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PREFACE 

This text represents the development of notes during a 
period of fifteen years in a course offered to engineering 
students at Purdue University. 

Though intended primarily for the undergraduate 
student in mechanical engineering, it offers certain 
features that should be of value also to students in other 
departments. For students in civil engineering, the 
chapter on Trusses and Bents should be of use as an 
introduction to the graphical analysis of structures. 
This chapter is designed to be of value also in instruction 
in aeronautical design. To students in machine design, 
the chapters on Cranes and Machines should be helpful. 
The text assumes a general knowledge of statics. 

A special feature, distinguishing this text from other 
works on graphic statics, is the grouping in one volume 
of the three important topics— Trusses and Bents, 
(^ranes, and Machines. Another feature is the liberal 
supply of illustrated examples which have been solved 
in detail and fully explained. Numerous problems 
have been furnished for solution by the student. An¬ 
swers have been given for checking the solutions. 
Instructors preferring problems without answers may 
make changes in the data given. 

The authors wish to express their thanks to R. G. 
Dukes, Dean of the Graduate School and Head of the 
Department of Applied Mechanics at Purdue Uni^'er- 
sity, for permission to use the available material of the 
department and to their colleague, A. P. Poorman, 
Professor of Applied Mechanics at Purdue University, 
for his thorough reading of the manuscript and sugges¬ 
tions as to form and content. 

Purdue University, Seibert Fairman. 

January^ 1932. Chester S. Cut8hali> 
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GRAPHIC STATICS 

CHAPTER I 

INTRODUCTION 

1. Definitions. 

Although a knowledge of statics is presupposed in this 
text, a brief presentation of some of its principles will be 
given in this and the succeeding chapter. 

Force is an action between two bodies that causes, or 
tends to cause, a change in their state of rest or motion. 
A force has magnitude, direction, line of action and 
point of application, all of which must be considered in 
determining its effect upon a body. 

A rigid body is a solid which may be considered as 
undergoing no change in form when subjected to the 
action of forces. Although no body is absolutely with¬ 
out change of form when under the action of forces, 
the amount of this change in many cases is so small 
that it can be neglected with no appreciable error. 

Static equilibrium exists when a body under the action 
of forces is at rest or in uniform motion. 

Statics is that branch of applied mechanics which 
treats of the effects of forces on bodies in equilibrium. 
Such bodies are either at rest or in uniform motion. 

Graphic statics consists of the solution of problems of 
statics by means of accurately constructed geometrical 
figures. The unknown quantities required are obtained 
directly from the figures by scaling lines and angles. 
The methods used are fundamentally simple because 
the magnitude, direction and line of action of a force 
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may be represented by the length, inclination and posi¬ 
tion of a straight line. On this account many problems 
which otherwise would require tedious computations 
become fairly simple when they are solved by the use of 
graphical principles. 

2. Instruments. 

For the proper solution of problems in graphic statics 
the following instruments are necessary: 

1. Drawing board and thumb tacks. 
2. Set of drawing instruments. 
3. T-square. 
4. 45° and 30°-60° triangles (large size). 
5. Engineers scale (1-foot triangular). 
6. Protractor. 
7. Lettering pencil (3H or 4H) . 
8. Hard drawing pencil (5H or 6H). 

3. The Drawing Plate. 

The drawing plate suitable for most of the problems 
in this text is 18 inches by 24 inches. The following 
arrangement of border, title, coordinates, scales, etc., 
is suggested: The plate will be laid out as shown in Fig. 
1. There will be a |-inch border all around the plate. 
The lettering may be vertical or inclined. The pr oblem 
number and title shall consist of j-inch upper case 
letters. All other information on the plate shall consist 
of ^inch (or 0.15 inch) upper case letters and ^inch 
(or 0.10 inch) lower case letters. 

4. Classification of Forces. 

Forces may be classified as distributed forces and con¬ 
centrated forces. A distributed force is one whose place 
of application is an area. A concentrated force is one 
whose place of application is so small that it can be 
considered as a point. 
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When two or more forces form a force system the 
following classification may be used: 

Force Systems 

Coplanar Noncoplanar 

Concurrent Nonconeurrent Cbnciirn'nt NorH‘oncurrent 

Coliiiear Noncolinear Parallel Nonparallel l^irallel Nonparallel 

Coplanar forces lie in one plane; noncoplanar forces 
lie in different planes; concurrent forces intersect in a 

PROBLEM 2 

STRESSES IN A ROOF TRUSS 

Coordinaies: Scales: ^ 
Leff end of iruss: Space Diagram 1-6 
PoinfA: 20''J4" Force Diagram I "=5000* 

Dorfe 
Name 

1. 

point; nonconcurrent forces do not intersect in a 
point; forces are parallel if their lines of action are 
parallel, and nonparallel if their lines of action are not 
parallel; forces are colinear if they have a common line of 
action. 



4 GRAPHIC STATICS 

6. Vector Quantities. 

Quantities which possess both magnitude and direction 
are vector quantities and may be represented by vectors. 
Vectors are lines which have definite lengths, inclinations 
and directions. The length of the vector to some 
convenient scale represents the magnitude of the quan¬ 
tity, the inclination shows its position and an arrowhead 
shows the direction. 

6. Graphical Representation of a Force. 

Since a force has magnitude and direction it may be 
represented by a vector. Figure 2 shows how two 
forces P and Q with their resultant R may be represented. 

To some convenient scale OA represents the magnitude 
of force P, angle 6 shows its inclination with the hori¬ 
zontal and the arrowhead shows its direction. In a 
similar manner, OB represents the magnitude of the 
horizontal force Q and its direction is to the left. The 
line OC shows the resultant R in amount, inclination 
and direction. 

7. Transmissibility of Forces. 

By the principle of transmissibility of forces, the 
external effect of a force upon a rigid body is the same 
for all points of application along its line of action. 
This is a principle of experience and applies to the 
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external effects only. The principle of transmissibility 
of forces is used constantly in graphical solutions. 

8. The Free Body. 

In analyzing problems the free-body method will 
be used. By this method the whole structure or some 
part of it is considered to be separated from its surround¬ 
ing parts. This free body, drawn accurately to some 
convenient scale, constitutes the space diagram. Upon 
this free body are drawn vectors representing all of the 
external loads, and the actions of the removed parts. 
Figure 3 shows a free body taken from a cantilever roof 

truss. The loads of 500 pounds and 1000 pounds 
are the known loads and are shown in their positions 
by vectors. The unknown stresses in the members BD, 
CD and CE are also shown by their vectors. Upon this 
free body the stresses in members BD, CD and CE are 
the only external unknown quantities, and solution 
may be made by applying the principles of statics. 
The stresses in members AB, AC and BC are internal 
forces and require other free bodies for their solution. 

9. Two-force and Three-force Members. 

The two-force member is a rigid body subjected to 
the action of forces at only iwo points. For equilibrium 
the resultant of the forces at one point must be colinear 
with the resultant of those at the other point. There¬ 
fore, such a member carries an axial stress or force of 
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direct tension or direct compression. In solving for 
the stress in a two-force member, the member is con¬ 
sidered to be cut and the joint at one end or the other is 
taken as the free body. Vectors representing the actions 
of the removed parts are drawn axial to the member. 
In Fig. 4, is a two-force member, and in Fig. 3, all 
members are two-force members. 

Three-force members are subjected to the action of 
forces at three or more points. A member of this type is 
subjected to bending and shearing forces, so the stresses 
in such a member are in general not axial. In Fig. 4, 

BC is a three-force member. Three-force members 
cannot be cut as are two-force members, because the 
stress is not axial. The force at B becomes a pin reaction 
and acts on the member at the hinged or fixed point. 
In Fig. 4, this reaction is Rb and its line of action is OB. 

