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PREFACE TO SECOND EDITION 

The second edition aims to continue the objective of the first edition 
by presenting a text that will '^explain in a consecutive and expanded 
manner the multitudinous details that make a reinforced concrete de¬ 
sign/^ The illustrative designs and the discussions in the text have 
been revised to conform, in general, with the 1941 Building Regulations 
for Reinforced Concrete of the American Concrete Institute or with the 
1940 Joint Committee Recommended Practice for Concrete and Rein¬ 
forced Concrete. 

The present theory, based on a straight-line variation of concrete 
stress and the consideration of stresses caused by loads alone, has fallen 
into considerable disrepute, and empirical methods of design are in¬ 
creasingly substituted. For this reason a plastic theory of design is 
presented as a possible alternative. Designs by both theories have been 
made to give comparison of ease of computation and economy of design. 

The material on shrinkage and plastic flow has been rewritten and ex¬ 
panded, as it is essential for discussion of the new articles on prestressed 
concrete. The chapter on elastic frame analysis has been expanded to 
include consideration of members of varying depth, curved beams, and 
three-dimensional space frames. The discussion of space frames leads 
to consideration of torsional stresses and torsional stiffness. The de¬ 
sign of forms has also been added. 

This text not only covers the usual content of courses in elementary 
concrete design but also offers material for advanced courses. It is 
hoped that it will be a handy reference book for the designer. 

D. P., Jr. 
Cambridge, Massachusetts 

February, 1946 





PREFACE TO FIRST EDITION 

This book has been written for use in a course in Reinforced Concrete 
Design of 270 hours of lecture and problem work given at the Massa¬ 
chusetts Institute of Technology. The author’s experience of nearly 
twenty years with the undergraduate and graduate students at the In¬ 
stitute, with the night classes of the Lowell School, and lately with the 
classes of unemployed engineers during the depression, has convinced 
him that there is a demand for a textbook which shall explain in a con¬ 
secutive and expanded manner the multitudinous details that make a 
reinforced concrete design. During the usual lecture it is not possible 
for a student to make accurate comprehensive notes and at the same 
time absorb the general scheme presented by the instructor. It is hoped 
that this discussion is sufficiently detailed so that the student need take 
no notes, or may use it to advantage if he must study without instruction. 

The general plan is to present the theory, followed by illustrative de¬ 
signs carried through to a sketch sufficiently elaborated to be presented 
to the field force. Each illustrative problem is a complete design of 
some unit, while collectively they form the essentials for the design of 
a complete building. Office practice varies with different firms and 
localities, and the designs presented are conservative solutions. Em-* 
phasis is given to the design fundamentals rather than to the execution 
of finished drawings and details. 

The recommendations of the 1928 Joint Standard Building Code of 
the American Concrete Institute are used in general for the allowable 
stresses and methods of commercial design. Where it seemed advisable 
it has been possible to indicate the changes of procedure recommended 
by the proposed 1936 revision of the A.C.I. code. The nomenclature is 
that generally employed in practice. 

It is assumed that the student is already, equipped with a working 
knowledge of applied mechanics, particularly with reference to the sub¬ 
jects of statics and the beam theory. Some phases of the work of de¬ 
sign lead to highly complex problems, as, for example, the analysis of a 
rdlrforced concrete building frame for a variable live load, and for wind 
loads. Such design problems call for excellent training in the theory of 
mdotarmimte structures based upon fundamental theories of applied 
mechanics and the theory of elasticity. Complex problems are beyond 

vii 



viii PREFACE TO FIRST EDITION 

the scope of the present text, which will be confined to the usual prob¬ 
lems of design. Since the primary concern of this text lies with design, 
the matters of construction detail and manipulation, such as building of 
forms, methods of pouring, etc., are omitted. 

Many uses have been found for reinforced concrete. This book is 
concerned, primarily, with reinforced concrete in the design of buildings. 
The underlying principles presented are applicable, however, to other 

classes of structures. 
It would be well for the student of reinforced concrete to orient this 

medium with reference to other classes of building materials before pro¬ 
ceeding with the study of its particular properties and problems. 

Grateful acknowledgment should be made to Professor Addison F. 
Holmes for the interest and encouragement that enabled the author to 

fit the extra load of writing into the teaching schedule. Mr. Alvin 
Sloane has benefited the text by a critical reading of the manuscript as 
he drew the illustrations. 

D. P., Jb. 
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CHAPTER 1 

GENERAL PRINCIPLES 

1. Reixiforced Concrete Construction. Plain concrete, made from nat¬ 
ural cements, was employed as a structural material in the time of the 
Roman Empire. It was used in compression members, such as roads, 
aqueducts, arches, etc. Some of these structures have survived to this 
day. Reinforced concrete has been used for about sixty years in mem¬ 
bers in bending or with tensile stresses. In this short time the study of 
tests and loaded structures has given rise to the methods of design now 
in general use. The recent tendency has been to develop more accurate 
and intricate methods of design which effect savings in materials. Such 
economies are justified only if the structure adequately supports its load. 
Variations of the live load must be considered, as well as the effect of 
temperature changes, and of shrinkage and time-flow, so that the maxi¬ 
mum deformations are not excessive. In design it is customaiy to com¬ 
pute the maximum stress intensities in a member, but the student should 
always keep in mind that the essential is a reasonable deformation. The 
stress intensity is a convenient measure of the strain, or unit deforma¬ 
tion. 

2. Monolithic Construction. The design of reinforced concrete struc¬ 
tures involves a study of the elementary parts, consisting of beams, 
columns, footings, retaining walls, etc. The identification and analysis 
of these units are more difficult than for steel or timber construction 
because there is no evident demarcation between slab, beam, or girder. 
They are poured monolithically, except for ‘‘precast^^ members. In 
timber construction, such as the “slow-burning'' mill building, the floor 
planks, wooden beams, wooden or cast iron columns, and brick walls 
are evidently separate units. Riveted steel frames are also designed 
as units of a single span, both for beams and columns. The modem 
welded frame, however, gives the more economical rigid connection. 
The reinforced concrete floor system is poured continuously over large 
areas, with steel running through all connections and construction joints. 
The result is a monolith with the advantages pertaining to a rigid 
frame. When a floor system is poured as a unit for many spans in aJI 
directions, the proper division of the floor load between slab, beams, and 
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2 GENERAL PRINCIPLES [Chap* 1 

girders becjomes a highly complicated problem. The beams, for in¬ 
stance, are fixed or partially fixed by the columns and by the beams in 
the adjacent spans. The columns are also continuous from basement 
to the roof. This type of construction allows readjustment of the stress 
distribution (deformations) if some member is overloaded. It can be 
designed to give resistance to wind loads, vibration, and earthquake 
shocks. 

3. Advantage of Reinforced Concrete Construction. Concrete is a 
material whose tensile strength is much less than its compressive 
strength. The tensile strength is so low that plain concrete can be 
used only where the member is in compression. Members in bending, 
such as slabs, beams, long columns, arches, etc., must be provided with 
properly placed steel to take the tensile pulls which will otherwise cause 
cracks and failure in the concrete. Reinforcing steel is supplied as bars 
of varying sizes which can be rolled cheaply and can be bent to rein¬ 
force any part of a member. Steel is best used as tensile reinforcement, 
because neither bars nor thin plates make satisfactory compression mem¬ 
bers unless supported laterally. 

The usual reinforced section consists of a concrete compression area 
and a steel tension area. The steel is protected from fire and corrosion 
by a covering of concrete, which is an excellent fireproofing material. 
The member has, therefore, great durability as well as adequate strength. 

Concrete has a low strength-weight ratio compared with steel. In 
fact, in many structures the dead weight may be a large percentage of 
the total load brought to the footings. The members must be corre¬ 
spondingly larger to carry the dead weight, but the effect of movable 
loads is much reduced. However, with the allowable stresses now used, 
concrete is a cheaper compression material than steel. For example, 
the concrete for a column may cost 40 cents per cubic foot, with an 
allowable compressive stress of 600 lb. per sq. in., or a cost factor of 
40 -T- 600 = 0.067. A richer mix may cost 60 cents per cubic foot with 
an allowable stress of 900 lb. per sq. in., or a cost factor of 0.056. Struc¬ 
tural steel may cost 4 cents per pound and have an allowable compres¬ 
sive stress of 13,000 lb. per sq. in. or less. Its cost factor equals (4 X 
490) 13,000 = 0.151. The concrete cost factor is markedly less. 

Remforced concrete is durable and fireproof. It can compete in cost 
in most localities with steel or wood-brick construction up to heights of 
10 to 12 stories. Above such heights the columns are Usually of struct 
tural steel encased in concrete. Reinforced concrete ocmstructim uses 
unskilled labor for the most part, and the supplies of cement, aggregate, 
and steel bars are easily obtained. On the other lmd, astimctural mate*- 
rial manufactured at the site can be very variable compaitd with 
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a material as structural steel. Some contractors and engineers do not 
have the experience or the knowledge required to produce even the 
average concrete assumed in specifications. 

The monolithic construction enables machine vibrations to be ab* 
sorbed, and the rigid structure can resist wind pressures or earthquake 
shocks. Reinforced concrete is not recommended for structures where 
alterations are anticipated or for a temporary building which must be 
razed later. 

Concrete has largely superseded masonry in retaining wails, dams, 
abutments, arches, and conduits. It is frequently used instead of ma¬ 
sonry for reservoir walls, roofs, and floors, also for chimneys or towers. 
Concrete competes with steel, cast iron, or vitrified clay in pipe lines or 
conduits. In buildings reinforced concrete is generally used for floors 
and footings, and it competes with steel and masonry for use in columns 
and walls. It has been employed for water tanks and ships. 

4. Physical Properties of Concrete. The designer of reinforced con¬ 
crete structures must be familiar with the physical properties of con¬ 
cretes in order that the structure may carry its load safely and be 
durable. The student should consult texts on materials for an extensive 
discussion of the mass of test data on cements and concretes. A brief 
summary will be given here of the more important properties of concrete. 

Reinforced concrete is often used in comparatively thin sections. It 
is desirable in such cases to give a minimum covering to the steel. Re¬ 
sistance to frost, imperviousness to water pressure, and protection of 
the steel from fire or corrosion call for a dense concrete. A dense, im¬ 
pervious concrete is also a strong concrete. Such a concrete can be ob¬ 
tained, with a minimum of the costly cement, by suitably grading the 
available aggregates and by carefully determining the amount of water. 
So many variables affect the grade of concrete actually manufactured 
that it is desirable to determine in advance by tests the strengths re¬ 
alized by the materials chosen, mixed by the methods and in the propor¬ 
tions to be used on the job. It has been the endeavor of recent speciy&- 
cations to encourage such advance tests and also field tests of the con¬ 
crete made by the contractor. 

5. Cement Portland cements are commonly used and are selected 
by the specifications of the American Society for Testing Materials. In 
recent years other cements have been developed for specific properties. 
Thus, high early strength cements are employed for highways and struc¬ 
tures where a reduction of the time of construction justifies some increase 
in cost Cements with a low coefficient of shrinkage are in demand for 
fairways, dams, etc. Portland cements frequently have a considerable 

rise when large masses of concrete are setting. A cement 
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with low heat of setting and low shrinkage coefficient was developed for 
Boulder Dam. 

6. Aggregate. The aggregate is often divided into two sizes. Fine 
aggregate comprises those particles less than J in. in diameter and is 
obtained from sand or the screened portion of slag or crushed stone. 
Coarse aggregate is composed of particles larger than J in. in diameter 
and is obtained from gravel, crushed stone, slag, or a more costly vitri¬ 
fied light-weight material. All aggregate should be composed of clean, 
sound, and strong material. 

Sands should not contain more than a trace of loam or other organic 
material. The grading should not show more than 30 per cent passing 
the 60 sieve or over 10 per cent passing the 100 sieve. Very fine mate¬ 
rial has a large surface area for a given volume and requires more cement 
paste to cover the surfaces. An aggregate which is uniform in size has 
large percentages of voids which must be filled by the cement paste. 
If a fixed amount of cement is used, as in a 1 : 2 : 4 mix, the strength 
will be less for poorly graded aggregates because more water must be 
used with the cement to produce a workable mix. Excess water will 
evaporate, and the concrete will be porous and low in strength. 

Fine aggregates are selected by a colorimetric test for organic matter, 
by sieving a sample for particle sizes, and by compression or tension 
tests for strength. 

The coarse aggregate is the material larger than j in. For reinforced 
concrete the maximum size is about f in. to 1 in., so that the stone will 
pass through the narrow clearances around the steel bars. With stones 
up to 6 in., or even 9 in., in size, large masses of plain concrete can be 
poured. Gravel concretes are easier to place than broken stone or slag 
concretes but, if the gravel comprises water-worn material, the smooth 
surface may give poor adhesion with the cement paste. Gravel con¬ 
cretes usually give the desired workability with less water, but the indi¬ 
vidual particles are often not as strong as the broken stone particles. 

Aggr^te should be clean. It is screened to deternune particle sizes. 
The relative gradings of mixtures of fine and coarse aggregate are com¬ 
pared by the ^'fineness modulus,'' or summation of the percentages held 
on certain sieves. 

7* Proportioning for Strength. The grading of the aggregate which 
results in the densest mixture gives a strong concrete. This is also eco¬ 
nomical because it requires the least amount of cement paste to fill the 
voids. In practice, somewhat more paste is used than the volume of 
voids to allow for separation of the aggregate particles by the introduc¬ 
tion of the paste. The densest aggregate proportions can be determined 
by trial or by the use of an id^l curve of gradation, such as Fuller's 
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curve.^ The strength of concrete increases with the ratio of cement to 
voids. Aggregate of uniform size, with a high percentage of voids, will 
require a larger amount of cement to give a desired strength than will 
the well-graded mixture. The strength of a given grading of aggregate 
can be increased by using more cement. 

The cement paste consists of cement and water. A certain minimum 
amount of water is needed to complete the chemical process of setting. 
More water than this amount must be used to give commercial work¬ 
ability. Mr. Duff Abrams proved that there is a relation between 
strength and the water-cement ratio. The relation is usually expressed 

S - 
A 

where S == compressive strength 
X = water-cement ratio 
A and B are constants determined by test. 

(1) 

I 

I 
I 

I 
^ as /a /.S 20 25 3.0 J5 ^.0 

w 
Watcr -Rat/o to yoLUMe or CcMtt/r — 

Fia. 1 

Figure 1 is a plot of equation 1 for a certain cement and aggregate. 
From such a plot the maximum water-cement ratio that will give a 
desired strength can be found. 

A given aggregate mixture requires a definite amount of water to wet 
the aggregate surfaces. A fean mix with a small amount of cement wiU 
require a higher water-cement ratio to give the same workability as a 
rtich mix, and has, therefore, a lower strength. 

* W. B. Fulka* and S. £. Thompson, "Laws of Proportioning Conorete,” Tran*. 
A.S.CJB., VoL LIX, p. W, 1907. 
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If the mix is determined from Abrams^ curve, it is usual to adopt a 
water-cement ratio expressed as gallons per sack of cement. This water 
content corresponds to the strength desired and includes the water al¬ 
ready present in the aggregate. If the grading of the aggregate varies 
from day to day the total amount of aggregate per sack of cement is 
varied, or the ratio of fine to coarse aggregate is adjusted, so that the 
workability of the mix is satisfactory. The water-cement ratio remains 
unchanged. 

8. Consistency or Workability. There is no completely satisfactory 
method of determining the consistency of the concrete which can be 
placed with the minimum of labor. The usual field test is the slump in 
inches of a standard truncated cone of concrete. The present tendency 
is to use as dry a mix as possible and to spade or tamp the concrete into 
place. Mass concrete and that in highways are poured with slumps of 
1 to 3 in. Reinforced concrete is placed with slumps of 3 to 6 in. Thin 
walls of considerable height with several rows of steel reinforcement 
require wetter consistencies in order to give smooth surfaces and to 
avoid honeycombing or voids around the steel. Concrete which was 
formerly considered much too dry can now be placed by the use of 
vibrators. 

Permeability tests show that the mortar sinks as the concrete sets, 
leaving voids under the coarse aggregate and continuous voids under 
horizontal or inclined steel. The larger the coarse aggregate the greater 
continuity of voids is given for flow of water. The presence of hori¬ 
zontal reinforcing steel may also reduce materially the effective depth 
of concrete to resist water penetration, 

9. Concrete Strengths. The compressive strength is the standard by 
which concretes are rated. The allowable stresses in building codes are 
based on the compressive strength at the age of 28 days when tested as 
a cylinder 6 in. in diameter and 12 in. in height. Most concretes are 
proportioned to give a desired compressive strength. This also insures 
reasonable tensile and shear strengths because they vary approximately 
as the compressive strength. The denser, stronger concretes are also 
thq more durable and impervious. 

The tensile strength varies from one eighth to one twelfth of the com¬ 
pressive strength. The value is so low that most failures are tensile and 
occur without warning in plain concrete. With reinforced concrete com¬ 
plete destruction may not occur, but an inadequate steel dedgn will 
result in unsightly cracks. 

The shearing strength of concrete is the resistance to sliding on some 
plane. Maximum shear stresses on a particle occur on planes at 46® 
with the planes of maximum compression or tension. Tkius, a concrete 
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cylinder tested in compression tends to fail by shear on a 45® plane, and 
this shear stress will be one half the compression stress on the cJ*os8 
section. The test cylinder has a height twice the diameter, and the 
plane of failure is actually greater than 45® with the cross section. Shear 
tests indicate strengths varying from 0.4 to 0.9 the compressive strength. 

The push of a column through a slab or footing is a form of shear 
failure, usually called punching shear. The average stress around the 
column perimeter varies with the shape of column section. The shear 
strength is great enough so that it seldom determines the failure of a 
member. 

The term shear failure is often used colloquially for a tensile failure 
on some plane inclined to the cross section. Such diagonal tension fail¬ 
ures occur when the cross section has high shear stresses and the plane 
of maximum tension for a particle makes a considerable angle with the 
cross section. The longitudinal steel is not in line with this pull and 
cannot alone prevent the formation of a tension crack on some inclined 
plane. Diagonal tension is discussed in Chapter 4. 

10. Stress-Strain Relations. The instantaneous unit deformation 
produced by the application of a load is known as elastic strain. Up to 
a certain limit this deformation is entirely recovered when the load is 
removed. However, for most loadings on concrete the amount of this 
recovery decreases as time passes; there has been a permanent set or 
deformation. 

Concrete is a plastic material, and additional deformations occur im¬ 
mediately after the application of a load. Even though the load remains 
constant these additional strains increase as time passes. They vary 
with the amount of load and with the time. The strain increase is called 
plastic strain, or time-flow. 

Quite apart from deformations due to the application of a load am 
deformations due to shrinkage or loss of water from the concrete. 
Shrinkage strains have considerable magnitude if the concrete dries out 
thoroughly, but will also occur at constant humidity. Subsequent wet¬ 
ting will cause a decrease of the shrinkage, but the recovery is not 
complete. 

Figure 2 from Mr. Glanville^s paper ^ shows the general time-strain 
relation between the three strains at constant temperature, humidity, 
and load. There can also be deformations caused by temperature 
changes. In the past, designs have usually taken into consideration 
the elastic effect of the loading only. The modulus of elasticity for the 
concrete has been computed, however, from strains which include some 
ol the plastic flow. It is now recognized for members of considerable 

* V. H. GlanviUe, Buildiixg Research Technical Papers 10,11,12. 
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size, such as floor systems, pavements, dams, and arches, that allow¬ 
ance must be made for plastic flow, shrinkage, and temperature defor¬ 
mations. 

^Plastic Strain 

Shrinkage Strain 

'—Plastic Strain 

Time after Loading 

Fig. 2 

11, Elastic Stress-Strain Relation. Figure 3a shows the stress-strain 
diagrams for concrete of different strengths as determined by the usual 
laboratory test. Mr. Glanville determined that some plastic strain is 

Sfratn 

TrpicAi CoiKften Ct/zms 

(a) Concrete (b) Steel 
Fig. 3 

included in such a test, even if the strain is recorded within a few sec¬ 
onds of the application of the load. He attributes to plastic flow the 
flattening of the curve at the higher stresses. The true modulus of elash 
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ticity is the slope of the tangent to the curve at the origin, or initial 
modulus. The secant modulus^ or slope of the line drawn from the origin 
to some point on the curve, is merely the ratio of stress to total strain. 

Professor R. E. Davis of the University of California has suggested 
that the modulus of elasticity E be defined as the ratio 

1 
E = - 

e 

where e = elastic strain for a unit stress. He suggests that modulus of 
resistance R be used for the ratio 

1 
R =- 

e + c 

where c = plastic strain for a unit stress. 
The modulus of elasticity Ec of the concrete is assumed in the A.C.I. 

Code to be equal to lOOQf'c, where fc is the compressive strength at 
28 days^ age. This criterion is based on tests whose strains include some 
instantaneous plastic flow. Mr. Glanville’s results give the true mod¬ 
ulus of elasticity as much greater in value. 

If a load is repeatedly applied, the stress-strain relation becomes a 
straight line up to this load. 

12. Shrinkage Strain. Ordinary commercial concrete is poured and 
sets under atmospheric conditions. As it dries out the concrete shrinks. 
There may be alternations of expansion and shrinkage as it is subse¬ 
quently wetted or dried. These deformations due to water content in¬ 
crease with the wetter mixes, with the richer mixes, and with low 
humidities. Concrete that hardens in shelter will dry out permanently, 
especially if the structure is heated during the winter. Under such con¬ 
ditions shrinkages from 0.03 per cent in 3 months to 0.08 per cent in 

2 years are possible. 
13. Methods of Design. In the past reinforced concrete members; 

have been designed to resist safely bending moments and shear forces due* 
to the live and dead loads on the structure. Before the design of slabs,, 
beams, columns, walls, and footings of a structure can be made it must- 
be analyzed for the variation and magnitude of these moments and 
shear forces in the individual members. In timber-brick construction;^, 
where there is little restraint at the supports, each member can be ana¬ 
lyzed separately. The same procedure has been used for steel frames; 
with standard riveted connections. The analysis of welded steel and 
reinforced concrete structures has steadily grown more complex as a 
result of the realization that end restraint of a member affects the bend¬ 
ing moment distribution. In the last decade great progress has been 
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made in the analysis of such monolithic structures on the assumption 
that they are continuous elastic frames. 

It was customary to find for a given member the various possible 
moment and shear diagrams due to the dead load and various combi¬ 
nations of live loads on nearby spans, also the effect of wind loads on 
the whole structure; then the individual member was designed for these 
moments and shears. The computed stresses for reinforced concrete 
were kept below certain maximum allowable values. These allowable 
values were set by experience low enough so that the unknown effect 
of temperature changes, shrinkage, and plastic flow would not result in 
excessive strains. As time passed methods of computing these additional 
strains were developed, but the computations are intricate and depend 
on certain coeflSicients, determined by test, which are not accurately 
known for all conditions, so that shrinkage and flow computations are 
little used in practice. 

Recently there has been a tendency to substitute for stress analyses 
due to loads empirical equations based on tests to failure, which pre¬ 
sumably include the effect of shrinkage, of loads, and to a certain extent 
the effect of plastic flow. The results give the load carried at failure 
and this load is divided by a factor of safety to give safe working loads. 
This change in design methods is most marked at present for column 
design but a similar procedure is proposed and used by certain designers 
for members in bending. The extent to which these empirical equations 
will supersede stress analyses due to loads is still in question, so this 
text wiU present both methods of design. A method that allows for 
the effect of all strain causes can naturally use greater allowable stresses 
than those previously specified for live and dead loads only. 

The illustrative problems in this text will use for the most part the 
allowable stresses given in the 1941 ‘‘Building Regulations for Rein¬ 
forced Concrete'^ of the American Concrete Institute (see Appendix.) 



CHAPTER 2 

RECTANGULAR BEAMS 

14. Classification of Members. For purposes of analysis structural 
members are divided into three classes, those in direct stress, those in 
bending, and members with direct stress and bending. The division is 
made according to the position of the resultant of the normal stresses 
acting at a cross section. 

A straight member is said to be in direct stress when the resultant 
force acts along the axis of the member through the center of gravity 
of each cross section and normal to it. Members in direct stress may 
be in tension or compression. Reinforced concrete is used for compres¬ 
sion members, a typical example being the interior column loaded with 
an axial load. Such cases are discussed in Chapter 10. 

A member is said to be in bending when the resultant of the normal 
stresses is a couple. Such members are called beams. They may also 
have shear stresses acting on the cross sections. The beam theory de¬ 
velops the relation between fiber stress, bending couple, and the cross- 
section dimensions. It is a very important part of reinforced concrete 
design and will be discussed in this chapter. 

A member is in direct stress plus bending when the resultant of the 
normal stresses is a force which does not act at the center of gravity of 
the cross section. This is equivalent to a force at the center of gravity 
producing direct stress and a couple producing bending about the center 
of gravity. This case is employed for columns and for arches thaii are 
subjected to compressive loads and bending. Shear forces may also be 
present, 

16. Homogeneous Beams. Before relations are derived between the 
bending moment, fiber stress, and section dimensions of reinforced con¬ 
crete beams the limitations and assumptions underlying the correspond¬ 
ing derivation for beams of homogeneous materials will be surveyed. 
It is advantageous to know whether the same requirements may be 
used for the reinforced concrete beam. It is imderstood that these 
derivations deal with the immediate elastic strains due to loading, 
and no account is here taken of shrinkage, plastic flow, or temperature 
strains. 

IJ 
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16. Limitations to Beam Theory. The general theory of flexure for 
homogeneous materials does not apply the term beam to all members 
in bending. Arches and columns also have bending stresses but are not 
regarded as examples oT simple bending. Five limitations are usually 
applied to determine what sort of members may be called beams. 

Limitation 1. The material of the beam is homogeneous and isotropic^ 
This is not so for reinforced concrete, as the concrete is composed of 
cement (hydrated or unhydrated), sand and stone particles, and air 
voids. The addition in certain places of steel reinforcement introduces 
another material. The same objection can be raised in a certain degree 
to timber, which has cracks, knots, sap wood, and bark, and is not 
homogeneous or isotropic. 

Limitation 2. The beam is straight and of uniform cross section through¬ 
out. This is usually realized as far as external dimensions are concerned. 
If, however, the concrete and steel areas used in the theoretical deriva¬ 
tions are considered, both the compression and tension areas are found 
to vary as the bending moment increases or decreases, and to become 
markedly different when the bending moment changes from positive to 
negative. 

Limitation 3. The external forces are in equilibrium and are applied 
in such a manner that they can be considered equivalent to a system of forces 
acting in a single plane which will be known as the plane of loading. This 
limitation can be realized. 

Limitation 4. The plane of loading intersects every cross section at an 
axis of symmetry y and, wherever the term cross section is used, the section 
at right angles to the central axis is to be understood. This is true for the 
usual rectangular, tee, and I sections. 

Limitation 6. The length of the beam is large in proportion to the great¬ 
est dimension of its cross section, and the difference between the depth and 
greatest width is not excessive. This requirement should be fulfilled. 

17. Assumptions. The dimensions of most reinforced concrete beams 
are determined by the nece^ity of safely carrying the external bending 
moment. Therefore, the first derivation will be for the relations exist¬ 
ing between the bending moment, fiber stress, and cross section of the 
beam. 

Three assumptions are made in the ordinary beam theory for the 
behavior of materials in bending. These assumptions are capable of 
verification by test and they answer the question: How does a beam actf 

Assumption L Plane sections remain plane and normal to the longi¬ 
tudinal fibers after bending. This assumption is justified to 1 per cent 
accuracy, at least, for reinforced concrete throughout the ordinary range 
of the working loads, certainly as much so as for timber. 
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Assumption 2, The material obeys Hookers law) that is, that stress in¬ 
tensity is proportional to strain throughout the beam, Hooke’s law gives 
the relation between stresses and elastic strains. This law holds for steel 
up to its elastic limit, which is above the working stresses considered in 
the beam theory. The stress-strain relation is also a straight line for 
concretes loaded within the working limits, as can be seen in Figure 3. 

Assumption 3. Every longitudinal layer is free to extend, or contract, 
under stress as if separate from the other layers. This is assumed. The 
ratio of stress to elastic strain, or modulus of elasticity, is constant for 

each material (see Art. 11), and the ratio of the two moduli, El 
Ec 

n. 

is taken as a constant. In the ordinary beam theory with homogeneous 
materials, n is assumed to be unity. For the usual concrete mixes n 
varies from ii = 15 for concretes whose compressive strength/'<, == 2000 
lb. per sq. in. to n = 6 for 5000-lb. concretes (/'c = 5000 lb. per sq. in.). 

STRESSES DUE TO WORKING LOADS 

18. Rectangular beams. The beam theory for rectangular sections 
applies to the design of cross sections whose compression area is a rec-^ 
tangle, the tension steel being held in its proper position by suflBicient 
concrete. It is assumed that a crack has appeared at the section of 
maxi^fium bending moment, and none of the concrete on the tension 
side is considered in the derivation. Therefore, its shape is immaterial. 
Thus, in Figure 4, all the sections shown are designed as rectangular 

Fig. 4 

beams, if the compression areas are the ones shown cross-hatched. Let 
N.A. be the neutral axis and YY the plane of loading. The compression 
area and the tension steel must both be symmetrically placed about 
the axis YY. When the bending moment is much less than the maxi¬ 
mum, the concrete on the tension side may not be cracked to the neutral 
axis and can take some tension. The neglect of this small amount of 
tension force gives computed stresses in the steel somewhat greater than 
actually occur. 
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19, Nomenclature, Let Figure 5 represent the elevation and cross 
section at a distance x from the support of a rectangular reinforced 
concrete beam supported at the left end by Ri, Let 

b ~ width of section 
h = total depth of section 
d == distance from extreme fiber in compression to the center of 

gravity of the steel in tension 
j'd = moment arm of internal couple 
kd = distance from extreme fiber in compression to neutral axis 
Ec = modulus of elasticity of concrete 
Et = modulus of elasticity of steel 

n = ratio of moduli, or — 
Ee 

fc = maximum intensity of fiber stress in concrete 
/, = average intensity of fiber stress in steel 
M = external moment at the section 

Me = moment of resistance expressed in concrete terms 
Ms = moment of resistance expressed in steel terms 
As — area of steel 

V = steel ratio —• 
hd 

kd -Ofg-pU-aj-*4 

-^-J-^^ 
I Neutral Axh^ kd W \ 

1 
Jd 

Or 

£te vat ion 

Fia. 5 

Cross 
Section 

The amount of tension steel As is expressed as the ratio p ~ 
bd' 

Since we do not consider the concrete on the tension side it might seem 
logical to use the ratio of the tension area to the compression area p = 

Ai 
bhd 

, but we do not know at first the position of the neutral axis kd. 

The steel ratio might also be defined as the ratio p ~ 77, using the 
bh 

total area of the beam. The convenient dimension, however, is the 
depth to the steel d. The total depth h is greater in order to give ad¬ 
hesion between steel and concrete and to provide fire- or dampproofing. 
In designing, the steel depth d is first calculated and the totd depth h 
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is made some convenient commercial dimension large enough to give 
the proper clearance. Therefore, for this derivation, the steel ratio is 

A 
assumed to be the ratio P ^ . 

20. Rectangular Beams. The object of the derivation is to deduce 
relations between th^ external bending moment Af, the fiber stresses /« 
and/c, the area Ag, and the concrete dimensions bd. 

Dealing with the portion of the beam span shown in the elevation of 
Figure 5 and applying limitation 3, the three conditions of equilibrium 
of statics hold, namely: S7 = 0, XH = 0, and 'EM = 0. 

The sum of the vertical forces, 2F = 0, gives the vertical shear at 
the section. For the time being this shear force will not be considered. 
The resultant of the uniformly varying normal compressive stresses C 
and the resultant of the pull T in the bars are the only normal forces 
acting on this portion of the beam. Therefore, since EH = 0, C = T 
and the force C forms a couple with the force T. The moment arm of 
this couple will be designated jd^ where j is a decimal ratio of d, usually 
having values between 0.85 and 0.95. 

On the assumption that a plane section remains a plane section after 
bending, the strains of any particle are proportional to the distance of the 
particle from the neutral axis. The extreme fiber on the compression 
side has a strain Cc, and the steel has a strain Cg, where 

Therefore 

also 

Equating, 

ec _ — and 
ft 

E, 

k 
€c £c _ fcE, _ nfc 

es ft ft^c 

ec kd k 

ea d-kd~ 1 -* 

nfc k 

f. 1-k 

nfc = nfek 4- /.fc = kinfc + /,) 

nfc 

h nfc nfc 
K 

nfcft nfc + ft 
1 

nfc 
1 + L 

nfc 

(2) 

(3) 
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Equation 3 gives the location of the neutral axis, providing we know 
the actual stresses and mix, or are assuming allowable values which will 
be actual values when the design is complete. This equation may well 
be called the designer's equation. The term A; is a decimal ratio of d, 
having values varying from 0.15 to 0.45. 

The neutral axis can also be located by using the fact that the com¬ 
pressive force C equals the tensile force T. The resultant C of a uni¬ 
formly varying stress equals 

C = ay^A (4) 

where a = intensity of stress 1 in. from the neutral axis 
2/0 = distance from the neutral axis to the center of gravity of the 

area stressed 
A = area stressed. 

The resultant C of the uniformly varying concrete stresses equals 

The resultant of the 

Equating 

Revising equation 2 

Equating 7 and 8 

+ 2n'pk = 2np 

P + 2nph + {npY = 2np + 

(Jc + npY = 2np + (np)^ 

k = V 2np + (np)^ — np (9) 

This expression gives the location of the neutral axis in terms of the 
mix and steel ratio p. It may well be called the checker's or inspector's 

(5) 

pulls in the steel bars equals 

T =f,At = f,pbd (6) 

fcbkd 
c = -— = r = f.pbd 

2 

fs bkd k 

fc 2pbd 2p 
(7) 

/, n(l — k) 

fc~ k 
(8) 

k n(l — k) 

2p k 
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equation, for it implies that one is checking a finished design whose mix 
and steel are known. 

The desired bending moment relations can now be found. Since the 
force C is the resultant of uniformly varying stresses, it acts ^kd from 

the neutral axis, or ^ from the extreme fiber. 
o 

From Figure 5 it is apparent that 

d =jd + Y or j = 1 - ^ (10) 

In terms of the concrete stress fc 
fchkd fc ^ 

Me = C{jd) = -jd = - jkbd^ (11) 
2 2 

In terms of the steel stress 

Ms = T(jd) = fsAsjd = fspjbd^ (12) 

Both expressions for the bending moment must give the same numeri¬ 
cal values. Equating 11 and 12, 

= fspj = K (13) 

It is convenient at times to write the bending moment equations 

Ms Me = Kbd^ (14) 

21. Summary. A reinforced concrete rectangular beam theory should 
derive relations between the bending moment at a section due to ex¬ 
ternal forces, the internal fiber stresses in the steel or concrete, and the 
cross-sectional dimensions. 

These relations are 

Me = ycjkbd^ = Kbd^ (11) 
and 

Ms = fsAsjd = fspjbd^ = Kbd^ (12) 

Before these equations can be used, it is necessary to determine the 
values of the ratios j and k. When one is designing, the position of the 
neutral axis kd can be found by use of 

(9) 
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The moment arm jd of the internal couple can be found by 

i.= l-g (10) 

The most economical rectangular beam is one whose dimensions and 
ratio of steel are such that at the section of maximum bending moment 
the maximum allowable concrete stress fc and the maximum allowable 
steel stress /« are given simultaneously. 

22. Transformed Section. It is possible to substitute for the rein¬ 
forced concrete section a hypothetical section of a single material, con¬ 
crete or steel, which has the same deformations as the reinforced sec¬ 
tion. This substitute is called the transformed section, and the usual 
equations for a homogeneous beam may be employed. Theoretically, a 
beam of plain concrete using the transformed section will deform as does 
the reinforced beam; practically, it is not possible to construct or load 
this section. It is customary to substitute a transformed section of 
concrete. 

The assumption that the tension area has cracked is again made. 
The reinforced section consists of a rectangular concrete compression 
area and tension steel. The steel has a tensile strain The substi¬ 
tuted concrete must be in the same position and have the same strain. 

A - - A 

where ft — tensile stress in the substitute concrete. 

s.-jf.-- 
Es n 

The substituted concrete must have an area At sufficient to give a 
resultant tensile force T, 

T=fsA,^ftAt 

The transformed area equals 

= nA. (15) 
ft 

The transfomed section consists of a rectangular compression area, 
wide and kd deep, plus an imcotmected tension area nA«, which has 

the hd|^t of the steel bars and the width to ^ve the necessary area. 
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The center of this narrow rectangle is at the depth d from the compres¬ 
sion particles with maximum stress (Fig. 66). The neutral axis is located 
at the center of gravity of the two rectangles. The moment of inertia 
of the transformed section about the neutral axis is found and the fiber 
stresses can be computed, using 

where / = fiber stress intensity 
M == bending moment 

y = distance from neutral axis to particle considered 
I == moment of inertia about neutral axis. 

-12"- 

_gfc __A_ 

t. 

i 1_ us \ 

Fia. 6 

MAXIMUM MOMENT AT FAILURE OF BEAM» 

23. Plastic Theory. It has been stated in Chapter 1 that the elastic 
strains due to application of a load give only a portion of the actual 
strains at any time in the concrete and steel. Before the load applica¬ 
tion strains due to shrinkage have been produced. A long-continuing 
load, such as the dead load, will give increasing plastic strains as time 
passes. For members in bending it is impossible to compute the final 
strain condition of a particular particle, especially if the member is part 
of a continuous frame. In any case the relation between steel and con¬ 
crete strains will be very different from that given by the equations de¬ 
rived above for stresses due to loads only. Therefore, certain designers 
have advocated designing for failure, the method of analysis being based 
upon tests of beams to failure. By this approach the ultimate strains 
will include shrinkage, load, and some plastic flow strains. 

In the past similar analyses for stresses in a beam up to the ultimate 
load assumed that the compressive stress-strain curve was a parabola 
like those of Figure 3a. The modem discussion modifies this assump- 

* This discussion is based on “Plastic Theory of Reinforced Concrete Design,” by 
Charles S. Whitney, in the Proc, AS.C.E,, Dec., 1940, p. 1749. See also “The Plas¬ 
ticity Ratio of Concrete and Its Effect on the Ultimate Strength of Beams,” by 
V. P. Jensen, in Jmr, A.C./., June 1943, p, 565. 
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Sfress 

tion. Tests of beams seem to indicate that the maximum stress occurs 
for strains of 0.0015 to 0.0020 (Fig. 7). If the beam is strained beyond 
these values, failure starts and the stress decreases. 

In a beam approaching failure, if a plane section remains plane, the 
strains will be uniformly varying at any section but the stresses will vary 

as in Figure 7. Since many sections are 
lightly strained the beam will not fail until 
the maximum strain on the most severely 
strained section exceeds 0.0020. At tliis 
section the maximum stress will not occur 
at the extreme fiber. If the proper per 
cent of steel is used, the steel will have 
reached its yield point stress at failure. 
If less steel than this amount is used, 
failure will be initiated by the increasing 
excessive steel strains, while the steel stress 
remains constant at the yield point value. 

Therefore, for balanced design, the steel strain at the most severely 
, yield point stress 

stramed section will be equal to c, =--- 
Eg 

0.00! 0.002 
Strain 

Fia. 7 

and the concrete 

strain at the extreme fiber will be greater than Cc = 0.0020. Figure 8 
shows such a section where the maximum concrete strain equals 0.0030 

60 000 
and the steel strain equals €, = — A— == 0.00167, the yield point 

uU,UtKJ, UUU 

being at 60,000 lb. per sq. in. The compression stress distribution will 

Stress 
Fia. 8 

be as shown, the maximum value being the compressive strength of the 
concrete /'« which occurs in the particles some distance below the top 
of the beam. 

In this case 
0.00300 

d 0.643d kd 
0.00467 
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The compressive force C = where / equals fiber stress on a 

particle at a distance y from the neutral axis. This integral is the area 
of the stress diagram and the force C acts at the center of gravity of 
this area. 

The tensile force T = fyA^ where/j, equals yield point stress of steel. 
The stress-strain diagram for the concrete will vary with the mix and 

the water-cement ratio. For practical designs it is sufiiciently accurate 
to substitute for the concrete stress diagram a constant stress of 0.85/'c 
(Fig. 9) with a depth of a, instead of kdy whose resultant force C will 

Fig. 9 

act at the center of gravity of the stress diagram of Figure 8 
a is less than the distance to the neutral axis kd. 

Since T = C 

a ~~ 
0.85/'c6 

This corresponds to the checker's equation (equation 9) of the other 
derivation. In the past the area of tensile steel has usually been so 
small that the steel reaches its yield point before the concrete fails. In 
such a case, if the load is increased, the steel stress remains imchanged 
but its strain increases until the concrete, in turn, is overstrained and 
failure occurs with the concrete stress distribution of Figure 8. 

24. Under-Reinforced Beams. The expressions for bending moment 
at failure in terms of section dimensions and stresses follow. 

3f = r-c = (d - -) = fyjM(d-——) 
jy V 2/ V 2X0.85/V 

where/yp6d *= 0.85/'ca6. 

M = fyV = K’hd‘ (17) 

fy 
where m --. 

O.SS(f'c 

. The depth 

(16) 
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Also 
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M ^ OMfcah yd - 

OMfcHa^ - 2ad) = -2Af 

o o 2M 
G — 2<2<i d —-h d 

0.85/'e6 

= ztd 
^ 0.85/' 

2M 

SSfM 

(18) 

Since a must be less than d, use negative sign with the square root term. 

1 _ ^ 
2.35M' 

^ \ f'cbd^ J (19) 

G 
The ratio - corresponds to the equation 3 for k in the straight-line 

d 
derivation and equation 18 is in a form to be used by the designer, 
providing he already has chosen the section dimensions. This is the 
case if the beam is under reinforced. 

26. Balanced Design. For economy of design the designer should 
endeavor to have both materials fail simultaneously. A study of beam 
tests led Mr. Whitney to assume that a equals 0.537d for balanced de¬ 
sign. Then 

c = d-= 0.732d 
2 

Substituting these values in equation 18, 

f 
M = Cc = 0.85/'c(0.537d)5(0.732d) = -^bd^ 

3 
(20) 

This is a simple equation by which to determine the section dimensions. 

or 
M = r-c =/^,(0.732d) 

M fobd^ 

0.732/yd ~ 3 X 0.732/yd 

fc 
0.456 —6d 

A 
(21) 

This balanced steel area is considerably more than has been used gen¬ 
erally. The following tabulation gives the percentage of steel p for bal¬ 
anced design by the two methods. The plastic theory tends to give a 
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smaller beam section with more steel than the working-stress straight- 
line theory. 

Steel Ratio for Balanced Design 

Compressive strength/'c 2000 2500 3000 
A.C.I. working-stress straight-line theory 0.009 0.011 0.014 
Plastic theory 0.018 0.023 0.027 

There is no advantage in using more steel than called for by balanced 
design, as the load at failure is not increased. This load is now deter¬ 
mined by failure of the concrete. There is an advantage in using a steel 
area somewhat less than that called for by balanced design, as over¬ 
loading will not cause a sudden compressive failure in the concrete, but 
incipient failure will be evidenced by a gradual yielding of the steel at 
the stress fy with marked increase of deflection and cracks in the beam. 
Such phenomena would be easily noticed in time to reduce the load or 
strengthen the beam. Also, it often happens that the under-reinforced 
beam is more economical. 



CHAPTER 3 

SLABS WITH ONE-WAY STEEL 

26. One-Way Slabs. The first application of the rectangular beam 
theory will be made to the design of slabs whose steel runs perpendicu¬ 
larly to the supporting beams. The term slab is used to denote the floor 
in contrast with the supporting beams and girders. The top surface 
may be finished to form the actual floor surface, or additional flooring, 
such as wood, cork, etc., may be laid over it. Sometimes a granolithic 
finish is applied as a wearing surface. This is counted as part of the 
slab if it is applied soon enough to bond with the concrete. The slab 
is generally poured for many spans, giving a continuous monolithic floor. 
The supporting beams are poured with the slab and all form one mass, 
so that the slabs are restrained at their supports against a change of 
slope by these supporting beams and the slab of the adjacent span. The 
resistance of a beam to the turning tendency, which is torsion for the 
beam, is not as great as the resistance of a column or wall. Also the 
restraint of the end span, where there is no slab beyond, is not so great 
as for the interior spans. Therefore, the moment distribution is different 
for end spans than for interior spans of the same length. 

27. Continuous Members. A reinforced concrete floor system is 
poured simultaneously for a considerable distance. The slab steel runs 
through the beams, the beam steel runs through the girders, and both 
the beam and girder steel run through the columns. The result is that the 
whole floor system is tied together. The column steel runs into the column 
above, and the column stack also has continuity at its connections. 

If we consider a single unit, such as one span of the beam, or a single 
story height for the column stack, we must include in the loading dia¬ 
gram the effect of the continuity of the member. This is done by com¬ 
puting the member with a fixed or partially fixed support. The span 
for such a member is taken as the clear span, as is customary for fixed- 
end beams. 

A structural member whose ends are fixed may have a reversal of 
curvature of its neutral layer. Thus a fixed-end beam with a load in 
the span will sag in the center, giving compressive stresses near the top 
of a section and tensile stresses on the particles near the bottom. This 
is called positive bending. At or near the support the beam will hog 

24 
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with tension at the top and compression at the bottom. This is called 
negative bending. 

The effect of continuity upon the bending moment is somewhat un¬ 
certain in concrete construction. It is well known that, if a beam is con¬ 
tinuous over a number of supports, two kinds of moment are developed: 
positive at or near the middle of the span and negative over and adja¬ 
cent to the supports. These moments cannot be determined by the 

4^ 
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equations of statics, and recourse is made to solutions involving the 
elasticity of the material. When the material is reinforced concrete, so 
many uncertainties arise that in general the bending moment values are 
matters of judgment which may be to some extent determined by suit¬ 
ably modifying the application of the theory of elasticity for homo¬ 
geneous structures under similar conditions. 

In Chapter 14 the effect of restraint of the supports is discussed in 
detail. 

The A.C.I. Code specifies maximum bending moments for continuous 
beams of approximately equal spans. ^^Approximately equaF^ is a rather 
elastic term as the limit is said to be reached if the larger of two adjacent 
spans is not more than 20 per cent longer than the shorter. The values 
are given in A.C.I. Article 701 in the Appendix. These recommenda- 
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tions are listed in Figure 10 with the addition of suggested negative 
moments at the exterior support. Slabs of short span and beams sup¬ 
ported by massive columns are regarded as fixed at the ends. The ratio 
of moment of inertia I of the section to the unsupported length I or h 

is taken as the relative stiffness y of a beam or column. 
If 

The greater the 

restraint at the support the greater will be the maximum negative bend- 
wl^ 

ing moment. For a uniformly distributed load w the moment — cor- 
lA 

responds to a fully fixed connection. 
28. Reduction of Live Load. The live load on a structure is the re¬ 

movable load of people, vehicles, furniture, machinery, supplies, snow, 
wind, etc. It is the variation of this live load from day to day that 
causes variations in the shear forces and bending moments in beams and 
columns. If the live load is given as a maximum load per square foot, 
or per foot of length, it is probable that the full loading will seldom 
occur in many types of stmctures. If the member in question supports 
a large area, this probability is increased, and building officials permit 
a decrease in the maximum load used in design. This decrease should 
never be applied for warehouses, garages, etc., which may be fully loaded. 

The dead load consists of the weights of the structures plus other 
permanent installations. Obviously the dead load should not be re¬ 
duced as it is always present in full amount. 

The tentative (1932) Building Code of the New England Building 
Officials Conference states that ‘‘a reduction of the total live load used 
in the design of two-way slabs and flat slabs of a certain area and in 
beams, girders, and columns based on a certain tributary floor area shall 
be permitted as noted in the following schedules.” These live-load re¬ 
ductions are given in the Appendix. 

29. Allowable Stresses. The ultimate compressive strength of the 
concrete/'c is defined as the compressive strength of a concrete cylinder, 
6 in. in diameter by 12 in. high, at the age of 28 days. The allowable 
stresses for design, whether they be fiber, shear, or bond stresses, are 
expressed as a percentage of the ultimate compressive strength /'c. 

The term mix will be used to denote the quality of concrete under 
consideration, which is based upon the ultimate compressive strength 
/'c. Thus, a 2000-lb. mix refers to the ultimate strength fo = 2000 lb. 
per sq. in. at the age of 28 days. 

The allowable stresses used in this text are those recommended in the 
1941 Building Regulations for Reinforced Concrete of the American 
Concrete Institute. The allowable values are given in A,C.I. Articles 
306 and 306 in the Appendix. These stresses should be regarded as 
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maxima self-imposed by the designer. They are a mutual agreement 
between the inspector, the engineer, and the designer. The designer 
should not exceed a maximum stress. He should regard it much as he 
does his bank balance, as a limit not to be overdrawn. It is true that 
concrete materials vary, that design loadings may not always be com¬ 
pletely present, and that a factor of safety has been applied. All these 
facts have been considered in the determination of the allowable stress. 
The honest designer should not rely on them a second time. 

30. Commercial Sizes of Steel. Round bars, plain or deformed, can 
be obtained from J in. to 1 in. inclusive, varying by -^-in. sizes. The 
only square bars kept in stock are the ^-in., 1-in., l|--in., and l|-in. 
See Table 1 in the Appendix. In this text deformed bars are used as 
reinforcement. 

31. Weight of Concrete. The average weight of reinforced concrete 
will be taken as 150 lb. per cu. ft. 

WORKING-STRESS STRAIGHT-LINE THEORY 

DESIGN OF SLAB—ILLUSTRATIVE PROBLEM 1 

32. Design of a Floor Slab. Given the interior span of a continuous slab (Fig. 11) 
loaded with a live load of 130 lb. per sq. ft., the span being 14 ft. 6 in. Compute the 

slab thickness and necessary steel, and include a detailed sketch of the steel. 

Cross Sec//on thru 

Slab Unit 

Fig. 11 
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Let us adopt a concrete testing f'o = 2000 lb. per sq. in./ and make the prelimi¬ 
nary assumption that the slab is 6 in. thick and the beam stem 12 in. wide. It is 

necessary to make initial estimates of the slabs and beam sizes and correct them, 
if required, as these dimensions are not known. The experienced designer seldom 
has to make corrections. 

33. Algebraic Solution. Rather than design simultaneously a large expanse of the 

slab we shall take a strip 1 ft. wide as our beam. The adjacent strips, each 1 ft. 
wide, are loaded with the same load and all deflect alike. There is no tendency for 

one strip to slide by another—in other words, no shear on the sides of the strips, 

and each can be regarded as a separate beam, just as a series of wooden planks are 

separate beams. If this strip is safely designed, the adjacent strips 1 ft. wide, loaded 
in exactly the same manner and deflecting alike, will also be safe. 

The 6-in. slab, 1 ft. wide, will weigh 75 lb. per ft. of length. The live load is 130 

lb. per sq. ft.; and the total load w is 205 lb. per ft. of length. 
We have the case of a continuous beam, interior span; the maximum positive 

wl^ 
bending moment Mp by A.C.I. Article 701 (in the Appendix) is Mp — — and the 

16 

We will design the slab depth 
wl^ 

maximum negative bending moment Mn — ^ ^ • 

for the greater negative moment. 

By A.C.I. Article 700 we use the average of the two adjacent clear spans for the 

negative moment. In this case, since the spans are equal, the clear span is 13 ft. 6 in. 

Mn 
wl^ 

IT' 
205(13.5)2 

11 
- 3400 ft.-lb. = 40,800 in.-lb. 

With fe = 0.45 X 2000 = 900 lb. per sq. in. and /, = 20,000 lb. per sq. in. as 
allowable stresses (A.C.I. Articles 305 and 306) 

k = 
1 

^ n}c 15 X 900 

= 0.40 

i = l-- = 0.87 

f 900 
Mn =='^~jkb<f = -T- X 0.87 X 0.40 X 12 X = 167 X 12d- 

Solving, 

Minimum d 
-4 

40,800 

157 X 12 
= 4.65 in. 

40,800 n.-lb. 

34. Clearance between d and h. The A.C.I. Code provides clearances for bond 
in Article 507 and the 1928 A.C.I. Code gives fireproofing clearances in Article 506 
(see Appendix). 

We shall assume that our aggregates are from glacial gravel. The protective cover¬ 

ing for the top steel will be f in. and the fireproofing for the positive steel will be 

if in. The size of steel is not known, but its estimated diameter will be taken some- 

* The modem floor concrete usually has strength of / c 2500 to 3000 lb. per 

sq. in. The rather low strength=» 2000 lb, per sq. in. is used in these illustrative 

problems since the low allowable stresses require greater attention to design details. 
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what large, so that we shall not be obliged to refigure the minimum clearance. Esti 
mating the steel as not larger than §-in. bars (Fig. 11), 

Minimum ^ = d -f clearance = 4.65 + 0.75 + 0.25 = 5.65 in. 

Practically it does not pay to vary the slab thickness by amounts less than half 

an inch. We shall adopt a slab 6 in. thick with an actual d = 6 — 1.00 = 5in, 

It may seem excessively fussy to compute the depth d to hundredths of an inch 
when one has observed the haste and inaccuracies of placing steel. Nevertheless, 

the actual value of d frequently figures an odd fraction of an inch. The values of 

-4*1 h should not be computed to great precision as the actual d may vary 
by an eighth of an inch. 

If the original estimate of the slab thickness is not correct, the computations are 

refigured for a corrected weight until the commercial h agrees with the estimated 
thickness. No steel computations are made until the concrete stresses and dimen¬ 

sions are satisfactory. 
35. Minimum Depth for Positive Moment. The maximum positive moment 

Mp = — = 28,000 in.-lb. 
16 

Minimum d ^/i 28,000 
~ 3.86 in. 

1157 X 12 

Minimum h = d -f 1.50 -f 0.25 = 5.61 in. 

We shall adopt a 6-in. slab and use an actual depth d for positive bending of d = 

6 - 1.75 == 4.25 in. 

36. Steel. The positive tension steel Ap can be computed. 

Ap 
28,000 

20,000 X 0.87 X ^ 
— 0.38 sq. in. per ft. width 

The A.C.I. Code provides for the maximum spacing of the main steel in A.C.L 

Article 710 (in the Appendix). The tension steel must not be too closely spaced 

because it is then difficult to place and the coarse aggregate will not pass through 

readily. It must not be too widely spaced, or there will be portions of the slab 

which are not served by the reinforcement. 

The tension steel is best spaced at intervals approximately the depth of the slab. 

In this problem the required area can be given by ^-in. round bars spaced 6 in. on 
centers, or by |-in. square bars spaced 8 in. on centers. Use the |-in. round bars. 

If it were desirable to use f-in. round bars, a new depth d = 6 — 1.6 — 0.19 « 

4.31 in. would be used to compute the area Ap. If f-in. round bars were considered, 

the actual d = 6 — 1.5 — 0.31 = 4.19 in. In no case can the actual d be less than 

the minimum d of 3.86 in. 

The maximum negative moment Mn at the support is 40,800 in.-lb. and the value 

of d =* 5 in. The negative tension steel An is computed: 

An 
Mn 
hid 

40,800 

20,000 X 0.87 X 6 
0.47 sq. in. per ft. width 

This steel will be supplied by bending up the positive steel at an angle approxi- 

0.47 
mately 30®. The ratio of these areas, 1.24, calls for about 25 per cent more 
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steel at the support than at the center of the slab. If bent bars shaped like T3rpe A 

(Fig. 12) were used, there would be the same area of steel over the support as there 
is in the bottom near the center. If the bars of Type B (Fig. 13) were employed, 

Fig. 13 

there would be twice as much negative steel as positive. To give the desired ratio 
between negative and positive steel use ^-in. round bars spaced at G in. in the center 

of the span, using Type B bars for every fourth bar. We shall then have three Type A 

for every one Type B bar and the negative steel will average 25 per cent more than 

the positive steel (Fig. 14). 

Fig. 14 

Another possible steel arrangement is to use Type B bars with Type C bars, which 

are straight bars at the bottom of the slab. If every third bar is straight, there will 

be four bars at each support for every three bars at the bottom in the center, or 

one third more steel at the support (Fig. 15). 
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37. Bending Steel. First ArrangemerU. Let us discuss the placing of the steel 

arrangement of Figure 14. Diagram 5 (in the Appendix) gives the parabolic bending 

moment curve that can be used for uniformly distributed loads (see explanation in 

Art. 340). The base line, M = 0, for the positive bending moment Mp = — is 

halfway up on the 
wf 

~S 
curve. The positive moment equals zero where this base 

line cuts the curve at 15 per cent of the span (25 in. from edge of support). The 

center of this steel is 4| in. from the top. When bent up, its center is 1 in. from the 

top, so the rise of this bar is 3| in. If bent at approximately 30° it will reach its 

upper position in 6 in. If all the positive steel is bent up at 25 in., it will reach 

the top at 19 in. from the edge of the support. 

wF 
Again using Diagram 5, the maximum negative moment of Mn — ~ 

ioF 
line {M — 0) at 73 per cent of — . This occurs at 24 per cent of the span (39 in. 

o 

from the edge of the support). Some of the negative steel must remain at the top 

until it is 39 in. out. If the Type B bars from the adjacent span are e-xtended this 

far before they end and the Types A and B in this span are not at the top after 

19 in. out, only one fifth of the negative steel runs at the top beyond 19 in. (12 

per cent of span). By Diagram 5 the negative moment at 12 per cent of the span is 

73 — 41 
—73— ” maximum. In other words 20 per cent of the steel cannot care 

for 44 per cent of the moment. To satisfy the conflicting positive and negative 

requirements would require different bending points for the Type A bars and the 

reversal of some of them. This is not desirable. Some designers detail an inter¬ 

mediate bending position and expect the steel foreman and the inspector to en¬ 

courage some staggering of the steel as it is placed. In Figure 14 a bending point 

of 33 in. is assumed (20 per cent of the span). The steel that ends on the bottom 

is run 10 diameters (5 in.) into the supporting beam. The steel that ends in the top 

is run to the point of inflection (39 in.) and anchored 12 diameters (6 in.) farther 

out. The bar details are shown in Figure 14. 

Second Arrangement (Fig. 15). In this arrangement for every three p)ositive bars 

there are four negative bars at each support; two of the four come from the adjacent 

span. In this case, if the two Type B bars in this span are bent dowm at 19 in. out, 

there are two bars available from the adjacent span to run out to the point of in¬ 

flection at 39 in. In other words 50 per cent of the negative steel remains at 19 in. 

to carry 44 per cent of the maximum moment. This is satisfactory. The bar de¬ 

tails are shown in Figure 15. The Type C bars will run continuously for 2 spans 

(29 ft. long) or 3 spans (43 ft. 6 in. long). 

38. Selection of Arrangement. From the details of Figures 14 and 15 the 

weight of steel per foot of slab width figures 26 lb. for Figure 14 and 27 lb. for 

Figure 15. The second arrangement (Fig. 15) is more flexible and will be 

adopted. 

39. Temperature Steel. The steel has been figured for its full allowable stress to 

cany the bending moment. It is also true that the shrinkage of the concrete as it 

sets and the temperature and moisture changes after it sets will tend to crack the 

concrete and hence stress the steeL This is cared for by putting in additional steel 

at right angles to the main steel which is known as shrinkage and temperature 
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steel. A.C.I. Article 707 (in the Appendix) requires p « 0.002 for floor slabs with 

deformed bars, 

A» 5= phd = 0.002 X 12 X 4.25 « 0.11 sq. in. 

Use |-in. rounds at 12-in. spacings. 

This temperature steel can be supplied also as wire mesh. In any case it is wired 

to the main steel on the side nearest the center of the slab in order to preserve the 

fireproofing clearance (Figs. 14 and 15). This steel helps likewise to tie together 

the main steel into a continuous mat which will tend to resist as a unit. Thus, if 

a concentrated load is applied to the floor, one bar will not be obliged to resist the 

load alone. 

wl^ 
40. End Span. The maximum bending moments in the end span are — — and 

-|—-j-. A 6-in. slab is still satisfactory for concrete fiber stress. The steel areas 

and steel arrangement will differ from the interior spans and can be satisfied by pos¬ 

sibly three different types of bars. Only enough steel will be bent up at the exterior 

support to care for Mn = ;r' • 

ILLUSTRATIVE PROBLEM 2 

41. Solution by Plots. The previous solution was made by means of the equa¬ 

tions derived in Chapter 2. The practical designer needs short-cut methods. The 

use of these same equations plotted gives a more rapid solution. 

It will be noticed that both equations 11 and 12 (Art. 20) for the bending moment 

can be written in the form 

M == Khd:^ 

where K *= ^cjk or K - f^pj. 

The plot for rectangular beams is given in Diagram 2 in the Appendix, where 

the steel ratios p are abscissae and values of K are ordinates. Thus, if /, — 20,000 

lb. per sq. in. and fc ■= 900 lb. per sq. in., A" = 157, which is the value given by the 

intersection of the /, = 20,000 and fc = 900 curves. The steel ratio p — 0.009. If 

more than this amount of steel is used, the steel stress will be less than 20,000 lb. 

per sq. in. when the concrete stress reaches 900 lb. per sq. in.; if less steel is used, 

the stress will be higher than 20,000. Using K — 157 in equation 20 the same depths 

d will be found as in the solution of Problem 1 and the design continues as in that 

problem. 

ILLUSTRATIVE PROBLEM 3 

42. Solution by Transformed Section. The algebraic equations for rectangular 

beams have graphical counterparts. Such a solution is made by the use of the 

transformed section (Art. 22). In other w^ords, for the reinforced section is sub¬ 

stituted a hypothetical section which is either all concrete or all steel and which has 

the same effective areas and effective moment of inertia as the actual section. In 

the problem given (Fig. 11), the unit beam was 1 ft. wide. Figure 6a shows the 

dimensions of the section. According to the beam theory we consider in our com¬ 

putations the concrete only on the compression side of the section. In Figure 66 

the shaded rectangle abed represents the compression area above the neutral axis. 



Art. 42] SOLUTION BY TRANSFORMED SECTION 

For the same strain 1 sq. in. of steel can carry a stress n times that of 1 sq. in. oi 

concrete, or it requires n square inches of concrete to carry the same force that 

1 sq. in. of steel takes. On the tension side we count no actual concrete area but 

we substitute for the steel n times as much concrete area. 
Revising equation 2 (Art. 20), we have 

fc k 

Z l-k 

n 

which is the algebraic statement that the equivalent concrete stresses vary with the 

distance from the neutral axis. If the maximum allowable concrete stress fo equals 

900 lb. per sq. in. and the maximum stress fa equals 20,000 lb. per sq. in. 

k = 0.40 and j = 0.87 (Art. 33) 

By equation 13 (Art. 20), 
900 X 0.40 

2 X 20,000 
0.009 

The moment of inertia of the transformed section (Fig. 66) about the neutral axis is: 
Tension Area, The area 

ef = nAa = npbd = 15 X 0.009 X 12 X d = 1.62d 

1.62d 
Assuming ^-in. steel the area ef will be J in. high, and have a length — or 3.24d. 

The moment of inertia about the neutral axis = In.a, = Ic.G. + where 

In.A. and Ic.o. are the moments of inertia about the neutral axis and center of 
gravity of the area A, respectively. The term o is the distance between the neutral 

axis and the center of gravity of the area. The moment of inertia of the tension 

area equals 

= 0.03384 + 1.624’(1 - k)^ 

bh^ 
It is customary to neglect the term — , as it is small compared with the product 

Aa^. The moment of inertia of the tension area equals 

1.62(i’(l - 0.40)2 = 0.5844’ 

Compression Area. The compression area is a rectangle. The moment of inertia 

about its base is 
bh^ 12(W)’ 12 X (0.40)’4’ 

3 ** 3 ”” 3 
0.256^3 

Total moment of inertia I == 0.584d^ + 0.256d® = 0.840d*. 

From the general beam theory 

J ^ I 
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For the extreme particles in compression with positive bending 

28,000(A:d) 28,000 X 0.40 

0.840d3 0.840^ 

<f == 14.8 or minimum d = 3.85 in. 

Commercial Size. When we adopt the actual d ~ 4.25 in. for a 6-in. slab, the 

fiber stress fc in the concrete will be reduced, because the concrete area is increased. 

The actual steel area should be such that its fiber stress A == 20,000 lb. per sq. in. 

Taking moments about the neutral axis, 

(12M) ^ = (npM){d - kd) 

k)p 6(4.25)V = 16 X 12(4.25)2(1 
or 

-f- 30/cp — 30p = 0 

On the tension side the equivalent concrete stress equals 

fs 20,000 

and 

(22) 

1 - inpbd){d - kdf -f 

15 

h{kdf 

~ 1330 lb. per sq. in. 

- 15 X 12(4.25)3(1 - kfp + 
12(4.25) k 

From 

3 ^ ^ ... 3 

13,820(1 - /c)2p -h 307A;3 = 307(A:^ ^ 45^,2^ _ 90A:p -f 45p) 

1330 = 
28,000(d - kd) 28,000 X 4.25(1 - k) 

I d07{k^ -h 45A:2p - 90kp -f 45p) 

k^ -f- 45^"p - 90kp -f 0.292A; -f- 45p - 0.292 = 0 

The solution of equations 22 and 23 simultaneously gives 

(23) 

k = 0.37 and p — 0.0074 

The solution is difficult, however, and the method of transformed sections is rec¬ 

ommended only for the determination of minimum depth d. This method gives a 

simpler solution when a completed design is checked (Art. 45). Even then the alge¬ 

braic solution is quicker. 

The steel area equals 

A, = phd - 0.0074 X 12 X 4.25 = 0.38 sq. in. 

This is the same value computed by the algebraic solution (Art. 36). Solutions 

by the transformed area are best made wholly graphically. Plotted at large scale 

they ^ve accurate results.* 

*See textbooks on graphic statics. Also ^‘Stresses in a Composite Member Sub¬ 

jected to Bending and Direct Stress,” by B. A. Eich and W. W. Bigelow, /oufi 

80c, qf E>, Feb., 1926, p. 62. 
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CHECK OF DESIGN 

ILLUSTRATIVE PROBLEM 4 

43. Checking Designs. Algebraic, If a drafting-room checker or a building in¬ 

spector were to check the design given above, he could not assume that ~ 20,000 

lb. per sq. in., or that fc = 900 lb. per sq. in., as the design may not be made for 

these values. He would note that 

(а) The mix is 2000 lb. per sq. in. concrete. 

(б) The slab is 6 in. deep. 

(c) The positive steel is |-in. round bars at 6 in. on centers. 

Checking the section of maximum positive bending, 

0.39 
n = 15 p = —-— = 0.00765 np = 0.115 

12 X 4.25 

From equation 9 (Art. 20), 

’ k = \^2np -f- (np)^ — np = 0.379 

■ = 1 - - = 0.874 
3 

. 2M 2 X 28,000 

= “• 

Allowable/c = 900 lb. per sq. in. 

^ ^ 28,000 

^ “ 0:00765 X 0.874 X 12 X(4.25)» “ 

Allowable fa - 20,000 lb. per sq. in. 

Similarly, checking the section of maximum negative bending (Fig. 15), 

0 39 X ^ 
p = ^ = 0.0087 k = 0.397 j = 0.868 

2 X 40,800 

0.868 X 0.397 X 12 X (5)2 

40,800 

0.0087 X 0.868 X 12 X (5) 

== 790 lb. per sq. in. Safe. 

2 = 18,000 lb. per sq. in. Safe. 

ILLUSTRATIVE PROBLEM 5 

44. Checking by Plots. Diagram 2 in the Appendix is also useful for checking a 

finished design. Let us check the design of Problem 1 by the plots. For the maxi¬ 

mum positive moment 

X » ^ = 129 and p = 0.00765 
ixP 12 X (4.25)« P 

The intersection of this ordinate and abscissa gives 

fc 780 lb. per sq. in. and /» = 19,300 lb. per sq. in. 
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ILLUSTRATIVE PROBLEM 6 

46. Chiecking by Transformed Section. The transformed section affords an alter¬ 
native method of checking a finished design. A design by transformed section has 
already been given in Article 42. The solution is much easier if the amount of steel 
is known. 

Once again checking Problem 1, the unit beam is 1 ft. wide and the positive steel 
equals 0.39 sq. in. per ft. width. In Figure 6, = 6 in. and d = 4.25 in. The trans¬ 
formed tension area equals 

nA« = 15 X 0.39 = 6.85 sq. in. of equivalent concrete 

The area ef represents this. It is \ in. high and 11.7 in. long, the center line being 
4.25 in. from the top. If we wish to check the design by this method, there is the 
difficulty that the position of the actual neutral axis kd is not known. The neutral 
axis, however, must be at the center of gravity of the shaded areas in Figure 66. 
Taking moments about the neutral axis. 

(12M) ^ = 5.85(4.25 - kd) 

+ bMkd - 24.86 = 0 and kd = 1.60 in. 

1.60 
A: = — = 0.377 

4.25 

The moment of inertia of the transformed area about the neutral axis is 

C<mpre88ion Area, 
h{kd)^ 12 X (1.60)® 

3 
= 16.4 

Tension Area. 
11.7 X (i)» 

12 
+ 6.85(2.66)=' = 0.1 + 41.1 

Total 7 - 67.6 (m.)‘. 

Fiber Stress, 

I 

Extreme fiber stress in the concrete 

28,000 
486i/ 

fe = 486 X 1.60 =* 780 lb. per sq. in. 

The average fiber stress in the steel equals 

/ « 486 X 2.65 =* 1288 lb. per sq. in. 

« n/ « 16 X 1288 =« 19,300 lb. per sq. in. 

The section of maximum negative moment can be checked by similar computa* 
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PLASTIC THEORY—DESIGN OF SLAB 

ILLUSTRATIVE PROBLEM 7 

46. Plastic Theory. Let us solve Problem 1 by the plastic theory, assuming bal¬ 

anced design. As before, we take a slab strip 1 ft. wide and assume it to be 6 in. 
deep. The uniformly distributed load w = 205 lb. per ft. Mr. Whitney recom¬ 

mends * that the allowable dead plus live load be taken as four tenths of the ulti¬ 

mate load; in other words, that the allowable stresses be taken as four tenths the 

compressive strength of the concrete and four tenths the yield point of the steel. 

Negative Bending. 

Mn 
wf 

ir 
205 X (13.5)2 X 12 

U 
40,800 in.-lb. 

By equation 20 (Art. 25), 

3M 3 X 40,800 

7^ 800 X 12 
12.7 in. and 

h = 3.56 -f- 0.75 + 0.25 = 4.56 in. 

d = 3.56 in. 

Positive Bending. 

28,000 in.-lb. 

3 X 28,000 

800 X 12 
2.96 in. 

K = 2.96 + 1.5 -f 0.25 = 4.71 in. 

Revising the slab thickness to 5-in. depth, the load w = 193 lb. i>er ft., Mn ** 
38,400 in.-lb., and Mp = 26,400 in.-lb. The minimum depth h = 4.46 in. for negar 
tive bending and h = 4.62 in. for positive bending. Use a slab 5 in. thick. 

Steel. Equation 21 gives the steel area for balanced design. 

Positive Bending. 

A, ~ M 

0.7Z2fyd 

26,400 

0.732 X 20,000 X 3.25 
0.56 sq. in. 

Use j-in. square bars spaced at 5 in. (area — 0.60 sq. in.). 

Negative Bending, 

A. 38,400 

0.732 X 20,000 X 4 
0.66 sq. in. 

This area is 10 per cent more than the actual positive steel. Adopting the steel 
arrangement of Figure 14, we get one fifth increase by using one Type B bar for 

every four Type A bars. 
Economy, A comparison can be made of the above results vdth those of Problem 1 

if costs are available. Let us assume that the forms cost the same in both designs, 

t^t 2000-lb. concrete costs 35 cents per cubic foot and steel costs 5 cents a pound in 

» Proe, AJS,CJE., VoL 66, No. 10, Dec., 1940, p. 1778. 
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place. Since the commercial spacings of the steel are often in excess of the theo¬ 
retical, this comparison is made using the same bar types but spacing them at the 

minimum possible of 6.19 in. for the working-stress design and 5.35 in. for the plastic 
theory. A strip of slab 1 ft. wide and 14J ft, long will cost; 

Working-Stress Plastic Theory 
Theory Balanced Under-Reinforced 

Concrete slab, 6 in. $2.54 $2.54 
5 in. $2,12 

Steel, 26.2-lb., J-in. round 1.31 
36.8-lb., 2-in. square 1 .84 

24.3-lb., l-in. round 1.22 

Total cost $3.85 $3.96 $3.76 

47. Under-Reinforced Slab. Let us assume a 6-in. slab which requires less than 
balanced-design steel. Using the plastic theory and the negative moment, by equa¬ 
tion 19, 

a 

d 

2.35 X 40,800 1 
-^-r = 0.225 
800 X 12 X (5)2 J 

_ = 1 ~ 0,887 and c = 0.887 X 5 ~ 4.43 in. 
d 2d 

XT X. . ^ 40,800 
Negative A, = -— = — -- = 0.46 sq. m. 

fyc 20,000 X 4.43 

For the positive moment of 28,000 in.-lb., and d — 4.25 in., 

3 = 0.212 3 = 0.894 and c = 3.80 n 
a d 

Positive A» 
28,000 

20,000 X 3.80 
0.37 sq. in. 

Use ^-in. round bars spaced at 6 in. (Area = 0.39 sq. in.) 

The required negative steel area is 18 per cent more than the actual positive steel. 
Use the arrangement of Figure 14 with four Type A bars for one Type B bar. The 

relative cost is included in the tabulation above, assuming the round bars to 

be spaced 6.35 in. on centers. It will be noticed that the balanced design of the 
plastic theory is somewhat greater in cost than the working-stress design, and it 

uses less concrete and more steel. The cost of the under-reinforced design is much 

cheaper than the balanced, and slightly less than the working-stress design. 

48. Summary. A designer or inspector working in a given city soon 
memorizes the values of K called for by the city building code and works 
without reference to any text or plot. However, the student is advised 
to try all the methods indicated so that he may use any one with facility 
and also determine which one suits his own personal taste. The ex- 
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perienced designer uses the plots and tables unless he deals with a con¬ 

crete strength for which there are no plots, whereupon he designs on 

the basis of the fundamental algebraic equations. 

One-way slabs are designed as rectangular beams to carry the applied 

bending moment. Unusually heavy loads for short spans require a check 

for shear stresses (see Chapter 5). Slabs with very long spans should 

be checked for deflection (Art. 165). 

With the exception of the plastic theory the designs illustrated in this 

chapter are computed due to the loading only. The allowable stresses 

have been adjusted by experience low enough so that the usual shrinkage, 

flow, and temperature changes do not give excessive deformations. 



CHAPTER 4 

SHEAR, BOND, ANCHORAGE, AND DIAGONAL TENSION 

The fiber stress equations for a rectangular reinforced concrete beam 

can be used to design or check rectangular beams when the fiber stress 

at the section of maximum bending moment is the critical stress. This 

is the case for floor slabs of ordmary dimensions, and the illustrative 

problems have covered such slab designs. The safe design of the sup¬ 

porting beams with their greater depths and loads requires that the 
maximum shear stress be also investigated. The shear stress equation 

is derived in this chapter. 

Whenever there are large shear stresses it is possible that tensile 

cracks may appear in the concrete on other planes than the cross sec¬ 

tions. Tension on these inclined planes, called diagonal tension^ will 

also be discussed and the computation of the diagonal tension steel 
known as web steel. 

We have previously stated that tension steel is used in a reinforced 

concrete beam to take the tensile pulls which otherwise cause cracks in 

the concrete. This statement is incomplete because the steel must also 

transfer its load back to the concrete before the end of the bar is reached. 

M 
The load, or pull T, in the bar is determined by the relation T = — 

jd 
as long as the bar is in tension. The decrease of the pull T requires 

that the adhesion, or friction, between the steel and concrete shall be 

suflScient to keep the steel from slipping. This frictional stress, or bond 

stresSf is also discussed herewith. After the bar passes the point of in¬ 

flection it ceases to be in tension, as it is now in a compression region. 

Any further length that may be given it may be regarded as anchorage. 

The usual requirements for anchorage are explained in subsequent art¬ 

icles of this chapter. 

49. Fiber Stress and Shear Stress Variation. The fiber stresses in 

cross sections of beams of timber or steel are figured by the usual rela¬ 

tion 
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The fiber stress is uniformly varying, and the maximum tension or* 
compression occurs on the particles farthest from the neutral axis (Fig. 
16, section AA), 

Fig. 16 

The particles in a cross section of a steel or timber beam also have 
vertical shearing stresses due to the shear force at the section. The 
magnitude of this shearing stress is given by the equation * 

bl 

where v = the intensity of vertical shearing stress 
V = the total shear force at the section 
Q = the statical moment about the neutral axis of the portion of 

the cross section beyond the layer containing the particle 
b = the width of the layer containing‘the particle 
I = the moment of inertia of the whole cross section about the 

neutral axis. 
For a rectangular beam the stress varies in a parabolic relation, as 

shown in section BB of Figure 16. These stresses are vertical stresses, 
even though they are plotted horizontally for comparison. The maxi¬ 
mum value occurs at the neutral axis and is 

”” 2 W “ 21 

where A = the area of section = bh 
60. Fiber Stress Variation—Reinforced Concrete. In Chapter 2 the 

variations of the concrete fiber stresses and the average value of the 
steel fiber stress due to working loads were derived for reinforced con¬ 
crete beams. The concrete compression stresses are uniformly varying 
(section DD, Fig. 16) while the tension in the concrete is not considered. 
The steel stresses are averaged at the center of gravity of the 

steel area. 
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SHEAR 

61* Shear Stress—^Reinforced Concrete. It is now necessary to de¬ 
rive expressions for the variation of vertical shear stress on the cross 
section of a reinforced concrete beam. 

Let us take a rectangular reinforced concrete beam which has a width 
bf height hj and depth d from the extreme fiber in compression to the 
center of gravity of the tension steel. This section is shown in Figure 
17a wfith the compression area above the neutral axis cross-hatched. We 

1 2 

Sec fion ! E leva f ion 

(a) (b) 

Fig. 17 

will take as a rigid body the portion of the beam lying between the cross 
sections dx apart (Fig. 176). The external forces acting on this body are 

Cl and C2 = resultant of the uniformly varying com- 
On sections 1-1 pressive stress 

and 2-2 Ti and == resultant of the tensile steel stresses 
Fi and F2 = resultant of the vertical shear stresses 

On top surface w = average intensity of the distributed loads 
on the beam between the two sections 

Since these two cross sections are very near the neutral axes may be 
assumed to be the same distance hd down from the top on both sections 
and the two forces Ci and C2.will act along the same line, da: being small 
enough to insure 1 per cent accuracy for this assumption. The two 
forces Tx and T2 also act in line and the moment arm jd of the couples 
at each section will be the same. If there is a load wdx acting on the 
body, VI does not equal F2. By the condition of equilibrium of statics, 

0. 
F2 — Fi — wdx = 0 

If Vi = 10,000 lb. and dx is so small that wdx = 10 lb., then V2 « 
10,010 lb. In such a case the statement that Fi » F2 — 7 is well within 
1 per cent accuracy. 
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If we take moments about a point on the neutral axis at its center 
dx ' ^ 
— from section 1-1 j we have, by the condition of equilibrium SM = 0, 

^ , dx V^dx 
• Ti{jd) — Tzijd) — Vi—---1- (lodx) X 0 = 0 

(^1 - T2)jd - Fdx = 0 

This assumes that the couple at section 1—1 is greater than that at sec¬ 
tion Then 

Vdx 
- T2 = —- (24) 

Jd 

Ti — T2 is the difference in pull at the ends of the steel bars; in this 
case it tends to pull the lower part of the body to the left. The push 
Cl — C2 will be equal to Ti — T2 and will tend to move the top part 
of the body to the right. There wall be, therefore, shear forces on longi¬ 
tudinal planes through the body. 

(o) (d) (c) 
Fig. 18 

Taking as a rigid body that portion of the rigid body of Figure 17 
w^hich lies below the longitudinal plane 'pqr (Fig. 186) we have the fol¬ 
lowing external forces acting. 

On sections 1-1 
and 2-2 

On longitudinal 
plane pqr 

Ti and T2 = tensile force in steel 
Sv = ^ portion of the vertical shear force Fi 

or F2 

Si = resultant of longitudinal shear stresses on 
plane pqr 

Since we have assumed Fi = F2 = F and are considering identical 
parts of sections 1-1 and 2-2 for the rigid body, the portions Sv of the 
vertical shears Fi and F2 are equal. Applying the condition of equi¬ 
librium, = 0, to the body gives 

T2+Si-Ti=-0 or Ti - T2 = Si 

If the section pqr is taken above the neutral axis (Fig. 18c), there 
acts on the body a portion of the compression stresses whose resultants 

are Di and i>2- 
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In that case, SJT = 0 gives 

(Ti - T2) - (i)i - D2) = Si 

Between the steel and the neutral axis the maximum longitudinal 
shear force Si amounts to Ti — T2> Above the neutral axis the longi¬ 
tudinal shear S] will be gradually reduced as the compressive forces 
equalize it. The top particles have no longitudinal shear, as the sum 
of the longitudinal forces 

{Tr - T2) - (Cl - C2) = 0 

This force Si is equal to the average stress si times the area, or 

and 

Si = siMx 

Si = sibdx = {Ti — T2) = 
Vdx 

jd 

By a theorem of the theory of elasticity, the shear stress intensities 
on perpendicular planes through a particle are equal. The intensity of 
vertical shear stress v is equal to the longitudinal shear stress intensity 
fiz, or 

(25) 

The variation of the vertical shear stress v for the given rectangular 
beam is shown at section EE, Figure 16. Equation 25 gives the maxi¬ 
mum stress only, which is a constant between the neutral axis and the 
tension steel. There is a variety of possible cross sections whose com¬ 
pression areas are rectangular, and which are, therefore, rectangular re¬ 
inforced concrete beams. For the sections of Figure 4 the shear force 
Si — Ti — T2 will be unchanged on any longitudinal plane pqr (Fig. 17) 
between the tension steel and the neutral axis. However, the maximum 
intensity of shear stress wiU occur on the layer pgr between the tension 
steel and the neutral axis which has the least width. 

62. Allowable Shear Stresses. A.C.I. Article 305 (see Appendix) pro¬ 
vides four values of the allowable vertical shear stresses. If the cross 
section is unreinforced, the maximum intensity of vertical shear at sec¬ 
tion AB cannot exceed 0.02/'c. 

If there is steel passing through the section, the resistance to vertical 
shear is much increased, since the steel must also be sliced off to produce 
failure. Therefore a maximum shear intensity of 0,06/'c is allowed for 
ordinary anchorage. 
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If there is steel at both top and bottom, there is still greater resistance 
to shear, and even higher allowable values may be used for the combined 
action of steel and concrete. This is also true if greater attention is 
given to steel placement and anchorage. The maximum allowable value 
of shear intensity is 0.12/'c for special anchorage. For continuous beams 
there is steel in the top and bottom of the section of maximum shear. 
For these beams the higher allowable stresses of special anchorage re¬ 
quire a more rigid beam-column connection produced by greater anchor¬ 
age lengths. This excess weight of steel is usually justified because of 
the increased values of shear and bond stresses that may be used for 
computations. The requirements for ordinary and special anchorage 
are discussed under A.C.I. Articles 902 and 903 (see Appendix). An 
illustration of the use of the shear stress formula is given in Problem 8 
in Chapter 5. 

BOND 

63, Adhesion. It has been previously stated (Art. 51) that the un¬ 
balanced pull Ti — T2 in the tension steel tends to produce longitu¬ 
dinal shear in the concrete. This cannot occur, of course, unless there is 
adhesion, or bond, in the form of friction between the steel and concrete. 
The deformed bar has projections, also, which must plow their way 
through the concrete if the bar slips. There is a direct pressure on these 
projections in addition to frictional r^istance. On this account the de¬ 
formed bar has an advantage, even though harder to handle, and de¬ 
formed bars will be used in the illustrative problems of this book. 

64. Bond Stress Equations. The bond stress u can be computed by 
use of the rigid body of Figure 17 and the relations derived in computing 
the shear stress v. From equation 24 

Vdx 

jd 

This unbalanced pull in the steel will cause slipping of the bar unless 
balanced by the adhesion between the concrete and steel in the length do;. 
This bond force is equal to the average bond stress u in the length dx 
times the area of contact between the steel and concrete. The area of 
contact is equal to the sum of the perimeters of the bars times the length 
and is written as (So) (dx). 

Vdx 
Bond force == u(So)dx — Ti — T2 -- 

jd 
V 

(^d)jd 
Bond stress = u = (26) 
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The bond stress can also be obtained in terms of the bending moment. 

Ml = Tijd or Ti = — 
id 

Ml - M2 

But the distance between these sections is only dx, and Mi — M2 can 
be written as dM, a small difference in bending moment. The bond 

force in the length dx equals Ti — T2, or . 
Jd 

dM 
Bond force = u(^o)dx = Ti — T2 —- 

id 
Ti - T2 dM 1 

u = ^ =-r (27) 
Hiodx dx 'Zojd 

This is another form of equation 26 since, by applied mechanics, V — 

, or the vertical shear equals the rate of change of bending moment. 
dx 
The bond stress u varies with the difference in pulls Ti — T2 of the bars, 
and, therefore, with the rate of change of the bending moment. 

65. Position of Maximum Bond Stresses. If a beam is fixed or par¬ 
tially fixed at the ends and is loaded with a uniformly distributed load 

of w pounds per foot, the bending 
490,000 in. ib-u"500.000 in. fb.» Mp 

Mnm 500,000 m./b. 

moment diagram will be of the 
shape shown in Figure 19. Let us 
assume that partial fixity gives 
Mn = M.p = 500,000 in.-lb. 

The positive tension steel in the 
bottom of the beam has the maxi- 

Fia. 19 mum allowable stress= 20,000 lb. 
per sq. in. at section C of maxi¬ 

mum positive bending moment Mp — 500,000 in.-lb. The curve does 
not vary rapidly here, and a foot away at D the bending moment is 

also large, say 490,000 in.-lb. The change of bending moment in a 
dx 

foot is 10,000 in.-lb. The bending moment at F, the point of inflection, is 
zero, and a foot away at E is 131,700 in.-lb. Here the change of bending 
moment per foot is 131,700 in.-lb. and is a much more severe case for 
bond. This is also indicated, of course, by the fact that the vertical 
shear V is greater at F than at C, 
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On the other hand, for negative bending near the support the tension 
steel will be at the top of the beam. At A, the section of maximum 
negative bending moment, the moment Mn == —500,000 in.-lb. A foot 
away at II the moment equals —310,000 in.-lb., giving a change of 
moment per foot of 190,000 in.-lb. At the point of inflection F the 
moment is zero; a foot away at G the moment is 15,000 in.-lb. The 
most severe bond conditions for the negative tension steel are at the 
support where the shear force F is a maximum. 

In general it can be stated that the greatest bond stresses occur where 
the bending moment curve is the steepest, or in other words at the section 
of maximum shear force while the bar is in the tension side of the section, 

66. Difference between Bond and Anchorage. The designer does not 
have control of the variation of the bond stresses, for they vary with 
the bending moment diagram. It docs not help to use a longer bar. 
He can obtain lower bond values by using smaller bars or by fulfilling 
the requirements for special anchorage (A.C.I., Art. 903). A 1-in. square 
bar has an area of 1 sq. in. and a perimeter of 4 in. Four §-m. square 
bars have an area of 1 sq, in. and total perimeter So = 8 in. Using 
four ^-in. square bars instead of one 1-in. square gives the same area 
and weight of steel but reduces the bond stresses by half, since the 
perimeter is doubled. 

It should be emphasized that tension steel is checked for bond only 
while in active tension. Thus in Figure 19 the positive tension steel is 
checked only between sections F andj, whereas the negative tension steel 
at the supports is checked only between sections A and jP, or B and J, 

After the positive tension steel passes beyond the point of inflection 
F, it is no longer in tension and the distance it then runs is regarded 
as anchorage. Theoretically the stress in the bar is zero at F and its 
use as tension steel is completed, but it is counted for bond at this 
point and it is customary to run the bars farther to permit such use. 
In fact, some of this steel is continued on the bottom into the support 
to give a more rigid column-beam connection and to support stirrups. 

Similarly the negative tension steel is checked for bond only between 
sections A and F, Any of this steel which continues on the top toward 
the center is being anchored. It is customary to run some of this steel 
to the center line to afford support for stirrups. 

ANCHORAGE 

57. Anchorage. Anchorage does not begin for tension steel until it 
has passed out of the region of tension. The length of anchorage, and 
hence the stress variation, are entirely at the control of the designer. 
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Thus, in Figure 20a, if a bar is embedded in concrete and is pulled 
by a force IT, the necessary length of embedment can be computed. 
Let u equal the average bond stress between the concrete and steel. If 

■«-1-► 
A\ C 

^ ^ ^ 

a /-J_\ 
f 8 

t 

Elevation 

(a) (b) 
Fig. 20 

the bar does not slip, the pull T must be balanced by the bond force 
between the concrete and steel. Let a be the diameter of a round bar 
or the side of a square bar. 

Round Bar, 

Then 

and 

Square Bar, 

Bond force = uwal 

ttO" 
Ural 

4a 

Bond force = a4aZ 

= u^al 

4a 

(28) 

(28) 

Figure 206 represents a wall beam supporting the exterior end of the 
exterior span of a slab. At the face of the support A the continuous 

wl^ 
slab is subjected to a maximum negative bending moment Mn =-. 

24 
The negative tension steel at the top of the slab has a stress of 20,000 
lb. per sq. in. At A the bar must run far enough in both directions to 
anchor this pull. If the concrete tests /'<. = 2000 lb. per sq. in., the 
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bond stress u = 0.05/'c — 100 lb. per sq. in. (see A.C.I. Art. 305 in the 
Appendix). By equation 28 

20,000 X a 
I =-= 50a 

4 X 100 

To the right of A while the bar is in active tension, the bar runs more 
than 50a. To the left of A it must also run 50a into the beam/ar anchor^ 
age. At this same support some of the positive steel has not been bent 
up. When it passes the positive point of inflection B it has zero stress 
theoretically, but it is customary to anchor zero stresses by 10a for ordi¬ 
nary anchorage or by a hook for special anchorage. Hence, carr3dng 
the positive bar 10a to the left of the point of inflection will anchor it, 
but this steel will be run into the support with an anchorage of 10a to 
give a more rigid beam-slab connection. 

68. Allowable Bond Stresses. The bond strength has usually been 
determined by tests which pull a bar from a concrete block. In the 
pull-out tests the block is usually set on the top of the machine and the 
steel bar grasped and pulled. The concrete is in compression and the 
steel in tension. In the actual beam both are in tension. A few tests 
have been made with the concrete in tension. They do not indicate a 
great variation from the usual results. The allowable bond stresses u 
given in A.C.I. Article 305 are based on the compressive strength/'c of 
the concrete. The factor of safety has been so adjusted that these 
allowable values compare favorably with the bond computation data 
from reinforced concrete beam tests. If a moderately good design is 
contemplated (ordinary anchorage), bond stresses of w = 0.05/'c are al¬ 
lowed for deformed bars. If greater attention is paid to anchoring the 
bars, as in special anchorage, allowable bond stresses oi u — 0.075/'c are 
permitted for deformed bars in beams, but u must not exceed 250 lb. 
per sq. in. 

Anchorage lengths are always computed for the lower frictional sttess 

oi u — 0.05fc- 
The application of the bond stress formula and of the anchorage re¬ 

quirements to a design is given in Problem 8 (Chapter 5) and the sub¬ 
sequent beam problems. 

Steel which is in compression seldom requires a check for bond stresses. 
As will be shown in Article 83, the compression force C'* in the steel 
does not change rapidly in magnitude, since it forms only a part of the 
total compression force C at any section. The necessary bond stresses 
are small and are aided by the bearing of the end of the bar against the 
concrete. 
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DIAGONAL TENSION 

69. Diagonal Tension. A plain concrete beam will scarcely support 
its own weight because the tensile strength of concrete is so low. Such 
a beam will fail suddenly without warning at the section of maximum 
bending moment (Fig. 21a) by a crack which starts on the tension side. 
The collapse is immediate, and the beam falls into two pieces. 

This sudden failure can be prevented and the applied load much in¬ 
creased by introducing steel to take the pull that would otherwise cause 
the cracking of the concrete. This steel is computed by the bending 
moment equation 12. In order to take the pull, this steel must transfer 
the stress back to the concrete, before it ends, by suitable anchorage in 

c 

1 r- —> 
‘ -I 1 A a - 

(a) 1 (b) 

Fia. 21 

some compression region. With the introduction of bending moment 
steel the concrete will crack slightly at the section A of maximum bend¬ 
ing moment (Fig. 216). As the load increases, sections of smaller bend¬ 
ing moment will be overstressed in tension and the concrete will crack 
as far up as the bending moment steel. Eventually the beam will fail 
suddenly, cracking along a line such as BC. This is a tension failure, 
as evidenced by the opening up of this crack, but the presence of the 
longitudinal bending moment steel does not prevent this tension fail¬ 
ure. However, the steel does prevent the beam from collapsing in two 
separate parts. 

The appearance of these cracks and the failure by tension on the 
diagonal plane BC can be predicted by the stress analysis of the theory 
of elasticity. If we consider a plain concrete beam, simply supported 
and loaded with a uniformly distributed load, the fiber stress / and the 
shear stress v can be figured for any particle in any cross section. The 
shear stress si on a longitudinal plane through the same particle are 
known to be equal to the vertical shear stress v. The principal tensile 
stress rii can be computed by the relation 

2 2 
(29) 
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The principal tensile plane, or plane with the maximum tensile stress, 
will make an angle with the cross section equal to a, where 

tan 2a = — 
/ 

At the section of maximum bending moment the shear equals zero 
and rii = /. The cross section is the principal tensile plane, and a crack 
will tend to form along this cross section. At other sections shear forces 
will be acting, and the principal tensile stresses will be inclined at differ¬ 
ent angles to the cross section, depending on the relative magnitudes of 
the fiber stress / and the shear stress v. If we consider an unreinforced 

BEA^^ WITH vSUPPORTUD - HalF 5PAKJ 

Fig. 22 

rectangular concrete beam of span I and loading w pounds per foot, the 
direction of these principal tensile stresses can be sketched by a series of 
lines such as the unbroken lines in Figure 22. All these lines cross the 
neutral axis at 45°, since there / = 0 and tan 2a ^ giving 2a == 90° 
and a = 45°. 

The dotted lines in Figure 22 drawn perpendicular to the direction of 
maximum tension mark the direction of possible cracks in different parts 
of the beam. It will be noted that in the center the cracks nearly co¬ 
incide with the cross section, and the longitudinal steel perpendicular to 
these possible cracks prevents their appearance. Near the end the cracks 
are about 45° with the longitudinal and the bending moment steel can¬ 
not alone take this pull. 

Figure 23 shows the same full lines of maximum tension and the dotted 
lines of possible cracks for a cantilever beam of span I and loaded uni¬ 
formly with w pounds per foot length. The cracks are all inclined, and 
longitudinal steel alone will not prevent their appearance. 

In Figure 24 a beam with fixed supports is represented. Its span is I 
and the load is w pounds per foot uniformly distributed. Such a beam 

wl^ 
has a maximum negative bending moment of Mn = 777 at the ends 
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wl^ 
and a maximum positive bending moment of Mp ~ • Here, agam, 

for a large part of the span the possible cracks are inclined and longi¬ 
tudinal steel alone is not sufficient. 

DinsctJCJn cf Maximunn Tension 

Fig. 23 

Pirsction of Maximum Tension 

Fig. 24 

The minimum weight of steel is required, if the longitudinal steel is 
bent into curves coinciding with the lines of maximum tension, so that 
the steel is always in the direction of the pull. A more practical possi¬ 
bility is to approximate these lines as in Figure 25. For commercial 

^^ 
Fig. 25 

work, however, it is customary to make bends of 45°, or thereabouts 
(Fig. 26o). Such a bend is satisfactory near the support of the beam 
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of Figure 22. It is reasonably satisfactory throughout the span for a 
cantilever beam (Fig. 23) and from the support to near the quarter span 
for the fixed-end beam (Fig. 24). Most concrete beams in a building 
are partially fixed, and 45° bends are satisfactory between the support 
and the quarter or fifth span. 

Certain designers prefer to use straight bars for all bending moment 
steel. They provide for diagonal tension cracks by adding vertical steel 

1 
One Rod 

in: 
Two Rod 

uu 
four Rod 

u > ULI 

Ele \ra ft on Rectangvfar Tee 
Sections 

STIRRUPS 

Fig. 27 

in the form of stirrups (Fig. 27) which act with the longitudinal steel 
to give a resultant pull in the proper direction (Fig. 266). 

60. Steel Systems. There are many systems of steel placement for 
continuous concrete beams, but three types are in general use. 

Type 1 (Fig. 28) consists of straight bars for longitudinal bending mo¬ 
ment steel, and stirrups for diagonal tension reinforcement. The posi¬ 
tive steel on the bottom can be cut off as the bending moment reduces, 

1 11 Hi M ■ H ■ 1 1 ■1 III 1 
1 L_l 

Fig. 28 

but the anchorage specifications require that some of the bars run into 
the support to assist in forming a rigid connection. The negative ten¬ 
sion steel at the top is needed in full amount at the support. Some of 
these bars run to the center line and lap with the bars from the other 
support. The stirrups are wired to the top and bottom steel so that 
they cannot shp as the concrete is poured. This system is easy to de¬ 
sign, as separate bars are supplied for positive and negative steel and 
for diagonal tension. It gives a greater weight of steel than the other 
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methods. Its advocates claim, however, that the total cost is not more, 
as it can be placed rapidly and requires no bends except for the stirrups. 
An illustrative design using this system is given in Problem 8 (Chapter 5). 

Type 2. The second system of steel placement consists of straight 
bars in the bottom for positive steel as before, and the inverted U bars 
for the negative steel at the top over the support also act as diagonal 
tension steel (Fig. 29). These bars are bent down as near as possible 

4 

m ■ 
LIj I L-j 

Fia. 29 

to the support. They are hooked at the bottom about spacer bars which 
are wired to the bottom steel. Two negative bars run to the center 
line to carry the few stirrups which may be needed to complete the 
diagonal tension reinforcement. This system is nearly as flexible as 
type 1, though the negative steel must perform two functions, acting 
as negative bending moment steel and later as diagonal tension steel. 
The weight of steel is less; but the negative bars, which are usually 
medium size, have four bends each. An illustrative design using this 
system is given in Problem 17 (Chapter 7). 

Type S. A third system of steel placement provides the positive steel 
in two types of bar shapes (Fig. 30). The bottom row consists of straight 

bars as in the previous cases. Some of these straight bars run into the 
support for anchorage. The top row are shaped as in Figure 31 and are 
known as truss bars. These truss bars act as positive steel and diagonal 
tension steel in this span, and as negative tension steel at each support. 

- The use of one bar for three 
functions necessitates great care 
in the design. The system is not 
flexible, and it is diflScult to meet 

tibe varying requirements for moment for end spans and unusual load** 
ings. The weight of steel is often more than for type 2, while for tong 

Fig. 31 
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spans the truss bars have excessive lengths. The truss bars have four 
bends. The labor cost is probably greater than for type 2, An illus¬ 
trative design using this system is given for the girder design of Problem 
17 (Chapter 7). 

61. Diagonal Tension Reinforcement. For any particle in the beam 
the tensile stress on the principal plane is given by equation 29 (Art. 59). 

f ^ + 1V/2 + (30) 

When the fiber stress f is large in comparison with the shear stress v 
the maximum tension t is nearly longitudinal in direction, and the longi¬ 
tudinal, or bending moment, steel prevents the spread of tension cracks 
in the concrete. Tlie maximum tension t makes a considerable angle 
with the longitudinal direction when the shear stress v is large in com¬ 
parison with the fiber stress /. The use of equation 30 involves much 
labor, and, therefore, for commercial designs it is customary to assume 
that t is proportional to v in diagonal tension computations. Wherever 
the fiber stress / = zero, t — v. Therefore, at the neutral axis of all 
sections t v. Wherever the maximum tension t is considerably in¬ 
clined, t may equal l.5Vf or 2y, or ^ == kv, depending on how small the 
fiber stress / may be at the particle considered. In commercial work it 
is customary to design the diagonal tension reinforcement in terms of 
the maximum shear stress v in the cross section, assuming that t = kv. 
The constant k is taken large enough and the allowable value of v is ad¬ 
justed so that the portion assigned to the concrete of the total tension 
on a particle does not exceed the allowable tension of concrete. There¬ 
fore, in the analysis of diagonal tension the concrete is ssumed to take 
some tension. This can be safely done as the sections in question have 
small bending moments and the concrete has not yet cracked in tension, 
while fine hair cracks may have already appeared at the sections of large 
bending moment. 

The allowable shear stresses v, or equivalent tension stresses, which will 
not exceed the allowable tension in the concrete are given in the A.C.L 
Code (see Appendix), a distinction being there made between ordinary 
and special anchorage of the steel. 

The tension on a particle is divided between the diagonal tension steel 

and the concrete, so that 
V == Vc + Vt 

where v = maximum shear stress at a given cross section 
Ve = allowable shear stress, or tension equivalent^ taken by concrete 
Vb ~ remaining, shear stress, or tension equivalent^ to be taken by 

diagonal tension reinforcement. 
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The amount of diagonal tension steel can be computed by relations 
derived as follows. 

62. Diagonal Tension Equation for Stirrups and Bent Bars. Let Fig¬ 
ure 32a represent one end of a beam ^ with bars bent up at an angle a 
with the longitudinal steel and crossing a plane A 5 of a possible diagonal 
tension crack which makes an angle d with the longitudinal steel. The 
bent bars are spaced a distance c perpendicularly, or s longitudinally. 
The beam is h inches wide. 

<7. b. 
Fig. 32 

Assumption 1, For values of a between 4^^ arid 90^, Let us assume 
that the bent bars are nearly perpendicular to the crack or, in other 
words, nearly in line with the pull. The tensile stress T on plane ABis 
perpendicular to the crack AB and makes an angle of 90^ — (0 + a) 
with the bent bars. The stress T can be resolved into a component t 
along the bar and one perpendicular to the bar. 

The component perpendicular to the steel equals 

Tsin [90^ - (8 +a)] 

The angle is small, by the assumption, and the concrete can withstand 
this stress, which can be resolved into tension and shear on the plane of 
the crack. 

The component along the bar equals 

T cos [90^ - (8 + a)] 

This component is withstood in part by the concrete and in part by 
the bent bar. Let us designate the portion taken by the steel as cos 
[90° — (0 + a)]. The middle bar of the three shown in Figure 32a must 

^See Journal, Boston Soc, C. E., February 1925, pp. 76-76, by Professor Hale 

Sutherland. 
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withstand the pull on an area of the crack e long and h wide, where e 
is measured half way to the adjacent bars in the plane of the crack. 
The steel takes a total pull, 

Ts = vM cos [90° — (0 + a)l 
By trigonometry 

c 
- = cos [90° — (^ + a)] 
e 

and 
c 
- = sin a 
s 

therefore 
e cos [90° — (0 + a)] = c = s sin a 

also (Art. 51) 
F, 

Vg = — 
hjd 

then 
Tg — Vghs sin a 

But 
T, == Ogfs 

where a, = area of diagonal tension steel 

fg = tension stress in this steel. 

Then 

or 

and 

o-sfa = sin a 

asfg 

bs sin a 

V = Vc + Vs = Vc + 
agfs 

r sin a 

(31) 

(32) 

Equation 32 is given by the 1924 Joint Committee Report. 
Assumption 2, For values of a less than In this case it is assumed 

that the steel makes a considerable angle with the crack and a resolu¬ 
tion of stresses as in assumption 1 would give too great a component 
perpendicular to the bar to be taken by the concrete as tension and shear 
on the plane of the crack. The total tensile stress T on the plane is 
taken partly by the concrete tensile stress Vc and the rest by the steel 
stress Vg, In assumption 2 the tension stress T, which is perpendicular 
to the plane of the possible crack, is resolved into a component ti parallel 
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to the lon^tudinal steel and a component t parallel to the bent bars 
(Fig. 33). This assumption is justified because the crack will tend to 
start at the bottom where the longitudinal steel and bent bars are both 

present and able to take tensile pulls. 
The tensile force F acting on the plane of 

the crack for a length e equals 

F = The 

Its vertical component is 

Fy = The sin (90° — 6) — The cos 0 

Since the component stress ti is horizontal, the vertical component of 
t equals the vertical component of T (Fig. 33). The vertical component 
By of the force parallel to the bent bar is 

By = The cos 6 

The force B can now be computed by dividing by sin a. The force B 
is supplied partly by tension in the concrete, partly by the tension in 
the steel bar. Let Vs be the portion of the stress T taken by the steel. 
Then the force Tg in the bent bar equals 

As before 

or 

and 

substituting, 

as before 

Tg = 

Vghe cos 0 

sin a 

e cos [90° — (6 + a)] = s sin a 

e sin (0 + «) = s sin a 

s sm a 
e = 

sin {6 + «) 

Vgh cos 6 5 sin a Vghs cos 6 

Tg = Vghs 

Tg = agfg 

sin a sin (0 + a) sin (6 + a) 

cos 6 

sin ^ cos a + cos sin a 

Ugfg sin $ cos a + cos ^ sin a 

cos^ 
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If the crack angle B ~ 45®, sin B == cos B and 

59 

hs 
(sin a + cos a) (33) 

This is the equation given for this case in the 1924 Joint Committee 
Report. 

For the special case, when a = 45®, equations 32 and 33 give identical 
values of 

Vs 
lAlasfs 

bs 
(34) 

63. Application to Design. Since bent bars in beams are usually at 
an angle of 45® and stirrups are vertical, equation 32 can be used for 
all diagonal tension computations. Illustrations of the application to 
stirrups and to bent bars are given in Articles 75, 135, and 146. 

The A.C.I. Code recommends a formula for the area of diagonal ten¬ 
sion steel in the form of vertical stirrups: 

VsS 

This is obtained from equation 31 by substituting: 

(35) 

Vs 
hjd 

where Vg = portion of total shear force on the section taken by the 
steel. Then 

F s Clsfs 

hjd bs sin a 

VsS 

Equation 35 is extensively employed commercially. However, the 
author will use in his illustrative problems the Joint Committee formulae 
which he regards as more convenient of application. 

64. Maximum Spacing. The formulae given above for the computar 
tion of spacing of diagonal tension steel are not foolproof. If one uses 
two 1J square bent bars, it is possible that spacings of 60 in. or more 
may result. It is, of course, absurd to expect that a bar 5 or 6 ft. away 
will prevent the spread of a crack. It is the object of diagonal tension 
reinforcement to prevent the spread of cracks beyond the neutral axis 
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into the compression area. The concrete on the tension side is assumed 
to be cracked in all fiber stress computations. To prevent ill-advised 
spacings, empirical equations are given to govern the maximum spacing 
longitudinally. A.C.I. Article 806 states that web reinforcement shall 
be spaced closely enough so that every potential 45° crack is crossed 
by at least one line of reinforcement before the crack reaches mid¬ 
depth of the beam. If special anchorage be used, wherever the shear 
stress exceeds v = 0.06/'c two lines of web reinforcement must cross the 
potential crack-line. Mid-depth is a convenient dimension and it in¬ 
sures that the crack docs not extend farther up to the neutral axis. 

66. Bent Bars. In Figure 34 are shown stirrups with a spacing of 8 
such that each stirrup stops the first possible crack (dashed) before it 

reaches mid-depth. It is evident that bent bars may be spaced longi¬ 
tudinally much farther apart than stirrups and yet intercept this first 
possible crack at the same point (Fig. 35). Assuming both crack and 
bent bar to be at angles of 45° with the longitudinal, the spacing of the 
bent bars can be twice the stirrup spacing. Using A.C.I. Article 806 
for sections where 

(a) Maximum shear stress v is less than 0.06/'c 

Maximum s = 0.5d for stirrups 
Maximum s = d for bent bars 

(h) Maximum shear stress v is greater than 0.06/'c 

Maximum s = 0.25c? for stirrups 
Maximum s = 0.50c? for bent bars 

(36) 

(37) 



CHAPTER 5 

RECTANGULAR BEAM DESIGN 

The preceding chapters have discussed the theoretical and empirical 
information which forms the basis of practical beam designs. In this 
chapter a design will be made of a typical beam span. It is suggested 
that the reader note particularly the order of procedure and that the 
student check the various steps in order to understand the reasons for 
each operation. 

66. Economy. Stresses. The most economical rectangular concrete 
beam is the one stressing steel and concrete to their maximum allowable 
values. It is proper, then, to design rectangular beams by use of the 
theoretical equations for fiber stress derived in Chapter 2. 

Shape. A rectangular beam is poured into forms which have bottom 
and sides but no top. If the space to be filled is too narrow, the concrete 
cannot be tamped into place easily about the bottom steel and the re¬ 
moval of the forms will show ‘^honeycombing'^ which can only be labori¬ 
ously and unsatisfactorily patched. A beam too wide, and hence shallow, 
will have too much steel. Experience has shown that beams having 
ratios of depth to width not exceeding 2 to 1 give economical sections. 

Mix. The choice of the proper strength of concrete to give the greatest 
economy involves many variables. Professor Inge Lyse ^ analyzes the 
results of tests on concrete to arrive at the following conclusions: 

“Above a minimum number of cement particles necessary to give 
workability and binding strength to concrete, the strength of concrete 
increases in direct proportion to the increase in number of cement par¬ 
ticles per unit of water." The relation can be written 

>S = A + B- 
w 

where S = strength of concrete, in pounds per square inch 
A and B are constants 
c = cement content 

w == water content. 

' ^‘Relation between Quality and Economy of Concrete,” Jour. A.C.I., March- 
April 1933, p. 326. 

61 
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The statement assumes that, in '‘the range of practical concrete 

mixes,'' the straight-line relation serves as well as Abrams' curve. Fig¬ 

ure 1 shows the original Abrams curve which gives the relation between 

w 
strength S and the water-cement ratio — . 

c 
The study of other tests causes Professor Lyse to conclude that "the 

factors which give high strength will also give high impermeability, 

greater resistance to freezing and thawing, and high fire resistance. On 

the other hand, the volume changes due to soaking and drying of the 

concrete will increase with the increase in cement content. 

"In the practical application of the above study the cost of mixing, 

placing, curing and possible finishing of the concrete and also the cost 

of formwork and labor contribute to the total cost of the final structure. 

However, the cost of preparing, handling and curing the concrete is 

nearly the same for rich and lean mixes. The cost of formwork, labor, 

and finish may be somewhat different for the different concretes, since 

the cross-sectional area of the member changes with the strength of the 

concrete and is greater for lean than for rich mixes. However, in most 

cases the differences in the cost of these items are so small that for 

studies of the nature presented in this paper they may be neglected. . . . 

Generally the decrease in cost of the concrete will more than offset the 

increase of cost of the steel and the protective cover," if rich mixes are 

used. Professor Lyse comes to the conclusion that the concrete beam 

cost is little affected by the variation in the strength of the concrete. 

We should consider also that, if concrete strengths of 4000 to 5000 lb. 

per sq. in. are used instead of 2000 to 2500 lb. per sq. in., slabs would be 

so thin that extra labor and inspection would be necessary to insure 

satisfactory results in mixing and placing the concrete and correctly 

locating the steel. 

67. Order of Procedure in Design. In all reinforced concrete beam 

designs the concrete dimensions should be definitely adopted before the 

steel is computed. A logical order of design is: 

1. Determine concrete size by bending moment requirements. 

2. Check size for shear. 

3. Figure steel area for bending moment. 

4. Check steel for bond and anchorage requirements. 

5. Figure diagonal tension steel. 

6. Detail beam for the steel foreman. 

Before studying the following problem the student should first read 

the discussion of partially restrained beams-in Chapter 14 (especially 

Art. 340). 
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WORKING-STRESS STRAIGHT-LINE THEORY 

ILLUSTRATIVE PROBLEM 8 

Given continuous rectangular concrete beams supporting a removable wooden floor 
consisting of planks weighing 20 lb. per sq. ft. (Fig. 3G). The interior spans are 

supported by concrete columns 30 in. square and 18 ft. high in the clear. The beams 
are spaced 14 ft. 6 in. apart, and have a span of 29 ft. center to center of columns. 

Fig. 36 

The live load is 130 lb. per sq. ft. Using 2000-lb. concrete, * design the interior 

span CD, Employ type 1 steel placement (Fig. 28). 
68. Beam Size by Bending Moment The beam carries 14.5 sq. ft. of floor surface 

for each foot of length of beam. It is also loaded with its own weight. The designer 

makes a guess of the size and corrects his estimate later if the guess is not accurate. 

After trials of a 14-in. width, the beam is assumed to have a cross section 16 in. by 

32 in., which is the deepest 16-in, beam.® 

* See footnote for Article 32. 
* If wood planks are used as beam-bottom forms, the width should be the actual 

plank width, 13§ in. or 15 J in. in this case. 
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Live load = 130 lb. per sq. ft. 

