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PREFACE TO SECOND EDITION 

The present revision is for the main part limited to three principal 

objectives: 
(1) The expansion of the treatment of the rigid joint structure to 

include (a) an account of the Cross method of moment distribution^^ 
which has attained such wide popularity in recent years, (h) a generaliza¬ 
tion of the slope-deflection method rendering it applicable to frames 
containing members with variable cross-sections, and (c) the analysis 
of the multi-storied building frame by the Maney-Goldberg adaptation 
of the slope-deflection method, which is believed to be especially well 
adapted to office computation, and by the Cross method. 

A portion of this material appears at the end of Chapter III (Special 
Methods of Attack), the remainder in Chapter V, which has been entirely 
rewritten. To include the new matter, without unduly increasing the 
size of the book, a considerable portion of Chapter V of the first edition 
has been omitted and the separate chapter on secondary stresses has 
been replaced by a briefer, but, it is believed, adequate treatment in a 
section of the new Chapter V which is now entitled Rigid Frames and 
Secondary Stresses. 

(2) The addition of an introductory treatment of the theory of 
suspension systems. The last decade has witnessed a remarkable 
extension of the suspension bridge type to intermediate and even to 
comparatively short span structures, so that a discussion of the basic 
theory appears desirable, even in an elementary treatise. The presen¬ 
tation in Chapter VII follows rather closely the conventional treatment 
laid down in the standard American works on the subject, and it is 
hoped that it will suffice to introduce the reader to one of the most 
complex as well as one of the most important fields of structural design. 

(3) The correction of errors of detail, typographical and otherwise, 
as well as some obscurities of statement appearing in the first edition. 

In addition to the above changes some slight additional matter has 
been added to the section on continuous trusses in Chapter IV and the 
Bibliography has been revised to bring it reasonably up to date. 

As in the first edition, every effort has been made to acknowledge 
specific information, wherever it is used. In the matter of corrections 
the authors^ thanks are due to Prof. W. S. Kinne of the University of 
Wisconsin and to Prof. F. H. Constant of Princeton University, who 
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VI PREFACE TO SECOND EDITION 

called their attention to the error in the solution of the A-frame problem 
in Chapter V and noted the correct analysis, and to many users of the 
book who have made valuable suggestions for its improvement. 

The authors are also deeply indebted to Mr. Brice R. Smith, Office 
Engineer with Sverdrup & Parcel, Consulting Engineers, St. Louis, 
Missouri, for the preparation of the example of suspension bridge 
analysis in Chapter VII, and to Mr. E. B. Murer, formerly Fellow in 
Structural Engineering at the University of Minnesota, now with the 
firm of Sverdrup & Parcel, for extensive assistance in the preparation 
of the revised manuscript. 

To Messrs. H. W. Schleiter and E. F. Graves, Fellows in Structural 
Engineering, University of Minnesota, thanks are due for assistance in 
seeing the book through the press. 

J I P 
University of Minnesota ' * 

April, 1936 Cr. A. M. 



PREFACE TO FIRST EDITION 

This book has grown out of the authors’ needs in teaching the sub¬ 
ject of Indeterminate Structures during the past fifteen years. It is 
intended to present as clearly as possible, and as fully as is consistent 
with an elementary treatise, the fundamental methods of attack on the 
problem of indeterminate stresses, and to illustrate these methods by 
application to some of the more common types of indeterminate struc¬ 
tures. 

It is believed that the book will be suitable for brief introductory 
courses and that it also contains sufficient material, if supplemented by 
some reference reading, for the longer courses now offered to advanced 
seniors and graduate students in many technical schools. While written 
primarily as a class room text, it is hoped that the book will prove useful 
to engineers wishing to work up the subject by independent study. 

Some brief remarks on the general plan of the work may not be out 
of place. 

Chapters I-III, comprising more than one-third of the book, are 
devoted to an exposition of the theory of elastic deflections and to a 
broad treatment of the general problem of indeterminate stresses. 
Every effort is made to show the essential unity of the subject under¬ 
lying the great diversity in method. 

Chapters IV-VII treat specifically the continuous girder, the rigid 
frame, the elastic arch, and secondary stresses. With few exceptions, 
the treatment is devoted entirely to the development and illustration of 
methods of analysis. 

Chapter VIII, containing a general discussion and historical survey, 
is in the nature of an appendix. It is hoped that it may stimulate the 
reader’s interest in some of the broader phases of the subject. 

Among the special features of the work, in addition to those just 
noted, may be mentioned the unusually full treatment of the rigid frame 
(which has grown so rapidly in importance of late), the wide use made 
of the slope deflection method, and the large number of numerical prob¬ 
lems accompanying the text. 

To keep within the limits of a moderate-sized volume it was neces¬ 
sary to exclude some important topics which might well claim a place 
even in an elementary treatise. Among these may be mentioned the 
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theory of suspension systems, of wind stresses in tall building frames, 
and the graphic treatment of continuous girders, frames and arches. 
Whether in all cases the selection has been wise must be left to the judg¬ 
ment of professional colleagues who use the book. 

In any such book as this, the indebtedness to other works on the 
subject is of course very great. It was the intent of the authors to give 
all sources of specific information in the footnotes; for any cases where 
they may have failed to do this, they wish to make acknowledgment 
here. They are under especial obligation to Lieutenant Joseph A. Wise, 
formerly Instructor in Structural Engineering, and to Messrs. Donald 
0. Nelson and Frank E. Nichol, Fellows in Structural Engineering of the 
University of Minnesota, for important assistance in the preparation of 
the manuscript. They are indebted to Mr. Gilbert C. Staehle, Consult¬ 
ing Engineer of Minneapolis, for some of the problems in Chapter V, 
and to Professor Frank H. Constant of Princeton University and Pro¬ 
fessor Hardy Cross of the University of Illinois for most valuable crit¬ 
icisms and suggestions. For these services the authors wish to express 
their deep appreciation and thanks. 

Thanks are also due Dean F. E. Turneaure and the McGraw-Hill 
Book Co. for permission to reproduce Figures 109 and 110/, respectively. 

The authors can hardly hope that a book containing so much detail 
will be entirely free from errors, and they will greatly appreciate having 
these brought to their attention. 

John I. Parcel 
George A. Maney 

University op Minnesota, 

April, 1926. 
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AN ELEMENTARY TREATISE ON 
STATICALLY INDETERMINATE STRESSES 

INTRODUCTION 

A. Nature of Statical Indetermination 

1. Definition.—Any structure in which the reactions or stresses are 
not fully defined, in terms of known quantities, by the necessary rela¬ 
tions of static equilibrium, is said to be statically indeterminate. 

For the student who is unfamiliar with the conception, some elabora¬ 
tion of this definition may be helpful. 

2. Structural Stability.—First we may recall some facts in the funda¬ 
mental theory of simple structures. The prime requisite in any struc¬ 
ture, as an engineer views it, is stability. The bridge must maintain its 
roadway at a prescribed level; the steel skeleton of an office building 
must hold the walls and floors rigidly in place; the dam or retaining wall 
must keep a fixed position against the pressure of water or earth. We 
specify, therefore, in all structures, that the structure as a whole and 
all its parts shall satisfy the conditions of static equilibrium. These 
conditions are but three in number and are expressed mathematically 
by the well-known equations: * 

2Fx =0.(a) 

sn = 0.(Jb) 

SAT = 0.(c) 

3. Examples.—We may note three cases (see Figs. 1, 2 and 3). 
Fig. 1 is obviously unstable. Unless the load P acts along the line 

AB, the structure cannot maintain its position no matter how strong 

* It is to be understood here and throughout this book that we are dealing only 

with forces lying in a plane. 



2 INTRODUCTION 

the member AB nor how firmly supported. Fig. 2 is clearly a stable 
form for all conditions of loading and the simplest form possible for 
maintaining the point -4 in a fixed position against the action of any 
force P, The point cannot move appreciably except by the failure of 
one of the bars. 

It should be clear from the above that any pair of bars in Fig. 3 will 
constitute a stable system, and therefore this structure has one super¬ 
fluous member. Fig. 1 is essentially unstable; Fig. 2 is “ just stable 

Fig. 3 is over-stable.^' Or, to put it another way, (1) is structurally 
defective, (2) is structurally sufficient, (3) is structurally redundant. 

4. Analytical Conditions.—Most solutions of practical structural 
problems involve an answer to the question—Given a structure and a 
loading, what must be the value of a given reaction or stress in a given 
member to insure equilibrium? " Applying this method to Fig. 1 we 
see that at B we require Rz = Ry = Py and M = P a, But, from 
the conditions of the problem (smooth pin at B), we cannot develop 
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a moment at the point of support, i.e., we have more conditions 
than means of satisfying them. Algebraically, we say there are more 
equations than there are unknowns, and no solution, in general, can 
exist. 

In the familiar case of Fig. 2, known methods of stress analysis show 
that for any condition of loading there is one and only one set of values 
of reactions and stresses which are consistent with equilibrium. Alge¬ 
braically, we have exactly the same number of unknowns as we have 
equations of condition. 

Turning to Fig. 3 we note that at joint A, for instance, we may 

remove any one of the bars and yet satisfy all the requirements for 
equilibrium by suitable stresses in the other two. If we arbitrarily 

P P 
assume any value for AD (say — or similar value), we at once find 

u Z 

the proper equilibrating values for the other bars by application of 
equations (a) and (6). That is to say, there is more than one set of 
values (actually an indefinite number) of the reactions and stresses in 
the structure of Fig. 3 which will completely satisfy the requirements of 
equilibrium,—more unknowns to determine than equations of condition, 
and no definite solution can be effected. 
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We may say, then, that a solution of (I) is in general impossible, the 
solution of (2) is definite and unique, the solution of (3) is indeterminate 
—statically indeterminate, we should say, because thus far only statical 
relations have been invoked in the solution. 

6. Generality of Statical Requirements.—The following point 
cannot be too strongly emphasized: To say that the three statical 
equations are insufficient for the solution of a framework of the type 
of (3) does not mean that they do not apply with all the force they do in 
any case. Any useful structure must fully conform to the laws of static 
equilibrium.* In some structures these laws, mathematically expressed. 

Fig. 4 

suflBice for a complete analysis of stresses; in others they do not; but 
this in nowise relieves the latter of the fundamental requirements. 

6. Principle of Consistent Distortions.—Seeing that the laws of 
equilibrium alone do not define the reactions and stresses in certain 
structures, we naturally ask what are the conditions which do serve to 
define these quantities. We know that the stresses and reactions are 

* This statement is subject to obvious qualification—movable bridges, fixed 

bridges subjected to suddenly applied live loads, cranes, ships, etc., may not, in a 

sense, fully conform to statical conditions, but this discrepancy is of no great impor¬ 

tance so far as methods of analysis are concerned. 
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not arbitrary and lawless; “real indeterminateness does not exist in 
nature/' * To find the answer to this question we must undertake a 
more exact inquiry into the behavior of a structure under stress. Many 
problems in stresses can be analyzed quite correctly on the assumption 
that the structure is a rigid body; but, of course, all bodies of which 
we have any knowledge are actually at least slightly deformable and 
the deformations and the corresponding stresses arc connected by very 
definite experimental laws, as the student has already learned from the 
study of mechanics of materials. Without taking up the matter in detail 
at this stage, it is not difficult to see how this fact affects the problem 
under consideration. Take the simplest possible case, as shown in Fig. 4. 
If we arbitrarily assume, for example, that AB — 0, we arrive at a set of 
values for the remaining stresses and reactions which satisfy the laws 
of equilibrium and, so far as this requirement goes, are as valid as any 
other. Let us now examine the elastic deformations. If the bars are 
all equal, the point A will move slightly downward along AB because 
of the elastic yield of 
the structure CAD. 

But, since the three 
bars are rigidly at¬ 
tached at Aj this can¬ 
not happen without 
inducing a consider¬ 
able deformation and 
hence a considerable 
stress (actually more 
than in either of the 
other bars) in AB, 

which was assumed to 
be zero. Similarly, 
any other arbitrary set 
of stress values, even 
though complying 
with all conditions of 
equilibrium, will result 
in incompatible defor¬ 
mations. Without at¬ 
tempting here to jus- 

Fig. 5 

tify it fully, we may now enunciate the principle upon which the answer 
to the preceding question is based. The reactions and stresses in any 
structure must not only accord with the requirements of static equi- 

* Kelvin and Tait, Natural Philosophy,” Vol. II, page 161. 



6 INTRODUCTION 

librium, but they must result in consistent elastic distortions. The theory 
of statically indeterminate stresses as presented in this book consists 
in developing in some detail the implications of this principle in its 
various phases and applications. 

7. Scope of Principle.—Though this law applies with all the force 
and generality of the laws of equilibrium, it has no significance for the 
analysis of structures unless they have redundant supports or members. 
For in all simple (i.e. ^'just-stable^') structures the distortions, so long 
as they remain small, are independent of each other—any member may 

(&) 
Fig. 6 

change its length or any support may be displaced without thereby 
stressing the other parts. This must follow from the very fact that the 
structure has just enough members and supports for stability and no 
more. A little consideration should make this clear. 

(a) and (6) of Fig. 5 are unstable forms. Within certain limits they 
may be displaced at will without awakening any resisting forces. In 
Fig. 6 the preceding forms have been rendered stable. From the 
previous discussion it is clear that, since the removal of any member 
of (a) and any support of (6) will result in an unstable form, therefore 
any member of (a) may change its length and either support of (6) may 
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be displaced without bringing into play any resisting forces. The law 
of consistent distortions has no meaning for such structures because 
any set of small deformations or displacements are self-consistent. 

In Fig. 7 the forms have been made redundant. It is clear that, 
since the removal of any member from (a) or any support from (6) still 
leaves a stable (rigid) structure, therefore the deformation of any 
member or displacement of any support will necessarily arouse resist¬ 
ing forces. Viewing the problem in another way, we may say that in 

(&) 

Fig. 7 

(a) of Fig. 7, the length of any member is a function of the other lengths, 
while in (a) of Fig. 6, the lengths are (within certain limits) quite un¬ 
related. Analogous relations hold for the supports. 

B. Types of Statically Indeterminate Structures 

8. Some of the more important structural problems requiring the 
theory of statically indeterminate stresses for their solution are tabulated 
below. The classification as arranged is merely for convenience of 
treatment; it is in no sense rigid or final, nor does the list pretend to be 
complete. 
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I. The Continuous Girder. 

a. Ordinary restrained and continuous beams. 
h. Swing bridges and turntables. 
c. Continuous trusses. 

Queensboro bridge (a continuous cantilever), the Scioto- 
ville bridge, the B. <fe L. E. bridge over Allegheny River at 
Pittsburgh, and similar types. 

II. The Elastic Arch. 

a. The two-hinged arch. 

1. Solid arch rib (steel or concrete). 
2. Arch truss (Hell Gate bridge). 
3. Spandrel braced arch (Grand Trunk R.R. Niagara 

Bridge). 

h. One-hinged arch (very rare). 
c. Hingeless arch. 

1. Solid steel rib. 
2. Trussed steel rib (Eads Bridge). 
3. Reinforced concrete arch (nearly all concrete arches 

in America are hingeless). 

III. Suspension Systems. 

a. Braced cable (Hudson River bridge). 
b. Wire cable with stiffening truss (Manhattan and Williams¬ 

burg bridges). 

IV. Trusses with Redundant Members. 
Double triangular and Whipple trusses and other similar types* 

V. Rigid Frames. 

a. Simple quadrangular frames. 

1. Beam and column frames in building. 
2. Solid portals. 
3. Box culverts. 

b. Irregular frames. 

1. Sewer sections and water conduits. 
2. Ship frames. 
3. Miscellaneous types. 

VI. Composite Frameworks. (Beam and truss combinations.) 

a. Framed bent and framed portal. 
h. King and Queen post trusses. 
c. Miscellaneous types. 
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VII. Multiple Rigid Joint Problems, 

а. Secondary stresses in bridges. 
б. Wind stresses in high building frames. 
c. Open web (Vierendeel) girders. 

VIII. Girders on Continuous Yielding Supports, 

a. Railroad rail. 
b. Footings and foundations. 
c. Pontoon bridges. 
d. Ships. 

IX. Flat Slabsy Arch DamSy Solid Domes, 

X. Buckling of ColumnSy StrutSy and Girder Webs. 

Many of these problems are beyond the scope of an elementary 
treatise. Some of them, notably the last two, involve a relatively 
exact investigation of the stress-strain relations within an elastic solid, 
and hence require the methods of the mathematical theory of elasticity 
for solution. This analysis differs so markedly in form from the ordinary 
methods of attack in statically indeterminate structures, that such 
problems are usually placed in a group by themselves. 

9. Structures Indeterminate Internally and Externally.—We dis¬ 
tinguish between structures that are indeterminate as to the supporting 
reactions and those indeterminate as to internal stresses. The former 
are said to be statically indeterminate externally, and the latter statically 
indeterminate internally. 

10. Criterion of Statical Indetermination.—Degree of Indeterminate^ 
ness, A structure which is indeterminate externally will generally be 
noted on inspection. Exceptional cases may arise, but they are rarely 
of any practical importance. The question of whether or not a frame¬ 
work is redundant internally is less easy to settle by inspection. The 
following simple criterion will suffice for all cases of plane structures 
likely to arise in practice. Nearly all such trusses are essentially 
assemblages of triangles. We may imagine them constructed by suc¬ 
cessive addition of the various joints, starting with any triangular 
frame as a base. Now, for stability, it is in general necessary and suf¬ 
ficient that each added joint shall be connected to the framework by 
two bars. Thus if n = the number of joints and m =* the number of 
bars, m — 3 = 2(n — 3), or m = 2n — 3.* 

* In certain limiting cases a frame will be defective even though there be 2n-3 
bars; in other special cases a stable frame may be devised which will possess fewer 
than 2n-3 members. As noted above, however, these frames have little practical 
significance. 
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We may approach the question from a slightly different standpoint. 
The student will recall, from the theory of stresses in simple structures, 
that for every joint of a simple truss we may write two and only two 
independent equations. From statical conditions alone, then, we have 
a total of 2n equations for the entire structure. Now, in general, to 
assure stability of the structure as a whole under any given set of 
forces, we must have at our disposal the magnitude and direction of 

one reaction and the magnitude of the other—three unknown quantities. 
The total number of unknowns is then m + 3, and if the structure is to 
be statically determined, this must not exceed 2n. If it is less, then 

the structure is unstable. Hence a determinate and stable framework 
should have m = 2n — 3. 



CHAPTER I 

DEFLECTIONS 

1. General.—The discussion in the preceding pages has shown that 
a solution of the problem of statically indeterminate stresses must be 
based on the elastic deflections of the structure. Indeed, it was there 
stated that the problem of determining the statically indeterminate forces 
was essentially that of so adjusting these forces as to secure consistent 
elastic distortions. It is evident, therefore, that a thorough study of 
the character of such distortions and of the methods of computing 
them must precede the study of indeterminate stresses. 

There are also many cases where a knowledge of deflections is 
desirable for other reasons. For example, it is frequently desirable to 
camber long-span bridge trusses in such a manner that the loaded chord 
will take a horizontal position under maximum loading or some specified 
combination of dead and live loading. This means that in the un¬ 
stressed state the chord will have a slight upward curvature. This 
result may be secured by making each top chord member a trifle longer 
than would correspond to the final form of the truss, a method common 
in ordinary cases, or by modifying the length of each member by the 
amount it will deform under maximum stress, a more correct method, 
and one preferable for very large structures. In either case, it is evident 
that for a rational solution of the problem it is necessary to know the 
relation that exists between a small change in length of any member 
and the corresponding displacement of any joint. A problem illustrat¬ 
ing both cases is given on page 88. 

In many erection problems, especially in the cantilever erection of 
long-span bridges, a knowledge of elastic deflections is of great impor¬ 
tance. In the erection of the Sciotoville two-span continuous bridge 
for example, one of the spans was erected on false-work and the other 
cantilevered out from this to its abutment, and later jacked up to allow 
the end shoe to be placed. Obviously it was of the greatest importance 
to know beforehand what the dead load deflection of the end would be, 
and what jacking force would be required to lift it sufficiently to set the 
shoe. 

In the same structure it was decided, in order to avoid high secondary 
11 
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stresses, to erect the truss under considerable initial strain in the 
opposite direction from that developed under full loading. This proc¬ 
ess necessarily required a careful and detailed study of deflections. 

Many other examples might be cited to show that it is often neces¬ 
sary or desirable to determine clastic deflections for their own sake. 
In spite of the importance of the theory of deflections in this connec¬ 
tion, however, it still remains true that this theory finds its chief applica¬ 
tion in the analysis of statically indeterminate stresses. 

We shall treat in this chapter several methods for obtaining the 
deflections of structures. One or two general remarks should precede 
this discussion. To avoid needless repetition, it should be emphasized 
here that in this treatise we shall deal only with deformations and 
displacements that are very small as compared with the dimensions of 
the structures concerned. This assumption is implicitly involved in the 
ordinary theory of beams and trusses, since it is there assumed that the 
same dimensions may be used in the strained state as in the unstrained 
state of the structure. For all ordinary cases, the facts fully justify the 
assumption. For example, the unit deformation of steel or concrete 
for maximum allowable working loads will seldom exceed 1 in 2000. 
The temperature change for a range of 100 degrees is but little more. 
(CoeflScient of expansion for both steel and concrete is about 0.0000065 
per degree of temperature change.) The total deflections resulting 
from such small deformations will usually be too small to modify the 
shape of the structure materially.* 

It may be further noted that it is seldom possible to determine the 
deflections of structures as they exist in practice to any great degree of 
refinement, nor is such refinement particularly desirable. It is a most 
important fact, and will be made clear in the later discussion, that in the 
analysis of indeterminate stresses it is the relative rather than the 
absolute values of the deflections which are important. 

la. Methods of Analysis.—The methods of determining deflections 
treated in this chapter may be classified as follows: 

I. Method of Work. 

a. The Maxwell-Mohr Method (Dummy Unit Loading). 
5. Castigliano's Method (Derivatives of Internal Work). 

• There are some important exceptions to the rule that the elastic deflections may 
be regarded as negligibly small in comparison to the main dimensions of the structure. 
For example, the calculated deflection of the Manhattan suspension bridge, under 
maximum live load, is about 16 ft.—roughly equal to 10 per cent of the sag and 
1 per cent of the span. (See Johnson, Bryan and Tumeaure^s Modem Framed 
Structures.” Part II, page 247.) 



DEFLECTIONS BY METHOD OF WORK 13 

11. Special Methods. 

c. The Moment-Area Method. 
d. The Elastic-Weight Method. 
e. The Displacement (Williot) Diagram. 

Methods a and b are based on the principle of the work of deforma¬ 
tion, and we shall see later that they are nearly identical in mode of 
application to most problems here treated. We shall, therefore, group 
them under the head of the Method of Work, and we shall adopt this as 
the general basic method for the treatment of deflections. It is not 
always, and in fact not generally, the shortest or most direct method for 
dealing with special problems, but as a broad fundamental method for 
use in developing a comprehensive general theory, its advantages have 
led to a nearly universal adoption. 

Methods c and d, despite a marked difference in fundamental con¬ 
ception, have so many points of similarity that they are frequently 
treated as a single method. They may be derived from the principle 
of work, but may also be established independently. 

Method e is quite distinct from any of the others. 
Still other means of finding deflections, differing markedly from any 

of the above and having wide fields of application, have been devised. 
Opinions as to advantages and disadvantages differ greatly. However, 
in an elementary treatise, we can only attempt to present some of the 
best known and most widely used methods of attack. 

We have omitted from discussion the well-known and very Important 
dPy AT 

beam-deflection differential equation ^ It is assumed that the 

student is suifliciently acquainted with this method from his study of 
mechanics of materials. 

SECTION I.—DEFLECTIONS BY METHOD OF WORK 

2. Statement of Problem.—Before we proceed to a deduction of the 
deflection equation by this method, it is well to state the deflection 
problem in a somewhat different form, perhaps, from that with which 
the student is familiar, and to develop the conception of the work of 
deformation. 

A beam AB deflects primarily because each elementary section dx 
is distorted, as shown in Fig. 8. (We shall later take up the relatively 
unimportant question of shearing deflections.) 

We have, for our purpose, completely solved the problem of deflec¬ 
tion for a straight beam when we answer the question, 'Hf an element 
dXf distant x from A, has its faces distorted through the angle da, the 
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remaining portion of the beam assumed rigid, what is the corresponding 
displacement of any point ql'' For, if the relationship can be established 
for any elementary section dx, the resulting displacement for all sections 
will be obtained by summing up the partial effects. 

The corresponding problem in an articulated truss may be stated 
thus: ^^If any member S is deformed an amount AS^ the remaining 
members assumed rigid, what is the corresponding displacement of a 
given point (See Fig. 9.) If this relation is established for any 

member, the result for any number of members follows by direct sum¬ 
mation. 

We should further note that there is a strictly geometrical relation 
between the deformation of an element of a beam and the consequent 
displacement of any point, and between the change of length of a mem¬ 
ber of a truss and the resulting deflection of any point. That is to say, 
a given distortion will be connected with a certain displacement, no 
matter what causes the distortion. This fact is too obvious to need elabora¬ 
tion, but since the deduction here given of the general deflection equa¬ 
tion is based in part upon it, the student should note it carefully. The 
principle of the work of deformation, to be developed in the next article, 
enables us to obtain conveniently a relation between internal dis- 
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tortioD and the resultant displacement of any point, when the distor¬ 
tion is caused by a load at the point. But by the principle just 
stated, this relation must be true whatever be the cause of the distortion; 
hence we are able to generalize the result at once. 

3. Internal Work of Deformation.—If a force is applied to any 
elastic body, there is a certain amount of energy expended in deform¬ 
ing the body. This must be equal to the product of the force and the 
component of the deflection of its point of application in the direction 
of its line of action, or to the sum of such products, if several loads are 
applied. If the elastic limit is not exceeded, the body will tend to regain 
its original position, and will do so against resistance, thereby perform- 

S 

ing a certain amount of work (‘‘negative'^ work compared to that of 
the original deflecting forces). If the body is perfectly elastic—we 
shall deal, here and later, only with strains inside the elastic limit —it 
will recover fully its original shape and complete a cycle during which 
there must be no energy gained or lost; i.e., the strained body must 
give out as much energy in regaining its original state as was stored up 
in it during the process of deflection. This is a clear requirement of the 
law of conservation of energy. 

The internal stored energy ('‘potential energy of straininay be 
expressed mathematically as follows: Referring to Fig. 9, suppose a 
load P to be applied at q and all members except L assumed rigid. A 
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stress will be developed in each member of the truss which may be 
represented by a pair of external forces applied axially at the ends of 
the member. For all members except L, these forces maintain their 
relative positions during deflection, and hence do no work. The two 
forces S applied to the ends of the member L will obviously perform 
an amooint of work equal to the product of the average value of S times 
the total deformation AL. If P be applied gradually, the stress S 
will gradually increase from zero to its full value, and the average value 
will be i S. The total internal work (only the one member L assumed 
deformable) will then be § S'AL. If Z/, A and E be given their usual 

SL 
significance, and the internal work of deformation may be 

expressed as 

AWi = iS-AL = 
2AE (la) 

If all members be regarded as elastic, this expression becomes 

2^AE 

A precisely analogous argument will hold for beams. 

Referring to Fig. 10, we suppose AP is a beam of any form of cross- 
section subjected, let us say, to a transverse load P. The internal work 
of deformation for an element dx (remaining portion of beam assumed 
rigid) will evidently be the sum of the products of the various fiber 
deformations and the average value of the corresponding fiber stresses 
during deformation, if the load is gradually applied. Take the layer of 
fibers shown as the area dA in the figure; the deformation of each fiber 

JlZv dx 
is ASy = -j- and if the fiber stress increases gradually from zero to 

its maximum, the average value will be g dA and the work of 
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1 M^xfidzdA 
deformation for this layer of fibers will therefore be ^ 

work of all the fibers on the cross-section will be 

2X 
iM^dx 
2 El • 

For the entire beam, the work will be obtained by summing the work 

performed by stresses at each element dx; hence 

1 r^M^dx 1 rmdx ,, 1 p. ,, 
’^•-2XTr-2X-rr'"-2X‘^-"’ ■ • ® 

if da represents the angular change between the two faces of the sec- 

F 

R-Fjp 

F ■> 

Fig. 11 

tion dx. (The student will recall, from his study of mechanics of 

matenals, that therefore _ = ^ = _ tan a = ^, 

since a is very small.) 
We may show independently that if a couple R (see Fig. 11) is 

displaced in any manner, the work performed will be Ra (if a is small). 
For evidently no work will be performed by pure translation of the 
couple, and the work of rotation may be expressed (if F maintains a 
constant value) as 

F{ds) + F{dt) == Fsa + Fta = Fa{s + <) “ Fpa = Ra, . (3) 

From the necessary relation of equality between internal and external 
work, we may say that if a beam is subjected to a number of loads P, 

so applied that the loads and corresponding internal stresses gradually 
increase from zero to the final value, and if 5 in general represents the 
component deflection, in the direction of the load, of the point of applica¬ 
tion of any load P, then from Equation (2) 

= = .... (4) 



18 DEFLECTIONS 

and similarly for trusses, if the members suffer axial stresses only, 
Equation (1) gives 

|SP5 = TFi = ^S;SAL = .... (4a)* 

A. Deflections by Maxwell-Mohr Method (Dummy Unit Loading) 

4, Truss Deflections.—We have seen that the essence of the problem 
of the deflection of structures is to obtain a relation between the distor¬ 
tion of a given element (small section dx of a beam or a single member of 
a truss) and the corresponding movement of a given point. The principle 
of work enables us to arrive at such a relation very simply. Applying 
the method to the truss of Fig. 9, load P applied gradually to point q 
and the member L alone regarded as deformable, Equation (4a) gives 
at once 

1 02 r 1 

iPA5„ =-- -,S-AL, 

whence 

ASg = AL— (5a) 

But we know from the fundamental theory of stresses that S is 
directly proportional to P, i.e., 

S = P X constant = Pfc, say. 

But this constant, /c, is numerically equal to the value of S when 
P = unity. Following the usual notation, we shall call this stress 
S (due to unit load) = u. Then Equation (5a) becomes 

A5g = AL*?/;.(56) 

or, if all members are deformable and S and AL are general terms for 
the stress and deformation of a member, 

= SAL-u.(5) 

The relations (5) have been proved on the assumption that AL is 
caused by the load P at q. But from the discussion in the last para¬ 
graph of Article 2 it is clear that if 5^ = AL*u when AL is a deformation 
caused by a load at q, then 8q must equal AL*u when AL is the same 
change of length due to some other cause. Since Equation (5) holds for 
all finite values of P and A (so long as the deflections remain small), 
by suitable variation of these quantities we can make the equation 

* These relations are due to Clapeyron, 1833. 
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cover the whole practical range of values of AL 
A E’ 

where 

L and E are constants). Therefore, Equation (56) is to be regarded 
as a perfectly general kinematical relation between any small change in 
length of a member and the corresponding displacement of a given 
point. AL may be a change of length due to temperature, to play in a 
pinhole, to the screwing up of a tumbuckle, or a deformation due to a 
given loading. The last is, of course, by far the most important case. 
If the truss is subjected to any set of loads and S designates the stress in 
any member due to these loads, we have 

Sq = 2AL*m = ^ 
SL __ s^SuL 
ae'^ 2^ae’ (5c) 

as usually written. 
6. Beam Deflections.—The equation for beams follows similarly. 

We note that ^PA8q = ^Mda (see Fig. 10), if we consider only section 
dx elastic, and 

A5g = ........ (6o) 

M . 
But p is a constant and is numerically equal to the value of M 

tvhen P is unity. Calling this value m, we have 

= m-da, . . (66) or (6) 

which is the fundamental deflection equation for beams. We should 
note that in developing Equation (6a) we assume that the distortion 
of the faces of the element dx through the angle da is produced by the 
load P. But we generalize the resulting relation as in the case of the 
truss; that is, a change da at a given section will produce the same 
deflection at a point q regardless of what causes the change, and the 
deflection will be equal to the product of the angular change into the 

constant -p = m. 

In the case of the beam, we are concerned almost wholly with bend- 
J^dx 

ing due to applied loads. For this case, da = and if the whole 

beam is treated as elastic (6) goes into 

X ^Mdx 
m, or d. 

r^Mmdx 

X ' . . (8c) 
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6. Deflection Constants.—Equations (5) and (5c), (6) and (6c) 
give a general solution of the problem of deflections. The quantities 
u and m may be termed the deflection constants for trusses and beams 
respectively. When put into words, the deflection equation for trusses 
states that if a bar changes its length by an amount AL, the correspond¬ 
ing displacement of any joint q in any desired direction is equal to AL 

times the deflection constant u, the latter being numerically equal to 
the stress in the member due to a unit load at g, acting in the direction 
of the displacement desired. 

For beams, we may say that if any clement of the beam undergoes 
a relative angular displacement of its faces, da, the corresponding dis¬ 
placement in any given direction of any point q in the axis of the beam 
is doL times the deflection constant m, which is here equal to the moment 
at the section where the element is taken produced by a unit load at q 
acting in the direction of the displacement sought. 

7. General Interpretation of 5.—Angular Displacement. In the fore¬ 
going discussion, 5 has been used to signify the linear displacement of 
a point referred to its original position. But there are other cases of 
deflection which are of considerable importance. For instance, we may 
wish to know the relative displacement of two points with respect to 
each other, or we may wish to know the angular displacement of a given 
line in a beam or framework. The given equations may be at once 
generalized to cover these cases by a proper interpretation of the deflec¬ 
tion constant. 

Referring to Fig. 12a, let us suppose that a pair of loads P, P act at 
h and C as shown, and that member BC (any other member might have 
been selected) alone is elastic. From Equation (4a), if A5 = relative 
displacement of h and C along line feC, 

S 
\PAh — \SaLj or A6 = —AL = w-AL, . . . (7 a) 

which is identical with (55) if by u we understand the stress in BC due 
to a pair of unit forces acting as shown in the figure. 

Similarly, suppose a couple F-p = M to he applied to the line Be 
as shown in Fig. 12a, and again imagine all members rigid except BCy 
and let & and AL be the stress and deformation, respectively, of BC due 
to the couple M. Then, in view of the equality of internal and external 
work and of Equation (3), (if Aa is the small angle through which bar 
Be is displaced), 

Ig 
MAa *= SALf or Aa = *77^ * u* AL, . . . (?6) 

M 

which is analogous to (56) if u is the stress in a given member due to a 
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couple of magnitude unity, applied to a line whose angular displacement 
Aa is desired. 

In Fig. 126, suppose a couple Afg is applied to the beam at 5, and 
only the element dx is elastic. Let Aoia be the angular change of the 
line 1 — 1 caused by da, the angular change between the faces of the 
element dx, due to the moment M at section 2 — 2. (This moment is 
produced by the applied moment Mq.) Then 

M 
MqAaq — Mda, and Aaq = ~ mda, ... (8) 

if m is the moment at section 2 — 2 due to a couple of magnitude unity 
at\ — Since, as already noted, the only flexural displacement of 

any importance in beams is that due to flexural stress, we may give da 

Mdx 
its value, and Equation (8) will read 

El 
. Mmdx r^Mmdx 

Aaq , or "9 “ ~ JEI ' 

if all sections are elastic. This is analogous to (6c), the only change 
being in the character of m. 

These equations are derived on the assumption that the applied 
loading is the cause of the internal deformation. But we may show, 
exactly as in the preceding cases, that the relation holds whatever the 

cause of AL and da. 
We may then make the following general statement regarding the 

deflection equations: 
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(1) Beams. If any element dx, in a beam AB, is deformed after 
the manner of Fig. 8, a displacement will in general take place at each 
point or section of the beam; this displacement will be in direct propor¬ 
tion to the deformation, and its amount will be equal to the relative 
angular displacement of the two faces of the element dx multiplied by a 
constant '^deflection factor.^’ This constant is numerically equal to 
the moment at dx produced by a unit loading applied at the point or 
section whose displacement is under consideration. This unit loading 
will be a single force equal to unity if linear deflection is sought, and 
must act in the direction of the deflection. It will be a couple of magni¬ 
tude unity if angular deflection is desired. 

(2) Trusses. If any member of a jointed frame changes its length 
a small amount, each point of the frame will in general be displaced, and 
the amount of the displacement will be equal to the change of length 
multiplied by the deflection factor for the point and member. This 
deflection constant is numerically equal to the stress in the member 
caused by a unit loading applied at the point or section where the dis¬ 
placement is desired. As for beams, the unit loading will be a unit 
force or unit couple, depending on whether linear or angular displace¬ 
ment is desired. To emphasize the distinction, wc shall generally use 
the symbol 8 to represent linear deflection and a to represent angular 
deflection, but it is clear that we might very well use 8 (or some other 
symbol) as a perfectly general designation of elastic displacement— 
linear or angular, depending upon the nature of the deflection constants. 

7a. Units.—It is well to keep in mind the units involved in the 
various terms of the deflection equation. Thus 

CMmdx ^ C Mnidx 
or 

gives 

Similarly 

(lb. X in.) (lb. X in.) X in. 
in. =-n- = in. 

lb. 
in.2 

X in.4 X Ib. 

or = V SuL 
^AEXllb.’ 

gives 
lb. X lb. X in. 

in.2 X ^ X lb. 
in.2 

= in. 

For convenience in writing the equation, we ordinarily omit the term 
representing the unit load; i.e., we say 8 is numerically equal to 

2 SuL , ^ CMmdx 
■JE’ or equal to J-^. 
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Or we may think of the deflection constants u and m as respectively 
equal to 

[stress duo to unit loading applied at deflected point] 
[ _in direction of desired deflection J 

Unit loading 
and 

[Moment due to unit loading applied at deflected point] 
I in direction of desired deflection J 

Unit loading 

8. Examples. 
(1) Deflection of cantilever loaded at end (Fig. 13a). 

with origin at By 

Mmdx 
1^ ~Er> 

M — Px ) 
m = Oy X < h i Mmdx = {Pt? — Phx)dx 
m = l^(x — h)y X > h ] 

_z. r.3 3L26 m 

2], SE'/r 2 ■^2j- 

li h = Oy ds 3jsr 

as* == 
Mm, fmadx _ P 

El -Elf 
xdx — ~ ^)) (since = unity). 

PL^ 
li b = 0, aa = 

2Er 
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(3) Simple beam with single load at center (Fig. 13c). 

Mmdx 

■ J. ~sr- 

OrigiD at M = if a < ^, 

Cl -r ^ L 
m = ^ X, if X < 2 • 

P h 
Origin at M ^ ^Xyii x < 

j^Xyii X < a, 

^ ^ / N cl{L — -r ^ ^ 
jtx — (x — a) = —-j--, if - > X > a. 

- 

„ _ L . _ PL3 
It a 2’ *“»■' 4SEr 

9. Maxwell’s Law of Reciprocal Deflections.—In the beam of 
Fig. 14a let any two points p and q carry equal loads P, If we suppose 
the load at q to be removed and write the equation for the deflection 
at q due to P at p we have, 

j MpiUqdx 
El » 

where Mp = moment at any section due to P acting at p; 
and = moment at any section due to a unit load acting at q. 

Similarly, if the load at p is removed and we have P acting at q alone 

8pq — deflection at p due to P acting at g == X ^ Mqntpdx 
El * 

But 

whence 
Mp = Prop and Mq = Pm*, 

hpq =S d*p,. • # r • . • (9) 
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that is, given any two points in a beam, the deflection at the first due 
to a given load acting at the second is equal to the deflection at the 
second due to the same load acting at the first. 

A similar argument establishes the theorem for a truss (Fig. 146). 
This principle, known as ^^MaxwelFs Law of Reciprocal Deflec¬ 

tions,'^ * is one of the most useful and important in the theory of 
indeterminate structures. It is more general than appears from the 
preceding illustration. It obviously applies, as the student may easily 
show, to loads having different directions. It applies also to angular 
as well as to linear displacements, as may easily be shown. We may 
first note that, since the magnitude of the equal loads P is immaterial, 
it will be convenient to take P = I Ib., and the theorem is then con- 

la) 

Fig. 14 

veniently stated thus—^Hhe deflection at p due to unity at g = deflec¬ 
tion at q due to unity at p." If in place of ^‘unit load" we put unit 
couple, we at once obtain 

mia)v^fn^audx -m-= J, —m— = 
Further, if we suppose a single load unity acting at p in any direction 

* After its discoverer, James Clerk Maxwell, Cavendish Professor of Experi¬ 

mental Physics at Cambridge University, and one of the greatest physicists of 
modem times. 

t The symbol “ is used here to emphasize the fact that m is due to a unit 
couple rather than a single unit force. The student should note that if we define 

mq as the moment at any given section due to a unit loading at q, this covers both 

the above cases and no special symbol is needed—see remarks on page 22, (2). 
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and we wish the angular displacement at by application of the funda¬ 
mental formula we get 

a'fl (due to unit load at p) = 

where rrip = moment at any section due to unit load at p, as before; 

and 7n(a)q = moment at any section due to unit couple at q. 

f ^ mp^m(a)Qdx 

~~EI ^ 

If we have a couple unity acting at g, no other loads, and we wish 
the linear displacement at p (in the direction of above unit load) we 
must have 

6'p (due to unit couple at q) 
m{a)gmpdx 

(11) 

that is, ^Hhe angular displacement at q due to a unit load acting in a 
given direction at p, is equal to the linear displacement (in this direc¬ 
tion) at p due to unit couple at q.'^ This holds equally for a truss. 

10. Shearing Deflection.—In the presentation of the theory of 
deflections in the preceding pages, no mention has been made of deforma¬ 
tion due to shear. We may investigate this problem in a manner similar 
to that used for the bending deflections. Referring to Fig. 15a, we pro¬ 
ceed to find the deflection at q due to a load P at g, assuming only the 
section dx as elastic. From the equality of internal and external work, 

P X = Internal work due to shear at section dx 

= Vr^f,. (12) 

if we assume that the shearing stress is uniformly distributed over the 
cross-section. This equation is analogous to Equation (65). We may 

show that ^ is a constant, numerically equal to the shear at the sec¬ 

tion when P = unity. Calling this deflection factor for shear v (cor¬ 
responding to m for bending and u for axial stress in a truss member), 

we get 

A5f (due to shearing distortion in dx) = t; X . . . (12a) 

where v is the shear at section dx due to a unit load at g acting in the 
direction of the desired 5^. The formula is general and will give the 
displacement of the point g due to a shear in dx from any cai^se. 

From the study of strength of materials we know that if v, = unit 
shearing stress, G - shearing modulus of elasticity and y = unit de- 
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truBion, or angle of shear, we must have y = % = if F is the total 
Cr Ah 

shear at section due to given loading. Also, since / is small, we have 

/ = dx-7 
Vdx 
AG 

For the shear throughout the length of the beam, 

K 
^ Vvdx 

(13) 

Expressions for angular displacement due to shear may be deduced 
in a similar manner, but this is of little practical significance. 

For a simple beam loaded with P at the center, the center deflec¬ 
tion is 

Vvdx 
~AG 

sT 2 2^ 

AG 
PL 
MG' 

For uniform load w per unit of length, 

5c 

L 
Vvdx 

/wL 
— • ^dx 

~AG 
wL^ 
SAG' 

Comparing these results with the corresponding center deflections 
due to flexure, we note that 

PL PL 
MG l.SAE „„ r2 
PL3 “ lA’ 

iSEI iSEAr^ 

if G = 0.4JE which is approximately correct for steel; also 

wL2 
SAG 
5wL* 
mEl 

with similar assumptions. 
For I beams and plate girders, r is approximately |d. For rec¬ 

tangular sections, r equals 

The following tabulation shows the relative importance of shear and 

moment deflections for different ratios of j. 
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TABLE A 

Shearing Deflection to Moment Deflection—Per Cent 

d 

L 

I-type of Section * 

i 
Rectangular Section 

Concentrated 
Load at Center 

1 

Uniform Load Uniform Load 
Concentrated 

Load at Center 

i 30 24 10 8 

tV 7.5 6 2.5 2.0 

tV 3.33 2.G6 1 il 0.9 

A majority of beam and girder spans have a proportionate depth of 
less than and for such cases the tabulation shows that no serious error 
will be involved in neglecting the shearing deflection. For short, deep 
beams and for trusses (where the proportionate depth is } to 4) the 
shear deflection cannot safely be ignored. In all cases of girders and 
beams with solid webs treated in this book, the deflection due to shear 
will be neglected. 

We should note again that these comparisons are made on the 
assumption that the shear distribution across the section is uniform. 
The actual distribution for rectangular and I sections is shown in 
Fig. 156. This results in a greater proportional deflection of the neutral 
plane due to shear, especially for the I section, but it does not invalidate 
the general conclusion stated above. 

11. General Equations for Combined Axial, Flexural and Shearing 
Stresses.—If we have a bar subjected to both transverse and longitudinal 
loads, we may express the total resultant displacement of an arbitrary 
point (see Fig. 16) in any specified direction by the superposition of the 
separate effects due to thrust, bending, and shear. We have 

. _SuL Mmdx , p Vvdx 
AG- 

SuaL Mmjix 
= + -W. 

• . . (14) 

(14a) 

These formulas assume that S and A are constants, which is usually 
the case. If either or both are variable, we must write 

Sudx 

I zr instead of 
AE' 
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This expression is often written in a different notation. U S N 
(normal force) and u — n (axial stress due to unit loading at point of 
deflection) we have 

which is the form commonly adopted in dealing with slightly curved 
bars, and which will be 
used later in this book. -- --.— -£- 

We frequently meet 
with a type of frame- 
work in which some of 
the members are sub- 
jectcd to bending as well q __^,C 
as axial stress. In Fig. 
17, members FE, FCj 
DC are hinged at their 
ends and hence receive 
axial stress only. But 
members ADF and BCE 
are continuous from A 
to F and B to E, and in 
general will be subjected Vr 
to both direct stress and 
bending. 17 

For such a case we 
obviously have for the deflection equation, 

XT' SuL . Mmdx 

SSuoL 
~AE 

Ml 

■^Jo 

Mmdx 

^ Mmjix 
El 

The terms involving mean that for a member subjected to 
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bending; we integrate the expression 
Mmdx 

from one end of the member 

to the other, and if there are several such members, add the results. 
12. Deflection of Curved Bars.—Thus far we have dealt with the 

deflection of straight beams, and frames composed of straight bars. 
Many important cases arise in the theory of structures (the arch rib, 
for example) in which formulas expressing the distortion of curved bars 
are required. This problem falls under two cases: (1) the case where 

the radius of cur¬ 
vature of the axis 
of the bar, and the 
depth of the bar in 
the plane of bend¬ 
ing, are quanti¬ 
ties of the same 
order of magni¬ 
tude; and (2) the 
case where the 
curvature is slight 
and the radius of 
curvature may be 
considered a very 
large number 
compared to the 
depth of the cross- 
section. 

In the first 
case we cannot 
assume that the 
simple stress dis¬ 
tribution of the 

straight bar is even approximately true. In the curved beam of Fig. 
18, which we will assume to have a symmetrical section, the length 
of the lower fibers ds^ is much less than that of the upper fibers dsi, and, 
assuming the distorted cross-section to remain plane and the neutral axis 

to be in the mid-plane, which measures the bottom fiber stress, must 

be greater than which measures the top fiber stress (Acfci = Ads2); 

whence it is clear that we cannot maintain equilibrium with the neutral 
axis in the central plane. As a matter of fact, the axis shifts toward 
the lower side, and the stress distribution takes the form shown in the 
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hatched area—a hyperbolic curve. For hooks, links, thick rings, and 
similar problems, the analysis must be carried out on this basis. On 
the other hand, for the case of the arch rib or most other curved bars 
met with in structural design, where the radius of curvature is from 
15 to 30 times the depth, the relative variation between the upper and 
lower fiber length is slight and the stress distribution is sensibly linear, 
so that for symmetrical sections the neutral axis may without serious 
error be taken to coincide with the centroidal plane (Fig. 19). 

In the present treatise we shall deal with curved bars of the latter 
type only. The deflection equations are easily obtained by a method 
similar to that used for straight bars. 

Let AB (Fig. 20) be the section of a curved bar acted upon by 
loads (not shown in figure) which induce both axial stress and bending. 
Assuming for the moment that only a small section of length ds is 
elastic, we wish to find the displacement of the point B due to this 
distortion. This latter will in general consist of a shortening or lengthen- 
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ing of ds by an amount Ads and a rotation of the face C1C2 through the 
small angle Ad0. As in the corresponding case for the straight beam, 
we assume a unit load acting at B in the direction of the desired deflec¬ 
tion (vertical in figure). This will in general produce a moment m and 
and an axial stress n at every section. Since we are temporarily regarding 

all portions of the beam as rigid except the length ds, the internal work 
due to the \4h. load when the small portion ds is deformed as above, from 

any cause, will be (from the fundamental formulas) 

AWi = n-Ads + m-Ad4 == 1 lb. • Afe, 

since the internal work of the unit load must equal the corresponding 
external work. 
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If all sections are elastic 

llb.SB =J' n-Ads + m-Ad<t}. 

This formula is perfectly general, but ordinarily we deal with the 

case where Ads and A(i(/) are deformations due to a specified loading. In 

such a case, if we call the resultant moment at any section M and the 

resultant normal stress through the axis iV, we shall have 

. , Nds . V 
= ae > 

and Ad<i> = angular change due to~axial deformation + angular change 

due to bending 

A 1 A 1 
= Aid<t> + A2d0 = + £/-’ 

since from Fig. 20, pAid4> = Ads, whence Aid<^ from (a)). 

It will be noted that these expressions are identical with the equations 

Nds 
for a straight bar except for the added term -i-v—. This addition 

Aiiip 

arises from the fact (which will be clear from the figure) that where 

the axis of the bar is curved, a displacement of the face CiC2 by an 

amount Ads along the axis must always be accompanied by a correspond¬ 

ing angular change Ad<f> — —— even if there is no bending. We may 

write the formula finally (dividing out the 1 lb.): 

, Nnds , Nmds , 

-X’ 
Mmds 

X 
or, if we let = n + 

If the section A is constant from B to A, and p approaches infinity. 

ds = dx; 

and (16) becomes 

, piV?^ds , n Mmds 

‘•-J, ■ • 

ion A is constant from B to A ^ and p 

AE ''AE\ AEr Jj, 

tnes 
BuL Mmdx 

Nmds 

SuL 

AE 

Mmdx 

which is Equation (14) with the shearing effect omitted. 
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Again referring to Fig. 20, if we choose the positive directions of 

coordinate axes as there shown, and designate counterclockwise rota¬ 

tion as positive (moments will then be positive which compress the top 

fibers), and if we further put ^ — s and recall that dx = ds-cos a and 
Jx 

dy = ds-sin a where a is the inclination of the tangent to the axis of 

the beam to the axis of x, we may write 

Vertical deflection = by — ^ • * (1^^) 

Horizontal deflection ^ ^^ ~ ’ ‘ 

These follow from (16), substituting for case of vertical deflection 

m = 1 lb. • a;, n = 1 lb. • sin a 

and for horizontal deflection, 

m = — 1 lb. • n = 1 lb. • cos a 

The signs will appear correct from physical considerations if it be 

noted that any positive rotation Ada displaces B upward and outward. 

B. Deflection as the Partial Derivative of the Internal Work 

OF Deformation 

13. General Equations.—Let AJ5, Fig. 21, be any beam or truss 
acted upon by any group of loads. 

Fig. 21 

We have (if loads are gradually applied, increasing uniformly from 

zero to P) Wi = internal work of deformation = external work of 

applied loads 

= + §P252 + . . • .(18) 

We inquire what is the change in Wi if any load, as Pr, changes by a 

very small amount APr. Since we assume that the elastic effect of 
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each load is independent of the others, it is clearly a matter of indif¬ 

ference how the increment to Pr is applied. (1) We may apply the loads 

Pi, P2 . . . (Pr + APr). . . Pn simultanoously; (2) we may apply the 

loads P and later add to them the small load APr; or (3) we may apply 

APr first and then apply the loads P. The final result must be the same 

in each case. Therefore, assuming the last order and gradual applica¬ 

tion of loads, we shall have 

Wi -f- ATT* = ^APf^ A8f -f- ^XP8 AP,*6,. 

If we take APr sufficiently small, APr*A5, vanishes to the second 

order of small magnitudes, and recalling (18) we have 

ATT. = APr Sr, or 5, = = (in the limit) . (19)* 
r O-^ r 

That is to say, in any beam or truss subjected to any set of loads, 

the deflection of an arbitrary point r is equal to the first partial derivative 

of the internal work of deformation with respect to a load at the point, 

Pr, which acts in the direction of the desired deflection. 

It should be noted that the right-hand member of (19) expresses a 

(partial) rate of change of the internal work as the load Pr changes. 

It is perfectly general for all finite values of the loads, and includes the 

case where a load is zero. We write down the general algebraic expres¬ 

sion for the total internal work and form its first partial derivative with 

respect to an arbitrary load acting at the specified point. In this expres¬ 

sion for the derivative we substitute the actual value of the load acting 

at r. If, as is frequently the case, r is a point at which there is no load, 

or none having a component in the direction of the desired deflection, 

Pr is equated to zero. A very simple example will serve to clear up the 

method. 

14. Application to Problem of Linear Displacement.—Let it be 

required to find the vertical deflection at B due to a load P at P, Pig. 22. 
From Mechanics of Materials (see Equation (2), page 17) 

Wi 
MHx P2 r 

h El 2ElX 
x^dx 

P^L^ 

6EI 

(assuming I constant), and = ^j, the well-known expression for 

the maximum deflection of a cantilever with a single load at the end. 

If we wish the vertical deflection at some intermediate point, as r, 

♦ This derivation follows closely that given by Foppl, ^Worlesungen,'' III, pages 

167-69. 
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we imagine an additional vertical load Pr applied to the beam. Then 

the total work is 

1 {Px)Mx 1 r^[{p Pr)^ — prxi^dx 
- iX "ST + si, El 

The first term, being independent of Pr, will disappear on differentia¬ 

tion, and hence may for our purpose be omitted. 

+ Pr)x - PrX.fdX 

= + -P^i(P+P.)(L2-:r.2)+P.2a:.2(L-xi)]. 

. ^ 
" dPr 

= ^[f(P + Pr)(L^-Xl®)-(P+2P,)x,(L2-Xl2)+2P,Xl2(L-x0j. 

This is a general formula, valid for any values (not infinite) of 

P and Pr- In this case Pr = 0 and 

~ BL^xi + xr^], ... a well-known result. 

15. Angular Displacement.—We may without difficulty extend the 

above method to the case of angular displacement. If in the structure of 

Fig. 21 we have a couple, R, acting at the end section B, for example, 

the work equation becomes, 

TFi = + iRa, 

if a is the angular displacement at B. If now we imagine an incre¬ 

ment AR to be added to the above loading, and applied before the other 

loads, just as in the preceding case, 

Wi -h AWi = i2P6 + iRa + AP-a, 
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whence 

a = 
ATf.- 

Afi 
(in the limit) 

dWi 

dR’ 
. . (20) 

that is to say, the angular displacement at any section of a girder is 
equal to the first partial derivative of the internal work with respect to 

a couple R acting at the section. As in the case of linear displacement, 

it is unnecessary that the actual applied loading shall include such a 

couple; we obtain 
dWi 

dR 
in a manner analogous to the preceding case. 

If in the beam of Fig. 22 we have a couple R acting at B 

Wi = 

9^' 
dR 

1 MHx _ 1 p.p , p«. 2j„ El 2El\ + 

+ PRx"’- + 

Vo El 

1 [PV 

2EI 3 

1 ■p2L3 

2E1 L 3 

+ m], 
which, for R = 0, gives 

dw ^ 

dR “ 2Er 
another well-known result. 

16. Summary and Comparison.—The above principle is one of great 

generality and importance in its application to the theory of structures 

and it is usually referred to as ^‘Castigliano's first theorem.^^ * 

We should note the important limitation that, as above expressed, 

the theorem can be directly applied only to structures with rigid sup¬ 

ports or at least where the reactions perform no work.f 

To compare the expressions (19) and (20), radically different in form 

from the previous deflection equations, with these latter, we observe 

that since the internal work in a bar due to axial stress and flexure re¬ 

sulting from the gradual application of a set of loads is, respectively 

Wi = 
IS^ 

2 AE 
and Wi = 

1 p M^dx 

Vo El 

* After the discoverer, Alberto Castigliano (1847-1884), a distinguished Italian 
engineer. His *‘Th6orie de T^quilibre des systtoes dlastiques ” (1879) is one of the 
pioneer works in theory of structures. 

t The method can be extended without difficulty to include the case of yielding 
supports. 
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(A is assumed constant) 

dWi ^ SL dS 

“ dP AE'dP' 

for the case of direct stress, and 

mi ^ p ^ 
dP J, El ‘ dP^ 

for the case of bending. (The integration is with respect to x; hence the 

differentiation under the integral sign with respect to P is permissible.) 

Now, if a bar is subjected to the action of several loads, of which 
Pr is one, we may always write 

/S = ^ -[“ 

where S = stress due to all loads excluding P^ 

and Ur = stress due to load unity applied in the line of action of P^. 

Also ilf = M + PrTrir, 

where M and rur are defined in a similar manner. 
We then have 

dPr 
= Ur and 

dM 

dPr 
= Mr, 

and the expressions for the deflection of a girder or a frame obtained by 

means of the derivative of the internal work with respect to a load at 

the point of deflection become identical with the previous equations 
derived from the dummy unit loading. 

SECTION n.—SPECIAL METHODS 

C. Moment Akea Method 

17. First Principle.—Given the beam of Fig. 23; required the 
angular change in the elastic line between the points A and B' due to 
any loading. We have 

Mdx 

where m is the moment at any section distant x from P' due to. unit 
couple applied at B', Therefore 

OiB' 
Mdx 

El ' (21) 

since m equals unity at all points. 

Referring to Fig. 23, the above expression obviously represents 



SPECIAL METHODS 41 

M 
numerically the area of the ^ diagram between A and Now, if 

we wish to find the angular displacement between two tangents, M and 

Nj in any bent beam, 
we may for the purpose 

in hand view one of the 

points as a fixed end 

and find the relative 

rotation at the other 

point by the above 

method. We thus ar¬ 

rive at the general prin¬ 

ciple: 

“In any bent beam 

the change in angle be¬ 

tween any two points 

on the elastic line of 

the beam is numerically 

equal to the area of the 

K 
El 
these two points.” 

18. Second Princi¬ 
ple.—If it be required 

to find the vertical de¬ 

flection of measured 

from a horizontal tan¬ 

gent at .4, we have 

diagram between 

= 

^ Mdx 

~W 
•m, 

where m is the moment 

at any section distant x 

from B' due to a verti¬ 

cal load of unity acting at B\ whence 

Mdx 

Fig. 23 

El 
(22) 

This expression is clearly equal, numerically, to the statical moment 
M 

of the ^ diagram taken about a vertical through B'. Evidently this 
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proposition applies to the linear displacement of a given point from a 
tangent at some other point in any bent beam. This second general 
principle may be stated: 

The deflection of a point B in any bent beam from a tangent at some 
other arbitrarily selected point A is numerically equal to the statical 

M 
moment with respect to B of the area between the two points, with 

jbi 

respect to a line (normal to the reference tangent) through the deflected 
point. 

These two very important propositions form the basis of what is 
commonly called the method of moment areas.* 

The following examples will illustrate the manner of application of 
the principle. 

Problem 1.—Cantilever with load at end (I constant) (Fig. 24). 
We may write at once from preceding principles: 

2Er ® 2El' 3 ZEE 

Problem 2.—Cantilever with uniform load (/ constant) (Fig. 25). 
From known properties of the parabola (see Table I) the area of 

moment diagram = IwL^ and its centroid is |L from the free end. 
Hence 

wL^ , . wL^ 
“ QEI’ " SEE 

* The development of the moment area method as here defined is due to the late 

Professor Charles E. Greene of the University of Michigan (1874). 
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TABLE I—Continued 

Uniformly Increabing Load 
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TABLE I—Continued 

w 
Note on Diagram (4), page 44.—2/x = "(Lx - x^); yx" = Vx - yx = 

W X w w ^ 
"(Lx — x^)-- o^(L — a) =="(ax — x^); i.e. the area (I) is identical with the 
Z Cl Z 2 

moment curve of a simple beam of span Similarly (II) is identical with the 

moment curve for span Since this relation holds for any pair of values of ‘"a” 

and ^*6/^ the division of the moment area as shown above may always be used to 

obtain the statical moments about any point. 

To obtain 5c, some special consideration is necessary. The moment 
area method gives the deflection of any point from a tangent at some 
other point; in this problem the desired deflection 5c is from the original 
position of the beam, and the moment area method does not give this 
directly. In such case we may proceed as follows: Since a a is very small, 

BB^ = JSB" = 5s = (from the second moment area principle) 
PL2 L 

From the geometry of the figure, CC = — = 

8EI 2‘ 

Also, CC' - C'C" 

= CC" == 5c. But C'C" (from second moment area principle) = 

PL^ 

PL^ L 

whence 5c = 

IQEI 6’ 

The same general method will apply to finding 
4SEr 

any simple beam deflection by means of moment areas. 
19. Independent Derivation.—The moment area method may be 

derived quite simply without recourse to the philosophy of the work 
of deformation. For it is clear, Fig. 23, that the total angular change 
between the faces of the beam at A and at 5' must be the summation 
of the angular changes of all the elementary sections dx lying between 
these points. But we have shown (page 17) that the angular change 

da between the two faces of an elementary section is therefore 
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the total change between A and B 
Mdx , M 

WT ~ Wi 
between A and B. This establishes the first moment area proposition. 

To derive the second principle, we note that the contribution of the 
distortion of an elementary section dx to the deflection at S' 

A ^ 7 1 ? r^' = Aoii' -- da-x = ^^^d bs' = I 
Mdx 

~~ET 
•X 

M 
= statical moment of diagram between sections A and S' about S'. 

hi 

The moment area method furnishes a general method of attack on 
all beam deflection problems, and many types of rigid frames can be 
analyzed advantageously by its use. By means of Table I used in 
conjunction with this method, a variety of deflection results may be 
written out at once, and the tedious integration processes of the general 
method of work or the method based on the differential equation of the 
elastic line are thus avoided. The student will be well repaid for taking 
time to thoroughly master the principle. 

D. Method of Elastic Weights 

20. Simple Beams.—If we examine the fundamental formula 

Mmdx 

~~Er^ 

we note that it may be approximately evaluated as follows (see Fig. 27): 
M 

Construct the ^ diagram and divide it into a convenient number of 

small strips Ax] construct the m diagram, determining the ordinates 
corresponding to the centers of the strips Ax. Then evidently 

(approximately) 
M‘Ax 

(23) 

Now let us imagine the same beam loaded with a varying load, w 

per foot. An approximate value for Mq may be obtained as follows: 
Construct the influence line for the moment at q (Fig. 28). Divide the 
distributed load w into a series of concentrations w-Ax, Ax being any 
convenient small distance; the smaller it is taken the more accurate 
the approximation. Then if Afi, is the ordinate to the influence line 
(taken in each case to correspond with the center of the space Ax) 

Mq — (approximately) Xw-Ax-Miq.(24) 
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But the influence line for Mq is numerically precisely the same 
thing as the moment diagram for the beam due to unity at g; in other 

words M\ = m. Now if w should equal it is clear that the expres- 

—I 

j Influence Line for Mq 
Fig. 28 

sions (23) and (24) are numerically identical; i.e., the deflection of any 
given point g in a simple beam AB is obtained by applying to the beam 

M . , 
the actual ^ diagram as an imagined load curve^ and computing the 

moment at g. This fictitious moment is numerically equal to the actual 
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deflection. Since this is true of all points in the beam, a moment diagram 

constructed for the imagined loading of ^ per foot is identical with the 
Jbi 

actual elastic line. 
Similarly 

rudx 

where m = moment at any section due to a couple of unity acting at q. 

Drawing a curve for m (Fig. 29), we note that it is identical numerically 
with the shear influence line for section q. Hence we deduce that the 

angular change at any section of a simple beam AB is equal to the shear 
M 

at the section due to an imagined loading equivalent to the ^ curve. 

21. Graphical Representation of Elastic Ctirve as a String Polygon.— 
From the well-known relations between the moment diagram and the 
equilibrium polygon we may construct the elastic line of a beam accord¬ 
ing to the above method, by a strictly graphical process. We first lay 
off a force polygon of the actual loads and, taking any convenient pole 
distance Hi, draw a string polygon. (See Fig. 30.) If yi is an ordinate 
to the polygon, Hiyi = M. Next, lay off on the base of the string 
polygon convenient small divisions Ax and treat the small areas 

Max __ HjyiAx 
El El ^ 



Figr, r reptcBenls the actual loading. 

Fig. II represents an equivalent loading. 

Fig. Ill is the moment diagram. 

Fig. lV is the displacement diagram, (reversed) 
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as loads, and with any pole distance Hu draw a second string polygon. 
Any ordinate ijn of this polygon will, if multiplied by //n, equal the 
moment at the point where the ordinate is drawn due to a loading of 

K 
El 

per unit of length, and hence will numerically equal the deflection. 

21a. Examples.—A few simple illustrations will make clear the 
method of application of the principle of elastic loads. 

Problem 1.—Fig. 30a—Simple beam with load at center; to find 
and 8q. 

We have seen that aq is numerically equal to the shear at q in the 
M 

beam when loaded with the ^ diagram. Therefore, 

_ PL2 PL2 _ 3PL2 
““ 16EI MEI met 

Also, is numerically equal to the bending moment at q in the beam 
M 

when loaded with the ^ diagram. 

Therefore, 
PL2 L PL2 L 11PL3 
\cn7T ^ A aA 7 ^ tci 16P/ 64P/^ 12 768P7* 

Problem 2.—Fig. 306—Simple beam uniformly loaded; to find aq 

and 8q, 

Since the area of the ^ curve FH'G = 1{HH')-L = the 

reaction at A due to the ^ loading is 
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The area 

FKK' 

Hence 

aa 

Likewise, 8a = bending moment at q due to ^ loading 
lil 

= R'a X ^ — moment of FKK' about q 

Fig. 306 

Problem 3.—Simple beam with partial uniform load and concentrated 

loads; to find elastic curve graphically. 

Solution is completely shown in Fig. 30. 
22. Application to Beams not Simply Supported.—The method of 

elastic loads as developed in the preceding articles applies only to 
beams simply supported at the ends. (It will be remembered that the 
deduction was based upon the numerical identity of the mq diagram 
and the moment influence line for q—a relation which holds only for 
a simple beam.) The method can be generalized to apply to all types of 
beams, but since we shall make little use of the method in any but the 
simple beam case, the general method will not be developed here,* 

* For a luminous account of the general theory of representation of the elastic 
line of arvy beam as a moment diagram for a suitably chosen substitute’’ beam and 
suitably chosen loads, see a paper by Professor H. M. Westergaard, “Deflection of 
Beams by the Conjugate Beam Method,” Journal of Western Society of Engineers, 
Nov. 1921. 

w (Lx = mx [T-jr- 5 wL^ 

384 Er 

Q, , wL^ 5 wL^ 11 wL^ 
Shear at g - ^ W " 384 W 
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The student should note that the moment area method gives directly 
change of angle between tangents at two separated points and deflec¬ 

tion from tangents, while loading with the ^ diagram gives directly the 
Jill 

angular and linear displacement referred to the original position. The 
former is therefore the readier method in dealing with cantilevers and 
the latter with simple beams. 

As will be seen from the last problem under Art. 18, however, the 
moment area principle is easily adapted to the simple beam case, even 
when deflections from a tangent arc not directly desired. As regards the 

application of the elastic load method to cantilever beams, it is evident 
that any cantilever may be regarded as one-half of a symmetrical simple 
beam, suitably loaded, and the method may thus be very simply extended 
to cover this case. It may also be of interest to the student to show 

M 
that if a cantilever AB (Fig. 31a) is directly loaded with the ^ diagram 

(Fig. 316) and the corresponding moment curve drawn (A"B'—Fig. 
31c), then the true deflection line will be determined by the ordinate y 
to the curve A"B', measured from the tangent A''B^', This is equivalent 
to loading the same beam fixed at B and free at A. 

M 
^The method of loading with the ^ diagram together with the two 

principles enunciated in Arts. 17 and 18 are grouped by many writers 
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under title of the moment area method.* So far as the treatment of 
M 

beams goes, the designation is apt enough; both make use of the ^ 

diagram in a very similar manner so far as practical detail is concerned. 
But the underlying conceptions of the two methods are quite different, 
as will be clear from the preceding pages. Furthermore, the notions 

M 
involved in th(^ procedure of treating the diagram as a load curve 

JojI 

are identical with those involved in the treatment of truss deflections 
in Art. 24, and for this case the designation of moment area^^ seems 
hardly suitable; it is almost universally termed the method of elastic 
weights. 

23. Advantages as Compared to General Method.—The same 
remarks apply here as were made in Art. 18 regarding the moment area 
method. The two methods taken together, each supplementing the 
other, constitute an analytical tool of far-reaching practical importance 
in the treatment of deflections and therefore in the analysis of statically 
indeterminate structures. Their use obviates all necessity of formal in¬ 
tegration in most practical cases, and while the integrals involved in the 
work equations are of the simplest kind, their evaluation is tedious and 
time-consuming, and is a common source of error. In most deflection 
problems, whether the loading results in a simple and easily expressible 
moment curve or a complex and irregular one, the moment area or 
clastic weight method is likely to prove by far the simplest working 
method for finding the deflections. Table I will greatly facilitate the 
work. 

It should also be mentioned that the relationships brought out 
by the above principles (e.g., the fact that, for a beam or series of 

M 
beams with ends fixed, the positive and negative areas must 

balance) are frequently of importance in the analysis and checking 
of problems where the principles are not used to obtain numerical 
results. 

24. Truss Deflections.—The principle of elastic weights can easily 
be extended to the case of truss deflections. In Fig. 32 let us examine 
the deflection of the truss due to (1) the deformation of the chord member 
BC and (2) the web member Cc. 

* The method of representing the deflection line as a string polygon and the 

concomitant method of computing individual deflections as bending moments due to 

a fictitious loading are due to O. Mohr, “Beitrag zur Theorie der Holz- und Eisen 

Konstruktionen," Zeitschrift des Architekten und Ingenieur Vereines zu Hannover, 

1868. 
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For BC 
s _ ^BcUbcBbC 

“ ~~~AbcE ^ 

SL SL 
or omitting subscripts = Xe AE ^ constant for any given 

loading. The deflection of a specific point, as e, is obtained by multiply¬ 
ing this constant by UBc-ey the stress in BC due to unity at e. For the 
deflection of d or c the deflection constant is the stress in BC due to 
unity at d or r. A little reflection will make it clear that the u diagram 

C 

Fig. 32 

for BC is, to some scale, the deflection diagram for a change of length in 
BC, But the u diagram is identical with the ordinary influence line for 
the stress in BC, and is obtained by placing a unit load at the center of 
moments for BC and drawing the moment diagram divided by r (since 

If instead of unity we apply a load of then the 

moment diagram is numerically exactly equivalent to the true deflec- 
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tion line. The same rule holds for all chord members; hence, to con¬ 
struct the deflection diagram for a truss due to the deformation of the 

chord members, load the moment center for each chord with — and draw 

the moment diagram. 
For Cc a similar line of reasoning leads to the conclusion that the 

influence line for the stress in Cc is, to some scale, the deflection curve 
of the truss for a change of length in Cc. For chord members it is clear 
on inspection that the influence line is numerically the same as the 
moment diagram for unity placed at the center of moments for the 
chord. If now we imagine a vertical load applied to the truss at o 
through a rigid bar o-c-d connected to the truss at c and d only, we see 

that the moment diagram due to a load of ^ at o is numerically the stress 

influence line for Cc, and if ^ be applied at o, the resulting moment dia¬ 

gram is the true deflection line. Now a load P applied to the truss in the 
r *4” 7) Pr 

above manner at o is equivalent to loads P—and-applied re¬ 

spectively at c and d as shown. Hence the law for the web members: 
To draw the deflection line for the truss due to a change of length in 
any web, apply to joints adjacent to section which is cut to find the 

stress in the web, the loads — and ■— — The resultant 
r p r p 

moment diagram is the actual deflection curve. 
We thus have a general method of constructing the deflection line 

due to the distortions of all members, for any truss, by the method of 
elastic loads. The method is fully illustrated in Problem II, page 78. 

It may be interesting to note a similarity between the methods for 
beam and truss. Beam deflections are computed for the effects of bend¬ 
ing moment only and hence are analogous to truss deflections due to def¬ 
ormation of the chords. It will be recalled that the elastic load for each 

small section of the beam, is the angular change due to the distor¬ 

tion of the element As. It is evident that the elastic load for the truss, 

—, is also the angular change due to the distortion of the chord member. 
r 

Hence the law is sometimes stated that the deflections due to bending 
in a beam or truss are obtained by loading the span with the numerical 
equivalent of the total angular change at each point. 
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E. The Williot Displacement Diagram 

26. General Theory.—Any point, as C (Fig. 33), connected to 
points A and B by a pair of bars, ACj BCj can obviously be displaced 
only (a) by a shift in position of A or /?, or (b) by change in length of 
one or both of the bars. Knowing the shift of A and B and the deforma¬ 

tion of AC and BC, we easily locate the final position of C (= C2 in 
figure) graphically by swinging arcs with the new locations of A and B 
as centers and the new lengths of AC and BC as radii to an intersection 
in C2. In the truss of Fig. 34 we may apply this graphical method to 
obtain the deflections. To make the construction clear we shall assume 
the relative deformations all equal and equal to ^L, positive or negative 
as indicated. The point A and the line Aa are fixed; a' is therefore 
easily located; with these points as centers and the deformed lengths 
of AB and aB as radii we strike arcs which will intersect in the final 
location of B(= B'); with J5' and a as centers and the deformed lengths 
Bb and ab as radii we locate 6' similarly; from B' and 6' and the deformed 
lengths Be and be we locate c', and so on. 
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This simple construction is, theoretically, always available for 
obtaining truss deflections when (as is nearly always the case) the truss 
is an assemblage of triangles. It is of little use as a working method, 

however. We have noted that in the deflection of framed structures 
we are dealing with deformations and displacements which are exceed¬ 
ingly small compared with the lengths of members. The deformations 
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seldom exceed ^oVo^) many deflection problems they are much 
less. To plot such quantities to any manageable scale on the same 
diagram with the frame itself is out of the question. 

TABLE A 

Member 
s, 
Lb. 

L, 
In. 

A, 
In.» 

L 

A A 
Ur,* 
Lb. 