10. Bow’s Notation. 

Bow’s notation will be used in all problems in Trusses 
and Bents (Chap. Ill). This notation furnishes a handy 
means of designating forces. The spaces between forces 
are lettered with lower case letters. Any force is desig¬ 
nated by the letters of the spaces it separates. The clock¬ 
wise direction around the free body will be used in 
determining the order of letters. Figure 5(a) shows a 
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truss so lettered. Reaction Ri is known as force ea, the 
1000-pound load as ab, the 2000-pound load as be (or 
b'c), the reaction as cd and the 4000-pound load as 
bb' when considering the entire truss as the free body 
and as de when considering the middle joint as the free 
body. Upon the pin at the left end of the truss as the 
free body, the forces are known as ea, af and fe. 

11. Space Diagrams and Force Diagrams. 

Figure 5(a) represents w’hat is known as a space 
diagram. It is an accurate drawing of the free body 

A 

e 

K 
fb) Force Diagrorn 

to be used in the solution of a problem. On this diagram 
are shown all of the external forces that act upon the 
free body in their proper positions. 

Figure 5(6) shows the force diagram for the same free 
body. In applying Bow’s notation to the force diagram, 
upper case letters are used: thus vector AB shows the 
amount and direction of the load ab; BC that of be 

and so on. 



CHAPTER II 

FUNDAMENTAL PRINCIPLES 

12. The Parallelogram of Forces. 

Tfw parallelogram law: If two concurrent forces are 

represented by their vectors, both of which are directed 

either toward or away from their point of intersection, the 

diagonal of the completed parallelogram drawn through their 

point of intersection completely represents their resultant. 

In Fig. 6, vectors P and Q represent two forces which 
intersect at 0. By the principle of transmissibility of 
forces, vectors P and Q may be transmitted to the 
positions of OC and OA respectively. The diagonal 
OB of the parallelogram OABC gives the resultant 
R of the two forces P and Q in amount, direction and 
position. 

The single force to hold these two forces in equilibrium 
will be a force equal to R and colinear with it, but oppo¬ 
site in direction. Therefore, if three nonparallel forces 

are in equilibrium they must meet in a common point. 

This is a very important principle in the solution of 
problems by graphics. 

8 
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13. Resolution of a Force into Two Components. 

Any force, such as R in Fig. 6, may be resolved into 
two components by constructing a parallelogram upon 
the force vector as a diagonal. The two sides, such as 
P and Q, that intersect the line of action of force R will 
be the required components. The construction of 
the paralellogram can be made anywhere along the line 
of action of force R. 

14. The Force Triangle. 

If force Q of Fig. 6 is placed along the line BC, as 
shown in Fig. 7 (a),P and Q form two sides of the triangle 
OBC. The third side of the triangle is the resultant R. 

(a) (b) 

Ficj. 7. 

As shown in Fig. 7(fe), if R\ equal, opposite and 
eolinear to resultant Rj is added to the system, the 
resultant is equal to zeio and the system is in equilib¬ 
rium. For this condition the force triangle closes, that 
is, the vectors follow each other in regular order. If 

three forces are in equilibrium their resultant is equal to 

zero and the force triangle or any projection of it must close, 

16. The Force Polygon. 

The principle explained in Art. 14 can be extended 
to include three or more forces. In Fig. 8(a) four force 
vectors, M, N, P and Q, form four sides of an incomplete 
polygon. The closing vector OD as shown gives the 
resultant R. This is obvious from the figure which is 
seen to be made up of a series of force triangles, OAB^ 

OBC and OCD. 
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If force R', equal, opposite and colinear to resultant R, 

is added to the system as shown in Fig. 8(6), the resultant 
is equal to zero and the system is in equilibrium. // 

a system of three or mare forces is in equilibrium their 

resultant is equal to zero and the force polygon or any 

projection of it must close. 

16. Parallel Forces: Composition by Resolution. 

The resultant of two parallel forces may be obtained 
by first resolving one of the forces into two com¬ 

ponents and then recombining the three forces into one 
resultant. 
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In Fig. 9, P and Q, two parallel forces, are to be com¬ 
bined into their resultant R. Force P is resolved into 
components Pi and P2- Component P2 is combined 
by the parallelogram law with force Q to obtain resultant 
Qi. Force Qi is then combined by the same law with 
component Pi to obtain the final resultant R. This 
resultant is completely obtained in amount, direction 
and position. 

The resultant of two parallel forces which act in the 

same direction is equal to the sum of the two forces and 

lies between them, nearer the larger force. 

The resultant of two parallel forces which act in opposite 

directions is equal to the difference of the two forces and 

lies outside of the two forces, on the side of the larger force. 

17. Parallel Forces: Composition by Inverse Proportion. 

Let it be required to find the resultant of the two parallel 
forces P and Q, shown in Fig. 10(a), by inverse proportion. 

Any convenient base line 00 is drawn. This base 
line is not necessarily perpendicular to the forces. 
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Along the line of action of force Q, force P is laid off 

from the base line 00; and on the line of action of force P, 

force Q is laid off in the opposite direction from the same 

base line 00. The line connecting the ends of these two 

scaled vectors will intersect 00 at the point where the 

resultant R acts. R = P + Q. 

Proof: The equation of moments with respect to any 

point on the line of action of R gives Pa = Qb or P/Q = 

b/a. The construction of Fig. l()(a) conforms to this 

equation; that is, the line of the resultant of the two par¬ 

allel forces divides any line drawn between them into 

two segments inversely proportional to the two forces. 

Figure lO(fe) shows the application of this principle 

when the two forces are acting in opposite directions. 

As before, any convenient base line 00 is drawn. Since 

the forces are acting in opposite directions they are both 

laid off either above or below 00, each one on the line 

of action of the other. The line connecting the ends 

intersects the base line 00 at the point where the resultant 

R acts. R = P — Q. The proof for this construction 

is similar to the preceding one and is left as an exercise 

for the student. 

18. Parallel Forces: Composition by the Funicular 
Polygon. 

The resultant of the two forces ab and be in Fig. ll(o) 

is required. 

The force diagram consisting of vectors AB and BC is 

laid off as shown in Fig. 11(6). AB is the scaled value 

of force ab and BC is the scaled value of force be. AC is 

therefore the scaled value of the resultant ac. Any 

convenient pole point 0 is selected and the rays AO, BO 

and CO are drawn. In the space diagram, Fig. ll(o), 

string ao is drawn parallel to ray AO through any con¬ 

venient point on the line of action of force ab. Through 

this point on ab, the string ob is drawn parallel to ray 
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OB until it intersects the line of action of force be, and 

from this intersection string oc is drawn parallel to ray 

OC. The resultant R acts through the point of inter¬ 

section of strings ao and oc. 

(a) Space Diagram Force Diagrorr' 

Fig. n. 

Proof: In Fig. 11(6), AB can be resolved into two com¬ 

ponents, AO and OB in amount. In the space diagram. 

Fig. 11(a), these components are acting in the positions 

ao and bo. The resultant of forces ob and be lies on line 

oc and is parallel to OC. The resultant R of ao and oc, 

and therefore of the original two forces, is AC, acting 

here ao and oc intersect, as explained in 

of a Force into Two Parallel Components. 

Jnverse Proportion.—Let it be required to resolve 

force R of Fig. 12 into two parallel components, one along 

at the point w 

Art^Pd. 

Res Resolution 

Fig. 12. 

P and the other along Q. Any convenient base line 

00 is drawn. Vector R is transferred to the tine of 
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action of either required component, say P, and is laid 

down from the base line 00 as K. The line drawn from 

the end of vector R to the point where the line of action 

of component Q intersects the base line 00, intersects 

vector R at point A and divides it into the required 

components P and Q. 

If a line is drawn through point A parallel to 00, the 

figure becomes the same as Fig. 10(a) and the same 

proportionality of the sides of the triangles is seen to 

be true. 

t 

(a) Space Diagram Cb) Force Diagram 

Fkj. 18. 

Funicular Polygon.—Force ah of Fig. 13(a) is to be 

resolved into two parallel components, one along the 

line ac and the other along the line ch. 

In the force diagram, vector AB is laid off, as shown in 

Fig. 13(6). Vector AB is the scaled value of force ah. 