Planks = 20 lb. per sq. ft. 

Total floor load = 150 X 14.5 = 2175 lb per ft. 

16 X 32 
Weight of beam =--— X 150 = 530 lb. per ft. 

144 _ 

Total beam load w — 2705 lb. per ft. 

Since span CD is an interior span of several equal spans, the maximum bending 

moment coefficients can be selected from A.C.I. Article 701 (in the Appendix). As¬ 

suming the beam section to be 16 in. wide by 32 in. deep, and using the clear span, 

Beam stiffness = 
^ _ 16(32) 

m ~ 12(26.5 X 12) 

Column stiffness = 
7 

h 
ht^ 

12h 

30(30)^ 

12(18 X 12) 
= 312 in.® 

Ratio of stiffnesses 
312 
— = 2.3 
137 

wt^ 
This ratio is less than 8, so the maximum negative moment equals — and the 

. . , 
P”*-™ 16- 

The maximum numerical moment 

Mn = 

wl?' 
IT 

2705(26.5)2 X 12 

11 
= 2,070,000 in.-lb. 

By A.C.I. Articles 305 and 306, /c == 0.45/c = 900 lb. per sq. in., /, == 20,000 lb. 

per sq. in., and the constant for rectangular beams K = 157. 

Minimum d = 
_ /2,070,000 

^Kb ~ yj 157 X 16 
28.7 in. 

By A.C.I. Article 507 the protection for this top steel is 1.5 in. Assuming ordinary 

anchorage and tension steel 1 in. square, or less, in one row with J-in. stirrups, the 

total depth h includes (Fig. 37) 

Minimum d =28.7 in. 

Minimum clearance to stirrup = 1.5 

Stirrup = 0.5 

Distance to center of tension steel = 0.5 

Minimum h = 31.2 in. 

Adopt tentatively a 16-in. by 32>in. beam. The neutral axis ratio k, corresponding 

to the design stresses of/c = 900 lb. per sq. in. and/, = 20,000 lb. per sq. in., equals 

0.40 by equation 3, and J » 0.87 by equation 10. 
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Total Clearance 

Sfed Profecf/on 

^^\^flrrap Allowance 
Distance to Center 
of Grawty of Steel 

Fig. 37 

69. Size Checked for Maximum Positive Bending Moment. 

Maximum positive moment Mp = — = 1,420,000 in.-lb. 
16 

This moment is smaller than the maximum negative moment, but the fireproofing 
clearance is 2 in. for glacial gravel (1928 A.C.I. Code, Art. 506). Therefore, we 

should check the fiber stress/«. Assuming 1-in. bars in one row the value of (Ji •— d) 
equals 

Fireproofing clearance = 2.0 in. 
Stirrup = 0.5 
Distance to center of tension steel = 0.5 

Total = 3.0 in. 

The value of d equals 29 in. (Fig. 38). 

1,420,000 

16(29)2 
105 

Fig. 38 
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On Diagram 2 (Appendix) follow to the right on the K = 105 line until the curve 

of /« = 20,000 is intercepted. 

p - 0.006 and fc = 700 lb. per sq. in. 

Allowable/c = 900 lb. per sq. in. By Diagram 1 (Appendix), using p = 0.006 and 

n = 15, 
j = 0.885 

The beam section of 16 in. by 32 in. is satisfactory for bending moment require¬ 

ments. 
70. Size Checked for Shear. The shear diagram for interior spans of continuous 

beams will be assumed to be symmetrical about the center line (Art. 349). At either 

/-35,900/d. 
^5,080/d , 

- 

V-/8,50^ 
V~-25,S50/b X 

__ 26^-6" 

Fig. 39 

2705 X 26.5 
support the maximum shear force V =---^ = 35,900 lb. (Fig. 39). At the 

support negative bending occurs and the value of j - 0.87 by Article 68. 

... y 35,900 
Maximum stress v = — = 77--77-7 *= 88 lb. per sq. m. 

hjd 16 X 0.87 X 29.5 ^ ^ 

Using ordinary anchorage and no web steel, 

Allowable v = 0.02/'c — 40 lb. per sq. in. (A.C.I. Art. 305) 

Using ordinary anchorage and web steel, allowable v = 0.06/c = 120 lb. per sq. in. 
For = 88 lb. per sq. in. use ordinary anchorage and web steel. We now defi¬ 

nitely adopt a beam size of 16 in. by 32 in. 
71. Steel Area for Bending Moment. Positive Steel. 

^_1,420,000 

fsjd 20,000 X 0.885 X 29 
2.76 sq. in. 

This is the correct area if 1-in. bars are chosen. The actual depth d will vary slightly 
if other sizes are adopted. There are listed below possible steel sizes and number 

of bars to care for the moment of 1,420,000 in.-lb. 

Depth d Required Area Actual Area Number 

Steel in. sq. in. sq. in. of Rows 

2—1 J-in. square 28.87 2.78 3.12 1 

3—1-in. square 29.00 2.76 3.00 1 

4—1-in. round 29.00 2.76 3.14 1 

5—|-in. round 29.06 2.76 3.01 1 
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All these possibilities can be placed in one row. The minimum lateral spacings are 

given by A.C.I. Article 505. For instance, the minimum width of one row of three 
1-in. square bars is 

2 fireproofing clearances 4.00 in. 
2 stirrup widths 1.00 
3—1-in. square bars 3.00 
2 spacings in the clear of 2 diameters 4.00 

Minimum width 12.00 in. 

Actual width 16.00 in. 

Since the three 1-in. square bars are nearest the required area, adopt this size if 
bond stresses are satisfactory. 

Negative Steel. 

A 
2,070,000 

= 4.03 sq. in. 
fdd 

steel sizes are 

20,000 X 0.87 X 29.5 

Depth d Required Area Actual Area Number 
Steel in. sq. in. sq. in. of Rows 

3—l|-in. square 29.37 4.06 4.69 1 
4—ij-in. square 27.75* 4.29 5.06 2 

5—1-in. square 28.30 4.20 5.00 2 
6—1-in. round 28.25 4.21 4.71 2 
7—round 28.62 4.17 4.21 2 

10—|-in. round 28.68 4.14 4.42 2 

* Minimum d = 28.7 in. (p. 64). Compression steel must be used. 

Seven |-in. round bars have an area closest to the required area but seven bars 

cannot be placed advantageously in two rows. It would be natural to place four 
bars in the top row, but, if placed symmetrically, the center bar in the bottom row 

is not in line with a bar above. When the concrete is poured this center bar will 

prevent the stone from flowing into the space below it and will produce ‘^honey¬ 
combing." Do not use seven bars in two rows. 

Ten f-in. round bars are too many to handle and will not be used unless the bond 

stresses of the larger bars are excessive. 
72. Steel Checked for Bond. Positive Steel. Reference to the bending moment 

yyP 
sketch for — in Figure 39 shows that the steepest portion of the curve, or most 

rapid change of positive bending moment, occurs at the point of inflection. There¬ 

fore bond will be checked at the point of inflection. 
The discussion in Chapter 14 on continuous beams (Art. 340) shows that the sum 

of the maxiinum positive and negative bending moments for a uniformly distributed 

load must be 
wf 

for the span at any instant. If the maximum i>ositive moment 

the maximum negative moment is 
16 

and the base line M 0 is half 

wP 
wa.y up on the — plot. 

o 
Using Ihagram 5 (Appendix) the point of inflection (Mp 
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= 0) is found at 0.15Z, or 0.15 X 26.5 X 12 = 48 in. (Fig. 39). The shear force at 
48 in. is 

^48 = 35,900 - 2705 X 4 = 25,080 lb. 

The purpose of determining the bond stress is to find out how many bars must 
pass the point of inflection to satisfy the bond requirements. The bond stress equa¬ 

ls 
tion u == —— will be rearranged to read 

Zojd 
V 

Number of bars IS = —— 
tiojd 

With ordinary anchorage, A.C.I. Article 305 gives a maximum allowable bond stress 

u — 0.05f'c ~ 100 lb. per sq. in. for deformed bans. 

^ 25,080 283, 
2.49 =- = — bars 

100 X o X 0.885d od 

Checking the four possibilities of the li.st in Article 71, we obtain 

Steel Number of Bars S 

1 J-in. square 1.96 
1-in. square 2.4 

1-in. round 3.1 
f-in. round 3.5 

Since all these possibilities are safe for bond, adopt the three 1-in. squares as they 

are closest to the required area. 
Negative Steel. The most rapid change of the negative bending moment occurs at 

the support. At this section 

Bond stress u 
V 

Xojd 

35,900 

So X 0.87 X d 

Checking the four larger sizes listed in Article 71, 

Steel 

3— 1 J-in, square 
4— l|-in. square 

5— 1-in. square 

6— 1-in. round 

Bond Stress u 

94 lb. per sq. in. 

83 lb. per sq. in. 

73 lb. per sq. in. 
78 lb. per sq. in. 

All these sizes are safe for bond, but none of them approaches closely the required 

area. Adopt the three ij-in. square bars, as they give the least number to handle 

and the actual area is only 15 per cent in excess. 
73. Anchorage and Placing. A.C.I, Article 902 gives the requirements for ordi¬ 

nary anchorage. 

Positive Steel. At least one fourth of this steel must run into the support for ten 
diameters, but two 1-in. square bars will be run into the support 10 in. for stirrup 
support. Bond requires that three bars run to the point of inflection, 48 in. out, 

and then be anchored 10 diameters, or 10 in. 
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Negative Steel, At the edge of the supports there are three ij-in. square bars 

resisting the maximum negative moment. The actual tensile stress in these bars 

equals 

_M_2,070,000 

Asjd ~ 4.69 X 0.87 X 29.37 
17,300 lb. per sq. in. 

These bars must run far enough into the supporting column and the adjacent span 

to anchor for this stress. By equation 28 (Art. 57) 

I 
fsa 

4u 

17,300 X 1.25 

4 X 100 " 
54 in. 

In this span some of the bars must extend to the point of inflection; the others can 

be cut off after they are no longer needed to resist the bending moment or bond re¬ 

quirements. All these bars mmst extend 12 diameters beyond tliese cntienl sections. 

The point of inflection can be found b}' the use of Diagram 5. h'or the negative 

wl^ 
moment of — the point of inflection occurs at 0.24/, or 77 in. out from the support. 

At this section the shear force equals 18,500 lb. (Fig. 39). The number of bars 

needed here for bond equals 

_V_18,500_ 

oyjd 5 X 100 X 0.87 X 29.37 
1.5 bars 

The two outer bars will be carried 3 in. beyond the center line to meet the bars from 

the other support. They will serve as supports for the stirrups. The center bar 

can be cut off before it reaches the point of inflection. After it is cut off two bars 

remain which can carry a moment of 

M2 = fsAJd = 20,000 X 3.12 X 0.87 X 29.37 = 1,590,000 in.-lb. 

mi . • 1,590,000 ^ ^ ^ 
This moment is- = 0.77 of —■. On Diagram 5 the moment — is 73 per 

2,070,000 11 11 

wl^ wl^ 
cent of — , or 73 units of the 100 representing — . The moment 1,590,000 in. lb. 

o o 

is represented by 0.77 X 73 = 66 units, or 73 — 66 = 17 units from the base. The 

17 abscissa line cuts the parabola at 0.05^ = 16 in. from the edge of the support. 

As far as bending moment is concerned the third bar can be anchored after passing 

this section. 

Two bars can safely withstand bond stresses after the shear force decreases below 

a value of 

F2 « uZojd = 100 X 2 X 5 X 0.87 X 29.37 = 25,550 lb. 

This occurs 46 in. from the support. This requirement is greater, so this third 

bar will run out 46 in. and then be anchored 12 X 1.25 = 16 in., ending 61 in. from 

the face of the support. 
74. Summary for Tension Steel. Positive Steel, We need in the bottom of the 

beam 

3 bars at the center line for bending moment 

3 bars at 48 in. out for bond 

1 bar at the support for anchorage (Use 2 bars) 
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Negative Steel. We need in the top of the beam 

3 bars at the face of the support for bending moment (These are adequate for bond 
also) 

2 bars are sufficient for bending moment and bond after passing the section 46 in. out 

76. Diagonal Tension. Diagonal tension steel in the type 1 system is supplied 

entirely by vertical stirrups. We have assumed -^-in. two-rod stirrups, which are 
tied to the outer bars both top and bottom. The hooks at the top will be made 
6 in. long and are turned in for rectangular beams. 

A.C.I. Article 305 allows a shear stress t; = 0.02/'^ = 40 lb. per sq. in. for concrete 
when ordinary anchorage is used. Wherever v is less than 40 Jb. per sq. in. the con¬ 

crete can carry the diagonal tension. From Fig¬ 

ure 40 this is seen to be for 144 in. in the center 

of the span. It is necessary to supply ^Veb^' steel 
for 87 in. at each end. 

The stirrup should be of such size that the 
closest spacings at the support are about 4 in. to 

6 in. with gradual increase to the maximum 

allow'ed. Theoretically one can change the spac¬ 

ing for each stirrup, but this is not economical. 

It pays to use the same spacings for several 

stirrups and then change to one considerably 
greater, always using dimensions that space easily on the steel foreman's rule. In 

other words, do not use fractions of an inch, or 5 in., 7 in., 11 in., etc. The desirable 
spacings are multiples of 3 in. or 4 in. 

Maximum Spacing. The maximum shear stress = 88 Ib. per sq. in. This is 

less than v = 0.06/'c = 120 lb. per sq. in.; therefore, by A.C.I. Article 806, the maxi¬ 
mum spacing equals the distance from ^‘mid-depth of the beam to the longitudinal 
tension bars.'' Let us interpret this to mean 

d 29.37 
Maximum spacing ® “ 2 ~ —9— “ 

Shear S/ress Diogrom 

Fig. 40 

We are considering the section at the support where there is negative bending and 

we use the negative d == 29.37 in. 
Commercial Spacing. Equation 32 (Art. 62) gives 

u = Vc 4- = 0.02/c -f 
bs sin a 

where s is the minimum spacing at the section under investigation. Assuming |-in. 

round two-rod stirrups, 

2 X 0.196 X 20,000 
88 - 40 + 

16 X « X 1 
490 

Solving, 88 = 40 -j-, or minimum s — 10.2 in. 
8 

This choice of stirrup size is hardly satisfactory as the minimum spacing does not 

allow of much increase before the maximum is reached. Assuming f-in. round 

stirrups, 

. 276 , . . 
3z 40 -ajld minimum s sm 5,7 m. 
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This is better. Assuming the first crack to start at the support, the first stirrup 

can be 5.7 in. out. We shall start with a 4-in. spacing and increase to 6, 9, and 12 in. 

We can successively compute the maximum shear stress v that each spacing repre¬ 
sents by use of 

» = 40 4- 
275 

Listing these values: 

Spacing Shear Stress Distance from Face 
8 V of Support 

in. lb. per sq. in. X in. 

4 

6 86 4 
9 71 31 

12 63 45 
40 87 

The values of x can be computed by similar triangles, or better still by scaling 

from a plot such as Figure 41a. The value of x is the minimum distance from the 
support at which that spacing s can be used. 

Fig. 41 

Starting at the support we use 

1— 4-in. spacing until we reach x = 4^ in, 

6—6-in. spacings until we pass x — 31 in., and end 34 in. out 
2— 9-in. spacings until we pass x = 45 in., and end 52 in. out 

3— 12-in. spacings until we pass x = 87 in., and end 88 in. out 

This can be done very rapidly on a plot such as Figure 41. 
After passing x = 87 in. no web steel is needed. However, we usually add stirrups 

about 2 ft. apart to allow for the effect of moving loads or for unforeseen concentrated 

loads. Our assumption has been that the loading is uniformly distributed. In an 
actual building the live load frequently is not. A much smaller load concentrated 

in the center will give a higher shear diagram in the center, though the maximum 
shear is less (Fig. 42). A concentration as great as that of Figure 425 ought to be 

known in advance and the actual shear diagram used in computations. Machinery 
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loads are frequently averaged as uniformly distributed, however, and a single machine 

in the center of the span may raise the shear diagram somewhat. 

POOC it>s pf^ ff 

— ion 
Load 

(O) 
Fig. 42 

20000 lt>3 

_i_ 
^OO Itxipar ^ 

-2on- 
L€>i»cl 

ib) 

\ 

76. Steel Assembly. The final detail sketch (Fig. 43) for the steel foreman should 

give all sizes and positions, so that he may cut, bend, and place the steel according 

to the design. 
It will be noticed that, when the steel is wired together, it forms a continuous 

truss. The anchorage specification requires that some of the positive steel run into 

each support to complete the lower chord, some of the negative steel run on top to 

the center line and then be wired to the bars from the adjacent support, while the 

stirrups form vertical supporting members until the concrete is poured around the 

steel frame. 
It should be emphasized again that the positive steel is anchored in a compression 

area at or near the support and the negative steel is anchored in a compression area 
iLt nr nAAT thn center. 
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PLASTIC THEORY 

ILLUSTRATIVE PROBLEM 9 

Let us solve the beam span of Problem 8, using the plastic theory. The previous 

computations gave a uniformly distributed load w = 2705 lb. per ft. Assuming a 

factor of safety of 2.5, substitute in the plastic theory formulae 0.4 X 2000 = 800 

lb. per sq. in. for/'c and 0.4 X 50,000 = 20,000 lb. per sq. in. for/y. The maximum 

numerical moment equals 
wl^ 

Mn = — = 2,070,000 in.-lb. 

For balanced design, by equation 20 

M = 2,070,000 
3 3 

If6 == 14 in., 

X 2,070,000 

800 X 14 
= 23.5 in. 

Assuming two rows of 1-in. square bars and f-in. stirrups 

Minimum h = 23.5 + 1.5 -f 0.38 + 0.5 + 1.5 == 27.38 in. 

Try a section 14 in. by 28 in. The revised load equals w — 2585 lb. per ft. The 

maximum shear stress equals 

2585 X 13.25 

14 X 0.732 X 24.13 
= 139 lb. per sq. in. 

Use special anchorage and web steel. 

The revised negative moment equals 1,980,000 in.-lb. By equation 21 the neces¬ 

sary steel area is 

^ M 1,980,000 
An —- -- = 5.60 sq. in. 

0.732/yd 0,732 X 20,000 X 24.13 ^ 

Use six 1-in. square bars in two rows. 

^The positive steel can be figured with the equations for an under-reinforced section. 

The bending moment equals 1,360,000 in.-lb. Assuming 1-in. round bars in one row, 

d = 25.12 in., a == 6.54 in., c = 21.85 in. == 0.872d. 

1,360,000 

0.872 X 20,000 X 25.12 
— 3.11 sq. in. 

Use four 1-in. round bars in one row. 

The positive and negative steel are both safe for bond stresses. The placement of 

the steel and computation of the diagonal tension steel can be made as in Problem 8. 

A rough comparison of the two designs is listed below. 

Plastic theory design has 

120 sq. in. less cross-section area 

0.35 sq. in. more computed positive steel area 

1.54 sq. in. more computed negative steel area. 

An accurate cost comparison can be made from final detailed sketches, such as 

Figure 43. 



CHAPTER 6 

RECTANGULAR BEAMS REINFORCED WITH TENSION 
AND COMPRESSION STEEL 

77. Compression Steel. The use of compression steel in rectangular 
beams may be regarded as an expedient to give satisfactory strength 
results in a portion of a beam which would otherwise require a deepen¬ 
ing of the beam tliat elsewhere has satisfactory depth. 

78. Economy. It has been stated in Article 66 that the economical 
rectangular beam has a section that stresses the extreme fiber in com¬ 
pression/c and the steel/, to the maximum allowable values. In certain 
cases, however, uneconomical sections may be tolerated for short dis¬ 
tances in order to use an unchanged section with the consequent savings 
in formwork, etc. An example is that of the continuous beam supported 
by girders. The maximum numerical moment in the interior spans is 

wl^ 

11 
and the end span has a maximum value of 

10 ■ 
If the end span 

chances to be somewhat greater in length, the numerical value in the 
end span may be well in excess of the value in the interior spans. If 
there are many interior spans, it may pay to use the same beam size in 
the exterior span and care for the greater bending moment by an increase 
of tension steel and the addition of compression steel to assist the con¬ 
crete. Another illustration of the use of a rectangular beam section 
which is in itself unecomonical is given in the discussion of tee beams 
in Article 110. 

Until recently compression steel was uneconomical because it was 
rarely stressed to more than 10,000 lb. per sq. in., although the allow¬ 
able stress is 20,000 lb. per sq. in. To carry a given force, about twice 
as much steel must be used than if it were to carry the same force in 
tension. Compression steel tends to buckle or bend when loaded, and 
frequent ties or stirrups are needed to assist the concrete to hold it in 
line. Tension steel, on the other hand, owmg to its pull under load, 
remains straight. 

The 1941 A.C.I. Code in Article 706 has doubled these compressive 
stresses, so the use of compression steel does not penalize the design as 
much as in the past. 

74 
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The present wartime emergency has led to the recommendation that 

no compression steel be used, that a larger section be employed with a 

smaller steel requirement. 

WORKING-STRESS STRAIGHT-LINE THEORY 

79. Derivation of Formulae for Fiber Stresses. In addition to the 

nomenclature used for the rectangular beam (Art. 19), let 

A'. 

V' 

— area of compression steel 

= the ratio — 
hd 

fa = stress intensity in compression steel 

C's = resultant compression force in compression steel 

C = resultant of concrete force Cc and compression steel force C',, 
or C = Cc + Cs 

z = distance from extreme fiber in compression to resultant com* 

pression force C 

The assumption that a plane section remains a plane section justifies 

the statement that the deformations are proportional to the distance 

from the neutral axis (Fig. 44). Therefore 

d — kd fa ^ 

kd Cc fc ^fc 
(38) 

Fig. 44 

As in the rectangular beam derivation (Art. 20) this gives 

k = 
1 

{Designer's Equation) (39) 
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The relation between the tensile steel stress /« and the compression 

steel stress can also be obtained by this proportionality of deforma¬ 

tions. 

^ X — -- 
(d - kd) €s Es fa fa 

or 

(40) 

Also the relation between fc and f\ can be found. 

kd - d/ 

kd €c Es fc nfc 

(41) 

The resultant compression force C must be equal to the resultant 

tensile force T, or 

C - Cc + C'. = T (42) 

The concrete area is equal to {bkd — A'*), but it is customary to as¬ 

sume it equal to bkd. This is an error on the unsafe side, but the final 

results are only slightly affected. Thus, in equation 44 below, the only 

change for an exact solution is that the numerator of the right-hand 

term changes from k to k — p\ By the time this has followed through 

to the moment equation, the error is small. By equation 42, 

bkd + fsA= fsA s (nearly) (43) 

Substituting the values of fa from equation 40 and the relations As 
« pbd and A', = p'bd in equation 43 gives 
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Equating the ratio — from equations 38 and 44 
fc 

k n(l k) 

k 

L \d- M / J 

k^ + 2n{p + p')k = 2n + p' 

Completing the square, 

k^ + 2n(p + p')k + n^(p + p')^ = 2n ^p + p' + n^(p + p)^ 

The square root is 

k = -^2n ^p + + V ') 

(Checker's Equation) (45) 

This equation can be compared with the similar derivation for k for 

the rectangular beam (Art, 20). Equations 39 and 45 enable one to 

locate the neutral axis. The next step is to locate the resultant com¬ 

pression force C in order to obtain the moment arm jd. 

Dealing with the compression forces only, the sum of the moments 

of the concrete force Cc and the compression steel force C'a about the 

top of the cross section must equal the moment of the resultant C. 

Cz = (Cc + C\)z = Cc 

r/c /kd ~ d'\ 1 /c /kd\ (kd - d!\ 

Lj “+to) J - 2 (?)+to)"" 
+ /< 

(U - d'\ 
,p'bdd' {-) 

\d- kd/ 6 
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For/a substitute from equation 38:/a 

/c - —^ 
k^d /l-kW ^~d 

fM — + np'd' i 
- 6 

2 = 
k 

d\i 

Reducing 

fcbd 

z = 

+ np' 

+ 2np'(i' 

(46) 

This term 2 is a distance measured in inches. This is contrary to the 

previous practice for rectangular beams, namely, express distances as 

ratios of d, as kd or jd. Now 

or 

jd — d — z 

In terms of steel stresses, the bending moment equals 

Ma = Tjd = AsUjd 

M 

(47) 

(48) 

= 
Asjd 

From equation 38 the concrete stress can be found. 

The concrete stress can be found independently by 

M, = Cjd = {Co + C’,)jd 
L 2 

>'6d jd 

Substituting the value of /'a from equation 41 in equation 50 

fc3bdP\, 
Mo =■ 

1 
k + 2np' 

\ m)\ 

(49) 

(50) 

(61) 
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The concrete stress 
2M 

f.-----(52) 

Equation 49 is usually the easier solution for /c. 

The stress in the compression steel /'« can be found from the tension 

steel stress/s by equation 40 or from the concrete stress/c by equation 41. 

The fiber stresses, or bending moments, cannot be computed unless 

we know the moment arm jd. This depends on the distance z (equa¬ 

tion 4G). The distance z depends on the neutral axis position k, the 

compression steel ratio p\ its position d', and the depth d to the tension 

steel. To compute 2, we must know or assume the beam size and the 

amounts of tension and compression steel. The equations derived above 

are better adapted to cheek a finished design than to make a new design. 

80. Modification of Design Methods. A.C.I. Article 706 states: 'The 

effectiveness of compression reinforcement in resisting bending may be 

taken at twice the values indicated from the calculations assuming a 

straight-line relation between stress and strain and the modular ratio 

given in Section 601, but not of greater value than the allowable stress 

in tension.” ^ This states that the compression stress/'« given by equa¬ 

tion 41 should be doubled, unless the computed stress is greater than 

fs = 10,000 lb. per sq. in. There is no analytical justification for this 

change. It is based on a survey of tests of beams which include the 

effect of shrinkage and flow as well as the load effect. The shrinkage 

and flow strains add compression stresses to the steel in addition to what¬ 

ever stress may be caused by the loads. For this reason the design of 

compression steel in beams or colunms has become a matter of employ¬ 

ing empirical equations ba^sed on tests. 

The assumption that the stress in the compression steel should be 

considered as 2/'^ will affect the previous equations. Equation 43 will 

now become 
f 
- bkd + = fsAs (nearly) 
2 

The result will be that equations 45, 46, 50, 51, and 52 may be used, 

if substitution of 2p' is made wherever p' occurs in these equations. 

81. Alternative Solution of Fiber Stresses. The empirical require¬ 

ment that the stress in the compression steel be taken as twice the com¬ 

puted value can be handled more easily by an alternate method. When 

^This maxinium is 20,000 lb. per sq. in. by the A.C.I. Code, but the 1940 Joint 
Committee Report limits the maximum to 16,000 lb. per sq. in. 
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compression steel is employed the cross-section dimensions are usually 
known, as well as the fact that the maximum stress in the concrete ex¬ 
ceeds the allowable value. 

The amount of tension steel As can be approximated by assuming a 
value of the ratio j and using equation 48. 

The amount of compression steel A'g can be determined by dealing 
with compression forces C<. in the concrete and (7'« in the compression 
steel separately. It is true by the previous discussion that the tensile 
force in the tension steel, T = Cc + A part Ti of the tensile force 
pairs with the compression force in the concrete Co to form a couple 
equal to 

(nearly) (53) 

Since we have determined the amoimt of tension steel to give a defi¬ 
nite fiber stress /, and w'e wish to add compression steel enough to give 
the allowable concrete fiber stress fc in the extreme fiber, the values of 

fc and fs are known. By the relation k 

1 + fa 

nfc 

■, which holds for rec¬ 

tangular beams whether there be compression steel or not, we determine 
the neutral axis position kd and hence this couple of equation 53. This 
couple is the moment that could be carried by the beam if the concrete 
is stressed to its working limit and the area of steel corresponding to 
the pull Ti has a stress of fs- The actual bending moment M is greater, 
however, and an additional couple must be provided; it is formed by 
using the rest of the area A, of tensile steel at a stress of and adding 
a compression steel area A', at the stress 2/',. This additional couple 
has the magnitude 

M's = 2/',A',(d - d') (54) 

where 2/'« is substituted for the theoretical value of the compressive 
stress/',. Also 

M', = ikf - Me (55) 

The neutral axis position will not be changed if the final values of 
fe and fs are not changed. From equation 54 the compression steel area 
can be computed: 

A', = 
M's 

2rs{d - d') 
(56) 

The couple M's is known from equation 55; the moment arm (d — d') 
is knowm; the compression steel stress /', can be found as follows. 



Abt. 82] PLASTIC THEORY 81 

The neutral axis is a distance kd below the extreme concrete fiber in 
compression. The compression stresses in the concrete are uniformly 
varying (Fig. 44). The compression stress /"c in the concrete layer at 
the level of the compression steel is 

The compression steel must not slip and, therefore, has the same 
strain (unit deformation) as the adjacent concrete. With equal strains 
the stresses are proportioned to their moduli of elasticity and the com¬ 
pression steel stress /', equals 

57) 

This is, of course, equation 41 (Art. 79). 

PLASTIC THEORY 

82. Plastic Theory. The design of rectangular beams with compres¬ 
sion steel can also be made for ultimate loads by the plastic theory dis¬ 
cussed in Article 23 (Chapter 2). The general assumptions are the same 
and the stress approximation at failure is illustrated in Figure 45. If 

d 

Strain 

Fig. 45 

the compression steel is held firmly by the concrete and closely spaced 
stirrups, it will resist as a column until the yield point is reached. It 
will be assumed that the compressive stress in this steel is equal to its 
yield point stress, if failure occurs on the compression side. 

Failure on Compression Side of Section, It is assumed that the con¬ 
crete and compression steel are both fully stressed at failure. Then 

or 

f 
M + A'Jy(d - d') 

3 

M 

(58) 

(59) 

where fy «= yield point of compression steel. 
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Failure in Tension Steel. This case occurs if there is not sufficient ten¬ 
sion steel compared with the concrete in compression and the compression 
steel. The assumption is made that the tension steel fails at its yield 
point stress fy. As it elongates at this constant stress the compression 
steel is stressed to its yield point f'y and then the area of concrete in 
compression is stressed to its ultimate. According to the analysis used 
in Article 81, a portion of the force in the tension steel forms a couple 
with the force in the compression steel, and the remainder forms a couple 
with the resultant compression force in the concrete. Assuming that all 
steel has the same yield point/j,, the ultimate moment of resistance equals 

M = A'sfyid ~ d') + (As ~ A's)fyC (60) 

By equation 16 (Art. 23) 

c = d-= d 
2 

(As — A's)m 

2b 

Substituting As = phdj etc., 

M 
+ (P - P')Iy 1 - 

(p - p')m 

(61) 

(&2) 

Solving for the ratio of tensile steel. 

(p - p')^ - (p - 
2 M 

mfy h<f 

Completing the square on the left side and taking the square root 

(p - v') 
1 _ /1 2p' / d'\ 2 M 

m ^ m \ d / mfy hd^ 

The minimum value of p equals 

V = (62a) 

The derivation is made for a deficiency in tension steel, yet the ex¬ 
pression {A — A's) implies that there is more tension steel than com¬ 
pression steel. For the unusual case of less tension steel than compres¬ 
sion steel, the moment at failure can be written as 

M = AsSy{d ~ d') (63) 

This assumes that the tension and compression steel form the moment 
of resistance together and that there are no compressive stresses in the 
concrete. 
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Use of Equations. For a given section it is not always possible to tell 
by inspection whether there is enough tension steel. In that case sub¬ 
stitute the values given into equations 58 and 60 to determine which 
case holds. 

EITHER THEORY 

83, Shear, Bond, and Diagonal Tension. The greatest shear stress 
in a cross section occurs between the neutral axis and the tension steel. 
The concrete on the tension side is not used in maximum fiber stress 
computations for either the rectangular beam or the rectangular beam 
reinforced with compression steel. Therefore, the shear, bond of tension 
steel, and diagonal tension equations derived in Chapter 4 apply to the 
beam with compression steel, since conditions are the same between the 
tension steel and neutral axis. 

There is also transfer of stress between the concrete and the compres¬ 
sion steel. Since T = Cc + C's, the rate of change of the force €'& iu 
the compression steel will be less than the rate of change of the force T 
in the tension steel and the bond stresses will always be less when 
A's = Now that the compression steel stresses approach those used 
for the tension steel and the compression steel areas and perimeters are 
often comparatively small, the bond stress may need investigation. No 
allowance is made for the fact that the thrust in the compression steel 
bar will be supported in part by bearing on the end of the bar. 

SOLUTION BY WORKING-STRESS STRAIGHT-LINE THEORY 

ILLUSTRATIVE PROBLEM 10 

84. Design of Rectangular Beam with Compression Steel. Design the exterior 

span AB oi the beam (Fig. 46) given in Problem 8 (Chapter 5), using the same size 

beam, 16 in. by 32 in., adopted for the interior span CD, and the same 2000-lb. 
concrete. 

Fig. 46 
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86. Order of Procedure. The same general procedure used for rectangular beams 

(Art. 67) will be adopted for this problem. The beam dimensions are known but 

the concrete stresses are checked first to determine whether tlie section can be used 

at all. A logical order follows. 
1. Check concrete fiber stresses and determine whether compression steel must be 

used. 

2. Check shear stresses in concrete. 

3. Figure tension steel areas for bending moment. 

4. Check tension steel for bond. The dimensions d and d' are now known. 

5. Figure compression steel areas for bending moment and check for bond stresses, 

if the steel is highly stressed. 

6. Figure diagonal tension steel. 

86. Bending Moments. Tliis is a case of a continuous beam with uniform load¬ 

ing and equal spans supported by columns. The moment coefficients for such con¬ 

ditions are given ha \.C.I. Article 701 (in the Appendix). The positive moment 

wl^ 
near the center of the span is given as — and the negative moment at the exterior 

face of the first interior column equals • No coefficient is given for the negative 

moment at the face of the exterior column. Therefore we shall adopt the recom¬ 

mendation of the 1928 A.C.I. Code. This code stated that two cases should be 

examined when beams were supported by columns. The criterion is the ratio of the 

beam stiffness 7 to the exterior column stiffness 7 . Where 7 is less than twice the 
I hi 

sum of the f for the exterior columns above and below the beam, the negative moment 
h 

at the exterior support should be taken as If - is more than twice the sum of the 

I wt^ 
two 7 values, the negative moment at the exterior column should be taken as —. 

h 16 
In our problem there is no column above. The colunm below will be taken as 

16 in. by 20 in., with its center line 28 ft. 7 in. from the center line of the interior 

column. _ Since the steel in the column and beam is not known, the ratio of moment 

of inertia will be approximated by using the complete areas of column and beam. 

Moment of inertia of beam == 7— = 
12 

16(32)® 
= 43,690 (in.)* 

Moment of inertia of exterior column = 
16(20)* 

12 
= 10,670 (in.)* 

The beam is continuous; therefore, use the clear span of 26 ft. 6 in. 

/ , 43,690 
pfbeam= — 137 (in.)® 

The distance from the top of the floor below to the top of this floor is 20 ft. (Fig. 

46). If there is a perpendicular wall beam 12 in. by 22 in, in section, the unsupported 

length of the exterior column is 18 ft. 2 in. 

^ . 10.670 
7 of lower column == ~ = 49 (m.)® 
h 218 
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The 7 of the beam is greater than twice the sum of the ~ of the upper and lower 
I h 

exterior columns, or 137 > 2 X 49. Therefore, the maximum negative moment at 

w!^ 
the exterior support will be taken as Mn ~ “ . 

87. Fiber Stress in Concrete. Fimt Interior Support. (Figure 47c.) The uni¬ 

formly distributed load is w — 2705 lb. per ft. (Art. 08). 

Mn = 

wf 2705 X (26.5)2 X 12 

10 10 
= 2,280,000 in.-lb. 

r-n 

•—* 

(O) 

, /6’ , 

tuJ 
(b) 

Pig. 47 

(P) 

The maximum allowable fiber stress in the concrete may be/c = 0.45/'c = 900 Ib. 
per sq. in. and the steel stress may be/, = 20,000 lb. per sq. in. 

Assuming one row of l|-in. square bars (the largest size) and f-in. round stirrups, 

the height d will be less than the total height h by the amount 

Protective covering = 1.50 in. (A.C.I. 507) 

Stirrup diameter = 0.38 
Half height of bar = 0.62 

Total = 2.50 in. 

therefore, d = 32 — 2.50 = 29.50 in. 

If the maximum stress /, and /c are to be realized simultaneously, the constant 

fe 
K ^ - ftpj = 157 (Diagram 2, in the Appendix). Without compression steel 

the section can safely withstand a bending moment: 

Afc = Kb<P = 157 X 16 X (29.50)2 = 2,180,000 in.-lb. 

The actual bending moment is greater and compression steel must be used. 

88. Fiber Stress in Concrete. Center of Span. (Figure 475.) The maximum 

bending moment becomes 

Mp ■= ^ = 1,630,000 in.-lb. 
14 

Assuming one row of 1 J-in. square bars (the largest size) and f-in. stirrups, the 

depth d will be less than the total depth h by the amount 

Fireproofing = 2.00 in. 

Stirrup diameter = 0.38 

Half dimension of bar = 0.62 

Total =» 3.00 in. 

Depth d = 32 — 3 = 29 in. 
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Without compression steel the section can safely withstand a bending moment: 

Me - Kh(t^ = 157 X 16 X (29)^ = 2,120,000 in.-lb. 

No compression steel is needed. 
Exterior Support. (Figure 47a.) The maximum moment here equals 

Mr, = — = 1,425,000 in.-lb. 
16 

The concrete can safely carry 2,180,000 in.-lb. No compression steel is needed. 
89. Shear Stresses. The discussion of maximum shear forces for continuous 

beams given in Chapter 14 (Art. 349) states that the shear force diagrams for an 

exterior span vary somewhat as different applications of the live load is made on 

this span or adjacent ones. A.C.I. Article 701 recommends that the two limiting 
diagrams be taken as shown in Figure 48. The non-symmetrical shear diagram of 

a425ivl 

O.Swl 
0,575wl 

0.426it?Z to —0.675ii7Z will occur when the negative moment of — — is present at 

the first interior support. The maximum shear force in this span equals 

V = 0.575u?Z = 0.575 X 2705 X 26.5 - 41,200 lb. 

At the face of the interior column 

. y 41,200 
Maximum shear stress = v = 77; = 77-7-rz-777 

bjd 16 X 0.87 X 29.5 
100 lb. per sq. in. 

This is within the allowable of v = 120 lb. per sq. in. for ordinary anchorage with 

diagonal tension reinforcement (A.C.I. Article 305). 
90. Tension SteeL First Interior Support. Previous computations show that this 

section must have compression steel. When this steel is supplied the concrete stress 

fe should be just under fe = 900 lb. per sq. in. We intend to supply tension steel 

enough so that the tensile stress /, ~ 20,000 lb. per sq. in. In that case the neutral 

axis ratio 

k 
1 1 

1 + 
20,000 

15 X 900 

0.403 

Neutral axis kd « 0.403 X 29.60 « 11.90 in. 
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hd 11.90 
The compression force Cc acts -r from the bottom, or ~ 3.97 in. If there 

o o 
were no compression steel, the moment arm ratio 

= 1 ~ 

0.403 

3 
= 0.866 

When 1 J-in. square bars are used, the compression steel force C« acts d' « 3.00 

in. from the bottom, or d' = 2.00 + 0.38 + 0.63 = 3.00 in. The resultant com¬ 

pression force C will act somewhere between Co and C«, or between 3.00 in. and 3.97 
in. It seems reasonable to assume 7 = 0.88, a value greater than that for Ce alone, 

since acts nearer the bottom of the beam. 

Assuming, therefore, j ~ 0.88 and d — 29.50 in., the minimum area of tension 
steel equals 

^ M 2,280,000 
Ag = — =-= 4.39 sq. in. 

f^d 20,000 X 0.88 X 29.50 

This is negative steel and is placed at the top of the beam (Fig. 47c). 

Bond. Negative bending steel is checked for bond at the face of the support which 
is the section of maximum rate of change of bending moment. 

V _ 41,200 

'^ojd i-o X 0.88d 

The allowable bond stress for ordinary anchorage is w = 0.05 X 2000 = 100 lb. per 

sq. in. The possible commercial sizes of steel are tabulated below. 

Actual Computed Actual Bond Stress 
Height Area Area Number wlb. 

Steel d in. As sq. in. As sq. in. of Rows per sq. in. 

3—Ij-in. square 29.50 4.30 4.69 1 106 
4—li-in. square 29.56 4.38 5.06 1 88 

5—1-in. square 28.42 4.55 5.00 2 82 
6—1-in. round 28.37 4.56 4.71 2 88 

The ij-in. bars cannot be used as the allowable bond stress is exceeded. Adopt the 

1-in. round bars because they have the least excess area and the bond stress is safe 

(see Fig. 47c). The actual tensile stress equals 

M 

Agjd 

2,280,000 

4.71 X 0.88 X 28.37 
= 19,400 lb. per sq. in. 

91. Tension Steel. Center of Span. The minimum tension steel area equals 

^ _ 1,630,000 

fojd " 20,000 X 0.87 X 29 
3.23 sq. in. 

This is positive steel and is placed at the bottom of the beam. 
Bond, The maximum positive bending moment occurs for the live-load placement 

that gives the shear force of 0.5icf at each end of the beam (Fig. 48). Positive steel 

is checked for bond at the point of inflection, as that is the section with the maximum 
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rate of change of positive bending moment. By consulting Diagram 5 in the Ap- 

pendix, the point of inflection (Af = 0) for Afp = — is found to be at 0.13Z, or 

0.13 X 26.5 X 12 = 41 in. from the face of the support. The shear at this section 

equals 26,600 lb. (Fig. 49). The allowable bond stress u — 0.05 X 2000 = 100 lb. 
per sq. in. The number of bars that must run to this section is 

v.-L_?«»»_ 
vjojd 100 X o X 0.87d 

Possible commercial sizes are tabulated below. 

Actual Computed Actual 

Depth Area Area, Number Number 

Steel d in. A, sq. in. As sq. in. of Rows of Bars 

3—if-in. square 29.06 3.22 3.80 1 2.4 

4—1-in. square 29.12 3.22 4.00 1 2.6 

5—1-in. round 29.12 3.22 3.93 1 3.4 

6—|-in. round 28.09 3.34 3.61 2 4.0 

Adopt the six |-in. round bars because they have the least excess area (see Fig. 476). 
92. Tension Steel. Exterior Support The maximum negative bending moment 

at the face of this support is Af„ = — = 1,425,000 in.-lb. Assuming j = 0.87 and 
16 

d « 29.50 in., the minimum steel area equals 

ilf 1,425,000 

* “ 20,000 X 0.87 X 29.50 “ ' “**■ *"' 

Bond, Bond will be checked at the face of the support; the shear force V «= 

that gives maximum shear (Fig. 48) will be used. 

« JL « 0-5 X 2705 X 26.5 
“ ” Zoid So X 0.87 X d 
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Possible commercial steel sizes are tabulated below. 

Actual Computed Actual Bond Stress 
Height Area Area Number ulh. 

Steel d in. A* sq. in. A* sq. in. of Rows per sq. in. 

2—if-in. square 29.50 2.78 3.12 1 140 
3—1-in. square 29.62 2.77 3.00 1 116 
4—1-in. round 29.62 2.77 3.14 1 111 
5—J-in. round 29.68 2.76 3.01 1 101 
7—f-in. round Not recommended 
10—|*in. round 29.00 2.83 3.07 2 73 
3—f-in. round) 

3—f-in. round] 
28.77 2.85 3.13 2 94 

The allowable bond stress for ordinary anchorage, u = 0.05 X 2000 = 100 lb. pei 

sq. in., determines the bar sizes to use. Ten bars are a great many to handle, sc 

we shall adopt the combination of three f-in. bars in the top row and three f-in. 

bars in a lower second row (Fig. 47a). 
93. Compression Steel. First Interior Support. A small amount of compression 

steel is needed at the first interior support. The tension steel consists of six 1-in. 

round bars with a height d = 28.37 in. There is available for compression steel 

some of the six |-in. round positive bars from the center of the span. The lower 

row of this steel is located at a height of 2.82 in. from the bottom of the beam. The 

m^imum allowable stress in the concrete is fc = 900 lb. per sq. in. and the actual 

stress in the tension steel equals/* = 19,4(X) lb. per sq. in. (Art. 90). 

Total bending moment M = 2,280,0(X) in.-lb. 

Maximum moment taken by the concrete Me ~ 2,180,OCX) in.-lb. 

Moment to be taken by the compression steel M'^ = 100,000 in.-lb. 

If all the compression steel can be placed in the lower row, d' — 2.82 in. 

Neutral axis ratio k 
1 1 

19,400 

15 X 900 

0.41 

Neutral axis kd = 0.41 X 28.37 = 11.62 in. 

The theoretical compression steel stress equals 

r.^nfe 
kd 

kd 

d' (11.62 - 2.82) 

- = li:62. 
10,200 lb. per sq. in. 

A.C.I. Article 7065 recommends that compression steel area A', be computed using 

a stress of 2/'« or 20,000 lb. per sq. in., whichever is the less. Use 20,CXX). 

A'. 
C'e 

20,000 

M'e 

20,000(d - d') 

100,000 > 

20,000(28.37 - 2.82) 
0.20 sq. in. 

Two |-in. bars will run into this support anyway and give considerably more than 

the required compression steel area. The actual stress is later found to be » 

17,100 lb. per sq. in. (Art. 98). 
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94. Placing Steel. Sted in Bottom of Beam. (Figure 50.) This steel serves as 

positive tension steel in the center portion of the beam and as compression steel 

at the first interior support. It consists of six |-in. round bars in two rows. It must 

be so placed that there are 

(а) 6 bars for the maximum bending moment at the center 

(б) 4 bars for bond at a section 41 in. from the support 

{c) 2 bars for anchorage running 10 diameters into each support (A.C.I. Art. 

9026) 

(d) 2 bars at the first interior support to act as compression steel 

Fig. 50 

These requirements permit two bars to be cut off before they reach the point of 
inflection (41 in.). The center bars of each row can be cut as soon as four bars can 

withstand the decreasing bending moment. The remaining four bars can carry a 
moment of 

M4. == f,Asjd = 20,000 X 4 X 0.601 X 0.87 X 28.09 = 1,172,000 in.-lb. 

This occurs at a section 0.3Z = 95 in. from the supports. With anchorage of 10 

diameters (9* in.) these bars end at 86 in. from the supports. 

The remaining two bars on the top row will run 9 in. beyond the point of inflec¬ 

tion, or 41 — 9 = 32 in. from each support. The remaining two bars on the bottom 

row should run 9 in. into the supports for anchorage. At the interior support these 

bars should also run in far enough to anchor the compressive steel stress of 17,100 

lb. per sq. in. This anchorage is figured by equation 28 (Art. 57) as 

The bar lengths are 

17,800 

4 X 100 
X - == 38 in. 

o 

2 bars 12 ft. 2 in. long 

2 bars 21 ft. 2 in. long 

2 bars 30 ft. 5 in. long 

96. Placmg Steel. Steel in Top of Beam. First Interior Support. (Figure 51.) 

This steel serves as negative tension steel over the first interior support and con¬ 

sists of six 1-in. round bars in two rows. It has been figured for the moment of 

wV wP 
~ at the exterior face but must also serve for the moment of — — in the ad- 
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jacent span. This adjacent span is an interior span and this moment amounts to 

2,070,000 in.-lb. and the shear force equals 0.5wl = 35,900 lb. (Problem 8, Chapter 

5). At the point of inflection, 77 in. out, the shear force equals 18,500 lb. (Art. 73). 

The number of bars needed at this section to satisfy bond is 

Z 
7 

oujd 

_18,500_ 

3.14 X 100 X 0.87 X 28.37 
= 2.4 bars 

In the exterior span we have a uniform load supported at the interior end by a 

force of 0.575x4;/ and restrained by a moment of 0.144;/^. Solving, the point of inflec¬ 

tion occurs at 0.214/ — G8 in. The maximum shear force equals 41,200 lb. and the 

Fig. 51 

shear force reduces to zero in 0.575/ == 183 in. (Fig. 52). The shear force at the 

point of inflection equals 25,900 lb. The number of bars needed at tliis section for 

bond is 3.2 bars. 
The requirements to be met by this steel are 

(a) 6 bars at the first interior support for bending moment and bond. 

(b) 3 bars in the interior span and 4 bars in the exterior to the points of inflection. 

These bars will extend 12 diameters (12 in.) beyond the point of inflection 

for anchorage. They will extend 68 + 12 = 80 in. into the exterior span 

and 77 + 12 = 89 in. into the interior span. 

(c) 3 bars in the interior span and 2 bars in the exterior can be cut before they 

reach the point of inflection. Such bars must fulfill bending moment and 

bond requirements before they end. 

The two outer bars in the upper row will be carried to the center line of both spans 

and lapped 3 in. beyond with the negative tension steel coming from the exterior 

support and the second interior support. The remaining bar on the top row will 

be carried out beyond the points of inflection. The middle bar in the lower row will 

run beyemd the points of inflection. The two end bars will be cut together to pre- 

^lerve the symmetry of the steel arrangement. 
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In the exterior span, if two bars are cut, four remain to resist the bending moment. 

The moment four bars can carry is 

Ma = f»A4d = 20,000 X 3.14 X 0.87 X 28.37 =- 1,650,000 in.-lb. 

By the bending moment equation for the exterior span two bars are not needed 

for bending moment beyond 19 in. from the interior support (Fig. 51). 

By the use of Diagram 5 (Appendix) for the interior side of this column, two bars 

are not needed 0.05Z = 16 in. out and the third bar is not needed after 0.09Z = 29 

in. out from the face of this column (Fig. 51). 
The check for bond can be made by computing the shear force the remaining bars 

can withstand. If four bars remain, 

Va = ttSoid = 100 X 4 X 3.14 X 0.87 X 28.37 = 31,000 lb. 

The shear force diagrams adjacent to the first interior column is shown in Figure 

52. The two outer bars in the lower row are not needed for bond beyond 46 in. 

Fia. 52 

in the exterior span and 22 in. in the interior. The center bar is not needed beyond 

68 in. and 52 in. respectively. 

Assembling the bending moment and bond data, the two outer bars are not needed 

for 46 in. out in the exterior span and 22 in. out in the interior. The center bar in 

the lower row is not needed 68 in. out in the exterior and 52 in. in the interior span. 

All these distances were determined by the bond requirement. In addition each 
bar extends 12 diameters (12 in.) beyond these points for anchorage (A.C.I. Art. 902). 

Lower How The two center bars are at least 10 ft. 2 in. long. 

The center bar is at least 14 ft. 6 in. long. 

Upper Row The two outer bars are 29 ft. 6 in. long. 

The center bar is 16 ft. 7 in. long. 

96. Flacixig SteeL Steel in Top of Beam. Exterior Support. (Figure 63.) This 
ste^ consists of three |-in. round bars in the top row and three f-in. round bars in 
the lower row. The bond stresses are computed for a maximum shear force of O.6t0{ 
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(Fig. 48). The point of inflection for the maximum negative moment of — 
wl^ 

16 
occurs at 0.15Z. At this section the sum of the bar perimeters needed for bond is 

_25,100 

ujd 
Xo 10.0 in. 

100 X 0.87 X 28.59 

This can be supplied by the three f-in. bars plus one f-in. bar. 

S/iear Force and Bending Moment Diagrams 
E%ferior Support 

Fig. 53 

The requirements to be met by this tension steel follow. 
(а) Six bars at the face of the exterior support for bending moment and bond. 

This steel has an actual stress of 18,300 lb. per sq. in. and must be anchored in the 

support for 

Z = — a = - X a *= 46 diameters 
4w 4 X 100 

The |-in. bars must run into the support 40 in. and the |-in. bars for 35 in. 

(б) Three |-in. bars and one J-in. bar must run at least 12 diameters beyond the 

point of inflection (48 in.). 

The two outer f-in. bars will be carried out 3 in. beyond the center line of the 

span and lap with the two 1-in. bars coming from the first interior support. The 

center bar in each row will run 12 diameters beyond the point of inflection. The 

remaining two f-in. bars can be cut off before reaching the point of inflection, pro¬ 

viding bond and bending moment requirements are satisfied. When the two f-in. 

bars are cut the remaining bars can carry a bending moment of 

Af4 * /.AJd “ 20,000 X 2.24 X 0.87 X 29.42 « 1,140,000 in.-lb. 

The bending moment reduces to this v^ue at 0.03Z = 10 in. out (Diagram 6). 

The remaining bars can carry a shear force to satisfy bond of 

Vi - vXojd * 100 X 10.61 X 0.87 X 29.42 « 27,100 lb. 
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The shear force becomes less than this amount at 39 in. (Fig. 63). This is greater 
than 10 in. so these two f-in. bars will be cut off at 39 + 9 = 48 in. from the face 
of the support. 

Upper Row The two outer bars are at least 16 ft. 10 in. long. 

The center bar is at least 8 ft. 3 in. long. 
Lower Row The center bar is at least 7 ft. 8 in. long. 

The two outer bars are at least 6 ft. 11 in. long. 

97. Diagonal Tension. We shall again use stirrups for diagonal tension steel, as¬ 

suming the same |-in. two-rod stirrup used for the interior span (Art. 75). The 
stirrup spacings wiU be different in the exterior side than in the interior side since 

the shear force diagrams differ (Fig. 48). 

Maximum spacing s = 
28.37 

2 
14.2 in. 

Shear stress at exterior colunm: 

V_ 

hjd 

35,900 

IG X 0.87 X 28.59 
— 90 lb. per sq. in. 

Shear stress at exterior force of interior column: 

41,200 
= 103 lb. per sq. in. 

16 X 0.88 X 28.37 

The stirrup spacings are figured by the equation 

. 2 X 0.11 X 20,000 , 276 
t; = 40 H-- 40 H- 

16 X s X 1 « 

Listing desirable spacings and correstx)nding distances: 

Spacing 

8 

in. 

4 
6 

9 
12 

Shear Stress 

V 

lb. per sq. in. 

86 

71 

63 
40 

Distance from 
Face of Exterior 

Support 

in. 

7 
34 

48 
88 

Distance from 
Face of Interior 

Support 

in. 

30 

67 

71 
112 

The stirrup spacings in the exterior portion of the beam are practically the same 

as those of the interior spans, the variation being due to differences in the value of d. 
The actual stirrup spacings are shown in the final sketch of Figure 64. 

Note that A.C.I. Article 706a requires that wherever compression steel is needed 

stirrups must be used at a spacing not exceeding 

16 bar diameters « 16 X I* = 14 in. 

48 tie diameters « 48 X f * 18 in. 
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At the interior support no compression steel is needed when the moment has de¬ 
creased to 2,180,000 in^-lb., which occurs about 4 in. out. The above design fulfills 

this requirement. 

Section A A 

1 s 1 ■ 1 ■ 
Section BB 

"SS’i'rd. Stirrups 
@ 6~9"Long 

Section CC 

Exterior Span 

Fia. 54 

ILLUSTRATIVE PROBLEM 11 

98, To Check a Completed Design. The use of the equations derived in Article 

79 to check designs using compression steel will be illustrated by reviewing the de¬ 

sign just completed; refer to the final sketch of Figure 54. 
First Interior Support We note from the sketch and the loading data that 

Width of section h — 16 in. 

Height to tensile steel d = 28.37 in. 

Height to compression steel d' = 2.82 in. 

Tensile steel ratio P = = 10X2^ “ 

The force in the compression steel is assumed to be 2f'gA'a (A.C.I. Art. 706). In 
order to figure /« by the theoretical equations it will be necessary to use the area 

of the compression steel as 2A',. 

.2A'a 2X2X0.601 
Compression steel ratio p' = = 16 X 28 37~~ "" 

Maximum bending moment — = 2,280,000 in.-lb. 
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By equation 45 we solve for the neutral axis ratio ki 

yjz X 16 ^0.1 
2 82 \ 

0.0104 + 0.0053 X — ) 
28.37/ 

«• VO.328 + 0.055 - 0.236 = 0.619 - 0.236 = 0.383 

The neutral axis height kd = 0.383 X 28.37 = 10.85 in. 
Using equation 46, the distance z equals 

+ (15)^(0.0104 + 0.0053)® - 

15(0.0104 + 0.0053) 

(0.383)» X 28.37 
+ 2 X 15 X 0.0053 X 2.82 ( 0.383 - —) 
__V_^.37/ 

(0.383)® + 2 X 15 X 0.0053 

0.532 + 0.127 _ 0.659 

0.147 + 0.045 “ 0.192 

f0.383 - 
\ 28.37/ 

= 3.43 in. 

The moment arm jd ^ d — z - 28.37 — 3.43 = 24.94 in. 
24.94 

Note that the moment arm ratio j = —^ = 0.879 agrees with the value of j = 
28.37 

0.88 assumed by the designer (Art. 90). 

The maximum compressive stress in the concrete is found by equation 62: 

/« 
2 X 2,280,000 

0.88 X 16 X (28.37) .37)2 j^O.: 383 + 2 X 15 X 0.0053^1 
2.82 y 
10.85/_ 

4,560,000 

11,33010.383 -I- 0.118] 

4,560,000 

6680 
803 Ib. per sq. in. 

The allowable stress is/^ = 0.45 X 2000 =* 900 lb. per sq. in. Safe. 
The tensile stress equals 

^ M 2,280,000 

(6”X0:785)X 0.88 X 28.37 “ 

The allowable stress is /, *= 20,000 lb. per sq. in. The tension steel is safe and is 
economically designed. 

The compression steel stress is given by equation 41; 

ft = 15 X 803 ( ) = 8900 lb. per sq. in. 
\ 10.85 / 

The compression steel is designed for twice this value, or 17,800 lb. per sq. in., 
which is less than the allowable of 20,000 lb. per sq. in. It will be noticed that, 

though there is an excess of compression steel area, the stress is not reduced in pro¬ 
portion to the areas. 

99. Solution by Plots. The algebraic solution for the compression steel area 

A\ by the method of Article 81 is so direct that plots do not save time. The solu¬ 

tion deals with the terms the designer needs in order to complete the design; namely, 
the depths d and d% the compression steel stress /* and area A',. 

On the other hand, the algebraic equations developed for checking designs are 

complicated in form, and time can be saved by the use of plots. Diagrams 6 to 8, 
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in the Appendix, give values of the neutral axis ratio j and the bending moment 
constant K', where 

or 

The diagrams require that the terms np and np' be known or assumed. 

ILLUSTRATIVE PROBLEM 12 

100. To Check Designs by Diagrams. Let us check the design of Problem 10 by 

means of plots. 
First IrderioT Support. As before, we note from Figure 54 that 

Width of section 6 = 16 in. 

Height to tensile steel d = 28.37 in. 

Height to compression steel d' = 2.82 in. 

Tensile steel ratio 

Compression steel ratio 

^ = P = 0.0104 
od 

= p' = 0.0053 
od 

Maximum bending moment == 2,280,000 in.-lb. 

Then 
Moduli of elasticity ratio n = 15 

np = 15 X 0.0104 = 0.156 

np' = 15 X 0.0053 = 0.0795 

d 

2.82 

28.37 
= 0.1 (nearly) 

By Diagram 7 in the Appendix, for ~ 
d 

0.10 

/« 

A; 

M 

K'b(F 

0.38 j = 0.879 K' = 0.22 

2,280,000 
-r = 800 lb. per sq. in. 
0.22 X 16 X (28.37)2 ^ ^ 

If allowance is made for the less accurate values taken from a plot, the values of 

jt fe check the values laboriously computed in Problem 11. ' The stresses/« and 
d' 

can be now obtained. If the ratio -r were not closely 0.10, it would be necessary 
d 

to interpolate between two diagrams to get the values of k, /, and K'. These plots 

save much time in checking designs. 
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PLASTIC THEORY 

ILLUSTRATIVE PROBLEM 13 

101. Compression Steel by Plastic Theory. Using the plastic theory, let us make 

a parallel solution to that of Problem 10. The design of the interior span by the 

plastic theory in Problem 9 gave a section 14 in. by 28 in., which was “balanced 
design’^ for a moment of 1,980,000 in-4b. Let us adopt the same section for the 

exterior span whose load w — 2585 lb. per ft. With a factor of safety of 0.4 use 

fc — 800 lb. per sq. in. and fy — 20,000 lb. per sq. in. 
Tension Steel. There is no advantage using more steel than that called for by 

balanced design. The moment M 
10 

= 2,180,000 in.-lb. and, by equation 21 

(Art. 25), 

A, M_2,180,000 

0.732/^ ” 0.732 X 20,000 X 23.62 
6.28 sq. in. 

Try four l|-in. square bars in two rows. 

Failure on Compression Side of Section. By equation 58 (Art. 82), assuming the 
compression steel to be l|-in, square bars 

2,180,000 = — X 14 X (23.62)2 + A'. X 20,000 X (23.62 - 2.94) 
o 

2,180,000 = 2,085,000 + 413,600A'. 

A « = 0.23 sq. in. 

The steel used is computed below. 

Failure in Tension Steel. The compression steel will be supplied by the positive 

wl^ 
tension steel from the center of the span. The positive moment — = 1,560,000 

in.-lb. is less than the “balanced design’^ moment of the interior span. This posi¬ 

tive steel in the exterior span will be “under-reinforced'^ steel and can be computed 
by use of equation 17 (Art. 24). 

where m « 

1,560,000 = 20,000 X 

fy_20,000 _ 
0.85/'c 0.85 X 800 “ 

/ 29.4p\ 

29.4. Solving, 

X 14 X (25.06)2 

p = 0.0105 and A« = pbd — 3.72 sq. in. 

Use three l^-in. square bars. Two of these bars will run into the support and be 
available for use as compression steel; therefore, at the interior support A » = 2.54 

sq. in. At this section the steel ratio 

6.24 

14 X 23.62 
= 0.0188 and 

2.54 

14 X 23.62 
0.0077 

Subsfiituting in equation 62 (Art. 82), 

M 77 

““ (10)^ 

(188 - 77)29.4'! 

2X10* J 
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Solving, — « 154 X 0.876 + 222 X 0.837 = 321. But ^ « 279 actuaUy, so there 

is sufficient tension and compression steel at the section. Equation 62 could be 

solved for the minimum value of p', but the method above, using available steel, is 

simpler. The solution by plastic theory gives a smaller section and requires more 

tension steel than the straight-line stress theory, the minimum compression steel area 

A*9 being very small for both solutions. 

ILLUSTRATIVE PROBLEM 14 

102. The Check of a Design by Plastic Theoiy. Let us check the straight-line 

theory design of Problem 10 at the first interior column by the plastic theory. The 

essential data are 

Width of section 

Height to tension steel 

Height to compression steel 

Tension steel area 

Compression steel area 

6 == 16 in. 

d = 28.37 in. 

d' = 2.82 in. 

Aa = 4.71 sq. in. 

A'a = 1.20 sq. in. 

m = 29.4 

Maximum moment Mn = 2,280,000 in.-lb. 

Failure on Compression Side of Section, By equation 59 (Art. 82) 

M 16 X (28.37)2 
800 20,000 X 1.20/ 2.82 y 

. 3 16 X 28.37 V 28.37/_ 

ilf = 3,340,000 + 614,000 = 3,954,000 in.-lb. 

By the plastic theory it is evident that no compression steel is needed to aid the 

concrete. 
Failure in Tension Steel, By equation 61 

By equation 60, 

c * 28.37 - 
(4.71 - 1.20)29.4 

2 X 16 
25.14 in. 

M - 1.20 X 20,000(28.37 - 2.82) -f (4.71 - 1.20)20,000 X 25.14 

M « 20,000(30.7 + 88.2) « 2,378,000 in.-lb. 

This moment is slightly greater than the actual moment of 2,280,000 in.-lb. and the 

plastic theory checks this particular design by the ^'straight-line working-stress” 

theory. Both theories give equations that are better adapted to check a design 

than for initial design. 



CHAPTER 7 

TEE BEAMS 

The usual reinforced concrete floor system is poured as a unit—slabs 

and beams at the same time. Since tlie slab steel runs over the beam 
and the prongs of the beam stirrups project into the slab, the slab is 
closely tied to the beam and deflects with it. It was early recognized 

that in such a case the beam was much stiffer than the same size rec¬ 
tangular beam having no assistance from the slab. It was stiffer and 
tests showed that the concrete and tension steel had lower stresses. 
Therefore, it is customary to count in a portion of the slab adjacent to 
the beam as forming a part of the beam section. 

103. Tee Beams. Beams whose compression areas are tee-shaped 

are called tee beams. In Figure 55 the sections represented are subjected 

Fig. 55 

to positive bending and their compression areas are shown shaded. Sec¬ 
tions a, c, and d are tee beams. Section 6 is a rectangular beam. It 
will be designed for a width b of compression area and depth d to the 
tension steel by the usual rectangular beam equations. See also discus¬ 
sion in Article 18. 

WORKING-STRESS STRAIGHT-LINE THEORY 

104. Tee-Beam Theory. Compression in Web Neglected. Given a beam 
of tee-shaped cross section (Fig. 66). It is subjected to a positive bend¬ 
ing moment M of such a magnitude that the neutral axis is located in 
the stem at a distance kd from the top greater than the thickness t of 

the iSange. The flange has a width b and the stem a width of 6'. The 
100 
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tension steel has an area As and is located a distance d from the extreme 
fiber in compression. 

For this case assume the neutral axis to be not far below the bottom 
of the flange. The area of the stem above the neutral axis is small, and 
the compressive stresses on this area are small. If we neglect this stem 
area entirely the total compression force C will not be much reduced 
and the design will be on the safe side since we use a smaller force than 
actually exists. The resulting equations will be much simpler. 

The first assumption of the beam theory that a plane section remains 
plane justifies the statement that the strains are proportional to the 
distance from the neutral axis. If the strain in the extreme compression 
fiber is ec and the strain in the tension steel is it follows that 

Cs d —■ kd 1 k 

Cq kd k 

By Hooke’s law the strain equals the ratio of stress to the modulus of 
elasticity, or 

II 
€s Els EJcfs ft d kd 1 k (64) 

fc EJsfc nfc kd k 

This reduces to 
1 

(65) 

This is the same result that is given for rectangular beam and for rectan¬ 
gular beams with compression steel. It gives the neutral axis ratio k if 
the actual steel and concrete stresses are known as well as the concrete 
^strength. 
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Similarly, the strain e"c at the bottom of the flange equals 

A 

e"c _ Ec _ f”e _kd — t 

Cc fc fc kd 

'Ec 

Therefore the concrete stress fc at the bottom of the flange equals 

fc = fc 

kd — t 

kd 
(66) 

The resultant compression force C can be found by using the average 
compressive stress on the flange: 

2 2 
1 + 

kd — t 

kd 

fM 
ht = — {2kd - 0 (67) 

2kd 

The compressive force C must equal the resultant tension force T, 

fcbt 
(2kd - 0 = fsAs 

2kd 
Therefore 

fg bt(2kd •— t) 

fc 2Agkd 

From equations 64 and 68 we get 

n{d — kd) bt{2kd — t) 

fc kd 2Agkd 

Multiplying by 2A8kd gives 

2nAg(d — kd) = bt(2kd — t) 

2ndAg + bt^ 
Jed =___ 

271A g “b 2bt 

(68) 

(69) 

The resultant compression force C acts at a distance z from the top. 
The moment of the resultant force C about an axis will equal the sum of 
the moments of the uniformly varying stresses acting on the rectangle bt. 
These var3dng stresses may be considered as a constant stress of/"« plus 
a stress varying uniformly from zero at the bottom to (/c — /"<.) at the 
top of the flange. 
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Taking moments about the top and using the value of C in equa¬ 
tion 67, 

■ Cz = ~ (2kd - t)z = f"M (-) + ~ ^ ht 
2kd \2/ 2 

Substituting the value of /"e from equation 66, 

fcht 
(2kd — t)z — fc 

/kd-t\he fc 

\ kd ) 2^ ~2 
1 

Multiplying by-gives 
fM 

Qcd-t^ie 
M It 

S(2kd - t)z = 3(/cd - t)t + 

t{Zkd - 2t) 

Z{2kd-t) 

From Figure 56 it is evident that 

(70) 

jd = d — z (71) 

In terms of steel stresses, the moment of resistance equals 

M, = Tjd = AJsjd (72) 

This is the same equation derived for rectangular beams. The mo¬ 
ment arm ratio however, is usually greater for tee beams than for 
rectangular beams. It usually varies from 0.91 to 0.94. It is an ad¬ 
vantage to have j large as a greater moment can be carried for the same 
depth and same allowable stress. 

In terms of concrete stresses, the moment of resistance Me equals 

fjbiijd) 
= Cjd = (2kd - t) (73) 

2(kd) 

From equation 64 it is possible to obtain the concrete stress fc, if the 
steel stress is known, by the relation 

105. Tee-Beam Theory. Compression in Web Considered. A tee 
beam with a thin flange, or one whose flange width b is not much greater 
than the stem width V, or a tee beam heavily loaded may have the 
neutral axis so far below the bottom of the flange that this area should 
be considered in computations. 
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Using the same nomenclature as in Article 104, it is again true that 
the stress relation equals 

fg d — kd 1 — k 

nfc kd k 

From which the neutral axis ratio k comes: 

(75) 

As before 

(76) 

The resultant compression force C equals the force in the flange, as be¬ 
fore, plus the additional force in the stem: 

fcbt f'ch' 

C = — {2kd - t) + — (kd - t) 
2kd 2 

f ht f f 
C = — (2kd - t) +~ (kd - if = — [U(2kd - 0 + V(kd ~ tf] 

2kd 2kd 2kd 

Equating this to the tension force T gives 

— [U{2kd - 0 + h'{hd - 0=^] = f,A. 

2kd 

f, _ IU{2M - 0 + b'ikd - t)^] 

To 2kdA, 

/. 
Solving equation 75 for the ratio — and equating it to equation 77 

d - kd\ _ [bt{2kd - 0 + b'(kd - tf] 

. kd ) 2kdA, 

Multiplying by 2kdA, and expanding the terms, 

2nA,d - 2nA,kd = 2kdbt - bf + b'Qcd)^ - Wtkd + h't^ 

b'ikdf + 2[nA, + (6 - b')t]kd = 2nA,d + (jb - b')t^ 



Aet. 106] TEE-BEAM THEORY 105 

Divide by b' and complete the square of the terms on the left by adding 

-nA, + {b- b')r^ r nA, + {b — i>0<l 

L . 
to both sides. 

(kdf + 2--+1--- = 
b' 

Taking the square root, 

2nA,d +ib- b'y \nA, + (6 - b')t 
+ 

■nA, + (6 - 

V 

nA, + (b- b')t l2nA,d + (6 - b')(^ [nA, + (b - b')ff 

+-1--'i-1'-+L-?-I M 

Therefore 

kd -4 j2nA,d-i-ib-b')t^ 

J b' + b' b' 
(78) 

Taking moments about the top of the beam and equating the sum of 
the moments of the stresses to the moment of the resultant force C 
(Fig. 56): 

f 

Cz = — [bti2kd - 0 + b'ikd - tf]z = 
2Jcd 

bt^ , (/c - rc)be , f",b' 
+ {kd 

( kd — t\ 

— [bt{2kd -t) + b'ikd - t)^]z = 
2kd 

/kd — i\ 

A kd ) 
u + /c 

[^ kd - <] 

I k4r J 
-nu^ f,b' / kd-t\ 

6 2kd \ 3 / 

6kd 
Multiply by — : 

fc 

3lbti2kd -t)+ b'ikd - t?]z = 3(fcd - Obt^ + bt^ + b'Qcd - tfikd + 2t) 

Solving for z gives 

z = 
b'ikdf + nb - b'XZkd - 20 

3[b'ikd)^ + tib - b')i2kd - 0] 

The moment arm jd equals 

(79) 

jd = d — z (80) 
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The moment of resistance in steel stress terms equals 

M, = Tjd = A,f,jd (81) 

The moment of resistance in concrete stress terms equals 

M, = Cjd = [bt{2kd t) + b'ikd 0^] (82) 

It is also true that 
L/ kd \ 

(83) 1 

:i 
^ 

11 

PLASTIC THEORY 

106. Plastic Theory of Tee Beams. The plastic theory for rectan¬ 
gular beams assumes for balanced design that the compression stresses 
are constant at a value of 0.85/'c for a depth of a = 0.537d (Art. 25). 
Whenever the flange of a tee beam has a thickness t greater than 0.537d 
the rectangular beam equations can be applied unchanged. Whenever 

.the flange of a tee beam has a thickness t not much less than 0.537d the 
section can be designed as a rectangular beam of width h and depth t 
with the constant stress 0.85/'c acting on it. In other words, a = t In 
this case equation 20 (Art. 25) becomes 

M = 0.85f (84) 

and equation 21, for the steel area, equals 

- ^ (85) 

If the slab thickness t is much less than 0.537d, the area in the stem to 
a depth of 0.537d may be included. All this area is assumed to have an 
average stress of 0.85/'^. This compression area Ac equals 

Ac = (5 - b')t + 6'(0.537d) 

Taking moments about the top of the beam, its center of gravity z 
equals 

Q> - b') + 0.2886' 

(6 - 60 0 + 0.5376'j 

(86) 
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The bending moment equals 

The steel area equals 
M = OMfcid - z)Ac 

M 

* "" fy{d - Z) 

(87) 

(88) 

If these equations are used, the tests available indicate that the width 
of flange b should not be taken greater than 6 = 8^ + 6', instead of 
present A.C.I. Code value of 6 = 16^ + 6'. 

107. Shear Stresses in Tee Beams. It has been shown (Art. 51) that 
the maximum shear stresses in a section occur between the neutral axis 
and the tension steel. This is entirely within the stem and, therefore, 
the maximum shear stress v for a tee beam will be given by the relation 

V 

h'jd 

The beam of Figure 555 is a rectangular beam. The shear force on 
any layer is constant between the tension steel and the neutral axis which 
is now in the flange. The layers with the least width and hence greatest 
stress will be in the stem, and here again the maximum shear stress v 
equals 

V 

^ ^ Vjd 

108. Bond Stress in Tee Beams. The discussion of bond in Article 
54 shows that the bond or adhesion between the bar and the concrete 
depends on the rate of change of bending moment. This is independent 
of the shape of the cross section. Therefore the bond stress is computed 
by the previously derived relation: 

V 
u =- 

Xojd 

. 109. Width of Flange. When the slab and beam are poured simul¬ 
taneously there is no definite demarcation between the two. If the beam 
is heavily loaded and deflects, as at B in Figure 57, it drags some of the 
slab down with it, as shown by the dashed lines. The portion of the 
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slab near the beam assists in resisting the deflecting loads. Tests con¬ 
firm the statement that the adjacent slab can be considered as part of 
the beam. In a commercial design it is necessary that there be restric¬ 
tions so that the designer does not assign too great a width of the slab 
as flange of the tee beam. 

A.C.I. Article 705a (see Appendix) specifies that the flange width b 
I 

shall not exceed one fourth the span length of the beam, or 6 < ~. 

It is evident that short-span beams will not deflect as much as long-span 
beams and, therefore, will not drag down as great a width of slab. 

It is also specified that the overhanging width on either side shall not 
exceed eight times the thickness of the slab. In other words the flange 
width 5 < 16i + b'. Since the flange is used as though it were a canti¬ 
lever from the stem the thinner slabs cannot have as great a projection. 

The third restriction requires that the overhanging width shall not 
be greater than half the clear distance to the next beam, orb < spacing. 
This specification merely states that no part of the slab shall be con¬ 
sidered as flange for two beams. 

The flange width used in computations is the least of these three re¬ 
strictions, The flange can be used whenever the slab and beam are 
poured simultaneously and suitable steel is provided to tie the two to¬ 
gether. In Figure 55 sections a and b both use the flange width b as 
the width of the compression area. 

It may seem unwise to figure the slab as fully stressed in compression 
for both the slab computations and the tee-beam design. It should be 
noted, however (Fig. 58), that the slab is figured for a cross section such 

as A BCD and is in negative bending. The particles at C at the bottom 
of the slab have the maximum compression stress fc in plane ABCD due 
to the slab loads, while the particles at B and A are in tension. The 
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beam shown will be a tee beam only for sections in heavy positive bend¬ 
ing. Let us say that the section BEFC is the section of maximum posi¬ 
tive bending moment. The particles B and E now have the maximum 
fiber stresses fc in plane BEFC by the tee-beam computations, while 

Jed — t 
particle C has only /"c == fc ——— . If plane BEFC is a plane of maxi- 

Jed 
mum bending moment, the shear force is zero and the shear stresses are 
zero for all particles. Therefore, plane BEFC is a principal plane and 
the stress f"c is the minimum stress for particle C, and the slab stress 
fc on the perpendicular plane A BCD must be the maximum stress on 
the particle C. Other cross sections through the beam will have smaller 
bending moments and smaller fiber stresses but there will also be shear 
forces in the section. The principal planes will be inclined to the beam 
cross section, but the principal stresses will not exceed the value fc at 
point C on plane ABCD or the value fc due to beam computations for 
particles B and E, Therefore, the use of the slab in both slab and beam 
computations does not give a fiber stress greater than the allowable 
value of fc. 

110. Economical Size for Tee Beams. It is possible, but not usual, 
to have a slab and beam floor which has only one span. If the supports 
are not restrained, the bending moment will be wholly positive and the 
beam sections will have the broad compression areas of Figures 65a and 
556. The most economical size will be the one which gives the maxi¬ 
mum allowable stresses fc and /« in concrete and steel. The formulae 
for kd and z in Articles 104 and 105 require a knowledge of the steel 
area depth d, and the flange width b and depth t. In other words, 
the equations are checker's or inspector’s equations. After designing the 
slab the designer can most easily proceed by assuming a beam stem 
dimension and the tension steel area and solve for the concrete and steel 
stresses fc and /«. Three or four trials will give an economical beam 
section and area of steel. 

The more usual slab and beam floor system is one that has several 
continuous spans, both of slabs and beams. In this case the beam is 
a continuous beam of constant cross section. For uniformly distributed 
loads the maximum positive bending moments will be of the magnitude 

wl^ wf 
of — and 77“. The compression area, shown shaded in Figure 59a, 

16 14 
will be broad and not deep, tending to give a high value of the moment 
arm ratio ^ and requiring comparatively small values of the depth d and 
the stem width 6' to give satisfactory concrete stress/c and steel stress/,. 
There will be negative bending, also, in these continuous beams, and 
the maximum negative bending moments will be fully as great in mag- 
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nitude, having values such ^ ^ > and ^ . 
lU 11 1a 

These moments must 

be resisted by a rectangular beam of the shape shown in Figure 596, 
whose compression area is narrow and must therefore be deep with low 
values of the moment arm ratio j and the necessity of using compara¬ 
tively large values for the depth d and stem width 6' to keep within the 
maximum allowable values of the concrete stress/c and the steel stress/«. 

Fig. 59 

A section, which at the center is fully stressed with fc — 0.45/'c and 
/a = 20,000 lb. per sq. in. for positive bending, will give values of fc 
vastly greater than the allowable/c = 0.45/'c at the support; in fact, the 
concrete stress at that section will approach the ultimate. On the other 
hand, a design which gives a section safely stressed at the support will 
require a section so large that the concrete stress in the center would 
be very low, which is not economical. 

The economical solution is a compromise. The intermediate size used 
may be aided at the heavily loaded section at the support with compres¬ 
sion steel, so that the final result gives a maximum concrete stress at 
the center of fc = 0.2/'c, or thereabouts, and a maximum concrete stress 
at the support of fc = 0.45/'c. 

As the section at the support is the critical one, there will be for each 
stem vddth 6' (compression area width) a corresponding most economical 
depth d. Of the possible stem widths the most practical will be adopted. 
When the placing of the concrete for the floor system commences the 
beam stem is the only portion of the beams projecting below the general 
slab level. The stem must not be too narrow, or the concrete cannot be 
placed about the steel without “honeycombing^^ showing at exposed sur¬ 
faces when the forms are stripped. The stem must not be too shallow, 
for that requires an excessive amount of steel. Commercial steins are 
usually not over a 1 : 2 ratio of width V to depth Qi — t). 

111. Economical Depth. The cost analysis of a beam and slab floor 
^stem should compare possible column spacings and possible beam and 
girder arrangements. Increasing the distance between columns requires 
a substitution of fewer and heavier beams for the original layout. In- 
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creasing the spacing between beams increases the depth of the slab 
and the size of the beam. Comparative analyses of this sort in order 
to be complete should include the costs of columns, walls, slabs, and 
beams. It is not proposed to discuss such a comprehensive analysis at 
this time. After the economical column spacing and the framing plan 
for the girders and beams have been adopted, the slab thickness t can be 
computed. There then remains the necessity of determining the size of 
beam stem which shall give the cheapest beam for the given loads. The 
following discussion of economical size is based on fiber stress computa- 
tions. Beams which are very long tend to have excessive deflections, 
and economy will be sacrificed for stiffness. Beams of short span and 
very heavy loads may have excessive shear stresses, and economy will 
be sacrificed to give safe shear conditions. The beam with a reasonable 
span and usual loads should be designed for economical proportions. 

112. Cost of Concrete in Beam Stem. Let c equal the cost of the 
concrete per cubic foot. This unit cost should be supplied by the esti¬ 
mating department of the firm by which the designer is employed. It 
includes the cost of cement, sand, and stone, also the costs of mixing 
and placing the concrete. The cost of the concrete in the stem equals 
c¥(h — t) per foot of beam length. 

113. Cost of Steel in Beam. The estimating department furnishes a 
unit cost s per pound of steel. This includes the purchase of the steel, 
the bending, and the placing of the steel. 

The designer wishes to select an economical size but he does not yet 
know the total steel in the beam. The finn by which the designer is 
employed has doubtless adopted a standard type of steel placement. 
Three such types are shown in Figures 28, 29, and 30 (Art. 60). If the 
standard type is always used there is a nearly constant ratio a between 
the weight of the total steel in the beam per foot of length and the weight 
of the positive steel area Ap per foot. Let us call Sp = sa the unit cost 
of the steel per pound of positive steel. Also note that a bar 1 sq. in., 
in section and 1 ft. long weighs 3.40 lb. The designer can now figure' 
approximately the amount of positive steel Ap and thereby estimate 
the cost of the total steel. Thus the total cost of steel per foot of 
beam length equals 

where 

5 (weight of total steel in beam) 
j ~ SAOspAp 

Sp = os 

The total cost of the steel per foot length of beam equals 

(89) 

3.40asilp =■ 3.408pAp 
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114. Determination of Steel Ratio a. Referring to Problem 17 below, 
the total steel for intermediate beams BF or CG (Fig. 81) with Type II 
steel amounts to 

Positive steel, 32 linear ft. f-in. rd. bars at 1.50 lb. per ft. = 48.0 lb. 
Negative steel, 62.5 linear ft. J-in. sq. bars at 0.85 lb. per ft. = 53.1 lb. 
Stirrups, 14.7 linear ft. J-in. rd. bars at 0.17 lb. per ft. = 2.5 lb. 

Neglecting spacer bars, ties, etc. Total = 103.6 lb. 
103.6 

The total steel per foot of beam length =-= 7.77 lb. per ft. 
13.33 

The positive steel per foot == 2 X 1.50 = 3.00 lb. per ft. 

7.77 
a =- 

3.00 
2.59 

Similar computations for the cross beam AE (Fig. 85) with 
8.03 

steel give a value of the ratio a =-= 2.68. 
3.00 

Type II 

An analysis of the girder AD with Type III steel gives a value of the 
ratio a = 2.05 (Fig. 93). 

This indicates that the ratio a varies from 2.0 to 2.7 for the author^s 
methods of design when Types II and III systems of reinforcement and 
special anchorage are used. Ordinary anchorage of the steel will give 
lower ratios of a, say 1.9 to 2.2. 

116. Cost of Forms. The estimating department usually reports the 
cost of formwork for beam and slab floor systems as / cents per square 
foot of floor surface. This includes the cost of forms for slabs and beams 
and all posts, ledgers, braces, wedges, etc., necessary to hold up the floor 
system until the concrete has reached a suitable strength. It is dijfficult 
to isolate the cost of the beam stem, and it is not necessary as a varia¬ 
tion of 2 to 6 in. in stem depth makes little difference in the total form 
cost for the entire floor system. For our discussion we shall assume that 
the cost of the forms has little effect on the relative cost of different 
sizes of beam stems and may be neglected in an analysis. 

ILLUSTRATIVE PROBLEM 16 

116. Economical Depth by Computation. Given a beam and slab floor system 
' with a slab thickness / = 6 in. The beam is subjected to a maximum positive bend- 
; ing moment of 1,400,000 in.-lb. Determine the cheapest section for a stem 6' » 
,12 in. 

Cost of concrete c — 40 cents per cubic foot 

Cost of steel a » 6 cents per pound 
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The tjrpe of steel reinforcing used gives a steel ratio a * 2 for ordinary anchorage, 

or cost of steel Sp = 10 cents per pound of positive steel. The estimating depart¬ 
ment states that it has allowed about 15 cents per foot of beam as the form cost 
assigned to the beam stem. 

Let us determine the cost of various beam stems, each of which has a width 6' ~ 
12 in. The following computation is made for the beam stem 12 in. by 24 in. (total 

depth ~ 30 in.). 

Assume the positive steel to be in one row, 3 in. from the bottom, and assume that 
the moment arm ratio j = 0.92 approximately. 

Steel area Ap K. 
fjd 

1,400,000 
- = 2.82 sq. in. 
20,000 X 0.92 X 27 ^ 

We shall use this minimum area Ap for our comparisons, so that the non-coinci¬ 
dence of commercial areas with the minimum may not affect this discussion. 

Cost of concrete 
cb'(h - t) 

144 

0.40 X 12 X 24 

144 

Cost of steel = 3.40 X Sp X Ap = 3.40 X (2 X 0.05) X 2.82 

Cost of forms 

= $0.80 

= $0.96 

= $0.15 

Total cost per foot length « $1.91 

The tabulation below summarizes similar computations for a series of beam stems 

each 12 in. wide. 

Beam depth h inches 

b' == 12 in. 21 24 27 30 33 36 39 

Stem height = {h — t) inches 

1 15 18 21 24 27 30 33 

Depth d (one row) 21 24 27 30 33 36 

Depth d (two rows) 17 .... 
1,400,000 

4.48 3.63 3.14 2.82 2.54 2.31 2.12 
^ “ 20,000 X 0.92 X d 

Cost of steel $1.52 $1.24 $1.07 $0.96 $0.86 $0.79 $0.72 

Cost of concrete 0.50 0.60 0.70 0.80 0.90 1.00 1.10 

Cost of forms 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

Total cost per foot $2.17 $1.99 $1.92 $1.91 $1.91 $1.94 $1.97 

In Figure 60 these costs are plotted against stem depth and indicate that the 
minimum cost occurs for the 12-in. by 27-in. stem. An old ^^rule of thumb'’ criterion 
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that “the cheapest section is that for which the cost of concrete and forms equals 

the cost of the steeP' agrees fairly well with this result, as it calls for the 12-in. by 

24-in. stem whose total cost is also $1.91 per foot length. 
The computations given above give the cheapest stem for a 12-m. width. The 

process must be repeated for 8-in., 10-in., 14-in., and 16-in. stems in order to deter¬ 

mine the cheapest possible stem. The complete computations are too long, and the 

Siam DcpTH-h -/ncucs 

Fig. 60 

problem is given only to illustrate the effect of too great depth and of a shallow 

beam. The determination of the economical size can be handled better by an alge¬ 

braic analysis of the factors involved. 

If a steel ratio a « 3 for special anchorage is used, the cheapest section in the 
tabulation above is the 12-in. by 33-in. stem. However, the 12-in. by 27-in. stem 

costs only 1 cent per foot more. 

117. Economical Depth Equation. The total cost of the beam stem 
per foot length will be the sum of the concrete, form, and steel costs. 
It has been previously stated that the variation in form cost may be 
neglected if we are comparing different stem sizes to carry the same 
bending moment. Variation in the cost will be produced by the con¬ 
crete and steel only. 

(h\h - t) 
Total cost of stem per foot = —;-b ZAOspAp + F 

144 
where F is the constant form cost and 
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Let A = d + 6, where e is the fireproofing clearance. 

Total cost per foot 
cb'(d + e — t) 

144 
+ 

SAOspMp 
+ F 

The maximum and minimum values of tliis equation are obtained by 
equating to zero the first differential in respect to the variable depth d 
and solving for depth d. 

where 

d(Cost) cV 3.40spAfp 
X 

d{d) 144 U ^ 

/ X 144s;>Mj, _ vMp 

V ”2/ ” Wj, 

3.40 X 144sp idOsp 

- + 0 = 0 

t IrMp 

"r V or d 
t 

(90) 

(91) 

The depth d is the cheapest depth for a given stem width h\ A trial 
of two or three stem widths will indicate the stem depth and width that 
are nearly a 2 : 1 ratio. 

118. Alternate Methods of Determining Section Dimensions. Proper 
application of the economical depth equations requires that the esti¬ 
mating department have up-to-date costs obtained from other jobs under 
comparable conditions. Such information is not always available or the 
designer may not have easy access to the costs. In the drive to get 
work done designers often prefer to obtain the section dimensions by 
some other means. 

Size by Shear Stress. A favorite means, because it is easy, is to select 
the section by using the maximum allowable shear stress. It is cus¬ 
tomary to use the ordinary anchorage maximum, as this practice grew 
up before special anchorage was defined; also the dimensions given by 
the maximum shear stress for special anchorage are much too small. 
Thus in Problem 15 the section dimensions can be obtained, assuming 
/'c = 2000 lb. per sq. in. 

Ordinary Anchorage, The allowable shear stress v = 0.06/'c = 120 lb. 
per sq. in. The section at the support is similar to that of Figure 696 
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and the value of j is approximately 0.87. If the clear span is taken as 
wl^ 

26 ft. and the positive bending moment = — = 1,400,000 in.-lb., the 
16 

uniformly distributed load w = 2760 lb. per ft. The maximum shear 

force 7 = = 2760 X 13 = 35,900 lb. 
JU 

35,900 

120 X 0.87 
= 344 sq. in. 

If 6' = 12 in., d = 28.7 in., and h = 32 in. The beam stem is 12 in. 
by 26 in., which is close to the economical size. 

On the other hand, had the span been only 22 ft., the following values 
would obtain: w = 3870 lb. per ft., V = 42,600 lb., and bd = 407 sq. in. 
If 6' = 12 in., d = 33.8 in., and h = 37 in. The beam stem is now 12 
in. by 31 in., which is not economical. 

Special Anchorage, The maximum shear stress now equals v = 0.12/'^ 
= ,240 lb. per sq. in. Using the dimensions given above, for a 26-ft. 
span, the beam stem would be 12 in. by 12 in. The 22~ft. span calls 
for a beam stem of 12 in. by 14 in. Both sizes are evidently very un¬ 
economical. Tee-beam sizes should not be determined for shear by the 
use of the special anchorage maximum. 

Size Determined by Negative Moment Some designers prefer to deter¬ 
mine the size by the choice of one which requires no compression steel 
.at the supports. For Problem 15 let the negative moment be taken as 
2,040,000 in.-lb. The section is similar to that of Figure 595 and the 
compression area is a rectangle. By the rectangular beam theory, 

2,040,000 

157 X 12 
32.9 in. 

The total depth = 36 in. and the beam stem is 12 in. by 30 in. This 
is not economical for the costs used in Problem 15. 

The author recommends that the economical depth equation be used, 
providing that suitable costs can be obtained. 

ILLUSTRATIVE PROBLEM 16 

119. Economical Depth Equation. Let us check the results of Problem 15 by the 

equation for economical depth. From that problem we note that the concrete cost 

e «« 40 cents per cubic foot and the steel special cost Sj,»as»2X5»=10 cents 

per pound of positive steel. 
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From equation 90, r 
490 X 10 

40 
== 123. This result may also be obtained from 

Diagram 9 (in the Appendix). From equation 91, 

d 
jm X i,4oo,6( 
\ 20,000 X 12 

000 6 
+ - - 26.8 + 3 - 29.8 in. 

2 

The total depth h of the beam equals 

h ^ d-i-3 ^ 29.8 + 3 32.8 in. 

This agrees with the results plotted in Figure 60. 

The trial sizes given by the three methods are listed below for a beam stem 12 in. 

jdde. 

Beam Stem Depth (in.) 
Span = 26 ft. 

Economical depth (r = 123) 27 
Shear, ordinary anchorage 26 
No compression steel 30 

Span = 22 ft. 

Economical depth (r = 123) 27 
Shear, ordinary anchorage 31 
No compression steel 30 

120. Design of Tee Beams. Order of Procedure, The efficient order 
of procedure to employ in designing tee beams concentrates on select¬ 
ing the proper beam size before selecting any steel areas. The recom¬ 
mended procedure is 

1. Determine economical depth and select the desired values of stem 
width V and total depth h, 

2. Check the section for shear. 
3. Check the sections at the supports for fiber stress /c. To give the 

allowable value of the concrete stress/«compression steel is often 
needed. The concrete stress/c at the section of maximum posi¬ 
tive bending moment seldom needs to be checked. 

4. Determine tension steel areas for bending moment requirements. 
5. Check tension steel for bond. 
6. Determine anchorage requirements. 
7. Place tension steel. 
8. Design diagonal tension reinforcement. 
9. Reinforce flange, if necessary (A.C.I. Art. 705c in the Appendix). 

STRAIGHT-LINE WORKING-STRESS THEORY 

ILLUSTRATIVE PROBLEM 17 

121. Design of Tee Beams. Given the column spacings of Problem 8 (Chapter 5) 
whose elevation is shown in Figure 36. After a preliminary cost analysis the de» 
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signer has adopted a concrete beam and slab floor system whose plan view is given 

in Figure 61. The live load is 130 lb. per sq. ft. 
A tjrpical interior panel such as ADHE (Fig. 61) is to be designed; a 2000-lb. 

concrete ^ wiU be used. The cost of a concrete testing 2000 lb, per sq. in. at the 

age of 28 days is 45 cents per cubic foot. Forms cost 13 cents per square foot. Steel 
costs 4 cents per pound. Assume a positive steel to total steel ratio a — 2.5. 

txfcrior /nf<fn'or /nfer/or fnfer/or 

Co/<jmn Column Co/</mn Co/urrtn 

Fig. 61 

122. Division of Loads. The floor system, which has column spacings of 29 ft. 

by 14 ft. 6 in., has been divided by the girder and beams into panels which are 14 ft. 

6 in. by 9 ft, 8 in. These are markedly rectangular in shape so the slab will be de¬ 

signed with one-way steel spanning the short direction over the beams. 

The loads brought to the cross beams will be carried by them directly to the 

columns. The intermediate beams carry their loads to the girders, which in turn 

bring their loads to the columns. 
The greater part of the slab loads will be brought by the one-way steel to the 

beams; but a square foot of slab at some such position as a (Fig. 62) close to the 

girder, in fact part of its flange, is undoubtedly principally supported by the girder. 
Some other square foot of slab, such as 5, close to the beam is wholly taken by the 

beam. The load on an area such as c is probably partly carried to the beam and 

partly to the girder. 
We can draw boundary lines such as An, Bn, Bo, Co, etc., which separate the 

areas whose loads are principally carried by the girder or by the beam. The bound¬ 

ary lines of Figure 62 are drawn at 45^ as a reasonable division. Such a division 

of the slab area would assign to the beam an area FtnBouF. Shown as a beam of 

single span supported at the ends, the loading diagram is given in Figure 63, and the 
shear force and bending moments are given as full lines in Figure 64, where to is 

^ See footnote of Article 32. 
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the total load per square foot of slab area. The shear force diagram, shown for the 

half span only, is unchanged if the beam is continuous (Art. 349), and the bending 

moment diagram, also for the half span, is unchanged in shape, the base line (M — 0) 

being shifted upwards. 
The floor area carried directly by the girder AD (Fig. 62) consists of the three 

diamond-shaped areas AqBn, etc. The girder also receives from each intermediate 

beam a concentrated load of the areas wnBox and yzrBq. The result is the loading 

/NTCRM^ATi: GRDLR 

Fig. 64 Fig. 65 

shown in Figure 63. The shear force and bending moment diagrams are shown in 

full lines in Figure 65. 
Both these loading diagrams give uniformly varying loads over all or part of the 

span. The solution of shear force and bending moments for uniformly varying loads 

is more diflicult than for uniform loading. The designer is accustomed, therefore, 

to approximate these assumed loadings in order to deal with uniformly distributed 

loads or concentrated loads. Such approximations should be on the safe side and 
should not give shear force or bending moment diagrams diverging greatly from the 

desired ones. 
An approximation often made with one-way steel is that the beam carries all the 

slab load, or the area jlmk (Fig. 62). In this case the loading for the beam and girder 
is shown as the first approximation in Figure 63. The shear force and bending 

moment diagrams are shown as dash lines in Figures 64 and 66. The shear force 

diagram for the beam coincides with the original assumption in the center portion 

but is higher near the supports with a maximum of 70u; instead of 46.7ti’. The 
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bending moment values are greater throughout the span with a maximum of 254w 

instead of 21Qw. The margin of safety is rather excessive for our problem. If the 

column spacings were such that the beam had a greater span this margin would be 

much less. The girder shear force diagram has a maximum of 140w; which is less 

than the 163.3if; given by the loading originally assumed. The bending moment 

diagram gives less values throughout the span, the maximum being 1353t^ instead 

of 1430ty. The first assumption gives shear and bending moment diagrams which 

are on the safe side for the beam and on the unsafe side for the girder. The first 

approximation would not be safe for the girder design. 

Another approximation that might be made is that the areas assigned to the girder 

are averaged to a strip of constant width. The width of this strip is sometimes 

reduced by a requirement that this strip shall be wholly within the flange width h 

of the girder. The remaining slab area is taken by the beams. In Figure 63 the 

loading for this second approximation is shown. The girder is assumed to take a 

strip higf (Fig. 62), of constant width of 4 ft. 10 in. This area is the same as the 

sum of the three diamond-shaped areas AqBn^ etc. The flange of the girder should 

have a width h of at least 58 in. The beam carries the floor area d'e'ed, which is 

9 ft. 8 in. wide and 9 ft. 8 in. long. The area dexw is brought to the girder by the 

beam from each side. The shear force and bending moment diagrams for the second 

approximation are shown in Figures 64 and 65 as dot and dash lines. The shear 

force for the beam is constant at the maximum of 46.7aJ for 2 ft. 5 in., and then 

the diagram coincides with the first approximation and later with the original as¬ 

sumption of loading. The bending moment diagram is slightly higher than the orig¬ 

inal with a maximum value of 22Qw instead of the 21Gt^7 of the original. The shear 

diagram for the girder has the same maximum value of 163.3zi^ as the original assump¬ 

tion. It substitutes a straight line for the reverse curve of the original, but the 

other boundary values of \\7w and 2Zw are also identical with the original. The 

bending moment diagram for this case closely coincides with the original diagram 

and cannot be plotted separately. The curve for the original loading reverses 

slightly, just as does more markedly its shear force diagram. The curve for the 

second assumption is alternately slightly above or below the original values. The 

girder will be designed for the loading of the second approximation. 

The second approximation gives good results. At the same time the designer 

deals with concentrated loads or uniformly distributed loads. To be sure, the load 
for the beam does not extend over the whole span, but its bending moment diagram 

is a close approximation to a parabola and the same relative shifting of the base line. 

{M = 0) can be used if the beam is continuous. 

The fact that the uniformly distributed load for the beam does not extend over 

the full span prevents the adoption of the second approximation for the beam design 

by many designers. They prefer the simplicity of the first assumption though in 

this case both the maximum shear force and the maximum bending moment are 

considerably in excess of the values that one wishes to approximate. The present- 

problem is an extreme case because the girder span is so great compared with the. 

beam span. If the column spacings had been 29 ft. in both directions the loading: 

diagram for the beam would be that shown in Figure 66. The corresponding shear 

force and bending moment diagrams for the beam are plotted on Figure 67 with 

the assumed loading with full lines and the first approximation with dash lines. The 

excess of shear force and of bending moment is not great, and the first approximation 

would be adopted without question. 

In our problem the maximum shear force by the first approximation is 50 per 

cent in excess of the assumed loading. The bending moments at every section are 
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nearly 20 per cent in excess. The saving in time for the designer would be too 
dearly purchased; so we adopt the second assumption for the beam design in this 

particular problem. 

-^9ft‘4'- 

A. 
'I'l'ijiniTiirii'i 
9yw/bs.Ar/t 

_1 1 t 1 1 1 1 1 1 1 ii 1.1 1. ifiThv. 

I--PPf/.-O"-J 

Assumed Loading 

f-^9 "-H 
/4a^^ 

ffR5T Approximation 
Fia. 66 

123. Depth of Slab. The slab steel is one-way and spans 9 ft. 8 in. over the cross 

and intermediate beams. We shall design a strip 1 ft. wide, assuming a 4-in. thick¬ 

ness. 
Live load = 130 lb. per sq. ft. 

Weight of slab = 60 lb. per sq. ft. 

Total load w = 180 lb. per sq. ft. 

The panel ADHE (Fig. 61) is an interior panel. The three spans of the slab in 

this panel are all interior spans. By A.C.I. Article 701 (see Appendix) the maxi- 

. . wl^ wt^ 
mum positive bending moment equals — and the negative moment equals — . 

16 12 
The rectangular slab section will be designed for the negative moment, using the 

clear span. The designer estimates that the cross and intermediate beams will be 

S in. to 10 in. wide. He uses the smaller value so that the slab may be too large 

rather than too small, and the design may be on the safe side. The clear span is 

^ ft. 8 in. minus 8 in. A.C.I. Article 701 states that the maximum negative moment 
for slabs with spans not exceeding 10 ft. shall be 

Mn 

Depth to steel d 

^ ^ 180 X (9)^ X 12 

12 ■“ 12 
14,580 m.-lb. 

4 
14,580 

157 X 12 
2.78 in. 
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The protective covering is f in. for slabs (A.C.I. Art. 6076), Assume that the 

steel is not larger than | in. The minimum slab thickness t equals 

Minimum t « 0.75 + 0.25 + 2.78 ~ 3.78 in. Use 4 in. slab. 

Before we compute the slab steel we shall check the assumption that the beam 
stem width 6' = 8 in. 

124. Size of Cross and Intermediate Beams. Loading. The cross and inter¬ 

mediate beam will be made the same size. The architect approves of this for gen¬ 
eral appearance, the engineer desires the same depth so that sprinkler pipes, conduits, 

shafting, etc., can be readily carried down the building, and the contractor has uni¬ 

form sizes for his slab and beam forms. 

There are two intermediate beams and one cross beam in each bay. We shall 

compute the economical size for the intermediate beams as there are twice as many 

of them. The economical depth will be determined from the maximum positive 
bending moment. 

We have decided to use the second approximation of Article 122 which uses the 

slab area deed' of Figure 62. The intermediate beams are continuous and we shall 

use the clear span. The designer estimates that the girders are 12 in. to 14 in. wide. 

He will assume 12 in. in order to use the greater span as a margin of safety. The 

clear span is 14 ft. 6 in. minus 12 in., or 13 ft. 6 in. Near its center the beam carries 

9f sq. ft. of slab for each foot of length. 

Slab load = 180 X 9| = 1740 lb. per ft. length. In addition the beam must 

carry its own stem weight for the entire span. If the beam is 8 in. wide, the maxi¬ 

mum stem will be 8 in. by 16 in. 

ia) 

ISI 

Q325 /A 

Infermediafe Beam 

/360 fb. per 

Mm 

Kb) 

9325 /A 

Fig. 68 

Stem weight ..— X 150 = 135 lb. per ft. length. The loading is shown in 
144 

Figure 68a. Taking the origin at the left support, the shear and bending moment 
equations for a beam are 

From r == 0 to X = 1.92 

Shear force = 9325 — 135x 

Bending moment = 9325x — 
135x2 

2 
+ Mn 

From X = 1.92 to X = 6.75 (center line) 

Shear force « 9325 ~ 135x - 1740(x - 1.92) 

135x2 1740 
Bending moment = 9325x---- (x — 1.92)2 ^ 

2 2 
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The shear force and bending moment diagrams are shown in Figure 69 as full 
lines. The bending moment is plotted for a beam freely supported at the ends 

(Mn = 0). 
Some designers would now propose a third approximation. This approximation 

would substitute a uniformly distributed load equal to the total load of Figure 68a. 

The load w equals 1380 lb. per ft. 

This loading is shown in Figure 686. The shear force and bending moment dia¬ 

grams are shown in Figure 69 as dash lines. Both the shear force and bending mo¬ 

ment values are too small throughout the span, and this approximation will be 

rejected. We shall continue to design by the second approximation. 

The beams are continuous and we wish to design an interior span. Assume that 

the beam with the load of Figure 68a has the same relative fixity as that given by 

the A.C.I. moment coefficients for uniformly distributed loads. 

The intermediate beams are supported by the girder. The moment coefficients 
of A.C.I. Article 701 for uniform loads are the basis for reference and give a maxi- 

mum negative moment Afn ^ interior span. A beam with fixed ends 

wJ^ 
has an end moment of — — . The maximum positive bending moment Mp equals 

which must accompany a minimum negative moment Mn 
wf . , 

, m order 
16 
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Paralleling this for the loading of Figure 68a, solve for the fixed end moment. 

Using one of the methods discussed in Chapters 12 and 13 with the knowledge that 
the slope is zero at the ends for a fixed beam, computations give 

Fixed-end moment Mn = —25,690 ft.-lb. 

Summarizing for the usual uniformly distributed load, 

Fixed-end moment 

Interior span, maximum negative moment Mn 

Interior span, maximum positive moment Mp 

Using the loading of Figure 68a, 

Fixed-end moment 

Interior span, Mn = x 25,590 

Interior span, Mp *= X 25,590 

In Figure 69 the base line (Af =* 0) for the negative moment is located at the 27,900 

ft.-lb. level. The base line {M « 0) for the positive moment of 19,200 ft.-lb. is 

located at 39,660 — 19,200 = 20,460 ft.-lb. from the bottom of the diagram. 

126. Economical Depth. Intermediate Beam. The cost of concrete c » 45 cents 

per cubic foot. The cost of the steel a =* 4 cents per pound, and the special unit 
cost ap = oa = 2.69 X 4 = 10.36 cents per pound (Art. 114). 

4- 4 4. 490ap Cost constant r = -- 
c 

490 X 10.36 

The maximum positive bending moment Mp - 19,200 ft.-lb. 
By equation 91, 

Economical depth d *= 

Let us examine values of stem width b' of 6, 8, and 10 in. Adopt the steel reinforce¬ 

ment of Type II (Art. 60) and assume the positive steel consists of one row of 1-in. 

/113 X 19,200 X 12 4 _ 35.4 

I 20,000 Xb' "^2 
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bars. Use stirrups not larger than f-in. (Fig. 70&}. The distance from the bottom 

of the beam to the center of the steel is 

Fireproofing clearance = 2.00 in. 
Stirrup diameter = 0.38 

Half dimension of bar = 0.50 

h-d = 2.88 in. 

Stem Width Depth to Tension Total Depth Depth of Stem 
b' Steel d h (h-<) 

6 14.5 16.5 
2.0 2.9 

16.5 19.4 15 
Use 19 

8 12.53 14.53 
2.0 2.88 

14.53 17.41 13 
Use 17 

10 11.22 13.22 
2.0 2.88 

13.22 16.10 12 

Use 16 

The depths are economical ones, not minimum, so we may select sizes larger or 

smaller as we prefer. The 8-in. by 17-in. beam has a stem ratio less than 2 to 1 

so we shall tentatively adopt it. 
Selection of Size by Shear Stress. As a basis of comparison let us also determine 

the size of beam by the allowable shear stress method, using ordinary anchorage. 

The maximum shear force is 9325 lb. Assuming the distance from the top of the 

beam to the center of gravity of the negative steel to be about 3 in., the minimum 

size to satisfy shear becomes 

9325 

120 X 0.87 
89.2 sq. in. 

If 6' = 6 in., d = 14,85 in., A = 18 in., and f = 14 in. 

If 6' = 8 in., d = 11.13 in., h = 15 in., and i = 11 in. 

By the shear stress method we would use an 8-in. stem with a total depth 2 in. less 

than that of the economical size. 
Selection of Size for No Compression Sled. The maximum negative moment is 

27,9(K) ft.-lb. At the support we have compression at the bottom of the beam (Fig. 

595} and a rectangular compression area. 

fW /27,900 X 12 46.1 

157X6' 

If 6' = 6 in., d = 18.85 in., 6 = 22 in., and A — i = 18 in. 

If 6' = 8 in., d = 16.3 in., A = 20 in., and 6 — f = 16 in. 
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This method would call for au 8-in. stem with a total depth which is 3 in. deeper 
than that given by the economical size. 

126. Shear. Intermediate Beam. Since we have adopted the economical size, 
we have one larger than that called for by the shear stress method and the shear 

stress is safe. It will be necessary to use web steel. 

127. Size of Girder. Economical Depth. Maximum Positive Bending Moment, 

We have adopted the loading of the second approximation (Fig. 63) for the girder. 

We are designing an interior span of a continuous beam, whose clear span is 26 ft. 

6 in. The loading is shown in Figure 71. This loading assigns to the girder as 

/S270.//X 16,270/b. 

33,770/b 

liimiiiiiiiiiiiiiinil 
Sff.-S’— 

--- ..... (11 M 
/l70\/b. per f7\ 

I1LJULI11LU.LU.U.U 

Girder 

Fig. 71 

33770 /b 

direct slab load a strip of 4.83 ff. of slab area for each foot length of girder. We 

wish to limit such direct loads to loads on the girder flange. The girder flange width 

h (A.C.I. Art. 705a) cannot exceed 

h 
I 

4 

26.5 X 12 

4 
= 80 in. 

6 = 16< + 5' = 16 X 4 -f 12 = 76 in. 

h = spacing == 14 ft. 6 in. == 174 in. 

Use flange width 6 = 76 in. The desired direct slab load for a width of 4.83 ft. 

= 58 in. can be adopted. 
The uniformly distributed load for each foot of length of the girder equals 4.83 

sq. ft. of slab plus the weight of the girder stem. We have previously assumed a 

12-in. stem width and we now assume the maximum depth of 24 in. 

Slab load = 180 X 4.83 - 870 lb. per ft. 

Girder stem = 
12 X 24 

144 
X 150 300 lb. per ft. 

Total uniformly distributed load w = 1170 lb. per ft. 

The concentrated load consists of the slab load of 93.3ta plus the weight of the 

beam stem for the clear span of the beam. 

Slab load « 93.3 X 180 = 16,800 lb. 

Beam stem = 110 X 13.5 = 1,470 lb. 

Total concentrated load = 18,270 lb. 

The girder loads of Figure 71 can be handled separately as a uniformly distributed 

load and two symmetrically placed concentrated loads. It is necessary to deter- 
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mine the maximum positive bending moment for the interior span. This will occur 
at the center section for both loadings. 

The maximum positive bending moment due to the uniformly distributed load 
w ~ 1170 lb. per ft. will be 

_ 1170 X (26.5)^ X 12 

16 ” 16 
= 616,000 in.-lb. 

The two concentrated loads W = 18,270 lb. are symmetrically placed but are 5 in. 

from the *'third points,which are the sections at ^ = 106 in. from the face of the 
o 

column. The maximum moment will be somewhat smaller than the values recom¬ 
mended in Table J (Chapter 14) for concentrated loads at the third points, but near 
enough so that the relative displacement of the base line {M = 0) from the fully 
fixed position may be assumed to be the same. 

Figure 72a shows two equal loads of W at the third points of the span. If the 
ends are fixed, the couples Mn at the supports can be found by the methods 

IV 

w w 

1 _ / / 2 _: 3 — 3 

-/ - 

(a) 

- ■ ■■■‘j 

/e,270lb. /d270/A 

P7/.~<S - 

IV /d270/h. 

Girder 

Fig. 72 

(d) 

4S270 

discussed in Chapter 14. Using the fact that the change of slope is zero for a 
fixed-end beam, the bending moment at the fixed end equals 

Mn = 

In Table J (Chapter 14) it is recommended that a maximum positive bending 

moment Mp = -^Wl be used for interior spans of continuous beams. This is ac- 
Wl 3 7 

companied by the minimum negative moment Mn --Wl —-Wl, since 
3 16 48 

Wl 
Mp + Afn = — . This moment is two thirds the value of the fixed-end moment 

3 

Mn ~ for the negative moment of accompanying the recommended 
positive moment is 0.66 of the fixed-end moment —^Wl. 

Turning now to the actual loading of Figure 726, the fixed-end moment can be 
obtained by a similar computation. It equals 

Mn - ~ 105,000 ft.-lb. 

Using the same relative shifting of the base line {M = 0), the minimum negative 
moment f X 105,000 = —70,000 ft.-lb. The maximum positive moment Mp at 
the center sections equals 

Maximum Mp « 18,270 X 8.42 - 70,000 « 84,000 ft.-lb. 