AB +90,000 180 6.0 30.0 +2,700,000 +3.0 8,100,000 
BC = CD + 10,000 180 2.0 90.0 + 900,000 + 1.0 1,800,000 

Dc -14,100 253 2.0 126.5 -1,785,000 -1.41 2,520,000 
bc==ab -40,000 180 4.0 45.0 -1,800,000 -2.0 7,200,000 

aA +50,000 180 3.5 51.4 +2,570,000 +1.0 2,570,000 
aB -70,500 253 8.0 31.4 -2,230,000 -1.41 3,150,000 
Bh +10,000 180 1.0 180.0 +1,800,000 
Be +42,300 253 3.0 84.3 +3,560,000 +1.41 5,040,000 
Cc -10,000 180 2.0 90.0 - 900,000 

B.5d==30,380,000 
ai>-1.01" 

* The last two columns are added to give a check on the deflection at D. They 
are not required in the construction of the Williot diagram. 

This fact of very small deformations, however, leads to a modified 
graphical method of the highest usefulness. For with deformations so 
small, the above described process of swinging arcs about such points 
as A and B may permissibly be replaced by erecting tangents at the 
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ends of the radii. (The student will best be convinced of this by 

attempting the exact construction in a simple example, say, AL = 2qqq‘ 

In the adjoining illustration (Fig. 33), the deformations are in the 

neighborhood of 200 times the natural size. In an actual truss the 
maximum change of length in a member 50 feet long would be little 
over I inch.) 

In Fig. 33 the exact construction gives the new location of C as C2; 
the approximate construction, by means of perpendiculars erected at 
the ends of the radii, gives the displaced position as C". Here the 
error is considerable, but for a relative deformation of that 
shown, the difference would be practically negligible. 

Following the detail of the approximate construction as shown in 
Fig. 33, we note that CC'a and CC'b are equal to A A' and BB\ 
These quantities must be known before the construction can be 
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started. Having these laid off, we next lay off AL^-c from C'a and 
ALb~^c from C'b and from the extremities of these lines (which are the 
ends of the members after deformation) we erect perpendiculars and 
prolong to their intersection instead swinging arcs about A' and B'. 
This last step is the keynote of the construction, which, it will be 
observed, may be carried through without any knowledge of the actual 
lengths AC and BC. Since we make no use of these quantities, we may 
draw the displacement diagram to any scale we please, quite inde¬ 
pendently of the framework. It is so shown in Fig. 33a. 

This construction is known as the Williot displacement diagram, 
after the French engineer Williot, by whom it was developed. 

As a simple illustration of the construction, the diagram of 
Fig. 34a is drawn for the truss of Fig. 34 with data as shown in 
Table A. 

26. The Mohr Correction Diagram.—In the preceding example the 
truss had one point, A, which remained fixed and one member, A — a, 
which maintained a fixed direction throughout the process of deforma¬ 
tion. For all such cases the construction proceeds directly. Now, in 
general, every stable frame will have one point and one line fixed, but 
the latter does not necessarily coincide with any member. In Fig. 35, 
loaded as shown, the point A is fixed, as is also the direction of the line 
AB, but every bar in the frame changes its direction. The Williot 
diagram, since it consists essentially in the repeated application of the 
construction shown in Fig. 33a, that is, the location of a third point from 
two others of known location, fails for the case of Fig. 35 unless emended. 
This emendation takes the following form: We assume any member, 
as AK, to be fixed, and draw the Williot diagram. This construction 
obviously gives the correct displacement of all joints with respect to AK 
and it only remains to determine the true position of AK. The deformed 
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truss is shown (greatly exaggerated) by the dotted lines in Fig. 35. 
Since the deformed configuration of the truss is correct, evidently we 
only need to rotate it as a rigid body until the point B' takes the position 

it being a condition of the problem that the line through the joints 
A and B maintains a fixed horizontal position. 
If, then, to the displacement of any joint as 
determined by the Williot diagram we add vec- 
torially the rotational displacement just explained, 
the result will be the true displacement. The 
angular rotation of the frame is sufficiently ex- 

B'B'^ 
actly expressed as xtj"- Since every line in the 

At> 

truss must turn through this angle, the rotational 
displacement of the point J, for instance, will be 

B'B" X 
AB 

in a direction normal io AJ. It is 

Fig. 35a 

assumed here that since the deflections are small 
we may use the length and direction of AJ as 
identical with the length and direction of AJ', 
A similar equation may be used to determine the 
rotational displacement of any other joint. 

The graphical solution of the rotational dis¬ 
placement may be accomplished as follows: If 
upon the known displacement, B'B"^ as a base, 
we construct a figure similar to the given frame 
(see Fig. 35a), turned through a right angle, since 

B'B" 1, ABj we note that 

(1) Ami ± Am and (2) Ami = = B'B"-~- 

likewise LiAi J. AL and is equal to B'B"-^^^ and so on. These 

quantities must therefore correctly represent in magnitude and direction 
the desired rotational displacements. 

This simple and elegant construction, without which the Williot 
diagram would be of limited usefulness, is known as Mohr^s correction 
diagram.* 

26a. Example.—Fig. 36 shows a Williot diagram for the truss of 
Fig. 35, drawn on the assumption that AK stands fast. The vectors 
Am'y AK', AL', etc., represent the magnitudes and directions of the 

• O. Mohr, “Ueber Geschwindigkeitsplane und Beschleunigungsplane,'’ Zivil- 
ingineur, 1887. 
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displacements of m, K, L, etc., referred to the point A and the line AK as 
fixed. As shown in the displacement diagram and in Fig. 35, this 
results in B lifting from the support an amount B'B”. To place the 
truss in its true position it is necessary to give it a rigid-body rotation 

K j L 

B“ b' 

about A until B lies in the same horizontal line with A. The Mohr 
correction diagram described above gives all the displacements due to 
this rotation, and is shown as I in the lower part of Fig. 36. ABi is 
laid off equal to the vertical component of AB' (= B'B" of Fig. 35), 
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and a similar figure to the original tmss, rotated through 90®, is drawn 
on this base. Then the rotational displacement of, say, point L, is ALi, 
If we add the vectors AV and AL\ we get the final correct displacement 
AL'i. However, a simpler and more compact diagram results if we draw 
the correction diagram as shown in the upper part of the figure as II. 
Here the rotational displacement of any point, as L, is L"A. This 
combined with AV gives L"L' as the final displacement. This is 
clearly identical with AUi, Similarly, the resultant deflection of 
n is n"n', of J, J"J', etc. Owing to the greater compactness, the cor¬ 
rection diagram is always applied in this manner. 

SECTION m.—SUMMARY AND APPLICATIONS 

27. Recapitulation.—brief recapitulation of the several methods 
for finding deflections may be of some aid to the student. 

A. The method which was first developed and which is adopted as 
the standard method for this treatise is based on the equivalence of the 
external and internal work of a dummy unit loading (force or couple 
imagined to act at a point whose deflection is desired) acting through 
displacement due to other causes. It may thus be viewed as a special 
case of the general theorem of Virtual Work,’^ * though the derivation 
here given does not make explicit use of that principle. 

In its application to the deflection of structures, the above method 
appears to have been first perceived by Maxwell (1864), but it was 
independently discovered by Mohr (1874) and its application greatly 
broadened. For brevity we shall refer to it as the '^Maxwell-Mohr'^ 
method, t In the form here presented it is applicable to finding the 
displacement, linear or angular, of any point in a bar, or an assemblage 
of bars, straight or slightly curved, due to a distortion (taking place in 
any portion of any or all bars) which may be represented by a combina¬ 
tion of axial and flexural deformation. In the cases we shall study, 
these deformations are generally due to applied loads, but it is most 

* A statement of this principle as applied to rigid bodies may be found in almost 

any treatise on analytical mechanics, e.g., Church, pages 67 et seq. The deflection 
equation for a true framework follows easily from this, but the justification of the 

more general principle of virtual work as appHed to deformable solids is by no means 

so simple, and it is believed that the proof presented in the text, though less com¬ 
prehensive, will present less diflSculty to the student. 

t The propriety of linking the names of Maxwell and Mohr with the method 

of the dummy unit loading is open to some question, since this particular method 

did not originate with either. (See Prof. I. P. Church, Trans. A. S. C. E., Vol. 

XXXIII, page 649.) To them is due the general method of obtaining deflections by 

the principle of work, which is now universally applied by means of an arbitrary 
unit loading. 
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important for the student to note that this is not necessarily so. For 
example, if a member of a truss is shortened or lengthened by change of 
temperature, play in the pinholes or tightening of a turnbuckle, or if a 
beam has its temperature so varied that the fibers on one side are 
shortened and those on the other side lengthened in a manner similar 
to flexural distortion, the method will apply equally well. It is, of 
course, necessary that these changes shall be small to the order of elastic 
deformations. The distortions being known, the procedure is invariable: 
We apply a unit loading to the point where we wish the deflection, 
determine the moment m and the axial stress n (the shear if desired) 
for all sections of all members of the structure, and we have 

and 

5 = (numerically) Ads + 

a = (numerically) a‘Ads -f” ^ ^TTict* 

and of Castigliano’s equations. The latter can be extended 

B. The method based on the derivatives of internal work, '^Casti- 
gliano^s theorem,^^ differs in fundamental conception from the Maxwell- 
Mohr method, but in the application to the deflection of structures the 
scope of the two methods is virtually the same. We have seen that 
the and of the Maxwell-Mohr equations are identical with 

aud 
0P 9P 
readily to include temperature changes, yielding supports, etc., and the 
essential difference in the methods lies in the way in which, say, m is 

obtained in the one method and in the other. 

In the former case we apply a unit loading at the point we are investi¬ 
gating and write the expression for m from the rules of statics; in the latter 
we set up the expression for M due to the specified loading (including, if 
necessary, a load P at the point of deflection) and differentiate this with 

respect to P, giving P its numerical value in M and aft^r the opera¬ 

tion. Recalling that M and N are linear functions of the loads, i.e.. 

we see that 
M - CiPi + C2P2 . . . + CrPr. . . + CJPn 

^ = Cr (= m, obviously), 

and the operation is thus simpler than might at first appear. 
C. The method of moment areas affords a veiy simple treatment of 
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angular and linear deflection of beams based upon the two propositions 
(a) that the relative tangential rotation due to flexure between any two 

M 
points of a beam is equal numerically to the area of the ^ diagram 

between the two points, and (b) that the deflection of any point of a bent 
beam referred to a tangent at some other point is numerically equal to 

Af 
the statical moment of the diagram lying between the points, about a 

hii 

normal through the first point. These principles, though deducible as 
corollaries of the work theorem, are easily deduced from the most 
elementary considerations in the geometry of the strained beam. Their 
application to problems is clear-cut and direct and requires no comment. 
This method is applicable to all beam deflection problems, and to trusses 
which act approximately as beams. Where the areas and moments of 
areas are not readily handled algebraically, useful approximations are 
easily made by taking a finite summation of reasonably small elements 
of area (and their moments). The method is not applicable to truss 
deflection problems except as above noted. 

D. The method of elastic weights is here used to include all the 
methods having for their basis the correspondence between the deflec¬ 
tion curve of a structure and the moment diagram of a beam subjected 
to an imagined set of elastic loads.^’ The fundamentals of the method 
are quite fully set forth in Section II C, where it is shown that the same 
general method is directly applicable to the vertical deflections of both 
beams and trusses. It may also be extended to obtain the horizontal 
deflections of trusses * and is therefore a method capable of very wide 
application. So far as the application to beam deflections is concerned, 
it is an alternative and strictly parallel method to that of moment 
areas. 

From its basic character in treating the deflection diagram as a 
moment curve for a properly adjusted fictitious loading, it lends itself 
directly to both graphical and analytical calculation, and to approximate 
calculation as noted in preceding paragraph on moment areas. 

E. The Williot diagram affords a direct method, based on purely 
geometrical considerations, for obtaining the actual (as distinct from 
the component) displacements in any true truss, to which alone it is 
applicable. 

Each of the above methods is independent; that is, each may be 
deduced without the aid of the other. 

28. Comparative Advantages of Methods.—Some remarks on com¬ 
parative advantages have already appeared in the preceding pages, and 

* See paper by Professor W. S. Kinne, Wisconsin Engineer, February, 1920. 



SUMMARY AND APPLICAllONS 71 

some further discussion may be found in Chapters II and III. The 
following points will bear emphasis here. 

(а) If it is desired to find the angular or linear displacement of a 
simple or cantilever beam at a single section, calculation by moment 
areas or elastic weights will nearly always prove the most expeditious 
method. 

(б) If the simultaneous deflection of a number of points is wanted, 
the construction of the elastic curve as a string polygon (see page 54) 
is recommended as the most advantageous method. 

In either of the above cases, if (from tables or otherwise) the general 
equation of the elastic curve is known, a simple substitution gives any 
deflection, and of course this will be the easiest solution. However, 

complete solutions of the equation 
dx^ 

K 
El 

are not usually available 

in advance for any but the simplest cases, and the integration of the 

Fig. 37 

equation and the determination of the constants is in general a far more 
difficult method of solution than those suggested above. 

(c) To obtain the displacement of a single point in a truss, the 

equation 8 = 
2SuL 

AE 
will usually give the readiest solution. 

(d) To obtain the simultaneous displacements of a number of points 
in a truss, the Williot diagram is the simplest and quickest method. 
We may also repeat the calculation of (c) for each point, or we may apply 
the method of elastic weights as described in Art. 20 and illustrated in 
problem II, page 78. The latter method is the quicker of the two and 
for practical purposes is equally exact. The Williot diagram is open 
to the same criticism as the ordinary stress diagram and many other 
graphical processes; small errors easily creep in and may become 
cumulative and so introduce important error in the final result. With 
reasonable care in construction, however, the Williot diagram will 
probably give results as accurate as the data justify. It will be largely 
used for truss deflection problems in the later chapters of this book. 

29. Examples. 
Problem I (Fig. 37).—To find linear and angular displacement at C. 
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(a) By the Maxwell-Mohr method (Dummy unit loading). 
With origin at A we have 

M = 

« r >1 X 
fwL\X-Ty- ... A to 

%wLix 

r2 
2 

wL\ 

2^ 

From B to C, Af = 0, hence 

Li to B. 

Mmdx 
Er 

vanishes for this section. 

Since we are concerned with vertical deflection, we apply the unit load 
at C downwards; the sense is a matter of indifference so long as due 
regard is paid to the sign of m. We have 

m = — X ^ from A to 
El 

whence, assuming E and I constant, 

t)](“ 'c)* 

Li Li 

■/ 
2 

wLiL2xdx _ 

w 
El 

2 

1 __ _7 wLi^L2 
38- 

w;Li3L2r_ 1 , 1 , 7 _ 
El L 64 128 192 64 384 El ' 

i.e., the displacement is upward by this amount. 
Also, 

Mrriadx 
CLc 

=r El 
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where m* = moment at any section due to a unit couple at C acting as 

shown. This couple will cause a negative reaction of j— Sit A, whence, 

rria = —7-j from A to B, 
Li 

It is evident then that the detail work is exactly as above with — ^ 
L\ 

substituted for — whence 
Li 

_ _ 7 wLi^ 
384 El ’ 

the minus sign indicating a rotation opposite to that shown, i.e., a 
counter-clockwise rotation. 

Since the beam from .B to C is unstressed, it is clear (a and 6 being 
very small quantities) that 

8c — L2‘OtC‘ 

It is also evident that ac = As a check we may compute 
Applying a unit couple clockwise at A and taking origin at B, we have 

Mmdx L El 

/ L,\21 
1 HwLix X p. wL\x 

> 1 
1 

xdx 9 wLi^ 

~EI J. -8-L*+. k 
2 

8 2 Li ~ ' 384 El ' 

i.e., the rotation at A is clockwise. It is evident from symmetry that if 
the beam is fully loaded, 

9 wLi^ 7 wLi^ _ 1 wLi^ 
"" 3^ 'W SM ~W “24 B/ * 

This is a well-known result easily verified by the general method. 
Thus for full loading 

a 
Mmdx 

_ 1 [ wi? wx^l 

“■ miW ~ 8LiJo 2A EI^ 
check. 

(b) By Castigliano's theorem of the partial derivative of the work 
of deformation. 
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Suppose an arbitrary load P to act downward at C. Then, with 
origin at A, and calling moment due to Mtv, we have 

- Px~, A to B 

[- Pill + L2 - x),B to 6" 

dM 

dP 

- x-^, A to B 
In 

- (L2 + In - x), B to C 

Mdx m 
El "dP 

Mu, - Px^^dx 

, rP{L2 + Jn 

- 

x)dx 
(L2 + L2 — x). 

Since this holds for all values (not infinite) of P, it will be true if 
we assume P = 0. Then 

be — 

which is identical with the corresponding equation in (a); hence we need 
not carry the detail further. 

(ci) By the method of elastic weights. 
Since 5c = q:c'L2, andac; = as, the problem is practically solved 

when as is found. 
The rotation at B is numerically equal to the shear at P in the beam 

M 
AB when the 777 diagram is applied as a load curve. Since we are 

Jtiil 

assuming E and I constant it will be convenient to work for Elan. 
Fig. 38 shows the moment diagram for the given loading. The moment 
area may be divided as indicated into the triangle A'EiB' and the 
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parabola A'lyEi'. Since the latter is identical with the moment 
diagram for a simple beam span equal to AE^ its area 

_ 2 ^ wLi^ _ wLi^ 

The area of the triangle 
_ wL\ 1 Li Li _ wLi^ 
“ “T“4*T‘T “ 'W' 

Therefore EIolb = shear at B due to M-diagram applied to AB 

Mom. of A'E,'B^ + Mom. A'D'Ex' 
Li 

[wL\^ 1 , 1 

[ 3 2 '2'^ % 

(C2) By method of moment are:is denoting clockwise rotation as 
positive, it is evident that 

8'a 

iM] 7,3 

fij “ - SS”'-' ■ 

ac = aa = — 
Li’ 

and 5'^ = Moment of A'Ei'B' about A + Moment of A'D'Ei about A 

= ^ 4. h. 
32 ’2 9(i '4 384 

wLi*, 

•• aa = - 

Problem II.—Given the truss of Fig. 39a to find the vertical deflec¬ 
tions of the lower chord joints. 

(a) By the Maxwell-Mohr method. 
Table A, Fig. 39c shows the detail of the work and the results. To 

avoid repeated division hjE with the resulting small decimals, it is simpler 
SuL ^ SL 

to work first for £5 = convenience in tabulating, IS 

taken in units of —and consequently the dummy unit load is 1000 lb. 

The stresses S are obtained from the Maxwell diagram of Fig. 395. For 
S 

the particular loading of this problem it is evident that Ud = For most 

cases, of course, no such simple relation exists and Ud would be obtained 
from an independent diagram or by analytical computation. It is 
clear from the symmetry of the truss that Ub is obtained directly from 
Ud) and that Uc will be the same on either side of the center and will 
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equal 2 X (corresponding value of Ud for left half of truss). The sign 

of the quantity will obviously be positive when w and S have the 

same sign; otherwise it will be negative. The remainder of the calcula- 

c 

tion requires no explanation and the resulting deflections are riven at 
the bottom of Table A. 

(i>) By Castigliano’s method. 
The fimdamental equation is 

Sr = 

Recalling that 

dw 
dPr 

= - V 3-5 
dPr\2Z^AE) ~Z,AE'Wr' 

s = klPl + k2P2 ...+krPr...+ 

we readily obtain 
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But, S(due to Pr) = Pr'Ury i.G. Ur kr = 

dPr 
hence it is evident 

that the detail of the solution by Castigliano^s method reduces to the 
same form as for the Maxwell-Mohr method. 

Fig. 40 

GENERAL NOTES 
Fundamental Equation:— 

5n_r=ALrXWn-r, where 5n-r = deflection of joint “n” due to a change of length 
ALr in member and Wn_r=stres8 in “r'' due to unity at n. 

Fundamental Working Rule:— 

Let an clastic load’^ for each member ( = change of length-^moment arm) be 
applied to truss at the moment center corresponding to the member. The simple 
beam rrwment diagram for this fictitious loading is the actual deflection diagram for 
the truss joints. 

Deflections due to Chord Distortions:— 

Fig. 40 (c) shows the method of application of elastic loads for a deformation 
AL in BC. For any other upper chord member the method is identical. The 
same essential procedure is followed for lower chord distortions if deflections of both 
upper and lower chord joints are desired. If displacement diagram for lower chord 
joints only is wanted, the procedure is shown (for the chord member he) in Fig. 40 (6). 
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(c) By the method of elastic weights. 

Wc proceed a>s in (a) to find IJ-AL — Corresponding to 

each member an ^‘elastic load^^= is to be applied to the truss at 

the moment center for the given member, r is the “arm^^ of the 
member referred to its moment-center. In the case of web members, 

an equivalent substitute loading is generally used in place of — 

/ ^ \ \ 

Ap Iq Ap Iq Ip Qf\ fp qIX 
Fig. 41 

NOTE 

From similar triangles we have—==— and - = (i26||Cc), whence P= 
a w a V ri 

Q — —. This rule is general. 
r-i ^ 

Elastic loads for chords act in direction of actual loads. The manner of applica¬ 
tion of P and Q corresponding to tension and compression in webs is illustrated in 
diagrams at bottom of Fig. 41. 

P is always the nearer load to the moment center. 



80 DEFLECTIONS 

TABLE B 

Chobd Mbmbekb * j WEB Members 

Joint 
Mem¬ 
ber 

E XAL r 
E X AD 

! Joint 
Mem¬ 
ber 

E X AD 

r 
EAL 

r ^■i r2 
n 

Q « 

r2 

B ah 310,000 20 ■fl5,500 b Bb + 434,000 
1 

27.3 + 15,900 

C be 750.000 25 + 30,000 b 
Cb - 884,000 

18.2 ~ 48,400 

D cd 1,250,000 25 -f- 50,000 c 22.5 + 39,300 

E de 940,000 20 + 47,000 b 
Cc 

22.5 - 66,000 

b 
aB 416,000 21 + 19,800 c 

-1,260,000 

4-*> 11 ^ 

22.5 
1 

+ 56,000 

BC 436,000 22 4- 19,800 c 
cD 

22.5 
1 

- 56,000 

c CD 750,000 25 + 30,000 d 22.5 
1_ 

+ 66,000 

d 

DE 1,300,000 22 + 59,000 c 
dD 

22.5 ~ 93,800 

Ee 1,255,00C 21 + 59,800 d 

d 

1 1 OiVJW 
18.2 + 116,000 

dE +1,290,000 27.3 + 47,400 

* End post is treated as a chord. 

This is explained in Fig. 41, The values of r used are tabulated on 
the figure in 39a. The remainder of the process will be clear from 
Figs. 40, 41 and 42, and Table B. When the resultant values of the 
elastic loads have been obtained the moments may be calculated ana¬ 
lytically, or the elastic load moment curve = true deflection curve may 
be constructed as a string polygon (Fig. 42). 

(d) By the Williot-Mohr diagram. 
With the data of column 5, Table A (Fig. 39c), assuming member aB 

to stand fast, the Williot diagram of Fig. 43 is constructed after the 
method explained in section II-c. The Mohr correction diagram is then 
applied as was explained in the illustrative problem in this section 
(Fig. 36). The deflection results for 6, c, and d are indicated in the 
figure. 

The very close check obtained by the three independent methods is 
worthy of note. 

Problem III.—^Figs. 44a and 6. This is a beam deflection problem 
similar to I. It is solved by the method of elastic weights, and the 
detail work is fully shown. 
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PROBLEM m (See Fig. 44) 

Reactions and Moments for Actual Loading 

„ 3000 X 6 + 1800 X 13.5 
aa — SB ^OOU. 

Rr =. 2450. 
200 X 9* 

Mb -= 2350 X 9 - „ = 13,050'* - 156,600"*. 
A 

Me = 2450 X 8 - 3000 X 2 - 13,600'* = 163,200"*. 
Mo = 2450 X 6 - 14,700'* - 176,400"*. 
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Moments and Shears for Beam Loaded with Moment Diagram 

Area X Arm (F) = Moment 

Area I = 1 X 24,300 X 9 = 145,800 13.5 1,970,000 

II = i X 156,600 X 9 = 705,000 12 8,460,000 
III = 156,600 X 3 = 469,800 7.5 3,525,000 
IV = 19,800 Xi X3 = 29,700 7 207,900 

V = 176,400 X i V 6 = 529,200 4 2,116,800 

1,879,500 16,279,700 

^ 16,279,700 X 144 
^ -.o- = 905,000 X 12 

lo X 

Area IIIi = 156,600 
Area IVi = 6,600 X 0.5 X 1 = 3,300 
Shear at C = 905,000 - 145,800 - 705,000 - 156,600 - 3,300 = - 105,700 X 12 

- 105,700 X 12 

30,000,000 X 144 
— 0.000,294 radian = Slope of beam at (7. 

Fig. 43. 
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Bending moment at C 

El = 905,000 X 10 = -h 9,050,000 
I = - 145,800 X 5.5 = - 802,000 
II = - 705,000 X 4 = - 2,820,000 
III = ~ 156,000 X 0.5 = - 78,300 
IV 11 1 C

O
 

C
O

 
O

 
o

 

X 0.33 = - 1,100 

Mc=- 5,384,100 X 144 

5c 
5,384,100 X 144 

30,000,000 X 144 
= 0.1782 in. = Deflection at C. 

3 > 

P-3000* 

i^«200^per ft. ^—.1e 
1 1 

r “ If 

E = 30,000,000*/sq. in. 

I — 144 in.^ 

Required uc and 6c (vertical) 

(a) 

(6) 

Fig. 44 
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Problems IV, V and VI, Figs. 45, 46 and 47 are problems in truss 
deflections. The accompanying tables show the detail work. 

PROBLEM IV 

Fig. 45. 

Member 
Length (L) 

Inches 

Stress (S) i 
Pounds 

Area (A) 
8q. In. 

SL 

EA 
1 

a 
1 

SuL 

EA 

UoUi 120 -f83,400 6.00 + .0595 + 1.665 + .0990 
UiUz 120 +50,000 6.00 + .0357 + .832 + .0297 
UiU^ 120 +25,000 6.00 + .0178 0 0 
ULx 120 -50,000 G.OO -.0357 - .832 + .0297 
LtiLi 120 -25,000 5.00 -.0214 0 0 
X/jLj 120 - 8,330 4.00 -.0089 0 0 

UU 1 120 - 8,330 3.00 -.0119 0 0 
UiLi 144 +30,000 5.00 + .0308 + 1.000 + .0308 
U^U i 144 +20,000 4.00 + .0257 + 1.000 + .0257 
UiU ! 144 0 3.00 0 0 0 
U,Li 187 +13,000 4.00 + .0217 0 0 
UzU 187 -26,000 4.00 -.0434 0 0 
mu 187 -39,000 4.00 -.0651 -1.300 + .0846 
UxU 187 -52,000 4.00 : 

i 

-.0868 -1.300 + .1128 

Total deflection of Li =* -f. 4123^ 
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PROBLEM V 

(1) Horizontal Deflection op B 

Member 
Length (L) 

Inches 
Stress {S) 
Pounds 

Area (A) 
Sq. In. 

SL 

AE 
u 

SuL 

AE 

AC 170 -11,330 3.00 -.0229 -1.416 + .0324 
CB 170 -18,400 3.00 -.0382 -1.416 + .0541 
AD 134 +14,500 2.00 + .0347 +2.235 + .0775 
DB 134 +14,500 2.00 + .0347 +2.235 + .0775 
CD 60 +13,000 4.00 + .00696 +2.000 + .0139 

Total horizontal deflection of B to right = 0^554'' 

E is taken as 28,000,000 lb. per sq. in. 

(2) Horizontal Deflection of C 

Member 
Length (L) 

Inches 
Stress {S) 
Pounds 

Area (A) 
Sq. In. 

SL 

EA 
u 

SuL 

EA 

AC 170 -11,330 3.00 -.0229 0 .0000 
CB 170 -18,400 3.00 -.0382 -1.416 + .0541 

AD 134 +14,500 2.00 + .0347 + 1.117 + .0387 
DB 134 +14,500 2.00 + .0347 +1.117 + .0387 
CD 60 +13,000 4.00 + .00696 +1.000 + .00696 

Total horizontal deflection of C to right - 0.13846' 
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E = 28,000,000 */sq. in. 

Fio. 47. 

Required Vertical Deflection at C 

Member 
Length (L) 

Inches 
Stress (S) 
Pounds 

Area (A) 
Sq* In. 

1 

u 
SuL 

EA 

UoUi 360 -239,000 10.00 - .307 - .6375 + .1955 
UxU2 360 -600,000 10.00 - .771 -2.000 +1.542 
U2lh 360 -844,000 10.00 -1.085 -3.750 +4.070 
Li)Li 400 0 20.00 0 0 0 
Iu\Ij2 374 +249,000 18.00 + .1845 + .()61 + .122 
1j21jZ 362 +603,000 16.00 + .4325 + .2015 ' + .088 
UJ.X 457 +304,000 10.00 + .496 + .810 + .401 
IhU 402 +404,000 8.00 + . 725 + 1.525 + 1.105 
U2U 388 +274,500 6.00 + .634 + 1.880 + 1.191 
UoLo 456 -187,500 10.00 - .3055 - .500 + .1578 
UiLi 282 -255,000 8.00 - .3215 - .682 + .219 
U 2L2 180 -170,500 6.00 - .1827 - .700 + .128 
UzU 144 - 37,500* 2.00* - .09(>4 - .500* + .0482 

* One half actual value. 9.2675" 
The total vertical deflection of C is twice this result == 18.535" 

VIb.—The truss, loading and E are taken the same as in Fig. 47. 

Required: The horizontal movement of B, 

Member 
Length (L), 

In. 

Stress {JS), 
Lb. 

Area (A), 

Sq. In. 

SL 

EA 
u 

EA 

UoUx 360 -239,000 10.00 — .307 - .617 + .1892 
U1U2 360 -600,000 10.00 — .771 -1.533 +1.182 
U2Uz 360 -844,000 10.00 1.085 -2.165 +2.350 
LoLi 400 0 20.00 0 +1.11 1 0 
LiL, 374 +249,000 18.00 + . 1845 + 1.678 + .3095 
LiLz 362 +603,000 16.00 + .4325 +2.55 + 1.102 
t/oL, 457 +304,000 10.00 + .496 + .785 + .389 
ViL, 402 +404,000 8.00 + .725 +1.025 + .744 
U,L, 388 +274,500 6.00 + .634 + .680 + .431 
UoL> 456 -187,500 10.00 — .3055 - .483 + .1473 
ViLi 282 -255,000 8.00 .3215 - .458 + .1473 
Ud^, 180 -170,500 6.00 .1827 - .253 + .0462 
V,L, 144 - 37,500 2.00 .0964 .000 .0000 

The total horizontal movement of B is twice this result « 14.075" 7.0375^ • 
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PROBLEM VII 

tt;—4600#/ft. 
"7777777777777Z777777777777777777777.- 

1 
Beam and Loading 

1 

Fig. 48 

Calculation of Center Deflection 

5c = 
E ’ 

. - - M . 
if Me = center moment due to — loading 

3940 X 16 = 63,000 
3700 X 32 = 118,500 
3700 X 64 = 236,300 
3290 X 80 - 263,000 
4480 X 112 = 503,000 

3800 X 128 = 487,000 
3910 X 156 = 610,000 
4040 X 180 = 728,000 
1970 X 200 *= 394,000 
1690 X 208 = 331,000 
1590 X 224 * 356,000 

Me 

5c = 

= 72 X 240 ~ SPa 
- 36,000 X 240 - 4,080,000 
= 4,540,000 

Me __ 4,540,000 Ib./in. 

E “ 30,000,000 Ib./in.* 

= 0.1608 in. 

R « 36,000 Ib./in. 4,080,800 Ib./in, 



S8 DEFLECTIONS 

Problem VIL—Fig. 48 is an example of the calculation of beam deflec- 

tions where I is not constant. The method of elastic weights is used 

advantageously here. The y diagram is plotted (Fig. 49c) and this 

is then applied as a load curve to a simple beam of same span as given 

beam, but of constant section (Fig. 49d). The moment diagram for 

tliis substitute beam and loading is the true deflection curve (Fig. 49c). 

M 
In Fig. 49c, the y areas I, II, ... XI are treated as triangles and 

trapezoids. The final error in this approximation is small for the divi¬ 

sions shown and of course will be further reduced by taking smaller 

divisions. Any case of varying moment of inertia may be similarly 

treated. 

PROBLEM VIII 

Problem VIII shows the camber calculations for the 330-ft. 

railway truss span of Fig. 50. The calculations for the center 

deflections (at L4 and I.5) are made (a) for maximum loading 

(D+L+I) and (6) for [D-|“J(L+/)]. Camber is usually provided 

just sufiicient to offset (6). The last two columns of the table 

show the necessary modifications in length (1) when camber is pro¬ 

vided by changing the lengths of all members and (2) when it is 

secured by changing the top chord members only. An advantage 

of the latter method lies in the fact that the changes in length, 

being confined to a few members, can be secured more accurately 
(due to their greater amount) within the limits of workable dimen¬ 
sions. 
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CHAPTER II 

GENERAL THEORY OF STATICALLY INDETERMINATE 
STRESSES 

30. Preliminary.—Every structural problem where the number of 

unknown forces to be found exceeds that which can be obtained by 

means of the equations of static equilibrium is said to be statically 

indeterminate. The setting of the problem has been discussed rather 

fully from a general standpoint in the Introduction. It was there 

stated that the necessary additional relations upon which the solution 

of the problem depends are obtained from the Law of Consistent Deflec¬ 

tions. That is to say, in any structure, not only must the requirements 

of static equilibrium be satisfied, but the resulting elastic deflections 

must be consistent with the conditions of the problem. 

In Chapter I we have shown how the elastic deflections of structures 

may be obtained by several methods; in this chapter we shall apply 

these results to the solution of the statically indeterminate problem in 

general, by means of the principle of consistent elastic deformations 

or deflections. 

Before proceeding further it is well to note explicitly the assumption 

that underlies the whole development of the theory (as indeed it does 

other portions of the theory of structures), i.e., that the total effect of a 

group of forces on the stresses and deflections of a structure is equal to 

the sum of the effects of the forces taken separately. This is commonly 
called the “law of superposition.’^ 

SECTION I.—SINGLY INDETERMINATE STRUCTURES 

31. General Theory.—Let us consider a continuous girder ABC, 
Fig. 61a, resting on three rigid supports. We remove the center 

support and imagine the simple beam AC acted on by the loads 

Pi ... P* and an arbitrary upward load Pb at P, Fig. 516. Clearly, 

if Pb = Rb, the simple beam in (6) becomes the exact equivalent, 
statically, of the continuous beam in (a). The determining condition 

to be fulfilled by Pb = Rb is that it shall make the deflection at B equal 
to zero. We have 

6b = 

Mmj^x J. El ’ 
and ilf = Af' + Rsnisf 

90 
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if M' is the simple beam moment, due to loads P at any point of AC, 

and REtriB is the simple beam moment of any point in AC due to 

Pb = Rb applied at B. 

Hence 
midx 

from which we get 

+ R 
■r 

_ I ^ 

IT 

Rb= - 
^ mi?dx ^ib’ 

mi?dx 

(25) 

if 5'b = deflection at B in simple beam AC due to specified loads, and 

= deflection atB 

p. 1^^- .jp« in simple beam AC 

due to an upward 

load unity applied 

at B. 
The physical con¬ 

ception is thus very 

simple. We imagine 

the loading applied 

to the beam with the 

superfluous reaction 

removed; this will 

result in a certain 

displacement of the reaction point = 5'. We then say that the amount 

of the true reaction is the magnitude of the force necessary to erase 

this deflection. A unit load will effect a displacement of 5i, whence 

B 

^Ra 
\/////A 

-. 

p» 

C (a) 

R. 

(6) 

|Pb 

Fig. 51 

A 
Rc 

^ _ i' 
Unity 5i* 

The same method in principle may be applied to a truss with a 

redundant member. In the truss of Fig. 52 the tie rod CD may be 

regarded as a superfluous member. The truss may be rendered statically 

determinate by the removal of CD, which is accomplished in effect if 

we cut the member at some point—for convenience very near the end D. 
When the member is so cut, the cut faces will be displaced relatively 

by an amount S' which may be computed by the standard method, 
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where >S'= stress in any member of frame, due to given loads, with CD 
removed (cut), and 

u = stress in any 

member due to a 

pair of unit forces 

acting on the cut 

faces of CD as shown 

in Fig. 52. 

If now we have 

a pair of equal and 

oppositely directed 

forces acting on the 

cut faces of CD, 

numerically equal to 
the true stress in CD 
when it acts as a part 

of the frame, this 

modified structure is 

evidently statically 

equivalent to the 

original, and we must 

have 

and 

d = relative displacement of cut faces of CD = 0 

2SuL _ + Sr-u)uL 
AE “ 2^ AJS 

SS'uL ^ ^s^u^L 
AE ''Z/ZE' 

SS'uL 
AE 

2 u^L 

AE 
h' 

(26) 

where Sr = magnitude of irm stress in CD and 

S = magnitude of true stress in any member of the frame. 

It will be noted that S' for the redundant member is always zero; 

hence it disappears from the summation in the numerator. We ordi¬ 

narily say, therefore, that the summation in the denominator includes 

all members, while that in the numerator includes all except the 
redundant. 
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The method is thus seen to be precisely analogous to the case of 

the redundant reaction for a beam. We cut the superfluous bar, com¬ 

pute the resulting displacement of the faces, and determine the true 

stress in the bar by the principle that it is equal in magnitude to the 

force-pair required to bring these faces into contact. A pair of 1-ib. 

forces will move the faces a distance 6i, and to move them through the 

distance 5' will require 1 lb. X —• 
0l 

The cut in the redundant member may be taken anywhere; if taken 

sufficiently close 

to the end, the 
deformation of the 

longer portion 

may be taken as 

the deformation 

of the entire mem¬ 

ber, which simpli¬ 

fies the detail 

work. 
32. Structures 

with Members 

Subjected to Di¬ 

rect Stress and 
Bending.—The preceding method is easily adapted to the more general 

case. In the framework of Fig. 53, where some of the members take 

flexure as well as axial stress, we know that the true stresses must 

be such as to render the horizontal deflection at A zero, whence we 

have 

t ._p 

P 

Ib (.A ; 
BRh.. 

(a) k 

Fio. 53 

, i^SujtL , f'Mm 
&H-A - 2^-^ + 2. J ~E 

-2 

AE 

S'uaL 
AE + Re 

'MrriAdx 

~wr~ 

uj?L 

= 0 

AE ' 1 

whence 

Rh-a “• “■ 

+Rh^a 

^S^UaL 
< AE 

rtriA^dx 

Z^J El ’ 

rM'rtiAdz 

mAdx 
El 

^Ua^L 
1 AE 

+ 2/= 
mA^dx 
~W~ 

5la + 5ld 
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where ua and tha = the direct stress and the bending moment, re¬ 

spectively, in any member due to a 1-lb. load 

acting horizontally inward at A. 
6'a and = the horizontal deflection at A due, respectively, 

to the axial deformation of all members resulting 

from the given loads, and the bending of the 

members due to the given loads. 

If we change the subscripts for u and m in the preceding equation 

from -4 to r we 

get the equation 

for the stress in 

the redundant 

member Sr of the 

structure shown 

in Fig. 546. Here 

again Ur and mr 
are, respectively, 

the axial stress 

in any member 

and the bending 

moment at any 

point of any 
member due to a 

pair of unit forces applied in opposite directions to the cut faces of the 
member, 

33. Modification to Include Members Slightly Curved.—Finally, if 
we have a framework in which some or all of the bars are slightly curved, 

and in which the section A is not necessarily constant throughout the 

member, we may write quite generally 

(6) 
Fig. .54 

Xr = redundant quantity, either reaction or stress 

^7 
N'rirds / 

AE +2vj 
^M'rrirds 

El 

2. 
Crrir^ds 
' El 

hr 
. (28) 

The same remarks regarding the scope of the summation in numerator 

and denominator apply here as were noted for the simpler case on 
page 92. 

34. General Remarks.—It should be noted that the choice of the 

reaction or of the member which we treat as redundant is to some extent 

arbitrary. Usually any reaction or member may be so treated whose 
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removal leaves a statically determinate stable structure. In the truss 

of Fig. 52 we might equally well have selected AGy or FEj or any one of 

several others as the redundant. But we could not so use GE, since its 

removal leaves an unstable structure and it is therefore not a superfluous 

member. Neither could we select EJ or HFj since for the given loading 

they are not essential members of the truss; their stress is zero, and 

their removal still leaves the structure statically undetermined. 

The interpretation of the signs requires careful consideration. To 

restate the general method: We remove the redundant support or 

member and apply in its place equivalent forces as external loads. If 

Fio. 55 

these are entirely removed, the resulting statically determinate structure 

will so distort that the points of application of the redundant forces (in 

case of external reaction there is but a single force) will be displaced an 

amount 5'. The redundant force X must be such as to cause an equal 

and opposite deflection X5i i.e.: 

5 = 0= 5' + X6i. 

This, of course, assumes that the unit loading producing is opposed 
to the displacement 5' and it must always give a positive value of X. 

If the calculation is carried through as above but with the unit loading 

applied in the opposite sense, the value so obtained for X will have the 

same magnitude but opposite sign. A clear understanding of these 

relations should serve to avoid any confusion as to the sign of X, 
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36. Examples.—It will aid in fixing the foregoing principles to 

apply them to a few simple problems. 
(a) Beam Fixed at One End and Freely Supported at the Other (Fig. 

65). 

With origin at B, E and I constant, Rb removed, we have 

M' = 0, — from x = o to x = b, 

M' = P(x — b), — from x = b to x = L, 

m = X, — (unit load downward). 
Then 

EW = j 1 M'mdx = 1 P(x — b)xdx 

and 
J 

ElSi = 1 

0 

1 m?dx = 1 =^^ = -3' 

whence 
J 

Rb = 
i' 1 1! 

1 

C
O

 

h u- 2 L3'' 

The minus sign means that Rb acts oppositely to the unit load. 
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Consider the same beam with uniform load extending a distance a 
from the fixed end (Fig. 56). Proceeding as before 

0, — 0 to 5 

— ' w{x — 5)2 
, — 6 to L 

Els' -C'M'mdx - 

r3 
En, = 

J' _ _ w 

“ 8 
(2) V - a). 

When a = L 

Rb - — IwL, 

It is not necessary to use Rb as the redundant; we may take the end 

moment, equally well. In this case the statically determinate 

structure is as shown in Fig. 57. The fundamental equation is 

Mj, = 

where m is the moment at any section due to a unit couple applied at A 
We then have 

wa^x w(x — by 
, . . .btoL, 

x'a = J" Mmdx = — ^ I «>(* - by^x^ ^^dx+ -2- 

r(2L - a)2, 
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whence 

The plus sign indicates that acts in the same direction as the 

dummy unit couple. 

Fig. 57 

Required: Value of Ri 

Fig. 57a 

== 
-5' 

5. 

Mmdx 

R, = 

/Mmdx ^ 

^eT' ^ 21'_ 
C ( m^dx 
J El 

1500a;»dx 
■ + 

ri500a:2 i 
— + 6000(a: - 8)Ja:dx 

X x*dx 

23,969,000 

1,944 

Ra « - 12,310 lb. 
The unit load was assumed to act downward, hence the negative sign means 

that R2 acts uoward 
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We may check this from the preceding result: 

- M. = R.L - = g ^3(4L- a) - ^2" = - af. 

Fig. 57a shows a numerical example 

(h) Continuous Girder of Two Equal Spans, Uniform Load (Fig. 58). 

w 

Ficj. 58 

\ t 1000^ per linear ft, 

TTTOIITlfllTnTlinii lU.llllllIlM liLlilllllllLllllillllllllllTllllirillllll 

^Rt . 
^_5.' __ooi_J 

r T 1 
Fig. 58a 

Section 

1 Web plate 30" X i" 2 Angles 6" X 4" X I" 

2 Cover plates 14" X V 
Required: Value of 

J^^^^34.55x-^j .451xdx + [^34.55x “ 5(x - 18) J 

72. - - 

.451xdx + ^32.45x — .549xdx 

^34_ r2H_ 
\ A5fxHx + .549Vdi 

208 000 
=-^— X 1000 = — 42,750 lb.; the negative sign means that Ri acts 

4865 

upward. 

We treat the center support as redundant and take origin at A. 

ilf' = wLx 
wx^l 

m 
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and 

XL rL 7 3 

mHx = j -^dx = 

whence 

Rb — 
hB 

12 

which is the well-known formula for the center reaction in a continuous 
beam of two equal spans, loaded uniformly. 

The same general method may be applied to a two-span continuous 
girder of unequal spans and any loading. Fig. 68a shows a numerical 
case. 
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(c) Portal Frame (Fig. 59). 
We treat the horizontal reaction as redundant, and neglect the effect 

of shortening in CD due to H (generally exceedingly small in such a 
frame). The fundamental equation is, 

whence 

'Sp PM'm 

^1 ^m~d 

fM'mdx 1 Px 

2,J-bz- - 2 isj; 

2^J El -^X ^ Jo ^ 

5 Px , , PhL^ 

SEL/ 

hHx 2 PL 

Eh 3 Eh Eh’ 

2 h? K^U 

3 Eh Eh 

The unit loading was applied outwardly; the minus sign shows 
that H acts inwardly. 

We may take the same frame with horizontal load at top (Fig. 60). 
Again neglecting axial shortening, we have 

Phx^ 
Af' = 0 for AC; = -j- for CD, origin at C, 

D 0 
and 

h 
= Px for DB, origin at D, 

0 

m is same as for preceding case. 
We then have 

Phx 

EhL 
•hdx + 

Px^dx 

Jo ^ 

Ph^L PI^ 
2Eh ZEh P 
!fL 2 ~ 2’ 
Eh 3 Eh 

the usual approximate formula. 

Ph^L Pffi 

2Eh ZEh' 
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If the member CD should develop an appreciable axial deformation, 

or if the load P should be applied to the column BD at an intermediate 

point, the above result would no longer hold. 

(d) Two^hinged Arch Rib with Parabolic Axis (Fig. 61). 

Deflection line for arch axis under pair of unit horizontal loads at supports acting 

inward = (to some scale) influence line for H. 

Fig. 61 

Taking positive direction of coordinates upwards and to the left, 

the equation of the parabolic axis when referred to end B is 

The cross-section of an arch rib usually increases toward the support; 

a common assumption which gives a very satisfactory approximation 
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in most cases is that I varies as secant a (a = angle of inclination of 

arch axis with axis of x). In such case, ii Ic — I at crown, 

T r ^ ds ds cos a 
1 — Ic sec. a, and = —,- 

' -l c 

dx 
T’ 

and the deflection equations are considerably simplified. Further, the 

terms representing axial thrust arc, in all ordinary cases, quite small 
and may be neglected without serious error. 

Making these simplifications and taking the horizontal thrust as the 

redundant, we have, 

M' - 

Pa ^ 
T ^ L 0 

Pax _ 
L 

m = y — 4h 
/x _ x^\ 

\L W 
P(x - &)|^ 

and 

These integrals are easily evaluated: 

X iPahx / X X- 

■ TJ\ 

, PahL 
dx = -, 

~^{Lx — x^){x — b)dx = 
4PA p 

x^L — — Lhx + hx^)dx 

- - »>l 

/ 

- p) * - 

M'mdx 
PahL Ph/aYf , . ,, 
-3- - t(l) - a)] 
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whence 
6 PL 

H--- — 
fa a Vo U i?(,^ l)\ 

U -f — k, we have 
Li 

21^ + Ar^). 

Fig. 61h indicates the distortion of the arch when H is removed. 

TABLE A 

Mem¬ 
ber 

A L S' S'L 

A \ 
u 

1 

S'L’U 

A 

u^L 

A~ 
SrU S==S'^SrU 

1 3 141 0 -1.41 94.0 +7000 +7000 
2 3 141 -14,100 -667,000 -1.41 +940,000 94.0 +7000 -7000 
3 10 100 -f 10,000 + 100,000 + 1 + 100,000 10.0 -5000 +5000 
4 3 100 + 10,000 +333,000 +1 +333,000 33.3 -5000 +5000 
5 10 100 0 +1 10.0 -6000 —5000 
6 3 100 0 + 1 33.3 -5000 -6000 

+1,373,000 +274.6 
„ 5' - 1,373,000 
Sr - “ T “ —— « — 6000 lb. « Stress m S%. 

Si 274.6 

Since the unit loading is such as to produce tension in St, the negative sign means 
that the true stress is compression. 
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{e) TrxLSS with Redundant Member, 

The general method of procedure for this problem has been previously 

indicated. Fig. G2 and Table A show the full detail of a very simple 
numerical example. 

(/) Continuous Truss. 

This is precisely similar to the solid girder if we use the truss deflec¬ 
tion formula instead of the beam deflection formula. 

We have 
S^S'ugL 

r. _ 
Su 

The notation is self-explanatory and the detail involves nothing but 

a straightforward application of the deflection formulas. 

ig) The Spandrel-braced Arch. 

The horizontal thrust is the redundant; if Rth be removed the 

point g will deflect to the right a distance 5' under the action of the 

load w. If Ug is the stress in any member due to a unit horizontal load 
acting outwardly at 

./ __^S'UgL 

^' 2.1 AE' 

The true horizontal thrust is the force required to produce an equal 

and oppositely directed deflection. A 1-lb. load will deflect g 

2.1 AE' 
and 

\r^S'u^ 

- - -P = - u}L ‘ '%^Ug^L 

Fig. 64o and table show a numerical case. 
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Fk;. G4(a) 

TABLE A 

Mem¬ 

ber 

Length (L) 

Inches 

Stress (S') 
Pounds 

Area (A) 

Sq. In. 

S'L 

EA 
ii S'uL 

~EA 

u^L 

EA 

VoUi 360 * -239,000 10.00 ’ — .307 - .617 + .1892 .00000045 

Udh 360 -600,000 i 10.00 1 — .771 -1.533 +1.182 .00000282 
U,Uz 360 -844,000 j 10.00 — 1.085 -2.165 +2.350 .00000561 
LoLi 400 ! 0 20,00 000 +1.11 000 .00000082 
L1L2 374 j +249,000 1 18.00 + .1845 + 1.678 + .3095 .00000195 
L-iLz 362 +603,000 16.00 + .4325 +2.55 +1.102 .00000490 
UoLi 457 +304,000 10.00 + .496 + .785 + .389 .00000090 
UiU 402 +404,000 8.00 + .725 + 1.025 + .744 .00000176 
UiLi \ 388 +274,500 6.00 + .634 + .680 + .431 ,00000099 
UoLo ! 456 -187,500 10.00 — .3055 - .483 + .1473 .00000035 
UiLi 282 -255,000 8.00 — .3215 - .458 + .1473 .00000025 
UiU 180 -170,500 6.00 .1827 - .253 + .0462 .00000006 
Ud., 144 -37,500* 2.00* .0964 .000 .0000 

■^One-half actual value. | 7.0375 ,00002086 

H 
7,038 

.000021 
350,000 lb. 

The minus sign indicates that H acts inward (opposite to deflection S')* 
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(h) The Framed Bent {Truss and Beam Combination) (Fig. 65). 
The columns ACD and BKll are continuous over points C and K. 

All other members take axial stress only. We take Rin as the redundant 
(we may take Rm equally well) and, from the discussion which has 
preceded, we may write at once, 

Any truss and beam combination is analyzed similarly. Fig. Giya 
is a simple example of a ^^King post^’ truss. Member ACB is con¬ 
tinuous over joint C. If the member (1) is taken as the redundant, 
and we imagine it cut at the upper end, we have 

_ __ i' = _ ^''AE^2^~~En 
5i \^u^L s^ni^dx ’ • • • W 

2^'AE 2^"eT 

In the substitute statically determinate structure, it is obvious 
that the load P is carried to the supports entirely by bending m AB) 

S'uL 
therefore the term vanishes. It is further clear from the figure 

Alii 
that Af' = — Pm. We shall then have 

^m“dx 

>\) = P' 

rm-c 

f rn^dx 

r wrdx 
= 2 

L 

2 dx T? 

T = 

^ A 
- (from Table A) = 224.0 

1340 

1340 + 224 
X 10,000 = 8570 lb. 

(b) 

(c) 
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The positive sign indicates that Sq is of the same sign as Wq; 
i.e., compression. 

It may be interesting to view the problem from a different standpoint. 
We have noted that when member CD is cut, the load is carried entirely 
by beam action in ACB. But if the framework were rendered deter¬ 
minate by breaking up the member ACB into separate members AC 
and CB, we should have the entire load carried by the simple truss 
ACBD, In the actual framework there is a combined action, and the 
problem is solved if we can answer the question: How much load is 
carried by truss action in ACBD^ and how much by beam action in 
ACB? Now the deflection of the true truss (no continuity in ACB at C) 

for a unit load at C is term in the denominator of (6). 

Likewise the deflection of the simple beam AB for a unit load at C is 
m^dx f: El 

■j the numerator of the fraction in the right-hand member of 

(6) and also the second term in the denominator. If we call 

n 

= the coefficient of rigidity of the beam AB with respect to a vertical 
load at C, and define the rigidity coefficient r, for the truss similarly, 
we may write Equation (b) 

1 
n rt 

_ + i 
Tt n 

id) 

Now, the stress Sq measures the amount of the load which the truss 
carries and P — S the portion of the load carried by AB acting as a 

beam. We may easily show from (d) that jz—; i-e., the 
P — ^0 n 

relative distribution of the load through the beam and through the 
truss is in proportion to their relative rigidities. 

This result illustrates a very fundamental principle in the theory 
of redundant structures, usually termed the principle of rigidities.'' 
In general, in transmitting a load to its final support, the stress tends to 
follow the most rigid path. 

36. Summary.—We may summarize briefly : 
Any structure containing a single redundant may be reduced to an 

equivalent structure from which the redundant has been removed and 
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in its place a statically equivalent loading applied. If the redundant 
is a simple support this loading is a single force; if the redundant is a 
superfluous bar, the loading is a pair of equal and opposite forces; if 
the redundant is a fixed-end’^ reaction, the equivalent loading is a 
couple. The problem is to find this unknown loading which is numeric¬ 
ally equal to the redundant quantity, and which we may designate in 
general by X. The statically determined structure which results from 
the remov^al of the redundant we shall for brevity call the base-system. 

If now we imagine X to be entirely removed and the specified load¬ 
ing to be applied to the base-system, there will result a certain displace¬ 
ment of the point of application of X which we call 5' and which is 
easily calculated from the fundamental formulas. (When the redundant 
is a pair of forces, the displacement of the point of application of X is 
to be interpreted as the relative movement of one of the equal and oppo¬ 
site forces with respect to the other.)* 

If we next imagine the specified loading removed and X alone to be 
applied to the base-system, we shall find that the application point of 
X is displaced an amount X5i, if is the displacement for the case 
X = unity, and no other loads act on the base-system. But, if X is to 
be equivalent to the actual redundant reaction or redundant stress, 
then (in all such cases as we have been considering) these two deflec¬ 
tions must be equal and opposite, i.e., 

5' + X8i =0; X = - 
0} 

It is important for the student to recognize clearly that this simple 
equation applies directly to a great variety of problems—simple beams, 
simple trusses, and what we may call truss and beam combinations (as 
case It should also be noted that 8 is here used as a general term 
for displacement, either linear or angular. 

* If the redundant is a moment, the displacement is a rotation, and in such case 

the use of the term point of application’^ is open to criticism. If for any moment, 

however, we take a statically equivalent couple consisting of a pair of indefinitely 

large forces with a correspondingly small arm, we may approach as nearly as we 

please to the condition of a moment applied at a point, and with this interpretation 

we may properly speak of the rotation of the point. ’’ (See Professor Geo. F. Swain, 

“A New Principle in the Theory of Structures,” Trans. A. S. C. E. Vol. LXXXIII, 

pages 622, et seq.) At any rate, the gain in simplicity of statement would seem 

to make this terminology defensible in this case. 
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SECTION II.—DEVELOPMENT OF FORMULAS FOR STRUCTURES OF ANY 

DEGREE OF STATICAL INDETERMINATENESS 

37. General Equations.—The preceding method is readily extended 
to structures with any number of redundants. To fix ideas we shall 
first consider a continuous girder with four spans (Fig. 66). If we 

a" ' 

Moment curve for a load diagram = A'a'h'c'B' 

— El X Deflection curve for loading kaa, kab^ kac 

= InflueiH^e line for Xa (if ya l>e made = 1). 

Fig. 6G 

remove /2a, Rd and Rc we shall get, from the given loading, deflections 
5'o, 5'^ and b'c at a, 6, and c. Now /2a, Rd and /2c must be so adjusted 
that the resultant deflection at each of these points is zero. If in general 
we let bmn = deflection at m due to a unit loading at n in the base- 
system, we may express the above conditions mathematically in the 
equations 

Ra^aa ”1“ Rb^ab "f* Rc^ac 4“ b^a = 0, 

and two similar equations. 
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In the general case of n redundants we have 

Xa^aa “f" Xjihab “h Xc^ac "!"••• Xn^an “h a “ 0 

XaSjo + Xbditb + Xc^bc + . . . Xn^bn + = 0 

(29) 

Xa^na + Xbdnb + Xc^nc + . . • Xn^nn + = 0 

This always gives n equations by which we may determine the n 
statically indeterminate quantities. The coefficients of X in the above 
equations, as well as the constant terms, are deflections of the statically 
determined base-system and are all readily obtained. Considerable 
simplification is possible if we remember that 8mn = 5nm from MaxwelFs 
theorem of reciprocal deflections. In general 

and 

5, _’S^aS'i4tL , f'M'rrirdx 

J EI ^ 

rmgnirdx 
2.J 

UgUrL 

IK 

For a structure with a large number of redundants, general formulas 
for X in which the value may be obtained by direct substitution are quite 
out of the question; indeed when the number is more than two or three, 
the unwieldiness of the algebraic forms renders their practical usefulness 
doubtful. In such cases it is generally simpler to substitute the numeri¬ 
cal values of the 5’s in equations (29) and solve the resulting numerical 
equations for the X's, 

The two examples following will make clear the application of the 
general method. 

37a. Examples. 
Problem I is a quadrangular frame with columns fixed at base and is 

therefore triply indeterminate. Fig. 67a shows the frame and loading 
and Fig. 676 shows the base structure with external loadings applied 
equivalent to the redundant reactions. The solution follows. 

The fundamental equations for the statically undetermined quan¬ 
tities are: 

5a ~ 0 = “h Xa^aa "h Xb^ab "H Xc8ac.(o) 

6b 0 *** d^b “i“ Xa^ba 4" Xb8bb 4" Xc^bc.(6) 

6* “ 0 8'c 4" Xa^ca 4” Xb^cb 4“ Xc8cc» ..  (c) 
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To evaluate the 5’s we proceed as follows (axial distortion is ne¬ 
glected) :— 

^M'niadx _ r^Pjx — h)xdx f''PaLdx 

Ji> Eh Jo 2/ El 

M'lUhdx 

El -X 
_ rM'mdx ^ _ pF 

'~2^J El " jb 

Eh 

'^P{x-b)hdx 
f 
Jo 

Eh %EIi 

'^Paxdx Pah f a 

^[aK3L - a)] 

Eh 2E Ih 
+ 

/2J 

p'P(x - 6)cix f^Padx Pa ^0 2*1 

^ Eh 

11 1 

2E Ji tJ 

rmaHx f^xHx p 
Z^J El ^ Jo ~Eh Vo 

^JMx 
Eh 

VL . Zh 

ZElh 

r2h 

7] 
. rmbHx r^xHx f^h^dx r2h ZLl 

2. j xeT = Vo wJJoW,^ +t1 

_ r m^dx ^ dx r^dx _ f2h LI 

“ Z^J El ~ Vo Eh '^Jo Eh “ IM2 EhJ 

r^hxdx r^Lxdx - Lh ■L *-] 

*0 Eh J *0 ~Eh ^ 2E TJh\ dba 

*""2/ 

‘‘-2/' 

mctriadx 
hr~ 

'mcmi)dx 
~Er~ 

__ H'xdx r^Ldx _ l^VL 2hr\ __ 

Jo Jo ^ 2^L/T T^J ^ 

• - zZXk 11 
’Jo Eh Jo Eh ~ £ L/i / J = _ 2 5c6 

Eh 

With all constants and all coeficients of the quantities X thus deter¬ 
mined, the equations (a), (6) and (c) are readily solved. In any case 
ordinarily arising in practice h and L are known in advance and 11 and 
12 are either known or relative values are assumed, and the algebraic 
detail then becomes quite simple. 
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The solution to obtain general expressions for the unknowns is quite 
lengthy and tedious and is seldom of enough advantage to justify itself 
in any individual problem. As an illustration of the general method we 
will indicate the process for obtaining the general formula for the hori¬ 
zontal reaction Xi>. 

In such case where no more than three equations are involved, it is 
best to first write out the general expression for from equations 
(a), (6) and (c). This may be done by ordinary elimination, but it is 
most easily effected by use of determinants. We have: 

^aa 5u5 5 ac 

^ba ^bh ^bc 

^ca ^cb Bcc 

. . id) 

~ ^bc^ar) - + ^'cidgadhr — ^nr^nh) 

dabi^ba^cc ~~ ^bc^ac) — ^bb{Saa^cc ““ ^^ac) + ^cb{^aa^br ~~ ^ac^aby 
(e) 

if (d) is expanded by means of the minors of the terms of the middle 
column. 

The coefficients of the 6'^s are (dropping the constant E), 

had.. -hh. = t[7T + + [n ^ 

= i^ik -L 4. 
12 [h "^/2jUl /2J 

SaaS,. - 6acda,= ^ ^^ ^ 
m\L 
12 [h A1 Ik 4- 

^2JL^1 I2. 
Substituting in (e) these coefficients and the values of the S'’s them¬ 

selves, we have (after cancelling the common factor •— 

Xi- 
Pa 

a , h' 
Ti'^T2 

\k + 2^1 
|/i ^ I2 

I 

A
le

' 
4-

 2^' 
■^2 

+
 

f
_

 

2h ' +
 

2 h' 
3 /2. 

\L , 2h~ 
Lt: + h\ 

- 
L ^ h 2 
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If we let = ku -j- = k2, ^ = n we shall have: 
ii I2 Ii 

X == — — + 2^2) — (n + 2^2)(fei -f ^2) ___ __3Pa n — k\ 
2h {ki + ik2){ki + 2^2) — (A;i + k2)^ 2h 2ki-]rk2 

__ 3Pa(L - a)72 _ ^ ^ 3a6 
2h{2Ll2 + hli) V ^2'! ^ 2hL(]^^) 

The plus sign indicates that Xb( = Hc) acts as indicated in Fig. 676. 
A similar reduction gives the other redundants as 

= Vr 
_ Pa 

~ 17 1 + 
6 L - 26 

Qk +“^1, 

and 

Y. = Me 
(5A:- l)+2j(^ + 2) 

2/; (^TW^”"TT) * 

% P P P P P P P p/2 

Fig. 68 

Problem 2 is an 8-panel quadrangular truss with each panel doubly 
braced. It is in general 8-fold indeterminate, but for the symmetrical 
loading of this problem the redundant stresses are identical on either 
side of the center so that the problem becomes only quadruply inde¬ 
terminate. Figs. 68a and 686 show the structure and loading and 
the equivalent base structure. The solution for the redundant stresses 
is shown in Table A and the solution of the numerical equations follow¬ 
ing the table. 

When the stresses in the redundant members have been found, the 
true stress in any member is obtained from the equation^ 

T" Xatla XpUb . . . XnUn* 
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SECTION in.—INFLUENCE LINES FOR STATICALLY INDETERMINATE 
STRUCTURES 

38. Simple Cases.—As a general rule influence lines are much more 
important in the analysis of statically indeterminate structures than in 
simple structures. In many cases they constitute the only practicable 
method of determining conditions for maximum and minimum loading. 
We shall consider a few of the simpler cases. 

(a) Two-span Continuous Girder. 

To construct the influence line for Rb in the beam of Fig. 51 we 
require the equation for Rb due to a unit load acting at any point q. In 
this case it is convenient to denote d's by dsq and from the preceding 
theory we have at once 

^ niB^dz ‘ 

X 
If then we compute the above numerator for a number of different 

positions q of the unit load we obtain corresponding points on the 
influence line for R (obviously is a constant). This procedure is 
very tedious, and we shall ordinarily find it advantageous to proceed as 
follows: 

From Maxwell's principle we have bsq = where bqB is the 
deflection at any arbitrary point q due to a unit load at B. That is to 
say, if we construct the deflection curve for the beam under a unit load 

at this curve multiplied by is the influence line for Rb. We may 
obb 

conveniently obtain this deflection curve analytically or graphically^ 
by the method of clastic weights, using as a load diagram the actual 
moment diagram for the simple beam AC loaded with unity at B. 

(h) Triuis on Three Supports. 

If we consider a truss on three supports (Fig. 63) and apply the 
above general theory, we get 

^ UqUeL 

n __AE 

Z^AE 
where q == h, c . . . k. If we apply a unit load at e to the base-syrstem 
and construct a Williot displacement diagram for this case, we shall get 
from this one diagram all the values of dqe and thus all the data for the 
construction of the influence line for B,. We may also obtain the 
deflection line conveniently by means of a simple beam moment diagram 

j mqniBdx 
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for elastic loads, following essentially the method of Chapter I, Section 
II, D. 

(c) The Two-hinged Arch Rib. (Fig. 61.) 
For the two-hinged arch rib under 

any point 5, 
a single vertical load unity at 

/mqmiii 

_El 
/mii^dx ’ 

Eh 

if we make the assumptions of Problem d, page 102. Fig. 61c shows 
influence line for Rg. It should be noted that dgq — horizontal dis¬ 
placement at B due to unit load acting vertically at g = vertical dis¬ 
placement at q due to unit load acting horizontally at P = 8qB. The 
quantities niq and ms are respectively the moment at any section due 
to unity at q acting vertically on the simple curved beam AB^ and the 
moment at any section due to unity applied horizontally at B to the 
same structure. Here, as in the case of the continuous straight beam, 
we may construct the influence line for Rg as a moment diagram of a 
simple beam under certain elastic loads. This is discussed in the 
chapter on arches. 

(d) Two-hinged Braced Arch. 
The above formula for Rg holds if we substitute the truss-deflection 

expression instead of the corresponding form for beams. Thus 

Here again we may obtain all the values of from a single Williot 
diagram. We apply a unit horizontal force at g, no other loads acting, 
and draw the displacement diagram. From this we obtain the vertical 
deflection of each joint B, C ... F, which by Maxwells principle is 
numerically equal to the horizontal deflection at due to a unit vertical 
load at 5, and hence is the desired quantity. 

39. General Method for Multiply Redimdant Structures. 
Let us take for example a triply indeterminate structure for which 

we have the equations: 

Xahao, “f" "h Xc^ac ~ — ^aa 

Xaha + XftSw + Xehc = — 5^ 

Xm^ca + Xifdcb + XcBoc == — 
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Solving these equations for the X’s, and noting that 5a6 = etc., 

we get 

Xa= - 
Saai^bb^ci '(^^ac^bc ^ab^cc) “H _ 

if 

^aa ^ab ^ac 

^ba ^bb ^bc 

^ca ^cb ^cc 

and two similar equations for Xi, and Xc. 

We may write the above equations 

where 
A.t, — ^ab^Qb ^qc^QC) 

JCaa — 
^bb^cc — ^bc^ 

; etc. 

(30) 

and two similar for Xb and Xc- 

Now, 5ya, dgb, etc., are respectively the deflections at any point q 

in the base-system, due to unit loadings at a, 6, and c. There¬ 

fore, 

kaa^qo) ^^ab^qbf ^ac^qc 

are the deflections at q due to loadings at a, h, c, numerically equivalent 

to kaa, kabf otc. Wc havc thus reduced the problem of constructing 

the influence line for any of the statically indeterminate quantities X to 

the problem of constructing the deflection line for the statically deter¬ 

mined base-system—the simple structure resulting from the removal of 

all redundant bars or supports—under certain elastic loads h applied at 

the points of redundancy. This deflection line of the simple structure 

is ordinarily most easily obtained by the method of elastic weights, or, 

if a truss, b} the Williot diagram. 

As an example wc may take the four span continuous girder of Fig. 

66. We apply to the base-system (simple beam AB) the forces 

Xa — kaof Xb — kab} Xc — kai 

This loading will give the moment diagram of Fig. 66d. To obtain the 
elastic curve we apply the moment diagram as a load curve and thus 

obtain the curve of Fig. 66e. If we determine the scale by the fact 
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that 2/a = 1 (since, for a unit load at a, Xa must obviously equal unity) 
then from the preceding theory, is the true influence line 
for the reaction Xa. The method is general and may be applied to other 
problems than the straight continuous girder or truss. Fig. 69 shows a 
continuous arch with the influence line for the horizontal thrust con¬ 
structed by this method, but a full treatment of the subject is beyond 
the scope of this treatise.* 

40. Mechanical Solution.—A most ingenious application f of the 
preceding princi¬ 
ples, with certain 
modifications, has 
led to a mechani¬ 
cal solution of 
statically i n d e - 
terminate struc¬ 
tures, apparently 
applicable to all 
types, whatever 
the degree of inde¬ 
termination, and 
which promises to 
be of great practi- 
cal importance. 
Only the outline 
of the method can 
be presented here, 
and we may do 
this by showing 
the application 
to the continu¬ 
ous girder of Fig. 
66. 

In this method the fundamental structure is not the simple structure 
with all redundants removed; it is the structure obtained by the removal 
of the redundant whose value we seek, and no other. Let us suppose 

* For further treatment of the subject, the reader is referred to H. Mueller- 
Breslau, “ Die neueren Methoden der Festigheitslehre,” which is largely the source 
of the above discussion (pages 195-228, edition of 1913). 

t Due to Professor George E. Beggs of Princeton University, who has successfully 
applied this method to a wide variety of complicated problems in statically inde¬ 
terminate stresses. See article by Professor Beggs in Proc. Am. Cone. Institute, 
Vol. XVIII, pages 68-82. 
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that in the above girder we want to derive the influence line for Xa. 
We remove the support at a and consider the continuous girder AhcB, 

If we denote the deflection of any point of the structure by A (to 
distinguish from the previous case where the base-system was the 
simple beam AB)j a little reflection will serve to show that we must 
have 

where in general Aqr = deflection at q due to unity at r in the continuous 

girder AbcB. 

But, since Aaa is a constant, this means that if we have the deflec¬ 
tion curve for the continuous beam AhcB for a unit load at a, this must 
be to some scale, the influence line for Ra. For the ordinary course of 
analytical calculation, to be sure, such a procedure is futile; we should 
have to carry out a solution of the statically indeterminate structure 
AhcB before the deflection curve could be found. But if we lay out, on 
a drawing board or otherwise, the spans Aa, ah, he, cB to scale and 
place on the supports A,h,c, and B a flexible bar of homogeneous mate¬ 
rial (so-called spline^’), having I proportional to that of the actual 
girder, we then have a simple mechanical means of obtaining the desired 
deflection line. Hinging the spline at h, c, and B, we displace the 
point a an amount 2/a = 1- Then the ordinate at any other point, q, 

measured from the base line AhcB to the neutral line of the spline, 
is equal to the reaction at a due to unity at q. It is obvious 
that the spline will take a curve identical in form with AhcB in 
Fig. 66e. 

In general, for any statically indeterminate structure, if we effect, 
on a model of the structure, a unit displacement at the point of applica¬ 
tion of the redundant force (unit angular displacement if the redundant 
is a couple) and measure the displacement in a given direction of any 
other point, this will equal the value of the redundant force for a unit 
load at the point acting in the given direction. Good results have been 
obtained by the use of relatively simple and easily constructed card¬ 
board modela 



THE METHOD OF LEAST WORK 121 

SECTION IV.~THE METHOD OF LEAST WORK 

41. General Theory.—In Section I, Chapter I, we developed the 
expression for deflection as the partial derivative of the internal work of 
deformation, 

dr = 

dW 
dPr 

If now we have a beam or truss with a single redundant support, 
which we replace as in the preceding cases by an unknown force X, we 
must have (if the support is unyielding), 

8 = 
dW 
dX 

= 0, 

which gives the required equation for X, 
If we have a reaction in the form of a restraining moment (as in a 

fixed-ended beam), the same equation holds if we understand 5 to be a 
general term for displacement, including angular as well as linear move¬ 
ments. X is then the applied external couple statically equivalent to 
the restraining moment. 

In the case of a frame with a redundant bar, if, as usual, we sever 
the bar and apply a force-pair X (equivalent to the true stress in the 
bar) to the cut faces, and if we call the relative displacement of these 
faces 8y the preceding equation is still valid. 

If there are several statically indeterminate quantities, we shall 
have, since W is in general a function of all these quantities, 

We thus have an equation of condition for every redundant and the 
method is perfectly general. 

If Tf = / (Xfl, Xft. . . X„; Pay . . . Pn) where the loads P are 
to be regarded as constants throughout the investigation, the values 
of the X^s determined by the conditions 

dW 
dXa 

= 0, dW 
ax, = 0, etc. 

are the values that cause W to take either a maximum or a minimum 
value. Physical considerations indicate that it cannot be a maximum. 
For in the case of, say, a continuous girder or truss, if we apply to the 
base-system forces X having the same sense as the specified loads, it is 
clear that Tf increases uniformly as the X’s increase, and no true maxi¬ 
mum is possible. Similar reasoning applies to other indeterminate 
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structures. We appear justified therefore in assuming that values of 

X determined as above render W a minimum.* 
We thus arrive at this important generalization: In every case of 

statical indetermination where an indefinite number of different values 

of the redundant forces X will satisfy all statical requirements, the true 

values are those which render the total internal work of deformation a 

minimum. 

This law generally goes by the name of the principle of least work.’’ 

It is often urged as peremptory proof of the principle that it must follow 

from the '^economy of nature'' that all natural operations take place 

with a minimum expenditure of energy. 

It has been held that the principle is traceable to the principle of 

least action" which has played so important a part in the development 

of mathematical physics. As a principle useful in the analysis of stresses 

in structures, it appears to be due to Menabrea (1858). But it was 

discovered independently by Castigliano (1875) and its application 

greatly extended, whence it is generally known as Castigliano's second 

theorem. Frankel also arrived at the principle independently (1882). 