Any pole point 0 is selected and the rays AO and BO 

drawn. In the space diagram shown in Fig. 13(a), 

string ao is drawn parallel to ray AO through any con¬ 

venient point on the line of action of force ah. Through 

this point string oh is drawn parallel to ray OB. Through 

the points where these strings, ao and oh, intersect their 

respective component lines ac and ch, the string oc is 

drawn. Ray OC in the force diagram is drawn parallel 

to the string oc in the space diagram and divides AB into 
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the two required components AC and CB. The proof 
for this construction is identical with that of Art. 18. 

The force system shown in Figs. 12 and 13 will be in 
equilibrium if forces equal and opposite to P and Q of 
Fig. 12 or ac and cb of Fig. 13 are added to the original 
systems. 

20. Concurrent Forces: Composition by Resolution. 

If two concurrent forces do not meet within the limits 
of the drawing, they can be combined into their resultant 
in the same manner as explained in Art. 16. 

In Fig. 14, the two forces P and Q which are concur¬ 
rent, but not within the limits of the drawing, are to be 
combined into their resultant R. 

Force P is resolved into two components Pi and Pa. 

I 
I 

Component Pi is combined by the parallelogram law 
with force Q to obtain resultant Qi. Q\ is then com¬ 
bined in the same manner with component Pa to obtain 
the final resultant R in amount, direction and line of 
action. In solutions of this type care must be used in 
selecting workable components ot P or Q. 
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21. Nonconcuirent Forces: Composition by the Funicu¬ 
lar Polygon. 

The resultant of two or more nonconcurrent forces is 

obtained readily by the funicular polygon. 

The three forces ah, be and cd, shown in Fig. 15(o), are 

to be combined into their resultant R = ad. 
In the force diagram, vectors AB, BC and CD are laid 

down as shown in Fig. 15(fo). Any pole point 0 is 

selected and the rays AO, BO, CO and DO are drawn. 

A 

On the space diagram, Fig. 15(a), string ao is drawn 

parallel to ray AO intersecting force ah at any convenient 

point on its line of action. Through this point, string 

ho is drawn parallel to ray BO. At the point of inter¬ 

section of string bo with the line of action of force be, 
string eo is drawn parallel to ray CO and, as before, 

at the point of intersection of string eo with the line 

of action of force ed, string do is drawn. Strings ac and 

do intersect at a point on the line of action of the result¬ 

ant force R. The magnitude of the resultant R is 

obtained by scaling vector AD of the force diagram. 

This solution is similar to the one explained in 

Art. 18. 
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22. Resolution of a Force into Two Components, One 
Fixed in Direction. 

Inverse Proportion.—Force E, of Fig. IG is to be 

resolved into two components: P at point N acting in a 
given direction, and Q at point M. 

\ 

Force R is resolved into two components: P2 parallel 

to the line of action of the required component at point 

N) and Pi perpendicular to P2. By the method of 

inverse proportion, as explained in Art. 19, component 

P2 is resolved into two forces P and Q\. Component P 

acts at point N and is one of the required components. 

Component Pi acts at point M and is recombined with 

force Qi to obtain the other required component Q. 
/ 

(a) Space Diagram tb) Force Diagram 

Fig. 17 

Funicular Polygon.—In Fig. 17, force P is to be 

resolved into two components: P acting vertically 

through point N; and Q acting through point M. 
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In the force diagram, vector AB is laid down as shown 

in Fig. 17(6). From any pole point 0 the rays AO and 

BO are drawn. In the space diagram, string ao is 

drawn parallel to ray AO through point M. Htring ho 
is drawn parallel to ray BO at the point of intersection 

of string ao and the line of action of force R. String co 
is drawn from point M to the intersection of string ho 
and the line of action of force P. Ray OC in the force 

diagram, parallel to string co, intersects the vertical 

line through B at point C. Vectors CB and AC are 

then the required components P and Q. 
In a force system of this type equilibrium is established 

if forces equal and opposite to P and Q are added to the 

original force. 

23. Resolution of a Force in Space into Three 
Components. 

It is sometimes required to resolve a force into three 

mutually rectangular components. 

In Fig. 18(a), force F is a force in space and it is 

required to resolve it into three components Fx, Fy and 

Fx. Plane BDEG is passed through force F and the 

F-axis, as shown in Fig. 18(6). The length of BG is 

obtained from the diagonal of the parallelogram BCG A, 
Fig. 18(c). In Fig. 18(6), force F is resolved into two 

components Fy and Fh. In Fig. 18(c), vector Fu is 

resolved into components F* and F,. The required 

components Fx-. Fy and F^ are thus obtained. 
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24. The Four-force System. 

In the solution of many problems in graphic statics 
there occurs a system of four forces in equilibrium all of 
whose directions are known and one of which is known 
in both amount and direction. 

In Fig. 19, the four forces P, Q, M and N are known 
to be in equilibrium. Force Q is known in amount and 
direction, but the others are known in direction only. 
The amounts of the unknown forces are required. The 
forces are assumed to be combined by pairs. Forces 
Q and P intersect at 0^ and forces N and M intersect 
at O'. Since these forces are in equilibrium the resultant 
of one pair must be equal, opposite and colinear with 
the resultant of the other pair. This resultant there¬ 
fore must lie on the closing line 00'. At point 0, the 
resultant R must be the diagonal of the parallelogram 
whose sides are P and Q, from which one of the required 
forces, P, is obtained. Resultant Ri oi M and N must 
be equal and opposite to resultant R oi P and Q. At 
point O', vector Ri is resolved into components in the 
known directions from which the two remaining forces 

M and N are obtained. 



CHAPTER III 

TRUSSES AND BENTS 

26. Trusses and Their Construction. 

Jointed frames such as those illustrated in Fig. 20 
are known as trusses. The trusses considered in this 
chapter consist of straight members all of which may be 
assumed to lie in the same plane. The members of such 
structures may be riveted together or joined by pins 
through their ends. In the following work, all trusses 
will be treated as if pin connected with any single mem¬ 
ber extending only from one joint to the next, but not 
to a third. It w'ill also be assumed that the loads are 
applied to the truss at the joints only. The weight of a 
member may be assumed to be negligible in comparison 

with the other forces acting upon it or, if not negligible, 
to be equally divided between the two ends. 

Under these conditions, forces will act at only two 
points, the ends of the member. Each member thus 
conforms to the definition of a two-force member as given 
in Art. 9 and the stresses are therefore axial; that is, 
simple tension or compression. In the analysis of 
stresses in such a truss, it is permissible to take a section 

20 
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through any of the members since the stresses, thus made 
external to the free body, are known to be axial. 

Many trusses are riveted at the joints and have some 
members extending through several joints. In the strict 
sense, certain members of a truss constructed in this 
way would be three-force members as defined in Art. 9 
and the stresses would not be axial alone, but would 
involve shearing and bending. However, it is customary 
to consider such a truss as consisting of two-force mem¬ 
bers unless the ability to take bending is necessary for 
stability. 

Graphical methods are especially well adapted to the 
determination of reactions and stresses in trusses and 
similar frames. Bow’s notation, as explained in Art. 
10, will be used in the following graphical analyses of 
trusses. 

26. Resultant of Loads. 

The loads on a truss are often combined into their 
resultant before the external reactions are found. The 
various principles and methods required for combining 
forces were explained in Chapter II. 

The roof truss in Fig. 21 is acted upon by vertical 
dead loads and oblique wind loads as shown. The 
resultant of these loads is to be determined. 

Since the vertical roof loads constitute a symmetrical 
system of parallel forces, their resultant Ri will, by 
inspection, be 16,000 pounds acting vertically downward 
through the middle of the truss. By the inverse-pro¬ 
portion method of Art. IT, the 6000-pound load and Ri 
are combined into their resultant — 22,000 pounds. 

By inspection, the resultant R3 of the diagonal wind 
loads is 10,000 pounds, acting perpendicular to the upper 
chord at its middle point. By the parallelogram method 
of Art. 12, the forces and R3 are combined into their 
resultant R4 = 31,500 pounds. Since all loads have now 
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been taken into account, must be the resultant of all 
of the loads. 