The total maximum positive bending moment due to the complete loading of Fig¬ 
ure 71 equals 

Mp « 616,000 4- 84,000 X 12 - 1,624,000 im-lb. 
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Assume the value of a « 2.5 and the cost constant r =» 109.* 

Eco..,.i»l depth d - +1 
\ 20,0006' 2 

d = 
94.1 

Vb' 
+ 2.0 

We shall examine stem widths 6' of 12 in., 14 in., and 16 in. It is customary to 

use the same type of reinforcement for all beams and girders, but in this problem 

we shall use for the girder Type III reinforcement with truss bars (Art. 60) in order 

Section at Support Section at ^ 

ia) Girder (6) 

Fia. 73 

to illustrate its design. Assume the positive steel to be two rows of bars not larger 
than J-in. rounds in size (Fig. 736). We shall again assume f-in. rounds for the 

stirrups. The steel clearance h — d equals 

Fireproofing clearance - 2.00 in. 

Stirrup diameter « 0.38 in. 

Distance to center of lower row = 0.37 in. 

Half distance to upper row = 0.88 in. 

h — d — 3.63 in. 

Stem Width 
6' 

Depth to Tension 

Steel d 
Total Depth 

h 

Depth of Stem 

12 27.2 

2.0 

29.2 

3.6 

28 

29.2 32.8 
Use 32 

14 25.1 
2.0 

27.1 

3.6 

26 

27.1 30.7 

Use 30 

16 23.5 

2.0 
25.5 

3.6 

25 

25.5 29.1 

Use 29 

*This proved to be a generous assumption, as the final design gives a value of 

the steel ratio a » 2.05 (Art. 114). The final design indicates that a smaller sec¬ 
tion is the economical one. 
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The section, 14 in. wide by 30 in. deep, gives a stem ratio just under 2 to 1, and 

this will be tentatively adopted. 

Sdection of Size by Shear Stress. As a matter of interest, let us determine the 

14-in. beam section by the shear stress method. The maximum shear force V equals 

F - 1170 X 13i -i- 18,270 = 33,770 lb. 

Assuming ordinary anchorage, the minimum size is 

V _ 33,770 

vj ” 120 X 0.87 
323 sq. in. 

If h' — 14 in., d — 23.1, h — 27 in., and — ^ = 23 in. 

This calls for a section 3 in. shallower than the economical. 

Selection of Size for No Compression Steel. The maximum negative moment due 

to the uniformly distributed load equals 

wP 
Afn = — = -895,000 in.-lb. 

The negative moment due to the two concentrated loads will be taken as their 

fixed-end moment of 105,000 ft.-lb. The total negative moment at the support is 

Maximum Mn — —895,000 — 105,000 X 12 = —2,155,000 iii.-lb. 

Since we have a rectangular compression area in the bottom of the stem at the sup¬ 

port, the depth to the steel equals 

d = 
^JKb' "Vis 

155,000 

157 X 14 
31.3 in. 

This calls for a total depth of /i = 35 in. and a stem depth h — t ~ SI in. Using 

the section computed for economy, we have a beam 5 in. shallower and we must 

use compression steel at the support. 

128. Shear. Girder. The corrected stem weight equals 

14 X 26 
Stem weight == ——— X 150 == 380 lb. per ft. 

144 

This is more than the assumed weight of 300 lb. per ft. The shear stress will still 

figure somewhat under the limit of 120 lb. per sq. in. for ordinary anchorage. Use 

special anchorage with web steel. The. results so far call for ordinary anchorage 

for the girder and beams; however, in order to illustrate the application of special 

anchorage requirements, it will be used for girder and beam design. This is no 

hardship as the increased allowable stresses for bond and diagonal tension are ad¬ 

vantageous. 

The girder stem size of 14 in. by 26 in. is adopted. The designer now knows very 

closely the dimensions of the floor system. He should then compute his column 

stacks for size and steel to verify the assumption of column size before figuring the 

steel for the floor system. In this problem we will accept the 30-in. column as a 

satisfactory size for this floor, and start the final design of each member. 
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129. Steel for Slab. The preliminary design of the slab gives us the following data. 

Beam stem width = 8 in. 

Clear span 

Load w = 180 lb. per sq. ft. 

Maximum positive bending moment Mp — — 10,900 in.-lb. 
16 

Maximum negative bending moment Mn ~ TiT ~ 14,600 in.-lb. 

Thickness of slab f = 4 in. 

The fire-protective covering for the positive steel is 1.5 in. for glacial gravel. As¬ 

suming ^-in. bars, the depth d = 4 — 1.75 = 2.25 in. 

Positive steel Ap = 
Ujd 20,000 X 0.87 X 2.25 

= 0.28 sq. in. 

This area is given by J-in. rounds spaced 8| in. on centers. This spacing is too 

large for a 4-in. slab. Assuming |-in. rounds with a depth d = 2.31 in., the area 

Ap « 0.28 sq. in. Use |-in. rounds spaced at 4| in. on centers. 

The negative steel area An can be computed, assuming f-in. rounds and a height 

d =* 4.00 - 0,75 - 0.19 = 3.06 in. 

^ 14,600 
An -- = 0.28 sq. in. 

20,000 X 0.87 X 3.06 ^ 

With the steel arrangement of Figure 15 the slab steel arrangement is sketched 

in Figure 74. Every second bar is a Type A bar and is bent up at one fifth of the 

dear span (22 in.). The Type B bars are straight and run three spans (29 ft.). 
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By this arrangement we meet the requirements that for 

Positive bending: (a) at least one half the steel beyond 27 in. 

(6) some positive steel runs into the support. 

Negative bending: (c) 0.28 sq. in. at supports. 

(d) at least one half the steel until 11 in. out. 

(c) some negative steel to run 12 diameters (5 in.) beyond point 
of inflection (26 in.). 

The shrinkage-temperature steel is supplied as a steel ratio p = 0.002 (A.C.I. Art. 
707). 

Temperature steel At = 0.002 X 12 X 2.31 = 0.06 sq. in. 

Use J-in. rounds spaced 10 in. on centers. This steel is parallel to the intermediate 
beams and will run two spans, or 29 ft. 

INTERMEDIATE BEAM 

130. Design of Intermediate Beam. Shear Force and Bending Moment. The 

design of the intermediate beam will be made before that of the cross beam as its 

span is longer and the moments and shears will be greater. Note from the previous 

computations that 

Slab load 

Corrected stem weight 

Clear span 

= 1740 lb. per ft. 

jj X5Q = 110 lb. per ft. 
144 

= 13 ft. 4 in. 

Stem width ¥ — 8 in. 

Total depth h = 17 in. 

W4QJi^ 9/40/A 

infermeefiate Beam 

Fig. 75 

The corrected loading diagram is given in Figure 75. The change in load and 

span is so slight that the designer would continue with the previous loadings of 

Figure 68 which are on the safe side. We shall use, however, the corrected loading. 

The fixed-end moment can be computed as before, giving 

Un - -24,800 fWb. 
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By the same procedure as used in Article 124 the maYimnm moments are 

Interior span, negative Mn = X 24,800 = —27,100 ft.-lb. 

Interior span, positive Mp = H X 24,800 = +18,600 ft.-lb. 

The shear force diagram is plotted in Figure 76, and the two bending moment 
diagrams in Figure 77. 

8940/b 

0 I 1.85 5 4 5 6 6}b7 
D/sfctnce from Support-ft 

Fia. 76 

131. Positive Tension Steel. Intermediate Beam. We are using the Type II 

system of reinforcement for the beams (Art. 60) and special anchorage. The posi¬ 

tive steel consists of straight bars. Assume a moment arm ratio j — 0.92, and a 

depth to steel d = 17 — 2.88 = 14.12 in. (Fig. 706). 

Steel area Ap 
Ujd 

18,600 X 12 

20,000 X 0.92 X 14.12 
0.86 sq. in. 

Bond is checked at the point of inflection. From Figure 77 the point of inflection 

is 2.2 ft. from the face of the support. At this section the shear force V =* 8260 lb. 
For special anchorage the allowable bond stress u — 0.076/e — IflO lb. per sq. in. 

The number of bars needed at 2.2 ft. for bond is 

^ V 8260 60 ^ 
ss ..- ss-sss — bars 

uojd 160 X o X 0.92 X d od 

The positive steel should be a few large-sized bars in one row. It is important 

that they should be in one row if they are employed as compression steel at the 

supports. Tabulating possibilities, 

Num¬ Size Steel Actual Computed Number of In One 
ber in. Depth d Area A« Area A« Bars for Bond Row 

2 f rd. 14.26 0.88 0.86 1.8 Yes 

3 1 rd. 14.31 0.92 0.85 2.2 No 

The three f-in. round cannot be placed in one row as assumed in the confuta¬ 

tions. Since the two f-in. bars have less area, they would be adopted anyway. 
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182. Negatiye Tension SteeL Intennediate Beam. Some of the negative tension 

steel is to be bent down and used as diagonal tension reinforcement. It should be 

bent as near to the support as possible in order to eliminate stirrups in a region 

where they are closely spaced. The steel will be designed first for its use as tension 
steel and then used as diagonal tension steel wherever bending conditions permit. 

Assume that a moment arm ratio j = 0.87 is conservative, and that the height 
to the steel d = 17 — 3.13 = 13.87 in., using 1.5 in. for clearance (Fig. 70a). 

Steel area An — Uid 
27,100 X 12 

20,000 X 0.87 X 13.87 
1.35 sq. in. 

The bond stress is a maximum at the support. All bars are present at this section, 

and the bond stress will be computed instead of the necessary number of bars. 

Bond stress u 
V 

l^ojd 

9140 

So X 0.87 X d 

10,500 

Xod 

The negative steel should be four or more bars, so that there may be enough to 
bend down as diagonal tension steel. Tabulating possibilities, 

Num¬ Sixe Steel Actual Computed Bond Number 
ber in. Height d Area A* Area A, Stress u of Rows 

4 frd. 13.87 1.77 1.35 80 2 
6 2 sq- 14.12 1.50 1.33 62 2 

Adopt the six ^-in. square bars. They will be located as shown in Figure 78. 

When the two outer bars in the lower row are bent down they will be inclined toward 

Fig. 78 

the section center line (shown by dash lines) to preserve the fireproofing clearance 
on the beam stem. 

The point of inflection for the negative bending moment occurs at 3.2 ft. from the 
l^er face (Fig. 77). The shear force at this section equals V 6410 lb. (Fig. 76). 

The number of bars required at this section for bond is 

V __6410_ 

myd “ 150 X 2 X 0.87 X 14.12 
1.8 bars 

138. Fiber Stresses in Concrete. Intermediate Beam. Negative Bending, The 

maximum negative bending moment is 27,100 ft.-lb. « 825,000 in.4b. Without the 

aid ol compression steel at the support the rectangular beam can care for a bendmg 
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moment « Kh(f « 157 X 8 X (14.12)2 „ 251,000 in.-lb. Therefore, compres 
sion steel is needed. 

Maximum moment M — 325,000 in.-Ib. 

Concrete fully stressed carries Me = 251,000 in.-lb. 

Moment taken by compression steel M', = 74,000 in.-lb. 

The stress in the tension steel /, = 17,500 lb. per sq. in. The neutral axis ratio j 
equals 

k --^ --- = 0.435 

1 + U 
njc 

1 + 
17,500 

15 X 900 

The neutral axis lies dX hd ~ 0.435 X 14.12 =» 6.14 in. above the bottom of th 

beam. The compression steel will be supplied from two |-in. bars used as positive 
steel. These bars are 2.75 in. from the bottom. The stress f\ in the compressioi 

steel equals 

kd -d' 

kd 
= 15 X 900 X 

(6.14 - 2.75) 

6.14 
7450 lb. per sq. in. 

By A.C.I. Article 706 the compression steel area A'* is figured for twice this stress 

M'. 74,000 . 
A * =--- = 0.44 sq. in. 

' 2feid -d') 2 X 7450 X (14.12 - 2.75) ^ 

In order to preserve the symmetry of steel placement use the two |-in. bars. Thii 

gives a considerable excess of area but, if one checks the actual stress using twic< 

the area of these bars, it is found to be reduced to /« == 58(X) lb. per sq. in. (se< 

Problem 11, Chapter 6). As positive bending steel these bars should run into th< 

support and terminate in a hook (A.C.I. Art. 903); as compression steel with a stres* 

of 2 X 5800 lb. per sq. in. these bars must run into the support a distance 

I = 

11,600 

4 X 100 
X 7 - 21.7 in. 

4 

The standard hook will be used with a 180® bend and a radius of 4 in. (A.C.I. Art. 

906). Entrance into the support, plus the hook, plus the extension of four diam¬ 
eters should ^ve an anchorage of at least 22 in. 

Positive Bending. The concrete area for maximum positive bending is either a 

wide rectangle in the flange or a tee beam if the neutral axis is in the stem. The 

designer knows that the fiber stress will be small, and in commercial computations 

he will not check it. 
However, if we desire to ascertain the maximum fiber stresses, we investigate by 

first solving for the flange width 6. 

Maximum h 
span 

"IT 
13.33 X 12 

4 
= 40 in. 

Maximum 6 « 16i + “ 16 X 4 -f 8 = 72 in. 

Maximum d « spacing » 9 ft. 8 in. » 116 in. 
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Use 6 = 40 in. and d = 14.25 in. Let us assume that the neutral axis is in the flange 
and that the compression area is rectangular. 

Steel ratio p 
bd 

0.88 

40 X 14.25 
- 0.00155 

From Diagram 1 in the Appendix, the intersection of p = 0.00155 and n = 15 
gives values of the neutral axis ratio k = 0.20 and the moment arm ratio j = 0.935. 
The neutral axis is a distance kd = 0.20 X 14.25 = 2.85 in. from the top. This is 
within the slab, which is 4 in. deep, and the compression area is rectangular. 

From Diagram 2 in the Appendix, using values of 

— - 223,000 
“ 40 X (14.25)2 

28 and p = 0.00155 

Actual/c = 300 lb. per sq. in. and actual/, = 19,2(X) lb. per sq. in. 
The assumption of j = 0.92 is safe, but we shall now use the correct j = 0.935. 
134. Placing Steel. Intermediate Beam. Positive Steel. In placing the straight 

positive bars we must meet the following requirements. 
1. Two f-in. round bars at center line for bending moment. 
2. Two bars at 2.2 ft. = 27 in. from support for bond. 
3. Two bars running 22 in. into the supporting girder for anchorage of compression 

steel. 
Negative Steel. The following requirements must be met by the designer as he 

places the negative steel. 
1. Six |“in. square bars at the face of the support for bending moment. 

2. Bond requirements at the 
support are satisfied by these six 
bars. 

3. Two bars at the point of 
inflection for bond or anchorage 
(A.C.I. Art. 903). The point of 
inflection is 3.20 ft. = 39 in. from 
the face of the support (Fig. 77). 

Extend the two outside bars in 
the upper row to 3 in. beyond the 
center line. The stirrups can be 
wired to these bars (Fig. 79). We 
w’ish to bend down the other four 
bars as soon as possible to act as 
diagonal tension steel, keeping the 
steel arrangement symmetrical 

about the vertical axis of the cross section. Bend down the two outside bars in 
the lower row first, then the center bar, and the center bar in the upper row last 
of alL 

2 bent: Ma * 20,000 X LOO X 0.87 X 14.50 « 252,000 in.-lb. 

3 bent: Mz = 20,000 X 0.75 X 0.87 X 14.87 - 194,000 in.-lb. 

4 bent: Mz * 20,000 X 0.50 X 0,87 X 14.87 = 129,000 in.-lb. 

JO" 

1- 

m 
m 

m 

1 cj n /9« 
26“ 

,-^—J Girder 

Elevofion 
Intermediate Beam 

Fia. 79 



Art. 135] DIAGONAL TENSION 137 

If these moments are changed to foot-pound units, the bends can be made by use 
of Figure 77. 

M4 = 21,000 ft.-lb. Bend two bars at 0.65 ft. = 8 in. 

Mz ~ 16,150 ft.-lb. Bend one bar at 1.2 ft. = 15 in. 

M2 = 10,750 ft.-lb. Bend one bar at 1.8 ft. = 22 in. 

Since the number of bars is reduced, the points of bending should be checked for 

bond. For the successive bends the maximum shear force is 

2 bent: F4 = uXojd = 150 X 4 X 2 X 0.87 X 14.50 = 15,150 lb. 

3 bent: F3 = 150 X 3 X 2 X 0.87 X 14.87 = 11,650 lb. 

4 bent: 72 = 150 X 2 X 2 X 0.87 X 14.87 = 7,760 lb. 

The maximum shear in this span equals 9140 lb., so bond does not affect the loca¬ 
tion of the first two bends. The shear force reduces to 7760 lb. at a section 2.47 ft. 

30 in. out. This dictates the position of the 

third bend. 
These three bending points are minimum 

values. It is not permissible to bend these 

bars nearer the support but, if desired for 

diagonal tension, the distances may be in¬ 

creased. The bars will be bent down at 45® 

and hooked about a cross bar wired to the 

positive steel (Fig. 79). The bars in the 

lower row drop about 10 5 in. and hence ex¬ 

tend horizontally the same distance; the bar 

from the top row drops 12 in. The top and 

bottom points of bending are listed in Fig¬ 

ure 79. The diagonal tension analysis may 

result in bends farther out from the supports. 

136. Diagonal Tension. Intermediate 

Beam. Diagonal tension reinforcement will 

be supplied by bent bars and stirrups. The 
corrected maximum shear stress at the sup¬ 

port equals 

Distance from Support-ft 

Intermediate Beam 

Fig. 80 

_9140 

bjd “ 8 X 0.87 X 14.12 
93 lb. per sq. in. 

This value is less than v = O.OGf'c = 120 lb. per sq. in. The shear stress diagram 

is shown in Figure 80. 
Maximum Spacing. 

d 1 
Maximum spacing = - = - X 14.12 = 7.06 in. (stirrups) 

A bar bent at 45® will meet a 45® crack at *‘mid-depth” if its maximum spacing 

equals d = 14.12 in. 

The diagonal tension steel must be designed to cover a variation of negative bend¬ 
ing moment from a maximum negative moment of 27,100 ft.-lb. to 19,700 ft.-lb. as 
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th© live load is shifted about on the floor. When the negative moment equals 27,100 

ft.-lb. th© diagonal cracks will tend to form as in Figure 24. When the moment 

equals 19,700 ft.-lb. the crack diagram approaches more nearly that of Figure 22. 

For maximum negative bending the tension cracks tend to appear on the top of the 

beam and the bent bars cross them close to the support, while the slab tends to pre¬ 

vent crack formation. When the tension cracks tend to appear on the bottom of 

th© beam, the bent bars are farther from the support as they cross possible crack 

lines and there is no aid from the slab. The diagonal tension steel will be designed 

for the case of tension cracks at the bottom of the beam due to maximum positive 
bending. 

Let us assume that the first crack starts at the bottom of the section at the sup¬ 

port (Fig. 22). The first pair of bent bars are 19 in. from the support. This is too 

far away as it exceeds their maximum spacing of 14 in. Stirrups must be used near 

th© support. 

SiirrupB. We have assumed a two-rod f-in. round stirrup. The minimum spacing 

is computed by using equation 32 (Art. 62): 

8 X 5 X 1 « 

550 
Minimum s -- 

33 
16.6 in. 

This exceeds the maximum spacing of 7 in», and the f-in. bar is too large. 

Assuming a two-rod f-in. round stirrup we compute 

Minimum s = 
33 

7.6 in. 

This is still rather large and is more than the maximum, but there is no smaller com¬ 

mercial size. Since this is a smaller size than previously assumed, all clearances 

are safe. Wherever stirrups are used they must be limited in spacing to 7 in. 

BerU Bara, Let us endeavor to use the bent bars at their maximum spacing of 

14 in. One f-in. square bar bent at 45^ can be used at a spacing of 14 in. when 

the shear stress is less than 

IX 0.25 X 20,000 

8 X 14 X 0.707 
-60 + 63 123 lb. per sq. in. 

The maximum shear stress is only 93 lb. per sq. in., so the bent bars may be used 

at their maximum spacing in any part of the span. 

Placing. The first pair of bent bars cannot reach the bottom of the beam before 

19 in. from the support. They can prevent the appearance of diagonal cracks up 

to the section 19 — 14 = 5 in. from the support. Therefore, use one strirup at 7-in. 

spacing, and then move out the first pair of bent bars to 7 + 14 — 21 in. The single 

bar from the bottom row can be placed at 21 + 14 = 35 in., and the center top 

bar at 35 + 14 - 49 in. out. ,The shear stress ©c ** 60 lb. per sq. in. occurs at ^ 

in. (Fig. 80). Beyond this section no diagonal steel is needed. The designer may 

add a few widely spaced stirrups near the center of the span, but the computations 

do not require their presence. The complete steel arrangement for this span is shown 

in Figure 81. 
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StcHon A'A Section B-B 
Intermediate Beam • Elevation 

Fig. 81 

Note that wherever compression steel is used stirrups must be spaced closer than 

16 bar diameters = 12 in. 

48 tie diameters = 12 in. 

The bending moment reduces to Me =* 251,000 in.-lb. about 8 in. out. The stirrup 

spacing of 7 in. is safe. 

CROSS BEAM 

136. Design of Steel. Cross Beam. The cross beam will be made the same size 

as the intermediate beams. Since the girder load is figured for its clear span only, 

the slab area higf (Fig. 62) carried directly by the girder is reduced to and 

the slab areas shown heavily shaded near the columns A and D must be carried by 

the cross beams. The loading diagram is given in Figure 82a; the clear span of 

12 ft. is used. The shear force diagram is shown as the dash line AB and full line 

'V H, 

(b) 
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BC in Figure 83. The bending moment diagram for a simple beam (Afn « 0) is 

shown in dash lines with a maximum of 32,500 ft.-lb. 

The reduction of load near the support is not great. If we approximate this load¬ 

ing by assuming that the uniformly distributed load in the center part w = 1740 

+ 110 = 1850 lb. per ft. acts the full span, we get the loading diagram of Figure 826. 

The shear force diagram (Fig. 83) is the full line DBC. The bending moment dia¬ 

gram for a simple beam (ikfn = 0) is shown as a full line with a maximum of 33,300 

Distance from Support-ft 
Cross Beam 

Fig. 83 

ft.-lb. Both the shear force and bending moment diagrams are good approximations 

of those first adopted, and we shall design the cross beam by using the loading of 

Figure 826. 

The design is made for an interior span of a beam loaded with a uniformly dis¬ 

tributed load w = 1850 lb. per ft. The maximum positive bending moment Mp « 

wP wP 
— and the maximum negative bending moment Mn = rr • 

Mp 
wP 

16 

1850 X (12)^ 

16 
16,670 ft.-lb. = 200,000 in lb. 

Mn 
11 

24,200 ft.-lb. 291,000 in.-lb. 

These moments are about 90 per cent of those used for the intermediate beam. 

The base lines (Af » 0) are drawn on Figure 83 at Afn * 33,300 — 16,670 « 16,670 

ft.4b. for the maximum positive moment (minimum negative), and at 24,200 ft.-lb. 

for the maximum negative moment. 
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137. Tension Steel. Cross Beam. Positive Bending, We are again using the 

Type II system of reinforcement (Art. 60). Assume j - 0.92, |-in. round bars, and 
j-in. stirrups. 

Ap — 

200,000 

20,000 X 0.92 X 14.31 
0.76 sq. in. 

Bond will be checked at the point of inflection which is 1.75 ft. = 21 in. from the 
face of the column (Fig. 83), where the shear force V = 7860 lb. 

2 = — = 7860 ^ ^ 
uojd 150 X o X 0.92d od 

Size 
Steel 

Depth 
Actual 

Area 
Computed 

Area 

Number 
of Bars Number 

Number in. d Ae A. for Bond of Rows 

Use 2 f rd. 14.37 0.88 0.76 1.7 1 
3 |rd. 13.90 0.92 0.79 2.1 2 

Three bars cannot be placed advantageously in two rows. Use f-in rounds. 

Negaiive Bending, This steel will be in the form of inverted U bars. Assume two 

rows of f-in. bars, j = 0.87. 

An 
291,000 

20,000 X 0.87 X 14.13 
1.19 sq. in. 

V 11,100 _ 12,750 

Xojd 2o X 0.87 X d 'Lod 

Size 

Steel 
Depth 

Actual 

Area 

Computed 

Area 

Number 

of Bars Number 

Number in. d A. A. for Bond of Rows 

4 1 rd. 14.13 1.23 1.19 114 2 
Use 5 2 sq- 14.40 1.25 1.16 88 2 

The point of inflection for maximum negative bending is at a section 2.86 ft. — 
34 in. from the column face (Fig. 83), where the shear force V — 5850 lb. 

2) 
V 

uojd 

_5850_ 

150 X 2.00 X 0.87 X 15.00 
1.5 bars 

138. Fiber Stress in Concrete. Cross Beam. Negaiive Bending. The maximum 

negative bending moment Mn == 291,000 in.-lb. Without compression steel the 

rectangular beam at the support can care for a moment Me = Kh(P = 157 X 8 X 

(14.40)^ =» 261,000 m.-lb. The necessary compression steel A't — 0.19 sq. in. is 

found by the procedure used for the intermediate beam in Article 133. Employing 

the two f-in. positive bars that run into the support, the compression steel stress 

^ * « 6600 lb. per sq. in. and its anchorage must be at least 13 in. 

139. Placing Steel. Cross Beam. Positive Steel, The following reqmrements 

govern the placing of the straight positive bars. 

1. Two f-in. round bars at the center line for bending moment. 

2. Two bars at 21 in. from support for bond. 

3. Two bars at the support for anchorage and compression steel. 
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Negative Sted. The following requirements govern the placing of the negative 

tension steel 

1. Five |-in. square bars at the face of the column for bending moment. 
2. These five bars satisfy bond requirements at the support. 

3. Two bars at the point of inflection for bond. The point of inflection is 2.86 ft. 

= 34 in. from the column face. 

The two outside -|-in. bars in the upper row will be carried to a section 3 in. beyond 

the center line. They support the stirrups, and fulfill the anchorage requirement by 

substituting an exceptional length for the standard hook. The other three bars can 

be bent down before they reach the point of inflection. Bend the pair in the lower 

row first and then the middle bar of the upper row. 
If two bars are bent down, the remaining three can carry a bending moment: 

2 bent: Mz = 20,000 X 0.75 X 0.87 X 15.00 - 195,500 in.-lb. 

3 bent: M2 = 130,300 in.-lb. 

If these moments are changed to foot-pound units, the bends can be made by using 
Figure 83. 

Mz = 16,300 ft.-lb. Bend two bars at 0.77 ft. == 10 in. 

M2 = 10,850 ft.-lb. Bend one bar at 1.36 ft. = 17 in. 

These bends have been determined by bending moment considerations. The 

allowable stress in bond should not be exceeded and it is essential to insure that there 

are bar perimeters enough at all sections until the point of infiection is reached. 

For successive bends the maximum shear force is: 

2 bent: Fs = 150 X 3 X 2.00 X 0.87 X 15.00 = 11,730 lb. 

3 bent: 72 - 7,830 lb. 

The first bend can occur at any section as the maximum shear force in this span is 

11,100 lb. The second bend can occur at a section 1.76 ft. « 22 in. out. The two 

bars in the lower row can be bent at 10 in. and the middle bar in the top row at 
22 in. from the column face. 

l40. Diagonal Tension. Cross Beam. Figure SJ,.. Diagonal tension reinforcement 
will be supplied by a combination of bent bars and 

stirrups. 

Maximum 1; ~ 
11,100 

8 X 0.87 X 14.40 

d 14.40 

111 lb. per sq. in. 

Maximum stirrup spacing = - 
2 

Maximum bent bar spacing = 14.4 in. 

7.2 in. 

/ 2 3 4 5 6\ 
Disfctnce from Support-fr 

Cross Beam 

Fia. 84 

The first pair of bent bars can reach the bottom 

row at 10 -f 11 “21 in. from the column face, which 

exceeds the maximum spacing of 14 in. Use two^d 

i-in. round stirrups. 
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Minimum stirrup spacing: 

V « 

DIAGONAL TENSION 

in = 60 + 
■ r> V ^ V X t 

AT- • 250 Minimum 8 — ■— 4.9 in. 

143 

Stirrup Spacing Data (Fig. 84) 

Spacing Shear Stress Distance from Support 
8 in. V lb. per sq. in. X in. 

4 

5 110 1 
6 102 6 
7 96 10 

60 33 

A single ^-in. square bar bent down at 45® can resist diagonal tension stresses safely 

at its maximum spacing of 14 in., if the shear stress is less than 

1 X 0.25 X 20,000 
p = 60 H- 

8 X 14 X 0.707 
60 -f- 63 = 123 lb. per sq. in. 

The bent bars can be used anywhere in the span at their maximum spacing. 
The first pair of bent bars cannot reach the bottom of the beam until 21 in. out. 

This pair prevents crack formation for 14 in., or to the section 7 in. out. There¬ 

fore, use stirrup spacings of 4 and 5 in. Then use the pair of bent bars for 14 in. 

30* 
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to a section 23 in. out. The single bent bar from the top row can reach the bottom 

at 22 + 12 = 34 in.; however, when spaced at the maximum spacing of 14 in., it 

reaches the bottom at 23 + 14 = 37 in. out. The shear stress reduces to t; = 60 lb. 

per sq. in. at the section 33 in. out, so no more diagonal tension steel is required. 

Figure 85 shows the complete steel for this span. 

GIRDER 

141. Design of Girder. The preUminary design of the girder gives us the follow¬ 

ing information (Art. 127): 

Width of stem * 6' = 14 in. 

Depth of stem ^ i = 26 in. 

Corrected uniformly distributed load = 1250 lb. per ft. 

Concentrated load = 18,270 lb. 

The corrected loading diagram is shown in Figure 86. 

Maximum shear force at support V = 34,850 lb. 

J8270/b. f8^70/b. 

Fig. 86 

With an origin at the left support the shear force and bending moment equations 

From X = 0 to X =* 8.42 ft. 

Shear force V = 34,850 — 1250x 

1250x^ 
Bending moment M = 34,850x--— 

The shear force and bending moment diagrams are shown in Figures 87 and 88, 
Corrected maximum positive bending moment due to uniformly distributed load: 

Mp = — = 660,000 m.-lb. 
16 

Majdmum positive bending moment due to concentrated loads (Art. 127): 

Afp = 84,000 X 12 = 1,008,000 in.-lb. 

Total maximum positive bending moment at center line; 

Afp = 1,008,000 + 660,000 = 1,668,000 in.-lb. 
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For maximum negative bending the end moment Mn (Fig. 86) equals — for the 

distributed load plus 105,000 ft.-lb. for the two concentrated loads (Art. 127). The 

Distance from Support-ft 
G/rder 

Fig. 87 

value 105,000 ft.-lb. is the fixed-end moment for two cencentrated loads placed as 
shown. The total value of the end moment Mn for maximum negative bending is 

Mn = - 

1250 X (26.5)2 
105,000 == -185,000 ft.-lb. 

Mn == -2,220,000 in.-lb. 

Fig. 88 

142. Tension Steel. Girder. Positive Steel, The Type III system of reinforce¬ 

ment ha-g been adopted for the girder (Art. 60). The positive steel should be four, 

six, or dght bars, so that half of it can be bent up as truss bars. Assume a moment 
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arm ratio j ~ 0.92 for positive bending (Fig. 736), a depth to the steel d » 30 — 4 

« 26 in., and |-in. round stirrup bars. 

_ 1,668,000 

^ “ 20,000 X 0.92 X 26 
3.48 sq. in. 

Bond is checked at the point of inflection, which is at 3.8 ft. = 46 in. by Figure 
88. At this section the shear force V = 30,100 lb. Using special anchorage and 

an.allowable stress u — 150 lb. per sq. in.. 

2 
V 30,100 218 

uojd 150 X 0 X 0.92 Xd~ od 

Steel Actual Computed Number 

Num¬ Size Depth Area Area of Bars Number 

ber in. d A. A. for Bond of Rows 

4 1 sq. 27.00 4.00 3.35 2.1 1 
5 1 rd. 27.00 3.93 3.35 2.6 1 
6 i rd. 26.12 3.61 3.47 3.1 2 
8 f rd. 26.25 3.54 3.45 3.6 2 

Adopt tentatively the eight |-in. round bars, as they closely approach the com¬ 

puted areas and give plenty of bars to bend. This choice is subject to change if 

satisfactory provision cannot be made for compression steel at the support. 

Negative Steel The negative tension steel will be provided from the top rows of 
positive tension steel in the two adjacent spans. By bending up four f-in. round 

bars from each side there are available at 

the support eight f-in. round bars. Assume 

a moment arm ratio j *= 0.87 and a height 

to the steel d = 26.49 in. (Fig. 89). The 

top row of |-in. square bars in the cross 

and intermediate beams is 2.00 in. down. 

The top row of f-in. girder steel must be 

below these bars. 

An - : 

185,000 X 12 
= 4.82 sq. in. 

20,000 X 0.87 X 26.49 

The eight f-in. bars supply 3.54 sq. in. 

Fig. 89 area. There remains an excess of 1.28 sq. 

in., which is given by two 1-in. round bars. 
The 1-in. bars will not be bent down, but will run to the center line and carry the 

fitiiTups. The minimum spacings are satisfied with four f-in. rounds and two l-in. 
rounds in the same row. 

At support 
.'M- TUMI 

60 lb. per sq. in. 
34,850 

25.13 X 0.87 X 26.72 

143. Fiber Stress in Concrete. Girder. Negative Bending, The maximum nega¬ 

tive bending moment Mn = 2,220,000 in.-lb. Without compression steel the rec¬ 

tangular beam at the support (Fig. 89) can safely carry a bending moment: 

Me » Kbd^ « 157 X 14 X (26.72)* « 1,570,000 in.-lb. 
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Therefore, compression steel must be used. 

M « 2,220,000 in.-lb. 

Me = 1,570,000 in-lb. 

M’e = 650,000 in.-lb. « C\{d - d') 

Assuming the compression steel to be f-in. bars in the bottom row, d' — 2.88 in. 

650,000 

26.72 - 2.88 
= 27,200 lb. = 2/'.A'. 

If the maximum allowable stresses are = 900 lb. per sq. in. and che actual steel 
stress /# = 18,700 lb. per sq. in., the neutral axis ratio k 0A2f and the neutral 

axis distance kd = 0.42 X 26.72 « 11.2 in. 
The fiber stress in the compression steel equals 

= 15 X 900 P®"" *”• 
11.20 

2/', 2 X 10,000 
= 1.36 sq. in. 

This area is supplied by the four f-in. round positive tension steel in the bottom 

row of the girder. Since the actual area is 1.77 sq. in., the actual compression stress 

equals /', =* 2 X 9050 lb. per sq in. and must be anchored 45 diameters, or 34 in., 

into the column. 
Positive Bending, The designer knows that the stresses in the concrete are safe 

for positive bending. 
However, if we desire to ascertain the actual stress, we solve first for the flange 

width h. This is computed as 6 = 78 in. The tension steel depth d * 26.25 in. 

Assuming that the neutral axis lies in the flange, we solve for the steel ratio P “ 

q KA 

-±21— « 0.0017. From Diagram 1 in the Appendix, the intersection of p 
78 X 26.25 . 

» 0.0017 and n » 15 gives a neutral axis ratio k ~ 0.20 and a moment axis ratio 
j Es 0.93. The neutral axis is a distance kd ~ 0.20 X 26.25 = 5.25 in. below the 
top. This is below the slab, and the compression area is tee shaped. Assuming 

that the compression in the stem can be neglected, equation 73 (Art. 104) may be 

written: 

Me (2fai - 0 ” CefJtHp 
2kd 

where 

2iWV d) fJxP 

also p “ 0.0017 and np = 16 X 0.0017 = 0.026. 

0.162 
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From Diagram 10 in the Appendix, for - = 0.152 and np == 0.026, the value of 
a 

the moment arm j = 0.94. The assumption of j = 0.92 is safe, but we shall now 

use j ** 0.94. In the same diagram, for ~ = 0.152 and np — 0.026 the term Ce ~ 
d 

0.09. 

Maximum fiber stress fc = 
1,668,000 J!L _ 

Ccbd^ ~ 0.09 X 78 X (26.25)2 
= 340 lb. per sq. in. 

Maximum allowable stress/c = 0.45/c = 900 lb. per sq. in. 
144. Checking by Tee-Beam Equations. The check of fiber stress given immedi¬ 

ately above l/y plots is the usual commercial method. Cases may arise for which 

there are no plots a-nd we should be able to use the fundamental equations. Let us 

check the maximum fiber ^stress for positive bending by the equations of Article 104. 

Neutral axis kd 
2ndA, + b/2 

2nAs + 
2 X 15 X 26.25 X 3.54 + 78 X (4)2 

2 X 15 X 3.54 + 2 X 78 X 4 

2790 -f 1250 _ 

106 + 624 “ 730 
5.52 in. 

This is the correct kd] the previous computation of 5.25 in. in Article 143 was 

made by the rectangular-beam theory and merely indicates that the result was out¬ 

side the limit. The neutral axis is below the slab, and the compressive area is tee 
shaped. 

tiZkd - 2t) 4(3 X 5.52 - 2 X 4) 4 X 8.56 

* “ 3{2kd -i) ~ 3(2 X 5.62 - 4) " 3 X 7.04 “ 

also 
jd — d -- z — 26.25 1.62 — 24.63 in. 

24.63 

26.25 
- 0.94 

M 1,668,000 

A,jd “ 3.54 X 24.63 
19,100 lb. per sq. in. 

fc 
19,100 / 5.52 \ 

15 V26.25 - 6.62/ 
340 lb. per sq. in. 

These equations are convenient for checking a design rather than for determining 

sises of sections and areas of steel. 

146. Placing Steel. Girder. Positive Steel. The positive steel consists of eight 

f-in. roimd bars in two rows. We must fulfill the following requirements while it 

is used as tension steel. 

1. Eight f-in. rounds at the center line for bending moment. 

2. Four bars at the point of inflection 46 in. from column face for bond. 

3. Four bare running into the column and hooked, for anchorage and compression 
steel. 

Run the lower row of four bare 34 in. into the column to anchor for the compression 

stress 18,100 lb. per sq. in. (Art. 143). This will care for bond, anchorage, 

and compression steeL 
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The bars in the upper row can be bent up as soon as the bending moment allows. 

From Figure 88 the positive bending moment diagram permits 

2 bent: Me = 20,000 X 6 X 0.442 X 0.94 X 26.54 = 1,320,000 in.-lb. 

4 bent: Ma - 20,000 X 4 X 0.442 X 0.94 X 27.13 = 900,000 in.-lb. 

When Me = 110,000 ft.-lb. bend 2 bars at 7.8 ft. = 94 in. 

When Ma — 75,000 ft.-lb. bend 2 more at 6.5 ft. = 78 in. 

These bends cannot be made nearer the center line, and the values are maxima when 

bends for diagonal tension are considered. 

Negative Tension Steel. The negative tension steel consists of eight f-in. round 

bars and two 1-in. round bars. The 1-in. bars will be run 3 in. beyond the center 

line in each direction. 
Bond. The point of inflection for maximum negative bending occurs at a section 

5.95 ft. =71 in. from the column (Fig. 88). The total perimeters required at this 

section to satisfy bond requirements are 

^ V 27,400 
2o = — =-- 7.75 m. 

ujd 150 X 0.87 X 27.13 

The steel height d = 27.13 assumes that all the bars considered are in the top row. 

The two 1-in. bars supply 6.28 in., so at least one f-in. bar must run to this section 

to satisfy bond. Use two f-in, bars for symmetry; they will be run a few inches or 

so into the ^'region of compression” and a standard 180° hook ’will be added. The 

other six f-in. bars can be bent down or cut off before they reach the point of inflec¬ 

tion. As far as bond is concerned, six bars can be bent down at any part of the 

span, as the remainder is effective up to a shear force of 39,000 lb. 

Bending Moment. Three-quarter-inch bars can be bent down in pairs as follows. 

2 bent: Ms = 20,000 X 4.22 X 0.87 X 27.00 = 1,980,000 in.-lb. 

4 bent: Me = 20,000 X 3.34 X 0.87 X 26.90 = 1,570,000 in.-lb. 

6 bent: Ma = 20,000 X 2.45 X 0.87 X 27.13 = 1,157,000 in.-lb. 

When Ms *= 165,000 ft.-lb. bend 2 bars at 0.83 ft. = 10 in. 

When M« = 130,700 ft,-lb. bend 2 more at 1.62 ft. = 20 in. 

When Ma = 96,300 ft.-lb. bend 2 more at 2.65 ft. = 32 in. 

This last pair is bent down but is not made continuous with the positive steel. 

The summary of the bending moment, bond, and anchorage data for the bent 

bars is shown in Figure 90. One pair of truss bars will be bent up to go into the 

Maximum 
Minimum Js- .1 1 

■ HS ■ 
Column 

3r to* Minimum \ 

] IS" \ 
t t 

^ Maximum 

Fia. 90 
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upper row over the column and run to the point of inflection; the other pair will go 

into the lower row and bend down in the adjacent spans. We are now able to com¬ 

pute the diagonal tension steel, knowing the limitations for the bent bars due to 

their triple action as positive, negative, and diagonal tension steel. 
145. Diagonal Tension Steel. Girder. The corrected maximum shear stress equals 

V_ 

bjd 

34,850 

14 X 0.87 X 26.72 
= 108 lb. per sq. in. 

The complete shear stress diagram is shown in Figure 91. 

Maximum Spacing. We have assumed two- 
rod ^-in. round stirrups. Their maximum longi¬ 

tudinal spacing equals - 
Jt 

26.72 
13.4 in. 

Fig. 91 

We are using f-in. round bars as* bent bars. 

Their maximum longitudinal spacing equals 

d = 26.7 in. 

Minimum Spacing, Assume that diagonal 

tension is computed for maximum positive 

bending with the tensile cracks occurring at the 

bottom of the girder. The first pair of bent 

bars cannot be nearer than 31 in. to a crack 

starting at the support. This is greater than 

the maximum longitudinal spacing of 26 in. 

W^e must first use stirrups. 
Stirrups. The minimum spacing for stirrups is determined at the support. 

2 X 0.196 X 20,000 560 
108 = 60 +-r;-r- = 60 + — 

^ 14 X 5 X 1 8 

560 
Minimum s — — = 11.7 in. This is too close to the maximum spacing of 13 in. 

4o 

If the size is changed to two-rod f-in. round stirrups the closest spacing equals 

314 
v = 60 -f * or » * 6.6 in. 

This size permits some expansion as the shear stress drops, and we shall adopt 

the f-in. stirrups. 

Spacing Total Shear 

Distance from 
Column Face 

in. V in. 

6 
8 99 20 

10 91 46 
12 86 62 

60 101 

Bent Bars, It is desirable to use bent bars at their maximum spacing so that the 

extra cost of bending the bar may be offset by the number of stirrups eliminated* 

Also, it is desirable to make the bends as near the support as possible, because the 

stirrups are closely spaced in regions of high shear force. 
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A pair of |-in. bars bent at 45® can be used at their maximum spacing of 26 in. 

if the shear stress does not exceed 

2 X 0.44 X 20,000 
t; = 60 H-^- 

14 X 26 X 0.707 
129 lb. per sq. in. 

The shear stress does not exceed v = 108 lb. per sq. in., so the bent bars can be 

used at their maximum spacing anywhere in the span. By A.C.I. Article 706a 

stirmps must be spaced not more than 

16 bar diameters = 12 in. 

48 tie diameters = 18 in. 

wherever compression steel is needed. The negative moment exceeds Me == 1,570,000 

in.-lb. for a distance of about 18 in. from the column face. 

Placing Steel. The first bend can reach the bottom of the beam at 31 in. (Fig. 90). 

At a maximum longitudinal spacing of 26 in. this pair of bent bars can reinforce aU 

sections between 5 in. and 31 in. However, use three stirrups spaced at 6 in. to 

reinforce from the column face as long as compression steel ig needed. Then the 

first bent pair can be placed at 18 4- 26 = 44 in., which is between the bending 

limits of 31 in. and 78 in. The second bent pair is spaced at its maximum of 26 in. 

and bends up at 70 in., which is also between the bending moment hmits of 43 in. 

and 94 in. The third pair of negative bars can be bent down from the top at 32 in. 

out. Let them continue to the bottom and be hooked there. They can reach the 

bottom at 53 in.; but, if used as diagonal tension reinforcement, they should reach 

the bottom at 70 4- 26 = 96 in. The edge of the intermediate beam is at 97 in., 

so no additional web steel is needed. The stirrup spacings and bent bars are shown 

in Figure 93. 

147. Transverse Steel in Slab. Girder. The slab steel runs parallel to the girder. 

Therefore, there is no rigid connection between the slab and girder except that given 

by the prongs of the few stirrups, yet we are assuming that the slab acts as the flange 

of the girder section. In mid-span the slab will tend to deflect more than the girder, 

and cracks may appear at or near the junction of slab and girder stem. To prevent 

the formation of such cracks and to tie the slab and girder together it is customary 

to place steel in the top of the slab running transversely over the girder. A.C.I. 

Article 705c specifies that this steel shall be designed to carry the load on the portion 

of the slab assumed as the girder flange. This load will act on a cantilever beam 

(Fig. 92). The maximum bending moment occurs at the edge of the beam stem 

and for a cantilever 1 ft. wide equals 

wP 32 32 
M = — = 180X7rX“ = 7680 in.-lb. 

2 iJj Z 

This transverse steel goes in the top of the slab but must be under the slab steel 

in order to preserve the fireproofing clearance. The transverse steel will be imme¬ 

diately below the main slab steel and can be placed to dodge the occasional girder 

stirrup which also hooks over at this level. The spacing of the transverse steel shall 

not exceed five times the slab thickness, nor exceed 18 in. Assume f-in. round bars 

for trial. The steel height d»4 — f — | — 2.69 in. 

M ^ 7680 

5cP “ 12 X (2.69)2 
K 88 
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From Diagram 2, in the Appendix, steel ratio p — 0.005. From Diagram 1 the value 

of the moment arm ratio j — 0.89. 

Tension steel area As 
_7680_ 

20,000 X 0.89 X 2.69 
= 0.16 sq. in. 

Use f-in. round bars spaced at 8| in. This spacing is within the maximum allow¬ 

able of 5t = 20 in, and within the other maximum of 18 in. 

148. Final Sketch. Girder. Figure 93 shows the complete steel sketch for this 

span. The design of this floor system has been given in considerable detail because 

tee-beam designs constitute so great a part of concrete design. The designer would 

simplify much of the procedure by means of tables and plots. 

Fia. 93 

The truss bars A and B are long and have many bends plus hooks. Type III 

reinforcement using truss bars is not well adapted to the present requirements for 

special anchorage. If ordinary anchorage had been used the hooks could be omitted 

and the final bend down for anchorage in the adjacent spans for bar B, Both A 
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and B bars would then resemble those of Figure 31 and be shorter and easier to 

fabricate. When special anchorage is employed the U bars of Type II reinforce¬ 

ment fit more easily into the requirements. 

PLASTIC THEORY 

ILLUSTRATIVE PROBLEM 18 

149. Tee-Beam Size by Plastic Theory. Let us determine for the beam and girder 
floor system of Problem 17 the sizes of tee-beam sections to use for the intermediate 

beam and the girder. 

Intermediate Beam. The known or assumed data are 

Thickness of slab = 4 in. 

Beam stem = 8 in. by 16 in. 

Load from slab = 180 X = 1740 lb. per ft. 

Stem weight =135 lb. per ft. 

The load diagram is shown in Figure 68 and the shear force and bending moment 

diagrams are given in Figure 69. These shears and moments will be used without 

change for the plastic theory, on the assumption that they were obtained from the 

ultimate values by dividing by a suitable factor of safety. 

Maximum positive moment = 19,200 ft.-lb. 

Maximum negative moment = 27,900 ft.-lb. 

Negative Bending at Support (Fig. 69b). This section is a rectangular beam. 
Assuming no compression steel and balanced design, the size by equation 20 is 

3 X 27,900 X 12 

800 
1253 cu. in. 

The allowable stress fe has been taken as 0.4/c. If 6 = 8 in., d = 12.5 in., h = 

15 in. 
Positive Bending (Fig. 69a). If ^ = 15 in., d — 12.25 in, approximately. Mr. 

Whitney recommends that the beam flange 6 = 8f + 6' = 40 in. It is probable 

that the compression area will lie wholly in the flange. Assuming an under-rein¬ 

forced rectangular beam, by equation 19, 

a 12.25 1 
2.35 X 19,200 X 12 

800 X 40 X (12.25)2 
0.71 in. 

c 11.90 in. 

Ap - 

M 

fyC 

19,200 X 12 

20,000 X 11.90 
= 0.97 sq. in. 
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If one 1-in. square bar is used, the bond stress is too high, so use two f-in. round 

bars. The negative steel equals 

An - 
M 27,900 X 12 

0.732/^ 0.732 X 20,000 X 12.5 
= 1.83 sq. in. 

Use two 1-in. square bars, which are also satisfactory for bond. No compression 
steel is needed at the support. The comparison of the designs by the two theories 

gives 

Straight-Line Plastic 

Stem width, in. 8 8 
Total depth, in. 17 15 
Actual Ap, sq. in. 0.88 1.20 
Actual An, sq. in. 1.50 2.00 
Theoretical A',, sq. in. 0.44 None 

The compression steel does not count in this comparison, q& the two bars of positive 

steel will run into the support anyway and must be well anchored to justify ^‘special 

anchorage.” 

Girder. A similar analysis of the girder gives 

At the support 

Mp = 139,000 ft.-lb. 

Mn = 185,000 ft.-lb. 

hd^ = 

3 X 185,000 X 12 

800 

If 6 = 14 in., d = 24.4 in. and h = 29 in. 

185,000 X 12 
An == 

0.732 X 20,000 X 25.00 

= 8320 cu. in. 

6.06 in. 

Use eight 1-in. round bars, which are also satisfactory for bond. 

For positive bending, assuming d — 25.26 in. (two rows), 

a = 25.26 1 - 

2.35 X 139,000 X 12 

800 X 46 X (25.26)2 

c = 25.26 ~ 1.10 = 24.16 in. 

139,000 X 12 

= 2.20 in. 

— „ = 3.45 sq. in. 
^ 20,000 X 24.16 ^ 

Use -J-in. round bars. The comparison of results gives 

Straight-Line Plastic 

Stem width, in. 14 14 

Total depth, in. 30 28 
Actual Apf sq. in. 3.54 3.61 

Actual Aft, sq. in. 5.11 6.28 

Theoretical A',, sq. in. 1.36 None 
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In general, plastic design gives a somewhat smaller section with no compression 

steel at the support. However, the negative tension steel is considerably increased 

and the positive tension steel is slightly greater. These comparisons are made on 
the assumption that bond, anchorage, and diagonal tension are satisfied. 

RIBBED OR JOIST FLOORS 

160. Ribbed or Joist Floors. The ribbed floor consists of a thin slab, 
in. to 3 in. thick, supported by small joists spaced not more than 

30 in. in the clear. This type of floor construction is used in the endeavor 
to save weight and is especially adapted for oflSce buildings, schools, etc., 
where the live loads are light. Since the slab and joists are poured as a 
unit the design again deals with a tee-shaped section. The space be¬ 
tween the joists may be filled with light-weight tile to give a plane under¬ 
surface for plaster (Fig. 94a), or the joists may taper slightly so that 

Fig. 94 

the forms of sheet metal may be withdrawn, leaving this space open 
(Fig. 94&). If tile is used the clear distance between joists is usually 
12 in.; if the metal forms are used longer distances up to 30 in. can be 
employed. 

Concrete or clay tiles are used as fillers. Before the floor system is 
designed it is desirable to learn what depths of tile are available in the 
locality where they are to be purchased. The weights of concrete tile 
with 12-in. by 12-in. area for varying heights are 

Height Weight * Height Weight 
in. lb. in. lb. 

4 16 8 30 
5 20 9 33 
6 22 10 35 
7 27 12 40 

• From Concrete Engineers Handbook^ Hool and Johnson. 

A.C.I. Article 708 requires that the ribs shall be considered straight, 
not less than 4 in. wide, nor deeper than 3 times the width. The clear 
spacing of ribs shall not exceed 30 in. Where removable forms are used, 
the slab thickness shall not be less than ^ the clear span between ribs, 
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nor less than 2 in. If tile are used, the slab thickness shall not be less 
than ^ the clear span between ribs, nor less than in. If the tile 
are so placed that the tile joints in alternate rows do not occur at the 
same cross section of the rib, the tile webs m contact with the rib may 
be used in the region of negative bending for computations involving 
shear and bending moment. Shrinkage reinforcement must be provided 
as in ordinary slabs. 

ILLUSTRATIVE PROBLEM 19 

161. Design of Ribbed Floor. Using the floor dimensions of Figure 61, design a 

tile ribbed floor to span between the girders, omitting the intermediate and cross 
beams. Adopt a 2000-lb.* concrete and ordinary anchorage. The tile system is 

used for this illustration because it parallels the design for removable forms and the 

tile computations must be made in addition. 
Assume the ^rder to be 12 in. wide; then the clear span for the continuous ribbed 

floor will be 13 ft. 6 in. Assume the minimum slab thickness f = 1^ in. and the 

minimum rib thickness of 6' = 4 in. Each tee-beam joist carries a strip of floor 

16 in. wide (Fig. 95). 

Fia. 95 

152. Slab. The thin slab spans continuously across the joists for many spans. 

Assuming that they are fixed at the ends and disregarding any support the tile may 

give, the negative fixed-end moment equals Mn — ~ • The load equals 

Live load - 130 lb. per sq. ft. 

l|-in. slab — 19 

w = 149 lb. per sq. ft. 

wJ?- 149 X (1)2 X 12 

12 
= 149 in.-lb. 

The slab is of plain concrete, except for shrinkage steel, and the maximum tensile 

stress equals 

My ^ 149 X 6 

/ “ 12 X (1.5)2 
33 lb. per sq. in. 

The allowable tensile stress is given by the ^‘shear equivalent’^ of v « 0.02/c » 

40 lb. per sq. in. (Art. 61). The l|-in. slab is satisfactory. 
153. Tee-Beam Rib. The dimensions of this small beam should be fixed before 

any steel is computed. The narrow compression area at the support (Fig. 965) 

• See footnote of Article 32. 
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makes that section the critical one. Assuming an 8-in. tile, the load on each beam 
equals 

Live and slab loads = 149 X = 199 lb. per ft. length 

4X8 
Beam stem ==-— X 150 = 33 

144 

8-in. tile = 30 

w = 262 lb. per ft. length 

262 X 13 5 
164. Shear. Joist. The maximum shear force V =---^ = 1770 lb. The 

tile walls adjacent to the joist are assumed to be | in. thick. The shear stress equals 

1770 

5.5 X 0.87 X 8.50 
== 44 lb. per sq. in. 

This stress is safe if special anchorage is used. No diagonal tension steel is needed 

nor is it desired. 
166. Fiber Stress at Support. The maximum negative moment equals 

„ 12 
Mn = — = 262 X (13.6)2 X — = 52,000 in.-lb. 

The compression area is rectangular at the support (Fig. 965). Counting the 

adjacent tile walls, the rectangular beam constant equals 

M _ 52,000 

6d2 - 5.5 X (8.60)2 
131 

From Diagrams 1 and 2 for iC = 131 and /, — 20,000, 

Je — 800 lb. per sq. in. and j - 0.875. Safe. 

166. Positive Bending Moment. (Figure 96a.) The maximum positive moment 

Mp “= — = 35,7(X) in.-lb. Assuming the steel to be J-in. bars with 1^-in. fireproof- 
16 

ing and the neutral axis to be located in the flange. 

M 35,700 _ 

bdP 16 X (7.75)=* 

From Diagrams 1 and 2 for .K °° 37 and f, == 20,000, 

ft “ 360 lb. per sq. in. j — 0.93 and k =* 0.22 
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The neutral axis is at a distance kd ~ 0.22 X 7.76 « 1.71 in. from the top. This 
is below the flange and the compression area is tee shaped. The positive steel equals 

M_35,700 

^ " fsjd ~ 20,000 X 0.93 X 7.75 

Use one ^-in. square bar. 

== 0.25 sq. in. 

By Diagram 10 for 
t 1.5 

7.75 
= 0.194 and np = 

15 X 0.25 

16 X 7.75 
= 0.03, 

Cc — 0.10 and 

M 35,700 

“ CM “ 0.10 X 16 X (7.75)2 

j = 0.93 

370 lb. per sq. in. Safe. 

It will be noticed that the results for fc and j by the false assumption of the neutral 
axis in the flange are correct in this case because the neutral axis is only a short 
distance below the flange. 

The positive steel is checked for bond at the point of inflection. This occurs at 

0,151 == 24 in. from the support. At this section V - 1240 lb. The number of bars 
required is 

2 -- = —-- = 0.6 bars. Safe. 
uojd 150 X 2.00 X 0.93 X 7.75 

167. Negative Tension Steel. 

^ 62,000 . ^ o. . 

* 20,000 X 0.876 X 8.60 ’ 

Use two ^-in. round bars. 

At the support 

_V_1770_ 

Xojd ” 2 X 1.57 X 0.875 X 8.50 
76 lb. per sq. in. Safe. 

These bars will be carried out to the point of inflection and anchored beyond 

that section by hooks. The point of inflection occurs at 0.24Z = 39 in. The steel 
arrangement is shown in Figure 97. 

Shrinkage Sled. This steel can best be supplied by wire mesh, since there is no 

steel in the thin slab and it is advisable to have shrinkage reinforcement in both 

directions. Using the slab thickness oit = 1.5 in., the steel area in both directions 
equals 

A, = 0.0025 X 12 X 1.5 = 0.045 sq. in. per sq. ft. of floor surface 

168. Supporting Beam. Rectangular Beam. The beam supporting the joist floor 

system will have the section showm in Figure 97 when opposite a row of tiles. If the 

l-^rd. X 9'-4“Long 2-irdx9'-rLong^ 

n _1 

i y.l5'-4'Lonp 

, THe for 13 ft. , I 
Fig. 97 
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tiles run for 13.5 ft., it will be necessary to introduce a half-tile into each row to 

give the necessary length and to assure that the tile joints are not opposite each 

other in two adjacent rows. Each slab rib brings to the supporting beam in each 
16 in. interval a load of 

Live and dead loads = 262 X 13.5 = 3540 lb. 

Beam = 12 X 24 X ttt X fl == 400 lb. 

Total - 3940 lb. 

The load per foot of length w = 3940 X rJ = 2950 lb. per ft. Disregarding the 
thin 1 |-in. slab, the beam section is rectangular. The maximum numerical moment 

is the negative. 

wl^ « 12 
Mn = — = 2950 X (26.5)2 X — = 2,260,000 in.-lb. 

d = 
_ /2,260,000 

\Kb “ \ 157 X 6 

120 

Vb 
A beam with a width of 12 in. will be about 38 in. deep, and a better section would 

be 16 in. by 33 in. In order to use tile or half-tile between beams 16 in. wide, the 

row of tiles could only be 13 ft. long. The beam would then have a flange of solid 

slab extending out 1 in. each side of the beam stem. 

Tee Beam. A lighter design can be made w4th a tile row of 13 ft., if the beam stem 

is made 12 in. wide with the solid slao extending out 3 in. on either side. The beam 

section for positive bending is tee shaped w4th a flange 18 in. wide and 9.5 in. deep. 

Let us assume the stem to be 12 in. by 21 in. Each joist unit brings in a load for 

each 16-in. length of the beam equal to 

Live load and l^-in. slab = 149 X tI X 14.5 = 2890 lb. 

- 435 
4X8 

Joist stem = -7.X 150 X 13 
144 

Tile = 30 X 13 

Solid slab - ——^-3-- - X 150 
(12)3 

= 390 

= 80 

3795 lb. 

The load per foot length of the beam equab 

3795 X H = 2840 lb. per ft. 
12 X 29 

Beam weight = —77;;— X 150 = 360 
144 

3200 lb. per ft. 

Maximum positive moment = “ = 3200 X (26.5)2 X ~ = 1,690,000 in.-lb. 
16 16 

Assuming the neutral axis to be below the 9.5-in. flange and d = 27.5 in., 

^ 1,690,000 

np w 

' 20,000 X 0.88 X 27.5 

16 X 3.50 

3.50 sq. in. 

18 X 27.6 
0.106 and 

9^ 
27.5 

0.35 
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From Diagram 10, = 810 lb. per sq. in., j == 0.88. This concrete stress is safe. 

Use three Ig-in. square bars in one row with d = 27.56 in. 

Negative Moment and Shear. Maximum negative moment = — = 2,460,000 

in.-lb. Use four l|-in. square bars in one row with d = 28.06 in. The concrete, 

without compression steel, can safely carry a moment of 

Me = Khd- = 157 X 12 X (28.06)2 = 1,480,000 in.-lb. 

The compression steel moment M'g — 980,000 in.-lb. and a compression steel area 

A a = 1.95 sq. in. is required. 
The maximum shear stress equals 

_7 ^ 3200 X 13.25 

hjd "" 12 X 0.87 X 28.06 
145 lb. per sq. in. 

If special anchorage is used, this is safe. 

Weight of floor. The weight of a joist unit 16 in. vdde by 13.5 ft. long = 1,245 lb. 

Weight of floor panel 29 ft. by 13.5 ft. = 27,000 lb. 

Weight of beam, 12 in. by 30.5 in., 26.5 ft. long = 10,100 lb. 

Weight of floor system, 29 ft. by 14.5 ft. = 37,100 lb. 

169. Comparison with Solid One-Way Slab. If this same panel, 29 ft. by 14.5 ft., 

is designed for a slab spanning from girder to girder, the slab load equals 

Live load =130 lb. per sq. ft. 
6-in. slab = 75 

Total on slab = 205 lb. per sq. ft. 

12 
The maximum numerical moment = Mn = — = 205 X (13.5)2 X — = 40,800 in.-lb. 

^ [m I 40,800 

Assuming |-in. steel, h = 4.65 4- 0.75 -f 0.50 = 5.90 in. Use 6-in. slab. 

Beam. A tee beam, 12 in. wide by 31 in. deep, with a stem 12 in. by 25 in., will 

carry this slab and the live load safely. 

Weight of floor, 6 in. deep, 29 ft. by 13.5 ft. = 29,400 lb. 

Weight of beam, 12 in. by 31 in., 26.5 ft. long = 10,300 lb. 

Weight of floor system, 29 ft. by 14.5 ft. = 39,700 lb. 

For the loads and dimensions used in this problem little saving in weight results 

from the use of the joist floor system. If the metal forms are used and no tile, so 
that the joists are much farther apart, there is often a saving. If spans are less and 

loads are lighter, the solid slab approaches its minimum of 4 in. thick and flreprooflng 

clearances make such a slab inefficient. The somewhat deeper joist floor will then 
often compare favorably in weight. 

The joist floor system can also be used with two-way steel and joists. The division 

of loads is made in the same manner as that for two-way solid slabs (Chapter 10). 



CHAPTER 8 

DEFLECTION AND TORSION 

160. Deflection and Flow. The term deflection will be used to denote 
the displacement of the neutral layer of a beam which occurs within a 
short time after the application of the load. The usual beam formulae 
give deflections. The term flow will be used to represent the additional 
deformations caused by shrinkage and by the yielding under long- 
continued loading. 

Neither deflection nor flow is extreme for beams of short span. Beams 
of medium span designed for fiber stress are usually safe for deflection. 
Beams of long span must be checked for both deflection and flow, as 
the safe load will be determined by the necessity of having reasonable 
values for these deformations. 

161. Deflection of Beams. The theory of deflection for beams is 
based on the usual limitations and assumptions of the general beam 
theory. A reinforced concrete beam does not fulfill all these require¬ 
ments. It is not of homogeneous and isotropic material, nor does it have 
uniform cross sections as required by the limitations. The assumption 
that the fiber stresses are uniformly varying is true for the steel and at 
least approximately for the concrete in compression. If we consider 
the concrete as also helping to carry the 
tensile stresses, the tensile stresses in the 
concrete will be so near the ultimate that a 
constant proportionality between the stress 
and strain no longer holds (Fig. 3a). As long 
as the concrete still carries some tension, the 
load-deflection diagram will be curved as is 
the line OA in the typical deflection diagram 
of Figure 98. After the concrete cracks in 
tension the concrete carries the compression 
stresses and the steel the tensile stresses in a 
straight-line relation AB, When the concrete reaches the higher com¬ 
pression stress and the steel passes its elastic limit the load-deflection 
diagram is no longer straight, but continually greater deflections are re¬ 
corded for the same increment of load, as is shown by BC, The difficulty 
of fitting a rational deflection theory to both the OA and AB portions of 

161 

Fig. 98 
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the load-deflection curve which shall allow for the changes produced by 
concretes of different strengths and also by the great variation of pos¬ 
sible steel arrangements is apparent. The variations are so great that 
the theory must be modified by test results to give reasonable accuracy. 

The usual equations for the maximum deflection v of beams take the 
form 

Wl^ 
^':nax. = (92) 

til 

where W = total load on the span 
I = span 

E = modulus of elasticity of the material 
I = moment of inertia of the section 

Cl = a coefficient (Ci varies with the fixity of the support and 
with the t3q)e of loading whether it be concentrated, dis¬ 
tributed, etc.) 

If this relation is adopted as the basis of reinforced concrete deflection 
computations, it is necessary to decide w^iat we shall use for the modulus 
of elasticity E and for the representative, or average, moment of inertia 
I for the span. 

162. Modulus of Elasticity. The usual beam theory assumes that the 
modulus of elasticity of the homogeneous material is the same in tension 
as in compression. This is not true for the reinforced concrete beam. 

On the compression side of the beam the concrete stresses may be 
assumed proportional to the strains. There will be a constant value Ec 
of the modulus of elasticity in compression for all sections whether 
lightly or heavily loaded. 

On the tension side the concrete will have cracked at the sections of 
maximum bending moment even for light loads. Other sections will still 
be able to take some tension wherever these tensile stresses are low. 
When we design for fiber stress we consider the section of maximum 
bending and very properly do not consider the concrete as taking any 
tension. On the other hand, when we design for diagonal tension at 
sections of small bending moment we allow for the tension in the con¬ 
crete. Similarly, dealing with deflection, and considering the action of 
the beam as a whole, we should allow for the tension in the concrete for 
a great part of the span. At a section with small bending moment the 
maximum tensile stresses may vary from zero to A (Fig. 99). In such 
a case all particles have the same modulus of elasticity Et^ which is the 
slope of the line OA. This value Et approximates the modulus of elas¬ 
ticity Ee in compression. At a section more heavily loaded the tensile 
stresses may vary from zero to JB. The particles with stresses varying 
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from zero to C have a common modulus which is the slope of the line 
OC, Each particle beyond C has a different modulus (secant modulus), 
such as the slope at particle B. The whole section will act as though 
the tensile stresses obeyed some unknown average modulus. 

Some other section may have tensile stresses varying from zero to F 
with a different average modulus. It is impossible, therefore, to compute 
a modulus of elasticity Et for concrete in 
tension which shall be a good average for 
sections lightly or heavily stressed in tension 
and sections which have already cracked. 
In addition, on the tension side there are 
varying amounts of steel whose modulus of 
elasticity E, is a constant. 

We cannot determine the correct aver¬ 
age modulus for all particles in a beam. 
As we shall use the transformed section 
for our computations, it seems advisable ^ 
to adopt the modulus of elasticity Ec of Sfra/n 
the concrete in compression for use in the Fig. 99 

deflection formulae and let any error due 
to the fact that it may not be the correct average be taken care of by 

Es 
an empirical value n' of the ratio — = n'. This term n' will also allow 

Ec 

for the variation of steel areas and position at different sections and for 
the variation of moment of inertia at different parts of the span. It 
becomes an empirical constant that justifies our simplifications and as¬ 
sumptions by giving the correct deflection. The analysis of available 
deflection tests suggests that the value of n' be taken as 8, 10, or 12, 
no matter what the mix may be. A value of n' = 8 appears to be a 
good average for all types of beams. The deflection figured when the 
term n' is used as a constant will not give exact results but will indicate 
whether the deflection is in., ^ in., 1 in., or more. The designer can 
then judge whether this approximate deflection is excessive or not.^ 

163, Moment of Inertia. There has been previous discussion of the 

fact that the moment of inertia of the cross sections of reinforced con¬ 

crete beams varies in different parts of the span. At the center sections 

with positive bending the cross section has the appearance of Figure 

100a with the equivalent transformed areas of Figure 1006 or 100c, de¬ 

pending on the position of the neutral axis. At the support with nega- 

' At the end of 4 or 6 years plastic flow makes it advisable to use values of of 
40 or SO to estimate the total deflection due to loads, shrinkage, and flow. 
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tive bending the section is shown in Figure 101a with tension and com¬ 
pression steel. The equivalent transformed area is given in Figure 1016. 
The positive and negative transformed areas are quite different, and 
their moments of inertia are different. Near the points of inflection, 

mmmmm ■ 1 1 
I-1 

Fig. 100 

(c) 

while the steel is bending up or down, the transformed section will con¬ 
tinually vary. It is difficult, therefore, to obtain by theory or by test 
an average moment of inertia which can be easily computed. The fol¬ 
lowing discussion gives some justification for using in computations the 
moment of inertia of the sections in positive bending. 

Maximum deflection is obtained by the live-load arrangement which 
gives the least restraint at the support or, in other words, gives the 
maximum positive bending in the span. The continuous beam will then 

approach the case for greatest deflection, which is that of a beam sup¬ 
ported at the ends without restraint. The discussion of slope-deflection 
solutions of continuous frames in Chapter 14 shows that the deflection 

can be found graphicaUy from the diagram. The moment of this 

diagram about a section gives the deflection at that section. If we con¬ 
sider a beam of constant moment of inertia I supported at the ends with 
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a uniformly distributed load, the — diagram can be plotted as in Fig- 
hil 

ure 102a. The moment of the portion of the diagram to the left of the 
center line gives (Fig. 1025): 

wl^ (l\ wl^ / 3Z\ wl^ / 5^\ b ^ 5 Wl^ 

i’mai. - 24^/ (2/ ” 2iEI \16/ ~ 2iEI \16/ 384 El 384 El 

The same result is obtained if we 
M 

take the* — diagram in two parts 
El 

divided by the section at - of the span (Fig. 102c). The maximum 

deflection at the center section is the moment of two couples about the 

center line: 

11 wf/bl \ 5 wl^/n \ {bl+lS)wl^ _ 5 wl^_5 WP 

384 ^ \T76/ ^ 384 El \80 / 384 X16 El 384 El 384 El 

This second analysis shows that == 0.84 of the maximum deflection 

M 
is due to the — loading in the middle half of the beam. 

El 
A similar analysis ior the supported beam with a central concentrated 

load TF gives a deflection (Fig. 103): 

WP ^ SWP 14 ^ (2 + 14)TrJ^ 

64M ^ 6 ^ 36 * " liloiir 

TTl* 

4^ 

In this case 
14 

16 

M 
0.875 of the maximum deflection is due to the — diar 

El 
gram in the middle half of the beam. 
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Analyses of the cases for concentrated loads of W due to two or three 
intermediate beams show that the loading of the center half causes more 
than 80 per cent of the maximum deflection. 

Therefore, since the center half of a reinforced concrete beam has a 
constant moment of inertia, and since more than 80 per cent of the 

M 
maximum deflection is due to the — loading of this part of the beam, 

El 
it seems reasonable to adopt the moment of inertia of the sections 
in positive bending for use in computations for maximum deflection. 

s 
64EI 

Fig. 103 

This is admittedly not the average for the whole span, but the correc¬ 
tion will be made from test data by the adoption of the suitable con¬ 
stant n' in the relation E^ = n'^c- 

164. Maximum Deflection. The maximum deflection of reinforced 
concrete beams will be computed by using equation 92: 

WP 

EJp 
(93) 

where Ec = modulus of elasticity of the concrete in compression 
Ip == moment of inertia of the transformed section for sections 

in positive bending. (The tension in the concrete is to 
.be included between the neutral axis and the center of 
gravity of the tension steel.) 

The values of the coefficient Ci for the usual loadings are given in Table 
2 in the Appendix. 

165. Deflection of Rectangular Beams, Tension Steel Only. A gen¬ 
eral expression for the jnoment of inertia Ip for sections in positive hendr 
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ing can be deduced. The section, transformed to equivalent concrete, 
will consist of a concrete rectangle hd and equivalent concrete substi¬ 
tuted for the steel in the amount Ac = n'Ag — n^pbd (Fig. 104). As 
the tension in the concrete is also considered, the neutral axis will not 
be at a distance kd from the top given by the formulae of Chapter 2. 

Fia. 104 

The neutral axis is at the center of gravity of the transformed section 
and can be found by taking moments of the transformed area about the 
upper edge. 

d 
hd X —h n'pbd X d = (bd + n'pbd)kd 

2 

Dividing by bd? and assembling k terms, 

1 + 2?i'p 

2(1 + n'p) 
(94) 

The moment of inertia of the concrete projections, substituted for the 
steel, about their center of gravity is so small that it will be neglected. 
The total moment of inertia about the neutral axis equals 

h 
h{Mf h{d - kdf 

~3 ' 3 
+ n'pbdid - kdf 

Ip = — [fc® + (1 - kf + 3«'p(l - &)2] 
3 

bd^ 
= — [3(1 + n'p)k^ - 3(1 + 2n^p)k + (1 + 3n'p)] 

3 

Substituting the value of k from equation 94 gives 

(1 + 4n'p) bd^ 
Ip = 

a + n'p) 12 
(95) 
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ILLUSTRATIVE PROBLEM 20 

166. Deflection of a Slab. Compute the deflection of the slab designed in Prob¬ 

lem 1 (Chapter 3). The data deal with an interior span of a continuous slab. The 

greatest deflection will occur for the live-load arrangement that gives a maximum 
wP 

positive bending moment Mp — — and, hence, a minimum negative moment Mn 
16 

wP --, 
16 

Clear span = 13 ft. 6 in. 

Slab thickness t — 6 in. 

Depth to steel d = 4.25 in. for positive bending 

Aa 0.39 
Steel ratio p = T; = -T7Z ~ 0.0077 

12 X 4.25 

Adopt a value of the constant n' — 8. 

Ip 

n'p = 8 X 0.0077 = 0.0616 

(1 + 4n» hd^ _ 1.246 X 12 X (4.25)^ 

(1 + n'p) 12 “ 1.062 X 12 

Es 30,000,000 
The modulus of elasticity Ec = — = --- = 3,750,000 lb. per sq. in. The 

n 8 
coeflScient Ci by Table 2, for a uniformly distributed load and an end restraint of 

wP 
“ » equals Ci = 0.0052. 
16 

_ CiWP _ 0.0052(205 X 13.5) (13.5 X 12)^ 
l^max. - ^ - 3^50,000 X 90 

Maximum deflection Vmax. ~ 0.18 in. 

Id.O X I 
If the maximum allowable deflection is taken as — — 

400 400 

slab is safe for deflection, even if Vmax. — 0.18 in. is somewhat approximate 

= 0.41 in., the 

ILLUSTRATIVE PROBLEM 21 

167. Deflection of a Rectangular Beam. Compute the deflection of the rectan¬ 

gular beam of Problem 8 (Chapter 5). The data deal with the interior span of a 

continuous beam. The greatest deflection occurs for the live-load arrangement that 

♦ wP 
gives a maximum positive moment Mp = — with an accompanying negative value 

16 
wP 

• By Table 2 the coeflScient Ci « 0.0052. 
Id 

Clear span I =26 ft. 6 in. 

Width of beam 6 « 16 in. 
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Depth to steel d = 29.12 in. for positive bending 

Steel ratio p 
U 16 X 29.12 

= 0.00643 

Adopting a value of the constant n' = 8, 

n'p « 8 X 0.00643 = 0.0515 

^ 1.206 X 16 X(29.12)» ^ 

1.05 X 12 

E, 30,000,000 
Modulus of elasticity Ec ^ =-r- = 3,750,000 lb. per sq. in. 

n' 8 

CiWl^ _ 0.0052(2705 X 26.5)(26.5 X 12)^ _ n ock * 

»m.x. - - 3,760,000 X 37,600 “ ’ 

If the maximum allowable deflection is taken as ■— = 0.80 in., the beam is safe 
4UU 

for deflection. 

168. Deflection of a Rectangular Beam with Compression Steel. The 
expression for the moment of inertia Ip of a rectangular beam with com¬ 
pression steel can be obtained by the use of the transformed section 

Section Elevation Transformed Section 

Fig. 105 

(Fig. 105). This concrete area consists of a rectangle hd. The compres¬ 
sion steel is pulled out and the holes filled with an equal area of concrete. 
The rest of the equivalent concrete for the compression steel, having an 
area (n' — l)p'bdj is placed as a projection, or fin, at a distance d' from 
the upper edge. The equivalent concrete for the tension steel is placed 
as a fin, or projection, with an area of n'pbd at a distance d from the 
extreme compression edge. To be strictly accurate, some of the equiva¬ 
lent concrete should be used to fill the semicircular holes left in the 
rectangle bd when the tension steel was removed. This precision is not 
necessary and has been neglected. 
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Including as before the tension in the concrete, the neutral axis is 
found by taking moments about the upper edge: 

d 
bdX- + n'pbd X d + (n' — l)p'bd Xd' = [bd + n^pbd + (n' — l)p'bd]Jcd 

Dividing by bd^ gives 

1 d' 
—h n'p + (n' — l)p' — = [1 + n'p + (n' — l)p']k 
2 d 

k = 

1 + 2n'p + 2(n' - l)p'- 
d 

2[1 + n'p + (n' - l)p'] 
(96) 

Neglecting again the moment of inertia of the projections about their 
own centers of gravity, we obtain for the moment of inertia about the 
neutral axis 

Ip — 

b(kdf b(d - kdy^ 
+ + n'pbd(d — kdr + {n' — l)p'bd{kd — d') A 2 

Expanding these terms does not simplify the expression, so we shall 
leave the moment of inertia as 

6d^ r / d'\^l 
/p = — + (1 ~ kf + 3n'p(l - kf + 3(n' - l)p' ( * ~ ) 

3 L \ d / _ 
(97) 

ILLUSTRATIVE PROBLEM 22 

169. Deflection of a Rectangular Beam with Compression Steel. The beam of 

Problem 8 actually has two l |-in. square bars on the compression side of the sec¬ 

tions near the center of the span. If this steel is counted as part of the reinforce¬ 

ment, the beam will be somewhat stiffer and the computed deflection should be less. 

Using the data of Problem 21 with the addition of the compression steel, 

3.12 
Compression steel ratio p' = 7--: = 0.0067 

^ ^ 16 X 29.12 

(n' - l)p' = 0.047 

Depth to compression steel d' = 2.50 in. 

d' 2.50 
The ratio — = = 0.086 

d 29.12 

By equation 96, 

1 -f 2 X 0.0515 + 2 X 0.047 X 0.086 
k 

2(1 + 0.0515 -f 0.047) 
0.606 
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By equation 97, the moment of inertia equals 

171 

16 y f29 12)^ 
Ip =-—■■■’. [(0.506)3 + (0.494)3 + 3 X 0.0515 

X (0.494)® + 3 X 0.047 X (0.420)®] 

, 16 X 24,700 X 0.313 - 41^180 (,„.)4 

0.0052(2705 X 26.5) (26.5 X 12)® 
Vmax. — —~—■ = 0.078 in. 

3,750,000 X 41,180 

This is a reduction of about 9 per cent in deflection due to the inclusion of the steel 
present on the compression side of the section. 

170. Deflection of Tee Beams. The moment of inertia Ip for posi¬ 
tive bending for a tee-shaped cross section can also be determined by 
the transformed section. Since the tension in the concrete is included, 
the transformed area has the shape shown in Figure 106. 

The expression for the neutral axis ratio k can be found by taking 
moments of the areas about the upper edge. 

t 
bt X —b\d — t) 

2 

2 
Multiply by — : 

b(P 

+ n'pbd X d — 

[bt + b\d - 0 + n^pbd]kd 



172 DEFLECTION AND TORSION IChap. 8 

The moment of inertia about the neutral axis equals 

b{kdf {b - b')(kd - b'(d - kd)^ 
-1-f- n'pbdid MY 

r / b'\ / t\^ b’ 1 
4 = Y [ fc" - (l - - j (fc - - j + - (1 - + 3n'p(l - kY (99) 

These equations can be used if the neutral axis is in the stem or the 
flange. 

A.C.I. Article 705 permits the use of a flange width b — (16i + 6') 
at the section of maximum bending moment, providing the span and 
spacing do not limit this width. However, the flange width for deflec¬ 
tion should be representative of the whole beam span. Conservative 
designers tend to limit the flange width to 6 = {12t + V), or even b = 

(8^ + 6'). 

ILLUSTRATIVE PROBLEM 23 

171. Deflection of a Tee Beam. Compute the deflection of the intermediate beam 

in Problem 17 (Chapter 7). 

Intermediate Beam. This is an interior span of a beam supported by girders. The 

loading of Figure 75 (Art. 130) necessitates a special computation for the coefl5- 

cient Cl. 

From Figure 75, for x == 0 to a; = 1.83 ft., 

M = 9140x 

El 
dv 

d^ 

EIv 

9140x2 

2 

9140x^ 

6 

110x2 

2 

llOx^ 
6 

llOx^ 
24 

+ Mn 

-f- Af„x + Cl 

+ — + CiX -f C2 

(100) 

(101) 

(102) 

For X = 1.83 ft. to X = 6.67 ft. (center line), 

M « 9140x - 
110x2 1740 

2 2 
(x - 1.83)2 + Mn 

dv 9140x2 IlOx® 1740, , 
EIy ^ -ly-;-“T" - 1*^) + MnX + C8 

OX ^ o o 

9140i’ IKte^ 1740, , , MnX* , 
Elv = ~---- 1.83)4+ + 

(103) 

(104) 

(106) 

To evaluate the constants of integration: 

When X ~ 1.83 equation 101 - equation 104 and ci = cs 

_ dv 
When X = 6.67 — = 0 and ca = —164,940 — 6.67Mn 

dx 

When X « 0 v ~ 0 and C2 = 0 

When X «» 1.83 equation 102 equation 105 and C4 = 0 
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The maximum deflection occurs when x = 6.67 ft. (equation 106): 

173 

= -697,000 - 22.22Afn 

For maximum positive bending there is a corresponding minimum negative moment 

of 

Mn = -19,700 ft.4b. (Fig. 77) 
and 

CiWI^ ^ Cl X 18,280 X (13.33)^ 

El ^ El 

259,200 __ 

El 

Cl = 0.00598 
Itl s also known that 

Clear span *= 13 ft. 4 in. 

Thickness of slab t = 4 in. 

Flange width b — 40 in. This happens to correspond to 

h == (b' + St) f which is conservar 

tive (see Art. 170). 

Stem width 6' =8 in. 

Depth to tension steel d = 14.37 in. 

A, 0.88 
Tension steel ratio p =-—•==: --TTTZ ~ 0.00153 

^ 40 X 14.37 

Adopting a value of the constant n' = 8, 

n'p « 0.00153 X 8 = 0.0122 

t 4 b' S 
Also “ = —rz = 0.278 and r “ 7;; — 0.20, 

d 14.37 b 40 

k 
(0.278)^ 4- 0.20[1 - (0.278)^1 + 2 X 0.0122 

2[0.278 + 0.20(1 - 0.278) + 0.0122] 
= 0.329 

Ip 
40(14.37)* 

3 
[(0.329)* - (1 - 0.20) (0.329 - 0.278)* + 0.20(1 - 

X 0.0122 

Ip - 39,680 X 0.1124 = 

Modulus of elasticity Eg 

4450 (in.)4 

E 
= 3,750,000 lb. per sq. in. 

0.329)* + 3 

X (1 - 0.329)*] 

CiWl^ 

Eclp 

0.00598 X 18,280 X (13.33 X 12)* 

3,750,000 X 4450 
0.027 in. 

If the maximum allowable deflection is taken as --r = —“77::- “ 0-40 in., the 
400 400 

actual deflection is a safe value. 

The deflection of the cross beam will be less than this amount as its span is less 

and its ends are more rigidly restrained. 
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TORSIONAL STRESSES IN BEAMS 

Members in bending may also be subjected to torsional couples. Wall 
beams and beams framing about openings receive their loads- wholly 
from one side of the beam axis with tendencies to rotate as well as bend. 
Concentrated loads may also be applied to produce a considerable tor¬ 
sional moment. 

The discussion of moment distribution in Chapter 14 shows that the 
torsional stiffness of the usual reinforced concrete beam section is very 
small compared with the bending stiffness, so that a negligible amoimt 
of torsional moment will be transmitted to a given beam span by its 
action as part of a continuous frame. In general, then, it is sufficient 
to investigate torsional stresses due to the loads brought directly to the 
member. 

172. Torsional Stresses in Plain Concrete. Circular Sections, A 
member of circular section subjected to a torsional couple T will have 
shear stresses on the cross section whose magnitudes are 

V = 

2Tr 
(106) 

where R = outside radius of the section 
r == distance from center of section to the particle considered. 

The maximum shear stress occurs on the particles on the outside perim¬ 
eter and equals 

ttR^ 
(107) 

If this member is loaded to destruction, failure does not occur on the 
cross section but on a plane inclined 45® with the cross section. This 
failure is due to excessive tensile stresses. By the theory of elasticity 
the maximum tensile stress t on a given particle equals 

t = -+- Vf + 4i;2 (108) 
2 2 

where / = fiber stress on the cross-sectional plane through the particle. 
This tensile stress occurs on a plane making an angle with the cross 

section, where ^ 
2v 

tan 2a = — 
/ 

(109) 

If only the effect of the torsional couple is considered, there is no fiber 
stress and the maximum tensile stress equals 

t — V (110) 
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Then, tan 20! = ~ = oo and a = 45°. For plain concrete, the tensile 

stress i will determine the torsional moment carried at failure. 
Square Section, A plain concrete member with a square cross section 

will have maximum shear stresses on the particles in the cross section 
which are on the outer perimeter at the ends of the axes of symmetry. 
This maximum shear stress equals 

4.8T 
^max. “■ ^3 (Ilf) 

where h = side dimension of the square sections. 
If the maximum stresses on the circular and square sections are 

equated, 

53 = — ^ 7 54/^3 
2 

h = 1.96iK = 0.98Z) 

where D = diameter of the cylinder. 
The lower shear stresses elsewhere in the square section are not easily 

computed. As far as stresses are concerned the square section can be 
closely approximated by using the inscribed circle for computations. 

ks 
aio 

0.60 

030 
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050 

070 
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Fig. 107 
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Rectangular Section, The maxiinum shear stress due to torsion for a 
rectangular section occurs at the outside particle on the long side h at 
the end of the short axis of symmetry. Its magnitude ® is 

^max. 

T 

k^h^h 
(112) 

where h = short side of rectangle 
h = long side of rectangle 

h 
^2 = numerical term depending on ratio - (see Fig. 107). 

0 

For a square section, k2 = 0.208, b = /i, and equation 112 simplifies 
to equation 111. 

173. Torsion Reinforcement. Circular Section. The most efiicient 
torsional section is circular. Though this is not a common structural 
shape the derivation of the amount of torsional reinforcement will first 
be made for this shape. 

It has been shown that the maximum tensile stress on a 45® plane 
equals the maximum shear stress due to torsion on the cross section. 

If the torsional moment produces tensile 
stresses greater than the allowable tension 
of the concrete used, torsional reinforce¬ 
ment must be used. The theory ^ makes 
use of the same procedure employed for 
the design of web steel to resist diagonal 
tension stresses in a beam (Art. 61). The 
portion of the section where the concrete 
tensile stresses are less than the allowable 
is considered safe and the torsion reinforce¬ 
ment is designed to take the excess tension 
above the allowable for the portion of the 
section near the perimeter. 

In Figure 108 the shear stress is plotted 
on a radius. On each particle the principal tensile stress on a 45® plane 
equals the shear stress on the cross section. Let 

Axis of 

Vm = maximum shear stress at the perimeter, R in. out 
V = shear stress on a particle r in. out 

Vc = shear stress on the particle fc in. out, whose principal tensile 
stress tc equals the allowable tension in the concrete 

* Theory of Elasticity^ Timoshenko. 

•“Experiments with Concrete in Torsion,** Paul Andersen, Trans, A,S,C,E,, 

1935, p. 949. 
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If we consider as a rigid body a particle whose area in the cross sec¬ 
tion is rdrdd (Fig. 109), and bounded by the two principal planes at 
45®, this body is in equilibrium under the following forces: 

vr dr dd on the cross section 
tr cos 45® dr dd on the principal tensile plane 
cr cos 45® dr dd on the principal compression plane 

also t C 
V t — cm magnitude 

Wherever t exceeds the allowable tensile stress 4, the excess tensile force 
on the principal tensile plane equals 

0.707(^ — Qrdrdd = 0.707(v — Vc)rdrdd 

The total excess tensile force equals 

0.707 / {v-v. 
Jq Jtc 

)r dr dd 

This excess tensile force can be resolved into two components, one 
parallel to the cross section and perpendicular to the radius, the other 
parallel to the axis of the cylinder. Each component is equal to the 
total excess tension times the sine or cosine of 45®. The axial component 
has no moment about the axis of the cyhnder. The cross-sectional com¬ 
ponent has a moment about this axis of 

(0.707) 
/’2t /•« 

' / {v-v, 
Jo Jtc 

)r^ dr dd 

Vm R r 
By Figure 108, or t; = ^ . 

V r R 

If the reinforcing steel is placed at 45° with the cross section and acts 
perpendicular to the principal tensile plane at a distance r® from the 
cylinder axis, its moment about the axis equals 

/sA, cos 45® r, 

where .4* = the area of the reinforcement perpendicular to its axis. 
Equating these moments, £• f‘(y^y,r. 

0.707 X 

■do 

UA,r, 

*^,r, = 

R 

1.414grtv> 

12R 
[3B< - 4rcfi® + rM 
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, Vc tc 
or, substituting rc = — R = — R, 

Vm Vfn 

/ R\^ 
f,A,r, = 0.370 -) + t\] 

\Vm/ 

Let the reinforcement be supplied in the form of 45^^ spirals whose 
longitudinal pitch equals p. Then 

2Trrs 

V 

where a, = cross-sectional area of one wire. 

CL 1 / R\^ 

- = ^ + <.“] (113) 
P iV>r, \vj 

Equation 113 can be used to select a spiral size to give a reasonable 
pitch. Figure 110 shows a member of circular section subjected to a 

Mi 

Fig. no 

torsional moment T = Fa. The supporting couples must be of such a 
magnitude that they produce the same angle of twust at the loaded sec¬ 
tion. Therefore, 

Ml h 
= - (114) 

M2 c 

The spiral reinforcement can be figured for each supporting couple 
and is placed as shown in order to be perpendicular to possible tension 
cracks in the concrete. 

174. Allowable Tensile Stresses. Diagonal tension can be computed 
for a member in flexure by equation 108. The principal tensile stress 
will be somewhat greater than the shear stress on the cross section and 
makes a variable angle with the cross section (equation 109). Diagonal 
tension in beams is only of importance when the angle a approaches 45°, 
that is, when the fiber stress is comparatively small (Art. 61). Diagonal 
tension reinforcement for beams is satisfied by means of shear stress 
computations and the building codes give allowable shear stresses Vm and 
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Vc which insure safe diagonal tension stresses. These allowable shear 
values should be less than the permissible tension in concrete. 

For members in torsion the principal tension equals the shear stress 
(equation 110). Therefore the allowable values of the shear stresses Vtn 

and Vc can be taken somewhat greater than the allowable values for 
beams given in building codes. Code values are certainly conservative 
ones to use. 

176. Torsion Reinforcement in a Square Section. It has been shown, 
in Article 172, that the maximum torsional shear stress on a square sec¬ 
tion is closely equal to the stress on the inscribed circular section. It 
is rather improbable that a square helix would be used as reinforcement, 
as that would probably involve welding short bars at an angle of 45° 
to the longitudinal steel. If such reinforcement is used, allowance must 
be made for the variation in position of the bars (dimension Vg) when 
taking the moment of this reinforcement about the central axis for the 
derivation of equation 113. It is much easier both for design and con¬ 
struction to use spiral reinforcement. 

Rectangular Section, Examination of equation 112 shows that, as long 
as a rectangular cross-sectional area is kept constant, the maximum 
shear stress increases as the ratio of depth h to width b increases. The 
square section is the logical shape to use if torsional moments are large 
enough to require torsion reinforcement. It is also difficult to supply 
torsional reinforcement for a section that is markedly rectangular. 

ILLUSTRATIVE PROBLEM 24 

176. Design of Torsion Reinforcement. Figure 111 shows a beam subjected to 

a load of 50,000 lb. which is 10 in. distant from the center line of the member. The 

60 kips 

Fia. Ill 

ends are assumed to be fixed. The load can be transferred to the center line; this 

will give a downward load at C and a torsional moment of 500,000 in.-lb. 
Bending. Considering first the effect of the load at C, the fixed-end bending 

moments equal (Table I, Art. 341) 

50,000 X (12)2 X 6 X 12 
- 1,600,000 in.-lb. 

Mb « 

50,000 X 12 X (6)2 X 12 

(18)‘ 
800,000 in.-lb. 
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The supporting forces are Va — 37,000 lb. and Vb = 13,000 lb. Let us assume 

the beam to be 22 in. square. The fixed-end moments due to the beam weight of 
600 lb. per ft. equal 

Ma == Mb ^ 
^ _ 500 X (18)^ X 12 

12 ~ 12 
162,000 in.-lb. 

Additional supporting forces = Va = Vb = 45001b. 

1118 in. K. 

ir-JII 
il03 

SHEAR STRESS INTENSITY 

31 

Fig. 112 

U'«47 

The combined bending moment diagram is given in Figure 112. Assuming a cor* 
Crete strength/'<. « 3000 lb. per sq. in., with/c ■> 1350 lb. per sq, in. and/, »» 20,000 lb. 
per sq. in., the depth to the steel equals 

Minimum d 4 1,762,000 

123 X 22 
18.5 in. 

Total depth k - 18.5 -f 1.5 + 0.5 -f 0.44 - 20.04 in. Use^ « 22in. 
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Maximum shear stress va = 
41,500 

bjd 22 X 0.87 X 19.56 
111 lb. per sq. in. 

Positive steel Ap = 
1,118,000 

20,000 X 0.87 X 19.56 
= 3.38 sq. in. 

Use six round bars. Run two into each support. 
Negative steel. 

A A ~ 5.29 sq. in. Use nine J-in. round bars 

Ab ~ 2.88 sq. in. Use five |-in. round bars 

Torsion. The torsional couple of 500,000 in.-ll>. is supported by end torsional 

moments (equation 114). 

Ta 12 
^ — or Ta - 333,000 in.-lb. and Tb - 167,000 in.-lb. 

Ib 6 

The maximum torsional shear stresses at each support equal 

4.8r _ 4.8 X 333,000 

(6)3 “ (22)3 
150 lb. per sq. in. 

VB — 75 lb. per sq. in. 

In each section, at one end of the horizontal axis of symmetry the shear stresses 

due to bending and torsion act in the same direction. The resultant vertical shear 

stress on this particle equals 

VA = 111 + 150 = 261 lb. per sq. in. 

= 47 + 75 = 122 lb. per sq. in. 

When special anchorage is used, the maximum allowable shear stress v — 0.12 

X 3000 = 360 lb. per sq. in. The maximum allowable shear stress, used as a meas¬ 

ure of tensile stress, Vc — 0.03 X 3000 = 90 lb. 

per sq. in. At section A let us divide this shear 

equivalent between bending and torsion corapu- (j-150 
tations in proportion to their maximum stresses. 

For bending, Vc — X 90 = 38 lb. per sq. in. 

For torsion, Vc — X 90 = 52 lb, per sq. in. 

For torsion reinforcement (Fig. 113), 72 == 11 in., 

Tc — 3.80 in., and r, =8.1 in. By equation 113, 

? - 17 X X (8.1)- (s)' - * X «*»■ X “ + <®)‘l - »•»»« 

With J-in, round spirals the pitch figures 3.4 in. One spiral unit makes a complete 

turn in 27r8.1 = 51 in. Use 17 spiral units to give a pitch of 3 in. from A to C. Be¬ 

tween B and C the pitch for J-in. spirals figures about 31 in. but five spiral units 

will be used to give a pitch of 10.2 in. Tins is less than the maximum spacing of 

half the depth, or 11 in. 
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Siirrups. Using ^-in. round bars, stirrups will be spaced at 4 in. from A to C and 
at 10“in. spacing from C to B. The sketch of the reinforcement is given in Figure 114, 

Fig. 114 

ILLUSTRATIVE PROBLEM 26 

177. Wall Girder. A common example of direct torsional loading of beams is that 

of spandrel beams at the outside wall of a structure, or beams framing around an 
opening. These beams receive a load from one side only of their axis. A concrete 

floor system provides such beams with a flange on one side only, which is not a sym¬ 

metrical section. However, such beams are designed as an angle section for bending 

computations. It has been common office practice to neglect the torsional moments 
and stresses but these may often be of considerable magnitude, especially as the 

section is not the most economical for resisting torsion. In this problem allowance 

will be made for torsional stresses. The computations must be regarded as approx¬ 

imate because the presence of the slab is a restraint of unknown amount against 
twisting of the beam. For this reason, the section will be regarded as rectangular 

for torsional computations and the computed stresses are probably in excess of actual 

values. 
Design the wall girder parallel to the interior girder EH of Figure 61. In addi¬ 

tion to the floor loads this girder carries a curtain wall weighing 80 lb. per ft. of 

length but the steel window frame is supported by the columns. Let us assume 
that the design for bending results in a girder stem 12 in. by 22 in. (26 in. total 
depth) and that the maximum shear stress due. to bending equals 80 lb. per sq. in. 

at the face of the support. It is desired to compute the additional shear stresses 
due to torsion. 

The intermediate beams that are supported by this girder were designed for a 

minimum negative moment at this exterior support of Mn ~ — rr*. This moment 

was assumed in order that a reasonable amount of negative tension steel may be 
placed in the top of the cross beam at its support. We have no assurance that the 

wall girder supplies the restraint to develop this moment. It will now be advan- 
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tageous to estimate the restraint, at least approximately. The procedure will be 

that discussed in Article 374. 

Wall Girder RS (Fig. 115). If Poisson's number w = 6, (r = yE, while J 

The wall girder has dimensions 6 = 12 in. and h = 26 in., so A^i = 0.236 from Figure 

107. Using center line dimensions, RM — MP = PS = 116 in. and 

Kmr = Kmp = Kps 
7 116 

S\ 

P 

M 

/?!> 

J.. .. ' L 

<? 

N 

_r Ll 

T 

Fig. 115 

Beams MN and PQ. The intermediate beam stems are 8 in. by 13 in. with a 4-in. 

flange 40 in. wide. Using the gross section the moment of inertia about its center 

of gravity / = 6240 (in.)"^. The bending stiffness equals 

Kmn - KpQ — Kb 
4EI 

I 

4 X 6240E 

14.5 X 12 
= 143E 

The fixed end moment at M or P equals 24,800 ft. lb. (Art. 130). Assuming fixity 

at S, Ry N, and Q, the method of moment distribution (Art. 361 et seq.) can be used 

to determine the moments in the wall girder as joints M and P are released. 

Moment Distribution at Joints M and P 

Joint R M P s 

Member RM MR MN MP PM fO PS SP 
Carry-over factor -1 +0.5 -1 -1 +0.5 -1 

Stiffness K 39E 143^ 39E 39£ 143jB: ZQE 

K 
Ratio —^ 

ZK 
0 0.177 0.646 0.177 0.177 0.646 0.177 0 

F.E.M. (ft. k.) -24.8 -24.8 

Distribute +4.4 +16.0 +4.4 +4.4 +16.0 +4.4 
Carry over -4.4 -4.4 -4.4 -4.4 

Distribute 0 +0.7 +3.0 +0.7 +0.7 +3.0 +0.7 0 
Carry over -0.7 -0.7 

Final Moment -5.1 +5.1 -5.8 +0.7 +0.7 -5.8 +5.1 -5.1 
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It is suflBciently accurate to assume the wall girder ends to be fixed if the girder 

Is continuous and frames into a sizeable wall column, but a more accurate solution 

could be made by applying moment distribution to a bent consisting of the con¬ 

tinuous intermediate beam right across the building with the far ends of upper and 

lower columns assumed fixed (Art. 355). 
Using the results given above, the end moment in the beams MN and VQ are 

wP" 
0.234 the fixed end moment, which is much less than — = 0.5 F.E.M. used to 

compute the negative tension steel at M and P. 

The maximum torsional shear stress at half depth of the wall girder at the sup¬ 
port R, or Sj can be figured by equation 112, where — 0.252 is obtained from 

Figure 107 for the ratio - = 2.17. 
0 

5100 X 12 

0.252 X (12)2 X 26 
65 lb. per sq. in. 

This shear stress acts in the same direction as the shear due to bending on the 

inside face of the section. The total shear at half depth equals r = 65 + 80 = 145 

lb. per sq. in. This shear is a measure of diagonal tension and reinforcement can be 

supplied by stirrups without regard to possible bends of the tension bars. 

ILLUSTRATIVE PROBLEM 26 

178. Wall Beam. Design the wall beam PQ of Figure 61. This beam acts as 

end support for the slab whose one-way steel runs into this beam. The beam will 
be considerably deeper than the slab and it is certainly conservative to assume a 

wP 
moment of — — in the slab at this support. Using center-to-center dimensions for 

the slab and referring to slab loads (Art. 129) the end moment equals 

Mn 
wP 180 X (9.67)2 X 12 

24 
8420 in.-lb. per ft. 

The torsional moment at the support of the beam PQ will be taken as the sununa- 

tion of these slab moments for the half span, namely, 

Mr = 8420 X 6.58 - 65,500 in.-lb. 

Following the procedure of Problem 25, the section of beam PQ will be determined 

by the usual procedure for bending loads but the diagonal tension reinforcement 

can be increased by adding the shear stress vr due to torsion to the shear stress Vb 

due to bending. In the past most designers have neglected to make torsional compu¬ 

tations, in view of the difficulty of ascertaining true torsional moments. They have 

made the section slightly larger than needed for bending computations. The fact 

that few cracks in wall beams or girders can be assigned to overstress due to torsion 

indicates that the approximate estimates made here are conservative. 



CHAPTER 9 

SHRINKAGE, FLOW, AND PRESTRESS 

The beam theory presented in previous chapters for working-stress 
straight-line assumptions deals only with the elastic strains produced in¬ 
stantaneously by application of the live or dead load. In several places 
mention has been made that other strains of considerable magnitude are 
produced in concrete by temperature variation and by time effects known 
generally as shrinkage and plastic flow. 

Since 19IG these additional strains have been increasingly investigated. 
There is not yet a complete agreement in definition of these terms nor 
in explanation of the observed strains. For the purposes of the discus¬ 
sion in this chapter the following definitions of these terms will be used. 

Shrinkage of concrete is the volume change due to drying out of the 
cement gel between the aggregate particles. There may also be some 
shrinkage of the aggregate itself. The unit shrinkage strain is deter¬ 
mined by tests of plain or reinforced concrete on unloaded specimens. 

Plastic flow or creep will be regarded as the additional volume changes 
of loaded specimens obtained by subtracting from the total strain (time 
= t) the elastic strain due to load application (time = 0) and the shrink¬ 
age strain as defined above. The flow strain may be caused by the sus¬ 
tained load or by non-uniform shrinkage due to unequal drying out of 
thick concrete members; but for convenience all these interrelated effects 
will be denoted plastic flow. A concise explanation of plastic flow or 
creep is that given by Lorman: ^ 

It has been suggested that creep of concrete may involve all three of the fol¬ 
lowing types of yielding: (a) crystalline flow (in a crystalline mass, slippage 
along planes within the crystals); (b) seepage (due to applied pressure, flow of 
adsorbed water from the cement gel); and (c) viscous flow (movement of par¬ 
ticles, as in the flow of asphalt). A portion of the creep possibly may be due to 
crystalline or viscous flow; nevertheless, it is believed that the major portion is 
caused by seepage, which would appear to be the most acceptable explanation 
of creep. The hydration of portland cement results in the formation of an amor¬ 
phous or gelatinous mass, ordinarily termed **gel,” which serves to connect the 
aggregate particles. Water may. exist in the concrete mass in three principal 

^ “The Theory of Concrete Creep," by W. R. Lorman, Proc. A,S.T,M,, 1040, 

p. 1082. 

185 
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forms: (a) chemically-combined water (in chemical combination with the 
cement), (b) adsorbed water (adsorbed by the cement gel), and (c) free water 
(water within the microscopic pores or spaces between the gel particles). Ac¬ 
cording to Lynam, chemically-combined and free water play no direct part in 

volume changes. Thus, except for the effect of hydration, gain or loss of ad¬ 

sorbed water from the gel appears to be the basis of volume changes resulting 
from ambient moisture variations or from sustained pressure. The gel may be 

considered as having microscopic pores; with the removal of water the pore 
spaces collapse and the gel shrinks, while upon the addition of moisture the pore 
spaces adsorb water and the gel expands. This process is dependent upon fric¬ 

tional resistance to flow of water along the capillary channels which permeate 
the mass of concrete. Other things being equal, the total frictional resistance 
is governed by the moisture gradient. The steeper the moisture gradient, the 
easier the flow of water through the capillary channels. Volume change of the 

gel may, on the other hand, be dependent upon seepage caused by applied exter¬ 
nal pressure. Subjecting the concrete to an external load, the adsorbed water 

is expelled from the gel. The rate of expulsion of moisture in this instance is a 

function of the applied load and of the friction in the capillary channels. The 
greater the applied load, the steeper the pressure gradient with consequent 

increase in rate of moisture expulsion. By the foregoing hypothesis shrinkage 

or swelling due to loss or gain of moisture and creep due to seepage are inter¬ 
related phenomena. Despite this relation the two are considered separately. 

SHRINKAGE 

179. Shrinkage. The drying out of concrete varies with time and 
with the exposure of the member. Structures in regions of low humidity, 
such as Arizona, or members located in a heated building will attain 
maximum shrinkages. Members exposed to high humidities will have 
little shrinkage, whereas those under water may even expand. Con¬ 
crete that is alternately wet and dried will have alternate expansion and 
contraction of volume but the net result at the end of each cycle is 
usually a residual shrinkage. 

Lean mixes have less shrinkage than rich. Mixes of high water-cement 
ratio shrink more than dry mixes if exposed in air, but they expand less 
under water. Large members will dry out more rapidly at their sur¬ 
faces and non-uniform shrinkage may produce unequal strains and warp¬ 
ing of the member. 

If a member drys out at constant temperature and humidity the 
shrinkage strains increase rapidly at once and then at a decreasing rate 
for several years. The variation of strain against time gives a plot similar 
in shape to that of plastic flow strains in Figure 118. 

180. Shrinkage of Symmetrically Reinforced Members. A plain con¬ 
crete specimen will shrink as it dries out but there will be no stress in 
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iL 
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the member due to shrinkage. Steel does not shrink as the concrete 
dries out, so its restraint tends to reduce the volume change of reinforced 
concrete. After a certain time the concrete will have tensile stresses 
and the steel will be in compression. 

Assuming perfect bond between the steel and concrete these stresses 
can be computed for members, such as columns, whose steel is symmetri¬ 
cally placed in the cross section. 
It is understood that only the effect 
of shrinkage is considered. 

If the shrinkage strain is 5 dur¬ 
ing the time ^ = 0 to ^ = ^i, a plain 
concrete member of length I will 
shorten si. The action on the rein¬ 
forced member can be visualized as 
a shortening of the concrete due to 
shrinkage plus a partial pull back 
by the steel. The final length of the 
steel and concrete must be the same (Fig. 116). Equating the strains, 

Plain 
Concrete 

{ho) 

Plain 
Concrete 

Fig. 116 

Reinforc&J 
Concrete 

(f't.) 

E, * E, 
(115) 

where f\ = compressive stress in the steel 
ft = tensile stress in the concrete. 

The stresses at a given section must be in equilibrium. 
Equating the compressive force on the steel to the tension in the 

concrete 
/>A=/,(1 -p)A (116) 

Solving for/', in equation 116 and substituting in equation 115, 

ft 

Similarly, 

The above discussion is representative of constant conditions for 
nearly the full length of the member. Near the ends the stress f\ in 
the steel must be transferred back to the concrete before the bar ends* 
The pressure on the end of the bar plus the friction between concrete 

np 

1 + (n - l)p 

I-P 

1 + (n - l)p 

sEc 

sE. 

(117) 

(118) 
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and the steel surfaces will both be included in the bond resistance. By 

equation 28 the length of imbedment of the bars, a distance in which 

the shrinkage equations do not apply, is 

l = — a (119) 
4u 

The shrinkage discussion applies also to columns with spiral steel re¬ 

inforcement, since tests show that the spiral steel is not stressed until 

well beyond working loads. The shrinkage of symmetrically reinforced 

members whose cross sections vary in thickness, or those of curved 

center line, is discussed in Article 391. 

ILLUSTRATIVE PROBLEM 27 

181. Shrinkage Stresses in a Column. Let us assume the designs of the rodded 

column of Problem 38 (Chapter 11) for a concrete strength of f'c — 3000 lb. per 

sq. in. Assume it to be in a heated building and to have a shrinkage strain s — 0.0004 

at the end of two years. 

Plain Concrete. If this column were of plain concrete and its ends were fully re¬ 
strained by the floor S3^stem above and below, the tensile stress in the concrete due 

to shrinkage would equal 

ft - sEc = 0.0004 X 3,000,000 = 1200 lb. per sq. in. 

This concrete would probably crack in tension at stresses around 300 lb. per sq. in. 

The compressive stresses due to the dead load would not be great enough to reduce 

the tensile stress from 1200 to 300 lb. per sq. in.; so this column should have tension 

cracks due to shrinkage some time before the two-year age. In practice, however, 

the other colunms on this floor also shrink and the upper floor moves downward; in 

other words, its ends are not fully restrained. 

Reinforced Section. Low Percentage of Steel. The design of this column for a low 

percentage of steel gives 

Square section ^ = 21 in. and steel ratio p = 0.0109 

By equations 117 and 118, 

10 X 0.0109 
ft * t;——-, X 0.0004 X 3,000,000 = 119 lb. per sq. in. (tension) 

(1 “t* 9 X 0.0109) 

(1 - 0.0109) 
/# = Q ^ Q ^ 0.0004 X 30,000,000 = 10,8001b. per sq. in. (compression) 

The concrete stress of 119 lb. per sq. in. will be reduced by the stresses due to the 
live and dead loads and by plastic flow; so there should be no shrinkage cracks. The 
steel stresses due to the loads will be materially increased by the shrinkage stresses. ^ 
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Reinforced Section, High Percentage of Steel, The design for a high percentage of 

steel gives 
Square section t — 17 in. and steel ratio p = 0.0351 

^ 1200 = 320 lb. per sq. in. (tension) 
1.316 

^12,000 = 8800 lb. per sq. in. (compression) 
1.316 

The greater steel area more effectively reduces the actual concrete deformation, 
giving a higher tensile stress in the concrete. This value of 320 lb. per sq. in. will 

be reduced by compression stresses due to live and dead loads and by the effect of 

plastic flow. 

182. Shrinkage of Beams—Concrete Taking Some Tension. If the 
steel is not symmetrically placed about the center line of the cross 
section, shrinkage of the concrete adds to the tensile stresses in the con¬ 
crete due to bending and causes compression stresses in the steel. These 
shrinkage compression stresses decrease the tensile stresses in the steel 
due to bending. As the effect of shrinkage becomes operative many 
more sections in a beam are cracked as a result of excessive tensile 
stresses. On the compression side there is no steel to prevent the com¬ 
plete shrinkage deformation from occurring, so the deflection of the 
beam will be greater because of this shrinkage warping. 

Stresses Due to Shrinkage, Assume that the concrete is uncracked for 
a distance of qd from the compression side (Fig. 117). The steel pulls 

(a) (b) (c) 

Fig. 117 

on the concrete, tending to reduce the full shrinkage deformation in the 
concrete nearby. The concrete area b(qd) is affected as though a tensile 
force Ts were applied at the center of gravity of the steel (Fig. 117c). 
The maximum tensile stress ft and compression stress fc in the concrete 
equal 

T, QT.jd - ^qd) 2T. 3 - g 

b{qd) Hqd)^ bqd ^ q 

T, _ &T,{d - \qd) _ _ 2^ 3 - 2g 

b{qd) ^(Qd)^ bqd ^ q 

(120) 

(121) 
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The neutral axis ratio k equals 

h = 
(3 - 2q) 

3(2 - q) ® 
(122) 

Returning now to the full section of concrete and steel (Fig. 1176), 
the strain in the concrete at the level of the steel, were it uncracked, 
would be equal to that of the steel. By equation 115, 

Eg Ec 
(123) 

where /"^ = tensile stress at level of tensile steel, if uncracked. Since 
a plane section remains plane, the strains are proportional to their dis¬ 
tances from the neutral axis, so 

/"i _d - kd -k 

fc kd k 

rt- 
1 

k 
~fc 

Substituting into equation 123, 

/'« = sE, (1 -fe) 

k 
nfc 

The fact that the concrete has cracked means merely that the ulti¬ 
mate value of ft has. been exceeded, and the concrete cracks in order 
that the section may remain plane. 