42. Method of Application.—To illustrate in a general way the 

application of the method of least work, let us take the case of a con- 

* For a single redundant the mathematical proof follows readily: 

1 fM^ds IXT^ CN’^da 
“ '2^J IT j 'ae’ 

dw _ CMds dM -sp fNds dN_ 

QX ~ El ' dX ^ 2^ J AE dX’ 

^ r fMds dm rJ*/^yi 
[J El 'dX^ J El\dx) J 

Nds /^\ 0 

AE 'dX^'^J AE\dx) J' 

But if M and N are linear functions of X, 

d^M 3W_ 
0X2 “ 0X2 ^ 

whence 

9X* J EI \dx) ^ AE\dx) ’ 

an essentially positive quantity. 
The general case of maxima and minima of a function of several variables 

involves other considerations, and a really rigorous investigation of the question from 
this standpoint is hardly in place here. It is believed that the physical argument is 
quite convincing. 
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tinuous girder of three spans. We replace the effect of the intermediate 
supports by the undetermined external forces A^a and Xu as in previous 
cases. We have, 

1 p MHx 

Va EI ' 

where A and B are the end points of the entire girder system. Then 
the equations of condition are 

aA, ^ El 'dXa^ dA, ^ El aAV 

We may write 

M ^ M' + Ma + 

where M' is the simple beam moment in the span AB, just as we 
have hitherto used it, and Ma and Mj, are respectively the moments 
at any point in the simple beam AB due to forces Xa and A^ applied 
singly to the points a and h, no other forces acting. We then have 

M'dx aMa Mgdx dMa , M4x dMg ^ 

dXa J, Ef'dXa^X, El 

Changing the subscript from a to 6 we get a similar equation for 

M', Mat Ml,, are all easily obtained, and the integrals 
aAft oAa oAft 

readily evaluated. There result two equations in Xa and Xb and cer¬ 
tain constants from which we find the values of the former quantities. 

The example of Fig, 70 will illustrate the method of procedure. 
Recalling that 

Ma = AoWa, Mb = Xbrrib, 
and therefore 

a^a 
aAa 

_ ^Mb _ 
'f^a, nife. 

Equation (32) is transformed into 

dW . ^ r» M'dx 

= 5 a + Xa^aa + Xb^ah, 

nia^dx 
^~w 

+ x, 
>/ 

Trtanibdx 
~wr 

which the student will readily identify with the general equation (29). 
43. Summary.—The method of least work has played a very 

important part in the development of the theory of structures, and it 
5s still widely used. It is a general method, coordinate with the Maxwell- 
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Mohr method; in practically all cases of importance to the structural 
engineer a problem which can be solved by one method can be solved 
by the other. Opinions differ as to the relative advantages; the authors 
of this book have felt that on the whole the balance is in favor of the 
Maxwell-Mohr method, and hence have adopted it as the fundamental 

trlb./ft. 

(a) 

m 

Ra (6) 
Fio. 70. 

_ . ^ 

Treating the two right-hand supports as redundant we have for the internal work 
of deformation: 

y = 4; r f& 
2EI 2ElJo V 4 / 

+ -r 2ElJo 
[(R, + R4)’x* + 2RMRz + Ri)! + Rt^mdx + }x^dx 

wL RU . Rh + 2RJti + R.* L> rRi» _«;L , w‘‘L‘ , RU , 
“h RilR\ “h 2R4* 

dw 

dRz 

] U) 

; “ ^[3®*!! - T H+= 0.(B) 

and 

91Y _ 
dR* 2EI 

+ iRi + Ir> + Ir* + R> + 4R. 
4 3R4 ' 3' 

wL dRi 

] = 0. (O 

dRi 
p>om statics we have , , . Ri — ^ 4- 2R4, whence ~ 1 and 

2 Q/t# qRa 
= 2, substituting in (B) and (C) and collecting terms we get: 

4" zRi 4* 3/?4 * 0, and —-—f- 3Bi 4' 8B4 = 0, whence Ra = Ri =» ““"t;;;; 
o o 60 10 

13 21 39 13 
andRi =* Rt - wL — [Bi 4 Ba 4 iK4l - wL — 60^^ * 

method for the general treatment of statically indeterminate problems. 
But it should be said that in spite of the differences in the fundamental 
conceptions of the two methods, the parallelism in the actual detail of 
applications to problems is so close that there is very little to choose 
between them on that score. The historical importance of the method 
of least work and the fact that such wide use is still made of it in 
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temporary literature has made it seem desirable to explain its funda¬ 
mental character, though, for the reasons just stated, little further use 
will be made of it. 

The whole system of analytical treatment based on the internal 
work of deformation is sometimes referred to as the '^method of least 
work.^’ Though the distinction may not be of great practical impor¬ 
tance, for the sake of clear thinking it is well to note that such usage is 
incorrect. 

SECTION V.—TEMPERATURE AND OTHER NON-ELASTIC EFFECTS 

44. Modification of Preceding Formulas.—In the preceding deriva¬ 
tion of formulas for the redundants in a statically indeterminate structure 
we have omitted from consideration the effect of temperature, of yield¬ 
ing supports, slip of riveted joints and similar effects. 

If in the beam ABC the support B sinks a small distance Ab below 
the level AC, we can no longer write 

5b = 0 = 5^b Rb^ib) 

but we must write 
5b = Ab = 5^b “b Rb^ib* 

Again let us suppose that when the support B is removed and the 
loads are applied to the base structure AC, an unequal distribution of 
temperature takes place so that there results a displacement from this 
cause which we call A^b- Then clearly 

P _ 5'b ± AtB 

dlB 

So in the truss of Fig. 52 if when the redundant member is cut and 
the loads are applied there are also temperature changes in the different 
members, then in general the total displacement of the cut faces will 
be 5' ±: At and 

. 5' ± A, 

A similar provision may be made for other non-elastic distortions. 
It is clear that we may express the effect of temperature or other 

similar change on the redundant independently of the effect of the loads 
by placing 5' = 0 whence 

x = ^‘. 
0l 

Temperature effects will be treated further under the special problems 
of the later chapters of the book. 
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SECTION VI.—GENERAL SUMMARY 

46. The following summary may aid the student in gaining a clearer 
view of the subject as a whole, 

(а) The first step in attacking a statically indeterminate problem 
by the general method is to decide (if, as is usual, there are alternatives) 
on the base-system. The second step is to replace the redundants by 
statically equivalent external forces X, acting on the base-structure. 
The third step is to write for the above structure the displacement equa¬ 
tions for the points of application * of X. These displacements must 
be known or the problem is incapable of solution. If the redundant is 
a single superfluous bar, we cut it at the end and express the relative 
displacement of its faces, which we know, if the force pair X is equal to 
the true stress in the bar, must be zero. If the redundant is a single 
superfluous reaction or restraining moment, we know that its resultant 
displacement must be zero, assuming the ordinary case of rigid support. 
(Temperature, settling of supports, slip of joints, etc., are generally 
provided for separately. See Section V.) The deflection equations 
take the general form (29). 

5, = 0 = 5'. + XaSra • • • X.5- 

which equation merely states that the final deflection of the point r is 
the deflection which the given loading, acting alone, would produce in the 
simple structure, combined with the deflection which the redundant 
forces, acting alone, would produce in the same structure. 

It is important to note that thus far the equation does not require 
the principle of work for its establishment; it depends only on the 
principle of the proportionality of deflection to load (which establishes 
that the deflection due to Xr equals Xr^rr) and the principle of super¬ 
position, which states that the effect of a set of forces applied simultane¬ 
ously to a structure is equal to the sum of the effects of the forces applied 
separately. 

It is only when we attempt to evaluate the quantities 5 that we 
must have recourse to one of the several methods developed in Chapter 
I. The form of the equation illustrates very clearly the fact that the 
problem of determining the redundants in a statically indeterminate 
structure is essentially but a problem in deflections. 

(б) A different philosophical aspect of the problem is brought out 
by the principle of least work, but for the problems treated in this book 
and for most structural problems, the practical difference is slight. We 

* See page 110 for interpretation of the term “ pdrU of application.’’ 
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set up an equation for the total internal work of deformation, and dif¬ 
ferentiate successively with respect to the redundants X, and, to 
determine the so that the total work is a minimum, we must have 
these derivatives equal to zero. This gives as many independent 
equations as there are redundants. But, in order to set up the equation 
of internal work, it is necessary to treat the structure as a statically 
determined base system acted upon by the given loads and by the 

forces X, Since by Castigliano^s first theorem 
dW 
dZ 

dr the operation 

of treating W for a minimum is essentially the same procedure as that 
followed in (a) above, and we have seen (Section IV) that the resulting 
equations are identical. 

(c) Either the Maxwell-Mohr principle of the dummy unit loading 
or Castigliano’s principle of least work results in a perfectly general 
method of attack directly applicable to any statically indeterminate 
problem, in so far as the structure can be regarded as assemblage of bars 
(including the single beam as a special case), straight or slightly curved, 
and subjected to axial stress or flexure, or both. The advantage of a 
comprehensive general method for the treatment of such problems, for 
purposes of demonstration, of unification of the theory and as a check 
on special methods, requires no comment. But it is not to be expected 
that the method which has the widest application shall always or indeed 
usually prove the simplest. Numerous artifices may be used in par¬ 
ticular cases to simplify the detail work of application, and in many 
cases it will be found advantageous to proceed by special methods dif¬ 
ferent from those outlined in the present chapter. In the following 
chapter we shall consider the subject of special solutions in some detail. 
It may be well to remark that, however markedly some of these modes 
of attack may vary from the general methods developed in this chapter, 
they are all fundamentally in harmony with and usually derivable from 
this method. 
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SPECIAL METHODS OF ATTACK 

46. Preliminary.—It has been noted in the preceding chapter that 
the general method there developed is directly applicable to any stati¬ 
cally indeterminate problem. No simpler method, possessing equal 
generality, is known. But for special types of problems, modifications 
of the general method or independent methods may be devised which 
are much shorter and readier of application. Sometimes these methods 
are applicable to very wide groups of problems and are of the highest 
practical importance. It is the purpose of this chapter to discuss some 
of the leading methods by which the analysis of statically indeterminate 
stresses may be simplified in special cases.* 

47. The general method of the last chapter presents two main 
difficulties. First, the evaluation of the quantities 8 (Eqs. 29) by the 
work equations is likely to be quite laborious, and second, in case of 
multiply indeterminate cases, the solution of the group of simultaneous 
equations, equal in number to the statically undetermined quantities, 
is a tedious process and one from which it is difficult to eliminate numer¬ 
ical errors. We may say in general that the chief merit of most (though 
not all) special methods of attack lies in a simplification along one or 
both these lines. 

48. We shall consider briefly 

I. The use of the principle of moment areas and elastic weights 
to evaluate the deflections in beam problems. 

II. The choice of the base-system so as to reduce the number of 
terms entering the equations for the statically undetermined 
quantities. (Three moment theorem, etc.) 

III. The direct application of the moment area method. 
IV. The slope-deflection method. 

* The special methods of solution for indeterminate problems are so many and 

varied that no adequate account of the subject can be given here. This copter 

will merely attempt to indicate the general lines along which the simplifications 

are usually made, and present in detail a few of the more important methods which 

have proved especially advantageous as practical working methods. 

128 
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SECTION I.—MOMENT AREAS AND ELASTIC WEIGHTS APPLIED TO 

EVALUATION OF DEFLECTIONS 

49. General.—It was stated in Chapter II that Equations (29) 

6o = 0 = 5'fl + XaSaa • • • XnSan 

Sn — 0 — S^n “f" XaSfta • • • Xn^n 

do not require the principle of work for their establishment. We are 
at liberty to determine the deflections in any manner we please. We 
have seen in Chapter I that the method of work appears to be the most 
comprehensive single method, but we have also learned that for beam 
problems the method of elastic weights and moment areas is usually 
much simpler and more expeditious. We shall now apply this method 
to some of the problems solved in Chapter II by the method of work. 

60. Examples. 
1. If we take the beam of example (a), page 95 (Fig. 71), we may 

write at once 

Rb == ~ 

2 ‘3 3 

Pa^ 3L — a 
2 ■ L3 ■ 

2. Consider the beam of Fig. 56, page 96, to find Rb (Fig. 72), using 
data of Table I, Chapter I, on parabolic moment diagram, 

Kb-T- 
OlB 

1 WO? (, . 3 N 
3-r(^ - <■ + 4°; 

3 

(5)*(4L - a). 

3. Consider same beam as above, to find Ma. as the redundant 
(Fig. 73). 

Ma =- 
OCIA 

fL-^\ 
2 1 2 wa^ . wa^b L + b L 

{~ir/'3'~8 
L 2L 
2 3L 

wa^ fa(2L - a) + 2{L - a)(2L - a)] wa^/ 
“ ~8 L2 J “ 8 V 
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4. If we wish to find the center reaction in a two-span continuous 
girder, load uniform and spans equal, we have (see Fig. 74), 

Rb = — 
ha 

2 wL^ 2 wL^ 3 
3* 2 3 2 *8^ 

4 3 4 

SECTION n.*~SPECIAL SELECTION OF BASIC STRUCTURE 

61. General.—For a multiple indeterminate structure the directness 
and simplicity of the solution are importantly affected in many cases 
by the choice of the statically equivalent substitute structure which is 
used as a base-system. It is impossible to give general rules to cover 
all cases, but we may note that ordinarily it is advantageous to break 
up the structure, if possible, into more or less independent parts such 
that the effect of the loads and the redundant forces X do not extend 

/X 
1 

TT 
2 

/X 

rJ 
i 

Fig. 76 

over the whole system. This means that fewer terms will appear in 
Equations (29). The following examples will make this point clear, 
and they will also show that the application of this principle leads to 
methods of attack possessing considerable generality. 

52. Application to a Continuous Girder with n Supports.—(Fig. 75a 
and 756.) 

First type of hase-system.—We may select as the base structure the 
simple beam (1) — (n), Fig. 756. The redundants here are the n ~ 1 
intermediate reactions. Then we must have, from Equations (29), e.g.. 

62 = 0 = 5'2 + X2822 + Xsfcs • • • Xrd2r • • . -3r„-i52(n-l), 

and n — 1 similar equations. ^'2 is the downward deflection of the 
support point © due to loads P acting on the simple span ©~@; the 
remaining terms in the right-hand member of the equation represent, 
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collectively, the upward deflection of the same point due to the forces 

X (equivalent to true reactions) acting on the simple span (i)-©. 

522 is the deflection at © due to X2 = 1, no other forces acting; Sor is 

the deflection at @ due to Xr = 1, no other force acting, etc. It is 

obvious that the calculations for each 8 will extend over the entire beam, 

and that each of the n — 1 equations will contain a full complement of 
terms. 

63. Second type of base-system. Let us consider next a differently 

selected base-system (Fig. 76). Here the structure is replaced by a 

series of simple beam spans. The redundants are the moments at the 

n — 1 intermediate supports. If these moment-pairs 

X2...Xr... Xn-1 

as shown in the figure are of such magnitude as to maintain a common 

Fig. 76 

tangent at points ©--Q etc., then the structure of Fig. 76 is the 

statical equivalent of that shown in Fig. 75a. 

Equations (29) become 

52 = 0 = 5^2 + X2822 4* X3523, 

53 = 0 = 5^3 + X2532 + X383S + X4834 . , (33) 

5r = 0 = 5'r + Xr-l5r(r-l; + XrSrr + Xr+15r(r+l) 

5'r is the relative angular displacement of the end tangents at r in the 

simple spans © - C^-Q and © - (4+©, due to the loads P. 8rr is the 

relative angular displacement of the end tangents at r in the adjoining 

simple beams when the structure is loaded with Xr = 1, all other 

loads removed; drir-v is the relative angular displacement at r due to 

Xr-i = 1 acting alone on the structure. If r is any support point, it 
is evident that 5'n will be affected only by the loads in the immediately 

adjoining spans, and that none of the X^s other than Xr-i, Xr, and 

Xr+i can affect the angular displacement at © —whence all the 8^8 but 

three will in general vanish in each equation. 

64. Theorem of Three Moments.—To carry the application a 
little further, there are shown in Fig. 77 two consecutive spans of a sys¬ 

tem of continuous beams. If Mr in general is the bending moment 
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over any support r, and Or the relative angular change, at the support 

r, between the end tangents of the adjacent simple beams, then 

Xr = Mr and dr = Or. 

If we assume the possibility of a relative displacement of supports, 

(c) 

(d) 
5', 

(e) 

Diagram for 
[oncentrated load 

Deflection line 

Deflection line for 

(0 

O’) 

(fc) 

^(fia^rram for XrSf 1 

n<*flertinn line forXr-i*! 

Iy «**®K™**' Xr4.i“l 
®(r-i)r “(r-l)r 

Deflection line for Xr^i,**i 

Graph showing effect of relative displacement of 
|~|^8upporta. 

■ Vn 

Vr-Vr-i VrM-Vr 

Lr-i *-r 

Fig, 77 

then the total relative angular displacement between the end tangents 

at r of the two simple beams 0 - C^-Q and Q ~ (r+i) will be: 

— Displacement due to yielding supports + displacement due to 

given loadings P and w + displacement due to the moment-pairs X at 
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the supports (which are introduced as external forces acting on the 

series of simple beams) = 0, whence (from Fig. 77) 

Vr - Vr-l 

~ Lr^l ' 

Vr + l - 

Lr 
+ 5'r + Xr-l5r(r-l) 

+ XrSrr + Xr-|-1 6r(r-fl) = 0. . 

Vr - yr~l 

Lr~l 

yr-fl - Vr 

Lr 

^r-lLr^. ( Lr~l , 

^ ^FAr-l ^ Mir J 

I r-^\Lr     Qr—lQr—l   Qr^r+l 

^ ~~Mrr~ “ ■ LZx Lr~ 

Here Qr = area of ^ diagram for the span Lr and gr+i the arm of 

the centroid referred to r + 1, ^r-i = arm of centroid of Qr -i 

referred to r ■— 1. It will be recalled from Chapter I that the angular 

displacement 0 at the end of a simple beam due to any loading is the 

M 
shear at that end for a load equal to the ^ diagram for the loading 

considered. All of the 5's of Equation (34) are evaluated by means of 

this simple principle. It is customary to split up the moment diagram 

Q into the portions due to uniform load and those due to concentrated 

loads. (See (c) and (d) of Fig. 77.) 

The simple beam deflection lines are shown in Fig. 77 (e), and (/) to 

(k) show the moment diagrams and deflection lines for the redundant 

moments acting independently. (1) shows the effect of the relative end 

displacements. 

We find that the angular change 6 at the end of a simple beam due 

wIA 
to a uniformly distributed load is 24^ ^ single concentrated 

PL2 
load distant L(1 — k) from the support, B = (k — k;^). Elementary 

simplifications then give us Equation (34a) in the following form 

(assuming more than one concentrated load) 

Mr-~\Lr—\ . c%Ti/r (Lr—l i • itr Lr 

__ + + tJ + 7, 

-2 

_ (Vr - Vr-l _ 

\ Lr-l 

PL\-i{k - F) 

Ir-1 

Vt+I - yAgg _ Wr-lLK-l 

<PLMk - F) 

r Ir 
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(The subscripts are omitted from the P’s and Fs since no misunderstand¬ 
ing is likely to occur from this source.) If the /'s are constant, we get 

Mr-iLr-i + 2Afr(Lr-l + Pr) + Mr+lLr 

= - Mi:±LILyi\ _ _ WrLK 
\ Lr-l Lr / 4 4 

- SPL2,_i(fc - P) ~ SPL2,(/fc ~ F). . . . (34c) 

The student will recognize (34c) as the ordinary general ” form of 
Clapeyron’s “Theorem of Three Moments” * derived in a somewhat differ¬ 
ent manner in mechanics of materials. Since no restriction was placed on r 
in the development, Equations (34a), (346), (34c) will apply to any three 
consecutive supports in a continuous girder system, and the equations 
can be set up without direct reference to the general method expressed 
in Equations (29). It is evident that the equation is directly applic¬ 
able to a very large class of problems. The form (346) can be readily ex- 

(6) 
Fig. 78 

tended to cover other types of loading, and recalling how the form (34a) 
was developed, it is evident that the case of variable moment of inertia 
may be provided for in a given case without difficulty. The student 
should note that the development does not require the supports to be 
originally level. The theorem applies to the system of Fig. 78a, as 
well as to 786, so long as the supports fit the unstrained profile of the 
beam and there is complete continuity in the construction. 

The theorem of three moments can be derived without recourse 
to the principle of work or to the general method of analysis for inde¬ 
terminate stresses presented here. As a matter of fact, it was discovered 
and widely used before the development of this latter method. But 
the discussion of the preceding paragraphs should aid in making clear 
the setting and significance of the three moment equations in the general 
theory. 

66. Rigid Frame with Columns Fixed.—solution of this problem in 
one form was presented in Chapter II, page 112. We shall show here that 

* Comptes Rendus (1857). Some authorities attribute priority of discovery to 
Bertot (1853), but the principle has always borne Clapeyron's name. 
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a fairly simple artifice in the arrangement of the statically determined 
base system leads to independent equations for the three redundants. 

We shall imagine the structure divided symmetrically and the redun¬ 
dant forces X applied to the ends of a rigid arm as shown in Fig. 796. 

The true moment, shear and thrust at the center of the horizontal 
member BC will then be 

M ^ Xe- C-X,, Xa,H = Xft. 

The general equations may be written 

Xa Xt Xc Constant 

^oa Sab Sac 

iba Sbb Sbe —n 
Sea Seb See -S'c 
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From MaxwelFs principle, 8ab = etc. 
If M' = moment at any section of frame due to given loading, 

redundants removed, and 

nia = moment at any section due to Xa = unity, 
mi, and me being similarly defined, we shall have 

Now, from the symmetry of the unit loadings = 1, Zc = 1 and 
the anti-symmetry of the unit loading Zo = 1 it is clear from inspection 
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(see Fig. 80) that 8ac = 8ca = dab = = 0. (The student may also 
easily verify this fact by the general formula.) We have further 

8bc — 8ci 

= i\^ 
e[Ii 

El 

+ 2ch — 

cdx f" (c - y)dy'[ 

0 ^Jo J 

] 
The length of the rigid arm through which we have supposed 

the loads applied to the substitute structure of Fig. 7% is entirely 
arbitrary; by a proper variation in the forces X we can maintain the 

desired condition with any length of arm. We propose to choose a 
length which will render 8t,c = o. Letting h = kh 

whence 

c — . . 

2^ + F 
When this value of c is used all 5’s vanish except 5ao, St® and and 

we have 
y i'a _ Pd 3aL — 2a^ + QhLk 

iF+mJc ’ 

„ 5'b SPa (L — a) 
hi~ 2'h^k + 2hL’ 

„ 5'c Pa aL + 2hLk 
~ ~ IZ ~ T 2{L + 2hky 
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Moment diagrams and graphs showing distortions for the various 
cases are shown in Fig. 80a , , . d. 

This method is applicable to any type of frame with fixed supports, 
including the case of the fixed arch (see Fig. 816). In the unsymmetrical 
case (Fig. 81c) the length and direction of the auxiliary arm and the 

direction of one 
of the resolved 
forces, say are 
to be determined 
by the conditions 
that (1) the forces 
Xb and Xa will 
cause no angular 
change at 0 (from 
which it must fol- 

will cause no dis¬ 
placement along 
its line of action 
(whence Xb will 
cause none in the 
direction Xa). The 
location of the 
point 0 may al¬ 
ways be deter¬ 
mined readily 
enough, since 0 

lies at the center of gravity of the elastic weights, or if the indi¬ 

vidual members have variable moments of inertia. This point is some¬ 
times called the elasti c center of the framework. To satisfy condition 
(2) we must first determine the direction of the displacement of 0 due to 
Xa = 1. The direction of X^ will obviously lie normal to this displace¬ 
ment. The method will be further illustrated in the chapter on arches. 

66. Statically Undetermined Base-System.—It will sometimes be 
advantageous to work with a statically undetermined base-system for 



SPECIAL SELECTION OF BASIC STRUCTURE 141 

which a complete and simple solution is ready to hand. The frame¬ 
work of Fig. 82 is five-fold statically indeterminate, hence in the ordinary 
course of solution five equations each containing five unknowns would be 
involved. We may, however, use the framework of 826, i.e., a rigid 

rectangular frame and two simple beams, as a substitute structure. 
The equations will then be 

Xa^aa + Xb^ab = “■ ^'a 

XaSba + Xb^bb = fi'b, 
where 5'o — the angular change between the tangent at B of simple 
beam AB and the tangefit at B of the cross girder, BC, of the rigid frame 

EBCF, due to load P, and 5oo, ^ab, etc., are correspondingly defined. 
This of course gives a vastly simpler solution provided we can readily 
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determine the angular rotation of the joints B and C in the frame 
EBCF due to a load P, and io an applied moment acting at B or C. 
We recall that since E and F are fixed, the angular rotation at B and C 

must equal the area of the moment diagram for EB and FC. The 5'^s 
and 5’s in the above equations are then very easily obtained so soon as 
we know the moments at base and top of columns. The preceding 
example has shown that complete general formulas are readily obtain¬ 
able for the statically unknown quantities in any fixed rectangular 
frame. Further, such formulas may be found ready to hand in a 
number of reference works.* This method of solution will therefore 
prove of great advantage in certain frame problems. 

In other problems it may be advantageous to use other types of 
statically undetermined base systems—the two-hinged arch or the 
rectangular frame with hinged bases. Speaking generally the method 
will have unique advantage when, and only when, the statically inde¬ 
terminate substitute structure possesses a reasonably simple general 
solution, either known in advance or readily available from tables. 

SECTION III.—THE DIRECT APPLICATION OF THE MOMENT 
AREA PRINCIPLE 

67. General Relationships.—We have emphasized in the earlier 
chapters that the solution of a statically indeterminate structure may 
always be viewed as a problem in consistent distortions. The common 
method of applying the law of consistent distortions is to resolve the 
structure into a base system (usually determinate) to which, in addition 
to the given loading, the redundants are applied as external forces in 
such a manner as to secure the required consistency of distortions. This 
method has been illustrated in the immediately preceding pages and in 
Ch^-pter II. But it is not always necessary to formally resolve the 
structure into a fundamental system and redundants in order to apply 
the law of consistent deflections. We may note the frame of Fig. 83 
for example. For practical purposes, this is five-fold statically indeter¬ 
minate. If we observe the sketch (Fig. 836) showing qualitatively the 
distortion of the structure, it is at once evident (since there must be a 
common tangent at ® and since joints ®, ® and ® are fully fixed) that 

Ai_2 _ A3_2 A2-1 = 0, .(c) 

Li L2 ’ 

A4-2 

(a) 

(b) 

A2-3 = 0, 

A2~4 = 0. 

(d) 

(e) 

* See for example, Wilson, Richart and Weiss, ^‘Analysis of Statically Indetermi¬ 

nate Structures by Slope-Deflection Method,Bulletin 108, University of Illinois Ex¬ 

periment Station, pages 60-64; or A. Kleinlogel, ^^Rahmen Formeln,’’ pages 96 and 227. 
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These relationships may be evaluated in terms of the moments at 
once by the principle of moment areas. 

Fig. 83 

68. Solution of Rigid Frame.—^We have, noting that the moment of 

M 
the diagram abecd is equal to the moment of the triangle bee minus 

Mil 
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the moment of the trapezoid abed, which latter may be resolved into 
the A hca and acd, 

PLi^ M2-1L1 MS-2L2 

e/i 3/1 “ 6/2 

_ M^—2h 

6/3 

PLi2 M1-2L1 M2-1L1 

167i 3/1 6/1 

— M2-3P2 L2 I MZ-2L2 2L2 ^ 
2/2 ‘ 3 2/2 ‘ 3 “ ^ • 

— M2—4h h M4-2h 2/1 _ 
“27^ 3 ■^■"^ ' 3 “ • 

whence 

and 
-M2-3 = 2M3-2, 

^2—4 == 2717^4—2* 

M2-3L2 

3I2 

7172 — 4^ 

(a) 

(&) 

(c) 

(c7) 

(e) 

We have also the statical equation— 

SMabout© = 0 = 7172—1 + 7172-3 + 7172-4. 

From these six equations we may readily solve for the six end 
moments. 

If Ki = K2 — ^ and K3 = and if wc denote any moment 
Li L2 

as positive which tends to rotate the corresponding joint clockwise 

__ PLi K3 

^ ^ 8 Ki + K2 + 

PL, K2 + 7:3 

" 8 K,+K2 + K3^ 

_ PLi K2 
iW3~2 ^ ^ 

M2~ 
8 7:i+7:2 + 7C3' 

M ^3 
iU4-2 +7^2 +7:3^ 

Afi_2 = [2 + + kI + jj; J • 

We thus see that problem is completely solved very simply and 
expeditiously by expressing by means of the moment area method the 
relations arising from the geometry of distortion, 

69. Alternative Derivation of General Three Moment Theorem.— 
We may further illustrate the direct application of the moment area 
principle by the derivation of the general three moment equation. We 
shall take the case illustrated in Fig. 84, where the supports are '^out of 
level,i.e., the unstrained beam does not rest on the three supports, and 
where E and 7 are different in adjacent spans. 
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With the notation of Fig. 84a we get from similar triangles 

Hi+yi- H2 _ Ih - Ih 
Li L2 

whence 

yi = —-"Li - {Hi - H2). . . 
Li 

(a) 

From Fig. 846, if QNP is the common tangent at N, after the beam 
is subjected to bending, 

OQ _ MP Di + t/i _ D2 

QN ~ PN’ Li “ “ Ti’ 
whence 

yi = ^D2 + Di = —~-^ Li - (//, - //2)—from (a), . . (b) 

/. L1D2 + L2D1 — (Hs — H2)Li + (//i — H2)L2.{c) 

The values of Di and D2, respectively the deflection of the support 
points 0 and M from a tangent to the elastic curve of ONM at N, may 
be readily evaluated by the principle of moment areas. We have 

M 
Di = Statical moment of ^ area l~2-3-4-5-6“7 of Fig. 84ff about 

point 2 
= Moment of trapezoid 1-2-G-7 minus moment of 1-4-7 

= Moment of A 1-7-2 and 7-2-6 minus (mom. of AI)C + mom. 

HIJ, Figs, c and d). 

The values of these area moments are 

Moment of area 1-7-2 

^ Ml /^]Li ^ MiLi^ 
£7i7i\2/3 IjEih^ 

Moment of area 7-2-6 

MiLi^ 

SEih' 

Moment of area ADC 

= BCD + ABD 

Piki{l — ki)Li 

2EiIi 
[(1 - fc,)Li(fci + 

PiLi^ 

QEih 
{ki - Ai®). 
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Moment of area 

urr _ 
8Eih3 ^'2 24£i7i 

^ “ ^]- 

In an entirely similar manner we get 

D2 = + 2M2 - P2L2{2k2 - Zk2^ H- ki) - 

Substituting in Equation (c) we get 

+ 2^2 - PjL2(2fc2 - 3fc2 -1- 1:2®) - 

+ + 2M2 - PiLi(fci - fci®) - 

= (7/3 - 772)Li -t- (77i - 772)12.(e) 

This is the general form of Clapeyron's three moment equation. 

In most practical cases Ei — E2] assuming this and giving the negative 

sign to the moments over the supports, we have 

WlLi® , W2L2® , PiU^n ; . f’27-2® 07 ? , 7 

"" ItT ^ ~ ^ ~ir - 3^2® +1:2®) 

+ .« 
This is the ordinary form of the generalized three moment theorem. 

SECTION IV.—THE SLOPE-DEFLECTION METHOD 

60. General Statement.—In dealing with isolated beam problems 

we commonly speak of the ends either as 'Treely supported or as 

fixed.But the case of an intermediate condition, a partial fixity 

often arises, even in isolated beams, while in rigid frames it is the com¬ 

mon case. If we take any beam in which there is a degree of restraint 

at the ends (Fig. 85) it is clear that the flexure of the beam is fully 

determined so soon as the end moments, Ma and Mb are known. These 

moments will depend (1) upon the given loads, (2) upon the rotation of 

the end tangents, and (3) upon the relative displacement of the supports. 

In studying the flexure of a beam from this point of view it is advanta¬ 

geous to take the case of fixed-ends as the standard basic condition. For 
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this case the end moments are determined by well-known general for¬ 
mulas. If there is tangential rotation or relative change of level of 
supports, the moments will be modified accordingly. 

61. Development of Slope-Deflection Equations.—The analytical 
expression for the relation between the end moments and the end dis¬ 
placements may be derived as follows (see Fig. 86): 

Imagine the simple beam AB acted upon by moments and Mb 

inducing angular rotations of the end tangents a a and Further 

Fig. 86 

assume that supports A and B are displaced to A' and B\ thus inducing 

an angular shift in the axis of the beam = ^ = i?. Then the total 
h 

tangential change = d — a + R, The angular change a may be 
evaluated in terms of the moments either by the method of work as in 
Chapter I, or by the method of moment areas * or of elastic weights. 

* The slope-deflection equation is conveniently proved by the moment area 
principle, but, notwithstanding statements to the contrary that have appeared in 
the literature of the subject, there is no more necessary relation between the two 
than between the moment area principle and the three moment equation. 
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Recalling that the angular change at the ena of a simple beam is numer¬ 
ically equal to the corresponding end shear in the beam when loaded 

M , 
with the diagram, we get at once (considering clockwise rotation 

positive, and the end moments positive when acting as shown in Fig. 86) 

- Mb) ; as = ^mB - M^), 

whence 

Ba = - Mb) +R; Ob = ^(2Mb - M^) + B. 

Solving for Ma and Mb we get 

Ma = ^(- 20x - Ob + 3R) 

OWT 

Mb = 2eB - eA + m 

(35a) 

We have here the end moments expressed as functions of the end 
distortions. That is to say, if the ends of a beam are forcibly displaced 
by amounts 6 and R, these applied^’ end distortions will awaken 
resisting moments as indicated by Equations (35a) (see Fig. 87). If 
when these end displacements occur the beam is also acted upon by any 
set of loads, the principle of superposition justifies the direct combinar 
tion of the different effects, i.e., the end moment will equal the ordinary 
fixed beam moment increased or decreased by the moment due to the 
end displacements. Equations (35a) then become 

Ma = MrA + ^(- 20X - Ob + SR) 

Mb = M^b + ^(- 20b - 0X + 3R) 

■ (35) 

These relations are perfectly general and apply equally to an isolated 
beam and to any member of a framework acting as a beam. Since they 
state the final value of the end moments in any given case in terms of 
the known fixed beam moments and the changes in slope and the relative 
deflections at the points of support. Equations (35) are commonly known 
as the ** slope^deflection equations. 

Where it is desired to compute the effect on a beam of any sort of 
settlement of foundations, the Equations (35a) apply directly; the ob¬ 
served or estimated numerical values of the displacements of the supports 
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are substituted for the 0’s and R in the right-hand member of the 
equation and the resulting moment follows at once. 

But by far the most important application of the slope-deflection 
method is in the analysis of stresses in multiple statically indeterminate 

structures under any given load conditions, where the slopes arid deflec¬ 

tions are taken as the unknowns for which a solution is sought This use 
of the slope-deflection equations can best be explained through a few 
simple examples. 

62. Application to Continuous Girder with Fixed Ends.—(Fig. 88.) 
Consider the two-span continuous girder ABC with ends A and C fixed 



THE SLOPE-DEFLECTION METHOD 151 

and unyielding supports. The structure is triply statically indeter¬ 
minate. From the conditions just stated we have at once that 

Fig. 88. 

Mab + [- 29a - 9a + 3B] = + 2EKd-9a]. . . (1) 
Li Li^ 

Mba = MF + ~[-2eB-eA+3R]=^^~~ + 2EK,l-2eB]. . (2) 
Li Li^ 

MBC — Mf H—[~ 2^5 — + ZR] =-—-h 2EK2 [— 2BbV • (3) 
L2 ^2* 

Equilibrium about joint B requires that Mba == Mbc^ whence the 
value of Bb is easily determined, and this value substituted in Equations 
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(1) to (4) gives the value for each end moment. Thus the solution of 
three simultaneous equations for the statically undetermined moments 
which would be required by the general method of Chapter II, and also 
by the three-moment theorem and by the direct application of the 
moment area method, is entirely avoided. Two points should be noted: 
(1) the slight modification in notation and (2) the significance of the 
sign convention. 

(1) Where several members enter the same joint, say Af, it is neces¬ 
sary in order to avoid ambiguity to specify the end moments in the 
different members by a double subscript, thus, 

OJpJ 
Mmn = Mfmn H-[— 2Bm ~ + 322Afj\r], 

Limn 

Mnm — H j—[— 2^jv — Bm “t~ 3I2jvAf], 

where Mmn = moment at M in beam MN, etc. 

— E — 0; Loads applied 
to beam; = -j- ; Mb == 

P ~ 0; = E = 0; Negative Ba 
induced in beam; Ma = + ; 

Mb ~ +• 

P = 0; = E = 0; Negative 
value of Bb induced in beam; 
Ma - = +. 

P = 0; Ba= Bb = 0‘, Negative 
value of E induced in beam; 

Ma - Mb = —. 

For most cases we may omit the subscripts for Mr and for R without 
loss of clearness. 

(2) The sign convention (see Fig. 89) is most important in the 

application of the slope-deflection method. B and R are angles 
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measured in radians; they are to be taken as positive when the angular 
movement is clockwise. The end moments M are taken as positive 
when they tend to rotate the joint on which they act (not the member) * 

in a clockwise direction. Fig. 90 shows the beams of the preceding 
problem cut away and the moments acting on the joints (the end 
support is also treated as a joint ^0- The signs are indicated accord¬ 
ing to the rule 
just stated. It 
should be noted 
carefully that the 
ordinary sign con¬ 
vention in which a moment is treated as positive or negative according 
to whether the stress in the top fiber is compression or tension has no 
application here. 

Since beginners in the use of the slope-deflection method frequently 
find especial difficulty “keeping the signs straight/^ the student is 
advised to study carefully the simple rules stated above, applying them 
to easy examples until thorough mastery is obtained. Their applica¬ 
tion is invariable, and once they are mastered all difficulty with signs 
in slope-deflection analysis disappears. 

63. Application to Rectangular Frame (a).—(See Fig. 91.) If we 
assume that axial deformation in the two-legged bent with fixed bases 
may be neglected, we have Rcd = 0, Rca ~ Rdb) and with load applied 
as shown, Aff = 0 for all members. The remainder of the solution is 
indicated in full on the figure. PH is taken as positive when it cor¬ 
responds to a positive R. Since we take the moments Af^c, Mcd^ etc., 
as the moments acting on the joints the minus sign must be used in the 
equation (la) which sums up the moments acting on the members 
AC and BD, Since the shear across the bent = P, we must have the 
summation of the four end moments equal to the moments of the end 
shears (Fig. 91c). 

64. Application to Rectangular Frame (h).—It will be interesting to 
compare the solution by the slope-deflection method of the frame of 
Fig. 83, pages 142-4, with that previously worked out by the direct ap¬ 
plication of the moment-area principle. Noting that 

0i = 6s ~ ^4 = P = 0, 

• A different sign convention might equally well be used—see for example, 
Wilson, Richart and Weiss, Solution of Statically Indeterminate Structures by the 
Slope-Deflection Method"—University of Illinois, Engineering Experiment Station 

Bulletin No. 108. The convention adopted here has appeared to the authors to have 
some advantage in simplicity. 

Fig. 90 
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Fiq. 91 
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the equations for the six moments become (denoting 62 simply as 6 and 

^asK) 

Mi-2 = + ^ - 8 M3-2 = - 2EK2e 

M2-1 = - ^ - 4EKi 8 M2-3 = - '^EK2 8 

M2-A = — 4EK3 0 ^4-2 == — 2EK:i B- 

Since 
M2-\ + M2-Z + M2-4^ = 0, 

we have 
. „ 1_ 

Z2E Ki '+ k2~ K^: 

whence by direct substitution, 

Mi-2 

Mz-2 

M2-1 

2 + 

PLy( 
16 \Ki + K2 + Kz 

K2 + Ks 

Ki + K2 + K^/ 

K2 

5). 

_ 
8 \l Ki + K2 + K3 )■ 

M2-Z 

M2-4. 

Ma-2 

PLi, ( A'2 
8 ' Ui + A2 + As, 

PLu f As 
8 ' VAi + As + As, 

PLu f As 
16 ' \K\ + K2 + 

The signs given are in accord with the sign convention stated on 
page 153, i.e., the moment at a joint is positive if the moment applied 
alone would tend to rotate the joint clockwise. 

65. Members with Variable /.—Generalized Slope-Deflection Equa¬ 
tions.—The preceding discussion of the slope-deflection method was 
based upon the assumption that the moment of inertia remains constant 
throughout the length of each member. Though seldom strictly true, 
this assumption gives results sufficiently exact for designing purposes 
for a very large class of problems in continuous girders, building frames, 
secondary stresses in riveted trusses, and the like. There are many 
cases, however, in which the deviation from a constant /-value is too 
great to ignore if the results are to be practically usable, and for such 
cases a modified form of the slope-deflection equations is required. 
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If we let M't = maximum simple beam moment in member mn due 
to given loading, and 

Ic = minimum value of the moment of inertia for the 

same member, we may write: 

2El 
Mmn — CjPmM't = [Cmm^m + Cnm^n ~ (Cmm + Cnm)R] 

Mn 
2El 

Cf nM't-j~ [CnnO„ + CnmOm “ (Cnn + Cnm)R] 

(36) 

These are the “ generalized '' slope-deflection equations. They may 

be demonstrated along exactly the same lines as Equations (35), page 

149, taking into account the fact that I is now a variable quantity. 

This may be done in a number of ways. If the variation takes a simple 

M 
mathematical form, the areas and statical moments of the diagram 

used in the derivation can ordinarily be obtained by direct inte¬ 

gration. Where the exact mathematical expression for the /-vari¬ 

ation is so complicated as to be unmanageable, an approximate 

form, sufficiently accurate and readily integrable, may sometimes be 

devised. * 

Where the /-variation is markedly irregular it is best to follow the 

general method of approximate integration described in Art. 20, pages 

47“52, where the member axis is divided into a number of small, finite 

divisions As, and such quantities as 

the usual integrals. These summations may be made to approach the 

exact values as closely as desired by taking As sufficiently small. This 

method is, of course, applicable to all cases, though the others mentioned 

are simpler when feasible. 
66. Derivation of Equations for the Generalized Constants.—To il¬ 

lustrate the process of deriving Equations (36) for the general case, the 

values for Cwm and Cmm will be derived. The other constants are ob¬ 

tained similarly. 
Let m-n (Fig. 92) represent a fixed-end beam, loaded in any 

manner, and having any arbitrary variation of I along its longitudinal 

axis. 

♦ For an interesting example of this see the analysis of a single-span rigid frame 
bridge by Weiskopf and Pick worth, published as a bulletin of the American Institute 
of Steel Construction, 1934. 
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constant, 

Shear at m = Ea^ = 0 

_ L ~ X 'spikf„,/L — xY , X L — X 

2^ i ‘ L 2^ i \ L ) '^2^ Tl l 

= (say) Ki + kiMm + k^Mn.(cl) 

Shear at n = Ean = 0 

_ X 'SC^MmL — XX 'S^Mn/xX^ 

I'L'^2^~I ~L L'^2^T\l) 

= (say) K2 + k2Mm + kzMn.(6) 

from which we may write at once: 

Kiks — K2k2 
~ hks - kh 

2^~T' l ’2^i\l) 2, i'l'2^TL~ir~ 

,, K2ki — Kiki 

” “ hks - ki^ 

•s^M' X 1 /L — a:V L — x \ x L — x 
= L ) 2^ I L Z^Tl' L 

2K^T2r(r)'-{2fr^)' 

For purposes of generalizing these results it is desirable to replace 

the actual values of M' and I (which in the above equations represent 

the values of the simple beam moment and the moment of inertia at 

any section, x) by ratios. If we take I — tic, and M' * M\ • m„ where m. 
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and ^ are pure numbers, then, expanding the squares and products in 

the terms of Equations (c) and {d) and reducing and substituting for I 
and M' as indicated, we get; 

MFmn 

= (say) .(/) 

If we imagine a beam such as m—n in Fig. 92 freely supported and 

acted upon by end moments Mm and Af„ (signs to be taken as explained 

in Art. 62, pages 152-153) we may obtain the relation between the 

moments and the distortions by the same method followed in Art. 61, 

taking account of the fact that I is now a variable. It will be simplest 

to consider the effects of Mm and Mn separately, as shown—Figs. 92a 

and 926. 
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= — MJci + Mnk2, say 

a„ = a'„ + a"„ = (j 

L -- X As 
L El 

2 As 

El L El 

= Mmk2 — Mnk-dj say 

If m is displaced relative to n, so that the axis shifts through the angle 

we may write the total angular change, 

0m = «m + = ~ klMm + hzMn + R \ 

0n == = kzMm ~ k’sMn + R. 

— k^Om — k20n + (k2 + k3)R 
Mm = 

kih^ — kz^ 

= •“ C'mm^m “ C'mn^n + (C'mm + C'mn)R» 

C' = ^ mm 

/ x\ ^As 
21^ \l) EI 

kik's — kz^ /L—xV^ As / xV^ As I V^/£ As\ 

2^\ir) Ef Z^\L) EI L^\S’ 

_^ \l) EI 2As Np/^VA5_ As ^ 

w2^\l) Ei~[2^L'm_ 

(g) 

Substituting — for As, where n is the number of divisions selected for 

summation, and Ici for /, we obtain: 

2(f)1 _ 2EL 
^ mm — 1 

Similarly, 

p, _ 2Eh 

r 2t2(£ 

1 
n i 1 

L ^mm- 

i _2^/ 
v mfi — ^ — 2y ”* ** 

It will be noted that Cmm is the moment at m required to produce a unit 

rotation at m when n is fixed (0n = -R = 0) and Cmn is the moment 



160 SPECIAL METHODS OF ATTACK 

developed at m when a unit rotation is produced at n, m being fixed 

(0m = /^ == 0). For / constant, Cmm = 2 and Cmn = 1 (as may be 

readily shown from Equations {h) and {j) if the summations are 

replaced by integrations), and therefore Equation (36) for this limiting 

condition becomes identical with Equation (35). 

67. Symmetrical Case.—If both the beam and the loading are sym¬ 

metrical with respect to the center line of the span, the formulas may 

be greatly simplified. Calling: 

»•> 

A a 
we have, for symmetrical conditions, B = ^ ^ ^ 2^ whence 

hB 

Opm — 

.C ,(|-c) St 

Also: 

C = -• 

B- - AC A 

C 

(1-^) 2V' 

ik) 

2 AC - 

HI — moment of inertia of the bcliagram about its centroidal axis 

C = 

if 

and 

D’S?+' - (I)l2‘+22i(' - '1)1 - j <■* + 

Cmm 

Similarly, 

n 4(A + 2D) _ n A A~ 2D _ ^ /7\ 
2 A[\{A + 2D)] - *■ 2 2AD ^ 4D 

71 fl 71 
45 ““ coefficient of = ^. . (m) 

These simplifications are especially noteworthy in view of the fact 

that the symmetrical beam is a very much more common case than any 

other, and the simplified formulas are extraordinarily well suited either 

to individual solutions or to plotting curves for the constants. 
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When the constants in Equations (36) have been determined, the 

analysis of frames containing members with variable 7 is identical with 

that for constant 7. Where the constants must be evaluated for each 

individual case, the solution becomes excessively tedious. It is possible 

to prepare charts, however, which cover with sufficient exactness all 

common modes of variation of 7 and from which the constants of the 

generalized slope-deflection equation may be directly obtained. Some 

simple diagrams of this type will be found in Chapter V. More exten¬ 

sive data have appeared elsewhere.* 

68. Advantages of Slope-Deflection Method.—Of all the special 

methods so far considered, the slope-deflection method is the most 

important and has the widest range of application. It is applicable to 

all rigid-frame problems, and for a majority of the types commonly 

used it offers many advantages over the general method. The latter 

involves three principal steps: 

(а) The selection of the base structure. 

(б) The evaluation of the 5^s which appear in the so-called “ elastic 

equations (29), page 112, as coefficients of the statically undetermined 

quantities. 

(c) The solution of the set of simultaneous equations for the statically 

undetermined quantities. 

The first step may be accomplished in innumerable ways as indicated 

in the discussion under Section II; for any but the simpler cases, the 

selection of the most convenient base structure demands considerable 

judgment and experience, and on it may depend both the number of 

6-values required and the ease of their computation. For structures 

with many redundants this computation, at best, is likely to be long 

and burdensome. The same may be said, with even more force, of the 

problem of solving simultaneously a large group of equations of the 

type (29). 

The slope-deflection method entirely avoids the difficulties of steps 

(a) and (6), since the structure is not broken up into a base system acted 

upon by the specified loads and redundant forces. Instead, for most 

frames of practical importance, the elastic equations are formed simply 

by writing the equilibrium equations for each joint and for each vertical 

story of the frame. The latter expresses the requirement that the total 

* One of the most elaborate sets of charts for evaluating the constants of the 
generalized slope-deflection equation will be found in the “Handbook of Rigid Frame 
Analysis’^ by L. T. Evans, 1934 (published by the author). See also “Analysis of 
Rigid Frames by the Method of Restraining Stiffnesses" by Earle B. Russell, and 
“Structural Frame Works." by Thomas F. Hickerson. 
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internal shear along a transverse section cutting the members at their 

ends shall be equal to the transverse external shear. (See Art. 63.) 

The first type of equation may be termed the joint equation, and the 

second the herd equation. Since, upon the assumption that axial defor¬ 

mations may be neglected, there will be but one J^-value per story, it is 

clear that by the above method enough equations are provided to deter¬ 

mine all the 0’s and fl’s. When, owing to symmetry of frame and loading 

or to external restraint, R is zero, or where, as in the common theory of 

secondary stresses, it can be independently determined, only the joint 

equation is required. The joint equation in general form may be written: 

- 6^K„,iRnn = . . . (o) 

where X = ^, 0 = £0, and i refers to the far end of any member as 

mZ, mn, mo, etc. The summations cover all members entering the joint m. 

The bent equation, if loads are applied at the joints only and Vh is 

the shear in any story, xy of height h, is: 

~ . . (b) 
where the summations extend over all columns of the story. 

The process of setting up the elastic equations consists merely in 

determining the fixed end moments for such members as support loads 

between the joints and then writing out such equations as (o) and (6). 

For multiple indeterminate frames the resulting equations will, in a 

majority of practical cases, show two points of advantage over the 

standard formulation. 

(1) From the manner in which the slope-deflection equations are 

formed, it is clear that only a limited number of unknowns will appear 

in any equation. Thus in a twenty-story symmetrical frame of three 

bays under transverse wind load (see problem on page 241) there are 

sixty unknown 0 and R values, but no more than six appear in any one 

equation. This limitation greatly’" simplifies the solution. It is true 

that, as shown in Section II, a similar result may sometimes be accom¬ 

plished by the proper selection of a base structure, but even where 

possible, the choice is likely to require considerable study and investiga¬ 

tion while with the slope-deflection method the result follows auto¬ 

matically from the basic characteristics of the method. 

(2) A twenty-story unsymmetrical bent of four bays will show 240 

redundant forces (or force pairs) but only 120 unknown 0’s and R's, 

A six-panel riveted Pratt truss has thirty redundant moments at the 

ends of the members (secondary moments) but only twelve unknown 

slope-deflection quantities. The importance of these reductions in 

unknowns to be solved for simultaneously is evident. 
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It must not be inferrred from the foregoing discussion that the slope- 

deflection method will always show to such marked advantage. If in 

Fig. 91 the bases A and B are iiinged, the frame becomes singly inde¬ 

terminate. If the horizontal reaction at A is taken as redundant, it 

8' 

is determined by the equation Ha = On the contrary the frame 
Oaa 

will show three unknown slope-deflection quantities—0c, On and E 
(Oa and Ob are eliminated by means of the relations Mac = Mbd = 0) 

which must be obtained by a simultaneous solution. 
The frame of Fig. 93 is three-fold indeterminate. If it is symmetrical 

the elastic center (see Art. 55) is easily located, and the redundants, 

for any loading, may be expressed by three inde¬ 

pendent equations and a simultaneous solution 

thus is avoided. For unsymmetrical loading the 

frame has four unknown 0^s and five unknown 

E's, two of which are expressible in terms of the 

other three, leaving seven unknowns to be deter¬ 

mined by a simultaneous solution. In these two 

examples it is clear that the slope-deflection solu¬ 

tion is markedly less simple than that obtained by the use of the 

general elastic equations. It is fair to say, however, that, for the great 

majority of rigid frames commonly used, the slope-deflection method 

will furnish the simpler solution, and for frames with a relatively large 

number of fixed ends, for multistoried bents of several bays and for 

secondary stresses in riveted trusses, the method is incomparably 

superior to the general method. 

69. Approximate Solutions.—Although the preceding article has 

emphasized the important advantage of slope-deflection analysis in 

reducing (in many cases) the number of unknowns to be solved for 

simultaneously, it is clear that, even with this reduction, for many not 

uncommon cases, the number remains large. The solution of such a 

set of equations, though very simple in principle, presents many serious 

practical difficulties. The process of successive elimination is arduous 

and time-consuming; unless parallel calculations are made by two 

computers, there is no intermediate check on the detail, and a single 

numerical mistake may vitiate the entire solution; many times, unless 

unusual care and skill are exercised in detennining the order of the 

elimination, some coefficients in the intermediate equations will appear 

which are formed by the subtraction of two nearly equal quantities, in 

which case these values may have to be determined far beyond slide- 

rule accuracy to secure consistent final results. 
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For sets of equations of five or less, these difficulties are of relatively 

small importance, but beyond this limit they increase rapidly, and for 

very large groups (in wind stress and secondary stress calculations, cases 

involving forty to eighty simultaneous equations are not unusual— 

some monumental structures greatly exceed these limits) the difficulties 

presented are critical, and to avoid these difficulties at least partially, 

approximate methods have been proposed for obtaining the unknowns 

without resort to the exact process of successive elimination. Several 

such methods are discussed later in this book. (See Chapter V.) The 

discussion here will be limited to indicating the lines along which the 

approximations proceed and the principles underlying the method. 

A few basic relations should be noted : 

(1) It is fairly evident that, although the moments and stresses at the ends 
of any member are, strictly speaking, affected by the conditions at every joint in 
the structure, the importance of the effect falls off rapidly as the distance from 
the point concerned increases. Thus, to take one of the simplest illustrations, 
the moment at the center support in a two-span continuous girder for a given 
loading will vary greatly depending on whether the outer ends are fixed or free, 
but in a six-span girder the middle support will be practically the same in either 
case. This characteristic may be utilized for approximate solutions by taking a 
limited section of a structure for analysis on the basis that any reasonable assump¬ 
tion made as to the behavior of distant portions of the frame will suffice for such 
approximate calculation. 

(2) For many rigid-frame problems (among which are those of wind stresses 
in tall buildings and secondary stresses in riveted bridges) the variation in the 
slope-deflection quantities from joint to joint will be regular and gradual, except 
in the case of sudden and large changes in cross-sections of members. This fact 
is of the greatest assistance in obtaining approximate results, as will be evident 
from later discussions. 

(3) Referring to equations (a) and (6), it is noted that in (a) the co¬ 
efficient of Got is 4 X (sum of all K-values entering joint m), while the coeffi¬ 
cient of 0» is 2Kmi and that of Rmi is ^Kmi, and in (6) the coefficient of 
R is 12 X (sum of K-values for all columns of story) while the coefficient of each 
8 is 6 X (K-value for the one member). This will in general result in a set of 
equations in which each contains one term with a much larger coefficient than any 
other. This type of equation is especially amenable to approximate solution by 
means of successive substitutions. If, hy any means, a very rough value of each 
unknown can be obtained, these values substituted in the terms with small 
coefficients, will give for the 0 with the large coefficient a very much closer 
approximation to the true value. If the large coefficient is made unity, the others 
become small fractions, and any errors made in the assumed values will be 
minimized by being multiplied by these terms. 

If the above process is carried through for all equations, a new and more 
nearly correct set of values will be obtained, and the process may then be repeated 
as many times as are required to secure the desired accuracy. A simple example 
will make the method clear. 
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Table A shows in lines (2) to (4) a hypothetical set of equations of the general 

type encountered in slope-deflection analysis. In general many methods may be 

devised for securing a first rough approximation to the 0-values. Only two of 

the simpler methods (which, however, have a wide apphcation) will be mentioned 

here. 

(а) One may assume that a crude approximation for any particular joint 

rotation will be obtained if the neighboring joints are considered fixed, i.e., the 

0-values assumed to be zero. If in each of the above equations this assumption 

is made with rcgai’d to the 0’s having the smaller coefficients, we obtain the 

results given in line 5 of the table. As will be noted, these values are from 30 to 

60 per cent in error. The rapidity of the convergence is indicated by the fact 

that the maximum error in the second approximate set of values is about 2 per cent. 

(б) Instead of assuming the adjacent joints to be fixed, it may be assumed 

that they rotate the same amount and in the same direction as the one to be 

computed. This assumption give.8 the values of line 11 in the table. The maxi¬ 

mum error is about 13 per cent, and the first approximation gives results that are 

practically exact. 

TABLE A 

Number of Equation 01 

1 

O2 03 
Constant 

Term 

1. 1.0 0.23 0.18 4.82 

2. 0.12 1.0 0.31 5.91 

® 3. 0.16 0.29 1.0 6.64 

® 1st assumed values. 4.8 5.9 6.6 

® 1st approximation*. 2.27 4.35 4.16 =e* 

@ 2nd approximation. 3.07 4.02 4.89 =e" 

® 3rd approximation. 2.92 4.01 4.99 =0™ 

® 4th approximation. 3.0 4.0 5.0 = 6*'' 

@ Exact values. 3.0 4.0 5.0 =e 

® 2nd assumed values. 3.41 4.13 4.58 

@ Ist approximation. 3.04 4.01 4.95 =ei 

® 2nd approximation. 3.0 4.0 5.0 =e“ 

♦Values of 01 and 0# are determined as follows: ©'i-l-O.23X6.9+0.18X6.6—4.82; 0'i-2.27; 
0'8-f 0.16X48+29X69“ 6.64; 0'j“4.16. Substituting O'! and ©'s in Equation (2) givee e^s^^.SS. 
The same process is followed in subsequent cycles, for both first and second assumptions. 

If we write the joint equation (for the case B = 0) 

ft — ^rm 

” “ ^ZK~2ZK “ ~2ZK ~ ' "2SK 

jXMr - Zg.e.- 

(<n 

(e) 2ZK 
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we may view the process of approximate solution, based upon assumption (a) of 

the previous paragraph, from a slightly different angle. We note that, if all 

adjacent joints were fixed, the value of 0m would be 
22:K’ 

We may call this 

base value Om- If O-values for all joints of the frame are computed, we obtain 

a first approximation for the rotation of any joint, m as: 

0'm = Om + AlOm, where AiOm = - 
22:k* 

If O' values are computed for all joints, we obtain a second approximation for 

the joint m as: 

0"m — O'm + AaOm “ Om "b AiOm "b A20m 

ZKjAiOi ^ 

2XK 2XK 
OV id) 

The succeeding approximations are similarly obtiiined. Viewed from this 

standpoint the process consists in applying to the base value of 0 (the value that 

would obtain if adjacent joints were fixed) a series of diminishing corrections. 

This conception will be further exemplified in the discussion of rigid frames in 

Chapter V. 

The type of structure and character of loading will usually indicate 

whether assumption (a) or (6) is likely to g?ve tho best rough base value. 

It is difficult to give any definite rules, kai it may be said in general 

that, when an inspection indicates that the 0/s are narkedly smaller 

than 0m, and of alternating signs, assumption (a) will give the best 

results, while if (as in most wind stress and secondary stress problems) 

there is obviously a marked uniformity in both sign and magnitude of 

the slope changes, assumption (b) is clearly indicated. Other assump¬ 

tions may prove more advantageous in special cases, but for all ordinary 

frame problems, one of the above will suiBSce to give a reasonably com¬ 

pact solution. 

SECTION VI.—THE MOMENT DISTRIBUTION METHOD 

70. General.—The method of rigid frame analysis commonly termed 

Moment Distribution^^ * provides a solution for the end moments in 

the members of a frame without resort to an intermediate calculation of 

distortions. It proceeds along lines closely analogous to the approximate 

slope-deflection analysis discussed on pages 165-166. 

♦ This very ingenious method of rigid frame analysis is due to Professor Hardy 

Cross of the University of Illinois, and is commonly referred to in the literature of 

the subject as the “Cross Method." The first general presentation of the method 

appeared in a paper by Professor Cross—“Analysis of Rigid Frames by the Distri¬ 

bution of Fixed-End Moments," Proc. Am. Soc. C. E., May, 1930, pp. 919-928. 
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Consider a quadrangular frame composed of members with constant 
moments of inertia, loaded in any manner, and free from sidesway. If 
each joint of the frame is locked (restrained against rotation by an exter¬ 
nally applied moment), each member becomes a fixed beam whose end 
moments are readily obtained. If these moments are summed up around 
each joint they will not, in general, be in equilibrium, their algebraic 
sum being the amount of the required locking moment. (A joint which 
is actually fixed in the true structure, of course, requires no locking 
moment.) If the joints are now “ unlocked,^’ each will rotate until a 
state of equilibrium is reached and each fixed end moment will receive 
a ‘‘ correction ” corresponding to this rotation. This phenomenon has 
been explained in the discussion of the slope-deflection theory. 

The unlocking process may be accomplished by applying, to each 
joint, moments equal and opposite to the locking moments, i.e., equal to 
the unbalanced moments. The structural action may be viewed as a 
superposition of two loadings : 

(а) Applied loads + Locking moments. 
(б) — Locking moments (= Unbalanced joint moments). 
Obviously (a) + (b) = True loading. Hence, if to the fixed-end 

moments we add the moments which would be caused by the independent 
application of couples equal to the statical unbalance at each joint, the 
resulting end moments will be the true values. Moments for load con¬ 
dition (6) (releasing moments) are obtained in the form of a series of 
converging approximations by the following method: 

Consider the joint n into which frame a group of members ng^ nh, . . . 
np: Designating the releasing moment Afn, and assuming all joints 
fixed except n; any member m, will receive moments: 

. . (a), and Mi„ = Wm. . . (6) 

[From the slope-deflection theory, 

Mni = “ iKniOn, Min = - 2Km^ny ^Mni = -~ ~ 

M 
whence 0n = follow at once.] 

Equation (a) shows that each member resists the moment Jin in pro¬ 
portion to its stiffness compared to the total stiffness of members entering 
the joint (sum of all iiC-values), and equation (6) shows that one-half 
of the ‘^distributed'^ moment, Mni is “carried over" to the far end, f, 
if the latter is fully fixed. The moment Mm would be exact if no rota¬ 
tion occurred at adjacent joints. But, the application of Mi at joint i, 
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all other joints assumed locked, causes a moment in member ni at i of 
K 

Mi) and one-half of this is transferred (carried over) to n. There 

are similar carry-overs from other adjacent joints. After the first dis¬ 
tribution of the unbalanced moments each joint is in equilibrium, but 
when the carry-overs have been made this equilibrium is disturbed, 
since, in general, the carry-overs are not in balance among themselves. 

The new unbalance will evidently be the algebraic sum of the 
moments carried over. This iz redistributed, exactly as in the case of 
the original unbalance, and the process is repeated until the desired 
accuracy is attained. 

The correctness of the method, in principle, is based on the fact that, 
since the carry-over factor is but one-half of the applied end moment, 
the successive unbalances, on the average, will progressively diminish. 
A simple example will make the process clear. 

71. Illustrative Problem.—The frame to be considered is shown in 
Fig. 94. End moments (due to an assumed loading not shown), unbal¬ 
anced joint moments and relative X-values are indicated on the figure. 

Since D is hinged, only f of the relative -- value is used as the relative 
Li 

stiffness of CD. The essential feature of the solution is to obtain cor¬ 
rections (to be applied to the fixed-end moments) to take account of 
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the fact that B and C must actually rotate owing to the effect of the 
unbalanced fixed moments at these joints. A first approximation to 
such corrections will be obtained if we assume: 

(1) A couple acting independently upon the joint B and equal to the 
corresponding statical unbalance, all joints except B considered 
as fixed, and 

(2) a couple (equal to the statical unbalance) applied to C under 
similar assumptions. 

Applying the unbalance (= +150) at B will cause resisting r oments 
to develop in the ends of each member entering the joint in ^^irect pro¬ 

portion to the relative stiffnesses thus: Mbc= — 
Kbc 

== — 83.3; Mbf 16.7 and Mba 60. Similarly, we obtain 
resisting moments at C, due to the unbalance of —200, of Mcd 

= + 60, Mcb = + 100 and Mce = + 40. All joints are now bal¬ 
anced, and one cycle of operations is complete. The results are 
only roughly approximate, since no account has been taken of the fact 
that, if joint C is fixed when the unbalance is applied at By one-half of 
the moment Mbc ( — —83.3) /^carries over,’^ giving a moment Mcb = 
— 41.7. Similarly, when B is fixed and the unbalance is applied at C, 

giving Mcb =+ 100, one-half of this is transferred to the opposite end, 
giving Mbc 60. 

In the very simple frame shown, B and C are the only free joints 
(D may be regarded as fixed if Kcd is reduced as indicated), and 
member BC the only one affected by the carry-over process, but it 
is evident that in a more extended structure we might have carry-overs 
in all members entering a joint. When the carry-over moments are 
summed up, with due regard to sign, they constitute, in effect, a second 
unbalanced moment, which may be distributed exactly as the original 
unbalance. In the present problem the new unbalance at .B == + 50 
and at C=—41.7 which, when distributed, give — 27.8, 
Mbf — — 6.6, Mba =— 16.7, and Mcb ==+ 20.9, Mce =+ 8.3 and 
Mcd =+ 12.5. The joints are again balanced and a second cycle is 
complete. The carry-overs from the new moments are made and dis¬ 
tributed and the process repeated as shown clearly on the figure. The 
rapid diminution of the successive unbalances is clearly indicated, and 
it is seen that the results of the second cycle are amply sufficient for 
designing purposes, while the third approximation is substantially cor¬ 
rect (error less than 1 per cent). 

The sign convention here adopted is identical with that used i,n 
slope-deflection analysis. 
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72. Frames with Sidesway.—The moment distribution method 
may be readily applied to frames with sidesway, though some emenda¬ 
tions are required in the process just described. In the frame of Fig. 95, 
we first imagine joints B and C locked against rotation but free to 
translate under the action of the load P, The resulting shears in the 
two columns (neglecting axial distortion) will be in direct proportion 
to their rigidities in bending, i.e., to their K values. (For the most 
common case where the columns are of equal length the flexural rigid¬ 
ities are proportionate to the /-values.) From the shears the unbal¬ 
anced i moments at B and C are easily found. In this case we have 
_ h 
Mb = Mba = X Shear X -, and similarly for Mcd^ There 

will be a marked disequilibrium among the internal moments at these 
joints, since the deflection of the frame without joint rotations presup¬ 
poses the existence of locking moments at B and C. If releasing moments 
are now applied independently to the frame, we shall have; 

Actual loading = (Horizontal load + Locking moments) 
+ (Releasing moments). 

It must be carefully noted, however, that during the application of 
the releasing moments the joints must be restrained against translatiori 

if the method of moment distribution is to remain valid. (The method 
was established from the slope-deflection equation with i? = 0. If 
R Of the distribution and carry-over will be quite different.) 

The hypothetical force restraining the joints against linear move¬ 
ment may be thought of as a force P', acting in line with and opposite 
to P. Denoting the locking moments as il/, it is clear that, actually, 
the superimposed loading will be 

(а) = P +XM 

(б) = - 2M - P', 

and (a) + (6) = P — P', that is, the various end moments computed 
from the above loading are such as will (1) balance around all joints and 
(2) hold in equilibrium a horizontal load equal to P — P'. From the 
law of superposition it is clear that the true moments will result from 

p 

increasing the moments obtained in the proportion -p—p. Fig. 95 

shows rather fully the details of a numerical solution. 
An alternate method frequently used assumes arbitrarily a pair of 

moments Mba and Mcd subject only to the requirement that they shall 

Kba 
have the ratio ■——. These moments are then distributed just as in 

Kcd 
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the previous method and the resultant four column moments and the 
total shear they will balance computed. The latter is to the actual shear 
as the computed moments are to the true moments. 

There are other methods of applying the moment-distribution prJA'- 
ciple to problems involving sidesway, but the form here exemplified m 

probably the simplest for frames with only a few stories. For more 
than one story a set of simultaneous equations, with as many terms as 
there are stories, is involved. For tall building frames the solution 

>2000 + 3300 ^ 
+1700 +1000 
—1300 - 667 

— 333 + 2340 3633 — 680 
+ 206 + 453 

+ 227 +2273 3406+ 133 
— 181.6 — 88.7 

— 44.3 + 2318.4 3451 - 01 
+ 35.4 + 00 

+ 30.0 + 2310 3420+ 18 
— 23.0 - 12 

— C.0 + 2317 3426- 11 
+ 4.0 + 7 

+2315 xl.213»+2890 -8422J( 1.213=4154 

p=iooo 

t 

^Mool*.*+1211+3422+24014 2316*>+m66 

=821= P—P^=sShear which computed 
column moments will resist. 

1.213a® ~;s-a=factor by which all moments must 
^ be multij»lied to jpivo true values. 

I 

i 

II, lu 

_|i 111'^ IP 
§ 

■2^MooH. (corrected)«5112+1164+2022 + 2810»+14998'l ‘ . 
Shear moment»ISOOPJ ^ 

orresponding 

Fig. 95. 

Note:- Pigjures thusC )are corresponding values by slope-deflections. 

£25s2 

I I"" 
« eo 
s:: 

ll -i 

becomes very tedious, and a different type of analysis is advantageous. 
This will be described in Chapter V. 

73. Members with Variable /.—For members whose moment of 
inertia varies over all or part of the length the preceding method must 
be modified, since the fixed end moments and the distribution and carry¬ 
over factors will differ markedly in the two cases. Tables have been 
prepared, however, from which the modified values for these terms may 
be obtained, and when they are determined, the solution is carried out 
in the same manner as for members with constant 7.* 

* Tables for fixed moments have been referred to on page 161. For tables of 

stiffness and carry-over factors, see Cross and Morgan, Continuous Frames of 

Reinforced Concrete,'* pages 137-165. 
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74. Remarks on Moment-Distribution Method.—The method of 
moment distribution, like the slope-deflection method, is applicable to 
all rigid-joint frames; to all quadrangular frames of the types commonly 
used it may be applied in the simple form that has been presented, 
without material modification. Of all theoretically correct methods 
used in frame analysis it involves, perhaps, the simplest theory and the 
least mathematical formulation. As compared to the slope-deflection 
method or other “ deformation ” methods, it has the advantage of 
dealing directly with moment values without recourse to an intermediate 
distortion quantity. This, however, is not an unmixed advantage in 
dealing with frameworks where a large number of members enter each 
joint, since the process of distribution and carry-over must be applied 
to every member, while a relatively small group of slopes and deflections 
determines a large set of moments. It must also be noted that the 
process of moment distribution is not self-checking; an error in carrying 
over, for example, will give an error in the moment to be redistributed 
at that joint, but since any moment, applied at any joint, may be dis¬ 
tributed through the frame and eventually balanced, no evidence of the 
error will necessarily appear in the later work. For this reason it will 
usually be desirable to check the results of the moment-distribution 
method by some form of distortion analysis.* 

For a wide range of frame problems the method rapidly converges 
to values sufficiently accurate for all ordinary design purposes, and for 
such structures it furnishes one of the simplest and most easily applied 
forms of analysis available. Where the assumption (used for the first 
distribution) of fixity of all neighboring joints is very largely in error, 
the convergence may be quite slow and the process becomes very tedious. 
Modifications have been proposed f to avoid this difficulty in some 
degree, but they are outside the scope of this presentation, which is 
intended merely to indicate the basic principles of the method. Some 
further applications of moment distribution to more complicated frame 
problems will be found in Chapter V. 

* See article “ Checking Moment Computations for Rigid Frames,** by Messrs. 

Niles, Vernier and Campbell, Engineering News-Record, July 26, 1934. 

t See discussion of Professor Cross’s paper, Trans. A.S.C.E., Vol. 96 (1932), and 

a paper by L. E. Grinter, Wind Stress Analysis Simplified,” Trans. A.S.C.E., 

Vol. 99 (1934). 



CHAPTER IV 

CONTINUOUS GIRDERS 

75. Preliminary.—In the broadest sense the continuous girder 
includes all girders, solid or framed, which rest on more than two 
supports. A single beam with fixed ends may be regarded as a three- 
span continuous beam with the end spans indefinitely shortened. 

The types commonly met with in American practice are: 

(A) Restrained Beams. An isolated girder with fully fixed ends is 
not a common type of structure, but partially restrained beams 
both as independent girders and as members of a composite 
framework are encountered very frequently. In many cases 
the end conditions cannot be determined with certainty, and the 
fixed-end moments are desired as a limiting case. Further, we 
have seen that the method of analysis by slope-deflections uses 
the fully restrained beam as the basic condition of every mem¬ 
ber. On account of these facts, the theory of the restrained 
beam is perhaps the most important section, practically, of the 
continuous-girder theory. 

{B) Floor Systems in Building Construction. In both steel frame 
and reinforced concrete buildings continuity of construction is 
the general practice, and an accurate analysis of such structures 
requires them to be treated as rigid frames. When, however, 
the restraining effect of the columns is slight, or when only 
roughly approximate results are desired, the floor girders may be 
treated as multi-span continuous beams. 

(C) Continuous Steel Bridges: 
1. Turntables. 
2. Swing Bridges: 

(а) Two-span center bearing bridge (solid girder or 
truss). 

(б) Three-span rim bearing bridge (solid girder or 
truss—usually latter and partially continuous over 
center span). 

3. Long span continuous trusses. 
173 
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(D) In some cases the continuous girder theory may be applied to 
advantage to a portion of a structure not primarily designed 
as such. Thus the bending stresses in the riveted top chord 
of a bridge truss, arising from the elastic deflection of the truss 
under loads (secondary stresses), may be obtained approxi¬ 
mately by treating the chord as a continuous girder under no 
loads, but in which a displacement of each joint is forcibly 
imposed on the girder. 

The present chapter will be devoted to a consideration of : 
I. The fully restrained beam under various types of loading, with 

several numerical examples. 
IL The general treatment of the multi-span continuous girder, 

illustrating the application of the three-moment theorem in its various 
forms, the contruction of influence lines and numerical examples. 

III. Continuous and swing bridges, including two- and three-span 
swing bridges, the partially continuous girder, and influence lines. A 
complete numerical example of the stress analysis for a swing bridge is 
appended. 

SECTION I.-~THE FULLY RESTRAINED BEAM 

76. Equation for End Moments.—Concentrated. Load.—The end 
moments in a fixed beam are easily deduced from the moment area 
principle (see Fig. 96). Since the deflection of A from a tangent at B 

and the deflection of B from a tangent at A each equal zero, we have 

~ i2MB + Ma) = {2k - 

and 
12 pr3 

whence 
Ma = PL{k^ ~ F).(37a) 

In Fig. 96 kL is measured from B; evidently if it' = 1 — A; we shall 
have 

MbPL{¥^ - k'^),.(376) 

where W is measured from A: If P = 1, Equation (37a) is the influence 
line for Ma (see Fig. 97a). 