27. Reactions. 

If the truss shown in Fig. 21 rests upon supports at 
each end, each of these supports must exert a vertical 
reaction, and one or both must resist the horizontal 
thrust due to the wind load. If both ends are hinged. 

Fig. 21. 

the division of the horizontal thrust between the two 
supports is indeterminate. It is sometimes assumed 
in such a case that the two ends share this force equally, 
but it is safer in design to assume that either end support 
can take all of the force. In order to allow for expansion 
and contraction of the truss, one end is often supported 
on rollers and a bed plate, and the other is hinged. In 
this case, the reaction at the rollers must be vertical 
and the hinged end must take all of the horizontal thrust. 
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If the resultant of all loads has been found, the process 
of determining the reactions consists, briefly, of resolving 
the resultant load into vertical (F) and horizontal {H) 
components. The V component in turn may be resolved 
by the inverse-proportion method of Art. 19 into vertical 

components at the supports, and the H component may 
be divided between the supports or all transferred to one 
support as explained in the preceding paragraph. The 
reactions of the supports are equal and opposite to these 
components of the load. 

The truss of Art. 26 will be used to illustrate the pro¬ 
cedure and is reproduced in Fig. 22. In order to simplify 
the figure, all of the construction for obtaining the result- 



24 GRAPHIC STATICS 

ant i?4 has been omitted. The truss is supported by 

rollers at the left end and a hinge at the right end. The 

spaces have been lettered in accordance with Bow’s 

notation. 

Since the resultant of the reactions must be colinear 

with Ri, it is necessary that the horizontal reaction IJ 
intersect the resultant of the vertical reactions LA and 

JK on the line of action of resultant R^. This inter¬ 

section is point S. Therefore, at point S, the resultant 

Ri is resolved into V and H components by the parallelo¬ 

gram method. These vectors scale 31,200 pounds and 

4500 pounds respectively. By the inverse-proportion 

method of Art. 19, the value of V is laid off on the line 

of action of LA and the diagonal is drawn to the opposite 

corner of the truss thus dividing V into its components 

acting at the ends of the truss. The reactions JK and 

LA are equal and opposite to these components which 

scale 12,800 pounds and 18,400 pounds respectively. 

The entire amount of force H must be supported at the 

hinged end and thus determines the reaction IJ = 4500 

pounds. 

If desired, the vertical and horizontal reactions at the 

hinged end may be combined by the parallelogram 

method into the resultant reaction at the hinge. (This 

is not shown in the diagram.) 

Instead of combining all of the loads into their result¬ 

ant, and from this determining the reactions as was just 

explained, it is also possible to determine separately the 

partial reactions due to each particular load or combina¬ 

tion of loads, and then combine these partial reactions 

algebraically to obtain the total reactions. 

The reactions may also be obtained by the funicular 

or equilibrium polygon which was discussed in Arts. 

18, 19 and 21. Figure 23(o) shows the same truss 

used in the preceding paragraphs, but with a slight 

change of lettering. The line of action of the 6000- 
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pound load has been extended upwards to divide the 
original space e into two parts, e and <?'. The entire 

space below the truss will now be known as k. The 

A 

reaction at the left end, unknown in amount but known 

to be vertical, will be called KA. The reaction at the 

right end, unknown both in amount and direction, will 

be called IK. 
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In the force diagram, Fig. 2S{b), all of the known 

forces are laid off to scale as indicated, AB, BC, . . . 

HI. It is known that reactions IK and KA must 

close the force polygon, but the location of point K 
on the line KA is unknown. Any convenient pole 

point 0 is chosen and the rays OA, OB, etc., are drawn. 

In the space diagram, the funicular polygon is drawn, 

beginning at the hinge at the right end since it is the only 

point known on the reaction IK. The string oi is zero 

length since it is drawn between hi and Ik. The strings 

oh, og, of, oe', oe, od, oc, oh and oa are drawn, in the order 

named, parallel to OH, OG, etc., in the ray diagram. Since 

the system of forces is in equilibrium, the funicularpolygon 

must close. String ok is accordingly drawn as the closing 

side. The ray OK in the force diagram parallel to string 

ok in the funicularpolygon, locates point K and thus deter¬ 

mines the amount of the rejiction KA and the amount and 

direction of reaction IK. KA scales 18,400 pounds. IK 
may be resolved, as indicated, into H and V components 

which scale 4500 pounds and 12,800 pounds respectively. 

By referring to Fig. 22, it will be seen that these results 

check the values given for TA, IJ and JK respectively, as 

determined by the previous methods. 

The funicular-polygon method possesses certain advan¬ 

tages, only a few of which will be discussed here. It will 

be noted that, when this method is used, it is unnecessary 

to determine the resultant of the loads. Also, -in the 

case of trusses having a large number of unsymmetrical 

parallel loads, this method saves much work in com¬ 

bining forces. It is especially useful, also, in the case 

of loads which are nonparallel but so nearly parallel 

that they do not meet within the limits of the drawing. 

28. Internal Stresses: Method of Joints. 

If all of the members meeting at a given joint in a 

truss are two-force members, the joint may be taken as a 



TRUSSES AND BENTS 27 

free body acted upon by a system of concurrent forces. 

If all but two of the forces are known, the two unknown 

forces may be determined. The method based on the 

polygon law, Art. 15, is usually employed. Successive 

joints may be used, in turn, as free bodies until all of 

the stresses have been determined. If more than two 

of the forces intersecting at a given joint are unknown, 

the joint cannot be solved. Some other free body should 

then be selected, as will be discussed later. 

The truss used in the preceding articles will again be 

taken as an example. Figure 24 shows this truss with 

its loads and reactions. The steps employed in the 

determination of the reactions have previously been 

explained and are therefore omitted in the figure. The 

various joints are numbered and, in the discussion 

which follows, will be referred to by their respective 

numbers. 

It will be noted that the solution for the internal 

stresses may be begun at either end of the truss, since 

either of these joints has but two unknown forces acting 

upon it. All other joints have at least three unknown 

forces. Joint 1 which will be used here as the first free 

body is acted upon by five forces, of which three are 
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known and two are unknown. The polygon of these 

forces, Fig. 25, may be laid out in accordance with 

instructions given in connection with Bow^s notation; 

that is, the forces are taken in clockwise order around 

the joint, starting with the first known force which is 

LA, Then AB is added, followed by BC. The ne^xt 

force is CM which is known in direction, so a line is 

drawn through point C parallel to the direction of cm 
in the space diagram, but indefinite in length. Simi¬ 

larly, ML is known in direction and must close the 

polygon at point L. Therefore a line is drawn through 

point L parallel to the direction of ml and indefinite in 

length. The intersection of these lines locates point M 
and determines the values of vectors CM and ML which 

scale 31,500 pounds and 27,000 pounds respectively. 

Fig. 25. 

It should be noted that forces LA, AB and BC are 

known in direction, arrowheads being used in the force 

polygon to indicate these directions. By following 

the direction of these arrows around the remainder of the 

polygon it is seen that force CMy acting down to the 

left, must push on the joint, and the stress is therefore 

compression. Force AfL, acting horizontally to the 

right, must pull on the joint, and therefore the stress 
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is tension. The directions of these vectors must be 

reversed when the adjacent joints are considered as the 

free bodies. 

The direction in which a member acts upon a joint 

may also be determined very quickly and easily in the 

following manner; The letters by which a stress is desig¬ 

nated will be taken in clockwise order around the joint. 

The direction obtained by taking these letters in the 

same order in the force polygon will give the direction 

of the stress action on the joint. For example, in the 

joint just considered, the horizontal member would be 

designated as ML when taking the spaces in clockwise 

order. By taking the letters in the same order in the 

force polygon. Fig. 25, the direction from M to L is 

toward the right. Thus force ML acts to the right 

on this joint and must be tension. This is another 

important feature of Bow’s notation. 

The next joint having only two unknown forces is 

joint 2. The polygon of forces for this joint is con¬ 

structed in the same way as the preceding one and is 

shown in Fig. 26. The known vectors MC, CD and 

DE are laid out in order first, followed by the unknown 
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vectors EN and NM. These are found to scale 29,500 

pounds and 8700 pounds respectively. Stresses EN 
and NM are both compressive because the arrowheads 

in the force polygon show each to be pushing toward 

the joint. 