It is also true that the total compression force on the section equals 
the total tensile force (Fig. 1176). 

Substituting, 

f'.A. + - b{kd) = - b(qd - kd) 
2 2 

ft q - k 
and As = pbd 

2 2 k 

fc 

ft 

r 9 

(q - 2k)q 

2(g - k)p 

iq-2k)q^’ 

sE, 

2np(l — k) 
1 + 

(124) 

(125) 

(126) 

q{q - 2k) 
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The non-uniform shrinkage of the concrete will cause the beam to 
bend. There will be constant stress conditions at all sections due to 
shrinkage only and the deflection can be computed for a uniform bend¬ 
ing moment M. 

e ^ M 

y~ 

where e = strain in concrete at a distance y from the neutral axis; then 

MP e P 
^max. ' X 

8EI y S 

-max. OT1 /j T\ 
SEcikd) 

No Cracks. For the special cases of no cracking, q = 1, and equations 
120 and 121 reduce to 

bd 

4T. 

The neutral axis ratio k — ^ and equations 124, 125, 126, and 127 
become 

Sc = 2pf\ (128) 

U = (129) 

1 + 4np 

183. Stresses Due to Loads—Concrete Taking Some Tension. As¬ 
suming that the combined effect of shrinkage and loads leave the con¬ 
crete uncracked for the distance qd from the top of the section (Fig. 
117a), the center of gravity of the transformed area is a distance kd 
from the top. 

hiqdP 
+ npbd^ = [Hqd) + npbd]kd 

2 
or 

cP -f 2np 
k « V ^ (132) 

2(3 + np) 



[Chap. 9 192 SHRINKAGE, FLOW, AND PRESTRESS 

The moment of inertia about the neutral axis equals 

b(kdf b(qd - kdf 
I = + • + npbd(d - Mr 

bd^ 
7 = — [k^ + (q^ kf + 3n7>(l - k)^] 

3 

The maximum fiber stresses in the concrete equal 

M{kd) 
Compression fc =- 

Tension 
Md 

= -y- (5 - fc) 

(133) 

(134) 

(135) 

These stresses vary from section to section with the bending moment 
and the height of the cracks will vary from section to section. For this 
reason, since some loads are present on the beam during the drying-out 
period, accurate shrinkage computations are difficult to make for mem¬ 
bers in bending. 

No Cracks. If no cracks occur above the tension steel, g = 1, and 
the equations simplify. The results are the same as those of the deflec¬ 
tion derivation in Article 165. 

1 + 2np 

2(1 + np) 

(1 + 4np) bd^ 

(1 + 7ip) T2 

(136) 

(137) 

ILLUSTRATIVE PROBLEM 28 

184. Shrinkage Stresses in a Slab. Assume that the slab of Problem 1 (Chap¬ 
ter 3) has partially dried out before the live load is applied. The shrinkage strain 
will be taken as « === 0.0002. The essential data from Problem 1 and Figure 15 give 

Depth t = 6 in. 

Maximum positive moment = 28,000 in.-lb. 

Positive steel area Ap = 0.39 sq. in. per ft. of width 

d = 4.25 in. 

Maximum negative moment = 40,800 in.-lb. 

Negative steel area An = ().52 sq. in. per ft. of width 

, d « 5.00 in. 
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Live load « 130 lb. per sq. ft. 

Dead load = 75 lb. per sq. ft. 

f'c = 2000 lb. per sq. in. 

Ultimate tensile stress ft = 200 lb. per sq. in. 

No Cracks 

Positive Negative 
Bending Bending 

Shrinkage Stresses 

Steel ratio p 0.00765 0.00865 
Compression stress in steel /'» 4120 3950 
Maximum compression stress in concrete/<. 63 68 
Maximum tensile stress in concrete126 136 

Maximum Stresses Due to Dead Load 

Neutral axis ratio k 0.551 0.557 
Moment of inertia I 100 168 
Maximum moment (dead load) M 10,250 14,900 
kd 2.34 2.79 
d — kd 1.91 2.21 

Maximum compressive stress in concrete/c 240 247 
Maximum tensile stress in concrete/f 196 196 
Maximum tensile stress in steel/, - nft 2940 2940 

Maximum Stresses—Shrinkage plus Dead Load 

Maximum compressive stress in concrete/c 303 315 
Maximum tensile stress in concrete/e 322 332 

Compressive stress in steel /', 1188 1010 

It is apparent that the assumption of ^‘no cracks” is definitely in error, if the effect 

of plastic flow is neglected. During positive bending the maximum moment that 

can be carried without cracks will produce a tensile stress in the concrete due to the 
dead load of ft = 200 — 126 = 74 lb. per sq. in. The moment equals 

M = 
fl 

d{l - k) 

74 X 100 

1.91 
= 3870 in.-lb. 

The concrete will be cracked for about 7.5 ft. in the center of the 13.5-ft. span. A 

similar computation for the negative moments shows that the concrete will be cracked 

for about 2 ft. from each support. Only about 2 ft. of the total span will be uncracked. 

More complete drying out plus the addition of the live load would tend to crack the 

slab throughout were it not for plastic flow. 

At the section of maximum positive bending at the center, by the process of trial 

and error, a maximum tensile stress of 200 lb. per sq. in. in the concrete is found 

to be at a distance qd = 2.08 in. from the top. When the value of g = 0.49 is used, 

the stresses due to shrinkage and dead load and the resultant stresses are 

ft *= 122 + 77 = 199 lb. per sq. in. 

fc = 98 + 300 «= 398 lb. per sq. in. 

/« » —766 -f 7050 = 6294 lb. per sq. in. (tension) 
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Any other section will have a different bending moment due to dead load and a 

different distance qd to the limiting tensile stress ft = 200 lb. per sq. in. Therefore 

it is impracticable to determine the combined shrinkage and load effect for a member 
in bending. This holds true also for the additional deflection due to shrinkage. The 

modification of these results by consideration of plastic flow will be investigated in 

Problems 32 to 34. 

PLASTIC FLOW 

186. Plastic Flow Coefficient. Plastic flow has just been defined as 
the strain due to a sustained load. In test data it is obtained by measure¬ 
ment of the total strain of the loaded specimen at some definite time ti 
after loading. From this total strain the elastic strain {t = 0) due to 
the application of the load is subtracted as well as the shrinkage strain 
(t = <i) of a duplicate reinforced specimen which has remained unloaded. 

The plastic flow strain c, thus obtained, is caused by sustained appli¬ 
cation of the load (dead always and quiescent live loads) plus whatever 
shrinkage effect due to non-uniform drying out occurs, but should not 
include temporaiy adjustments due to temperature changes. As used 
in the following derivations the plastic flow strain c is the unit strain 
due to a unit stress at some definite time ti after application of the 
quiescent loads. Various investigations evaluate the actual plastic strain 
Cp for axially loaded members in different terms. Some of the results are 

Straub ep = Cif^e^ 

Thomas ep = Cj/cll - 

Shank 

Lorman 

where Ci, (72, Cz, C4 = constants determined by test 
/c = uniform normal stress intensity in the concrete 

t = time, in days 
p = exponent determined by test for varying stresses 

as or q = exponent determined by test for varying ages 
e = Naperian base 

A == area of cross section 
a2 = constant of viscous creep 

X = exponent determined by test 
m == final value of unit strain c after several years of 

sustained load. 

For working loads it is generally agreed that the strain Cp varies 
directly with the stress, so that the actual strain at any time ti equals 
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= fifii or the unit strain c may be taken as varying only with the 
time. Professors Maney and Lagaard have recently stated that all 
plastic flow strains for working loads are due to non-uniform shrinkage 
since the member dries out more rapidly at its exposed surfaces. The 
result is a warping of the member and a readjustment of stress distri¬ 
butions. Whatever the explanation may be the plastic flow equations 
record the strain changes observed in the test specimens. 

The plastic flow unit strain c varies with the age after the load appli¬ 
cation. The strains increase rapidly at first, but the rate of increase 
decreases as time goes on until the rate of change approaches zero at 
the end of 4 or 5 years. Figure 118 shows the general form of the plastic 

Age “ Years 

Plastic ffow Increase with Age 

Fig. 118 

flow strain curve in terms of time. A similar curve is recorded for 
shrinkage strain « versus time. At the end of 4 or 5 years the specimen 
responds elastically if there are no moisture changes in the concrete. 
Figure 118 also shows that the greater the age of the concrete when 
loaded the less is the total plastic flow and the more rapid the rate of 
increase of strain immediately after loading. Three or four months later 
the increase of strain is the same for all ages of loading. Since plastic 
flow tends to relieve the concrete particles that are highly stressed it 
is advantageous to remove the forms at an early age in order to obtain 
the maximum readjustment due to flow. These flow readjustments also 
occur if there is movement of the supports. 

Tests of concrete specimens subjected to torsion show a similar in¬ 
crease of the angle of twist and the shearing strains due to a sustained 
twisting moment. The angle of twist versus time relation gives a curve 
similar to that of Figure 118. 

186. Stress Changes Due to Plastic Flow under Sustained Load. 
Axud Loads. Let us assume a concrete member symmetrically rein- 
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forced and loaded with an axial load N, By equation 186 (Art. 231) 
the elastic stress fo in the concrete at the instant of loading equals 

N 

A[1 + (n - l)p] 
(138) 

After loading, as the concrete creeps, the total force at the section re¬ 
mains unchanged, so the increase in stress in the steel Afg and the de¬ 
crease of stress in the concrete Afc must be related. 

AfsAg = -AfcAc 

Ac 1 — p 
Afg = -A/, — = ~A/,-^ (139) 

As p 

At some time ti after loading the strain in the concrete will have in¬ 
creased. If the unit elastic strain equals e and the additional plastic 
strain at this time ti equals c, the total strain due to the stress /c now 
equals 

Unit strain X stress = total strain = /c^ + S/cAc 

In this equation the product is obtained by using the actual stress fc 
at the time U, The summation of the plastic strains must be made by 
using corresponding values of /« as increments of Ac are taken. In a 
short increase of time A^ beyond ti the deformation in the concrete will 
equal the elastic strain due to a change of stress Afc and the yield due 
to the stress fc (t = ti), or 

a. / A -h/cAc = — 
Ec E, 

(140) 

Usually Afc will have a negative value as the concrete stress decreases 
when the steel stress increases. 

/cAc 
E. Ec 

Substituting the value of A/, from equation 139, 

/cAc = 

A/c = 

A/d A/c _ ^ ^[1 - p + np 

Ec Ec 

where 

E, p 

, 1 ri + (n - l)pl 

p - p + np' 

L np np 

:Ac 

V 
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Passing to the limit, 
d{fc) ^ 

Sc b 

Integrating between limits of ^ = 0 to ^ or to fc and c — 0 to 
c = c, 

In fc - Info = -• r 
0 

r = or /c = ^ (141) 
Jo gb 

Equation 141 gives the concrete stress/c at any time ti after loading, 
providing the elastic stress/o is computed and the plastic flow unit strain 
c for the time ti is known for the concrete used. 

A similar derivation will give the changes in stress in the steel. Let 
fi be the initial elastic stress and fa the final stress at time 

nN 

A[1 + {n - l)p] 

The change in stress in the concrete f^c equals 

f^C — fo fc — fo 

(142) 

Let the change in stress in the steel be f^g. From equation 139, for 
numerical equality, 

(143) 

Note that equation 141 gives the final concrete stress fc whereas equa¬ 
tion 143 gives the change of stress f\ in the steel. 

187. Plastic Flow Stress Changes with Length Constant A simple 
illustration of stress changes under constant length is that of the con¬ 
crete cylinder loaded with a compression force in a testing machine. 
When the load is applied there is an elastic deformation. If the testing 
heads remain unchanged in position the load on the scale beam decreases 
as flow takes place. 

At the instant of application of the initial axial load the member 
undergoes a unit elastic strain e. If the length of a reinforced concrete 
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member remains unchanged thereafter owing to the restraint of its sup¬ 
ports, the steel remains unchanged in length and its stress v/ill be con¬ 
stant. The load on the concrete will cause unit flow strain c and the 
total strain (e + c) at any time h must equal the initial elastic strain e. 
The concrete stress and the total load will decrease. The relation be¬ 
tween the initial elastic stress fo and the final stress fc can be found. 
The change in elastic strain is equal and opposite to the plastic strain. 

Integrating 

djfc) 

Ec 
-fcd(c) 

In fc —Info = —EcC 

(144) 

For members in bending the tendency is to decrease the initial maxi¬ 
mum stress fo on particles near the surface of the compression side, and 
the stress variation from neutral axis to outer fiber is no longer uni¬ 
formly varying. This justifies such discussions as the plastic theory of 
beams. Mr. Charles S. Whitney comments, “This indicates another 
valuable property of concrete which appears to make it advisable to 
place it under dead load at as early an age as possible. The plastic 
flow causes an adjustment of stress, which reduces the maximum, mak¬ 
ing structures stronger under live load. This flow in the material also 
tends to compensate irregularities in the stiffness of the material itself, 
accounting no doubt for some of the increase which has been noted in 
the strength of concrete subjected to sustained loads. 

ILLUSTRATIVE PROBLEM 29 

188. Plastic Flow Stresses for an Axially Loaded Column. Let us consider the 
effect of plastic flow for the same columns of Problem 27. Assume that the unit 
plastic flow strain c - 100 X 10“® for the concrete used at the end of 2 years of a 
sustained load of 150,000 lb. This includes the dead load and sustained live load. 
The variable live load is also 150,000 lb. 

Low Percentage of Steel. The column designed for a concrete strength of/'c = 3000 
lb. per sq. in. has a section 21 in. square and a steel ratio p « 0.0109. By equa¬ 
tion 138, 

150,000 
fo = (21)»(1 098) “ 

b =---r« 3.366 x 10~* 
3,000,000 [0.109 J 

c ^ 100 X 10~* 

6 “ 3.365 X 10"* 
0.208 and «» - 1.347 
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By equation 141, 

/c 

310 

1.347 
230 lb. per sq. in. (compression) 

The initial steel stress /i = nfo = 3100 lb. per sq. in. (compression) 

By equation 143 the change of stress in the steel equals, 

f\ = 3100 
/1.347 - l\ /0.989\ 

\ 1.347 /\0.109/ 
= 7250 lb. per sq. in. (increase) 

The summary of combined effect of loads, shrinkage, and flow at the end of 2 years 
is 

Concrete Steel 
lb. per lb. per 

sq. in. sq. in. 

Elastic stress (sustained load) 310 C 3,100 C 
Shrinkage 119T 10,800 C 
Plastic flow 230 C * 7,250 C 

Resultant stress (sustained load) me 21,150 C 

Elastic stress (live load) 310 c 3,100 C 

Resultant stress (fully loaded) 421 C 24,250 C 

* The concrete stress of 230 replaces initial stress of 310; steel stress of 7250 is an 

addition to the initial stress of 3100. Computations of stresses due to loads only 

would give/c = 620 lb. per sq. in. and fa = 6200 lb. per sq. in. The resultant effect 

of slirinkage and flow is to reduce the concrete stress 32 per cent and increase the 

steel stress 290 per cent. In the past, when columns were designed for loads alone, 
the designs were safe because the allowable concrete stress was held low enough so 

that the allowable steel stress did not exceed 10,000 lb. per sq. in. The shrinkage 

and flow readjustments did not raise the resultant steel stress to the yield point. 

High Percentage of Steel. This column was 17 in. square with a steel ratio 

p == 0.0351. Solving as before, 

fo-- 
150,000 

(17)2(1.316) 
= 395 lb. per sq. in. 

5 - 1.25 X 10-« - = 0.800 
o 

and 2.226 

395 
178 lb. per sq. in. 

2.226 

Steel fi == 3960 lb. per sq. in. 

* /2.226 - l\ /0.965\ 

("w) Wi) = 
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Summary. 
Concrete Steel 

lb. per lb. per 

sq. in. sq. in. 

Elastic stress (sustained load) [395 C] 3,950 C 

Shrinkage 320 T 8,800 C 

Plastic flow 178 C 5,960 C 

Sustained load stresses (2 yr.) 142 T 18,710 C 

Elastic stress (live load) 395 C 3,950 C 

Resultant stress (fully loaded) 253 C 22,060 C 

In this case the effect of shrinkage and flow compared with clastic stresses is to reduce 

the concrete stress 68 per cent and increase the steel stress 187 per cent. The shrink¬ 

age and flow readjustments have greatest influence on the steel stresses when low 

steel ratios are used. 

189, Approximation of Shrinkage-Flow Readjustments. The calcu¬ 
lations in the previous article preserve equilibrium at the section. For 
example, the column with the low percentage of steel carries at time 
f == 0 a sustained load of 

N = A[fc{l - v) +fsV] = 441[310 X 0.989 + 3100 X 0.0109] 

= 150,000 lb. 

After 2 years the load sustained is 

N = 441[111 X 0,989 + 21,150 X 0.0109] = 150,000 lb. 

The elastic stresses were computed with the assumption that the steel 
stress fi = nfo. The final stresses can also be computed for dead plus 
live loads by equation 138 if a value of n is used equal to 

24,250 ^ 

fc 421 

iV = 421 X 441[1 + 56.7 X 0.0109] = 300,000 lb. 

Similarly the dead plus live load stresses for the high percentage of steel 
can be obtained by equation 138 by using a value 

^ _ 22,660 

Yc ^ 253 
89.8 

AT - 253 X 289[1 + 88.8 X 0.0351] = 300,000 lb. 

The designer can approximate the final stresses by using values for n 
of 60 to 90 for the particular concrete strength, shrinkage, flow strains, 
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and dead-live ratio adopted for this problem. It would be logical to 
use a greater value of n, say 150 to 200, applied to the sustained load 
only, and the usual elastic ratio n = 10 to the short time live loads, 
except that occasionally (as with the high percentage of steel) the sus¬ 
tained stresses in the concrete result in tensile values. 

190. Plastic Flow in Beams. It is stated in Article 187 that the re¬ 
sult of shrinkage and flow in members in bending is to produce a non¬ 
linear stress variation in the concrete on the compression side. An as¬ 
sumption of a parabolic variation is frequently made. The neutral axis 
is lowered and this gives a greater compression area. Computations for 
stresses or deflection which purport to allow for shrinkage and flow are 
of doubtful value; consequently the designer usually approximates for 
these values by using a greatly increased value of n. As Professor Shank 
says, ^Tn any practical problem uncertainties about the crack penetra¬ 
tion, the real elastic properties of the concrete, and the plastic flow ex¬ 
pression are great enough so that it is hardly practical to use any theory 
more complex than the modular ratio change method.'^ ^ For illustra¬ 
tion of plastic flow in beams see Problems 32 to 34 under prestressed 
concrete. In these cases the tensile stresses are kept at low values and 
cracks do not affect the results for working loads.® 

TEMPERATURE 

191. Temperature Stresses. Changes in the temperature will pro¬ 
duce strains in a reinforced concrete member. If the member is part of 
a continuous frame these strains will be accompanied by stresses in the 
steel and concrete. At early ages the temperature stresses in the con¬ 
crete are modified by plastic flow. For this reason the actual tempera¬ 
ture during deposition of the concrete is not important and it is suffi¬ 
ciently accurate to compute temperature changes above and below the 
average of the tenaperature range. After 4 or 5 years the rate of plastic 
flow approaches zero and the concrete acts as an elastic material but 
with a modulus of elasticity considerably higher than it possesses at 
early ages. Temperature computations made at ages greater than 4 
years should not rely on readjustment by plastic flow. For concrete 
exposed outdoors the temperature range internally in thick sections can 

• ‘The Plastic Flow of Concrete,'' Ohio State University, Eng, Exp, Sta, Bidletin 91, 

p. 50. 
•An interesting analysis of plain concrete slabs whose surfaces are exposed to 

drying out (non-uniform shrinkage) and direct stresses or bending is given by 
Mr. Gerald Pickett, in Jour, A.C.L, Feb., 1942, p. 333. For this simple case Mr. Pick¬ 
ett's analysis supports Prof. Maney's statement that plastic flow for working strains 
is due to non-uniform shrinkage. 
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be taken to be about 60 per cent of the yearly range; thin sections will 
approach the air temperatures. 

The coeflEicient of expansion of concrete varies ^ith the mix and mate¬ 
rials used. Laboratory and field tests give values of the coefficient € 
varying from 4 X to 7 X per degree Fahrenheit.^ In designs 
it has been customary to assume the coefficient to be equal to that of 
steel and to have a value e = 5.5 X 10“®. If the coefficients are not 
equal, stress will be caused in the steel by variations of temperature 
above or below that at the time the concrete hardened. To evaluate 
the stresses due to different coefficients, neglect plastic flow and note 
that strain equals the coefficient e times temperature change T. The 
difference in concrete and steel strains will be (e^ — €c)T. If the tem¬ 
perature drops and €« is greater than the steel will be placed in tension 
and the concrete ir compression, so 

j+f »«) 
The section must be in equilibrium, so 

fcAc = fsAs or fc(l p) = fsP (146) ‘ 

Substituting values of/« or fc from equation 146 in equation 145, 

/. = (e. - e,)TE. - ^. (147) 
1 + (n - l)p 

fc = (148) 
1 + (n - l)p 

If the temperature rises, the steel will be in compression and the con¬ 
crete in tension. 

192. Temperature Stresses in Concrete Chimneys. An extreme ex¬ 
ample of reinforced concrete exposed to temperature changes is the con¬ 

crete chimney. The unlined chimney may 
be subjected to great differences in tempera¬ 
ture on opposite faces of a comparatively 
thin shell. The derivation given here is 
taken from the Tentative Standard of the 
American Concrete Institute (505-36T) for 
Design and Construction of Reinforced 
Concrete Chimneys. 

Figure 119 shows an elevation of the 
chimney shell with a representation of the 

* *^Plain and Reinforced Concrete Arches,” Chas. S. Whitney, Jour. A.C.L^ March 
tm, p. 479. 
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temperature gradient from flue gas to outside air. Let 

T = maximum temperature of flue gas, degrees Fahrenheit 
2\ = temperature of concrete at inside surface of shell 
T2 = temperature of concrete at outside surface 
To — minimum temperature of outside air 
u = coefficient of overall heat transmission from the gas inside the 

chimney to the air outside, British thermal units per square 
foot of surface per hour per degree temperature difference 

Ki = coefficient of absorption and convection at inside concrete sur¬ 
face, British thermal imits per square foot per hour per degree 

K2 = coefficient of radiation and convection at outside concrete sur¬ 
face, British thermal units per square foot per hour per degree 

C - coefficient of thermal conductivity of concrete, British thermal 
units per square foot of surface per inch thickness per degree 

The amount of heat received at the inside surface equals the heat 
conducted through the shell and the heat discharged to the air, or 

K,(T - Ti) = - (Ti - T2) = K2(T2 - To) = u(T - To) (149) 
z 

also 
T-To= (T-T,) + (Ti - T2) + (T’2 - To) 

From equation 149, 

u(T - To) t 
r - n =---, Tr-T2 = -u{T- To), 

Ai C 

T2 - To ^ 

Substituting in equation 150, 

u = 

u(T ~ To) 

lU 

1 

Let 

1 t 1 

Tx = - Fa = -u{T - To) 
0 

t{T - To) 

/I t 1 \ 

(150) 

(151) 

C C 
Let-1-= Ko, a constant determined by experiment. For the 

Ki K2 

unlin ed chimney 
(T - To)t 

Ko-¥t 
(162) 
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K the chimney is lined, the value of Kq will also include the surface 
coefficients, thickness, and conductivity of the lining. It is suggested 
in the absence of test data that Ko — 12 for unlined chimneys and Ko 
«= 30 for lined chimneys where the lining is at least 4 in, thick with an 
air space of at least 2 in. between the lining and the concrete shell. 

The analysis for stresses due to temperature differences includes the 
assumption that the combined effect of dead load, wind, and tempera¬ 
ture may crack the concrete particles which have tensile stresses. There¬ 
fore, the concrete is assumed to be cracked on the tension side. The 
coefficient of expansion e of concrete and steel are assumed to be the 
same. The temperature gradient at any particular level is assumed to 
be the same around the circumference; the section remains circular and 
horizontal. 

Vertieal Steel, The inner hotter particles tend to expand more than 
the outer ones. If the section remains horizontal, the outer particles 

must expand more than the temperature dic- 
Verfica! Steel tales and the inner ones less. The inner 

stresses will be compression, the outer stresses 
tension. Some particles in between, on a defi¬ 
nite circumference, will expand an amount 
agreeing with the temperature change Tz 
(Fig. 120). These particles will have zero 
temperature stress. Let us assume that these 

Fig. 120 particles are located a distance kt from the 
inner surface (note that this distance is ktj 

and not kd). Let the distance to the steel be zt. The particles on 
the inner surface have compressive strains due to restraint of €{Ti — Tz) 
and a stress 

fc = €(Ti - Tz)Ec 

kK 
2/ . 

Jns/efe ♦ , Outside 

/ 

But 

Then 

Ti ~ Tz kt 

t 
or Ti - Ts = kT^ 

fc = eTxkEc (compression) (153) 

Similarly the steel is given a forced elongation corresponding to the tem¬ 
perature difference {Tz — T4), The steel stress equals 

fa ~ ^{Tz — T^Es = fTx{z — k)Ei (154) 

The forces on the section must be in equilibrium. Using an average 
circumference. 

Sc 
- kt{2rr) = /«pf(2irr) 
Jj 
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Substituting the values of /c and /« from equations 153 and 154, 

205 

k = ‘\/np{np + 2z) — np (155) 

These equations give stresses due to temperature and are uniform around 
the circumference. 

Circumferential Steel The derivation for stresses on a cross section 
is given above. If one takes a vertical section, say 1 ft. high, the same 
equation may be used to compute compressive stresses on the inner con¬ 
crete and tensile stresses in the circumferential steel. Of course, in this 
case the distance zt locates this circumferential steel and the steel ratio 
p is computed by using the area of this steel. 

PRESTRESS 

One of the disabilities which reinforced concrete members in bending 
suffer is the loss of the concrete area on the tension side in computations 
at sections near the maximum bending moment. This loss is due to the 
assumption that the concrete has cracked to the neutral axis. Members 
that must be watertight have the additional handicap that such cracks 
reduce the thickness of impermeable concrete. The prestressing of some 
or all of the steel is one method of reducing or eliminating tensile 
stresses. 

Methods of prestressing steel for reinforced concrete pipes, tanks, and 
beams were initiated by M. Freyssinet and a variety of devices for pre¬ 
stressing have been introduced by others. Most of these methods are 
patented. The following discussion will cover members in direct ten¬ 

sion, such as pipes and tanks, and members in bending. 

' 193. Prestressed Pipes. M. Freyssinet developed a reinforced con¬ 

crete pipe of great strength. The concrete mix and water content were 
determined with great care. The concrete is deposited into a form con¬ 

taining the circular steel reinforcement. With the outer form immov¬ 

able the inner form is expanded. The compressed concrete becomes 

denser and some excess water is drained off. Then the outer form ex¬ 

pands while the inner form follows it to maintain the pressure on the 
concrete. The circular steel must also increase in diameter and a pre¬ 
determined tensile stress is produced in this steel. The concrete now 

hardens at a temperature of 180® P. The result is a concrete whose 
compressive strength may be as high as 7000 to 8000 lb. per sq. in. 

After hardening the inner form is collapsed and the pull in the steek 

causes the pipe to decrease slightly in diameter. The result is that the 
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empty pipe has initial compression stresses in the concrete and tension 
in the steel. Let 

fp = tensile stress in the steel due to expansion of inner form 
fr = tensile stress in the steel on release of inner form 
fe = compressive stress in the concrete 

p = steel ratio = 
t X I 

Figure 121a shows the half section of concrete pipe, one unit long, 
acted upon by the pressure of the contracting steel. The final force in 

the steel amounts to frA, = frp(t X 1). The force in the concrete will 
equal C = fcAc = /c(l ~ p)(^ X 1). These two forces must be equal, so 

/c = fr 

Also, the concrete and steel strains must be equal: 

fp fr __ fe 

Es 
or 

fp-fr 

n 

Solving these two equations, 

_f 
1 + (n - l)p ** 

(166) 

When the pipe goes into service an internal pressure q (Fig. 1216) will 
produce a tension T per unit length of shell. This is resisted by both 
steel and concrete, if the concrete is not overstressed in tension. 

T^qR^ Mt X 1)[1 + (n - l)p] (157) 
also 

= nft (158) 

The effect of prestressing and internal pressure can be combined to 
give resultant stresses. 
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ILLUSTRATIVE PROBLEM 30 

194. Design of Prestressed Pipes. Determine the effect of prestressing a pipe 

of 30 in. internal diameter with shell 1.5 in. thick. Use/'c ~ 5000 lb. per sq. in. and 

reinforcing steel of No. 6 American Steel and Wire Gage spaced at 1.5 in. center to 

center of bars. This steel is to be prestressed to fp = 80,000 lb. per sq. in. 

Number 5 wire has a diameter of 0.207 in. and area of 0.0336 sq. in.; p == 0.0149. 
By equation 156, 

/r = 
80,000 X 0.985 

1.075 
73,350 lb. per sq. in. 

/ — fr 6650 
fo = - = ~;r~' — 1113 lb. {)er sq. in. (compression) 

n 6 

Determine the maximum internal pressure to reduce the concrete prestress to zero. 

15.00^ = 1113 X 1.5 X 1.075 or q - 120 lb. per sq. in. 

If it is deemed permissible to stress the concrete to a resultant Tensile stress of 
400 lb. per in., the int/Crnal pres.sure q = 163 lb. per sq. in. 

Shrinkage and Flow, The curing of tliis pipe should result in a rather complete 

drying out. This shrinkage will cause the pipe to contract more; there will be a 

tendency to produce tension in the concrete and compression in the steel. Let us 

assume a shrinkage strain s = 0.0004. By equations 117 and 118 there will be a 

shrinkage tensile stress in the concrete of 

6 X 0.0149 
=--- X 0.0004 X 5,000,000 = 167 lb. per sq. in. 

1.075 

0.9851 
Steel stress/* = —X 0.0004 X 30,000,000 = 11,000 lb. per sq. in. 

1.075 

The process of curing is not lengthy but some time may elapse before the pipe is 

placed in service. Let us assume that a flow strain c = 40 X 10~® represents the 

deformations ascribed to flow with due allowance for the fact that shrinkage is 

reducing the prestresses in both steel and concrete. By the flow equations for 

sustained load, 

1.075 

6 X 0.0149 5,000,000 
= 2.39 X 10“« 

By equation 141, 

= 942 lb. per sq. in. 

The forces at the section are in equilibrium, or 

942 X 1.5 X 0.9851 * /. X 1.5 X 0.0149 

/, « 62,200 lb. per sq. in. 



208 SHRINKAGE, PLOW, AND PRESTRESS [Chap. 9 

If we combine shrinkage and flow effects, the stresses as the pipe is put in service 

appear to be 

fc = 942 — 167 = 775 lb. per sq. in. (compression) 

=* 62,200 — 11,000 = 61,100 lb. per sq. in. (tension) 

If the pipe transports water, the greater part of the shrinkage will be eliminated 

by a subsequent expansion. Plastic flow will be non-existent if the resultant concrete 

stresses are close to zero. If the pipe stands empty for a long time, flow may be 

resumed but will depend on whether the pipe is above ground or whether it receives 

additional sustained compressive stresses due to the weight of fill above it. 

In any case the effect of shrinkage and flow before the pipe is in service is to reduce 

the effect of prestressing and therefore reduce the allowable internal pressure that 

produces tensile stresses in the concrete. 

196. Prestressed Tanks. The walls of a water or oil tank of cylin¬ 
drical shape can be prestressed as a means of crack prevention. For 
tanks of considerable diameter, say 50 ft. to 150 ft., steel has been used 
as large as 1-g^in. rounds with rolled threads on upset ends perhaps 30 
to 35 ft. long. These bars are joined by turnbuckles and form bands or 
continuous helices around the tank wall. The steel is placed on the 
outside of the poured wall and wherever the turnbuckles occur vertical 
slots or recesses are made in the wall so the turnbuckles may be rotated 
for tightening. After prestressing the steel is covered with a layer of 
concrete or gunite. This extra layer, placed after prestressing, adds con¬ 
crete whose stress is theoretically zero before shrinkage, flow, or loading 
takes place. 

By tightening the turnbuckles the length of steel is reduced and the 
concrete is prestressed in compression, while the steel has tensile stresses. 
The prestress analysis is similar to that of the concrete pipe except that 
the prestressed bar starts at zero stress and ends with the maximum 
stress /p. With the usual lever bar for turning the tumbuckle, pre¬ 
stresses of 20,000 to 30,000 lb. per sq. in. can be obtained. If the diam¬ 
eter of the tank is very great compared to the wall thickness, an average 
radius R may be used. The steel is placed outside the wall so the con¬ 

crete area equals (^i X 1) and the steel ratio is 
As 

<1 X r 
Equating the 

forces at a section one unit high, 

fcAc = fpAs or fo = pfp (159) 

When the tank is filled the tensile stresses in steel and concrete are given 
by equations 157 and 158, where the thickness t is the sum of the wall 
thickness plus gunite cover ^2- As in Problem 30 it is possible to 
adjust the steel area As and prestress fp so that the concrete can take 
a reasonable tension due to the internal pressure. The gunite cover does 
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not have the advantage of prestressing but it can well be proportioned 
with a greater tensile strength and the action of plastic flow will tend 
to relieve the greater resultant tensile stress. 

A low prestress, say 30,000 lb. per sq. in., suffers a large percentage of 
reduction due to shrinkage and flow in the concrete. Therefore, recent 
tanks have been prestressed by wrapping wire around the wall with pre- 
stresses as high as fp = 150,000 lb. per sq. in. 

ILLUSTRATIVE PROBLEM 31 

196. Prestressed Tank Wall. Let us check the prestressing effect pn a tank, 90 

ft. in diameter, wliich is to be filled with water. Assume that the preliminary design 

gives an 8-in, wall at a position 20 ft. below the water level; use/'c = 3000 lb. per 

sq. in. The wall is prestre^ed with |-in. round bars spaced at 3| in. at this depth. 

The prestress equals fp = 25,000 lb. per sq. in. After prestressing 3 in. of gunite is 

placed to cover the steel bars. 

Frestress. Since the steel is placed outside the wall the steel ratio for a vertical 

section 1 ft. high equals 

2.06 

8 X 12 
= 0.0215 

By equation 159, 

fc ~ Pfp - 0.0215 X 25,000 = 537 lb. per sq. in. 

The section is now in equilibrium, for 25,000 X 2.06 = 51,500 = 537 X 96. The 

gunite covering is now placed and has no stress when it has hardened. 

Shrinkage and Flow, If some time ehipses before the tank is filled, shrinkage and 

flow will modify these stresses. Let us assume that the measured deformation cor¬ 

responds to a flow strain c = 30 X 10~®, and the cross section remains parallel to 

its original position. The concrete in the wall will decrease in circumference because 

of flow but will tend to increase in circumference because of the reduction of compres¬ 

sive strength. Reversing the left terms of equation 140, the concrete strain equals 

537 -f/c JO _ 537 -fc 

2 ^10® 3 X 10® 
(160) 

where /c is the final stress and the average stress is used for A/c. 

The gunite will receive a compressive stress fg due to this net shortening. Shrink¬ 

age of the gunite will cause it to shorten and flow due to the compressive stress will 

cause it to shorten. Assuming the net change also to equal c = 30 X 10“®, the gunite 

strain equals 

fg 30 

Equating these strains, 

537 -h/c 3^ _ 537 - fc ^ 

2 ^10® 3 X 10® 

For equilibrium, after flow has occurred, 

m. + 33.0V« “ 

(161) 1 
3 X 10* 

A/. (162) 
30 X 10® ■ 2 10® 3 X 10* 

(26,000 - Af.)2.0fi (163) 
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The values of A/* and fg can be expressed in terms of fe by equation 162 and substi¬ 

tuted in equation 163. The results give 

fc = 404 lb. per sq, in. 

fg = 200 lb. per sq. in. (compression) 

A/a = 2900 lb. per sq. in. (reduction) or 

fg = 22,100 lb. per sq. in. 

These results are approximate as equation 140 should be a summation of small 
increments of Ac with corresponding values of A/^, A/g, and A/,, but this approximation 

indicates a reduction in the steel stress of about 12 per cent, which is checked by 

test values. 
Effect of Water Pressure. Let us consider the portion of the tank wall between 

19 ft. and 20 ft. below the water level. The average water pressure equals 19.5 X 

62.5 = 1220 lb. per sq, ft. The steel ratio for the full thickness of concrete and gunite 

equals p = 
2.06 

11 X 12 
= 0.0156. By equation 157, 

1220 X 45 = 54,900 lb. = /«(!! X 12)[1 + 9 X 0.0156] 

ft = 365 lb. per sq. in. (tension) 

Resultant stress (concrete)/c — 404 — 365 = 39 lb. per sq. in. (compression) 

Resultant stress (gunite)/^ = —200 + 365 = 165 lb. per sq. in. (tension) 

Then 

Also, 

-39 X 96 + 165 X (36 - 2.06) X 2.06 = 54,900 

fg = 25,750 lb. per sq. in. (tension) 

fg = 22,100 + 3650 = 25,750 lb. per sq. in. 

These are the computed stresses immediately after the water pressure is applied. 

Note that the steel stress only slightly exceeds the original prestress and that the 

gunite must be able to withstand safely a tensile stress of 165 lb. per sq. in. 

Shrinkage and Flow. The water-filled tank will absorb moisture and the greater 

part of the shrinkage will be overcome by the consequent expansion of the concrete. 

The plastic flow due to stresses can be handled similarly to the flow due to prestress. 

Since shrinkage strains disappear, let us assume that the flow effect will correspond 

to a flow strain of 40 X 10~®. The tensile force on the gunite is greater than the 

compressive force on the concrete. Assume that the section remains parallel to its 

original position and that it expands. Then 

/l65+/g\ 40 (165 -/g) Afg _/39+/A 40 39 -/c 

V 2 / 10® 3 X 10® 30 X 10® \ 2 / 10® 3 X 10® 

The force equation for equilibrium at the section becomes 

-96/c + 33.94/g + 2.06(25,750 + A/.) “ 64,900 
Solving, 

fc = 19.6 lb. per sq. in. (compression) 

fg = 75.3 lb. per sq. in. (tension) 

fg « 26,295 lb. per sq. in. (tension) 
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This approximate evaluation of the effect of flow indicates that the tendency is to 
relieve the concrete and gunite stresses and yet the resultant steel stress is not far 
from the original prestress. 

197. Prestress of Rectangular Beams. The prestressing of beams is 
advantageous because properly located prestressed steel will produce 
compressive stresses at the bottom of the beam which will offset the 
tensile stresses caused by the loads. The prestressing causes a deflection 
upward which will reduce the resultant deflection when the loads are 
applied. Up to the present time it has not been economical to prestress 
continuous beams. Many prestressed beams are precast and then moved 
into place; they serve as beams of a single span with supported ends. 
It is difficult to produce continuity for prestressed beams cast in posi¬ 
tion. This discussion of prestressed beams will be limited to those of 
rectangular section, but similar procedures can be applied to the I sec¬ 
tions often used, or the tee section of the normal floor systems. Two 
cases will be considered. In the first case the prestressing steel is coated 
with grease or asphalt, or wrapped in oiled paper, so that there is no 
bond between the steel and the adjacent concrete. In the second case 
the steel is assumed to be bonded to the concrete. 

198. Prestressed Rectangular Beam—^NoBond. Such beams are con¬ 
structed by pouring the beam with the unstressed steel in place. After 
the concrete has hardened long enough to with¬ 
stand prestress, the steel is prestressed to the 
determined value of fp by a pull on its ends. The 
steel can slip easily in reference to the concrete 
but the bearing plates at the ends, or the bear¬ 
ing cones of concrete at the ends, cause the con¬ 
crete to be compressed at the level of the steel. 
In the following derivation the concrete area will 
be considered to be bh as it is intended to have 
the resultant concrete stresses after loading entirely compressive or 
of very low tensile values. The steel ratio will be based on the full 

area bh and equals p 
bh' 

The neutral axis ratio k will be a percent¬ 

age of the depth A, and the steel depth d will be expressed as zh 
(Fig. 122). 

Prestressing. Let the prestress intensity in the steel be denoted fp 
and, for simplicity of equations, call the concrete area bh instead of 
{bh — A i). Upon completion of the prestressing the force in the steel 
equals fpA^ = C\, This force will produce a pressure on the concrete, 
which acts at the center of gravity of the steel. Using the analysis de¬ 
veloped for shrinkage (Art. 182), transfer this force to the center of 
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gravity of the concrete area at “. On the bottom particles the con- 

Crete stress equals 

hh ^ 

6C' 
'■M 

hK^ 

2C". 

l)h 
(3z - 1) = 2/j,p(3z - 1) (104) 

Similarly the top particles have a tensile stress of 

ft = 2UpiZz - 2) (105) 

Assuming a straight-line relation between concrete stress and strain, the 
neutral axis ratio equals 

k = 
30-2 

6z - 3 
(166) 

If we now consider the whole section, the steel has a tensile stress /p, 
the lower part of the concrete is in compression, and the portion above 
the neutral axis is in tension. The forces at the section must be in 
equilibrium, or 

- hijeh) + fppbh = -b(h- kh) 
2 2 

Substitution of values of ft and fc and k shows that this equation is an 
identity. 

Stresses Due to Loads. The effect of application of loads will be con¬ 
sidered separately from the prestress, but it will again be assumed that 
the combined effects produce tensile stresses in the concrete which are 
below the working tensile strength. 

The loads on the beam will cause it to deflect and the unbonded steel 
will deflect with the concrete but may slip with relation to any concrete 
particle at the level of the steel. As the beam bends, the tensile steel 
will be lengthened, its ends being anchored, and it receives an additional 
tensile force T. This force T, acting on the end anchors, will load each 
concrete section with an equal compressive force = T applied at the 
level of the steel. If M equals the moment at any section due to the 
external loads, the net moment Me on the concrete area equals Me — 
M — Th{z — I). By the methods used in deducing equations 164 and 
166, 
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At the level of the tensile steel the stress f''c in the concrete equals 

213 

T l2MMz - i) T l2Mc ^ 

^ bh^ ~ 

When the value of Me from above is substituted, the stress/"c becomes 

/", = ^[l + 12(z 
oh 

m - 12{z - \)M 

bh^ 

f"c 
The concrete strain at this level equals c!'c = tt is negative (ten- 

hie 

sion). This strain varies from section to section as the external bending 
moment M varies. The total change of length at this level must equal 
the change in length AZ of the steel, or 

Tl 
; dx 

I {Tl , , I2{z - \) /*' 
(167) 

ILLUSTRATIVE PROBLEM 32 

199. Design of Prestressed Beam—Steel Not Bonded. It is customary to use 

wires which have a high yield point as prestressed steel, so that a high prestress can 

be used. Thus plastic flow will not neutralize the 

piestressing. 

Assume a beam section, 10 in. by 20 in. in 

section, supported at the ends of a 16-ft. span and 

carrying a uniformly distributed dead load of 520 

lb. per ft. and a live load of 1040 lb. per ft. It is 

subjected to a maximum dead load moment of 

200,000 in.-lb. and maximum live-plus-dead moment 

of 600,000 in.-lb. It is reinforced by ten No. 5 

(American Steel and Wire Gage) wires prestressed 

to 150,000 lb. per sq. in. The center of gravity of 

this steel is located 3 in. from the bottom of the 

beam and each wire has a diameter of 0.207 in. (Fig. 123). The concrete strength 

/'c “ 3000 lb. per sq. in. 

Prestresses. 

0.336 1.68 

10 X 20 ” lO® 
A, = 10 X 0.0336 and p 
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By equation 164 and 165, 

fc^ 2 X 150,000 

/« = 2 X 150,000 

1 f{H 
X (3 X 0.85 — 1) = 782 lb. per sq. in. 

1 
X (3 X 0.85 — 2) = 277 lb. per sq. in. 

k - 
277 

277 + 782 
0.262 (168) 

The stress diagram is shown in Figure 124a. The stresses are low enough so that 
a straight-line distribution is reasonable. The tensile stress is close to the ultimate 

value for 3000-lb. concrete. 

T--iY.2ny.5.24y.l0--X260lb. 

f^-250 

f^‘782 
Prestresses 

C:jx7S2x/4.76x/0-57,7301b. ^ T-fpAs -150,000x0.336-50.mib 

-T-e.555lb. 

X-5/,9601b. 

■T-45.425/b. 

Fia. 124 

fc-705 

Presfress ^Shrinkage -f-F/ow 

Shrinkage and Flow. Shrinkage will cause the concrete to shorten, whereas flow 
due to stresses will cause the concrete in compression to shorten. The steel will also 

shorten and the prestress will be reduced. The section must remain in equilibrium 

under the reduced stresses. Assume that the test data indicate a 10 per cent reduc¬ 

tion in steel stress, or a stress fp = 135,000 lb. per sq. in. The compressive stress 

in the concrete becomes fc = 705 lb. per sq. in. and the tensile stress ft = 250 lb. 

per sq. in. The stress distribution is given in Fig. 1245. 
Stresses Due to Dead Load. The maximum stresses due to the dead-load moment 

of 200,000 in.-lb. can be found. Using equation 167 and assuming the steel to be 
concentrated at its center of gravity. 

T X 192 

0.336 X 30 X 10® 

1 

3 X 10® 

T X 192 

200 
[1 + 12 X (0.35)2] _ 

12 X (0.35) 

10 X 400 
200,000 X 192 X 

01 
- 67.2T * -f2.37r - 26,880 (169) 

T ~ 451 lb. and /* « 1340 lb. per sq. in. 

Maximum Me « 200,000 - 451 X 20 X 0.35 « 196,840 in.-lb. 

^ 6 X 196,840 

200'^ 10X400 
297.5 lb. per sq. in. 

ft « —293.0 lb. per sq. in. 
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Combined Effect of Prestress and Dead Load. The combined stresses after applicar 
tion of the dead load are given below and plotted in Figure 125a. 

Top particles fc — 298 — 250 = 48 lb. per sq. in. (compression) 

Bottom particles fc = 705 — 293 = 412 lb. per sq. in. (compression) 

Steel/, «= 135,000 -f" 1340 — 136,340 lb. per sq. in. (tension) 

Shrinkage and Flow—Dead Load. At the time the live load is applied assume that 

the additional shrinkage and flow amount to a flow strain c = 30 X 10“®. Tests 
indicate that a plane section remains plane after flow and the stresses are assumed 
to be uniformly varying for working loads. A solution can be made by using a 

greatly reduced modulus of elasticity. The elastic stress modulus E = -, or the 
e 

elastic strain for a unit stress equals « = ~ * An equation in Article 11 suggests that 
E 

the modulus of elasticity, after flow, may be defined as =-. In this problem, 

Then 

R = —-— = 1,580,000 lb. per sq. in. (170) 
e + c 

Using this value in equation 167, 

T = 827 lb. and /, = 2460 lb. per sq. in. 

fc = 295.4 lb. per sq. in. and ft = —287.2 lb. per sq. in. 

Flow reduces the concrete stresses only slightly, because there is such a small area 

of steel to prevent additional deflections. ♦ 
Combined Stresses before Live Load Is Applied. 

Top particles/o =* 296 — 250 = 46 lb. per sq. in. 

Bottom particles ft * 706 — 287 = 418 lb. per sq. in. 

Steel fc « 135,000 + 2460 « 137,460 lb. per sq. in. 

♦ An alternative is to apply a percentage reduction of the stresses of Figure 126a. 
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hive Load. The live load will be regarded as intermittently applied; therefore it 

will produce only elastic stresses. The additional live-load maximum moment equals 

400,000 in.-lb. The stresses produced will be twice those of the dead load when it 
was initially applied. There is now less justification for superposing the results of 

separate stress computations, but the combined concrete stresses are low and do 
not vary much after the dead load is applied; therefore such a summation indicates 

the tendencies of stress variation. 
Let us assume that the flow, after several years of continued dead-load application, 

amounts to c = 100 X 10“®. In this case R = 750,000 lb. per sq. in. Using equa¬ 
tion 167, the stresses due to dead load become, 

T = 1615 lb. and = 4810 lb. per sq. in. 

fc — 291.2 lb. per sq. in. and ft — —275.0 lb. per sq. in. 

Top particles fc - 291 2 X 297.6 — 250 = 636 lb. per sq. in. (compression) 

Bottom particles/i = 705 — 275 — 2 X 293 = — 156 lb. per sq. in. (tension) 

Steel/, = 135,000 + 4810 + 2 X 1340 = 142,490 lb. per sq. in. (ten¬ 
sion) 

The fiunal stress distribution in the concrete is plotted in Figure 1256. The tensile 

stresses are moderate and should not produce cracks. The final stress in the steel 

does not exceed the original prestress. The low resultant compression stress may 
suggest that the section could be reduced in size, but a survey of such reduction 

should include allowable tensile stresses at the top due to prestress and at the bottom 
due to all factors. A reduction in section may also give difficulty in the introduction 

of the necessary area of steel. A discussion of diagonal tension stresses is given in 
Problem 33. 

200. Prestressed Rectangular Beams—Steel Bonded to Concrete. 
This steel is installed in place and prestressed. The concrete is then 
poured; after it has hardened sufficiently to withstand prestress, the pre¬ 
stressing mechanism is released and the bearing plates, or bearing cones, 
press upon the concrete, causing it to oppose the shortening of the steel. 
The concrete is thereby prestressed. 

In this case the original steel prestress /p is reduced to some value /r- 
The concrete at the level of the steel will receive a prestress in compres¬ 
sion of /c,. If the two materials are bonded, the strains at this level 
must be equal, or 

" - - or =fp-fr (171) 
hg he 

The force exerted by the steel on the concrete equals C', == frAg = frpbh. 

Paralleling the derivation in Article 198, 

Bottom particles/c = 2frp(3z — 1) (172) 

Top particles ft = 2frp(Sz — 2) (173) 
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also 32-2 
k =- 

62-3 

After prestressing, the section is in equilibrium, or 

ft fc 
frpbh + - b(kh) - - b{h - kh) 

2 2 

2frP+ftk==fca -k) (176) 

Stresses Due to Loads. The solution for stresses due to dead or live 
loads can be made by the use of the transformed area, if the resultant 
tensile stresses are assumed to be low enough so that the whole concrete 
section can be considered in the computations. 

(174) 

(175) 

ILLUSTRATIVE PROBLEM 33 

201. Design of Prestressed Beam with Bonded Steel. Assume the dimensions, 
loads, and stresses of Problem 32. 

Prestresses. The center of gravity of the steel is 17 in. from the top. Therefore, 

since z = 0.85 and k — 0.262, = 0.797/c and ft = 0.355/c. 

From equation 176, 

2/r X ^ + 0.262/, = 0.738/c 

or 

From equation 171, 
fc == 0.00531/r 

10 X 0.797/c = 150,000 - fr 

(177) 

Substituting the value of fc in terms of fr from equation 177, 

fr = 143,900 lb. per sq. in. 

Bottom particles fc — 2 X 143,900 X 
1.68 

10^ 
(3 X 0.85 — 1) = 749 lb. per sq. in. 

Top particles ft = 206 lb. per sq. in. 

These stresses differ only slightly from those obtained for non-bonded steel. The 

difference is due to the slightly lower steel stress fr at the end of prestressing. 
Shrinkage and Flow. Assume again that the steel stress is reduced 10 per cent to 

0.9 X 143,900 « 129,510 lb. per sq. in. Then the maximum compressive stress in 

the concrete becomes fc 674 lb. per sq. in. and the maximum tensile stress ft «= 

239 lb. per sq. in. 
Dead Load. If the steel is bonded to the concrete, the effect of the dead load can 

be found by using the transformed area. The complete concrete area will be used 

in calculations because we expect the resultant stresses will not give tensile stresses 
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large enough to crack the concrete. Take moments about the top of the section 

to determine the neutral axis, position (Fig. 123), assuming the steel to be concen¬ 

trated at its center of gravity: 

10 X 20 = 200 X 10 = 2000 

10 X 0.336 = 3.36 X 17 - 67 

SA = 203.4 2057 = XM 

2057 
kh = - = 10.11 in. and k — 0.5055 

203.4 

The moment of inertia about the neutral axis equals 

I == 
10 X (10.11)3 JO X (9 39)3 

+ 10 X 0.336 X (6.89)2 = 6835 (in.)^ 

Maximum/c = 
200,000 X 10.11 

6830 
= 296 lb. per sq. in. 

Maximum// = 290 lb. per sq. in. 

6 89 
/, — 10 X 290 X = 2015 lb. per sq. in. 

The remaining procedure parallels that of Problem 32. The results are tabulated 
below. 

Stresses in Prestressed Beam 

Stresses (lb. per sq. in.) 

Due to Line Concrete Steel 

Top Bottom 150,000 

Prestress 1 266 T 749 C 143,900 
Shrinkage and flow (prestress) 2 239 T 674 C 129,610 
Dead load 3 296 C 290 T 2,016 
Combined—after dead load 2 + 3 = 4 57 C 384 C 131,525 

Shrinkage and flow (dead) 5 293 C 281 T 3,700 
Combined—before live load 2 +6 « 6 54 C 393 C 133,210 

Live load 7 692 C 680 T 4,030 
ComHned—after live load 6 +7 = 8 646 C 187 T 137,240 

Shrinkage and flow (dead) 9 287 C 263 T 7,207 
Combined—after several years 2 + 7 + 9 « 10 640C 169 T 140,747 
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The high value of the prestress may raise questions in regard to the bond stresses 

between steel and concrete. The high-strength wires used have a large perimeter- 
to-area ratio. There is a greater perimeter over which to distribute a given force. 

Also the drop from original prestress fp to final prestress fr tends to cause the wire 

to increase slightly in diameter and thus adds to the friction at its surface. Shrinkage 

and flow tend to offset the increase of steel stresses due to the loads and the resultant 
stresses do not exceed the original prestress fp. 

The prestresses are constant at all sections so there is no need to transfer varying 
steel forces to the concrete except at the ends of the wire. A properly designed bear¬ 

ing cone at the ends will safely transfer the steel stresses to the concrete. Subsequent 

bond stresses are due to the loads only. The usual bond relation can be restated as 

V vhjd vb 

'Zojd ^ojd 2^0 
(178) 

This shear stress v at the level of the steel is the maximum value for the usual re¬ 
inforced concrete beam, as is shown in the distribution on section BB of Figure 16. 

However, the prestressed beam includes the concrete on the tension side in computa¬ 

tions, and the shear stress varies as shown on section BB of Figure 16, if one disre¬ 

gards the effect on shear stresses of the small amount of steel. At the level of the 

steel in a prestressed beam the shear stress is very low as compared with section BB, 

and by equation 178 the bond stress is correspondingly low. 

Diagonal tension reinforcement will usually be needed. Since the fiber stress dis¬ 

tributions may resemble those of Figure 124 at all sections during prestress and con¬ 

tinue to be much the same at sections where the bending moment due to loads is of 

low value, we do not have the usual condition for diagonal tensile reinforcement. 

Usually such reinforcement is needed at sections where the tensile fiber stresses are 
low and the shear stress is high. Therefore, it is probably better to proportion the 

diagonal tension reinforcement by the more exact equation 30 (Art. 61) than by the 
approximate equations in general use, such as equation 32, which consider shear 

stresses only. In European practice stirrups are often prestressed also to add com¬ 

pressive stresses on a horizontal plane. In that case the principal tensile stress can 

be computed by the equation 

i + (179) 

where fh = normal stress on horizontal plane. These normal stresses are negative, 

if compressive. 
The maximum deflection of the beam upwards by the prestressing action can be 

computed by using equation 127 (Art. 182). This operates as an initial camber of 

the beam and subsequent deflections due to the loads and to flow should include 

this initial value. 
Some of the patented systems of prestressing and some designers include ordinary 

reinforcing bars in the section in addition to the prestressed wires. The following 

problem will compute for comparison with Problem 32 the effect of prestressing such 

a beam. 

ILLUSTRATIVE PROBLEM 34 

202. Design of Prestressed Beam—^Prestressed Steel Not Bonded. Using the 
data of Problem 32 add two 1-in. square reinforcing bars to the section (Fig. 126). 
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In this case the prestressing force in the wires acts upon the concrete and the 
reinforcing steel, whose steel ratio p = 0.01. The transformed area the prestress 

force acts upon equals 

A - 200(1 + 9 X 0.01) - 218 sq. in. 

h
—

-
1

 

T 
^/0'//o.5Wires 

Fia. 126 

The neutral axis ratio for concrete and steel bars equals k = 0.529 and the moment 

of inertia/ = 7477 (in.)^. The prestressing force C'a — 150,000 X 0.336 — 50,4001b. 
Computations similar to those of equations 164 and 165 give 

Bottom particles fc 
50,400 50,400(17 ~ 10.58) X 9.42 

218 7477 
= 639 lb. per sq. in. 

Top particles ft 
__ 50,400 50,400(17 - 10.58) X 10.58 

218 7477 
per sq. in. 

f,-227 

f^‘639 

Bor Stress fs^ 
5,090lb. per sq.ia 

Wire Stress fp= 
150,000Ibpersg.in. 
Prestress 

(o) 

fc'17 

fs^ 
2,900Ib.persq.in, 

Average €$• 
136,1 10 lb. per sq. in. 

Prestress, Shrinkage, 
and Dead Load 

(b) 

6:-6/0 

frds 

rr- 
2,835!b. per sq.m 

Average fs* 
139,842 lb per sq.in. 

Prestress, Shrinkage, 
Dead Load, Flow, 
an<f Live Load 

(c) 

Fia. 127 

These prestresses are shown in Figure 127a and they are somewhat less than those 
Figure 124a. The compressive prestress in the reinforcing bars equals 

11 76 
ft 77— X 639 X 10 « 5091 lb. per sq. in. 
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Shrinkage and Flow, Assuming, as in Problem 32, that the result of shrinka^ 

and flow is a 10 per cent reduction in the prestress in the wires, the reduced stresses 
in concrete and reinforcing bars become 

fc = 575 lb. per sq. in. 

ft = 204 lb. per sq. in. 

^« = 4582 lb. per sq. in. 

Stresses Due io Dead Load. Upon the application of the loads, the concrete and 

bars act as a bonded unit, whereas the wires are not bonded. The derivation of 

Article 198 can be modified by substituting the transformed area of 218 sq. in. for 
the previous concrete area bh and the moment of inertia which equals 7477 (in.)^ 

about the neutral axis 10.58 in. from the top of the section. Then 

Mc = M - 6A2T 

. _ 10.58.Mc 

“ 218 7477 

* “ 218 7477 

/"c = 
6.42Mc 

T X 192 

218 

1 

7477 

1.01 X 192T 

10^ 

I.OIT 8.59 

8-59 /„„„ 
- —r { 200,1 

10* \ 0.336 X 30 X 10' 3 X 10® 

- 57.2T = 1.947’ - 22,000 

T = 372 lb. 

f, = 1107 lb. per sq. in. (wires) 

Maximum Me = 200,000 - 372 X 6.42 = 197,610 in.-lb. 

372 10.58 X 197,610 

000 X 192 X : 

218 7477 
= 281 lb. per sq. in. 

372 __ 9.42 X 197,610 

218 " 7477 
— 247 lb. per sq. in. 

(bars) fa - nf"c = 10 X 168.1 = 1681 lb. per sq. in. 

The remaining computations are made by using the procedure and strains of 

Problem 32, except that the prestressing steel acts on the transformed area. In the 

computations, after the dead load is applied, equilibrium at the section requires 
that the reinforcing bars be analyzed separately, for prestress and live loads (n « 10) 

as contrasted with dead-load flow (n' = 19 or n' « 40), when combining stresses, 

The results are tabulated below. 
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Stresses in Prestressed Beam 

Stresses (lb. per sq. in.) 

Due to Line Concrete 
Steel 

(bars) 

Steel 
(wire) 

Top Bottom 

Prestress 1 227 T 639 C 5091 C 150,000 T 

Shrinkage and flow 2 204 T 575 C 4582 C 135,000 
Dead load 

Combined—after 
3 281 C 247 T 1681 T 1,107 

dead load 2 +3 = 4 77 C 328 C 2901 C 136,107 T 

Shrinkage and flow 

(dead) 

Combined—before 
5 269 C 213 T 2663 T 1,744 

live load 2 -f 5 = 6 65 C 362 C 1919 C 136,744 T 

Live load 

Combined—after 
7 562 C 494 T 3362 T 2,214 

live load 6 + 7 - 8 627 C 132 T 1443 T 138,958 T 

Shrinkage and flow 

(dead) 
Combined—after 

9 252 C 164 T 4055 T 2,628 

several years 2 + 7 + 9 = 10 610 C 83T 2835 T 139,842 T 



CHAPTER 10 

TWO-WAY AND FLAT SLABS 

Floor systems of reinforced concrete have been devised for many types 
of construction. As previously defined, the broad expanse of floor is 
spoken of as a slab. The discussion in Chapter 3 was confined to slabs 
whose tension steel spans in one direction only. These one-way slabs 
are designed as rectangular beams and are supported by beams span¬ 
ning perpendicularly to the slab steel. A discussion of the design of one¬ 
way joist floors is also given in Chapter 7 as an example of tee-beam 
design. 

It is possible to design certain floor slabs, whose panels are rectangular 
in shape, with two-way or four-way steel. In the two-way system the 
steel is placed in perpendicular bands or strips. Four-way steel has 
diagonal bands in addition. 

In this text the term two-way slab will refer to a floor panel supported 
by beams or girders on all four edges and reinforced with two-way steel. 
The term flat slab will denote a floor panel which has no supporting 
beams or girders. The column is enlarged at the top to give a support¬ 
ing capital. Flat slabs may be reinforced with two-way or four-way 
steel. 

TWO-WAY SLABS 

203. Statically Indeterminate Slabs. The framing plan for beam and 
girder floor construction is often so arranged that each panel is supported 
on all four sides by a beam or girder. If the panel is square, or nearly 
so, there may be an economic advantage in designing a two-way slab 
with steel running longitudinally and transversely. The design of such 
a slab involves a statically indeterminate analysis, as any given square 
foot of floor is supported both by north-south and east-west steel. Such 
a panel will deflect much as a rectangular net does whose four sides are 
tightly held. The previously discussed one-way slabs have the much 
less complicated deflections of the same net, or a sheet of paper, sup¬ 
ported on two opposite sides only. The division of the load between 
the two perpendicular sets of bars is dependent on their relative resist¬ 
ance to deflection and the fact that both sets must have the same de¬ 
flection at their intersections. A general theoretical discussion of such 
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slabs with a survey of tests on two-way slabs can be found in a paper, 
^^Moments and Stresses in Slabs,by H. M. Westergaard and W. A. 
Slater in the 1921 Proceedings of the American Concrete Institute. Dr. 
Westergaard continues the discussion in 1926 A.C.I. Proceedings with 
^Tormulas for the Design of Rectangular Slabs and the Supporting 
Girders.” A theoretical discussion is also given in a paper, “The Cal¬ 
culation of Flat Plates by the Elastic Web Method,” by Joseph A. Wise 
in the 1928 A.C.I. Proceedings. This is followed by “Design of Rein¬ 
forced Concrete Slabs” in the 1929 A.C.I. Proceedings. 

These derivations involve advanced mathematics and result in com¬ 
plicated equations; consequently even the simple case of one panel simply 
supported on its four edges does not give equations easily applicable to 
commercial use. Continuous slabs give even more intricate results. 

Such analyses are valuable to justify some simple empirical method for 
commercial design. Dr. Westergaard finds from tests that there is a 
relative yielding of the slab at regions of high stress and a redistribution 
of the mternal moment of resistance over a section the width of the 
panel due to plastic flow. This moment of resistance may vary theo¬ 
retically as shown in Figure 128 but the redistribution produces a reduc¬ 
tion of the maximum value and an increase at points where the moment 
per inch of width is lower in value. Therefore, the bending moments 
given by the complex derivations are not realized in practice and the 
designer uses empirical methods based on such exhaustive analysis as 
Dr. Westergaard’s with due modification to accord with the results of 
tests of full-sized two-way slabs. 

In the4)ast there have been a number of such empirical methods, such 
as the New York or Boston Codes. At present the two in general use 
are the A.C.I. and Joint Committee recommendations. The choice be¬ 
tween possible empirical methods should be made to fulfill the two 
basic requirements of any empirical method: (1) economical and safe 
results, not too far from the theoretical; (2) simple procedure easily ap¬ 
plied by a designer who only occasionally uses this type of design. 

Using the empirical methods the procedure consists bf specification 
of the moments and shear forces to be used in the design. It is cus¬ 
tomary to design the slab as though it consisted of strips one unit wide 
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spanning in the north-south or east-west direction. Each strip is de¬ 
signed as though it were a one-way slab and, for bending moment or 
shear, is assumed to be loaded with an average uniform load consisting 
of part of the actual load on the panel. The sum of these average loads 
on the north-south and east-west strips may not equal the total load w 

pounds per square foot. This is due to the fact that the assumption 
of the strips is empirical and does not correctly picture the transfer of 
the loads to the supporting columns. 

The design of a one-way slab also assumes strips of unit width but 
the adjacent strips are loaded similarly and have the same deflections, 
so there are no shear forces or couples perpendicular to the strip acting 
on the sides of a given strip which are due to the greater or less deflec¬ 
tion of the adjacent strips. The deflection of the two-way slab has a 
double curvature instead of the trough, or cylindrical, curvature of a 
one-way slab; therefore the adjacent strips do not deflect the same and 
shear forces and couples perpendicular to the sides of the strip exist. 
The empirical methods ignore these shear forces and couples and correct 
for them by using a reduced load carried by the strip to its supporting 
beam. It is also customary to design all strips in the central half-width 
alike and to make some reduction of the steel area in the end quarter- 
width. Two-way construction is most economical for square panels and 
does not compare favorably with one-way slabs for rectangular panels 
whose length is greater than 1.5 the short span. 

204. 1940 Joint Committee Two-Way Slab. The 1940 Joint Com¬ 
mittee two-way slab applies ‘^to slabs (solid or ribbed), isolated or con¬ 
tinuous, supported on all four sides by walls or beams, in either case 
built monolithically with the slabs. The recommended coefiicients, as 
in the case of the design provisions for flat slabs, are based partly on 
analysis and partly on test data. (In general, the coefEcients and 
methods given in these recommendations are based upon the coefiicients 
proposed by H. M. Westergaard, M. Am. Soc. C. E. Some modifications 
of these coefiicients have been made and the series extended to include 
cases not covered by Dean Westergaard. In making these modifica¬ 
tions and extensions full consideration has been given to the results of 
available test data.)’^ 

The moment coefficients are given in Table 5 of the Joint Committee 
report given in the Appendix. . They apply to unit strips taken in the 
center half-width of the panel. The maximum moment coefiicients Ci, 
whether in the long or short direction, are given in the form M = CiwS^y 

where 

Cl = coeflBicient from Table 5 
w » total load per unit area 
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S = short span (Spans are taken as the center-to-center distance or 
as the clear span plus twice the thicknea of the slabs, which¬ 
ever value is less.) 

^. . short span 
m = ratio of --. 

long span 

The moments are assumed to be constant for all strips in the center 
half-width and a constant reduced value for the end quarter-widths. 

The maximum positive moment is assumed to occur at the center line 
of the strip, and the maximum negative moment occurs along the edges 
of the panel at the face of the supporting beams. The bending moments 
in the strips in the end quarter-widths should average two thirds of the 
corresponding moments given in Table 5 for the center width. The de¬ 
tails of shear stresses, comer reinforcement, and two unequal negative 
moments on opposite sides of a common supporting beam will be dis¬ 
cussed in Problem 35. 

ILLUSTRATIVE PROBLEM 36 

206. Design of a Joint Committee Two-Way Slab. Figure 129 gives the framing 

plan of a beam and girder floor system. The slabs are to be designed as two-way 
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slabs. The discussion will consider panels A, B, C, and D. The live load equals 

130 lb. per sq. ft. and a concrete strength of / c ** 2000 ^ lb. per sq. in. is assumed. 
AH girder stems are 10 in. wide and all beam stems 8 in. wide. 

1 See footnote to Article 32. 
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Minimum Depth. By J.C. Article 814 (see Appendix) the minimum thickness for 
a 5-in. slab in panel D is 

As this is greater than 4 in. and greater than the minimum thickness of any other 

panel, it is the deciding value. This equation insures that the deflection is not too 
great. 

Assume that the slab has a constant thickness of 5 in. throughout the floor. The 
total load is 130 4- 63 = 193 lb. per sq. ft. It should be obvious, and Table 5 con- 

fiirms it, that greater moments for each panel will be taken by the strips in the short 

direction. The tabulation below lists the moments in the center width for the short 

spans. Note that the moment coeflicient ci is determined from Case 2 for panels B 
and C and from Case 3 for panel D, 

North-South Spans (Short Spans) 

Panel A 

Short span, S ft. 14.33 

Long span, L ft. 17 

m 0.843 
Moment CoefBcient ci 

Positive 0.033 
Negative 0.045 

Discontinuous negative 

B C D 

14.33 14.33 14.33 
17 16 16 

0.843 0.897 0.897 

0.039 0.036 0.043 
0.052 0.048 0.057 

0.026 0.028 

Since all moments are expressed as ilf = ciwS^, the maximum numerical value is 

given for the strip having the greatest value of ci; namely, the negative moment 

at the interior support of panel D. This value is modified by the fact that the co¬ 
efficient Cl for the adjacent panel (another C panel) is only 0.048. The slab has 

constant thickness and the two short spans are the same, so the j stiffnesses are the 

same. The difference in coefficients equals 0.057 — 0.048 = 0.009. One third of 
the difference reduces the D panel coefficient to ci = 0.054 and increases the coeffi¬ 

cient of the adjacent panel to ci = 0.051. The minimum depth for a strip 1 ft. wide 

equals 

, [m /0.054 X 193 X (14.33)2 X 12 „ . 
Negative d = = -3.69 m. 

Assuming §-in. bars, minimum h = 3.69 + 0.75 + 0.25 = 4.69 in. For positive 
bending the flreprooflng for glacial gravel equals 1.50 in. The minimum depth equals 

^ ^ /0.043 xT93 X (14.33)2 X 12 ^ . 
Positive d *= .4 /-7-;-TT-=* 3.30 in. 

\ 157 X 12 

Minimum h »* 3.30 -|- 1,5 -h 0.25 ~ 5.05 in. 

If the contractor were willing to obtain an aggregate **free from disruptive action 

under high temperatures,the Are protection could be reduced to 1 in. and the slab 

depth to 5 in. Let us assume that he can economically do so to save a half inch of 

concrete throughout the floor. Use 5-in. slab with 1 in. of fireproofing. 
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Diagonal Tension. J.C. Articles 813 and 815 state that the individual panel load 

shall be distributed to the supporting beam as shown in Figure 130. In the center 

of the slab there are a few 1-ft. slab-strips wholly 
in the areas marked I. The maximum shear 
stress for one of those strips equals 

193 X 14.33 

2 X 12 X 0.87 X 4 
= 34 lb. per sq. in. 

It is, of course, not desirable to use diagonal 
tension reinforcement in a slab. The allowable 

shear stress Vc — 40 lb. per sq. in., so the com¬ 

puted value is safe, and the 5-in. slab will be 
used. 

Design of Steel for Panel B. The determina¬ 

tion of steel areas and placement will be illus¬ 

trated by computations for panel B, Figure 129. 
The short-span steel will be placed outermost for 

both positive and negative bending in all panels. The steel foreman and the inspector 
can easily check its proper placement. In the center half-width the steel area equals 

Fig. 130 

0.039 X 193 X (14.33)2 X 12 
= 0.29 sq. in. 

20,000 X 0.87 X 3.75 

The modified coefficient for the negative moment at the interior support is ci = 0.050. 

T . . , , 0.050 X 193 X (14.33)2 X 12 ^ 
Interior support An - --- = 0 

20,000 X 0.87 X 4.0 
,35 sq. in. 

Exterior support An = 0,18 sq. in. 

If ^-in. round bars at 8-in. spacing are used for positive steel, two thirds of the 
bars will be bent up over each support. The other third will be straight (Fig. 131). 

The remaining steel at the interior support will come from the adjacent span. 

The long-span steel (east-west) will be figured for moment coefficients of ci == 0.031 
for positive bending and ci = 0.041 for negative bending (J.C. Table 5), assuming 
f-in. round bars. 

Ap 

An 

0.031 X 193 X (14.33)2 X 12 

20,000 X 0.87 X 3,25 

0.041 X 193 X (14.33)2 X 12 

20,000 X 0.87 X 3.50 

= 0.26 sq. in. 

~ 0.28 sq. in. 

Use 9-in. spacing 

Once again, two thirds of the bars will be bent up at both ends and one third will 
be straight (Fig. 131). This gives some excess area at the supports but a simple 
arrangement to be placed in the slab. 

The moments in the quarter-widths near the beam supports can be taken as two 

thirds of the values given by J.C. Table 5. The steel area will be two thirds as much, 
or the spacing 1.5 that of the center part. This steel is so arranged that there is 
usually one spacing where the two bands join that is intermediate, say about 1.25 

the center spacing. 

206. Comer Steel. J.C. Article 811 (see Appendix) states that extra reinforce¬ 

ment should be placed at *‘exterior comers” of a panel to prevent cracks in diagonal 
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directions. In Figure 129 panels R, C, and D have discontinuous edges and “extenor 

corners.” The theoretical analysis of slabs supported on four edges demonstrates 
that extra steel is needed to overcome the tendency of the comer to lift. Cracks 

tend to appear in the top of the slab perpendicular to the diagonal and in the bottom 

parallel to the diagonal. If additional steel is placed perpendicular to these potential 

cracks, there will be four rows of steel in a thin slab, so it is customary to add extra 

north-south and east-west bars in the region of the corner (quarter-span). The area 

of steel, if placed perpendicular to the potential crack, should be equal to the short- 

span steel area resisting the positive moment in the center half-span. The areas of 

steel, if placed parallel to the edges of the panel, are equal to this “positive moment 

area” multiplied by the sine of the angle that the bar makes with the potential 

crackr This is illustrated in Figures 132 and 133. 

a^A, ^As Since 

'90 

'A2 ^As sin /£? *As cos a 

U^fsA, *fsAs stna V^f^Ai^fsAs cosa 
Tf^Usina ^fsAssin^a T2*Vcosa ^t^AsCOS^a 

-^A (s/n^a ^cos^a)*tsAs*T 

Fia 132 Fia. 133 
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The positive steel area for the center half of panel B equals 0.29 sq. in. per ft. 
width for the shortHspan steel (north-south). The diagonal of this panel makes an 

an^e with the 17-ft. side whose sine equals 0.65 and whose cosine is 0.762. The 
potential crack in the top of the slab is perpendicular to the diagonal and there are 

two ^-in. bars bent up in the quarter-width for both sl^rt- and long-span steel. 
>.65 X 4 X 4 . 0.76 X 4 X 2 

There is available 0.196 
2l 
- = 0. 203 sq. in. per ft. 

17 14.33 

This is not enough, but one extra bar in each direction will give the required 0.29sq. in. 
The potential crack in the bottom of the slab is parallel to the diagonal and there 

are two |-in. bars in the long-span and one in the short-span direction. The available 

1 ^ r<^-762 X 4 X 1 0.65 X 4 X 2l ^ 
area equals 0.196 ---1---- = 0.106 sq. m. per ft. The 

L ■ 14*00 J 

addition of four extra bars in the short-span and two extra in the long-span direction 
will give a total area of 0.32 sq. in. per ft. 

207. Beam Size. Long-Span East-West Girder, The long-span girder on the inte¬ 

rior edge of panel B carries a load from panel B similar to area I shown in Figure 130. 
An equivalent uniform load to give the same positive maximum bending moment 

in the beam can be computed from an equation in J.C. Article 815. The uniform 

load Wh equals 
wS fS — 

Y L ^ 
From adjacent panel = 1060 lb. per ft. 
Estimated stem weight = 180 lb. per ft. 

1060 lb. per ft. 

Total 2300 lb. per ft. 

Let us assume this beam to be supported by columns 20 in. square. The maximum 

negative moment equals 

Mn = 

wf 2300 X (15j)2 X 12 
= 590,000 in.-lb. 

11 11 

The minimum depth (in order not to use compression steel at the support) equals 

^ [m / 590,000 

■\157X10 ■ 

Minimum h = 19.4 -|- 2.5 = 21.9 in. Use 10 in. by 17 in. stem. 

Each panel brings to this beam a load similar to the shaded area I in Figure 130 
which shows the portion of the panel B load assigned to this girder. By the equation 

in J.C. Article 815, the total load equals 

r2 — m~\ 
Wi^ — \ « 13,650 lb. 

The adjacent panel brings in the same load, half of the total being supported at 
each end. V « 13,650 -f-180 X 15.33 X 0.5 » 15,030 Ib. 

Z „ 15,030 

hjd “ 10 X 0.87 X 19.5 
89 lb. per sq. in. Safe. V 
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A tee-beam section with stem 10 in. by 17 in. is satisfactory. The design of the 
steel for bending moment and diagonal tension can be completed by following the 

procedures described in Chapter 7. If it is desired to obtain moments or shears 
other than the maximum values, the beam loads should be set up with area I of 

Figure 130 from each adjacent panel used as panel loads. 

Short-Span North-SoiUh Beam, According to the provisions of J.C. Article 816, 
the uniform Wh on the short-span beam is 

wS 
Wh — 

193 X 14.5 

3 

From adjacent panel « 

Estimated stem weight = 

930 lb. per ft. 

930 lb. per ft. 

140 lb. per ft. 

Total = 2000 lb. per ft. 

The maximum negative moment at the first interior column equals 

2000 X (12.83)^ X 12 

10 
= 395,000 in.-lb. 

The minimum depth in order to have no compression steel equals 

^ / 395,000 
^ ~ \ 77^-T: ~ 17.8 in. 

\ 167 X 8 X8 

Minimum k — 17.8 + 2.5 = 20.3 in. Use 8 in. by 16 in. stem. 

The total load to the beam from this panel equals 

4 4 

The maximum shear force at the interior support equals 

V = 0.575[2 X 9950 + 140 X 12.83] = 12,600 lb. 

X, . . 12,600 
Maximum shear stress v =  -— -—^ *= 97 lb. per sq. m. 

8 X 0.87 X 18.5 

A tee beam with an 8-in. by 16-in. stem is satisfactory; the steel can now be com¬ 

puted. The bending of bars and the shear stresses for diagonal tension should be 

computed by using moment and shear diagrams for a beam load from each panel 

equal to area II of Figure 130. 
SM)8. One-Way Slab. A comparison of one-way and two-way designs can be made 

with the use of panel J5. A one-way slab would span in the short direction. If the 

methods of Chapter 3 are used the design results in a C-in. slab with ^-in. round 

bars spaced at 6 in. for the positive steel. There are no short-span beams. The long- 

span girder, figured on the same assumptions as above, has a stem 12 in. by 18 in. 

,The sted can be computed as described in Chapter 7. 
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Comparison op Designs 

Volume of slab concrete 

Two-Way 
J.C. 

One-Way 

(17' X 14.5'), cu. ft. 102.7 123.0 

Volume of beam stems, cu. ft. 29.6 23.0 

Total concrete, cu. ft. 132.2 146.0 

Slab steel, lb. 470 500 

Extra '‘comer steel," lb. 50 

This compar^on does not include the beam steel, but does include the necessary 

temperature steel for the one-way slab. The use of a two-way slab results in a saving 
in both concrete and steel in the interior panels. For the conditions of panel B there 

is a saving in concrete with the two-way system, but the extra corner steel gives a 
greater total weight of steel. 

FLAT SLABS 

209. Flat Slabs. Flat slabs are a type of floor slab developed in the 
United States which are peculiar to reinforced concrete construction. 
The slab is not supported by beams or girders but transmits its loads 
directly to the columns. The columns are enlarged at their tops into 
capitals to give additional rigidity to the slab-column connection (Fig. 
134). Formerly the ^^mushroom’^ top (Fig. 1346) was widely used, but 

Fig. 134 

the restriction that the capital diameter c is that portion within a 45® 
tangent to the curve led to the adoption of the 45® cone (Fig. 134a) as 
the usual capital. In addition, the forms for mushroom capitals are 
more difficult to construct. 

Interior columns may be round, square, octagonal, or hexagonal, but 
they are usually round. Exterior columns are usually rectangular. The 
capital for an exterior column is sometimes only a bracket which pro¬ 
jects from the column toward the interior column. The exterior capital 
may project in three directions; this gives greater rigidity to the 
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exterior column in restraining the end span of the continuous slab, 
but the construction is harder to form and may project into the 
window area. 

The slab is much thicker than the beam and girder floor slabs and it 
has more steel, but the omission of beams and girders gives 

(a) Shorter story heights for a given clear height. 
(b) Better fire protection with a flat ceiling and better play for a 

sprinkler system. 
(c) Economical form design covering flat surfaces. 
(d) A uniform surface for a ceiling from which to hang piping, shaft¬ 

ing, etc. 
(e) Favorable costs compared with beam and girder floors for panels 

approximately square with medium to long spans and medium 

to hea\y loads. The panels with a large ratio 7, or panels 
h 

with light load or short spans, are cheaper with ribbed floor or 
some form of beam and girder construction. 

The flat slab is often constructed with a deepening of the slab as it 
nears the column capital. This deeper portion is known as the dropped 

Fia. 135 

panel (Fig. 135). The extra cost of the forms for a dropped panel floor 
is usually offset by the saving in concrete in the thinner slab. Figures 
136 and 137 show sections through flat slab and dropped panel floors. 
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210. Flat Slab Systems, Special flat slab systems have been pro¬ 
tected by patents. Most of these patents have expired. The usual sys¬ 
tems of steel arrangement now in use are some form of two-way or four¬ 
way steel in a flat slab or dropped panel floor. One type uses three-way 
steel with the columns located at the apices of equilateral triangles. 

Fig. 138 

This is not a very convenient column arrangement for aisles or for the 
diffusion of light in many buildings. A unique steel arrangement is 
the Smulski system of Figure 138. The darker lines represent 
negative steel in the top of the slab. The S.M.I. design gives less 
weight of steel than the usual two-way or four-way system. 

21L A.C.I. Flat Slab. In the past the building laws of different cities 
have varied greatly in their flat slab specifications. The Chicago, New 
York, or Philadelphia regulations gave different minimum thicknesses 
and led to variable steel arrangements for economy. The Joint Com¬ 
mittee Report and the A.C.I. Code give recommendations for a flat slab 
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design which is conservative yet of reasonable economy. Since it bids 
fair to be the basis for future regulations the author will use the A.C.I. 
slab for his illustrative designs (see A.C.I. Arts. 1000-1009 in the Ap¬ 
pendix). 

The A.C.I. regulations are to be regarded as empirical specifications 
based on a careful analysis modified by the results of tests. The prob¬ 
lems of moment distribution, deflec¬ 
tion, bond, and anchorage of the 
steel are handled by empirical spec¬ 
ifications instead of a theoretical 
analysis. 

212. Statical Analysis of a Flat 
Slab. Let us consider a square inte¬ 
rior panel with a span of I between 
column centers. It is loaded with a 
uniform load of w pounds per square 
foot, and the adjacent panels are 
likewise interior panels with the same 
load. We shall take as a rigid body 
the half panel (Fig. 139) bounded by 
the center line BCj the panel edges 
EB, FGj HCj and the curved lines, 
FE and (jJT, at the perimeter of the 
column capitals. The column capi¬ 
tals have a diameter c. 

Since the panel is loaded symme¬ 
trically, a square foot of floor at J 

will deflect the same amount as its 
opposite K, the other side of the 
center line. Therefore, there is no Elevation 

tendency for a sliding of the two by Yiq. 139 
each other at the section BC, and 
there can be no shear on BC. The same line of reasoning holds for 
the symmetrically placed areas at L and M adjacent to the panel 
edge HC. Therefore, there is no shear along BE, FG, and HC. 

There is shear on the curved edges EF and GH, because the column 
capital is more rigid than the adjacent slab and deflects less. There¬ 
fore the load Wi on the half panel is supported by the shear on the 
curved lines EF and GH. 

The resultant load Wi acts on the axis of symmetry XX at the center 
of gravity of the half panel. The half-panel area is the rectangular area 
ABCD minus the two quadrants, AEF and DGH. Taking moments 
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about the edge AD, the center of gravity is a distance Xo from AD 
equal to 

n\ I TC® 2c 

•ZM W 4 - 2c® 3i® - 2c® 

3(4i® - «®) 

If the load equals w pounds per square foot, 

w 
PFj = = _ (4^2 _ (180) 

8 

The distribution of the shearing forces along the column capital perim¬ 
eters is not known. If we deal with the average force, which is equiva¬ 
lent to the assumption of uniform distribution, the resultant force on 

W\ c 
EF or GH equals —^ and acts at a distance a = - from the diameter 

2 TT 
AD, These two forces give a resultant Wi acting on the XX axis at a 
distance a from AD, 

The only other external loadings on the rigid body are bending couples 
at half-panel edges. These are in vertical planes perpendicular to the 
edges. Those along the center hne BC are positive bending moments 
Mp. Those along the panel edges BEj FGj and HC are negative mo¬ 
ments. The negative moments perpendicular to the circular arcs EF 
and GH can be resolved into component couples parallel to those on 
the edge FG and the edge BE, Let Mn be the sum of the couples on 
edge FG plus the parallel components on the curved arcs. 

The load Wi and the resultant Wi of the supporting forces do not 
act at the same point, though both are on the XX axis. They form a 
couple equal to 

r dP - 2c^ cl - I2cl^ + TC^l 
M- -«) - B'. --J - ,r. J 
Substituting from equation 180 the value of TFi, 

w /l^ cl^ 
M-(3irZ® - 12cZ®-f-ire®) = w(-+—) (181) 

24ir \8 2x 24/ 

This couple tends to turn the half panel about some axis parallel to the 
YY axis. If the half panel is in equilibrium the couples Mp and Mn 
must balance the couple M. In Figure 139 M is clockwise and both 
Mp and Mn are anti-clockwise. Therefore, 

M ’^Mp + Mn (182) 



Abt. 213] DIVISION OF MOMENTS OP RESISTANCE 237 

The couples along BE and the components on EF parallel to them bal¬ 
ance those on HG and the component couples on GH. 

Equation 181 can be written as 

4c 1 

IT I 3 

This is approximated by the equation 

wl^ / 2 c\2 WU 2 c\2 
a83) 

W = load on whole panel = wP 

This approximate analysis by the principles of statics gives values 
greater than the results of tests or of Professor Westergaard’s more com¬ 
plete analysis. This is due to the fact that the statical derivation does 
not consider the actual deflections of the panel nor the effect of plastic 
flow on the moment distributions. The more exact analyses, modified 
by the study of tests, have led to a reduction of the sum Mp + Mn but 
the general form of the statical moment equation has been used. The 
coefficient of the moment sum has been reduced as follows. 

Moment 
Coefficient 

Statical analysis 0.125 
1917 A.S.C.E. 0.107 
1921 Joint Committee 0.09 

Percentage of 

Statical Analysis 

100 

85 
72 

The coefficient 0.09 of the reduced moment was recommended by Pro¬ 
fessor Westergaard. The total moment equals 

/ 2cV 
M = 0mWl\^l ---j (J84) 

213. Division of Moments of Resistance. Equation 182 states that 
the external bending moment M is resisted by the internal moments of 
resistance at the sections of maximum positive and negative bending 
moment. The actual variation of moment in these sections can be com¬ 
puted analytically and has also been checked by tests. Figure 140 shows 
the moment variation as computed by Professor Westergaard for the 
case where the column capital c = 0.25Z. The shaded areas should add 
up to Mn and Mp oi equation 182. For design it is customary, as with 
the two-way slabs, to divide the panel into two parts, or strips, and 
assume a constant moment throughout each strip. The middle half- 
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span is called the mid-strip^ and the half-span whose center is the column 
center line is called the column strip (Fig. 141). The A.C.I. Code speci¬ 
fies the bending moment to use in each strip. The amounts vary with 
two-way or four-way steel and with flat slab or dropped panel slabs. 
Some latitude is also given the designer, but in general 

ilfp = and Mn = fM 

The steel which supplies the tension force for these couples will run 
in an east-west direction (Fig. 139). The north-south steel will resist 
moments found by taking the half-panel cut by the axis XX instead of 
by YY. In a square panel it will be the same as the east-west steel. 

214, Rectangular Panels. The analysis of Article 212 holds for a 
rectangular panel, if it is also an interior panel surrounded by similar 
interior panels. In that case the total bending moment on sections YiYi 
and YY for the east-west steel equals (Fig. 142) 

/ 2cV 
Ml = 0.09irz(^l ---j 

where Mi == moment to be taken by long-span steel. 
The total moment to be resisted at sections XX and XiXi equals 

/ 2 c\2 
= 0.09]F6(^1 

where ~ moment to be taken by short-span steel. 
216. Order of Procedure for Design* The suggested order of pro¬ 

cedure for design requires, as usual, a check of the concrete dimensions 
before any steel is figured. The procedure is 
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A. 

B. 

Concrete Dimensions: 1. 
2. 
3. 

Steel Area: 4. 
5. 
6. 

By empirical formulae. 
Checked for fiber stress. 
Checked for diagonal tension and shear. 
For bending moment. 
For minimum and maximum areas. 
Placing regulations to cover bond and 

anchorage. 

ILLUSTRATIVE PROBLEM 36 

216. Design of Dropped Panel Slab with Two-Way Steel. Design the interior 

and exterior panels of a two-way flat slab using 2000-lb. concrete for the floor system 
of Problem 17. In Figure 61 (Art. 121) assume that the alternate column rows are 

left out, giving column spacings of 29 ft. in both directions. The live load is 130 lb. 

per sq. ft. 
Assume interior columns of 28 in. diameter; the exterior columns will be 24 in. 

square to fulfill the requirement of 1928 A.C.I. Article 11056 that the least dimension 

of exterior columns must be not less than one fifteenth the average center-to-center 

span. The plan view of the exterior and adjacent interior panel is given in Figure 141. 

217. Minimum Thickness. A.C.I. Article 1006 (see Appendix) gives a require¬ 
ment to avoid excessive deflection. 

Minimum t — — 
40 

29 X 12 

40 
8.7 in. Assume 9-in. slab. 

218. Depth to Satisfy Fiber Stress. The column capital c is usually assumed to 

be 0.201 to 0.25Z, with 0.2251 giving a good trial size. Assume a column capital 
c « 80 in. = 0.23Z. In the past a minimum dropped panel width of 0.35Z was re¬ 

quired. Let us assume a square drop of 10 ft. 6 in. on a side. Formerly the dropped 

panel thickness h had to be within 1.25t and 1.5/, where / is the thickness of the slab. 

This would require /i to be between 11J and 13| in. The present A.C.I. Article 1006 

merely permits a maximum increase /i — / of one fourth the distance from the edge 

of the capital to the edge of the dropped panel. The maximum thickness = / -f 

63-40 
4 

9 4“ 5.75 = 14.75 in. Let us assume a thickness ti 11.5 in. The load 

W on the panel equals 

Live load * 130 X (29)^ - 109,000 lb. 
9-in. slab * 113 X (29)^ = 95,000 . 

2.5-in. drop = 31 X (10.3)^ = 3,000 

/ Total load = 207,000 lb. 

By A.C.I. Article 1003, 

Mn-hMp^ 0.09 X 207,000 X (29 X 12)(1 - | X 0.23)2 « 4,650,000 in.-lb. 

•This moment is divided between the positive and negative moments. In each case 

ip assimaed to be constant in the column head and mid-sections. The suggested 
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division is listed in the three tables in A.C.I. Article 1004 and is tabulated below 
for this problem as a decimal part of M^, 

Negative Moment 

1 

Positive Moment 

Column Mid Column Mid 

Interior panel 0.50 0.15 0.20 0.15 

Exterior panel Int. Ext. Int. Ext. 

East-west ppan 0.55 0.45 0.165 0.10 0.25 0.19 

North-south span 0.125 * 0.15 0.05 ♦ 0.15 

* Half-strip. 

The coefficients for the interior panel and the mid-strips in the exterior panel parallel 

to the discontinuous edge (north-south) are taken from Table 1004a. The north- 

south strips in the exterior panel are spanning an interior span. The coefficients 

for the half column-head strip adjacent to the discontinuous edge are taken from 
A.C I. Table 1004c, The coefficients for the strips in the exterior panel perpendicular 

to the discontinuous edge (east-west) are taken from A.C.I. Table 10046. 
The exterior span, perpendicular to the exterior wall, is often made less than the 

interior spans to offset the increase in moment coefficients. 

Slab. It is apparent from Figure 141 that the sections along FE^ ED and IH cut 

through the thin slab only. The maximum moment coefficient for these sections^ 

positive and negative for the mid-strips and positive for the column strips, is 0.2& 
for the east-west column-strip positive moment. The minimum depth for this 

strip, 14.5 ft. wide, is 

“ yjKb “ \i 

0.25 X 4,650,000 

157 X (14.5 X 12 X 0.75) 
= 7.5 in. 

Notice that A.C.I. Article 1003c states that compressive stresses are figured by 
using only three fourtlis the width of the strip. This is an arbitrary method of in¬ 

suring a sufficient depth and supersedes empirical formulae for minimum depth 
formerly used. Assuming f-in. rounds, the minimum thickness t = 7.5 -f- 1.5 

-f 0.38 « 9.4 in. Change slab depth to 9.5 in. Corrected weight W = 212,000 lb. 

and corrected Mo *= 4,760,000 in.-lb. 
Dropped Panel. The maximum negative moment in the column strip acts on the 

section QH (Fig. 141). This section is shown in Figure 143. The shaded compression 

area is tee shaped, but the broader part is near the neutral axis. We have not de^ 

veloped an an^ytical ta^eatment for this case of a tee-beam section. The areas GP 
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and QH beyond the dropped panel are not large and have low stresses. We shall 

be on the safe side, and not too wasteful, if we neglect them and figure the compres¬ 
sion area as a rectangle PQ, the width of the dropped panel. A.C.I. Article 1003c 

confirms this. 
Column 

The maximum coefficient for the negative moment in the colunrn strips is 0.55 for 

the east-west strip in the exterior span. There are two layers of steel crossing at the 

top of the dropped panel but we shall assume a steel placement schedule that puts the 

cast-west steel above the north-south. The clearance — d ~ 0.75 -j- 0.38 = 1.13 in. 

Minimum d = 
0.55 X 4,760,000 

157 X (126 X 0.75) 
- 13.27 in. 

The minimum thickness h = 13.27 -f-1.13 = 14.4 in. The A.C.I. Article 1006 
maximum thickness h = 9.5 -f- 5.75 = 15.25 in. Use a drop panel thickness h ~ 

14.5 in. The corrected weight W — 210,000 lb. and corrected Mo = 4,850,000 in.-lb. 
219. Diagonal Tension and Shear. The designer does not wish to supply diagonal 

tension steel in a slab. Therefore, the slab depth must be great enough to give shear 

stresses, or ^'equivalent tension,** that the concrete can cany. If this is done the 

true shear (punching shear) will be satisfactory, since its allowable value is e » 0.06/« 

lor sections crossed by longitudinal steel The true shear is a tendency of the slab 
to slide by the column on section AB (Hg. 144). Diagonal tension will not occur at 
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AB, but at the first section from which a crack can run through the slab. This is 
at section E. Assuming a 45® angle for the crack EB^ the section E at which the 

crack starts is a distance d from the capital. The section E is therefore the perimeter 
of a circle c + 2<i in diameter. A.C.I. Article 807 specifies that this perimeter be 

checked for shear by using d = / — 1.5. Each interior column supports the slab 
halfway to the next column. This is an area 29 ft. square. The shear force V at 
section E will be due to the load on the portion of the area outside the perimeter LMN 
(Fig. 141) whose diameter equals 80 2 X 13 = 106 in. = 8.83 ft. The average 

TF 216 000 
load per square foot can be taken as u; = —- ~ 257 lb. per sq. ft. 

hjd (ir X 106) X 0.87 X 13 
= 53 lb. per sq. in. 

The allowable shear stress can vary between v = 0.025/c and v = 0.03/'c, according 
to the percentage of colunm-strip negative steel passing directly over the column 

capital. This steel will be uniformly spaced over the column-strip.width of 14.5 ft. 
The per cent crossing the column capital will be found from the ratio of the widths 

80 in. to 174 in., or 46 per cent. The allowable stress (A.C.I. Article 807) equals 

V = 0.025/'c + |i(0.005/y = 50 + 0.84 X 10 = 58.4 lb. per sq. in. 

The diagonal stresses are safe in the dropped panel. 

Slab. The slab is checked for diagonal tension at section F (Fig. 144);d«<2 — 
1.5 = 9.5 — 1.5 — 8.0 in. is used. The perimeter of section F is that of a square 

with sides of 126 + 2 X 8 *= 142 in. = 11.83 ft. 

257(841 - (11.88)^] 

4 X 142 X 0.87 X 8.0 
= 46 lb. per sq. in. 

Allowable stress v *= 0,03/'c = 60 lb. per sq. in. Safe. 

A.C I. Article 8075 states that 50 per cent of the negative steel in the column strip 
must be within the width of the drop panel. Since this steel is evenly spaced the 

relative amount of steel will be found by the ratio of widths, 10.5 ft. to 14.5 ft., 

which is 72.5 per cent. 
The concrete has now been checked for deflection, fiber stress, and diagonal ten¬ 

sion; so the slab thickness of 9.5 in. and dropped panel thickness of 14.5 in. will be 

definitely adopted. 
220. Steel Areas for Fiber Stress. Table A gives the computations for steel areas. 

An average value of d has been used in the interior panel wherever the north-south 
and east-west steel are on the same side of the slab. In the exterior panel it is as¬ 

sumed that the northnsouth steel is placed first (lowest) with the east-west steel 

above it. 
The steel placement is shown in Figure 145. The present code merely specifies 

that the bars shall be evenly spaced across the full width of the strip and shall pro¬ 
vide for bending moment and bond stresses at all sections. More definite instruc¬ 

tions for the inexperienced designer are given in the extract from the 1928 A.C.I. 

Code in the Appendix. These recommendations provide for a suitable steel distri¬ 

bution to avoid cracks in the blab and to avoid bond computations. 
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Placement. The steel in the column strips should provide 0.4 of the positive area 

in the form of bar A of Figure 146. At least one third of the area should be straight 
bars in the bottom as bar B. Since the negative areas are quite large, the minimum 

of bars B will be used and all the rest will be bent as bars A. Counting the bars A 
that come from the adjacent panel, the full area required is usually not satisfied and 
it is necessary to add additional top bars as bar D. 

In the mid-strip at least one half of the steel must be like bars E of Figure 146. 
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Interior Panel. In the column strip for positive steel use = 6 bars B. Use 

17 — 6 = 11 bars A. Use no bars C. At the line of maximum negative moment 
there are now 2 X 11 =22 bars A. Add 3 bars D. Total negative bars equal 
2 X 11 + 3 = 25 bars. 

In the mid-strip for positive steel use 7 bars E and 7 bars F. At the line of 

maximum negative moment there will be 2 X 7 = 14 bars E\ only 12 are needed. 
Exterior Panel, EasUWest Steel, In the column strip for positive steel use ^ = 7 

bars H and 14 bars O (Fig. 147). At the exterior support there will be 14 bars G; 
add 9 bars J for a total of 23 bars. At the interior line of maximum bending moment 

there are 14 bars G plus 11 bars A. Add 3 bars D to give a total of 28 bars. 
In the mid-strip for positive steel use = 8 bars AT, plus 8 bars M, At the ex¬ 

terior support there will be 8 bars K, which is sufficient. At the interior hne of 

maximum moment there are 8 bars K and 7 bars E for a-total of 15 bars; 13 are 

needed. 
Exterior Panel. Norih-South Steel. The half-column strip on the interior column 

side will be identical with that of the interior panel; this is also true for the steel in 
the mid-strip. 

The half-column strip adjacent to the wall beam will have 2 bars B and 3 bars A 
for positive steel. At the line of maximum negative moment there will be 3 -f 3 6 

bars A, which is the required amount. 
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The greatest spacing of these bars occurs for the east-west steel in the mid-strip 

of the exterior panel at the exterior support. Eight bars are spaced evenly in a 
width of 174 in., or an average spacing of about 22 in. This does not exceed 3 X 
^.5 « 28.6 in. (A.C.I. Article 10086). 

Mid-sfnp 
Minimum Bar Lengths 

inferior Pane! 

Fig. 146 

Length of Bars. The present A.C.I. Code does not give detailed instruction for 

determining bar lengths to satisfy bending moment and bond. Until experience is 

gained the designer may well follow the recommendations of the 1928 A.C.I. Code. 
These are summarized in Figures 146 and 147. In certain cases two minimiiTn anch¬ 

orages are given, so the greater value is used. Bars proportioned to these require¬ 
ments are not checked for bond or anchorage. 
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221. Wall Beam and Coltunns. It has been assumed that the waU beam has a 

depth greater than 1.5 times the slab thickness (1.5 X 9.5 = 14.25 in.). By A.C.I. 

Table 1004c this beam is designed for whatever wall or window loads are brought 

directly upon it plus a uniform load of one quarter of the total live and dead load 

Minimum Bor Lengths 
Exterior Pane! 

Fia. 147 

on the exterior panel. The beam has a flange on one side only, whose minimum 
lengths are given by A.C.I. Article 705b. The section is angle shaped and not sym¬ 

metrical about the plane of loading. It is designed by the usual procedure for tee 

beams and possible shear stresses due to torsion are usually neglected. 

The interior columns are usually circular and, in this case, the exterior columns 

are rectangular. The methods of design of columns are discussed in Chapter 11. If 
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the building is considered as an elastic frame there will be bending moments in the 
interior columns as well as the exterior. Methods of elastic frame analysis are 

discussed in Chapter 14. 

ILLUSTRATIVE PROBLEM 37 

222. Design of Flat Slab with Four-Way Steel. Problem 36 illustrated the usual 

flat slab design using dropped panels and two-way steel. For comparison of results 

the floor system of Problem 30 will be designed for a slab of constant thickness with 
four-way steel. I.et us tentatively adopt a column capital c = 80 in. diameter. 

I 
Minimum thickness i = — — 9.G6 in. Assume a 10-in. slab. 

Interior panel: W = 214,0001b. and Mo = 4,810,000 in.-lb. 

Moment Coefficients of Mo 

Interior panel 

Negative Positive 

Column Strip Mid-Strip Column Mid 

0.46 0.16 0.22 0.16 

Exterior panel Int. Ext. Int. Ext. 

East-west span 0.50 0.41 0.170 0.10 0.28 0.20 

North-south span 0.115 ♦ 
! 

0.16 0.055 * 0.16 

* Half-strip. 

Minimum depth for fiber stress (O.SOAfo): d = 10.83 in. t — 11.96 in. 

Increase to < = 13 in. IF = 246,000 lb. Mo = 5,530,000 in.-lb. 

Then d == 11.63 in. and t = 12.76 in. 

223. Diagonal Tension. Average load w = 293 lb. per sq. ft. Shear stress on a 

perimeter of 80 + 2 X 11.5 = 103 in. is 

293(841 - 0.785(8.58)^1 

(tt X 103) X 0.87 X 11.5 
70.7 lb. per sq. in. 

As before, allowable v = 58.4 lb. per sq. in. There are three possible remedies. 

1. Increase the capital diameter. 

2. Change the mix. 

3. Deepen the slab. 
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Increase of Capital Diameter. This change may remedy designs that are not greatly 

overstressed. If the capital is made the usual maximum value c = 0.25Z « 87 in., 

the computed shear stress v = 65.5 lb. per sq. in. Now 50 per cent of the column- 

strip negative steel crosses the column capital and the allowable stress v = 0.03/« 

60 lb. per sq. in. In this problem the increase in column capital is not sufficient. 
Increase of Capital Diameter and Depth of Slab. If the maximum capital diameter 

of 87 in. is used, an increase of slab thickness to 14.5 in. gives a shear stress of v — 

60 lb. per sq. in. and an allowable stress = 60 lb. per sq. in. 

224w Change of Mix. Assume a mix f'c — 2500 lb. per sq. in. and the original 
column capital of c = 80 in. The shear stress remains v = 70.7 lb. per sq. in. The 

allowable stress equals 73 lb. per sq. in. 
The choice is between 

1. An increase of the mix to 2500-lb. concrete. 

2. A capital c ~ 87 in. and slab t — 14.5 in., using 2000-lb. concrete. 

The decision would be given to the cheaper of the two. It is possible that the in¬ 
creased cost of the mix will be less than the cost of an increase of slab depth of 1.5 in. 

with the resulting decrease in steel areas. However, in order to compare the present 

results with Problem 36 we shall continue to use the 2000-lb. concrete, column cap¬ 

ital c — 87 in., and slab thickness t — 14.5 in. It will be noticed that the slab 

thickness is now the same as the drop panel thickness of Problem 36. 
226. Steel Areas for Fiber Stress. Table B gives the computed steel areas. The 

corrected value of Mo = 5,700,000 in.-lb. In the interior panel an average value of 

Fig. 148 
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the depth d is used for column-strip negative and mid-strip positive steel, so that all 

north-south and east-west bands will be alike. In the exterior panel it is assumed 
that the east-west steel is placed above the north-south. Notice that at several 

sections the requirement of a minimum per cent determines the steel area used. 
The steel arrangement consists of direct bands in the north-south and east-west 

column strips (Fig. 148). There are also four diagonal bands crossing the sections 

Fia. 149 

oi maximum negative moment in the column strips and two diagonal bands crossing 
the line of positive moment in the mid-strip. The negative mid-strip steel consists 
of shor bars placed in the top of the slab. 

Interior Panel. The order of procedure is: 

1. Positive column-strip steel. This is supplied wholly by a direct band. Sinc^ 
there are four diagonal bands also crossing the line of negative moment, only the 

minimum of bar A (Fig. 149) will be bent up in the direct band in the endeavor to 
balance the number of bars in direct and diagonal bands at the column. Use 13 X 

0.4 « 6 bars A, and 7 bars B (or = 5 bars B and 2 bars C). 
2. Negative columrirstrip steel is supplied by two direct bands and four oi^i^onal 

bands from this and the adjacent panels. There are 12 bars A crossing 

ularly the line of maximum negative moment. The remaining area to be supplu-<i 
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by four diagonal bands equals 12.33 — 5.30 = 7.03 sq. in. Tke pull in a diagonal 

bar in the diagonal direction equals fa As pounds (Fig. 150). This is resolved into 
component pulls in the east-west and north-south directions. They are respectively 

faAa cos di and fsAa cos $2. The required area in one diagonal band is then computed 
and equals 6 bar E. This is a good balance with the 6 bar A in the direct band. 

/ ei \ 
i-H— 

Fig. 150 

3. The positive mid-strip steel is supplied by two diagonal 

5.33 
must have an area = 2.G7 = A, cos 45°. The area A, = 

bands. Each band 

3.77 sq. in. This is 

given by 9 bars. The minimum number of bar is 0.4 X 9 = 4 bars. From the 

design of paragraph 2 we use 6 bars E and 3 bars F. 
4. The negative mid-strip steel consists of 14 bars G in the top of the slab. 
Exterior Panels East-West Strips. The same procedure is followed for the exterior 

panel (Fig. 151). 

1. For positive column strip steel use 0.4 X 17 = 7 bars H) = 6 bars /; and 

4 bars J. (If fewer types of bars are preferred, use 7 bars 11 and 10 bars I). 

2. For negative steel at the interior column we have provided 6 bars A 7 bars H 

in the direct bands. In addition there are two diagonal bands from the interior 

panel, each bringing in 6 bars E. The total area of these bars equals 9.50 sq. in. 

The bars M in the two diagonal bands of the exterior panel must supply an area of 

13.50 — 9.50 = 4.00 = A, cos 45°. Then A« = 5.66; use 2.83 sq. in. in each band, 

or 7 bars M. 

At the exterior support there are 7 bars //, 4 bars and 14 bars M. Their area 

equals 0.442(11 -j- 14 X 0.707) = 9.25 sq. in. The total area required is 11.07 sq. in.; 

supply the remainder as 5 bars L. 

3. The positive mid-strip steel area of 5.35 sq. in. is supplied by two diagonal bands. 

Each band should have 9 bars; use 7 bars M and 2 bars N. 

4. The negative mid-strip steel will be supplied as 14 bars P. 

Exterior Panel, North-South Steel. The north-south steel in the exterior panel is 

spanning an interior span. The diagonal bands have been determined by the east- 

west areas and the north-south direct bands will supply whatever is needed in addi¬ 

tion. The direct column-strip steel over the first interior columns will be made the 

fiame as the interior panels. 

1. The half column-strip adjacent to the wall beam will have as positive steel 

7 X 0.4 ~ 3 bars A and 4 bars B. 

2. The negative steel area in the half columrv-strip consists of 3 X 2 = 6 bars A 

plus 7 X 2 X 0.707 » 9.9 bars M, giving a total of 15.9 X 0.442 « 7.00 sq. in. 

The required area equals 3.18 sq. in. 
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3. The positive mid-strip steel should equal 5.33 sq, in. There are available 18 bars 

in the two diagonal bands, or 18 X 0.707 X 0.442 = 5.62 sq. in. 

4. The negative mid-strip steel will consist of the usual 14 short bars G. The steel 

is dimensioned in Figure 148. The bands are 0.4Z wide. If bands of this width are 

Minimum Bar Lengths - Exterior Panel 

Fig. 151 

plotted on the panel plan, it will be seen that they cover the whole surface. The 

economical order of placing the steel should be determined by consultation with the 

steel foreman or the superintendent on the job. 

226. Comparison of Design Results. The following tabulation compares the re¬ 

sults of the two designs of Problems 36 and 37. It shows that there is 613 cu. ft. less 

concrete in the two panels for the drop panel floor but the steel in the drop panel 

type is in excess by 290 lb. It is probable that the cost of the excess steel plus the 
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extra form cost of framing around the drop panel will not equal the saving in con¬ 

crete cost. Therefore, the drop panel two-way design is probably the more eco¬ 

nomical. 

Quantities for 1 Interior 

and 1 Exterior Panel 
Drop Panel; 
2-Way Steel 

i 

Flat Slab; 

4-Way Steel 

Slab concrete, cu. ft. 1422 2035 ♦ 
Steel—interior panel, lb. 3440 3280 
Steel—exterior panel, lb. 3530 3400 
Total Steel—^two panels, lb. 6970 6680 

* Also an 87-in. capital, instead of 80 in. 

A discussion of the proper moments to use for flat slabs whose spans in either 
direction are markedly unequal is given in Chapter 14. 



CHAPTER 11 

COLUMNS 

227. Columns. The column in many respects is the most important 
unit of a structural frame. A slab panel or a beam may often fail with¬ 
out serious consequences, but the failure of a column endangers the 
whole structure. Therefore, columns must be carefully designed and 
conservative allowable stresses must be used. 

The floor systems discussed in previous chapters are supported by 
columns or walls. A wall may be regarded as a column of great width. 
Therefore, the design of floor supports may be covered by a general dis¬ 
cussion of columns. 

In reinforced concrete construction the type of column used varies 
from plain concrete to structural steel columns. The types may be 
listed as: 

1. Plain concrete. 
2. Concrete reinforced with longitudinal bars and ties (Fig. 152a). 
3. Concrete reinforced with longitudinal bars and spiral steel (Fig. 

1526). 
4. Composite columns of structural steel or cast iron within the spiral 

steel of a type 3 column (Fig. 152c). 
5. Combination columns of structural steel covered with concrete for 

fireproofing. The steel column is usually wrapped with wire for 
bond with the concrete (Fig. 152d). 

6. Structural steel. 

228. Stresses in Columns. It has been previously stated in the dis¬ 
cussion of the use of compression steel in beams in Chapter 6 that tests 
of members in compression show the marked effect of shrinkage and 
plastic flow upon the residual steel stresses at the end of 2 years, or 
more, of loading. Until about 1935 it was the custom to design mem¬ 
bers for the stresses due to the loads and to specify an allowable stress 
low enough so that the readjustments due to shrinkage and flow would 
not cause failure of the member. The reinforced concrete column is a 
typical compression member, so it is natural that the substitution of 
empirical methods of design based on tests for the former practice should 
be first employed for columns. The present A.C.I. and Joint Committee 
Codes recommend such empirical equations based on a comprehensive 

255 
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(a) ElLV/^ION 

Fig. 152 

series of tests made by the American Concrete Institute cooperatively 
at the University of Illinois and Lehigh University about 1930. The 
separate analysis of columns for shrinkage and plastic flow stresses is 
discussed in Chapter 9; the analysis for so-called ^ ^elastic stresses^ ^ due 
to loads is covered in this chapter. Therefore the residual stresses at 
any age can be computed, if the necessary strain coefficients are known, 
for comparison with the present empirical equations. In this chapter 
the derivation of the elastic stresses will be given first, then the empirical 
equations. 

229. Distribution of Stresses Due to Loads. The analyses of the cross 
sections for maximum fiber stresses are divided into two cases: 

A. A normal force N applied at the center of gravity of the section. 
It is assumed for this loading that the stresses are uniformly 
distributed. 