77. Uniform Load.—If we wish to get the effect of a broken load w 

uniformly distributed from x = k2L U> x = kiL (see Fig. 976), we may 
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sum up the load per unit times the corresponding area under the influence 
line thus 

Ma = Vw>A(fcL)-L(A:2 - F) = wU I (F - k^)dk 

r2 (38) 

If k2 = 0, that is if the load w extends from B a distance fcL, Equa¬ 
tion (38) may be viewed as the influence line for Ma where a load w per 
linear foot is substituted for a concentrated load of unity. Fig. 976 
shows this influence line. To get the value of Af a for a broken load (from 
k2L to kiL) we simply take the difference between corresponding values 

of f^ j and multiply by wL^. 

The area moment of 2-3-4 about (A) equals: 

PL ri - k kL 1 
— k^) 1^ ~ L X |(1 — k)L + X (1 — ■|fc)Lj, taking 2-3-3' 

and 4-3-3' separately. 

PL* 
2EI^^ - + ^(1 - f^)] = - fc*)(2 - k) 

PL* 

6EI 
{2k - Sk* -h k*). 

Likewise the area moment of 2-3-4 about {B) equals: 

PL* 

2EI 
PL* PL* 

- .H<‘ - ‘’X* + - 5F,<‘ - *•>■ 
The moment area of 1-2-4-5 about (A) equals: 

+ or ^^(2Mb + Ma). 

L* 
likewise the moment area of 1-2-4-5 about (R) equals: -:^.{2Ma Mb). 

QEI 
Fig. 96 
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TABLE n 

Decimal Fra. 

Coefficients of 

PL wL^ wL* wL* 

k* 
3 “ 4 

k* k^ 
4 5 

fc’ 2k* k^ 
3" 4 5 

.000 .0000 .00000 .00000 .00000 

.050 .0024 1 .00004 .00000 .00004 

.100 .0090 .00031 .00002 .00030 

.111 i .0109 .00042 .00003 .00038 

.125 1 ■s .0137 .00059 .00005 .00054 

.143 .0175 .00087 .00009 .00078 

.167 .0232 .00136 .00017 .00120 

.200 i .0320 .00227 .00034 .00193 

.222 1 .0384 .00304 .00050 .00254 

.250 i .0469 .00423 .00078 .00350 

.286 1 .0584 .00612 .00129 .00483 

.300 .0630 .00698 .00154 .00544 

.333 4 .0740 .00923 .00226 .00697 

.350 .0796 .01054 .00270 .00784 

.375 S TT .0879 .01264 .00346 .00918 

.400 if .0960 .01493 .00435 .01058 

.428 4 .1048 .01774 .00551 .01223 

.444 4 .1096 .01946 .00625 .01320 

.450 .1114 .02012 .00656 .01356 

.500 i .1250 .02604 .00938 .01667 

.556 .1372 .03343 .01324 .02019 

.572 .1401 .03562 .01452 .02110 

.600 1 .1440 ! .03960 .01684 .02276 

.625 1 .1465 .04324 .01904 .02420 

.650 .1479 .04691 .02140 .02551 

.667 . 1482 .04943 .02308 .02635 

.700 .1470 .05431 .02640 .02791 

.715 .1457 .05651 .02797 .02854 

.750 f .1406 .06152 1 .03170 .02982 

.778 .1344 .06536 .03460 .03076 

.800 .1280 .06827 1 .03686 .03141 

.833 1 .1159 .07230 .04017 .03213 

.850 .1084 .07420 .04170 .03250 

.857 '4' .1050 .07497 I .04243 .03254 

.875 .0957 .07677 .04403 .03274 

.889 1 .0878 .07805 .04514 .03291 

.900 .0810 .07898 .04582 .03316 

.950 .0451 .08217 .04883 .03334 
1.000 .0000 A 

1 
A A 

By a similar procedure we find that for a uniformly increasing 
(triangular) distributed load having a value of 0 at B and at A, the 
equation for Ma is 

Ma 

(See Fig. 97c.) 

(39) 
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This is equivalent to taking P = A; in Equation (37a) and integrating 
from zero to k. Obviously if we have a broken load which extends 
from k2L to kiL varying directly with fc, we shall get 

. 

Likewise for a loading of the type shown in Fig. 97d 

Ma = wU' 
4 5/’' 

and if such a loading extends from k2L to k\L 

„ ,„r/b3 2k* , 

The functions of k in these four cases, shown graphically in Figs. 
97a to 97d, are given numerically in Table II. They are of great aid 
in solving numerical problems, particularly special and more or less 
irregular cases, as the following examples will illustrate. 

78. Example 1,—(See Fig. 98.) We have here the simultaneous 
application of three different types of loading, (a) unequal concentrations 

EXAMPLE 1 

Fig. 98 

TABLE A 

Due 

to 

Value of 

K 
Value of 

C 
Moment in 

i Foot-Pounds 
I 1 

Shear in 

Pounds 

Load 
A B 

\ 
A B A B A B 

1 1 3 .148 .074 40,000 20,000 6,670 3,330 

2 i ! .074 .148 60,000 120,000 10,000 20,000 
3 i to ! I to § .0402 .0402 29,300 29,300 4,500 4,500 

4 i 1 to 1 .00226 1.0070 9,900 30,600 2,000 7,000 

Due to diff. in end moments. -2,250 -1-2,250 

Totals.. 139,200 199,900 20,920 37,080 
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at the i point, (h) uniform load over middle third and (c) a uniformly 
varying load over the outer third on one side. 

Entering Table II with proper values of k for the ends A and B 

(note that for k is measured from B; for B it is measured from A) 

for each loading, we get directly (or by a simple subtraction) the values 
C of the coefficients which multiplied by PL or wL‘^ give the moments 
MA and Table A gives all the results. 

For the shear calculation we note that the final shear may be obtained 
by combining the simple beam shear with that due to the end moments 
MA and Mb. If the moments are taken positive when causing com¬ 
pression on upper fiber and the end shear positive when acting upward 
on the portion of beam outside of the section, we must have that the 
shear due to combined end moments is 

T/ M _ Mb Ma -r^ Af Ma n 
Va--, Vb = -. 

The simple beam shears are 

V'a = 23170; V'b = 34830. 

The shears due to end moments are 

- 199900 (- 139200) ^ ^ ^250 

^ - 139200 - (- 199900) ^ 2250. 
27 

EXAMPLE 2 

Ma due to load on right half = . 00938 wL^. 

Ma due to load on left half = .01667 wL^. 

Ma due to total load W = .02605 wL^. 

But TT = 

/. M « 

wL 
— or w 
4 

. 1042 WL. 

AW 

CASE II 

M = .0624 WL 

Fiq. 99 
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The final shears therefore are 

Va = 23170 - 2250 = 20920, 

Vs = 34830 + 2250 = 37080. 

79a. Example 2.—(Fig. 99.) This treats of two cases of special 

symmetrical loading, worked out very simply by means of Table II. 

EXAMPLE s 

(a) 

Ma = PL 

is the tangent to the moment influence line as the loads P, P move across 

the span from B io A. When tangent passes through zero, = 0. This gives 

the value of k for the position of the loads to produce a maximum moment at A. 

Determination of K for Maximum Moment at A 

(6) (c) 

k by (2) = 0.689 *: by (2) = 0.338 
Ma by (1) = 708,800 ft-lb. Ma by (1) - 76,300 ft-lb. 

Fig. 100 
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Case I is a triangular loading with a maximum unit value at the center; 

Ma — Mb — . 1042 WL if W — total load. Case II is the same total 

load distributed oppositely, i.e., w varies symmetrically from zero at 

center to a maximum at the ends. Evidently the sum of the loadings 

I and II is a uniformly distributed total load of 2TE, for which the end 

moment is ^WL, For Case II then 

Mjl = Mb - .VmWL = M2AWL. 

EXAMPLE 4 

The maximum value of is to be determined as in Ex. 3. 

Determination of fc for Maximum Moment at A 

dUA 

dk 
= 0 = 3(2fc - 3fc2) + [2 ~ ^ ] 

6fc - W + 2k 
20 60fc 300 „ 

■ — - 3fc* + ^ “ 

WL>+ 2kL‘ - 20L-3fc*L»+ 60fcL-300 = 0 

12I,2fc»- (8L> + 60L)fc + 20L+ 300 = 0 

/8L« + 60L\, , /20L + 300\ 
12L2 12L* 

»)-. 
6L 

I /2L + 15\ “ /5L + 75\ 

\\ 6L / \ 3L* ‘ 

I 1 
^ s' 

—60— 

(6) 

—37.8— 

k-"-M 

-16- 

(c) 

*by(2) 
Ma by (l) 

’ 0.767 
■ 276,300 ft-lb. 

k by (2) 
Ma by (1) 

0.6667 
: 66,600 ft-lb. 

Fio. 101 

• (2) 
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79b. Example 3.—(Fig. 100.) We have here a conventional railway 
bridge loading, two heavy moving loads P on axles 7' 0" apart. Equa¬ 
tion (2) (on the figure) gives the criterion for the position causing a 
maximum end moment. Two numerical cases are appended; P = 
50,000 lb. in each case, and L = 50 ft. in one and 15 ft. in the other. 

79c. Example 4.~(Fig. 101.) This is similar to Example 3, except 
that the loading is the conventional 20-ton tractor highway bridge 
loading. The criterion for maximum moment (for the loading shown) 
is developed on the figure, and the numerical results for the same 
two spans as in Example 3 are shown. Both these problems are 
very quickly solved by Table II as soon as the critical value of k is 
determined. 

79d. Example 6.—(Fig. 102.) The loading indicated in this problem 
is a conventional railway bridge loading sometimes used as an alternate 
to Cooper’s E-40. To locate the position for a maximum, moments for 
three trial locations were plotted as ordinates against k as abscissas, 
and the maximum determined as shown in Fig. 102(5). This method is 
readily applied to any type of loading whatsoever, and should be used 
where it is inconvenient to derive an algebraic criterion as was done in 
Examples 3 and 4. 

SECTION n.—THEORY OF MULTI-SPAN CONTINUOUS GIRDER 

80. General Considerations.—It is obvious that the analysis of any 
continuous girder is reduced to a simple beam problem so soon as the 
moments at the support are known. The true moment diagram for any 
system of loads will be the ordinary simple beam moment diagram com¬ 
bined with the moment diagram due to a set of external moments equal 
to the support moments acting as applied loads on the series of spans 
treated as simple beams. Fig. 103 shows the two sets of moment dia¬ 
grams and their combination. The shears are obtained from the formula 

Fi = F'l + M2 - Ml 
U 

The problem is thus completely solved when the support moments 
are determined. 

Either the three-moment theorem or the slope-deflection equations 
will serve as a general method by which any continuous-girder problem 
may be solved. If the end supports are fully fixed, slope-deflections 
may be applied to advantage, but otherwise the three-moment method 
is the most expeditious. We will illustrate the application of this 
method by the following problems. 



THEORY OF MULTI-SPAN CONTINUOUS GIRDER 183 

EXAMPLE 6 

w = 4000 lb. per lineal foot. 
Pi = P2 = 60,000 lb. 

P1.2P = 50 X 00 = 3000 (moment in 1000 ft-Ib.). 

wL^ == 4 X 3000 = 14,400 (moment in 1000 ft-lb.). 

To determine maximum moment at A due to conventional train loading coming 
on from end B. 

Method: Try first load (Pj) at distances {kL) from the end B equal to 0.8L, 0.9/>, 

0.95L, respectively, and plot a smooth curve through the moments and determine 
maximum location of Pi by trial. 

Example:—L = 60 ft. loading as shown. 

Load ^ 
Moment in 1(X)0 Ft-Lb. Based on Constant 

from Table 11 

1. kL = S-10L Pi 0.1280XPiL = 384 

P2 0.1475 XP2L-443 
w 0.0396 XtJ)L» = 570 

Total = 1397 
2. fcL=9-10L Pi 0.0810 XPiL = 243 

P2 0.1330 XP2Z/ = 399 
w . 0.0543 XwL= = 782 

Total = 1424 
3. A-L = 95-1001/ Pi 0.0451 XPiL = 135 

P2 0.1159XP2L = 348 
w 0.06152XwL= = 886 

Total = 1369 

2000 

Values of k 
0 Maximum«il430 

(6) 
Fig. 102 



184 CONTINUOUS GIRDERS 

Fig. 103 

81. Examples. 
Problem la shows the solution by means of the three moment equa¬ 

tion for a six-span continuous girder with a single concentrated load in 
any span. The solution is carried through separately for the loading in 
each span and from these data the influence line for the moment at any 
section of the girder may be drawn. Such influence lines for a support 
point and an intermediate point are shown in Fig. 103a. 

PROBLEM la 

Moment Influence Lines for Girder of 6 Equal Spans 

Incase III-Unit load on 3d Span only 
M-Case ll-Unit load on 2d Span only 

^Cnse I- Unit|load on let Spa^ only 

1----^ .. .. ^ . ^ 

1 2 3C^ S ^ 7 

For equal spans the typical three-moment equation becomes— 

Mn-^l “f" 4Afn "I" J\fn+l ™ 2)PnZ/(A^ XPn+lIj(^kn+i 
If we call (k ~ A:*) = Ci and (2k — 3A;* + fc*) — Ci the five simultaneous equations 
for the moments Mi to Mi inclusive, may be tabulated as shown in Table A, where 
the resulting values are to be interpreted as coeflQcients of PL for the loading cases 
indicated. Influence lines for Mi and Mcy plotted from data of Tables B and C, are 
shown in Fig. 103a. The complete detail of the solution is indicated in the following 
tables. Cl and C% are evaluated by means of Table HI. 
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TABLE A 

Equa¬ 

tion 
M2 Mz M, 

1 4 1 

2 1 4 1 

3 1 4 

4 1 

5 

a 4 

h 4 

c 15 GO 

d 15 56 

e 56 224 56 
f 56 209 j 
9 56 14 

h 195 

j 1 

k 1 

1 1 

m 
n 

M, 

1 

4 

1 
16 

15 

15 

Mt Case I 

-C, 
0 
0 

0 
0 

0 

0 

0 

0 

0 

0 
- UC, 

-M4Ci 
4-.072C, 

- .2G8C2 
- .OlOCi 

+ .OO5C1 
-.OOlC, 

Case II 

-C2 
-Cl 

0 

0 
0 
0 
0 
0 
0 

- 56 Cl 
- 56 Cl 
- 14 Ci 

+ 14C2 - 56Ci 

-f .O72C2 - .287Ci 

~.268C2 + .O72C1 

~.019C2 4-.O77C1 
+ .OO5C2 ~.021Ci 

-.OOlC, ■f.005C, 

Case III 

0 
- Co 

- Cl 
0 
0 
0 
0 

- 15 Cl 
- 15 Cl 
- 56 C2 

+ 15Ci - 56C, 
0 

+ 15Ci - 56C2 
+ .077Ci - .287C, 
-.019Ci + .O72C2 
~.288Ci + .O77C2 
4-.077Ci ~.021C2 
_ man _l. nnsr'. 

TABLE B—Values of M4 

k Case I Case II Case III 

.1 -.00190 + .00433 -.0149 

.2 -.00369 + .00923 -.0325 

.3 -.00525 + .01413 -.0503 

.4 -.00646 + .01846 -.0663 

.5 -.00721 + .02163 -.0783 

.6 -.00738 + .02308 -.0831 

,7 -.00687 + .02221 -.0812 

.8 -.00554 + .01846 -.0678 

.9 -.00329 + .01122 -.0414 

TABLE C—Values of Me 

Ic 
Case I Case II Case III 

A/ 
Left Right Left Right Left Right 

.1 + .0026 -.0007 -.0059 + .0016 + .0216 -.0055 

.2 + .0050 -.0014 -.0126 + .0033 + .0494 -.0120 

.3 + .0072 -.0019 -.0193 + .0052 + .0836 -.0186 

.4 + .0088 -.0024 -.0252 + .0068 + .1241 -.0245 

.6 + .0099 -.0026 -.0296 + .0079 + .1709 -.0288 

.6 + .0101 -.0027 -.0315 + .0085 + .1241 -.0309 

.7 + .0094 -.0025 -.0303 + .0081 + .0835 -.0299 

.8 + .0076 -.0020 -.0252 + .0068 + .0494 ! -.0249 

.9 + .0045 -.0012 -.0154 + .0041 + .0215 -.0152 
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Fig. 103o 

Problem 16 (Fig. 1036) shows typical moment diagrams for concen¬ 
trated loads at the center of each successive span. 

PROBLEM lb 

Moment Diagrams for Concentrated Loads—Girder with 6 Equal Spans. 

Data from Tables of Problem la. 

Fig. 1036 
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Problem II develops general formulas for a girder of three equal 
spans loaded in any manner. Tables III to VI will aid greatly in han¬ 
dling numerical cases. 

PROBLEM n 

Girder of 3 equal spans; any arrangement of concentrated or uniformly dis¬ 
tributed loading in any span. 

k,L 

® 
r 

—kl L—H 
fcr.L 

span I © Span II 0 Span III 

-t- 
Fig. 103c 

® 
1 

Case I.—Span I loaded (concentrated load). 

Case II.—Span II loaded (concentrated load). 

Equation Case I Case II 

(aHM2+Mz = -PL{k,-k,'^) -PL(2fc„-3A:„»+fc.,») 

(6)M2+4M3 = — PL{kii—kii^) 
(b’)UIt + mM,= —4P L{ku — kji^) 

(6')~(a)15M3 = -PL(2fc„+3fc„»-5V) 
Ma- i\PL{kz-k,>) -^PL(2hz+Zku^-5k„>) 
M2 = 

For uniform loads let P — W'd{kL) = wLdk. Then, for load extending from 

k'L to k"L, we have 

tcL* C ' 1 
Mz = — \ (fcx - k,^)dk = -~wLH2h^ - k, 

15 60 

- wL^ P''“ 
= —,1“ I - 5fc„’)dfc = 

15 Jt’a 

. . Case I 

wL^ 
(4/c„* + - 5k,*) , Case II 

wL^ 
m2 = - - k,*) 

lo 
Case I 

Tables III to VI give the values of the functions {k — ki) and {2k — 3A;’ + A:®), 

(2A;* - k*), {2k + Sk^ - 5k^) and (4A;* + 4A;’ - 5k*), 

Note on use of tables: 

For span III, use coefficients for span I, measuring kL from 4. For Afj with load¬ 

ing in span II, use coefficients for Ms, measuring kL from 3. 
I*- 

Such expressions as (2A;^ — k*) 

of the function (2A;* — k*) for k = 

are to be evaluated as the difference in the values 
Ir 

fc' and k « ifc". 
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TABLE III 
Values of k-k^ and 2k - 3A;* + k^ 

k — k^ (read down) 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

•0 .0000 .0100 .0200 .0300 .0399 .0499 .0598 .0697 .0795 .0893 .0990 .9 
.1 .0990 . 1087 .1183 .1278 . 13731 .14661 . 1559 .1651 .1742 .1831 .1920 .8 
.2 . 1920 .2007 .2094 .2178 .2262 .2344 .2424 .2503 .2580 .2656 .2730 .7 
3 ,2730 .2802 .2872 .2941 .3007 .3071 .3134 .3193 .3251 .3307 .3360 .6 

.4 .3360 .3411 .3459 .3505 .3548 .3589 .3627 .3662 .3694 .3724 .3750 .5 

.5 .3750 .3773 .3794 .3811 .3825 .3836 .3844 .3848 .3849 .3846 .3840 .4 

.6 .3840 .3830 .3817 .3800 .3779 .3754 .3725 .3692 .3656 .3615 .3570 .3 

.7 .3570 .3521 .3468 .3410 .3348 .3281 .3210 .3135 .3054 .2970 .2880 .2 

.8 .2880 .2786 .2686 .2582 .2473 .2359 .2239 .2115 .1985 . 1850 .1710 .1 

.9 .1710 . 1564 .1413 .1256 .1094 .0926 .0753 .0573 .0388 .0197 0 

1 
' .09 .08 .07 .06 ; .05 .04 .03 .02 .01 0 

[ 

2k — 4- k^ (read up) 

TABLE IV 
Values of 2/c* — k^ 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0 0 ,0002 .0008 .0018 .0032 .0050 .0072 .0098 .0128 .0161 
.1 .0199 .0241 .0286 .0335 .0388 .0445 .0505 .0570 .0638 .0709 
.2 .0784 .0863 .0945 .1030 .1119 .1211 .1306 .1405 .1506 .1611 
.3 .1719 .1830 .1943 .2059 .2178 .2300 .2424 .2551 .2679 .2811 

.4 .2944 .3079 .3217 .3356 .3497 .3640 .3784 .3930 .4077 .4226 

.5 .4375 .4525 .4677 .4829 .4982 .5135 .5289 .5442 .5596 .5750 

.6 .6904 ,6057 .6210 .6363 .6514 .6665 .6815 .6963 .7110 .7255 

.7 .7399 .7541 .7681 .7818 .7953 .8086 .8216 .8343 .8466 .8587 

.8 .8704 .8817 .8927 .9032 .9133 .9230 .9322 .9409 .9491 .9568 

.9 .9639 .9705 .9764 .9817 .9865 .9905 .9939 .9965 .9984 .9996 

TABLE V 
Values of 2k -j- 3/c2 — bk* 

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .0000 .0203 .0412 ,0672 .0843 .1070 .1298 .1532 .1767 .2008 

.1 .2250 .2498 .2747 .2997 .3253 .3505 .3763 .4022 .4282 .4538 

.2 .4800 .5058 .5322 .5577 .5838 .6095 .6348 .6602 .6852 .7103 

.3 .7350 .7593 .7832 .8072 .8303 .8539 .8757 .8972 .9187 .9398 

.4 0.9600 0.9798 0.9987 1.0172 1.0348 1.0520 1.0683 1.0837 1.0982 1.1123 

.5 1.1250 1.1368 1.1482 1.1582 1.1673 1.1755 1.1828 1.1887 1.1937 1.1973 

.6 1.2000 1.2013 1.2017 1.2007 1.1982 1.1945 1.1893 1.1827 1.1752 1.1658 

.7 1,1550 1.1428 1.1292 1.1137 1.0968 1,0780 1.0578 1.0362 1.0122 0.9873 

.8 .9600 .9313 .9002 .8677 .8333 .7970 .7583 .7182 .6757 .6313 

.9 .5850 .5363 .4857 .4327 .3778 .3207 .2613 .1992 .1352 .0688 
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TABLE VI 

Values of 4k^ + 4A:* — bk* 

0 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 0 '.0004 .0016 .0037 .0066 .0105 .0152 .0209 .0274 . 0350 

.1 .0435 .0530 .0635 .0750 .0875 .1010 .1155 .1311 .1477 . 1653 

.2 .1840 .2037 .2245 .2463 .2691 .2930 .3179 .3438 .3707 .3986 

.3 .4275 .4572 .4882 .5201 .5528 .5865 .6210 .6565 .6928 .7300 

.4 0.7680 0.8068 0.8464 0.8867 0.9251 0.9695 1.0119 1.0549 1.0985 1.1428 

.5 1.1875 1 2327 1.2785 1.3246 1.3711 1.4180 1.4651 1.5126 1.5602! 1.6080 

.6 1.6560 1.7040 1.7521 1.8001 1.8481 1.8960 1.9436 1.9911 2.0383 2.0851 

.7 2.1315 2.1775 2.2229 2.2678 2.3120 2.3555 2.3982 2.4401 2.4811 2.5211 

.8 2.5600 2.5978 2.6345 2.6698 2.7039; 2.7365 2.7676 2.7971 2.8250 2.8511 

.9 2.8755 2.8979 2.9184 2.9368 2.9530 2.9670 2.9786 2.9878 2.9945 
1 

2.9986 

Numerical Example: 

j 10,000 

^ Loading I ^ L<)adin^ II ^Loadingr III _ 1 ^ © - 
- 8 equal spans of 26 0- 

Fig. 103d 

Loadinsr IV 

From preceding formulas and tables: 

Loading I 

Loading II 

Loading III 

Loading IV 

Total 

3/2 

.4) 
'-Ax 10,000 X 25 X. 3360 

-wL^ 
60 
500 X625 

60 

= - 22,400' * 

Jfc"- .76 

fc'- .32 

(2.398 - .4882) = - 9950'* 

(4ifcii* + 3*11^ — 5A;n^) 

Note:—k is measured from (3). 

wL^ , 
+ —(2Aiii*- Ariii^) 

60 |jfc'=.6 
. 1000 X 625 

' +-r;;-x (1 - .4375)= +5860'* 
60 

+ ApX,(*ui - kva‘)(k - .24) = +4620'* 

- 22,000' * 

Ml 

^rtf^Liki - A:i«) « + 5600' * 

- u)L* 
(4^11*+ 3Arn* — 5kii*) 

(2.038- .269) 

60 
500 X625 

60 

- 9220' * 

life"- .68 

ifc'- 24 

wL^ / \A;"-10 
- —( 2^111* - 15 V 
- 23,400' * 

- ApL(*i„ - km*) » - 18,000 

- 45,000' * 

The general procedure is identical with that shown in the preceding 
problems regardless of the number and lengths of spans involved; 
however, it is rarely necessary to attempt a complete solution of a con¬ 
tinuous girder of more than four spans. Particular attention should be 
called to the rapid dying-outin the effect of any single load. Thus 
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the influence lines for and Me in problem la show that the effect 
of a load more than two spans removed is quite negligible. 

Problem III (Fig. 103c) is a two-span continuous girder with fixed 
ends for which the slope-deflection method offers a ready solution shown 
in full in the figure. 

PROBLEM m 

Fia. 106e 

CALCnLATION OP FiXBD BeAM AND MOMENTS 

Mfab = 60,000 X 30( 0879 + .1340) + 5000 Xj6‘( .0026) = + 411,200'* 

Mfba = 60,000 X 30(.1137 + .1465) + 5000 X 3(f'(.0833 - .0670) = -541,300'* 

Mfbc = Mfcb = ■:lf(5000)(50)2 = ± 1,042,000'* 

(See Table II for coefficients used above.) 

Moment Equations Calculation op Moment Values (1000'*) 

Mab = Mfab + K{- Bb) = + 411.2 + 1,01-131.8] =+279.4 
Mba = Mpba + K(-29b) = - 541,3 + 1.0[-2(131.8)] = - 804.9 1 
Mbc = Mfbc + K,{-29b) = + 1042.0 + .9[- 2(131.8)] = + 804.9 J 
Mcb = Mfcb + Ki(- 9b) = - 1042 0 + 9[- 131.8] = - 1160.6 

/2EI\ 
K and Ki are relative values of (~-) for AB and BC respectively. 

Let K = 1.0, A^=0.9 

Mba + Mbc - 0 ot (K + Ai)(+ 2^b) = Mfba + Mfbc 

Substituting 
- 541.3 -h 1042.0 

2(1.0+ 0.9” 
= -f 131.77 

Mfba A'Mfbc 

~2{K + Ai) 

Moment values from preceding solution are shown in figure as AAi, BBi, and CCi. 
Plot moment values for simply supported case from base lines A\Bi and BiC\ in a 
vertical direction to obtain finished diagram. M'l - 800 M'2 = 790 M'z ~ 489 
M'i - 1173 M'z = 1563. 

For true shear, correct shear values for simply supported beam as follows: 

Vab^V'abA^' 58.4 + 
~ 804.9 - (- 279.4) 

(V 'ab == simple beam reaction at A in AB.) 
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82. Special Applications.—It may be of interest to note briefly 
some of the simpler applications of the three-moment theorem as com¬ 
pared with that involved in the preceding examples. 

Case (a).—For two equal spans, only one span loaded, I constant and 
supports unyielding, the general equation simplifies into 

-Ml- 4M2 - M3 =XPL{k - F), 
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and since 

il/i = Ms = 0, 
PT 

-M2 = 2—(fc - k^). 
4 

Values for (fc — k^) are given In Table III. Fig. 104 shows the shear 
and moment diagrams for numerical case. 

Case (6).—For the case of a two-span girder under uniformly dis¬ 
tributed load, L, I and w different in each span, we get 

It will be observed from the form of this equation that it is only the 

relative value of ^ which is significant. Fig. 105 illustrates a numerical 

case. 
PROBLEM Case (6) 

tCo-1500S<^ 

~kr 

'r^. 
-L,-26~ 

^-1- 

Fia. 105. 

- 2^2(2 + 1) = 
500 (15)» 

Ml — Mz — 0 

1500 (25)» 
(2) + (1) 

6ilfa 
225,000 - 937,000 

Ml = - 48,400 ft.-lb. 

Case (c).—Fig. 106a illustrates a girder of three equal spans, rigid 
supports and the loading and stiffness uniform throughout. 

Here the general equations reduce to 

- Ml - 4M2 - itf, = 

-Mi- 4M3 - M4 = 

Since Mi = M4 = 0, and the structure is symmetrical, the value 

for Mu - may be written at once as — 
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Cose (d).—Fig. 1066 shows the same problem with a different I for 
the center span. The form of the equation here is 

_ m\/r ^2 ^3 _ wL^ I\ + I2 

h ^ " hh ' /2 “ 4 "7i/2 • 

The solution for any numerical case follows readily as may be seen 
from the figure, and we note there that increasing the stiffness of the 
center span to five times the others increases the moments at the ends 
of this span about 15 per cent. 

In general we have 

M2 == Mz == 
wL^ 1 + k 

T 

k = 1, we have the case of uniform stiffness, and 

M2 = Mz 
wLP' 

lo^ 

PROBLEM—Case (c) 

^ Ort' < "0* ^ ^ J 
r 1 

IC—1000^ per ft. over all spans Constant I (a) 

20 

-Ml- AMi - JI/5 - 

ZlxA 

2(1000)(20)2 
“4 .... 

Solving (1) and (2), 

— Mz — AM3 — Mi — do. (Also M\ = Mi = 0) . . 

ilf 2 = ilf3 = - 40,000 

Fig. 106a 

(1) 

(2) 

PROBLEM—Case id) 

< 20’ > 

<-1 —lOO_*■ 12*"0W 

‘ 1000* per ft, over all si 

< Ig—lVAi ^ 

>anB 

-.A-l 2A- ■ ^3 

■— - 2Mi 1 
/lOO 4- 500\ Mz _ 1000 (20)2 /lOO + 500\ 

100 1 50,000 / 500 ■” 4 \ 50,000 / 
(1) 

and since Mi — Mi = 0 

-0 
Ml 
500 

100,000 
/ 600 \ 

\50,000/ V50,000/ 

From symmetry, M% *= Mz — — 46,200 ft-lb. as compared with — 40,000 ft-lb 
for the condition of uniform stiffness. 

Fig. 1066 
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as indicated in (c) above. If ^ = 0, the middle beam is infinitely stiff 
compared to the others, and 

M2 — M’i = — 

wL^ 
'"8 ’ 

the end moment in a beam fully restrained at one end and free at the 
other. 

Case (e).—It is frequently of practical importance to estimate the 
effect of a slight settlement of the support on the stresses in a continuous 
beam. We will consider a 15 in. I @ 42 lb., which is supported freely at 
the ends of a 20-ft. span, and on which we imagine a center deflection of 
-4 in. to be forcibly imposed. The three-moment equation applicable is 

- Ml - 4M2 - Ms = {Hi + Ih - 2H2). 

Since 
Ml = M3 - Hi = //3 = 0, 

we have (calling M2 = M) 

- 4M = 
6 X 30,000,000 X 442 

120- 
(-2X1 in.) 

= 686,000 lb-in. 

To produce this moment in a 20-ft. simple span would require a load 
P determined by 

PU . P X 240 . 
-- 686,000 Ib-m. M = -j-, i.e., 

whence 
P = 11,500 lb. 

The unit stress is 
^ Me 686,000 ,, _ „ 
S = g - = 11,700 lb. per sq. m. 

We may check the result from 

_ PL'3 11,500 X (240)'^ _ n • 
48EI 48 X 30,000,000 X 442 ” 

This problem illustrates the fact that for short-span continuous beams 
a very high stress may result from a comparatively slight displacement 
of supports. 

SECTION ni.~-CONTINUOUS AND SWING BRIDGES 

83. General.—One of the most common cases of continuous girder 
action to be met with in bridge engineering practice is the swing bridge. 
This is a type of movable bridge which opens to admit the passage 
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of boats and barges by revolving in a horizontal plane on a central 

supporting pier. Such bridges are usually classed as center hearing 

and rim hearing. In the former the center reaction is carried entirely 

by a central pivot or its equivalent. (This may be a roller or disk 

bearing, but the statical effect is identical.) In the rim-bearing swing 

bridge the central support is a large circular girder upon which the main 

trusses or girders directly or indirectly rest. This circular girder or 

drum revolves with the bridge upon a set of conical rollers turning on a 

circular track. The diameter of this circular girder or drum varies 

with the span of the bridge; it may be as much as 25 ft. to 30 ft. In any 

case the main trusses or girders rest on two supports a considerable 

distance apart at the central pier, and we get in effect a continuous 

girder of three spans. Figs. 107 and 108 show in outline a center 
bearing swing span and a rim-bearing span. 

The center-bearing swing bridge is the simpler as to construction 

and operation and where feasible it will generally have the preference, 

though there is not complete unanimity of professional opinion on this 

point. The center-bearing type has been built for single and double 

track crossings up to a total length of 400 ft. and width c. to c. trusses of 

40 ft. For spans up to 150 ft. the plate girder type is commonly used. 

For extremely wide bridges the rim-bearing type is doubtless better 

suited, though it is also used frequently for single-track spans. 

Swing bridge design is of itself a highly developed specialty in 

bridge engineering, and it is not proposed here to enter into any detailed 

discussion of the subject, other than that necessary to make clear the 

statical problem involved. 

In contrast to most other bridges, the swing bridge is subjected to 
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loads under several different conditions. Thus when swinging it acts 
(under dead load alone) as a double cantilever; when closed the end 
supports are lifted (usually by means of wedges) an amount sufficient 
to prevent them from raising off the support under partial live load. 
This ordinarily means that we have a degree of continuous girder 
action for dead load with the span closed, and full continuous girder 
action for live load. But contingencies may arise when the wedges 
cannot be driven, in which case the end of the unloaded span will lift 

entirely off the support under partial live loading, and the loaded span 
will act as a simple beam or truss. 

The various combinations of stresses used in practical design will be 
indicated in the problem of Art. 85. 

We are interested here primarily in the case where the bridge is 
closed and the ends raised so that full continuity of action may be 
assumed. We shall discuss the stress calculation for the center-bearing 
bridge and the rim-bearing bridge separately. 

A. Center-bearing Swing Bridge 

84. Method of Analysis.—A beam of uniform stiffness simply 
supported at three points on the same level is, as we have seen, one of 
the simplest of statically indeterminate problems. Calculations for a 
wide variety of cases show that practically any center-bearing swing 
bridge can be satisfactorily calculated on this basis, even though the 
span be a truss with considerable variation in depth. Two errors are 
involved in the process: (a) neglect of the varying moment of inertia, 
and (6) the omission of the effect of shear distortion. For trusses, both 







CONTINUOUS AND SWING BRIDGES 197 

these errors may be of considerable magnitude in themselves, but 
ordinarily they appear to be compensatory; in any case their effect on 
the final values of the redundant reaction (or moment) is slight.* A 
strictly accurate computation of the redundant reaction would involve 
the method of truss deflections as explained in Chapter II, problems (/) 
and (^), pages 105 and 106. There is general agreement among engineers 
that this is an unwarranted refinement, except in some very special 
cases. 

Upon the foregoing assumption the analysis of the center-bearing 
swing bridge is fully illustrated in the problems of Figs. 107 and 109. 

PL 
The equation for the center moment is — — (k — k^) (see page 192) 

If P = 1 this is the equation of the influence line for the center moment, 
and it may be easily constructed by the use of Table III, page 188. 

If we have a distributed load extended from fc = fci to fc = fc2 we 
shall have 

M = - k^)dk = - ^[(*2=* - ki^) - Kfe* - h*)], 

or we may use the tables of problem II, page 188. 
Ordinarily broken loads arc not considered in the design calculation 

for a center-bearing swing span, but the above equation is very useful 
in the special cases where broken loads need consideration. 

These will only occur when the bridge is so located (for example 
near a large switch yard) that it carries a great deal of mixed traffic. 
Even in such cases it is hardly reasonable to assume broken loads and 
full impact effect, since such broken up traffic would never occur at 
high speeds. If a reduced impact factor is used, broken loads, even if 
assumed as permissible, will rarely govern the design of a member. 

If ki = 0, = 1, we have Af = — if A;i = 0, ^2 = | (left half 
of left span loaded), we get M = For right half of same span 
loaded we must have M = The accompanying problem will 
illustrate fully the detail of the construction of influence lines for any 
particular member of the truss. 

86. Example of Center-bearing Swing Bridge.—Fig. 109 is a stress 
sheet for a double track railway swing span, f The complete tabulation 

* See for example a comparative study of a typical case in Johnson, Bryan and 
Turneaure, “ Modem Framed Structures,” Part II, pages 66-70. The maximum 
error in the bending moments at the joints was 1.5 per cent. 

t This problem is one of a large collection of practical examples contained in the 
supplementary plates to F. C. Kunz’s treatise on “ Bridge Design.” The solution 
presented there is considerably different from the above. 
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of stresses will be found at the right-hand side of the drawing, with the 
various legitimate combinations shown below. The following check 
calculations for three typical members, Lol7i, f73L4 and will 

Fig. no 

indicate the method of analyzing the statically indeterminate cases (IV 
and V in the figure) for such a truss. 

86. Influence Lines (Fig. 110).—From case (a), Art. 82, we have for 
P = unity and span = nL 

M ^ (fc - 
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whence 
= 1 - /b ~ ~ fc3), 

R2 = k + h(k- F) = ffc - 
R3== - lik - P). 

Shear at left of center support = — J(5fc — k^). 

Shear at right of center support = — {{k — F) = Rz. 

The influence line for Ri is shown in Fig. 1105. From this the 
influence line for LoUi is obtained by multiplying each ordinate by 
sec 0 = 1.31 (Fig. 110c). 

The influence line for U3U5 is also readily obtained by the aid of 
the influence line for Ri, The dotted line AEF in Fig. 1105 indicates 
relatively the negative moment of the load unity when the latter is in 
the segment L0L4. For example the moment at L4 due to unity at 
L2 = ft X 4 X 27 - 1 X 2 X 27 = 108 (0.593 - 0.50) - 108 X GG' 

(Fig. 1105). Therefore if we take the difference of the ordinates between 
the diagrams ABC and AEFC (as GG' at L‘2) and multiply these by 
108 

we shall get the corresponding ordinates to the stress influence 

line for U3U5 (Fig. llOd). 
For UsL4 the effect of the upper chord slope is to reduce the vertical 

component of f/3/>4 by the vertical component of U3U5 {= -^UzU^) for 
all positions of the load to the right of L4 and to increase it by a like 
amount for positions to the left of L4. It is clear then that if we con¬ 
struct by means of the diagram for ft the shear influence line for the 
panel L3L4 and add algebraically to corresponding ordinates of the 
influence ordinates for C/3I/5, we shall obtain the graph for the vertical 

48 7 
component of C/3L4, and by multiplying by we get the final stress 

influence line for U3L4 as shown in Fig. llOe. 
The calculations can best be carried out by a tabular scheme as 

follows: 

Li 2 3 4 5 7 8 9 10 11 

(1) 9-56 X 
UtUi .0177 .0366 .0618 .0947 .0406 - .0251 - .0365 - .0368 - .0291 - .0160 

(2) Shear - .207 - .407 - .694 .2410 .1030 - .0637 - .0927 - .0937 ~.0740 - .0405 
Subtract (1) 

from (2) - .2247 - .4436 -> .6558 .1463 .0625 - .0386 ~ .0562 - .0569 - .0449 - .0245 
Times 

48.7 + 41.0 - .267 - .626 - .778 .174 .074 - .0458 - .0667 - .0675 - .0533 - .0292 

The influence line for any member of the truss may be drawn simi¬ 
larly to one of the above. 



200 CONTINUOUS GIRDERS 

87. Live Load Stresses.—It will be observed that the influence lines 
for the preceding cases in general change slope at each panel point. It 
is not feasible in such cases to develop useful algebraic criteria for the 
position of a train of wheel concentrations giving maximum stresses, 
as is done for the case of simple trusses. The maximum values are best 
obtained by repeated trial, guided by the general principle that the 
heavier loads should be placed in the region of large ordinates. Figs. 
110 c, d and e show the correct positions for maximum loadings for the 
various cases obtained in this way. The results are perhaps most 
rapidly obtained if the influence line is drawn to a fairly large scale and 
the ordinate corresponding to the loads scaled from this, grouping the 
loads and taking the ordinate through the center of gravity where 
possible. The work may be carried out readily enough arithmetically, 
however, as illustrated in the following calculation of the stress in 
Lo — Ui for position (/). 

25 X-^|(1.04) = 13.7 
55 X If (1.04) = 46.9 

3 X 55 X (0.778 + || X 0.262) = 164.0 
4 X 32.5 X 0.778 = 101.1 

25 X (0.553 + ^4X 0.245) = 15.8 
4 X 55 X (0.316 + II X 0.217) = 108.7 
4 X 32.5 X (0.135 + 14 X 0.181) = 39.7 
5 X 12.5 X (0.135 + ^ X 0.181) = 10.9 
5 X 27.0 X 0.0675 = 9.2 

510.0 

This gives the maximum stress in LqUi due to both tracks loaded, 
on left arm only, as indicated in Fig. 110c — @. 

If we assume the near track loaded as in 0 but with the uniform 
load extending over the right arm, and the far track loaded with the 
uniform train load in both arms, we have: 

(а) Stress in LqUi from load on near track 

21 5 
= (— 510 + 5.0 X influence area for right arm) 

oU 

= (- 510 + 5.0 X 13.0) X ^ = - 445 X ^ = - 318.5. 

(б) Stress in LqUi due to load on far track 
8 5 

~ *3^ (5.0 X difference in influence areas for right and left spans), 

= ^ [5.0 (- 75.7 + 13.0)] = - 88.5, 

whence final stress in LqUi for this case = — 407. 
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The maximum stresses for 1/3 C/5 and C/3L4 (shown in table of Fig. 
109) are similarly obtained. 

88. Approximate Criteria for Maximum Wheel Loading.—It is worth 
noting that while the influence lines are irregular figures to which simple 
algebraic criteria cannot be applied, nevertheless, in the regions where 
the^loads have the greatest effect (the left-hand segments in Figs. 110c, 
d and e), the form of the influence line approaches more or less roughly 
that of a triangle. This fact may aid the computer in determining the 
character of the trial loadings. Applying the ordinary criterion for the 
triangular influence line 

I <Wi + P 

where W == total load, 
Wi = load on short segment of influence line, 

I = total span covered by influence line, 
li = length of short segment of influence line. 

Pc = critical wheel. 

we find that loadings (I), (V), (VII), and (VIII) satisfy this criterion, 
while loadings (III) and (VI) vary by only one wheel space from the 
position indicated, and almost the same numerical result would have 
been obtained by using the position indicated by a triangular influence 
line. 

89. Equivalent Uniform Loads.—The above result suggests the possi¬ 
bility of using an equivalent uniform load * to obtain the live load 
stresses. The specified loading is of a special type approximating 
Cooper^s E-50, differing only in the driver axle loads, which are 10 per 
cent heavier. For loaded lengths used in the left span of the truss the 
total excess of the given load over E-50 is about 5 per cent. For an 
influence line such as the predominant effect of the heavy drivers 
would justify selecting an equivalent load of perhaps 7 or 8 per cent in 
excess of E-50. 

Making these tentative and rather crude approximations, we get 

* It is presumed that the student is familiar with the general subject of equivalent 
uniform live loadings from his previous study of bridge analysis. Those who are 
not familiar with the subject and those who wish to study it further are referred to 

Live Load Stresses in Railway Bridges/' by George E. Beggs; Modem Framed 
Structures," Part I, by Johnson, Bryan and Turaeaure; and “ Live loads for Rail¬ 
way Bridges," by D. B. Steinman, Trans. A.S.C.E., Vol. LXXXVI. Professor 
Beggs’ treatise contains elaborate tables, and Professor Tumeaure’s book and Dr. 
Steinman's article contain convenient charts of equivalent live loads. The chart 
shown in Pig. 110/ is practically identical with that given in ** Modem Framed 
Stmetures." 
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the following typical results for the equivalent live load check on the 
previous figures. 

For LoUi . . . Equivalent uniform load for E-50 (see Fig. 110/) = 
I point in 162-ft. span = 6440 

6440 X 1.05 = 6750; 

area of influence line = 75.7 

75.7 X 6750 = 512, 

as against 510 by wheel load calculation. 

Length of Span-Feet 
Ekioivalent Uniform Loads for Cooper's E-50 Loading 

Fig. 110/ 

For JJzUi, Equivalent uniform load for E-50 (f point in 162-ft. span 
= 6160 

6160 X 1.05 = 6470, 

area of influence line = 41.4 

6470 X 41.4 = 268.0, 

as against 266 by wheel load calculation. 
For VzLi, Equivalent uniform load for E-50 (A point in 103-ft. 

span) = 6800. 
Here the effect of the heavy drivers might be expected to have a 

larger influence on the result than would be indicated by the ratio of 
the total weight of loading to total E-50 loading of same length. It 
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seems fair to assume the added equivalent load per foot to be 8 per cent 
rather than 5 per cent as previously used on the longer spans. 

Area of influence line = 40.6. 

6800 X 1.08 X40.6 = 299, 

against 302 by wheel load calculation. 
Using an increase of 5 per cent as in the other cases gives 290, or an 

error of less than 4 per cent. 
These calculations tend to show that for all ordinary cases, calcu¬ 

lation by the equivalent uniform load method gives results which are 
(juite as accurate as the data justify, and where tables or graphs of 
equivalents are available, it is the method recommended. 

For such an influence line as that of Fig. llOd, slightly closer results 
in selecting the equivalent load may be obtained by using the triangular 
influence line of equal area . . . A'BC\ This correction is unnecessary 
except for such cases as deviate considerably from the triangular form. * 
Where the influence line does not even approximate a triangular form 
(as in right-hand portion of Fig. 110c) the above method can be regarded 
only as a very rough approximation, if applicable at all. 

B. Rim-beakino Swing Bridge 

90. General Considerations.—We have just seen that the ordinary 
continuous girder theory applies with sufficient accuracy to the center¬ 
bearing swing bridge. We shall find on the contrary that important 
modifications in the analysis must be made before it can be applied to 
the rim-bearing sv»^ing bridge. In the three-span girder with the center 

span very much shorter than the others, the shearing distortion cannot 
be ignored without introducing serious error; the deflection in this short 
panel due to shear is, as a matter of fact, of the same order of magni¬ 
tude as the moment deflection. No practical bracing is possible, even 
if desirable, which is stiff enough to minimize the shearing deflection to 
such extent that the usual flexural theory may be applied. But it is 
generally conceded that the use of such bracing is undesirable; the 
high shearing stress and large negative reaction at the intermediate 
support adjacent to the unloaded span introduce serious practical dif¬ 
ficulties. It may be shown that if we calculate the reactions on the basis 
of the continuous girder theory, and proportion the web members of 
the center span to carry the large shear indicated by this theory, and 

* For further discussion on this general subject, see Johnson, Bryan and Tur- 

neaure^s ** Modem Framed Structures," Part II, page 79 in 1929 Ed., and Charles 

Ellis, “ Essentials of Structures," pages 309 et seq. 
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then make an exact calculation by the truss-deflection method, we shall 
find that no such large shear in the center span is actually realized. 
That is to say, though the bracing Is strong enough to carry the large 
shear, it is not stiff enough to cause it to develop. Indeed, within 

W;-CCOoVlin. ft. 

reasonable limits, the size of the bracing appears to have little effect 
on the unit stress.* 

These facts have led to the general adoption of very light center panel 
bracing, just large enough to stiffen the structure properly but assumed 

• See Johnflon, Bryan and Tumeaure, “ Modem Framed Structures,” Part II, 
page 93 in 1929 Ed. 
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not to transmit any shear. Such a truss is said to be partially 
continuous. 

Figs. 111a and 1116 illustrate the essential features of the two types 
of action. 

91. Equations for Shear and Moment—Full Continuity.—To de¬ 
velop in a more convenient form the expressions for shear and moment, 
we may write the three-moment equation, assuming Mx = 71^4 = 0, L == 
center span; nL = outer spans, load P in left span, 

- 2M2(nL+ L) - M3L- Pnn?{k - /c^), 
and 

— M2L— 2iML) = 0, 

whence 

M2 = - PnL-ih - 
4w2 + 8n + 3’ 

n 
M3= + 3 

Shear in center panel 

r, = = p(k - k^)-. “*■ 
L 4^2 + 8n + 3‘ 

For uniform load over left span, 

M — + 2n 
4~ 4n2Tto + 3' 

Tables III, VII and VII6 may be used to evaluate terms involving the 

constants k — k^ and 
4^2 + 8/1 + 3 

Fig. 108 shows a numerical case worked out for uniform load. 
It will be noted that the shear in the center panel is 401,000 lb. and 

the negative reaction at R3 = 405,600 lb. It would be very difficult 
if not impossible to provide satisfactorily for the uplift that would occur 
at this point under combined dead and partial live loading, and as 
previously noted, both experience and a more exact analysis indicate 
that even with bracing heavy enough to carry it safely, no such shear 
is actually developed, nor anything approaching it, and the ordinary 
continuous girder theory thus appears quite inapplicable to the rim- 
bearing swing bridge. 

92.—^Theory of Partially Continuous Truss.—The assumption of 
partial continuity—i.e., that the shear in the center panel is zero, gives 
results which are in fair agreement with the more exact analysis even 
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when the center span is heavily braced, and for light bracing the agree¬ 
ment is quite satisfactory. 

The corresponding formulas for the moments over the center sup¬ 
ports (if the shear in the panel is zero, these moments must be equal) 

TABLE VII 

Rim-bearing Swing Bridge (Shear-Resisting Center Panel) 

From equations in Art. 91: 

- 2Mi(Li + L) - M^L = 
- 2Af2(Li 4- L) - M^L - 0 

Then: 

Solving 

Let Li ~ nL. 

- 2Mi(l -f n) - M2 = n(k - k^)FLi 

-Ml - 2M2(1 -f- n) - 0. 

Ml 
2n(n -f- 1) 

4-8n -TS, 
;) (fc - fc’)] PL,. 

Values of 

n == 20 II 0
 

n = 8 n — 6 i n — 5 n = 4 n = 3 n == 2 n = 1 

.00 0.0000 0.0000! 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

.05 .0238 .0227 .0223 .0215 .0210 .0202 .0191 .0172 .0134 

.10 .0471 .0450 .0441 .04261 .0416! .0400 .0377 .0339! .0264 

.15 .0700 .0609 ,0655 .0632 .0617 .0594 .0561 .0504 .0393 

.20 .0914 .0873 .0853 .08251 .0806 .0776 .0732 .0658 .0513 

.25 .1112 .1064 .1041 .1008 .0982 .0945 .0892 .0803 .0625 

.30 . 1298 . 1242 .1214 ,11741 .1145 .1103 .1038 .0936 .0729 

.35 ,1458 .1398 .1364 .1320 .1290 .1240 .1171 .1053 .0820 

.40 ,1598 . 1528 .1493 .1445 .1411 .1357 .1280 .1152 ,0897 
*0 .45 .1708 .1633 .1596 .1545 .1510 .1450 .1370 .1232 .0958 

.50 .1783 .1708 .16701 .1612 .1575 .1514 .1430 ! .1286 .1002 
§ .55 .1825 . 1745 .1709! .1650 .1613 .1550 .1464 ! .1318 .1026 

IS .60 .1825 . 1745 .17091 .1650 .1613 .1550 .1464 .1318 .1026 
.65 .1783 ! .1708 .1670 .1612 .1575 .1514 .1430 i .1286 .1002 
.70 .1698 .1589 .1534 .1498 .1441 .1359 .1225 .0953 
.75 .1492 miiiuM .1409 .1377 .1325 1 .1124 .0876 
.80 .1370 fRuil .1282 ,1237 .1208 .1165 ; .1097 .0768 
.85 .1124 I .1073 .1050 .1016 .0992 .0954 .0900 .0809 
.90 .0814 .0737 .0456 
.95 .0442 .0423 1 .0414 .0400 1 .0375 ■RxSn .0248 

1.00 0.0000 0.0000 j .0000 0.0000 0.0000 1 .0000 0.0000 0.0000 
! 

0.0000 
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may be developed conveniently by the principle of moment areas. We 
may consider the two center supports coinciding and the action the same 

as in a two-span girder except that there will be a break in continuity 
over this center support equal to the angle between the two verticals 
at the inner ends of the two spans. This angle will evidently be 

measured by the sum of the top and bottom chord deformations divided 

by the height of the truss, that is 

^ = Jk, = ¥Jl = ¥k 
h AEh Er 

Fia.112 
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Now it is clear from the figure that 

A2 _ _Ai 
wL “ nV 

and if we multiply through by El and substitute the values from (a), 

(6), and (c), we have 

- Ml(i + 0, 

whence 

M =- PnL{k - ¥) 4^17^.(40) 

Fig. 1116 shows the large reduction in the moment at the center sup¬ 
port as compared with the continuous girder calculation. 

For calculation of moments and shears or of influence lines, it will 
generally be convenient to use the reactions Ri and For a load on 
the left span these may be written 

B, . . . (41) 

«< - - P(* - *•) .(42) 

Tables III and Vila will aid in evaluating these expressions 
numerically. 

TABLE Vila 

Values of 
n 

4n 4- 6 

n 1 2 3 4 5 6 7 8 
1 

9 10 15 20 

n 

4n + C 
.100 .143 .167 .182 .192 .200 .206 .211 .214 .218 .227 .232 

Values of 

TABLE VII6 

2n* -f 2n 
4w* -f 8n -f 3 

n 1 2 3 4 

1 

5 6 7 8 9 10 15 

2n* -f 2n 

4n» + 8n -f- 3 
.267 .343 .381 .430 .438 .445 .451 .455 .469 47e 
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93. Example of Rim-bearing Swing Bridge.—To illustrate the analy- 
vsis of the partially continuous rim-bearing swing span we shall show the 
influence lines for a rim-bearing span identical with the center-bearing 
span of Fig. 110, except for the addition of a small center panel of 16 ft. 
(see Fig. 113). 

The equations of the preceding article enable us to compute all 
influence ordinates in a manner similar to the example for the center- 

Fig. 113 

bearing bridge. The results are shown in the figure, A comparison 
with the influence lines of Fig. 110 shows that while some of the smaller 
ordinates differ by as much as 15 to 20 per cent, the larger ordinates 
rarely differ by more than 4 or 5 per cent. On this account it is not 
uncommon to analyze the rim-bearing swing bridge as a center-bearing 
bridge with spans equal to the two outside spans. The variations in 
the actual sections for the two cases will usually be of no practical 
importance. 
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C. Present Status of Swing Bridge 

93a. As recently as thirty years ago the swing bridge was the pre¬ 
vailing type of movable bridge in America. Swing spans have been 
built ranging from 100-ft. plate girders to trusses more than 500 ft. in 
length. Their relative popularity has greatly decreased of recent years, 
due to the remarkable developments in the design of the bascule and 
vertical lift types. These latter are ordinarily statically determinate 
types and hence are not treated in this book, nor would it be in place 
here to enter into a discussion of the relative merits of the various types 
of movable bridges. It may be noted that both the bascule and vertical 
lift types have the advantage that they may be opened more quickly 
than swing spans and afford an unobstructed waterway. Double leaf 
bascule bridges have been built up to 350-ft. spans and vertical lift 
bridges up to 450 ft. In spite of the increasing freciuency of such types, 
however, the awing bridge still appears to have a very definite and 
important place in movable bridge design, particularly for longer spans, 
and hence it is felt that the space given to it in this chapter is justified. 

D. Turntables 

93b. The locomotive turntable is a structure of common occurrence 
which is built sometimes as a simple girder and sometimes as a con¬ 
tinuous girder. The latter type presents a problem statically identical 
with the center-bearing swing bridge, and from the standpoint of analysis 
no separate treatment is required. 

E. Continuous Bridges 

93c. Until very recently the Lachine bridge of the C. P. R. Ry. over 
the St. Lawrence river was practically the only continuous truss span 
(aside from swing bridges) in America. Since the completion of the 
Sciotoville bridge in 1917, however, the interest in this type of bridge 
has greatly increased, and within the last fifteen years a large number 
of such structures have been built, both for long and for moderate 
spans and for both highway and railroad bridges, and the type seems to 
be steadily gaining in favor for crossings to which it is suited. 

It has always been recognized that the continuous truss possesses, 
in some respects, marked advantages over a corresponding construc¬ 
tion involving two or more simple spans. In general for the same load¬ 
ing the stresses are lower, the structure is more rigid, construction 
details are to some extent simplified, the piers are in manv cases reduced 
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in size owing to smaller space required for shoes, and where cantilever 
erection is necessary or desirable, the continuous truss is far better 
adapted to it. Two objections have been largely responsible for the 
infrequency of its use: 

(а) Where the live load is large there will be marked reversals of 
stress in certain members, requiring, according to most standard 
specifications, much lower unit stresses, which tends largely to offset 
the economy otherwise secured, and 

(б) Small relative changes in the levels of the supports were telieved 
to seriously disturb the normal stress conditions. Experience and 
more thoroughgoing investigation have shown that the second objection 
has little weight in the case of large structures * (to which the con¬ 
tinuous type is especially adapted), while the matter of stress reversal 
is of diminishing importance the longer the span and hence the greater 
relative importance of the dead load. Further, there is an apparently 
growing opinion among structural engineers that the severe penalties 
placed upon alternating stresses in the past are without justification 
in fact. These are among the considerations which have led to the 
present increase in favor of the continuous bridge; this favorable opinion 
seems to be rapidly growing and this type of construction will doubtless 
be widely used in the future for long-span bridges. 

The two-span continuous bridge is statically identical with the center¬ 
bearing swing span when the latter is closed and the end supports in 
full action. The three-span continuous truss, on the other hand, unlike 
the three-span (rim-bearing) swing bridge, may be analyzed to a close 
approximation by the ordinary continuous girder theory. The three 
spans are usually of somewhere near equal length and hence we do not 
have the exaggerated importance of the shearing deflections which arise 
from the relatively very short center span of the rim-bearing swing 
bridge. Although it is thus evident that no new principles are required 
for the analysis of continuous bridges, some details regarding the most 
convenient method of application may be of interest. Analysis of the 
two-span case has been sufficiently illustrated in Arts. 85-89. An out¬ 
line of the method of procedure for the cases of three and four spans 
(more than four are rarely found in practice) will be indicated in the 
following articles. 

93d. Three-Span Continuous Truss.—As previously noted a three- 
span continuous bridge truss of the usual type and proportions can be 
analyzed reasonably closely by the application of the three-moment 
cheorem, treating the truss as a beam with constant /. The values of 

* See Chapter VIII for further discussion of this point. 
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the stresses so obtained will be quite satisfactory for preliminary design. 
After such a design has been made, more exact (usually final) values 
may be obtained from the general equations (29), using the truss 
deflection method to compute the various 6’s. If equivalent uni¬ 
form live loading is used, the load position for maximum stresses in 
most members is fairly obvious, but frequently it is desirable to con¬ 
struct influence lines for some or all members. Two methods will be 
outlined. 

(a) If, following the analogy of the three-moment theorem, the 
stresses in the chords over the supports (see Fig. 114) are taken as 

redundant, expressions for these, from Equation (29), become 

« _ s . cr ^ aa » ^ab j 
^ - dog ~ 

where 8aq is the deflection between the two cut faces in the upper chord 
over the a-support due to a load unity at any point, g, in any span, and 
dbq is similarly defined, and A = daa {hb ~ The procedure is 
greatly simplified by observing that, from Maxwell's law, the deflection 
at a due to a unit vertical load at q is equal to the deflection at q due 
to Sa = unity, and similarly for bhq. If now the deflection curves for 
the base structure loaded with (1) 5a = 1 and (2) 5b = 1 are drawn, 
every deflection quantity needed in the above equations can be obtained 
from these two constructions. The latter can be made either by means 
of elastic weights (see page 79) or by the Williot diagram (see page 
61). From the principles developed in Art. 39, it is evident that a 
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“ synthetic ” solution may be obtained if we load the truss with Z# = 

^bb 5 b 
~~ and Xb = —~ simultaneously and plot the resulting deflection line. 

This will be, to some scale, the influence line for Xa. Xb may be ob¬ 
tained in the same manner. 

(6) An alternative procedure especially well adapted to a sym¬ 
metrical truss (by far the most common case) may be followed, using 
the two end reactions as redundants, giving the base structure a simple 
span with overhanging arms, supported at (2) and (3) (Fig. 115a). 

Applying a unit load at (1) a deflection curve shown by the heavy 
lines in Fig. 1156 may be drawn. Now if the support (1) only were 
removed and if a deflection curve for this statically undetermined base 
structure were plotted, this curve, to some scale, would be the influence 
line for Ri. We may obtain this deflection curve by superimposing, 
upon curve (1), the deflections due to a loading at (4) just sufficient 
to reduce §4 to zero. But, in case of symmetry, it is obvious that this 

force is P4 = “ X unity, and the resultant deflection line will be 
oi 

obtained by subtracting from curve (1) the ordinates to the same curve 

reversed and multiplied by The entire detail is thus reduced to 
di 

determining the deflections for a load unity at (1) in spans 1 and 2— 
the deflection curve for span 3 is a straight line. As in (a), the deflec¬ 
tions may be obtained either from a Williot diagram or by the use of 
elastic weights. If the truss is unsymmetrical the work is practically 
doubled since it is then necessary to obtain an independent deflection 
curve for a load unity at (4). 

93e. Four-Span Continuous Truss.—If, as in the three-span truss 



214 CONTINUOUS GIRDERS 

chord members over the supports are taken as redundant, the equations 
for these stresses are (Fig. 116a). 

Sa^aa + Sb^ab == ^aq 

Sa^ba + Sb^bb 4" Scdbc == ^bq 

Sbdcb + Scdcc = Scq 

(a) 

These are a generalized form of the three-moment equations since Sa, 
Sb and Sc are directly proportional to the support moments. It is 
obvious that, when these stresses are obtained for any given loading, 

/E 7'^7\ 7VV\7\ /\7\7V7 7mpK 1 © ® 
(a) 

@
 
^
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< 

_
\ 
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the truss may be analyzed as a statically determinate structure. For 
any single load condition all the 5-quantities may be readily found by 
the truss deflection formula (5c, page 19) and the resulting numerical 
equations solved for the redundant stress values. For an influence line 
study, one may follow the same general procedure as for the three-span 
truss. If the equations (a) are solved there is obtained: 

Sa ~ 5og[555*5cc 5^6c] ^6g[5o6’5cc] 4“ ^cg * * ^6c]> 

where A = 8aa'hb-^cc — — ^aad^bc- Sb and Sc are similarly 
defined. It is clear that correct relative values for the influence line 
for Sa will result if the coefficients of 5og, dbq, etc., in the above equations 
are applied as loads at (a), (b) and (c) respectively, i.e., dbb-Scc — S^ab 

at a; dab*he at 6, etc., and the resulting deflection line constructed. 
For the symmetrical case the redundant reactions may be obtained 

in a manner somewhat similar to that used for the three-span truss; 
see Art. 93d (6). Let the reactions at supports (1), (3) and (5) be taken 
as redundant (see Fig. 1166), and let the deflection curves for 5^1 
{q = any point in the structure) and 8qs be drawn for the structure 
supported at (2) and (4). Evidently 5^5 may be obtained from the 
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principle of S3mimetry. The construction of these deflection curves 

becomes relatively simple since individual values for need be found 

for only three spans and 6^3 for only one span. (Spans 2 and 3 are 

alike, and spans 1 and 4 deflect as straight lines.) 

To obtain the influence line for we observe that this will (to some 
scale) be the deflection curve, with the base structure as chosen, for a 
unit load at (3) when simultaneous forces are applied at 1 and 5 just 
sufficient to maintain zero deflections at these points. The required 

values for these latter forces will evidently be X\ = X'5 =-^- 
5ii + 5i5 

= Kf say, and at any point g, the correction to be applied to dqs to 
give the correct influence line ordinate will be K(8qi + 5^5)• 

To obtain the -influence line, we first obtain the deflection curve 
for Ri — unity, for the statically undetermined base structure consisting 
of the truss supported at (2), (3) and (4) with overhanging arms 1-2 
and 5-4. We shall obtain such a deflection curve if we apply a load at 
(3) just sufficient to erase the deflection 631. This required force will 

goj 
obviously be Corrections to the curve 5gi at any point q will be 

5.33 

S' 
We may call the ordinates to the resulting deflection curve 

533 
S'gi. The influence line for Ri is the deflection diagram for the con¬ 
tinuous truss 2-3-4-5-, with the cantilever arm 1-2. The ordinates to 
this curve will be the 5'gi values corrected by the deflections due to a 
load at R5 in the amount required to reduce 5'51 to zero. The required 

value will be X"5 = 4^. 
5 11 

We may again obtain these correction 

ordinates from the curve for 8\i from symmetry; i.e., if we multiply 
8^ 

each 5'^! by the ratio and reverse the resulting curve, the corrective 
0 11 

ordinates will be in the true position. It should be noted carefully 
that only the two basic deflection lines need be constructed; the 
necessary corrections are all obtained by proportion. If, for example, 
q is any point in span 1, and r is a symmetrically placed point in span 4, 
then the ordinate at q to the final deflection curve, which is, to 

some scale, the influence line for Ri^ will be (letting ^ = C) 

s, = - S,3-C - [5i, - 53r-C] 
dll di3C 

shown shaded in Fig. 1165. 

The influence area is 



CHAPTER V 

RIGID FRAMES AND SECONDARY STRESSES 

94. Preliminary.—A frames technically speaking, is a rigid-joint 
structure in which some or all of the moments and shears due to the 
joint restraints are required to maintain the equilibrium of the structure. 
Thus the frame of Fig. 91a, page 154, would collapse if all joints were 
pin-connected. 

Most rigid frames used in practice are statically indeterminate, and, 
speaking broadly, this type of structure furnishes the largest field of 
application of indeterminate stress analysis. This field includes building 
frames of all types, frame bridges, viaduct towers, portal and bracing 
frames, culverts, tunnel and sewer sections and many other structural 
forms. 

The secondary stress problem is analytically very similar to the 
frame problem, for which reason its treatment is included in this chapter. 
There are, however, certain important distinctions between the two 
problems which are noted under the subject of secondary stresses. 

The most useful general methods in frame analysis are the slope- 
deflection method and the moment-distribution method. The funda¬ 
mentals of both methods have been rather fully developed in Chapter 
III. Both will be used in this chapter, the slope-deflection method 
predominantly. 

For convenience of treatment the chapter will be divided into four 
sections: 

Section I. Simple Frames. 
Section II. Multi-Storied Bents. 
Section III. Frames Containing Members with Variable /. 
Section IV. Secondary Stresses. 

SECTION I.—SIMPLE FRAMES 

96. Preliminary.—This section will be confined to the analysis of a 
few single-story frames of rather simple character, the main purpose 
being to familiarize the student with the application of the methods of 
analysis. The examples include the cases of single and multiple panel 
structures, and that of equal and unequal (and inclined) legs. 

216 
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96. Three-Panel Symmetrical Frame.—Figs. 117a and h illustrate a 

frame in which heavy side walls and footings may be assumed to restrain 

all external joints rigidly. Problems of this type require quite a compli¬ 

cated treatment by the general method of indeterminate stress analysis, 

but are easily solved by slope deflections. A fairly simple solution may 

be made by moment areas. Both solutions will be presented. 



218 RIGID FRAMES AND SECONDARY STRESSES 

Also 

whence 
Ms + Me "I" Mb — 0> 

wL^ 

~12 

2[2Ai + 2K2 + K] 

wL^ -
1 

+
 

12 
.2i;+4:+zJ 

Me 
wU 

12 

'll 
L 

+ 2p + 
Ll ' ^2 

/ 
L 

Ms 
wL^ 

1l2 

,L 

'L2 

(b) Solution by Moment Areas. 

As sketched in Fig. 117d there are six unknown bending moments, 
Ma, Mb) Mcy Mdj Me) and Me. Between these six unknowns, we can 
only set up two equations from the conditions of statics. These are 

Mb = Me Me.(a) 

Ma + Mb^~.(6) 

The remaining four equations can be written with the aid of the 
M 

moment area principle. The distribution of the r— values is indicated 
HjI 

by the curves of the diagram Fig. 1176. 
The condition of rigidity of the joint at B requires that the two 

tangents at this point shall always be perpendicular to each other. 
From this condition we get two independent equations (Fig. 117o): 

9 = 
L L2 

and Qi _ Oj 
Ll L2 

Here Q, Qi and Q2 are the deflections of the points D and F. 
The deflection Q is measured by the statical moment of the area 
l~5~3~4r-2, Fig. 1176, about B\ or the moment of the area 1-5-3 minus 
the moment of the area l-2~4-3. 
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Therefore 

Q = 

^ x\l x\l - Mbx\l X L 
_ . 

The deflection Q2 is measured by the statical moment of the area 
12-2-10-11 about the point F, equal to the moment of the area 11-13-10 
minus the moment of the area 12-11-13-2. 

Therefore 

Q2 

{Mb + Mf)^ X \l2 - MfXLoX^ 

E2I2 

Knowing that — equals ™ we get 
Li2 

wL^ M{Mb Mp)Tj2 Mf'Tj2 
2“ 3 2~ 

El £2/2 

whence, if i? is constant, 

wL^ 
- SMb = A"i(2Mi; - Mb), 

if 

Lh 
= K\. 

Also since ~ equals — we get 

{Me + Md)Li MdLi {Mb Mb)L2 MfL2 
3 3 ^ 

EJi E2I2 

(c) 

whence, if E is constant 

if 
2ilfc - Md = K'2{2Mb - Mb), 

K'2 = 
L2/1 

LJ2 

{i) 

The deflection of the point B from the tangent to the elastic curve 
at D is zero since the point B remains unchanged and the tangent at D 

is fixed by the conditions of the problem. Therefore, the statical 
moment of the area 8-2-&-9 about the point B is zero, or, what is the 
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same, the moment of the area 6-9-7 about the point B minus the 
moment of the area 2-7-9~8 about the point B is equal to zero. From 
this we get 

EJi 
or 

Me = 2Md.(e) 

The same being true with regard to the tangent at the point F 

we may immediately write 

Me = 2Me.(/) 

Substituting (e) and (/) in (d) we get, 

Me = K'zMe.(a') 

Substituting (a') in (a) we get 

Me = (1 + k'2)Me.m 

Substituting {h') and (/) in (e) we get, 

- 3(1 + K'2)Mh = 

Therefore 

M ^ \ 
12 \A^'i + 2A''2 + 2/ 

_2LLxI>_\ 
12 \F1L2l ~\~ 2AA2/1 ~\~ 2LL1I2) 

^ 12 ^ 

where 
^ __2LL1/2_ __2_ 

L1L2I + 2LL2I1 H" 2LL1I2 K'l + 2K'z + 2 

From (a') 

Mo . CK', 
wL^(_2LUh_' 
12 \L1L2I “h 2LL2I1 4" 2LL1I2, 

From (/) 
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From (e) 

Md 

if 

C' 

From (a) 

Mb 

CK'o wL'^ _ wU' / LL2I1 

~ ~12 \L1L2l + 2LL2I1 + 2LL1I2, 

^ 12’ 

_hUh 
IJ1L2I “f“ 2jLZ/2/i H“ 2Z/Z/1/2 

C(1 + K'2) 
wL 

12 

2 

From {b) 

Ma 

wL^ 

12 

wL^ 

'~S~ 

/ 2LL1I2 + 2LL2/1 \ 
\L1L2I "F 2LL2I1 “F 2IjIjiI2/ 

- Mb. 

It will be seen that the preceding moment values readily reduce to the 
same form as those of solution (a). 

It is an easy matter to test some of these values for the limiting 
cases. Take for instance the value for Mb. There are four condi¬ 
tions of the members BD and BF which would produce a condition of 
fixed ends for the central span BB\ If h or 12 becomes very large in 
comparison with the remaining values of /, or if Li or L2 becomes very 
short in comparison with the remaining values of L, we would get a 
condition approaching fixed ends for the central span. In all four of 

these cases it is seen that the value oi Mb approaches which is the 

value of the end moment for a fixed span with a uniform load. When 
the values of / and L approach the other extreme we have a condition 
of a freely supported simple span, where Mb approaches zero, as a 
substitution will show. 

When 11 equals zero, 7 equals /2, and L equals L2, we have the con¬ 
dition of a beam of uniform section with three equal spans, fixed at the 
two end supports and supported freely on the two intermediate supports. 
Here again the values ol Mb and Me check themselves by becoming 

,, , wL^ 
• while Mp> becomes 

97. The Framed Bent with Vertical Legs.—Vertical Loads.—A frame 
with an unsymmetrical vertical load will ordinarily show a slight trans¬ 
verse swing of the columns unless the top is externally restrained from 
horizontal movement. This is very commonly the case since only a 
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small force is required to prevent such movement. For purposes of 
comparison a solution will be given for the two cases (1) where the col¬ 
umn tops are restrained against horizontal displacement, and (2) where 
they are free. 

(1) Assuming the data of Fig. 118 (but omitting horizontal load) 
we have 

Mfbc = ^PcB = PMk - 

= 1000 (10) = 1000 (10) (1 - 1 + ^) 

= 469 Ib-ft. = - 1408 Ib-ft. 

and, since Kbc =1.5 and Kab = Kcd = 1, and li = 0, we have: 

Mba = - 2(2ei,) 

Mbc =+ 469 - 2 X 1.5(20^ + Gc) 
and 

Mob = - 1408 - 2 X 1.5(200 + 0a) 

Mod — — 2(20c) 
whence 

100a + 30c = + 469, 

30b + 100c = - 1408. 
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Solving we obtain 

0c = — 170.3, 

0B = + 98.0, 

Mba = — 2(2 X 98.0) = - 392 
Sijf/, = 0, 
check. 

Mbc = ~ 2X1.5 [2X98 + (- 170.3)1 

+ 469 = + 392 

Mcb = — 2 X 1.5 [2 X {- 170.3) + 98.0] 1 
SMc = 0, 
check. 