In a similar manner, the polygon for joint 3 can be 

constructed as shown in Fig. 27. The values as scaled 

from this polygon are NP = 17,100 pounds tension and 

PK = 12,800 pounds tension. 

The polygons for the remaining joints in order are 

shown in Fig. 28. From them the values are scaled as 

follows: 

GQ — 21,900 pounds compression 

QP = 4000 pounds tension 

QR = 3600 pounds compression 

RK = 16,600 pounds tension 

HR = 23,600 pounds compression. 

It is not necessary to construct the polygon for the 

last joint since the stresses acting there have already 

been found from preceding joints. 

Since the several separate polygons which have thus 

been constructed contain sides which are common to 

one or more of the other polygons, it is convenient to 

link the polygons together during the course of their 

construction. The force diagram thus obtained is shown 

in Fig. 29. 
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By thus linking the separate polygons together, dupli¬ 

cation of lines is avoided and a considerable saving of 

time, space and labor is effected. 

The part of Fig. 29 consisting of lines representing 

the loads and reactions is reproduced in Fig. 30 and is 

■K 

called the load line. This is seen to be a closed polygon 

and actually is the polygon of forces for the entire truss 

considered as a free body. The directions of all of the 

forces composing the load line are fixed and should be 



32 GRAPHIC STATICS 

indicated by arrowheads. The arrowheads have been 

omitted from the other polygons in the force diagram of 

Fio. 29. 

Fig. 29 because it has already been shown that the 

vectors representing the internal stresses must be 

reversed in going from one joint to the next. 

It will be found convenient in subsequent 

problems to lay out the load line completely, 

before proceeding with the determination of 

internal stresses. Not only will this serve as a 

useful frame upon which to build the remain¬ 

ing polygons, but failure of the load line to 

^ close, when laid out properly, indicates an 

error in determining the reactions. It should 

G be noted, however, that closing of the load 

line is not positive proof that the reactions are 

M correct. A failure of the final force polygon to 

-1/ close properly indicates an error made in some 
Fio. 30. p^j.^ of solution. 

The graphical solution of any truss may now be said 

to consist of two or three figures, depending on the method 

by which the reactions are obtained. 
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If the first method given in Art. 27 for determining 

reactions is used, two figures will suflfice. The first, 

called the space diagram, will consist of the truss, drawn 

to some convenient scale, properly dimensioned and 

lettered, and showing all of the loads. The constructions 

by which the reactions are found .should be made on the 

space diagram, using some convenient scale for laying 

out the forces. The second figure, called the force 
diagram, will consist of the load line and linked polygons, 

drawn to some convenient scale (usually the same as 

that employed for forces in the space diagram). The 

scales chosen should be such that both figures may be 

placed on the same drawing sheet. 

If the second or funicular-polygon method for deter¬ 

mining reactions is used, three figures may be necessary. 

It will be seen that the load line of Figs. 29 and 30 is 

not the same as that of Fig. 23(&). In solving for the 

unknown reactions in Fig. 23(6), it was necessary 

to have all of the vectors of the known forces joined 

together; so the line of action of the 6000-pound load 

was projected upward and became ee'. In constructing 

the frame to which the force polygons for the joints are 

linked, it is necessary that this load shall be acting at 

its proper place on joint 3, and it thus becomes separated 

from the other known vectors in the load line, as in 

Figs. 29 and 30. When the reactions have been found, 

this can be done. It follows, therefore, that three figures 

may be necessary, the first of which will be the space 

diagram drawn as directed in the preceding paragraph. 

The funicular or string polygon will be drawn in this 

space diagram as shown in Fig. 23(a). The second 

figure, called the ray diagram, will consist of a load line 

and rays as shown in Fig. 23(6). The third figure will 

consist of another load line and the linked polygons for 

the internal stresses as shown in Fig. 29. The second 

and third figures will usually be drawn to the same 
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scale for forces. In case there are no loads between the 

reactions, the load lines of Figs. 23(6) and 29 become 

identical and the second and third figures, discussed 

above, may be united into a single diagram, as is done in 

Example 1 of Art. 33. Otherwise, as in the case of the 

truss of this article, changes required in the order in 

which forces are taken and the consequent modifications 

in lettering may make it necessary to separate the ray 

diagram from the linked polygon diagram. All figures 

required should be constructed on the same drawing 

sheet. 

In Art. 27, it v/as pointed out that the total reactions 

may be determined by adding algebraically the partial 

reactions obtained by considering separately each par¬ 

ticular load or group of loads. This procedure applies 

likewise to the internal stresses. For instance, the 

reactions and stresses, due to wind loads only, may be 

determined separately. Then the reactions and stresses 

due to dead loads may be determined. The resultant 

stress in any given member is the algebraic sum of the 

several partial stresses thus obtained. 

29. Internal Stresses: Method of Sections. 

In the analysis of some trusses the method used in 

the preceding article must be supplemented by other 

processes in order to complete the solution. The truss 

shown in Fig. 31 is an example. 

The reactions, LA = 24,400 pounds and JK = 19,600 

pounds, may be foimd by the methods given in Art. 27. 

If the first method is used, the loads on the upper chords 

are combined into their resultant Ri = 32,000 pounds, 

acting at the center. Fig. 31. The 12,000-pound load 

is then combined by inverse proportion with to obtain 

Ri, = 44,000 pounds, which is the resultant of all of 

the loads. Ri is then resolved by inverse proportion into 

its components acting at the ends of the truss. The reac- 
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tions JK and LA are equal and opposite to these 

components. 

If the funicular-polygon method is used to obtain the 

reactions, a slight change in the lettering is necessary 

Indicated in Fig. 32. The line of action of the 12,000- 

pound load is extended upward to divide space d into 

two parts, d and d'. This load is now known as DD' and 

the entire space between ^he reactions is designated as 

k. The left reaction then becomes KA instead of LA. 
Tiie load line is laid out from point A to / as in Fig. 32(6). 

Any convenient pole point 0 is selected and the rays 

AO, BO, etc., are drawn. In Fig. 32(o), the funicular 

polygon is constructed with the left end of the truss 

as the initial point. String ao is of zero length since it is 
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drawn between ka and ah. Strings ho, co, . . . io are 

drawn parallel to rays BO, CO, etc. String ju is of zero 

length because it is drawn between ij and jk. Since 

the force system is in equilibrium, the funicular polygon 

must close; so ko is necessarily the closing string. The 

ray KO in Fig. 32(6), drawn parallel to string ko, locates 
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point K and thus determines the reactions JK and KA 
which scale 19,600 pounds and 24,400 pounds as before. 

The procedure for determining internal stresses will 

now be considered. The load line and the force poly¬ 

gons for the first three joints are constructed in the usual 

manner as shown in Fig. 33. An inspection of the next 

joints 4 and 5 shows that each is acted upon by three 

unknown forces and thus cannot be solved. The same 

situation arises if the solution is made by starting at the 

right end of the truss. The method of joints can there¬ 

fore be carried no further unless one of the unknown 

stresses is determined by other methods. If the stress 

TK, for instance, can be obtained, joint 4 will have only 

two unknown forces and can be solved. The solution 

of the remaining joints can then readily be made. 

The stress TK can be found by using half of the truss 

as a free body. If the left half is used, the known forces 

will consist of the loads and the reaction LA. The 

unknown forces will be the stress TK and the hinge 

reaction at the apex of the truss. If the loads and reac¬ 

tions can be combined into their resultant, the number 

of forces on the free body is reduced to three. These, 
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being nonparallel, must intersect at a common point, as 

explained in Art. 12. In this way the direction of the 

unknown hinge reaction at the apex is determined. The 

force triangle can then be constructed and the value of 

stress TK scaled off. 