B. A normal force N acting at some distance e from the center of 
gravity. The stresses are assumed to be uniformly varying. 

1. The neutral axis is outside the section and all stresses are 
compressive. 
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2. The neutral axis lies within the section and there is tension 
over part of the section. 

In this chapter the stress analysis will be discussed for the different 
types of reinforced concrete columns when subjected to any of the three 
cases of stress distribution. 

PLAIN CONCRETE 

230. Plain Concrete Columns. Plain concrete columns are seldom 
used, because such compressive members are limited in height to 5 or 6 
times the least thickness t to avoid the possibility of bending or buckling. 
If such a short strut is used, the load must be nearly axial as there can 
be no tension in any section. When the neutral axis is at the edge of 
the section, the greatest eccentricity of loading for a rectangular section 

i 
equals e = - . The resultant N of the uniformly varying stress acts at 

6 
2t t 

from the neutral axis and hence - from the center line of a rectangular 
3 6 
section. 

COLUMNS WITH LONGITUDINAL STEEL AND TIES 

231. Stresses Due to Axial Loads. The derivation assumes, as in the 
beam analyses, that there is a partnership between the concrete and 
steel. Both are in compression, and their strains e must be the same; 
otherwise the steel will slip. Equating strains gives 

r. _ _ /c 

Ef Ec 

r. = ^fc = n/o (185) Ec 
Assume any column section with a normal load N acting at the center 

of gravity of the section (Fig. 153). The force N is supported by the 
sum of the compressive forces in the steel and the concrete. Let 

A == total area of the colunm 

, . p = steel ratio = — 
A 

N = fcAc +/U. = fc{A - Ac) + nfcAs 

N^fcA[l -p + np] «/cA[l + (n - l)p] (186) 
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jRANSrORMCO 
[livation Slct/on 

(a) {h) (c) 

Fig. 153 

232. Transformed Section. The method of solution by use of the 
transformed area (Art. 22) gives identical results. When a section of 
“equivalent concrete” (Fig. 153c) is used, the steel is removed and nAg 
= npA areas of concrete substituted in the proper position to give the 
same area and moment of inertia. One area fills the hole left by the 
steel, and (n — l)Aa areas are added as fins symmetrically placed about 
the YY axis, if bending or buckling is expected about this axis. The 
total area Ag now equals the area of the original column plus the fins, or 

Ag — A + {n — 1)A, = A + (n — l)pA = A[l + (n — l)p] 

As the stress is uniform, 

N = fcAg = JcA[l + (n - l)p] 

233. Empirical Formulae for Axial Load. The A.C.I. tests determined 
that the load A' carried at failure by a tied column was closely approxi¬ 
mated by the equation 

A' = 0.85/'cA,+/yA, (187) 

Since /'c is the compressive strength of a 6-in. cylinder 12 in. high, 
the reduction to 0.85/'c allows for the greater length-thickness ratio of 
the usual column. Failure occurs when the concrete fails in compres¬ 
sion and the steel has reached the yield point stress /y. Failure may be 
due only to application of load, or it may be due to the long-time appli¬ 
cation of a less load, or to thorough drying out (shrinkage) plus a long¬ 
time load application. 
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For purposes of design the failure equation is modified by factors of 
safety: 

N = Aip.lSfc + 0.32/yp) (188) 

The stresses in concrete and steel no longer obey equation 185, as shrink¬ 
age and flow have changed this elastic relation. 

234. Long Columns. Columns which are exceptionally long will fail 
at loads less than that given by equation 187. The design load that 
such a long column can safely carry is obtained from equation 188 by 
use of a load-reduction formula, involving the slenderness ratio, similar 
to the familiar stress reduction formulae used in steel and timber design. 
In A.C.I. Article 1107, a long column is defined as one whose length 
exceeds ten times its least cross-sectional dimension and 

Ni = n(^1.S- 0.03 ^ (189) 

where Ni = safe load for long column 
N = safe load for short column by equation 188 
h = unsupported height 
t = least cross-section dimension. 

236. Economy. It is possible, by varying the mix, steel, and size, to 
design a great number of column sections, all of which will carry a given 
load safely, but only one will be the cheapest. For the true reinforced 
concrete column (types 2 and 3) the illustrative problems will discuss 
economical design. The contractor is interested in the cheapest con¬ 
struction costs for his columns; but the owner, who is purchasing floor 
space, is also interested in having small columns. This interest is, of 
course, quite apart from the occasional necessity of having definite clear¬ 
ances for machinery, aisles, etc. The cost comparison from the owner's 
point of view should include allowance for all floor surface in excess of 
that given by the column of least cross-sectional area. 

Many city building laws allow a reduction of the live load for certain 
buildings if the column in question carries more than one floor. The 
reductions specified by the New England Building OflSicials Conference 
are given in the Appendix. 

ILLUSTRATIVE PROBLEM 38 

236. Design of Column with Longitudinal Steel and Ties. Axial Load, Design 

an interior column whose unsupported length is 16 ft. for an axial load at the top 

section of 300,000 lb. 
The interior columns of beam and girder floors are usually square; flat slab col¬ 

umns are round. Assume a square column. Equation 188 has three unknowns: 



COLUMNS 260 [Chap. 11 

size, mix, and steel ratio. Assume for the first analysis the rich mix of / c = 5000 lb. 

per sq. in. and a yield point of the steel fj, = 60,000 lb. per sq. in. 

Long or Short Column, The ratio ~ must not exceed 10 for short columns. Col- 

h 
umns thicker than — = 19.2 in. are short columns. 

10 
Maximum and Minimum Areas. The bottom section has the greatest load N. 

Assuming the column to be “short^* and to weigh 3000 lb., equation 188 becomes 

303,000 = A[900 + 10,000p] 

The steel ratio can vary between 1 and 4 per cent. Substituting the limiting ratios, 

lip — 0.01, A — 286 sq. in., t = 16.9 in. 

If p == 0.04, A = 197 sq. in., t - 14.1 in. 

A 15-in. or 16-in. column can be used. Either one is a ‘"long” column. Let us 

adopt a 16-in. colunrn, weighing 4300 lb. By equation 189 tliis column will be de¬ 

signed as a short column carrying the increased load N of 

304,300 - iNr[1.3 - 0.03 X -W'] 

N = 324,000 lb. 

Then 

324,000 = 266(900 + 16,000p) 

p = 0.0228 and A, = 0.0228 X 256 = 5.84 sq. in. 

In order to keep a symmetrical arrangement of steel, the bars in a square colunrn 

should be in multiples of four. In a round column any number over four with a 

minimum diameter of f in. may be evenly spaced around a perimeter. The possi¬ 

bilities for this column are 

Four Ij-in. squares with area = 6.25 sq. in. 

Eight 1-in. rounds with area = 6.28 sq. in. 

Twelve |-in. rounds with area = 7.21 sq. in. 

Use four if-in. squares. Assuming in this case that the total height of the column 

is 18 ft., the steel is 24 diameters longer (A.C.I. Art. 1103c), or 20 ft. 6 in. long. 

A.C.I. Article 11046 states that the ties shall not be smaller than \ in. This is a 

light bar to restrain a if-in. rod from buckling. For this design we shall use as a 

sin^e tie for four rods: 

f-in. ties with f-in. bars 

f-in. ties with and 1-in. round bars 

f-in. ties with 1-, if-, and if-in. square bars 

Use f-in. ties, whose spacing must not exceed 

16 bar diameters = 20 in. 

48 tie diameters » 24 in. 

Least column dimension » 16 in. 
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Use 16-in. spacing. Figure 154a shows the steel arrangement in the section. If 

8 bars are used additional ties must be added as in Figure 1545; the ties for 12 bars 

are shown in Figure 15^c. These additional ties add to the labor and cost of wiring 

the column steel, in addition to interfering with pouring concrete down the 16-ft. 

height. There is every incentive to use a few large¬ 

sized bars. When additional ties are used the tic 

sizes can be made smaller than for a single tie. It 

is suggested that the tie size be then made large 

enough so that it does not reduce the tie spacing: 

in other words, 

|-in. ties with |- and f-in. bars 

f-in. ties with f- to 1 f-in. bars 

^-in. ties with li-in. bars 

We have been designing a section such as ^ A in 

Figure 155. The steel in this column ends at this 

section and cannot carry load. It does reinforce 

the sections such as BB which are nearly as heavily 

loaded. At section A A the steel from below must 

supply the reinforcement and must have an area at 

least equal to A« = 5.84 sq. in. 
237. Cost Let us assume: 

1. Concrete costs 45 cents per cubic foot This 

includes materials, labor, and plant costs for mixing 

and placing. 

2. Forms cost 18 cents per square foot This 

includes materials, and labor cost for making, erect¬ 

ing, stripping, and repairing, 

3. Steel costs 4 cents per pound. This includes 

material, labor, and plant charges for bending and 

placing* 
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Cost per colxinm for 18 ft. height equals 

16 X 16 
1. Concrete ——— X 18 X 0.45 = $14.40 

144 

2. Forms 4 X if X 18 X 0.18 * 17.28 
3. Steel, 

longitudinal, 4 X 20.5 X 5.31 * 436 lb. 

ties, 12 X 4.67 X 0.67 * 38 lb. 

474 lb. X 0.04 = 18.96 

Total - $50.64 

For comparison. Table C gives the designs for 2000-, 2500-, 3000-, 4000-, and 

6000-lb. concretes using high and low steel ratios. It will be noticed that when a 
size larger than the maximum limit is used, steel equal to p = 0.01 must be used. 

In certain cases the commercial steel is much in excess of the computed amount. 
The steel must have the minimum spacings of A.C.I. Article 11035 (see Appendix). 

Assuming the ratio of total building cost to total floor area to be $2.00 per sq. ft., 
the cost comparison includes an allowance for the ^‘excess floor area.*' Assume 

also that 

2000-lb. concrete costs 35 cents per cubic foot 

2500 tt (t n 37 tt It (( tt 

3000 (< (t (t 39 tt It (( tt 

4000 t( a a 42 tt tt tt tt 

5000 ii tt tt 45 tt tt tt tt 

It will be noticed that the stronger mixes are cheaper than the weaker. It is also 
usually true for a given mix that the low steel ratios are cheaper, because compression 

steel is not economical. Professor Lyse ^ proves that the statement “the richer 

mixes are cheaper” may be made general regardless of the load. 

238. Elastic Stresses. Equation 186 enables one to compute the 
stresses due to loads only. It is as easily manipulated as the present 
empirical equation 188. For example, if one checks the design in Table 
C for the 3000-lb. concrete by equation 186, the results for the 21-in. 
column with eight -J-in. round bars are 

r 4.811 
307,400 - /c X 441 1 + 9 X- 

L 441 J 

fc « 634 lb. per sq. in. and /'« = nfe = 6340 lb. per sq. in. 

The allowable stress due to loads was formerly taken as fe = 0,225fe *= 
675 lb. per sq. in. and the designs would be identical by the two methods. 

^ “Relation between Quality and Economy of Concrete,” Jour, A.C.L, March- 

April, 1033, p. 325. 



264 COLUMNS [Chap. 11 

The 17-in. column with eight 1-g-in. square bars would have computed 
elastic stresses of 

304,800 = /, X 289 1 + 9 X 
10.13" 

’2^_ 

fc — 803 lb. per sq. in. and /'« = 8030 lb. per sq. in. 

In this case the elastic stress considerably exceeds the former allowable 
of 675 lb. per sq. in. and the present empirical method permits the use 
of less steel. 

239. Stresses Due to Load, Shrinkage, and Flow. These same col¬ 
umns are analyzed for the stresses due to loads, shrinkage, and flow in 
Problem 29 (Chapter 9). There it is showm that there is ultimately a 
very considerable decrease of concrete stress and a greater increase of 
steel stress. The effects of shrinkage and flow are so marked that com¬ 
putations of stresses due to loads only do not give a comprehensive pic¬ 
ture of stress conditions at any time during the life of the column. For 
this reason, even though the former method gave safe columns, it was 
abandoned in favor of the present empirical method. 

ECCENTRIC LOADS 

STRESSES DUE TO LOADS 

240. Eccentric Loads—^Rectangular Section. Case I. Compression on 
Entire Section. Neutral Axis Outside Section. Assume a rectangular sec¬ 
tion with equal areas of steel on the two broad faces. This is the usual 
condition for exterior colunms. The load N acts on the axis of syfn- 
metry XX with an eccentricity of e (Fig, 156). The transformed sec¬ 
tion of Figure 156c will be substituted for the reinforced section by add¬ 
ing nAa areas of concrete for the steel. One area fills the steel holes, 
and (n — l)Ag areas are added as fins in the same relative position about 
the center line. Let A^, = pht. 

Take the portion of the column above the section AA as the rigid 
body, disregarding the weight of this portion. The force at this section 
equals N and it is the resultant of the stresses which are assumed to be 
uniformly varying with the neutral axis at a distance kt from the side 
of the maximum stress/c. Then, by Figure 1566, 

fc 

kt kt — df kt — d kt — t 
(190) 
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N = bt + — 1) - — 1)-U 
2 2 2 

UT /kt-i\ , ^ /M-d' kt-d\ 

N = — {2k- 1)[1 + (n - 1)p1 
2k 

[UVATION 

(a) 

ScCTfON 

Fig. 156 

TRANSrORMCD 

SECTION 

It is also true that the sum of the moments of the stresses about the 
center line equals Ne. We shall assume that the stress on the rectangle 
ht consists of a uniform stress plus stresses uniformly varying from 
zero to fc — 

Ne = rjbt X 

/“c(« — 1) - 6<a — /”^(n — 1) - &ia 
2 2 

ht\ / (kt — i)\t , ^ /kt — d' kt — tTvl 

- i L(^' - —) 5 + ) J 
Jf-We-'^[l + 12(i.-l)p0) j (192) 
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Multipl3dng equation 191 by e and equating to equation 192, 

fjbte fcbf r /a\^ 
— (a-1)[1+ („-!,Pi. — [i + i2(„-i)py 

1 + 12(n - 1)P0 

12 0[l+(n-l)p] 

(193) 

Equations 191, 192, and 193 contain as variables the terms fc and n 

governed by the mix, the steel ratio p, and the column dimensions b 

and t A direct design resulting in a definite solution is not possible. 
The designer assumes a size, mix, and steel ratio, solves for k by equa¬ 
tion 193, and for the maximum stress fc in equation 191 or 192. Dia¬ 
grams 11 to 15 (in the Appendix) can also be used to solve these equa¬ 
tions. 

Approximate Equations. Many texts add areas of concrete fins 
for the transformed section. This results in equations: 

fcbt 

N ^'—(2k-m+np) 
2k 

fcbf r /a\2 

1, ‘ 
A =-[- 

^ 12 0(l+np) 

a94) 

(195) 

(196) 

The error is on the unsafe side but it is not great. For instance, assume 
n = 6 for 6000-lb. concrete and the maximum steel ratio p = 0.04. A 
column of minimum thickness ^ = 12 in. will have a ratio 

If, for Case I, a median value of the eccentricity is taken as ~ 0.10, 
t 

k will be about 1 per cent too great, N about 3 per cent too great, and 
M about 4 per cent too great. These maximum errors are very small, 
mi equations 194, 195, and 196 may be used. The author considerB, 
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however, that the numerical value of n — 1 can be substituted in com¬ 
putations as easily as n, so equations 191, 192, and 193 will be used for 
problem solutions. 

241. Eccentric Loads—^Rectangular Section. Case II, Neutral Axis 
within Section, Assume a rectangular section with equal areas of steel 
on the h faces. The load N acts on the XX axis of symmetry with an 
eccentricity e (Fig. 157). The transformed section of Figure 157c will 

Fig. 157 

Transformed 

Sect/on 

(c) 

be substituted for the reinforced section by adding nA^ areas of con¬ 
crete for the steel. On the compression side one area fills the steel hole, 
and (n — l)Ag areas are added as fins. The remaining compression 
area is now a rectangle h wide and kt deep. On the tension side there 
is only a fin with an area of nAg, 

Take as a rigid body the portion of the column above section AA, 
neglecting the weight of this portion. The force at the section must 
equal N and it is the resultant of the compressive stresses on the reo- 
taagle b(ki) which vary uniformly from zero to /c, plus the force on the 
compressive fins, and minus the force on the tensile fin. From Figure 
1575, 

fc f'c ft 

kt kt -- d! d — kt 
(197) 
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iV = - b{kt) + f",(n -1)-U- ftn - bt 
2 2 2 

bt r at - d'\ /d - k{\ 1 

(198) 

Taking the sum of the moments of the forces about the center line, 

jT /1 kt'\ 7) T) 
Ne== -b{kt)[-) + f"c{n - 1) - hta + ftu - bta 

2 \2 3 / 2 2 

Ne 
hi [fckt fckH Sc{kt — d!) 

““ 2 . 
+ ■ 

kt 
in — \)pa ■+ 

Scid - kt) 

kt 
■ npa j 

+ 12.P 0' - 6P J (j. - 9] “W 
Multiplying equation 198 by e and equating to equation 199 

Then 

F +3 

f r /aV cl ‘i'ra e 
3p{»[2(-) +J + _[--- (200) 

Equation 200 must be solved for k and its value substituted in either 
equation 198 or 199 for the fiber stress fc. 

242. Approximate Equations. Equations 198, 199, and 200 are very 
long. The error from using fins of nAa on the compression side affects 
only the compression fins, and the error is less than in Case I. The 
author recommends for Case II the use of this approximation which 
gives the equations usually employed. The results are 
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(202) 

(203) 

243. Plots. Diagrams 11 to 15 (in the Appendix) are given to solve 
equations 191 and 193 for Case I. Four diagrams have been supplied 

d' d' 
for interpolation between — = 0.05 and ~ = 0.25. If d' = 3 in. this 

t t 
covers the range from ^ = 12 in. to < = 60 in. From equation 191 it is 

N 
seen that the constant Ci, in/c = — Ci, equals 

bt 

fcbt 2k 

i2k - 1)[1 + (n ~ l)p] 
(204) 

Diagrams 16 to 20 solve equations 202 and 203 for Case II of rec¬ 

tangular sections. The constant C2, in fc 
M 

be 
C2, equals 

*2(3 - 2k) + 12np I 

In order to condense the scale the eccentricity ratio is plotted as - . 
e 

244. Stresses Due to Shrinkage and Flow. Empirical Equations. 
The normal stresses on a cross section of a column loaded eccentrically 
are uniformly varying, as are the normal stresses of a beam. The shrink¬ 
age and flow stresses can be computed in the same manner as discussed 
in Chapter 9 for beams. Ignorance of the presence and length of cracks 
and the readjustment of stresses does not enable the designer to com¬ 
pute final stresses with confidence in the accuracy of the results, even 
though it is recognized that the final stresses are widely different from 
those due to loads only. Logically, empirical equations based on test 
data should be employed for eccentric column design; but test data 
are still scarce, though tests of eccentric loading are accumulating. 
At present, in default of a better method, both the A.C.I. and Joint 
Committee Codes recommend that eccentrically loaded columns be de¬ 
signed by computation of the stresses due to loads only; which is the 
case just abandoned for axiaUy loaded columns. 
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246. Allowable Concrete Stresses. Some years ago beams were de¬ 
signed with an allowable concrete stress fe = OAOf'e, whereas axially 
loaded columns used an allowable stress due to loads fc = 0.20/'c. Col- 

N 
umns eccentrically loaded, whose load stresses were equal to /c = -7 dz 

(Ne)y 
j were given an allowable stress fc = 0.30/'c, even if the bending 

stress were very small or very great compared to the axial. This was 
not logical, for columns with slight eccentricity of load should have an 
allowable stress approaching that of an axially loaded column and those 
with a great eccentricity should approach the allowable stress of beams. 
The recent A.C.I. and Joint Committee Codes have corrected this by 
a more complicated but more logical method of obtaining the allowable 
concrete stress due to loads. The allowable stress fa for axially loaded 
columns is computed as 

(206) 
A 1 + (n — l)p 

Allowable stress for beams equals fh = 0.46/' 

fa 
Ratio C = — and the term D == —r (2 

A 
(208) and (209) 

where R is the least radius of gyration of a column section. The section 
has the steel symmetrically arranged. For a rectangular section, 

i22 = - 

— + (n — \)phta^ 

ht[l + (a — l)p] 

+ 12(n - l)pa=^ 

12[1 + (n - l)p] 

where a is distance from center line of section to center of the steel. 

Maximum allowable stress fp 
t + Del 
- (211) 
t + CDei 

= fb, when e approaches This stress varies from fp = fa, when e = 0, to/c = fb, when e approaches 
infinity (a couple acting on section). 

246. Deragn Procedure. There are so many variables in the stress 
equations that designs are made by selecting a mix, size, and steel ratio 
and computing the maximum stresses fc and /*. The size is usually de¬ 
termined by the desire to use the same size as the coliunn above, or to 
make a 4-in. to 6-in. increase and hold for several stories in order to 
use the same forms. It is well to use first the maxinnuin steel ratio p, 
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as a ‘‘sighting shot/^ and to indicate whether the size and mix are reason¬ 
able. The steel ratios may vary from p = 0.01 to p = 0.04. 

In general, ratios greater than - = 0.27 give Case II solutions, and 
t 

e • 
ratios less than - = 0.17 are Case I. The values intermediate may be 

I 

either, depending on the mix and steel ratio used. For large values of 

- in the Case II solutions the steel stress fs should be checked as well as 
t 
the concrete stress /c. 

ILLUSTRATIVE PROBLEM 32 

247. Design of Column with Rectangular Section and Longitudinal Steel Loaded 

Eccentrically. Case II. In Problem 10 (Chapter 6) the end span of a beam, 16 in. 

by 32 in., was supported by an exterior column, whose section was assumed to be 
h = 16 in. and t = 20 in. Check this assumption, and complete the design of the 

column. The unsupported height of the column is 18 ft. 2 in. 

The beam design gave at the exterior support a supporting force V and bending 

moment Mn equal to 

V = 2705 X 0.5 X 26.5 = 35,900 lb. (Art. 92) 

wl^ 
Mn = — = 1,425,000 in.-lb. 

16 

In addition assume that the wall beams bring to the center line of the column a load 

of 10,000 lb. 
If the joint is taken as a rigid body, the forces acting at section AA are shown in 

Figure 158. Therefore, N = 45,900 lb. and 

M - 35,900 X 10 + 1,425,000 = 1,784,000 in.-lb 

Fig. 158 
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The force and couple can be combined to give a resultant N ~ 45,900 lb. acting with 
an eccentricity e equal to 

e 
M 

N 

Eccentricity ratio ■ 

1,784,000 

45,900 
38.8 in. 

38.8 

20 
= 1.94. This is Case II. 

If this is a long column, the force N at section AA will be arbitrarily increased for 

h 218 
design purposes, but the eccentricity e will remain unchanged. The ratio - == — = 

t 20 
10.9, which exceeds the limiting ratio of 10. Then, by A.C.I. Article 1107 (see 
Appendix), 

45,900 = N[1.Z - 0.03 X 10.9] = 0.97SN 

N = 47,200 ib. 

Maximum Concrete Stress. In this problem a trial section has been assumed. It 
remains to adopt a mix and steel ratio in order to compare computed stresses with the 

allowable. It is advantageous to try first the maximum steel ratio p = 0.04 for each 
mix because, if the trial proves unsafe, it is not necessary to investigate that mix 

further. Let us assume a concrete strength / c = 4000 lb. per sq. in. and p == 0.04. 
By equation 203, 

fc* + 3(1.94 - 0.5)fc2 + 6 X 7.5 X 0.04 X 1.94fc = 3 X 7.5 X 0.04[2(-i^)2 + 1.94] 

fc® + 4.32/;2 + 3.49fc = 1.97 and k = 0.375 

By equation 202 the maximum concrete stress due to loads equals 

fc ~ 
47,200 X 38.8 X 12 X 0.375 

16 X 400[(0.375)2(3 - 0.75) + 12 X 7.5 X 0.04(0.35)2] P®'' 

Allowable Concrete Stress. The allowable concrete stress for axial loads, by the 
equations in Article 245, equals 

/a = 
0.18 X 4000 + 16,000 X 0.04 1360 

1 4- 6.5 X 0.04 

1080 

1.26 
= 1080 lb. per sq. in. 

(7 = ~ 
fb 0.45 X 4000 

= 0.6 

J?2 = 
400 + 12 X 6.5 X 0.04 X 49 

12 X 1.26 

20 + 5.48 X 38.8 

= 36.5 and D = 
400 

2 X 36.5 
' 5.48 

1080 
20 + 0.6 X 5.48 X 38.8, 

1700 lb. per sq. in. 

in this case a 4000-lb. concrete with 4 per cent of steel is a possible solution. 

Maximum Steel Stress. By equation 197 this equals /« = nft = 7.5 X 1700 X 
17 - 0.376 X 20 .. 

Q ^ 20 ** 16,100 lb. per sq. in. This is safe, as the allowable stress equals 
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20,000 lb. per sq. in. The steel area amounts to A, = 0.04 X 16 X 20 = 12.8 sq. in., 

or five l| in. square bars in each 16-in. face. It is impossible to place these bars 
with the required spacing of 3 diameters (3f in.) on centers. 

The maximum steel that can be placed is four 1-in. square bars on each face, or 

p = 0.025. Using fc = 6000 lb. per sq. in. and p = 0.025, the computed stress 
fc — 2570 lb. per sq. in. and allowable 
stress fp = 2500 lb. per sq. in. This is 

not satisfactory. Moreover the maximum 

steel stress = 24,400 lb. per sq. in., so 

the steel is overstressed. 

Let us increase the column width to 21 

in., using the same depth of 20 in. and a 

concrete strength fc — 4000 lb. per sq. in. 
Eight 1 f-in. square bars can be placed in 

this width, so p = 0.0242. The maximum 

stresses are fc — 1660 Ib. per sq. in. and 
ft = 19,900 lb. per sq. in.; the allowable 

concrete stress fp = 1672 lb. per sq. in. This is satisfactory, 

is shown in Figure 159. 

Fig. 159 

The steel arrangement 

ILLUSTRATIVE PROBLEM 40 

248. Solution by Plots. Computed Stresses, Solve Problem 39 by means of Dia¬ 

grams 16 to 20 (see Appendix), For the first solution the data are 

N - 47,200 lb.; c = 38.8 in.; 6 - 16 in.; and t = 20 in. 

f'o — 4000 lb, per sq. in.; p = 0.04. 

t d'^ 3 
- = 0.515; “ = — = 0.15; and np = 0.30. 
e t 20 

t 
On Diagram 18 the intersection of •* = 0.515 and Up — 0.30 gives C2 — 5.95. Also 

e 

A; =* 0.38 approximately. 

, 47,200 X 38.8 X 5.95 
/- = —I C2 ==-- 1700 lb. per sq. m. 

bt^ ^ 16 X 400 ^ ^ 

d' 
The final design used 6 = 21 in.; f = 20 in.; and p == 0,0242. For -y “ 6*15, 

Diagram 18 is entered at - == 0.515 and np = 0.181. C2 = 7.6 and k = 0.33 approx- 
e 

imately. 
, 47,200 X 38.8 X 7.6 

fc --—-~ 1660 lb. per sq. m. 
21 X 400 

The values of C2 and k cannot be read from the plots as accurately as they can 

be computed but there is little divergence from the results of the computations in 

Problem 39 and much time is saved. 
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AUmoable Stresses, Diagram 21 (in the Appendix) gives the value of the term D 

of equation 209, if ~ and (n — l)p are known or assumed. The values of the allow- 
z 

able axial stress fa of equation 206 are difficult to plot as the numerator consists of 

the essential part of the empirical equation 188, whose steel term is independent of 

the ratio n of the moduli of elasticity, whereas its denominator contains the essen¬ 
tial part of the equation for the transformed area, whose steel term contains the 

product (n — l)p. The ratio ~ should be computed. Diagram 22 gives the allow- 
/ c 

f fa e 
able stress fp as the ratio ^ , if ~ and the product D - are known. 

f e f e t 

For the first solution in Problem 39, / c — 4000 lb. per sq. in. and fa = 1080 lb. per 

sq. in The ratio ~ = 0.27. Also ' ~ 1.94; — = 0.15; and (n — l)p = 0.26. By 
f e t t 

Diagram 21, D = 6.48. Using Diagram 22, D - = 10.62 and ^ = 0.425. Therefore 
^ f c 

fp « 0.425 X 4000 *= 1700 lb. per sq. in. This checks the solution in Prob¬ 
lem 39. 

For the final design, /e — 4000 lb. per sq. in.;/a = 955 lb. per sq. in. and ~ = 0.239. 
• f e 

e d' 
Also - = 1.94; — * 0.15; and (n — l)p « 0.157. By Diagram 21, D = 5.03. Using 

Diagram 22, D ^ = 10.92 and ^ = 0.418. Then/p = 1672 lb. per sq. in. The solu- 
* f e 

tion of allowable stress by these plots saves much time. 

ILLUSTRATIVE PROBLEM 41 

249. Design of Column with 
Eccentrically. Case L Let us 

Rectangular Section and Longitudinal Steel Loaded 
assume that the design of the column stack of Prob¬ 

lem 39 is continued. Several floors below, the 

load from above equals 250,000 lb. and the floor 

loads of Problem 39 come in again. Figure 160 

shows the forces at the junction of columns and 
beam. For the first trial both columns meeting 

at this floor will be given the previous section of 

6 == 21 in. and t = 20 in. with the steel placed 

at d' ~ 3 in. from each face. The story height 

above this floor is 20 ft.; that below is 18 ft. 

At section CD (Fig. 160), N « 295,900 lb. 
Taking moments about the center of this sec¬ 

tion, Mcr -h Ml *= 1,425,000 + 36,900 X 10 « 

1,784,000 in.-lb. 

The division of moment between Mv And Ml 

will be in proportion to their stiffnesses -. If 
h 

tiie unknown steel areas are ne^ected and Pro. 160 
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outside dimensions are dealt with, both columns will have the same moment of 
inertia I. Then 

Mu __ ^ ^ 16.17 1 

^ ^ 7l ” 1^7 1.125 

Mu = 840,000 in.-lb. and Ml = 944,000 in.-lb. 

Design of Section AB of Upper Column. At tliis section N = 250,000 lb., M 
840,000 in.-lb., and e = 3.36 in. 

e ^ 840,000 

t 250,000 X 20 
= 0.168. This is Case I. 

However, this is a “long'" column, as the ratio j — 10.9. The design will use a force 

250 000 
N == • = 257,000 lb. and the eccentricity e — 3.36 in. Assume a 4000-lb. 

0.97 o 

concrete and p =* 0.011. By equations 193 and 191, 

, 1 , 1 + 12 X 6.5 X 0.011 X (0.35)2 
k = —-- 1.012 

2 12 X 0.168 X 1.0715 

257,000 
X 

2.024 

21 X 20 1.024 X 1.0715 
= 1128 lb. per sq. in. 

The allowable stress will be found as in Problem 40, -y = 0.15; {n — l)p « 0.0716; 

fa =* 836 lb. per sq. in. By Diagram 21, D == 5.82. By Diagram 22, for ~ = 0.209 
/ G 

De f 
and — = 0.977, ~ ~ 0.284; so/p = 1136 lb. per sq. in. It is not necessary to check 

^ f e 

Case I solutions for the maximum steel stress. In this case it amounts to 

(kt - d'\ /20.24 - 3\ 

~k~) "" ^ ^ ^ 

A. = 0.011 X 420 « 4.62 sq. in. 

Use six 1-in. round bars. The steel arrangement is shown in Figure 161a. Before 
the design is finally adopted the section at the top of the column should be checked 

for its normal load N and bending moment M from the floor above. The steel of 

Figure 161 ends at the section AB (Fig. 160) we have just designed. It cannot rein¬ 

force that section, though it will those sections a short distance above. Therefore, 
we must make sure that at least 4.62 sq. in. of steel comes through from the column 

below and is extended far enough into this column to reinforce section AB, 

Design of Lower Column. Section CD (Fig. 160). N = 295,900 lb. and M « 

944,000 in.-lb.; “ = «= 0.16. This is Case I and a ^*short column.'^ Assuming 

the same mix as in the column above of /« = 4000 lb. per sq. in., the steel ratio is 

finally found to be p = 0.02. Tor this ratio k = 1.050 and/c = 1192 lb. per sq. in. 
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The allowable stress is obtained for values of (n — l)p = 0.13; — — 0.15, giving 
t 

6 f f 
D « 5.69. 2)- - 0.91; /a = 922 lb. per sq. in.; and j = 0.2305 gives ^ == 0.299, 

^ J C f c 

80 fp == 1196 lb. per sq. in. 
Ag 0.02 X 420 = 8.40 sq. in. Use six ij-in. square bars. The steel arrange¬ 

ment is shown in Figure 1616. It will be noticed that it has been possible to use the 

(a) (6) 
Fig. 161 

same section as the roof column with the same strength of mix and a reduction of 
the steel ratio. The increase of load has been balanced by the decrease in eccen¬ 
tricity. 

ILLUSTRATIVE PROBLEM 42 

260. Case I. Solution by Plots. Solve Problem 41 for maximum concrete stress 

fe by means of Diagrams 11 to 15. 

Upper Column. 5 = 21 in.; i = 20 in.; AT = 257,000 lb.; e = 3.36 in.; ^ = 0.168; 

d' 
and -- = 0.15. If the same mix /'c = 4000 lb. per sq. in. and the final steel ratio 

t 
e 

p « 0.011 are adopted (Diagram 13), for - = 0.168 and (n — l)p — 0.121, the value 

of Cl = 1.84. 

^ 257,000 ^ 

01 42U 

This checks the computation in Problem 41. 

Lower Column, h ~ 21 in.; t = 20 in.; JV = 295,900 lb.; e = 3.19 in.; ^ *= 0.1595; 

d' 
and -- “ 0.15. The mix/' = 4000 lb. per sq. in. and the final steel ratio p «= 0.02, 

so (n — l)p « 0.13. From Diagram 13, Ci = 1.695, 

295,900 
fo — X 1.695 *=* 1192 lb. per sq. in. 

This also checks the computed fc in Problem 41. The allowable stress fp was obtained 
in that problem by means of Diagrams 21 and 22. 
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251. Critical Section. These designs have been made for certain se¬ 
lected sections. Each story should be designed for the section of greatest 
stresses. Figure 162 shows the original exterior column stack in full 
lines. The dashed lines show its probable deformation when the floors 
are loaded. Each column has a 
point of inflection near its center. 

Since the columns are loaded at 
their ends only, the bending moment 
in the column will vary uniformly 
from the value of at its top to 
Mu of the floor below at its bottom. 
The designer can usually tell by 
inspection which is the section of 
greatest stress. At the bottom sec¬ 
tion the steel in this story ends and 
cannot, therefore, take any stress. 
The steel from below which runs 
into this column must act at this 
section and should not be less than 
the computed area. For example, 
the computed area for section AB 
(Fig. 160) is 4.62 sq. in. Six 1-in. 
round bars are used in the upper 
column and they end at this section. The steel from below consists of 
six l|^-in. square bars with an area of 9.38 sq. in., which is satisfactoiy. 
Care should be used to check this steel when the column below is 
greatly increased in size or its mix is increased in strength. 

252. Economical Design of Columns in Bending. Comparative de¬ 
signs for the same loading using different values of fe and p can be 
made with a tabulation similar to that in Table C (Art. 237) for axial 
loads. The results usually show that a minimum steel ratio p is cheap¬ 
est for columns in bending. This leads to the general statement that 
longitudinal steel in a column is not an efficient reinforcement. 

The effect of the mix is less marked than with axial loads. Medium 
to high-strength mixes give the cheapest designs. 

263. Eccentric Loads. Circular Section. Case J. Compression on En-^ 
tire Section, Neutral Axis Outside Section (Fig. 163). Assume a circular 
section of radius R whose longitudinal steel is uniformly spaced on a 
perimeter of radius r. The neutral axis lies outside the section at a 
distance of k{2R) from the particle with the maximum compressive 
stress /c. The values of k must be greater than unity for Case I. The 

steel area equals and the steel ratio p 
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Fig. 163 

The transformed area can be constructed by removing the steel and 
filling the holes with concrete. The remaining area (n — l)p7rR^ is sup¬ 
plied as an annular ring superposed on the section. The transformed 
area equals 

A = ttR^ + (?^ — l)pTrR" 

A = wR^ll + (n - l)p] (212) 

This is, of course, the same result as that for axial loads. The moment 
of inertia of the transformed area about a diameter *quals 

I = — + [(n - l)pvR^] j = — [R^ + 2(n - l)pr^l 

The maximum stress equals 

N My N ^ 4NeR 

“ J T" ” tR^[1 + (n - l)p] tR^IR^ + 2(n - 

ARe 

or 

N \ 1 

^ 111 + (n - l)p] [R^ + 2(n - Dpr^] 

N 

irR^ 
(T + S) 

(213) 

(214) 
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The minimum stress /"« equals 

My 

~T 
N 

(T^S) (215) 

life and/'\ are known the neutral axis distance k{2R) can be computed. 
Diagram 23 (in the Appendix) gives the values of T for given values 

of n and p. 
Equation 213 can best be used by an assumption of mix, size, and 

steel ratio and by a computation of the fiber stress /c. If Case I holds, 
the term T must be greater than term S in equation 214. 

264. Eccentric Loads. Circular Section. Case II. Tension on Part 
of Section. Neutral Axis within Section (Fig. 164). If the neutral axis 

(c) 
Fig. 164 

lies within the section, only the concrete on the compression side is con¬ 
sidered in stress computations. In constructing the transformed sec¬ 
tion the steel is removed and the holes on the compression side are filled 
with concrete. An arc of an annular ring of concrete, whose area is 
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(n — 1) tunes the area of the steel on the compression side, is super¬ 
posed. On the tension side there is only the arc of an annular ring of 
concrete whose area is n times the area of steel on the tension side. It 
is not necessary for accuracy to keep this difference in ring width. There¬ 
fore a complete ring of nA^ can be used without much error, as has been 
done with Case II for rectangular sections. 

The transformed area now consists of a circular segment subtending 
an angle of 2q:i, and an annular ring whose area is 

nAs ^ npirR^ 

The resultant compression force Nc of the uniformly varying stresses 
on the segment equals 

iv,=y*fdA 

where / = intensity of stress on the area dAy which is a distance x from 
the OF axis, w^hcre x = R cos a. From Figures 1646 and lG4c, 

/ X — R cos ai 

fc ^ 

fcR{cos a — cos ai) /c(cos a — cos ai) 

If X = 72 cos aj dx = R sin a da (numerically), and 

dA = y dx = R^ sin^ a da 

/■ fcR^ 
fdA — - / (cos a — cos ai) sin^ a da' 

2k —Of, 

fcR^ [sin^ a 

3 

sin a COS a\ 

sim ai + sin ai cos^ ai — ai cos ai 

The annular ring substituted for the steel has an area equal to 

Ag = npirR^ = 2Trrt 

where t *= thickness of ring. 
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The intensity q of the uniformly varying stresses acting on the ring 
can be found by the relation 

or 

q r cos a — R cos ai 

Q = 
A 
2kR 

(r cos a — R cos ai) 

For values of a from 0 to «2 the ring is in compression, from a2 to ir 

it is in tension. The intensity q acts on an area dA = tr doc. The re¬ 
sultant force equals: 

fcTt 
COS a — R cos ai) da 

Ns 
fort 

[r sin a Ra cos ai]-y 

fcTt 
N =-{2irR cos ai) 

2kR 

Ns 
irnpR^fc cos ai 

2k 

The minus sign signifies that the resultant is a tensile force if ik < 0.5, 
or ai < 90°. 

The total normal force N equals 

f R^ 
N ^ NcA- Ns —-[2 sin^ ai + 3 cos ai (sin ai cos ai — ai — imp)] (217) 

6fc 

Combining the terms that deal with ai only, 

fcR"" r 
N =-[V — Sirnp cos ai] 

6fc 
(218) 

where 7 = 2 sin^ ai + 3 cos Q;i(sin ai cos ai — ai). 
The moment M of the external force N about the diameter OF of 

the column section equals M = Ne. The sum of the moment of the 
internal stresses must balance this moment. The moment Me of the 
stresses in the circular segment equals 



282 COLUMNS [Chap. 11 

fx dA = —— / (cos a — cos ai) cos a sin^ a da 
2/c J---ai 

r /a sin 4q!> 

" L\8 ^> 

sm'’ a 

h LS 

sin 4ai cos ai sin^ ai 

The moment of the ring about the diameter OY equals 

r SctH 
qxdA = (r cos a — Ji cos ai) cos a da 

Ms, = 

\ /ra r sin a cos ( 

fcrH\2Trr'\ 2TrrHfc 

R cos ai sin ( 

t r2Tr~ 

: L~2~. 

Substituting, 27rr/. = impR^ 
impRr^fc 

The total moment of resistance M about OY equals 

M = Me+ M, 

fcR^ r 
==- 12ai — 3 sin 4ai — 32 sin^ ai cos ai + 247mp | 

96A/ L 

Combining the terms dealing in ai only, 

„ _ /rVi 
TF + 247mp Q] 

irj. 
From equations 217 and 219, the eccentricity e = — , or 

12ai- 
1 L 

3 sin iai —32 cos ai sin^ ai+247mp 
1 L_^ 

R NR 16 2 sin^ ai +3 cos ai (sin ai cos ai —ai ’-imp) 

This can also be written 2 

R 16(F — Zurap cos ai) 

Q1 
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Diagram 24 (in the Appendix) gives the values of the terms V and W 

for values of ai from 0° to 180^. A problem is attacked by assuming 
Case I to hold. If k comes out less than unity, the designer knows that 
the equations for Case II are necessary. The equations do not use the 
term k but it can always be found since 2kli = 72 — 7? cos ai or 

k = 
1 — cos Oil 

2 
(223) 

In general, values of -- greater than 0.37 require a Case II solution. 
li 

Solutions for Case II are made by the assumption of size, mix, and 
steel ratio and the computation of the stress /c. 

ILLUSTRATIVE PROBLEM 43 

266. Design of Axially Loaded Column of Circular Section (Fig. 165). Design a 
column to support the interior panel of the flat slab of Problem 36 (Chapter 10). 
Assume that the height equals 20 ft. from floor to floor. 

Fig. 165 

Size, Each interior column supports a floor area of 29 ft. by 29 ft. If the column 
in question supports one floor only, the load at its base equals 

Floor load (Art. 218) 216,000 lb. 
, Column capital (Fig. 165a) 7,000 lb. 

Column weight for 16 ft. 4,(XX) lb. 

227,000 lb. 

Assuming a short column with concrete strength / c * 5000 lb. per sq. in., by equar 

tion 188 (Art. 233), 

227,000 « A(900 -b 16,000p) 

If p * 0.01: A - 214 sq. in,, and diameter D * 16.5 in. 

If p « 0.04: A « 148 sq. in., and diameter D « 13.7 in. 
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Let us adopt a column 16 in. in diameter. The unsupported length h is the distance 

from the top of the floor to the bottom of the capital, which is 16 ft. (A.C.I. Art. 1102a, 

in the Appendix). The ratio ~ 12, so this is a long column. The load increase 

factor of A.C.I. Article 1107 becomes 1.3 — 0.03 X 12 = 0.94. Solving for the 

necessary steel ratio, 

227,000 = 0.94 X 201(900 + 16,000p) 

p = 0.019 and A, == 0.019 X 201 = 3.82 sq. in. 

These bars are spaced evenly around a perimeter and there is no need for multiples 

of two or four for symmetry. Either four 1-in. squares or five 1-in. rounds are 

satisfactory. 
The 1-in. square bars will be used as it is easier to provide ties for 4 bars than 5, 

and there will be fewer bars to handle. The steel arrangement is shown in Figure 1656. 

The column has been designed for an axial load due to the live and dead loads. 
Analysis of the slab and columns as an elastic frame may give bending moments in 

interior columns for certain live load arrangements. In such a case this column 
design should be checked for these moments and the corresponding axial loads. 

ILLUSTRATIVE PROBLEM 44 

256. Design of Column of Circular Section in Bending. Case IL Assume that 

several interior panels of the flat slab floor of Problem 36 have been left open for a 

Fig. 166 

crane well, and the 16-in.-diameter column designed in the previous problem is to 

be checked for use at the panel edges (Fig. 166). Complete its design for mix and 

steel. 
Loads* Each column supports a half panel load. 

Half panel load 108,000 lb. 
Marginal beam and cantilever slab 9,000 lb. 

Capital 6,000 lb. 

Load at base of capital N « 123,000 lb. 

The 1928 A.C.I. Article 11056 recommends a bending moment of — as the moment 
35 

brought by the slab to the marginal column. The load W is the load on the whole 
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panel. Our problem is a similar case, and this moment will be adopted. We shall 

neglect the balancing weight of the slab which overhangs into the crane well. 

M - 

M 

Wl 216,000 X 29 X 12 

35 

2,150,000 

N 123,000 

35 

= 17.5 in. 

2,150,000 in.-lb. 

e 17.5 

= “s' = 

In general, values of -r greater than 0.37 give Case II solutions; values below — =* 0.25 
R R 

give Case I. This is Case II. Equation 221 enables the designer to locate the neutral 

axis by successive assumptions of ai. It makes for speed if he assumes ai ~ 180° 
e 

and decreases ai by using the multiples of 30° and 45°. A plot of •— soon suggests 
R 

the true aj. 
For this problem assume a 5000-lb. concrete and the maximum steel ratio p = 0.04. 

<Xl 
11 II II 

“
la

^
 

Cm Cn 
180° 44.8 11.68 0.24 

90° 25.9 2.00 0.81 
85° 23.0 1.42 1.01 
80° 21.14 0.88 1.50 
78° 19.45 0.69 1.76 
77° 18.92 0.578 2.05 
76° 18.44 0.483 2.38 

e 
Use ai — 77° as the approximate angle for — = 2.19. 

R 

By equation 220, 

Then A; = 
1 — cos ai 

2 
0.39. 

96fcM 96 X 0.39 X 2,15a000 

18.92 X (8)* 
= 8300 lb. per sq. in. 

The solution of Problem 43 showed that a column 16 in. in diameter is a long 
column. In the present design the load N — 123,000 lb. should be increased but 

assumed to act with the same eccentricity e. We have dealt with equations involving 
0 

and the external bending moment M, so that the reduction of stress due to “long 
R 
column” dimensions does not appear. This reduction will be applied to the allowable 

stress. 
Allowable Stress, Using the method of A.C.I. Article 1110 (see Appendix), the 

radiiis of gyr&tion p is computed by using the complete concrete area. By Article 253, 

R^ -f- 2(n -- l)pr^ 

4[1 (n - l)p] 

64 + 2 X 5 X 0.04 X 25 
15.4 

4(1 + 5 X 0.04) 
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The term D in A.C.I. Article 1110 can be used as D 
2p2 

where the eccentricity 

ratio equals — . Note that Diagram 21 (in the Appendix) applies only to rectangu- 
2x2 

lar sections. 
D 

256 

2 X 15.4 

De 2.19 
= 8.3 and ^ = 8.3 X — 9.1 

/a = 
0.18 X 5000 + 16,000 X 0.04 

1.20 
1280 lb. per sq. in. 

k sjt ^ = 0.256 and D — — 9.1, Diagram 22 gives a ratio ^ = 0.419. The allow- 
/ c 2/2 f c 

able stress fp ~ 2095 lb. per sq. in. for a ^^short column.'’ In Problem 43 it was 
found that the load-increase factor, or stress-reduction factor, was 0.94. For a 

**long column” the allowable stress Jp = 0.94 X 2095 == 1970 lb. per sq. in. Of 

course, in this case, it is not necessary to compute the allowable stress, as the stress 

fc =* 8300 lb. per sq. in. exceeds the compressive strength of the concrete. The 
section is much too small. 

Revised Section, After several trials a section 24 in. in diameter with/c = 6000 lb. 

per sq. in. and p — 0.035 is selected. This is a short column. 

The necessary ratio -r 
R 

17.5 

12 
1.457 

An angle ai *= 79° and k = 0.404 gives closely this value of — . The computed 
R 

stress/c «= 2380 lb. per sq. in. and the allowable stress/p = 2390 lb. per sq. in. The 
neutral axis is located at 2kR = 9.7 in, from the greatest concrete stress. The max¬ 

imum steel stress equals 

(d - 2A:Jf2\ 11.3 
/« = ( —TTZ— ) = 5 X 2380 X 7-71 = 13,900 lb. per sq. in. 

\ ZkR / 9.7 

This design is satisfactory. 

A, = 0.035 X X X (12)2 ^ g gq 

Use sixteen 1-in. square bars with a center-to-center spacing of approximately 

in., as compared to the minimum spacing of 3 in. (Fig. 167). The requirement 

of A.C.I. Article 11045 in regard to ties necessitates many additional ties which im¬ 

pede the efficient deposition of the concrete. The labor of installing steel and pouring 

concrete is greatly increased, so that the A.C.I. requirement puts a premium on the 

use of low steel ratios. 
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For comparison a second design is shown in Figure 168 using a section 28 in. 

in diameter with p = 0.012 with f'c = 6000 lb. per sq. in. The computed concrete 

stress/c = 2180 lb. per sq. in. and the allowable= 2230 lb. per sq. in., while the 

maximum fa — 18,000 lb. per sq. in. 

The tie arrangement is much simpler and it will be easier to install the steel and 

pour the concrete. The volume of concrete is somewhat greater but the cost is 

probably less. 

ILLUSTRATIVE PROBLEM 45 

257. Design of Column of Circular Section in Bending. Case L Assume that the 

design of the column stack of Problem 44 is continued. A few floors down, the load 

from above equals 500,000 lb. and the floor loads of Problem 44 are again brought in. 

Assume both columns to be 28 in. in diameter (F'ig. 169). The upper story is 20 ft. 

from floor to floor, so the column has an unsupported height from floor to base of 
capital of 16 ft. 6| in. The lower column has an unsupported height of 14 ft. 6j in. 

^L£VATION 

Fia. 169 

500,000Hx 

/V 

Joint 

(h) 

Figure 1696 shows the forces acting at the column capital. The floor moment of 

2,150,000 in.-lb. will be divided between the upper and lower columns in proportion 

to their stiffness ratios - . The moment of inertia I of the columns will be taken as 
h 

that of the plain concrete section. In this problem lu ^ Il- 

Ml"" hu^ hu“ 16.46 ” 1.14 
also 

+ M - 2,160,000 
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Then 
Mu - 1,005,000 in.-lb. and Ml = 1,146,000 in.4b. 

Design of Section A A of Upper Column, This is a short column. 

N - 500,000 lb. and M - 1,005,000 in.4b. 

M 

' N 

1,005,000 
= 2.01 in. and - = 0.144 

500,000 

This is Case I. Try/c = 4000 lb. per sq. in. with p = 0.04. By equation 213, 

500,000 ( 1 4 X 14 X 2.01 

616 \1 + 6.5 X 0.04 196 4- 2 X 6.5 X 0.04 X 121/ 

fc = 812(0.793 4- 0.435) = 995 lb. per sq. in. 

The allowable stress /p can be determined by the procedure in Article 256. 

259 

' 4 X 1.26 
= 51.4 and D = 

4i?2 784 

2p2 2 X 51.4 
= 7.62 

e 7.62 X 2.01 

^2/2 28 
0.55 and 

f’c 
720 4- 640 

1.26 X 4000 
0.27 

From Diagram 22, /p — 0.316/c = 1264 lb. per sq. in. There is an excess of steel 
and a few trials determine the correct steel ratio p ~ 0.021. For this amount 

fc * 1112 lb. per sq. in. and/p = 1125 lb. per sq. in. 

Ac = 0.021 X 616 = 12.94 sq. in. 

Use nine lj4n. square bars lapping 24 diameters into the columns above; or 22 ft. 

6 in. long. These bars are spaced over 7j in. on centers, which is more than the 
minimum of 3 X 1.25 = 3.75 in. (Fig. 170a). At this section AA an equivalent area 

Fig. 170 

of steel must come up from the column below. It is possible, of course, that the top 
section of this column may be higher stressed, and the designer also examines that 

section. 
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258. Design of Section BB of Lower Column. (Figure 169.) 

N = 623,000 lb. and M = 1,145,000 iii.-lb. 

Af , e 1.84 
c = ™ = 1.84 in. and — = —- = 0.131 

N R 14 

Assume this to be Case I. Try /^ = 5000 lb. per sq. in. and p — 0.01. The maximum 

concrete stress/c = 1460 lb. per sq. in. and the allowable/p = 1185 lb. per sq. in. 

Several trials of additional steel result in p 0.024 with fc = 1367 lb. per sq. in. 
and/p — 1375 lb. per sq. in. 

A, = 0.024 X 616 = 14.79 sq. in. 

Use twelve li-in. square bars, 20 ft. 3 in. long. This also gives more than the re¬ 
quired area at section AA of the upper column. The section at the bottom of this 

lower column should be investigated before the design is adopted. It may require 
a larger steel ratio. The steel arrangement is shown in Figure 1706. 

PLASTIC THEORY OF COLUMNS 

269. The empirical column equations recommended by the A.C.I. and 
Joint Committee Codes are based on studies of test data for loads at 
failure. There has been previously given in this text 
under the heading of plastic theory analytical equa- —..| 
tions for the breaking loads of beams. The same j ^ 
analysis can be applied to columns and the derived f" 
equations should check with the A.C.I. results, as i| i| 

both are based on test data. The case immediately iftllt T 
considered is that of a rectangular section subjected fjTc I 
to a normal force on an axis of symmetry which is ^ j 

eccentric in regard to the perpendicular center line of 1,2 J ^ 1, 
the section. Assuming, as before, that a uniform L-^— 
concrete stress intensity of 0.85/'^ can be substituted 
for the stress conditions at failure and that the steel 
areas on the two opposite faces are equal (A, = A',), the forces acting 
on a short portion of the column are shown in Figure 171. The steel is 
assumed to be stressed to its yield point fy. 

Failure on Compression Side, If the steel areas on the two faces are 
equal, this is not*a probable case. Take moments about the center of 
the tension steel and note that the ultimate moment for the concrete is 
given by equation 20 (Art. 25): 

AT' (e - ^ + d) = y ixi"® +fA'.id - d') 

2\j'chdF + ZJyA'M - d')] 

_§L. 
e —t 

■j _ 

j) 

;] 1 
T 

1 
2. 

n r 

L.. 

jCc 
a 
1 
2 

d 1 

Fig. 171 

{Case ID 
3(2e + 2d - <) 

(224) 
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This equation applies if the eccentricity is great enough so that the 
compression stress/e occurs on only part of the area of the section. For 
an axial load « = 0, then, substituting At = A, + -4', = 2-4'* and d — 
d' « 2d - < 

It is known that a plain concrete column, loaded axially, has an average 
stress at failure of 0.85/'c and fails at a load N = O.S5fJ)L The concrete 
term of equation 225 can be written 

or 

2f'chd^ 

3(2d - t) 
O.S5fcbt 

2\ d^ / 0.85 
1.178 

(Axial Load) N' = O.S5fcbt + fyA t (226) 

This is the equation determined by the Illinois-Lehigh tests for failure 
of axially loaded columns. Mr. Whitney recommends a factor of safety 

2.5 
of 2.5 for spiral-steel columns and a factor of — = 3.13 for tied col- 

0.8 
umns. When the A.C.I. equations 188 and 237 are multiplied by these 
factors, the ultimate load A' based on the A.C.I. equations becomes 

N' = 0.5d3fcbt+fyAt (226a) 

In other words, the A.C.I. Code uses a greater factor of safety for the 
concrete than for the steel. 

For moderate eccentricities (Case I), with compression over the whole 
area, equation 224 can then be rearranged to read 

(Case I) 
f'cbt 

3et 
+ 

+ 1.178 

2fyA\(d - dQ 

2^ 2d — t 
(227) 

Failure on Tension Side, This is the more probable case, as the com¬ 
pression side has an equal steel area and the concrete is in compression; 
but the tension steel has a greater moment arm about the applied force N. 
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Assuming the compressive force in the concrete to act d' in from the 
edge, take moments about the center of the compression force. 

iV' (e - ^ + d'^ = f^A.(d - d'] 

N' = fyA. 
2id - d') 

26 -f- 2,d' — t 

If the resultant of the concrete stresses of 0.85/'c acts other than d' 
from the edge the equilibrium of forces gives 

A' +fyA, - 0.85Aa6 + SyA\ 

A, - a: 
0.85f'cb 

Taking moments about the center of the tension steel, 

iV' (e - ^ + d) = 0.85/'<,a6 (^d - 0 +/^'.(d - d') 

„ . . P -4. 
Substituting — = — = — and the values of a given above and m 

2 U U 

, this reduces to 

(Case II) 

- (r i)! 
For small eccentricities, there is no tension in the steel, and no failure 

can occur on the tension side. 

When the eccentricity ratio - is large, the two terms of equation 229 
if 

within the bracket are nearly equal and it is difficult to get an accurate 
result with slide-rule computations. An alternate derivation covers this 
case. Refer to Figure 172; the load N' may be conceived as divided 
into two parts, N\ resisted by all the compression steel and some of 
the tension steel Ai, and A^'2 resisted by the concrete in compression 
and the remainder of the tension steel A2. Then Ag = Ai + A2. 
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(^) (b) 
Fig. 172 

In Figure 1726 take moments about N\y noting that Ci = then 

Ti = fyAi = fyA', - and Ai = yl'. - = A\ 
Cl ei 

Taking moments about Ci, 

Tiid -d') d- d' 
N\ = ^ = fyA'.- 

ez ei 

In Figure 172a take moments about C2 

N'2 = T2- 
C2 

SO 

N'2^1 = fv^2 

€1 — C2 

€261 

(230) 

ei — C2 

a 
Taking moments about T2, noting that - = d ~ C2: 

2 

0.85/'ca6c2 == N^'2^1 = fyA2 
€261 

ei — C2 

o = 2(d-C2) =-^X-X- 
0.86/'c 6 — ^2 

This can be expanded to 

« * 2m6ii42 
- 4c2(ei +d)+ l(ei + d)^]-- 4^id + [(cj + d)^] 
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Taking square root, 

293 

2^61^2 
4€id + {ei+d)‘^ + (ei + d) 

Now, 

As = A'sj and A2 == — Ai = A^ — A's 

Then 

(d-d')l (d-c^O 

Cl 

y _ 

ei 

1 , 
C2 = “ i (Ci + d) 

2 

2mA s{d — 
+ — d)^ [ (231) 

Also, 

= hA^ - Ti = - = f,A, ( ^ ) = 
Cl \ Cl / 

Cl - C3\ fuA,{d - d') 

ei 

Finally 

fyA'Ad -d') ^ ^ ^ id- d') C2 
N' = N'l + N'2 =-\-ft4>- 

Cl Cl e-i — C2 

(Case II) 

^ fyA.jd - (fO r C2 1 ^ - < 

Cl L ei - C2J (ei - C2) 
(232) 

260. Columns with Round Cores. Mr. Whitney “ has also proposed 
equations for the load at failure of square columns reinforced with longi¬ 
tudinal steel placed on a circular perimeter and for round columns with 
circular placement of the steel. In viev; of the added assumptions based 
on test data these equations seem to be strictly empirical. 

Square Columns with Circular Core. Diameter of steel ring equals d. 
Compression Failure. 

N' = 
0.85/',4« 

10.2e« 
+ fyAi 

(t + 0.67d)= 
+ 1.51 

3e 
(233) 

+ 1 

Tension Failure. 

N' = 0.8^'/ j-^o.e? ^ + (^ ~ “ (7 “ ®-^)} 

* Tran*. A.S.C.E!., VoL 68, p. 251, 1942, “Plastic Theory of Ednforced Concrete 

Design,” by Charles 8. Whitney. 
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Round Column, With diameter D and steel ring diameter of d. 
Compression Failure. 

N' 
O.SdfcAc 

S.mDe 
+ 

fyAt 

(O.SD + 0.67d)‘ 
+ 1.51 

3e 
+ 1 

(235) 

Tension Failure. 

N' = 0.85/'eZ)2 
0.85e 

rD~ 
(236) 

ILLUSTRATIVE PROBLEM 46 

261. Checking Column Designs by Plastic Theory. Axial Load, Rectangular 

Section, In Problem 38 iV = 310,500 lb. (Table C, Art. 237), 6 = < = 16 in., At = 

6.24 sq. in., fc = 5(X)0 lb. per sq. in., fy = 60,000 lb. per sq. in. For tied columns 
the reduction factor of 0.8 recommended by Mr. Whitney and A.C.I. Article 1104o 

will be used. By equation 226 the ultimate load equals 

iV' = 0.8[0.85 X 5000 X 256 + 50,000 X 6.24] - 1,120,000 lb. 

By equation 226a the ultimate load 

N' = [0.563 X 5000 X 256 + 50,000 X 6.24] « 1,032,6001b. 

Since this is a ‘long column,both loads are multiplied by the reduction factor, 
0.94. Then, the respective factors of safety are 3.40 and 3.13. Equation 226a 

automatically gives the factor of safety of 3.13, which is based on the A.C.I. 

formula. 
Axial Load, Circular Section, In Problem 43 D — 16 in., d — 10 in., and At *= 

4.00 sq. in. By the methods of Problem 43 the total safe load equals 

i\r » 0.94 X 201 ^900 + 16,000 X ^) = 230,000 lb. 

By equation 226, the ultimate load for a tied column equals 

AT' = 0.8 X 0.94(0.85 X 5000 X 201 + 50,000 X 4.00) « 792,800 lb. 

The factor of safety is 3.45. 
Prom these two examples it appears that the A.C.I. formula has a factor of safety 

of about 3.4 on the ultimate load determined by the plastic theory. 
Eccentric Load, Case I, Rectangular Section, In Problem 41, for the upper 

column, fc 4000 lb. per sq. in., fy - 50,000 lb. per sq. in., 6 = 21 in., < « 20 in., 
Ag ^ A\ 2.36 sq. in., d « 17 in., d' « 3 in., e == 3.36 in. By the methods of 

Problem 41 the maximum safe load with an eccentricity of 3.36 in. is found to be 
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N = 0.973 X 261,500 = 254,000 lb. for a ‘%ng column. By equation 227 the 
ultimate load for failure equals 

N' - 0.973 X 0.8 

N' = 822,000 lb. 

3500 X 21 X 20 

3 X 3.36 X 20 

(17)2 
+ 1.178 

2 X 50,000 X 2.36 X 14 

’ 2 X 3.36 4- 2 X 17 - 20 

The factor of safety of the A.C.I. solution equals 3.24. 

The lower column data gives f'c = 4000 lb. per sq. in., fy = 50,000 lb. per sq. in., 

5 == 21 in., ^ = 20 in., A, = A « = 4.69 sq. in., d = 17 in., d' == 3 in., e == 3.19 in. 
The maximum safe load N — 312,000 lb. By equation 227 the ultimate load for 
failure equals 

N' - 0.8 
3500 X 420 

3 X 3.19 X 20 

(17)2 
4-1.178 

2 X 50,000 X 4.69 X 14 

2 X 3.19 4 2 X 17 - 20 

N' = 988,000 lb. 

The factor of safety of the A.C.I. solution equals 3.17. Mr. Whitney recommends 

a factor of safety of 3.13 for tied columns; thus, the factors of safety by present 

methods of design are slightly greater. 

Eccentric Load. Case I. Circular Section. Upper Column. In Problem 45 the 
essential data are / c = 4000 lb. per sq. in., fy — 50,000 lb. per sq. in., D = 28 in., 

d = 22 in., Ae = 14.04 sq. in., e = 2.01 in. By the methods of Problem 45 the max¬ 
imum safe load N = 507,000 lb. By equation 235 the ultimate load for failure equals 

N' = 
0.85 X 4000 X 602 

8.16 X 28 X 2.01 

(0.8 X 28 4 0.67 X 22)2 + * 

4 
50,000 X 14.04 

3 X 2.01 

22 

- 1,663,000 lb. 

41 

The factor of safety of the A.C.I. solution equals 3.28, which slightly exceeds the 
factor of 3.13 recommended by Mr. Whitney for tied columns. 

Lower Column. The section considered in this column had dimensions of Z) =» 
28 in., d = 22 in.. At = 15.24 sq. in., e = 1.84 in., fc = 5000 lb. per sq. in., and 
fy — 50,000 lb. per sq. in. The maximum safe load N = 632,000 lb. By equation 235 
the ultimate load equals 

N' 
0.85 X 5000 X 601 50,000 X 15.24 

8.16 X 28 X 1.84 

(0.8 X 28 4 0.67 X 22)2 
4 1.51 

3 X 1.84 

22 

2,014,000 lb. 

41 

The factor of safety of the A.C.I. solution equals 3.19. 
Eccentric Loads. Case 11. Rectangular Section. In Problem 39, /c ~ 4000 lb, 

per sq. in., fy =» 50,000 lb. per sq. in., b ~ 21 in., f = 20 in., A, = A « = 5.06 sq. in., 

d = 17 in., d' = 3 in., e = 38.8 in. By the design methods of Problem 39 the maxi¬ 
mum safe load with an eccentricity of 38.8 in, is found to be iV * 46,400 lb. 

If failure on the compression side is assumed the ultimate load N' by equation 224 
equals 

N' 
2(4000 X 21 X 289 4 3 X 50,000 X 5.06 X 14) 

3(2 X 38.8 4 2 X 17 - 20) 
== 254,000 lb. 
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If failure is assumed on the tension side with compression steel taking all the com¬ 
pression stresses, the ultimate load by equation 228 equals 

N’ = = 111,3001b. 
2 X 38.8 + 2 X 3 - 20 

It is, therefore, probable that the concrete takes some stress. For tied columns with 
large eccentricities, Mr. Whitney recomiiiends that equations 224, 229, 231, and 232 

be used without the multiplier of 0.8. Using equation 229, 

- 0.85 X j ^,4.7 X 0^.1 

N' = 0.85 X 4000 X 21 X 20(1.527 - 1.44) = 124,000 lb. 

Comparing the value with the result of equations 231 and 232, where 

ei == 45.8 in. 

i (45.8 + 17) 
^2 X 14.7 X 5.06 X 14 

21 
+ (45.8 - 17)21 i5_;i5 jjj. 

50,000 X 5_06 X 14 

(45.8 - 16.15) 

This result is more accurate by slide rule than the result of equation 229, as the 

latter contains the term (1.527 — 1.44) whose difference is small. 
Surveying these results one concludes that the critical case is failure on the compres¬ 

sion side with the concrete taking stress, the ultimate load being 0.973 X 119,300 = 
116,000 lb. The factor of safety of the A.C.I. design based on this load is 2.50. 

Eccentric Loads. Case 11. Circular Section. In Problem 44 fc — 6000 lb. per 
sq. in., fy — 50,000 lb. per sq. in., D = 24 in., d — 18 in., and At = 16.00 sq. in. 

By the methods of Problem 44 the maximum safe loads with an eccentricity e — 
17.5 in. is AT = 124,000 lb. 

Assuming failure on the compression side by equation 235, 

N' = 
0.85 X 6000 X 436 

8.16 X 24 X 17.5 

(0.8 X 24 + 0.67 X 18)= 

•4- 

+ 1.51 

50,000 X 16 

3 X 17.5 

18 

= 649,000 lb. 

If a tension failure is assumed equation 236 gives 

N' - 0.85 X 6000 X (24)2 
79 X 0,0354 X 18 

2.5 X 24 
+ 

N' = 396,000 lb. 

/0.85 X 17.5 

\ 24 

The ultimate load equals 396,000 lb, and the factor of safety of the A.C.I. design 

equals 3.19. A general comparison of the present A.C.I. designs with the ultimate 
loads by the plastic theoiy is given below. 
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Type 
of 

Loading 

Eccentricity 

Ratio 
e e 

A.C.I. 
Safe Load 

lb. 

Plastic 
Theory 

Ultimate 

Load 
lb. 

Factor 
of 

Safety 

Rectangular Axial 0 310,500 1,052,000 3.40 
section Eccentric, Case I 0.168 254,000 822,000 3.24 

(< << If 0.160 312,000 988,000 3.17 
‘‘ Case II 1.94 46,400 116,000 2.50 

Circular Axial 0 230,000 792,800 3.45 
section Eccentric, Case I ! 0.144 507,000 1,663,000 3.28 

if fi if 0.131 632,000 2,014,000 3.19 

“ Case II 1.46 124,000 396,000 3.19 

Mr. Whitney recommends a factor of safety of 3.13 for tied columns with axial 

loads or small eccentricities of loading, and a factor of 2.5 for beams; for tied columns 
with large eccentricities the factor of safety should range from 3.13 to 2.5. Columns 
with spiral steel may be designed for a factor of safety of 2.5. 

COLUMNS WITH SPIRAL STEEL 

262, Spiral Steel Columns. The column with closely spaced spiral 
steel is almost invariably reinforced with longitudinal bars, which add 
to the column's resistance to bending and to shrinkage. The spiral steel 
restrains the concrete core from bulging as the column is loaded but does 
not take much stress until the lateral deformation is considerable. The 
lateral deformation, dependent on Poisson's ratio, is not great at work¬ 
ing loads and therefore there is little stress in the spiral steel at work¬ 
ing loads. This steel does reduce excessive concrete deformations and 
increases the ultimate load carried by the column. When the spiral 
steel becomes stressed, the longitudinal steel has passed its elastic limit, 
and the concrete is highly stressed. At failure the longitudinal steel has 
reached its yield point stress. Any analysis that assumes the spiral steel 
to be stressed must be made for conditions beyond the yield point of the 
column and does not lend itself to a simple analytic treatment. For 
this reason spiral column design formulae are empirical. 

263. Axial Loads. (A.C.I. Art. 1103.) The spiral steel column loaded 
with an axial load is designed by the empirical equation 

N = A(0.225f c + 0,4f^p) (237) 
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Equation 188 (Art. 233) for the design of tied columns is 0.8 of this 
equation. The spiral column of the same dimensions as a tied column 
will, therefore, cany an axial load 25 per cent greater. In addition, 
however, it is permissible to use longitudinal steel up to 8 per cent, 
though it is frequently difficult to place as much steel as this and com¬ 
ply with the minimum spacings. 

Formerly the amount of spiral steel was in direct proportion to the 
amoimt of longitudinal steel, its volume being one fourth the volume 
of the longitudinal steel. Although it is always permissible to use as 
much spiral steel, the Illinois-Lehigh tests justify a different procedure. 
The strength added by the spiral steel at loads near failure should equal 
the loss of strength due to spalling off of the concrete outside the spirals. 
The minimum amount of spiral steel equals 

p' = 0.45(^-l)^ (238) 
\Ac / fy 

where Ag = gross area of column 
Ac — area of the core, measured to the outside diameter of the 

spiral 
fy = yield point of the spiral steel, but limited to 60,000 lb. per 

sq, in. 

ILLUSTRATIVE PROBLEM 47 

264. Design of Axially Loaded Spiral Column. Design the circular interior col¬ 

umn for the flat slab floor of Problem 36 (Chapter 10), using a spiral steel column. 
Assume that the design is made several floors down the stack for a load at the base 

of the capital of 1,100,000 lb. The story height is 20 ft., and the unsupported length 
is 16 ft. 

Size. Assume f'e = 6000 lb. per sq. in. and that the column weighs 10,000 lb. 
The load at the bottom of the colunm equals 

1,110,000 - A(1350 + 20,000p) 

If p =» 0.01, A - 717 sq. in., outside diameter D = 30.2 in. 

If p =* 0.08, A = 377 sq. in., outside diameter D =*21.9 in. 

Diameter of column, D in. 30 22 
W^ght of 16-ft. length, lb. 12,000 7000 

Steel ratio, p 0.011 0.078 
Steel area sq. in. 7.85 29.7 

Use 8—1" sq. 19—1J" sq. 
Spiral ratio p' 0.0178 0.0266 
(Outside of spir^ 2 in. from outside of column, fy = 60,000 lb. per sq. in.) 
Volume of core, per ft. height, cu. in. 6390 3060 
Volume of spirals, cu. in. 114j 81 

Volume Of X wd X no. of turns per ft. 

Mm X no., sq. in. 1.43 1.48 
Use f-in. rd. @ 2| in. rd. # 2f in. 
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The spirals chosen have a clear spacing exceeding if in. and less than 3 in. The 
center-to-center spacing does not exceed one sixth the core diameter. The column 
sections are shown in Figure 173. It will be noticed that it is diflScult to place the 

steel and pour the concrete in a column containing a steel ratio approaching p » 0.08. 

266. Economy. It is evident that for a given axial load many designs 
may be made which use different sizes, steel ratios, or mixes. At a given 
floor only one of these designs is the cheapest. This cheapest column 
is dependent somewhat on the sizes above and below, upon the possi¬ 
bility of using the colunrn forms for more than one floor, and the neces¬ 
sity of placing extra steel dowels at certain column junctions. In gen¬ 
eral, however, a comparative analysis, like that made in Article 237 for 
tied columns, shows that the cheapest column with spiral steel is that 
with a rich mix and high percentage of steel. The fact that the spiral 
steel is in tension so increases the ultimate load that it becomes econom¬ 
ical to use high steel ratios for longitudinal steel. 

266. Columns with Spiral Steel in Bending. Since the spiral steel 
does not take stress until failure approaches, columns in bending can be 
designed for working conditions by the equations usfed for tied columns 
of circular section. The allowable stress is determined by the same 
method, except that in place of equation 206 the axial stress 

_ a?y,t,0:to 
1 + (» - Dp 

267. Composite Columns. Composite columns are defined as steel or 
cast-iron columns encased in concrete reinforced with longitudinal bars 
and spiral steel. The area of the metal column shall not exceed 20 per 
cent of the gross column area. If a hollow cast iron or steel column is 
used, its core shall be filled with concrete. The longitudinal steel ratio 
and the spiral steel ratio shall conform with the requirements for rein¬ 
forced spiral columns. 
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ILLUSTRATIVE PROBLEM 48 

268. Design of a Composite Column. Design a composite column to carry an 

axial load of 2,000,000 lb. at its base. After several trials a 14 W 158 steel section 

is adopted with crossnsectional area of 46.5 sq. in. This section is shown in Figure 174. 

If a 2-in. fireproofing clearance beyond the spiral steel is allowed, the smallest square 

section has an outside dimension of 27 in. Thus, the metal section is only 6.4 per 

cent of the gross area of the column. Assume f'c = 6000 lb. per sq. in. and fy = 
50,000 lb. per sq- in. for the reinforcing steel. Equation 22 in A.C.I. Article 1105 
can be set up as 

2,000,000 = 1350(729 - 46.5 - A,) -f 20,OOOA, + 16,000 X 46.5 

At ~ 17.92 sq. in. Use twelve l|-in. square bars. 

In the computation of the spiral steel Ag = 729 — 46.5 — 18.7 = 663.8 sq. in. 
and Ac = 7r(11.5)2 - 65.2 = 349.8 sq. in. 

P' = 0.45 
/663.8 

\349.8 

\ 6000 

/ 50,000 
0.0485 

Spiral volume — 0.0485 X 349.8 X 12 = 204 cu. in. per ft. height 

204 = o,(r X 22.13) X ~ and - = 0.245 
V V 

Use f-in. round bars spaced at 2f-in. pitch. 

269. Combination Columns. The last step in the progression from a 
plain concrete colunrn to a plain structural steel column is the steel 
column encased in concrete. There are no restrictions on the area of 
the steel column, the only requirement being that the concrete shall 
cover all metal parts, except rivet heads, by at least 2.5 in. The only 
concrete reinforcement is welded wire mesh encircling the steel column. 

The column stack in a high building usually starts with tied columns 
supporting the upper stories, followed by spiral steel columns and com¬ 
posite or combination columns as the load increases at the lower stories. 
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ILLUSTRATIVE PROBLEM 49 

270. Design of a Combination Column. Design a combination column to carry 

the same axial load of 2,000,000 lb. at its base as in Problem 48. The unsupported 
length is 16 ft. After several trials a 14-in. plate and angle column weighing 414 lb. 

per ft. (1937 AJ.S.C. Handbook) is adopted. The column is encased in a concrete 
covering 24 in. by 22 in. outside dimensions (Fig. 175). The load that can be carried 

by equation 23 of A.C.I. Article 1106 is 

N = 121.7 X 16,100 [l + = 2,025,000 lb. 

I 192 
The ratio - = ■:— = 43.3 and the allowable steel stress/V == 16,100 lb. per sq. in. 

r 4.44 



CHAPTER 12 

FOOTINGS AND RETAINING WALLS 

The loads that are applied on a roof or floor system are brought to 
the columns and carried down the column stacks for transference to the 
soil or rock. Columns, piers, or caissons can occasionally transfer their 
load to bedrock without change of size, but usually there must be an 
expansion of the column base in order to prevent excessive settlement. 
This expanded portion is called the column footing. Foundations vary 
in complexity from the simple footing supporting one column to a raft 
foundation which acts as an inverted floor and supports the entire build¬ 
ing. In some recent buildings the basement and the floor above, with 
the connecting columns and walls, form trusses stiffening the foundation 
in perpendicular directions to produce uniform settlement. 

271. Allowable Soil Pressure. The designer of the foundations should 
not consider exclusively any individual footing. He has the problem of 
floating his structure on a yielding medium without the advantage en¬ 
joyed by the naval architect, whose yielding medium is water with con¬ 
stant elastic properties. The foimdation engineer deals with sands, 
gravels, and clays whose elastic properties vary with their previous geo¬ 
logical history. Even though the soil may consist wholly of sand or of 
clay, its homogeneity and its compressibility may vary throughout the 
building site. It is usually uneconomical to make enough bearing tests 
to be sure of the proper allowable unit pressure at the base of each foot¬ 
ing to give a uniform settlement for the whole building. Often average 
values for the locality are all that are available for the designer. Un¬ 
equal settlement with unsightly cracks in the finished structure and un¬ 
foreseen overloading of some part is not at all unusual. It is not the 
function of this text to develop the science of soil mechanics, and in this 
discussion it will be assumed for the footings examined that the proper 
allowable bearing pressure has been adopted so that all the footings in 
the structure will settle uniformly. 

Maximum allowable soil pressures can be determined approximately 
from the 1907 Building Code of Boston: 

‘Tn the absence of satisfactory tests of their sustaining power, the 
maximum allowable bearing values of the above materials shall be lunr 
ited by the following unit pressures: 

302 
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Tons per 

Square Foot 

Solid ledge rock. 100 

Shale and hardpan. 10 

Gravel, compact sand and hard yellow clay. 6 

Dry or wet sand of coarse or medium-sized grains, hard blue 

clay mixed or unmixed with sand, disintegrated ledge rock.. 5 

Medium stiff or plastic clay mixed or unmixed with sand, or 

fine grained dry sand. 4 

Fine grained wet sand (confined). 3 

Soft clay protected against lateral displacement. 2 

272. Distribution of Soil Pressure. The experimental data on varia¬ 
tion of soil pressures on the bases of footings are not yet extensive enough 
to give the actual distributions. For wall footings which project as canti¬ 
levers, it is probable that the actual pressure varies as shown by the 
dash lines of Figure 176b, because the portion of the footing remote from 
the wall will deflect readily when acted on by a smaller pressure than 
the center values. The total pressure on the soil must support the wall 
load, the weight of the footing, and the weight of the soil and the base¬ 
ment floor loads immediately above the footing. While the soil is still 
unconsolidated, there can be little of the arching action that occurs 
through a compact soil to transfer the basement loads outside of the 
footing area. It is customary, however, to design footings neglecting 
the basement load and the soil weight, which is an assumption that 
arching action does occur by the time the full live load is on the floors. 

In the case of the stepped footing of Figure 176a, the weights of the 
footing will vary as shown, and the assumption that the net pressure 
due to the wall load is uniform is reasonable. Such an assumption is 
probably not correct for the reinforced footing of Figure 1766. Never¬ 
theless, the net pressure is commonly taken as an average or uniform 
pressure. The weight of the footing, soil, and the basement load imme¬ 
diately above a unit area of soil cause pressure on the soil but do hot 
cause shear forces or bending moments in the footing, since the support¬ 
ing soil is in line with the loads. It is the building loads, or net pres¬ 
sures, which cause bending and shear in the footing sections. 

Simple footings for columns shown in Figure 177 tend to take a bowl 
shape as they deflect. The pressure distribution is complicated, and the 
analysis involves slope and deflection solutions for a slab supported by 
the column and subjected to variable pressures. As with flat slabs, these 
complicated derivations, not yet justified by tests, are not used for com- 
mci cial designs. The net pressure is again assumed to be imiform. This 
assumption gives bending moments and shear forces which are some^ 
what too large, and the design is on the safe side. 
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(a) Plain Concrefc Footing 

Fig. 176 

273. Piles. A footing which is supported by piles, rather than by the 
soil pressure on its base, is considered to be loaded with a concentrated 
load at each pile equal to the net load carried by that pile. The footing 
design follows the methods described below except for this substitution 
of concentrated for distributed loads. 

WALL FOOTINGS 

274. Wall Footings. Wall footings are continuous and can be de¬ 
signed as cantilever beams 1 ft. wide, if the wall loads are constant. The 
footing may be a stepped footing of plain concrete of considerable depth, 
or the footing may be expanded at once to its full area and reinforced. 
The type adopted depends on the relative cost and particularly on the 
difficulty of excavating for the greater depth of the stepped footing. 

ILLUSTRATIVE PROBLEM 60 

276. Design of a Stepped Footing. Design a plain concrete footing to support a 

wall 16 in. thick loaded with 50,000 pounds per linear foot. The top of the footing 
is 2 ft. below ground level. Neglect basement floor load and weight of soil. Allow¬ 
able soil pressure = 3 tons per square foot. 

Use 2000-lb. concrete and assume the net pressure to be uniform. The total 
load on the soil per foot length of wall equals 
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Wall load = 50,000 lb. per ft. 

Estimated footing weight = 6,000 lb. per ft. 

Total = 56,000 lb. per ft. 

Area of footing == = 9.33 sq. ft. per ft. length. 
uOOO 

Bending Moment. The footing is 9 ft. 4 in. long and projects 48 in. on each side of 
the wall, forming cantilever beams. 

50,000 
Net pressure p = — = 5360 lb. per sq. ft. 

y.oo 

The bending moment at any section x inches from the end equals (Fig. 176a): 

M = 
2 X 12 

5360x2 

24 
= 223x2 in.-lb. 

Each section is rectangular, b inches wide and t inches thick. If the allowable tension 

/ is taken as/ — 0.03/'c = 60 lb. per sq. in., 

Section modulus = — = ~ 
6 / 

hj 12 X 60 

t == 1.36x 

At the section CC of maximum bending moment, x = 48 in. and ^ 66 in. 

Shear. The shear force V at any section x feet from the end of the footing equals 

V 
px 

12 
= 447x 

Maximum shear stress Vc 
VQ 

bl 2bt 
0.02/'c 

At section CC, 

1.5F _ 1.5 X 447x 

Vcb ~ 40 X 12 
1.39a; 

f = 67 in. 

The shear stress governs, and we adop* a total depth of 67 in. 

Steps. The side of each step must have forms, and their heights should be dimen¬ 

sioned to avoid the necessity of r piping planks to give the form height. If we assume 

three steps for this design with successive ^‘risers’^ of 23 in., 22 in., and 22 in., the 

corresponding “treads’^ determined by fiber stress equal 

t X Tread 

in. in. in. 

23 16.5 16 

45 32,4 16 

67 48 16 
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Costs, In Table D this same footing is designed for richer mixes and the com¬ 

parative costs computed: 

2000-lb. concrete costs 35 cents per cubic foot 

2500 “ “ “ 37 “ “ “ “ 
3000 “ “ 39 “ “ “ “ 
4000 “ “ “ 42 “ “ '' '' 

Forms cost 10 cents per sq. ft. of riser 

Excavation costs 4 cents per cu. ft. 

The excavation extends 1 ft. beyond the footing end. 
It will be noticed, if the costs are plotted for these data, that the richest mix con¬ 

sidered is the cheapest, there being as yet no nunimum. 

Table D. Stepped Footing 

Mix, f'c 2000 2500 3000 4000 

Weight, lb. 6000 5000 6000 4000 
Length, ft. 9.33 9.17 9.17 9.00 
Projection, in. 48 47 47 46 

Net pressure, p 5360 5450 5450 6555 
By fiber stress, /, in. 1.36x 1.23x 1.12x i 0.982X 
By shear stress, t, in. 1.39X 1.14x 0.946X 0.723X 

Thickness at wall, t, in. 67 58 53 46 
First riser, in. 23 20 18 16 
First tread, in. 16 16 16 10 
Second riser, in. 22 19 18 15 
Second tread, in. 16 15 16 15 
Third riser, in. 22 ! 19 17 15 
Third tread, in. 16 16 15 15 

Cost per Foot 

Concrete $13.11 $11.80 $11.28 $10.38 
Forms 1.12 0.97 0.89 0.77 
Excavation 3.44 3.06 2.87 2.57 

Total $17.67 $16.83 $16.04 $13.72 

ILLUSTRATIVE PROBLEM 61 

876. Dedgn of Reinforced Wall Footing. Given the wall load of Problem 60, de¬ 

sign a reinforced concrete footing. Use a 2000-lb. concrete and assume the net 

pressure uniform. The total load on soil per foot length of wall equals 

Wall load 60,000 lb. per ft. 

Estimated footing weight 3,000 lb. per ft. 

53,000 

53,000 lb. per ft 

8.83 sq. ft Area of footing 
6000 
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Bending MomeriL The footing is 8 ft. 10 in. long and projects 45 in. on each side 
of the wall as a cantilever beam. 

50,000 
Net pressure p = - - ~ ~ 5670 lb. per sq. ft. 

0.00 

Take a width of 1 ft. of this footing as a unit beam. 

1VT - , 5670(45)2 
Maximum moment « — = -» 479,000 in.-lb. 

2 12 X 2 

/ 479,000 

1157 X 12 
16.0 in. 

The steel is at the bottom of the footing. Assume that projecting stones, clay, 
muck puddles, etc., may spoil 2 in, of concrete. Using in addition 3 in. of damp- 

proofing (A.C.I. Art. 507a), the minimum depth equals h = d 4" 6 = 21.0 in. 
Diagonal Tension. The portion of the footing immediately under the wall acts 

as an extension of the wall and is in compression. Diagonal tension cracks will not 
continue to spread in this portion of the footing. The first crack to extend completely 

through the footing and, hence, the failure crack is AC of Figure 1766. If it is as¬ 
sumed to be at an angle of 45°, diagonal tension will be checked at section CD at a 

distance d from the face of the wall. The shear is due to the net soil pressure on the 
extension of the footing beyond this section. The allowable stress Vc « 0.03/c (A.C.I. 

Art. 808), as it is not desirable to use diagonal tension steel. 

d ^ — ^ ^^70(45 - d) 

^ vbj'' mx 12 X 0.87 X 12 

Solving, d = 19.3 in. The diagonal tension stresses determine the footing depth. 
Use 6 = 25 in. and d = 20 in. 

The A.C.I. Regulations do not require a determination of the maximum shear 
stress on section AB of Figure 1766. The allowable stresses and fabrication of the 

steel permit only special anchorage designs. If the shear stress is figured. 

JF ^ 5670 X 45 

bjd ^ 12 X 0.87 X 20 X 12 
= 102 lb. per sq. in. 

The allowable shear stress (no web reinforcement) equals v = 0.06/c *= 120 lb. 

per sq. in 
Weight The footing weighs X 8,83 X 150 =* 28(X) lb. Estimate of 3000 lb. is 

safe. 

Sted. n/r yi'rnfiAO jlf 479,000 

' /.jd “ 20,000 X 0.87 X 20 
1.37 sq. in. 

The bond stress is often high, so the necessary perimeters to keep within the allow¬ 

able u « 0.076/'<5 will be computed. 

■ s=s -...*- sss 8.14 in. 
vjd 150 X 0.87 X 20 

The area and perimeter requirement can be satisfied by using |-in. round bars at 

4-in. spacings. It will be noticed that the depth and steel areas of these cantilever 
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footings with shortnspan and heavy loads are often determined by the diagonal ten¬ 

sion and bond requirements rather than by the fiber stress requirement that usually 

governs for the beams supported at each end. The application of A.C.I. Article 905 

gives a bar length of 10 ft. 6 in., if a 90° hook is used at each end. 

If the mix has a strength f'c = 2500 lb. per sq. in., the footing length is 8.75 ft., 

its depth h — 22 in., d = 17 in. For steel, 1-in. round bars at 4.5 in. spacing are 

satisfactory. With the costs of Problem 50 and a steel cost of 4 cents per pound, the 

2000-lb. concrete design costs $11.12 per ft. length and the 2500-lb. concrete $11.00. 

There is no advantage in using richer mixes as the diagonal tension stress is limited 

to 75 lb. per sq. in., which is the maximum for f'c = 2500 lb. per sq. in. 

COLUMN FOOTINGS 

277. Assumptions for Design Practice. American design practice for 
the footings for single coliunns and for wall footings was formerly based 
on the classical series of tests by Professor Talbot ^ at the University of 
Illinois. Car springs were used to give distributed loads on the footing 
base. In addition to the test report Professor Talbot made recommen¬ 
dations for footing design which employed the rectangular beam equa¬ 
tions and the usual allowable stresses. These recommendations, based 
upon tests, were empirical, and the complicated stress analyses for this 
indeterminate structure were not used for commercial design. 

After many years of use engineers concluded that the Talbot method 
gave footing depths which were greater than needed. The present 
A.C.I. recommendations are also empirical but somewhat simpler to 
apply. The depth is usually determined by the diagonal tension re¬ 
quirement, whereas the depth by the Talbot method was usually fixed 
by the maximum fiber stress. Chapter 12 of the A.C.I. Regulations 
states that the soil pressure shall be assumed to be uniform or that the 
force exerted by a pile on the footmg may be assumed a concentrated 
force. Moments and shear forces are determined by passing a plane 
across the footing and dealing with the forces acting on the footing to 
one side of this plane. 

278. Pedestals. Column footings are sometimes sloped to save con¬ 
crete. The design should allow a 6-in. shelf adjacent to the column face 
upon which to place the column forms. The minimum thickness at the 
edge of the footing is 12 in. The maximum slope, between these two 
points, should give the necessary thickness for diagonal tension at the 
section d itiches out. A sloped footing requires forms for the slope, and 
a carpenter must be in attendance during the pouring to fill in the pour¬ 
ing holes left in the sloped forms. The added form costs cancel some of 
the concrete saving. 

^ Bulletin 67, University of Illinois. 
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Concrete can also be saved by using a pedestal between the column 
and footing. This pedestal may be reinforced, forming an additional 
short column; or it may be merely an enlargement of the footing as are 
the stepped wall footings. A.C.I. Article 1207 gives recommendations 
for pedestal design. 

ILLUSTRATIVE PROBLEM 62 

279. Design of Exterior Column Footing. Design an exterior footing for the ex¬ 

terior column stack of Problem 41 (Chapter 11) with an allow\able soil pressure of 

3 tons per square foot. The basement column is 6 — 21 in. and t ~ 24: in. and it has 

six l i-in. square bars and a concrete strength/'<; = 6000 lb. per sq. in. This column 

has a load N — 600,000 lb. at its base and a moment Mi — 1,000,000 in.-lb. at its 

upper section under the first floor. Assume that the footing fixes the lower end; 

Ml 
therefore the moment at the bottom section is M = — = 500,000 in.-lb. (Art. 372). 

r Co/umn i 

Fir si Fhor 

r 
N r 1 

Fooii 
dosemeni 

i 
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t. Co/.i 
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Fig, 177 

M 500 000 
The resultant of the force N and couple M (Fig. 177a) acts at e = -“ = „- =* 

N 600,000 

0.83 in. from the column center line (Fig. 1776). If the force N passes through the 

center of gravity of the footing base, or center line, the assumption of uniform net 

pressure on the base of the footing is justified. If the footing is centered on the col¬ 

umn center line, the net soil pressure varies uniformly with the maximum intensity 

on the outer edge, and the footing will tend to tip outward. 

In this problem the force N is less than 1 in. from the column center line. If the 

live load on the first floor is reduced and the moment in the column decreases, the 

force N approaches the column center line. In order to avoid any chance of the 

footing tipping outward owing to a resultant force N to the right of the footing 

center, the exterior footing will be centered 1 in. outside the column center (approx¬ 

imation for 0.83 in.), and will be designed for a uniform soil pressure. The footings 

for interior columns are centered on the column axis, as the most severe loading for 

interior columns is an axial load. 
280, Depth for Diagonal Tension. The shear stress e, used as a measure of diag¬ 

onal tension, shall not exceed 0.03/'c, nor 75 lb. per sq. in. Since the depth is usually 

determined by this requirement, there is no incentive to use concrete stronger than 

fe « 2500 lb. per sq. in. Adopt this strength. 
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A rectangular footing will be used with the rectangular column. Taylor, Thomp^ 

son, and Smulski ^ state that the cheapest proportions are given if the rectangular 

base projects the same distance beyond each column face, because these proportions 
require the minimum amount of materials. This criterion will be adopted for this 

design. 

2r 

In Figure 178 let the dimensions c\ ~ — c 

Column load 600,000 lb. 

Weight of footing 39,000 lb. 

Total load 

Area of base 

Area 

Use lx 

c 

126 in. 

639,000 lb. 

639,000 

6000 

= 106.6 = 

= 106.5 sq. ft 

(24 + 2c}(21 -f 2c) 

and 

144 

= 50.7 in. Use c =* 61 in. 

^2 = 123 in. Area = 107.8 sq. ft 

A.C.I. Article 1205a states that the critical sections for diagonal tension shall be 

assumed at a distance of d from the faces of the column. The shear force on these 

sections is due to the net pressure on the cross-hatched area outside (Fig. 178). 
Since d is not known, the computation is somewhat intricate. 

Net pressure p 
600,000 

107.8 
5570 lb. per sq. ft. 

* Conerek, Plain and Reinforcedy Vol. I, p. 610. 
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hjd 2[(24 + 2d) + (21 + 2d)] X 0.87d 

151.6d 4- 13.48d2 - 15,019 - 90d - 4^^ 

d — 23.2 in. Use d = 24 in. 

Use ^ = d -j- 5 = 29 in. Weight of footing = 39,000 lb. 

281. Depth by Bending Moment. In Figure 178 the bending moments at sec¬ 
tions AA and BB are 

Ma 
wf 

- 5570 X 
126 X (51)2 

2 X 144 
6,350,000 in.-lb. 

121 X (51^^ 
Mb = 6570 X = 6,100,000 in.-lb. 

2 X 144 

The sections are rectangular; therefore 

M / 6,350,000 / 6,100,000 

“ A:5 ~ ViaS X 126 “ V196 X 121 ~ 

This depth is much less than the diagonal tension requirement. Use d = 24 in.; 
h — 29 in. 

282. Steel. Let us assume d = 24 in. as an average for the two levels of steel 

Place the steel crossing section A A lowermost with an assumed d = 24.6 in.; its 

areaequals ^ ^ 6,350,000 _ . 

* fjd 20,000 X 0.87 X 24.6 ’ 

For d = 23.5 in., the steel crossing section BB equals 

6,100,000 A, = = 14.9 sq. in. 
20,000 X 0.87 X 23.5 

Bond is checked at the face of the column. For the steel crossing section A A, 

5570 X 

So = 

126 X 51 

144 

ujd 140 X 0.87 X 24.5 
M. 83.5 in. 

For the steel crossing section BB, Iho *= 83.6 in. 

The bond requirement is more severe. Use thirty-six f-in. round bars in each 
direction. This easily satisfies the fiber stress requirement. The steel crossing sec¬ 

tion BB is spaced uniformly over the 123 in. A.C.I. Article 1204^ states that the 

steel crossing section A A shall be spaced uniformly over a band width of 123 in. 
2 

This steel amounts to . » e i i ^ remainder is spaced 
1 2 3 “T 1 

uniformly over the two equal end strips of 1.5 in. In other words, our footing is so 

nearly square that a uniform spacing can be used over the entire width of 126 in. 

Use a standard semicircular hook at each end and 3 in. of concrete protection 

at the footing sides; then the long bars will be 11 ft. 8 in. long and the short bam 

11 ft. 4 in. long {A.C.L Art 905). 
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283. Dowels. Short bars, or dowels, are placed at the column-footing junction 

to transfer the column load to the footing. They must have at least the area of the 
column steel in the column, in this case 9.36 sq. in. (six 1 J-in. square bars). A.C.I. 

Article 1103c states that these dowels must extend 32 diameters into the footing for 
a concrete strength / c ~ 2500 lb. per sq. in. In order to preserve dampproofing 

clearances at the base of the footing, it will be necessary to use f-in. bars. Use 

twenty-two f-in. round bars 48 in. long. 

ILLUSTRATIVE PROBLEM 63 

284. Design of Footing for Interior Column. Design a footing for the interior 

column of Problem 47 (Chapter 11). This basement column is of 6000-lb, concrete, 

30 in. in diameter, and has an axial load of 1,112,000 lb. at its base. Use 2500-lb. 

concrete for the footing and an allowable soil pressure of 3 tons per square foot. 
Use a square footing weighing 100,000 lb. The column section is assumed to be 

27 in. square, of the same area as the 30-in. circle. By the methods of Problem 52 

the following results are obtained, 

Minimum area of footing 

Depth for diagonal tension, d 

Depth for bending, d 

Actual weight 

A, 

= 202 sq. ft. Use 14 ft. 3 in. square 

= 33 in. and h ^ SS in. 

= 23 in. Use d = 33 in. 

= 96,500 lb. 

*= 29.5 sq. in. and = 116.8 in. 

Use thirty 1-in. square bars in each direction, 16 ft. long, hooked. 

285. Footing with Pedestal. The footing depths are quite shallow compared with 

those of former methods of design, so the saving of concrete by the use of pedestals 

is not so great as formerly. Let us investigate the possibility of using an unreinforced 

pedestal for this design, 

A.C.I. Article 1207a states that the compressive stress on the gross area of a 

pedestal shall not exceed/*. = 0.25/'*? = 625 lb. per sq. in. 

Pedestal area = 
1,112,000 

625 
1780 sq. in. 

Use a pedestal 43 in. square, projecting 8 in. beyond the equivalent square column. 

Depth for diagonal tension at section D, d = 33 in. (Fig. 179) 

Depth for diagonal tension at section A, d = 29 in. 

cijn 

Equivalent Square 
Column 

\8ff.^96in.SQuore 

JLl. 

A 05 C 

_/4 ft • 168 in. Square 

\j •^SSfin.Square 
m^Long 

Fia. 179 



Art. 285] FOOTING WITH PEDESTAL 313 

In this case the saving of 4 in. of concrete over an area of 190 sq. ft. is probably 
not balanced in cost by the necessity of extra forms for the pedestal. This pedest^ 

is unreinforced and it is not desirable here to use a smaller one reinforced as a colunm. 

Let us also consider the possibility of using a larger pedestal to form the equiva¬ 
lent of a stepped footing. The footing depth at the edge of the column will have the 

values d = 33 in. and h == S8 in. computed above. Let us arbitrarily assume steps 
of 20 in. and 18 in., and estimate the weight as 64,000 lb. (Fig. 179). 

, 1,176,000 
Area of base — —— = 196 sq. ft. Use 14-ft. square. 

, LI 12,000 
IS ct pressure = —— = 5680 lb. per sq. ft. 

Depth for diagonal tension at critical section A, wdth d = 15 in. and h as shown 
on Figure 179. 

5680 
r 

144 
V = — - 75 = ■ - - - 

hjd 4li X 0.87 X 15 

h = 126 in.; therefore width of upper step = 126 — 2 X d == 96 in. 

Weight of footing = 63,500 lb. 

5680 X 14 X (36)2 

At section BB, 

M = 

A. = 

2 X 12 

4,280.000 

20,000 X 0.87 X 15 

V 5680 X 14 X 3 

At section CC, 

M = 

A. = 

2:0 = 

vjd 140 X 0.87 X 15 

5680 X 14 X (70.5)2 

- 4,280,000 in.-lb. 

16.4 sq. in. 

130.6 in. 

2 X 12 

16,500,000 

20,000 X 0.87 X 33 

5680 X 14 X 70.5 

140 X 0.87 X 33 X 12 

= 16,500,000 in.-lb. 

= 28.7 sq. in. 

= 116.4 in. 

To satisfy the area and perimeter requirements use thirty-three 1-in. square bars, 

spaced approximately 6 in. on centers. These bars will be hooked; they are 15 ft. 

8 in. long. 
A comparison of these results with constant-depth footing of Article 284 gives 

Constant-Depth Stepped Footing 

Area of footing, sq. ft. 203 196 

Weight, lb. 96,600 63,600 

Total depth, in. 38 38 

Volume of concrete, cu. ft. 643 423 

Weight of steel, lb. 3,270 3,620 
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A cost comparison for the stepped footing will compare the saving in concrete 
with the increase in steel and form costs. The necessary dowels must be placed in 

the top of the footing to lap up into the circular column. 

ILLUSTRATIVE PROBLEM 64 

286. Footing with Piles. Design the interior footing of Problem 53 if the load is 

supported on piles. Assume the piles to be 12 in. in diameter at the top and spaced 
3 ft. apart, each pile carrying safely a load of 20 tons. Use /'c == 2500 lb. per sq. in. 

Column load — 1,112,0001b. 
Estimated footing weight = 168,000 lb. 

Total on piles 

Number of piles 

Net pile load 

= 1,280,0001b. 

1,280,000 

40,000 

1,112,000 

32 

= 32 

= 34,750 lb. 

The piles will be arranged as shown in Figure 180. 

Diagonal Tension. Assume the critical section to come somewhere near perimeter 
ABCD 

^ V ^ 34,750 X 28 

^ bjd 4(27 + 2(i) X 0.87 X d 

af + 27(f = 3728 and d = 36.9 in. 

Use d = 37 in. and /i = 37 + 3 -f 6 = 46 in. 

Fiber Stress. Taking moments about section EE, 

Me = 34,760(4 X 76.5 + 6 X 40.5 + 6 X 4.5) = 20,000,000 in.-lb. 

d 
20,000,000 

196 X 18 X 12 
= 21.7 in. 

Use d = 37 in. and /i = 46 in. 

Actvtal Weight. Let us use the footing base shown in Figure 180, assuming that 
the concrete saved justifies the extra form cost of cutting off the comers. 

Weight - 160 I = 169,( ,0001b. 

This is almost exactly the weight assumed. 
Sted. 

20,000,000 A, 
20,000 X 0.87 X 37 

^ond will be checked at section EE. 

34,750 X 16 

= 31.1 sq. in. 

140 X 0.87 X 37 
123 in. 
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Use thirty-two 1-in. square bars in each direction. Most of these bars will be 
19 ft. 8 in. long, but those in the outer 3^ feet will be made varying lengths. 

f to jri 

Plan 

Equivalent Column 
27*'Square- Critical Section of 

^Diagonal Tension 

Section Through Footing 

Fig. 180 

COMBINED FOOTINGS 

287. Combined Footings. In congested districts a building is fre¬ 
quently carried to the property line with the exterior columns at or near 
the line. It is not possible to center a simple footing on the exterior 
column axis. A combined footing cariying the exterior column and an 
interior column is often substituted. If the building fronts on two 
streets, the comer column is often carried on a combined footing with 
two exterior columns and at least one interior column. In certain cases 
the allowable soil pressures may be low enough so that the footings 
overlap and a continuous slab results. The ultimate expansion is a raft 
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foundation which is an inverted floor system. Footings carrying more 
than two columns are statically indeterminate. 

288. Two-Column Footings. The footing carrying one exterior and one 
interior column should be designed to meet the following requirements: 

1. An area great enough to give the safe allowable soil pressure. 
2. A shape such that a uniform net soil pressure is given. 

In other words, the resultant of the loads must act through the center 
of gravity of the base. If the footing is of constant depth, the footing 
weight acts at the center of gravity of the base whatever shape is 
adopted. The resultant of the column loads must act there also. 

Rectangular Base. If the only restriction is the projection of the foot¬ 
ing beyond the exterior column, the footing base can be rectangular. 

Trapezoidal Base. If the rectangular base overlaps the opposite foot¬ 
ing, or if there is a restriction to the projection beyond the interior 
column, a footing base trapezoidal in shape will be necessary to fulfill 
the two requirements listed above. 

Connected Footings. Occasionally it is advantageous to use separate 
footings connected by a beam. The eccentric loading of the exterior 
footing is balanced by a pressure of the interior column on the connect¬ 
ing beam. 

If this beam, or strap, rests on undisturbed soil at the level of the 
footing bottoms, it may be considered part of the combined footing 
area. If reliance is placed on piles, or caissons, to carry the column 
loads, because of low allowable soil pressures, the strap may be regarded 
as a cantilever beam loaded at its end by the interior column. In such 
a case the strap often tapers in depth, and effort is made to have only 
loose fill under it. 

ILLUSTRATIVE PROBLEM 56 

289. Design of Rectangular Combined Footing. Design a combined footing to 

carry the exterior column stack of Problem 52 and the interior column stabk of Prob¬ 

lem 53. These columns are 29 ft. apart on centers. Assume that the outside of the 

footing cannot project more than 18 in. beyond the outer face of the exterior column. 

The allowable soil pressure is 3 tons per square foot. Use 2500-lb. concrete. 

290. Dimension of Base. 

Exterior column load = 600,000 lb. 

Interior column load = 1,112,000 lb. 

Estimated footing weight = 200,000 lb. 

1,912,000 lb. 

, ^ ^ 1,912,000 
Area of base = —— = 319 sq. ft. 

6000 

Resultant of colunrn loads « 1,712,000 lb. 
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Moment of column loads about center of exterior column: 

817 

M = 1,112,000 X 29 = l,712,000a:r 

Xr = 18.85 ft. 

The resultant acts 18.85 + 2.5 = 21.35 ft. from the outer edge of the footing. 
This point is the center of gravity of the rectangular base. 

Length of footing = 21.35 X 2 = 42.7 ft. Use 42 ft. 9 in. 

Width of footing 
319 

42.75 
= 7.46 ft. Use 7 ft. 6 in. 

291. Depth by Bending Moment. Bending and shear will be caused in the footing 

by the net soil pressure and the column loads. The design of the longitudinal beam 

will be made for the assumption of a uniform load over the width of 7 ft. 6 in. The 
column loads must later be spread transversely to justify this assumption. 

1,712,000 
Net pressure p = —— -— = 5340 lb. per sq. ft. 

o20.o 

Longitudinal beam load w =* 634W X 7.5 = 40,100 lb. per ft. length 

The loading, shear force, and bending moment diagrams for the longitudinal beam 
are given in Figure 181. The assumption is made that the colmnn loadeare uniformly 
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distributed over the column width. The essential shear force and bending moment 

values for the longitudinal beam are listed below. 

Distance from 

Exterior End Shear Force Bending Moment 

ft. kips (10001b.) ft.-kips 

1.5 60.2 45.2 

1.73 0 52.1 

2.37 0 

3.5 -460.0 -354.0 
6.56 .t -1577.0 

14.97 0 -2982.0 

23.39 -1577.0 
27.21 490.0 0 
30.38 618.0 1775.0 
3L54 0 2240.0 
32.63 -403.7 2020.0 

33.9 -355.0 1577.0 
35.0 1200.0 

Solving for the depth of the rectangular section to satisfy the maximum numerical 
moment, 

, [m 12,982,000 X 12 . 

~ \Kb " V196 X 7.5 X 12 ~ 

Use depth = d + 5 == 50 in. 
292. Shear. The maximum numerical shear force V =» 618,000 lb. 

- Z. = 618,000 

bjd ~ 90 X 0.87 X 45 
175 lb. per sq. in. 

This exceeds the allowable stress v = 0.06/'c ==150 lb. per sq. in. for ordinary anch¬ 

orage and is less than the allowable v — 0.12/© = 300 lb. per sq. in. for special 
anchorage. Use special anchorage. 

The concrete can withstand a ^‘shear equivalent of diagonal tension'^ v — O.OSfo =* 
75 lb. per sq. in. The combined footing is not a cantilever between columns, and 
diagonal tension cracks may occur close to a column. The critical section will be 

taken at the column face. The maximum shear equivalent v = 175 lb. per sq. in. 

necessitates the use of web reinforcement. 
Use a total footing depth h — 60 in. The weight of the footing equals 

W = X 320.6 X 150 = 200,000 lb., as estimated. 

293. Steel, 

the columns. 
Negative Steel. This steel is placed in the top of the footing between 

^ 2,982,000 X 12 

fnjd ^ 20,000 X 0.87 X 45 
45.7 sq. in. 

This steel is spread over a width of 7 ft. 6 in. The concrete must be poured through 

it; therefore space it about 6 in. on centers. These bars will be in two rows. 
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Bond is checked at the sections of maximum rate of change of negative bending 
{dM \ 

moment i --- == F ). At the exterior end this occurs at the inside face of the column 
\dx ) 

at 3.5 ft.; in the interior direction it occurs at the point of inflection, 27.2 ft. The 

perimeters needed at these two sections to satisfy an allowable bond stress u « 

0.075/c — 187.5 lb. per sq. in. are 

(So)ext. = 
ujd 

460,000 

187.5 X 0.87 X 45 
62.7 in. 

(2o)int. = 
490,000 

187.5 X 0.87 X 45 
66.7 in. 

Use thirty ij-in. square bars in two rows with A,, = 46.8 sq. in. with a spacing 

of 6 in. Bond is satisfied by 14 of these bars, so the lower row may be bent down 

according to fiber stress requirements. If the upper row of 15 bars remains, the 

moment that may be safely carried is 

Af = 15 X 1.56 X 20,000 X 0.87 X 46.5 X = 1,577,000 ft.-lb. 

From the bending moment diagram, the lower row may be bent down at sections 

6.56 ft. and 23.39 ft. from the exterior end. The upper row will run by the points 

of inflection and be carried under the columns. 

Positive Steel under interior colunm. 

A, 2,240,000 X 12 

20,000 X 0.87 X 45 
= 34.3 sq. in. 

Bond will be checked at the section having the gi’eatest rate of change of bending 

moment (F = 618,000 lb.). This is two-way steel, as the transverse steel is also 

in the bottom, and the allowable u — 0.056/'c = 140 lb. per sq. in. 

So 
618,000 

140 X 0.87 X 45 
112.5 in. 

Part of this steel can be supplied by the fifteen l|-in. square bars bent down from 

the lower row of the negative steel. Add fourteen 1-in. round bars as an upper row" 

to satisfy both area and perimeter requirements. The fifteen l|-in. square bars 

can carry a moment of 1,577,000 ft.-lb. safely, so the 1-in. bars can be bent up at 

33.9 ft., the bond stresses being also safe. 

Exterior Column, The maximum bending moment is only 52,100 ft.-lb., so the 

concrete can undoubtedly carry the tensile stresses. Assume a depth of plain con¬ 

crete A = 48 in.; the maximum tensile stress in the concrete will equal 

^ _ 52,100 X 12 X 6 

/ ~ 90 X (48)2 
18 lb. per sq. in. 

The allowable tension ft = 0.03/c = 75 lb. per sq. in. No tension steel is needed. 

294. Diagonal Tension. The shear stress diagram is plotted in Figure 181. Above 

the value v = 0.03/c = 75 lb. per sq. in., diagonal tension steel must be provided. 

Since the column does not extend completely across the width of the footing, it will 

be assumed that diagonal tension cracks may start at the section at the face of the 

column. Diagonal tension steel will be provided by bent bars, where available, 
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and by stirrups. At each section seven 2-rod stirrups of |-in. round bars will be 
hung on 14 of the 15 bars in the upper row of negative steel (Fig. 182). 

Maximum spacing s = ^ = 12 in., where v > 150 lb. per sq. in. 
s = 24 in. where v < 150 lb. per sq. in. 

Bent bars s = 24 in., where v > 150 lb. per sq. in. 
s = 48 in., where v < 150 lb. per sq. in. 

Fig. 182 

The shear stress varies from v = 130 lb. per 
sq. in. to zero for sections from 3.5 ft. to 14.97 
ft. It varies from 0 to 175 lb. per sq. in. from 

14.97 ft. to 30.38 ft. Beyond the interior 
column the shear stress varies from 114 lb. per 

sq. in. to zero from 32.63 ft. to 42.75 ft. The 
shear stress exceeds 75 lb. per sq. in. from 3.5 

to 8.36 ft.; 21.56 ft. to 30.38 ft.; and from 
32.63 ft. to 36.15 ft. Use 

V = Vc + Vs = 75 
14 X 0.307 X 20,000 

90 X s X 1 

The stirrup spacings can now be figured. The bent bars consist of fifteen l|-in. 

square bars, or, beyond the interior column, of fourteen 1-in. round bars. If either 
set is used at the maximum spacing of 48 in., the maximum shear stress each group 
can withstand is 

v = 75 + • QO ^ 4g 0 707 = 228 lb. per sq. m. for the li-m. bars 

V = 147 lb. per sq. in. for the 1-in. round bars. 

In other words, these bent bars can be used in any part of the span at a spacing of 
48 in., provided the shear stress is less than 150 lb. per sq. in. 