- 1408 = - 680 

Mcd = — 2 [2 (- 170.3)1 = + 681 ^ 

Mab = - 2 (98.0) = - 196, 

Mdc 2 (- 170.3) = 341 

A summation of the end column moments gives 

Mab + Mba + Mcd + Mdc = - 196 - 392 + 681 + 341 = + 434, 
therefore the required force at the column tops to prevent horizontal 
movement is 

434 
l5 

= 28.9 lb. 

(2) If we assume the top of the frame unrestrained and remaining 
data as above, we shall have 

Mab 2 [05 - SR] 

Mba = — 2 [205 — SR] 

Mbc — "h 469 — 2 X 1.5 [205 + 0c] 

Mcb = - 1408 - 2 X 1.5 [20c + 0b] 

Mcd ~ — 2 [20c — 3/^] 

Mdc = — 2 [0c SR] 

The joint equations SMb = 0, SMc = 0, are formed in the same 
general manner as in the preceding case, though they will now contain 
the additional unknown deflection quantity, R. The bent equation 
(which requires that the sum of the end moments in the columns shall 
equal the total shear across the columns multiplied by the height) takes 
the form 

Mab + Mba + Mcd + Mdc = 0 

Table A gives the equations and their solution in full together with 
values of the six end moments. It will be noted that these values satisfy 
the joint and bent equations practically exactly. 
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TABLE A 

Solution of Equations and Moment Calculations for Bent with Unsymmetrical 
Vertical Load Only and no Horizontal Restraint 

Equation R ^B Oc j Constant Moments 

Bent... . +24 -6 -6 0 Mba =2[3(-23.4) - 2(+86.9)] 

Joint B.. - 6 10 3 + 469 
= -488 

Joint C.. - 6 3 10 -1408 Mbc = +469 - 2 X 1.5(2(+86.9) 

© + 1.00 = 0.25 -0.25 0 
+ (-180.5) J = 489 

@ - 1.00 + 1.67 +0.50 + 78.2 Mcb = -1408 - 2 X 1.5[2(-180.5) 

® - 1.00 +0.50 + 1.67 - 234.7 
+86.9] =- 586 

© + @ + 1.42 +0.25 + 78.2 Mcd = 2[3(-23.4) - 2(-180.5)J 

© + ® +0.25 + 1.42 - 234.7 
= 582 

© +1.00 +0.176 + 55.1 Mab = 2[3(-23.4) - (+86.9)] 

® +
 

8
 

+5.680 - 938.8 
= -314 

©
 

1 +5.504 

ec =- 
0B = + 
R 

- 993.9 

1 

180.5 
86.9 
23.4 

Mdc = 2l3(-23.4) - (-180.5)1 
= 220 

98. Framed Bent with Vertical Legs.—Vertical and Horizontal Loads. 

—We shall now solve the same frame when loaded with a horizontal 

load of 200 lb. at C in addition to the vertical load P. 
The joint equations are unchanged; the bent equation in this case 

requires that the summation of all column moments = Hh = 200 X 15. 

Table B gives the set-up of the equations and their solution. 

Substituting values from Table B in the moment equations, 

Mba = 2 [3(139.0) ~ 2 X 162] = 186.0, 

Mbc = - 2 X 1.5 [2 X 162 + (~ 106.2)] + 469 = - 184.4. 

2Mb = 0, check. 

Mcb = ~ 2 X 1.5 [2(~ 106.2) -f 162.0] - 1408 = - 1256.8, 

Mcd = + 2 [3(139.0) ~ 2 (- 106.2)] = + 1258.8. 

.*. 2Afc = 0, check. 

Mab = + 2 [3(139.0) - 162.0] - 510, 

Mdc = + 2 [3(139.0) - i- 106.2)] = 1046.4. 
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TABLE B 

Solution of Equations for Bent with Horizontal and Vertical Loads (Fig. 118) 

Equation 
Unknowns 

Constant Term 
Ob Oc R 

Jb + ^bc) 2Kbc —6Kab 4-FL(A;2 - k^) 

Jc ^K-bc HKcd + Kbc) -6Kci> -PLik - 2k^ 4- k^) 
Bent -Kab -Kab -]-4Kab Hh/^ 

Jb 10.0 3 -6 4-469 

Jc 3 10.0 -6 -1408 
Bent -1 4-4 4 500 

® 1.0 .300 - .600 -f46.9 

@ 1.0 3.333 -2.000 -469.3 

® 1.0 1.000 -4.006 -500.0 
-3.033 4-1.40 4 516.2 
4-2.333 4-2.00 4 30.7 

1 - .462 -170.5 
1 4- .858 4- 13.2 

-1.320 -183.7 
R = 4139.0 

Oc— -106.2 

Ob = 4162.0 

Further 

Vba -h VcD 

186 + 510 , 1258 + 1046 _ 
-15-+-15- 

the applied shear, therefore bent equation is also satisfied. 
In Fig. 119 the moments as found in the preceding example are 

plotted and resulting transverse shears in the members are shown 
together with a distortion sketch indicating 0 and R values. 

99. The Framed Bent with Inclined Legs.—One of the simpler cases 
of the framed bent with inclined side members is that of the so-called 

frame. To illustrate the method of attack for such a problem, 
we will take the case of a frame similar in dimensions and loading to 
that used as an example in the preceding article but with inclined 
instead of vertical side members. (See Fig. 120.) 

The horizontal movement of B and C = Rh as before, 
The vertical drop of B = RLi, 
The vertical lift of C = RLi, 

Mba + Mab I Mcd + Mdc 

h h 
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Fig. 120. 
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07 

Therefore the member BC undergoes a rotation of R which in this 
L 

case equals R (since 2Li = L) and which is ( —) or counter-clockwise 
with the loading P acting from the left. 

Since Rab = Rcd = — Rbc — R, the six moment equations may be 
written: 

Mab = 2Kab(^R — Ob). 

Mba = 2Kab(?R — 20 b). 

Mbc = 2Kbc{ — ^R 20b — Oc) + 

Mcb = 2Kbc{~^R — 20c — Bjs) + 

Mcd ~ 2Kcd{SR — 20c). 

Mdc — 2Kcd{^R — 0c). 
The joint equations (identical with those of previous problems) are: 

Mba + Afj5c = 0.(a) 

Mcd Mcd = 0.(6) 

The bent equation is radically different from that of a frame with 
vertical legs. In setting up the equilibrium equation for the portion of 
the structure contained between horizontal planes cutting the posts 
very near the ends, account must be taken of the moments of the vertical 
components of the axial stresses in the posts. Calling these + Fc, 
the bent equation is: 

— Mab ~~ Mba Mcd ~ Mdc + Hh + VbBi VcLi = 0. 

From the equation of equilibrium for the beam BC, one obtains: 

L Lj 

and the bent equation reduces to: 
PL 

Mab + 2Mba "I" ^Mcd "I" Mdc = Hh-— (1 2k). . . (c) 

Substituting numerical values (see previous problem), equations 
(a), (6) and (c) become: 

-3R- 1005 - 300 + 469 = 0.(o') 

-3R- 10c - 305 - 1406 = 0.(6') 

+ 36jB - 1005 - 100c - 500 = 0.(c') 
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Table A gives the solution of the three equations, carried out for the 
combined loads and for each load separately. 

TABLE A 

Frame with Inclined Legs under Vertical and Horizontal Loads (Fig. 120). 

Right-Hand Member 

Equation eii Oc Combined Horizontal Vertical 
I-ioading Load Load 

JB —(a) 10 3 3 + 469 0 + 469 
JC —(5) 3 10 3 -1406 0 -1406 
Bent—(c) 10 10 -36 - 500 -3000 +2500 

(ai) 1.00 0.30 0.30 + 46.9 0 + 46.9 

(6i) 1.00 3.33 1.00 - 468.7 0 - 468.7 

(Ci) 1.00 1.00 -3.60 - 50.0 - 300 + 250 
3.03 0.70 - 515.6 0 - 515.6 

(&.)-(ai) 2.33 4.60 - 418.7 + 300 - 718.7 

(6.) (Cl) 1.00 +0.231 - 170,2 0 - 170.2 

1.00 + 1.975 - 179.7 + 129 - 308.7 
1.744 - 9.5 + 129 - 138.5 

E - - 5.45 i + 74 - 79.5 

Sc = 168.9 - 17.1 - 151.84 
Sji = 99.3 - 17.1 + 116.3 

MOMENTS 

Mab = 2[3(- 5.45)- 99.3] = - 231.4 
MjiA ^ 213(- 5.45) - 2(99.3)1 = - 430.0 
Myjc = 3[- 3(5.45)- 2(99.3)-(- 168.9)] + 469.0 - + 429.2 
Men = 3[- 3(- 5.45)- 2(- 168.9)-(99.3)] - 1406 -- 641.3 
Mcd = 2[3(- 5.45) - 2(- 168.9)] - + 642.8 
Mdc * 2(3(- 5.45)-(- 168.9)1 = + 305.3 

Mab + 2Mba + 2Mcd + Mdc = - 231.4 - 860.0 + 1285.6 + 305.3 = 499.5 
PL 

Hh-^ (1 — 2k) — + 500 check 

check 

check 

The moment diagram is shown in Fig. 121. From a comparison of 
the results shown there and in Table A with those of Arts. 97 and 98, 
certain significant effects of inclining the posts may be noted, though 
these, of course, are applicable only to frames of similar dimensions. 
For a horizontal load applied at the top of the frame, inclined posts 
decrease the sidesway markedly, and reduce the magnitude and reverse 
the direction of the joint rotations. For vertical loads the latter are not 
greatly modified, but the sidesway is very greatly increased. For the 
particular load combination shown, the net result is to somewhat equal¬ 
ize the moments in the two legs and thus reduce the maximum moment 
values about 50 per cent. 
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The method illustrated is obviously applicable to a multi-storied 
(single bay) frame with inclined posts. 

100. The Rectangular Bent with Transverse Loading and Columns 

of Different Lengths (Fig. 122).—This is the typical problem of the 

reinforced concrete bridge bent or special two-span culvert bridge. 

/ 

As regards simplicity of solution and number of unknowns the problem 

is the same as if all columns were of the same length. If we substitute 

for R its value, D being the horizontal deflection of the tops of the 
H 

columns (assumed the same for all points), the unknowns to solve for 

become 0a, 0a, Oc and D, 
Assuming D, E and F fixed we have the three joint equations and 

one bent equation necessary to solve for the ten bending moments (all 
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different) at the ends of the five different members which compose the 

bent. The moments are 

Mja> = 2Kad (3^ - 20^) = . . - + - 2Qjd, 

Mab = Mfab ~ 2i'LAB(20A “H 0b) = d-^ ~ 4(20^ + 0b)) 

Mba — — Mfba — 2Kab(!^^b + Ba) = — 66,700 — 4(20j9 + B^), 

Mbc — Mfbc — 2Kbc(20b + Be) = + —^ —-4(20^ + Be), 

Mbe — 2Kbe -205^ = . . . 2.8(j^Z) — 2Bb), 

Mcb — — Mfcb ~ 2Kbc(2Qc "t" Bij) == — 104,000 — 4(20e Bb), 

Mcf ~ 2Kcf ~~ = . . . 2(-^\Z) — 2Be), 

Mda = 2Kad ~ = • • • 4(^0^D — Ba), 

Meb = 2Kbe (^jj-Ob^ = . . . 2.8(y®jD — 0^), 

Mfc = 2Kcf -= . . . 2(^jjD — Be). 

From these we set up the equations for the B’s and D 

© XMa = 0 = - 16Ba - 40/^ + 1.20D + 66,700 

© ^Mb = 0 = - 4Ba - 21.60^ - 4Bc + MD + 37,300 

0 iMc = 0 = - 405 - 12Be + .30Z) - 104,000 

Joint 
equations. 

Ma£> + Mda Mbe + Meb _j_ Mcf + Mfc 

10 15 20 
= - 18,000, 

or, substituting and combining, 

— 1.200a — 0.5605 O.3O0e + 0.345Z) = — 18,000 . . . Bent equation. 

The minus sign is given to 18,000, the shearing force on the bent, 

because its tendency is to cause all columns to rotate in a counter- 
dockwise direction. 

In Table A we have a solution of these equations, a substitution in 

the original moment equations and a check of the three joint equations 

and the bent equation. 

Fig. 122 gives the moment diagram, shear diagram and also a dis¬ 

tortion sketch. 

101. The Vierendeel Truss or Open Webbed Girder with the Load¬ 
ing Applied between Joints.—The method of attack for such a prob- 
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lem can best be illustrated by the carrying through of the numerical 

solution of a specific case. Where the problem involves the solution 

of a number of simultaneous equations, the attempt to carry through 

a general case (without assigning numerical values) is exceedingly 

laborious and results in expressions so complicated as to be of little 

practical use. Further, the fundamental principles are often lost 

sight of in such a solution. 
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TABLE A 

Rectangular Bent with Columns of Different Lengths (Fig. 122) 

Equation 

Ja 
J B 
Jc 

Bent 
Ja 
Jb 

Bent 
Ja ~ Jb 

Jb — Btmt 

1 
2 
Jr 

1 - 2 
Jc — 2 

3 
4 

3-4 

Oa 

+ 16 
+ 4 

- 1.2 
+ 1.0 
+ 1.0 
+ 1.0 

Unknowns to Be Solved for | 

' 05 Oc 1) 

+ 4 - 1.2 
+21.6 + 4 - .56 
+ 4 +12 - .30 
- .56 - .30 + .345 
+ .250 - .075 
+ 5.400 + 1.00 - .140 
+ .406 + .25 - .287 
- 5.150 - 1.00 + .065 
+ 4.934 + .75 + .147 

1.00 1 + .194 - .0120 
1.00 + . 152 + .0298 
1.00 + 3.00 - .075 

+ .042 - .0424 
+ 2.848 - .1048 
+ 1.00 - 1.0100 
+ 1.00 - .0367 

— .9733 
D = - 6166 

0c = - 8730 + .0367( - i 
= - 10990 

jConstant Term 
of Equation 

+ 66,700 
+ 37,300 
-104,000 
- 18,000 
+ 4170 
+ 9320 
+ 15,000 
- 5150 
- 5680 

+ 1000 
- 1152 
- 26,000 
+ 2152 
- 24,848 
+ 51,200 
- 8730 
+ 59,930 

05 = + 1000 
= + 2350 

Ba = + 4170 - .25(+ 2350) +.075( 

194( - 10990) + .0126( - 61600) 

616000) = - 1040 

Mad = 4[.3(- 61,600) - 2(- 1040)] 
Mab = + 66,700 - 4[2(- 1040) + (+ 2350)] 

^Ma = 0 
Mba = - 66,700 - 4[2(+ 2350) + (- 1040)] 
Mbc = + 104,000 - 4[2(+ 2350) + (- 10,990)] 
Mbb = 2.8[.2(- 61,600) - 2(+ 2350)] 

/. SMfi = 0 

Mcb = - 104,000 - 4[2(- 10,990) + (+ 2350)] 
Mcf = 2.0[.15(- 61,600) - 2(- 10,990)] 

XMc = 0 
Mda - 4[.3(- 61,600) - (- 1040)] 
Meb = 2.8[.2(- 61,600) - (+ 2350)] 

= 2.0[.15(- 61,600) - (- 10,990)] 
Mad — 

Mbb — 

Mcf = 

= - 65,600 
= + 65,620 

= - 81,340 
= + 129,160 
- - 47,600 

= - 25,480 
= + 25,480 

= - 69,760 
= - 41,100 
= + 3500 
= - 65,600 
= - 47,600 
= + 25,480 

- 69,760 - 65,600 ^ - 41,100 - 47,600 , 25,480 + 3500 
10 15 20 - 18,000. 

.*. Bent equation is satisfied and a shear = 18,000 is developed in columns. 
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In the problem here indicated, where the loading, stiffnesses and mem¬ 

ber lengths are symmetrical about the center line of the truss, we have 

four unknown 0 values and one unknown R value. To determine 

Fia. 123 

these values we have four joint equations and one bent equation. The 

ten moment equations are as follows: 

(Noting that 02 — — 02i and 04 = — 04j; Reaction = 30,000), 

WL 
Mi-2 = 2Ki-2{SR - 201 - 02) + - 20i - 02) + 8330, 

WL 
M2-1 = 2Ki-2{SR ~ 202 “ ^1) + ” = 4(3/i - 01 - 202) ~ 8330, 

WL 
M2-2, = 2K2-.2,i- 202 - 02,) - = 4(-02) + 8330, 

Mi-s = 2Ki-z(— 201 — 03) , . . = 4( —201 — 03), 

Ms-i = 2i!Ci_3(— 203 — 0i) . . . = 4(— 203 0i), 

M2_4 = 2K2-^(- 202 - 04) . . . = 2(- 202 - 04), 

M4_2 = 2K^-2{- 204 - 02) ... = 2(- 204 ~ 02), 

M3-4 = 2K3-4(SR - 203 - 04) = 2(3jffi - 203 - 04), 

M4-.3 = 2K^-z{ZR - 204 ~ 03) = 2(3fi - 204 - 03), 

= 2iiL4~4i(*^ 204 — 04i) = 2(— 04). 
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The five equations of equilibrium are then expressed as follows: 

®Mi^2 + Ml-.3 = 0, 12R - 1601 ~ 402 ~ 403 + 8330 = 0, 

®M2~1 + M2-2i 4" M2-4 = 0, 6jB — 802 — 201 — 04 = 0, 

®M3_i + Ms-4 = 0, 3/2 —- 603 — 201 — 04 = 0, 

®M4-3 + M4-2 + M4_4i “ ■” — 02 — 03 = 0, 

®Mi>2 + M2^i + M3-4 + M4-3 = 30,000 X 10 ~ 10,000 X 5, 

/. 18/2 — 601 — 602 — 303 — 304 = 125,000 . . . Bent equation. 

The bent equation is obtained by cutting out a section between two 

vertical lines just to the left of 2-4 and just to the right of 1-3 and 

taking the moment of the shear on 1-3 minus moment of loads between 

1-3 and 2-4 equal to resisting moments on all four member ends cut. 

Solving these equations in the convenient tabular form shown in 

Table A, we find values of the unknowns 0i, 02, 03, 04 and /2. 

Substituting these values back into the original moment expressions 

we obtain the following: 

Mi_2 = 4[3(+ 13,620) - 2(+ 8100) - 7450] + 8330 = + 77,170, 

Mi>3 = 4[- 2(8100) - 3120] = . . , - 77,280 
2M = 0, check. 

M2-1 = 4[3(+ 13,620) - (+ 8100) - 2(+7450)] - 8330 = 63,110, 

M2-.2, = 4[- (+ 7450)] + 8330 = . . . ~ 21,470, 

M2-4 = 2[- 2(+ 7450) - 6060] = . . . - 41,920, 
SM = 0, check. 

M3-1 = 4[- (+ 8100) - 2(+ 3120)] = . . . - 57,360, 

M3-4 = 2[3(+ 13,620) ~ 2(+ 3120) - (+ 6060)]. . . + 57,120, 

XM = 0, check. 

M4^2 = 2[- (+ 7450) ~ 2(+ 6060)] = . . . - 39,140, 

M4-3 = 2[3(+ 13,620) -- (-h 3120) - 2(+ 6060)] . . . + 51,240, 

M4-41 = 2[- (+ 6060)] = . . . - 12,120, 
XM = 0, check. 

It will be seen upon examination of these results that all the joint 

equations check up very closely to zero while the bent equation is also 
satisfied—in other words 

Mi-2 + M2-1 + M3-4 + M4-^ == 248,640—against 250,000, 

which is an error of less than 1 per cent. 
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TABLE A 

Open Webbed Gibdek (Fig. 123) 

Equations 

Unknowns 

Knowns 
01 02 03 04 R 

Ji 16 4 4 -12 + 8330 

Ji 2 8 1 - 6 

Ji 2 6 1 - 3 

J4 . 1 1 5 - 3 
Bent - 6 - 6 - 3 - 3 +18 + 125,000 

Ji 1.0 .250 .250 - .750 + 521 

j. 1.0 4.000 .500 - 3.00 

j. 1.0 3.00 .500 - 1.50 
Bent - 1.0 - 1.0 - .50 - .50 -f 3.00 20,800 

j,-j4 3.75 - .25 .50 - 2.25 - 521 

J2 ” Ji 4.00 - 3.00 - 1.50 
Ji + Bent - 1.00 + 2.50 + 1.50 + 20,800 

© 1.0 - .067 .133 - .600 - 139 

© 1.0 - .750 - .375 
1.0 - 2.50 - 1.50 - 20,800 
1.0 1.00 5.0 - 3.00 

© - ® .683 .133 - .225 - 139 

r?) — (T) 1.750 1.125 + 20,800 Vi/ Vi/ 
® - Jt - 3.50 - 5.00 -f 1.50 - 20,800 

® 1.0 .195 - .329 -204 
(i) 1.0 .643 + 11,880 Vi/ 
® 1.0 1.428 - .428 + 5,940 

® -® .195 - .972 - 12,084 

® - ® . - 1.428 1.071 + 5,940 

® 1.0 - 4.990 - 61,900 

® 1.0 - .750 - 4,160 
- 4.24 - 57,740 
R = + 13,620 

04 = + .75(31,620) - - 4160 
= +6060 

0, = + 11,880 - .643(13,620) ■ = + 3120 
G, = .75(3120) + .375( + 13,620) = + 7450 

e, = +.521 - .25(7450 + 3120) + .75(13,620) = + 8100 
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SECTION IL-MULTI-STORIED BENTS 

102.—The multi-storied framed bent is encountered in many types 
of construction, the most important of which is the tall office building. 

The so-called skyscraper had its origin about 1890 when the first 
skeleton-steel frame buildings were introduced, and has had a remark¬ 
able development, particularly during the last 20 years. At present 
there are perhaps 50 buildings in the United States of 40 stories or 
more, and buildings of 25 stories are comparatively common, hence the 
analysis of such frames has become a very important structural 
problem. 

The slope-deflection method, in the form previously presented, is 
directly applicable to such problems, but for large frames the labor 
required is rather enormous and by most engineering offices is 
regarded as prohibitive.* Some approximate method of solution 
which can be carried out within a reasonable time, and which will 
be sufficiently accurate for designing purposes, is therefore urgently 
needed. 

This field has developed an extensive literature which cannot be 
adequately covered in an elementary treatise. The following discussion 
is confined to an exposition of a workable and satisfactory type ot 
approximate solution, or rather a solution by converging approxima¬ 
tions, by the slope-deflection method and the moment-distribution 
method. Since it is customary to make independent calculations for 
the stresses due to vertical loads and to transverse loads, the two types 
of analysis will be discussed separately. 

A. Multi-Storied Frames with Vertical Loads Only 

103. General.—This type of problem requires little special con¬ 
sideration since the methods discussed in Chapter III apply with only 
slight modifications in detail. These may best be illustrated by a 
numerical example. A comparatively simple frame will suffice for this 

* To compute the wind stresses in a symmetrical 20-story bent of three bays 
involves the solution of 60 simultaneous equations in addition to considerable pre¬ 
liminary work and a subsequent calculation of approximately 140 end moments. 
Such an analysis will require perhaps four to five days’ time of two experienced 
computers, making parallel calculations for checking purposes. An unsymmetrical 
40-story bent of four bays involves the solution of 240 simultaneous equations, and 
would ordinarily require several weeks’ time for a wind-stress analysis by the standard 
slope-deflection method. 
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purpose. The two-story bent of two bays, shown in Fig. 124, is assumed 
to be so loaded as to cause the fixed beam moments shown at the ends of 
each member. The JiT-values are written on each member. It is 
assumed that, for vertical loading, the sidesway is so small that the 
i^-values for the columns may be considered negligible in comparison 
with the joint rotation. 

104. Slope-Deflection Solution.—As shown in Chapter III, page 
165, for any joint, n, of a frame, the joint equation may be written: 

e„ = — . 

If now it is possible to make a very rough preliminary estimate of the 
B-values for the frame and loading, then these values, substituted for 
the various 0/s in Equation (43), and the equation applied successively 
to each joint of the frame, will give a set of values which may be 
regarded as a first approximation to the true 0-values. If these latter 
values are now used for 0*, and Equation (43) again applied to all 
joints, a second approximation is obtained, and the process may be 
repeated until the desired degree of accuracy is secured. 

* It should be noted that in this equation and later in this chapter, for conven¬ 
ience, 6 is taken bb2E X actual joint rotation. 
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To obtain a preliminary estimate or trial value for the rotation of 
any joint, we shall assume this as 

2XK ‘ 
(a) 

An outline of this general method of solution, with a numerical example, 
was given in Chapter III, page 165. 

One useful artifice in the application of this method of approxima¬ 
tion should be noted. If in the frame of Fig. 124 we separate the joints, 
by alternation, into two groups, A, C and E, and Z>, B and F, we note 
that in computing, by means of Equation (43), the 0-values for the 
first group, joints of the second group only appear in the Grterms, and 
vice versa. If, therefore, 0'-values are computed for joints D, B and F, 
we obtain 0i-values (first approximation) for joints A, C and E from 
using these in Equation (43). To compute 0'-values for these latter 
joints would serve no useful purpose, since the 0i-values are available 
for computing the rotations of the joints D, B and F, and the calculation 
so made amounts to a second approximation. When these latter values 
are used to obtain a second set of values for A, J5 and C we have in reality 
an order of accuracy amounting to a third approximation though they 
are designated in Fig. 124 as the second approximation. This procedure, 
though not essential to the successful application of the method, results 
in a marked acceleration of the rapidity of convergence. The entire 
process of calculation is shown in full on the line drawing of Fig. 124. 
The steps may be itemized as follows: 

1. Determine Af/--values and write at end of each member. 
Determine relative if-values and write on each member, also 2XK- 
values for each joint (shown in circles on figure). 

2. For convenience of application separate the frame into two 
groups of alternate joints. (For some frames a perfect alternation, 
as in the present problem, is not possible, but this is not necessary 
to secure the advantages of the procedure.) 

3. Compute 0' = for all joints in group 1. (In the present 

problem, D-B-F make up group I, but this selection is, in principle, 
arbitrary. The choice as made gives somewhat better preliminary 
values than if the group A-B-E had been taken, and hence hastens 
the convergence of the solution.) 

4. Compute 01 -n = 
23//? — 

2iK for all joints of group II. 



SOLUTION BY MOMI-INT DISTRIBUTION 239 

V ^ _ \'ir 0 

5. Compute Gi _i = —'~'2vX * joints of group I. 

6. Repeat the process of steps 4 and 5 until desired accuracy is 
attained. In present problem 1| cycles (exclusive of preliminary- 
values 0') are carried through. This will ordinarily be ample for 
purposes of design. 

7. Compute end moments by 

Mnr = Mp-nr ~ K (20„ + 0,). 

30.00 

-30.92 
-0.9-1 
-0.20 
-5.23 

4.55 

-30.00 10.00 

-4.39 
0.36 

-0.12 
2.64 
2.73 

-10.00 

Fig. 125 

This method of approximation is generally applicable to building 
bents under vertical loads (sidesway negligible) with any number of 
bays and stories. In the problem illustrated (which shows considerable 
dissymmetry of frame and loading) the results of 1| cycles of calculation 
are substantially exact. 

106. Solution by Moment Distribution.—The method of moment 
distribution exemplified in Article 71, page 168, can be applied to the 
problem of Fig. 124 without modification. The solution is shown in 
full in Fig. 125. The joints are divided into two groups of alternates. 
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A, C, E and Z), B, F, as before. For the latter group the unbalanced 
moments are distributed and carried over before any distributions are 
made in the second group. For example, the unbalance at D is +62.50, 
and the first distribution gives Mda = — 14.34, and the carry-over to 
A ==— 7.17. At B the unbalance is —20.0 and a first distribution 
gives Mba = + 4.55, which carries over to A as + 2.27. The unbalance 
at A is now + 30.0 + 2.27 — 7.17 =+ 25.10. This moment is used 
in the first distribution at A instead of + 30.0, as would be the case if the 
artifice of dividing the joints into alternate sets were not used. This 
method shortens the process somewhat but it is not an essential feature 
of the process of moment distribution. The results obtained by 1^- 
cycles of distribution at joints AjC,E and carry-over to D, 5, F (undis¬ 
tributed) are in almost exact agreement with the slope-deflection values 
obtained by | set of preliminary values and 1§ cycles of approximation. 
It should be noted that the basic assumption for preliminary values in 
the latter method and for the first moment distribution in the former 
are identical, i.e., that all joints adjacent to the one under considera¬ 
tion are fixed. 

B, Multi-Storied Frames with Transverse Loads and Sidesway 

106. Preliminary.—For tall building frames the most impor¬ 
tant analytical problem is the calculation of wind stresses. Ref¬ 
erence has already been made to the excessive labor required 
to make such an analysis by the standard form of the slope- 
deflection method. The solution by the least work method, or by 
the elastic equations developed by the Maxwell-Mohr method, 
presents even greater diflSculties. In the following pages two different 
working methods will be presented; one a modified form of the 
slope-deflection method, and the other a variation of the moment- 
distribution method. 

Since there is available a complete analysis (by the slope-deflection 
method) of a symmetrical 20-story building frame of three bays,* the 
abbreviated forms of analysis here presented will be applied to portions 
of this frame. 

107. Modified Slope-Deflection Solution.—Maney-Goldberg Method. 
It is desirable to recast slightly the fonns of the joint and bent equa- 

* Wilson and Maney, Wind Stresses in Steel Frames of Office Buildings/’ 
Bulletin 80, Engineering Experiment Station, University of Illinois, 1916, 
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tions. If the wind concentration at any floor level, n (see Fig. 126) is 
Wn, then, 

Wn-K = Mn = sum of moments at both ends of all columns of the 
nth story. 

= - 3(e„x + e„.)]} 
= 62liC^„ - 23JCc«(e™, + 0„x),.(44) 

which is the revised bent equation. Ken is the general value of K for 
any column of the nth story, and 0n* and 0m® are the rotations of the 
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xth joint of the nth and mth stories, respectively. The summations 
extend over all columns of the story. Since it is assumed that the 
axial deformations of the girders may be neglected, R is constant for 
all columns of a given story. 

If we consider the a:th joint of the nth story, and if Kc-nx represents 
the K of the :rth column of the nth story, etc., and Kon-xw represents 
the K of the girder xw at the nth floor level, we may write: 

Mnx ^nw -Kan —XW (2enx + e ni4>) 
Mnx—ny — Ron—xy (2e„. + e ny) 

Mnx-mx = + Kc-nx(^Rn — 20nx “ Gmx) 

_Mnx-ox = + Kc-ox{^Ro — 20na- — Gpx)_ 

XM = 0 = 3Zc-nxi^n + ZKc-oxRo ^ 2(2X)0„. -- 
(45} 

which is the revised joint equation. 'LK and l^{Kjdi) have the same 
significance as in Equation (43), page 237. 

From Equation (44) 

Rn^ 

Mn 
eSXen 

Mn , S [F:.n(30„. + 30^.)1 . 

+ the weighted average of the 0n^s and 0m's. 

If all columns of the story have nearly the same rigidity, 

M 
R'n = (approx.) —h the average of 0n^8 and 0m^s 

^2^lLcn 

_ Mn I O'm + 0^71 

"■ GSXcn 2 .. 
(460 

if 0'm and 0'n are the average values of the joint rotations at the mth 
and nth floors, respectively. To obtain crude approximations for 0' 
we may assume that all joints in the nth floor and in neighboring floors 
have the same rotation. The bent equations for the nth and oth stories 
then become: 

Mn = ^Kcn^Rn ~ 0'n) 

Mo = 'EKco6(Ro - 0^)_ , 

Mn + ilfo = ^XKonRn + Ql^KooRo - ^O'nilKan + XKooY ‘ ‘ ^ ^ 
For any joint in the nth story, the joint equation is: 

SKcnRn + SKcoRo - 3(SX)0'n = 0, 

or, if all joints of the nth story are taken together, 

S(XKon)Rn + Z(XKoo)Ro-3:^(^K)e'n = On . . . (48) 
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Eliminating R from Equations (47) and (48), we obtain 

af _ _Mn + Mo _Mn + Mo 
" 6 [2(2jf^) - XKcn - I:Kco] 12XKon * • • • 

[2(SJf!L) means the sum of all the iK’s for all joints at the top of the 
nth story = 2i:KGn + 

For columns in the first story, Equation (49) requires some modifica¬ 
tions. If the bases are assumed hinged, then the bent equations become : 

M2 = ^k,2HR2 - e'l) 

XK.iSiRi - e'l), 

and Equation (47) becomes: 

M2 + 2Mi = QZKcnRn + Q^KcoRo “ Qe'l(XKan + 2X.o) 
and Equation (49) then becomes: 

, _ 2Mi + M2 

^ ~ 12:SKa. ■ . (49') 

(This equation is of course not strictly correct, since the assumption 
that all joints rotate equally is inconsistent with the assumption of 
hinged bases at the bottom of the columns of the first story. The pur¬ 
pose of Equation (49'), however, is to obtain a very crude approximation, 
and the inconsistency is here permissible if the equation gives useful 
results.) 

If the columns are assumed fixed at the foundation, the bent equa¬ 
tions become: 

Ml = i:Kcimi - 30'i) 

M2 = XKe2^(R2 — 0^) 
Ml + M2 = esiiCciEi + Q1:Kc2R2 - 0'i(32;i^ci + ^^Kc2y 

The combined joint equation becomes: 

SXKciRi + SI:Ko2R2 “ e'iX(3ZK - SKa), 
from which 

Ml + M2 

^ “ 122X01 + 2Xci. 

If Equation (45) is solved for 0„i = (say) 0j, there is obtained (call¬ 
ing Kc-nzRft + Kc-oJto = ^KcR) 

32X,E - 2X,0< 
Oa = 22X 

(50) 

2Xc is the summation of all column X’s, and 2X the summation of all 
K’b for both girders and columns entering joint nx = A, Equations 
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(46) and (50) are the correct slope-deflection equationSj solved for R and 
0, respectively. 

A comparison of Equation (50) with Equation (43), page 237, shows 
them identical except for the first term in the numerator. But it may 
be readily shown that if two adjacent stories, n and o, sustain relative 

shifts of Dn and Do, so that Rn — ~ and Ro = and if the joints are 
hn ho 

restrained against rotation during the translation, then at any joint in 
the nth floor level, 'LMf — S^KcR. Equations (43) and (50) are, then, 
effectively the same equation, though it must be carefully noted that 
whereas in the former, XMf is a definitely known quantity, obtainable 
in advance of the solution, the corresponding term in Equation (50) 
is a function of R, which is itself one of the terms sought in the solution. 
In the latter case, therefore, we must estimate a preliminary value of 
Ry and use this in the first approximation for 0, from this obtain a more 
correct value of Ry and so on. The above point marks the chief analyt¬ 
ical difference between the problem of the frame under vertical loads 
and no sidesway and the wind-stress problem. 

108. Example.—The general method of procedure, which will be 
applied to the problem of Fig. 126, may now be outlined. 

Step I. Basic Data. 

(а) The various dimensions will be known, and the X-values for all members 

known or assumed. From these the various functions of Ky such as XKc and SiCo’ 

for each story and for each joint, are computed and tabulated. 

(б) The total shears due to wind (or other transverse loading) are computed for 
each story, and from these the “ shear-moments ** M = Wh are computed. 

Step II. Initial Values of R (= R'). 

(a) For each story, rough values of the average joint rotations are computed by 

Equation (49) as O'n = .——. 
J2S/Vf;n 

(6) For each story, the approximate value of R is calculated by Equation (46') 

as R'n = 
Mn 

6SKc, 
4- 

0'm -}- 0'n 

Step III. First Approximation for Q-Values. 

(а) Separate joints into two groups of alternates, say Group I and Group II. 
(See Fig. 126a). 

23/C R' 
(б) For all joints of, say, Group I, compute the values 0'i= This is 

32xv 
an intermediate calculation, and the results are used only to obtain a first approxima¬ 
tion for the G's in Group II. 

* This follows from Equation (60) if all adjacent O^s are assumed equal. 
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XZK R' — XK 0- 
(c) For joints in Group II, compute: 0"n =--—Here all 0i's fall 

2XK 
in Group I, and the values, 0'i, from (6) above, are to be used. 

(d) For all joints in Group I, we now compute: 0"i --'*'J*®*^ 

all Gj’s are now in Group II, and the values just obtained in (c) are to be used. 

I 
1 

Joints of 
Group 

Joints of I I 
Group ll.L^ 

(e) In computing 0"ii only rough tentative values were available for use us 

0i's. We now have more accurate values from (d) hence it will ordinarily be desirable 

to recompute 0"ii using these values. 

Step IV. First Approximate R-Values. 

Using the values of 0" computed in (d) and (e) above, we may now compute a 

more accurate value of R for any story, n from 

- 4. nx nx “h 0mi) 

^es/Tcn ’ 

where the summation extends over all columns of the story. 

Step III id) and (e), and Step IV, are to be repeated until the desired accuracy 

is obtained. (For regular frames of the ordinary type it will seldom be necessary 

to carry the work beyond the first cycle as indicated above.) 
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Step V. Moments are computed (by standard slope-deflection equation) for all 

member ends. 

Step VI. The relative deflection, Z), of the colunm ends and the total deflection 

of any story, I'D, may be computed from the R-values of Step III; thus D = Rh^Cf 

K El 
where C = — ~ (relative values — are sufficient for all moment calculations, but 

of course actual values must be used to obtain deflections). 

In Fig. 126 is shown the application of this shortened slope-deflection 
method to the first four stories of the Wilson-Maney building bent.* 
Although the calculations are completely shown on the line drawing of 
the figure, a few points should be noted to make the detailed procedure 
clear. 

(1) Data for story 5 are taken from a more extended calculation. Since the 

})urpose of the example is to make the method of procedure clear, and since the 

procedure for the higher stories is identical with that shown, there is no advantage 

in showing the entire bent. 

(2) It has been noted in previous discussions that the slope-deflection equation 

may be conveniently written (for no internal loading) Mmn - K(3Rmn — 20m — On), 
El 

where K is actually 2 —, but for moment calculations, if E is constant, may be 
1j 

taken as any convenient number which, when all members are considered, correctly 

represents the relative stiffnesses. In the present problem K is taken as ~ and 
L 

since this value is used in obtaining R and 0, moments so obtained will be correct. 

For deflection calculations, the results must be multiplied by iE. 
(3) Since the bent is symmetrical, the center girder will have an inflection point 

3 / / 
at the middle. Its relative stiffness will then be - Xr = 1.5- = 1.5K. 

4 L L 

2 
(4) In view of the above fact, it will be noted that for the inside row of columns 

(6) the constant 2XK becomes 2SA' -f Kg. [2S (relative stiffness factors) = 

2(Koi -f- 1.6Kgj + Ken + Kco) = 2XK + Kq, if Kg is factor for the inside girder.] 

(5) The computation of 0' and R' values for each story requires no comment. 

It should be noted that the former values are used only to determine a rough value 

for the latter. It is convenient to tabulate the values SKcR' on each column. 

(6) The joints are arbitrarily separated into two sets (see Fig. 126a): 

Group T == A2, A4, Bz, Bi, Group II = Ai, As, Ba, B2. 

These groups are operated on as indicated in Step III. In determining the first approx¬ 

imate value for Obi 
ZSKcR 

3sk; 
, a modification must be made, since this formula is 

* This designation has been frequently used in the literature of the subject for 

the bent analyzed by Wilson and Maney in Bulletin 80, University of Illinois 

Engineering Experiment Station. 



EXAMPLE 247 

derived on the assumption that all adjacent 0-values are equal. But, ©so 0, 

whence instead of 3SiiC in the denominator we must be 3SX — XcBi. 

(7) Taking joint Ai as an example, the computation for the first approximate 

value of © is made from: © = 
21K 

We assume in this case that a 

crude approximation for each ©i may be had by taking ©» = 
XSKcR^ 

32X 
, where the 

summations are taken with respect to the joint i. For this case the i-joints are A a 

and Bi, for which the values of 
XSKcR' 

32X 

, 7510 
are respectively- 

^ 2772 
= 27.1 and 

6870 

3618 

19.0. (Denominator here is 32^ — XcBi). We have therefore, 

= 

6870 - 27.1 X 35.6 - 19.0 X 30.5 

183.8 
29.0 

which is the first approximate value for ©^i. From this, and similar values obtained 

for each remaining joint of Group II, an approximate set of values for the joints of 

Group I is next obtained, in exactly the same manner, as is fully shown on the line 

drawing of the figure. When these values have been obtained we may calculate a 

more correct value for ©"^n as 

©"^1 = 

6870 - 27.8 X 35.6 - 17.8 X 30.5 

183.8 
29.1 

These calculations are more conveniently made if arranged as follows: 

First Approximation Corrections 

6870.0 

- 579.0 36.6 

- 965,0 ~ 24.9 

©' = 5326/183.8 = 29.0 A©' + 11.7/183.8 - 0.1 

©" = 29.1 

The correction values, + 36.6 and — 24.9, are obtained from the differences in 

the successive approximations for ©^2 and ©bi. Thus the preliminary approximation 

for ©Bi was 19.0, the corrected value was 17.8; 19.0 — 17.8-+1.2, and 

1.2 X 30.5 = 36.6. At A 2 the original ©-value was 27.1, the corrected value 27.8, 

and (27.1 — 27.8)35.6 = - 24.9. The corrections for A3, Ba and Bi are made in ex¬ 

actly the same manner. 
From the values of ©" one may calculate a more correct value of R. For the 

first story we have (from the equation of Step IV) 

8481 3 X 25.8 (29.1 -f 17.8) 

309.6 309.6 
= 27.4 + 11.7 39.1 

This differs from the preliminary value by less than 2 per cent. A second cal¬ 

culation for ©Ai gives a value of 29.8 instead of 29.1, a difference of slightly over 

2 per cent. For ©bi the corrected value is 18.0 instead of 17.8, a difference of about 

1 per cent. If these values are substituted in the equation for Ei, we obtain R = 

39.3, a difference of about i of 1 per cent. 
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These corrections may be made easily and rapidly, but the added accuracy is 

seldom of any significance for designing purposes. 

The moment at top end of col. A in the first story is found to be: M — 

25.8(3 X 39.1 — 2 X 29.1) = 1525. This is to be compared with the exact value 

determined by Wilson and Maney as 1490—an error of 2 per cent. 

The actual values of D and 2D are shown for each story. Since the story heights 

are given in feet, the moments in 10 ft-lbs., and K is taken as - instead of 2 EL 
L’ 

the factor c in D = R-h‘Ct becomes 
12 X 12 X 10 

2 X 30,000,000* 

A careful study of this form * of the slope-deflection method will 
show that it furnishes, for all reasonably regular building frames, a 
relatively simple and very workable solution. It should be emphasized 
that the expressions for R and 0 used in Steps III and IV of the solution 
are the correct slope-deflection equations. To the degree that the 
values found satisfy these equations simultaneously, they are exact. 
The method is, therefore, completely self-checking, and may be applied 
successfully by a single computer working alone. 

109. Solution by Moment-Distribution.—The moment-distribution 
method can be applied to multi-story frames of several bays, under 
transverse loads and free to deflect sidewise, in either of two modified 
forms. 

(a) The correction for the shear (the quantity P — P' in the problem of Art. 72, 

page 170), or an equivalent correction for the “Shear-moments’' for a multiple-storied 

frame may be directly determined by means of a set of simultaneous equations, 

equal in number to the number of stories, f When these values are found the final 

corrections to the moments are readily made, and the solution is complete. 

(b) Instead of determining the corrections for the sidesway effect as above, 

they may be obtained by a “ cut and try ” process of converging approximations t 

very similar in conception to the method used in frames without sidesway. The 

procedure is: 

(1) The shear moments are determined and distributed, carried over and bal¬ 

anced in each story by a process essentially the same as used in the problem shown 

on page 171. 

(2) The difference between the summation of the column end moments and the 

total shear-moment is determined, and correction-moments are added to each 

column to establish a balance between internal and external shear. It is assumed 

♦ This adaptation of the slope-deflection method was first proposed by George A. 

Maney and John E. Goldberg; see “ Simplified Methods for the Analysis of Multiple 

Joint Rigid Frames,” Bulletin Northwestern University, 1932. 

t Such a method was proposed by Prof. F. H. Constant; see Trans. A.S.C.E., 

Vol. 96, pages 79-80 (discussion of paper, “Analysis of Continuous Frames by Dis¬ 

tributing Fixed-End Moments,” by Prof. Hardy Cross), 

t Proposed by Prof. Clyde T. Morris, ibid., page 68. 



Itg
J 

-i- 
1
3
.0

9
 



250 RIGID FRAMES AND SECONDARY STRESSES 

that during this process the joints are restrained against rotation, hence these cor¬ 

rection moments are distributed just as the original shear moments in (1). 

(3) Steps (1) and (2) are repeated until the desired accuracy is obtained. 

The detail of the method can best be shown by a numerical example. 
For this purpose, the frame and loading of Fig. 126, Art. 107, will be 
used. (See Fig. 127.)* The results are completely shown on the line 
drawing of the figure; some of the intermediate steps will be indicated 
in the following discussion. The fourth story is selected for illustration. 

Since total shear across fourth story = 6.27 kips, and ///2 = 7.0, we have, 

assigning the values in proportion to //L, 

- C.27 X 7.0 X - >0.00 kip ,1. 

Mb-4 = 6.27 X 7.0 X 
35.5 

2 [35.4 H- 35.5] 
10.99 kip ft. 

End moments in other stories are similarly obtained. Thew'x moments are next 

distributed, carried over and balanced. The moment at the top end of column 

A — 4 is: 

Ma-a (top) 
Ma-a (bottom) 

Mb-A (top) 

Mb-A (bottom) 

= 10.96 - 8.83 - 4.35 == - 2.22, and 

= - 2.16 

= + 0.78 

= + 0.79 

S = - 2.81 

2.81 X 2 
This corresponds to a shear of-— = 0.402 across the entire story, in the 

same direction as the original shear, lo that the total so-called “ shear-moment at 

each end of column A —4 is now: 

35 4 
Ma-a = (6.27 + 0.402) X 7.0 X —— = 11.67 

141.8 

and for column — 4 

Mb-a = 11.68 

At the too end of column A —4 we now have moments: 

-f 10.96 original fixed-end moment due to shear 

— 8.83 first distribution 

— 4.35 first carry-over 

+ 11.67 shear balancing moment 

S = + 9.45 

This figure is taken from the discussion by Prof. Clyde T. Morris, of the paper, 

‘‘ Analysis of Continuoius Frames by Distributing Fixed End Moments ” by lYof 

Hardy Cross. Trans. A.S.C.E., Vol, 96,1932, page 68. 
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Similarly at the other ends of the columns, we have 

Ma-< (bottom) = + 9.51 

Mn-i (top) = + 12.46 

Mii-< (both) = + 12.47 

This completes a cycle of operations. 

When similar calculations have been made for each story a second cycle is per¬ 

formed in exactly the same manner; at joint A —4, for example, we shall have: 

MA~i (top) = + 9.51 

Ma-i (bottom) = 4- 8.81 

r, ( - 4.85 
1 - 1.87 

i - 4- 11.54 

This distributes into the column A~5, A-4 and the beam as —4.03, 
— 4.84 and —2.67, respectively. Similar distributions are made at the 
other joints, and the carry-overs performed, and again, the shear balance 
is determined to complete the cycle, precisely as in the first case. This 
is repeated until the smallness of the corrections indicate that the 
required accuracy has been attained. The totals shown at the side of 
the main row of moments give the successive approximations. It 
should be noted that the column totals are given at the close of each 
cycle at which time the column moments balance the external shear, 
while the beam totals are taken after the distributions have been made, 
and the moments about the joint are balanced. 

SECTION in.—FRAMES CONTAINING MEMBER WITH VARIABLE I 

110. General.—In Art. 65 of Chapter III, the generalized slope- 
deflection equations (36) were formulated and a method of derivation 
of the constants indicated. A summary of results (with some slight 
modification of details) will be presented here. 

(A) Symmetrical Members and Loading.—Assuming I to vary as the 
cube (or some other direct function) of the depth, Table A and notes 
show the necessary arrangement and formulation. The notation is the 
same as used in Art. 65. The column headed y is not required for the 
development of the slope-deflection constants, and may or may not be 
needed otherwise. The detail work for ordinary frame members is 
readily performed as will be shown in a later problem. 
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TABLE A 

Symmetrical Cases—Both as to Loading and /-Values 

Division 
No. 

Depth i nig 1 
i 

nig 
i y X A 

1 

2 

3 

4 

5 
r 

6 

7 

I 

■mjim ■HUH 

n~2 B 
n~l 

n 

S 

A Ai D 

Note: y - ordinates. 

A'^ - if X is measured from end, 

if a; is measured from center. 

Ca 
n n n n 

4D 2I' ^ ” iD “ 2I 

Mab — Mf — [Ca^a + C^B ~ {Ca 4* Cb)R] 

Mba *= Mf — ICbOb -f Ca^a — {Ca + Cb)R] 

(B) Unsymmetrical Members and Loading.—Table B and notes show 
suggested arrangement of calculations and formulas for constants. 
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TABLE B 

Unsymmetrical Cases—Both as to Loading and /-Values 

X 
Y measured from end “A” 
Ij 

Y measured from 
JLv 

end 

^ measured 
Lj 

from end “B'' 

Division 

No. Ui 

1 

i 

X 

L 

x^ X 

]J 
m. 

Trig 

i 

rrisX 

Ti 

X 

Li 

X^ 

LH 

1 

2 

3 

4 

5 

6 

- 

7 

8 

9 

10-2 

n-1 

n 

S 

4>4< Cx A Ba Ki K, Bs Cb 

* * 

♦ Values in these two columns from bottom up may be multiplied by r values 

from the top down to get values in last two columns. 

** The symbols (A, J5, C, K) in this horizontal column merely represent the 

summations in their respective vertical columns. They must not be confused with 

the coefficients, Cfa* Caai C^St etc., of the slope-deflection equation. 
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It was noted, in the discussion of this subject in Chapter III, 

that for uns3niimetrical conditions the labor of carrying through a 

detailed solution for the constants for each individual case becomes 

very burdensome, and the use of some form of graph or chart is 

B 
_ 

Lejj [gth. 

naymiBAtrlcal) B“Sp*n CU 

I |En<lD»pO> 

advantageous. Three such charts for Cp, Ca and Cb, for both 

symmetrical and uns3m[imetrical beams (but for full uniform load 

in each case), are shown in Figs. 128 to 130, which are self- 

* Very extensive sets of charts have been prepared and published; see note on 
page 161 for references to some of these. 
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explanatory.* These are intended primarily to illustrate the general 

form of the curves and their method of application (see later 

problems). At the same time it should be noted that the simple 

curves shown will suffice to solve, as accurately as is necessary for 

design, most practical frame problems where uniform loading governs— 

the most common case. 

111. Illustrative Problems. (1) Multiple-Span Rigid Frame.—Fig. 

131 shows a symmetrical four-span rigid frame under uniformly dis¬ 

tributed load of unequal intensity in different spans and restrained 

against sidesway. The basic data, the summations and the formulas 

for the constants, C, are fully shown in the figure and accompanying 

Table A, as are also the final shear and moment diagrams. Table B 

gives the moment equations, and Table C the solution of the 

slope-deflection equations. This is done by means of successive 

approximations; the preliminary value, 0', is obtained by dividing 

the constant term by the coefficient of the 0 under consideration. 

In the later approximate values, use is made, in each case, of the last 

approximation found. Though not necessary, this procedure some¬ 

what hastens the convergence. The 0i-values show a maximum error 

of less than 8 per cent, and the 02-values are practically exact. Tabu¬ 

lation of final end-moment values is shown in Table B. 

The detailed determination of the C-values is given in Table A for 

illustration. The corresponding values taken from the charts, which 

are shown in parenthesis, are amply accurate for any practical purpose. 

(2)-o. Fig, 132 shows a typical form for a reinforced-concrete 

frame bridge. This will be analyzed by the slope-deflection method. 
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using the charts of Figs. 128 to 130, for dead and live loading on 

the beam and for earth pressure on the columns. The fixed end 

moments calculated are: 

Mf-ab = 174,800 ft-lbs.—dead load. 

= 70,300 ft-lbs.—live load. 

Mf-ca = 17,470 ft-lbs.—lateral earth pressure. 

Mf-ac = 8,280 ft-lbs.—lateral earth pressure. 

TABLE A 

Divi¬ 
sion 

nig i/i mg/i 2x'yv- X 

1 0.109 0.120 0.0132 0.446 0.0535 
2 .306 .172 .0527 .348 .0599 
3 .430 ,257 .1131 .261 .0671 
4 .627 .413 .259 .187 .0772 
5 .750 .873 .655 .125 .1091 
6 .849 1.0 .849 .0756 .0756 
7 .923 1.0 .923 .0386 .0386 
8 .972 1.0 .972 .0139 .0139 
9 .997 1.0_ .997 .0015 .0015 

S 5.835 4.8340 0.4964 

Cf = 
i 4.834 

- — = 0.828 
1 5.835 

, n n 

2S- 

(0.83) 

(5.32) 

- ik - ^ 
21'- 

i 

i) \ Ly 
n = number of divisions in 

beam. 

(3.8) 

J of the 

TABLE B 

Moment Equations 

Joint A 

Maa' = 0 — KvoU^a) = 0 - 661 = - 661 
Mae = \W\Li'^{Cf) — Kh{Ca^a + CbQb) = 836 - 175 = + 661 

Joint B 

Mba' = IW^L.^Cf) - KniCAOB + CbOa) = — 836 - 210 = - 1046 
Mbb' = 0 - Kv.i^SB) = 0 - 272 = - 272 

Mbc = + IWiLi^iPF) — KnipA^B + CbOc) 1340 - 20 = + 1320 

Joint C 

Mcb = — iW’iLi^iCF) — Kh(Ca^c + Cb^b) = _ 1340 + 93 - - 1247 
Mcc = 0 — i^Vi(tOc) = 0 + 339 = + 339 
Mcd = + \W^L,\Cf) - KniCAec + CbOd) = 836 -h 70 = +906 

Joint D 
Mdc = \WzLz^{Cf) — Kh(CaOd + CbOc) =: - 836 - 53 = -889 
Mdd' «= 0 — Kvi{^d) = 0 - 324 = ~ 324 
Mj)E == IW^Lh^Pf) — Kh(PaOd + CbOe) 1340 - 129 = + 1211 

Joint E 

Med — iWd^iiCF) — Kh{Ca^e + Cb^d) 1340 - 38 = - 1378 
Mee' = 0 - Kyod^E) 0 + 1380 = + 1380 
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General equation for end moments; 

2EI 
Mab = ± CfM. + —' (XCa + Cb] Rab - CaBa - CbBb) 

JL 

where = maximum simple beam moments, 
Ic = moment of inertia at center, 

Rab = Angular change due to vertical displacement (0 in this case), 
= angular change at A. 

TABLE C 

Joint Equations 

Joint Oa Ob Or Od Oe Constant 

A ^Kvo 
+CaKh 

CbKh 

CbKh 
|Kyi 

■^2CaKh 
CbKh 

+ i(TEiLi2)(CF) 

+i(Tr2L22-PfiW)(C/i.) 
B 

CbKh 
fE-F. 
■¥2CaKh 
CbKh 

c 
CbKh 

fNr. 
+2CaK„ 

CbKh 

+l{Wa^^^-W2L2^){CF) 
D 

E 
CbKh 

fK'yo 
-^-CaKh 

+KWJj,^-WM{Cf) 

-^\{WM(Cf) 

Joint Oa Ob Oc On Constant 

A 12.95 0.676 + 836 
B 0.676 3.41 0.676 + 504 
C 0.676 3.41 0.676 - 504 
D 0.676 3.41 0.676 + 504 
E 0.676 12.95 -1340 

Solution by Successive Approximations 

Oa Ob 
1 

ec Od Oe 

0' +65 +148 -148 +148 -104 

01 55.1 178 -217 +199 -111 
02 55.1 180 -223 +214 -115 
08 55.1 181 -226 +216 -115 

L « clear span, 

Qb “ angular change at B, 
2EI 

» stiffness—(relative values used). 
h 

Cf, Ca, Cb « constants depending on size and shape of beam. 
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Fig. 132a shows a line drawing of the assumed frame, giving the 

clear lengths used for the members and the relative TT-values (relative 

K’s = relative values of ^ = relative values of (minimum depth) ^ -f- 

65 (27)^ 
length). This gives • “p = 9.1 for the relative stiffness of the leg; 

compared to the deck, assuming the latter as unity. 
Remembering that each loading (dead load, live load and earth 

pressure) is symmetrical, it is clear that for each case, 0/? = —0a, and 

0c = — 02), R = 0. For the case of deck shortening (due to temperature, 

shrinkage and displacement of the supports), there is no fixed beam 

moment in the ordinary sense; this is replaced, however, by a virtual 

fixed end moment (one which would occur if the ends suffered a rela¬ 

tive linear displacement without rotation) equal to: 

M'p-ac = 2E (1)^^ (Caa + Cac)R, 

where R = representing a known (or assumed) deck shortening. 
LiAC 

This expression is derived directly from the generalized slope-deflection 

equation, placing Mf-ac = 0a = 0c = 0. 

From Figs. 128-130 we obtain the following values for the constants 

C of the generalized slope-deflection equation: 

For beam AB (symmetrical use-intrados assumed circular) 

Ca = 10.5 

For column AC (unsymmetrical case—assume — = 1) 
t> 

Caa = 10.4 CcA = 3.4. 

Ccc = 3.7 Cac = 3.0. 

We then have, for example, in the case of dead load, 

Mab = 174,800 - 1(10.5 - 8.1)0a 

Mac = 0 - 9.1(1O.40a + 3.40c), 

whence, since Mab + -^ac = 0, 

970a + 310c = 174,800. 

The other moment and joint equations are similarly set up. 
The solution of the equations and the moment calculations for the 

four cases—dead load, live load, earth pressure and deck-shortenings 
are shown in Tables A and B and require no comment. 
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TABLE A 

Solution of Equations 

Equation 

Unknowns and 
Their Coefficients 

1 
I 

Constant Terms 

for 

4>a 4>c 
Dead Live Earth Deck 

Load Load Pressure Shortening 

Joint A. 97.0 31.0 4- 174,800 + 70,300 - 9,280 4- 795,000 
Joint C. 27.3 33.6 0 0 4- 17,470 4- 386,000 

-27.3 -8.7 - 49,200 - 19,800 4- 2,620 - 224,000 
24.9 - 49,200 - 19,800 4- 20,090 4- 162,000 

<t>c - 1,975 - 795 4- 805 4- 6,500 

<t>A 4- 2,430 4- 978 - 353 4- 6,120 

TABLE B 

Moment Calculations 

Mab - + 174,800 - (1)(10.5 - 8.1)(2430) 
Dead load.IMac = 0 - (9.1)[10.4(+2430) + 3.4(-1975)] 

Mca = 0 - (9.1)13.0(4-2430) -f 3.7(~1975)] 

Mab =4- 70,300 - (1)(10.5 - 8.1)(978) 
Live load.IMac = 0 - (9.1)110.4(4-978) 4-3.4(-795)] 

Mca = 0 - (9.1)13.0(4-978) 4- 3.7(-795)] 

\Mab = 0 - (l)(10.6-18.1)(-353) 
Earth pressure.. \Mac =- 9280 - (9.1)[10.4(-353) 4- 8.4(4-805)] 

[Mca =4- 17,470 - (9.1)[3.0(-353) 4- 3.7(+805)] 

- 4- 168,970 
= - 169,000 
= 0 

= 4- 67,950 
= - 68,100 
- 0 

= 4- 850 
-- 820 
= 0 

Deck shortening 
\Mab = 0 - (1)(10.5 - 8.1)(6120) = - 14,700 

=+ 795,000-(9.1)[10.4(4-6120)4-3.4(-f6500) =4- 14,000 
[Mca ==4- 386,000-(9.1)[3.0(4-6120)4-3.7(4-6500)l = 0 

(2)-b. More Exact Solution.—In addition to the possible inaccuracies 

of determining the constants C from the charts, the frame solution just 

presented involves the error of considering the axis of the deck beam 

straight when it actually hits an appreciable curvature. For purposes 

of comparison and as an example of method, a solution of the same 

frame by the general theory is presented. Since the bases C and D 
are assumed hinged, the problem is singly indeterminate, and the 

simplest approach is to solve for the horizontal component of the 
reaction. Evidently 

bec 

where bcp is the deflection at C due to any load at and hcc is the 
deflection at C due to He = unity. 



ILLUSTRATIVE PROBLEMS 263 

From Maxwell's law, bcq = bqc = deflection at any point q due to 

unity (horizontal) at C, whence, if we construct a deflection diagram 

for the frame loaded with He = unity (see Fig. 133), this, if we make 

bec = unity, will be the influence line for He, for vertical loads on the 

beam and horizontal loads on the column. This deflection line may be 

obtained in a variety of ways, one of the simplest of which is the applica¬ 

tion of the principle of elastic w^eights (see Chapter II, Section II-D). 

If we imagine the frame in Fig. 133 suspended freely at A and wso that 

AB acts as a simple beam and as a cantilever from A, then if we 

load the beam AB with the elastic load 
meds yds 

= (for the purpose 

of obtaining relative deflections) 
yds 

I I 

the corresponding moments will 

be the ordinates, to some scale, of the portion of the influence line from 

A to B; and if the elastic shear at A is computed, this, to some scale, 

will be the rotation A, and if the line AC" is drawn making the 

angle a a with AC, this will give the portion of the deflection of the post 

due to the bending in the beam. The remaining deflection of the post 

due to its own flexure (very slight in this case as shown in the figure by 

AC" compared to AC") may also be obtained by applying elastic 

loads to the cantilever after the manner described on page 57. The 

detail calculations are omitted, but the final values for the influence 

line ordinates, determined in the above manner, are shown in Fig. 

133 for five points on the column, and ten points on the beam. The 

influence line having been constructed, the remaining calculations for 

the various cases are very simple. 
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TABLE C 

Section y 
ds 

i i 

y^ds 

i 

1 18.99 0.985 18.7 355 
2 18.97 16.9 
3 18.91 14.0 265 
4 18.82 0.545 10.3 194 
5 18.70 0.388 7.2 135 
6 18.50 0.263 4.9 90 
7 18.40 0.177 3.3 61 
8 18.16 0.118 2.1 38 
9 17.92 0.080 1.4 25 

10 17.65 16 
11 15.75 0.86 14 
12 12.25 MmM 12 
13 8.75 0.116 9 
14 5.25 0.185 0.97 5 
15 1.75 0.318 1 

S 79.7/4.34 1540 

TABLE D 

Dead Load Live Load Earth Pressure 

Load Ordinate Product Load Ordinate Product Load Ordinate Product 

975 1.300 1170 1250 1.300 1625 990 0.099 98 
2020 1.210 2500 731 1.265 925 1360 0.298 405 
2430 2340 731 1.025 749 1730 0.493 853 
3030 mBi 2080 731 0.650 475 2100 0.685 1440 
3870 1370 731 0.228 167 2460 0.895 2200 

■ 
9460 « 3941^ 4996)(( 

(a) Deck shortening: 

6i « 

H » 

1540 X 144 X 39 ^ 

3,000,000 X 8000 

0.00067 X 12 X 32.5 

0.26 

0.00036 
12^ H 

0.00036 

« 0,26'' 

(5) Final comer moments: 

D. L. « 9460 X 17.5 « 165,300 

L.L. = 3941 X 17.5 » 69,000 

E. P. « 10.3 X 8640 - 4996 X 17.5 * 15.00 

D,S. » 720 X 17.5 » 12,600 
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TABLE E 

CoMPAKiRON OP Results by the Two Methods 

Case 

//-Component of Thrust, Lb. Corner Moment, PT-lb. 

Two-IIinged 
Arch 

Slope- 
Deflection 

Two-Hinged 
Arch 

Slope- 
Deflection 

Dead load. 9460 9660 + 165,000 4- 169,000 
Live load. 3941 3880 + 69,000 + 68,000 
Earth pressure. 4996 5000 + 1,500 + 830 
Deck shortening. 720 820 - 12,600 - 14,300 

Table C gives the basic quantities and summations for the deflection 
calculations, and Table I) with notes gives the computations for H and 
the “ corner ” moments for the various loading cases. It should be 
noted that the placement of the loads for dead load and earth pressure is 
as shown in Fig. 133, while the uniform live load on AB is placed at the 

I points (90 X ^ = 731), and 5 the concentrated load (2500 lb.) at 
the center is assumed to carry to each side. 

Since 5cc = its relative value is = 1540 (from 

the last column of Table C). Giving the proper values to the constants 
{ds = 39 in., 7, = 8000, E = 3,000,000) it is found that 5cc = 0.00036 
in. An extreme deck-shortening effect, due to all causes, of 0.26 in. is 
assumed for this problem. The horizontal reaction is then: 

H = 
0.26 

0.00036 
= 720 Ib. 

Table E shows a comparison of thrusts and moments obtained by 
the two methods for various load conditions. For all cases except the 
deck-shortening effect, the check is very close. It is believed that, 
though neither method can be considered absolutely exact, the 
solution by the general method in which the frame is treated as 
a two-hinged arch of irregular section is the more nearly correct and, 
as will be evident from the preceding detail, presents very little more 
aifficulty than solutions based upon the assumption of a rectangular 
frame. 
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SECTION IV.—SECONDARY STRESSES IN BRIDGE TRUSSES 

112. General Discussion.—The tissumptions underlying the ordi¬ 
nary computation of stresses in trusses* are that the members are con¬ 
nected at the joints by frictionless pins placed exactly in the gravity 
axis of each member, and that the applied loads are concentrated at the 
joints. Even in a fully pin-connected truss these conditions are very 
imperfectly realized; in a truss with heavy riveted connections, practi¬ 
cally no relative rotation of the member-ends is possible and the 
first assumption is wholly incorrect in principle. Actually, as we 
shall see, the axial stresses are but slightly modified, but in addition 
to these, bending stresses in the members due to the end restraints 
of the rigid connections are set up, which vary from negligible values 
in slender, flexible members to magnitudes approaching (and in 
extreme cases exceeding) the axial unit stresses for the case of very 
heavy rigid members. It is customary to call the axial stresses 
primary stresses, and the bending stresses arising from the rigid joints 
secondary stresses. 

113. Nature of Problem.—The physical phenomena giving rise to 
secondary stresses may be visualized qualitatively by means of a greatly 
exaggerated sketch such as Fig. 134. ABC is a triangular frame, either 
independent or an element of a truss. Through distortion of the mem¬ 
bers, the frame takes the form the angles a, ft 7 becoming a', 
/?', 7', on the assumption of smooth pins at each joint. If, instead, the 
joints are rigid, then the end tangents must maintain a constant angle 
between them so that a = a"; = jS"; 7 = 7". Then the dis¬ 
tortion cannot take place, in general, except by bending the members 
as shown. 

Before considering in detail the method of computing secondary 
stresses it may be well to discuss briefly certain general characteristics 
of such stresses. 

(a) A member in a rigid-joint truss is subjected to bending moments 
at any point arising from two sources: (1) the joint twists at the ends 
of the member, and (2) the axial stress acting through an arm equal to 
deflection (Fig. 135). The moment at any section x distant from m is: 

JIf (M„ + M„)£ + ;Sy = -g. . . (51) 

* It is understood that the term “ truss ” as here used is not meant to include 
any framework where rigidity of some or all joints is a necessary condition for struc¬ 
tural stability. Such structures are technically classed as ‘Tramee.’^ 
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Fici. 135 
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A theoretically exact solution for secondary bending moments would 
involve the use of Equation (51) with y substituted from (52). It has 
been well established, however, that for stocky, rigid members, in which 
alone secondary stresses are important, the effect of the term Sy is 
quite negligible, and in all other cases is very small and may safely be 
ignored.* This fact greatly simplifies the analysis. 

(5) If Fig. 136 represents a rigid-joint truss, it is clear that, taking 
moments about Li, the moment of the external forces is resisted by the 
direct stress in U1U2 and by the moments and shears at the ends of the 
three members cut by section q-q. Omitting the shears from con¬ 
sideration (since their effect is usually negligibly small compared to that 
of the other quantities), the question arises, what proportion of the 

external moment is resisted by the axial stress in such a member as 
U\U2 and what by the end moments? An explicit, general answer to 
the question is impossible, but some idea of the upper limits may be 
obtained from the following reasoning: 

li h = height of truss (or moment arm of given chord member); 

d « depth of chord member considered; 

Sp — primary unit stress; 

fs = secondary unit stress, 

and /, A, and c have their usual meaning, we may then write: 

Mp = resisting moment due to primary stress 

= fpAh; and 

♦ See Johnson, Bryan and Tumeaure, ** Modem Framed Structures,” Part II, 
pages 46^746, for a full discussion of this subject. 
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Ms = resisting moment due to secondary bending 
7 /sAr* 

— fs~ ~ —~ (assuming the neutral axis approximately at the center of the 
^ — section); 

2 

Ms _fs 2r^ ^fs d 
Mp fphd fp h* 

if we assume r = approximately 0.4d. 

If now we assume as an extreme limit for a heavy compression chord 
h 

that d ~ Jq fs = fpf we find that the secondary bending in the 

given chord will furnish about 3.2 per cent as much resistance to exter¬ 

nal moment as the primary stress. The tension chord and the diagonal 

as commonly built will have a much smaller relative effect, so that, 

even under the extreme conditions considered, it is doubtful if the 

secondary moments can furnish as much as 5 per cent of the resistance 

—that is to say, the exact primary stress is 95 per cent or more of the 

primary stress computed in the ordinary manner. 

Of course, the assumptions just made are very extreme. The ordi¬ 

nary ratio of depth of member to depth of truss is seldom more than 

1/15 even for heavy riveted trusses, while no well-designed bridge is 

likely to exhibit secondary stresses equal to 100 per cent * of the 

primary. The ordinary provision made in office designing is for a 

secondary of 15 to 35 per cent of the primary; a secondary stress of 

50 to 60 per cent is to be regarded as very high. A comparison made 

for a typical six-panel Pratt truss f shows a reduction of the primary 

stress from secondary bending ranging from § to I of 1 per cent for 

typical chord and web members. A similar comparison made for the 

very large Kenova truss (see Fig. 140) indicates that, for simultaneous 

secondary stresses in all contributing members of 60 per cent of primary, 

the reduction of primary stress in the top chord members would be but 

slightly over 1 per cent. 

This point is of especial significance, since it implies that even in mas¬ 

sive riveted construction the primary stresses are practically unaffected 

by the rigidity of the joints and may be computed to as high a degree of 

accuracy as the conditions justify upon the assumption of pin connections. 

* It is hardly necessary to point out that, when we speak of a secondary stress 
equal to a certain percentage of the primary, we are comparing the unit stresses on 
the extreme fiber due to secondary bending with the axial unit stress uniformly 
distributed over the section. 

t Johnson, Bryan, and Tumeaure, ** Modem Framed Structures,Part II, pages 
460-63. 
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(c) As a corollary of (b) it is clear that in any triangulated truss 

system the deflections depend upon the primary stresses alone. It is a 

principle of elementary geometry that the distortion of such a system 

is a function of the changes in length of the sides of the triangular 

elements, and of this only. Within the distortion limits comprehended 

by the elastic theory, the bending deflection of a member does not 

change its axial length,* hence such bending cannot influence the 

deflection, t 

114. Method of Solution.—The above simplifying assumptions ren¬ 

der the iheor^ of secondary stress computation quite simple. It would, 

of course, be possible to attack the problem by the general theory of 

indeterminate stresses, treating the equivalent freely hinged truss as 

the base structure and the end moments as the statically undetermined 

quantities, and deriving the elastic equations from the condition that 

all angles between members must be maintained unchanged. Such a 

solution would be extremely laborious, even for small frameworks, and 

prohibitively so for large trusses. (A simple six-panel Pratt Truss is 

thirty-fold indeterminate as regards secondary stresses.) 

Fortunately, there is no need to resort to the general form of 

analysis, since the slope-deflection method is directly applicable and 

furnishes a remarkably effective and practically { workable solution, 

even for large trusses. 

For the normal case of a bridge truss with concentric connections 

dhf 
* The fundamental differential equation of beam deflection, El = — M, is 

derived on the assumption that, sensibly, ds — dx. 
t Statements are sometimes made that riveted trusses are stiffer than pin trusses 

and that the assistance rendered by rigid joints in carrying the truss loads tends 

automatically to reduce the secondary stresses as computed. In so far as such 

statements mean that secondary stresses appreciably relieve the primary stresses, 

the foregoing arguments indicate that they are without foundation in fact. There 

are, however, important individual exceptions. For a fuller discussion, see Maney 

and Parcel, University of Minnesota, Studies in Engineering No. 4, “An Investiga¬ 

tion of Secondary Stresses in the Kenova Bridge. 

t Other effective methods of analysis are available; the original solution of the 

problem based upon the use of certain tangential angles {t - <f> — R) as unknowns, 

was proposed by Manderla in 1880 and has been widely adopted. (See Johnson, 

Bryan, and Tumeaure, “ Modem Framed Structures,” Part II, Chapter VII.) 

The moment distribution method is also readily applicable. (See Trans. A.S.C.E., 

1932, pp. 108-110, discussion by S. Thompson and R. W. Cutler of paper by Prof. 

Hardy Cross.) However, it is the authors' opinion that the slope-deflection method 

is the most rapid and generally satisfactory of any thus far proposed for the solu¬ 

tion of this problem. 
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and the load applied at the joints, the slope-deflection equation for 
each joint takes the form: 

= 0 = X2K [2<t>m + <t>i - 3Rmi] 

if m is the joint considered, i any immediately adjacent joint, <i>ni and 

4>i the rotations of joints m and i respectively, and = —, where D 
Lj 

is the relative displacement of the member ends in any member mi. 
From the deduction (c) in the preceding article, it is clear that D is 
substantially a function of the primary stresses alone, and may there¬ 
fore be obtained independently and in advance of the secondary stresses. 
The D-values will usually be determined most easily by a Williot dis¬ 
placement diagram, drawn for the loading for which the secondary 
stresses are to be calculated. When the relative Z)’s are obtained, the 
ii-values become known quantities, and the equation for any joint ro¬ 
tation, <t>, is: 

4>m = 
2XK 

(A) 

See Equation (50), page 243. 
One such equation may be written for each joint, and since the 

joint rotations are the only unknowns, it is evident that the required 
number of equations are established. The steps are: 

(1) Compute all primary stresses for the given loading by the usual 

methods. 

(2) Compute the deformations, Al - for each truss member. 

(3) Construct Williot displacement diagram, and scale the relative 
displacements, Z), of the member ends for each truss member, and from 
these compute each 72-value. (No correction diagram is necessary, 
since only relative values of D are required.) 