In this example, however, the resultant of the loads 

and the reaction is outside of the limits of the drawing; 

so the stress TK must be determined by parts. The 

loads are temporarily neglected and the partial stress 

TK, due to reaction LA alone, is found by use of the 

force triangle as explained above. Next, the reaction 

LA is neglected and the partial stress TK, due to the 

loads, is found. The two partial stresses are then 

combined algebraically to obtain the resultant stress TK. 
In Fig. 31, a section is passed through the hinge at 

the top, cutting the member tk] the portion of the truss 

on the left of this section is taken as the free body, 

shown in Fig. 34. Since the 4000-pound load EF passes 

through the hinge, it has no moment about this point 

and therefore cannot have any effect on the stress TK. 
Consequently, in the solution it does not matter how 

much of the load EF is made to act on this free body. 

It is convenient in this case to use 2000 pounds, or half 
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of the load EF, because the system of loads on the upper 

chord thus becomes symmetrical, and the resultant Rz 
of these loads is seen by inspection to be 16,000 pounds, 

acting through joint 5. The 12,000-pound load KL is 

now combined with JKs by inverse proportion to obtain 

Ri, which is the resultant of all of the loads on the free 

body and scales 28,000 pounds. 

If the reaction LA is temporarily neglected, the remain¬ 

ing three forces on the free body are Ri, the partial 

stress TK and the partial hinge reaction at the top, as 

shown in Fig. 35. These forces must be concurrent 

at the point where Rt and TK intersect. A line through 

this point and the hinge represents the direction of the 

unknown partial hinge reaction. The force triangle 

as shown is then formed upon the known vector Rt and 

the partial stress TK, due to the loads, is found to scale 

29,200 pounds compression. 

Next, the loads are neglected, leaving LA and the 

other partial values for the stress TK and the hinge 

reaction as forces on the free body, as shown in Fig. 

36. These forces must be concurrent at the point where 

LA and TK intersect, namely, the left end of the truss. 
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The direction of the partial hinge reaction in this case 
coincides with the upper chord of the truss. The force 
triangle, as shown, is formed upon the known reaction 
LA and the partial stress TK, due to the reaction, is 
found to scale 55,800 pounds tension. 

The resultant stress TK is found by adding algebraic¬ 
ally the partial stresses thus obtained. Hence TK = 
29,200 pounds compression -f- 55,800 pounds tension = 

26,000 pounds tension. The above constructions for 
determining stress TK should be made directly on the 
space diagram of the truss. 

Joint 4 now has only two unknown forces, PQ and 
QT, acting upon it and the polygon may be completed. 
Vector TK acts to the right, so must end at K, and the 
initial point T of the force polygon is thus located. 
The remaining joints offer no further difficulty since there 
are no more than two unknown forces on each successive 
free body. 

The complete solution of the truss is shown in Fig. 37. 
The values of the internal stresses as scaled from the 
force diagram are given on page 42. 
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BM = 56,000 lb. C 
CN = 54,400 lb. C 
DR = 52,800 lb. C 
ES = 51,200 lb. C 
FU = 39,200 lb. C 
OV - 40,800 lb. C 
//r = 42,400 lb. C 
IZ = 44,000 lb. C 

KT = 26,600 lb. T 

KX = 35,700 lb. T 
KZ = 40,400 lb. T 
LM = 51,300 lb. T 
LP = 46,800 lb. T 

MN = 3,600 lb. C 
NP = 4,500 lb. T 
PQ = 7,200 lb. C 
QR = 4,500 lb. T 
QT = 24,500 lb. T 

RS = 3,600 lb. C 
ST = 30,000 lb. T 
TU = 13,700 lb. T 
TW = 9,200 lb. T 
UV = 3,600 lb. C 

VW = 4,500 lb. T 
= 7,200 lb. C 

XY = 4,5001b. r 

YZ = 3,600 11). C 

30. Internal Stresses: Method of Substitution. 

The difficulty encountered in the analysis of the trus,s 

in the preceding article may be overcome in another 

manner. Let a section be taken through the truss of 

Fig. 31, cutting the members es, st and ik. The free- 

body diagram of the part of the truss on the left of the 

section is shown in Fig. 38(a), 

From a study of the free body it is evident that the 

stresses ES> and ET are independent of the form of the 

framework in the other part of the free body. There¬ 

fore, let the members qr and rs be removed and replaced 

by member g's as shown in the modified free-body 

diagram, Fig. 38(6). The solution of the truss thus 

modified does not involve the difficulty previously 

mentioned and is easily accomplished by the method of 

joints. The stresses ES and ST thus obtained must be 

identical with the stresses ES and ST in the original truss. 

The values of ES and ST may then be used in the solu- 
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don of the preceding joints and the stresses in the other 

members of the original truss obtained. The construc¬ 

tion employed in this substitution method should be 

made directly upon the force diagram. 

The complete solution of the truss, using the false 
member q's, is shown in Fig. 39. The force diagram, 

Fig. 39(6), is constructed in the following order. The 

load line is laid down, followed by the polygons for the 

first three joints. After the members qr and rs have 

been replaced by false member q's, the polygon for 

joint 5 is constructed, thus locating point Q' in the force 

diagram. The force polygon for joint 6 is now added, 

which locates point S. Vectors ST and TK can then 

be drawn, locating point T. The diagram, as it would 

appear at this point, is shown in Fig. 40. The false 

member q's is now replaced by the original members qr 
and rs and the remainder of the solution is easily 

completed. (The values of the internal stresses, as 

scaled from the completed force diagram, were given in 

Art. 29). 
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31. Reactions and Stresses in Bents. 

A bent consists of a truss and supporting columns. 

In Fig. 41(a), UVW and XYZ are columns, connected 

to the truss by pins at U and X and by knee-braces 

attached at V and F. The free-body diagram of the 

column UVW, Fig. 41(6), shows that forces are acting 

at more than two points on this member. This is also 

true of column XYZ. Each of these members is thus 

a three-force member as defined in Art. 9. Such mem¬ 

bers are subjected to shearing and bending as well as 

axial stresses. A section should not be taken through 

a three-force member, but the entire member should be 

included in the free body. No attempt will be made here 

to determine the internal stresses in the columns. 

The columns may be either hinged or fixed at the bases. 

In Fig. 41, they are shown hinged. If the columns are 

fixed at the bases, a lateral load will deflect the bent 

in the direction of the load, but portions XY and UV 
may be assumed to remain vertical. It likewise may be 

assumed that the tangents at the fixed ends Z and W 
will remain vertical. Under these conditions there will 

be points of counterflexure midway between F and Z 
and midway between V and W. These points of 

counterflexure are equivalent to hinged ends; hence a 
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column with its bases fixed may be treated as if it were 

hinged at a point midway between the base and the 

point of attachment of the knee-brace. (The solution 

of a bent with columns fixed at the bases is shown in 

Example 2, Art. 33.) 

If the bases of the columns are hinged, the distribution 

of the horizontal component of the reactions between 

the two hinges is indeterminate and some assumption 

must be made. It may be assumed that each hinge 

takes one-half; or that one hinge takes all, the other 

none. The latter assumption is safer in design. 

If the bases of the columns are fixed, the assumption 

that points of counterflexure are located midway between 

the bases and the knee-braces must necessarily be 

accompanied by the assumption that each column takes 

half of the horizontal reaction. 

The graphical analysis of a bent consists of the follow¬ 

ing steps: 

(a) The determination of the reactions on the columns, 

using the entire bent as a free body. 

(b) The determination of the stresses in the members 

attached to the columns, using the columns as free 

bodies. 

(c) The determination of the stresses in the remaining 

members of the truss, using the method of joints supple¬ 

mented when necessary by the auxiliary method of Art. 

29 or Art. 30. 

The simple bent shown in Fig. 42 will be used as an 

illustration. The reactions and stresses are to be deter¬ 

mined on the basis that each column is hinged at the 

base and that the horizontal components of the hinge 

reactions are equal. 