The cracks tend to appear at the top of the footing between the columns. Fifteen 

1 J-in. bars can be bent down at 6.56 ft., or 37 in. from the inner face of the exterior 
column. No stirrups are needed in this length. Diagonal tension reinforcement 
must be used for 8.36 — 3.5 = 4.86 ft. == 59 in. Beyond 6.56 ft. one set of stirrups 
at 24 in. will suflice. 

These fifteen 1 j-in. bars can also be bent down at 23.39 ft., which is 84 in. from 

the exterior face of the interior column. The shear stress reduces to 150 lb. per sq. in. 
at 27 in. from this face. For this distance use 3 stirrup sets at 9-in. spacing, then 

1 spacing at 12-in. (39 in. out). We are now 45 in. from the bent bars and they can 
reinforce this length. From 21.56 ft. to 23.39 ft. (22 in.) use 1 stirrup set at 24 in. 

Beyond the interior column the cracks will occur at the bottom of the footing. 
The fourteen 1-in. round bars can be bent up at 33.9 ft., or 15 in. from the column. 

Use 1 stirrup set close to the column face, then bend these bars up 15 in. out. They 
care for all cracks for 48 in., or 63 in. out. The steel arrangement is shown in Fig¬ 

ure 181. 
296. Transverse Beams. The column loads reach the footing on the narrow 

column area. The design of the longitudinal beam has assumed that these column 

loads are spread the full width of the footing. The design should justify this as¬ 

sumption. In some cases this is done by providing transverse steel the whole length 
of the footing. It seems desirable, however, to spread the load latoaUy at once. The 
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1940 Joint Committee Specifications require that the transverse steel shall “be placed 
uniformly within a band having a width not greater than the width of the column 
plus twice the effective depth of the footing.” 

This lateral transference of load might be accomplished by resting the column 
on an I-beam grillage. Such beams would be designed for a uniformly distributed 

(average) load, whose value would be the column load divided by the area of bearing 
between the I beams and the footing. In the same way a transverse concrete beam 

might be placed on the footing instead of the I beams. The transverse beam loading 
is not so evident if the concrete beam is placed within the footing. It is designed, 

however, as though it rested on and loaded the longitudinal beam. Now that the 

beam is within the footing it is difficult to justify its existence as an independent 

beam with no shear forces or bending couples on its sides. The design as an inde¬ 
pendent beam is on the safe side and should provide adequate strength and stiffness 

for the lateral transfer of the column loads. 
296. Transverse Beam. Exterior Column. In order to place this beam symmet¬ 

rically under the column it will be made 5 ft. wide. The net load w per foot of trans¬ 
verse length equals 

600,000 ___ 
^ — = 80,000 lb. per ft. 

7.5 

The transverse beam comprises two cantilevers, each projecting 34.5 in. beyond 

the column faces. The maximum moment occurs at the column face and equals 

wl^ 80,000 X (34.5)2 

2 X 12 
- 3,970,000 in.-lb. 

As = 

‘3,970,000 

So = 

20,000 X 0.87 X 45 

V 80,000 X 34.5 

= 5.07 sq. in. 

= 31.4 in. 
ujd 187.5 X 0.87 X 45 X 12 

There is no longitudinal steel on the bottom of the footing at the exterior column, 

so this transverse steel is one-way steel with the allowable u == 0.075/c- Fourteen 
f-in. round bars in one row satisfy both fiber stress and bond and give a spacing 

about 4.5 in. on centers for the 60-in. width. 
Interior Column. 

1,112,000 
= 148,500 lb. per ft. 

M = 

A, - 

So = 

7.5 

148,500 X (31.5)2 

2 X 12 

6,140,000 

20,000 X 0.87 X 45 

148,500 X 31.5 

140 X 0.87 X 45 X 12 

= 6,140,000 in.-lb. 

7.84 sq. in. 

« 71 in. 

This steel is two-way steel with an allowable w = 140 lb. per sq. in. The perim¬ 

eter requirement is high compared to the area, and thirty-six ^-in. square bars 

in two rows will be used which have a spacing of 6.5 in. on centers in the widtii of 

2 X 45 + 27 ~ 117 in. Figure 181 shows this steel which is also hooked at its ends. 
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ILLUSTRATIVE PROBLEM 66 

297. Design of Trapezoidal Footing. In Problem 55 let us assume in addition 

that the projection beyond the center line of the interior column cannot be more 

than 7 ft. Let the total length of the footing Z = 38 ft. 6 in. Assuming again a 
weight of the footing of 200,000 lb., the area of the base equals 319 sq. ft. and its 

center of gravity again must be 21.35 ft. from the exterior edge. 

Area = 319 = I = 

Center of gravity Xo = 

(240) 

alH- (6 - o) - 

-(a + b) ^ ^ ’ 

638 
From equation 240, a + 6 = - 16,58. 

38.5 

Substituting in equation 241, 

^ 21.35 X 16.58 X3 __ 5 ----10^53 * ii^Q 

38.5 

a « 16.68 - 11.0 » 5.58 

Useo “ 6ft.7in.and6 « lift. 
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The width c at a distance x from the small end equals 

b - a 
c = a H-j— X — 6.58 + 0.141a? 

1 712 000 
Net pressure p ~ ^— = 5370 lb. per sq. ft. 

The net pressure per foot length is uniformly varying and equals 

pc = 5370(5.58 -f 0.141a:) lb. per ft. 

The shear force and bending moment diagrams can be plotted as in the previous 

problem and the same procedure used for design. The longitudinal steel will be 
spread fanwise over the trapezoid and alternate bars will be cut off as allowed by 
moment or bond as the small end is approached. The diagonal tension stirrups will 
require a separate detail for each set as the supporting bars vary in spacing. The 

span of the transverse beams is approximated by using the center-line dimension. 

ILLUSTRATIVE PROBLEM 67 

298. Design of a Connected Footing. Design a connected footing to support the 

exterior and interior columns of Problem 55, using a 2500-lb. concrete and an al¬ 
lowable soil pressure of 3 tons per square foot. Assume that the strap beam bears 

on undisturbed soil. 

Follow the procedure of Problem 65; the necessary area is 319 sq. ft. and its 
center of gravity should be 21.35 ft from the outer edge of the footing. Assume the 

connecting beam to be 4 ft. wide, the interior footing to be e feet square and the 
exterior footing to be the same width e (Fig. 184). 

Area + 4(31.5 - dbe) 

^ - 2c - 4/ « 193 

Moments about AA give t 

18.86 X319-29«*+^f0 -2.5^ +4(31.6-/-0.6«) ^/-2ii+ 

4344 -29.6e*+0.6e/*-2.6<5f+lQf-68«-:5^* 
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Solving, 
e = 13.156 ft. 

/ = 5.06 ft. 

Use 13 ft. 2 in. 

Use 5 ft. 1 in. 

It is possible, of course, to obtain other dimensions by making the width of the 
exterior footing different from tliat of the interior. 

1,712,000 
Net pressure p — —— = 5370 lb. per sq. ft. 

299. Design of the Connecting Beam. If the exterior footing and beam are taken 
as a unit, the loads are those sJiown in Figure 185 to the edge of the interior footing 

(24.92 ft. from outside of exterior footing). This system is not in equilibrium, and 

the tendency of the exterior colunm to tip the footing-beam unit is balanced by the 

186,400-lb. load applied by the interior colunm. This 185,400 lb. is the difference 

between the colunm load and the net upward pressure of the interior footing. The 
beam is assumed to penetrate the interior footing until under the interior column. 

The loads, shear force, and bending moment diagrams are plotted in Figure 185. 

Certain essential values are tabulated below. 

Distance from 
Exterior End Shear Force Bending Mon 

ft. kips (10001b.) ft.-kips 

1.5 106.06 79.5 
1.96 0 104.0 
3.6 -352.53 -166.7 
5.08 -240.6 -636.2 

16.28 0 -1982.6 
24.92 185.4 -1181.2 

31.6 185.4 0 
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Depth by Bending Moment. 

d = 
_ /3,982,600 xl2 

\Kb ~ V 196 X 48 
= 50.3 in. 

Use c? = 51 in. and = 51 + 5 — 56 in. 
Shear. Between footings, the beam is rectangular and the maximum shear force 

V — 240,000 lb. Within the exterior footing-beam combination the cross section 
will probably be shaped as in Figure 186. In this case the maximum shear stress 

P-/s(7. 
x35ft 3/n. Long T I 
h _ c at I, 

SPairs 4'Rod ^rd. 
Stirrups X18 ft. 6in. Long 

^-tO-rsq. ^6” 
XS xt4 ft 9in.Long 

tSftlin 

Section AA 

4 ft. A 

1 9‘fi'‘sQ. xSSft.Sin. Long 

'9-fi'’sq. xS2 ft Sin. Long 

‘ 3 Pairs 4 Rod Vrd. 
Stirrups X l8ft6in.Long 

Section B3 

will occur between the tension steel and the neutral axis (Art. 51). If the neutral 

axis lies in the projecting beam, the width b is 48 in., as in the connecting beam. 
Maximum shear occurs at the interior face of the exterior column (3.5 ft. in.). 

Maximum stress v 
352,530 

bid 48 X 0.87 X 51 
= 166 lb. per sq. in. 

Use special anchorage. Allowable stress v — 0.12/'c = 300 lb. per sq, in. 
Steel. 

M 1,982,600 X 12 

Safe. 

A. = 
Ujd 20,000 X 0.87 X 51 

For bond, 

So 
352,630 

ujd 187.6 X 0.87 X 61 

26.8 sq. in. 

= 42.4 in. 

Use eighteen 1 J-in. square bars in two rows. The top row will be run from the 

outer end of the exterior footing through the interior column. The second row may 

be bent down when bending moment and bond requirements permit. The top row 

can carry a moment otM ^ 20,000 X 9 X 1.56 X 0.87 X 52 =* 12,680,000 in.-lb. « 
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1,057,000 This occurs at 7 ft. and 25.7 ft. from the exterior end. The top 

row is safe for bond wherever the shear force is less than 

V = u(Zo)/d = 187.5 X 9 X 5 X 0.87 X 52 « 382,000 lb. 

These 9 bars fulfill bond requirements anywhere in the span. 

At the exterior column there is a positive bending moment of 104,000 ft.-lb. 

Assuming a plain concrete section 53 in. deep the concrete tensile stress equals 

I 

104,000 X 12 X 6 

48 X (53)2 
= 56 lb. per sq. in. 

Allowable tension equals 0.03/c = 75 lb. per sq. in. No tensile steel is needed. 

Diagonal Tension. From the shear stress diagram of Figure 185 the following 

data are listed: 

Distance from Shear Distance from Shear 

Exterior End Stress Exterior End Stress 

ft. V ft. V 

1.5 50 8.83 75 

3.5 166 23.72 75 
4.0 150 24.92 87 

5.08 113 31.5 87 

Diagonal tension reinforcement will be needed from 3.5 ft. to 8.83 ft., and from 

23.72 ft. to 31.5 ft. 

Maximum spacing of stirrups = 27 in. {v < 150) 

Maximum spacing of stirrups = 13.5 in. between 3.5 ft. and 4.0 ft. 

Maximum spacing of bent bars — 54 in. (v < 150) 

The bent bars can be used at their maximum spacing wherever the shear stress is 

less than 

i; = Vc + 
65 (sin a) 

9 X 1.56 X 20,000 

48 X 54 X 0.707 
225 lb. per sq. in. 

However, when the stress v is greater than 150 lb. per sq. in., these bars can only 

be spaced at 27 in. The diagonal tension cracks will tend to occur at the top of the 

beam. The lower row of ij-in. bars can be bent down at 7 ft. This section is 36 in. 

from the section where v = 150 lb. per sq. in. From 3.5 ft. to 4 ft. stirrups must be 

used; also from 7 ft. to 8.83 ft. Try two four-rod 5-in. round stirrups hung upon 8 

of the 9 bars in the upper row. Their closest spacing will be 

166 75 + 
8 X 0.1% X 20,000 

48XaXl 
or 

a « 7.2 in. 
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Possible spacings are tabulated below. 

Spacing Shear Stress 

lb. per sq. in. 

Distance from 
Interior Face of 
Exterior Column 

Use one spacing of 0 in., then the bent bars care for 30 in. (42 in. beyond column), 
then one spacing of 27 in. 

Between 23.72 ft. and 31.5 ft. stirrups and bent bars will be used as diagonal ten¬ 

sion steel. The bars can be bent down at 25.7 ft. and they prevent cracks for 54 in, 
(30.2 ft.) The exterior face of the interior column is located at 30,38 ft., so bend down 

the bars at 25.92 ft., which is 54 in. away, and use no stirrups. From 25.92 ft. to 
23.72 ft. use one 27-in. stirrup spacing to pass the v — 75 section. The steel arrange¬ 

ment is shown in Figure 186. 
300. Design of Exterior Footing. This footing will be a cantilever extending out 

55 in. from each side of the beam. For a strip 1 ft. wide the critical section for 
diagonal tension will be d in. from the face of the beam. 

5370 X (55 ~ d) 

75 X 12 X 0,87 X 12 
Solving, d — 20 in. 

The maximum bending moment at the face of the beam equals 

wf 5370 X 55)2 
M = — ^ = 677,000 m.-lb. 

2 2 X 12 

, Im / 677,000 

“ yKb ~ \m X 12 ~ 

Use d = 20 in. and ^ = 20 4- 5 = 25 in. 

Steel, 

677,000 

20,000 X 0.87 X 20 

^ 5370 X 55 „ „ . 
Xo —-— 7.55 in. 

187.5 X 0.87 X 20 X 12 

Use 1-in. square bars spaced at 6 in. on centers. These bars are hooked at 

the ends. 
301. Design of Interior Footing. This footing is designed as a simple footing with 

a net soil pressure of 5370 lb. per sq, ft. This corresponds to the column load of 

1,112,000 — 186,400 « 926,600 lb. The computations follow the procedure of 

Problem 63 and give results of 
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Size “ 13 ft. 2 in. square 

Depth for diagonal tension d == 29.4 in. 

Depth for bending moment d = 20.2 in. 

Use d = 30 in. and ^ = 35 in. 

At = 20.0 sq. in. and Zo = 89.8 in. 

Use twenty-three 1-in. square bars (hooked) in each direction, 14 ft. 9 in. long. 

The total weight of the footing 169,000 lb. The weight was originally assumed 

to be 200,0(K) lb. The design may be corrected for the reduced actual weight with 

some slight decrease in the dimensions of the two footings. 

ILLUSTRATIVE PROBLEM 68 

302. Design of a Strap Footing Connecting Caissons. Assume that the exterior 

and interior columns of Problem 55 are to be supported by caissons. This is neces¬ 

sary because the soil immediately below the basement has a low allowable bearing. 

Thirty feet below the base of the columns is a hardpan whose allowable bearing is 

10 tons per square foot. The exterior column is so close to the property line that a 

caisson cannot be placed axially with it. Its center will be located 1 ft. inside the 

exterior column center line, this being also closely the middle point of the exterior 

footing of Problem 57. To offset the eccentricity of the exterior caisson a strap 

will be carried to the interior column. In this case it will be assumed that the strap 

does not bear on consolidated soil and it will be sloped with provision made to have 

loosened fill under it. After a preliminary survey it is decided to make the exterior 

caisson shaft 3 ft. in diameter and the interior one 4 ft. in diameter, with the strap 

3 ft. wide. This strap will also extend under the projecting part of the exterior 

column. 

The forces acting on the strap are shown in Figure 1875 (final dimensions are used). 

Taking moments about the center line of the exterior caisson, 

-600,000 X 1 - (li X 3 X 3.5 X 150) X i -f 450 X 26.5 X 14.75 + X 

26.5 X 10.33 + 28^2 = 0 

F2 == 10,600 lb. 

This force F2 is the net force at the interior column to produce equilibrium of the 

strap. It includes the supporting force for the strap and the portion of the column 

load diverted to the strap. The force Fi exerted by the exterior caisson equals 

Fi = 600,000 4- 10,600 + 29,200 = 639,800 lb. 

Exterior Caisson. The load at the base of this caisson equals 

From above Fi « 639,800 lb. 

Weight of caisson shaft (22.6 ft.) =» 24,000 

Weight of caisson base (4.33 ft.) = 12,200 

Total = 676,000 lb. 

^ 676,000 
Base area == « 33.8 sq. ft. 

20,000 ^ 
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The maximum width of this expanded base cannot exceed 2 X 2.5 *= 5 ft. Use 

the oval shape of Figure 187c, wliich has a longitudinal axis of 7.83 ft. and width of 

5 ft. On the longitudinal axis the slope of the base to shaft will be approximately 60® 

(Fig. 187d). 

The caisson shaft is loaded with a maximum force of 663,800 lb. Designed as a 

tied colunm (/'« = 2500 lb. per sq. in.), it requires a steel ratio p « 0.0127 and 

area Aa =* 12.9 sq. in. Use thirteen 1-in. square bars with suitable ties. The ratio 

h 22.6 X 12 

t “ 36 
7.5, so this is a short column. 
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Interior Caisson. The load at the coliram base equals 

Interior column = 1,112,000 lb. 
Weight of caisson shaft (24|- ft.) = 46,500 
Weight of caisson base (4.33 ft.) = 21,400 

1,179,900 lb. 

F2 = 10,600 

Total = 1,169,300 lb. 

1,169,300 ^ ^ 
Base area — ———-— = 58.5 sq. ft. 

20,000 ^ 

= 58.5 sq. ft. 

Use base 8 ft. 8 in. diameter 

The caisson shaft is designed as a tied column for a maximum load of 1,148,000 lb. 
life — 2500 lb. per sq. in., p — 0.0114, and Ag = 20.7 sq. in. Use twenty-one 1-in. 

square bars with suitable ties. 
Strap. At the interior end the strap beam has a shear force V — 10,600 lb. Allow¬ 

ing V = 50 lb. per sq. in. for diagonal tension in concrete with no web steel (ordinary 

anchorage), 

, V 10,600 
d = — =- == 6.8 in. 

vbj 50 X 36 X 0.87 
Use = 7 + 5 = 12 in. 

At the center of the exterior caisson the moment in the strap by the previous 
moment equation, equals M == 601,200 ft.-lb. 

Depth d = 
601,200 X 32 

/ 196 X 36 
= 32 in. 

At the inner edge of the caisson the shear force V = 34,940 lb. 

Depth for diagonal tension, d 
50 X 36 X 0.87 

Use d = 32 iii. and ^ - 32 4- 5 == 37 in. 
The exterior column overhangs the exterior caisson shaft as shown in Figure 187a. 

Assume the column load to be uniformly distributed; then the force on the blackened 
area outside the caisson equals 175,000 lb. This force tends to shear the strap along 

the line ABODE (22.4 + 2 X 7.5 = 37.4 in.). The allowable shear stress equals 
V =» 0.06/'c = 150 lb. per sq. in. The necessary depth d equals 

JF _ 175,000 

vbj "" 150 X 37.4 X 0.87 
= 35.8 in. 

Use /i * 36 4- 3 = 39 in. 
Strap Steel. 

Ag = 

For bond, 

601,200 X 12 

20,000 X 0.87 X 32 
= 13.0 sq. in. 

^ 175,000 
2,0 = -—-- 44.7 UL 

125 X 0.87 X 36 

125 X 0.87 X 32 
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Use fourteeii 1-ia. square bars in two rows. This steel is placed in the top of the 
strap. 

At the center of the strap, 14 ft. from the interior column, the moment equals 
208,000 ft.-lb., which requires a depth h = 23.8 in. for concrete fiber stress; the actual 
depth is 24.5 in. With one row of steel, d = 21 in. and the necessary steel area 
Aa = 6.83 sq. in. The shear force at this section equals V = 20,140 lb., which gives 
a shear stress i; = 31 lb. per sq. in. and steel perimeters So = 8.8 in. The lower row 
of the steel can be cut off at this section. 

When the five load varies on the floors above, the value of (Fig. 1875) will 

vary. If the loose fill under the strap consolidates, the case may arise where the strap 
is supported by the two caissons and tends to sag under its own weight. Using the 
average weight of 920 lb. per ft. as uniformly distributed, 

920 X (2^ 

8 
X 12 = 1,080,000 in.-lb. 

To avoid cracks at the bottom of the strap, use a steel area approximating 

^ _ 1,080,000 

* ” 20,000 X 0.87 X 21 

Use five j-in. round bars. 

2.96 sq. in. 

RETAINING WALLS 

303, Lateral Soil Pressure. Retaining walls serve to hold back earth 
banks or slopes which would otherwise tend to slide. The thrusts on 
such walls are computed by theories developed in the texts on soil me¬ 
chanics. Tests checking these theories are as yet few in number owing 
to the cost and difficulty of testing full-sized walls. The Rankine theory 
has been generally used by American engineers for design, but recent 
tests seem to indicate that the Coulomb theory is nearer actual condi¬ 
tions. The Coulomb theory will be used in this text. 

The Rankine theory assumes that, if a small prism of earth is taken, 
bounded by planes parallel to the surface of the earth and planes par¬ 
allel to the plane of contact of wall and earth, the pressure w on the 
upper plane (Fig. 188a) is equal to the weight of earth above the plane, 
and that the pressure p on the side plane is a conjugate stress, and par¬ 
allel to the surface of the earth. It is assumed that the presence of the 
wall does not affect this analysis. Therefore, the pressure on the wall is 
uniformly varying. 

In the Coulomb theory, the wall restrains the shding of some mass of 
earth such as ABC (Fig. 1886). This mass weighs W pounds. On the 
plane of sliding AC the pressure F is inclined from the normal so that 
the maximum soil friction is used, the angle of internal friction being 
Similarly the pressure E between the waU and earth develops the maxi¬ 
mum friction on plane ABj and E is inclined the angle of friction 
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The mass must be in equilibrium under the three forces W, F, and E, 
Some plane AC produces the maximum pressure E on the wall, and it is 
for this case that the wall should be designed. The wall pressure equals 

E = 
wh^ sin^ {d — <j5>) 

sin^ 6 sin {6 + z) 
sin {<t> — S) sin (0 + z) 

sin (0 — 6) sin (0 + z) y 
where w = unit weight of soil 

h = vertical height of wall 
5 = angle of the slope with the horizontal 
0 = angle of the inner face with the horizontal. 

<^242) 

Equation 242 is complicated in form, but has the advantage of being 
general. It may be used for any of the earth pressure theories that 
assume uniformly varying pressures if appropriate values of the angles 
</> and z are substituted. 

The discussion above refers to the case known as active pressure of 
the wall and the bank. This implies that the wall moves away from the 
bank as it deforms.' When an abutment is pushed into the soil by the 
thrust of an arch, or when a slope creeps or tends to landslip, passive 
pressure exists and the lateral soil pressure is greatly increased. Passive 
pressure implies that the wall and bank approach each other. In Figure 
1886 the wall pressure FJ' for passive pressure will act on the other side 
of the normal to plane AB, and the force on any sliding plane AC wiU 
act at F'. Equation 242 no longer holds for the value of E\ Most 
walls are designed for active pressure, and many wall failures are caused 
by the application of passive pressures to these designs. In this text 
active pressures will be assumed. 
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The Coulomb lateral pressures are uniformly varying. Texts on soil 
mechanics should be consulted for pressure distributions if the wall 
changes its slope, or if there is a surcharge load on the bank near the 
wall. 

304. Gravity Walls. Many walls are built of plain concrete. Such 
walls are designed to be in equilibrium under the action of 

W = weight of wall 
E = earth pressure on a side face 
P = resultant pressure on the wall base 

Figure 188a shows such a case. The weight W acts at the center of 
gravity of the cross section. Either the Coulomb or Rankine theory 
gives a uniformly distributed lateral pressure E. The force P is also 
assumed to be uniformly varying, because the concrete base AD remains 
a plane surface and will produce uniformly varying deformations in the 
soil as the wall tends to tip. If the soil is elastic, the soil pressures will 
also be uniformly varying. 

Applying the conditions of equilibrium, the magnitude and position 
of the pressure P can be determined. For safety it is necessary that 

1. The maximum intensity of the normal soil pressure pv on the base 
be within the allowable soil pressure. 

2. The base be wholly in compression, and the neutral axis (zero 
pressure) be outside the base. The limiting case occurs when the neu¬ 

tral axis is at A. The resultant force P then acts 
AD 

3 
from point Z>. 

For the case shown in Figure 188a, P acts nearer the center. This re¬ 
quirement is summed up in the statement that the force P must act 
within the middle third of the base. If the neutral axis is within the 
base, say at G, the portion AG of the base will be lifted off the soil. 

3. The force P does not make an angle with the normal to the base 
greater than the angle of friction z. 

Gravity footings safely proportioned may or may not be more eco¬ 
nomical than reinforced cantilever footings, depending on concrete and 
excavation costs. Comparative designs should be made. 

ILLUSTRATIVE PROBLEM 69 

306. Design of a Gravity Wall. Design a trapezoidal gravity wall with vertical 

outer face to restrain a bank 22 ft. high. The surface slopes at 10®. The base of 

the footing is to be 4 ft. below the lower level (Fig. 189). The soil weighs 100 lb. 

per cu. ft.; its coefficient of internal friction — 36°; and the coefficient of friction 

of concrete on earth z » 30°. The maximum allowable soil pressure equals 3 tons 

per square foot 
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The maximum pressures occur during construction before the earth consolidates. 

At that time the most severe conditions occur if the back fill is placed and the front 
fill is not. There will be a soil pressure E on the face CB but none on AE. After 
several trials the section shown is adopted. 

Taking a foot length of the wall, by equation 242 0 == 36®, z = 30®, d = 98f 
6 - 10®: 

E = 
wh? sm262|® 

9«3o oo3o/. . / sin26®sin66® 
cos2 8f ® cos 38j® ( 1 + .V --oT-T- ) 

\ \sin88|®cos38|°/ 

E - 33,800 X 0.353 == 11,900 lb. per ft. length 

Vertical component E^ = E sin 38|® — 7500 lb. per ft. 

Horizontal component 

Taking moments about A, 

Weight of wall 11.5 X 26 X 1 

4 X 26 X i 

Pp 

M 

Eh = E cos 38f ® = 9300 lb. per ft. 

Force Moment 

X ISO = 44,900 X «.75 = 258,000 ft.4b. 
X 150 = 7,800 X 12.83 = 100,000 

Ev “ 7,500 X 14.17 = 106,000 

= 2F = 60,200 +464,000 
Eh = 9,300 X 8.67 == -81,000 

SAf +383,000 ft.-lb. 
383,000 . 

= s=5 6.37 ft. fin orm ^ * 
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This is well within the third point = 5.17 ft, and the base has compression 
o 

over the full width. However, the maximum soil pressure controls the length of the 

base. Assuming the soil pressure on the rectangular base to be uniformly varying, 

the distance from the neutral axis to the center of pressure being xi and to the 
center of gravity being Xo'. 

h , _ IX (15.5)3 
xi — Xo - -— or 1.38 =  -- 

Axo 12 X 1 X 15.5xo 

1.38 X 12 
- 14.45 ft. 

The neutral axis is 6.7 ft. beyond point B of the base. If a is the intensity of pres¬ 
sure 1 ft. from the neutral axis, the resultant force equals Pv = axoA or 

14.45 X 1 X 15.5 
“ 269 lb. per cu. ft. 

Maximum pressure pv 

Maximum allowable pv 

The friction P// 

: 269(15.5 -f 6.7) = 5980 lb. per sq. ft. 

6000 lb. per sq. ft. Safe. 

9300 lb. between base and soil 

Maximum available friction F ~ Pv tan z 

F = 60,200 X 0.577 = 34,700 lb. Safe. 

When the front fill is placed and consolidation takes place the design will have an 

additional factor of safety. 

306. Reinforced Cantilever Walls. Such walls consist of a reinforced 
footing upon which is placed a reinforced wall. The wall may be placed 
at any point on the footing consistent with economy or the peculiarities 
of the particular design (Fig. 190). In the usual retaining wall (Fig. 

Fig. 190 

(190a) the wall is designed as a cantilever fixed at the footing and loaded 
by the lateral soil pressure. The inner footing is designed as a second 
cantilever supported at the wall-footing junction and loaded with earth 
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pressure above and below, while the exterior footing is designed as a 
third cantilever. The order of design procedure can be 

1. Design of wall. 
2. Selection of footing base by checking whole wall footing for 

a. Compression over whole base. 
b. Maximum soil pressure. 
c. Maximum friction on base. 

3. Design of interior and exterior footing cantilevers. 

Occasionally additional frictional resistance is provided by a projection 
at the bottom of the footing which assists by direct bearing on the soil 
(Fig. 190a). Experience has shown that mixes richer than 2500-lb. con¬ 
crete show in the exposed surfaces more cracks due to shrinkage and 
frost deterioration. 

307. Retaining Walls with Counterforts or Buttresses. Walls re¬ 
straining banks of considerable height are often more economically de¬ 
signed if the wall is braced or supported. Supports placed within the 
earth bank are called counterforts] those on the outside are buttresses. 
Both wall and inner footing are designed as continuous slabs with longi¬ 
tudinal steel. The bending moments for continuous slabs are so much 
less than cantilever moments that thinner slabs and less steel can be 
used. There is, however, the additional cost of the counterfort or but¬ 
tress to be considered. 

ILLUSTRATIVE PROBLEM 60 

308. Design of Cantilever Retaining Wall. Design a cantilever retaining wall to 

restrain the bank given in Problem 69. Use 2500-lb. concrete and assume the back 
fiU is placed but the front fill is not. 

309. Wall Design. Thickness. Assume a vertical inner face for the wall and a 
footing thickness not less than 20 in. The lateral earth pressure for a length of wall 
of 1 ft. and a depth of 24 ft. 4 in. equals 

E 
100(24.33)2 

X 
sin2 54® 

• or.o/-. . /siU 26 sln 66 \2 
sm2 90 cos 30 | 1 + r ) 

\ \ sm 80 cos 30 / 

E - 29,550 X 0.266 = 7850 lb. per ft. length 

Ev = 3925 lb. per ft. 

Eu = 6800 lb. per ft. 

Maximum moment at the base of wall (thickness » 0^ 

M - 6800 X 
24.33 

X 12 - 3925 X : 661,000 - 1963f 
3 
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Neglecting the minus term, the necessary thickness is figured approximately and 
then assumed i - 20 in. 

M = 661,000 - 39,250 = 621,750 in.-lb. 

/ 621,750 

/l96 X 12 
= 16.3 in. 

With a minimum covering of 3 in. (A.C.I. Art. 507a), 

Minimum ^ = 16.3 + 3.5 = 19.8 in. 

Use t = 20 in. and d ~ 16.5 in. 

310. Shear and Diagonal Tension. At any section the shear force V equals the 
earth pre.ssure Eji above this section. At the base, 

Maximum shear v 
hjd 12 X 0.87 X 16.5 

= 40 lb. per sq. in. 

Allowable shear v ™ 0.06/'c = 150 lb. per sq. in. 

Diagonal tension for a cantilever can be checked at a section d inches above the 

support (base). The designer does not wish to use diagonal tension steel in a con¬ 

tinuous wall. The allowable stress for concrete is v = 0.02/c = 50 lb. per sq. in. 

The section at the base is safe, and therefore the critical section above it is safe. 

It will be noticed that the value of d varies with the depth hy while V = Eh varies 

with Therefore, if the base section is safe all other sections are also. 

311. Steel. The wall will taper from 20 in. at the base to 12 in. (without decora¬ 

tive cornice) at the top. With four rows of steel in the wall a tliickness less than 

12 in. is not justified. The batter will be given on the outside face. At any section, 

100/i2 

E - X 0.266 = 13.3/i2 

Eh = 0.8665 = 11.52^2 

5, = 0.55 = 6.66*2 

M = 11.52*2 _ 6.65*2 = 46 1^3 _ 3 33;j2j 

Also 
M = fsAsjd = 20,000 X 0.87 X = 17,400A,d in.-lb. 

Therefore 
^ 46.1/1^ - S.ZShH 

• “ 17,400d 

Assuming < = d 3.5, the values of the steel area A« are plotted in Figure 1915 

by assuming values of h in feet and substituting the corresponding values of d and 

8 
t in inches, it being true that < = 12 + h. At the base, 

621,750 

20,000 X 0.87 X 16.5 
2.16 sq. in. 

Use I4n. square bars spaced at 5.5 in. placed in the inner face of the wall. 
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Bond* 

V 

Xqjd 

_6800_ 

2.18 X 4 X 0.87 X 16.5 
= 55 lb. per eq. in. 

Allowable u ~ 0.05/c = 125 lb. per sq. in. 

To Cut Off Bars. The plot of steel areas shows that the necessary area drops off 
very rapidly and it is economical to use bars of two or three lengths. 

Cut off 2 bars out of 3. The area remaining equals 
2.18 

= -0.73 sq. in. From 

Figure 1916 this occurs at h = 16 ft. from the top. These bars will be anchored 
10 diameters = 10 in. and will end about 15 ft. 2 in. from the top. 

2.18 
Cut off half of the remaining bars. = 0.36 sq. in. This area is satis- 

6 
fied at h = 12 ft. 3 in. Anchorage of 10 in. ends the bar about 11 ft. 5 in. from the 

top. The remaining bars run to the top and are spaced 33 in. apart. Figure 191c 
shows this spacing for a longitudinal elevation. 

Temperature Steel. The outside of the wall is exposed to the full temperature 

variation whereas ih4 inside is somewhat insulated. It is customary to place tempera¬ 

ture steel in the outer face equivalent to that for roof slabs (p » 0.0025) and half 

m much at the inner face. The outer face will be reinforced with both vertical and 

horizontal bars, but the inner face will have horizontal bars as temperature stedl 
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wired to the vertical tension steel. In each set, using an average d = 12.6 in., there 
is an amount 

A, = - 0.00125 X 12 X 12.6 = 0.19 sq. in. 

Use |~in. round bars spaced at 12 in. 

312. Location of Wall. Unless there are special restrictions at the site, the most 
economical retaining wall is the one with the least permissible width of the base 

footing. This least width is affected by the position of the wall upon the footing. 

One rule that has been proposed * assumes that greatest economy ensu^ when the 

weight of the wall plus the fill on the footing equals the weight of fill alone extending 

out to the point of application of the resultant pressure on the base (point F in Fig. 

192). The least width of base is obtained when zero base pressure occurs at the edge 

of the footing (point C, Fig. 192). In this case the resultant pressure acts at 

from point C, where I is the footing width. In applying this rule, a width Z = 8 ft. 

is assumed after several trials. Using the average width of the wall, 

(12 4- 
—) « 4870 lb. 

2 X 12/ 

* Helpful Eule for Use in Designing Eetaining Walls,’* by D. B. Hall, Cml 

Mngiimrmg^ Vol. 6, No. 3, March 1936, p. 203. 
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Assuming the fill to extend out cil = 8ci from point (7, 

r 01763 I 
Weight of fill = 100 24.33 X 8ci + X 64(^1 j 

= 664.2c^ + 19,4C4ci 

Wall + fiU = 504.2c^ + 19,464ci + 4870 (243) 

If fill alone extends out to |-1 = 5.33 ft., its weight equals 

100 1^(24.33 + 1.41C1 - 0.94)5.33 + ^ X 5.33 j = 752ci + 12,725 (244) 

Equating equations 243 and 244, ci = 0.41 and cil — 40 in. This places the wall 

near the center of the footing. Practice varies with the job conditions and with the 
2 I 

judgment of the designer, but the wall is usually placed somewhere between - I and - 
o 2 

from point C, unless a property fine or river bank necessitates its being placed near 
one end of tlie footing. 

313. Width of Footing Base. Check the assumed footing width of 8 ft. for 

1. Earth pressure (compressive) on full width. 

2. Maximum intensity of normal soil pressure on base. 

3. Adequate frictional resistance to sliding of the retaining wall. The retaining 
wall plus the fill resting on the base will be taken as a rigid body. 

The forces acting on this body are 

1. Weight of wall and footing. 
2. Weight of fill. 

3. Pressure on plane CG (Fig. 192) due to earth bank to right of CG. 

4. Pressure on the base. 

The pressure on the plane CG is computed by use of equation 242 with « = 0, 
since this is a case of undisturbed earth bearing on earth fill. 

100 X (26.69)2 
E =-^-- X 0.272 = 9620 lb. 

E^ = 6660 lb. and Eh = 7790 lb. 

Taking moments about A at the toe of the footing (Fig. 192), 

Force Moment 

lb. in. in.-lb. 

Wall (average) 4,870 X 48 = 233,760 
Footing 2,000 X 48 = 96,000 
Soil (24.33 ft. deep) 8,110 X 76 = 616,360 
Soil (slope) 98 X 82.7 = 8,110 

Ev = 6,660 X 96 643,360 

Pv = 27 = 20,738 lb. Sum = +1,497,690 

Ejb = Pa = 7,790 X 107 = -833,630 

IMa = 664,060 

XMa 664,060 
Xr « 

Pz 20,738 
32 in. 
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The resultant P of the pressure on the base acts at - from point A. There is 

compression over the whole base and zero pressure occurs at point C. 

Maximum Soil Pressure. The base pressure is assumed to be uniformly varying 
and the maximum normal pressure p occurs at A. 

20,738 = PA X 

Pa — 5185 lb. per sq. ft.; tlie allowable i)ressure equals 6000 lb. per sq. ft. 
Friction on Base. The maximum available friction equals 

Pv tan z = 20,738 X 0.577 - 11,950 lb. 

Actual friction = Eji — 7700 lb. This gives a factor of safety of 1.53 against sliding. 

Some designers consider the choice (d tiie angle z open to such an error that they 
provide a factor of safety of 2. They wmuld j)robabIy provide a projection, or key, 

at the base of the footing to increase sliding resistance. Failure in such a ca.se, with 

the front fill also in place, would mean rupture along some such line ABC (Fig. IQle) 

plus the friction on the surfaces CD and EF. It is a!)parent that this resistance is 

greater than that figured above. 
314. Design of Inner Cantilever Footing. The forces acting on the heel are 

1. Weight of earth on inner footing. 

2. Weight of footing. 
3. Horizontal and vertical components of the soil pressure on the base. 

The force P on the base makes an angle with the normal to the base: 

tan“^ ” = tan""^ = taii“^ 0.376 
P,, 20,738 

The normal soil pressure on the base at one foot from C (Fig. 192) equals pi = 

648 lb. per sq. ft. At D the normal pressure po = 2160 lb. per sq. ft. The horizontal 
component, or friction, varies from zero at C to p'n ~ 2160 X 0.376 = 810 lb. per 
sq. ft. at D. The moment about the center of the footing section at D equals 

Force Moment 

lb. in. in.-lb. 

Earth (24.33 ft. deep) 

Earth (slope) . 

Footing 

8,110X20 = 

98 X 26.7 - 
833 X 20 = 

162,200 

2,620 
16,670 

Downward shear 

Normal base pressure 

+9,041 

-3,600 X 13.3 = 

+181,490 

-48,000 

Resultant shear 

Tangential base pressure 

+5,441 lb. 

1,350 X 10 = -13,500 

+120,000 

The required depth at section D for bending equals 

I 120,000 

" 'Sim X12 
7.1 in. 
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The minimum depth /i « 8 + 5 = 13 in. Since the wall is 20 in. thick at its 
junction with the footing, we shall continue to use a 20-in. footing depth. The shear 

stress at section D equals 

V 
5441 

12 X 0.87 X 15 
= 35 lb. per sq. in. 

The allowable shear equals v = 0.06/c = 150 lb. per sq. in. Diagonal tension is 
checked at a section d = 15 in. from section D for cantilever footings. The allow¬ 
able diagonal tension equals v — 0.03/c = 75 lb. per sq. in., because all footing steel 
is hooked. This is safe since the shear stress at the critical section will be less than 

at section D. 
Steel. 

A. 
120,000 

20,000 X 0.87 X 15 
= 0.46 sq. in. per ft. 

So = 
5441 

187.5 X 0.87 X 15 
= 2.22 in. per ft. 

Use f-in. round bars at 8-in. spacing, 
316. Design of Outer Footing Cantilever. Before the outer fill is placed the forces 

acting on the outer part of the footing are 

1. Weight of footing. 
2. Horizontal and vertical components of the soil pressure on the base. 

The normal components of the soil pressure are pa =5185 lb. per sq. ft. and pb - 
3240 lb. per sq. ft. The tangential components are pA — 1950 lb. per sq. ft. and 
PE = 1220 lb. per sq, ft. The bending moment about the center of the section at E 
equals 

Force Moment 
lb. in. in.-lb. 

Normal pressure (uniform) 9,720 X 18 = 175,000 
(varying) 2,920 X 24 = 70,100 

Upward shear - 12,640 lb. +245,100 
Footing 750 X 18 = -13,500 

Resultant shear = 11,890 lb. 
Tangential pressure « 4,755 X 10 - -47,550 

XMe = +184,050 

The necessary depth at section E to satisfy bending moment is 

d 4 184,050 

196 X 12 
8.84 in. 

Minimum depth A = 9 + 6 = 14 in. but we continue to use h 
stress at section E equals 

11,890 

12 X 0.87 X 15 
77 lb. per sq. in. 

20 in. The shear 

This is safe. At a section 15 in. toward A the shear force equals 7640 lb. and the 
shear stress v » 49.5 lb. per sq. in. This is safe, since the footing steel is hooked 
(spedal anchorage). 
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Steel 
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A. 

2o 

184,050 

20,000 X 0.87 X 15 

11,890 

187.5 X 0.87 X 15 ' 

= 0.71 sq. in. 

4.86 in. 

The footing is poured first, then the wall, with a joint at their junction. This 

joint includes a key to add to the shear resistance. The wall steel is detailed in three 

lengths, of which the shortest extends 9 ft. above this junction. This is too great a 

distance to project above the footing before the wall forms are placed, so dowels 

will be used to supply the necessary 2.16 sq. in. of wall steel at the junction section, 

the wall steel being placed later in the forms and resting on the footing. These 

dowels run 40 diameters (40 in.) into the wall and must be anchored at least 40 in. 
in the footing. Let the dowels extend mto the outer footing on the bottom as rein¬ 

forcement. This gives As — 2.18 sq. in. and — 8.72 in. It would save steel to 

use two thirds of the dowels in this shape and run one third into a footing key, but 
this arrangement would add to the difficulty of installing the steel and inspecting 

its placement. 

The steel is detailed in k'ig. 191d. Provision should be made to drain the back 

of the wall, otherwise it wmuld be necessary to provide for water pressure or ice 

pressure on the wall, in addition to soil pressure. 

ILLUSTRATIVE PROBLEM 61 

316. Design of Counterfort Retaining Wall. Design a counterfort retaining wall 

to restrain the earth bank given in Problem 59. Use /'c = 2500 lb. per sq. in. and 

assume the back fill to be placed and front fill not yet placed. 

317. Spacing of Counterforts. Assume a wall of minimum thickness of 12 in. and 

estimate the footing to be 20 in. thick. 

Wall. The lateral soil pressure on the wall is the same as in Problem 60. Refer¬ 

ring to Article 309 the intensity of inclined pressure equals 100 X 0.266 == 26.6 lb. 

per sq. ft. at a depth of 1 ft. The wall is now regarded as a continuous slab supported 

by the counterforts and also at the footing. 
It is customary to design using strips 1 ft. high as independent rectangular beams 

supported by the counterforts. This is an approximation, as the bottom of the wall 

stiffens the lower strips. Also, the different strips have varying loads and, hence, 

deflect unequally, producing shear forces and bending moments along the sides of 

the strips. These forces and couples on the beam sides are neglected for commercial 

design, and we shall deal with the horizontal pressures only. Vertical construction 

joints will probably occur every 60 to 80 ft., so the slab will be designed for the end 

span of a continuous beam. The maximum numerical bending moment will occur 

at the first interior support of the 1 -ft. strip just above the footing. The average 

horizontal pressure ph on this strip equals 

Vh 

M 

0.866 X 26.6 X 23.83 = 550 lb. per sq. ft. 

10 

550 X 12^^ 

10 
660/2 in.-lb. 

M Kh(f = 196 X 12 X (8.5)2 ^ 170,000 in.-lb. 

Clear span I [m 
yj 6€ 

170,000 

660 
16 ft. 
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Since it is not desirable to use diagonal tension steel in the wall, the shear stress 
will be kept within the allowable value for concrete of v = 0.02/'^ for ordinary anch¬ 
orage. At the first interior support the shear force V = 0.575phl 

0.575 X 550 XI 

12 X 0.87 X 8.5 
I = 14 ft. 

If t; = 75 lb. per sq. in., Z = 21 ft. 
Inner Footing. Preliminary trials of footing dimensions must usually be made. 

Assuming that such trials result in the dimensions of Figure 193 and that the point 

Fig. 193 

of zero earth pressure on the base occurs at the inner edge of the footing, the load 
on a 1-ft. strip adjacent to this edge is approximately the weight of earth on the strip 
plus the weight of the concrete strip. Maximum shear on this strip equals 

V = 0.575[100 X 25 4- 150 X fi]Z = 1580Z lb. 

for diagonal tension. 
1580Z 

V =-= 10.4Z 
12 X 0.87 X 14.5 

If V « 60, Z « 4,8 ft. If i; - 75, Z - 7.2 ft. 
Counterfort. The stresses in the counterfort will also be affected by the counter¬ 

fort spacing; but, since the counterfort dimensions are dependent on computations 
yet to be made, no attempt will now be made to compute the minimum spacing. 

Let us adopt tentatively a coimterfort width of 18 in. with a clear spacing of 
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8.5 ft. and center-to-center spacing of 10 ft. Use special anchorage, but it may be 
necessary to increase the footing depth. 

318. Location of Wall. Accepting again the criterion used in Problem 60 to locate 
the wall and assuming the footing to be 8.0 ft. wide with zero pressure at the inner 
edge, the weight of earth 10 ft. long and a width of -j- X 8.0 = 5^ ft. from the inner 
edge equals 

I 5. Wi = 100 5.33 X 10(24.33 + 0.17633: - 0.04) + 5.33 X 10 X 
0.941 

2 J 
= 127,200 + 9403: 

where x is the width of fill on tlio inner footing. 
For a 10-ft. length the weight of 

Wall = 24.33 X 10 X 1 X 150 36,500 lb. 

Counterfort == 24.33 X 1.5 X *- X 150 = 2735x lb. 

Earth between counterfort 100 X 8.5 X 

Earth over counterfort 

(24.: 33x + ■ 
0.1763x2 ^ 

20,683x + 75x2 

= 100 X 1.5 X (24.33 + 0.17633:) - = 1825x -f 13.22x2 

W2 = 36,500 + 25,243x -J- 88.22x2 

Equating Wi — W21 x — 3.65 ft. Let the inner footing project 44 in. beyond the 

wall and the outer footing project 40 in. 
319. Stability of Wall Footing. Adopting these dimensions, take a 10-ft. length 

of the wall footing as a rigid body bounded by the plane AB in the earth bank. The 
earth pressure on this plane, for z = </►== 36®, 5 = 10°, 0 = 90°, is (see Art. 313, 

Problem 60): 

E 1 X 0.272 X 10 = 96,600 lb. 

E„ = 56,800 lb. and Eh = 78,200 lb. 

Taking moments about point C (Fig. 193), Force 

lb. 

Wall 
Footing = 150 X 8.0 X X 10 

24.33 
Counterfort = 150 X 3.67 X .. ■ •• X 1.5 

Jt 

Earth = 2,433 X 3.67 X 8.5 
3.67 

2,433 X ““ X 1.5 
2 

3.67 
65 X — X 10 

A 

Pv 

Ev 

» V 

Moment 

in. in.-lb. 

X 46 = 1,679,000 

X 48 = 960,000 

X 661 = 670,000 

X 74 = 5,620,000 

X 8li = 545,100 

X 8q = 97,000 

X96 = 5,452,800 

207,190 lb. 

26.65 X 12 
^ Eh ^ 78,200 X 

+15,023,900 in.-lb. 

-8,336,100 

XM 6,687,800 ^. 
J. -j-—^ » 32.3 UL 

Pp 207,190 

XM +6,687,800 in.-lb. 
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The resultant of the soil pressure on the base acts 0.3 in. within the middle thirds 
BO there is compression over the whole base. 

Maximum Soil Pressure. If the soil pressure on the base varies uniformly its 
resultant R = ax^A, where 

a == intensity 1 ft. from neutral axis 
Xo ~ distance to center of gravity of base from neutral axis 

A — area of base 

This resultant acts at a distance {xr — Xo) from the center of gravity of the base 

equal to Xt — Xo ~ —~ , where lo is the moment of inertia of base area about its 
XoA 

center of gravity. For this problem, the distance from the point of application of 
the resultant to the center of gravity equals 48 — 32.3 = 15.7 in. Then 

15.7 _ 10 X (8.0)^ 

12 “ 12 X 10 X S.Qxo 

Xo = 4.07 ft., or the neutral axis is 0.07 ft. beyond the inner edge of the footing. 

The maximum vertical intensity of pressure pmax. equals 

207,190 = a X 4.07 X 10 X 8 and a = 635 lb. per cu. ft. 

Pmax. = 8.07a ~ 5130 lb. per sq. ft. (whereas the allowable soil pressure is 6000 lb. 
per sq. ft.) 

Sliding. The horizontal earth pressure tending to slide the footing away from the 
bank equals Eh = 78,200 lb. The friction available, if z = 30° for earth on concrete, 

equals tan z == 207,190 X 0.577 — 119,600 lb. This gives a factor of safety against 

sliding of 1.53, which is ample. Therefore adopt a footing 8 ft. wide, with the wall 
center placed 50 in. from the inlier edge and 46 in. from the outer. 

320. Depth of Footing. Inner Footing. Figure 194 shows the vertical pressures 
acting on the inner footing. If a strip 1 in. wide is taken at the inner edge, the net 

downward pressure nearly equals lb. per ft. length of the strip. The footing 
is a continuous beam spanning from counterfort to counterfort. 
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Since the moments and shears are numerically greater in the end span, design for 
this case. 

Mat = ^ = 225 X (8.5)* X ^ = 19,500 in.-lb. 

^ [m I 19,600 

At the first interior support the maximum shear V — 0.575 X 225 X 8.5 — 1100 lb. 
Use special anchorage; then the necessary depth, if no web steel is used, equals 

_F _ 1100 

vbj " 75 X 1 X 0.87 
16.8 in. 

The depth h ~ 16.8 + 5 = 21.8 in. Use 22 in. 
The outer footing is not supported by a buttress, so it will be designed as a cantilever 

extending out from the wall-footing junction. The forces acting on a strip 1 ft. 

wide are 

1. Weight of footing (assumed 20 in.). 
2, IncUned earth pressure on the base. 

Taking moments about the center of the section at the wall junction. 

Force Moment 

lb. in. 

Vertical Pressure 

Uniform = (3,010 - 250) X H = 9,200 X 20 
Varying = (5,130 - 3,010) X i X ft = 3,535 X f X 40 = 

V = 12,735 lb. 

Horizontal Pressure 

78,200 1 40 
=^-^30X10 = 

SM - 
For fiber stress: 

/ 226,' 

“ Vl96 ) 

970 

X 12 
9.83 in. 

in.-lb. 

184,000 

94,270 

+278,270 

-51,300 

226,970 

The inner footing will be 22 in. deep, with a value of d = 17.0 in. The outer-footing 

cantilever will be made the same and will be checked for diagonal tension at a dis¬ 
tance of d from the wall, let us say 17.0 in. The shear force at this section equals 

V = 
/5130 + 3915 

\ 2 
- 8200 lb. 

V 
8200 

12 X 0.87 X 17 
= 47 lb. per sq. in. 

This is less than the allowable v *= 75 lb. per sq. in., and the footing will be made a 

constant depth of 22 in. The previous computations will be only slightly changed 
if an extra 2 in. of footing concrete is substituted for earth. 
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321. Footing Steel. Ovi&r cantilever. 

A. 226,970 

20,000 X 0.87 X 17.0 
= 0.77 sq. in. 

So 
12,735 

187.5 X 0.87 X 17.0 
4.60 in. 

Use f-in. round bars at 6-in. spacing. These bars will be bent up into the wall to 
act as dowels, or shear reinforcement at the junction of wall and footing. If the 
resistance of the concrete in the keyway is disregarded, the shear force of 6800 lb. 

per ft. at this junction produces a shear stress in this steel of - = 7700 lb. 
^ ^ ^ 2 X 0.442 

per sq. in. This is a safe steel shear. 

Inner Footing. Let p = net pressure on a 1-in. strip (lb. per ft. per in. width) 

Exterior span—positive moment 
(8.5)2 X 12 

14 V 61.9p in.-lb. 

Interior span—positive moment = 54.2p in.-lb. 

A. _M_ 

20,000 X 0.87 X 17.0 

M 

296,000 
sq. in. per in. width 

For the inch strip at the inner edge, exterior span: 

^ 61.9 X 225 . 
Am = —= 0.047 sq. in. per m. width 

Use -g-in. rounds at 6^-in. spacing. 
With the use of certain increments of spacing, there is tabulated below che loca^ 

tions where such spacing may be used, the net pressure being taken from Figure 194. 

Exterior Span—Positive Steel—1-in. strip 

Distance 
Net from 

Spacing A, Pressure Inner Edge 

in. sq. in. lb. per ft. 

6.5 0.0473 226 0 
8 0.0383 183 9 

10 0.0307 147 18 
12 0.0256 122 23 

Interior Span— -Positive Steel 

7 0.0441 241 0 
8 0.0383 209 3.5 
9 0.0341 186 9 

12 0*0256 139 19 
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In the interior spans, the negative moment equals — and will require an area of 

lx = 1-45 of the positive steel. This can be supplied by alternating bars A and B 

as shown in Figure 195. 

In the exterior span, the exterior support requires a negative area of x|- = 0.583 
of the exterior positive steel; the interior support needs a negative area of 1^ = 1.4 

End Counter- First Interior 

z Clear Span z Clear Span L_ Zj 
r Extenor n n 1 Interior *| n n 

Use j of dors os C 

j of Bars os D 

Use I of Bars os A 

i of Bars os B/ 

i of Bars as 62 

Fig. 195 

In Other Interior 
Spans B2 Bars ore 
Reversed Bi Bars 

of the exterior positive steel. These areas can be supplied by using 2 bars C for 

each bar D, if the negative steel from the interior spans is also included at the first 
interior support. 

For the inch strip at the inner edge the steel arrangement of Figure 195 gives a 
steel area of 0.0804 sq. in. per in. width at the first interior support. This is equiva¬ 

lent to 0.262 bar. The shear force at the exterior face of this support is 1100 lb. per 
in. width. 

V 1100 
Bond stress w = — = -—--—--- = 145 lb. per sq. in. 

ojd 0.262 X 1.96 X 0.87 X 17 

The allowable bond stress for special anchorage equals 188 lb. per sq. in. If this is 
safe, the bond stress is satisfactory elsewhere in the inner footing. 

322. Wall Steel. End Span. Since the wall is regarded as a continuous beam, 

. . . , P^ 
the positive moment in the end span will be —7, where p is the horizontal component 

14 

of the lateral earth pressure. This pressure on the wall varies with the depth h. 

p = 0.86 X 26.6/1 = 23h lb. per sq. ft. = 1.92/i lb. per ft. per in. height 

1.92 X (8.5)=“ X 12 , _ 
Af =-—-h = 119/1 m.-Ib. 

14 

_im_„_L. 
* “ 20,000 X 0.87 X 8.76 “ 1280 ***■ 
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When 3 in, of dampproofing and f-in. round bars are used, the spacing of the bars 

may vary as shown below. 

Spacing 
in. 

Area 
sq. in. 

per in. 

Maximum Depth 
Aft. 

Exterior Span Interior Span 

10 0.0196 25.1 28.7 
12 0.0163 20.9 23.9 
15 0.0130 16.6 19.0 
18 0.0109 14.0 15.9 
21 0.0093 11.9 13.6 
24 0.0081 10.4 11.9 
27 0.0072 9.2 10.6 
30 0.0065 8.3 9.5 

The steel spacings for the interior spans can be figured also. An arrangement of 
bars similar to those of the inner footing will give the required steel for the negative 
bending at each support (Fig. 195). 

The maximum bond stress will occur at the first interior support. For the inch 
strip at greatest depth (24.25 ft.), the shear force V — 0.575 X 8,5p = 9.37h - 228 lb. 

The steel arrangement of Figure 195 shows a steel area of 0.0315 sq. in. per in. at 
this support, or 0.161 bars. The bond stress equals 

_228_ 

0,161 X 1.57 X 0.87 X 8.75 
= 118 lb. per sq. in. Safe. 

Since the steel area and perimeter vary with the depth h, and the shear force V 

does also, the maximum bond stress is constant for all critical depths. 

Temperature Steel. The wall contains horizontal steel as main reinforcement; 
therefore, the temperature steel will be placed vertically. The outer face is the more 
exposed to temperature changes and shrinkage. 

Outer face A, = 0.0025 X 12 X 8.75 = 0.26 sq. in. per ft. height 

Use §-in. rounds spaced at 9 in. For the inner face use ^-in. rounds spaced 
at 18 in. 

323. Counterfort. The counterfort tends to fail in tension since the wall is pushed 

outward and the inner footing downward (Fig. 196). The rotation tendency of the 

Wall is usually greater than that of the footing, but this unbalanced couple must lift 
the whole mass of earth on the footing. The tension failure will occur on the sec¬ 

tion AB, Higher sections, such as CD, are not so heavily stressed, since the moment 

of the forces acting on the wall varies with the square of the waU depth, whereas the 
thidkness of section BC or AB varies with the wail depth. 
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By using the dimensions of the counterfort from Figure 196, the earth pressure 
on the counterfort can be found. 

<f> = 36^ z = 30^ S = 10°, 6 = 98.6° 

100 X 1.5^2 
E X 0.350 = 26.25/^2 

This pressure makes an angle of 38.6° with the horizontal. Point B of Figure 196 
is at a depth h = 23.63 ft. The earth pressure on the counterfort above point B is 

E — 26.25(23.63)2 = 14,660 lb. Its components equal Eh — 11,470 lb. and Ey ~ 

9150 lb. Taking moments about A (Fig. 196) for a 10-ft. length of the wall: 

WaU Eb = ~ 

Counterfort 

X 0.866 X (24.17)2 X 8.5 = 57,000 X 
24.17 

Eh = 11,470 X 
/23.63 \ 

Ey - 9,150 X I X 3.58 = 

459,000 

96,600 

-555,600 

+21,900 

The necessary depth of section AB equals 
2M 

d 4 533,700 X 12 

196 X 18 
= 42.6 in. 

-533,700 ft.-lb. 

The section is 43.5 in. total depth. Allowing 3.5 in. to center of the steel, the 

actual d = 40 in. If the counterfort width is increased to 21 in., M = 534,000 ft.-lb., 
and d « 39.4 in., which is satisfactory. The change in width will only slightly affect 

the previous computations. 

534,000 X 12 A, 
20,000 X 0.87 X 40 

9.20 sq. in. 
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Use six square bars. Bond stresses are undoubtedly satisfactory. If it is 
desired to check them, it is best to return to the bond stress derivation (equation 27, 

Art. 64) to use 

Rate of change of bending moment 
dj^ 
dh ’ 

and 
(M 

dh 
= y^ojd 

The change of bending moment per inch of wall depth can be substituted satis¬ 
factorily. In this problem, M = 37.84/^3 If /i = 24.17 ft., M = 534,000 

ft.-lb.; when h — 24.08 ft., M ~ 528,400 ft.-lb. The change of moment per inch 

depth equals 6600 X 12 = 67,200 in.-lb. and w = 64 lb. per sq. in. 

The second row of steel can be cut off when the area required at some section CD 
is less than one half the area at section AB, Three 1 J-in. bars can care for a moment 

Af « 3 X 1.56 X 20,000 X 0.87d = 81,500d in.-lb., where d = 0.15 X I2h - 3.5. 
Equating the expressions for moment, h — 16.9 ft. 

Ties, Since the wall and inner footing tend to pull away from their supporting 
coimterfort, there must be tie bars to supply the tensile supporting forces. 

Wall Ties, In the design of the wall (Art. 322) the shear force at the first interior 
support for the exterior span equals 

y « 0.575/p = 0.576 X 8.25 X - 109^1 lb. per ft. height 

where the clear span is now I *= 10.0 — 1.75 = 8.25 ft. 
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If |-in. round horizontal bars are hooked over the wall steel at the counterfort, 

the tensile stress in these tie bars is 

V _ 109h 

ma, 0.1 Iw 
992- 

m 

where m = number of bars per foot height 

o« == area of the bar. 

If the steel arrangement of Figure 195 and the corresponding maximum depth k 

are used, the greatest value of /« = 11,700 lb. per sq. in. These bars must run at 

least 24 diameters == 9 in. into the counterfort. These f-in. ties will also serve at 

the other counterforts. 

Footing Ties. At the first interior support the shear force on an inch strip equals 

V - 0.575 X 8.25(225 - 4.53x) = 1078 - 21.5a: 

where x = distance from inner edge (in.). 

If two I-in. ties are hooked over each bar, one in each face, 

V 
fa = — = 11,600 Ib. per sq. in. (maximum) 

naa 

where n = number of ties per inch. 

The complete steel layout is shown in Figure 197. 

324. Cost Comparison. A comparative cost analysis is given in Table 
E for the three retaining walls just designed. It is assumed that the 
excavation charged to the wall is from outer face into the bank and that 
the excavation ends at the footing edge. The back fill is also charged 
to the wall but not the front fill. The gravity footing is assumed to be 
2500-lb. concrete in order to give a wall which will weather well. The 
unit costs are 

Excavation 4 cents per cubic foot 

Back fill 2 cents per cubic foot 

Concrete 

2500-lb., reinforced wall footings 37 cents per cubic foot 

Steel 4 cents per pound 

Forms 10 cents per square foot 

of side surface 

The costs include no estimate for waste and are not necessarily typical 
for any particular locality. They do show the value of estimating the 
costs of comparative designs. 

If the bank is higher, the counterfort wall is undoubtedly cheaper, 
If the depth is less, the cantilever wall will be cheaper. The designs 
are made for the end span. The interior spans will have less steel and 
be somewhat cheaper. 
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Table E. Cost Comparison of Retaining Walls 

Gravity 

Exterior Span 

Cantilever Counterfort 

Quantity 
per ft. 

Cost 
1 

Quantity 

per ft. 
Cost 

Quantity 

per 10 ft. 
Cost 

Excavation, cu, ft. 405 16.20 132 5.28 1230 49.20 
Fill, cu. ft. 53 1.06 83 1.64 822 16.44 

Concrete: Wall 32.4 242 
Footing 13.3 147 
Counterfort 78 

Total, cu. ft. 351 129.87 45.7 16.91 467 172.79 

Forms: Wall 49.0 442 
Footing 3.3 37 
Counterfort 132 

Total, sq. ft. 53 5.30 52.3 5.23 611 61.10 

Steel: Wall 139 496 
Footing 81 360 
Counterfort 635 

Total, lb. 220 8.80 1491 59.64 

Cost $359.17 
Cost per foot length $152,43 $37.86 $35.92 



CHAPTER 13 

THE REINFORCED CONCRETE STRUCTURE 

The construction of a reinforced concrete structure involves the solu¬ 
tion of engineering problems other than those of its design. A site is 
selected in view of business and transportation requirements. Soil con¬ 
ditions for some distance underground must be ascertained to determine 
allowable soil pressures and the type of foundation best suited to reduce 
settlement and to result in uniform settlement. The choice of wood- 
brick, steel frame, or reinforced concrete structure will be made on basis 
of cost, fire protection, and proposed use of the building. Column 
spacings and story heights will be influenced by necessary head room, 
machine clearances, and other pertinent considerations. Stairways, 
elevators, pipes, heating and ventilation all require space and oftto 
complicate the design. 

The construction force must plan their plant to operate efficiently 
whether the location is in a city lot completely covered by the structure 
or in the country with ample room on all sides. In the midst of these 
decisions the designer starts work, with necessary revisions due to 
changes by the owner or architect, and is often forced to turn out plans 
under pressure to keep ahead of the field force. 

In this chapter it is proposed to discuss some of the factors not yet 
mentioned, particularly those which affect the design of a structure as 
a whole. 

FORMS 

325. Forms. A requisite for proper construction of the design is that 
the members be made true to size without warping or distortion while 
the concrete is placed and hardens. The forms must be strong enough 
to support the plastic mass of concrete as well as the weight of the men, 
runways, buggies, etc. This entails a design of the forms for strength, 
and also for economy, since the form cost may be a quarter or a third 
of the total cost. The forms must be tight so that water and cement 
are not lost, and they must be so designed that they can be easily re¬ 
moved without injury, especially if they are to be used again. Above 
ground concrete surfaces should be left smooth enough to satisfy the 
functional and architectural requirements of the structure. In many 

355 
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structures forms can be used again economically in the floors above, 

either unchanged in size or cut down. This implies a stout form, care¬ 

ful stripping after use, cleaning, and possible repairs. 

Forms are made of wood or steel. The steel form is usually limited 

to forms for circular columns and column capitals, and for slab and joist 

floors. Wood planks for slab and wall forms are usually tongucd and 

grooved with a planed surface bearing against the concrete; often they 

are surfaced on all four sides. Square-edge planks are usually used for 

beam sides and column forms. Table F gives data for certain board 

and plank sizes. 

Table F.* Properties of Boards and Planks, Dressed Four Sides (S4S) 

Nominal Size 
in. 

Dressed Size 

in. 

Area 

sq. in. 

Section Modulus 
on Edge 

cu. in. 

Section Modulus 

on Flat 

cu. in. 

1x4 It X 2.83 1.71 0.37 

1x6 If X 5| 4.39 4.12 0.57 
1x8 5.86 7.32 0.76 

2x4 if X 3f 5.89 3.56 1.60 
2x6 l|x5t 9.14 8.57 2.48 

2x8 if X 7^ 12.19 15.23 3.30 

2x10 If x9^ 15.44 24.44 4.18 
2x12 if X 111 18.69 35.82 5.06 

3x4 2f x3| 9.52 5.75 4.16 
3x6 2fx5| 14.77 13.84 6.46 
3x8 2f x7^ 19.69 24.61 8.61 
3x10 2| X 9-^- 24.94 39.48 10.91 
3x12 2fxllJ 30.19 57.86 13.21 

4x4 3f X 3f 13.14 7.94 7.94 

4x6 3f X 5f 20.39 19.12 12.32 

4x8 3fx7^ 27.19 33.98 16.43 
4x10 3f x9| 34.44 54.53 20.81 
4x12 3|xll| 41.69 79.90 25.19 

♦Abstracted from *‘Wood Structural Design Data,” National Lumber Manu¬ 

facturers Association. 

Plywood panels are in common use to form extensive flat surfaces, 
such as floor slabs and walls. Panels may be obtained in thickness from 

to in.; 48 in. wide by 96 in. long is a common size, but widths 
in even feet up to 8 ft. and lengths up to 16 ft. can be obtained on special 
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order. The plywood panel gives smooth concrete surfaces and the joints 
are easily rubbed down when the formwork is well placed. In certain 
structures, where the added cost is justified, forms are faced on the inner 
side with special absorbent fiber boards. These remove some of the ex¬ 
cess surface water and result in a more durable and impervious surface 
concrete. Ordinary form surfaces are brushed with mineral oil to pre¬ 
vent the concrete from adhering to the wood. 

Table G.* Allowable Stresses fob Wood Formwork 

(Pounds per Square Inch) 

Fiber 

Stress 

Compression 

Longitudinal 
Shear 

Modulus of 

Elasticity 
llto 

grain 
JL to 
grain 

Spruce and pine 1100 1000 250 no 1,100,000 
Southern pine or 

Douglas fir 1900 1400 315 120 1,500,000 
Plywood (Douglas 

fir) 2000 1500 325 120 1,600,000 

These allowable stresses are increased 20 per cent for wartime by the W.P.B. 

Specifications. 

After the concrete has been poured a suitable time must elapse before 
the form is removed. This time varies with the type of member, prob¬ 
able immediate loads upon it, and with the curing requirements and 
temperature range. Columns and wall forms should remain in place at 
least 2 days, in cold weather at least 4 days, provided the beams and 
girders are stDl supported by shores. Slab forms and beam sides remain 
in place from 7 days to 2 weeks, the longer interval applying to long 
spans. Slabs are often supported by posts or shores after the forms are 
removed. Beam and girder bottoms are supported for 10 days to 3 
weeks, depending on the load, span, and weather conditions. If test 
specimens of the concrete are taken as it is poured, forms can be removed 
when the concrete of the member in question has a strength in excess 
of the stresses used in design, or a 50 per cent excess of the dead and 
construction loads. 

326. Wall Forms. The sheathing of wall forms (Fig. 198) is made of 
planks or plywood panels. These are held in place by vertical studs. 
Sometimes a sill is placed on the ground bearing against the lowest 
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plank and the studs rest on this silL Low walls are plumbed and held 
in place by braces nailed to the studs. Higher walls must be kept true 
by bolts, or ties, to prevent the bulging out of the sheathing as the 
concrete is poured; there must also be spacers to keep the two forms 

the proper minimum distance apart. A combination of pipe sleeve and 
tie bolt is often used to perform both functions, and there are also many 
special types of ties in general use. 

ILLUSTRATIVE PROBLEM 62 

827. Design of a Wall Form. Design a wall form to resist a 6-ft. head of wet 
concrete exerting a lateral pressure of 140 lb. per sq. ft. 

Sheathing. Assume 1-in. spruce or pine planks as continuous beams supported 
by the studs. Taking 1 in. of height of this planking and checking the interior spans, 

M 
wt^ fbt^ 

TT “ T 5 
1100 

XIX 

I « 1.32 ft. 

Use Idn. plank with studs spaced at 16 in. The studs are supported by the tie- 
bolts and wales. Assuming the studs to be continuous beams of 2 x 4 section, 

(5 X 140 X X If « 1100 X 3.56 

I = 1.96 ft. 

Use 2x4 studs with wales and bolts spaced at 22 in., except near the top of the 
waM wbm there cannot be a 6-ft. head of wet concrete. The wales are also continu¬ 
ous beams supported by the tie bolts on a stud span of 16 in,, and spaced 22 in. 
apart. Aiauming a 2 x 4 wale with an average prwure equal to the 
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6 X 140 = 700 lb. per sq. ft., the force carried by the supporting ties equals ^ X 
700 X ^ = 1716 lb. With a tensile strength of 20,000 lb. per sq. in., the necessary 

area is 0.09 sq. in. Use f-in. tie rods in a 3^-in. hole. 
The wale is loaded only by the ties. As long as the level of the wet concrete is 

constant all ties have the same force and elongate the same amount, thereby causing 
no bending in the wale. Let us assume that a buggy load of concrete is dropped in 

opposite stud 5 to increase the depth of wet cement to 6 ft. at this stud, although the 

general level in the wall is 18 in. less. The pull in the tie in stud 5 is 1715 lb. and 
in the adjacent ties is 1200 lb. for 3.5 ft. of wet concrete. There will be bending in 
the wale due to the difference of 515 lb. Assuming a span of 32 in. between studs 4 

and 6, we have a beam loaded with a concentrated force of 515 lb. on a span of 32 in. 

with ends fixed, or nearly so. 
Wl 

The fixed-end moment for such a loading is — ; let 
o 

WL ZWl 
let us assume an end moment of — with a corresponding positive moment of . 

10 20 
The tie-hole reduces the wale width at stud 5 to 1J — 1.19 in. The required 

3 X 515 X 32 
section modulus - —-- 2.24 (in.)^. A 2 x 4 wale with a -rV-in. hole 

20 X 1100 
will give this section modulus. 

328. Slab and Beam Forms. The slab and beam forms are supported 
by a system of shores stout enough to support the whole weight of the 

)hore Wedges 

Fig. 199 
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floor. They should be so installed that the beam sides and slab forms 
can be removed while the beam bottoms are still shored. Posts can be 
replaced under the slab, if necessary. Figure 199 shows a possible sys¬ 
tem of slab and beam forms with supporting shores. There are other 
methods of supporting the beam sides by the use of bolts or clamps. 

ILLUSTRATIVE PROBLEM 63 

829. Design of Slab and Beam Forms. Slab. Design forms for the interior panels 

of the floor system of Figure 61 (Art. 121). The slab is 4 in. thick and the beam 

stem is 8 in. wide and 13 in. deep (Fig. 81, Art. 135). The beams are spaced 9 ft. 

8 in. on centers. The joists under the slab form are supported by the joist ledger 

and can be nailed to the beam-side cleat. Their span can be taken as 8 ft. 4 in. 

The load per square foot of slab surface is taken as 

Construction load of men and equipment 

4-in. slab 

Formwork 

70 

50 

10 

130 lb. per sq. ft. 

With a maximum moment of — the spacing of 2 x 8 Douglas fir joists is 
8 

130 X 6 X (81)2 X = 1900 X 15.23 5-2.14 ft. 

Use 24 in. At this spacing of 24 in. the maximum deflection of the joists is about 
I 

0.33 in., and the allowable deflection = 0.28 in., but after the construction loads 

move on, the deflection will be well under 0.28 in. No intermediate shores will be 

3F 
used. Maximum longitudinal shear v — -- = 132 lb. per sq. in., but this will again 

2bh 

be reduced by the removal of the construction loads. 

Using ^-in. plywood panels for the slab form and a maximum moment of 

the fiber stress figures 

130 X (2)2 X = i X 12 X (i)2 X/ 

/ = 1140 lb. per sq. in. This is safe. 

Beam Forms. The load coming to the beam shores equals 

wl^ 

IT’ 

Beam stem (8 X 13) = 110 

Forms 30 

1400 lb. per ft. of 

beam length 

The shore will be supported on a sill to spread its load on the slab below. It will 

be wedged in place on this sill. It will be braced in both directions by 1 x 4 or 1 x 6 
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planks placed high enough to allow passage underneath. This bracing is not sturdy 
enough to reduce the unsupported length. If the story height is 11 ft., the unsup¬ 
ported length equals 132 ~ 17 — 3 = 112 in. Assuming a 4 x 4 spruce post, the ratio 
h 
~ = 30.8. This is a long column and the allowable stress is given by the Euler 

formula: 
^ 0.274Ed2 ^ ^ „ 
J ~-Ti- =318 lb. per sq. in. 

h 

The maximum load equals 318 X 13.14 — 4180 lb. and the load carried for a shore 
spacing I equals 1400/ = 4180 or / = 3 ft. 

The beam bottom will be a Douglas fir plank supported by the shores and stiff¬ 
ened by nailing to the beam sides. If the assistance of the beam side is disregarded, 
the necessary section modulus Z will be 

1400 X (3)2 X if- = 1900Z Z = 7.23 (in.)® 

A 3 X 8 plank is satisfactory. If the shore spacing is reduced to 2 ft., a 2 x 8 plank 
can be used. 

Note, The beam stem is onhj 7\ in, wide. Designers should compute the concrete 

section by using the true width of the beam bottom. Those concerns that use the nominal 

8-in. width are reducing the factor of safety or assuming that the full live load is not 

applied until the concrete strength exceeds its 28-day value. 

The beam sides wall be made of 1-in. stock. Assuming 2x4 cleats spaced at 2 ft., 
the pressure of wet concrete on the lowest inch of the stem will be 140 X ts" = 200 lb. 
per sq. ft. The maximum plank fiber stress in the lowest inch is 

200 _ 12 1 /25\2 ^ 
n ^ ^ ll 6 ^ (32) ^ ^ = 715 lb. per sq.m. 

It is not necessary to check the cleat dimensions. The joist ledger is supported by 
these cleats and is loaded by the joist which touches one side of the cleat. Assume 
a 2 X 4 ledger; the fiber stress will be very low and the shear stress v equals 

3 F __ 3 130 X 8.33 22.38 

2hh~ 2^ 2 X 5.89 ^ 24 
= 128 lb. per sq. in. 

where the supporting force of the joist equals = 130 X 8.33 X 2 and l^be maximum 
22.38 

shear on the ledger equals R X • . No allowance has been made for reduction 
24 

of V by nailing the joist to the cleat. This load acts between joist and ledger as 
542 

compression perpendicular to the grain. The compressive strength equals -ry = 
If X If 

206 lb. per sq. in. This is safe, if the assistance given by nailing the joist to the cleat 
is again disregarded. 

330. Coluxnn Forms. Rectangular column forms are made of wood. 
The forms on two opposite faces are made the exact width of the column 
(even plank widths) and the other two forms overlap for a ti^t fit. 
There are many systems of cleats, bolts, clamps, wedges, and the like 
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Bevef Sfr/p 

Cut Girden / Cuf for Beam 
>^orm \ J ^fcrm 

in use. Figure 200 shows one using cleats, bolts, and wedges. The 
forms should be stout enough for use again on the floors above, if the 

story heights do not vary too much. 
The form can be cut down for width 
as the column width reduces. At the 
top of the form cuts are made big 
enough to admit the ends of the beam 
and girder forms. A cleanout opening 
should be left on two opposite faces at 
the bottoms to remove dirt, shavings, 
and loose ends after the steel is placed 
and before the concrete is poured. 

Steel forms are usually employed 
for circular columns and those with 
capitals. 

ILLUSTRATIVE PROBLEM 64 

331. Design of Column Forms. By assum¬ 
ing an average lateral pressure equal to 6 ft. 

of wet concrete at 140 lb. per sq. ft., and 

adopting ij-in. yellow pine planks, the spac¬ 
ing of cleats can be found. 

Cieonouf Hole 

■“ IT "" ~6“ 

6 X 140 . 12 1900 m 
Column Form 

Fig. 200 

I = 2.17 ft. Use 26-in. spacing. 

It is probable that a column may be filled 

more rapidly with wet concrete than a wall, 
so 6 ft. of wet concrete is used here, instead 

of the 5 ft. of Problem 62. This cleat spacing will be constant until within 6 ft. 

of the under side of the girder where column pouring will stop. Greater spacings 

can be used as the girder bottom is approached. Even the overlapping cleat, which 
is supported by the bolts, will be safe at this spacing for a column width up to 36 
in., if the cleat is made 2 in. wide by 4 in. deep. Some designers prefer a 4 x 4 

cleat mnce the area at the support is reduced by the bolt hole. The column form 
should be plumbed and braced after the steel assembly is installed. 

PLANS AND DETAILS 

332* Plans. The framing plan shows the location of columns, foot- 
jitgs, beams, girders, and walls for the load-bearing monbers of a steuo- 
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ture. If there are no unusual restrictions due to head room, machine 
clearances, or aisles, several different framing plans may be possible. 
These may involve different schemes of column arrangement as well as 
different beam and girder floor systems, or a comparison between beam 
and girder with flat slab or ribbed floors. The most economical system 
should be the designer's objective but this cannot be attained without 
comparative cost designs using approximate determinations of sizes plus 
costs and quantities from the estimating department. 

Once the framing plan has been adopted, each individual member is 
designed and detailed, showing an elevation with the steel arrangement 
for beams and columns, plus typical cross sections. A plan view is given 
also for slab steel distribution. Drawings of forms and form layouts are 
made with schedules of lumber needed. Schedules of steel are also 
needed with a detail of each type of bar, showing bends and lengths. 
Extra reinforcement around holes, under machinery, and so on, must 
have special detail drawings. 

Chairs, spacer bars, and collars are required to hold the steel in its 
proper position until the concrete is poured. These are not shown in 
the plans and the judgment of the steel foreman in the field usually 
determines where they shall be used. Splices of the column steel are 
shown for length on the elevations but the necessary offset to give clear¬ 
ance with the steel in the column above is left for the steel foreman. 

The detail elevations of individual members do not completely show 
the complexity of the steel placement at the junctions of several mem¬ 
bers. Thus, a junction of an upper and lower column with an east-west 
continuous girder and a north-south continuous beam gives a delicate 
problem in passing the various reinforcements through the junction 
without interference. Such junctions should be studied carefully, even 
if special detail drawings are not supplied to the field force. 

333. Construction Joints. It is seldom possible to pour a floor in one 
operation. The work must be laid out to complete what can be done 
in one day. Also, long structures need provision for the absorption of 
the expansion and contraction of temperature changes. This is ac¬ 
complished by stopping the day's work at a construction joint, which is 
a section through beams and slabs. The portion completed the previous 
day will undergo part of its shrinkage before the next day's pouring 
starts. Compressive forces can be transmitted through a construction 
joint by the pressure on opposite sides. Tensile forces can only be 
carried by the steel passing through the joint, and vertical shear resist¬ 
ance is much reduced. For these reasons construction joints are usually 
made at sections of zero shear force, which is the section of maximum 
positive bending moment near mid-span. Elsewhere special joints with 
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ke3rways should be used to increase the shear resistance. Sometimes 
special joints are inserted of metal or some plastic material to allow for 
the opening or closing due to temperature and shrinkage. 

Column and wall joints are made at the upper end immediately under 
the floor beams. For the most part compressive stresses are transmitted 
through the joint, but a horizontal joint should be carefully cleaned to 
remove the laitance scum that settles on the surface of wet concretes. 
These columns and walls are usually poured several days before the 
floor above and shrinkage will be largely completed before the floor 
is poured. 

334. Economy of Design. The choice of an economical concrete mix 
has been discussed for floor systems (Art. 66) and for columns (Table C, 
Art. 237). Sample cost comparisons have also been made for footings 
(Table D, Art. 275) and retaining walls (Table E, Art. 324). There are 
also certain general practices that tend to decrease costs. 

Members poured in wood forms should have such sectional dimen¬ 
sions that stock widths can be used. There is an extra charge for rip¬ 
ping out the proper plank width in the mill. 

Reinforcement is sold at a base price applying to f-in. round bars 
or larger. Bars smaller than |- in. are sold at an increasing price above 
the base; therefore :|-in. round bars may cost 20 to 25 per cent more 
than the base price. 

It is often advantageous to use the same stem depth for all beams on 
the same floor. The forms for beam sides and the supporting shores 
will be identical for all beams and it will be easier to run shafting and 
piping under the beams. If beams are supported by girders, the stem 
of the beam is usually shallower than that of the girder, but different 
depths also prevent interference of the bottom reinforcement. 

STAIRWAYS AND SPECIAL BEAM SECTIONS 

336. Angle Beams. Wall beams in a floor system frequently consist 
of a beam stem supporting a slab coming in on one side only. Beams 
at the outer edge of a balcony or those framing openings are also angle 
beams. A.C.I. Article 705 states that angle sections are designed simi¬ 
larly to tee beams, using a flange width 6 == (6' + Qt)y but not exceed¬ 

ing b = (b' + . Such a section violates the fundamental beam 

theory requirement that the section shall be symmetrical about the 
vertical plan of loading. It is also true that the external loads produce 
torsional as well as bending moments. In the past it has been customary 
to design wall beams for bending only, the torsional moments and the 
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non-syminetrical section being disregarded. A method of approximat¬ 
ing the torsional stresses has been given in Problems 25 and 26 
(Chapter 8). 

An endeavor is sometimes made to design the transformed section for 
bending so that the resultant tension and compression forces act in a 
plane more nearly vertical. This is accomplished by adding compres¬ 
sion steel which is offset to the outside edge of the wall beam. The 
tension steel is offset toward the inside face. The object is to have the 
resultant of the compression forces in the concrete flange and the com¬ 
pression steel act vertically above the resultant tensile force. ^ The fol¬ 
lowing problem illustrates such an attempt. 

ILLUSTRATIVE PROBLEM 66 

336. Wall Girder. The wall girder of Problem 25 has the following dimensions: 
h' = 12 in., 6 = 36 in., A = 26 in., ^ = 4 in., depth to positive steel d — 22 in., 

fc = 2000 lb. per sq. in. The positive bending moment Mp = 880,800 in.-lb. A 
trial computation is made with one 1-in. round bar as compression steel and four 

1-in. round bars as tension steel, placed as shown in Figure 201. By A.C.I. Article 706 

Fig. 201 

the stress in the compression steel is taken as 2/^^. If the concrete is assumed to b© 
in compression only over the flange depth, the center of gravity of the transformed 
area can be formed by taking moments of the areas about the top of the flange. 

36 X 4 = 144 X 2 = 288 

2 X 14 X 0.785 - 22 X 2 « 44 
15 X 4 X 0.785 « 47 X 22 = 1034 

A = 213 sq. in. M = 1366 cu. in. 

Center of gravity « 6.42 in. from top 

1 See Reinforced Concrete Design, Sutherland and Reese, p. 285. 
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The moment of inertia about the center of gravity equals 

36 X (4)^ 

12 
192 

36 X 4 X (4.42)2 ^ 2,817 
22 X (4.42)2 ^ 43Q 

47 X (15.58)2 - 11,438 

^ I 

^ - 14,877 (in.)< 

880,800 ^ ^ 
-^-y = 69.2i/ 

14,877 ^ ^ 

fc = 59.2 X 6.42 = 380 lb. per sq. in. (maximum) 

fc — 59.2 X 2.42 = 143 lb. per sq. in. (minimum) 

2/', = 59.2 X 15 X 4.42 X 2 = 7850 lb. per sq. in. 

= 59.2 X 15 X 15.58 - 13,900 lb. per sq. in. 

Compression force in concrete: 

Uniform - 143 X 36 X 4 = 20,570 lb., 2 in. down, 18 in. from outer face 

Uniformly varying = X 36 X 4 = 17,0601b., 1.33 in. down, 18 in. from outerface 

Force in compression steel: 

0.785 X 7850 = 6,160 lb., 2 in. down, 3 in. from outer face 

Total compression force = 43,800 lb., acting 1.74 in. down 

Force in tensile steel = 4 X 0.785 X 13,900 = 43,800 lb. 

Taking moments about the outer face, 

20,570 X 18 + 17,060 X 18 + 6160 X 3 = 43,800xc 

Xc — 15.9 in. 

The resultant compression force C acts 15.9 in. from the outer face while the re¬ 

sultant tensile force T acts 12 -- 4.25 == 7.75 in. The plane of these two forces makes 
9_7.75 

an angle with the vertical whose tan — -rir" = 0.402, or an angle of 21.9®. 
22 — 1.74 

If no compression steel were used and the tension steel were spread uniformly over 

18 ““ 6 
the stem width in one row, this tangent would be tan =  -—- = 0.564, or an 

23 — 1.75 

angle of 29.4®. The compression stresses in the concrete are very low, as is to be 

expected with angle and tee beams under positive bending, so the compression steel 

is only used to help reduce the angle of inclination of the plane of the internal forces. 

By using the reinforcement of Figure 201 the moment of resistance at this section 

is found to have components of 

Vertical bending moment =» 43,800 X 20.26 ~ 880,800 in.-lb. 

Horizontal bending moment ** 43,800 X 7.75 » 340,000 in.-lbt 



Art. 339] WARTIME ALLOWABLE STRESSES 367 

337. Stairways. A reinforced concrete stairway is often supported by 
beams on each side of the stair. Each thin riser and tread may be con¬ 
sidered to be an angle beam supported by the side beams. The design 
of a single riser and tread as an angle beam requires the assumption 
that the adjacent units deflect the same amount as this one. 

Other stairs are designed as inclined slabs whose thickness is the 
minimum thickness of the sawtooth section, the projecting riser and 
tread being an added dead load. The live and dead loads are inclined 
to the axis of the slab and give direct and bending stresses. However, 
this exact procedure is usually not followed for design. The slab is 
designed as though it were a horizontal slab with a span equal to the 
horizontal projection between the supporting beams. The vertical load 
is used and the computed thickness must be equal to or greater than the 
minimum vertical section through the slab. In case the stairway is 
supported at the far end of the landing, this landing is included as part 
of the substitute horizontal slab. Short steel bars should be placed at 
the supports for negative bending moments, in addition to the continu¬ 
ous positive steel running from support to support. 

338. Holes and Openings. Openings of considerable size in a floor 
should be framed by beams, even in flat slab construction. Pipe holes, 
manholes, or small hatchways do not require such framing, if the hole 
does not interrupt much slab reinforcement. At the corners of rec¬ 
tangular holes local stress concentrations tend to produce cracks and it 
is advisable to place extra steel at these corners consisting of short bars 
placed at 45® with the axes of the rectangle. 

Pipe holes may also be necessary in the stems of beams. If possible 
these should be placed in the upper part of the stem in order not to 
reduce the compression area for either positive or negative bending. In 
the center of the span the hole can be lower as the compression area is 
in the slab. Even though the hole is circular, local concentrations off 
stress will give a maximum shearing stress about three times the com¬ 
puted stress for a solid stem, so extra 45® and 135® steel is desirable,, 
adjacent to the hole. 

339. Wartime Allowable Stresses. The War Production Board's 
Emergency Specifications for Reinforced Concrete Design were based on 
the 1941 A.C.I. Code in general. The object of these specifications is 
to reduce the amount of steel used as reinforcement. Therefore, it is 
recommended that plain concrete be used wherever possible, even though 
the plain concrete design does not give the most economical footing or 
retaining wall. The reinforced beam section should be large enough sov 
that no compression steel is needed. For column design, it is recom-- 
mended that tied columns be used instead of spiral, that the longi- 
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tudinal steel should not exceed 2 per cent, and that high-strength con¬ 
crete be adopted. 

To force the use of larger sections the maamum fiber stress in beams 
is reduced to 0.35/'e, instead of 0.45/'^. Shear and diagonal tension 
stresses are not changed but bond stresses are increased 10 per cent. 

The tensile steel stress in the structural grade is increased 10 per cent 
to 20,000 lb. per sq. in., whereas for the other grades it is increased 20 
per cent to 24,000 lb. per sq. in. The reduction of fiber stress in the 
concrete and increase in the steel will give larger sections and, also, less 
steel for the section chosen. 



CHAPTER 14 

THE STRUCTURE AS A RIGID FRAME 

A principal advantage of reinforced concrete constniction is the mono¬ 
lithic, continuous frame that is a result of good design. The previous 
chapters have considered the methods of design of the portions of such 
a frame that may be designated slabs, beams, columns, footings, and 
so on. Due regard has been given to the fact there is a certain restraint 
at the junction of slab wit-h beam, a beam with column, a column with 
footing. For the most part conventional restraining moments have been 
assumed to act, but there are also many cases where the frame should 
be considered as a whole in order to estimate these restraining moments. 
Unequal spans of a continuous member or marked difference in the sizes 
of the supporting members are two of many possible cases not covered 
by conventional moment coefficients. 

In the last 15 or 20 years great advances have been made in the? 
analysis of statically indeterminate structural problems. These solu- 
tions may be divided into four general types, namely: 

1. Continuous beams by the three-moment equation. 
2. Slope-deflection method. 
3. Moment-distribution method. 
4. Strain-energy or work solutions. 

These methods are all covered fully in modern texts of applied me¬ 
chanics, or structures, and the basic equations will not be derived in 
this text. Their application to problems of reinforced concrete design 
will be discussed in this chapter. 

340. Restraint of One-Span Beams. Let us first discuss a beam of a 
single span loaded with a uniformly distributed load of w pounds per 
foot (Fig. 202a). If the beam is supported at the ends, the bending 
moment diagram is a parabola with a maximum positive moment in the 

center of Mp = — and a moment of zero at the support. The shear 
8 

wl wl . , 
force diagram varies in a straight line from + to —— and is zero 

at the point of maximum positive bending moment. 
369 
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If the same beam has fixed ends, the bending moment diagram is the 
same parabola, but the maximum positive bending moment is only 

wl^ 
Mp = + ■57 and there is at the support a negative bending moment 

wl^ 
Mn ~ 77 (Fig. 2026). The point of inflection (M = 0) occurs at 

0.215Z. It will be noticed that the sum of the maximum negative and 

1 
+ w Ib.oerff.k k ♦ wib.oerff.kk 
--1-^ 1 1 ̂^ 1 ^ 

Supported F/xeof Parfia//y F/Ked 
i 

Shear Force 

(«) (« (c) 

Fig. 202 

positive bending moments is 
8 ‘ 

The parabola is identical with Figure 

202a except that its base line (M = 0) has been shifted up two-thirds 
wf 

the ordinate — . By fixing the ends the same load is carried with only 
0 

two-thirds the maximum numerical bending moment and hence two- 
thirds the fiber stress that the simply supported beam has; of, better 
still, a smaller beam will carry the same load. The shear force diagram 
is unchanged. 

The beam may also be partially fixed with a maximum negative bend- 
, wC^ 
mg moment somewhere between — and zero. Figure 202c has been 

<5omputed for the case where the partial restraint gives a negative mo- 

ment of — — . The maximum positive moment at the center will fig- 
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wl^ 
lire + —, and again the sum of the maximum positive and negative 

lo 
wP 

moments equals — . The base line (M = 0) for the parabola has been 
o 

wl^ 
shifted up half the ordinate — . The shear force diagram is unchanged. 

o 
The general statement can be made that, as long as the beam is sym¬ 

metrical for loading and restraint, the shear force diagram is unchanged 
and the bending moment diagram can be formed from a single curve 
by suitably shifting the base line for zero moment. This is utilized in 
Diagram 5 in the Appendix. The total height of 100 units is equivalent 

wl^ 
to M = — . The total length of 100 units equals the span 1. The base 

o 

lines (M = 0) have been located for the moments specified by the A.C.I. 
Code for uniformly distributed moments. 

CONTINUOUS BEAMS—THREE-MOMENT EQUATION 

341. Three-Moment Equation The solution for the moments at the 
supports of a continuous beam by the three-moment equation neglects the 
stiffness of the supporting members. A concrete beam resting on a sup¬ 
port, such as a brick wall or steel column, fulfills this assumption but, 
if it is poured integrally with a concrete column or wall, the solution is 
an approximate one. The three-moment equation consists of the sum¬ 
mation of expressions for the slopes of the beam to the left and right 
of a given support (such as support 2 in Fig. 203). This summation 
must equal zero. In equation 245 subscript 1 refers to properties of the 
beam to the left of the chosen support (called B) and subscript 2 refers 
to properties of the beam to the right of support B, Support A is the 
support immediately to the left of support -B, and support C is immedi^ 
ately to the right. If the beam in span AB has a different moment of 
inertia than the beam in span B(7, the three-moment equation is 

1 [" --QEIiVa 

6B/i L I 

6Fab^a 1 
-h {Ma + 2Ms)li + —- 

n J 
+ 

1 r —QEI2VC 

6EI2 L I2 
+ (2Mb + Mc)l2 + 

QEbc^c 

h . 
0 (245) 

where E » modulus of elasticity of the material 
I == moment of inertia of the beam 
I » span of the beam 
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V = deflection of supports A or C relative to support B 
M = moment at the support designated by the subscript 
F = area of moment diagram of beam denoted by the subscript 
X == distance from far support (A or C) to the center of gravity 

of this moment diagram. 
All interior spans are assumed to be simply supported. Table H lists 

Fx 
the moment area F and product — for certain common beam loads. 

L 
If the two spans have the same moment of inertia, equation 245 be¬ 

comes 

%EIva 

h 

QEIvc ^Fab^a + MaIi + 2Mb(Ji + h) + Mch + + 
h h 

^Fbc^c 

h 
= 0 (246) 

Equation 245, or 246, is called the three-moment equation because the 
expression deals with the bending moments at three adjacent supports 
with the deflection and loading terms known. The deflections va and 
vc imply that the supporting columns at A and C shorten more than the 
colunm at B by the amounts va and vc* These shortenings can be esti¬ 
mated by determining the strains in each colunm and multiplying by 
the column length to get the total shortening. 

ILLUSTRATIVE PROBLEM 66 

342. Shear and Bending Moment Diagrams for a Continuous Beam. Given a 

continuous beam of three spans (Fig. 203), fixed at support 1 and hinged at support 4. 

f/xeef 2 

I0,000lb, 

(!) 
-sort- 

iiidbotbMrff. A ♦ I 

-t-20ff^-\-f4ftrA 
(2) (3) (4) 

Fig. 203 

5,000ib. 3,000/b 
^4ft 

The modulus of elasticity of the concrete will be taken as 2,000,000 lb. per sq. in., 

and the moment of inertia of the cross section as 14,000 (in.)^ for each span. Column 

1 shortens 0.06 in.; column 2, 0.25 in.; column 3, 0.20 in.; and column 4, 0.10 in. 

Determine (a) the supporting forces; (b) the complete shear force diagram; (c) the 

complete bending moment diagram. 

Taking the of support 1. The end support is assumed to be fixed. There¬ 

fore, the change of slope n equals zero. The deflection ojs of support 2 relative to 
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1 is ^2 == —0.20 in. Using the expression for slope just to the right of support 1, 
which is the second parenthetical term of equation 245: 

^ -6 X2,000,000Xl4,000(-0.20) . . 6X10,000X10 X 20 X 50 
0 ~-q-h (2ikri+Af2)30 4- 

30(12)3 6 X 30 

0 = 2Mi 4-^2 + 132,700 (247) 

Origin B at support 2. There is a beam span each side of support 2. Relative 
to support 2, the deflection vi = 4-0.20 in. and fg = 4-0.05 in. Using the three- 
moment equation (246): 

0 = 
-6 X 2,000,000 X 14,000 

(12)3 
/ a20 0.05\ 

V 30 20 / 
4" 30Afi -j- 2M2(30 4“ 20) 4- 

^ X 10,000 X 10 X 20 X 40 . 6 X 1000(20)’ 
-0iif3 4---4-- 

6 X 30 24 

0 = 3Mi + IOM2 4- 2i/3 4- 377,500 (248) 

Origin B at support 3. Relative to support 3 the deflection = —0.05 in. and 
V4 = 4-0.10 in. Also note that M4 = 0. 

0 - 
~6 X 2,000,000 X 14; 

(12)® 

6 X 1000(20)® 

24 

,000 / 0.05 0.10\ 

V ■20’ 14 ) 
+ 

6 X 5000 X 6 X 8 X 22 62< 3000 X 10 X 4 X 18 
*• y -I 4 • 6 X 14 6 X 14 

0 = 5^2 4- ITMs 4- 520,000 (249) 

Solving the three simultaneous equations 247, 248, and 249, 

Ml M2 Ms 

4-2 + 1 == -132,700 
4-3 + 10 +2 = -377,500 

+5 +17 = -520,000 

Ml = -59,000 ft.-lb.; ilf2 == -14,800 ft.-lb.; Ms = -26,250 ft.-lb.; Af4 - 0 

343. Shear Force and Bending Moment Diagrams. The loads and supporting 
couples and forces for each individual span are shown in Figure 204. When the 
supporting forces are computed the results are 

Vi = 8,140 lb. F"2 = 9,430 lb. V"s = 5,590 lb. 

F'2 = 1,860 lb. F'a = 10,570 lb. F4 = 2,410 lb. 

M,^-S9,000ft/b. 
I0,000ib. 

0^-30ff.-^ 

Span h2 

M.-HSOOftfb. 

(T- vimmsm 
^3-26,250 

fmr 

5,0001b 3,000fb 

D 
% 
span 2^3 

% % 
Span 3-4 

Fig. 204 
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The complete shear force and bending moment diagrams are assembled in Figure 

205. The supporting forces are 

Ri = 8,1401b. 

Ri = 1,860 + 9,430 = 11,2901b. 
Ri = 10,570 + 5,590 = 16,1601b. 
Ri = 2,4101b. 

Total upward forces = 38,000 lb. 
Total load = 38,0001b. 

V^+8/40/A 
94301b. 

(3 

\M=ZZ400ff.lb. 
I0,c/^lb 

T 

1/ 
Vmi—59.000Wb 

v^-meoib 

yM=39,mff.lb t'-y V’5SXIbyV‘59S/b 

SOOO/b. (3000lb 

per\ 9700ft. lb. 

'\ \M-:f3O0ff.lb, J^v.uiOlb 

Rl-ll,Z90lb 

Fia. 205 

lejeolb R4^24Wlb 
i^--2B,250ff.lb 

-10,570 Hx 

With the complete shear force and bending moment diagram, it is possible to 
design the different spans for size and reinforcing steel. If the design does not give 
a moment of inertia approximating 1 = 14,000 (in.)^, a corrected solution should be 
made. If the section varies in different spans, the solution should use equation 245 

instead of equation 246. 

844. Variation of Live Load. Most structures are designed for a max¬ 
imum live load. It may well happen, however, that the structure is 
not fully loaded, and it may chance for certain spans that this irregular 
distribution of the live load gives greater numerical values of shear and 
bending moment. The following problem illustrates the variation in 
shear and bending moment diagrams produced by partial loading. 

ILLUSTRATIVE PROBLEM 67 

346. Continuous Beam—^Live Load Varies. Given a beam of three spans fixed at 
the end supports (Fig. 206). The uniformly distributed load consists of a dead 

a. 

Fixtct ‘ 

Live Load^ 2.000 /A per ft 
Oead Load^hSOO Ibperft 

'A 
(f) 

-20 ft- -40 ft’ 

(2) (S) 
Fia. 206 

/ Fix^ct 

•soft- 

(4) 

load of 1500 lb. per ft. and a live load of 2000 lb. per ft. Assume the beam section 

to be constant in all spans and that the columns all shorten the same amount. 
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Determine the shear force and bending moment diagrams if the live load is added 
or omitted on complete spans. 

Case L Live Load on All Spans. At supports 1 and 4 the change of slope is zero. 
Using second part of equation 245 for support 1 and the first part for support 4, 

0 = 2Afi + M2 -f 350,000 (250a) 

0 = Afa + 2M4 + 787,500 (2506) 

Taking the origin B at support 2, 

0 = 2OM1 + 2Af2(20 4- 40) 4 40Af3 4 
6 X 3500(20)3 

24 

6 X 3500(40)3 

24 

0 - All 4 6Af2 4 2Af3 4 3,150,000 (251) 

Taking the origin B at support 3, 

6 X 3500(40)3 
0 - 4OM2 4 2M3(40 4 30) 4 30Af4 4--- 

6 X 3500 X (30)3 

24 

0 = 4Af2 4 14Ar3 4 3Af4 4 7,962,500 (252) 

Solving these equations simultaneously gives 

Afi = 18,700 ft.-lb. Mz = -418,900 ft.-lb. 

M2 = -387,400 ft.-lb. Mi = -184,200 ft.-lb. 

Af,^H8700ffJd. M,^-387,400Hlh. M^--4J8j900fttb. 
ImiFikTN.—ly h ^ 

.  - 40ft~   -30ff.— 
Vi Vi v; vj y; V4 

span /-? Span 2-3 Span 3-4 

Fia. 207 

346. Shear Force and Bending Moment Diagrams. Referring to the loads on the 
individual spans shown in Figure 207, the supporting forces are 

Vi = 14,700 lb. F"2 - 69,200 lb. = 60,300 lb. 

F'2 = 65,300 lb. V'z - 70,800 lb. F4 - 44,700 lb;. 

The supporting forces equal 

Ri = 14,7001b. 
122 * 65,300 4 69,200 = 124,600 
Rz - 70,800 4 60,300 = 131,100 
Ra « 44,700 

Total upward supports — 315,000 lb. ' 

Total load « 315,0001b. 

The shear force and bending moment diagram is plotted on Figures 208 and 209. 



Span-ft 

Fig. 208. Shear force diagrams. 

The results are given in Table I and plotted on Figures 208 and 209. All the 
cibove results can also be obtained by the use of influence lines. 

d48. Discussion of Results. It is evident from Figures 208 and 200 that no one 
loading will give all the maximum values. In general, we may say for this problem 

that: 
Maximum shear at end supports occurs when the end span has live load and the 

^jacent span does not. 
Maximum shear at interior supports occurs when the two spans at the support 

Tmve the live load and the adjacent one does not. 
Maximum positive moment near center of end spans occurs when the end span 

Kjparries the live load and the adjacent span does not. 
Maximum positive moment near center of interior spans occurs when this span 

-eamm the live load and one adjacent span does also. The nuudmum is nearly 
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reached, however, when this span carries the live load and the adjacent spans are 
without live load. 

Maximum negative moment at an exterior support occurs when the end spans are 
loaded with live load and the adjacent interior span is not. 

Maximum negative moment at interior supports occurs when the two spans meeting 
at the support carry live load and the adjacent span does not. 

The bending moment diagrams overlap, and the positive moment diagrams for 
some of the lower curves have points of inflection near the support, thereby requiring 
some positive tension st;eel near the support. The accurate design of continuous 

beams with variable live loads requires a repeated solution of possible loadings 
similar to the computations of this problem. Trial indicates the load positions 
giving maximum values. 

349* Continuous Beams with Equal Spans. Uniformly Distributed 

Loads, The case of continuous beams of eqvxd spans loaded with uni¬ 
formly distributed loads has been carefully computed. The maximum 
positive and negative bending moments recommended in A.C.I. Article 
701 (see Appendix) give the results, after modification for the proba¬ 
bility of occurrence of some of the loadings. In general, the maximum 
positive bending moment in an interior span occurs when that span and 
each alternate span is loaded with the live and dead loads, and the 
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adjacent spans and alternate spans are loaded with the dead load 
only. Similarly, the maximum negative moment at a support occurs 
when the two adjacent spans carry the hve and dead loads; thereafter 
the alternate spans carry no live load. 

There is obtained an upper and lower limit to possible bending moment 
curves for probable variations of the live load. Table J gives the spread 
of possible bending moment diagrams for the moment coefficients rec¬ 
ommended by A.C.I. Article 701. 

For distributed loads the maximum shear force in any one span will 
be O.^wly if the negative moments at each support are equal. When the 
live load is remoAxd from some spans this will not be true, and it is pos¬ 
sible to realize live-load arrangements which, coupled with the uniform 
dead loads, will give a maximum shear force at a support of about 
0.55wL This may occur in any span, but it has been commercial prac¬ 
tice to design all interior spans for a maximum shear force of 0.5wl and 
let the possibility of some unusual live-load arrangement be cared for 
by employing a somewhat smaller allowable shear stress. The shear 
force at the first interior column for the exterior span is increased to 
0.575wL There are two discontinuous shear force diagrams for this span, 
one varying from 0.5wl to —0.5wl, the other varying from 0A25wl, at 
the exterior column to —O.dTSwl at the first interior column. 

350. Continuous Beams of Equal Span. Concentrated Loads, Beam 
and slab floor systems are frequently planned so^that the girders run¬ 
ning from column to column support beams which are intermediate 
between the columns. These intermediate beams are usually evenly 
spaced. The girder is designed for a small uniformly distributed load 
and the symmetrically placed concentrated loads brought to it by the 
intermediate beams. The concentrated loads will vary as the live load 
is shifted about on the floor, and analyses similar to those made for uni¬ 
formly distributed loads must be made for these loads. The A.C.I. 
Code makes no recommendations for bending moment coefficients for 
these cases. The author proposes limiting moments for design. 

Table J gives the limiting values of the bending moment for symmet¬ 
rically placed concentrated loads, covering the cases of one, two, and 
three intermediate beams. 

361. Moving Loads. The preceding discussion applies to structures 
whose load is static, but may be shifted about from time to time. Other 
structures, such as bridges, receive moving loads, whose position is only 
temporarily static. The position of the load to give the maximum shear 
forces and bending moments for moving loads can be found by the use 
of influence lines. Any standard text on structures covers the construc¬ 
tion of influence lines. 



382 THE STRUCTURE AS A RIGID FRAME [Chap. 14 



p
p

o
rt

e
d

 



384 THE STRUC3TURE AS A RIGID FRAME [Chap. 14 

THE SLOPE-DEFLECTION METHOD 

362. Solution by Slope-Deflectioa Methods. The discussion of the 
preceding articles has covered the solution of continuous beams. Ex¬ 
cept for the restraint of the end supports no consideration has been given 
to the rigidity of the supporting columns. There are methods of solu¬ 
tion of indeterminate problems which do take into account all the mem¬ 
bers meeting at a joint. Such methods include work solutions and fur¬ 
ther use of slope-deflection relations. The slope-deflection method is well 
adapted for the analysis of structural frames and will be discussed in 
this chapter. The least-work solution is used in Chapter 15 in develop¬ 
ing equations for the design of concrete arches. 

363. Assumptions of the Slope-Deflection Method. Solutions for the 
end moments in members of a rigid frame by the method of slope- 
deflection, or its derivative, the method of moment distributions, are 
expedited by assumptions in regard to the deformations of these mem¬ 
bers. The assumptions are: 

1. The members meeting at a joint all rotate through the same angle 
when an external couple is applied. 

2. The change in length of columns and beams is small enough to be 
neglected. 

3. Deformations due to shear forces may be neglected. 
4. If the members of the frame all lie in the same plane, their rela¬ 

tive stiffness can be measured by the ratios of j of each member, where 
V 

I is the moment of inertia and I the length. 

Center line dimensions are commonly used for the length of each 
member. In the discussion of deflection of beams (Art. 163) the mo¬ 
ment of inertia was taken as that of the concrete area for the depth d 
plus the moment of inertia of the positive tension steel. Rigid frame 
analyses are usually made before the reinforcement is computed. There¬ 
fore, it is customary to use the moment of inertia of the gross concrete 
section about its center of gravity, with no allowance for the steel. 
Since the solutions involve ratios of stiffnesses, this procedure is satis¬ 
factory when apphed to all members. 

The basic slope-deflection equation is obtained from the beam theory 
by use of moment-area methods. The conventions in regard to moments, 
slopes, and deflections differ from those used in the usual beam theory 
by algebraic methods. These conventions are: 

1. Taking a member as a rigid body, the external end bending moment 
is positive if the moment-couple is clockwise. 
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2. The slope is positive^ if the center line of the member rotates clock¬ 
wise in regard to the unloaded position. 

3. Deflections are positive^ if the center line of the member at the 
joint considered is displaced by clockwise rotation. 

Consider a beam whose left end is at A and right end at B. After 
loading the slope at A equals ^^4 and at S is fe. The external moment 
at A is denoted Mab and the moment at B by Mb a- The basic slope- 
deflection equations take the form 

2Fab 
Mab - 2EK{2eA + fe ~ ^R)-^ {^xb - 1) (253) 

r 

Mba = 2EK(eA + - 3R) + (21 - 3xb) (254) 
r 

I V 
where K = - for the member and /? = - . 

/ 
In equation 253 v is the deflection of end B relative to A, and in 

equation 254 v is the deflection of A relative to B. In both equations 
V will have the same sign. These equations state that the moment at 
any section depends on 

1. 

2. 

The modulus of elasticity of the material. 
I 

The stiffness y of the span. 

3. Certain terms which allow for the relative restraint and displace¬ 
ment of the sections A and B. For a beam fixed at the ends, whose 
supports settle the same amount, Oa^ Ob^ and R equal zero. 

4. A term which allows for the loads between sections A and B, This 
term is computed as though the span were simply supported at A and B, 

364. Load Term. If sections A and B be taken at the supports of a 
beam fixed at its ends, the terms 6a, Ob, and R equal zero in equations 
253 and 254. Then the fixed-end moments at the supports equal 

Mab = 

Mba = 

—2F^5 
—— (3xb — Z) == Cab 

r 

In other words, the load term of equations 253 and 254 is numerically 
equal to the fixed-end moment of a beam loaded as given. The sign of 
this term is determined by noting that the load tends to cause clock- 
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wise rotation about section A and is therefore balanced by an anti¬ 
clockwise or negative term Cab* The load tends to cause anti-clockwise 
rotation about section J5, and the balancing moment Cba at the section 
is positive. 

Examination of equations 253 and 254 in the light of this discussion 
permits a simplification to one statement. The bending moment at any 
section equals 

M = 2J?iiL(2^8ection + ^distant section ”* ^ ^section (255) 

where C = fixed-end moment at the given section and the sign is deter¬ 
mined by the statement above. 

Table H (Art. 341) gives the fixed-end moments for certain common 
beam loadings. 

ILLUSTRATIVE PROBLEM 68 

356. Slope-Deflection Solution of a Rigid Frame. Determine the bending moment 
diagram for the continuous beam A BCD of Figure 210 by the use of the slope-deflec¬ 

tion equation. This beam is identical with that in Figui’e 203 of Problem 66 and 

carries the same loads, but the other members meeting at each support are now 

considered. The far ends of all columns are assumed to be fixed, so eE—SF—^o — 
6jl ^ dr == 0j — 0. With the far ends of these columns fixed, any horizontal move¬ 

ment of joints A, B, C, D will be neglected. E - 2,000,000 lb. per sq. in. 
Equation 255 is used to express the moment at each end of a member in terms of 

the unknown joint rotations 0Af 0By 0Ct and Od* The fixed-end moments can be ob¬ 
tained from Table H and are expressed in foot-pound units. Using the numerical 

value of E the deflection term QEKR for the individual beam spans should also be 

expressed in foot-pound units. 

From Figures 203 and 210: 

Kas » Kbf - = 32.7 (in.)* Kci = Kdj - 36.2 

Kao ** Ksff “ 83.3 Kab *= 38.9 Kbc * 58.3 Kcd « 83.3 
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By equation 255, 

Mab 

Mba 

Mbc 

Mcb 

Mcd 

Mdc 

2JS^38.9 

2^38.9 

2E58.S 

2E58.3 

2E83.3 

2E83.3 

26 a + — 

6a 4“ 26b — 

26b "h 6c — 

4- 2dc 4“ 

26c 4" ““ 

6c 4" 26j} 4" 

3 X (0.20)1 _ 10,000 X 10 X (20)^ 

360 X 12 J (30)2 

1 1 10,000 X (10)2 ^ 20 

720oJ (30)2 

3(-0.05)1 _ 1000 X (20)2 

240 X I2J 12 

--4— + 33,330 
19,200j 

3(-0.10)-[ _ 5000 X 6 X (8)^ _ 3000 X 10 X (4)^ 

168 X 12J (14)2 (14)2 

1 1 5000(6)2 X 8 3000 X (10)* X 4 

6720J (14)2 + (14)2 

Mae = 2^:32.7(29^] 

Mbf = 2£:32.7(29b] 

Mao = 2£83.3[29x] 

Mbh == 2E83.3^6b\ 

Mci = 2E3b,2[26c\ 

Mdj = 2E3b,2[2$D\ 

Equilibrium equations can be written to evaluate the four unknown slopes. The 
end moments of each member act on the adjacent joint reversed in direction. Suc¬ 
cessively applying equilibrium to joints A, R, C, and D: 

Joint A Mae 4- Mab 4- Mag == 0 (256) 

Joint B Mba 4* Mbf 4- Mbc 4- Mbb =* 0 (267) 

Joint C Mcb 4" Mcd 4" Mqi =* 0 (258) 

Joint D Mdc 4" Mdj — 0 (269) 

These four equations are tabulated below. 