(4) Tabulate the (KR) values for each member. 
(5) Set up an equation of the type (A) for each joint, using the 

72-values from (4). 
(6) Solve the equations for the values of 0. 
(7) From the 72- and values determined by (3) and (6), deter¬ 

mine the secondary bending moment at each end of each member— 

Mmi = [2<t)m + — 3fl*]. 
The solution of the <^quations may always be carried out by the 

standard method of successive elimination. For small trusses where 
only six to ten equations are required, this solution, though rather 
lengthy, presents little difficulty. However, secondary stresses are most 
important in large trusses with subdivided panels, where frequently 
twenty-five to fifty or more simultaneous equations are involved. For 
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Buch cases this method of solution is excessively tedious and time-con¬ 

suming, and is not ordinarily practicable as an oiffice method. In fact, 

for any set of equations involving more than four or five unknowns, 

the general method is unduly long.* 

3 (-f;2C0) 6 (-7885) 6 

Note:—Quantities in parenthesis == total deformation X E, 

Quantities written below members = total stress. 

Fig. 137 

For these reasons, and because the method of solving such equations 

in this manner has already been fully illustrated, the following discussion 

will be confined to working methods of solution by successive approxi¬ 

mations. This method has been described in Chapter III; its applica¬ 

tion to secondary stresses will be illustrated by two examples. 

116. Example 1. Six-Panel Pratt Truss.]—The truss shown in 

Fig. 137 with stresses and deformations for the various members due to 

the given loading shown on the figure. The properties of the members 

are given in Table A. Fig. 138 shows the Williot displacement diagram, 

drawn assuming member 6-7 to stand fast. Since the relative deforma- 

SL 
tions used in plotting the diagram were the -j—values for each member, 

the values of D shown are equal to E X true displacement. Since only 

• See discussion in Chapter III, Art. 69. 
t This truss is fully analyzed by a different method in Johnson, Biyan & Tumeaure, 

** Modern Framed Structures,^’ Part II, page 399 et seq. 
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relative values are required in the slope-deflection equation, this avoids 

the awkward process of dealing with small decimals. Values for 3^ and 

ZKR are given in the last two columns of Table A, which contains all 

the data necessary to formulate the slope-deflection equations (Table 

B). It will be noted that the constant term in these equations is 
El D 

^ ^ tabulated is multiplied by E), This form 

for the equations gives values for = 2E X actual joint rotation; 

=-^E^ (2e„ + e. - 3K„i) 

= K(24,^-+ <l>i - ZR'^) 

if <) = 2£e, R' = 2ER, K = r- 
Lj 

The symbol R will be 

used instead of 72' in later 

formulas, since no confusion 

should result from this sim¬ 

plification. 

Fig. 139 gives a tabulation 
of K- and fliiC/J-values. 

TABLE A 

Member 
Section 

Area 
Sq. Inches 

Length 
Inches 

J 
c 

Inches 

II ZD 
L 

^=ZKR 

1-2 29.44 320 1218 9.12 3.80 301.2 1145 
1-3 58.49 490.7 4490 9.54 

14.08 
9.16 260.6 2384 

2-3 16.00 372 94 8 5.4 .266 192.8 49 
2-4 29.44 320 1218 9.12 3.80 291.6 1107 
3-4 29.42 490.7 805 7.5 1.60 213.3 360 
3-5 52.35 320 3978 9.19 

14.43 
12.43 357.3 4440 

4-6 26.48 372 760 7.6 2.02 111.8 226 

4-7 45.48 320 1907 9.12 5.96 324.3 1932 

5-6 52.35 320 3978 9.19 
14.43 

12.43 269.3 3220 

6-7 20.58 490.7 358 6.0 .731 147.1 107 

6-7 14.70 372 288 6.0 .774 0 0 
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TABLE B 

04 02 01 03 06 X6KR 

.Toint 4. 26.70 3.8 1.6 2.02 7,230 
4,602 
7,058 

14,446 
15,936 

1st approx. 

Joint 2. 
Joint 1. 

3.8 15.71 
3.8 

3.8 
25.90 

0.255 
9.15 

Joint 3. 
Joint 5. 

1.6 
2.02 

0.255 9.15 46.87 
12.43 

12.43 
55.22 

212 196 182 205.5 229.5 
213.5 196.5 171.5 204 235.5 2nd approx. 

0"' 212.5 196.5 171.6 204 235.9 3rd approx. 

Table B gives the set-up of the five equations and 0-values deter¬ 

mined from three cycles of approximation by successive substitutions. 

The seventh horizontal column gives <l>' = 
62A^/e 

3SA ‘ 
The second set of 

values, <#)" is obtained in each case by substituting the preliminary 

values <!>' in the terms with small coefficients and solving for the 0' 

affected by the large coefficient. The third is obtained similarly using 

the (^" values. It will be seen that the (^"-values are, for all practical 

purposes, exact. A very compact tabular arrangement for the entire 

process of obtaining 4>' and <i>" is shown in Table C. The table is be¬ 

lieved to be self-explanatory. Column IX gives the values for the unit 

stresses obtained by an exact solution * of the problem. For all the 

large values of the stresses the check is substantially exact. 

Fig. 140 

Example 2. Sixteen^Panel Petit Truss (Fig, I40),—The truss 

shown here is the main span of the Norfolk and Western Bridge over the 

Ohio River at Kenova, West Virginia, one of the heaviest simple span 

riveted trusses ever built, and a type in which the secondary stresses 

may be expected to run especially high. The analysis is made for a 

full uniform load giving stresses at the center of the span equal to E-60 
plus 60 per cent impact. 

* See Johnson, Bryan, and Tumeaure, “ Modem Framed Structures,” Part II, 
page 408, Table F. 
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TABLE A 

TitavLutriON or Kmivts- ro» MtMBrg 

■ B B i i IB IB IB IB B IQ B 
IBS lES leg iteas iBsn lEEZa era len ea 
im in n in IBSZ im \a^ laa im 

m ra ini 
m B13 IKZM en 

ra itra irsa ira iS IS i" iiS ss wa ea 
El H IBBBI E5 Ksm Ha 
\m r-1 iB \S leza 1^ IS IBCH Ed iWSM ■a 
Ea m n n ini im lEEa imm ea 

'B IHH 
tzi IBS lEzn icn ira ira IBSZ lES llEZl II7IJ s 
ca m n in IHH im IHHI lira IHTI m 

lea \wm m iB l■ai 'SB! ivrw iim cm 
In m ira lEa ca 
Im in IB Ira 13 S issz! iSm 1^3 ira icza ea 
\n in in in IB in IBB ira I'ms Cl 
Fa \mm \rm im irn liS lira \SS idS iraa Im fTMl 
a in in n \mam injj |B£I im ■9 

■m 
\m S lea S i3 IS lEZS IBBS 'nai ICZl ca 
Ira IIQ lezi IB1 im loai IBEH ■33 IE31 lea 
ca rm m m lESI jm IBSBl legal iian ■775 lira ca 
Efl in in IB ira lim lem ra KZM ca 
P3S ra lEsa ini iS iKa iin ra KTM ea 
ea n in igg IH^9 EPl era ra 

'HH mi 
S :5 lea s s s SI [Rai ra rrn era 
\m fas ca □3 m ma mm IK3i ra ra ea 
\m HH 'MBBi ra era ■a 
\m mi mi n S BXH ■as era ea 
\m Hi n BH HHi BOB ra ■ra ca 

mu HI mi imi HHl imm miBB HH 
\m rm m m m rfi im ism ■m na ml 
ra HBH msHi BBH cm raa ml 
ra E3 n HI mi s HH HHi Bf^ai era ara ml 
ra fza mi n mi ■a BHi gm era era ia| 
Hi mi mi mi mi mi HH HB 
ra Eza im na EZS Ed Egi erai ra en ml 
\m ■za ra ml 
ra nn HI Hi Hi Qi ̂ 5\ JS ra ra enl 
E71 ra HI mi mi ^ai BaH Km ■za ca| 

im mi mi SB iHHI BBH BBH bbi 
n En m m E3 wa\ Bcai 

l^n|i 
PF!?! cri i^m ml 

ca mi EDI ■Z9 era pa| 
\m era era ■al 
\m ■9| 
\m n mil 191 m nl 
ns r^i Rail s t23l SI era ml 
rz5' raj Em ml 
m Oil 

Fig. 141 

Table A and Fig. 141 give the section properties, the Williot diagram 
and the values of D and R. Fig. 142 shows the entire solution sche¬ 
matically arranged on a line diagram of the truss, t 

The method followed differs from that of Example 1 only in the 
arrangement of the calculations, which are based on a process of suc¬ 
cessive corrections to the preliminary values. If we consider the 
equation: 

SX{KiRi) X{Ki^i) ^ 

-^.. 

t The arrangement of the calculations and the detail of the solution are due to 
Mr. Allston Dana, Designing Engineer for the Port of New York Authority, New 
York aty. 
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it is evident that if we assume 4ft = Ru or 4>i = 4>tn we obtain the same preliminary 
, , ^(KiRi) 

value of 4>fn, i.e., 4>m =* —• 
UK, 

If now we rearrange Equation (a) 

SllKjRi ~ X{Ki4>i) _ 2J:KiRi - Rj)] 
<t>m — 

2SX 2SX 

1 SXtSi 

22:K 

= 4>'m - 
2 ZK ’ 

(&) 

, ^ ZKiRi 
where 4> m ~ —— ~ preliminary value of 4> and 

zk 

— 4>i ~ Ri 

we may proceed as follows; 

(1) Compute 4>' for each joint (this step is identical with the procedure of 
Example 1). 

(2) Compute 0" from Equation (b) above, using the 0's obtained in step (1), thus: 

= 4>'m 
lZlKi(4>'i-Ri)] 

2 ZK 

This computation should be carried over the entire structure. 

(3) Compute 0'" by same procedure: 

.r// ^ 1 + AB\) 
<t> m i>m ^ '*”‘2 rK 

1 2g.A^'< _ „ 1 ^KiWi - <»'.•) 

'*’”2 2*: * 2 2iC 
since obviously 

A6'i = [0''* Ri] [4>'i Et] 

= (0"i - 0'i). 

The calculation at G may be followed through as typical. The calculation 
for 0' is obvious. For 0": 

, 1 ^ , 1 ^K(4>\ - R) 
= 0' ~ - ZK5'i ^ZK = (approx.) </> ”■ 2-^ 

The values of 0'» — E are written out for the adjacent joints—thus for 0' * 7.3, 
and for member GHy R = 11.6 and K = 27.6, 

f f (*' - K) = - ^ X 27.6(7.3 - 11.6) - + 69. 
2 2 2 

The calculations for H', G' and F are precisely similar. Summing up, we have 
- ^ZBU = + 38.0, which, divided by ZK = 58.4, gives +0.6 the correction to be 

applied to 0'oi i-e. 4>”g “ 12.9 + 0.6 = 13.6. This work is shown under calculations 
marked (1). 
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For the third approximation, 0'", it is evident from calculations (1) that the 
effects of H' and G' are entirely negligible. 

We have 
5' = - R, A6' = A4»' = <i>" - <t>'f 

and considering the adjacent joint H 

For joint F 
= 7.6 - 7.3 = -f 0.3 

A5' = 17.5 - 16.8 = -f- 0.7, and 

whence 

- = - 2 X 26.7 X 0.3 = - 4.0, and 

- iXASV = - ^ X 26.7 X 0.7 = - 9.0. 

- \:c.Kb‘ = - 13.0; 

0 Q — <t> Q 2 
2K 

== 13.5 - 
58.4 

This work is shown in Fig. 142 under calculations marked (5). 
All computations marked (1) are made prior to any marked (2). Therefore, the 

results of (1) are available for use in calculations (2) wherever they apply. Thus, 
in computing 0" at joint c, for example, only first approximate values of 0 are 
available at 6, R', D' and d, but at C the second approximation for 0 has already 
been made, and hence d' is computed as 0" — rather than 0' — R, 

Calculations (1) and (2) have all been made before any calculations (3). There¬ 
fore, at B' in computing b' for the adjacent joints, o, c and C, the second approxima¬ 
tion for 0 is available and is used. At joint 5, however, the second approximation 
has not been made, and hence 0' must be used. 

Similar remarks apply to other calculations. This order is not obligatory, but 
serves to hasten the convergence somewhat. Outside the panel adjoining the center, 
where from symmetry, it is known in advance that the values of 0 must be small, 
the range in the <t>'s for chord joints is from 10 at g, to 51 at a. In any group imme¬ 
diately adjacent to a given joint, it will be noted that the variation in the joint 
twists is ordinarily quite small. 

The results obtained by this method are identical with those which 

would be obtained by repeated applications of equation (a) as in 

Example 1, since the basic ^-equations are the same in both cases. The 

method of arranging the calculations and of obtaining successive ^-values 

by a series of diminishing corrections constitute the features of the 

second method. 

In the preceding examples the assumptions made to obtain prelim¬ 

inary values of were: 

(1) That all <^^s are equal. 

(2) That <l>i « R. 

It was shown (page 277) that these two widely different assumptions 

lead to the same mathematical expression for the first approximation. 
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Attention may be called to another assumption which usually gives very 

good results, i.e., 0' = —. 
ZD 

For cases of markedly irregular loading, 

the authors have found this to give a much better preliminary value 

than either assumption (1) or (2). For loading cases such as shown in 

Problems 1 and 2, it has no special advantage and is less readily 
obtained. 

116. Maximum Values for Secondary Stress.—It is usually con¬ 

sidered sufficient to assume that the maximum total extreme fiber stress 

due to combined primary and secondary effects will be maximum when 

the primary stress is a maximum, particularly so for the chord stresses 

and end posts * in which, on account of the relative rigidity, the secon¬ 

dary stresses are likely to be most important. This rule is nbject to 

important exceptions for trusses of the type shown in Fig. 140. Some 

results of an influence-line study of this truss made by the authors f 

are shown in Fig. 143. 

From a designing standpoint, two points of importance may be 

Tioted: 

(a) The effect of local concentrations is relatively much greater on the secondaries 
than on the primaries in a truss of the Kenova type. On this account, the calcula¬ 
tion of the former for an equivalent uniform load suitable for the primary stresses 
is likely to give much smaller values than would the actual concentrations. 

(h) Most secondary stresses in chord members are a maximum under full loading, 
but important exceptions occur, as will be observed from the influence line for EFG 
at F. A loading of approximately i of the span will for this case give a maximum 
total stress—primary plus secondary. 

117. Importance of Secondary Stresses.—There is ample experi¬ 

mental evidence to support the conclusion that secondary stresses may 

reach very high values (60 to 100 per cent of the primary unit stresses) 

in certain types of massive riveted trusses which are in more or less 

common use. If it be required to maintain the extreme fiber stress, 

due to all causes, well below the elastic limit of the material, secondary 

stresses assume a very important r61e in bridge design. It is widely 

recognized, however, that such stresses, being purely induced stresses, 
and in no way required for the equilibrium of the structure, are in a 

very different class from those stresses which are required to support 

See Johnson, Bryan, and Tumeaure, Modem Framed Structures.'' Part II, 

page 411. 
t Maney and Parcel, University of Minnesota, Studies in Engineering, No. 4, 

“ Investigation of Secondary Stresses in the Kenova Bridge," page 3. 
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the applied loads. When the material is stressed to the neighborhood 

of the yield point, the secondary stresses are very greatly relieved, and 

so far as actual failure is concerned, it seems probable that their effect 

on the structure is quite negligible, for conditions ordinarily met in 

practice.* Such a sweeping conclusion, however, is not completely es- 

* See paper by Parcel and Murer, Proc. A.S.C.E., November, 1934, pages 1261- 
1288. 
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tablished by data now available and may be subject to important 

exceptions. It seems fair to say that while, perhaps, secondary stresses 

are not now so seriously regarded as was once the case, it is still highly 

desirable that the designer should know where high secondaries are likely 

to occur and approximately their limiting values, hence a satisfactory 

working method for the computation of such stresses has still an impor¬ 

tant place in structural theory. 



CHAPTER VI 

THE ELASTIC ARCH 

118. Preliminary.—As defined by the engineer, an arch is any 

structure which develops horizontal reactions under vertical loads. In 

this sense the truss of Fig. 144 is quite as definitely an arch as the curved 

girder of Fig. 145. As actually built, however, most arch structures 

Fig. 145 

have the lower chord joints and often both chord joints l3dng on curves 
convex upwards as indicated in Figs. 146 to 150 which show some 

typical arch structures. 

The arch has a very wide range of application in bridge design. 

Reinforced concrete arches have been built from 30 ft. to 600 ft. spans 

and steel arches have been built from 200 ft. to 1600 ft. span lengths, 

and full designs have been prepared for much longer spans.* 

* One such span designed for the North River crossing, New York, was 3100 ft, 
in length. 

282 
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The statical advantage of arch action is illustrated by the two-hinged 

arch rib of Fig. 151. The large horizontal thrust developed in restrain- 

ing horizontal movement induces moments tending to counteract the 

simple beam moments. Fig. 1516 shows the moment diagram for the 
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arch (or for any other structure) acting as a simple beam. Fig. 151c 

shows the moment diagram due to horizontal thrust Hj and Fig. 15 Id 

shows the final diagram. The great reduction of bending action is 

evident. As a matter of fact, if the loading is fixed, an arch may always 

be designed to fit the equilibrium polygon for the loads practically 

exactly, and in such case all bending stresses are eliminated. 

The arch has other advantages—any steel arch lends itself readily 

to erection without falsework by the cantilever method; two-hinged and 

hingeless arches are relatively rigid structures, and steel arch trusses 

are likely to show small secondary stresses; the arch rib of steel or 

concrete (and some arch trusses) exhibit more graceful lines and a more 

pleasing appearance than a simple girder or truss, or a cantilever. Three- 

hinged and (less commonly) two-hinged arches are used in long span 

roof construction, but the arch principle finds its greatest application 

in railway and highway bridges. 

Where the crossing is over a deep gorge with rocky sides and where 

the stream traffic or other conditions make it impossible to erect by 

falsework, the arch is especially suitable, offering the double advantage 

of economy of material and ease of erection (see Fig. 152a and h). For 
any span length from perhaps 200 ft. to the limit of single arch spans 

(perhaps 3000 ft.) it is likely to prove advantageous for such a 

crossing. 

It is b3" no means limited to such conditions (note the Hell Gate 

crossing for example), but it loses its peculiar advantage in proportion 

as the soil conditions require large increase in the masonry abutments 

to take up the horizontal thrust. 

With such a great variety of types, the theory of arches becomes a 

very extensive field. We shall only consider in this chapter the types 

commonly met with in American practice. These are (1) the two- 

hinged arch rib—either the solid rib or a relatively shallow truss with 

parallel chords which may be treated as a beam (see Figs. 146 and 
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147); (2) the two-hinged spandrel braced arch (see Fig. 150), and (3) the 
hingeless arch rib (solid or braced girder). 

The three-hinged arch is a common structure but as it is statically 
determinate it will not be treated here. The one-hinged arch is almost 
never built in America. Two-hinged arch trusses of the type of Figs. 
148 and 149, when the chords diverge sufficiently that they cannot be 

{d) Resultant Moment Diasram for Arch 

Fia. 151 

treated as ribs, are analyzed on the same principle exactly as the spandrel- 
braced arch. The hingeless arch truss (other than the shallow-braced 

rib) is a very rare structure. 
We shall confine our treatment in the main to symmetrical arches, 

though the theory presented is general and may be applied to any type 

of arch. 
It is the purpose of the treatment to acquaint the student with the 

methods of analyzing the stresses in the commoner types of arch- 
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structures. As in the case of other indeterminate structures (for example, 

continuous trusses and rigid building frames) it is impossible to divorce 

the problem of stress analysis from the size and the make-up of the 

members of the structure, as may be done in the case of simple structures. 

Before a statically indeterminate analysis can be carried through, the 

cross-section properties of the constituent members must be known in 

addition to the loads and center line dimensions; so that the process of 

design is in a manner intimately tied up with that of stress computation. 

The method of procedure is indicated in the problems of Arts. 125 

and 135, but of course any treatment of the major problems of arch 

design is quite beyond the scope of this book. It should be emphasized 

that when one has at his command methods for analyzing statically 

indeterminate stresses, the problem of the design of a determinate or 

indeterminate structure is placed on the same footing, so far as a correct 

and scientific method of procedure is concerned. But for either type of 

structure, a correct analysis of the stresses is but one step in the design. 



THE TWO-HINGED ARCH 287 

if we use the latter in its broad sense. For a discussion of the design of 

arches, using “ design to mean the selection of most favorable types 

and forms, the economical proportions of main sections and details, etc., 

the student must be referred to special treatises and articles. * 

SECTION I.—THE TWO-HINGED ARCH 

119. The General Problem.—The two-hinged arch presents a singly 
statically indeterminate problem and as such it has already been treated 

briefly as a part of the general theory in Chapter IL The horizontal 

reaction is usually taken as the redundant f and whatever the type of 

arch we shall always have the fundamental relation 

11=--’.(53) 
OlH 

where 

d'a = the horizontal deflection at the support when II is removed 

entirely, and 

8ih = horizontal deflection at the support due to II — 1, no other loads 

acting. 

The chief question, then, is the evaluation of the quantities b'n 

and 6ih* 
A. The Arch Rib 

120. General Formula for H.—Recalling the theory of the deflection 

of curved beams (see Chapter I, page 32), we may write for the hori¬ 

zontal deflection of B in the arch rib of Fig. 153 

= ^'b + HhlB 

where 

Mmds C^Nrids 

"W X ^ Ja 

Nmds 
(54) 

MyN = true moment and true axial thrust, respectively at any point 

{Xj y) of the arch. 

m, n = the moment and axial thrust at any point due to = 1, no 

other forces acting. 

For arches with a considerable rise, the effect of the axial thrust 

on the deflection is altogether negligible and for any but very flat 

arches it is quite small. It therefore appears permissible to assume that 

the thrust is approximately parallel to the arch axis, i.e., that N = H 

* Some references will be found in the bibliography, pages 420 to 427. 
t We may also think of the two-hinged arch as statically equivalent to a three- 

hinged arch in which, in the case of the arch rib for example, an external moment 
pair is applied at the crown hinge sufficient to preserve a common tangent. 
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sec a (see Fig. 153a). The error involved in this assumption is far too 

small to have any important effect on the final result. We note further 

that m — y; n = cos a; dx = ds cos a. Therefore, substituting in (54), 

Myds dx sec a yds sec «~1 _ ^ ^ 

X iX ~^~X 

But M = Af' — Hm = Af' — Hy^ if Af' = the moment at (x, y) 

in the structure AB acting as a simple beam. Also we may express p 
in terms of y and a thus: * 

y = p cos a ~ p cos ai, (Fig. 153), 
whence 

dx sec a yds sec a _ f^dx sec a r^ds sec a cos ai ds 

X X~^^~X~^ X ^ x^ 
_ ds sec a cos ai 

~X ■ 

♦See Johnson, Bryan and Tumeaure, “Modem Framed Structures,” Part 11, 
page 160. It ie assumed that the curvature is approximately uniform. 
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We then have from (54a) 

and 

M'yds rj[ y^ds , ds sec a cos ail ^ 

X TT-^IX sr^X AE . - O' 

. . . (55) 

The second term in the denominator represents the effect of axial 

distortion (rib-shortening) on the value oi H, For all except very flat 

arches it is so small * that it may be safely neglected. Where it is 

desirable to take account of the term, it will ordinarily be quite accurate 

enough to assume that A varies as sec a,—(even if this is only very 

roughly approximate)—whence, if = area at crown, 

and 
Ac A cos a, 

) ^ EA cos a 
cosai == 

La cos a\ 
~~EAr~^ 

if La = length of arch axis. 
We then have 

H = 

I 
I K. 

M^yds 

~la~ 

^ y^ds , La cos ai 

W EA c ^ 

(55a) 

It is evident that the right hand term of Equation (55a) is equal 

to — T-. For reasons just stated we shall assume in the remainder of 
h 

the treatment of the arch rib that the second term of the denominator 

may be neglected and that 
'yds 

h-Jlj. ” — o O 

JA 

El 

^ y^ds 
~w 

(56) 

♦Johnson, Bryan and Tumeaure, “Modem Framed Structures,** Part II, page 
152, estimate the error at about 1.5 per cent for a parabolic arch with a rise * ^ of 
span, and a depth of rib « J the rise. Kirchhoff, “Statik der Bauwerke,” Part II, 
estimates the error for a rise | to ^ of the span, and a depth of rib » ^ the rise at 
not much more than 2 per cent. 
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121. The Parabolic Arch with Variable Moment of Inertia.—In 

problem (d), Chapter II, we developed the equation for the horizontal 

thrust in an arch with a parabolic axis and with moment of inertia 

varying as sec a as 
^ PTj 

H + .(57) 

if P is a load distant kl from the support. It is found that this equation 

will give fairly close results, even for a rib whose axis is not parabolic 

and where the variation of I departs rather widely from that assumed 

above. Most arch ribs arising in practice can be so analyzed. Indeed 

it may be used as a rough approximation for almost any two-hinged arch. 

122. Influence Lines—Moment.—Equation (57) plotted gives the 

influence line for H. Remembering that M = M' — Hy^ we may at 

once construct the influence line for the moment at any section by com¬ 

bining the simple beam moment influence line with the H influence 

line multiplied by the constant y. But since it is much easier to con¬ 

struct the simple beam influence lines than the H influence line, and 

since the former vary with the sections where the moment is desired 

while the latter is drawn once for all, it will be much more convenient to 

write 

Ms = - p 
Vq y<i 

M' 
In Fig. 154 we construct - - by dividing the simple beam moment 

Vq 
at q by yq and constructing the ordinary triangular influence line. Com¬ 

bining this with the H influence line, we get the influence curve for 

M 
■—- (the shaded area in Fig. 154d). It is a simple matter to multiply 
Vq 
the ordinates in this diagram by the y corresponding to any section 
and thus get the true arch moment. 

* 123. Influence Lines—Shear and Thrust.—These quantities arc 

less important than the moments, but when desired the influence lines 

may be obtained in a similar manner. 

For the shear normal to the arch axis, we have 

Shear = Fi cos a — 77 sin a for unit load to the right of the section 

= y2 cos a — 77 sin a—for unit load to left of section. Since 

7i = (1 - A:) X 1 lb. and 72 = A; X 1 lb., 

* The treatment in this article follows closely that of Johnson, Bryan and Tur- 
neure, Modem Framed Structures,Part II, pages 166-170. See also Kirchhoff, 
“ Statik der Bauwerke,” Part II, pages 200-216. 
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Shear » (1 ~ A;) cos a ~ H sin a = sin a [(1 — k) cot a H] 
. . . load to right 

= sin alk cot a — H] . , . load to left. 

Following the general method indicated for moments, it is obvious 

that the ordinates to the shaded diagram of Fig. 154e will, if multiplied 

by sin give the shear at any section q. 
Since the axial thrust N = H cos a — Vi sin a, or cos a — V2 sin a 

according as the load is to the right or left of the section, it is 
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evident that in a manner similar to the case for shear we may 
write 

AT ( H + {I — k) tan a .. . load right 

cos a \ H — k tan a .. . load left. 

Fig. 164/ shows the influence line. 

123a. Influence Lines for Maximum Fiber Stress.—We may obtain 

from the influence lines of the preceding article the moment, shear 

and thrust at any section due to any given loading. The thrust is a 

maximum under full loading for all sections, while the moment ordi¬ 

narily is not, and since it is the combined effect of these two quantities 

which usually governs the design, it is evident that the independent 
influence lines do not directly 

give the loading producing 

the maximum combined 

stress at any section. For 

designing purposes it is often 

desirable to construct influ¬ 

ence lines for maximum total 
fiber stress rather than for 

maximum moment and 

thrust. We may do this in 
the following manner: 

Let Fig. 155 represent 

any section of the arch ring. 

R is the total resultant force 

at the section, and we may 
resolve as shown into the 

shear V and normal thrust 

N. Then the moment must 
equal Ne ii e = arm of N referred to the neutral axis of the section. 

We must have for the stress in upper extreme fiber: 

N , MCt + Hrf I TiJT^t 3. = _ + _ = + 

where ct is the distance from neutral axis to the upper fiber and A, r 
and I have their usual significance. Since e, r and c< are distances, 

evidently e A— is a distance, as indicated in the figure, and N 
Ct 

is a moment which we may call Me « moment about the ‘^kem point” 
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of the section. The kern point for the upper fiber liee — below the 
Ct 

neutral plane and the corresponding point for the lower fiber lies - 

above the neutral plane, if ci is the distance from neutral plane to lower 
extreme fiber. 

If instead of the influence line for the moment about the neutral 

axis we draw for each section the influence lines for the moments about 

the upper and lower kern points, these diagrams give us directly the 

loading conditions for maximum total stress on lower and upper fibers. 

The construction is identical with that described for the bending moment, 

except that in the equation M = y — H^yy is measured to the kem 

point instead of to the neutral axis. Such influence lines are shown in 

the problem of Art. 125. 
124. Reaction Locus,—The effect of a single moving load may be 

conveniently studied in a somewhat different manner. The resultant 

reactions Ri and R2 must of course always intersect on the line of action 
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of the load P; as this load moves across the span this point of inter¬ 

section describes a locus whose equation may be readily deduced. In 

Fig. 156 let {kL, yi) be the coordinates of the reaction intersection, I. 

Since Vi and H are the vertical and horizontal components of Pi, we 

have 

Vi V 
H = Pi cos 0, Vi = Pi sin 0, and 77- = tan 0 = whence from 

H kL 

Equation (57) 

^ VikL P(1 - k)kL P(1 - k)kL \.&h , . 

H H bPL,, , ,,, l + k-K^- 
g (/c - 2k^ + k^) 

The curve of intersections is shown ^is FEG in Fig. 156. Once the 

reaction locus is constructed the two-hinged arch becomes for practical 

purposes statically determined, since the magnitudes of Pi and P2 may 

be determined from a simple force polygon (sec Fig. 1565). 

If we investigate the loading for maximum moment at g, it is clear 

from the figure that any load to the right of 1^ or to the left of I'q will 

cause negative moment; loading in the segment — Iq will cause 

positive moment. 

The exact expression for H for a partial uniform load extending 

from kiL to k^L is 

H = ^jwj (fc - 2P + k*)dikL) = J (k - 2k^ +p)dk 

wL^V 

125. Example. 

Design of a Two-Hinged Steel Arch Rib 

Span, 240 ft. Rise, 35-ft. Parabolic axis. (Fig. 157a.) 

Dead load, 1800 lb. per ft. Live load, 3200 lb. per ft. 

Impact, 25 per cent of live load. 

A depth of 60 in. will be assumed, and the rib will be designed as a 
box girder (Fig. 1575). 

The kern points will be assumed 0.8 of the half-depth distant from 

the center of the section for the crown section, and this factor will be 

assumed as 0.85 for the first section away from the crown and 0.9 for the 
remainder of the sections, x' and y' are coordinates of the kern 

points. 
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1 

Section 

r 

r 
• c

o
s 

y 
y' 

ft. 
•0- 
0 

x' 

ft. 

M' 

ft-lb. i 

M'ly' 

lb. 

in. in. ft. Irit. Ext. 
\ ^ 

Int. Ext. Int. Ext. Int. Ext. 

1 27 24.5 12.6 10.6 14.6 1.1 25.1 22.9 22.6 20.6 2.13' 1.41 
2 27 25.5 22.4 20.3 24 5 .8 48.8 47.2 39.0 37.7 1.92 1.54 
3 27 26.3 29.4 27.2 31.6 .5 72.5 71.5 51.7 50.1 1.90 1.58 
4 25.5 25.3 33.6 32.5 35 7 .3 96.3 95.7 57.8 57.5 1.84 1.61 
5 I 24 24 

1 
35.0 33.0 37.0 .0 120 120 60 0 60.0 

i 
1.82 

i 
1.62 

Values of H were obtained by substituting in the formula 

H = |p|(A: - + A:^) (P = 1). 

diagram included between the H and the lines, were determined by 

means of a planimeter. These areas must be multiplied by to get 

the true M-areas. 
126. General Method of Solution for Any Arch Rib by Means of 

Elastic Weights.—The majority of two-hinged arch ribs occurring in 

American practice are solid or open-web steel girders with either a 

parabolic or rather flat circular axis. The variation in 1 may or may 

not closely approximate that of sec a; in any case, as noted under 

Art. 121, the above theory gives a tolerably satisfactory approximation— 

sufficient for designing purposes in all ordinary cases. Where a more 
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Areas of Influence Diagrams 

Section Intradosal j Extradosal 

+ - Net + - Net 

1 8.29 3.40 +4.89 3.51 7.37 -3.86 
2 5.47 3.24 +2.23 3.09 5.46 -2.37 
3 4.28 2.21 +2.07 2.11 3.90 -1.79 
4 2.67 1.28 +1.39 1.00 2.40 -1.40 
5 1.84 .72 +1.12 .63 1.90 -1.27 

Section 
Moment 
Center 

1 

D. L. 
Moment, 

1000 in. lb. 

L. L. Moment, 
1000 in.lb. 

Maximum 

Moment 
1000 in. lb. 

Section 
Modulus 

+ - 

1 Top -12,170 24,600 51,700 -63,870 4265 
Bottom + 11,200 43,200 16,320 

2 Top -12,550 36,499 64,200 -76,750 5120 
Bottom + 9,790 53,250 31,600 

3 Top -12,220 32,000 59,200 -71,420 4760 
Bottom + 12,180 56,000 28,900 

4 Top -10,800 17,120 41,200 -52,000 3470 
Bottom + 9,470 40,300 19,359 

5 Top -10,150 11,170 33,750 -43,900 2930 
Bottom + 7,980 29,200 11,400 

Sections Chosen 

Section 

Section Modulus Section 

Required Supplied 

1 4265 4270 2-60 Xf webs 2 cover plates, 2coverplates, 
4.6X6X 1 48Xi 48XA 

angles 
2 5170 5170 do do 48X1 
3 4760 4790 do do 48X1 
4 3470 3530 do 48X1 48XA 
5 2930 

1 
3010 do do 
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exact analysis is desired, and for markedly irregular causes where the 
above theory is inapplicable we may proceed as follows: 

We write the general equation for horizontal thrust 

H = 
s 

M'mAs 

1^ 

X 
m^As ^ 

or if it be desired to include axial thrust 

M'mAs 

H 
El 

\^m^As La cos a 

EAc 

(o) 

(h) 

where As is any small length along the arch axis, and the summation 

extends over the entire arch. 

In either case the denominator, as regards the loading, is a constant 

which for any given arch need be computed but once. If we wish to 

study the effect of a moving vertical load unity, M' becomes the simple 

beam moment, for a span equal to that of the arch, due to a vertical 

unit load. We shall call this mv. m in equations (a) and (6) is 

the moment at any point of the arch due to a pair of horizontal unit 

forces applied at the reaction points. To avoid confusion we shall call 

this mff. Then the expression 

becomes 

\^M'mds 

*^mvmHAs 

i El * 

If the vertical unit load is applied at the point q (Fig. 158), then 

= deflection horizontally at H due to unit vertical load at q SmyrnnAs 

and 

^'gH = deflection vertically at q due to unit horizontal load at a reaction 

point (B in Fig. 158) 

SmufnvAs 

El * 
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These quantities are obviously equal, which means that if Af' is 

the moment at any section due to unity at 5, the numerator of (a) (which 

is actually the horizontal displacement at the support due to the unit 

vertical load, arch acting as a simple curved beam) may be interpreted 

as the numerical equivalent of the vertical deflection at q due to a unit 

horizontal force at the support. Obviously then the vertical deflection 

diagram for all points in the arch axis due to this pair of unit horizontal 

forces, represents the variation of as a unit load passes 

across the span, and is therefore to some scale, the H influence line. 

Calling = C, we have, for E constant 

H = 
2 mriTiiiAs 

I 
C 
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We may apply here with slight modification the principle of elastic 

weights—that any simple beam deflection curve may be obtained by 

treating the true —diagram as a load curve and constructing the 

moment diagram for this fictitious loading. We have, since rrin = y 

and As = Ax sec a, 
?n//A.s‘ _ 2yAx 

7 J cos a 

and Ed' — moment in beam AB due to a distributed loading equal at 

any point to —. 
i cos a 

It will generally be most convenient to divide the arch axis into 

for each one. reasonably small segments As and compute 

Then assuming these quantities to act as loads (through the center 

point of As) on the simple beam ABj we may construct the moment 

diagram (Fig. 158^f) either graphically by means of the string polygon, 

or by ordinary calculation. The ordinate to any point of this curve is 

^As 
- j--m for a unit load applied to the arch at the point where 

the ordinate is taken, and is therefore equal io C X H for a load at this 

point. 

This method will apply to any two-hinged arch rib and may be 

carried to any desired degree of accuracy by taking the segments suf¬ 

ficiently small. Satisfactory results will usually be obtained if ten to 

fifteen sections are used. 

127. Example.—Determination of true H-curve for the arch of Art. 

126. The data and results are completely shown in Table A. The 

values in column @ were obtained by calculating the moments at tenth 
Ty A o 

points in the simple beam span of 240 ft. loaded with the - values. 

The half division at the end was omitted; experience indicates that its 

effect is usually negligible. 

As a typical calculation we may note that for section 2 

R = 4.216 - = 3.42. 

M2 = [/? X 2 X 24 - 24 X .36] X 12 = 1866. 

The close agreement shown in columns ® and © would indicate 

that although the actual variation of I is quite different from that 

assumed, the formula for H is accurate enough for design purposes. 
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TABLE A 

© ® © © © © © © ® 

Section y As 
As 

7 

y-As 

I 

y*As 

~T 

rM'v-As 

I 
H 

II 
(Formula) 

Error 

ft. ft. in.’* in.’* in."^ lb-in. ’* lb. lb. 

1 12.6 26.4 .00238 .360 54.4 985 .411 .421 +2.5% 
2 22.4 25.4 .00187 .503 135.6 1866 .778 .795 +2.2% 
3 29.4 24.65 .00196 .691 244.0 2603 1.086 1.09 +0.3% 
4 33.6 24.2 .00264 1.064 427.5 3141 1.312 1.274 -2.8% 

5 35.0 24.1 .00380 1.598 671.0 3267 1.363 1.34 -1.6% 

i 
V _ 4.216 1533.5 

128. Approximate Method. 
Equation (57), 

H = 2k^ + k*), 

gives the influence line for the horizontal thrust as a fourth degree 
parabola. If we replace this by a common parabola of equal area (which 
according to the theory of least squares should give the closest approxi¬ 
mation) we shall have, if ym == mid-ordinate of the equivalent parabola. 

and 

fy«L = I -2k? + k^)dk 

-Lik Vm ig ^ » 

and the approximate equation for H is 

jj 3 PL., ,2\ 

PL2 
Sh’ 

(59) 

If we substitute this value in the equation for the reaction locus 

VikL P(1 - k)kL 
y*- H ~ H 

we have 
.(60) 

i.e., the reaction locus is a horizontal straight line f h above the support 
level (see Fig. 159). 

This method furnishes an exceedingly simple solution for the para¬ 
bolic arch rib with I varying as sec a. The maximum error involved is 
about — 4 per cent at the center and + 10 per cent at the ends. For 
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the central | of the span (in the region where the loads are most impor¬ 
tant), the maximum error is about 5 per cent, and since the positive and 
negative errors tend to balance for the maximum loading at many 
sections, the error is still further reduced. For most arch ribs the 
analysis on this basis is probably as accurate as the data will justify. 

129. Effects of Temperature and Yielding Supports.—From the 
g/ 

formula H — — —y recalling that 6' is the horizontal deflection at the 

support, due to any cause, in the arch acting as a simple curved beam, 
if a = the coefficient of expansion of the material, a change in tempera¬ 
ture of will cause a thrust to develop of 

H - 
± atL 

m^ds* 

X ^ 
positive or negative, according as the temperature rises or falls. 

If it be desired to estimate the effect of a slight horizontal yielding 
of the foundation, a similar method may be followed. If the yield is 
Ah we must have 

H ^ - 

/; 

Triads 

B. The Spandrbl-bbaced Arch 

130. Formula for H.—The method of obtaining the horizontal 
thrust for a spandrel-braced arch of the type of Fig. 150 has already 
been indicated in Chapter II, problem (p). We have (assuming con¬ 
stant E) 

H . . (61) 
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where 
S' == the stress in any member due to given loading, arch acting as 

a simply supported truss; and 
u = the stress in any member due to a pair of inward horizontal 

unit forces acting on the same structure. 

As in the arch rib we note that 5ii/ is a constant with respect to the 
applied loading, hence the diagram for 6'h must to some scale represent 
the H-diagram. 

131. Influence Lines for IL—First Method.—Since the horizontal 
displacement at the support due to a vertical load unity at any point, 
say Qj on the span, is equal to the vertical deflection at q due to a unit 
horizontal force at the support, it is clear that if we construct the deflec¬ 
tion diagram for all points of load application due to this latter loading, 

then the ordinates to this diagram multiplied by the constant ~— will be 
hu 

the influence ordinates for H (see Fig. 160). This deflection diagram 
may be constructed by means of a single Williot diagram drawn for the 
truss loaded at each support with // = 1 lb. This will ordinarily prove 
the simplest method for the influence line construction. 

132. Influence Line for H,—Second Method.—The value of the 
vertical deflections 6' for the horizontal unit loading may be obtained 
by the method of elastic weights in a manner analogous to that described 
in Art. 126. It was proved in Chapter I, Art. 24, that the deflection 
diagram of a simple truss may be represented by the moment diagram for 
a simple beam of the same span under suitable elastic loads. In the 
case of the spandrel braced arch it may be shown that the influence of 
the distortion of the web members on the value of H is generally negli¬ 
gible.* (We should note that this does not mean at all that the influence 
of the web members on the deflection is negligible; it simply means 

8' 

that — is nearly the same, whether the web members are considered or 
oi 

not.) The elastic loads for the chord members are the values of 

change of applied vertically at the moment centers, 
moment arm 

These values of — are readily computed 
r 

struction of the moment diagram algebraically or graphically is then a 
simple matter. 

(at r - aeI’ and the con- 

* For a complete discussion and numerical comparison on this point, see H. 
Mtiller-Breslau, “Graphische Statik der Baukonstruktionen,^’ Band II, I Abteilung, 
pages 240->242. This study indicates that for all the larger ordinates to the influence 
line, the error is about 1 to 2 per cent. 
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133. Influence Lines for Truss Members.—Having determined the 
influence line for the influence line for any member of the arch truss 
may be found without difficulty. These influence lines may be drawn 
in several different ways. Remembering that 

S = S'+ Huh, 

Fig. 160 

where S = true stress due to a given loading in any member of arch 
truss 

S' = stress due to a given loading in any member of arch truss 
when the horizontal reaction is removed, 

and ub = stress in any member due to H = unity. 

We may draw the influence line for any member due to simple truss 
action, and correct each ordinate by H X H will be obtained from 
the influence line and Uh from the table used for the construction of the 
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Williot diagram. This method is simple and results in influence lines 
drawn to a horizontal base. It will be somewhat more expeditious to 
follow a scheme similar to the one used in the analysis of the arch rib, and 
combine the simple truss influence line with the influence line for H, 
Thus 

S = ^" + Hu„ = 

and if we draw the influence line for S\ dividing each ordinate by tlie 
constant uh, we may combine this influence line directly with the H 
influence line, as indicated in Fig. 160c-c. Ordinates to the shaded 
curves, multiplied by Uh are the influence ordinates for the stress in 
the corresponding member. 

134. Approximate Methods.—The formula for //, Equation (57), 
could not be expected to apply to a spandrel-braced arch, except as a 
very crude approximation. Since the formula for H 

H - 

s^S'uL 
2^ A 

cannot be applied until the sectional areas are known, some preliminary 
assumption must be made. If data are available on a somewhat similar 
type of structure already designed, this will greatly aid in selecting pre¬ 
liminary section values. These, substituted for the ^4^8 in Equation (61), 
will give a first approximation for from which a complete set of 
stresses and sections may be made out. If the sections so obtained 
differ markedly from those assumed, the calculation is repeated until 
substantial agreement is obtained. 

In case no data such as referred to in the previous paragraph are at 
hand, an approximate value for // may be obtained by assuming all the 
sections equal, in which case the equation becomes 

A still further simplifleation is sometimes made by assuming all the 
lengths equal, whence 

u SS'u 

It is seldom necessary to repeat the calculation more than once. 
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135. Example and Discussion. 
Figs. 161 to 164, together with Tables A and B, show the complete 

solution of a two-hinged spandrel-braced arch. The areas * and 

* The arch used for illustration was originally designed as a three-hinged arch, 
and the areas in the table of Fig. 161 were so obtained. 
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lengtlis are given in Fig. 161a; Fig. 1616 shows the stress diagram for 
a pair of unit horizontal loads at Lo and Lio, arch acting as a simple 
truss. Fig. 162 shows the corresponding Williot diagram; the ordi¬ 
nates to the //-influence line are tabulated at the right of the figure, and 
the influence line is shown in Fig. 163. Figs. 164a-e shows the con¬ 
struction of the influence lines from which the stresses due to live load 
may be obtained. It will usually be accurate enough to follow the 
general method illustrated in the swing bridge problem of Chapter IV, 
pages 197-203, and treat the influence lines as approximate triangles 
for the purpose of obtaining the equivalent uniform load. For U1U2 

cc! 
for example, if A cC be taken as a triangle, we have -y— = 0.4, and the 

Ac' 
proper equivalent load will be obtained from the tabular value for the 

0.4 point in a 77-ft. span—since C is 77 ft. from the left end. Table B 
gives the results for all members. The dead load stresses are taken from 
the calculations for the three-hinged arch, it being assumed that the 
structure acts thus for dead load. 

136. The preceding calculation illustrates fully the method of pro¬ 
cedure in analyzing an arch of this type. The correctness of the anal¬ 
ysis will be indicated by a comparison of the sections designed to fit 
the stresses of column 13, Table B, with those originally assumed. If 
the discrepancy is considerable, a second calculation must be made 
using the revised sections. Since this calculation is identical with the 
preceding except that the new section areas are used, the work need not 
be carried further here. 

137. Deflections of Two-hinged Arches.—The deflections for any 
arch rib may be found from the formula 

A = Mmds 

Ja 
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where M and m are the moments in the arch due respectively to the given 
loads and to unit load at deflected point. But it is usually easier to 
solve the deflection problem by splitting it up into the deflection due 

Fig. 164 

to the given loads, arch rib acting at a simple beam, and the negative 
deflection due to H (again the arch acting as a simply supported curved 
beam). 
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Thus 
,'mgds . j, . r^M'm'ds r^m'mi 

‘-‘-‘"-J, T3--»XTi 
_ C^M'm'ds H C^yds , 

The primes are introduced in the notation to indicate that the 
moments are simple beam moments. If the point whose deflection is 
sought is distant kl from the left support, 7n' equals (1 — k)x or 
k{l — x) according as the section is to the left or the right of the deflec- 

yds 
tion point, j -j- • Is thus easily evaluated where y can be expressed 

as a simple function of x. We also note that is numerically 
A 

equal to the moment at the point of deflection in a simple beam of the 

same span as the arch, acting under the elastic loads y-j applied at the 

center of the sections As. 
If I varies as secant a, i.e., I — L sec a, the first term in the right 

hand member of (62) becomes 

M'm'ds _ M'm'dx 
y EIc sec a EIc ^ 

(63) 

which is the formula for the deflection of a simple beam of span AB 
and moment of inertia equal to 7c. 

Similarly for the arch truss, 

8 6' - 

7i'UhL 

~AE~* 
. . (64) 

where S' and u' arc respectively the stresses in any member due to the 
given loading and to a unit load at point whose deflection is sought, 
arch acting as a simple truss, uh is the stress in any member due to a 

horizontal thrust of unity at the support. is the vertical 

deflection of the point where the unit load producing u' is applied, due 
to the horizontal force of unity, and all values of this summation are 
therefore obtained from a single Williot diagram, as explained in Art. 131. 
If this construction was used to obtain the influence line for 71, these 

data are already known, and we need only evaluate 
SS'u'L 

AE 
, which 

may be done algebraically or by means of a displacement diagram. 
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SECTION n.—THE HINGELESS ARCH RIB 

138. General Equations.—(a) Unsymmetrical case. If we select for 
the statically undetermined base system, the curved cantilever beam 
AB, Fig. 165 (with the end B fixed) and to this beam apply the loads P 

and the undetermined reactions Xay Xi, Xc as shown, we have for the 
three necessary conditions to determine these reactions that there shall 
be no horizontal or vertical displacement and no tangential rotation 
at A, From Equations (29), Chapter II, we have at once that 

6a — 0 — 6'a + Xa6aa + Xi,6ab + Xc6a€ 

== 0 = 6't, A- Xa6ba + Xb6i,b + Xc6bc 

= 0 = + Xa6ca + Xb6cb + XcScc 

(65a) 

These equations solve readily for the X-values. Probably evalua¬ 
tion by determinants is the simplest method. We have 

S'a Sab Sac 

Sbb Sbc 

S'c Scb Sec 

^aa Sab Sac 

Sba Sbb Sbc 

5ca Scb See 

6'a(6bb^cc ~ ^bc^) — ^'b(6abdce "" ^6c^ac) 4~ 6'c{6be6ba ~ 6bb6ca) 

^bb{,^aa^cc 5ac^) “f" 2Sab^be6ao (^^ab^cc ”1“ ^*'bc^aa) 
(65) 

and similar equations for and Xc. 
Using the following notation: 

Af' = moment at any section of cantilever AB due to applied loading 
mo = moment at any section of cantilever AB due to Xo == 1 
mb = moment at any section of cantilever AB due to X^ = 1 
me = moment at any section of cantilever AB due to Xc = 1 
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and applying the general deflection formulas of Chapter I, we may 
write out any of the nine deflection values (it will be remembered that 

= haf etc.). Thus (neglecting the effect of rib shortening as is 
practically always done for working formulas),* 

3., _ f^M'niads ^ ^ rriambds ^ mam,ds 

~~EI ^ ^ 

If we change to the ordinary notation for the statically undetermined 
forces, 

Xa = Ml, Xb = III, Xc = Vi, 

ma — 1 nib — y nic = x 
Then 

n M'ds 

L 1^1 
.■.=j 

C^M'yds , , 

1 “ J 

M'xds '' 
1 -El’ 

&.-J 
ds 

L ‘“■J 

11 f ^ x^ds 

L 
yds 

1 El’ A 

r^xds _ 1 xyds 

L A / 

When the equation of the arch axis, the variation of the section from 
point to point along the axis and the loading are known, all the above 
integrals are readily evaluated. Where the axis is not a regular curve, 
or the variation of I does not take a simple form, it is usually best to 
divide the axis into small finite lengths and replace the integrals by 
summations, thus: 

‘‘•-'Lv' 

This condition is usually met in reinforced-concrete arches—the 
most common type by far of the hingeless arch rib. If the arch ring is 

* The same observations apply in general to the hingeless arch as to the two- 
hinged arch (see page 287) on this point. For a parabolic arch in which I varies as 
sec a, for a rise — one-eighth of the span and crown depth = one-eighth the rise, the 
rib shortening effect on H would be approximately 1.7 per cent. In Turneaure and 
Maurer, ** Principles of Reinforced Concrete,edition of 1919, pages 361-362, com¬ 
plete calculations are shown for an arch with a rise = one-fifth of span, crown 
depth » one-eighth rise, but with the axis varying considerably from a true parabola, 
and with I increasing very much more rapidly toward the springing fine than sec a. 
For this case, He omitting rib shortening, = 76,700 lb.; H (due to rib shortening) = 
1240 lb., a discrepancy of 1.6 per cent. 
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divided into, say, twenty sections, the results will be accurate enough 
for all ordinary cases. In very long spans and for certain special 
conditions, smaller divisions may be required. 

Equations (66) and (66a) substituted in the general equations of 
Art. 138 will suffice for the solution of any fixed ended arch. Most such 
arches as actually built are symmetrical, and in such case considerable 
simplification in the work may be effected. 

(6) Symmetrical Case. We may conveniently divide the arch into 
two equal cantilevers 
by a section at the 
crown, and take for the 
statically undetermined 
quantities the crown 
shear, thrust and mo¬ 
ment (see Fig. 166). 
We assume x positive 
to the left for the left 
side, to the right for the 
right side, and y positive downward. The deflections h in this case are 
the relative deflections of the cut faces at C. We may write at once 

rWa = 1 ... for both right and left halves of arch ring, 

nit, ~ y . . . for both right and left halves of arch ring, 

T — X . . . for left half 
nic = \ 

[+ X ... for right half. 

We shall then have:— 
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The general equations of condition (page 277) now reduce to 

5o = 0 == 5 o + Xo5aa + Xt,5t,a, 
= 0 = + Xa^ab + Xbdbb, 

whence 

Xa = 

5c — 0 = 5^c + Xcdce, 

5^a5b6 — B'bdgb^ 

^aa^bb ab 
X, = - 

^^b^aa — 5^0^06. 

^aa^bb “ 5^06 ^ 
(67) 

Using the ordinary notation for the statically undetermined quanti¬ 

ties Xa - Me, Xb = He, Xc = Vc, and substituting the values for the 
5’s derived on page 312, we have finally (if E is constant) 

a more convenient form for numercial evaluation if He is obtained first. 
ds • 

For irregular cases, or any case where y and y are not simply 

expressed as functions of x, we proceed as indicated on page 295, divid¬ 

ing each half arch into a number of finite lengths As, computing the 

average I for the portion, and substituting ~ for y, and then taking 

{x, y) as the coordinates of the center of the section As, and replacing the 
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integral signs by summation signs. Equations (68), (69) and (70) are thus 

readily evaluated. By taking the lengths As sufficiently small, the results 

may be obtained to any desired degree of accuracy, as noted previously, 

for symmetrical arches of ordinary span. All practical requirements 

will usually be satisfied if the half-arch is divided into ten divisions. 

Having obtained the moment, shear and thrust at the crown, we 

may obtain the moment at any point from the equation, 

M ^ M' +Me + Hey zh 7.x. 

The moments (M, M', Me) are considered positive when they tend 

to compress the outer fiber; IIe and 7. are positive when acting as 

indicated in Fig. 166. The plus sign before 7. applies to the right side 

and the minus to left side. 

Note.—Since most of the applications of the hingeless arch theory which the 
engineer is required to make will be to reinforced concrete structures, it may be worth 
while to note the small modifications necessary to bring equations (68), (69) and (70) 
into conformity with those usually found in special trcjxtiscs on the concrete arch. 
There is unfortunately no universally accepted standard notation, but it is believed 
that the form of arch equation most widely used is that given in Turneaure and 
Maurer’s “ Principles of Reinforced Concrete.” (Also followed in Hool’s special 
treatise on “ Reinforced Concrete Arches,” and used in Hool and Johnson’s “ Rein¬ 
forced Concrete Engineer Handbook.”) 

We should first note one important simplification which is almost 

universally used in the standard analysis of concrete arches.* 
Instead of making the divisions As of equal lengths or of arbitrarily 

As 
varying lengths, we may adjust the divisions so that -y is a constant. 

and in such case of course, the term disappears entirely from the formulas 

for He, Me and 7.. If we use the notation “ m ” for the cantilever 

moment instead of M', and note that if n = number of divisions in the 

half arch. 

Equation (69) at once goes into 
■B B C B B C 

'Y'my■ 2n - ■ 2^y n^my - • ^y 
TT ^^^ _ A._A_A 

^ \2 C' r- y C VO C > 
(71) 

* Due apparently to Robert Schonhdfer, “ Statische Untersuchungen von Bogen 
und Whlbtragwerken.” 
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B C 

Fc =- 

^^(otk — mi)2 

These are probably the most convenient forms for the equations for 
any case of the symmetrical fixed arch where the integral expressions in 
Equations (68), (69) and (70) are not easily obtained. 

139. Alternative Forms for the General Equations.—(a) If the 

origin of coordinates (see Fig. 167) be shifted downward to the point o, 

a distance c, it will be found that the equations for haay ^aby ^acy etc. 

(see page 314) remain in the same form as before. If then we take a 

value for c such that 
yds . , 

I = 0, i.e., the axis of X passes through the 

center of gravity of the quantities -j (the elastic center sec page 

140), dab vanishes. Since the remaining expressions for the 8^s are 

unchanged, we shall have from Equations (67), (68), (69) and (70) 

nM'ds 

Za = Mo = Me + He X C r- = 
voa 

= Ho = ffo = - F = - 
Obb 

X I 

X 

r’^M'(h 

X ~'i 
r“ds • 

X 

Xc — Vo = Vc ss in Equation (70). 

For the irregular case, Equations (71) and (72) become 

(71a) 



318 THE ELASTIC ARCH 

It will be seen that this transformation results in very simple and 

elegant formulas for the unknowns. The determination of the distance 

c is readily made. Taking the origin at the crown, and calling the 

^/-coordinate referred to this origin y', we must have the distance to the 

elastic center O. 
ny'dA 

=,/ = JLi 
p* ’ 

= Vo (74) 

As 
or in the case where a summation of finite quantities - j- is used, and 

" is made constant. 

(74a) 

+2/ 

Fig. 167 

When an arch solution is to be made for but one or two load condi¬ 

tions (the most common practice is to investigate two cases—(1) full 

dead and live load and (2) dead load plus live load over half * the span), 

it may well be noted that the actual simplification of the work is not in 
proportion to the rela- 

tive simplicity of for- ^ ^ 

mulas (71a) and (72a) 

compared with (71) 

and (72). The greater 

part of the tediousness 

of the solution lies in 

obtaining the various 

summations, 2^^, 'Ly^, 

Sm, etc. After these are obtained numerically, it is but a few 

minutes^ work to substitute in Equations (71), (72) and (73) and obtain 

the crown thrust, moment and shear. It will be observed that in locat¬ 

ing the elastic center 0 and in evaluating Mo and Ho precisely as many 

different summation quantities are involved as appear in Equations (70) 

and (71). The only advantage of the elastic center solution then lies in 

the simplified forms of the final equations for H and M, which we have 

just pointed out is of relatively small moment. 

Where influence lines are to be constructed, the method has other 

advantages which will be discussed in a later article. 

(6) It has been noted many times in the preceding chapters that in 

♦ Placing the live load over five-eighths the span is a not uncommon practice. 
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most cases of analysis of an indeterminate structure, more than one form 

of sample structure may be assumed for the base system. In the fore¬ 

going analysis of the fixed arch, we have assumed two symmetrical 

cantilevers; in Art. 138a (see Fig. 165) we assumed a single cantilever. 

If, instead, we assume a simple curved beam as in Fig. 168 (this will 

serve, of course, for an unsymmetrical case equally well) we may write 

the three equations of condition in the following form: 

(1) The deflection at A of tlie curved beam A~B, referred to a tangent 

at B must equal zero, therefore (from general equations of Chapter I) 

if E — constant. 
(2) Likewise 

Mxds „ 's^MaA,s ^ 

2-5- = 0. 

. . (a) 

. ■ (b) 

(3) Since there is no relative horizontal movement of A with respect 

to B, 
Myds 

Ja ei 
whence 

MvAs 

2^ I 
Now, 

= 0, 

= 0. 

M'+ aMs + bM^ + HvR. . . . 

(c) 

(75) 

ilf', Ma and Mb are taken positive when causing compression on the 
top (outer) fiber; If will therefore be regarded as positive when acting 
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outward. Substituting (75) in the fundamental formulas (a), (6) and 

(c), we get, since etc. 

2:Af'a + AlA^^ab + + Hl^av =0, ... (76) 

+ MA^^h- + Mn:!:ab + HKXvb = 0, ... (77) 

:::M'v + MA^vb + Mn^av + =0. ... (78) 

Explicit expressions for Maj Mb and HR are readily written out by 

means of determinants, thus— 

j ^M'al^ab^v^ + ^M'b{^avY - 

M == I + ^M'v^ah^av - ^M'blld^^b- + ^M'a:^avl.bv\ 

^ I (^aby^Xv^ + + (^6?;)-^a^ • • • ( ) 
1 - - 2^ab^av^bv 

These equations are exceedingly clumsy, and it will usually be 

simpler to substitute numerical values for the summations in Equations 

(76)-(78) and solve these for the moments and thrust. 

As noted, the preceding equations apply to any type of fixed arch 

and they are especially advantageous in certain irregular cases.* For 

the standard symmetrical arch. Equations (71)-(73) will involve rather 

less detail. 

It should be noted regarding this method that for symmetrical cases 

need only be tabulated for one-half the span, while the values of 

are the same as taken in reverse order. 

140. Example.—The following example will aid in making the 

application of preceding methods clear. We will analyze a reinforced 

concrete arch as shown in Fig. 169. The span is 132 ft., the rise 20 ft., 

thickness at crown 2 ft. and at springing line 2 ft. 6 in. Fig. 1696 shows 

As 
the graphical process of dividing the arch ring so that — = constant. 

The method is as follows: Several values (usually four or five are sufli- 

cient) of I at approximately equal spaces along the arch ring are com¬ 

puted, and laying off a' — u equal to length along one-half the arch axis, 

ordinates are erected at the proper points equal to the above values of 

/, and a smooth curve passed through them. This is approximately the 

correct /-diagram. Selecting a suitable number of divisions for the 

half arch (10 in this case), and beginning either at the crown or spring¬ 

ing line (the latter preferably in most cases) with a trial value of As, a 

series of isosceles triangles with corresponding sides parallel are con- 

♦ This particular form of solution was first proposed by George A. Maney. See 

Trans. A.S.C.E., Vol. LXXXIII, pages 664 et seq. 
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Dead 
Loads 

Live 
Loads 

Totals 

I 3800« 1200 6,000 
II 7650 2400 10,050 
III 7650 2400 10,050 
IV 9500 2400 11,900 
V 9500 2400 11,900 
VI 
Total 

9500 2400 11,900 
60,800 

TABLE B—D.L. + |L.L. 

Point X y (m^ + m^)y 

1 3.00 .06 9.0 -15,000 -11,500 -1,400 11,000 
2 9.00 .33 81.0 .109 -45,000 -35,000 -26,000 90,000 

3 15.00 .92 225.0 .85 -125,000 -90,000 -198,000 625,000 
4 21.25 1.83 450.0 3.35 -210,000 -160,000 -680,000 1,060,000 
5 27.68 3.21 760.0 10.30 -360,000 -270,000 -2,040,000 2,480,000 
6 34.26 6.00 1170.0 25.00 -540,000 -410,000 -4,700,000 4,460,000 
7 40.76 7.16 1660.0 51.27 -770,000 -595,000 -9,800,000 7,100,000 
8 47.50 9.75 2250.0 95.00 -1,060,000' -820,000 -18,300,000 11,400,000 

9 54.42 13.25 2955.0 175.65 -l,400,000l -1,080,000 -32,800,000 17,500,000 
10 62.00 17.42 3840.0 303.56 - l,850,000i -1,430,000 -57.100,000 26,000,000 

S 68.92 13,411.5 664.93 -11,278,000 -125,646,000 70,626,000 

^ 10(~ 125,645,000) - (-11,278,000) X 58.92 

" 2[58.92*-10(664.93)] 
93,300 lb. 

^ 70.626,000 

^ “ 2(13,411.5) 
- 2635 lb. 

Me 
-11,278,000 + 2(93,300) (58.92) +278,000 

III II OB ' 

20 20 
+ 13,900 ft-lb. . 
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structed, as indicated in Fig. 1696. Each stands on a base As„ with an 

altitude In, and since the triangles are similar by construction, the 

As 
ratio of -y is constant throughout. The trial assumption will not ordi¬ 

narily result in an even ten divisions of the distance a — u, and a eut- 

and-try process is resorted to until tliis result is approximated. 

The loads are assumed to be applied through spandrel columns as 

shown. The load values (for one-half arch) are shown in table A. 

Table B gives the tabular solution for the summations for the case of 

D.L. and \ L.L. The values of —the cantilever moments—are 

taken from the string polygon in Fig. 169. 

Arch with Fixed Ends 

Solution by clastic center method 

TABLE D 

Point Old New 

1 .05 + 5.84 
2 .33 5.56 
3 .92 4.97 
4 1.83 4.06 

5 3.21 2.68 

6 5.00 -f .89 

7 7.16 - 1.27 
8 9.75 - 3.86 
9 13.25 - 7.36 

17.42 -11.53 

lo) 58.92 

6.89 = yc 
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The numerical values for the crown thrust, shear and moment are 

shown at the bottom of the table. From these, a correct reaction force 

polygon may be drawn as shown in Fig. 169c, and the true pressure 
line plotted (Fig. 169a). 

140a. Table C gives the complete solutions by method (b) of pre¬ 

ceding article. The string polygon CDE of Fig. 169a was used to obtain 

the simple beam moments M\ It is believed the table is self-explanatory. 

It may be of interest to note the check between the two methods, 

since they are radically different in detail. We should first note that any 

consistent solution must give from equations on page 319, ^ == constant, 

'LM = 0 ® ZMxi = Silfxr = 0 @ and Silfz/ = 0 ®. 

For the first method, all three conditions were checked up. The 

errors were 2.6 per cent for ®, 3.5 per cent for ©, 3.0 per cent for®. 

Condition ® only was checked up for the second method, the error 

being about 2.5 per cent. These discrepancies are principally due to 

errors in scaling and small inaccuracies in computation. Considering 

the character of the data for the hingeless reinforced concrete arch, the 

check may be regarded as fairly satisfactory. Exact agreement, under 

such conditions, between the thrusts and moments in the two cases is 

hardly to be expected, though from the nature of the case, the former will 

agree more closely than the latter. A close check between the moment 

values requires extraordinary refinement in the detail calculations. 

140b. As a further illustration of method, the same arch will be 

solved with origin at elastic center where iJ, M and V are applied. 
The subjoined calculations show the complete solution. We first 

locate the elastic center, 0, by the equation yo = — (t/' being the ordi- 
7h 

nate of any point with the crown as origin). 

TABLE F 

Point Ml Mr Point Ml Mn 

1 +10,500 - 3,610 6 +33,512 -22,290 
2 +25,050 -17,255 7 +13,480 -21,220 

3 +27,330 -32,375 8 -15,465 -19,290 
4 +36,160 -34,505 9 - 4,253 +32,540 
5 +20,470 -36,000 10 -42,773 +51,780 

+250,882 
-249,036 

ZM - +1,786 
Error 0.36% 
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With the center of coordinates at the elastic center, 5.89 ft. below 
the crown (see Fig. 170 and Table D), the remainder of the solution is 
carried out in Table E. 

Final moments for the various points are shown in Table F. 
These check the condition XM = 0 to within one-third of 1 per cent. 

Comparison of H, and Mb by the several methods is shown in 
table G. 

TABLE G 

Quantity Method I Method II Method III * 

H 93,300 93,370 95,900 

Ma -39,700 -38,200 -27,700 

Mb +86,300 +83,700 +99,000 

141. Parabolic Arch with I = Ic sec a.—Referring to Equations (68), 
(69) and (70) and Fig. 171, we may develop general formulas for Hcf 
Me and 1% just as for the two-hinged arch. The integrals entering into the 

equations may be evaluated thus ( • 4/i 2 • • . - (assuming y = i origin at C 

= 2 X 

= 2 X 

Ah 

f 
10/42 n-i 

iJi:X 

xHx 

x*dx 

‘x-dx = 
J? 
12fc 

hL 
3/.’ 

IfL 
5/c’ 

4^^ rv ^.7^ 2^ ,, ,... 
~ m: =- ^ (3 - +fc^): 

p n PL^ - Y j ^y(2 - 3A; + F). 

* A slight difference in the load spacing was taken in the last solution—11 ft. 
instead of 11.125. This would affect the final results quite appreciably. In solu¬ 
tion (III) all moments were computedj in solutions (1) and (II) the moments were 
scaled. In each case, the results are intended to represent ordinary oflSce practice 
in which no more than the required accuracy for designing purposes is sought. 



THE HINGELESS ARCH RIB 327 

We then have 

= . 

= . . (8J) 

PT 
= -g (1 - k)- - 

V,=-^{2-\-k){\-ky-,.(82) 

yB y..(83) 

VA=^^{2-k){\ + ky.(84) 

—L-H 
Fig. 171 

From the above, we may obtain general expressions for the end 

moments and the moment at any point of the arch. The results are 

given below, the detail will be left as an exercise for the student. 

~{l- - 5fc2), . . . (85) 

PT 
A:2)(l + - 5F), • • • . (86) 

Mb + Vb(i +-^+ /a[l 
- (01 ; for X < hi. (87a) 

Ma + VA(l+fj 
- (01 ; for :r > kl. (876) 

These equations give a complete solution for the hingeless arch, 

with parabolic axis and / varying as sec a. They apply almost exactly 

to a flat circular arch also, and they give a fair first approximation of 

almost any arch rib. 
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142. Influence Lines.—Equations (80)-(87) when plotted for P = 

1 lb. give the influence lines shown in Fig. 172. For P = 1 lb. we may 

write Equations (80)-(87) as follows: 

He — Me = IZmc; Vb — Zvb] Va = Zva] 

Ma = IZma\ Mb = IZmb- 

The various values of Z for twentieth ])oints on the span are shown 

in Table IX. 

TABLE TX 

k Zh Zmc 

1 ^ 

Right I.oft Right Left 

0.0 0.469 0.0937 0.0625 0.0625 0.500 0.500 

0.1 0.459 0.0493 0.0835 0.0340 0.425 0.575 

0 2 0.432 0.0160 0.0%0 0.0000 0.352 0.648 

0.3 0.388 -0.0069 0.0995 -0.0369 0.282 0.718 

0.4 0.331 -0.0203 0.0946 -0.0735 0.216 0.784 

0.5 0.264 -0.0254 0.0720 -0.1055 0.156 0.844 

0.6 0.192 -0.0240 0.0640 -0.1280 0.104 0.896 

0.7 0.122 -0.0181 0.0430 -0.1355 0.061 0.939 

0.8 0.061 -0.0102 0.0225 -0.1205 0.028 0.972 

0.9 0.017 -0.0031 0.0065 -0.0790 0.007 0.993 

1.0 0.0 0.0 0.0 0.0 0.0 1.000 

Note:—Zm^ and are obviously obtained by reversing columns for Zm^ 

and For a load on right half Vc = Va', for load on left half, Vc ~ Vb> 

In case of an arch for which general equations for the statically 

undetennined quantities are not available in such definite form, the full 

solution (as in Art. 140) must be carried out for a load at a number of 

points. For such cases we may proceed as follows: If the origin be 

taken at the elastic center, 0 (Fig. 173), we have the equation for //o, 

for example (see Equation (69a)), 

Xt = Ho(= He) =-p, 

where 8'b ~ the relative horizontal deflection of the faces at C due to 

the given applied loads. To construct the influence line for Ho = He, 

we should compute this deflection for a unit load at, say, tenth points 
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across the span and divide the several results by the constant 5^. We 
recall, however, that ^^the horizontal deflection at the crown due to a 
unit vertical load at some point q, is equal to the vertical deflection at q 

due to a unit horizontal load at the crown (MaxwelFs principle of 
reciprocal deflections). If, therefore, we construct the deflection curve 
for the curved beam AC^ loaded with a 1-lb. horizontal load at 0, we shall 
have, to some scale, the influence line for He. The actual value of He is 

The constant is readily computed, and all values of 6'^, are 

obtained from a single deflection curve as noted above and shown in 

© 

Fig. 173c. This deflection curve is conveniently obtained, algebraically 
or graphically, as the moment curve for the straight cantilever beam * 

AC (Fig. 173fe) under a load whose intensity at any point is ^ X — = 

A similar method holds for both Afo and Fo ( = Fc); that is, 

the influence line may be drawn as a moment diagram for the canti- 
lever AC suitably loaded. These lines for a parabolic arch (the form 
would be very similar for any symmetrical arch) are shown in Fig. 174. 

* See H. Muller-Breslau, '' Die graphische Statik der Baukonstruktionen,” 

Band II, II Abteilung, pages 660-661; also compare article by H. M. Westergaard, 

“ Deflection of Beams by the Conjugate Beam Method,’^ Journal Western Soc. of 
Engineers, November, 1921. 
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It is of some interest to note curves for Ma, Ha and Va as the head 
of a uniformly distributed load of 1 lb. per ft. passes across the span—the 
“ summation influence line ” (see the treatment for fixed beams, Chap¬ 
ter IV, page 176). Again taking the parabolic arch, the equation for 

© 

Ha = He when referred to the right support instead of the crown as 
the origin is (for P = 1 lb.) 

77x = ^ (P - + k*). 

If we take P = w-d(kL) = wLdk and integrate the right-hand mem¬ 
ber from fc = 0 to A; = A;, we have 
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Fig. 175 shows these equations plotted for w; = 1 Ib. per ft. By their 
use, the moment, shear and thrust at any point for uniform load extend¬ 
ing from one end, partially across the span are readily obtained. 

143. Reaction Locus.—The determination of the reactions for a 
hingeless arch rib for a single load anywhere on the span may be accom¬ 
plished by means of the reaction locus method, as was done for 
the two-hinged arch in Art. 124. As might be expected, the construc¬ 
tion for the hingeless arch is considerably more involved since we have 
not only the reaction intersection locus to determine, but also the point 
of application of the reactions at each support. We shall develop the 
method for the case of the parabolic arch with I varying as sec a. 

Referring to Fig. 176, the origin is taken at the elastic center 0, and 
the problem is to determine for any load P, distant kl from the center, 
the corresponding ordinates, Vk and of the intersection point of the 
two reactions Ri and Rrj and of the intersection of Ri with a vertical 
through A. Obviously, when these values are known, the direction 
of the reaction is fully determined and its magnitude may then be found 
from the force triangle (Fig. 176&). We shall assume P = 1 lb. 

Taking moments about the point k of all forces on the left half 
of the arch, we shall have 

whence 

fhyk + 2 ” ~ 

yk=- 

Fo = F. = - 

Vok^-Mo 

To ' 

(2 + fc)(l -fc)2 

Mo = - kY. 

Vk = 

^(2 + A)(l -fc)2 + |(l-fc)2 

^ L 
64 h 

(1 - F)2 

8 , (1 - fc)2(fc2 + 2fc + 1) _ 8 , 
“15" (1-*2)2 -i5«- . (91) 

That is to say, the locus of reaction intersections is a horizontal 
line above the axis of x (through elastic center). 
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We also have by inspection of Fig. 176, 

(2 - A:)(l + kY 

Vk Vq _ y A _ 4 _8^2— 

l-kl Ha 15 L.. ,2.2 15 / (1 - A:)2* 

^ ^ 8 h2 - k yk ^ 8^,2 - k - 1 + k ^ ^ Vk mo\ 
" Z' 15Z 1 - A; I 15 I - kl l-kl Z - A:Z* ' 

This proportion affords a means to a simple and elegant graphical 
solution. If a unit load be placed at any point k, we draw the line 

kn, and from 0 draw a parallel line to intersection q with a vertical 

through A, Then nq = yq = yu j~ gives the direction of 

Ri. A similar construction holds for Rr. Fig. 177 shows the reaction 
lines drawn for tenth-point loadings. It may be shown that the 
envelope of these lines, MON, consists of two hyperbolas having a 
common point of tangency with the X-axis at the origin and each a 
vertical asymptote through the corresponding support. 