In accordance with the procedure outlined above, 

the reactions at the bases of the columns will first be 

obtained. The three wind loads acting upon the upper 

chord are combined by inspection into their resultant 
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i?i = 6000 pounds. The two horizontal wind loads 

are combined algebraically into their resultant Rt = 

10,000 pounds. Ri and R^ are then combined by the 

parallelogram method to obtain R^, the resultant of all 

wind loads, which scales 13,750 pounds. The vertical 

dead loads are combined by inspection into their result¬ 

ant Ri = 16,000 pounds, which is then combined with 

Ri by the parallelogram .method to obtain TEj which 

scales 24,800 pounds. This is the resultant of all of the 

loads. The resolution of R 6 into V and H components 

must be made at the point where R^ crosses the horizontal 

line through the bases of the columns, since the hori¬ 

zontal reactions must act along this line. The V com¬ 

ponent thus obtained scales 21,350 pounds and is resolved 
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by inverse proportion into components at the two 

hinges. The vertical reactions LM and NA are equal 

and opposite to these components, which scale 12,850 

and 8500 pounds respectively. The H component of 

Ri scales 12,700 pounds and, according to the initial 

assumption, each of the horizontal reactions KL and 

MN will be one-half of H or 6350 pounds. 

The funicular-polygon method for determining the 

reactions requires a slight modification in the diagram, 
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as indicated in Fig. 43. It must be assumed temporarily 

that only one column is hinged, say that at the left 

end, and the other supported by rollers. This assump¬ 

tion is made because it is necessary to fix the direction 

of one reaction. The right reaction is now vertical 

and is known as KM', the left reaction is unknown in 

direction and becomes M'Aj and the entire space 

between the reactions is designated as m'. The loads 

ABj BC, . . . JK are laid off to scale in the load line, 

Fig. 43(fe), the pole point 0 is chosen, and rays OA, 

OBj . . . OK are drawn. The reaction line KM' is 

known to be vertical, but the location of point M' 
is unknown. Starting at the^ base of the left column 

in the space diagram, since this is the only point known 

to lie on the line of action of the reaction M'A, the strings 

oa, ohj . . . ok are drawn parallel to the corresponding 

rays OA, OB, etc. Since the loads and reactions on the 

truss are in equilibrium, the funicular polygon must 

close, and orn' is thus drawn as the closing string. The 

ray OM' in the force diagram, parallel to the string om', 

locates point M' and determines the reactions KM' 
and M'A. To obtain the true reactions, based on the 

original conditions of a hinge at the end of each column, 

the reaction M'A is resolved into the H and V com¬ 

ponents M'N and AM respectively. The H component 

M'N is then divided into two equal parts, M'M and 

MN. The haff portion M'M is transferred to the other 

column and becomes the horizontal reaction KL, This 

resolution is shown as a part of Fig. 43(6) and finally 

gives KL, LM, MN and NA as the component reactions 

at the bases of the columns as obtained before in Fig. 42. 

The next step in the solution will be to determine the 

stresses DQ, QP and PM, The left column is the free 

body, as shown in Fig. 44(a). The known forces MN, 
NA and AB are combined into their resultant R7 = 8500 

pounds. If the four forces at the top of the column 
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are replaced by their resultant R^, the number of forces 

on the free body is reduced to three, namely R^, PM and 

R%, as shown in Fig. 44(6). These three forces must be 

(o) Space Diagroim < b) Force Diagram 

Fig. 45. 

concurrent at the point where i?7 and pm intersect. 

A line through this point and the top of the column 
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must therefore be the line of action of Rb. The triangle 

of forces may then be constructed upon the known 

force 7?7, and the value of PM is found to be 17,800 

pounds tension. The preceding constructions should 

all be made directly upon the space diagram of the bent. 

The stresses DQ and QP are now to be determined by 

using the column again as a free body, with Rb replaced 

by the original four forces at the top and with K7 replaced 

by its original components. The free body is shown in 

Fig. 45(a). All of the forces on the free body are now 

known except DQ and QP. These stresses may be 

obtained by drawing the foice polygon as shown in 

Fig. 45(6). This polygon should be constructed as a 

part of the force diagram for the entire bent. Tf the 

load line for the bent has already been laid out, it may 

be used as the frame upon which to build the above 

polygon, since the sides MN, NA, AB, BC and CD of the 

polygon are also a part of the load line. 

After the stresses DQ, QP and PM have been deter¬ 

mined, the remaining internal stresses may be found by 

the method of joints. The complete solution of the 

bent is shown in Fig. 46. As already pointed out in 

previous examples, the closing of the load line in this 

solution serves as a partial check on the reactions. 

There is, however, no similar check available for the 

internal stresses unless the right-hand column is solved 

independently as a free body to determine the stress 

VW. The values of the internal stresses, as scaled from 

Fig. 46(6), are as follows: 

DQ = 24,300 lb. C 
FS = 11,100 lb. C 
HT = 11,850 lb. C 
IV = 8,200 lb. C 

MP = 17,800 lb. T 

MR = 21,450 lb. T 
MU = 5,100 lb. T 
MW = 23,100 lb. C 

PQ = 4,500 lb. T 
QR = 5,700 lb. T 

RS = 14,700 lb. C 
ST = 4,900 lb. T 
TU = 3,600 lb. T 
UV = 7,200 lb. C 
VW = 27,1001b e’ 
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32. Redundant Members. 

A study of the trusses illustrated in the preceding 

articles shows that stability would be destroyed by the 

removal of any single member. Trusses which have 

sufficient members for stability, but no more, are often 

called complete or perfect trusses. If additional mem¬ 

bers not required for stability are added, the truss in 

general will be statically indeterminate. In some cases 

of the latter type, analysis will show that under certain 

conditions of loading some member is not acting and the 

truss becomes statically determinate. Such a member 

is called a redundant member. In Fig. 47, stability would 

not be destroyed upon the removal of either of the two 

diagonal members in the middle panel, provided that 

the remaining member is capable of carrying either 

tension or compression. If the two diagonals are 

designed to carry tension only, then both will not be 

stressed simultaneously. For instance, if the above 

truss is loaded as shown in Fig. 48, the dotted member, 

if stressed at all, would be in compression. If designed 

to carry tension only, such as a cable or slender rod, the 

conclusion would be that this member does not act 

and is therefore redundant. The truss is then statically 

determinate and the internal stresses may be found by 

methods already explained. 

In case both diagonals act simultaneously, the solution 

becomes statically indeterminate and beyond the scope 

of this text. For further analysis of such trusses, 

reference should be made to standard texts on Structures. 
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33. Examples. 

As a review and further illustration of the principles 

and methods taken up in the preceding articles, the 

following examples are given together with their com¬ 

plete graphic solutions. A statement of the steps taken, 

together with a brief explanation, accompanies each 

solution. In cases where more than one method is 

offered for obtaining a particular result, both solutions 

are placed on the same diagram. 

Example 1. A nacelle located on the lower wing of a 
bombing plane carries an engine and machine gunner. The 
dimensions and loads, as distributed to the various joints on 

one of the trusses, are shown in Fig. 49. The truss is sup¬ 
ported by the front and rear wing spars as shown. Determine 
the reactions and the internal stresses in the members. 

Solution: The truss is laid out to scale, dimensioned and 
lettered as shown in Fig. 50(a). 

The reactions FG and GA are found by the funicular-polygon 
method, the ray diagram with 0 as the pole point being drawn 
as part of the force diagram, Fig. 50(5); and the funicular 
polygon as part of the space diagram, Fig. 50(a). The ray 
(Xj in the force diagram, drawn parallel to the closing string 
og in the funicular polygon, determines the values of reactions 
FG and GA, which scale 175 lb. and 702 lb. respectively. 
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The solution for the internal stresses is now made, successive 
joints being used as free bodies. If the solution is begun at 
the left end of the truss as is usually done, only three joints 

can be solved. Each of the next two joints has three unknown 
forces acting upon it. If the solution is begun at the right 
end, however, this difficulty is avoided. If the same com 
dition should occur regardless of which end is used as a 
starting point, then the method of sections of Art. 29 or the 
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method of substitution of Art. 30 must be employed. When 
the latter is used, a false member mz is substituted temporarily 
for the three actual members in the panel. This makes it 
possible to continue with the method of joints, thus locating 
point Af, after which the solution is readily completed. 