E0a E6b j E6c E6d Equation 

77.8 ■jjll « 66,050 256 

852.9 = 20,570 257 

116.6 166.6 258 
474.1 = -63,050 259 

Solving simultaneously, 

Ma « 103.04 E$s 28,19 E$c « -98.56 EBd = -98.355 
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Substituting in the moment equations above, 

Mab-47,800 ft.-Ib. Mba = 13,000 ft.-lb. 

Mae = 13,500 ft.-lb. Mbc = ~ -20,100 ft.-lb. 

Mao = 34,300 ft.-lb. Mbf ~ 3,700 ft.-lb. 

Sum = 0 Mbh = 9,400 ft.-lb. 

Sum = 0 

Mcb = 25,800 ft.-lb. Mdc = 13,900 ft.-lb. 

Mod = -11,900 ft.-lb. Mdj = - 13,900 ft.-lb. 

Mci = -13,900 ft.-lb. Sum = 0 

Sum = 0 

The solution of Problem 60 by the three-moment equation is an approximation, 
as the stiffness of the supporting columns is neglected. In that problem, the support 
at 1 (or A) was assumed to be lixed and the other supports wore assumed to be simply 
supported. Comparison of the results is given below. 

Slope-Deflection Three-Moment 

Mab -47,800 -59,000 

Mba 

Mbc 

13,0001 
-26,100] 1 -14,800 

Mcb 

Mcd 

25,8001 
-11,900] 1 -26,250 

Mdc 13,900 0 

By the slope-deflection convention these end moments are all couples producing 
tension at the top of the beam and compression at the bottom. The signs of the 

moments of the three-moment solution also signify negative bending moments for 
all end moments. It is evident that the three-moment solution is a poor approxima¬ 
tion for the actual structure. 

When the complete moment and shear diagrams are computed as illustrated in 
Problem 66 the beam and column section can be checked for size. If changes seem 
advisable, the solution can be repeated for the new stiffness ratios. The dash lines 
of Figure 210 show, greatly exaggerated, the distortions of the frame due to the loads. 

ILLUSTRATIVE PROBLEM 69 

356. Statically Indeterminate Frame with Side-Sway. Given the frame shown in 
Figure 211. The beams AB and DE are loaded with a uniformly distributed load 
of 2000 lb. per ft., and beam CD has a load of 3000 lb. per ft. For this solution all 
columns and beams will be assumed to have the same modulus of elasticity E. Often 

has been estimated by an approximate design for each beam and colunrn, and this 
trial solution is made with the K values given in Figure 211. 

Deterinine the bending moment and shear force diagrams for ail members of 
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the frame. The column footings are assumed to be large enough to fix the ends of 
the column stacks. Therefore: 6p, and Bn equal zero. 

If the frame were symmetrical, the columns would remain in the present vertical 
lines, but the given frame will have lateral displacements of the upper and lower 

columns. Assuming that the beams do not change in length, the two upper columns 

will displace the same amount, as will the three lower columns. 

Mas ~ 2E60(2dA + Op) — 

Mba ~ 2E6O{0a + 26b) + 

2000(28)^ 

12 

2000(28)^ 

12 

Mac — 2ES0(2dA + — SEi) 

Mca = 2E8O(0^ + 2dc - SRi) 

Mbd = 2E8O(20b + ^z> - 3i2i) 

= 2ES0{9b + 2dD - 3i2i) 

3000(28)“ 
Mcd ~ 2F200^2^(7 ^d) — 

Mdc — 2E200{dc “b 20b) + 

12 

3000(28)2 

12 

Mde — 2E90(2t>i> 4“ ^e) — 

Med ~ 2F90((?/) + 20e) + 

Mcf = 2Em{20c - 3/^2) 

Mpc ~ 2E100 {6c 3/?2) 

Mdg = 2EIOO{20b - 3/22) 

Mod = 2E100{dB - 3/22) 

Meh = 2E70{20e - 3/22) 

Mhe ~ 2E70{6e “*• 3/22) 

2000(20)2 

12 

2000(20)2 

12 

In the above equations there are seven unknown terms. It is necessary to have 
at least seven equations for the solution. Applying conditions of moment equilibrium 

to each joint gives 

Joint A Mab “b Mac - 0 (260) 

Joint B Mba 4* Mbd = 0 (261) 

Joint C Mca + Mcd + Mcf = 0 (262) 

Joint D Mdb 4“ Mdc 4" Mde 4* Mdg — 9 (263) 

Joint E Med 4“ Meh *= 0 (264) 
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Take the two columns AC and BD as the rigid body (Fig. 212). Take moments 
about joint D. 

Mac “f" Mca + Mbd + Mdb ~ 0 (265) 

Take the three lower columns CF, DGy and EH as the rigid body. Take moments 

about joint D. 

Mcf + Mfc “h Mbg + Mod + Meh + Mhe ~ {Hfc + Hqd + Hhe)^^ = 0 

Note that, if the whole frame be taken as a rigid body, 11 fc + Hqd + Hhe must 
equal zero. Then 

Mcf + Mfc + Afjx? + Mqd + Meh + M he == 0 (266) 

There are now seven equations with seven unknowns. Table K lists the equations 
and gives the results of a solution. It is a long process to eliminate the unknowns 

Table K 

EBx EBb EBc I EBd EBe ZERi 3ER2 Equation 

560 120 160 -160 = +130,700 260 
120 560 160 ... -160 « -130,700 261 
160 1520 400 -160 -200 - +196,000 262 
... 160 400 1880 180 -160 -200 = -129,300 263 

180 640 -140 - -66,700 264 
480 480 480 480 -640 - 0 265 

600 600 420 -1080 = 0 266 

Results 

268.0 -258.4 +122.3 -59.76 -87.24 +54.03 +0.789 

1 

successively. In part of the solution it was necessary to use seven significant fig¬ 
ures. Substituting the values of EOa, EBbj etc., in the moment equations, 

Mab = 120(536.0 - 258.4) - 130,700 = -97,000 ft.-lb. 

Mba “ 120(268.0 - 516.8) + 130,700 = +100,800 ft.-lb. 

Mac = 160(536,0 + 122.3 - 54.0) = +97,000 ft.-lb. 

Mca *= 160(268.0 + 244.6 - 54.0) » +73,500 ft.-lb. 

Mbd * 160(-516.8 - 59.8 - 54.0) - -100,800 ft.-lb. 

Mdb = 160(-258.4 - 119.5 - 54.0) = -69,100 ft.-lb. 

Mcd « 400(244.6 - 59.8) - 196,000 - -122,100 ft.-lb. 

Mbc “ 400(122.3 - 119.5) + 196,000 == +197,100 ft.-lb. 

Mdb - 180(-119.5 - 87.2) - 66,700 = -103,900 ft.-lb. 

Med « 180(-59.8 - 174.5) + 66,700 « +24,500 ft.-lb. 
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Mcf = 200(244.6 - 0.8) = +48,700 ft.-lb. 

Mfc = 200(122.3 - 0.8) = +24,300 ft.-lb. 

Mdo = 200(-119.5 - 0.8) = -24,100 ft.-lb. 

Mqd ■■= 200(-59.8 - 0.8) « -12,100 ft.-lb. 

Meh = 140(-174.5 - 0,8) = -24,500 ft.-lb. 

Mhe = 140(-87.2 - 0.8) ' - -12,300 ft.-lb. 

Fig, 212 

These moments are used to compute the shear force and bending moment diagrams 

for the individual members. The computations for the supporting shears for the 

beams and columns are made as in Problem 66. Figure 212 represents the individual 

members, all moments being shown as positive. Those whose values are actually 

negative should be reversed in direction before the supporting shears are computed. 

It will be noticed that, if we take the upper floor frame CABDj the frame is in 

equilibrium at the base of the columns. In other words, Vca + Vdb = 2000 X 28 » 

56,000 lb., and He a + Hj^b = 0. Similarly, the whole frame is in equilibrium: 

Vfc + Vqd + Vhe = 180,000 lb. 

Hfc + Rod + Hhb « 0 
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ILLUSTRATIVE PROBLEM 70 

367. Wind Pressure. Solve Problem 69 assuming the wind to blow from the left 

causing the pressures on the column stack FCA shown in Figure 213. Neglecting 

the beam loads in the computations, determine the shear force and bending moment 

diagrams for all members of the frame. 

Assume again that the footings fix the column bases so that dp^ 6a, and 6n equal 

zero. It is apparent that the column stacks wall be pushed out of the vertical by 

the wind load. Assume that the axial loads in the beams do not change their lengths. 

Then the displacements of A and B are equal as are those of C, D, and E. Assume 

that A and B remain on the same level and that C, D, and E do also. The moment 

now be written 

Final Result 

ft.-lb. 

Mab = 120E{2eA + Bb) = +2,842 

Mba = 12QE{6a -f 20b) = +3,983 

Mac = 160^(20^ + Be - -2,842 

Mca = 1Q0E(Ba + 2dc — -7,862 

Mbd = 1QOE(20b A' Bd 3iKi) -3,984 

Mdb = \6>OE{0b + 20 B — 3i2i) -4,912 

Mqd == 400^(200 4" 6d) = +14,717 

Mdc = 400E(Bc + 2Bd) = +12,418 

Mde = 1S0E{2Bb At Be) +5,914 

Med — 1S0E{Bd A" 20e) = +7,276 

Mcf = 2OOF(20(7 — 3/22) 
200(16)2 

■^12 
-6,855 

Mpc = 2(X)E{Bc — SR2) " 

200(16)* 

12 
-18,224 

Mdg ~ 2OOF(20£) — 3122) -13,420 

Mqd = 2Q(SE{Bd — 3^2) -15,107 

Meh = 14OF7(20^ — 3/22) -7,276 

Mhe ~ 14OF(0jy — 3/22) -9,516 

The unknown terms comprise five slopes and two displacements, seven in all. 

A sketch similar to Figure 212 can be constructed and equations of equilibrium 

written: 

For Joint A Mab + Mac = 0 (267) 

Joint B Mba At Mbd = 0 (268) 

Joint C Mca + Mod + Mcf 0 (269) 

Joint D Mdb + Mdc + Mde 4“ Mdg “ 0 (270) 

Joint Med + Meh = 0 (271) 
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Columns AC and BD. Moments about joint C. 

Mac + Mca + Mbd + Mdb + 200 X 14 X 7 - 0 (272) 

Columns CF, DG, and EH. Moments about joint F. 

Mcf + Mfc + Mdg + Mod + Mbh + Mhe + 200 X 16 X 8 + 2800 X 16 « 0 (273) 

Table L lists these equations and gives the solution for its unknowns. Substitu¬ 
tion in the equations above gives the numerical results listed at the right of that 
page. From these values can be computed the shear force and bending moment 
diagrams for this case of the wind on the left side of the frame, and also the com¬ 
bined effect of floor load and wind. Analysis might also be made for wind on the 
right and the combined effect of floor load and wind on the right. The designer 
is then in a position to determine maximum shear forces and bending moments for 
the design. It may well result that the original moment cf inertias will be modified 
enough to warrant a second analysis. 

Table L 

EOa Eds EOc EOd EOe 3ERi ZER2 
Equa¬ 
tion 

560 120 160 -160 = -3,267 267 
120 560 160 -160 0 268 

160 1520 400 -100 -200 269 
160 400 1880 180 1 -160 -200 0 270 

180 640 -140 - 0 271 

480 480 480 480 -640 - -19,600 272 

600 600 420 1 -1080 273 

Results 
+4.722 +14.239 +14.180 +8.432 +15.994 +61.805 +83.966 
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368, Use of Slope-Deflection Method. A great variety of indetermi¬ 
nate structures can be solved by use of the slope-deflection method. 
The choice between this method and solution by other methods, such 
as virtual work or least work, depends on the relative labor of solution 
and the personal equation of the designer. As a result of his engineer¬ 
ing experience he decides that one method is particularly suited to 
trussed structures, but, perhaps, that another method is better adapted 
for bents and frames with members in bending. 

MODIFICATION OF SLOPE-DEFLECTION SOLUTION 

359. Moment-Distribution Method. The slope-deflection equations 
have been used by Professor Hardy Cross to establish a method of de¬ 
termining the bending moment at the support of a member by succes¬ 
sive approximations. Its advantages are that no equations are written 
out, and the solution of many simultaneous equations is avoided. The 
designer deals with numerical values at once. In order to avoid error 
or confusion the designer must decide on a standard procedure and 
representation. 

360. General Principles. A, An external moment {couple) applied at 
cmy joint is distributed among the members meeting at the joint in proper- 

tion to the stiffness constant j — K of each member. 
L 

Members Unloaded. Let A (Fig. 214a) be any joint in some structure 
at which, in this case, four members meet. The special case is assumed 

Fixed Fixed 

Fio. 214 

of a fixed support at each of the far ends. Then fe ■* 0 = 
» 6s. Assume no load on the members and no deflection of the far 
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ends relative to A. Some external couple M is applied to the joint A 
and tends to rotate the joint. Since there is equilibrium at A: 

but 

Then 

Oa - - 

Mab + Mac + Mad + Mae + M = 0 

Mab = ^EKab(^^a) = ^EKab^a 

Mac = ^EKac^A} etc. 

M M 

AE{Kab + Kac + Kad + Kae) ^EKt 

where Kt is the sum (Kab + Ka^ + Kad Kae) and 

Mab = —M 

Mac = -M 

Kab ,, Kab 
-----— = - 

Kab + Kac + Kad + Kae Kt 

Kac 

Kab + Kac + Kad + Kae 

nr^AC 
= —M-, etc. 

Kt 

Therefore, the moments in the members at A are proportional to the re¬ 

spective stiffness constant j ^ K of each member. 
L 

Member Loaded. Instead of applying the external couple M, let the 
member AB be loaded. In that case, by equation 255 (Art. 354), 

Mab ~ ^EKab^a ± C 

Mac = ^EKac^Ai 

For equilibrium of joint A 

Mab + Mac + Mad + Mae = 0 

C 

4JE{Kab + Eac + Kad + Kae) 
= =F 

^EKt 

Mab = 
and 

0- Kt) 

Kac 
Mac = -,etc. V I\.T 

Therefore, the following principle is true. 
B. The bending moment M in the section of a member at any joint is 

resisted by the members meeting at this joint in proportion to the stiffness 
constant K of each member. 
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It has been assumed that the far ends of the members are fixed. Then 
for the unloaded members by equation 255 

Mca = 2EKac^a 

Mj)a — 2EKda^Ai etc. 

These moments are one half the values of Mac, Mad, etc. 
C. The bending moments at the fixed far end of unloaded members j which 

meet at a joint A tending to rotate^ is one-half the resisting moment in the 

member at joint A. 
361. Procedure. Given joint A (Fig. 2145) at which four members 

meet, with two loaded in this case. 
1. Assume joint A and all far ends to be fixed. The fixed-end mo¬ 

ments for the beam AB are 

Mba == — 

For AD: 

Mad = — Mda = + 

The signs are governed by the fact that the joints are the rigid bodies 
and not the beams. The moments Mas and Mad are opposite in sign. 
If they are not equal in magnitude, there is an unbalanced couple M at 
joint A which tends to rotate the joint. 

Wili^ W2l^ 
M =^Mab^ Mad-- +■—-— 

2. Release joint A, By the discussion of principles A and B in the 
previous paragraph, the unbalanced couple M is resisted by the mem¬ 
bers in proportion to their respective stiffness constants. Then, under 
the new conditions, 

wxh^ Kab 
Mab = 4-7-^-M — 

12 Kt 

Mac = -M~ 

Mad = — -Af- 
12 Kt 

Mae = 
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3. The moments at the fixed far ends will be modified by a moment 

half the distributed values ( —M , etc.) given above. 

4. Pass now to one of the far end joints which is fixed as was joint A 
in procedure 1. Take this joint and apply the above procedure to it, 
passing again to an adjacent joint until the transferred moments at the 
far ends become too small for consideration. 

ILLUSTRATIVE PROBLEM 71 

362. Solution of Continuous Beams. Solve Problem 67 for the bending moments 

at each support by the momentr-dLsti J^ulion metiiod. This problem included an 

analysis of the effect of adding or removing the live loads for certain spans and re¬ 

sulted in seven solutions by the three-moment equation. For the moment-distribu¬ 

tion method the effect of a load of 1000 lb. per ft. on each single span will be com¬ 

puted and then these results combined for any of the seven combinations desired. 

This same procedure might have been adopted for the three-moment solution. 

The three spans have the same moment of inertia /. The stiffness constant 

Kab = f = ^ = 005/ 

Kbc = 0.025/ 
40 

XciJ = L = 0.033/ 

Let us deal first with a distributed load of 1000 lb. per ft. in span AB. 
moments equal 

Mab 
12 

1000(20)^ 

12 
33,300 ft.-lb. 

The fixed-end 

In Figure 215 these moments are listed in units of 1000 Ib.-ft., or kip-ft., with the 

signs of direction governed by the fact that the rigid body is successively each joint. 

Joint A is fixed by the problem statement and agrees with the assumption. There 

is no need to release this joint. At joint B when the joint is released there is an 

unbalanced moment of —33.3. This is resisted by the beam AB and BC so that 

-+33.3 X ^ - 33.3 X ^ . m X 2 - +22.2 

- +33.3 X § - 33.3 X ^ - 33.3 X 1 - +11.1 

The ratios of K are constant for each joint and independent of 7. They are listed 

at each joint on the sketch at the top of Figure 215. At the fixed ends the distri¬ 

bution is made as though there were a beam beyond the joint of iT =» <». It absorbs 

all unbalanced effects. If there were a hinged end, the moment at that joint must 
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be zero and all imbalanced moments are taken by the beam coming to the joint. In 

o^er words, we act as though there were a beam beyond the joint of iC *= 0. 

Kbc-0.0^5I Kco^O.0331 

20ff- 

Fixed ends 
Release joinis 
Carry o\rer 
Distribution 
Carry o\rer 
Distribution 
Carryover 
Distribution 
Final 

Fixed ends 
Release Joints 
Carry over 
Distribution 
Carry over 
Distribution 
Carry over 
ttistribufion 
Carry over 
Distribution 
Final 

I 
lOOOIb.perfl 

V313 -JjtJI 
0. ^22A 

0. 

{^444 ^ 0. 0. 

0. 
JU in 
*44.8 -10.3 

-883\ 
-44.4 0. 

-36 e 

-16 0. 

-04 0. ' 
j2« ’Oil 
-56D -fI2.0\ 

Fixed ends 
Release Joints 
^ry over 
Distribution 
Carry over 
Distribution 
Carry over 
Distribution 
Final 

CaseJL 

a a 
MO *taT^ 
*5.4 a 
J2j*54 *I07\ 
0. a 

a .a, 

kLULl- 

l^imihmkdFrmxm^ ^ 

Fia. 216 

The distributed resisting moments are listed in Figure 215. It has been assumed 
that joints A and B were released in turn. As each joint is released the adjacent 
joint (assumed hxed) receives a moment half the value distributed to that member. 

This ‘^carry-over^* moment is next listed. At joint A it is 0.6 X 22,2 -f 11.1; 

tt joint B for beam AB it is zero, for beam BC it is zero; at joint C for beam BC it is 
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0.5 X 11.1 = +5.6, for beam CD it is zero; at joint D it is zero. These carry-over 

moments are now unbalanced moments at the joints, and they are now distributed 

according to the K ratio. The unbalanced moment at joint A of +11.1 is absorbed 

by the fixed end. At joints B and D the unbalanced moment is zero. At joint € 
the unbalanced moment is +5.6. It is distributed so that 

Mcb = 0.43 X 5.6 = -2.4 

Mcd = 0.57 X 5.6 = -3.2 

The procedure is now finished and the first approximation can be summed up. 

Mab - +33.3 + 11.1 - 44.4 

Mba = -33 3 +22.2 - -11.1 

Mbc == +11.1 

Mcb - +5.6 - 2.4 = +3.2 

Mcd = -3.2 

Mdc — 0 

In Figure 215 a line is drawn at the end of the approximation and the totals listed 

beside the colunm of figures. It should be true that Mba — Mbc and Mcb “ Mcd» 

The first approximation is not sufficient as the carry-over moments are appreciable. 

The carry-over moments are again listed and the resultant moments for the second 

approximation. Joint C is now balanced while joint B is unbalanced. The third 

approximation is then completed. It is apparent that the fourth is not required as 

the carry-over moments have disappeared. 

The loads in the spans BC and CD are handled separately. The fixed-end moments 

equal 

Mbc — 
wf 

12 

1000 X (40)^ 

12 
133,300 ft.-lb. 

Mcd = 75,000 ft.-lb. 

The computations in Figure 215 for these spans should be plain. The general con¬ 

clusion from these three solutions is that three approximations give very closely the 

accurate moment. From the data in Figure 215 it is possible to handle any of the 

seven loadings of Problem 67. For instance, if Case II is taken, with a load of 

3500 lb. per ft. in spans AB and CD, and a load of 1500 lb. per ft. in span BC, the 

bending moments at the supports are 

Mab - +44.8 X 3500 - 56.0 X 1500 + 5.4 X 3500 = +91,900 ft.-lb. 

Mba = -10.3 X 3500 - 112.0 X 1500 + 11.1 X 3500 = -165,200 ft.-lb. 

Mbc =» +165,200 ft.-lb. 

Mcb = +3.3 X 3500 - 92.0 X 1500 - 30.7 X 3500 = -233,900 ft.-lb. 

Mcd ^ +233,900 ft.-lb. 

Mdc - -1.6 X 3500 + 46.1 X 1500 - 97.2 X 3500 « -276,600 ft.-lb. 

These values check very closely those tabulated for Case II on Table I, Article 347. 

The moments on joint and beam are sketched at the bottom of Figure 215. The 
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shear force and bending moment diagrams for the individual spans can now be 

computed as in Problem 67. 

A comparison of the solution of this problem by the three-moment equation, by 

the slope-deflection equation, or by moment-distribution will enable the designer to 

decide which one is the easiest for him to use with continuous beams. 

363. Deflection of Supports. The moment-distribution method has 
just been applied to a problem whose supports have no relative displace¬ 
ment. If the method of solution is compared with the slope-deflection 
equation for this case: 

Mab — 2EK{26a + fe) ± (fixed-end moment) 

it will be seen that Professor Cross starts with the fixed-end moment 
and successively approximates the joint rotations. 

When there is displacement of the supports, the slope-deflection equa¬ 
tion becomes 

Mab — 2EK{2dA + — 3/2) i (fixed-end moment) 
or 

Mab = 2EK{2dA + Ob) + {—^EKR rt fixed -end moment) 

Therefore, the moment-distribution method can be used if one starts 
with the fixed-end moments and the moment term due to deflection, 
correcting successively for joint rotations. 

ILLUSTRATIVE PROBLEM 72 

364. Continuous Beam with Deflecting Supports. Solve the continuous beam of 

Problem 66 for the bending moments at the supports by use of the moment-distribu¬ 

tion method. Figure 216 shows the beam with its loads. 

^ ■ / 14,000 ^ „ 

^ 14,000 ,- 

Kcd = 
14 X 12 

83.3 (in.)® 

Ordinarily the designer takes the K values as a round number, but in this problem 

we will use the above values in order to check the two previous solutions. 

The deflection term equals: 

6 X 2,000,000 X 14,000 v 
(12)8 p 

97,225,000 ^ft.-lb. 

where is in inches and I in feet. The sign is positive as the rigid body is the joint 

not the beam. 
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Kgc-58J 0.4I2\ 

30ft- 

Def/ecfion moment 
Fixed end moment 
Total moment 
Release Joints 
Carry over 
Disfribufion 
Carry over 
Distribution 
Carry over 
Distribution 
Carry over 
Disfribufion 
Carry over 
Disfribufion 
Final 

Deflection terms are 

5,0001b 30001b. 

\\ 1000 fbperftM\ I . i 

^Z!.t 
-123- 

HZ1- 

mwis.c -27.mA\ 
[5.2 

\^3J\^13.5 
-52 

'253kZ2j 
H6\ 

\0.S88 KciTS3.d\L 

14ft 

[493 -49.6 
[l2.2 -13± 

■3Z4 -63.0 

^48.7^63.0 
^315^244 

■12.2 -7.5 

•^3.6 
\22l*I4.d -T&A-2.2\-3.Z\^i 

It -It 

-Z6.f\ljA 

-J3 

•ZUfOtM 
■2.6 <3 

■0.8 HI 

m 
-262+26.2 

zm 
0 

Mab = 

Fig. 216 

+97,225,000 X 0.20 

(30)2 
= +21,600 ft.-lb. 

97,225,000 X 0.05 ,« 
Mbc  -TTT-g-== -12,200 ft.4b. 

(zU; 

97,225,000 X 0.10 ^ ^ 
Mcd  -7-775-= —49,600 ft.-lb. 

(14)2 

The fixed-end moments on the joints are 

10,000(20)2 X 10 
Mab 

Mba 

Mbc 

Mcb 

Mcd 

Mdc 

(30)2 

10,000(10)2 X 20 

(30)2 

1000(20)2 

12 

= +44,400 ft.-lb. 

= -22,200 ft.-lb. 

- +33,300 ft.-lb. 

-33,300 ft.-lb. 

5000(8)2 X g 3000(4)2 

(14)2 
+ 

(14)2 

6000(6)2 X 8 3000(10)2 X 4 
■ + 

(14)2 (14)2 

= +12,200 ft. lb. 

= -13,400 ft.-lb. 

These values are listed and totaled at the top of the columns in Figure 216. It will 

be noticed that these totals should be identical with the numerical terms of the slope^ 

deflection equations in Article 355. The release of joints, ^^cany over/’ and renewed 
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distributions are identical in method with the previous problem. Note that the ratio 

of distribution at each joint is listed at the joint in the sketch at the top of Figure 216. 

At the first release there is no unbalanced moment at joint A since it remains fixed; 
at joint B the total unbalanced moment of +20.5 is balanced by the distribution 

Mba - 0.4 X 20.5 - -8.2 

Mbc = 0.6 X 20.5 = -12.3 

At joint C the total unbalanced moment of —82.9 is balanced by the distribution 

Mbc = 0.412 X 82.9 « +34.2 

Mod = 0.588 X 82.9 = +48.7 

At joint D the total unbalanced moment of —63.0 must be resisted by the beam CD, 
since the joint is hinged. 

The carry-over moments are shown by arrows, and the second distribution occurs. 

There have been five approximations in this case, and the final moments check very 
closely the solutions by three-moment equation. 

ILLUSTRATIVE PROBLEM 73 

366. Moment-Distribution Applied to a Frame. Solve Problem 69 by use of the 

moment-distribution method. The frame is non-symmetrical, and the previous 

solution has shown thj^t there is side-sway of the columns. Without the previous 

solution the designer would suspect that there is side-sway but does not know the 

amount. A possible solution by moment-distribution is to neglect the side-sway 

and make an independent computation for its effect. In other words, the moment M 
at any supporting joint equals 

where 

and 

M == Ml + M2 

Ml = 2BK(2eA ±C 

M2 = -6EKr = 
I r 

The couple M2 must be balanced by equal shear forces H acting at the top and 

bottom of each column. Af2 equals the shear H times the length, or 

HI = M2 = QEj”- and 
M2 

To give an equal deflection v of the columns, these moments M2 must be pro¬ 

portional to the ^ of each column, or the shears H are proportional to ^, 

The problem can be solved by the moment-distribution method, if correction for 

this component couple M2 be made to the column moments at the end of each ap- 

proadmatioiL Table M gives the solution for the frame with the beams loaded. The 

fiiBt approximation is completed for the component couple Af 1 without regard to the 
column displacements. 
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The two columns in the upper story are the same length and have the same moment 

of inertia. It has just been stated that, if the columns have the same displacement, 

the moment in each column will be proportional to the ^ of the colunm, and the 

shear will be proportional to the — . In this case, the columns must have the same 

shears but opposite in direction in order to give equilibrium. Then 

He A 4* Hbb — 0 

Hca X 14 = Mac + Mca 

Hdb X 14 == Mbd + Mdb 
Then 

Mac + Mca + Mbd -f- Mdb — 0 

This is one of the conditions used in the slope-deflection solution of Problem C9. 

At the end of the first approximation the moments sum up 

2ilfi = -99.7 - 76.7 + 95.5 + 58.6 = -22.3 

This unbalanced moment XMi must be balanced by a moment 2Af2 — +22.3 

1 K 
distributed to the columns in proportion to their ^ = y, half being applied at each 

end to reproduce a fixed-end solution. The columns are alike, so 

22.3 
Mac == Mca — Mbd — Mdb — H—t~ = +5.6 

4 

In the lower story it must be true that 

Mcf + Mfc + Mdg + Mqd + Meh + Mhe — 0 

After the first approximation this equation runs 

= -49.0 - 25.8 + 26.5 + 13.8 + 23.8 + 14.6 == +3.9 

This is balanced by an applied couple of XM2 = —3.9 distributed to the columns 

in proportion to their ^, in order to keep their displacements equal. These columns 

/ K 
are all the same length so the ratio ^ ~ y will be proportional to the K values. 

Then ^ / 100\ 

^ Mcf — Mfc = Mdg ~ Mqd ~ 2 I ^ 270/ ” 

1 / 70 \ 
Meh = Mhe “ ~ 2 ^ 2TO/ ~ 

In Table M the carry-over moments are listed first for the second approximation. 

Then the moments 1^M2 are listed for the columns. The unbalanced moments at 

the joints are now distributed as usual. For instance, at joint A, the unbalanced 

moment equals (+1.1 + 6.6 + 3.7) =* +10.4. This is distributed. 

Mab = 0.428 X 10.4 « -4.4 

Mac == 0.672 X 10.4 » -6.0 
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At the end of the second approximation the upper column moments sum up: 

= -99.0 - 73.6 + 98.6 + 67.6 = -6.4 

This is divided up so that 

6.4 
Mac — Mca — Mbd = Mbb = + t* +1.6 

4 

The lower column moments sum up: 

2Mi - -50.2 - 25.2 + 23.9 + 12.6 + 23.7 + 11.4 - -3.8 

This is balanced so that 

Mcf ~ Mfc = Mbd 
3.8 

Mub = ~ X 
100 

270 
+0.7 

3.8 70 
Meh = Mhe ^ +0.5 

Four approximations are listed with the unbalanced moments tending to reduce to 

zero. The results of the fourth approximation check very closely those obtained 

by the slope-deflection solution. The student can decide by similar comparisons 

which method gives him accurate results more rapidly. 

366. Wind Loads. This method can be used for Problem 70 with the 
same frame subjected to wind pressure on the left side. In that case 
the upper columns appear as in Figure 217a. Note that Vac == Vcaj 

Vbd == Vdb, and Hac = Hbd = Hbb> Take moments about joint C 
with both columns as the rigid body: 

Mac + Mca + Mbd + Mdb + 200 X 14 X 7 = 0 

The correction applied at the end of each approximation must bring the 
sum of the column moments to —19,600 ft.-lb. = —19.6 ft.-kips. 

Similarly the three lower columns as rigid bodies have the external 
forces shown in Figure 2176. Take the rigid body as whole frame. 

Then + Vqd + Vhe ~ 0 Hpc + Hgd + Hhe — 200(14 + 16) 
= 6000 lb. acting to the left. Also Hcf + Hbq + Heh = 2800 lb. act¬ 
ing to the right. 

Take individual columns as rigid bodies. Then 

Hcf + Hfc = 200 X 16 = 3200 lb. II 

Hdq == Hqd Vdo — Vod 

Heh = Hhe 

1 II 

With the three columns as a rigid body, take moments about joint F: 

McF'^Mpc+Mdq + Mqd '^Meh'VMhe + 200 X16 X 8 + 2800 X16 — 0 
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These column moments must be successively corrected to sum to 

—70,400 ft.-lb. = —70.4 ft.-kips. The student can construct the com¬ 

bined moment-distribution solution for this case. 

Since the appearance of the moment-distribution method many vari¬ 

ations in the conventions or method of operation have been devised, as 

Fig. 217 

well as short cuts to simplify its solution for the designer continually 

using this method. 

367. Choice of Method. The general opinion of structural engineers 

seems to favor some form of slope-deflection solution for frames sub¬ 

jected to bending loads. The designer has welcomed the comparative 

ease of execution of the moment-distribution method. Other variations 

of the slope-deflection solutions have found favor. 

The alternative solutions by use of virtual work, or least work, are 

described in this chapter and the next. They have their fields of use¬ 

fulness particularly with trussed structiues and arches. 
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The discussion in this chapter should enable the designer to attack 
the analysis of frames of unequal spans or unsymmetrical loading, for 
which he can find no previous solution. 

MEMBERS OF VARYING SECTION 

368. Moment Distribution Applied to Members with Variable Mo¬ 
ment of Inertia. Any solution by means of equations for slope and de¬ 
flection becomes more diflScult if the moment of inertia of the member 
varies through its span. Haunched beams, columns with capitals, and 
even the transformed area of the ordinary reinforced concrete beams 
are illustrations of the common occurrence of such members. The flat 
slab floor system with a drop panel and column capitals is an extreme 
example. If a flat slab system is continuous and the spans are not 
'‘approximately equal,” the 1941 A.C.I. Code recommends that the 
bending moments and shear forces be determined by an analysis of the 
structure as a continuous frame (A.C.I. Art. 1002). Prior to the adop¬ 
tion of this article Mr. R. L. Bertin studied one possible method of 
solution using moment-distribution. This survey has not been pub¬ 
lished, except for a short explanatory article in the July 1939 Journal 
of the Boston Society of Civil Engineers; but a summary of the method of 
solution will be given here to illustrate the application of moment- 
distribution to a flat slab continuous frame. 

M 
369. — Diagram for Flat Slab Construction. The continuous frame 

El 

consists of the slab for the width of a bay taken continuously longitudi¬ 
nally, or transversely across the building, including the upper and lower 
columns in the bay width. 

Shb, A section taken near the center of the span wiU be a rectangle 
whose width is the width of the bay and whose depth is that of the 
slab. Nearer the column the cross section is tee shaped as the drop 
panel is cut. Still nearer the column center fine the cross section becomes 
larger as it includes portions of the column capital, and finally the sec¬ 
tion also cuts through the column. In this region the moment of inertia 
increases tremendously as compared with that at center span. If a single 
span of this slab is supported at the columns and an external couple M 
is applied at end A, the moment at any section varies uniformly from 
a value of JIf at A to zero at the far support B (Figure 218c). However, 

M 
the — diagram will be exceedingly variable owing to the variation of 

El 

I along the span. Figure 218a shows the general appearance of such a 
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diagram. It is proposed to substitute the more regular area CDEF for 
M 

the full line — area, the distances xl being chosen so that the two areas 
El 

are equal and their moments about the ends are equal (centers of 

gravity coincide). Mr. Bertin recommended that x = h — (h — a) j- 

(Fig. 2186). ^ ^ 

[V 

Fig. 218 

If the couple M is applied at support -d, 

Slope Oa =-(1 - 3x + 3x^ - 2x®) = — X h (nearly) (274) 
3EI 

where/4 = 1 — 2.6a:. 

Ml Ml 
Slope Ob = — (1 - 6x® + 4x®) = — X h (nearly) (275) 

where /s = 1 from x = 0 to x = 0.05 
/b = 1.066 - 1.33x from x = 0.05 to x = 0.2. 

If the far end B is fixed, the “carry-over” factor for a distributed 

couple ilf at A equals 
l/s 

Carry-over factor = - ~ 
2/4 

(276) 
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The representative stiffness K, for the slab equals 

3/4 N 

4/4" -/6"> 

If a uniformly distributed load w pounds per foot acts on the slab, 
the fixed-end moment is 

/ /s \ 
M = —{~^—) (278) 

4 V2/4-f/5/ 

When X = 0, the fixed-end moment = , the carry-over factor = 
J 

^ , and the stiffness , as commonly used for beams of constant 
Z I 

moment of inertia. 
Columns, The moment of inertia of the column will be constant until 

the column capital is reached. It then increases very rapidly and before 
the center line of the slab is reached, it is an exceedingly large value. 

M , . . 
As in the slab, the — values in the region of capital and slab are very 

small. It is proposed to substitute an — area, where I is the moment 
El 

of inertia of the column proper. This diagram will be cut off at a dis¬ 
tance yh below the slab center line, somewhere in the column capital. 
In practice yh is usually approximated by taking it equal to the dis¬ 
tance to the bottom of the capital. 

If a couple M is distributed at joint A to the lower end of the upper 
column, 

Mh , Mh 
Slope Oa = — (1 - = — X h (nearly) (279) 

oEl oEl 

where/a = 1. 
Mh ^ ^ Mh 

Slope at top = (1 -Sy^ + 2y®) = —— X /a (nearly) (280) 
QEI QEI 

where /2 = 1 — 0.5^. 
If a couple M is distributed at joint A to the upper end of the lower 

column, 
Mh , Mh 

Slope 0A = — (1 - y) = — X fi (nearly) (281) 
oEl oEl 

where A = 1 — 2.6y. 

Mh Mh 
Slope at bottom = —— (1 — + 2y®) = —— X A (nearly) (282) 

QEI QEI 
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When the far end of the upper column is fixed, the carry-over factor 

equals When the lower end of the lower column is fixed, 

the carry-over factor is 
a-s)- 

Representative stiffness of upper column: 

Representative stiffness of lower column: 

7, V 3/3 \ 

AWI/3-/2V 

(283) 

(284) 

(285) 

The carry-over factor becomes - and the stiffness K = - , ii y — 0 
Ji iX 

for a column of constant moment of inertia. 

ILLUSTRATIVE PROBLEM 74 

S70. Flat Slab Floor—Variable Span. Determine the moments in the continuous 

frame of Figure 219 due to a uniform load w - 10,000 lb. per ft. on span HI, The 

^ 4 

A 

F 

3 

G 

^ A 

C 

H 

D E 

I J 

/6ff^ HBlk 
J K L 

W yi 
M 

. . 
N 0 hr ry 

Fia. 219 

dimensions of the slab and columns are given in Tables N and O. The bay is 23 ft. 

wide. Table P gives the moment distribution of the load on span HI, the far ends 

of the columns being assumed fixed. 

10 X (23)^ / 0.879 \ 
Fixed-end moment =-:-1 ;;;—I ~ 540 ft.-kip8 

4 \2 X 0.636 +0.879/ ^ 

The moment diagram for span HI due to this load is plotted in Figure 220. The 

positiye moment of 159 ft.-kips can be used for comparison with other marimum pos¬ 

itive moments in this span caused by other combinations of live and dead loads on any 

the four spans. The negative moments have been obtained by using center line 

dimex^ons for the span; in other words these moments occur at the center of the ooL 

unuxs. In beam and girder construction it is customary to use the negative moment at 

the edge of the column as the maximum value occurring in the actual bemn cross sec- 
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tion. For the flat slab the critical section may be one through the column, or columi 

capital, or drop panel By reference to the moment coefficients long in use for fla 

mJKips 

^fO Kips per ft. 
MrH-479 

jrW ft'Kips 

527a'K 

J^i-Kips 

WBBL 
Vi9lftrKips 157fbKip\ 

/ //;//? JL29fi |\^ 

479ft'Kips 

Fig. 220 

slabs of equal spans, A.C.I. Article 1002 recommends that the critical section for nega 

tive moment be taken at a distance m == (0.073^ + 0.57a). This distance m “ 3.34 ft 
for span HI. The negative moments at these critical sections are shown in Figure 220. 

There has been a marked reduction from the center-line values. A.C.I. Article 1005 

Table N 
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also recommends that the numerical sum of the maximum positive bending moment 

and the average of the two maximum negative moments, 333 ft.-kips in this case, 

shall not be less than --^ 10^ ~ 3 ^ (0.127)1 — 365 ft.-kips. Of course, 

Table O 

JE 
5/ze, dtameler-tn 

th ickness- in. 
irai IHI 

24 24 

CoL \ 

si^ 

1 width -in 36 36 

-- ^sfab • 

/ * X 

f, 
fz 

Mm m 
0150 0150 

0625 0625 0625 0625 0625 

0.925 0.925 0925 0925 0.925 

I of column -On)^ 
Stiffness K 
Carry-over factor 

bottom to top 

to to to 

4/,500 22.400 22.400 22.400 4t.500\ 

219 US 

0.740 jfSI^ 
" LOWER COLUMNS FK GL 
Size, diameter-in. 

thickness-in 
width dn. 

y 
f, 
f2 
fs 

I of column - (inf 
Stiffness K 
Carry-over factor 

fop to boffom 

30 30 30 

24 24 

56 36 

0127 0127 0.127 o.m 
0.662 0.682 0.662 0.662 0682 
0936 0936 0.936 0.936 0.936 

l.O to to to to 

mm wmm 41500 
260 266 268 266 280 

0.468 0.466 0.468 0.466 0.468 

this single loading does not give either the maximum positive or the maximum nega¬ 

tive moments in span HI for the dead load in all spans and all possible live-load 
combinations. The analysis so far is part of a solution similar to Problem 71. 

three-dimensional frames 

371. Resistance to Joint Rotation by Members Meeting from Three 
Directions. The preceding discussion of continuous frames has assumed 
that the members of the frame were located in a single plane. In many 
structures there are beams or girders framing into the column-beam 
joints perpendicular to this plane. If the loads tend to rotate the joint 
ill the assumed plane, these members also resist such rotation and this 
resistance depends on the torsional stiffness of the perpendicular mem- 
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bers. The discussion that follows will determine whether it is essential 
to consider the frame as a two-dimensional or three-dimensional frame, 

372. Bending and Torsional Stiffness. When all members are in 
bending their relative stiffnesses are given by the comparative values of 

their j ratios. 
u 

When some of the members are subjected to torsion a 

more precise definition of stiffness must be adopted. 
Bending stiffness of a straight member of constant moment of inertia 

may be defined as the couple applied at one end of a member, which 

fixed 

Fig. 221 

produces unit rotation of the joint at that end, the other end being fixed 
(Fig. 221). By the slope-deflection equation, assuming A and B to re¬ 
main at the same level, 

AEIOa ^EI 
Bending stiffness — Kb — Mab =-=- (286) 

t I 

^‘Carry-over” factor = -, since Mba 
2 

2EI0a Mab 

" I ^ ”7" 

(287) 

Torsional stiffness of the same member may be defined as the couple 
applied at one end of a member to give unit rotation of the joint at that 
end, if the other end is fixed (Fig. 222). 

“Carry-over” factor = ~1, since Mba ’-‘Mab 

(288) 

(288a) 

373. Comparison of Bending and Torsional Stiffness. Circular Sec- 
Um. For circular sections of radius 

, 4S7 wB^E 
Bending stiffness ^ Kb ^- (289) 

I I 
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The relation between the torsional moment T and the angle of rota- 

. 1 m Gid T • 1 

tion B equals T == — , where I is the polar moment of inertia. 

^ GI irR*G 3 wR*E 
lorsional stillness = Ay == — =-=-— (^290) 

I 21 U I ^ ^ 

The last term of equation 290 is obtained by the relation 

E 
G = 

3 
= -E 

2(1 + ^) 7 
(291) 

Rectangular Sections. 

Bending stiffness = 

(292) 

(293) 

where v = Poisson^s ratio = J for concrete. Then 

AV = 0.214A^ 

iEI _ hh^E 

T~zr 
The relation between the couple T and angle of rotation B equals 

T = , where J == kih^L'^ ki depends on the ratio 7 and can be ob- 
t 0 

tained from Figure 107 (Art. 172). 
GJ 3 kih^hE 

Torsion stiffness = Kt = — =-(294) 
t T 1/ 

Bending and Torsional Stiffness of Rectangular Sections 

0
 

1 

h*E 
Kt = C2 — 

Ratio 
Kb 

Cl Ci 

(Square) 1.0 0.333 0.060 0.180 

1.5 1.125 0.126 0.112 

2.0 2.67 0.196 0.073 

Tee Section, The bending stiffness = . The moment of inertia 

is obtained using the gross section, where the flange width 6 is a con¬ 
servative value (Art. 170). The center of gravity of the section is deteiv 
mined and the moment of inertia about the center of gravity is computed* 

^ TimosheDko, Theory of Elasticity, p. 249. 
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The torsional stiffness of tee sections has been determined by test and 
by the soap bubble analogy.^ Approximate formulae for stiffness are 
suggested by Trayer and March (Fig. 223): 

bt^ (h 
J ^ fj'f— + f^w - 

16 

tW) '\3 

16 
+ aD^ (295) 

Fig. 223 

t 

(h-t) 

_L 

where b and t are width and thickness of the flange 
6' and (h — t) are width and depth of the web 
D = diameter of the largest circle that can be inscribed at the 

junction of flange and web 

M/ flange constant for the ratio (See Fig. 224.) 

2{h - t) 
Hw = web constant for the ratio- 

a = 0.148 
width of narrow rectangle 

width of wide rectangle 

t 
0.148— (usually). 

Equation 295 assumes there is no fillet at the junction of flange and web. 

Torsional stiffness = Kt = 
GJ 

A single example will be taken for the tee section (Fig. 225). The 
center of gravity of the entire section is 9.67 in. from the top. The 
moment of inertia about the center of gravity I = 50,900 (in.)^. 

Kb 
4JEI 

~ 

For torsional stiffness, 

4 X 50,900E 

I 

E 
203,600- z 

6 60 
- = — =10 and 
t 6 

2(/i - <) _ 2 X 24 

h' ii” 
* Nat. AdTuoiy Conunittee for Aeronautics, Report 334, Trayer and March. 
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Reef-angle Ralio 

Fig. 224 
% 

5.00 X 60 X 216 4.49 X 24 X 1728 6 
J =-i-+ 0.148 X — (12)* 

16 16 12 

J = 4050 + 11,635 + 1535 = 17,220 (in.)* 

GtT 3 E E 
Kt = — =-(17,220) = 7380 - and Kt = 0.036^:^ 

i T t I 

again obtained about the center of gravity of the gross section (Fig. 226). 
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The torsional stiffness can be obtained by using 

(6 - b')fi h(br 
J ^ ---[- --[- olD 

16 16 

[Chap, li 

(296) 

where (6 ~ h') and t are width and depth of overhanging flange 
h' and h are width and total height of web 
D == diameter of largest circle that can be inscribed at the junc¬ 

tion of flange and web 
2(6 - 6') 

pLf = flange constant for ratio-;-(See Fig. 224.) 
t 

/iti? = web constant for ratio 
6' 

width of narrow rectangle t 
ct = 0.07-= 0.07 — (usually). 

width of wide rectangle 6' 

Torsional stiffness = Kt = 
GJ 

T 
An example of the determination of these stiffnesses is given in which 

the dimensions of Figure 227 are used. The center of gravity of the 

section is 11.32 in. from the top. The moment of inertia about the 
center of gravity I = 32,190 (in.)^. 

For torsional stiffness, 

2(6 - 6') 2 X 18 

4EI E 
Kb =-= 128,800- 

Z Z 

= 6 and 
t 6 

4.77 X 18 X 216 3.88 X 28 X 1728 

h 28 
- = — = 2.33 
b' 12 

+ + 0.07 X 4 (12)* 
12 16 16 
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J = 1160 + 11,730 + 730 = 13.620 in.^ 

GJ 3 E E 
Kt ^ — == (13,620) = 5840- and Kt = 0.045^3 

111 I 

It is apparent that the circular section is by far the most efl&cient 
torsional section with a torsional stiffness of 0.214 of the bending stiff¬ 
ness. The usual concrete tee or angle beam is not an efficient shape 
to absorb torsional moments at a joint, as its torsional stiffness is usually 
less than 5 per cent of its bending stiffness. At a given joint such mem¬ 
bers in torsion will give little assistance to the perpendicular members 
in bending. Nevertheless, in order to cover the exceptional case of 
unusual loading, or a great divergence 
in section dimensions, the analysis of 
continuous space frames will be con¬ 
sidered. 

374. Moment Distribution Applied to 
Space Frames. If an unbalanced couple 
in the plane EFBC is applied to the 
joint A (Fig. 228), all the members 
meeting at A resist rotation of the joint 
in this plane. The total stiffness resist¬ 
ance will be the sum of the bending 
stiffness of members, AB, AC, AE, and 
AF plus the sum of the torsional stiffnesses of the members AD and 
AG, If an unbalanced couple is applied to the joint A in the plane 
DFGC, the members AC, AD, AF, and AG resist in bending, and AB 
and AE are in torsion. 

When an unbalanced couple has been distributed to these members 
in proportion to their stiffnesses, the usual procedure of carry-over mo¬ 
ments can be employed to bring unbalanced couples to the far mds 
(fixed ends for this operation) as with frames in a single plane. 

As an example, assume that the beams of Figure 228 are all tee beams 
with a bending stiffness Kb = 100 and torsional stiffness Kt = 4, The 
columns AF and AC are square with a bending Kb = 100. If 
an unbalanced couple M = 10,000 is applied at joint A in the plane 
EFBC, the resisting moments at the end A of each member can be 
determined by moment distribution. SK == 408 and Maje = Majs « 
Maf — Mao =“ ^ 10,000 « —2451. The torsional moments in 
AD and AG equal Mad = Mao == X 10,000 = —98. The carry¬ 
over factor to the far end of members AE, AF, AB, AC is plm one half, 
whereas the carry-over factor for the torsional members AD and AO is 
minm one. 
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If the solution is made by dealing only with the members in plane 
EFBCj the distribution gives Mae == Mao = Map — Mac — —2500 
and Maj = Mag = 0. The moments in the members in this plane are 
some 2 per cent greater than by the space frame solution, but the small 
torsional moments in AD and AG are neglected. It is so much easier 
to solve two-dimensional frames that space rame solutions are rarely 
made. 

CURVED BEAMS 

376. Curved Beams. Beams whose axes are curved in the horizontal 
plane will have both bending and torsional moments acting on the cross 
sections. The cases of bow girders and balcony beams ,will be taken as 
illustrations; it will be assumed that the load is uniformly distributed 
and the sections are uniform. 

The ends of the girder will be assumed to be restrained by moments 
shown as vectors in Figure 229. The solution will be made by the 

method of virtual work,^ temperature stresses being neglected. The 
basic equations are 

15a + Wa = Sao + -X^a5ao + Xhdab 4" Xcdac (297a) 

15b + = ^bo + Xa^ba + Xb^bb “h Xc^bc {297b) 

^ 18c Wc = 5co + Xa^ca + XbScb + Xc8cc (297c) 

where Xa, Xb, Xc are numerical values of the redundants. 8a, 8b, 8^ 

are their displacements. 
Wa, etc., equal the work done by the reactions when Xa = 1, etc., 

and daa, etc., equal the work done by the forces developed under con¬ 
ditions Xa = 1, etc., when distorted under conditions X *= 0. 

• Theory of Statically Indeterminate Stmctures, Fife and Wilbur. 
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^ab ~ 2^ 

Ma^ 

El 

MaMb 

El 

(is 4" S / — ds 
GJ 

ds -j- X 

fh 
J a 

/ TaTb 

GJ 
ds 

ds -f" 2 
FA / GJ 

- -/ 

Mb^ f 
—— ds + 2 / 
El J 

• Tb^ 
-ds 
GJ 

MbMc r 
El J 

TbTc ^ 
-ds 
GJ 

MJ^ r • rp 2 
— ds 
GJ 

= 2 /" 
fTaT, 

ds 

..zf 

El 

MbMo 

El 

MJIo 

ds 

=/ 

GJ 
T^To 

GJ 

ToTo 

ds 

ds 

- ds + S / -ds 
El J GJ 

(298) 

where May etc., are the bending moments at any section of ACB due to 
a unit load in direction Xay etc., Mo and To are the bending and tor¬ 
sional moments at any section due to the load on the beam. 

Only the results of the solution will be given here.^ Refer to Figure 
229 and let the reactions at B be the redundants, also Xa = X^ == 
Thay Xc = Fhay where Fha is the supporting force at R. If support A is 
fixed, Wa — Wh = Wc — 0. 

When ba = cch in plane AB^ §6 = 5c = 0, 

Mfia — 

^hh ^ce 

D 

SbJ 
- • at = Aiab (2g9a) 

Tha == 

bbc ^ca bba ^cc 
= A2ab (2996) 

D 
• ab 

Fba = 

^ba Scb — bbb 5ca 

= Ascxb (299c) 
D 
. * O^b 

* See ^*Moment Distribution in Bow Girders” by E. Curiel-Benfield, a thesis sub¬ 
mitted in partial fulfillment of requirements for the degree of Master of Science at 

M.I.T. 
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wllCrB JD ^aai^^bb ^cc ““ ^bc ^cb} “i“ ^baC^cb ^ae ^ab ^cc) “f" 
^ca i^bc ^ab Sac Sbh)- 

When Sa = So = 0 and 5^ = /36 in plane perpendicular to AB, 

Scb Sac Sab Sec n ^ 

Mha — -^- • Pb = Bi^b 

Saa Sec — Sae^ o _ p o 
i 6a ==-—- • Pb = -02P6 

Sea Sab Scb Saa « 

Fba —-::::-- Pb = BsPb 
D 

(300a) 

(3006) 

(300c) 

or 

Af6a = 'dia6 M 6a — Fba ?1 

Tha = Mha 
Ai 

Tba = B2Pb (301) 

As 
F ba ^ A/ ba ~ 

Ai 
Fba — Tha 

?1 
B2 

Refer to Figure 229; the bow girder ACB is symmetrical about OC and 
is in equilibrium; therefore, when = «6, 56 = 5c = 0, 

Mab ~ —Af6a — Fba X AB = —Mba 

A2 

(i + ^xab) 

Tab — ~Tba = ~Mba X 
Ai 

(302) 

(303) 

When Sa — de ~ 0, 3^ = /St, 
/ Bi Ba \ 

(304) 

Tab -Tba (306) 

Similarly, when support A rotates through an angle a* in plane AB 

** T-VJ 

Mab = -Mba -FbaXAB^ ^ 
\B2 B2 / 

Mab “ AicXa 

Tab "Mab 
Ai 

Mba ^ --Mab 

Tba — Mab 

f’oJ = Mab 

(306) 
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When support A rotates through an angle /Sa hi a plane perpendicular 
to AB, 

Mat = -Tab ~ Mba= -Tati— + — ■ Al^ 
B2 KBz Bi ) 

Tab == B2^a Tba == ““ T'aft (307) 

Bs 
Bab = —Tab • “ 

/>2 

BOW GIRDER 

376. Bow Girder. The term how girder will be used in the applica¬ 
tion of the equations above as limited to a beam whose horizontal axis 
is an arc of a circle (Fig. 229), 

If Mha = 1, Ma = cos — B) and Ta — — sin (<#> — 0) 

If Tba == 1, Mb = sin {<)} — 6) and Tb = cos (</> — 6) (308) 

If Fba — 1, Me = R sin 6 and Tc = i2(l — cos B) 

Substituting equations 308 into equations 298 and integrating be¬ 
tween 0 and 2<l>j where ds — R dB, one obtains 

R R 
^aa = (20 + sin 20) + (20 — sin 20) 

2E1 2(jJ 

dab — 0 

5ac = —^ sin <t)(2<t> + sin 24>) H-sin 4>i2<t> — sin 24>) 
2EI 2GJ 

R R 
dbb — (2<#> — sin 2<t>) + (24> + sin 2<t>) 

2EI 2w 

R^ , 
Sbe =-(sin 0 + sin cos 2(j> — 24 cos <i>) + 

2E1 

/ 

R^ 

R? / 

(309) 

(3 sin <#► — sin <t> cos 24 — 24 cos 4>) 

-sin 44 ) "t" ( 30 H— sin 40 — 2 sin 20 ) 
4 / GJ \ 4 / 
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For a uniformly distributed load Wy consider end A to be fixed and 
end B to be free. The bending moment at D due to the load w over 
the length BD is obtained by integration of a load wds acting at E. 

Mo — —R^w f sin {d — ^) = —R^w{l — cos 6) (310a) 
Jo 

To == —R^w f (I — cos^) dyp = ‘-R^w{6 — sin 0) (3106) 
Jo 

Substituting in equations 298, 

'^w 
-(sin (j> + sim <t> — <t> cos <t>) — 
El 

R^w 
(3 sin <i> — sin^ 0 — 3<^ cos 0) 

R^w/ 1 
(-^ (20 — sin 20)sin 0 
\EI GjJ 

R^w „ 
^co =-(sin^ 20 + 2 cos 20 — 2) — 

2EI 

' [sin^ 20 — 40 sin 20 + (20)^] 

Equations 309 and 311 are substituted into equations 297 to solve 
for the fixed-end moments, where 8a — 5^ = 8c = 0 and Wa = Wb = 
Wc = 0. The solutions are much easier if numerical values are used. 

ILLUSTRATIVE PROBLEM 75 

377. Bow Girder. Fixed-End Momerds, Assume a bow girder with AR ** 20 ft., 

CE = 5 ft., and w = 2000 lb. per ft. Then R — 12.5 ft. and 0 *= 63.13®. Assume 

the girder section to be 20 in. square. In that case, / = » 13,330 (in.)^ and 
12 

J “ 0.14066^ = 22,500 (in)^ If Poisson's ratio equals (7 « and QJ = 
0.7235E/. 

Substitution of 0 » 0.928 radians and the functions of 0 and 20 in equations 309 
and 311 give the results tabulated below. 

6ob “ 0 

5cc “ + ' 

267.6 

. 33,550 
bco *= — --W 

El 
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The fixed-end moments can be found by substituting these values into equations 

297 and noting that 6a ~ = 0 and Wa = Wb == Wc = 0. The three equa¬ 
tions are 

-\-2bMMba + 253.4F6a - 4-2062m> 

+29.91 r6a + 121.13na = +267.6U) 

+253.4Ar6a + 121.13T6a + 4045Fj^ = +33,550u> 

The solution of these three simultaneous equations gives 

Mba = ~34.73u’ Tba = -38.06u; Fba = 11.61ip 

Since the girder and loading are symmetrical about OF, the force and couples at 
support A equal 

Mah — +34.73iy Tab = *-38.06«) Fab = 

Owing to the symmetry, Fab — Fba — wR<i>, If one takes moments about the 

line ABf Tab = Tba can be found by statics. Therefore, it is only necessary to use 

the first equation above to solve for Mba- It should be noted that the so-called bend¬ 
ing moments Mab and Mba do not act perpendicular to the cross sections at A and B, 
nor do the torsional moments Tab and Tba act in the cross-sectional planes. 

378. Moment Distribution. The directions OC and AB of Figure 
229 have been chosen to act parallel to the other beams framing into 
the joints A and B, If the complete continuous frame is analyzed by 
the method of moment distribution, the moment M^a distributed to 
the bow girder ACB will have carry-over moments of Mabj Tab, and 
Tba- These moments can be found by use of equations 302 and 303. 
Similarly the carry-over moments due to a distributed moment of Mahf 
or Tab, or Tba can be computed by equations 302 to 307. 

BALCONY BEAM 

379. Balcony Beam. A beam composed of straight members, similar 
to that of Figure 230, can be analyzed by the same method, that of 
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virtual work, equations 297 to 307 inclusive being used. For the sym¬ 
metrical case of Figure 230: 

daa = [2Zi cos^ 0 + 12]+-^ [2li sin^ 
El GJ 

Bab = 0 

1 * 
cos ^(1 -f* cos 20) ZiZ2(l “f~ cos 0) 

^bb = ~ [2Zi sin^ 6^ + — [2Zi cos^ 6 + Z2] 
El GJ 

2 J GJ 
[IJs sin^ 0] 

(312) 

1 1 
die = — [(—sin 0)(l2 cos S + Zj cos 26)] H-[(Zi cos d)Q,2 + h sin ^)] 

El GJ 

--k(- Ell \3 
-f- COS 2^(1 “h cos 26) )+ 

Zi^Z2 cos ^(1 -f- cos 0 + cos 2$) -4" lil2^ cos ^(1 “h cos 9) H--1- 

1 

GJ 
[k% cos^ e + hk^ sin2 

For a uniformly distributed load w, with end A fixed, take moments 
about a section distant s from right end of each member: 

Member DB: Mo == — 

Member CD: Mo =-+ 2sZi + cos 6] 

To^ - 

ws" 

T 

w 

2 

wli^ 

and To — 0 

sin 0 (313) 

w 
Member AC: Mo ~-[s^ -h2s(li -hk) ”f" Zi^cos2^-f*-f-2Z1Z2cos^] 

2 

w 
To^-[jgS gin ^ 2I1I2 sin ^ sin 26] 

2 

Numerical values of Zi, Z2, and the functions of 0 should be placed in 
tihe above equations for Mo and To before substituting in equations 298 
for Boot and Seo* 
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ILLUSTRATIVE PROBLEM 76 

360. A Balcony Beam as Part of a Continuous Frame. Given the floor plan of 

Figure 231, compute the fixed-end moments for the balcony beam AB and determine 

by moment distribution the moments in the other members of the frame resiilting 
from a uniformly distributed load of 2000 lb. per ft. acting on AB, Assume the 

joints at Z), E, and F to be fixed. The interior beam AE has the dimensions of 
Figure 225, all exterior beams have sections shown by Figure 227, the balcony beam 

Fig. 231 

has a section 20 in. square. All upper columns are 20 in. square and all lower col¬ 

umns are 23 in. square. The far ends of all columns are fixed. All columns are 

15 ft. long. 
381. Balcony Beam. Fixed-End Moments. As in Problem 75, let GJ « 0.7235E/. 

Substituting in equation 312, 

3aa = + 
26.84 

El 

Sob 

^bb — + 

Bbc = -f 

30.67 

El 

131.5 

El 

6ac 
268.9 

El 
Bcc 

4326 

El 

As explained in Article 375, Mat ©fC i are the bending moments at any section due to a 

unit load in direction Xaj etc. From the geometry of Figure 230, 

Member DB: Ma 

Me 

Tb 
Member CD: Ma 

Me 

Tb 
Member AC: Ma 

Me 

cos e = 0.707 

B 
cos ^ = 0.707 

cosO® « 1 

B A-h eos 6 = « -f 6 

cosO® “ 1 

cos ^ * 0.707 

B -1-^2 COS6 +.ZlC06 2^ 

A » n 707 

Mb sin 9 = 0.707 

Ta = -sin 9 « -0.707 

Te^O 
Mb^O 

Tc = h sin ^ * 5 

Mb - —sin 9 * —0.707 

s + 7.07 Ta»sin6* 0.707 

7. om A «. ia li. 
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By equations 313, 

Member DB: Mo — 

Member CD: Mo = 

To == 

Member AC: Mo = 

To = 

ws^ 
T" 

and To — 0 

w 
- - (s2 + 14.14s +35.35) 

- 17.68u» 

w 
- - (5^ 4- 34.14s + 170.7) 

-110.4U? 

Substituting these values in equation 298, 

^4 

jT'* (0.707) (s^ + 34.14s + 170.7) dsj - 

j^O + 0 + (0.707)(110.4) dsj 
w 

^1 

2272 

" El ^ 

Similarly, 
280 

and ^co 
36,946 

El 

The supporting forces Fab = Fha = ^ (2/i + ^2) = VZ,07w — 24,140 lb. 

If the supports at A and B are fixed, take moments about the line ABy noting that 

Tab “ T’fro* 
I 'Al.i*" Bin H I 

+ Tob 4“ Tha — 0 
r2Zi^sin^ ,. xl 

H ^-h Wiism0)J 

Tab^Tba==^ ~42.68t/; = -85,400 ft.-lb. 

The moments Mab and Af^o can be found by use of the equation 297a. 

0 = -2272WJ + 26.84M6a H- 268.9 X 12.07u; 

Mba = ~35.9u? = -71,800 ft.-lb. and Mob = +71,800 ft.-lb. 

382. Balcony Beam. Moment Dutrihviion Coefficients. A moment Mba distributed to 

the balcony beam at support B will cause carry-over moments of T'ta, Af'oj, and T'oj 

at both supports. This couple Mba acts in the plane AB and equals Aioib (equation 
299a), where Ai is the stiffness factor Kb to be used for rotation of joint B through 

an angle txb in the plane AB. To obtain the numerical value of A1 it is necessary to 

use equation 299a and the value of D given immediately below equations 299. 

D - 7^. {26.84[30.67 X 4326 - (131.6)*] + 0 + 268.910 - 268.9 X 30.67]} 
(El) 

876,780 
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By equations 299 and 300, 

, 30.67 X 4326 - (131.5)= 
Ai = -- --- +0.1315E/ and Bi = +0.04033E/ 

o7o,7oU 

A 2 = +0.04033J5'/ B2 = +0M9S7EI 

= ~0.009406J?7 Bz = -0.004026J^/ 

At support B, because of a rotation ab in the f)lane A B, by equations 299 to 303, 

Mba — 0.1315jB/ab = KBOCb M'ab ~ ^AZQMba 

T'ba - 0.3065M6a T'ab = -0.3065M6a 

At support B, because of a rotation (ib in a plane perpendicular to AB, 

Tba = 0.04987B7/36 - Erdb M'ab = 0.8075r6a 

M'ba = 0.8075r6a T'ah = -Tba 

At support A, because of a rotation aa in plane AB, 

Mob = 0A315B7aa = KBOLa M'ba - 0.430Ma6 

T'ah = -0.3065Afa!, T'ba = 0.3065Ma6 

At support A, because of a rotation /3a in a plane perpendicular to AB, 

7^06 = 0.04987B7^a = Kr^h M'ba = -0.8075^0* 

M'ah — —0.8075T'ofi T'ba = '-"Tab 

383. Solution of Continuous Frame. The necessary cross-sectional properties of 
the members shown in Figure 231 are given in Table Q. 

Table Q 

1 1 

Cross 7 J 
Stiffness 

Section (in.)« (in.)^ 

Kb Kt 

Balcony 20 in. 

beam AB square 13,330 22,550 1,753B 665B 

Interior 
beam AE Fig. 225 50,900 17,220 10,250E 369B 

Exterior 

beams Fig. 227 32,190 13,620 6,438B 2&2E 
Upper 20 in. 

columns square 13,330 d,556E 
Lower 23 in. 

columns square 23,3;^ 6,219B 
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Table R gives the moment distribution over the frame of Figure 231 of a load of 
w ~ 2000 lb. per ft. on the balcony beam AB. Columns labeled BB\ etc., are 
upper columns, those labeled RB", etc., are lower columns. The carryover factors 
for all columns and beams are (+§) for bending and (—1) for torsion, except for the 
balcony beam. 

The results show little change from the fixed-end values of Mabr Tah^ and but 
a 10 per cent decrease of Mba- Before the bending and torsional moment diagrams 
are plotted for the balcony girder, the moments Mdb and should be resolved 
into true bending and torsional couples perpendicular or coinciding with the cross 
section at A; also Mba and Tba at section B should be resolved in the same manner. 



CHAPTER 15 

ARCHES AND RIGID FRAME BRIDGES 

The arch and rigid frame bridge are two examples of the structure 
whose center line is curved, or changes direction, in the vertical plane. 
There is the added complication that the cross sections vary in depth, 
this variation being especially marked in the rigid frame bridge. Most 
designers agree that curved members with variable section are best ana¬ 
lyzed by a virtual work or least work solution. Virtual work was used 
in the previous chapter to determine the fixed-end moments for the bow 
girder and will now be employed to establish a method of arch design. 

384. Arches. From the earliest examples to recent ones arches have 
been compression members. They are, even now, usually so loaded that 
all the particles in a cross section have compressive stresses. Therefore, 
concrete is a legitimate material with which to construct arches. Plain 
concrete arches, like masonry ones, should be of such a shape that the 
line of the resultant pressure at each section lies within the middle third. 
In such a case all particles in the section have compressive stresses. The 
reinforced concrete arch can have tensile stresses, but it is good practice 
to keep the resultant pressure close to the center of gravity of the sec¬ 
tion because variations in the position of live loads or moving loads will 
cause variations in the stress distribution at a section. 

386. Arch Nomenclature. The arch springs from the foundation or 
abutment. The thickest section of the arch proper is known as the 
^ringing (Fig. 232). It is easily located in the masonry arches, but in 

concrete construction, with abutment and arch poured continuously, it 
will be defined as the last section in the abutment which remains fixed 
in position. The upper surface of the arch is the exirodos] the inner 
autface is the inirados. The arch axis is the line passing throng the 

432 
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center of gravity of each section. The crown is the highest section. For 
design, the span is the distance between the centers of gravity of the 
two springing sections, and the rise is the vertical distance from the 
center of gravity of the crown to that of the springing. Out in the field 
the term span is sometimes used as the clear distance between the ver¬ 
tical faces of the abutment, and rise as the vertical distance from the 
top of the vertical abutment face to the highest point of the intrados. 

386. Design Theory. Hingeless Arch. The reinforced concrete arch 
is continuous from abutment to abutment and is statically indetermi¬ 
nate. The arch is statically indeterminate because at each springing 
section there may act: 

1. A shear force Vs- 
2. A normal force Ns at the center of gravity. 
3. A bending couple Ms- 

There will be six unknowns. For a curved member, such as an arch, 
the solution by least work is recommended. 

The derivation will be made for an arch which is symmetrical about 
the crown section (Fig. 233). The half arches will be considered sepa¬ 
rately, and the shear force Vcj normal force //c, and couple Me acting 

at the crown will be obtained. Since the two sides of the crown section 
do not displace relative to each other, the theory of least work may be 
used, 

387. Assumptions. The following assumptions are made. 
I. The normal stresses at any section are distributed as in a section 

of a straight beam subjected to the same forces. This is sufficiently 
accurate for curved beams with a large radius of curvature. 
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II. The normal force N at any section will be taken equal to Hcy the 
normal force at the crown section, in computing the work done by the 
normal forces. This approximation makes for simplicity and is justified 
since the work due to the normal force is a small part of the total work. 

III. The work done by the shear force V will be neglected. This is 
the customary procedure in work solutions, since its effect on the com¬ 
puted forces is negligible. 

388, Derivation Nomenclature. In addition to the terms previously 
defined, let 

s == length of arch measured on the arch axis 
W = work done 

Ho = normal force at origin 0 (Fig. 233) 
Vo = shear force at origin 0 

Mo == bending moment at origin 0 
Ml, = bending moment at any section of left half-arch 
Mr = bending moment at any section of right half-arch 
niL = sum of moments about the center of gravity of a section in 

the left half-arch of the loads between the section and the 
crown 

rriR = sum of moments about the center of gravity of a section in 
the right half-arch of the loads between the section and the 
crown 

X = one of the unknowns. 

389. Determination of Crown Forces by Least Work. In Figure 233 
let the OY axis be taken through the crown section for both half-arches. 
It would seem natural to take the OX axis through the center of gravity 
of the crown, but there is a gain in simplicity if the OX axis be taken 

"yds 

El 
below the crown at such a distance yc that = 0. They dimen¬ 

sions are measured upwards. The x dimensions are plus, measured 
to the left for the left half-arch, and plus, measured to the right for the 
right half-arch. 

If an unknown force X acts at a section of a member, the displace¬ 
ment b of this section in the direction of X is given by work equations 
from textbooks on indeterminate structures. The displacement due to 
bending in the member is 

dW M BM 
— = /-ds 
dX Jo El dX 

Inhere Jj the displacement of the supports. 
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The displacement of the same section in the direction of a normal force 
X due to the normal forces N acting throughout the member equals 

dW nn N dN 
5 + L =-= / -- — ds 

dX Jo EA dX 

Taking the portion of the arch between the crown and a given section 
AB SiS 0, rigid body, the external forces acting are 

(а) Forces Vo and Bq and couple Mq acting at the crown section but 
transferred to 0. 

(б) Loads P2, P3, etc. 
(c) Forces and F^, and couple Mz, acting at section AB. 

Taking moments about the center of the section AB, 

Left half-arch: Ml — Mq — raz — Hoy + Vqx 
Right half-arch: Mr = Mq — tur — Hoy — Vqx 

N = Hq for the least-work derivation 

If the two sides of the crown sections do not move apart in a hori- 
55ontal direction and the abutments do not move horizontally, 

5 + L = 0 == 
bW 

Wo 

r9/2 Mz dMz Mr BMr 
= f ---ds + t ---ds + * 

Jo El dHo Jo El dHo 

N dN 
2 1 — • —d$ 

/•/2 ds 
{Mo -mz- Hoy + Vox){-y) — + 

'■r EA dHo 

El /«/2 ds ds 
{Mo - ms - Hoy - Vox){-y) — + 2Ho I 

El Jo EA 
But 

/ yds 

W 
= 0 by assumption 

Mo is a constant multiplied by this term, the terms +Vox and --Vox 
cancel, and the moments niz and vir vary from section to section. 
Therefore, 

/*/2 (niL + 'itir) ds ds 
^ + _ 014, 
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If the abutments do not move vertically, and the two sides of the 
crown sections do not move relatively in a vertical direction, 

5 “b i/ 0 =-= / 
dVo Jo 

‘«/2 Afjr^ ^s/2 A//2 dMn 
- . -_|_ / - . -^5 
El dVo Jo El dVo 

{Mo - niL - Hoy + Vox){x) — + 
El 

p/2 jv dN 
2-ds 

Jo EA dVo 

ds 
(Mo -rriR - Hoy - Vox){-x) — + 0 

El 

p‘‘^ X ds x^ ds 
0 = / {mR^mL)-— + 2Vo / (315) 

•/o El Jo El 

If the abutments do not rotate and the two sides of the crown sec¬ 
tion do not rotate relative to each other, 

dW r 

^Wo ^ ^ ^ X 

■»/2 Ml BMl 

El dMo 

''s/2 ]\^J^ dMji 

El dMo 
p/2 

2 /-ds 
Jo EA dMo /«/2 

(Mo — niL — Hoy + Vox)(l) ds + 

p/2 
I {Mo — niR — Hoy — Vox){l) ds 

Jo 

O-WoT-- r —(316) 
Jo El Jo El 

Solving equations 314, 315, and 316, 

{rriL + mR)y ds {rriL + mR)y c 

0 I /«/2 ds p^ 

. — 

ds 

Jo I 

p/^ ds 

y, — 

Fo = 
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Jo T 
If the force Ho is transferred to the center of the crown section and de¬ 

noted Hci then Hey Vcy and Me are the forces and couple at the crown 
section: 

He = Ho Vc = Vo and Me ^ Mo - HoVc 

where yc = distance of center of gravity of crown section above the OX 

The OX axis can be located by taking moments of the term — about 
hi 

the horizontal axis HH through the center of gravity of the springing 

sections. This axis is a distance below the OX axis. 

Let y' = distance from HH to any section. Moments about HH give 

/y* dB r ds r y dB r ds r ds - y (V+».)--yy ^ - 0+- 
J'y' ds 

y. = ——- (317) 
r ds 

J 7 

The integrals are difiBcult to evaluate, and designs are made by using 

a number of short lengths As instead of the infinitesimal length ds. In 

each length As the moment of inertia I and the area A are assumed to 

be constant. The design equations become 

Ho = He = 

{rriL + 

r 1 
2S — + 2S - 

I A 

, (mz, - mR)x 

Fo = F, = (319) 
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{niL + mu) 
2/--- 

Me ----HoVc ^ Mo- HoVc (320) 

2S- 
I 

These summations are for the half-arch. 

390. Temperature Stresses. The reinforced concrete arch, fixed at 
its ends by the abutments, will have additional stresses due to tempera¬ 
ture changes. These might have been included in the previous deriva¬ 
tion, but it is convenient to keep the temperature analysis separate. 
The temperature change affects the normal stresses of the cross section. 
The resultant of these stresses may be taken as a normal force Nt at 
the center of gravity and a couple Mt^ For either half-arch, 

Mt = M'o - iroy 

Nt ~ H^o cos <l> 

where <t) = the angle between the section in question and the crown sec¬ 
tion. 

Once again, the two sides of the crown section do not separate and 
the abutments are assumed to be unyielding. For the symmetrical arch. 

w 
— = 0 = 2/ (Af'o - 
( 0 Jo 

oy){-y) — + 

/•/2 ^b/2 

{H'o cos <^)(cos 4>)-2€t I cos ds 
EA Jo 

where € = coefficient of expansion 
t = average temperature rise in the length ds. 

The first term is the horizontal displacement of the crown section due 
to the temperature couples in the half-arch. The second term gives the 
displacement due to the thrust. The third cares for the lengthening of 
the arch due to a temperature rise and is tension (negative in the equa¬ 
tion). 
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ds /**/2 cos^ <t> ds 

El ""Jn EA 

where I = span = 2 
Jo 

Also, 

V2 
COS ds. 

dW r«/2 
~.0 = 2_^ (1,- 

therefore 

and 

/V2 

/'*/2 (/s 
0 = 2M'o /-0 

Vo i^7 

2/ds 

"i/ 

M'o = 0 

H'o 
dlE 

'’’/^y^ds 

y 2 r +2 
Jo £ 

cos^ <t> ds 

~A 

If a finite number of divisions As are used, I = 272A^, where n is the 
number of As divisions in the half-arch. The term cos^ 0 can be ap¬ 
proximated as unity. 

Using a finite number of short divisions the value of H'c becomes 

H'c = 
etnE 

r 1 

I A 

(321) 

These summations are for the half-arch. 
391. Shrinkage. The shrinkage stresses are considerable in a long 

curved member, such as an arch, held firmly at the ends, and these 
stresses should be considered in the design. It is customary to reinforce 
the concrete arch with equal areas of steel on the extrados and intrados 
faces. The shrinkage of an arch will, therefore, be analogous to that 
of a column, and the symmetrical section permits the use of average 
stresses. Consider the arch as a series of n straight members of length 
As with a total length equal to Z = 2nAs. Equations 117 and 118 (Art. 
180) give the tensile stress ft in the concrete and the compressive stress 
f, in the steel due to a shrinkage strain s. 
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The change in length will be sL The allowance for additional stresses 
due to the fact that the arch is actually curved can be handled, as were 
changes in length due to temperature, by substituting the value si for 
etl in equation 321 to obtain H'c- 

The shrinkage coefficient was given an average value of s = 0.0004 
in. per in. in Article 181, Chapter 9. Arches usually consist of large 
masses of concrete exposed to the weather and not completely dried out; 
so a value of s = 0.0002 is probably safe. Shrinkage is often cared for 
in computations by specifying that it be regarded as a temperature 
change of 10"^ to 30°. 

392. Plastic Flow. Compressive distortions of the arch due to the 
dead loads will continue for some years after the arch is constructed. 
It is stated in Article 189, Chapter 9, that the effect of plastic flow can 
be included in computations by using a corrected modulus of elasticity 
ratio, perhaps n' = 50 to 90. This can be used in the shrinkage pro¬ 
cedure outlined above, and the ultimate effect of shrinkage is much re¬ 
duced. 

In the equations for Me, Ha and Vc derived above, the modulus of 
elasticity does not appear, except for the temperature effect in equation 
321. The moment of inertia / of a reinforced section is only slightly 
affected by the value of n. Therefore, the magnitude of the moments 
and thrusts at a section due to dead or live loads need not be corrected 
for plastic flow. However, the computation of the stresses at a section 
due to these forces and couples should be made using the modified value 
n' when dead loads are considered. Live loads usually vary so rapidly 
that plastic flow need not be considered. 

The result of the shrinkage, plastic flow, and temperature changes is 
to produce resultant stresses in the steel considerably greater than those 
due to the loads. These may approach the yield point of the steel. 
Plastic flow will prevent the total stress from greatly exceeding the 
elastic limit stresses, but there results a shifting of stress conditions in 
the section, and final values are problematical. It is advisable to esti¬ 
mate the effect of shrinkage and flow in the design.^ 

393. Proportions of Arch. The equations for Hey Vcy and Me, derived 
above, can best be used if the shape of the arch axis and the dimensions 
of the cross sections are known. There are empirical equations for the 
thickness of the crown and springing, and approximate solutions for the 
curve of the arch axis that enable the designer to choose arch propor¬ 
tions that will give the minimum bending moments. The bending mo- 

^ For a comprehensive discussion of the effect of shrinkage, temperature changes, 
and plastic flow see *Tlain and Reinforced Concrete Arches,*^ by Charles 8. Whitney, 
Jour. A.CJ.y March 1932, p. 479. 
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ment will be zero when the normal thrust N passes through the center 
of gravity of the section. The dead weight is always present and, with 
earth-filled arches, is a large portion of the total load. It is customaiy 
to adopt an arch axis coinciding closely with the line of thrust due to 
the dead loads. 

394. Crown and Springing Thickness. The crown thickness can be 
tentatively assumed by an empirical equation based on existing arches. 
That of Mr. F. M. Weld ^ gives 

tc 

I Wi Wc 
1^// _l-1-1- 

10 200 400 
(322) 

where tr = crown thickness in inches 
I = clear span in feet 

Wi = live load in pounds per square foot 
Wc = dead load at crown in pounds per square foot. 

The thickness of the section at the springing is about 1.5 to 3 times the 
crown thickness, a value of 2 being commonly used. 

Mr. C. S. Whitney^ has derived an equation for the thickness tx at 
any section in terms of the crown thickness tc for arches with a distrib¬ 
uted loading. 

4 = (323) 

where 0 = angle between tangent to the arch axis and the horizontal 
(Fig. 234) 

* Engineering Record^ November 4, 1905. 
* Trans, A,S.€.E,. 1925. 
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angle at springing 
crown section thickness 
springing thickness 

ratio of horizontal distance x to the length 

396. Arch Axis. Mr. Whitney also proposes an equation for the curve 
of the arch axis for distributed loads. For any section whose center is 
a horizontal distance x from the crown the vertical distance y of the 
axis below the crown center is (Fig. 234): 

(--0 \Wc / 

(cosh kC - 1) (324) 

Ws 
where C = cosh’”^ — 

Wc 

Wc = dead load intensity at crown 
Ws = dead load intensity at springing 

r = rise of arch axis. 

This is not in a convenient form for the designer. For design Mr. 
Whitney has prepared a table which enables the designer to select the 

arch axis if the ratios ^ , - and — are known. The dimension yi is the 
Wc r r 

I 
y coordinate of the section at a: = ~ from the crown. 

Mr. Victor M. Cochrane ^ proposes an equation for the axis of arches 
with distributed loads. 

a + 3Pr^ 
k^r 

n + 3rr\ 

\ I + 3r / 
(325) 

ILLUSTRATIVE PROBLEM 77 

896. Design of an Earth-Filled Arch. Design a symmetrical arch to carry a road¬ 
way. The concrete pavement is 6 in. thick. The fill between the pavement and 
the arch weighs 120 lb. per cu. ft. and is 1 ft. thick at the crown. The span between 
the vertical faces of the abutments is 145 ft., and the rise from the top of this vertical 
face to the highest point of the intrados is 30 ft. The live load is 100 lb. per sq. ft. 

The allowable foundation pressure is 5 tons per square foot.^ It has been decided 
to tiy a 3000-lb. concrete. The steel ratio will be assumed as p » 0.015 at the 
crown and will be kept a constant area throughout the arch. An arch 1 ft. wide 
will be used in the computations. 

^ Proceedings, Engineering Societ/y of Western Pennsplmnia, November 1916. 
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397. Selection of Trial Arch. Crown Thickness. Substituting in Mr. Weld^s equa¬ 
tion 322, 

tc « Vl^ -f 
150 100 120 + 150(0.5 -b 2.5) 

10 200 400 
■ 29.1 in. 

Adopt tentatively a crown thickness of 30 in. The springing will be assumed as 
75 in. thick. 

Arch Axis. Using equations 324 and 325 and dividing the horizontal distance 
between crown and springing into tenths, Table S has been computed for the trial 
arch axis. It has been assumed that the span of the axis will be 5 ft. more than the 
clear span (or I = 150 ft.), and that the rise of the axis r = 30 ft. 
By Cpchrane: 

SOk^ 
y = j^EoTTxm " o.i25;b2(i5o + 

By Whitney: 

^ 28 X 120 -f 150(0.5 -f 10.0) _ 

Wc “ 120 + 150(0.5 + 2.5) ” 570 

This assumes 28 ft. of fill on the arch at the springing and a vertical depth of con¬ 
crete of 10 ft. in the arch. 

C - cosh-^ 8.67 - 2.85 

30 
y “ (cosh 2.85A: — 1) 

7.67 

The two results are shown in Table S and differ only slightly. In Figure 235 the 
trial axis is plotted, for the most part between the Cochrane and Whitney values. 

Table S 

Arch Axis Vertical Dimensions y Section Thickness tz 

k Cochrane Whitney <t> Whitney 

Crown 0 0 30.0 in. 
0.1 0.19 j 0.16 31.0 
0.2 0.75 0.66 32.1 

1.72 1.52 9.6® 33.5 
0.4 3.12 2.83 12.6® 35.1 
0.5 6.04 4.67 16.5® 37.1 
0.6 7.62 7.27 21.3® 39.8 
0.7 11.07 10.73 28.6® 43.7 
0.8 15,70 15.4 37.6® 49.5 
0.9 21.8 21.6 43.6® 58.0 

Spring 30.0 30.0 50.0® 76 
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Thickness of Sections. Equation 323 will be used to obtain the trial section depths. 
By the previous assumptions the crown thickness tc = 30 in. and springing =» 76 in. 

30 
By Figure 235 the angle <f>, at the springing is tan ^ , or <t)8 

25.2 
equals 0.543. 

50®. The cos 

30 30 

^Vlcos. 
0.643/ J 

■V^[l — 0.90A;] cos <l> 

Dead Loads 
Horizonfa! 
Division 

Average 
Ordinate load- Ik 

0-J 3.9 P, = 4,400 
f-z 4.f Pi “ 4,600 
2 -i 4.6 P3 = 5,200 
S-4 5.55 >4 = 6,200 
4-5 7.05 P5= 7,900 
5-6 9.05 Pe^W.ZOO 
6-7 nm Pi^/3,000 
7-8 15.25 Pa^^moo 
8-9 20.55 P^ ^23,100 
9-to 26.15 P,o=3!,600 
Total 123,300 

Dead Loads by As divisions 
Arch 

Division 
Average 
OroHnate 

Division 
Width Load-lb. 

/ 3.95 8.4 /},= 4.980 

2 4.35 8.4 P,2^ 5,480 

3 5.0 8.3 P,3=^ 6,230 

4 6.3 8.2 7,750 

5 8.25 8.2 P,5^ 10,150 

6 10.6 7.5 Pi6=11,910 

7 12.55 7.5 'Pn^ 14,110 

8 16.75 6.8 P,a-11,080 

9 23.25 6.3 P,9*11,880 

W 29.35 5.4 p(j=^23,750 

Total 123,320 

TriatPofe-^ 

Fia. 236 
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The values of tan are scaled on Figure 235 for each of the division points. The 

angles and thicknesses are listed in Table S, and the thicknesses are plotted in 
Figure 235 to give the trial extrados and intrados. 

398. Dead Loads. The dead load is plotted in Figure 235 in terms of concrete 

weights. Each foot of fill will be equivalent to = 0.8 ft. of concrete. Thus, at 

the crown there are 2^ ft. of arch, 1 ft. of fill, and 0.5 ft. of pavement. At the spring¬ 

ing there are 10 ft. of arch (vertical), 27.5 ft. of fill, and 0.5 ft. of pavement. For 

convenience these ordinates have been plotted to a horizontal base line below the 

arch. The dead loads are divided into ten divisions by the original horizontal dimen¬ 

sions of one tenth the half-span. These loads Pi, P2, etc., for a foot width of arch 

are equal to the average height times the width of 7.5 ft. multiplied by the unit 

weight of concrete. Thus, 

3.8 + 4.0 
Pi --±-X 7.5 X 150 - 4390 lb. 

and 

X 7.5 X 150 = 31,600 lb. 

Their lines of action are found graphically. For example, the load P5 is equal to the 

area ABCD multiplied by 150 lb. per cu. ft. It acts at the center of gravity of the 

area. This can be found graphically by laying off on the line AB a distance BE 
equal to CD, and laying off in the opposite direction on CD a distance DF equal to 

AB, Locate also the middle point G of AB and the middle point H of CD, The inter¬ 

section of the lines EF and GH is the center of gravity of the trapezoid. 

These forces Pi, P2 . . . Pio are plotted in order as a force diagram in Figure 

236. Other forces acting on the half-arch are the horizontal thrust He at the crown 

and a thrust at the springing, both being assumed to act at the arch axis. Hence, 

there are no bending moments at crown or springing. The shear Vc at the crown 

equals zero, if both halves of a symmetrical arch are equally loaded. At the end 

Q of the Pi vector draw a horizontal line. Choose any pole Oi on this line and draw 

the rays. This assumes He = OiQ and the thrust at the springing equals OiS. 
Starting at the center line of the springing draw the string parallel to OiS until it 

intersects the line of action of the load Pio- The next string, parallel to OiP, is drawn 

between the loads Pio and P9. The final string parallel to OiQ intersects the crown 

section at U. The pole Oi is not correctly located as the force He was assumed to 

act at the center of the crown section. To correct, locate the line of action of tb© 

resultant R of all the loads by prolonging the end strings parallel to Oi/S and OiQ. 
From the center of the crown draw a new final string parallel to OiQ; at the inter¬ 

section with the line of action of R draw VW to the center of the springing. The 

ray parallel to VW through S locates the true pole 0, The second funicular polygon 

passes through the centers of the springing and crown and coincides throughout 

with our trial axis. Therefore, the present arch axis will be adopted for complete 

analysis, since the bending moments at all sections due to the dead loads are elim¬ 

inated. This is the end of the preliminary analysis for the selection of arch dimensions. 

399. Live Loads. A variation in the position of the live loads will affect the 

magnitude of the forces and couples at the cross sections. The position of the live 

load to give maximum forces or couples at any given section can best be found by 

the use of influence lines. The sections chosen for analysis will be the crown, spring¬ 

ing, and the section halfway between on the arch axis which will be called the quarter- 

section. 
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400. Influence Lines for Live Load. In Figure 237 let a load of unity be applied 

to the left of the crown. In the analysis of Article 389 the moment ttil due to the 
loads becomes at any section B between the load and springing 

wiz, = —l(a; — a) 

The negative sign agrees with the original derivation. For sections between the 
load and the crown, or for any section in the right half-arch 

mi, — mjt — 0 

Substitution in equations 318, 319, and 320 gives 

^0 = 

.jj(^ -2Sf + .2jf 

2S f + 2S -7 22 f + 2S ^ 
I A I A 

(326) 

^c(x-a)x 
-J- J 

2S- 
(327) 

Me 

^c(x - a) 

HeV, = -HeVe (328) 

401. Stress Computation. The arch adopted will now be analyzed for the stresses 

due to all dead and live loads and temperature changes. Since the summations 

take much time, especially for the live-load investigation, the stresses wiU be ob¬ 
tained at the crown, springing, and quarter-sections only. 

Ten divisions As of the half-arch axis will be used in the summation. The half¬ 

arch axis is scaled as 84.0 ft. long. Each division will be taken as 8.4 ft. long and is 

spaced out on the arch axis (Fig. 235) and the crossHsection drawn. The center of 
each division is also marked. The cross-section constants are listed in TaUe T; 

the dimensions used are at the center of each As division. The total cross seolion will 

he used to compute area and moment of inertia. This is equivalent to aamiatng 
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that there is no tension in the section. Since these values are average for the length 
As it is not necessary to be more accurate. The area of any section equals 

A = 6<x + (n - l)vhtc == + 9 X 0.015 X 1 X 2.5 

« <x 4- 0.338 sq. ft. (329) 

Table T. Cros&-Section Data (Foot Units) 

As y' iz 
tK 
12 

0.0844(<x -0.5)2 I y' 
I 

1 
1 

1 29.8 2.54 1.366 0.351 1.717 17.36 0.582 
2 29.4 2.65 ; 1.551 0.390 1.941 15.13 0.516 
3 28.6 2.75 1.733 0.428 2.161 13.22 0.463 
4 27.2 2.92 2.074 0.495 2.569 10.58 0.389 

5 25.0 3.09 2.456 0.567 3.023 8.26 0.331 
6 22.5 3.32 3.046 0.671 3.717 6.06 0.269 

7 18.9 3.65 4.06 0.84 4.90 3.86 0.204 

8 14.4 4.12 6.82 1.11 6.93 2.08 0.144 

9 9.1 4.80 9.21 1.56 10.77 0.85 0.093 

10 3.1 5.70 15.43 2.28 17.71 0.17 0.056 

Total 77.57 3.047 

The moment of inertia of any section equals 

2 

12 ^ 
0.338 = ^ + 0.0844fe - 0.6)== (ft.)< (330) 

By equation 317, 

_ 1 3.047 

^7 

yc - 30 - 25.47 = 4.53 ft. 

Table U gives data determined from the arch axis dimensions. These distances are 

again taken to the center of the A« divisions and referred to the X axis of Figure 233 

which is 4.63 ft. below the center of the crown. 
402. Analysis for Dead Loads. In order to figure the forces and couple at the 

crown section it will be necessary to sum up the moments of the dead loads about 

the center of each As division. The dead-load diagram will be divided anew into 
trapeaoids. In Table V the moment at the cent^ of the fourth As will be equal to 
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Table U. Arch Axis Dimensions 

As X 
y or 

(2/' - Vs) I 

O 

1 

1 

A 

1 4.2 4.3 10.28 10.87 0.347 

2 12.6 3.9 81.8 7.92 0.334 

3 20.9 3.1 202 4.49 0.324 

4 29.2 1.7 332 1.15 0.307 

5 37.4 -0.5 462 0.08 0.292 

6 45.3 -3.0 552 2.39 0.273 

7 52.9 -6.6 571 8.83 0.251 

8 60.0 -11.1 520 17.70 0.224 

9 66.5 -16.4 411 24.90 0.195 
10 72.5 -22.4 297 28.24 0.166 

Total 401.5 3439 106.57 2.713 

the moment at the third, plus the product of the total dead weight of the first three 
divisions times the horizontal distance between the third and the fourth. 

By equations 318, 319, 320, 

+2 X 10,540,000 

2(106.57 + 2.71) 
= 96,450 lb. 

Vc^O 

Me 
2 X 1,320,000 

2 X 3.047 
- 96,450 X 4.53 = -3700 ft.-Ib 

The value He should not check the value He = 95,000 lb. obtained in the tenta¬ 
tive analysis assuming He to act through the center of the crown, since the resultant 
of He and Mo does not act at the center. From the equilibrium polygon the resultant 

dead load equals 123,300 lb. and scales 23.3 ft. from the center of the springing. At 
the springing the normal force AT* makes an angle = 50° with the horizontal. 

N, = 96,450 X 0.643 + 123,300 X 0.766 = 156,500 lb. 

M, = -123,300 X 23.3 + 96,450 X 30 - 3700 = +16,500 ft.-lb. 

At the springing the normal force also acts close to the center line, as was indicated 
by the trial funicular polygon. 

It is customary to check also a section about half way between crown and spring¬ 

ing. In this problem the quarter section is at the junction of the fifth and sixth As. 
Taking as rigid body the portion of the arch between this section and the crown, 

the dead load totals 34,600 lb. (Table V) and the arch slopes at an angle « 18.6®. 
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The center of this section is 6 ft. below and 41.5 ft. to the left of the crown 
center. 

Nq = 96,450 cos <t> + 34,600 sin <f> = 91,500 + 11,000 = 102,500 lb. 

Mq = 96,450 X 6 - (467,500 + 34,600 X 4.1) ~ 3700 = -34,360 ft.-lb. 

The moment of the dead load is handled as was that at the center of the sixth As in 
Table V, 

Table V. Moments of Dead Load 

TIIL = 'triR 

Total Moment Arm Total 
niL rriLV 

As Dead X2 - XI Moment Moment 
Load (Table U) tflL 

I I 

1 4,980 0 0 0 0 0 
2 

5,480 
8.4 41,800 41,800 21,500 84,000 

3 10,460 8.3 80,800 128,600 59,500 186,000 
6,230 

4 16,690 8.3 138,500 
i 

267,100 103,900 179,000 

7,750 + 449,000 

5 24,440 
10,150 

8.2 200,400 467,500 154,400 74,000 

6 34,590 
11,910 

7.9 273,500 741,000 200,000 - 595,000 

7 46,500 
14,110 

7.6 353,500 1,094,500 223,500 - 1,470,000 

8 60,610 
17,080 

7.1 430,000 1,524,500 220,200 - 2,440,000 

9 77,690 
21,880 

6.5 505,000 2,029,500 188,600 - 3,090,000 

10 99,570 6.0 597,500 2,627,000 148,300 - 3,320,000 

23,750 -10,989,000 

+449,000 

Total 123,320 1,319,900 -10,540,000 
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403. Stresses Due to Dead Loads. Crown. By equation 329: 

[Chap. 15 

A = (2.5 4- 0.338)144 == 410 sq. in. 

By equation 330: 

I = + 0.0844(2)2^ (12)^ = 34,100 (in.)* 

.. . , 96,450 , 3700 X 12 X 15 , 
Maximum fc == “77;;-1-,77-; 77- = 255 lb. per sq. m. (bottom) 

410 34,100 

Minimum fc = 235 — 20 = 215 lb. per sq. in. (top) 
Springing. 

A - (6.25 + 0.338)144 - 950 sq. in. 

1.25)3 _ r(6.25: 

~ L 12 
+ 0.0844(5.75)2 (12)^ = 479,000 (in.)^ 

_ . ^ 156,500.16,500 X 12 X 37.5 ^ 
Maximum/c = - —— +-4790OO- "" 

Minimum fc — 165 — 16 = 149 lb. per sq. in. (bottom) 

Quarter-Sectim: Depth of section = 3.25 ft. 

A - (3.25 + 0.338)144 = 517 sq. in. 

1.25)3 - r 
” L" 12 

4 0.0844(2.75)2 (12)^ - 72,700 (in.)^ 

Maximum/c = 
102,500 34,360 X 12 X 19.5 

517 72,700 
= 309 lb. per sq. in. (bottom) 

Minimum /<. = 198 — 111 = 87 lb. per sq. in. (top) 

All the sections examined have compression over the whole area. 
404. Analysis for Live Loads. The live load is assumed to be 100 lb. per sq. ft. 

It will be necessary to solve for the live-load placement that gives the maximum 
normal stress, or shear, or bending moment. This analysis will be made for the 
crown, springing, and quarter-section by using influence lines. 

405. Influence Lines for Crown Analysis. The live load will be divided into in¬ 
crements which are spaced equally on the horizontal span. The unit load will be 
applied at the center of each increment. The summations should be made from the 
springing to the load in each case; but it will give substantially the same results if 
the As divisions of the arch are used, including each time those whose centers are 
between the load and the springing (Fig. 235). Table W gives the computations; 
and in Figure 238 are plotted the results of the computations for the crown sections. 
For instance, in the Ho diagram, the value of Ho — 0.22 at 20 ft. from the springing 
means that He = 0.22 lb. if the unit load is located 20 ft. horizontally from the spring¬ 
ing. The maximum He occurs with the live load spread over the whole span and 
win be equal to the area under the He curve multiplied hy the intensity w = 100 lb. 
per ft, The shear Fc is a maximum if the live load is spread over a half-span. 

The maximum positive moment Me at the crown occurs when the live load ex¬ 
tends 76 *- 51 24 ft. either side of the crown (24 ft. «» 0.16Z). The maximum 
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negative moment occurs when the live load extends from each springing to the 51-ft. 
horizontal distance. The positive moment is much the greater. The loadings for 
maximum He and Me are not the same. The maximum combined effect will bej 
obtained by some intermediate loading. This maximum combined effect will give, 
however, stresses only slightly more than those obtained by dealing with the maxi¬ 
mum moment Me and the accompanying He. The latter procedure will be adopted 
when the stresses are computed. 

10 20 30 40 50 60 707500 SO 
Span, ft 

Fia. 238 

406. Influence Lines for Springing. By Figures 233 and 237 it is evident that at 
the left springing 

Ne He COS *4“ (1 — Vc) sin 4>a 

= Mo 4- ZOHe + 757o - 1(75 - a) 

If the unit load is applied to the right half-arch, the normal force and couple at 
the left springing equal 

Na =* He cos <t>a — Ve sin 4>a 

M. = Mo + BOHe -f 757o 

The computations for the normal force and the couple are given in Table X, and 
the results are plotted in Figure 239. The maximum positive moment M, at the 
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left sprin^ng occurs when the live load covers the right half-arch and extends to 
63 ft. (0.3651) from the left springing. The maximum negative moment is smaller 
and occurs with the live load on the first 53 ft. from the left springing. 

407. Influence Lines for the Quarter-Section. The maximum values of the nor¬ 
mal force and couple at the quarter-section can be found. Take the portion of 
the arch between the left quarter-section and the crown as a rigid body (Figs. 233 
and 237). If the load of unity acts on this body, 

Nq = He cos 18.5® + (1 - Vc) sin 18.6® 

Mq^ Me + 6//c + 41.6Fc - 1(41.5 - a) 

If the unit load does not act on the rigid body, these equations become 

Nq = 0.948H,, - 0.317Fc 

Jlfo = Afc + 6Hc + 41.5Fc 

The computations for the normal force and the couple are given in Table Y. 
The results are plotted in Figure 240. The quarter-section occurs within 3 in. of 
the load point a « 0.55. The values of this load point will be used for the quarter- 
section. 

The maximum negative moment at the left quarter-section occurs with the live 
load acting on the whole right half-arch and ending at 47 ft. (0.311) from the left 
flinging. The maximum positive moment is less and occurs if the live load acts 
nmst the first 47 ft from the left springing. 
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Maximum Positive Moment 
CROWN SECTION 

Maximum Negative Moment 

Maximum Positive Moment Maximum Negative Moment 

LEFT QUARTER SECTION 

(at ^ of span) 

Fig. 241 
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408. Maximuin Moments by Approximation. The problem illustrated above has 
a fairly long span for earth-fill arches. The analysis by influence lines is justified. 

Analysis of many arch designs leads to the loadings of Figure 241 to give approxi¬ 
mate maximum moments. 

If these approximate loadings were used in this problem the crown moment would 
be figured for a live load extending 0.125^ each side of the crown, whereas the influ¬ 
ence line calls for a distance 0.16Z. The positive moment is the greater, and the 
approximation would give a moment which is too small. 

At the springing the approximation ends the loading at 0.375Z from the springing. 
The influence lines of Figure 239 end the loading at 0.355/. The positive moment is 

again the greater, and the approximation gives slightly smaller values. It is a 
reasonable approximation, however. 

The comparison cannot be made at the quarter-section as the approximation 

deals with a section - = 37.5 ft. from the crown, whereas the section used here at one 
4 

quarter of the arch axis is 41.5 ft. from the crown. 
409. Stresses Due to Live Loads. The areas of the moment and thrust influence 

lines are tabulated in Table Z. After being multiplied by tr = 100 lb. per ft., the 

Table Z. Live-Load and Temperature Stresses (Pounds per Square Inch) 

Maximum Moment 

Corre¬ 
sponding 
Thrust 

Section 

Data 
Live-Load 

Stresses 
Tempera¬ 

ture Stresses 

Section i 

Area Ft.-lb. Area Lb. A 
/ 

y 
Top: 

Bot¬ 
tom 

Top 
Bot¬ 

tom 

Crown 

1 

+M 139.2 13,920 64,8 6480 410 
34,100 

15 
89 -58 203 -249 

-M 25.3 - 2,530 21.0 2100 - 8 19 -203 249 

Springing +Af 863.5 86,350 72.2 7220 950 
479,000 

1 89 -73 233 -220 
37.5 

-M 424.8 -42,480 52.4 5240 

72,700 

19.5 

—34 45 -233 220 

Quarter 100.0 
i 

10,000 18.6 1860 517 36 -29 62 - 28 

-M 245.4 -24,540 93,6 9360 -61 97 - 62 28 

maximum moments and the corresponding thrusts are found. The stresses are also 
computed. Thus, for the crown section with positive bending (Art. 403): 

Maximum/c 
6480 13,920 X 12 X 15 

410 34,100 
~ 89 lb. per sq. in. 

Minimum « 16 — 74 =« —58 lb. per sq. in. 
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410. Temperature Stresses. An earth-filled arch will have temperature changes 
somewhat less than those of the atmosphere, since only the intrados and the sides 
are exposed. Assuming the arch to be poured about 50° to 60° F., we shall assume a 
temperature variation in the arch of 40° rise or drop. The coefl&cient of expansion 
will be taken as € = 0.000006. By equation 321, 

0.000006 X 40 X 10 X 3,000.000 X 144 

109.3 
9480 lb. 

M*c « M'o ~ HeV = 0 - 9480 X 4.53 «= -42,900 ft.-lb. 

At the springing for 40° rise, 

N\ = H'c cos = 9480 X 0.643 = 6100 lb. 

Af', - 30^'c + M'c = 9480 X 30 - 42,900 = 241,500 ft.-lb. 

At the quarter-section for 40° rise, 

N' = 9480 X 0.948 = 9000 lb. 

A/' = 9480 X 6 - 42,900 = 14,000 ft.-lb. 

The stresses due to these forces and couples are also listed in Table Z. For ex¬ 
ample, the maximum stress at the crowm due to a 40° rise equals 

, 9480 . 42,900 X 12 X 15 , 
/„ = — H-- = 249 lb. per sq. m. (bottom) 

The stresses for a 40° drop are equal in magnitude but opposite in sign. 
411. Resultant Stresses. Table AA lists the values of the stresses previously com¬ 

puted. Compressive stresses are positive. It will be noticed that the resultant 
stresses due to the dead loads produce compression over the whole of the trial sections. 
This is also true for the live and dead loads acting together. 

For the unusual case that the most severe live-load placement will coincide with 
a maximum temperature change, there will be tensile stresses at the crown, quarter- 
section, and springing. Those at the springing have the greatest magnitude, and 
that case will now be checked, allowing for the loss of area due to resultant tension 
in the section. 

Springing. The resultant normal force and couple due to dead and live loads 
plus a 40° temperature rise are 

« 156]6(K) + 7200 -h 6100 « 169,800 lb. 

M» - 16,500 + 86,350 + 241,500 == 344,350 ft.-lb. 

The resultant force and couple for dead and live loads plus a 40° temperature 
drop are 

N, » 156,500 + 6240 - 6100 « 155,640 lb. 

M, « 16,500 - 42,480 - 241,500 -267,480 ft.-lb. 
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RestdtarU Stresses at Springing, Temperature Rise, 

e 311350 X 12 
Eccentricity ratio - = —g’— - = 0.325 (Case II) 

hi 

0.015 X 12 X 30 

12 X 75 
= 0.006 and 

' 3 faV /34.5\2 
,=-=0.04 and (r) = = 0. 

np — 0.06 

21 

k = 0.66 C = 9.0 

/c = 550 lb. per sq. in. /* = 2500 lb. per sq. in. (tension) 

The value fc — 550 lb. per sq. in. supersedes /. = 503 in Table AA. 

Table AA. Maximum Fiber Stresses (Pounds per Square Inch) 

Section Dead Live 
Max. 
D. & 

L. 

Min. 
D. & 

L. 
Temp. 

Max. 
D.,L., 
and 

Min. 
D.,L., 
and 

Temp. Temp. 

Crown 
Top 215 89 -8 304 207 203 -203 507 4 
Botloiu 255 19 -58 274 197 249 -249 523 -52 

Springing 
Top 181 89 -34 270 147 233 -233 503 -86 
Bottom 149 45 -73 194 76 220 -220 414 -144 

Quarter 
Top 87 36 -61 123 26 62 -62 185 -36 
Bottom 309 97 -29 406 280 28 -28 

i 

434 252 

Temperature Drop, 

e ^ 267,480 X 12 

1 ■" 155,640 X 75 

k « 0.76 

0.275 (Case II) 

C - 9.07 

fe 430 lb. per sq. in. — 1130 lb. per sq. in. (tension) 

The stress/c = 430 lb. per sq. in. supersedes the value= 414 in Table AA. 
By similar computations it is possible to check the crown, springing, and quarter* 

sections for the loadings that give maximum tensions. Though there is tension on 
these sections, the probability that maximum live-load conditions and maximum 
temperature changes will occur more than momentarily is too slight to justify a 
revision of the moments of inertia which have been figured on the assumption of 
compression over the full area. 

412. Allowable Stresses. The allowable stress for dead and live loads will vary 
witli the eccentricity. Assuming the neutral axis to be at the edge of the section 
at the springing, the allowable stressis about 1100 Ib. per sq. in. 
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When the effect of temperature changes is included, the allowable stress can be 

increased, perhaps 20 to 25 per cent. 
This design uses a mix somewhat richer than those from which Mr. Cochrane’s 

or Mr. Whitney’s approximate designs are based. The steel ratio at the crown of 

0.015 is also somewhat higher than the more usual p — 0.01. It is possible to reduce 

the steel ratio somewhat without starting the design anew. A change in mix should 
require a fresh start. Since the approximate equations are based on concretes 

about 2000 lb. per sq. in. in strength with a steel ratio about p — 0.01, the sections 

can be reduced in depth if richer mixes or more steel are adopted. 
413. Shrinkage and Flow.® The shrinkage stress at the crown can be computed 

by the procedure outlined in Articles 391 and 392. Assume that 

8 = 0.0002 

n = 10 for elastic deformations 

n' = 40 for combined plastic and elastic deformations 

The stresses due to direct shrinkage are computed by equations 117 and 118 
(Art. 180) at each As division. If lx is expressed in inches, the stress equations become 

Concrete/i - 

Steel fa — 

( 

( 

np \ 32,400 

1 +(n-l)pj ' 12/» + 210.6 

1-P ^ - SA 
l + (n-l)p/ * \12«x +210.6 ) 6000 

The concrete stresses vary from 56.3 to 31.4 lb. per sq. in. from crown to spring¬ 
ing; the steel stresses vary from 3750 to 4750 lb. per sq. in. The summation of the 

strains divisions equals 1381 X 10“® in. per in. Substituting 

this strain for the uniform temperature strain et in equation 321, 

H'c 
1381 X 10~^ X 750,000 X 144 

109.3 
—1370 lb. (tension) 

M'c^O - (-1370)4.53 = +6200 ft.-lb. 

This thrust and moment due to shrinkage are always present and should be in¬ 
cluded with the dead load thrust and moment. Combining, 

He = 96,450 — 1370 = 95,080 lb. (compression) 

Me = -3700 + 6200 = 2500 ft.-lb. 

The stresses due to the elastic loads can then be revised: 

Maximum fc 
95,080 2500 X 12 X 15 

410 34,100 
= 245 lb. per sq. in. (bottom) 

Minimum fe = 232 — 13 « 219 lb. per sq. in. (top) 

•Space does not permit a more extended discussion of the effects of shrinkage 

and plastic flow. The student is referred to ‘Tlain and Reinforced Concrete Arches,” 
by Charles S. Whitney, Joun A.C.I,, March 1932, p. 479, 
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If the effect of plastic flow is included, the stresses are computed by using n' =« 40. 
At the crown section, 

Area = ht[l + (n - l)p] - 12 X 30[1 + 39(0.015)] = 570 sq. in. 

ht^ ft \2 12f30)* 
/ = +(n-l)p6i ( - -3 j = --■■■ +39(0.015)12X30(12)2 ==67,300 (in.)^ 

, 95,080 . 2500 X 12 X 15 
Maximum /<, == *—H--= 175 lb. per sq. in. (bottom) 

o70 57,300 

Minimum fc = 167 — 8 = 159 lb. per sq. in. (top) 

The effect of shrinkage and plastic flow may be estimated as 

(Bottom)/. = —56 + 175 — 245 = —126 lb. per sq. in. (tension) 

(Top) fc = —56 + 159 — 219 = —116 lb. per sq. in. (tension) 

In this particular problem the correction is a tensile stress of considerable mag¬ 

nitude. The stress in the steel can be found by plotting the concrete stresses to get 

the concrete stress at the same level as the steel and multiplying by n'. Thus, the 
bottom steel has a stress correction: 

/'. = 3740 + 174 X 40 - 244 X 10 

— 3740 + 6960 — 2440 = 8260 lb. per sq. in. (compression) 

This correction will be added to the computed stresses in the compression steel which 

do not exceed a possible maximum of /« — 1.257i/c and the combined stress does 

not exceed /« — 20,000 lb. per sq. in. This correction will reduce the stress in steel 

whose computed stresses are tensile. 
414. Abutments. The abutments are loaded with earth pressures from above and 

on the base, also by lateral earth pressure on the back face. There may be water 
pressure on the front face in certain cases. In addition, at the springing section 

acts the normal force Ng and couple which vary as the live load and tempera¬ 

ture vary. The abutment should be of such size and shape that it is in equilibrium 
for all values of and AT, without exceeding the allowable soil pressures. If the 

assumption that the abutments do not yield is justified, the abutment should be 
massive enough to fix the springing section. The adoption of pressures for design 

which are well below the allowable will help to reduce settlement. For this reason 
the location of the abutment must be very carefully selected. On poor soils the 

arch should be designed by equations which allow for movement of the abutments. 