Once the reaction lines are constructed, the moment, shear, and 
thrust at any point are easily determined, and they also offer one of the 
readiest methods of determining the position of live loading for maxi¬ 
mum positive and negative moments. Thus, if the point n (Fig. 177), 
is at the flange center or kern point of the corresponding section, it is 
clear that any loading from P4 to P7 will result in compression on the 
top fibers; any other load positions will cause tension. 
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The general method of reaction lines may be used in live-load investi¬ 
gations for any arch as an alternative method to that of influence lines, 
but of course, no such simple solution as that just illustrated for the para¬ 
bolic arch is in general possible. If the equation for yk is known and if 
the points of intersection r and s of the reaction lines with the X-axis 
can be determined, it is evident the reaction lines may always be drawn. 
The general equations are 

Vk 
— Vokl 4* Mo , _ Mo kl _ Mo ^ 

ITo ^ “ 1 + ^ ^ 

Thus, as soon as Afo, Ho, and Vo are known, the reaction line may be 
determined for a load at any point of the arch. 

144. Effects of Temperature and Rib-Shortening.—Temperature 
effect is most readily seen from Equations (68) and (69a), referred to 
the elastic center. 

We have 

Ho = 
Obb 

♦ See H. Muller-Breslau, ** Die graphische Statik der Baukonstruktionen,” 
Band II, II Abteilung, page 664. 
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and if for d’n we substitute atL, we have 

alL 
Ho‘ = lic‘ 

Similarly, 
i 

y^ds' 

IT 

.... (93) 

Mo' = - 
S'„ 

and 

X " -t 
X X 

yds 

El 

ds 

El 

- 0, 

Mc« = Mo' - He'-c = -7^1 

J. 
• (94) 

If the axis bo taken at the crown, the corresponding expressions 
become 

HJ = 
“ J. El 

J, ElX 'ET - ^X m} 

yds 

L El 
. 

X 

. (93a) 

C — (94a) 

Obvious changes are made for the case where summations are used 
in place of integrals. 

As has been previously noted, the change in length of the axis of the 
rib due to direct normal stress is usually entirely negligible in its effect 
on H and M. If it be desired to calculate this effect it may always be 
done with sufficient accuracy for practical purposes by assuming the 
rib-shortening equivalent to a drop in temperature, and replacing, in the 

formula for H just given, atL by 
He cos ai • La 

AJE ^ 
the change of length due 

to thrust (see discussion for two-hinged arch, Art. 120, page 287), 
Equation (93) then becomes 

He cos aiLa 
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and (93a) becomes 
H cos aiLa / 

EA. J. 4 

pds 1 

A 
y^ds 

0 
f" yds's^ 

L Elj 

(95a) 

146. Deflections.—If we treat the hingeless arch as a simple curved 
beam acted upon by the given loads and applied end thrusts and 
moments equivalent to Haj IIBy and then so soon as we know 
these latter values, the deflection at any point of the arch may be com¬ 
puted by the standard beam deflection formula, 

8 
X 

^ Mmds 

where m is the simple beam moment^ and M == the true arch moment 

= -f- Me "i“ HeV i VqXj 

if we follow the method of Art. 120, or 

M = M' + aMs + bMA + HvR, 

if we follow the notation of Art. 139 (second method). 

146. Approximate Methods.—The great majority of hingeless arch 
ribs met with in ordinary practice have either a parabolic axis, a flat 
circular ax^’s, a compound circular axis, or an elliptical axis. Most of 
these types, though not all, may be fairly closely approximated by a para¬ 
bolic axis. Marked differences will be found in the case of concrete 
arches in the variation of /, but it is tolerably well established that unless 
this difference be very great, the effect on the final values of the statically 
undetermined quantities is rather slight.* It would appear then that 
fair approximate results might be expected from applying the formulas 
for the parabolic arch with I — Ic sec a. Actual computations bear 
this out for ordinary ratios of rise to span—| to J—and for ordinary 
variations of /. A fairly typical comparison is shown in Table A. The 
arch selected is analyzed rigorously by means of influence lines in 
Turneaure and Maurer’s ^‘Principles of Reinforced Concrete Con¬ 
struction,” pages 362 et seq. The span is 100 ft., rise 20 ft.; the axis is 
not parabolic nor is the variation of / in proportion to sec a. [Ic = 138; 
sec ai == 1.286 for a parabolic arch of the same rise and span; therefore 
I at springing line should equal 1.78. The actual value is 4.33]. 

* For a full discussion of this point with numerical comparisons, see J. Pirlet 
'‘Statik der Baukonstruktionen,” Band II, 2 Teil, pages 274-281. 
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TABLE A 

Point 

He Me Ve 

Actual 

Value 

Approx. 

Value 

Actual 

Value 

Approx. 

Value 

Actual 

Value 

Approx. 

Value 

Crown + 1.25 +1.15 +4.54 +4.60 -0.50 -0.50 

+ 1.14 + 1.08 +0.80 +0.70 -0.36 -0.36 

+0.85 +0.85 -0.78 -1.10 -0.21 -0.21 

+0.48 +0.48 -0.92 -1.20 -0.10 -0.10 

+0.14 +0.15 -0.37 -0.50 -0.02 -0.02 

The first column gives the distance from crown to the point consid¬ 
ered {I = half span), the remaining columns are self-explanatory. 
There is a considerable percentage error in the relatively small moment 
influence line ordinates at the f and f points of the half span. For all 
other values the agreement is remarkably close. 

From the preceding considerations, it seems justifiable to assume that 
any ordinary arch rib may be analyzed with a fair degree of approxima¬ 
tion by substituting the parabolic arch with / = 7c sec a, and that for 
many cases, the results are so close that they may well be used in lieu of 
the exact values. 

For more elaborate approximate methods, reference may be made to 
Hool and Johnson, ^‘Concrete Engineers’ Handbook” (Section by 
Victor H. Cochrane) and to J. W. Balet, ''Theory of the Elastic Arch.” 

147. Irregular Cases.—We shall illustrate in this article two prob¬ 
lems of a less conventional type which are conveniently analyzed by the 
arch method of Art, 1406, 

Problem I (see Fig. 178). This is a culvert section, dimensions and 
loading as shown in Fig. 178a. It may be analyzed as a fixed end 
curved beam AB (Fig. 1786). AB is not a true arch, since the length is 
not fixed; the tangents at A and B are fixed by the sjonmetry of the 
structure and loading. The necessary equations of condition—no 
angular charge at A or J5: 

2ailf^ = 0; = 0. 

Table A and the adjoining equations show the arch solution. The Af'’s 
were obtained graphically; Fig. 178c shows the force polygon for given 
loads and the corresponding string polygon (marked " preliminary pres¬ 
sure line ”) is shown in Fig. 178d. When the moments Ma and Mb were 
obtained Ra and Rb were corrected, a new pole located on the force poly- 
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Attention should be called to the notation in one point—for con- 
L . j . As 

venience -j is used for -j-. 

148. Problem II (see Fig. 179).—^This problem is the analysis of a 
water conduit section with dimensions and loading as shown in Fig. 179a. 
It is assumed that a very heavy base along the line A-B completely 
fixes the structure at A and B. Fig. 1796 shows the graphical construc- 

As 
tion to determine the division lengths rendering -y constant. Assum¬ 

ing the arch a simple beam hinged at B and on rollers at A {Va vertical), 
the force polygon, Fig. 179c, was constructed and from it the string 
polygon was drawn in Fig. 179a. The column headed “ e Table A, 

Problem II—Solution of Equations 

ZMa — 0 'LMh = 0 ^LMv = 0 

M — M' oMb + IjMa + vFhR 

XM'a + + MA^ah + FnR^av = 0 

XM'b MB^u.b -f- MA^b^ "P FffRXbv = 0 

2M'v + Ms^ab -f Ms^bv + FhRXv^ = 0 

Correction to be applied to V to obtain final value 

« AF 
7450 - (-6200) 

5.5 
2480. 

This evidently acts downwards at A and upwards at B, 
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gives the arms as scaled from the string polygon, while the second 
column, headed ^‘Thrust,” gives the corresponding resultant force. 
The necessary summations are obtained from Table A. It should be 
recalled that vR is the vertical height of any division point measured 
from line A-Bj and therefore v is the relative rise of any such point. 
It should also be noted that the horizontal thrust necessary to be added 
at A and B to secure complete arch action is denoted as (instead 
of i/ as in the case of vertical loads). 

TABLE C—Problem II 

Final Moment Calculations 

Point 1 2 3 4 5 6 7 

M' - 830 -1670 -1670 -1390 +• 670 + 3,000 + 5,000 

aM B + 180 4- 310 + 370 + 310 - 120 - 620 - 990 

hMA +7G70 +7820 +7900 ■+7820 + 7,300 + 6,710 + 6,250 
vFfjRi -1660 -4070 -5880 -8600 -10,870 -12,070 -13,140 

M 4-5370 +2390 + 720 -1860 - 3,020 - 2,920 - 2,880 

1 
Point 8 9 10 11 12 13 14 

M' + 7,230 + 10,800 +14,900 + 16,700 +18,850 +21,200 + 19,400 
aM B — 1,420 - 2,170 - 2,850 - 3,340 - 4,030 - 4,770 - 5,200 
hMA + 5,740 + 4,840 + 4,020 +• 3,420 + 2,600 + 1,710 + 1,190 

vFhR - 14,190 -14,950 -15,100 -15,100 -14,950 -14,190 -13,140 
M 2,640 - 1,480 +- 970 + 1,680 + 2,470 + 3,950 + 2,750 

Point 15 16 17 IS 19 20 

M' + 19,000 +18,200 +1.5,900 +11,400 +8100 +3600 

aMs - 5,580 - 6,070 - 6,510 - 6,570 -6510 -6390 
hMA •f 750 + 150 - 970 - 450 - 370 - 220 
vFffR -12,070 -10,870 - 8,600 - 5,880 -4070 -1660 

M + 2,100 + 1,410 + 420 - 1,500 -2850 -4670 

Table B shows the simultaneous solution for Mb and Fjy, 
and Table C gives the final moment calculations. The moments are 
tabulated on Fig. 179a also, on the tension side of the arch ring. That 
is, at point 7 the moment is 2880 lb. producing tension on outside fiber; 
at point 12 the moment is 2470 lb. producing tension on inner fiber. 
The check (SAf = 0) is within less than J of 1 per cent; SAft; checks 
within 3.8 per cent. 
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149. Influence Lines for Reinforced Concrete Aich—Numerical 
Example. 

To illustrate further the analysis of the fixed arch by means of 
influence lines we will construct the influence diagrams for Mo, Ho and 
Vo (i.e., the supporting forces applied at the elastic center) for the arch 

shown in Fig. 180. The influence diagram for the moment at an inter¬ 
mediate point will also be drawn. 

The method used varies slightly from that discussed in Art. 142. 

The redundant forces are applied at the elastic center, but the arch is 
treated as a single cantilever (see Fig. 181o) instead of two symmetrical 
cantilevers.* The analysis to obtain Ho, Mo and Fo is shown in full 
detail in Table A and accompanying notes. The detail of dividing the 

arch ring to render constant, and the location of the elastic center, 0, 

is omitted. 

•See an article by C. S. Whitney, Engineering Record, Sept. 11, 1916. The 
method of evaluating the summations used in Table A was suggested by Mr. J. A. 
Wise. 
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TABLE B 

Table op Influence Ordinates for Af^ 

Mfi == Mo - - lloy^ -f VoXi 

Point Mo - Ihlji + Po( — Xo) M'= - X\ M, 

2R .40 .065 .72 -0.39 
3 1.12 .162 1.99 -1.03 
4 2.09 .263 3.51 -1.68 
5 3.20 .363 5.16 -2.32 
6 4.41 ,448 6.82 -2.86 
7 5.75 .513 8.54 -3.30 
8 7.22 .572 10.33 -3.68 
9 8.83 .620 12.12 -3.91 

10 10.57 .657 14.01 -4.10 
11 12.60 .682 15.93 -4.01 
\2R 14.77 .693 i 17.86 -3.78 
12L 17.14 ! .693 19.82 -3 37 
11 19.68 .682 21.80 -2.80 
10 ! 22.45 .657 23.72 1 -1.93 
9 25.42 .620 25.60 . -0 80 
8 28.67 .572 27.45 -f-0 65 
7 32.25 .513 1 29.20 

i 
+2.54 

0 36.28 .448 i 30.90 +4.87 
5 40.80 .363 32.60 +7.84 
4 46.30 .263 34.20 6.65 +5.19 
3 53.15 .162 ’ 35.75 14.37 +2.87 
2 61.20 .065 1 37.05 i 23.19 +0.89 
IL 70.25 0 1 37.63 32.62 0 

Values for Ik arc negligibly small. 



CHAPTER VII 

SUSPENSION SYSTEMS 

160. Preliminary.—A suspension bridge consists essentially of a road¬ 
way supported by a rigid or flexible cable suspended between sup¬ 
ports. The term “ cable is used here in a conventional sense; it may 
be a truss, a chain of links or bars, or a wire rope of any of a variety of 
forms. 

A rigid cable bridge is practically identical, statically, with an 
inverted arch rib. Like the latter it may be of the hingeless, two- 
hinged or three-hinged type (see Figs. 182-184). A number of such 

Fig. 183 

structures have been built in the past, but they have come to be almost 
wholly superseded in American practice by the flexible cable type. For 
this reason, and because the methods of arch analysis may be applied 

Fig. 184 

to such types, practically without modification, they will not be con¬ 
sidered further in this chapter. 

The flexible cable bridge may be either stiffened or unstiffened. It 
is of course obvious that a truly flexible chain or cord is, within limits, 

349 
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an unstable structural form, subject to relatively large inelastic deflec¬ 
tions under partial loading. An unloaded cord, ABCD (see Fig. 185), 
will under the loads Pi and P2 take the form AB'C'D, If the weight 
of the cord is small compared to the applied loads this will be substan¬ 
tially the equilibrium polygon for these loads subject to the conditions 
that it must pass through A and D and the strings have a total length 
equal to that of the original cord. Such a structure, even though pos¬ 
sessing ample strengt^h, is unsuited to carrying railway or highway 
traffic since the roadway distortion in the neighborhood of the loads 
would be much too great. If the dead weight of the cable, roadway, 
floor, and bracing is very large compared to the live loads, this weight 
acts as a stabilizer, greatly decreasing the deflections, and such a struc¬ 
ture, though more flexible than truss or arch types, may be rigid enough 
to give satisfactory service. These conditions will ordinarily obtain 
only in extremely long spans or in moderate spans with extremely light 

Fig. 185 

live loading. For other cases it is necessary to supply some type of 
artificial stiffening to prevent undue local distortion of the floor under 
live loads. This usually takes the form of a shallow truss or girder 
(extending the length of the span) attached to the floor system and 
suspended from the cable by hangers. Other stiffening devices may 
be used, but practically all important suspension bridges built in 
America during the last twenty years have stiffening trusses. 

The accurate determination of the stresses in such structures presents 
very great analytical difficulties. These arise chiefly from the fact that 
the deflections of a suspension bridge are too large to permit the usual 
assumption that, for purposes of stress computation, the configurations 
of the stressed and the unstressed structure are identical. This assump¬ 
tion underlies the analysis of all structures so far treated in this book, 
as it does the approximate theory of suspension systems. It may be 
shown, however, that this method applied to bridges with relatively 
flexible stiffening trusses gives a total cable stress considerably too high, 
and bending moments and deflections in the stiffening trusses grossly in 
excess of the true values. For such structures a more exact method of 
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analysis, which takes into account the deflected position of the cable, is 
required. 

It is common practice in the literature of the subject to call the 
approximate theory the elastic theory and the more exact theory the 
deflection theory. The former derives from the fact that the standard 
theory of indeterminate stresses is quite often referred to as the elastic 
theory (e.g., a fixed arch is said to be analyzed by the “ elastic 
theory since the redundants are found from equations defining the 
consistent elastic deformations. When a suspension structure is analyzed 
in an entirely analogous manner it is natural to designate the method 
the elastic theory also. 

It is important again to call attention to the fact that, although in 
the conventional theory of indeterminate systems the redundanls are 
obtained by means of relations existing among elastic deflections, yet 

for the purpose of computing shears, moments, stresses, etc., the base 
structure is assumed to maintain its shape unchanged. Thus in a two- 
hinged arch rib, when the final moment at any point is computed as 
ilf == Af' zb Hyj y is taken as the ordinate to original arch axis, though, 
clearly, owing to deformation under loading, this is not exactly correct. 
Similarly, in the approximate theory of suspension bridges the ordinates 
to the cable curve are assumed to remain unchanged under all condi¬ 
tions of loading, while the more exact theory requires the introduction 
of the ordinates to the actual deflected cable curve. It is this point 
which justifies the use of the term deflection theory; of course, both 
methods involve the use of elastic deflections. 

It is impossible to present a full account of so extensive and complex 
a subject as the theory of suspension systems in an elementary treatise; 
this chapter will attempt merely to present the basic theory, discuss 
briefly the limitations, and show some simple applications. 

L THE ELASTIC (APPROXIMATE) THEORY 

151. Symmetrical Three-Span Suspension Bridge with Trusses 
Hinged at Supports.—Equation for H. Fig. 186 illustrates the most 
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common type of stiffened suspension bridge. It consists essentially of 
two separate structures—the stiffening girders and the cable—and it is 
therefore singly statically indeterminate. It is advantageous to select 
the cable as the redundant member and the horizontal component of 
the cable stress as the statically undetermined force X. If we imagine 
the cable cut at one of the anchorages (Ai in the figure) and free to 
slide in a horizontal slot, then from the general theory of indeterminate 
structures, Equation (28), page 94, we shall have: 

x = iy = 
< SI ^, 
<AE^^ E/ M'ds 

El 
■m 

m^ds 
w 

(96) 

where 5' is the horizontal deflection of the cut face of the cable due to 
the applied loads and 5i is a like displacement due to H = unity. The 
stiffening girder may be either a plate girder or a truss, but in either 
case it is usual to treat it as a beam with constant /. M' is the bending 
moment at any point of the span of any of these girders due to the 
applied loading, the cable not acting, and m is the moment at the same 
point due to = 1. aS' and u are, respectively, the stresses due to the 
applied loads (cable disconnected) and the stresses due to /? = 1 in the 

cable, towers and hangers. The sign El means that the integration 

is to be carried over the several spans. 
The equation may be considerably simplified by some general con¬ 

siderations. Since with the cable out of action there are no members 
sustaining a direct stress, aS', the first term of the numerator vanishes. 
The stiffening girder is ordinarily horizontal, hence ds = dx. It is cus¬ 
tomary ordinarily to disregard the stresses in the towers and hangers, 
so far as their effect on the deflection 5i is concerned, hence the expres- 

EuH 
is the horizontal movement of the cable end at Ai due to 

the elongation of the cable under the action oi H — If we assume 
the cable to slide freely at the towers, and the inclinations of the hangers 
negligible, the horizontal component of the cable must remain constant 
throughout its length. For the loading = 1, the cable stress T = 

rr ds * 

dx 

* Attention should be called to the fact that this is the reciprocal of the corre¬ 
sponding expression for the two-hinged arch rib, which is statically so similar to the 
suspension bridge with two-hinged stiffening truss (see page 288). 



THE ELASTIC (APPROXIMATE) THEORY 353 

The expression for m requires more consideration. If the cable is cut 
at the tower and at a section x distant therefrom and also a horizontal 
section taken through the hangers we shall have the structure shown in 
Fig. 187. The cable, being perfectly flexible, must hang as an equi¬ 
librium polygon for the hanger loads. From the fundamental properties 
of this polygon, the bending moment of the hanger loads at the section 
X must equal Hy = 1 * y. Since the hanger pulls, reversed, are the only 
loads tending to bend the stiffening truss for this loading condition 
{H — 1), it is clear that the bending moment m in the stiffening truss 
at the point xm —y. 

Fia 187 

We may then write for Equation (96), assuming E the same for all 
parts of the structure, 

C 
J I /rxf* \ 

2/ M'ydx 

Before numerical computation is possible it is necessary to evaluate the 
last term in the denominator. Assuming the cable curve a parabola, 
we have for the main span, origin at the center, 

- ^ 
y ~ P ’ dx P’ 

*_ + + . . . (97) 

If the total length of main span cable curve = L, 

= Lc, say.(98) 
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A simple approximate expression for Lc is obtained if we expand 
(97) by the binomial theorem and integrate term by term, thus: 

= l[l + 8n2 + yn« + ...].(99) 

if w Since this term is usually of the order of yV) the third term 

in (99) is of the order ro:Wo) and we may with sufficient exactness, take 

Lc = 1(1 + 8n2). (100) 

The L-term for the side spans may be obtained similarly. It should 
be noted (Fig. 188) that the vertex of the side cable curve will usually 

lie outside the span Ij. Calling the distance from tower to the vertex 
of the curve extended 1^/2, we may write the equation of the curve 
(origin at O') as 

y = 

4/'a;^ 

and the L-term for the side span cable from A to B' as 

2 
f 

If I" = W and y = n', we obtain as in (100) 

(101) 

i. = ^[(l k) + 8(1 - fc)2n'2] = li [1 + 8(1 - k)n'^]. (102) 
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It will frequently be convenient to refer the cable curve to an origin 
at the tower top (B' in Fig. 188). The equation of the main span 
cable is evidently 

y = '^[,{lx-x^),.(103) 

and it may readily be shown that the side span curve is given by the 
equation 

2/ = p (104) 

where y (see Fig. 188) is referred to the chord B'A and fi and h are 
as shown. 

The general equation of the parabola referred to a point such as 
B'is: 

y — ax + hx^. 

For main span, the following conditions hold: 

For X = I, y — Oj whence a ^ — hi. 

T. ^ . al bP , bP 
For X = 2^ 2/ = /; whence / =2‘^T""“''2'^T 

W 
4 ‘ 

r 4/ , 4/ 
0 = — -p; and = y , and Equation (103) follows. 

For the side span: 
y' = ax + bx^, 

and we have the conditions: 

X = h, y' =F; * = |, 2/' = J+/i 

from which we derive 

whence 
h * h ^ 

{lix — x^). 

We may now evaluate the first term in the denominator of equa¬ 
tion 96a. For the main span: 

{Px^ — 22a:® + 3^)dx = 
8/*2 
15/• 

(105) 

For the side spans this term becomes 
I51i 
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Equation (96a) may then be written: 

'M'ydx 
> I 

H = 
yr^ T.C‘ 

. . U + 2L. D 

M'ydx 
I 

, 16^ Z^2L. 
15 / 15 /i A 

(106) 

Df being independent of the loads, may be computed once for all. 
The symbol 2 in the numerator means that the integrals shall extend 
over all loaded spans. For the side spans, h and Ii replace I and /. 

162. Influence Lines.—H-Component of Cable Stress,—If a load P 
is placed in either the main span or a side span, at a distance kl from the 
left end, we have 

^ and 

\pk(l — x) for X > kly 

+ 7j['{^(^ - x)k^^ (1 - x)] jdx 
= ~PfPk{k^ - 2fc2 + 1).(107) 

The equation for H then becomes: 

= 0|fc(F -2F + 1), (108) 

where D is the denominator of Equation (106). 
Substituting fi and k for f and Z, the expressions for a load in the 

side spans are identical. If it is desired to obtain the value of H for a 
uniform load p per unit of length extending a distance kl from the left 
end of any span, this may be done by substituting pd{kl) = pldk for P 
in (107) and integrating from zero to fc. Thus: 

jf' M'ydx = - 2F + k)dk = ^ {2k^ - 5*^ + 5^). 

The equation for H is thefl: 

H = III. mo fc2(2ifc3 - 5F + 6). (109) 

Where the load extends from x = kil to x — the above expres¬ 
sion becomes: 

H = ^ (k2^ - kMh^ - m - W - + 6]. . (110) 
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Equations (109) and (110) give the values for the standard influence 
line and the summation'' influence line for H. (See Chapter VI, 
Fig. 175.) They apply to both main and side spans, with due regard 
to the constants. Evidently, for a single load in the same relative 
position in the main and side spans, the ratio of the two values of H 

will be: ^2, if the subscript denotes the side-span values. For 

I = 2li (usual proportion), the above fraction will ordinarily not greatly 
exceed 6 per cent, i.e., loads on the side spans have a comparatively 
unimportant influence on the cable stress. 

Fia. 189 

It is readily shown that for a moving concentration P, H is 
maximum for k — andjfor an advancing uniform load, pfci, it is 

• For concentrated load, 

H = KP{k< - 2k* + k); ^ = KPi^k* - 6** + 1) - 0; 
die 

A A;* - 4. j * kKk - i) - (it -f m - i) » 0, 

whence the roots of the cubic are f and §(ld=\/3)* Since k must be positive and 
less than unity, obviously only the first value applies. 
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maximum for fc = 1.* Fig. 189 (a and b) show typical forms for these 
curves. 

163. Moment in Stiffening Truss.—The actual moment at any 
point in the stiffening girder must equal the sum of the positive 
moment of the applied live load, the girder acting as a simply sup¬ 
ported beam, and the negative moment of the hanger forces. For 
these latter, however, the cable must act as an equilibrium polygon, 
hence their moment at any point is Hy, We then have the moment 
equation: 

M = M' -Hy = . 

Since y is a constant for any given section, the expression in paren¬ 
thesis is, to some scale, the influence line for the moment at such section 
(see discussion for the two-hinged arch, page 290). If this section is 
distant xi from the left end of the span, the influence curve M'xi will be 
a triangle whose maximum ordinate is at the section and is equal to 

j (i-xi). The ordinate to the cable curve at this section is 

4/ Af' I 
yi = xi(l — Xi), whence which, being independent of xij 

shows that the apices of all the modified influence triangles — lie on 

the same horizontal line, and once the ^f-curve is found the construction 
of any moment influence line becomes very simple. Such diagrams for 
sections at the center and quarter point are shown in Fig. 189c. The 
hatched portions are the influence areas to be used. Resulting values 
for uniform or concentrated loads must of course be multiplied by the 
corresponding y to give the correct moment values. 

164. Shear in Stiffening Truss.—If we differentiate (111) we obtain: 

V = — - V' 
dx dx 

H tan a. . . (112) 

where V ~ actual shear in stiffening truss, 7' = the simple beam shear 
(due to applied live loading with cable removed) at any given section. 

• For a uniform load: 
JTJ 

H = K'p{2k^ - 6k* -f 6ife*); — = K'p{l0k* - m* + 10/c) « 0; 
dk 

/fc* - 2A;* + 1 = k\k - 1) - (A: + - 1) = 0, 

whence the roots of the cubic are 1 and i(l =fc \/5> where again it is clear that the 
first only has any significance for the present problem. 
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and tan a is the slope of the cable curve at the corresponding point, 
Fig. 190. To facilitate the superposition of the simple beam action 
and the cable effect, the equation may be written: 

’'-(sL.(“2) 
Since tan a is a constant for any specified section, all that is required 
is to construct the simple beam shear influence line, multiplied by 

1 . P 
^-= (for section at x') ^ y combine with the influence 

Fig. 190 

line for H. For the side spans where yi is measured from the inclined 
chord of the cable curve, we have: 

dMi ^ dM'i 
dx dx 

= F'l — H(tan a — tan <l>) (113) 

since, clearly, 

and therefore 

_ dy dyi + dx tan <t> 
dx dx ’ 

dx 
— tan a — tan 0, 

where a (Fig. 188) is the angle the tangent to any point in the cable 
curve makes with the horizontal, and <#> is the angle between the chord 
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and the horizontal. If a — we have 

, tan a — tan <t> 
tan ai = Tj——-7—7* 

1 + tan a tan <p 

Since the average value of tan a tan <l> is approximately 0.04 for average 
suspension bridge proportions, we may write approximately 

However, 

and 

Fi = y'l - Htsmai, 

& - p - 2«.) - U, 

so that the numerical operations in the construction of the shear influence 
lines for the main and side spans are substantially identical. 

156. Temperature Effects.—From fundamental relations we have: 

=- 
di . (114) 

where D is the same as in Equation (106), and 2 indicates that the inte¬ 
gration is to be carried over both main and side spans. 

For the main span we may write (origin at vertex)— 

= co«(l+y 

For the side spans, if we take the origin at the vertex (lying on the 
cable curve produced—see Fig. 189), we have similarly: 

= ‘0<[x + x3]^= a Li, 

whence 
+ 2Lit) 
D (116) 

The effect of temperature on moment and shear will be obtained, respec¬ 
tively, from the equations: 

ilf = ilf' - Hy, 

y ^ Y' ^ 
dx 

if the loading terms, M' and F' are made zero, and Ht is substituted 
forH. 
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166. Deflections.—The deflection at any point in the stiffening truss 
may be calculated from the general equation: 

For a load, p, covering the entire central span, the center deflection is, 
origin at top of tower: 

*■ - lr{j[i f'* - 
V_W 
2 

El 
(lx^—x^)dx = 

^ P 51* 
2EI ‘ 192 38iEI 

51* / ). (118) 
H of course must be determined by means of the formula of Art. 152 
for the particular loading causing deflection. 

The deflection for any other load condition may be obtained simply 
by determining the correct values of M\ m and H for this loading. 

167. Continuous Stiffening Trusses.—The general formulas devel¬ 
oped for the case of trusses hinged at the towers are directly applicable 
to that of the continuous stiffening truss if M' and m in the various 
equations are properly modified. For this case we may use a statically 
undetermined base system, and ikf' becomes the bending moment due 
to the applied loads (cable removed) in the three-span continuous girder 
ABCD (Fig. 186), and m the bending moment in the same girder system 
due to ^ = 1. 

U Mb and Me are the support moments due to the applied loads 
with the cable removed, we shall have, for any point x, of the main span 

M cont. M' - Mb~^ -Mcj. (119) 

For w, we note that the equation of the equilibrium polygon for a 
uniformly distributed load, Wj is: 

^ _ §/* 
dx^ H dbP\P^ ) P' 

. . (120) 

* If we take a small distance, dxy on the horizontal projection of the cable, and 
assume the hangers so closely spaced that w can be considered continuous, we shall 
have for vertical equilibrium: 

*= H*A(tana) = H L 

and 

t£ ^ ^ 
H “ ^x\dx) “ dz^ 

as Ax is diminished indefinitely. 
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Therefore the suspender pull, assumed uniformly distributed, is 

w = ^ (for H = unity).(121) 

This acts downward on the cable and upward on the stiffening truss, 
causing the bending moment m. For the case of the continuous truss, 
if mB = me = the support moments, 

mcont. = m' - mc^-= - ms]. . . (122) 

Using these modified values in the equation for ff and for M, all the 
formulas of the preceding section remain valid. Mb, Me, tub and me 
are readily computed by the three-moment equation. 

168. Suspension Bridges without Side Spans.—For some crossings 
suitable for a suspension bridge, it may be advantageous to use a single 
main opening with straight backstays and the relative short side spans 
independently supported (not attached to the cable).* This arrange¬ 
ment is shown in Fig. 191. This so-called single-span suspension 
bridge is analyzed exactly as the three-span type; all that is required 
is to omit, in both numerator and denominator of the iif-equation, the 
terms which refer to the side spans. 

Fig. 191 

Summaiy.—The elastic theory of suspension systems, as indi¬ 
cated by the brief presentation here given, closely parallels the theory 
of arches and presents little more difiSculty either in the basic theory 
or the application. For structures with rigid stiffening girders it gives 
results very nearly correct, and for certain other cases it may be used 
to obtain useful approximations. A comparison of results obtained by 
the elastic and deflection theories will be found in the problem on 
pages 380-390. 

• The Ambassador Bridge over the Detroit River, the second longest span sus¬ 
pension bridge in the world, is of this type. 
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n.—THE DEFLECTION (MORE EXACT) THEORY OF SUSPENSION SYSTEMS 

159. Preliminary.—It has been noted in Art. 145 that a suspension 
bridge, even with a moderately heavy stiffening girder, is a much more 
flexible structure than any other type in common use, and for such 
structures it is in many cases necessary to take the deflection into 
account in order to obtain stresses sufficiently accurate for designing 
purposes. For very long spans or otherwise more flexible types this 
necessity is correspondingly increased. 

This requirement very greatly increases the difiSculty of analysis. 
The general equations for statically indeterminate forces. Equations 
(29), page 112, are founded upon the principle of superposition, i.e., 
that the summation of the separate effects of the forces of a given group 
is equivalent to the effect of the entire group applied simultaneously 
(see page 90). When it becomes necessary to take into account the 
elastic deflection of a structure the law of superposition obviously fails. 
The deflection will depend upon the total loading, and if this deflection 
is sufficient to affect the stresses, then a load will no longer produce the 
same effect when it acts alone as when it acts in combination with other 
loads, nor will the stress effect vary linearly with the intensity of the load. 

The implications of the failure of the superposition law are of funda¬ 
mental importance and should be clearly understood by the student. 
According to the elastic theory the equation for the horizontal com¬ 
ponent of the cable stress is 

S' + HSi = 0, or H = - I-. 
Ol 

This expression is no longer valid, since it assumes that the deflection 
due to H is H X (deflection due to unity). If the deflected position of 
the structure must be considered, this will be very different when H = 
10,000,000 lb., say, from the value when = 1 lb. 

The moment in the stiffening truss has been obtained from the 
equation; 

M = M' - Hy, 
where y is taken as the ordinate to the parabolic cable curve. How¬ 
ever, the deflection theory requires the use of the ordinate to the deflected 
cable curves, so that the equation becomes: 

-H{y+ by), 

where by is vertical displacement of the cable under the given loading. 
It is very evident that influence lines cannot be used, except approxi¬ 

mately, in the deflection theory, since there is no longer a linear variation 
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in the load effects, nor is the summation of independent effects valid, 
both of which are presumed in the application of influence lines. 

In the ordinary sense, a suspension system analyzed by the deflection 
theory is singly redundant, just as in the analysis by the elastic theory, 
and in the former as in the latter it is convenient to take the horizontal 
component of the cable pull as the redundant. But evidently H depends 
upon 62/, which in turn depends upon /f, so that it is necessary to develop 
two equations of condition in order to solve the problem. Expressions 
for H and by will be developed in the following articles. 

160. Equation for H. (a) Derivation by the Method of Work,—For 
simplicity we shall take a single-span suspension bridge, and assume a 
horizontal section taken just above the stiffening truss (see Fig. 192). 

The live load, p, is disposed in any arbitrary manner. The following 
notation will be used: 

Hw = horizontal cable pull due to dead load only. 
Hp = additional cable pull due to live load, p. 

Sy = rj — deflection of cable due to p. 
q = hanger pull due to p. 

A and E = respectively, the constant cross-section and the modulus of 
elasticity of the cable. 

It is assumed that: 

(а) The dead load w, is uniformly distributed and carried entirely 
by the cable. 

(б) The hangers are inextensible, hence by {^rj) for the stiffening 
truss and cable are identical. 

(c) The supports are immovable. 

Considering the structure as shown in Fig. 192 under above assump¬ 
tions. we shall have for the total internal work due to the application of 
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the live load, p, the summations of the products of the cable stretch 
for each element of length ds and the average stress prevailing during 

H 
this process. If p is applied gradually so that may be taken jis 

the average of the if-component of the induced cable stress, the average 
cable pull will be: 

Tav. = (h^ + a ... . (123) 

and the stretch will be: 

5ds = . (124) 

whence the total internal work of distortion due to the application of 
p is: 

where Lc is the same expression as was evaluated in Equation (98), 

page 353. 
The external work, TFc, must equal the summation of the products 

of the external forces times the corresponding deflections. These forces, 
over an elementary length dx (assuming the hangers so closely spaced as 
to form practically a continuous sheet), will be {w + qav)dx, hence the 
total external work is 

We ^ J {w + q^y.)dx^dy.(126) 

The hanger pull, is no longer uniformly distributed over the span, 
as will be shown later, but from the essential nature of the distributing 
action of the stiffening truss, it may be expected that the variation from 
uniformity will be slight. For the purpose of estimating the value of 
the external work this assumption will ordinarily prove sufficiently exact. 
This is of course equivalent to assuming that the deflected curve is a 

parabola with a sag 

/'==/+ Vof 

and 

w + gav.== 

= + .(127) 

Substituting in Equation (126) we have 

W. = (h„ + (approx.) (h^ + (^28) 
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This substitution of / for /' does not appear justifiable at first glance, 
but, as will be later indicated, it affects the final value of Hf very little, 
even when there is a considerable center deflection. 

Since the potential energy of strain must equal the external work of 
the forces producing it, we have 

Wi = W„ or + +y)|J[W, 

whence 

This expression may be evaluated when an integrable expression for 
T] — by has been found. This will be derived in Art. 163. Because of 
its basic importance an alternative method of derivation for Equation 
(129) will be presented. 

(6) Derivation by Kinematical Method.—From the general differential 
relation 

= dx^ + dy^ 

we have, applying the process of variation, 

2ds8(ds) = 2dx8(dx) + 2dyb(dy), 
from which 

S(dx) = dids) ^ - 5idy) 

This relation will hold for any plane curve affected by the deforma¬ 
tions indicated, provided the latter are vanishingly small. Assuming 
it to apply to the cable curve of Fig. 193, for which the ends are fixed, 
we shall have: 

0. 

We may write further, since S(ds) 

AE r©' •ds 

V ^ 
HpSeca , ^dx 

AE ' AE 

HpLo 
AE 

ds, 

dx 

Integrating the right-hand term by parts. 

(130) 
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But, at A and B, 5y = 0, hence the bracketed term vanishes. Also 

g-|, whence S ' IjT”*!'* 

and from (130), 

which is identical with (129). 

Regarding the error involved in the use of / in place of / + dycy 
discussed in the preceding derivation (see page 366), it should be noted 
that derivation (b) is strictly correct only for the condition that the 
deformations are of the order of infinitesimals, for which case the 
above substitution is clearly admissible. 

161. Three-Span System.—For a symmetrical three-span bridge we 
shall have for the internal work: 

and for the external work, 

Fc = (iL + ^ 7]dx + 2 

or, understanding that /, I, and L shall be properly modified for the 

respective spans; 

(131) 

162. Temperature Effects.—If in addition to a cable stretch due to 

load, we have also a stretch or shortening due to temperature, the 
additional contribution to the internal work (assuming the change to 
take place gradually so that the average cable stress increment due to 

H 
temperature is sec a) is: 

/ (»”+“ (»”+1')-*/+f 
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where Lt is obtained as in Equation (115), page 360. The hanger pull 
corresponding to this condition is: 

w + 4. KiW 
^ 2)f U 

Ne may write 

+ ailLt = 

CaJling Hp + Ht = H, we may write the combined result: 

Jl 
AEa 

or 

Eie 
(182) 

163. Differential Equation for Truss Deflection.—The beam -4-5' 
(Fig. 192) is acted upon by the downward dead and live loads, w and p, 
and the upward hanger pull. If M'u> and M'p are, respectively, the 
simple beam bending moments due to dead and live loads, and Mh = 
negative bending moment due to the hanger pulls, then iV/, the true 
bending moment in the stiffening girder, must equal: 

M = + M'p - Mh.(133) 

From the fundamental theory of the equilibrium polygon we must have: 

Mk = (5«; + H){y + ^y),.(134) 

if Hw and y are, respectively, the horizontal component of cable pull 
and the cable ordinate under dead load and normal temperature, and 
H and by the additional cable component and cable displacement arising 
from the application of the live load p, or a change of temperature, or 
both. Assuming the structure so adjusted that the dead load is carried 
entirely by the cable, we must have: 

M'^ = .(135) 
and finally, 

M -EI^(Sy).. . (136) 

H I pj 
If for convenience we replace by by rj and.— by (the nota¬ 

tion commonly used in the literature of the subject), and M'j, by M' 
the differential equation for the deflection of the stiffening truss is: 

g _ c2»j - JJ - y) - . . (137) 
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Assuming the original cable curve a parabola and p uniformly dis¬ 
tributed, M' and y are quadratic polynomials in x. If p is, say, a 
triangular loading, M' will be a cubic. Other distributions will give 
other functional forms, but they are of little practical importance. With 
Six) any polynomial the general solution * of (137) takes the form: 

f) = + A2e-“ - /(x) - . . . (138) 

For the conditions assumed above, y and M' will be of the second 
degree in x and all derivatives above the second will vanish. Further, 

dx^ dx^ r 
If we set 

"" //„ + // "" iUTh 
we have finally: 

V = Aie^- + ilze— - fix) - -./"(x), . . . (139) 

H 
CiC'^ -j- C26 (139o) 

Cl and C2 are constants of integration which may be determined (as 
will be explained later) when the loading conditions are fixed. 

Note: Equation (139a) may be readily verified thus: 

d?7, ^ Hc^ 
dx^ Hu, + H 

[Cie"+C2e-^"1 - 
H 

C^t] — 
Hc^ 

Hu,-\-H 
[Cie“ -f- C-ze-^^] 

(P 

//„ + H\H 

Ilc~ 

dP " H^ + 

^ (P _ 8/\ 
H + Hu,\H V Hu, + H\H ly 

HP /M' \ 

h[-h - V’ 

which is Equation (137). Although this establishes the correctness of 
the solution it does not indicate the method by which it is obtained. 
A full development of this process requires a knowledge of the methods 
of differential equations. The student unfamiliar with this subject may 
find the following of some interest: 

The differential equation: 

^ - c2j7 = c2/(x).(o) 

♦ See for example, Forsythes “ Diff^ential Equations,” pages 68-71. 
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stated in words, requires that Fiix) = be such that when multiphed 
by and subtracted from its second derivative it shall equal c^f(x), 
the latter being a known function—in the present case a second degree 
polynomial. We must then have: 

If we assume that a particular solution may be obtained in poly¬ 
nomial form, Fi(x) must clearly be of the second degree—if higher or 
lower, the condition (6) cannot be fulfilled. Differentiating (6) twice 
and transposing: 

d^Fi 
dx^ 

<*31 
[ dx^ dx 

= 0 

(since Fi is of the second order in x). Therefore, 

and from (6) 

d:^Fi ^ dj 
dx^ dx^^ 

F.(x).-/(x)-ig. {c) 

id) 

This is a particular solution only; it is evident that, if 0(x) is a 
function such that 

S - -». 
then 

77 = F{x) = Fi{x) + (j>{x) 

will also satisfy (a), since 

^ - c^Fi + ^ - = c2/(x) + 0. 

rj = Fi(x) + <l)(x) is then a more general solution. The function (/> 
may be obtained by elementary processes. Thus, multiplying (d) by 

2 ^ and rearranging, 

whence 
dx 

= c^(t>^ + Kif 

where Ki is the first integration constant. Then 

^ /Jii'l i tF' _1 rr Ky 
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Again integrating, 

log [K3{4, + + K2)] = cx, 

where K3 is the second integration constant. From this we obtain: 

or 
— K3{<i> + v<t)“ + K‘2), 

<i> +V<1>^ + Kz = A’4e” 

if A4 = ^, and transposing and squaring, 
A3 

whence 

Then, 

— 2K4(t>e^^ + + i^2 
K^2^2cr _ 7^2 

2^46“ 2 

K2 

2Ki 

= Aie^^ + A2e' ^ 

V = <t>(x) + Fi(x) = Aie^^ + A2e-^^ - f{x) - --^/"(x), 
which is (139). 

That this expression is the most general form of the solution of 
Equation (a) is proved in the theory of differential equations. 

cPt) 
From (139a), since M ^ — El we have 

M.-H [c,.» + ft.- - - I) . . 

V = ^-=- //c[Cie'^* - C2e-"]. 

dV 
p — q = Ptruiw ^ ^ C2e "] . 

q = hanger pull per horizontal unit, 

= p - //c2[Cie'" + C2e-'"]. 

. (140) 

. (141) 

. (142) 

. (142a) 

The student should note from these relations that the moments, 
shears and deflections are no longer linear functions of x, and that the 
hanger pull is not constant over the span. 

The differential equation for the side span stiffening trusses is of 
exactly the same form, and derived in the same manner. It may be 
obtained from (139a) by substituting h, fi and h for I, f and 1. 

164. Evaluation of toe Integration Constants, (a) Full Loading.— 
For this case the moment equation retains the same form throughout the 
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span, and we have the two conditions that for a; = 0, and x = I, M = 0, 
whence 

Ci + C2 = ^[^-%)-Cie^+C2e-^ 

^ + ~~fi). 

“ (1 + e-")c^(H ~ 'f). 

-X- 

A 
' c 

<_j. 7_S. 
\ 
L_ _ru—1, \j_s. 

b 

^ fCjt *" 

r ^ 

h-1- 

Fig. 193 

(6) Patch Loading (see Fig. 
193). — It is evident that the 
M-curve will have three different 
forms, characterized by three dif¬ 
ferent pairs of constants, corre¬ 
sponding to the segments Aa^ ah 
and hB. The six equations of con¬ 
dition are: 

a: = 0, M =0. 

Aa ~ Algjt}] 
x = kill 

[VAa = Fa6. . 

\Mab — Mblil 
X = k2l\ 

[Vab = n/i. 

X = I, M == 0. 

If we let the known constant = 

give the following six equations: 

. (I) 

.(II) 

. (Ill) 

.(IV) 

. (V) 

.(VI) 

/?, the above conditions 

Cl + C2 — 01.(ai) 

-01^ --02, . . (61) 

.(ci) 

+ C4e”^**'~/S2 = - ft. . . (ft) 

(Since ft = ft) 

Cse^' - C4e“^"*' - €56^^ - Cee-^.(d) 

+ Cq€^^ = ft.(ft) 
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If we successively add and subtract (6i) and (ci) and (di) and (ei), 

and for brevity call —= b, we have: 

Cl+ C2 = Pi.{!') 

Cl - Cs =  (2') 

C2 - C4 = be'*''.(3') 

Ca - Cs = - be-‘^'.(4') 

C4 - Ce = - be+^^'.(50 

Cs + = pie-^.(60 

Solving this set of equations, and placing 

e^"'' + e-*'‘ = El; = Ez, 
we have: 

• • (145) 

= + . . (146) 

^3 - yT^i - be-^ - .(147) 

.(148) 

= . 

Ce = Pie^ - Cee^^' = . . (150) 

For the purpose of numerical evaluation a table of natural logarithms 
or of hyperbolic functions is desirable,* and for convenience in the use 
of the tables it should be noted that Ei = 2 cosh ckix and E2 = 
2 cosh ck2X, 

The above formulas will suffice for all loading conditions ordinarily 
met in practice. In addition to covering all cases of isolated “ patch 
loading, by making Ai = 0 they apply to any length of continuous 
uniform loading. In this case Ci and C2 no longer apply; the four 

* See for example B. O. Peirce, “A Short Table of Integrals ** (Ginn and Com¬ 

pany), pages 120-123. 
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constants, C3 to Ce, suffice for the two branches of the moment curve. 
Values for any other than a uniformly distributed load are rarely 
required. Suspension bridges have never been used for railroad struc¬ 
tures in America and, except in very rare cases, only for comparatively 
long-span highway bridges (400 ft. and over). For such structures a 
concentrated loading is likely to be required for influence line construc¬ 
tion only, and as already noted, influence lines cannot be used (except 
approximately) in analysis based on the deflection theory. 

Determination of constants for a single concentrated load presents 
no difficulty. If the load is kl distant from the left support, the moment 
curve has two branches and four constants are required. It will be 
convenient to take the origin of coordinates at the left end for the left 
segment and at the right end for the right segment. 

The four equations of condition then are: 

X = 0, ilf = 0, . . . . for both segments. 

If A/ 

Mu — 

V,; + F,, = P, 

and 
Ml = — P(Cic®* + — i8).(02) 

Mr = - + C4C— -13).(62) 

Vi=- Pc(Cic- - C2e—).(C2) 

Vr=- Hc{Cze^^ - C2e“-).(da) 

From (aa) and (62) evidently, since each = 0 for x = 0, 

Cl + C2 = C3 + (74 = I3f 
whence 

C2 = P — Cl and C4 = /3 — C3. 

Since, for x = kl in (aa) and x = k^l in (62), 

Ml = Mr, 

Cie‘^ + C2e-'“ = Cae'/' + 

Also, for X = kl in (C2) and x = k'l in (^2) 

F, + F, = P, 

- C2e-^ + 
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Substituting the values of C2 and C4 in terms of Ci and C3 and 
solving, we obtain 

„ _ P , /3 

^ 2Hc\ e“ - 1 + ‘ 

C3 = -it 
211c\ j 1 + + & 

(151) 

(152) 

166. Continuous Stiffening Girder.—In the general equation for 

moments (136), M' is the moment in the stiffening girder with the cable 
removed. In the preceding articles we have considered the stiffening 
girder to act as a simple beam. But the derivation for tj will follow 

identically if M' is replaced by Mf = M' + Mi + (Mr — Mi) j 

moment in a continuous stiffening girder, if M' = simple beam moment 
at any point x distant from the left end, and Mi and Mr are the support 
moments at the left and right ends respectively. In deriving the con¬ 
stants for this case, we no longer have the condition that ikT = 0, for 
X = 0 and X — 1. Instead the determining conditions are now: 

:r = 0, 

X = ly 

’[^]left main span, 

^jmain span == right side span. 

Although in principle the transformation from hinged stiffening 
trusses to continuous stiffening trusses is simple enough, the detail work 
is rather complex and will not be developed further here.* 

166. Working Formula for H,—The expression for H given on page 

368. 

+ .0*2) 

may now be evaluated. The second member of the equation, expanded, 

is: 

|[jrVx + 2K£vidx^, if ^ 

The most complete treatment of suspension bridges with continuous stiffening 

trusses so far developed is contained in an article by Dr. D. B. Steinman, Proc. 

A.S.C.E., May, 1934. See also an important paper by Dr. S. Timoshenko, Publica¬ 

tions Int. Ass’n for Bridge and Structural Engineering, 1933-1934, pages 452-466, 

which treats the same problem by a different method of analysis. 
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and Tji is the deflection of the side span truss. We have: 

j^vdx = + C2e-«)rfx 

The side span integral will be of identical form but will have different 
specific values for/, Ij M\ p, Ci and C2. We may then write Equation 
(132) 

. p&2^[Hjr'(C,e" + C,e-)dx 

Pc^EI^tLt 
8/ 

(Cie- + C2e-^^)dx + - |/zj 
8/ 2,, I 
cH 3-^ J 8/,4 

Referring to the formulas for the integration constants on page 373, 

recalling that fii=- Jp, 6 = - and letting y = we may 

write: 
n_I V r^-ct^Z ^-ciiZ ^ ^2)1 /-ic:c:\ 

¥\-- 

= 7 + g Bi, say, 

and similarly 

= A -- 7 + ^^2, say, 

Cz = y + ^B3. . . . (157) C6 = 7 + ^B6 . . . . (159) 

C4 = /3i-7 + |b4 . . (158) C6-ft-7 + ^B6, . . (160) 
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where are obtained similarly to Hi and H2. It is now clear 
that: 

X 
2ft 

c ( 
l-(^\ 

1+w 
(161) 

This general relation holds for both main and side spans. 

When this value is substitut-ed for the integral in the right-hand 

member of (153) and the resulting equation solved for we obtain: 

H = 

Pc^EIc^tLt 

^_ 
-'y'K ~ ? - jBic- - 

W 2'. 10//1 - Fc^TsI 

cH c'‘zXl + Wl 8/^ 
Pc-EIoitL, 

8/ - ^ - -Bie" - B-'e-^^yix 

D 
(162) 

It will be noted that the denominator D is free from all load and 

temperature terms (p, Af, t)j hence it will preserve the same form for 

all states of loading and temperature. 
167. Value of H for Specific Cases of Loading.—For any particular 

condition of loading the values of p, ilfHi and H2 become known con¬ 

stants and the integral in the numerator of (162) may be evaluated. 

This process is simple in principle, but the detail work is lengthy and 

tedious and the resulting formulas rather cumbersome. As an illus¬ 

tration of the method of procedure we shall take the case of a load p 

on the main span extending a distance kl from the left end, both side 

spars unloaded. 

(a) Value of 

For main span: 

Ml - |)x - 

M' = ■ 
-pk^ ^(l- x) . 

,JkP kH^ 11 
--g-- 35J.(^0 

px^ X = kl 

~2 • • x = 0 

X = I 
.X = kl. 
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For the side spans, p and M' = 0. 

(6) Value of + B2e-^^)dx, 

For the main span, the constants are obtained from the equations on 

pages 372 and 373. Since ki = 0, and k2 = A;, the effective constants 

are C3 . . . Cq. Then: 

Bs = 7f(C3 - 7) = + --J 

p r^rfd-l:) p-c/(l-fc) _ 

2c“[ J* 
Similarly, 

Bi=- 

= + 

2c- 

JL 
2c? 

e 

2e^ 
qcI ^ cl 

’^-cKi + k) g-cz(i-t) _ 

J- 
1" 

£3 + ^. c‘ 

Bz 
P 6““' 

d2) 

{Az) 

d4) 

Bo = - 

Then, 

X 

2c2 gCf __ Q-Cl 
^c/d+t) 4_ pci{\-k) _ 2«cn ^ 

" J = -B3 + |o(2-e«‘). ds) 

x< 

r'ki 
{Bie'^^+B2e~^^)dx == J (53C‘''*'+J54e~‘^’')dx (J55e‘^*+J5oe‘“®®)c?a: 

=J^ |^B3(e'^ - e-“) + e-'*^jdx 

+jr‘jB3(e“ - e—) - + e-“^(2 - e'«)jdx. d 

Obviously the terms* containing ^63 may be directly integrated from 0 to 

2, and noting that 
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we may write {A^ as: 

+ B2e-‘=^)dx 

+ e-'‘ - 2) - ^ + 2e-'' - 2)j 

’j) ~|~ c _ c 
. . (^7) 

Since we have assumed the side spans unloaded (p — 0), the con¬ 

stants, and hence the integral, vanish. We may now write Equation 

(162) for this case of loading as: 

1 
p [grKl-*)+^.-rai-t)_e<-i_g-rf_^cM_e-rtI+2] Pc^Euth, 

• 'A .x! rJ or 

For a uniform load on either side span, extending a distance kl from 

either support, there must be added to the numerator terms identical in 

form to those for the main span, but with pi, h) ci replacing p, I 

and c (if I is taken as constant from anchorage to anchorage, c = ci) 
f f 

and the proper value of Ki = ^ ^ introduced. For ordinary pro¬ 

portions Kl is very nearly unity. 
Several important observations regarding Equation (163) may be 

made. 
(1) In the form presented (including, if required, side span terms as 

explained above) it applies directly to any partial loading p, extending 

any distance klj from either end of the main span or of either or both 

side spans. 
(2) By taking A; = 1, the formula for H is obtained for full loading 

on main span alone, or either side span alone, and therefore, any desired 

combination of full span loading. 

(3) By subtracting from (2) the effect for a load extending k and k* 

from either end of any span, one obtains the value of H for any desired 

patch loading extending (on any span) from x — kl to x = I — k'l. 

(4) The term providing for temperature is to be taken minus for an 

increase in temperature, and vice versa. Obviously the lengthening of 

the cable (and consequent increase in 7f) due to a rise of temperature 

will decrease JEf, just as a shortening consequent upon a temperature 

drop will increase it. 
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(5) The comparative simplicity in form of Equation (163) may be 
deceptive; the equation is by no means an explicit expression for JY, 
since the latter is involved in the constant c which appears both in the 
numerator and denominator. It is obvious from inspection, since c 
appears both exponentially and otherwise in varying powers up to the 
fifth, that no explicit finite expression * for is possible. Equation 
(163) must be solved by repeated trial. 

(6) Since the coefficient of p in Equation (163) is variable—it is a 
function of H which is in turn a function of p—it is clear that no linear 
relation between H and p exists and that, strictly, the method of influence 
lines is inadmissible, though in many cases it may be used with a 
satisfactory degree of approximation, t 

In the application of (163) to numerical computation, it is useful to 
have a graph of the denominator, Z), in terms of H. Such a graph is 
readily plotted as soon as the constants for the structure are known. 
(See example, page 387.) 

The exponentials in the second term of the numerator may be 
evaluated individually by the aid of a table of logarithms, or the term 
may be written: 

~{csch (cO«cosh [cZ(l—4)1—coth (c2)—csch (cZ)‘Cosh (c4Z)+csch'(cZ)}, 
C3 

which may be evaluated from a table of hyperbolic functions. The 
first method will usually be preferable. 

The following example will serve to illustrate the application of both 
the approximate and more exact theories. 

168. fixample.—^The foregoing theory will be illustrated by applying it to a 
structure whose principal dimensions are shown in Fig. 194. The cable stress will 
be computed, influence lines constructed and the values of moment and shear deter¬ 
mined at a point in the main span stiffening truss at a distance of 0.3Z from the 
tower. The structure consists of two stiffening trusses, each suspended from a 
single cable. 

(a) IXmensiom and Constants.—The following dimensions and constants will be 
used in the calculations. Some of these values are obtained from Fig. 194; those 

* It has been shown by Prof. S. Timoshenko that an explicit formula for H may 
be obtained in the form of a Fourier series, which for most cases gives sufficiently 
accurate values with a very few terms. For a full exposition of Timoshenko's 
theory, as well as an important contribution to suspension bridge analysis in general, 
see a monograph by Dr. Geo. C. Priester, “Application of Trigonometric Series to 
Analysis of Suspension Bridges,“ Engineering Research Bulletin 12, University of 
Michigan, 1929. 

t See George C. Priester, loc. cU. See also Hans H. Rode, “A New Deflection 
Theory,” F. Bruns, Nidaros (Norway), 1930, where a very interesting and original 
method for the approximate application of influence lines is presented. 
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relating to loading and section properties of the structure are the result of previous 
calculations. 

I = 800.0 ft. 
h = 400.0 ft. 

Cable in anchorage, 75.0 ft. 

/ = 80.0 ft. n = 
/i = 20.0 ft. 
1 = 2500 in.2 ft.2 per truss. 

1\ — 2800 in.2 ft,2 per truss. 

A = 85 sq. in. per cable, 
tan ai = 0.200. 
sec ai = 1.020. 

Dead load = 4500 lb. per ft. of truss. 
Live load = 1600 lb. per ft. of truss. 
Temperature variation = i 60° F. 

E for trusses and cables = 30,000,000. 

A. Solution by Elastic Theory 

(a) Determination of H.—The value of H for dead load is determined by: 

"-'I 
4500 X 8002 
=-- = 4,500,000 lb.(a) 

8 X 80 

For live load (see equation (108)): 

^ pfmk’ - 2k^ + 1) 

" = 1;-—-j—7...W 
~Pl + -■ + 7 (2L. + Lc) 
15 15 ii A 

For temperature: 

„ _ _EIoitLt_ 
C 10 J T . 

Owing to the fact that the curvature of side span cables is the same as that for 
the main span: 

2La + Lc =* 2Lc + 150 (last term refers to anchorage cable; see Fig. 194) 

Lc = (approximately) 1(1 + Sn^).(d) 

= 800 (1 + rSo) = 864. 
21,, +!,<, = 2 X 864 + 150 = 1878 ft. 

1^,^^8X8^ = 2,730,000 

16^,7 16X202X 400 X 2500 

-si?2ioo- 
2,883,000 
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Total brought forward: 2,883,000 

- (2L, + Lc) - 
2500 X 1878 

85 
55,000 

Then for a unit loacj on the main span 
2,938,000 = value of denominator D. 

H = 
3 X 80 X 8002 X k{k^ - 2k^ -f 1) 

2,938,000 

and for unit load on the side spans: 

^ X 20 X 4002 X ki(h^ - 2k,^ + 1) 

//=-- 

5.809A:(/c3 - 2k'^ + 1), . (b') 

- = 0.303/bi(/ci3 - 2/ci2 -4- 1). 
2,938,000 ^ ^ 

For varying values of k the ordinates of the //-curve as drawn in Fig. 194 have 

the following values: 

k k{k^-2k^-\-\) 
II 

Main span 

II 
Side span 

0 0 0 0 

0.1 0.0981 0.5G99 0.0356 

0.2 0.1856 1.0782 0,0674 

0.3 0.2541 1.4761 0.0922 

0.4 0.2976 1.7288 0.1080 

0.5 0.3125 1.8153 0.1134 

The maximum value of 11 is represented by the area enclosed by the //-curve 

and may be determined either by Equation (&')> or by scaling from the influence line. 

By the latter method the total area is found to be: 

Main span = 926.5 

Side spans = 2 X 28.8 = 57.6 

Total = 984.1 

Maximum live load H - 984.1 X 1600 == 1,574,600 lb. 

For a change in temperature of —60° F. 

El coin 
Ht =+• 

D 
(e) 

Owing to the symmetry of the cable curves about the towers: 

Lt — 2 (term for main span in Equation (e)) + 150 

+ 150 

/ 16 X 802\ 

\ “^ 3 X 8002/ 

, 16 X 802\ 

‘““'■ + 3x150:)+““ 
1835 ft. 

30,000,000 X 2500 X 0.0000065 X 60 X 1835 

2,938,000 

Ht « 17,000 lb. 

Ht^ 
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Maximum U\ 

D.L. 
L.L. 
Temperature 

4,500,000 Ib. 
1,574,600 lb. 

17,000 lb. 

Total. 6,091,600 lb. 

Maximum cable tension T = 11 

16 X 802 
6,090,700 1 + 

6,0<)0,700 X 1.077 = 6,559,000 lb. 

(5) Determination of Maximum Moments.— 

For main s})an 

For side spans 

_ I 800 

y “ 4/ " ^ 

y 4/, 80 

These values are plotted on the H-influcnce line, and it is seen that, for maximum 
positive moment at the 0.3 point of the main span, the left half of the center span 
must be loaded. Influence lines have also been drawn for the center points of main 
and side spans. 

Af' = Simple beam moment at 0.3 point.(i) 

_ 1600 X 400 X 600 X 240 1600 X 240^ 

800 ~ 2 

== 69,120,000 ft-Ib. 

/ p//*A-2(2A;3 - 5A;2 + 5) 
*.^30 

_ 1600 X 80 X 800« X 0.25(0.25 - 1.25 -f 5) 

30 X 2,938,000 
= 743,500 lb. 

y = . 

4 X 80 X 240 X 560 

= 67.2 ft. 

M = M' -Hy. 

= 69,120,000 - 743,500 X 67.2 

= 19,157,000 ft-lb. 
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Graphically the quantity-H is represented by the shaded area on the influence 
y 

diagram. Scaling the diagram this area = 181.9 units. 

M = {— - njy = 181.9 X 67.2 X 1600 = 19,556,000 ft-lb. These two re- 

suits check within 2 per cent, which may be considered sufficiently accurate. 
For the maximum negative moments and shears, influence areas will be used. 
For maximum negative moment all the structure must be loaded except that 

portion loaded for maximum positive moment. 

^ ^ /M' \ . 926.5 1.815 X 400 
Influence area for I-// ) = 57.6 H------ 

\y / 2 2 
= 157.9. 

M = 157.9 X 67.2 X 1600 = 16,960,000 ft-lb. 
Moment due to temperature: Mt ± IIty 
For a change in temperature of =t 60“ F. 

Mt = ± 17,000 X 67.2 = =t 1,142,000 ft-lb. 

Total maximum moments: 
Positive Negative 

Live load. 19,157,000 ft-lb. 16,960,000 ft-lb. 
Temperature .... 1,142,000 ft-lb. 1,142,000 ft-lb. 

Total. 20,299,000 ft-lb. 18,102,000 ft-lb. 

(c) Determination of Maximum Shears.— 
For determining influence ordinates: 

V — {V' cot 0 ~ H) tan 0.(m) 

4/ 4/ 
tan 0 = y (1 — 2x) = “ (1 — 2n), if x - nl. (n) 

I 

For unit load the values of V' cot 0 are: 

-when the load is just to the left of the section. 
4/(1 - 2ri) 

_j—'^hen the load is just to the right of the section. 
4/(1 — 2n) 

At the 0.3 point of the main span: 

V' cot 0 = — 

F' cot 0 = + 

0.3 X 800 

4 X 80 X 0.4 

0.7 X 8.00 

4 X 80 X 0.4 

~ — 1.875 when the load is to the left. 

— 4- 4.374 when the load is to the left. 

These values are plotted on the influence diagram. The shaded area is the 
influence area for V' cot 0 ~ with the main span loaded from the 0.3 point to the 
right end of the span, for maximum positive shear. This area is found to be 489.9 
units. 

4 V 80 
tan 0 * (1 - 0.6) - 0.16 

800 

+ F = 489.9 X 0.16 X 1600 = 126,400 lb., for live load. 
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For maximum negative shear all the structure must be loaded except that por¬ 
tion loaded for maximum positive shear. 

Influence area = 474.0 units. 
- V = 474.0 X 0.16 X 1600 = 121,300 lb., for live load. 
Shear due to temperature: Vt =zt Ht tan O. 
For a change in temperature of ±60"* F. 

Ft = ± 17,000 X 0.16 = =t 2,700 lb. 

Total maximum shears: 

Positive Negative 
Live load. 125,400 lb. 121,300 lb. 
Temperature. 2,700 lb. 2,700 lb. 

Total. 128,100 lb. 124,000 lb. 

B. Solution by Deflection Theory 

The preceding problem will now be analyzed by the deflection theory. 
(a) Determination of Curve for Denominator D,—It has been noted that the solu¬ 

tion of the //-equation must be made by repeated trial. For this purpose it is a 
practical necessity to have a graph for D in terms of H. (The student should note 
again that D is independent of all load and temperature terms except as these are 
reflected in the value of 11.) The procedure is indicated in the following. We have; 

D 

_1- J) + 3*^^ ch\ + 

/ 
h 

80 

64,000 U 

taking II — 0, for example; // 

20 

16,000 

: 4,500,000 lb. 

1 

*8000’ 

,000 

X 2500 

I 4,500, 

' "V30,000,000 

/ 4,500,000 

\ 30,000,000 X 2 
Cl 

cl = 6.200. 

Cih = 2.928. 

log c = 0.4342945, 

log e”* = 2.692629, 

e"* = 492.7527. 

W 

V 
m 
—-XL = 65,235,000. 
of A. 

= 0.00776. 

= 0.00732. 

: 0.002. 

logs' = 347.4360, 

loge*‘'‘ = 1.271616. 

e'*'* = 18.6707. 

= 42,667. 

El = 76,000,000,000, 
El 

SfA 

/C = Ki = 1 

(A) 

log = 173.7180. 

I 
■■ 0.8. 

133.333 [10-10]. 

Eh - 84,000,000,000, — = 119.047 [lO-ioj. 
Eh 
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16/i 

IfiU 
§A 
h 

= 0.002. 

= 5,333.33. 

= 0.4. 

The constants and numerical values for the various terms of Equation (^4) are 
given in the following tables: 

Constants for D-Equation 

H // + //„. c Cl^ 

1 

Cl 

0 4,600,000 0.0000600 0.00775 0.0000535 0.00732 492.7527 18.6707 
500.000 5,000,000 0.0000667 0.00816 0.0000595 0.00771 684.0345 21.8463 

1,000,000 6,600,000 0.00007 0.00856 0.0000655 0.00809 941.9980 25.4319 
1,600,000 6,000,000 0.0000800 0.00894 0.0000714 0.00845 1273.7314 29.3709 
2,000,000 6,500,000 0.0000867 0.00931 0.0000774 0.00881 1716.4426 33.9199 

Terms in D-Equation—Main Spans 

// A B {A-B) C D 
AB 

-\-C-D 
E (X) 

0 4,301.07 0.99694 4,283.61 42,667.00 13,333.33 33,617.95 3,314.10 36,932.05 
600,000 3,674.6 0.99708 3,663.87 42,667.00 12,000.00 34,3.30.87 3,682.33 38,013 20 

1,000,000 3,187.6 0.99787 3,180.71 42,667.00 10,909.09 34,938.62 4,060.56 38,989 18 
1,600,000 2,796.4 0.99843 2,792.01 42,667.00 10,000.00 35,459.01 4,418.80 39,877.81 
2,000,000 2,477.8 0.99884 

1 

2,474.93 42,667.00 9,230.92 35,911.01 4,787.03 40,698.04 

Terms in D-Equation—Side Spans 

H A^ B' A'-B' C' D' 
A'^B' 

2(F) D 

0 5,106.99 0.89831 4,687.66 6,333.33 7,476.63 2,444.36 4,888.72 41,820.82 
500,000 4,359.72 0.91245 3,978.03 5,333.33 6,722.68 2,688.68 j 5,177.36 43,190.66 

1,000,000 3,774.33 0.92433 3,488.73 6,333.33 6,106.87 2,715.19 5,430.38 44,419.56 
1,600,000 3,314.93 0.93414 3,096.61 6,333.33 6,602.24 2,827.70 5,655.40 46,633.21 
2,000,000 2,933.00 

2,939.68 
0.94284 2,765.36 6,333.33 6,167.96 2,930.73 6,861.46 46,659.50 

The graph for D is plotted in Fig. 195. 
(6) Graph for H: For a load p extending a distance kl into the main span (side 

spans unloaded) we have: 

pw[g(3-2fc)-y 

- -e''-e-'“ +21 
u {_c^(e — e )_ 



THE DEFLECTION THEORY OF SUSPENSION SYSTEMS 387 

If temperatiire is to be included we have the additional term in the numerator of 
IVEIaLt ^ 

^—, the minus sign corresponding to a rise of temperature, and vice versa, 
oy 

In order to obtain a curve for H under the advancing uniform load, it is necessary 
to solve the above equation by trial for a number of values of k. The first trial 
can be little more than a rough guess; the valuer of H by the deflection theory will 
generally run from 00 to 80 per cent * of the corresponding values determined by the 
elastic theory. Fortunately the right-hand member of the equation is very insen¬ 
sitive to moderate changes in H and if the first assumption is within 10 to 15 per 
cent of the correct value, the result of the first trial will usually be within 1 to 2 
per cent of the true value, which may be considered sufficiently exact. We may 
illustrate the procedure for A; = 0.8. 

Assuming = 1,049,000 lb. 

4,500,000 4- 1,049,000 

30,000,000 X 2500 
= 0.0000739867 

c « 0.0086015 - = 116.259, 
c 

= 1,571,350. 

log - 2.9884673. 
log 6'^^ = 2.3907738. 
log e 2d 0.5976935. 

- = 13,515.942, 
c* 

= 973.794. 
= 245.909. 
= 39.600. 

= 0.001027. 
= 0.004067. 

e-2d 0.025252. 

* Bohnj', ** Hangebnicken,’’ page 38. 
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The first term of the numerator of the H-equation is: 

[0.8 X 800 X 800 1 
-—-(3 - 2 X 0.8) - 13,515.94 

= 1,024,000 (59,733.33 - 13,515.94) = 47,326,607,000 
The second term is: 

^1600 X 1,571,350 

973,794 - 0.001 

[39.60 + 0.025 - 973.79 - 0.001 - 245.91 - 0.004 - 2] =+ 3,041,600,000 

60,368,207,000 

The temperature term (60°) is (I-™) 
1000 X 7398 X 30,000,000 X 2500 X 0.00039 X 1835 

100,000,000 

D (from Fig. 195) = 

H = 

- 3,971,114,000 

46,397,093,000 

44,550 

1,041,000 

Since the variation between the assumed and calculated values is less than 1 per 
cent, we may assume the result correct. 

Computations for other values of k are made similarly. Fig. 196 shows the 
resulting graph for H in terms of fc, assuming 60°+ temperature. 
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(c) Maximum Moment at S/10 Point.—It will generally be found that the exact 
theory gives a slightly less value of Id for the maximum moment at a given point 
tlian the approximate theory. The latter gave a maximum moment at the 3/10 
point for k = 0.5. We will compute the moments for k = 0.42,0.46 and 0.48, which 
may be expected to cover the region of maximum values. The computations for 
k = 0.45 will be illustrated: 

For maximum positive moment at 0.3 point; 

Assume k = 0.45. 

H = 460,000 lb. 

4,960,000 
= -^Q9) = 0.00006613333, 

= 15,120.97. 

log ^ = 2.8254190. 
logg.55cz ^ 1.5539804. 

log e = 0.8476257. 

= 668.989. 
^.55ci ^ 35.8080. 

e.3ci ^ 7.0409. 

c = 0.0081322. 

= 0.00149479. 
g-.56d ^ 0.0279267. 

^ 0.142027. 

2Hc2 

M = -H^ 

(ed-WcJ - 2e"'') K 
cH^ 

(1 

Ci-e" + C2-e-‘^^4- 
c^\l^ H/\ 

8/ 8 X 80 

8002 
0.001. 

£ 
H 

Cl = 

1600 

460,000 

1 

668.988 
1 

668.988 

1.3860. 

= 0.00347826. 

~i K ion 07 

’ X 0.00347826 X 35.8331 - (16.121 X 0.9985) 
2 

(942.3168 - 15.0983) 

] 

C2 = - 1.3860 ~ [15,120.97 X (- 0.00247826)] 

= - 1.3860 + 37.4738 

= +36.0878. 

M 460,000 [(1.3860 X 7.0409) + (36.0878 X 0.14203) + (- 37.4738)] 

= - 460,000 (9.7687 + 6.1256 - 37.4738) 

= - 460,000 (- 22.6895) = 10,391,170 ft-lb. 

Values for k = 0.42 and 0.48 were similarly computed and were found to be 
10,198,600 and 10,365,690, respectively. Since the variation between the extremes 
is little over 1 per cent, the value for k = 0.45 may be taken as the maximum. 
It will be noted that thia is about 67 per cent of the value determined by the elastic 

theoiy. 
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(d) Deflection Due to Full Load on Center Span + 60° Temperature.—This con¬ 
dition gives maximum deflection for center span. From Equation (139a), page 369, 

pl^ 
for X = 1/2, y — J and M' = —, we have 

o 

H \ - - 

1_A 

' + 1)\Z2 /// 

m 

C2 = Cie^K 

H = 1,170,000 lb. 

5,670,000 

75(10«) 
= 0.00007560. 

- = 13,227.51. 

c = 0.0086946. 

log e®* = 3.0208170. = 1049.20. 

cl 

loge2 = 1.5104085. 
cl 

= 32.3898. c ^ = 0.0308739. 

Cl 
13,227.51 

1050.20 
X (- 0.000368) 

= + 0.004635. 

C2 == 0.004635 X 1049.2 

P 

H 

1000 

1,170,000 
0.00136752. 

= 4.86304. 