416, Open Spandrel Arches. Many arches are built without earth 
fills. The superstructure loads are brought to the arch by columns or 
walls. The analysis and design follow the methods illustrated above, 
but some of the live and dead loads will be concentrated forces. 

THE RIGID FRAME BRIDGE 

416. The Rigid Frame Bridge. The type of bridge known as the rigid 
frame bridge has been increasingly used in modem construction. The 



462 ARCHES AND RIGID FRAME BRIDGES [Chap. 16 

usual cross section has the shape of Figure 242. Such a section is supe¬ 
rior to the arch in that the clearance under the deck can be kept close 
to the maximum rise throughout the clear span. The abrupt change of 
direction between the center lines of the deck and walls renders it im¬ 
possible to keep the line of thrust nearly coincident with these center 
lines, and large bending moments occur at the junction of deck and 
wall. These large restraining moments at the ends of the deck give a 
low value to the positive moment at the center of the deck span, and 
the center section can be made relatively thin. 

If the footings are relatively narrow as in Figure 242, the support at 
the base of the wall is assumed to be hinged. Sometimes a deliberate 
attempt is made to construct a hinged connection between wall and foot¬ 
ing. A massive footing justifies the assumption of a fixed base. 

The Portland Cement Association ® suggests trial dimensions for the 
mathematical analysis. They are 

1. Determine clear span L 

2. Assume section depth at BG equal to ^ for usual soils. This may 
oo 

be reduced to ^ , if the footing does not settle. 

3. Assume AD and DE to be about. 
15 

4. Assume FG frgm 18 in. for 30-ft. span, to 30 in. for 60-ft. spans, 
up to 40 in. for 90-ft. spans. 

417. Design of Rigid Frame Bridge. The design of the rigid frame 
bridge is usually made by virtual work, the equations being the same 
used previously for arch design."^ It is usual to take an even number 
of A« blocks between sections FG and DE and again between sections 

*Analy»i8 of Rigid Frame Concrete Bridgee^ Fourth Edition, 1036. 
^ The Rigid Frame Bridge^ by Arthur G. Hayden. 
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AD and BC. The mass of concrete between sections DE and AD is 

treated as a single As block. The analysis should include influence lines 

for moving loads, and the effect of dead loads and earth pressure against 

the walls. Temperature stresses and the readjustments due to shrink¬ 

age and plastic flow should be included in the final summations. 

Space does not permit a complete solution of a rigid frame bridge 

design in this text and the reader is referred to Mr. Hayden’s book for 

illustrative designs using virtual work, and to the Portland Cement 

Association publications, for an illustrative design using the column 

analogy and moment-distribution methods for the solution. Compari¬ 

sons of the time spent in design cannot be made directly between these 

two methods as the labor of computation is considerably reduced in the 

moment-distribution illustrative problem by the use of charts givmg 

coeflacients obtained as the average of many analyses. 





APPENDIX 

1941 Building Regulations for Reinforced Concrete (A.C.I. Code) 

The following articles of the 1941 Buildivg Regulations for Reinforced 

Concrete ^ have been reprinted by kind permission of the American Con¬ 
crete Institute. They were selected from the regulations for use as 
design standards in the text. The A.C.I. article numbers have been 
used, and the references in the text distinguish them by the prefix 
A.C.I. 

306. Allowable Unit Stresses in Concrete, (a) The unit stresses in pounds per 

square inch on concrete to be used in the design shall not exceed the values of Table 

305(a) where f'c equals the minimum specified ultimate compressive strength at 

28 days, or at the earlier age at which the concrete may be expected to receive its 

full load. 

306. Allowable Unit Stresses in Reinforcement. Unless otherwise provided in 

these Regulations, steel for concrete reinforcement shall not be stressed in excess 

of the following limits: 

(а) Tension 
(fg = Tensile unit stress in longitudinal reinforcement) and 

(fv — Tensile unit stress in web reinforcement) 

20,000 p.s.i. for Rail-Steel Concrete Reinforcement Bars, Billet-Steel Concrete 
Reinforcement Bars (of intermediate and hard grades), Axle-Steel Concrete 

Reinforcement Bars (of intermediate and hard grades), and Cold-Drawn Steel 

Wire for Concrete Reinforcement. 

18,000 p.s.i. for Billet-Steel Concrete Reinforcement Bars (of structural grade), 
and Axle-Steel Concrete Reinforcement Bars (of structural grade). 

(б) Tension in One-Way Slabs of Not More Than 12 Feet Span 

(fs = Tensile unit stress in main reinforcement) 

For the main reinforcement, f inch or less in diameter, in one-way slabs, 50 per 

cent of the minimum yield point specified in the Standard Specifications of the 
American Society for Testing Materials for the particular kind and grade of rein¬ 

forcement used, but in no case to exceed 30,000 p.s.i. 

(c) Compression^ Vertical Column Reinforcement 

(A “ Nominal working stress in vertical colunm reinforcement) 

1 The complete regulations can be obtained from The American Concrete Institute, 

7400 Second Boulevard, Detroit 2, Michigan. 

465 
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Table 305(a). Allowable Unit Stresses in Concrete 

Allowable Unit Stresses 

Description 

For Any 
Strength of 
Concrete as 

Fixed by 

When Strength of Concrete is Fixed 
by the Water-Content in Accordance 

with Section 302 

Test in 
Accordance 
with Section f'c » /. « 

302 2000 2500 3000 3760 
30,000 p.s.i. p.8-i. p.s.i. p.s.i. 

” f'c n =» 15 n 12 n an> 10 n = 8 

Flexure :/c 
Extreme fiber stress in compression. fc 0.45/', 900 1125 1350 1688 

Shear: v 
Beams with no web reinforcement and 

without special anchorage of longitud¬ 
inal steel. Vc 0.02/', 40 50 00 75 

Beams with no web reinforcement but 
with special anchorage of longitudinal 
steel. 

Beams with properly designed web rein¬ 
forcement but without special anchor- 

Vc 0.03/', 60 75 90 113 

age of longitudinal steel. 
Beams with properly designed web rein¬ 

forcement and with special anchorage 

V 0.06/', 120 150 180 225 

of longitudinal steel. 
Flat slabs at distance d from edge of col¬ 

V 0.12/', 240 300 360 450 

umn capital or drop panel.*. Ve 

O
O

 
d

o
 

1 60 75 90 113 
Footings,!. Vc I 60 75 75 75 

but not 
to exceed 

Bondt: i* * § 75 p.s.i. 
In beams and slabs and one-way footings: 

Plain bars. u 0.04/, 
1 but not 

80 100 120 150 

to exceed 
160 p.s.i. 

Deformed bars. u 0.05/c 
but not 

to exceed 
200 p.s.i. 

100 125 150 188 

In two-way footings: 
Plain bars (hooked). u 0.045/'c 

but not 
90 113 135 160 

to exceed 
160 p.s.i. 

Deformed bars (hooked). u 0.056/', 
but not 

to exceed 
200 p.s.i. 

112 140 168 200 

Bearing: f, 
On full area. fe 0.25/, 500 625 750 038 
On one-third area or less §. h 0.375/', 750 938 1125 1405 

* See Section 807. t See Section 905(o) and 808(a). 
X Where special anchorage is provided [see Section 903(a)], one and one-half times these values in 

bond may be used in beams, slabs and one-way footings, but in no case to exceed 200 p.s.i. for plain 
bars and 250 p.s.i. for deformed bars. The values given for two-way footings include an allowance for 
special anchorage. 

§ The allowable bearing stress on an area greater than one-third but less than the full area shall be 
interpolated between the values given. 

The author adds the following to clarify the allowable shear stresses given in Table 305(a). These 
shear etresses perform two functions: (a) as allowable shear stresses, (6) as measures of allowable tension 
(assuming t » constant X v). 

Shear, 
Plain concrete »e — 0.02/'c 
Reinforced concrete—ordinary anchorage maximum v O.Odfc 
Reinforced concrete—special anchorage maximum v ■■ 0.12/« 

Diaaonal Tension. Shear etreaa aa measure of aU&wable tension. 
Plain concrete—allowable tensile stress f** 0.03/V 
Reinforced concrete—shear equivalent of tension. 

Concrete—ordinary anchorage Cb 0.02/« 
special anchorage «« •» (U)3A 

Total on partide—ordinary anchorage « ■■ 0.01^ 
special anchor^ t 
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Forty per cent of the minimum yield point specified in the Standard Specifications 

of the American Society for Testing Materials for the particular kind and grade of 

reinforcement used, but in no case to exceed 30,000 p.s.i. 

{fr = Allowable unit stress in the metal core of composite and combination 
columns): 

Structural steel sections 16,000 p.s.i. 

Cast iron sections 10,000 p.s.i. 

Steel pipe See limitations of Section 1106(5) 

(d) Compression^ Flexural Members. For compression reinforcement in flexural 
members see Section 706(5). 

FORMS AND DETAILS OF CONSTRUCTION 

601. Design of Forms, (a) Forms shall conform to the shape, lines, and dimen¬ 

sions of the members as called for on the plans, and shall be substantial and suflaci- 

ently tight to prevent leakage of mortar. They shall be properly braced or tied 

together so as to maintain position and shape. 

602. Removal of Forms, (a) Forms shall be removed in such manner as to insure 

the complete safety of the structure. Where the structure as a whole is supported 

on shores, the removable floor forms, beam and girder sides, column and similar 

vertical forms may be removed after twenty-four hours, providing the concrete is 

sufficiently hard not to be injured thereby. In no case shall the supporting forms 

or shoring be removed until the members have acquired sufficient strength to sup¬ 

port safely their weight and the load thereon. The results of suitable control tests 

may be used as evidence that the concrete has attained such sufficient strength. 

603. Pipes, Conduits, etc., Embedded in Concrete, (a) Pipes which will contain 

liquid, gas or vapor at other than room temperature shall not be embedded in con¬ 

crete necessary for structural stability or fire protection. Drain pipes and pipes 

whose contents will be under pressure greater than atmospheric pressure by more 

than one pound per square inch shall not be embedded in structural concrete except 

in passing through from one side to the other of a floor, wall or beam. Electric 

conduits and other pipes whose embedment is allowed shall not, with their fittings, 

displace that concrete of a column on which stress is calculated or which is required 

for fire protection, to greater extent than four per cent of the area of the cross sec¬ 

tion. Sleeves or other pipes passing through floors, walls or beams shall not be of 

such size or in such location as unduly to impair the strength of the construction; 

such sleeves or pipes may be considered as replacing structurally the displaced con¬ 

crete, provided they are not exposed to rusting or other deterioration, are of un¬ 

coated iron or steel not thinner than standard wrought-iron pipe, have a nominal 

inside diameter not over two inches, and are spaced not less than three diameters on 

centers. Embedded pipes or conduits other than those merely passing through, 

shall not be larger in outside diameter than one-third the thickness of the slab, 

wall or beam in which they are embedded; shall not be spaced closer than three di-* 

ameters on centers, nor so located as unduly to impair the strength of the construction. 

Circular uncoated or galvanized electric conduit of iron or steel may be considered 

as repladng the displaced concrete. 

604. Cleaning and Bending Reinforcement (a) Metal reinforcement, at the time 

concrete is placed, shall be free from rust scale or other coatings that will destroy or 
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reduce the bond. Bends for stirrups and ties shall be made around a pin having a 

diameter not less than two times the minimum thickness of the bar. Bends for other 

bars shall be made around a pin having a diameter not less than six times the mini¬ 

mum thickness of the bar, except that for bars larger than one inch, the pin shall be not 

less than eight times the minimum thickness of the bar. All bars shall be bent cold. 

506. Placing Reinforcement, (a) Metal reinforcement shall be accurately placed 

and adequately secured in position by concrete or metal chairs and spacers. The 

minimum clear distance between parallel bars shall be one and one-half times the 

diameter for round bars and twice the side dimension for square bars. If special 

anchorage as required in Section 903 is provided, the minimum clear distance between 

parallel bars shall be equal to the diameter for round bars and one and one-half times 

the side dimension for square bars. In no case shall the clear distance between bars 

be less than one inch, nor less than one and one-third times the maximum size of the 

coarse aggregate. 

(b) When wire or other reinforcement, not exceeding one-fourth inch in diameter 

is used as reinforcement for slabs not exceeding ten feet in span, the reinforcement 

may be curved from a point near the top of the slab over the support to a point near 

the bottom of the slab at mid-span; provided such reinforcement is either continuous 

over, or securely anchored to, the support. 

506. Splices and Offsets in Reinforcement, (a) In slabs, beams and girders, 

splices of reinforcement at points of maximum stress shall generally be avoided. 

Splices shall provide sufficient lap to transfer the stress between bars by bond and 

shear. In such splices the minimum spacing of bars shall be as specified in Section 606. 

(6) Where changes in the cross section of a column occur, the longitudinal bars 

shall be offset in a region where lateral support is afforded. Where offset, the slope 

of the inclined portion shall not be more than 1 in 6, and in the case of tied columns 

the ties shall be spaced not over three inches on centers for a distance of one foot 

below the actual point of offset. 

607. Concrete Protection for Reinforcement, (a) The reinforcement of footings 

and other principal structural members in which the concrete is deposited against 

the ground shall have not less than three inches of concrete between it and the ground 

contact surface. If concrete surfaces after removal of the forms are to be exposed 

to the weather or be in contact with the ground, the reinforcement shall be protected 

with not less than two inches of concrete for bars more than five-eighths inch in 

diameter and one and one-half inches for bars five-eighths inch or less in diameter. 

(6) The concrete protective covering for reinforcement at surfaces not exposed 

directly to the ground or weather shall be not less than three-fourths inch for slabs 

and walls; and not less thsin one and one-half inches for beams, girders and columns. 

In concrete joist floors in which the clear distance between joists is not more than 

thirty inches, the protection of metal reinforcement shall be at least three-fourths inch, 

(c) If the code of which these regulations form a part specifies, as fire-protective 

covering of the reinforcement, thicknesses of concrete greater than those given in 

this section, then such greater thicknesses shall be used. 

(d) Concrete protection for reinforcement shall in all cases be at least equal to the 

diameter of round bars, and one and one-half times the side dimension of square bars. 

(e) Exposed reinforcement bars intended for bonding with future extensions shall 

be protected from corrosion by concrete or other adequate covering. 

508. Construction Joints, (a) Joints not indicated on the plans shall be so made 

and located as to least impair the strength of the structure. Where a joint is to be 

made, the surface of the concrete shall be thoroughly cleaned and all laitance re- 
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moved. In addition to the foregoing, vertical joints shall be thoroughly wetted but 

not saturated, and slushed with a coat of neat cement grout immediately before 

placing of new concrete. 

(6) At least two hours must elapse after depositing concrete in the columns or 

walls before depositing in beams, girders, or slabs supported thereon. Beams, girders, 

brackets, column capitals, and haunches shall be considered as part of the floor system 
and shall be placed monolithically therewith. 

(c) Construction joints in floors shall be located near the middle of the spans of 

slabs, beams, or girders, unless a beam intersects a girder at this point, in which case 

the joints in the girders shall be offset a distance equal to twice the width of the 

beam. In this last case provision shall be made for shear by use of inclined rein¬ 

forcement. 

DESIGN—GENERAL CONSIDERATIONS 

600. Notation. 

/'c = Ultimate compressive strength of concrete at age of 28 days, unless other¬ 

wise specified. 

K 
n =* Ratio of modulus of elasticity of steel to that of concrete = ; assumed 

Ec 

as equal to 
30,000 

/ c 

601. Assumptions, (o) The design of reinforced concrete members shall be made 

with reference to working stresses and safe loads. The accepted theory of flexure 

as applied to reinforced concrete shall be applied to all members resisting bending. 

The following assumptions shall be made: 

1. The steel takes all the tensile stress. 

2. In determining the ratio n for design purposes, the modulus of elasticity for the 

concrete shall be assumed as 1000/'c, and that for steel as 30,000,000 p.s.i. 

602. Design Loads, (a) The provisions for design herein specified are based on 

the assumption that all structures shall be designed for all dead- and live-loads com¬ 

ing upon them, the Uve-loads to be in accordance with the general requirements of 

the building code of which this forms a part, with such reductions for girders and 

lower story columns as are permitted therein. 

603. Resistance to Wind Forces, (a) The resisting elements in structures re¬ 

quired to resist wind forces shall be limited to the integral structural parts. 

(5) The moments, shears, and direct stresses resulting from wind forces determined 

in accordance with recognized methods shall be added to the maximum stresses 

which obtain at any section for dead- and live-loads. 

(c) In proportioning the component parts of the structure for the maximum com¬ 

bined stresses, including wind stresses, the unit stresses shall not exceed the allowable 

stresses for combined live- and dead-loads provided in Sections 305, 306 and 1110 

by more than one-third. The structural members and their connections shall be so 

proportioned as to provide suitable rigidity of structure. 

FLEXURAL COMPUTATIONS 

70L General Requirements, (a) All members of frames or continuous construc¬ 

tion shall be designed to resist at all sections the maximum moments and shears 
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produced by dead load, live load and wind load, as determined by the theory of elajs- 

tic frames in which the simplified assumptions of Section 702 may be used. 

(6) Approximate methods of frame analysis are satisfactory for buildings of usual 

t3rpes of construction, spans and story heights. 

(c) In the case of two or more approximately equal spans (the larger of two ad¬ 

jacent spans not exceeding the shorter by more than 20 per cent) with loads uni¬ 

formly distributed, where the unit live load does not exceed three times the unit 

dead load, design for the following moments and shears is satisfactory: ^ 

Positive moment at center of span 

End spans wl'^ 

Interior spans iV 

Negative moment at exterior face of first interior support 

Two spans -I- wl'^ 

More than two spans wl'^ 

Negative moment at other faces of interior supports YY wl'^ 

Negative moment at face of all supports for, (a) slabs with spans not 

exceeding ten feet, and (b) beams and girders where ratio of sum of 

column stiffnesses to beam stiffness exceeds eight wl'^ 

Shear in end members at first interior support 1.15 
wV 

T 

Shear at other supports 
2 

702. Conditions of Design.* (a) Arrangement of Live Load. 1. The live load 

may be considered to be applied only to the floor under consideration, and the far 

ends of the columns may be assumed as fixed. 

2. Consideration may be limited to combinations of dead load on all spans with 

full live load on two adjacent spans and with full live load on alternate spans. 

(6) Span length. 1. The span length, Z, of members that are not built integrally 

with their supports shall be the clear span plus the depth of the slab or beam but 

shall not exceed the distance between centers of supports. 

2. In analysis of continuous frames, center to center distances, I and A, may be 

used in the determination of moments. Moments at faces of supports may be used 

for design of beams and girders. 

3, Solid or ribbed slabs with clear spans of not more than ten feet that are built 

integrally with their supports may be designed as continuous slabs on knife edge 

supports with spans equal to the clear spans of the slab and the width of beams other¬ 

wise neglected. 

(c) Stiffness. 1. The stiffness, X, of a member is defined as El divided by I or h. 

2. In computing the value of I of slabs, beams, girders, and columns, the rein-' 

foroement may be neglected. In T-shaped sections allowance shall be made for the 

effect of flange. 

* I' w clear span for positive moment and the average of the two adjacent dear 

spans for negative moment. 

* Chapter 7 deals with floor members only. For moments in columns see Section 1108. 
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3. Any reasonable assumption may be adopted as to relative stiffness of columns 

and of floor system. The assumption made shall be consistent throughout the 
analysis. 

(d) Haunched Floor Members. 1. When members are widened near the supports, 

the additional width may be neglected in computing moments, but may be considered 

as resisting the resulting moments and shears. 

2. When members are deepened near the supports, they may be analyzed as mem¬ 

bers of constant depth provided the minimum depth only is considered as resisting 

the resulting moments; otherwise an analysis taking into account the variation in 

depth is required. In any case, the actual depth may be considered as resisting shear. 

(e) Limitations. 1. Wherever at any section positive reinforcement is indicated 

by analysis, the amount provided shall be not less than .005b'd except in slabs of 
uniform thickness. 

2. Not less than 0.0056'd of negative reinforcement shall be provided at the outer 

end of all members built integrally with their supports. 

3. Where analysis indicates negative reinforcement along the full length of a span, 

the reinforcement need not be extended beyond the point where the required amount 

is 0.00256'd or less. 

4. In slabs of uniform thickness the minimum amount of reinforcement in the 

direction of the span shall be: 

For structural, intermediate and hard grades and rail steel 0.00256d 

For steel having a minimum yield point of 56,000 p.s.i. 0.0026d 

703. Depth of Beam or Slab, (a) The depth of the beam or slab shall be taken 

as the distance from the centroid of the tensile reinforcement to the compression 

face of the structural members. Any floor finish not placed monolithically with the 

floor slab shall not be included as a part of the structural member. When the finish 

is placed monohtliically wdth the structural slab in buildings of the warehouse or 

industrial class, there shall be placed an additional depth of one-half inch over that 

required by the design of the member. 

704. Distance between Lateral Supports, (a) The clear distance between lateral 

supports of a beam shall not exceed thirty-two times the least width of compression 

flange. 
706. Requirements for T-Beams. (a) In T-beam construction the slab and beam 

shall be built integrally or otherwise effectively bonded together. The effective 

flange width to be used in the design of symmetrical T-beams shall not exceed one- 

fourth of the span length of the beam, and its overhanging width on either side of 

the web shall not exceed eight times the thickness of the slab nor one-half the clear 

distance to the next beam. 
(6) For beams having a flange on one side only, the effective overhanging flange 

width shall not exceed one-twelfth of the span length of the beam, nor six times the 

thickness of the slab, nor one-half the clear distance to the next beam. 

(c) Where the principal reinforcement in a slab which is considered as the flange 

of a T-beam (not a joist in concrete joist floors) is paraUel to the beam, transverse 

reinforcement shall be provided in the top of the slab. This reinforcement shall be 

designed to carry the load on the portion of the slab assumed as the flange of the 

T-beam. The spacing of the bars shall not exceed five times the thickness of the 

flimge, nor in any case eighteen inches. 

(d) Provision shall be made for the compressive stress at the support in continuous 

T-beam construction, care being taken that the provisions of Section 505 relating 
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to the spacing of bars, and 404(d), relating to the placing of concrete shall be 

fully met. 

(e) The overhanging portion of the flange of the beam shall not be considered as 

effective in computing the shear and diagonal tension resistance of T-beams. 

(/) Isolated beams in which the T-form is used only for the purpose of providing 

additional compression area, shall have a flange thickness not less than one-half the 

width of the web and a total flange width not more than four times the web thickness. 

706. Compression Steel in Flexural Members, (a) Compression steel in beams, 

girders, or slabs shall be anchored by ties or stirrups not less than one-fourth inch in 

diameter spaced not farther apart than 16 bar diameters, or 48 tie diameters. Such 

stirrups or ties shall be used throughout the distance where the compression steel is 

required. 

(6) The effectiveness of compression reinforcement in resisting bending may be 

taken at twice the value indicated from the calculations assuming a straight-line 

relation between stress and strain and the modular ratio given in Section 601, but 

not of greater value than the allowable stress in tension. 

707. Shrinkage and Temperature Reinforcement, (a) Reinforcement for shrink¬ 

age and temperature stresses normal to the principal reinforcement shall be provided 

in floor and roof slabs where the principal reinforcement extends in one direction 

only. Such reinforcement shall provide for the following minimum ratios of rein¬ 

forcement area to concrete area hd, but in no case shall such reinforcing bars be placed 

farther apart than five times the slab thickness nor more than eighteen inches: 

Floor slabs where plain bars are used 0.0026 

Floor slabs where deformed bars are used 0.002 

Floor slabs where wire fabric is used, having welded intersections not 

farther apart in the direction of stress than twelve inches 0.0018 

Roof slabs where plain bars are used 0.003 

Roof slabs where deformed bars are used 0.0025 

Roof slabs where wire fabric is used, having welded intersections not 

farther apart in the direction of stress than twelve inches 0.0022 

708. Concrete Joist Floor Construction, (a) Concrete joist floor construction 

consists of concrete joists and slabs placed monolithically with or without burned 

clay or concrete tile fillers. The joists shall not be farther apart than thirty inches 

face to face. The ribs shall be straight, not less than four inches wide, nor of a depth 

more than three times the width. 

(6) When burned clay or concrete tile fillers, of material having a unit compressive 

strength at least equal to that of the designed strength of the concrete in the joists 

are used, and the fillers are so placed that the joints in alternate rows are staggered, 

the vertical shells of the fillers in contact with the joists may be included in the 

calculations involving shear or negative bending moment. No other portion of the 

fillers may be included in the design calculations. 

(c) The concrete slab over the fillers shall be not less than one and one-half inches 

in thickness, nor less in thickness than one-twelfth of the clear distance between 

joists. Shrinkage reinforcement in the slab shall be provided as required in Section 

707. 

(d) Where removable forms or fillers not complying with (6) are used, the thick¬ 

ness of the concrete slab shall not be less than one-twelfth of the dear distance be¬ 

tween joists and in no case less than two inches. Such slab shall be reinforced at 

right an^es to the joists with a minimum of .049 square inch of reinforcing steel per 
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foot of width, and in slabs on which the prescribed live load does not exceed fifty 

pounds per square foot, no additional reinforcement shall be required. 

(e) When the finish used as a wearing surface is placed monolithically with the 

structural slab in buildings of the warehouse or industrial class, the thickness of the 

concrete over the fillers shall be one-half inch greater than the thickness used for 
design purposes. 

if) Where the slab contains conduits or pipes, the thickness shall not be less than 

one inch plus the total over-all depth of such conduits or pipes at any point. Such 

conduits or pipes shall be so located as not to impair the strength of the construction. 

710. Maximum Spacing of Principal Slab Reinforcement, (a) In slabs other than 

concrete joist floor construction or flat slabs, the principal reinforcement shall not 

be spaced farther apart than three times the slab tliickness, nor shall the ratio of 

reinforcement be less than specified in Section 707(a). 

SHEAR AND DIAGONAL TENSION 

801. Shearing Unit Stress, (a) The shearing unit stress v, as a measure of di¬ 

agonal tension, in reinforced concrete flexural members shall be computed by form¬ 

ula (12): 

bjd 
(12) 

(b) For beams of I or T section, 6' shall be substituted for b in formula (12). 

(c) In concrete joist floor construction, where burned clay or concrete tile are 

used, 6' may be taken as a width equal to the thickness of the concrete web plus the 

thicknesses of the vertical shells of the concrete or burned clay tile in contact with 

the joist as in Section 708(6). 

(d) When the value of the shearing unit stress computed by formula (12) exceeds 

the sliearing unit stress Vc permitted on the concrete of an unreinforced web (see 

Section 305), web reinforcement shall be provided to carry the excess. 

802. T3rpes of Web Reinforcement, (a) Web reinforcement may consist of: 

1. Stirrups or web reinforcement bars perpendicular to the longitudinal steel. 

2. Stirrups or web reinforcement bars welded or otherwise rigidly attached to the 

longitudinal steel and making an angle of 30 degrees or more thereto. 

3. Longitudinal bars bent so that the axis of the inclined portion of the bar makes 

an angle of 15 degrees or more with the axis of the longitudinal portion of the bar. 

4. Special arrangements of bars with adequate provisions to prevent slip of bars 

or splitting of the concrete by the reinforcement. See Section 804(/). 

(6) Stirrups or other bars to be considered effective as web reinforcement shall be 

anchored at both ends, according to the provisions of Section 904. 

803. Stirrups, (a) The area of steel required in stirrups placed perpendicular to 

the longitudinal reinforcement shall be computed by formula (13).* 

Ap 
fvjd 

(13) 

(6) Inclined stirrups shall be proportioned by formula (15), Section 804(d). 

(c) Stirrups placed perpendicular to the longitudinal reinforcement shall not be 

used alone as web reinforcement when the shearing unit stress (v) exceeds O.OSjTc. 

4 Y'm excess of the total shear over that permitted on the concrete. 
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804, Bent Bars, (a) When the web reinforcement consists of a single bent bar 

or of a single group of bent bars the required area of such bars shall be computed by 

formula (14). 

fv sin a 
(14) 

(6) In formula (14) V' shall not exceed 0.040/'c bjd. 
(c) Only the center three-fourths of the inclined portion of such bar, or group of 

bars, shall be considered effective as web reinforcement. 

(d) Where there is a series of parallel bent bars, the required area shall be deter¬ 

mined by formula (15). 

fvjd (sin a + cos a) 

(e) When bent bars, having a radius of bend of not more than two times the di¬ 

ameter of the bar, are used alone as web reinforcement, the allowable shearing unit 

stress shall not exceed 0.060/c. This shearing unit stress may be increased at the 

rate of 0.01/c for each increase of four bar diameters in the radius of bend until the 

maximum allowable shearing unit stress is reached. See Section 305(a). 

(/) The shearing unit stress permitted when special arrangements of bars are 

employed shall be that determined by making comparative tests, to destruction, of 

specimens of the proposed system and of similar specimens reinforced in conformity 

with the provisions of this code, the same factor of safety being applied in both cases. 

806. Combined Web Reinforcement, (a) Where more than one type of reinforce¬ 

ment is used to reinforce the same portion of the web, the total shearing resistance 

of this portion of the web shall be assumed as the sum of the shearing resistances 

computed for the various types separately. In such computations the shearing re¬ 

sistance of the concrete shall be included only once, and no one type of reinforcement 

shall be assumed to resist more than 
2V' 

806. Spacing of Web Reinforcement, (a) Where web reinforcement is required 

it shall be so spaced that every 45 degree line (representing a potential crack) extend¬ 

ing from the mid-depth of the beam to the longitudinal tension bars shall be crossed 

by at least one line of web reinforcement. If a shearing unit stress in excess of 0.06/© 

is used, every such line shall be crossed by at least two such lines of web reinforce • 

ment. 

807* Shearing Stress in Flat Slabs, (a) In flat slabs, the shearing unit stress on 

a vertical section which lies at a distance ^2 — l| inches beyond the edge of the 

column capital and parallel or concentric with it, shall not exceed the following 

values when computed by formula (12) (in which d shall be taken as ^2 — 12 inches): 

1. 0.03/'c, when at least 50 per cent of the total negative reinforcement in the col¬ 

umn strip passes directly over the column capital. 

2. 0.025/'c, when 25 per cent or less of the total negative reinforcement in the col¬ 

umn strip passes directly over the column capital. 

3. For intermediate percentages, intermediate values of the shearing unit stress 

shall be used. 

(6) In ffat slabs, the shearing unit stress on a vertical section which lies at a dis¬ 

tance of fs — inches beyond the edge of the drop panel and parallel with it shall 

not exceed 0.03/'c when computed by formula (12) (in which d shall be taken as 

Is — inches). At least 60 per cent of the cross-sectional area of the negative rein- 
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forcement in the column strip must be within the width of strip directly above the 
drop panel. 

808. Shear and Diagonal Tension in Footings, (a) In isolated footings the shear¬ 

ing unit stress computed by formula (12) on the critical section [see 1205(a)], shall 

not exceed 0.03/'c, nor in any case shall it exceed 75 p.s.i. 

BOND AND ANCHORAGE 

901. Computation of Bond Stress in Beams, (a) In flexural members in which 

the tensile reinforcement is parallel to the compression face, the bond stress at any 

cross section shall be computed by formula (16). 

V. 

Zojd 
(16) 

in which V is the shear at that section. 

(5) Adequate end anchorage shall be provided for the tensile reinforcement in all 

flexural members to which formula (16) does not apply, such as footings, brackets 

and other tapered or stepped beams in which the tensile reinforcement is not parallel 

to the compression face. 

902. Ordinary Anchorage Requirements, (a) Tensile negative reinforcement in 

any span of a continuous, restrained, or cantilever beam, or in any member of a rigid 

frame shall be adequately anchored by bond, hooks or mechanical anchors in or 

through the supporting member. Within any such span every reinforcing bar shall 

be extended at least twelve diameters beyond the point at which it is no longer 

needed to resist stress. In cases where the length from the point of maximum tensile 

stress in the bar to the end of the bar is not sufl5cient to develop tliis maximum stress 

by bond, the bar shall extend into a region of compression and be anchored by means 

of a standard hook or it shall be bent across the web at an angle of not less than 

15 degrees with the longitudinal portion of the bar and either made continuous with 

the positive reinforcement or anchored in a region of compression. 

(6) Of the positive reinforcement in continuous beams not less than one-fourth 

the area shall extend along the same face of the beam into the support a distance of 

ten or more bar diameters, or shall be extended as far as possible into the support 

and terminated in standard hooks, or other adequate anchorage. 

(c) In simple beams, or at the outer or freely supported ends of end spans of con¬ 

tinuous beams, at least one-half the positive reinforcement shall extend along the 

same face of the beam into the support a distance of twelve or more bar diameters, 

or shall be extended as far as possible into the support and terminated in standard 

hooks. 
903. Special Anchorage Requirements, (a) Where increased shearing or bond 

stresses are permitted because of the use of special anchorage (see Section 305), 

every bar shall be terminated in a standard hook in a region of compression, or it 

shall be bent across the web at an angle of not less than 15 degrees with the longi¬ 

tudinal portion of the bar and made continuous with the negative or positive re¬ 

inforcement. 
904. Anchorage of Web Reinforcement, (a) Single separate bars used as web 

reinforcement shall be anchored at each end by one of the following methods: 

1. Welding to longitudinal reinforcement. 

2. Hooking tightly around the longitudinal reinforcement through 180 degrees. 
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3. Embedment above or below the mid-depth of the beam on the compression 

side, a distance sufficient to develop the stress to which the bar wiU be subjected at 

a bond stress of not to exceed .04f'c on plain bars nor .05/'c on deformed bars. 

4. Standard hook [see Section 906(a)I, considered as developing 10,000 p.s.i., 

plus embedment sufficient to develop by bond the remainder of the stress to which 

the bar is subjected. The unit bond stress shall not exceed that specified in Table 

305(a). The effective embedded length shall not be assumed to exceed the distance 

between the mid-depth of the beam and the tangent of the hook. 

(b) The extreme ends of bars forming simple U or multiple stirrups shall be an¬ 

chored by one of the methods of Section 904(a) or shall be bent through an angle of 

at least 90 degrees tightly aroimd a longitudinal reinforcing bar not less in diameter 

than the stirrup bar, and shall project beyond the bend at least twelve diameters of 

the stirrup bar. 

(c) The loops or closed ends of such stirrups shall be anchored by bending around 

the longitudinal reinforcement through an angle of at least 90 degrees, or by being 

welded or otherwise rigidly attached thereto. 

(d) Hooking or bending stirrups or separate web reinforcement bars around the 

longitudinal reinforcement shall be considered effective only when these bars are 

perpendicular to the longitudinal reinforcement. 

(e) Longitudinal bars bent to act as web reinforcement shall, in a region of tension, 

be continuous with the longitudinal reinforcement. The tensile stress in each bar 

shall be fully developed in both the upper and the lower half of the beam by one of 

the following methods: 

1. As specified in Section 904(a), (3). 

2. As specified in Section 904(a), (4). 

3. By bond, at a unit bond stress not exceeding .04/c on plain bars nor .05/c on 

deformed bars, plus a bend of radius not less than two times the diameter of the bar, 

parallel to the upper or lower surface of the beam, plus an extension of the bar of not 

less than twelve diameters of the bar terminating in a standard hook. This short 

radius bend extension and hook shall together not be counted upon to develop a 

tensile unit stress in the bar of more than 10,000 p.s.i. 

4. By bond, at a unit bond stress not exceeding .04/'c on plain bars nor .05/c on 

deformed bars, plus a bend of radius not less than two times the diameter of the bar, 

parallel to the upper or lower surface of the beam and continuous with the longitudinal 

reinforcement. The short radius bend and continuity shall together not be counted 

upon to develop a tensile unit stress in the bar of more than 10,000 p.s.i. 

6. The tensile unit stress at the beginning of a bend may be increased from 10,000 

p.s.i. when the radius of bend is two bar diameters, at the rate of 1000 p.s.i. tension 

for each increase of one and one-half bar diameters in the radius of bend, provided 

that the length of the bar in the bend and extension is sufficient to develop this in* 

creased tensile stress by bond at the unit stresses given in Section 904(e), (3). 

(/) In all cases web reinforcement shall be carried as close to the compression 

surface of the beam as fireproofing regulations and the proximity of other steel will 

permit. 

905. Anchorage of Bars in Footing Slabs, (a) All bars in footing slabs shall be 

imohored by means of standard hooks. The outer faces of these hooks shall be not 

less than three inches nor more than six inches from the face of the footing. 
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d06. Hooks, (a) The terms *^hook” or ^^standard hook^’ as used herein shall mean 
either 

1. A complete semicircular turn with a radius of bend on the axis of the bar of not 

less than three and not more than six bar diameters, plus an extension of at least 
four bar diameters at the free end of the bar, or 

2. A 90-degree bend having a radius of not less than four bar diameters plus an 

extension of twelve bar diameters. 

Hooks having a radius of bend of more than six bar diameters shall be considered 

merely as extensions to the bars, and shall be treated as in Section 904(e), (5). 

(6) In general, hooks shall not be permitted in the tension portion of any beam 

except at the ends of simple or cantilever beams or at the freely supported ends of 

continuous or restrained beams. 

ic) No hook shall be assumed to carry a load which would produce a tensile stress 

in the bar greater than 10,000 p.s.i. 

(d) Hooks shall not be considered effective in adding to the compressive resistance 

of bars. 

(e) Any mechanical device capable of developing the strength of the bar without 

damage to the concrete may be used in heu of a hook. Tests must be presented to 

show the adequacy of such devices. 

FLAT SLABS 

1000. Notation. 

A « The distance from the center line of the column, in the direction of any span, 

to the intersection of a 45-degree diagonal line from the center of the col¬ 

umn to the bottom of the flat slab or drop panel, where such line lies wholly 

within the column, capital, or bracket, provided such capital or bracket is 

structurally capable of resisting shears and moments without excessive 

unit stress. In no case shall A be greater than one-eighth the span in the 

direction considered. 

Aav ~ Average of the two values of A for the two columns at the ends of a column 

strip, in the direction of the spans considered. 

c — Diameter or width of column capital at the under side of the slab or drop 

panel. No portion of the column capital shall be considered for structural 

purposes which lies outside the largest right circular cone, with 90 degrees 

vertex angle, that can be included within the outlines of the column capitaL 

L = Span length of slab center to center of columns in the direction of which 

bending is considered. 

Mo = Sum of the positive and the average negative bending moments at the criticai 

design sections of a flat slab panel. See Section 1003(6). 

W = Total dead and live load uniformly distributed over a single panel area. 

Wav = The average of the total load on two adjacent panels. 

X = Coefficient of span L which gives the distance from the center of column to 

the critical section for negative bending in design according to Section 

1002(o). 

1001* Sc<^e* (a) The term flat slab shall mean a reinforced concrete slab sup¬ 

ported by columns with or without flaring heads or column capitals, with or without 

depressed or drop panels and generally without beams or girders. 
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(6) Eecesses or pockets in flat slab ceilings, located between reinforcing bars and 
forming cellular or two-way ribbed ceilings, whether left open or filled with permanent 
fillers, shall not prevent a slab from being considered a flat slab; but allowable unit 
stresses shall not be exceeded. 

(c) This chapter provides for two methods of design of flat slab structures. 

1. Any t3rpe of flat slab construction may be designed by application of the prin¬ 
ciples of continuity, using the method outlined in Section 1002, or using other recog¬ 
nized methods of elastic analysis. In either case, the design must be subject to the 
provisions of Sections 1005(a) and (c), 1006, 1008 and 1009. 

2. The common cases of flat slab construction described in Section 1003 may be 
designed by the use of moment coefficients, given in Sections 1003 and 1004, and 
subject to the provisions of Sections 1005, 1006, 1007, 1008 and 1009. 

1002. Design of Flat Slabs as Continuous Frames, (a) Except in the cases of 
flat slab construction where specified coefficients for bending may be used, as pro¬ 
vided in Section 1003, bending and shear in flat slabs and their supports shall be 
determined by an analysis of the structure as a continuous frame, and all sections 
shall be proportioned to resist the moments and shears thus obtained. In the analy¬ 
sis, the following assumptions may be made: 

1. The structure may be considered divided into a number of bents, each consisting 
of a row of columns and strips of supported slabs, each strip bounded laterally by 
the center line of the panel on either side of the row of columns. The bents shall 
be taken longitudinally and transversely of the building. 

2. Each such bent may be analyzed in its entirety; or each floor thereof and the 
roof may be analyzed separately with its adjacent columns above and below, the 
columns being assumed fixed at their remote ends. Where slabs are thus analyzed 
separately, in bents more than four panels long, it may be assumed in determining 
the bending at a given support that the slab is fixed at any support two panels distant 
therefrom beyond which the slab continues. 

3. The joints between columns and slabs may be considered rigid and this rigidity 
may be assumed to extend in the slabs a distance A from the center of the columns, 
and in the column to the intersection of the sides of the column and the 45-degree 
line defining A. The change in length of columns and slabs due to direct stress, and 
deflections due to shear, may be neglected. Where metal colunm capitals are used, 
account may be taken of their contributions to stiffness and resistance to bending 
and shear. 

4. The supporting columns may be assumed free from settlement or lateral move¬ 
ment imless the amount thereof can be reasonably determined. 

5. The moment of inertia of slab or column at any cross section may be assumed 
to be that of the gross section of the concrete. Variation in the moments of inertia 
of the slabs and columns along their axes shall be taken into account. 

6. Where the load to be supported is definitely known, the structure shall be an¬ 
alyzed for that load. Where the live load is variable but does not exceed three- 
quarters of the dead load, or the nature of the live load is such that all panels will 
be loaded simultaneously, the maximum bending may be assumed to obtain at all 
sections under full live load. Elsewhere, maximum positive bending near mid-span 
of a panel may be assumed to obtain under full live load in the panel and in alternate 
panels; and maximum negative bending at a support may be assunaed to obtain 
under full live load in the adjacent panels only. 
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7. Where neither beams nor girders help to transfer the slab load to the supporting 

colutxm, the critical section for negative bending may be assumed as not more than 
the distance zL from the colunm center, where 

X = 0.073 +0.574 (17) 
Jb 

In slabs supported by beams, girders, or walls, the critical section for negative bend¬ 
ing shall be assumed at the face of such support. 

8. The numerical sum of the maximum positive and the average maximum nega¬ 
tive bending moments for which provision is made in the design in the direction of 
either side of a rectangular panel shall be assumed as not less than 

9. The bending at critical sections across the slabs of each bent may be appor¬ 
tioned between the column strip and middle strip, as defined in Section 1005, in the 
ratio of the specified coefficients wliich affect such apportionment in the special cases 
of flat slabs provided for in Section 1003. 

10. The maximum bending in columns may be assumed to obtain under full live 
load in alternate panels. Columns shall be proportioned to rasist the maximum 

bending combined with the maximum direct load consistent therewith; and for 

maximum direct load combined with the bending under full load, the direct load 
subject to allowable reductions, in the manner provided in Chapter 11. In computing 
moments in columns at any floor, the far ends of the columns may be considered fixed. 

(6) The foregoing provisions outhne the method to be followed in analyzing and 

designing flat slabs in the general case. In all instances the design must conform to 
the requirements for panel strips and critical design sections, slab thickness and drop 

panels, capitals and brackets, arrangement of reinforcement and openings in flat 
slabs, as provided in Sections 1005(a) and (c), 1006, 1008 and 1009. 

1003. Design of Flat Slabs by Moment Coefficients, (a) In those cases of flat 
slab construction which fall within the following hmitations as to continuity and 

dimensions, the bending moments at critical sections may be determined by the use 
of specified coefficients as provided in Section 1004. 

1. The ratio of length to width of panel does not exceed 1.33. 
2. The slab is continuous for at least three panels in each direction. 
3. The successive span lengths in each direction differ by not more than twenty 

per cent of the shorter span. 

(6) In such slabs, the numerical sum of the positive and negative bending moments 
in the direction of either side of an interior rectangular panel shall be assumed as not 

less than 

Mo ^O.OQWlU(19) 

(c) Three-fourths of the width of the strip shall be taken as the width of the sec¬ 
tion in computing compression due to bending, except that, on a section through a 

drop panel, three-fomths of the width of the drop panel shall be taken. Account 

shall be taken of any recesses which reduce the compressive area. Tension reinforce¬ 

ment distributed over the entire strip shall be included in the computations. 
(d) The design of slabs under the procedure given in this section is subject to the 

provisions of aU subsequent sections of this chapter (Sections 1004 to 1009). 
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1004. Bending Moment Coefficients, (a) The bending moments at the critical sec¬ 

tions of the middle and column strips of an interior panel shall be assumed as given 

in Table 1004(a). 

(6) The bending moments at critical sections of strips, in an exterior panel, at 

right angles to the discontinuous edge, where the exterior supports consist of rein¬ 

forced concrete columns or reinforced concrete bearing walls integral with the slab, 

the ratio of stiffness of the support to that of the slab being at least as great as the 

ratio of the live load to the dead load and not less than one, shall be assumed as 

given in Table 1004(6). Where a flat slab is so supported by a wall providing restraint 

at the discontinuous edge, the coefficient for negative bending at the edge shall be 

assumed more nearly equal in the column and middle strips, the sum remaining as 

given in Table 1004(6), but that for the column strip shall not be less than O.SOil/o. 

Bending in middle strips parallel to a discontinuous edge, except in a corner panel, 

shall be assumed the same as in an interior panel. Mo shall be determined as provided 

in Section 1003(6) for an interior panel. 

(c) The bending moments at critical sections of strips, in an exterior panel, at 

right angles to the discontinuous edge, where the exterior supports are masonry 

bearing walls or other construction which provide only negligible restraint to the 

slab, shall be assumed as given in Table 1004(6) with the following modifications. 

1. On critical sections at the face of the exterior support, negative bending in each 

strip shall be assumed as O.Ofiilfo. 

2. The coefficients for positive bending shall be increased by forty per cent. 

3. The coefficients for negative bending at the first interior columns shall be in¬ 

creased thirty per cent. 

(d) The bending moments in panels with marginal beams or walls, in the strips 

parallel and close ther^eto, and in the beams, shall be determined upon the basis of 

assumptions presented in Table 1004(c). 

(e) For design purposes any of the moment coefficients of Tables 1004(a), 1004(6), 

and 1004(c) may be varied by not more than six per cent, but the numerical sum of 

the positive and negative moments in a panel shall not be taken as less than the 

amount specified. 

(/) Panels supported by marginal beams on opposite edges shall be designed as 

solid one or two-way slabs to carry the entire panel load. 

(g) The ratio of reinforcement in any strip shall not be less than 0.0025. 

General Requirements 

1006. Panel Strips and Critical Design Sections, (a) A flat slab panel shall be 

considered as consisting of strips in each direction as follows: 

A middle strip one half panel in width, symmetrical about panel center line and 

extending through the panel in the direction of the span for bending. 

A column strip consisting of the two adjacent quarter-panels either side of the 

column center lines. 

(6) The critical sections for bending are located as follows: 

Sections for negative bending shall be taken along the edges of the panel, on col¬ 

umn center lines between capitals and around the perimeters of column capitals. 

lections for positive bending shall be taken at mid-span of the strips. 
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Table 1004(a). Bending Moments in Intebior Flat Slab Panel 

m 

With drop panel 
Column strip Negative moment 0.50Afa 

Positive moment 0.20ilfa 
Middle strip Negative moment 0.15Ma 

Positive moment 0.15ilfo 
Without drop panel 

Column strip Negative moment 0.46ilf<, 
Positive moment 0.22Mo 

Middle strip Negative moment O.I6M0 
Positive moment O.lGATo 

Table 1004(6). Bending Moments in Exterior Flat Slab Panel 

With drop panel 
Column strip Exterior negative 0A5Mo 

Positive moment 0,25Mo 
Interior negative OMMo 

Middle strip Exterior negative O.lOMo 
Positive moment 

1 Interior negative 0.165Ma 
Without drop panel 

Column strip Exterior negative 0.41M„ 
Positive moment O.2SM0 
Interior negative O.5OM0 

Middle strip Exterior negative O.lOMo 
Positive moment O.2OM0 
Interior negative 0.176Mo 

Table 1004(c). Bending Moments in Panels with Marginal Beams or Walls 

Marginal Beams with Marginal Beams 
Depth Greater than l| with Depth li 
Times the Slab Thick- Times the Slab 
ness; or Bearing Wall Thickness or Less 

(a) Load to be carried by Loads directly superim- Loads directly 
marginal beam or wall f)osed upon it plus a superimposed 

uniform load equal to 1 upon it exclusive 
one-quarter of the total of any panel load 
live and dead panel load 

With Without 

1 

With Without 

(b) Moment to be used in 
Drop Drop Drop Drop 

the design of half col¬ 
umn strip adjacent and 

Neg. O.125M0 O.II5M0 0.25Mo 0.23Jfer„ 

parallel to marginal 
oeam or wall 

Pos. OMMo 0.055Mo O.lOMo O.llMo 

(c) Negative moment to be 
used in design of middle 
strip continuous across a 

Neg. 0.195Mo 0.208M. 0.15Mo 

beam or wall 
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(c) Only the reinforcement which crosses a critical section within a strip may be 

considered effective to re^t bending in the strip at that section. Reinforcement 

which crosses such section at an angle with the center-line of the strip shall be as¬ 

sumed to contribute to the resistance of bending only its effective area in the direc¬ 

tion of the strip, as defined in Chapter 1. 

1006. Slab Thickness and Drop Panels, (a) The thickness of a flat slab and the 

size and thickness of the drop panel, where used, shall be such that the compressive 

stress due to bending at the critical sections of any strip and the shear about the col¬ 

umn capital and the drop panel shall not exceed the unit stresses allowed in concrete 

of the quality used. 

(6) The shearing stresses in the slab outside the capital or drop panel shall be 

computed as provided in Section 807. 

(c) Slab thickness shall not, however, be less than 

L 
— with drop panels 
40 

or 

L 
— without drop panels 
36 

(d) The thickness of the drop panel below the slab shall not be more than one- 

fourth the distance from the edge of the column capital to the edge of the drop panel. 

1007. Capitals and Brackets, (a) Where a column is without a flaring concrete 

capital the distance c shall be taken as the diameter of the column. Structural metal 

embedded in the slab or drop panel may be regarded as contributing to resistance in 

bending and shear. 

(6) Where a reinforced concrete beam frames into a column without capital or 

bracket on the same side with the beam, the value of c may be taken as the width 

of the column plus twice the projection of the beam above or below the slab or drop 

panel for computing bending in strips parallel to the beam. 

(c) Brackets capable of transmitting the negative bending and the shear in the 

column strips to the columns without excessive unit stress may be substituted for 

column capitals at exterior columns. The value of c where brackets are used shall 

be taken as twice the distance from the center of the column to a point where the 

bracket is 1J inches thick, but not more than the thickness of the column plus twice 

the depth of the bracket. 

(d) The average of the diameters c of the colunm capitals at the four comers of a 

panel shall be used in determining the bending in the middle strips of the panel. 

The average of the diameters c of the two column capitals at the ends of a column 

strip shall be used in determining bending in the strip. 

1008. Arrangement of Reinforcement, (a) Slab reinforcement shall be provided 

to resist the bending and bond stresses not only at critical sections, but also at inter- 

mediate sections. 

(&) Bars shall be spaced evenly across strips or bands and the spacing shall not 

exceed three times the slab thickness. 

(c) In exterior panels the reinforcement perpendicular to the discontinuous edge 

for positive bending, shall extend to the edge and have embedment of at least six 

inches in spandrel beams, walls or columns. All such reinforcement for negative 

bending shall be bent, hooked or otherwise anchored in spandrel beams, walls or 

ccflumns. 
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1009. Openings in Flat Slabs. Openings of any size may be cut through a flat 

slab if provision is made for the total positive and negative resisting moments, as 

required in Section 1002 or 1003, without exceeding the allowable stresses as given 

in Sections 305 and 306. 

REINFORCED CONCRETE COLUMNS AND WALLS 

1100. Notation. 

Ac 

A, 

Ar 

A. 
C 

D 

d 
e 

F 

fa 

fc 
f'c 

fp 
fr 
f'r 
/• 

h 

K 

N 

P' 

Pt 

P 

F' 

B 

t 

= Area of core of a spirally reinforced column measured to the outside diameter 

of the spiral; net area of concrete section of a composite column. 

~ The overall or gross area of spirally reinforced or tied columns; the total area 

of the concrete encasement of combination columns. 

= Area of the steel or cast-iron core of a composite column; the area of the steel 

core in a combination column. 

= Effective cross-sectional area of reinforcement in compression in columns. 

= Ratio of allowable concrete stress, fa, in axially loaded column to allowable 

fiber stress for concrete in flexure. 

2R^ 
= a factor, usually varying from 3 to 9. (The term R as used here is the 

radius of gyration of the entire column section.) 

= The least lateral dimension of a concrete column. 

= Eccentricity of the resultant load on a column, measured from the gravity axis. 

Yield point of pipe ^ , 
=-45^100- Section 1106(6).] 

= Average allowable stress in the concrete of an axially loaded reinforced concrete 

column. 

= Computed concrete fiber stress in an eccentrically loaded column. 

« Ultimate compressive strength of concrete at age of 28 days, unless otherwise 

specified. 

= Maximum allowable concrete fiber stress in an eccentrically loaded column. 

= Allowable unit stress in the metal core of a composite column. 

= Allowable unit stress on unencased steel columns and pipe columns. 

=* Nominal working stress in vertical column reinforcement. 

“ Useful limit stress of spiral reinforcement. 

« Unsupported length of column. 

« Least radius of gyration of a metal pipe section (in pipe colunms). 

30,000 
8SE 

A 
= Axial load applied to reinforced concrete column. 

«= Ratio of volume of spiral reinforcement to the volume of the concrete core 

(out to out of spirals) of a spirally reinforced concrete column. 

= Ratio of the effective cross-sectional area of vertical reinforcement to the gross 

area Af. 
« Total allowable axial load on a column whose length does not exceed ten times 

its least crossHsectional dimension. 

« Total allowable axial load on a long column. 

» Least radius of gyration of a section. 

» Overall depth of column section. 
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1101. Limiting Dim^sioxis. (a) The following sections on reinforced concrete and 

composite columns, except Section 1107(a), apply to a short column for which the 

unsupported length is not greater than ten times the least dimension. When the 

unsupported length exceeds this value, the design shall be modified as shown in 

Section 1107(a). Principal columns in buildings shall have a minimum diameter of 

twelve inches, or in the case of rectangular columns, a minimum thickness of ten 

inches, and a minimum gross area of 120 square inches. Posts that are not continu¬ 

ous from story to story shall have a minimum diameter or thickness of six inches. 

1102. Unsupported Length of Columns, (a) For purposes of determining the 

limiting dimensions of columns, the unsupported length of reinforced concrete col¬ 

umns shall be taken as the clear distance between floor slabs, except that 

1. In flat slab construction, it shall be the clear distance between the floor and the 

lower extremity of the capital. 

2. In beam and slab construction, it shall be the clear distance between the floor 

and the under side of the deeper beam framing into the column in each direction 

at the next higher floor level. 

3. In columns restrained laterally by struts, it shall be the clear distance between 

consecutive struts in each vertical plane; provided that to be an adequate support, 

two such struts shall meet the column at approximately the same level, and the angle 

between vertical planes through the struts shall not vary more than 15 degrees from 

a right angle. Such struts shall be of adequate dimensions and anchorage to restrain 

the column against lateral deflection. 

4. In columns restrained laterally by struts or beams, with brackets used at the 

junction, it shall be the clear distance between the floor and the lower edge of the 

bracket, provided that the bracket width equals that of the beam or strut and is at 

least half that of the colunm. 

(6) For rectangular columns, that length shall be considered which produces the 

greatest ratio of length to depth of section. 

1103. Spirally Reinforced Columns, (a) Allowable Load. The maximum allow¬ 

able axial load, P, on columns with closely spaced spirals enclosing a circular concrete 

core reinforced with longitudinal bars shall be that given by formula (20). 

P = A^(0.226A+/aPg) (20) 

the gross area of the column 

compressive strength of the concrete 

nominal working stress in vertical column reinforcement, to be taken 

at forty per cent of the minimum specification value of the yield 

point; viz., 16,000 p.s.i. for intermediate grade steel and 20,000 

p.s.i. for rail or hard grade steel.® 

ratio of the effective cross-sectional area of vertical reinforcement to 

the gross area, Ag. 

(b) Vertical Reinforcement. The ratio pg shall not be less than 0.01 nor more than 

0.08* The minimum number of bars shall be six, and the minimum diameter shall 

• Nominal working stresses for reinforcement of higher jdeld point may be estab¬ 

lished at forty per cent of the yield point stress, but not more than 30,000 p.8.i., 

when the properties of such reinforcing steels have been definitely specified by stand¬ 

ards of A.S.T.M. designation. If this is done, the lengths of splice required by 

Section 1103(c) shall be increased accordingly. 
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be f inch. The center to center spacing of bars within the periphery of the column 

core shall not be less than 2| times the diameter for round bars or three times the 

side dimension for square bars. The clear spacing between bars shall not be less 

than 1~2" inches or if times the maximum size of the coarse aggregate used. These 

spacing rules also apply to adjacent pairs of bars at a lapped splice; each pair of 
lapped bars forming a splice may be in contact, but the minimum clear spacing 

between one splice and the adjacent splice should be that specified for adjacent single 
bars. 

(c) Splices in Vertical ReinforcemenL Where lapped splices in the column verticals 

are used, the minimum amount of lap shall be as follows: 

1. For deformed bars—with concrete having a strength of 3000 p.s.i. or above, 

twenty-four diameters of bar of intermediate grade steel and thirty diameters of bar 

of hard grade steel. For bars of higher yield point, the amount of lap shall be in¬ 

creased in proportion to the nominal working stress. When the concrete strengths 

are less than 3000 p.s.i., the amount of lap shall be one-third greater than the values 
given above. 

2. For plain bars—the minimum amount of lap shall be twenty-five per cent greater 

than that specified for deformed bars. 

3. Welded splices or other positive connections may be used instead of lapped 

splices. Welded splices shall preferably be used in cases where the bar diameter 

exceeds if inch. An approved welded splice shall be defined as one in which the 

bars are butted and welded and that will develop in tension at least the yield point 

stress of the reinforcing steel used. 

4. Where changes in the cross section of a column occur, the longitudinal bars 

shall be offset in a region where lateral support is afforded by a concrete capital, 

floor slab or by metal ties or reinforcing spirals. Where bars are offset, the slope of 

the inclined portion from the axis of the column shall not exceed 1 in 6 and the bars 

above and below the offset shall be parallel to the axis of the column. 

(d) Spiral Reinforcement. The ratio of spiral reinforcement, p', shall not be less 

than the value given by formula (21). 

"'-“•“(s-Oa ™ 
ratio of volume of spiral reinforcement to the volume of the concrete 

core (out to out of spirals). 

useful limit stress of spiral reinforcement, to be taken as 40,000 p.si. 

for hot rolled rods of intermediate grade, 50,000 p.s.i. for rods of 

hard grade, and 60,000 p.s.i. for cold drawn wire. 

The spiral reinforcement shall consist of evenly spaced continuous spirals held firmly 

in place and true to fine by at least three vertical spacer bars. The spirals shall be 

of such size and so assembled as to permit handling and placing without being dis¬ 

torted from the designed dimensions. The material used in spirals shall have a min¬ 

imum diameter of J inch for rolled bars or No. 4 W. & M. gage for drawn wire. An¬ 

chorage of spiral reinforcement shall be provided by extra turns of spiral rod or 

wire at each end of the spiral unit. Splices, when necessary shall be made in spiral 

rod or wire by welding or by a lap of 1J turns. The center to center spacing of the 

spirals shall not exceed one-sixth of the core diameter. The clear spacing between 

spirals shall not exceed 3 inches nor be less than if inches or if times the maximum 

size of coarse aggregate used. The reinforcing spiral shall extend from the floor level 

in any story or from the top of the footing in the basement, to the level of the lowest 

Wherein p' = 

A = 
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horizontal reinforcement in the slab, drop panel or beam above. In a column with a 
capital, it shall extend to a plane at which the diameter or width of the capital ia 
twice that of the column. 

(c) Protection of Reinforcement The column reinforcement shall be protected 
everywhere by a covering of concrete cast monolithically with the core, for which 
the thickness shall not be less than 1^- inches nor less than times the maximum 
size of the coarse aggregate, nor shall it be less than required by the fire protection 
and weathering provisions of Section 507. 

(/) Isolated Column with Multiple Spirals. In case two or more interlocking spirals 
are used in a column, the outer boundary of the column shall be taken as a rectangle 
of which the sides are outside the extreme limits of the spiral at a distance equal to 
the requirements of Section 1103(e). 

(р) Limits of Section of Cohimn Built Monolithically with Wall. For a spiral col¬ 
umn built monolithically with a concrete wall or pier, the outer boundary of the 
column section shall be taken either as a circle at least ItJ inches outside the column 
spiral or as a square or rectangle of which the sides are at least 1^ inches outside the 
spiral or spirals. 

(h) Equivalent Circular Columns. As an exception to the general procedure of 
utilizing the full gross area of the column section, it shall be permissible to design a 
circular column and to build it with a square, octagonal, or other shaped section of 
the same least lateral dimension. In such case, the allowable load, the gross area 
considered, and the required percentages of reinforcement shall be taken as those 
of the circular column. 

1104. Tied Columns, (a) Allowable Load. The maximum allowable axial load 
on columns reinforced with longitudinal bars and separate lateral ties shall be 80 
per cent of that given by formula (20). The ratio, pg, to be considered in tied col- 
unms shall not be less than 0.01 nor more than 0.04. The longitudinal reinforcement 
shall consist of at least four bars, of minimum diameter of f inch. Splices in rein¬ 
forcing bars shall be made as described in Section 1103(c). 

(6) Lateral Ties. Lateral ties shall be at least J inch in diameter and shall be 
spaced apart not over 16 bar diameters, 48 tie diameters or the least dimension of 
the colunm. When there are more than four vertical bars, additional ties shall be 
provided so that every longitudinal bar is held firmly in its designed position and has 
lateral support equivalent to that provided by a 90-degree comer of a tie. 

(с) Limits of Column Section. In a tied colunm which for architectural reasons has 
a larger cross section than required by considerations of loading, a reduced effective 
area, not less than one-half of the total area may be used in applying the provisions 
of Section 1104(a). 

1106. Composite Columns, (a) Allowable Load. The allowable load on a com¬ 
posite column, consisting of a structural steel or cast-iron column thoroughly encased 
in concrete reinforced with both longitudinal and spiral reinforcement, shall not 
exceed that given by formula (22). 

P « 0.225A^'c -f/rAr (22) 

Wherein Ac =* net area of concrete section 
Ag — A* — At 

A* « cross-sectional area of longitudinal bar reinforcement. 
Ar * cross-sectional area of the steel or cast-iron core. 
fr » allowable unit stress in metal core, not to exceed 16,000 p.s.i. for a 

steel core; or 10,000 p.s.i. for a cast-iron core. 

The lemaining notation is that of Section 1108. 
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(6) Details of Metal Core and Reinforcement The cross-sectional area of the metal 

core shall not exceed 20 per cent of the gross area of the column. If a hollow metal 

core is used it shall be filled with concrete. The amounts of longitudinal and spiral 

reinforcement and the requirements as to spacing of bars, details of splices and thick¬ 

ness of protective shell outside the spiral shall conform to the limiting values specified 

in Section 1103(?>), (c) and (d). A clearance of at least three inches shall be main¬ 

tained between the spiral and the metal core at all points except that when the core 

consists of a structural steel H-column, the minimum clearance may be reduced to 

two inches. 

(c) Splices and Connections of Metal Cores. Metal cores in composite columns 

shall be accurately milled at splices and positive provision shall be made for align¬ 

ment of one core above another. At tiie column base, provision shall be made to 

transfer the load to the footing at safe unit stresses in accordance with Section 305(a). 

The base of the metal section shall be designed to transfer the load from the entire 

composite column to the footing, or it may be designed to transfer the load from the 

metal section only, provided it is so placed in the pier or pedestal as to leave ample 

section of concrete above the base for the transfer of load from the reinforced con¬ 

crete section of the column by means of bond on the vertical reinforcement and by 

direct compression on the concrete. Transfer of loads to the metal core shall be 

provided for by the use of bearing members such as billets, brackets or other positive 

connections; these shall be provided at the top of the metal core and at intermediate 

floor levels where required. The column as a whole shall satisfy the requirements of 

formula (22) at any point; in addition to this, the reinforced concrete portion shall 

be designed to carry, in accordance with formula (20), all floor loads brought onto 

the column at levels between the metal brackets or connections. In applying for¬ 

mula (20), the value of Ag shall be interpreted as the area of the concrete section 

outside the metal core, and the allowable load on the reinforced concrete section 

shall be further limited to O.S5f'cAg. Ample section of concrete and continuity of 

reinforcement shall be provided at the junction with beams or girders. 

(d) Allowable Load on Metal Core Only. The metal cores of composite columns 

shall be designed to carry safely any construction or other loads to be placed upon 

them prior to their encasement in concrete. 

1106. Combination Columns, (a) Steel Columns Encased in Concrete. The allow¬ 

able load on a structural steel column which is encased in concrete at least 2 ^ inches 

thick over all metal (except rivet heads) reinforced as hereinafter specified, shall be 

computed by formula (23). 

Wherein Ar ~ cross-sectional area of steel column. 

f'r — allowable stress for unencased steel column. 

Ag *= total area of concrete section. 

The concrete used shall develop a compressive strength, f'c, of at least 2000 p.s,i. 

at 28 days. The concrete shall be reinforced by the equivalent of welded wire mesh 

having wires of No, 10 W. and M. gage, the wires encircling the colunm being spaced 

not more than four inches apart and those parallel to the column axis not more than 

^ght inches apart. This mesh shall extend entirely around the column at a distance 

of 01^ inch inside the outer concrete surface and shall be lapHsplioed at least forty wire 

diameters and wired at the splice. Special brackets shall be used to receive the entire 
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floor load at each floor level. The steel column shall be designed to carry safely any 

construction or other loads to be placed upon it prior to its encasement in concrete. 

(b) Pipe Columns. The allowable load on columns consisting of steel pipe filled 

with concrete shall be determined by formula (24). 

P - 0.225/Uc+/'rAr (24) 

The value of /V shall be given by formula (25). 

(25) 

Wherein /V * allowable unit stress in metal pipe. 

h — unsupported length of column. 

K = least radius of gyration of metal pipe section. 

^ yield point of pipe 

^ 45,000 * 

/V = 18,000 - 70 

If the yield point of the pipe is not known, the factor F shall be taken as 0.5. 
1107. Long Columns, (a) The maximum allowable load, P', on axially loaded 

reinforced concrete or composite columns having a length, h, greater than ten times 

the least lateral dimension, d, shall be given by formula (26). 

P' - P 1.3 - ^6) 

where P is the allowable axial load on a short column as given by formulas (20) and 

(22). 

The maximum allowable load, P', on eccentrically loaded columns in which ^ 
d 

exceeds ten shall also be given by formula (26), in which P is the allowable eccentri¬ 

cally applied load on a short column as determined by the provisions of Sections 1109 

and 1110. In long columns subjected to definite bending stresses, as determined in 

h 
Section 1108, the ratio - shall not exceed twenty. 

1108. Bending Moment in Columns, (a) The bending moments in the columns 

of aU reinforced concrete structures shall be determined on the basis of loading condi¬ 

tions and restraint and shall be provided for in the design. When the stiffness and 

strength of the columns are utilized to reduce moments in beams, girders, or slabs, 

as in the case of rigid frames, or in other forms of continuous construction wherein 

column moments are unavoidable, they shall be provided for in the design. In 

building frames, particular attention shall be given to the effect of unbalanced floor 

loads on both exterior and interior columns and of eccentric loading due to other 

causes. Wall columns shall be designed to resist moments produced by 

1. Loads on all floors of the building 

2. Loads on a single exterior bay at two adjacent floor levels, or 

3. Loads on a single exterior bay at one floor level 

Resistance to bending moments at any floor level shall be provided by distributing 

the moment between the columns immediately above and below the given floor in 

proportion to their relative stiffnesses and conditions of restraint. 
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1109. Detenninatioxi of Combined Axial and Bending Stresses, (a) In a rein* 
forced concrete column, designed by the methods of this chapter, which is (1) sym¬ 

metrical about two perpendicular planes through its axis and (2) subject to an axial 

load, N, combined with bending in one or both of the planes of symmetry (but with 

the ratio of eccentricity to depth, e/t, no greater than 1.0 in either plane), the com¬ 
bined fiber stress in compression may be computed on the basis of recognized theory 
applying to uncracked sections, using formula (27). 

t = • 

N ■+7 
Ag Ll + (n - l)pg. 

(27) 

Equating this calculated stress, /«, to the allowable stress, fp, in formula (29), it 
follows that the column can be designed for an equivalent axial load, P, as given by 
formula (28).® 

P (28) 

Pe 
When bending exists on both axes of symmetry, the quantity — is to be computed 

t 
De 

as the numerical sum of the — quantities in the two directions. 
t 

(h) For columns in which the load, N, has an eccentricity, e, greater than the col¬ 

umn depth, t, or for beams subject to small axial loads, the determination of the fiber 

stress fc shall be made by use of recognized theory for cracked sections, based on the 

assumption that no tension exists in the concrete. For such cases the tensile steel 

stress shall also be investigated. 

1110. Allowable Combined Axial and Bending Stress, (a) For spiral and tied 

columns, eccentrically loaded or otherwise subjected to combined axial compression 
and flexural stress, the maximum allowable compressive stress, fp, is given by for¬ 

mula (29). 

Wherein the notation is that of Sections 1103 and 1109, and, in addition/« is the 
average allowable stress in the concrete of an axially loaded reinforced concrete 

column, and C is the ratio of fa to the allowable fiber stress for members in flexure. 

0.225f'c A" fsPg , 
Thus/a ~ 

and C 

1 + (n - l)p 

fa 

for spiral columns and 0.8 of this value for tied columns, 

0.46/'c 
1111. Wind Stresses, (a) When the allowable stress in columns is modified to 

provide for combined axial load and bending, and the stress due to wind loads is 

• For approximate or trial computations, D may be taken as eight for a circular 

spiral column and five for a rectangular tied or spiral column. 
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also added, the total shall still come within the allowable values specified for wind 

loads in Section 603(c). 

1112. Reinforced Concrete Walls, {a) The allowable working stresses in rein¬ 

forced concrete bearing walls with minimum reinforcement as required by Section 

1112(t), shall be 0.25/c for walls having a ratio of height to thickness of ten or less, 

and shall be reduced proportionally to 0.15/c for walls having a ratio of height to 

thickness of twenty-five. When the reinforcement in bearing walls is designed, placed 

and anchored in position as for tied columns, the allowable working stresses shall be 

on the basis of Section 1104, as for columns. In the case of concentrated loads, the 

length of the wall to be considered as effective for each shall not exceed the center to 

center distance between loads, nor shall it exceed the width of the bearing plus four 

times the wall thickness. The ratio pg shall not exceed 0.04. 

(b) Walls shall be designed for any lateral or other pressure to which they are 

subjected. Proper provision shall l>e made for eccentric loads and wind stresses. 

In such designs the allowable stresses shall be as given in Sections 305(a) and 603(c). 

(c) Panel and enclosure walls of reinforced concrete shall have a thickness of not 

less than five inches and not less than one thirtieth the distance between the sup¬ 

porting or enclosing members. 

(d) Bearing walls of reinforced concrete in building of fire-resistive construction 

shall be not less than six inches in thickness for the uppermost fifteen feet of their 

height; and for each successive twenty-five feet downward, or fraction thereof, the 

minimum thickness shall be increased one inch. In two story dwellings the walls 

may be six inches in thickness throughout. 

(c) In buildings of non-fire resistive construction bearing walls of reinforced con¬ 

crete shall not be less than one and one-third times the thickness required for build¬ 

ings of fire-resistive construction, except that for dwellings of two stories or less in 

height the thickness of walls may be the same as specified for buildings of fire-resistive 

construction. 

(/) Exterior basement walls, foundation walls, fire walls and party walls shall not 

be less than eight inches thick whether reinforced or not. 

(g) Reinforced concrete bearing walls shall have a thickness of at least one twenty- 

fifth of the unsupported height or width, whichever is the shorter; provided, however, 

that approved buttresses, built-in columns, or piers designed to carry all the vertical 

loads, may be used in lieu of increased thickness. 

(h) Reinforced concrete walls shall be anchored to the floors, columns, pilasters, 

buttresses and intersecting walls with reinforcement at least equivalent to three- 

eighths inch round bars twelve inches on centers, for each layer of wall reinforcement. 

(t) Reinforced concrete walls shall be reinforced with an area of steel in each direc¬ 

tion, both vertical and horizontal, at least equal to 0.0025 times the cross-sectional 

area of the wall, if of bars, and 0.0018 times the area if of electrically welded wire 

fabric.^ The wire of the welded fabric shall be of not less than No. 10 W. & M. gage. 

Walls more than ten inches in thickness shall have the reinforcement for each direc¬ 

tion placed in two layers parallel with the faces of the wall. One layer consisting 

of not less than one-half and not more than two-thirds the total required shall be 

placed not less than two inches nor more than one-third the thickness of the wall 

from the exterior surface. The other layer, comprising the balance of the required 

reinforcement, shall be placed not less than three-fourths inches and not more than 

one-third the thickness of the wall from the interior surface. Bars, if used, shall not 
be less than the equivalent of three-eighths inch round bars, nor shall they be spaced 

^ Expanded metal has been omitted until a specification can be formulated. 
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more than eighteen inches on centers. Welded wire ® reinforcement for walls shall 
be in fiat sheet form. 

(j) In addition to the minimum as prescribed in 1112(t) there shall be not less 

than two five-eighths inch diameter bars around all window or door openings. Such 

bars shall extend at least twenty-four inches beyond the corner of the openings. 

(k) Where reinforced concrete bearing walls consist of studs or ribs tied together 

by reinforced concrete members at each floor level, the studs may be considered as 

columns, but the restrictions as to minimum diameter or thickness of columns shall 
not apply. 

FOOTINGS 

1201. Scope, (a) The requirements prescribed in Sections 1202 to 1209 apply 
only to isolated footings.® 

1202. Loads and Reactions, (a) Footings shall be proportioned to sustain the 

applied loads and induced reactions without exceeding the allowable stresses as pre¬ 

scribed in Sections 305 and 306, and as further provided in Sections 1205, 1206 and 

1207. 

(6) In cases where the footing is concentrically loaded and the member being 

supported does not transmit any moment to the footing, computations for moments 

and shears shall be based on an upward reaction assumed to be uniformly distributed 

per unit area or per pile and a downward applied load assumed to be uniformly 

distributed over the area of the footing .covered by the column, pedestal, wall, or 

metallic column base. 

(c) In cases where the footing is eccentrically loaded and/or the member being 

supported transmits a moment to the footing, proper allowance shall be made for 

any variation that may exist in the intensities of reaction and applied load consistent 

with the magnitude of the applied load and the amount of its actual or virtual 

eccentricity. 

(d) In the case of footings on piles, computations for moments and shears may be 

based on the assumption that the reaction from any pile is concentrated at the center 

of the pile. 

1203. Sloped or Stepped Footings, (a) In sloped or stepped footings, the angle 

of slope or depth and location of steps shall be such that the allowable stresses are 

not exceeded at any section. 

(b) In sloped or stepped footings, the effective cross-section in compression shall 

be limited by the area above the neutral plane. 

(c) Sloped or stepped footings shall be cast as a unit. 

1204. Bending Moment, (a) The external moment on any section shall be deter^ 

mined by passing through the section a vertical plane which extends completely 

across the footing, and computing the moment of the forces acting over the entire 

area of the footing on one side of said plane. 

(b) The greatest bending moment to be used in the design of an isolated footing 

shall be the moment computed in the manner prescribed in Section 1204(a) at sec¬ 

tions located as follows: 

1. At the face of the colunm, pedestal or wall, for footings supporting a concrete 

column, pedestal or wall. 

® See footnote 7. 
• The committee is not prepared at this time to make recommendations for com¬ 

bined footings—those supporting more than one column or wall 
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2. Halfway between the middle and the edge of the wall, for footings under mas¬ 

onry walls. 

3. Halfway between the face of the column or pedestal and the edge of the metallic 

base, for footings under metallic bases. 

(c) The width resisting compression at any section shall be assumed as the entire 

width of the top of the footing at the section under consideration. 

(d) In one-way reinforced footings, the total tensile reinforcement at any section 

shall provide a moment of resistance at least equal to the moment computed in the 

manner prescribed in Section 1204(a); and the reinforcement thus determined shall 

be distributed uniformly across the full width of the section. 

{e) In two-way reinforced footings, the total tensile reinforcement at any section 

shall provide a moment of resistance at least equal to eighty-five per cent of the mo¬ 

ment computed in the manner prescribed in Section 1204(a); and the total reinforce¬ 

ment thus determined shall be distributed across the corresponding resisting section 

in the manner prescribed for square footings in Section 1204(/), and for rectangular 

footings in Section 1204(^). 

(/) In tw^o-way square footings, the reinforcement extending in each direction shall 

be distributed uniformly across the full width of the footing. 

{g) In two-way rectangular footings, the reinforcement in the long direction shall 

be distributed uniformly across the full width of the footing. In the case of the rein¬ 

forcement in the short direction, that portion determined by formula (30) shall be 

uniformly distributed across a band-width (B) centered with respect to the center 

line of the column or pedestal and having a width equal to the length of the short 

side of the footing. The remainder of the reinforcement shall be uniformly distributed 

in the outer portions of the footing. 

Reinforcement in hand-width (B)_2 

Total reinforcement in short direction (B -f- 1) 

In formula (30), S is the ratio of the long side to the short side of the footing. 

1206. Shear and Bond, (a) The critical section for shear to be used as a measure 

of diagonal tension shall be assumed as a vertical section obtained by passing a 

series of vertical planes through the footing, each of which is parallel to a correspond¬ 

ing face of the column, pedestal, or wall and located a distance therefrom equal to 

the depth d for footings on soil, and one-half the depth d for footings on piles. 

(6) Each face of the critical section as defined in Section 1206(a) shall be considered 

as resisting an external shear equal to the load on an area bounded by said face of 

the critical section for shear, two diagonal lines drawn from the column or pedestal 

corners and making 45-degree angles with the principal axes of the footing, and that 

portion of the corresponding edge or edges of the footing intercepted between the 

two diagonals. 

(c) Critical sections for bond shall be assumed at the same planes as those pre¬ 

scribed for bending moment in Section 1204(6); also at all other vertical planes 

where changes of section or of reinforcement occur. 

(d) Computations for shear to be used as a measure of bond shall be based on the 

same section and loading as prescribed for bending moment in Section 1204(a). 

(c) The total tensile reinforcement at any section shall provide a bond resistance 

at least equal to the bond requirement as computed from the following percentages 

of the external shear at the section: • 

1. In one-way reinforced footings, 100 per cent. 

2. In two-way reinforced footings, 86 per cent. 
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(/) In <3omputing the external shear on any section through a footing supported 

on piles, the entire reaction from any pile whose center is located six inches or more 

outside the section shall be assumed as producing shear on the section; the reaction 

from any pile whose center is located six inches or more inside the section shall be 

assumed as producing no shear on the section. For intermediate positions of the pile 

center, the portion of the pile reaction to be assumed as producing shear on the section 

shall be based on straight-line interpolation between full value at six inches outside 

the section and zero value at six inches inside the section. 

(g) For allowable shearing stresses, see Sections 305 and 808. 

(h) For allowable bond stresses, see Sections 305 and 901 to 905. 

1206. Transfer of Stress at Base of Column, (a) The strass in the longitudinal 

reinforcement of a column or pedestal shall be transferred to its supporting pedestal 

or footing either by extending the longitudinal bars into the supporting member, 

or by dowels. 

(h) In case the transfer of stress in the reinforcement is accomplished by extension 

of the longitudinal bars, they shall extend into the supporting member the distance 

required to transfer to the concrete, by allowable bond stress, their full working value. 

(c) In cases where dowels are used, their total sectional area shall be not less than 

the sectional area of the longitudinal reinforcement in the member from which the 

stress is being transferred. In no case shall the number of dowels per member be 

less than four and the diameter of the dowels shall not exceed the diameter of the 

colunrn bars by more than one-eighth inch. 

(d) Dowels shall extend up into the column or pedestal a distance at least equal 

to that required for lap of longitudinal column bars (see Section 1103) and down into 

the supporting pedestal or footing the distance required to transfer to the concrete, 

by allowable bond stress, the full working value of the dowel. 

(e) The compressive stress in the concrete at the base of a column or pedestal 

shall be considered as being transferred by bearing to the top of the supporting pedes¬ 

tal or footing. The unit compressive stress on the loaded area shall not exceed the 

bearing stress allowable for the quality of concrete in the supporting member as 

limited by the ratio of the loaded area to the supporting area. 

(/) For allowable bearing stresses see Table 305(a), Section 305. 

(g) In sloped or stepped footings, the supporting area for bearing may be taken 

as the top horizontal surface of the footing, or assumed as the area of the lower base 

of the largest frustum of a pyramid or cone contained wholly within the footing and 

having for its upper base the area actually loaded, and having side slopes of one verti¬ 

cal to two horizontal. 

1207. Pedestals and Footings (Plain Concrete), (a) The allowable compressive 

unit stress on the gross area of a concentrically loaded pedestal shall not exceed 0.25/'<.. 

Where this stress is exceeded, reinforcement shall be provided and the member 

designed as a reinforced concrete column. 

(6) The depth and width of a pedestal or footing of plain concrete shall be such 

that the tension in the concrete shall not exceed .03/c, and the average shearing stress 

shall not exceed .02/'o taken on sections as prescribed in Sections 1204 and 1206 for 

reinforced concrete footings. 

1208. Footings Supporting Round Columns, (a) In computing the stresses in 

footings which support a round or octagonal concrete column or pedestal, the 

of the column or pedestal shall be taken as the side of a square having an area equal 

to the area enclosed within the perimeter of the column or pedestal. 
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1209. Minimum Kdg^e-Thickness. (a) In reinforced concrete footings, the thick¬ 

ness above the reinforcement at the edge shall be not less than six inches for footings 

on soil, nor less than twelve inches for footings on piles. 

(6) In plain concrete footings, the thickness at the edge shall be not less than eight 

inches for footings on soil, nor less than fourteen inches above the tops of the piles 

for footings on piles. 

FIRE PROTECTION 

Exceipt from 1928 (A.C.L) Joint Standard Building Code 

506. (h) In fire-resistive construction, metal reinforcement shall be protected by 

not less than 1 in. of concrete in slabs and walls, and not less than in. in beams, 

girders, and columns, provided coarse aggregate is used, which is free from disrup¬ 

tive action under high temperatures, as, for example, limestone or trap rock; when 

impracticable to obtain aggregate of this grade, the protective covering shall be 

^ in. thicker and shall be reinforced with metal mesh having openings not exceeding 

3 in. placed 1 in. from the finished surface. In similar structures where the fire hazard 

is limited, the metal reinforcement sliall not be placed nearer the exposed surface 

than f in. in slabs and walls, or 1 in. in beams, girders, and columns. 

FLAT SLAB 

Excerpt from 1928 (A.C.L) Joint Standard Building Code 

Placing Steel. Lengths and Bends to Satisfy Bond and Anchorage^ if Panels Are 

Approximately the Same Size. 

1007. Point of Inflection, (a) In the middle strip the point of inflection for slabs 

without dropped panels shall be assumed at a line 0.331 distant from the center of 

the span and for slabs with dropped panels 0.31 distant from the center of the span. 

(6) In the column strip, the point of inflection for slabs without dropped panels 

shall be at a line 0.33(/ — c) distant from the center of the panel and 0.3{l — c) for 

slabs with dropped panels. 

1008. Arrangement of Reinforcement at Column Heads—^Two- and Four-Way 

Systems, (a) In both two- and four-way systems, provision shall be made for 

securing the reinforcement in place so as to resist properly not only the critical mo¬ 

ments, but also the moments at intermediate sections. The full area of steel required 

for negative moment at the column head shall be continued in the same plane close 

to the upper surface of the slab to the edge of the dropped panel, but in no case less 

than a distance 0.21 from the center line of column. Lapped splices shall not be 

permitted at or near regions of maximum stress except as described in Section 605. 

1009. Arrangement of Reinforcement—^Two-Way System, (a) For column strips 

at least four-tenths of the area of steel required at the section for positive moment 

in the column strip shall be of such length and so placed as to reinforce the negative 

moment section at the two adjacent column heads. These bars, and any other bars 

for negative reinforcement shall extend into the adjacent panel to a point at least 

0.052 beyond the point of inflection. Not less than one-third of the bars used for 

positiTe reinforcement in the column strip shall extend into the dropped pane! at 

least twenty diameters of the bar, but not less than 12 in. or in case no dropped 

panel is us^, shall extend to within 0.1252 of the center line of the columns or th^ 
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supports. The balance of the bars for positive reinforcement in the column strip 

shall extend at least 0.33^ on either side of the center line of panel. 

(6) For the middle strip at least one-half of the bars for positive moment shall be 

bent up and extend over the main bands at both sides of the panel to a point at least 

0.252 beyond the center line of columns. The location of the bends shall be such that 

for a distance 0.15Z for slabs with dropped panels (or 0.1252 for slabs without dropped 

panels), on each side of the center line of columns, the full reinforcement required 

for negative moment will be provided in the top face of the slab. The full reinforce¬ 

ment for positive moment in the middle strip shall extend in the bottom face of the 

slab to a point at least 0.32 on either side of the panel center line, and at least 50 per 

cent of it shall extend to points 0.3252 on either side of the panel center line for slabs 

with dropped panels, or 0.352 for slabs without dropped panels. 

1010. Arrangement of Reinforcement—Four-Way System, (a) For direct bands, 

all provisions governing the placing of steel in column strips in two-way systems 

apply as well to the direct bands in four-way systems. 

(6) For diagonal bands, at least four-tenths of the area of steel required at the 

section for positive moment shall be of such length and so placed as to reinforce the 

negative moment section at tlie two diagonally opposite column heads. These bars 

and any other bars for negative reinforcement shall extend into the adjoining panel 

to points at least 0.42 beyond a line drawn through the column center perpendicular 

to the direction of the band. The straight bars for positive moment in the diagonal 

bands shall not be shorter than the longer straight bars in the direct bands. 

(c) For negative moment in the middle strip, the required steel shall extend not 

less than 0.252 on either side of the colunrn center line. 

TWO-WAY SLABS 

The following articles from the “Recommended Practice and Standard 
Specifications for Concrete and Reinforced Concrete^^ (Joint Committee) 
have been reprinted with the kind permission of the American Society 
of Civil Engineers. These articles cover design recommendations for 
two-way slabs with supports on four sides. 

TWO-WAY SLABS WITH SUPPORTS ON FOUR SIDES 

809. General, (a) These recommendations are intended to apply to slabs (solid 

or ribbed), isolated or continuous, supported on all four sides by walls or beams, 

in either case built monolithically with the slabs. The recommended coefficients, 

as in the case of the design provisions for flat slabs, are based partly on analysis and 

’partly on test data.^® The analysis indicates that for square panels the momenta. 

^®In general, the coefficients and methods given in these recommendations are^ 

based upon the coefficients proposed by Dr. H. M. Westergaard (Formulas for ther 

Design of Rectangular Floor Slabs and Supporting Girders, p. 26, Proceedings of 

the American Concrete Institvie for 1926). Some modifications of these coefficients 

h8ve been made and the series extended to include cases not covered by Dr. Wester¬ 

gaard. In making these modifications and extensions full consideration has been 

given to the resulte of available test data. 
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may be substantially less than those determined on the basis of independent pris¬ 

matic beam elements. Similar decrease is considered to hold for other than square 

panels but at reducing percentages until a ratio of short to long span of 0.5 is reached. 

For this and all lesser ratios the entire distributed load (except that in the column 

strips) is assumed to be carried in the short direction of the panel. Available test 

data indicate that these assumptions are justified. 

(b) Available data also indicate that, when two-way slabs are cast monolithically 

with supporting beams, the distribution and the numerical values for bending mo¬ 

ments in slabs with one or more discontinuous edges do not differ widely from those 

of interior panels. However, these data are rather limited, but the moment coeffici¬ 

ents recommended in Table 5 for the slabs with discontinuous edges are conservative 

and in general agreement with accepted theoretical considerations and general 

practice. 

(c) In the special case of slabs discontinuous at 4 edges (isolated panels, case 5, 

Table 5), the coefficients may be assumed to apply also to slabs which are built into 

masonry walls, provided the weight of masonry above the slab is sufficient to restrain 

the slab properly at the edges. The average parapet wall is probably lacking in this 

respect. 

810. Limitations and Notations, (a) The recommended moment coefficients in 

Table 5, Sec. 811, are intended to ai)ply to panels fully loaded with a uniformly dis¬ 

tributed load. For values of m intermediate between those shown in TablO 5, inter¬ 

polated values of the moment coefficients may be used. For values of m less than 

0.5 the coefficients given for this ratio should be used. 

(6) Panels are considered as being divided into middle strips and column strips 

as in flat slabs. [See Sec. 834(a)]. For panels in which the ratio m is less than 0.5 

the middle strip in the short direction of the panel should have a width equal to the 

difference between the long and short spans, the remaining area representing the 

two column strips. 

(c) Notation. Span lengths of panels should be taken as the center-to-center dis¬ 

tance between supports or as the clear span plus twice the thickness of the slabs, 

whichever value is the smaller. 

S = short span as defined above 

. short span 
m = ratio ,- 

long span 

w — load per unit area 

(d) Principal Design Sections. The critical sections for moment calculations are 

referred to as principal design sections and are located as follows: 

For negative moment, along the edges of the panel at the 

faces of the supporting beams. 

For positive moment, along the center lines of the panels. 

'811. Bending Moment Coefficients, (a) Middle Strips. In Table 5 are given the 

bending moment coefficients for the middle strips for both short and long spans for 

varying values of the ratio m of short to long span. These coefficients, when multi¬ 

plied by wS^ gite the bending moment per unit width of slab. The basis of this table 

is a maximum negative moment of .033tt;/S^ per unit width in the middle strip for 

.square Interior panels* The coefficients for other than square panels and for panels 
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Table 5. Bending Moment Coefficients for Rectangular Panels Supported 

ON Four Sides and Built Monolithically with Supports 

(Coefficients are for moments in middle strips.) 

Short Span 

Moments 
Values of m 

Long 

Span 
All 

1.0 0.9 0.8 0.7 0.6 

less 

Values 
of m 

Case 1—Interior Panels 

Negative Moment at 

Continuous edge i .033 .040 .048 .055 .063 .083 .033 
Discontinuous edge 

Positive Moment at Midspan .025 .030 .036 .041 .047 .062 .025 

Case 2—One Edge Discontinuous 

Negative Moment at 

Continuous edge .041 .048 .055 .062 .069 .085 .041 

Discontinuous edge .021 .024 .027 .031 .035 .042 .021 

Positive Moment at Midspan .031 .036 .041 .047 .052 .064 .031 

Case S—Two Edges Discontinuous 

Negative Moment at 

Continuous edge .049 .057 .064 .071 .078 .090 .049 
Discontinuous edge .025 .028 .032 .036 .039 .045 .025 

Positive Moment at Midspan .037 .043 .048 .054 .059 .068 .037 

Case 4—Three Edges Discontinuous 

Negative Moment at m Continuous edge vm .066 .074 .082 

Discontinuous edge 1^ .037 .041 KtfBl mm 
Positive Moment at Midspan H .056 .068 .074 wm 

Case 6—Four Edges Discontinuous 

Negative Moment at 

Continuous edge 

Discontinuous edge .038 .043 .033 

Positive Moment at Midspan .050 .057 .064 .080 .083 .050 

These coefficients, when multiplied by give the moment per foot of width* 

w » load per sq. ft.; iS » short span as defined in Sec. 810(c). 

Note that is the multiplier for both short and long span moments. 
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with one or more edges discontinuous are based on the following modifications of 

this basic moment for the square interior panel: 

1. Bending moments in the short span increase as the ratio m decreases. 

2. Bending moments in the short span increase successively with the introduction 

of one or more discontinuous edges, the increase being independent of the position 

of the discontinuous edges. 

3. Bending moments for the long span for all values of m are equal to the bending 

moments in a square panel having sides equal to the short span. 

4. Negative moments at discontinuous edges are taken as equal to | of the cor¬ 

responding moment at the continuous edge. 

5. Positive moments at the center are taken as f of the negative moment at the 

continuous edge. 

(6) Column Strips, For moments in the column strips, coefiicients two-thirds of 

those given in Table 5 for the corresponding moments in the middle strip should be 

used. In determining the spacing of the reinforcement for the column strip, the 

moment at any section may be assumed to vary from a maximum at the edge of the 

middle strip to a minimum at the edge of the panel, but the average should be that 

computed from the coefficient as given herein. 

(c) Comer Reinforcement, Experience and theoretical considerations have shown 

the need for reinforcement at exterior corners to prevent cracks in diagonal directions. 

The effective amount of such reinforcement per foot of width should be equal to that 

for the positive moment in the middle strip. This is required in both the top and 

bottom face of the slab. By the effective amount of the steel is meant the normal 

area multiplied by the sine of the angle which the bar makes with the critical sec¬ 

tion. In the top of the slab the critical section is perpendicular to the diagonal; in 

the bottom of the slab it is parallel to the diagonal. 

812. Distribution of Unequal Negative Moments at Supports, (a) In appl3dng 

the moment coefficients of Table 5 to adjacent panels of varying dimensions and 

unequal loading, the negative moments on either side of a supporting beam may differ 

materially. Under these conditions some modification of the moments should be 

made, based on the relative rigidity of the slabs and the resistance offered by the 

support. For this purpose the assumption that the supporting beams offer a restraint 

equivalent to the average of the stiffness factors of the adjacent slabs may be used 

in a manner similar to that given in Sec. 808(6) for beams framing into girders. 

On this basis two-thirds of the unbalanced negative moment should be distributed 

to the two spans in proportion to their respective stiffness factors. 

(6) Where conditions are such as to require modification of the support moments, 

as given in (a) above, the corresponding midspan moments may be obtained by the 

procedure ordinarily followed for continuous beams. For this purpose, the unad¬ 

justed negative moments obtained from Table 5, considered as equivalent to fixed 

end moments, may be multiplied by l| to obtain the simple span moments. The 

midspan moment then would be equal to the average adjusted end moments less 

11 times the unadjusted end moments. The coefficients in Table 5 for positive mo¬ 

ments at midspan are sufficiently conservative to cover ordinary cases. However, 
where large adjustment of the support moments is required, the midspan moments 

should be investigated. 

813. Shear in Slabs. The shearing stresses in the slab should be computed on 

the assumption that the load is distributed to the supporting beams in accordance 

with Sec. S15. 
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S14. Minimum Slab Thickness. The slab thickness should not be less than 4 

inches, nor less than the value computed by the following formula: 

t = 
Nl 1 3/2500 

loj 72 \ f'e 

Where t *= Slab thickness in inches. 

S (in inches) and m as in Sec. 810(c). 

N = Total length in inches of slab periphery which is continuous with 
adjacent slabs. 

816. Loads and Bending Moments in Supporting Beams, (a) Distrihutum of 

Load, The loads on the supporting beams for a two-way rectangular panel may be 

assumed as the uniformly distributed load within the tributary areas of the panel 
bounded by the intersection of 45® lines from the comers with the median line of 
the panel parallel to the long side. 

(5) Total Load and Shear. On the basis of the load distribution in {a) above, the 
total loads on the short and long span beams due to one loaded panel are given by 
the following formulas, respectively. 

Ws 
wS^ 

4 

Wl 

The end shears may be obtained from the above loads by the usual modifications 

of the reactions for any difference in end moments. 

(c) Bending Moments. The bending moments may be obtained for the load dis¬ 

tribution assumed by the methods of mechanics appro])riate to the conditions of 
support, or they may be determined approximately by transforming the load on 

the beams to equivalent uniform load per lineal foot of beam as follows: 

For the short span, 

For the long span. 

3 

wS r3 — 

TL 2 J 

BUILDING CODE, N. E. BUILDING OFFICIALS CONFERENCE 

Reduction of Live Loads. (Section 2310) 

Tributary 

Floor Area 

or Flat 2-Way 
Slab Area 

sq. ft. 

Reduction Allowed, % 

In Office 

Buildings and 
Manufacturing 

Buildings 

In Public 

Garages 

In Gymnasiums, 

Wholesale Stores, 
Storage Build¬ 

ings and 

Assembly Halls 

In Other 

Types 

100 5 0 10 

200 10 0 15 

300 15 25 0 25 
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The following reductions shall be permitted in all buildings except storage build¬ 
ings, wholesale stores, public garages and office and manufacturing buildings for all 
columns, girders, trusses, walls, piers, and foundations: 

Carrying one floor Same reductions as tabulated above 
Carrying two floors 25% reduction 
Carrying three floors 40% reduction 
Carrying four floors 50% reduction 
Carrying five floors 65% reduction 

Carrying six floors or more 60% reduction 

For office buildings and manufacturing buildings 

Carrying one floor Same reductions as tabulated above 
Carrying two floors 10% reduction 
Carrying three floors 20% reduction 
Carrying four floors 30% reduction 
Carrying five floors 40% reduction 
Carrying six floors or more 50% reduction 

For warehouses, storage buildings, and wholesale stores 

Carrying one floor No reduction 

Carrying two floors 6% reduction 
Carrying three floors 10% reduction 
Carrying four floors 15% reduction 

Carrying five floors 20% reduction 

For public garages 

Carrying one floor Same reductions as tabulated above 
Carrying two floors or more 25% reduction 

No reduction shall be allowed in the roof load . . . on any portion of any structure. 
These reductions shall not be made if the member carries more than one floor 

and has its live load reduced according to the table above. 
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Table 1. Area of Steel per Foot of Width 

Diameter of Bar 

Round Rods Square Rods 

Spacing 

in. 
iin. fin. 1 in. I in. fin. 5 in. 1 in. 2 in. 1 in. m 

2 0.29 0.66 1.18 1.84 2.65 3.61 4.71 1.50 6.00 9.37 
0.23 0.53 0.94 1.47 2.12 2.89 3.77 1.20 7.50 

3 0.20 0.44 0.79 1.23 1.77 2.41 3.14 1.00 4.00 6.24 

0.17 0.38 0.67 1.05 1.51 2.06 2.69 0.86 3.43 4.34 5.36 

4 0.15 0.33 0.59 0.92 1.33 1.80 2.36 0.75 3.00 4.68 

0,13 0.29 0.52 0.82 1.18 1.60 2.09 0.67 2.67 3.37 4.16 

5 0.12 0.26 0.47 0.74 1.06 1.44 1.88 0.60 2.40 3.75 

5} 0.11 0.24 0.43 0.67 0.96 1.31 1.71 0.55 2.18 2.76 3.41 

6 0.10 0.22 0.39 0.61 0.88 1 1.20 1.57 0.50 2.00 2.53 3.12 

6| 0.09 0.20 0.36 0.57 0.82 ll.ll 1.45 0.46 1.85 2.33 2.88 
7 0.08 0.19 0.34 0.53 0.76 1.03 1.35 0.43 1.72 2.17 2.68 

0.08 0.18 0.31 0.49 0.71 0.96 1.26 0.40 1.60 2.50 

8 0.07 0.17 0.29 0.46 0.66 0.90 1.18 0.38 1.50 1.90 2.34 

Si 0.07 0.16 0.28 0.43 0.62 0.85 1.11 0.35 1.41 1.78 2.20 
9 0.07 0.15 0.26 0.41 0.59 0.80 1.05 0.33 1.33 1.69 2.08 

0.06 0.14 0.25 0.39 0.56 0.76 0.99 0.32 1.26 1.60 1.97 

10 0.06 0.13 0.24 0.37 0.53 0.72 0.94 0.30 1.20 1.52 1.87 

11 0,05 0.12 0,21 0.33 0.48 0.66 0.86 0.27 1.09 1.38 1.70 

12 0.05 0.11 0.19 0.31 0.44 0.60 0.78 0.25 1.00 1.27 1.56 

Cross-Sectional Area of Bars 

Number of Bars 

1 2 3 4 5 6 7 8 

Round 
in. 

1 0.05 

j 

0.10 0.15 0.20 0.25 0.29 0.34 0.39 

0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 

i 0.39 0.59 0.78 0.98 1.18 1.37 1.57 

I 0.61 0.92 1.23 1.53 1.84 2.15 2.45 

1 0.88 1.33 1.77 2.21 2.65 3.09 3.54 

i 0.60 1.20 1.80 2.41 3.01 3.61 4.21 4.81 

1 0.78 1.57 2.36 3.14 3.93 4.71 5.50 6.28 

Square 
in. 

i 0.25 0.50 0.75 1,00 1.25 1.50 1.75 2.00 
1 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 
li 1.27 2.53 3.80 5.06 6.33 7.59 8.86 10.13 

U 1.56 3.12 4.69 6.25 7.81 9.38 10.95 12.60 
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Table 1. Continued 

Perimeter of Bars 

Number of Bars 

1 2 3 4 5 6 ■ 8 

Round 
in. 

i 0.79 1.57 2.36 3.14 3.93 4.71 5.50 6.28 

i 1.18 2.36 3.53 4.71 5.89 7.07 8.25 9.42 
1 
2 1.57 3.14 4.72 6,28 7.85 9.42 11.00 12.67 

f 1.96 3.93 5.89 7.85 9.82 11.78 13.74 15.71 

1 2.36 4.71 7.06 9.42 11.78 14.13 16.49 18.85 

1 2.75 5.50 8.25 11.00 13.74 16.49 19.24 21.99 

1 3.14 6.28 9.42 12.57 15.71 18.86 22.00 25.13 

Square 

in. 

h 2 4 6 8 12 14 16 
1 4 8 12 16 20 24 28 32 

4.6 9 13.5 18 22.5 27 31.5 36 

5 10 15 20 25 30 35 40 

Weight of Bars 

Round 
in. 

\ 0.17 0.33 0.50 0.67 0.83 1.00 1.17 1.34 

1 0.38 0.75 1.13 1.50 1.88 2.26 2,63 3.01 

\ 0.67 1.34 2.01 2.67 3.34 4.01 4.68 5.35 

I 1.04 2.09 3.13 4.17 5.22 6.26 i 7.30 8.34 

i 1.60 3.00 4.51 6.01 7.51 9.01 10.51 12.02 

1 2.04 4.09 6.13 8.18 10.22 12.26 14.31 16.35 

1 2.67 5.34 8.01 10.68 13.35 16.02 18.69 21.36 
Square 

in. 

i 0.85 1.70 2.55 3.40 4.25 5.10 5.95 6.80 
1 3.40 6.80 10.20 13.60 17.00 20.40 23.80 27.20 

li 4.30 8.61 12.91 17.21 21.52 25.82 30.12 34.42 

li 5.31 10.62 15.94 21.25 26.56 31.87 37.18 42.50 
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Table 2. Deflection Coefficients fob Beams 
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Diagiu^ 2. B«ctangulax beams. Fiber stress solutions. 
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Srm Ratio^^ 

Diaqbam 3. Rectangular beams. Fiber stress solutions. 
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Ducouif 6. Eecta&gular beams with compression steel Fiber stress solutions 
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Diao&am 11« Ecoentrically loaded columns. Rectangular section. Case L 
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Diagram 13. Eccentrically loaded columns. Rectangular section. Case I« 
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Di40»am 14. Eccentrically loaded columns. Rectangular section. Case I. 
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Diaobau 15. EcoentricaHy loaded columns. Rectangular section. Case 1. 
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JOiAQBAM 17. Eccentrically loaded coltmms. Rectangular aectaon. Caae XL 
(Af^Tumeanre and Maurer.) 
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Dsa<xbjm is. Ecisentrically loaded oolumns. J^f6oiaiigular section. Case II. 
(After Tumeaure and ^uWar.) 
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Diaobam 20. Eccentrically loaded columns. Bectangular section. Case II. 
(After Tumeaure and Maurer.) 
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Dxaqrau 21. Valves of Columns with rectangular section. 
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Diaqium 24. Eccentrically loaded columns. Circular section. Case II. 
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Aggregate, 4 

American Concrete Institute Code, 465, 
494 

Anchorage, 47, 68 

Angle beams, 364 
Arches, 432 

abutments, 461 

approximate positions for live load, 
456 

axis, 442 

dead-load analysis, 445, 447 
influence lines, 446, 450 
least-work solution, 434 

live-load stresses, 457 

plastic flow, 440, 460 

shrinkage stresses, 439, 460 

temperature stresses, 438, 458 

thickness, 441 

Bars, see Steel 

Beams, anchorage, 47, 68 
angle section, 364 
balcony, 425 

bending moment coefficients, 25 

bond, 45, 67, 83, 107 
bow, 423 

compression steel, 75, 79, 89, 135, 147 
continuous, 24, 369, 397 

cracks in, 50 
curved, 420 

deflection, 161, 503 

diagonal tension, 60, 65, 70, 83, 94, 
137, 142, 150 

economical, 61, 74, 109, 364 

fiber stresses, 15, 75, 100, 103 
forms, 112, 359 

plastic flow, 201, 215 

plastic theory, 19, 37, 73, 81, 98, 106, 

153 

prestressed, 211 

rectangtiiar section, 13, 61 

teduction ol live load, 26, 499 
idiear etrases, 42,83,107 

Beams (Continued) 
shrinkage, 189 

stiffness, 26, 64, 84, 414 

tee, 100, 103, 106, 147 

torsion stresses, 179 
transformed section, 18, 32, 36, 167, 

258 
wall, 365 

working stresses, 26, 44, 49, 465 
Bearing pressure on soils, 302 

Bending and direct stress, 264, 277, 289 
Bond, beams, 45, 67, 83, 107 

comparison with anchorage, 47 
compression steel, 83 

footings, 307, 311, 314, 319 
formulae, 45 
stresses, 45, 83, 107 

working stresses, 49, 466 

Bridge, rigid frame, 461 

Caissons, 328 

Cantilever retaining wall, 336 
Columns, axial loads, 257, 290, 297 

bending stresses, 264, 277, 289 
capital, 232 

circular section, 277 
combination, 300 

composite, 299 
eccentric loads, 264, 277, 289 

economical design, 259, 261, 277, 299 

excess floor space, 263 
exterior, 271 

formulae, 257, 264, 277, 289, 297 

height, 259 

interior, 259, 290, 297 
long, 259 

moment of inertia, 278 
moments, 271, 274, 277, 287 

plastic flow, 198, 269 
plastic theory, 289 
rectangular section, 264 

reduction of live bads, 500 
shrinkage stresses, 186, 269 

529 
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Columns (Continued) 

spiral steeli 297 
tied, 259 

working stresses, 270, 285 

Combined footings, 315 
Concentrated loads on beams, 374 

Concrete, coefficient of expansion, 202, 
458 

compressive strength, 4 
elastic properties, 8 
fireproofing, 468, 494 

modulus of elasticity, 9, 162 

modulus of resistance, 9, 215 
plastic flow, 7, 194 
shearing strength, 6, 44 

shrinkage, 7, 185 
stress-strain relations, 7, 20, 162 

tensile strength, 6, 187 

torsional strength, 174 

water-cement ratio, 5 

weight, 27 

Connected footings, 316, 323 
Continuous beams, 24, 369, 397 

coefficients, 25 

moment of inertia, 384 
three-moment equation, 371 

Coulomb’s earth pressure, 331 

Dampproofing, 307, 468 

Deflection, due to shrinkage, 191 
of beams, 161, 503 

of columns, 388 

Diagonal tension, beams, 50, 55, 94, 137, 

142, 150 

flat slab, 242, 248 
footings, 309, 314, 319, 326 

Diagrams, columns, 514-527 

compression steel, 509-511 
rectangular beams, 504-507 

tee beams, 512-513 
Direct stress, 11 
Direct stress and bending, 11 
Dowels, 312 

Drop panel, 233, 241 

Earth pressure, bearing, 302 

lateral, 331 
Economicid proportions, beams, 61, 74, 

109, 125, 364 
columns, 259, 261, 277, 299 

Economical proportions (ConJtinued) 

footings, 306 
retaining walls, 339, 353 

Exterior columns, 271 

Fiber stress, 13, 20, 75, 81, 100 
working, 466 

Fireproofing, 65, 468, 494 
Flat slabs, column capital, 232 

diagonal tension, 242, 248 

drop panel, 233, 241 
four-way steel, 248 
maximum moments, 237, 241, 248 

rectangular, 239 
shear stresses, 242 

square, 235 
statical analysis, 235 

thickness, 240, 248 

two-way steel, 240 

unequal spans, 407 

Floor slabs, see Slabs 
Floors, live-load reduction, 499 

load distribution, 118 

Flow, see Plastic flow 

Footings, bond, 307, 311, 314, 319 

caissons, 328 
combined, 315, 322, 323, 328 

costs, 306 

diagonal tension, 309, 314, 319, 326 
moments, 309, 317, 324 

pedestal, 308, 312 

pile, 304, 314 

simple, 309, 312 
wall, 304 

Forms, 355 
beam, 112, 359 

column, 361 

slab, 359 
waU, 357 

Holes, 367 

Hooked bars, 48, 135 

Inflection, point of, 31, 66, 90, 124, 133, 
140, 145, 370 

Influence lines, 446, 450 
Interior columns, 259, 290, 297 

Joint Committee, 57, 79, 225, 495 
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Least work, 434 

Load, distribution, 118 

live variation, 26, 876, 499 

moving, 381, 445 

on soil, 303 

Modulus of elasticity, 9, 162 

Modulus of resistance, 9, 215 
Moisture protection, 307, 468 

Moment coeflScients, 25 

Moment distribution, 394, 419 

Moment of inertia, for deflection, 163 

rigid frames, 384 
transformed area, 18, 33, 36, 278 

variable, 407 

Nomenclature, 14, 75 

Pedestals, 308, 312 

Piles, 304, 314 
Pipes, prestressed, 205 

Plastic flow, 7, 185, 194 

arches, 440, 460 

beams, 201, 215 

columns, 198, 269 

pipes, 205 

tanks, 208 
Plastic theory, beams, 19, 37, 73, 81, 98, 

106, 153 

columns, 289 
Prestress, 205 

Rankine^s earth pressure, 331 
Rectangular beam section, 13, 61, 63, 75, 

83 
'Rectangular column section, 264 

Reinforced concrete, advantages of, 2 
dampproofing, 307, 468 

fireproofing, 468, 494 

Reinforcement, see Steel 
Retaining walls, cantilever, 335 

costs, 339, 353 

counterfort, 343 
earth pressure, 331 

gravity, 333 
Rigid frame analysis, 384, 412, 434 

Rigid frame bridge, 461 

Shear stresses, beams, 42, 83,107 
t(»sional, 174 
working, 466 

Shrinkage, 7, 185 
arches, 439, 460 
beams, 189 

columns, 186, 269 
pipes, 207 

tanks, 209 
Slabs, flat, 232 

joist or ribbed, 155 
one-way, 24, 27, 122, 131, 168 

two-way, 223 

Slope deflection, 384 

Soil pressure, see Earth pressure 
Stairways, 367 

Statically indeterminate frames, 384, 
394, 407, 412, 432 

Steel, areas, 501 

arrangement, 30, 53, 69, 90, 136 
bent, 30, 60, 136, 142, 149 

coefficient of expansion, 202 

compression, 75, 89, 135, 147 

modulus of elasticity, 20, 469 

perimeters, 502 

sizes, 27, 501 

spiral, 297 

temperature, 31, 472 
transformed area, 18 
weight, 502 

working stresses, 465 
Stiffness, bending, 26, 64, 84, 414 

torsional, 414 

Stirrups, 53, 59, 70, 94 

Stresses, allowable, 26, 44, 49, 178, 270, 
285, 367, 465 

Tables, deflection coefficients, 503 
live-load reduction, 499 

moment coefficients, 25 

steel, 501 

two-way slabs, 497 
Tanks, prestressed, 208 

Tee beams, continuous, 109 
deflection, 171 

economical size, 109 

flange, 107 

formulae, 100, 103, 106 

one-span, 109 

Temperature steel, 31, 472 

Temperature stresses, 201, 438, 458 

Three-moment equation, 371 
Torsion stresses, 174 
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Torsional stiffness, 414 

Transformed area, 18, 32, 36, 167, 258 
Truss bars, 64, 145, 148 

U bars, inverted, 54, 136, 142 

Virtual work, 420 

Wall beams, 365 

Walls, retaining, 331 

Water-cement ratio, 5 
Web reinforcement, see Diagonal ten¬ 

sion 
Weight, concrete, 27 

steel, 111, 502 
Wind loads, 392, 406 

Work, least, 434 

virtual, 420 