(0.004635 X 32.3898) + (4.86304 X 0.0308739) 

/ 1600 X 8002 \ 1 + (8 X ■.■70,0.0) + X - *J 
« 0.206349 [0.15013 + 0.15014 + 109.401 + 4.8677 - 80] 

= 0.20635 X 34.569 

1,170,000 

5,670,000 

= 7.133 ft. 

169. Tower Deflections.—As previously noted, suspension bridge 
towers may be either fixed or hinged at the base; if hinged the cable 
saddles are always rigidly attached to the top of the tower. If the 
tower is fixed at the base, the saddle may be either fixed or sliding. 
In the former case there will be a small difference in the horizontal 
cable pull at the tower top which will act as a transverse load on the 
tower, the latter acting as a cantilever beam fixed at the base. Since 
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the tower bending stresses from this source may be considerable it will 

usually be necessary to investigate the question of maximum tower 

deflections. 

Two methods are available: 

(a) A reasonably close approximate value for the deflection may be 

obtained by the ordinary deflection theory, treating the tower and side 

span (if any) as a structure acted on by such vertical loads as may be 

applied and the horizontal cable pull H. (See Fig. 197.) If the cable 

distortion be omitted, we have: 

, Mdx 

Jo 
where M is the true bending moment in the stiffening truss, and m is 

the moment in the truss due to 7/ = 1. M = M' — //^i, and since the 

maximum deflection occurs for the main span and far side spans loaded, 

near span unloaded, we have for this case {M' — 0), 

Ac 
r^Mdx 1 P r/ / H r -J, Eh^-miX T?-J, (hx—xi^ydx 

(since m = — see page 353), whence 

Ac 
8 M 

15 EI{ 

(6) A more accurate method may be used to compute the deflection, 

based on the principle of virtual work as applied in Art. 160 to deduce 

the true cable component. 
For all loading cases we must have the external work of the average 

cable pull acting through the tower deflection, A, equal to the total 
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internal work of cable distortion and vertical displacement of the hanger 
loads, i.e, (omitting the work in the tower itself), 

whence 

^ ~ AE + 
n 

T]idx, (162) 

The final term in the right-hand member is readily evaluated when 
the equation for rj is explicitly determined. If the side span is unloaded, 
it is readily shown that the integral: 

16/i (1 - 
cvHi^ (1 + e'l'') 

8/i ,2 
]• 

170. Critical Summary.—Although the deflection theory of suspen¬ 
sion systems is frequently called the exact theory it is seen that its 
development requires a number of assumptions obviously inexact. It 
may be well to call specific attention to the more important of these. 

(1) It is assumed that the original cable curve is a parabola and that 
the entire dead load is carried directly by the cable. For all ordinary 
conditions these assumptions are very closely fulfilled. 

(2) It is assumed that the cable and the stiffening girder deflect 
identically; i.e., the distortion of the hangers is ignored. It is clear 
that this assumption is not even approximately fulfilled, yet it is fairlj 
well established that the effect of this omission on the values of rj and 
H will ordinarily be very slight, usually less than 2 per cent.* 

(3) In developing the formula for the hanger pull for the live as 
well as dead load was taken as uniform over the entiie span. This, of 
course, is directly contradicted by Equation (142a). Again, it may be 
shown that, although this assumption is very wide of the truth, the 
resulting effect on the value of F is practically negligible for all impor¬ 
tant cases of loading, t 

(4) In computing the external work in the equation from which H 
is obtained (see page 365), the ordinate f to the undeflected cable was 
substituted for f + v- This in itself involves an error of possibly 6 to 
10 per cent. A little consideration, however, will show that in the final 
expression for H (Equation (164), page 376) the only terms affected by 
this approximation will be the first term in the numerator and the last 

See Johnson, Bryan and Tumeaure, “ Modem Framed Structures,” Part II, 
Ninth Edition, pages 299 et seq.; also George C. Priester, loc, cit.^ page 380. 

t See Johnson, Bryan and Tumeaure, “ Modem Framed Structures,” Part II, 
Ninth Edition, pages 308 et seq., where a study is made of the effect in the Man¬ 
hattan Bridge sowing a typical variation of about li per cent. 
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term in the denominator, and the effect on the value of H will usually 

be less than 1 per cent. 

(5) The assumption of a constant moment of inertia for the stiffening 

truss will not infrequently be in error by as much as 20 to 40 per cent, 

but the effect on the maximum moments used for designing will ordi¬ 

narily be quite small.* It should be noted that this assumption may 

be readily avoided by breaking the span up into a number of sections 

for which / can be taken as constant and determining additional values 

of the constants of integration. Though simple in theory this is a very 

tedious process and is rarely justified by the small additional accuracy 

obtained. 

The general conclusion may be drawn from the preceding discussion 

that even though the deflection theory of suspension bridges is by no 

means theoretically exact, in that it involves many simplifying assump¬ 

tions which are in themselves considerably in error, yet the final result 

presents a very close approximation to exactness—probably as close as 

the basic data will justify in all ordinary problems. Of course, unusual 

cases may arise in which this conclusion is not justified, and in which 

more exact studies will be required, but these are likely to be very rare. 

Where a wide range of loading conditions must be investigated, the 

deflection theory is exceedingly cumbersome, as is abundantly clear 

from a study of the example given on pages 385-390. It is obviously 

highly desirable to have available a simpler method of calculation which 

will give fairly close approximate results, without the extensive detail 

calculations necessary in the direct application of the deflection theory. 

One such method has been proposed by A. H. Baker, f who has made 

a comparative study of the results obtained by applying the elastic 

theory and the deflection theory to suspension bridges of various dimen¬ 

sions. From these comparisons he was able to develop a very simple 

chart, so plotted that the ordinate gives the ratio of maximum moment 

or shear calculated by the deflection theory to that calculated by the 

elastic theory, while the abscissa is the stiffness constant for the 

structure. This constant is taken as: 

* See Johnson, Bryan and Tumeaure, Modem Framed Structures,^' Part II, 
Ninth Edition, pages 302 et seq., where a typical moment calculation for the Man¬ 
hattan Bridge shows a variation of about 31 per cent. 

t Suspension Bridge Analysis by the Exact Method Simplified by Knowledge 
of its Relations to the Approximate Method," by Arvid H, Baker, Rensselaer Poly¬ 
technic Institute, 1930. 
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Charts of this type must be prepared upon certain assumptions as to 

the proportions of the structure and relative values of the dead and live 

load. Baker has made a study of the effect of variation in these relations 

and gives approximate values for correction terms to be applied for devi¬ 

ations from the standard .‘issumptions made in the construction of the 

graphs. We have seen that analysis of suspension systems by the elastic 

theory proceeds comparatively simply and rapidly; it has been found 

that results so obtained, when corrected by the above or similar 

methods, are amply accurate for estimating purposes, and will frequently 

suffice for the final design. 

For suspension bridges of considerable span and modern design 

(which favors the use of relatively shallow stiffening trusses) the maxi¬ 

mum stiffening truss moments computed by the elastic theory are so 

greatly in error as to render their direct use valueless for design purposes. 

Calculations by both methods for such structures as the Mount Hope 

(1200 ft.), Manhattan (1470 ft.) and Philadelphia-Camden (1750 ft.) 

bridges indicate errors of from 40 per cent to more than 50 per cent. 

The 800-ft. span of the example analyzed in this chapter showed a varia¬ 

tion of over 40 per cent (page 389). For certain bridges of moderate 

span and deep stiffening truss the approximation is fairly close, though 

rarely sufficient, without correction, for use in the final design. 

171.—Rode’s Deflection Theory. The preceding discussion of 

the possible sources of error in the deflec¬ 
tion theory are based upon the classical 

presentation of this theory which has been 

generally accepted by all authorities since 

the original development by Melan. It 

appears highly important, however, to call 
attention here to a profound and original 

study of the basic theory of the subject 

recently presented by H. Rode. * Rode’s 

analysis indicates a fundamental defect in 

the basic differential equation upon which the stiffening truss action is 

based. The outline of his more accurate theory may be sketched as follows: 
We consider the structure under any load condition, w + p, giving 

a cable component H, and let 8y = rj he the additional deflection due to 

the application of a small increase in loading 8p. If we consider the 

hangers very closely spaced so as to approximate a solid sheet, it is 

evident that the hanger load, g, over a horizontal element dx must be 

equilibrated by the vertical cable pull d{H tan <f>); i.e.. 

tan«). (See Fig. 198.) 

* Loc. cit., page 380. 

(163) 
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Then the load on the stiffening truss is: 

■p - q = p - ^{H 

If we apply the process of variation: 

(164) 

(165) 

if Tj is the deflection merement caused by the addition of hp. Replacing 

4> with a (= “</>) = and noting that o and ~ are commutative, i.e., 

6- d_ ^ jL 
dx dx 5, 

we may write: 

bp El 'Pi - iU 4- tan a- Hph tan a). 
dx* dx dx 

(165o) 

If 

6 tan a 

we shall have 
dx dx 

(166) 

If we differentiate twice Equation (136), page 308, and denote the 

live load by p and the hanger pull by q, we obtain: 

d*v dm 

-^^-^^dxi = ~dx^ 

<FM' d^y frr.rr. d^V 

Since ilf' is the bending moment in the stiffening truss with the 

cable removed, the truss sustaining the entire load, p, evidently 

(PM 

dx^ 
and 

— Py 

(166a) 

It has been noted that, in Equation (166), H is the cable component 

due to any loading, p + Wj prior to the application of bp. If in Equa¬ 

tion (166a) p is taken very small (== bp), H becomes bll, H + = 

— Hy, {bp and bH are quantities of the second order of mag¬ 

nitude) = Hi and Equations (166) and (166a) become identical. 

* The student will recall the fundamental principle in the theory of deflections 
that for any beam bent by a load, p, the deflection ri is subject to the relation 

- M El 
d*ij 

p 
dx* 

= El 
dx^’ 
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The mathematical process of variation used in obtaining (166) 

dfV 
clearly assumes that in the variation of tan a — -^y dy only varies. 

If both dy and dx vary with increments of 5dy — drj and 5dx = df we 

must have: 
/dy\ _ dxbdy — dybdx 

\dx) dx^ 

drj 

dx 
-r fan a, 
dx 

Rode has shown (see note at end of paragraph) that this change 

results in a substantial modification of Equation (166) which, to a 

relatively high order of exactness, may be written: 

ip - ® “ S - " s(s ■ • <>«> 
(H is replaced by H in this and the following equations.) Equation 

(167) becomes identical with (166) if sec a is taken as unity. For a 

symmetrical cable sec a is maximum at each tower and zero at the 

center. For various sag ratios we have the following maximum values: 

1 
sec a sec* a 

1 

12 
1.045 1.09 

1 
1.08 1.16 

10 

1 
1.12 1.25 

If we assume roughly the effective average value of sec^ a to be one- 

half the maximum. Equation (167) would indicate that the actual 

“ stiffening effect of the cable may be 4 to 12 per cent in excess of 

that given by the classical deflection theory. The effect on the cal¬ 

culated moments may be considerably greater than this. 

While the defect in the derivation of Equation (166) is readily seen, 

it is of interest to enquire into the corresponding defect in Equation 

(134), page 368. 
M -Hy-{H^ HyyyXy +»;).. . . (134) 

If this equation is rigorously correct, then Equation (166a), the equiva¬ 

lent of (166), must be correct. 

It will be recalled that Equation (134) was deduced upon the assump¬ 

tion that My,y the moment of the dead load hanger stresses, at any 

point, is exactly equal to Hy both before and after the live load applica- 
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tion. But if the distortion due to the latter produces an appreciable 

transverse shift in the hanger loads, the above relation is no longer 

necessarily true. Fig. 199 shows a (greatly exaggerated) view of the 

cable and hangers before and after the application of the live load. 

If, due to the cable stretch, the center of gravity of the dead load hanger 

pulls has shifted somewhat to the left, it is clear that at the center for 

example, the bending moment, which in the unstrained condition is just 

equal to !/«,*/, is now somewhat less than this value, thus leaving a 

certain portion of this cable moment which is effective in resisting live 

load bending, in addition to that considered (!/«,• 77) in the standard 

deflection theory. 

Noth: The following is an outline of the detail procedure in the variation of 
tan a for the case involving both vertical and horizontal displacements. Fig. 200 
shows a small section of the cable of length OA = dL. This suffers a change of 
length bdL and a change of slope 5a such that A moves to A'. The coordinates of 
the latter, referred to -4 as origin, are hdx — and bdy = drf. Then the following 

relations may be deduced: 

3 (tan a) = sec* ada = sec* a 
dL 

sec g-e 

cos odL dx 
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f = di) — di tan (a + 6a) = dti — di tan a (to first order of approximation), 

whence 

dff 
5 (tan a) = --- tan a.(a) 

dx dx 

If bs is the increase in cable unit stress due to application of 

_ 5s „ b{H sec a) bll //5(sec 
SdL = — • dL —-;-dL = —— sec a H- 

E AE AE AE 

Fig. 200. 

Also, from Fig. 200, 
SdL = drf sin a d^ cos a. 

whence 

5 (sec a) = sec* a-sin aba = sin ab (tan a), 

bH Hsina v , 
—- sec a H-- 5(tan a) dL — drj sin a + cos a 
AE AE 

or, dividing by dx and noting that — == sec a, 
dx 

bH H drj d^ 
sec* a + tt; 5(taii a) ~ — sin a + cos a. 

AE AE dx dx 

Substituting (a) in (d) and reducing, we derive, 

drj bH 
- ~ tan a (1 - X) + — sec*« 

^ _ dx_AE 

dx 1 -j- X • tan* a ’ 
H BQCa 
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From (e) and (a), 
dr} htl 

-tan a (1 — X) H-^ sec^ a 
^ dr} dx AE 

5(tan a) = —- —--tan a 
dx 1 + X tan* a 

drj 8H 
-- sec* a — ■— sec® a tan a 
dx AE 

1 + X tan* a 

1 4“ X tan'^ c 1 -f X tan* a 

We may now write the basic differential equation in the form: 

// sec® ct dy 

d dy AE dx 
= £7--^ - SH\-- 

dx \dx 1 -f X tan* a dx\i 4- X tan* a 

(1 - X) 

(ic \1 + X tan* a 

Now, if the limiting allowable unit stress in the cable is taken as 75,000 lbs. per sq. in., 

s 75,000 

E 30,000,000 

dy d 

dx dx 

Af 

t* 

= y at tower top where the slope is maximum. 

Assuming a sag ratio of 1/10, we find 

1 — X = 0.9975 (minimum). 

1 4- X tan* a = 1.0004 (maximum). 

It would then appear that, to a degree of accuracy higher than can be realized in 
structural design, 

1 4~ X tan* a 1 + X tan* a 
= 1, and Equation (h) becomes 

ITT TT ^ f 
6p = El --SH — — -r\~ sec* a 

dx* dx* dx \dx 

which is Equation (167). 
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From the relation: 
16/* 

sec* a - 1 + tan* a = 1 + - (/ - 2x)* = a + + cx* 

the final term in the right-hand member may be expanded, and all coefficients of the 
derivatives of ?; may be expressed in terms of x. Since 

and 

d dr} 

dx[_dx 
(1 -f tan* a) V d^v drj d 

— (1 + tan* a) -f — 2 tan a — (tan a) 
ax* dx dx 

d ^ d^y 8/ 
■— tan a — — --, 
dx dx* Z* 

. O') 

Equation (j) is a linear differential equation of the fourth order with variable 
coefficients, and its integration in any form suitable for practical use has not been 
effected. Proceeding along entirely different lines (not involving the integration of 
the differential equation of the stiffening girder). Dr. Rode has carried out an analysis 
of the problem (in numerical terms for the Philadelphia-Camden Susi)ension Bridge) 
which indicates a reduction in the stiffening truss bending due to the added ‘‘ cable 
stiffening ** {H sec a instead of /i) of as much as 25 per cent at the 4/10 point. 



CHAPTER VIII 

GENERAL DISCUSSION OF STATICALLY INDETERMINATE 
CONSTRUCTION—HISTORICAL REVIEW—BIBLIOGRAPHy 

A. General Discussion 

172. Preliminary.—The statically indeterminate structure has never 

found favor generally with American engineers; as a matter of fact until 

quite recent times the attitude of the profession has been distinctly 

hostile to it. However, the increase in the number of monumental 

structures, to many of which statically indeterminate types are especially 

suited, and for which more careful analyses are required, the widening 

use of riveted construction, and more than anything else, perhaps, the 

remarkable development in the use of reinforced concrete (an essentially 

statically indeterminate type of construction in most cases) have, along 

with other causes, effected a very considerable change in the professional 

attitude, with the result that indeterminate construction is now much 

better understood and more widely used and, for suitable conditions, 

has many advocates. None the less, a sharp division of opinion 

remains, and it is probably no exaggeration to say that the majority 

of structural engineers in America still oppose statically indeterminate 

types wherever they can be avoided, and where their use is practically 

unavoidable they have rather limited confidence in the exact methods 

of analysis that have been proposed, preferring in many cases crude 

estimates based on judgment and experience. 

Under such conditions it would seem not out of place to introduce the 
student, at least superficially, to some of the major points that are 

raised regarding the economy and reliability of indeterminate structures, 

the difficulties and uncertainties of the calculations and similar questions. 

It is the purpose of the present chapter to do this. To discuss the 

various questions thoroughly would require an independent treatise; only 

the very briefest outline can be attempted here. Also, as later noted, 

most of the questions raised cannot be answered conclusively in the 

present state to our knowledge; some of them may always remain, to 

an extent, a matter of opinion. The most that can be hoped from the 

short discussion presented here is to give the student the setting of the 

401 
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subject and direct him to the more important sources of information. 

A brief historical review and bibliography are also added. 

173. Review of Definition and Classification.—Before proceeding with 
the discussion it will be well to consider somewhat more critically the 

usual definitions and classification. 

A statically detemiinate structure, as ordinarily defined, is one in 

which the reactions and internal stresses are fixed by the bare require¬ 

ments of equilibrium, and are not at all conditioned by the cross-section 

make-up of the various parts of the structure, nor the elastic properties 

of the material, so long as these are such as to result in a strained 

structure of sensibly the same form as the original.* 

The question may properly be raised here as to whether “ internal 

stress is to be taken as referring to resultant axial stresses and moment 

couples, or to stresses on individual fibers. If the latter interpretation, 

which is the strictly correct one, is used, then no structure of any mag¬ 

nitude is even approximately statically determinate as regards internal 

stresses. A structure simply supported and composed of ideal bars 

(perfectly straight, absolutely homogeneous, etc.), ideally jointed (fric¬ 

tionless pins exactly centered), is the type ordinarily visualized as the 

perfect statically determined structure, since for such members it 

appears fair to assume a uniform stress distribution regardless of the 

material or cross-section. This, however, ignores the fact that (1) the 

local distribution of stress at the pin bearing is not statically determined 

and (2) that in some or all bars there will be flexural stresses due to 

weight of members. Though emphasis is seldom placed on the point, it 

is obvious that these latter stresses are always statically indeterminate. 

The beam formula, s = 
Me 

I 
is based on the assumption of a linear rela¬ 

tion between stress and strain and the integrity of plane sections. These 

are propositions of experimental elasticity, not of statics. Neither is 

strictly true for any material, and the degree of approximation varies 

widely with the character of the material and the conditions of loading. 

The problem of the resistance of a beam to loads was, as a matter of 

fact, the problem from which the whole modern theory of elasticity 

developed, t 

It is clear, then, that if a strict construction is put upon the definition, 

no actual engineering structure is statically determinate. 

* Since this is never naore than approximately true, every elastic structure, even 
with ideally perfect members and connections, is statically indeterminate. In all 
ordinary cases the elastic distortion is so slight that this point has only theoretical 
interest. ISee Chapter I, page 12. 

t See Historical Review. Art. !S5 
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If we consider resultant stresses and moments only, the field of 
application of the definition is greatly broadened, but even so, few if 
any practical structures will conform to it. Frictionless ” joints have 
only an ideal existence; and even in a fully pin-connected bridge truss 
for example, the effect of the floor system and the lateral, portal and 
sway bracing is such as always to set up very appreciable statically 
indeterminate stresses. These are usually small, though in some cases 
they may reach considerable magnitude and importance. Ordinarily 
they do not explicitly affect the design, though they are among the many 
factors that lead to the adoption of a wide margin of safety and hence 
indirectly are taken account of. 

174. Conventional Character of Classification.—If the preceding state¬ 
ments are correct, we must regard the grouping of structures into 
statically determinate and indeterminate as subject to a conventional 
rather than a strictly logical interpretation, if we are to give any 
significance to the classification. Even with such an understanding, 
there is considerable difficulty in drawing the line between the two 
groups. For example, a long-span fixed arch of reinforced concrete, 
carr3dng light highway traffic, may show a pressure line which follows 
so closely that of the corresponding 3-hinged type as to modify the 
extreme fiber stresses less than 25 per cent. 

On the contrary, an extremely massive sirnple-span riveted truss 
with sub-panels may show secondary stresses as high as 60 per cent to 
80 per cent of the corresponding primary stress. 

Now, a fixed arch is unquestionably a triply indeterminate structure, 
while a simply supported truss, even with rigid joints, is to a very close 
approximation * statically determinate as to its 'primary (axial) stresses. 
But it would seem stretching logical classification to the limit to call 
the arch indeterminate and the riveted truss determinate. 

There is no definitely established precedent to follow in such cases 
but generally speaking the usual practice is to class any structure as 
statically indeterminate in which the reactions, principal stresses or 
primary bending moments cannot be determined statically, and to treat 
as determinate any framework (used in the widest sense to include a 
single isolated beam, strut or tie) in which such stresses amd moments 
can be determined statically by ignoring so called “ secondary effects, 
these latter ordinarily including the effect of floor system and bracing, 
actual continuity at joints assumed as hinged, and such like. 

176. Statically Indeterminate Structures in the Limited Sense.— 
The preceding definition would limit the use of the term indeierminale 
structure to structures with redundant supports, trusses with redundant 

See Chapter V, page 268. 
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members and csertain types of rigid frames. The latter type in nearly 
all cases is indeterminate of practical necessity; that is to say, there is 
no alternative simple type of rigid frame practically feasible. This is 
not true of the other two types; they usually have close analogues that 
are statically determinate. Thus, for example, we get most of the unique 
advantages of continuous construction in the cantilever; the advan¬ 
tages of arch action are furnished by the three-hinged as well as by the 
two-hinged or hingeless arch; the advantages of short floor panels com¬ 
bined with favorable diagonal inclinations are secured by the statically 
determinate sub-paneled truss of the Baltimore or Petit type as well 
as by the indeterminate Whipple truss. Most of the discussion 
regarding the relative advantages and disadvantages of statically inde¬ 
terminate construction in the past has referred to structures of this 
character, hence for convenience of treatment we shall in the following 
discussion consider the term indeterminate structure to apply pri¬ 
marily to such frameworks except as otherwise indicated. 

176. Merits and Defects of Statically Indeterminate Construction.— 
As noted in Art. 172, the question of the relative merits of statically 
determinate and indeterminate construction has given rise to a sharp 
difference of opinion among professional engineers, and has been the 
subject of much controversy. Only a brief and inadequate account of 
the matter can be given here, but it is hoped that it will at least make 
clear some of the main points at issue, the difficulties involved in settling 
them, and direct the attention of the student to some of the original 
researches in the field. 

It will be convenient to treat the subject under the three heads of 
(1) relative economy of material in indeterminate structures, (2) their 
reliability under service conditions and (3) the trustworthiness of the 
methods of analysis and the difficulty of making the design calculation. 

177. Economy of Material—In spite of the many studies that have 
been made and published, there still remains a wide diversity of pro¬ 
fessional opinion as to whether or not a statically indeterminate type of 
construction is likely to show an economy of material as compared to an 
alternative type of simple structure. Structural design is not as yet an 
exact science by any means; there is no unanimity even among leading 
authorities in the matter of provision for impact, temperature changes, 
reversal of stress, possible inaccuracies in fabrication, settlement of sup¬ 
ports and like matters. Details are likely to reflect more or less the 
personal opinions—perhaps prejudices—of the designer. Under such 
conditions it is not strange that competent investigators arrive at very 
different conclusions. 

We may note some results of specific studies in comparative economy 
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of determinate and indeterminate types. Since the arch has been the 
subject of more investigation than perhaps any other type, it will serve 
very well as an example. 

(a) Merriman and Jacoby* investigated the result of placing a crown 
hinge in the 550-ft. two-hinged spandrel braced arch bridge over the 
Niagara river and found that if the hinge were placed in the upper chord 
the weight (arches alone) would be decreased 11.8 per cent. 

(b) Prof. C. W. Hudson made a comparative study f of the weight 
of a 200-ft. span highway bridge designed as a three-hinged and two- 
hinged arch. The latter structure showed an economy (main material 
and details both considered) of per cent. 

(c) Dr. J. A. L. Waddell has made a very elaborate study of the 
Economics of Steel Arch Bridges.^^ J Among the conclusions he arrives 

at are that for railway bridges a 500-ft. braced-arch rib will require about 
5 per cent less metal when designed as a two-hinged arch than as a 
three-hinged arch, while a hingeless arch will require about 5 per cent 
more metal than the latter. For highway bridges the three-hinged type 
is about 8 per cent heavier than the two-hinged and 2 per cent lighter 
than the hingeless type. This includes weights of both main members 
and details. 

(d) Prof. M. A. Howe § made a comparative study of a 416-ft. arch 
truss, finding that a three-hinged design was 30 per cent heavier than a 
hingeless type and about 8 per cent heavier than one with two hinges. 

(e) Prof. W. Dietz of Munich statesif that a very careful comparison 
of material required for a two-hinged and three-hinged arch for the 110-ft. 
span of the Hacker bridge in Munich, indicated that 11.3 per cent excess 
was required for the latter type. 

The inconclusiveness of these results when taken as a whole needs 
no comment, though it is but fair to say that a considerable part of the 
discrepancy would be explained if specifications in each case were ana¬ 
lyzed. 

* See Roofs and Bridges,Part IV, pages 282-4. 
t ‘‘Comparison of Weights of the three-hinged and a two-hinged Spandrel-braced 

Parabolic Arch"—Trans. A. S. C. E., Vol. XLIV, pages 20-30. This comparison 
was made for the crown hinge in the lower chord in the three-hinged arch—a loca¬ 
tion economically unfavorable. 

t Trans. A. S. C. E., Vol. LXXXIII, pages 1-41. This paper, including the dis¬ 
cussion, forms the most up-to-date and complete treatment of the subject that has 
appeared. It covers a much wider field than the comparison of determinate and 
indeterminate types. 

§ A note by Dr. Waddell, loc. cit., page 19. 
If Discussion of paper by Frank H. Gilley—“The Exact Design of Statically 

Indeterminate Frameworks. An Exposition of its Possibility but Futility.'* Trans. 
A. S. C. E., Vol. XUII, page 424. 
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When we pass from the results of specific studies to general state¬ 
ments, we find them equally conflicting. Johnson, Bryan and Tumeaure* 
state that the hingeless arch is “slightly more economical than the 
hinged types^'; C. B. McCullough f says the hingeless arch “ probably 
requires less metal than the three-hinged type''; though “no definite 
relation has ever been established"; F. C. Kunz J considers that on the 
average the three-hinged arch will be about 15 per cent lighter than 
either the two-hinged or hingeless types, and J. W. Balet§ states that 
for suitable crossings the two-hinged and hingeless types will be more 
economical than any others that can be found. 

These results relate to arches only but they are fairly representative 
of the whole field of indeterminate construction. 

178. An ambitious and brilliant attempt to deal with the whole 
question of relative economy of indeterminate frame works by general 
mathematical reasoning has been made by F. H. Cilley.lf Mr. Cilley 
supports the thesis that for every statically indeterminate type it is at 
least theoretically possible to devise a determinate type with approxi¬ 
mately the same figure of inclusion which will carry the same loads with 
less material. He therefore concludes that, in general, structural 
redundancy means structural waste. 

The method of investigation followed involves an enormous amount 
of detail for any but the simplest cases, and Mr. Cilley therefore hmited 
his specific studies to a few ideal jointed frames of a rather primitive 
type. That he has made out a very convincing case for the abstract 
proposition as stated in the preceding paragraph must be conceded. 
This has served to dispose once for all (if there were need to do so) of 
the notion that there is any intrinsic economic advantage in statically 
indeterminate construction. 

Beyond this, the investigation can hardly be said to have settled the 
economic question, for two reasons, (a) Few engineers are willing to 
accept as conclusive any economic comparison of two types of struc¬ 
tures which does not involve a fairly complete design of each and a 
study of all important details, and (b) even Mr. Cilley himself did not 
claim that the alternative types of construction by means of which he 
transformed the indeterminate types into determinate types of less 

* “ Modem Framed Structures,” Part II, page 199. 
t Hool and Kinne, “ Movable and Long Span Bridges,” page 362. 
t Quoted by J. A. L. Waddell, loc. dt., page 19. 
§ ‘^Analysis of the Elastic Arch,” pages 51, 100, 219. 
^ ‘^The Exact Analysis of Statically Indeterminate Frameworks—an Exposition 

of its Possibility but Futility.” Trans. A. S. C. E., Vol. XLIII, pages 363-407. 
This paper and its discussion constitute the best general treatment of the subject 
that has so far appeared. They will well repay a careful study. 
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weight were always practically feasible; as was clearly brought out in 
the discussion, they might sometimes be quite impracticable.* 

One point of general interest may be noted here. As the student 
has learned from the preceding chapters, the design of any statically 
indeterminate structure is a matter of repeated trial. A section is 
assumed for each member, the stresses computed and the unit stress 
noted; if the latter is not in agreement with the specified value, the 
section is revised and the whole process repeated, using the new value, 
and so on until a satisfactory agreement is reached. 

For many cases a few approximations lead to an agreement which 
for all practical ends is exact. There can, however, be no general 
assurance on this point. We have noted in Chapter IV that for the brac¬ 
ing in the short middle panel of a three-span swing bridge, the unit 
stress remains nearly the same regardless of the variation in the cross- 
section of the members. Johnson, Bryan and Turneaure t note that a 
similar difficulty arises in the design of a hingcless-arch truss of the 
spandrel-braced type. Indeed, one of the clearest examples of the point 
in question is the ordinary beam with solid web. We may fix the 
extreme fiber stress, but the stress on any other fiber is fixed by the 
clastic distortion of the beam, and cannot be made to agree with a pre¬ 
scribed value. Though, as just noted, it may be of no real importance 
in many cases, this is an inherent defect of statically indeterminate con¬ 
struction so far as economy of material goes. 

179. We may sum up the question of economic advantage conser¬ 
vatively by saying that, other things being equal, there is no good reason 
to expect that a statically indeterminate framework will show any 
economy in material over a determinate type; that in many cases it 
will be at a clear disadvantage in this regard, but that in other cases 
especially favorable to it, it will be more economical of material than 
any other type practically feasible. 

It should be noted again that we are here considering economy of 
material only; this does not always coincide with total economy. 

180. Reliability.—Since in any statically indeterminate structure a 
member cannot change length nor a support shift its relative position 
without setting up stresses throughout the structure, it is clear that the 
effects of inaccuracies in the lengths of members, of changes in tempera¬ 
ture and settlement of foundations require very careful consideration. 
There can be no doubt that its sensitiveness to such effects consti¬ 
tutes a valid general criticism against indeterminate construction and it 

•See particularly Profeaeor Ritter^s discussion on page 419, of the Trans. 
A. 8. C. E., previously cited. 

t ** Modem Framed Structures,” Part. II, page 185. 



408 STATICALLY INDETERMINATE CONSTRUCTION 

has been a large factor in preventing a wider use of such construction— 
justly so in many cases. But it must not be forgotten that the 
importance of these effects varies widely with different conditions. 
With rigid inspection and improved modem methods of fabrication, 
inaccuracies in the fit of the members can no longer be regarded as 
serious. Temperature of course differs greatly in different localities, and 
the effect of temperature varies widely with different kinds of structures. 
In an arch a uniform change of temperature will stress the entire struc¬ 
ture; in flat arches this effect may become very great—50 per cent or 
more, of the maximum stresses due to loading. On the other hand for 
arches with large rise and shallow rib the maximum temperature 
stresses may be less than 20 per cent of the full load and hence according 
to most specifications negligible. 

In a continuous truss, a uniform change of temperature throughout 
the structure produces no stress, and generally the effect of unequal 
changes in different parts may be safely ignored. 

The practical importance of settlement of supports likewise varies 
greatly with the individual structure. It is most important to note that 
in the design of foundations it is customary to adhere to a specified unit 
soil pressure, whether the pier or abutment be large or small, and since 
it is the unit pressure and not total pressure which governs the yield, 
there is no reason to expect this to be larger for a large span than for a 
small one. Now it is clear that for a deep plate girder, continuous over 
two 50-ft. spans, a relative settlement of l| in. in the middle support 
might be disastrous while for a truss spanning two 500-ft. openings, 
such a settlement would affect the stresses relatively little. Emphasis 
on this fact has brought a considerable weight of professional opinion 
to favor a more liberal use of continuous construction for long spans. 
More or less similar conclusions apply to large scale indeterminate 
structures of other types. 

As regards reliability of behavior of statically indeterminate struc¬ 
tures under service conditions, then, we reach the same general con¬ 
clusions as noted in Art. 179 relative to economy. The type of construc¬ 
tion has certain inherent disadvantages, in many cases these are so 
important as to rule it out altogether, while under other conditions they 
have little or no practical weight, so that if indeterminate construction 
is otherwise advantageous, it may be used with complete confidence. 

181. Validity of Methods of Analysis of Indeterminate Stresses.— 
Strictly speaking it is manifestly impossible to analyze the stresses in 
any statically indeterminate structure to the same degree of accuracy as 
in the case of a statically determined structure. The redundant reactions 
and stresses depend not only upon the requirements of static equilibrium, 



GENERAL DISCUSSION 409 

but also in general, upon the elastic deportment of the structure as a 
whole, and hence an additional source of uncertainty is always involved 
in their calculation.* 

This point has frequently been emphasized as an important general 
defect of statically indeterminate structures, and a reason for avoiding 
their use where possible. Whether as a matter of fact the uncertainties 
in the elastic behavior of such structures are sufficient to invalidate 
seriously the theory as a guide to practical design is a question which 
can be settled only by experimental investigation. No comprehensive 
investigation of the subject has ever been made, and a conclusive 
answer must await future researches. 

There is available, however, a very considerable body of data, results 
of special tests, having a most important bearing on the question even 
if not entirely conclusive. Some of these results will be noted. 

a. Tests on Steel Structures. 
(1) Moore and Wilson f made laboratory tests to determine if the 

assumption of absolutely rigid joints in steel building frames was jus¬ 
tifiable. They found that for the two most favorable types of connec¬ 
tion the error due to slip was in one case from 1 per cent to 3 per cent 
and in the other from 2 per cent to 6.8 per cent. 

This test was not a check test on indeterminate stresses in general, 
but inasmuch as the question of the actual rigidity of the joints in a stiff 
frame is fundamental, the results of the test are very significant. 

(2) Hiroi J made a test on a small model truss to check the calculated 
secondary stresses. Measurements were taken at three points, giving 
values of 600, 800 and 650 lb. per sq. in., respectively. The corre¬ 
sponding computed values were 715, 830 and 750 lb. per sq. in. 

(3) Experimental investigation of secondary stresses has been con¬ 
ducted by a committee of the American Railway Engineering Associa¬ 
tion, and comparative results for a 105-ft. span pony Warren truss are 
given in Bulletin 163. There is a wide spread in the individual dis¬ 
crepancies, measured values apparently running under the computed 
in the chords and above in the web. The committee considers the 
agreement to be satisfactory considering all the possible sources of error 
in measurements. 

(4) Maney and Parcel § made an experimental determination of the 
♦ It is incorrect, however, to say that the indeterminate quantities can be com¬ 

puted no more accurately than the elastic deflections themselves. See pages 12 
and 302. 

t University of Illinois Experiment Station Bulletin No. 104-1917. 
t Journal of the College of Engineering, Imperial University of Tokio, November 

30th, 1913. 
§ See University of Minnesota, Studies in Engineering, No. 4, 1922. 
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secondary stress at four joints on the 518-ft. span Kenova bridge in 1917. 
The test was made under service conditions (no definite test load) and 
with instruments of no great refinement, so that quantitative compari¬ 
son of measured and calculated stress are rather uncertain. Comparison 
with the conventionally computed stresses showed a wide range of error. 
When rigidity of floor and bracing and induced local distortion were 
taken into account the theoretical and measured stresses in nearly all 
cases agreed within 5 per cent to 20 per cent—a very satisfactory corre¬ 
spondence under the conditions. 

(5) D. B. Steinman* * * § has published a study of the dead load secondary 
stresses in the Hell Gate arch showing actual values far lower than those 
calculated by the conventional method. But these results have little 
bearing on the accuracy of the theory, since the type of joint used in 
this structure was such that the ordinary assumptions could not be 
expected to hold. 

(6) The Swiss Technical Commission f has made a comprehensive 
experimental study of stresses in many types of structures, and have 
given especial attention to secondary stresses. The general conclusions 
of the Commission are that when all factors that can be conveniently 
included in the calculations are so included, the agreement is in general 

satisfactory ” and in many cases very good.^^ The results shown 
(graphically) in the reference here cited are in many cases in practically 
exact agreement, and nearly all are within an error of 15 per cent. 

(7) During the erection of the Sciotoville bridge, opportunity was 
afforded (on account of erecting the structure under initial stress to 
reduce secondary stresses) to compare computed and measured 
deflections in a massive and complex framework. For practically all 
cases the error was but a few per cent; in many the agreement was exact. J 

6. Tests of Concrete Structures. 
(1) M. Abe§ has made laboratory tests to determine the applicability 

of the theory of statically indeterminate stresses to reinforced concrete 
frames. He concludes that the formulas will give stresses well within 
the limits of accuracy required for practical design. 

(2) Slater and Richart^ investigated experimentally the stresses in 
2-legged rectangular reinforced concrete frames with different types of 

* Trans. A. S. C. E., Vol. LXVII, 1914. 
t See Schweiszerische Bauzeitung, Feb. 3, 1923. For further interesting infor¬ 

mation regarding this remarkable series of tests the authors are indebted to the kind¬ 
ness of M. M. Ros, Secretary to the Swiss Commission. 

t See article by Clyde B. Pyle, Engineering News Record, Jan. 31,1918. 
§ University of Illinois Engineering Experiment Station Bulletin 107. 
f Proc. A. C. I., Vol. XV, pages 48-60 (paper by W. A. Slater). 
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brackets or haunches. The agreement between the test results and 
theory (as indicated in diagrams shown) was quite satisfactory. 

(3) A very comprehensive analytical and experimental study of 
reinforced concrete flat slab structures has been made by Westergaard 
and Slater.* The authors conclude that when the results are reduced 
to a just basis for comparison the agreement between theory and experi¬ 
ment is fair. 

Such problems as secondary stresses in steel bridges and the stresses 
in reinforced concrete frames puts the theory of indeterminate stresses 
to an especially severe test. The preceding results, even though falling 
short of complete verification will go far toward establishing confidence 
in the possibility of analyzing indeterminate stresses with sufficient 
accuracy for all practical needs. From the Sciotoville tests quoted it 
would seem altogether probable that a long span continuous truss (and 
l)y analogy, perhaps, a long span two-hinged arch or any similar type) 
can be analyzed with practically the same degree of exactness as a simple 

structure. 
European engineers have in general, always accepted as trustworthy 

the standard methods of indeterminate stress analysis, and, as previously 
noted there appears to have been, in the last twenty years, a steady 
drift of opinion in this direction among American engineers. 

182. Laboriousness of Calculations.—Of the many inherent disad¬ 
vantages of statically indeterminate construction it is possible that none 
has had more weight in influencing professional opinion than the fact 
that the analysis of the stresses is a very much more difficult and time- 
consuming task than in the case for a simple structure, yet, when con¬ 
sidered rigidly on its merits, this objection, in general, has little to support 
it. The amount of time and expense involved in making the stress cal¬ 
culations for any structure of considerable magnitude is an exceedingly 
small item in the entire engineering of the structure. An expert com¬ 
puter will hardly require more than two or three days to make a complete 
analysis of the stresses in a moderate sized two-span continuous truss 
or a two-hinged arch, or any similar type. More complex problems, 
such as fixed arches, multiple rigid frames and secondary stress in 
riveted bridge trusses will ordinarily require considerably more time, 
but only under exceptional conditions will the statically indeterminate 
stress analysis require more than a week to ten days of the time of a 
trained expert, f Fairly accurate tentative analyses can be made by 

* Moments and Stresses in Slabs. Proc. A. C. I., Vol. 17,1921. 
t These estimates are of course only crudely approximate, but they are based upon 

a considerable range of experience and observation, and are believed to be conserva¬ 
tive; some computers report much greater rapidity in their calculations. It may be 
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approximate methods in a fraction of this time. If therefore, a definite 
saving of even 5 per cent or 6 per cent can be made either by the use of 
an alternate type of structure which is statically indeterminate (as a 
continuous truss in place of two or more simple spans) or the accurate 
analysis of an indeterminate structure in place of a crude estimate of the 
stresses (as in case of secondary stresses in bridges or wind stresses in 
building frames), the expense involved in making the necessary calcu¬ 
lations will usually be altogether insignificant. 

This is not meant to minimize the importance of simplifying the 
analysis of structures of whatever type in every legitimate way, for, 
rightly or wrongly, correct methods will be less widely adopted if they 
are tedious and complex than if they are short and simple. 

183. Naturally Indeterminate Types.—The preceding discussion has 
been chiefly concerned with the merits and demerits of statically 
indeterminate construction as compared to alternate statically determin¬ 
ate forms. But it should be noted that there is a very large class of 
indeterminate structures, established as standard types in American 
practice, for which no corresponding determinate forms seem practically 
feasible. In such a class belong almost all reinforced concrete struc¬ 
tures, the steel framework in office buildings and mill buildings, and also 
(if we take a somewhat broader definition of indeterminate construc¬ 
tion) most heavy bridges which are fully or partially riveted. Difficul¬ 
ties in the joint details (especially the piling up of pin plates) has led to 
a very general adoption of a continuous upper chord in massive bridge 
trusses—even though they are nominally pin-connected trusses. In the 
case of concrete arches, three-hinged types are frequently seen in con¬ 
tinental Europe and have occasionally been built elsewhere, but Ameri¬ 
can practice thus far appears to favor overwhelmingly the hingeless 
type. 

Though it is physically possible to introduce hinges into a steel 
building frame so as to convert it into a determinate structure, prac¬ 
tically it would be quite difficult and undesirable. In a structure 
such as a reinforced concrete flat slab building frame or a multiple-arch 
dam, any modification to obviate the statical indetermination is alto¬ 
gether impracticable. 

We may say that structures of this class are (in var3ring degrees) 
“ naturally indeterminate,” that is they are not rendered indeterminate 
by adding statically imnecessary supports or members, but from their 

of interest to note Professor Tumeaure’s statement (“Modem Framed Structures,” 
Part II, page 413) that “a good computer, after becoming familiar with the process, 
can nuike a complete analysis by joint loads of the secondary stresses in an ordinary 
truss in less than two days’ time.” 



HISTORICAL REVIEW 413 

essential character special artifices would have to be used to render them 
determinate, and these appear in the main impracticable. 

184. General Summary.—In so far as any definite conclusions can 
be deduced we may say that: 

(1) Statical indetermination is never in itself a desideratum; cer¬ 
tain inherent defects always accompany it which abstractly considered 
place any indeterminate structure at a disadvantage. 

[ (2) The essential defects of indeterminate construction are of widely 
varying practical importance; in some cases they are so serious as to 
completely bar such construction; in other cases they are of no practical 
consequence. 

(3) When conditions are such as to minimize the importance of the 
essential defects, statically indeterminate types may show advantages 
in economy of material, stiffness, simplicity in manufacture and erection 
and such like over any other type practically feasible. 

(4) Certain wide fields of construction as indicated in Art. 183 are 
practically preempted by forms that are essentially statically indeter¬ 
minate and for which no alternative determinate type is practicable. 

B. Historical Review 

186. Early Period.—It is a surprising fact that structural engineer¬ 
ing, though a very old practical art, is a very new science. On this point 
Professor H. Lorenz * remarks: Despite the marked activity in con¬ 
struction of all civihzed peoples in the ancient and medieval periods, 
there is no trace to be found in the literature of those times of any 
rational reflection on the strength of structural members or the funda¬ 
mental properties of structural materials. Within the circle of con¬ 
structive artisans, one was apparently satisfied with simple rules of 
thumb which were passed on from generation to generation, jealously 
guarded as secrets of the guild, and only rarely extended by new knowl¬ 
edge and experience. The architects in charge on the other hand, 
regarded themselves (even as to-day) as constructive artists; they seldom 
went beyond the application of the law of the lever (known since the 
time of Archimedes), in which they imphcitly regarded the materials 
of construction as rigid bodies.This condition remained unchanged 
until the beginning of the seventeenth century, and it was not until 
about the middle of the nineteenth century that any systematic and 
comprehensive theory of structures was developed. 

If we take one of the simplest though one of the most important 
problems in structural mechanics, that of finding the stresses in a simple 

♦ ^^Technische Elastizitatslehre,” pages 644-645. 
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truss with smooth pin joints, we find the first definite step toward a 
solution in the work of the Dutch engineer, Simon Stevin (1548-1620) 
who appears to have understood the principles of composition and resolu¬ 
tion of forces and to have made some primitive use of the force triangle. 
He investigated the problem of the loaded cord or rope—statically 
quite similar to the problem of the truss joint. Stevin^s investigations 
were published in 1608. P. Varignon (1654^-1722) the founder of 
graphic statics^^ also investigated the loaded cord as well as other prob¬ 
lems, enunciated the parallelogram law (apparently independently of 
Sir Isaac Newton) and pointed the way to many applications of the 
force polygon and string polygon. The principles developed by Vari¬ 
gnon were applied to a variety of structural problems by the great French 
engineers of the first half of the nineteenth century, particularly Lam6, 
Clapeyron and Poncelet, but it does not appear that any marked advance 
in analytical or graphical method was made until after the middle of the 
period when a number of important discoveries followed in rapid 
succession. Before discussing these we may note that prior to 1850 the 
jointed truss was almost exclusively an American structure. A steady 
development in this type of construction had followed the Revolutionary 
War, and bridges up to 300-ft. span had been built. These were not 
built from rational designs, but in 1847 Squire Whipple, a prominent 
American engineer and inventor of the Whipple truss, published a 
remarkable treatise on Bridge Building in which he set forth for the 
first time a correct and tolerably complete theory of truss analysis and 
design. The methods he used are not the ones now followed, but this 
does not detract from the exceptional originality and thoroughness of 
his work. 

In 1863 Prof. August Ritter * published his “Method of Sections ” later 
to be so widely used, and indicated how all stresses might be analytically 
calculated by the principle of moments. In 1864 Prof. J. Clerk Maxwell 
published his work on “Reciprocal Figures and Diagrams of Forces” (the 
so-called “Maxwell stress diagram”); in 1866 Prof. Carl Culmann, of 
Zurich, the founder of modern graphics, published the first edition of 
his great treatise—“ Die graphische Statik.” While much important 
work has been done by later scholars, these works definitely cleared up 
the general question of the rational analysis of the jointed frame. 

186. The history of the analysis of the simple beam runs quite 
parallel to that of the frame. The first speculations on the subject are 
attributed to Galileo (1564-1642). He investigated mathematically 
the strength of a cantilever beam of rectangular section loaded at the 

* Continental authorities usually cite Ritter as the first to correctly analyze the 
stresses in a truss, but Whipple’s prior claim seems clear. 
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end with a single concentration, arriving at a formula we now know to 
be quite erroneous. This is not surprising, since he ^Hxeated solids as 
inelastic, not being in possession of any law connecting the displace¬ 
ments produced with the forces producing them, or of any physical 
hypothesis capable of yielding such a law.^^* But the problem com¬ 
monly known for 200 years as “Galileo^s problemmarked the beginning 
of the modern theory of the stress-strain relations in elastic solids and it 
remained unsolved until 1820 when Claude Louis Marie Navier (1785- 
1836) distinguished French engineer and professor at the Ecole des Fonts 
et Chauss&s presented to the French Academy a paper f giving a fairly 
full and sound treatment of the deflection and strengl.h of beams. 
This was followed shortly by his memorable paper on the general theory 
of elasticity, t 

In 1826 Navier published the first edition of his ‘T^^ons,” § which 
not only contained the first adequate accounts of what is frequently 
called the common theoryof the flexure of teams, but also treated 
arches, suspension bridges, columns under eccentric loads and other 
technical problems. To Navier therefore belongs the double honor of 
developing the first general theory of elastic solids and also the first 
systematic treatment of the theory of structures. 

During the period between Galileo and Navier many important 
developments were made, the most fundamental of which was the formu¬ 
lation of a law connecting elastic strain with the forces causing it. This 
was due to Robert Hooke (1635-1702), Professor of Geometry at 
Gresham College, London, who arrived at the law bearing his name 
during the course of his investigations of steel springs to be used for 
clocks and watches. His discovery was made in 1660 but was not pub¬ 
lished until 1676 (as an anagram ceiiinosssttuu ” containing the letters 
of the Latin form of the law—Ut tensio sic vis Hooke made no 
applications of his law to engineering problems, but in 1680 E. Mariotte 
(1620-1684) announced the same law (apparently quite independently) 
and applied it to Galileo^s problem. His analysis appears correct for 
the simple cases treated. 

Another important step in advance was the introduction of the 
physical notion of modulus of elasticity by Thomas Young (1773-1829). 

Love, Mathematical Theory of Elasticity,” page 2. 
t Memoir sur la flexion de verges (jlastiques courbes.” 
t Memoirs sur les lois de r<^quilibre et du mouvement des corps solides dlastiques.” 
§ ^‘R6sum6 des Ie9ons donnto a T^cole des ponts et chauss6es sur Tapplication de 

\a mdcanique a I’^tablissement des constructions et des machines.” 
If A substantially correct theory of the flexure of beams (shearing effects entirely 

neglected) was proposed by Coulomb in 1776, though apparently not very fully 
elaborated. 
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There was further a vast amount of work done by eminent mathe¬ 
maticians and physicists on isolated problems in elasticity. Especially 
noteworthy were the studies of James Bernoulli (1654-1705) on the 
elastic curve of bent bars; of Daniel Bernoulli (1700-1782) and Leonhard 
Euler (1707-1783) on the same subject and on the vibration of beams 
and rods; of Euler and Lagrange (1736-1813) on the stability and 
strength of columns; of Mile. Sophie Germain (1776-1831) on the vibra¬ 
tion of plates; and of Coulomb (1736-1806) on bending and torsion. 

187. Middle Period,—Following Navier^s formulation of a general 
theory of elastic solids came a p3riod of great activity and rapid 
development both in technical elasticity and the broader reaches of the 
subject as a branch of mathematical physics. With the latter we are 
not concerned here; among the important technical advances prior to 
1860 we may note the memoir* of Poisson (1781-1840) published in 
1829, containing the solution of some important plate problems and 
introducing the notion of transverse strain (“ Poisson^s ratio ”); the state¬ 
ment by Clapeyronf of the theorem of equality between the internal 
work of deformation in an elastic solid and the work of the force pro¬ 
ducing it—a theorem used as the basis for many later investigations; 
the work of Lam6 (1795-1820), one of the great pioneers in both the 
technical and more general science of elasticity, on cylinders and plates 
and elastic properties of iron (he also introduced the notion of tho 
stress ellipsoid, and of curvilinear coordinates and wrote the first sys¬ 
tematic treatise on the subject), and the general analysis of flexure, shear 
and torsion of any prismatic body by Barr6 de Saint-Venant (1797- 
1886), perhaps the greatest of elasticians. His work, culminating in a 
famous memoir J presented to the French Academy in 1855 may be said 
to have conclusively settled in all its practically important phases the 
^‘beam problem.’’ Navier’s solution was a satisfactory solution for all 
cases where flexure alone was the important action, and it is still the 
method used in most engineering applications. But Navier himself 
recognized that it was only applicable to deep, narrow beams. We may 
say then, roughly, that it was not until past the middle of the nineteenth 
century that simple truss action and simple beam action were fully 
understood, hence not until after this time that an adequate theory of 
structures could develop. Before outlining the development of the 
modern theory a few points regarding the earlier work seem worth 
noting. 

♦ ^‘Mtooirs sur Ti^quilibre et le mouvements des corps ^lastiques.” 
t G. Lamz et E. Clapeyron,— *‘Sur r4quilibre int4rieur des corps solides homo- 

gdnes,*^ Paris, 1833. 
t Usually referred to as the "Memoir on Torsion," though containing a general 

treatment of the entire behavior of bars. 
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(а) During the period we have been considering no clear distinction 
was made between theory of elasticity and theory of structures. As 
we have just noted, the latter could not exist until the fundamental 
questions regarding elastic behavior were settled, and this led scientific¬ 
ally inclined engineers into the study of the theory of elasticity. The 
founder of this theory and two of the greatest contributors to its 
development, Navier, LamS and de Saint-Venant were what would now 
be called professional structural engineers. 

(б) As previously noted, prior to 1860 the jointed truss was little 
known or used outside America. Hence in one sense of the term (see 
pages 402-403) all structures in common use in England and Europe 
were statically indeterminate internally. Doubtless due to this cause, no 
such emphasis on the distinction between determinate and indetermi¬ 
nate structures was made during the period just considered as has been 
in recent times. The question seems to have arisen chiefly in regard to 
fixed ended beams and arches and beams on several supports. As far 
back as Navier^s Logons^' at least, it was clearly realized that this 
problem was capable of rational solution by a consideration of the 
elastic behavior of the structure and in this way only. 

(c) It is interesting to note in connection with the preceding that 
the order in which the basic structural problems were solved has no 
relation to their theoretical diflSculty. The theory of the buckling of 
columns and the theory of arches and suspension bridges was developed 
before the theory of simple trusses, and many intricate problems, 
statically indeterminate in a high degree, regarding the stresses in plates, 
cylinders and the like were solved before the relatively simple analysis 
of continuous girders was perfected. It is historically quite inaccurate 
to regard the theory of indeterminate stresses as a modem development, 
a refinement, as it were, of the theory of simple structures. 

(d) The earlier investigations of the stresses in such structures as 
continuous girders and arches were very intricate and laborious. How¬ 
ever, simplifications and improvements were rapidly developed; Clapey- 
ron published his treatment of continuous girders by the “ three- 
moment ” theorem in 1857, vastly simplifying the whole subject; Bresse* 
and Winkler f during the period from 1850 to 1865 presented very 

♦ Bresse’s first treatise—Recherches analytiques sur la flexion et la resistance 
des pidces courbes was published in 1854; most of the matter on structures was 
reproduced in his “ Cours de m^canique appliqu6e in 1859. It is worthy of note 
that certain recent French authorities insist that his general methods have never 
been improved upon for the treatment of beams and arches. On this point see 
Pigeaud, R(5.sistance des Mat^riaux,” pages vi-vii. 

t Formanderung und Festigkeit gekrtimter Korper, 1866" and " Elasticitat und 
Festigkeit,'* 1865. 
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thorough and practically usable analyses of curved beams and 
arches. 

188. Modern Period,—The groundwork of the modern theory of 
indeterminate structures was laid during the period 1865-1880. In 
1864 Maxwell (1830-1879)* * * § published his analysis of a redundant frame¬ 
work by a method based on Clapeyron’s theorem of the equality of the 
internal and external work of the actual loads on a structure. He also 
gave in this paper the law of reciprocal deflections. The treatment 
was brief and without any attempt to develop all the implications of the 
method or illustrate it by practical examples, and consequently it 
lay practically unnoticed for many years. In 1874 Mohr f (1838-1920), 
apparently quite without knowledge of Maxwell's work, gave a simpler 
and more comprehensive presentation, based on the principle of virtual 
work, of the same general method, together with examples of its varied 
application. The method is therefore widely known as the “Maxwell- 
Mohr” method. Several years prior to the preceding work Mohr had 
presented an epoch-making paper t on the general representation of the 
elastic curve as a string polygon (^‘method of elastic weights.") 

In 1879 Castigliano (1847-1884) published his treatise on the 
“Th^orie de Tf^quilibre des systemes elastiques" by the method of least 
work.§ This was a remarkably original and comprehensive treatise, 
covering a much wider range than the work of Maxwell and Mohr, and 
it had a very important influence on the development of the theory of 
indeterminate structures. 

In 1879-80 Manderla presented his analysis of the secondary stresses 
in a truss with rigid joints. The unique feature of this solution was the 
use of the tangential angle at the member-ends as the unknown to be 
solved for rather than the moments or stresses direct. 

With the preceding work the full basis for the modern theory of 
structures was laid. Other important work was of course done in this 
period; special mention should be made of Prof. Green's presentation of 

• the Calculations of the Equilibrium and Stiffness of Frames.’’ Philosophi¬ 
cal Magazine, Vol. 27, 1864. 

t“Beitragzur Theorie des Fachwerks.” Zeitschr. des Arch.- und Ing.-Vereins 
in Hannover, 1874-5. 

t^Beitrag zur Theorie der Holz- und Eisen Konstruktionen.” Zeitschr. des 
Arch.- und Ing.-Vereins in Hannover, 1868. 

§ The method of least work, at least in a primitive form, was used by Euler in his 
investigation of the elastic curve of beams and columns. D. Bernoulli suggested to 
him that the form of the true elastic line might be determined by making the total 
internal work a minimum. Also M6nabr4a in a paper “Nouveau principe sur la 
distribution des tensions dans les S3rsttoes 61astiques,” Comptes Rendus, 1868> 
gave a definite statement of the principle as applied to trusses. 
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the method of moment areas (*1872), of Williot^s discovery of the con¬ 
struction bearing his name (1877), of the work of Winkler on the theory 
of arches (1868-1869) and of Winkler and Asimont on secondary stresses 
(1880). 

Since 1880 the development of the literature on theory of structures 
has been so vast that it is impossible here to do more than indicate a few 
of the more important contributions. 

The full development of the Maxwell-Mohr theory in application to 
all structural problems has been largely due to the later works of Mohr 
himself and to Miiller-Breslau (1851-1925) and A. Foppl (1854-1924). 
Mtiller-Breslau, Frankel and others have also made a wide application 
of the principle of least work; Foppl, Henneberg and Mtiller-Breslau* 
developed the theory of space frameworks, determinate and indeter¬ 
minate. W. Ritter, following Culmann and Mohr, developed graphical 
methods of treatment for a very wide variety of statically indeterminate 
problems, among others the solution by the ellipse of elasticity which 
has recently been given considerable attention in American literature. 
A very elegant graphical solution of the continuous girder problem by 
the method of characteristic points was presented by Claxton Fidler 
(‘^ Practical Treatise of Bridge Construction,^^ 1887), and this was 
elaborated and extended by A. Ostenfeld f to include the general case 
of angular or linear yield of supports. Engesser and Mohr have con¬ 
tributed largely to the later development of secondary stress theory; 
particular mention should be made of Mohr^s method of solution by 
** slope-deflections first proposed in 1892. f 

J. Melan has been one of the leaders in developing the modern 
theory of suspension bridges. § Since the failure of the Quebec bridge 
in 1907 brought into prominence the question of the behavior of large 
built-up columns a new theory has been presented for the action of 
such members, largely due to Miiller-Breslau ^ and Engesser. 

Particular attention of late has been given to the very difficult 
subjects of elastic stability, stresses in medium-thick plates and stresses 
in domes and multiple arch-dams. Though these fall within the scope 
of statically indeterminate stresses, properly speaking, they are not 
ordinarily so included in standard treatises, since they require lengthy 

♦ A full citation of the published articles is too lengthy to insert here; those 
interested are referred to the very full bibliography in Mehrtens, '‘Statik und 
Festigkeitslehre,’^ III-2nd Halfte, pages 258-266. 

t Graphische Behandlung der continuerlichen Trager, etc.” Zeitschr. fur Arch.- 
und Ingenieurwesen, 1906 and 1908. 

t See note on page 166 regarding the development of the slope-deflection method. 
§ See bibliography, page 421. 
If Neuer Methoden der Festigkeitslehre, Abschnitt V. 
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and special treatment. A large literature in this line has developed in 
the last two decades, but no attempt will be made even to outline it here. 
Some basic references may be found in the appended bibliography. 

C. Bibliography 

The following brief bibliography is intended to give the student 
(1) a fairly complete list of the more recent books in English which treat 
the general subject of indeterminate stresses, or important departments 
of it; (2) a list of a few representative foreign treatises, and (3) a short 
list of papers and monographs which cover a different field, or a special 
field more completely than do the general treatises. Brief^ descriptive 
comment is appended in some cases. 

The literature bearing on the theory of statically indeterminate 
structures is now so voluminous that anything like a comprehensive 
bibliography would be much too bulky to insert in this book. It is 
hoped that the small list given will serve to introduce the student to 
the larger field. Some of the references named contain rather full 
bibliographies. 

Among the general treatises on statically indeterminate structures 
may be mentioned: 

Andrews, Ewart C. Translation of Theorie de Vtquilihre des sysUmes 
dastiqueSj by A. Castigliano, under the title, Stresses in Elastic 
Structures. London. Scott & Greenwood. 1919. 

Though nearly 60 years old, this remarkable treatise still has much more than 
mere historic interest, and is well worth careful study. 

Hiroi, Isami. Statically Indeterminate Stresses. New York. Van 
Nostrand. 1905. 

Brief, clear treatment (exclusively by method of least work) the leading t3rpes of 
indeterminate structures and of secondary stresses. 

Hool, George A., and Kinne, W. S. Structural Engineers Handbook 
Library, volumes entitled, Structural Members and their Connec¬ 
tions. Stresses in Framed Structures. Movable and Long-Span 
Bridges. New York. McGraw-Hill. 1923. 

No one of these volumes is primarily devoted to the subject of indeterminate 
stresses, but taken as a whole they cover the subject rather thoroughly. 

The first named volume contains a very thorough and excellent treatment of 
beam deflections by a variety of methods and of restrained and continuous beams; 
the second volume treats (among other things) the subject of truss deflections, 
redundant members, secondary stresses and rigid frames; the third named volume 
treats at considerable length the theory and practice of continuous and swing spans, 
arches and suspension bridges. 
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Johnson, J. B., Bryan, C. W., and Tumeaure, F. E. Modem Framed 
Structures, Part 11. Statically Indeterminate Structures and 
Secondary Stresses. New York. John Wiley & Sons. 1929. 

Taken in connection with the last chapter of Part I of the same series, which 
chapter treats of deflections and the elementary applications to indeterminate 
problems, this volume probably offers the best and most comprehensive treatment of 
statically indeterminate stresses in the Enghsh language. All practically important 
types of structures are treated. The treatment of secondary stresses and suspension 
bridges is especially full and detailed. The method of consistent distortions is the 
basic method followed, though the method of least work is illustrated. 

Molitor, D. A. Kinetic Theory of Engineering Structures. New York. 
McGraw-Hill. 1911. 

Contains full treatment of fundamental theory. The approach is quite different 
from most other treatises in English, being largely modeled after the European 
method. 

Among the more important special treatises may be named: 

Cross, Hardy and Morgan, N. D. Continuous Frames of Reinforced 
Concrete. New York. John Wiley & Sons. 1932. 

This treatise has a wider scope than is indicated by the title. It presents a 
broad treatment of deflections and of the analysis of continuous girders, frames, and 
arches, using both moment distribution and the column analogy for the indeterminate 
stress analysis. 

Hayden, Arthur G. The Rigid Frame Bridge. New York. John 
Wiley & Sons. 1931. 

Fuel treatment of the analysis and design of rigid frame bridges. 

Hool, George A. Reinforced Concrete Construction, Vol. III. Bridges 
and Culverts—Part I—Arch Bridges. New York. McGraw-Hill. 

1916. 

Full treatment of reinforced concrete arch by the standard method and also by 
the method of the ellipse of elasticity. Also treats problem of multiple arch bridge 
with elastic piers. 

McCullough, C. B., and Thayer, E. S. Elastic Arch Bridges. New 
York. John Wiley & Sons. 1931. 

Very complete, modem treatment of the theory of arches. Excellent presenta¬ 
tion of the analysis by the method of the ellipse of elasticity. 
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Steinnum, D. B. Translation of J. Melan’s Arches and Suspension 
Bridges. Chicago. Myron C. Clark. 1913. 

Very thorough treatment of arches and suspension systems by one of the fore¬ 

most authorities. 

Steimnan, D. B. Translation of J. Melan^s The Reinforced Concrete 
Arch. New York. John Wiley & Sons. 1915. 

Very complete treatment supplemented by tables, graphs and examples. 

Steimnan, D. B. A Practical Treatise on Suspension Bridges. New 
York. John Wiley & Sons. 1922. 

Excellent treatment (covering both Elastic and Deflection theories) written 

from the standpoint of the designing engineer. Also contains extensive data on 

construction methods. 

A number of works which are not treatises on indeterminate struc¬ 
tures primarily have important sections devoted to the subject. Among 
these may be named: 

Ellis, Charles A. Theory of Framed Structures. Chapters V to VIII 
New York. McGraw-Hill. 1922. 

Greene, Charles E. Trusses and Arches. Chapters VII to X. Part II; 
practically all of Part III. New York, John Wiley & Sons. 
1893-94. 

Ketchum, Milo S. Design of Steel Mill Buildings. Part II—Chapters 
XIV to XXII. New York. McGraw-Hill. 1929. 

Morley, Arthur. Theory of Structures. Chapters VI, VII, XIV, XV, 
XVIII. London. Longmans, Green. 1918. 

Spofford, Charles M. Theory of Structures. Chapters XIV to XVII. 
New York. McGraw-Hill. 1915. 

Sutherland, Hale and Bowman, H. L. An Introduction to Structural 
Theory and Design. New York. John Wiley & Sons. 1935. 

Van den Broek, J. A. The Elastic Energy Theory. New York. 
John Wiley & Sons. 1931. 

The literature on indeterminate stresses in continental Europe is 
wide and varied, and by far the greater bulk of it is in the German 
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language. Among the modern comprehensive treatises the following 
may be mentioned: 

Bleich, Friedrich. Theorie und Berechung der Eisemen Briicken. 
Berlin. Julius Springer. 1925. 

Though primarily a treatise on the theory of design, this work contains an exten¬ 

sive treatment of the analysis of continuous girders and trusses, frames, arches, 

suspension systems and secondary stresses. It also gives, from the standpoint of 

the bridge engineer, one of the very best and most complete presentations of the 

important subjects of elastic buckling and complex local stresses. 

Flamard, Ernest. Calcul des systdmes ^lastiques de la construction. 
Paris. Gauthier-Villars. 1918. 

A small book containing a very thorough mathematical treatment of the funda¬ 

mental “work theorems” and their applications to continuous and restrained beams, 

trusses and arches. 

Griining, Martin. Die Statik des Ebenen Tragwerkes. Berlin. Julius 
Springer. 1925. 

Very thorough mathematical treatment of the subject. 

Mehrtens, G. C. Statik und Festigkeitslehre. Ijeipsic. Wilhelm 
Englemann. 1912. 

This work is in three volumes; parts of Vols. I and II and nearly all of Vol. Ill 

are devoted to deflections and indeterminate stresses, and the treatment is very full 

and detailed. 

Miiller-Breslau, H. F. B. Die graphische Statik der Baukonstruk- 
tionen. Stuttgart. Alfred Kroner. 1920-27. 

This work is in three volumes and practically the whole of the last two are 

devoted to statically indeterminate stresses—some 1200 pages. The treatment is 

probably the most complete to be found anywhere and the work is perhaps the lead¬ 

ing international reference book on the subject. 

Ostenfeld, A. Teknisk Statik, Vol. II (in Danish). Copenhagen. 

Jul. Gjellerup. 1913. 

A very thorough treatment of the whole field of indeterminate stresses, rivaling 
in clearness and comprehensiveness the work of Miiller-Breslau. 

Pigeaud, Gaston. Resistance des Materiaux. Paris. Gauthier-Villars. 

1923. 
This large volume is, as the name indicates, primarily a treatise on mechanics of 

materials, but it contains several chapters devoted to the subject of indeterminate 
structures—continuous girders, arches and suspension bridges. 
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Pirlet, J. Kompendium der Statik der Baukonstruktionen, Vol. II, Die 
Statische Unbestimmten Systeme. Berlin. Julius Springer. 1925. 

Exceptionally full treatment of basic theory, and emphasizing the application 
to frames and arches. 

Ritter, W. Anwendungen der graphischen Statik, nach C. Culmann 
Zurich. A. Raustein. 1900-06. 

This is a four-volume work of which the 3d and 4th volumes are devoted to 
indeterminate problems. The whole field is covered and graphic or semi-graphic 
methods predominate in the treatment. This is the leading reference work for 
graphic methods. 

Among the important treatises covering a more limited field two 
may be noted: 

Ostenfeld, A. Die Deformations Methode. Berhn. Julius Springer. 
1926. 

Presenting a generalized method of attack in which deformations rather than 
stresses are directly solved for in the analysis. 

Rode, H. A New Deflection Theory. Nidaros. F. Bruns. 1934. 

Presenting a more exact theory of suspension systems. 

While no attempt will be made here to list all the important 
papers and monographs on indeterminate structures that have 
appeared in America in recent years, it may not be out of place 
to note the following for the reason that they treat certain important 
departments or phases of the theory not ordinarily found in text and 
reference books: 

von Abo, C. V. Secondary Stresses in Bridges. Proc. A. S. C. E. 
Feb., 1925. 

This paper is devoted to a detailed critical comparison of the various methods of 
attack on the secondary stress problem. Together with the discussion it consti¬ 
tutes by far the most complete study of this important topic that has ever been 
made. 

Beggs, George E. Mechanical Solution of Statically Indeterminate 
Structures by Paper Models and Special Gages. Proc. A. C. I., 
Vols. XVIII and XIX. 

This gives the fundamental theory, illustrated by many applications of Prof. 

Beggs’ unique method of solving indeterminate problems by means of mechanical 

models. 
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Cross, Hardy. Analysis of Rigid Frames by the Distribution of 
Fixed-end Moments. Trans. A. S. C. E., Vol. 96. 1932. 

This brief paper and the very voluminous discussion present very comprehensively 

the moment distribution method and its application to a great variety of problems. 

Cross, Hardy. The Column Analogy. University of Illinois. Engi¬ 
neering Experiment Station. Bulletin 215. 1930. 

Presents the theory and some examples of the author's interesting method of 

obtaining the indeterminate moments in continuous girders, frames and arches by 

means of their mathematical analogy to the stresses in a short, rigid “hypothetical'' 

colunm, resting on an elastic supi)ort and subjected to axial and bend forces. 

Janni, A. C. The Design of Multiple Arch Systems. Proc. A. S. C. E. 
Aug. 1924. 

Perhaps the most complete exposition in English of the analysis of this important 

problem by means of the ellipse of elasticity. 

Priester, George C, The Application of Trigonometric Series to 
Cable Stress Analysis in Suspension Bridges. Ann Arbor. Engi¬ 
neering Research Bulletin No. 12. University of Michigan. 1929. 

Detailed study of the application of Timoshenko's method of using a Fourier 

series to express the deflection of a suspension bridge stiffening truss. Full exposition 

of theory illustrated extensively by numerical examples. 

Steinman, D. B. The Generalized Deflection Theory for Suspension 
Bridges. Proc. A. S. C. E. May, 1934. 

Presents the most complete treatment extant of the theory of suspension bridges 

with continuous stiffening trusses. 

Wilson, W. M., and Maney, George A. Wind Stresses in Office Build¬ 
ings. Bulletin No. 80, Univ. of Ill. Expt. Station. 

The most thorough and complete treatment of the problem that has so far 

appeared. It contains a full exposition of the exact solution by the slope-deflection 

method, a critical comparison of various approximate methods, and a fully worked 

out example of a 20-story building. 

It has been noted in the historical summary that there are a number 
of problems in the theory of structures which are actually problems in 
statically indeterminate stresses, but which are not amenable to the 
methods analysis ordinarily included under this head. In this group 
we may include plate and dome action, elastic stability, and problems 
regarding the exact local distribution of stress. These problems usually 
require a more exact formulation of the stress-strain relations within 
an elastic solid than is necessary for most structural problems. It 
would appear that this field is becoming of increasing importance to 
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structural engineers, and for the benefit of those interested in stud3dng 
up the subject a few references are noted here. 

On the general subject of technical elasticity perhaps the best English 
works are: 

Prescott, John, Applied Elasticity. London. Longmans, Green. 1924. 

Timoshenko, S., and Lessells, J. M. Applied Elasticity. Pittsburgh 
Technical Night School Press. 1925. 

Timoshenko, S. Theory of Elasticity. New York. McGraw-Hill Co. 
1934. 

In German the following works are particularly well suited to the 
needs of the engineer: 

Foppl, A. and O. Drang und Zwang. 2 Volumes. Munich and 
Berlin. R. Oldenburg. 1920-24. 

Lorenz, H, Technische Elastizitatslehre. Munich and Berlin. R. Old- 
denburg. 1913. 

Attention may be called to the following monographs and articles 
on special problems in the field of technical elasticity which are of 
interest to structural engineers: 

Mayer, R. Knickfestigkeit. Berlin. Julius Springer. 1921. 

Very full theoretical treatment of the subject of elastic buckling and also the 

analysis of numerous tests. 

Nadai, A. Elastischcn Platten. Berlin. Julius Springer. 1925. 

The standard work on the mathematical theory of plate action. 

Salmon, E. H. Columns. London. Henry Frowde and Hodder & 
Stoughton. 1921. 

Critical review of the theory of columns and of test data. Contains an exhaus¬ 

tive bibliography. 

Timoshenko, S. Problems Concerning Elastic Stability in Structures. 
Proc. A. S. C. E. April 1929. 

Contains a detailed study of a number of problems of interest to the structural 

engineer. 

Westergaard, H. M. and Slater, W. A. Moments and Stresses in 
Slabs. Proc. A. C. I., Vol. XVII, 1921. 

One of the most important studies of flat slab building construction. Contains 
a full mathematical treatment and review of test data. Also contains an extensive 

bibliography. 
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Westergaard, H. M. Buckling of Elastic Structures. Proc. A. S. C. E., 
Nov., 1921. 

Comprehensive mathematical treatment of the subject of elastic stability so 

far as it affects engineering structures. Very full bibliography. 

Westergaard, H. M. Computation of Stresses in Bridge Slabs Due 

to Wheel Loads. Public Roads, Vol. II, No. 1. March, 1930. 

The most authoritative treatment on this subject that has so far appeared. It 

has become the standard upon which most design specifications are based. 

A. S. C. E. Committee. Report on Arch Dam Investigation. 

Proc. A. S. C. E., Vol. 1, part 3. May, 1928. 

Comprehensive theoretical and experimental study of the stresses in an arch 

dam. Very full bibliography. 
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