The first and third of these possible solutions are shown in 
Fig. 50. The values of the internal stresses, as scaled from 
the force diagram. Fig. 50(5), are as follows: 

AH = 235 11). C 
AI = 190 1b, a 
BH == 235 lb. T 
CJ = 297 lb. T 

DM = 70 lb. T 
EP 0 

FP - 70 lb. a 
FN = 70 lb. C 
GL = 655 lb. C 
HI = 89 lb. T 
IJ - 191 lb. C 

JK = 722 lb. C 

KL = 450 lb. T 
KM - 430 lb. T 
LM - 595 lb. T 
MN - 306 lb. C 
NP - 100 lb. T 

Example 2. The columns of the bent shown in Fig. 51 are 
fixed at the bases. Assuming that the points of counter¬ 
flexure will be located halfway between the bases and the 

points of attachment of the knee-braces, solve for the reac¬ 
tions and all of the internal stresses. 

Solution: Since the points of counterflexure in the columns 
are equivalent to hinged ends, the bent will be treated as if 
hinged at these points. The effect of this assumption is to 
reduce the length of the columns from 20 ft. to 12 ft., and to 
decrease the horizontal wind load, in the same proportion, 
from 5000 lb. to 3000 lb., acting at a point 6 ft. above the 
hinge. The bent is accordingly laid out to scale, dimensioned 
and lettered as shown in Fig. 52(a). The solution, from this 
point on, will be similar to that of the example in Art. 31- 
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The first step is to determine the reactions, with the entire 
bent as the free body. The wind loads are combined into 
their resultant R2 which scales 7800 lb. The dead loads are 
combined into their resultant R4. = 22,000 lb. By combining 
R2 and 7^4, the resultant R^ of all the loads is obtained and 
scales 28,000 lb. At the point where R^ intersects the hori¬ 
zontal line through the hinges, it is resolved into H and V 
components which scale 5600 lb. and 27,400 lb. respectively. 
The V component is now resolved by inverse proportion into 
its two components at the hinges, thus determining the 
vertical reactions KL and NA which scale 14,800 lb. and 
12,600 lb. respectively. As stated in Art. 31, the location 
assumed for the points of counterfiexure requires that the 
horizontal reactions upon the columns shall be equal. Each 
of the reactions JK and NA must therefore be half of the II 
component of the resultant load, or 2800 lb. 

The left column is now used as a free body to determine the 
stress PM in the knee-brace. The reactions MN and NA and 
the 3000-lb. wind load are combined into their resultant = 
12,600 lb. The four forces acting at the top of the column 
are considered as combined into a single unknown force 2^. 
This reduces the number of forces on the free body to three, 
the known force Rij the unknown stress PM and the unknown 
resultant force R^. These forces must be concurrent at the 
point where the line mp intersects the line of action of E7. 
The direction of the resultant force Rs is thereby established 
and the force triangle is drawn as shown in Fig. 52(a), from 
which PM scales 4000 lb. T, The entire left column is again 
considered as a free body with the resultants R7 and Rs 
replaced by their original components, and the force polygon 
is laid out in Fig. 52(5) to determine the stresses DQ and QP. 

The force polygons for the remaining joints are then added, as 
shownin Fig. 52(5), to complete thesolution. The valuesof the 
internal stresses as scaled from the force diagram are as follows: 

DQ - 23,800 lb. C 
FR - 22,100 lb. C 
HT = 22,800 lb. C 
lU ^ 24,600 lb. C 
LV = 8.660 lb. C 

MP = 4,000 lb. T 
MS = 12,300 lb. T 
pQ = 16,800 lb. T 
QR = 6,600 lb. C 
RS = 9,000 lb. T 

ST = 8,900 lb. T 
TU = 3,600 lb. C 
UV = 27,800 lb. T 
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Example 3* A bent with a flat top has dimensions and loads 
as shown in Fig. 53. The columns are hinged at their bases 
and it is to be assumed that the left column takes all of the 
horizontal reaction. Determine the reactions on the columns 
and the internal stresses in the remaining members. 

Solution: The bent is laid out, dimensioned and lettered as 
shown in Fig. 54(a). 

The first step in the solution is to determine the reactions, 
with the entire bent as the free body. The various loads are 
combined into their resultant which scales 36,900 lb. At 
the point where intersects the horizontal line through the 
bases of the columns it is resolved into H and V components 

which scale 8000 lb. and 36,000 lb. respectively. The V 
component is resolved by inverse proportion into its two 
components at the hinges, thus determining the vertical 
reactions IJ and KA which are 20,000 lb. and 16,000 lb. 
respectively. The horizontal reaction JK at the base of the 
left column must support all of the H component and is thus 
8000 lb. 

As an alternative method, the reactions may be found by 
the use of the funicular polygon. The line of loads is laid out 
in Fig. 54(5) and the rays are drawn from the pole point 0. 
The funicular polygon is then drawn in Fig. 54(a) in which oj 
is the closing string. The ray OJ in the force diagram then 
determines the reactions. 

Before the force diagram for the internal stresses can be 
completed it is necessary to determine the stresses JR and CL 
(or HW), Either the right or the left half of the bent may be 
used as a free body in solving for stress JR. Since the right 
half is somewhat simpler, it is used in this case, as shown in 
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Fig, 54(a). The loads on the right half of the bent are tempo¬ 
rarily neglected and the partial stress JR, due to the reaction 
IJ alone, is obtained and found to scale 75,000 lb. tension. 
The loads on the right half of the bent are now combined into 
their resultant = 18,000 lb. The reaction IJ is then 
temporarily neglected while the partial stress JR due to R^ 
is obtained and found to scale 33,800 lb. compression. The 
resultant stress JR in the algebraic sum of the partial stresses 
and is therefore 41,200 lb. tension. The substitution method, 
replacing members np and pq by the false member zq, may be 
used instead of the foregoing solution and the constructions 
for it are also shown in Fig. 54. 

The left column is used as a free body to determine the 
stress CL. The four known forces on the free body, AB^ J5C, 
JK and KAy are combined into their resultant R^ which scales 
13,000 lb. The two unknown forces LM and Af J, acting at 
the same point on the column, are considered as combined 
into a single unknown force acting at this point. The 
number of forces on the free body is thus reduced to three: 
the known resultant force R^y the unknown stress CL and the 
unknown resultant force R^. These forces must be concurrent 
at the point where line cl intersects Rh and the direction of R^ 
is thus determined. The triangle of the forces is then drawn 
from which CL scales 10,000 lb. compression. The entire left 
column is again considered as a free body with the resultants 
R^ and R^ replaced by their original components. The only 
unknown forces acting on the column now are LM and MJy 
which are determined by laying out the force polygon for the 
column in the force diagram^ Fig. 54(b). 

The force polygons for the remaining joints, taken in order 
from left to right, are then added to the force diagram, as 
shown in Fig. 54(6), to compjete the solution. The stress HW 
may be determined by using the right column as a free body. 
The value thus obtained may be used as a check on the 
solution already made, or may be used, instead of CL, in 
beginning the layout of the force polygons. In this case the 
joints are solved in order from right to left. (It will be 
seen, by inspection of the right column, that stress is 
zero.) 
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The values of a few of the internal stresses, as scaled from 

Fig. 54(6), are as follows: 

LM = 31,100 lb. C 
MJ - 31,500 lb. T 
DP = EQ = 38,700 lb. C 
VJ = 22,700 lb. T 
VW = 31,000 lb. C 

PROBLEMS 

Note: In the following problems, the scales and coordinates 

given are based on the standard-size drawing plate as recom¬ 

mended in Art. 3. The coordinates are to be measured from 

the left and lower borders respectively. A few of the answers 

are given by which to check the solutions. 

Problem 1. Determine the reactions and stresses in the 

Fink roof truss, shown in Fig. 55. Scales: 1 in. = 6 ft.; 1 in. 

= 3000 lb. Coordinates: Left end of truss—1 in., 10 in.; 

point A in force diagram—21 in., 10 in. 

Ans, HA = 10,800 lb.; BI = 19,650 lb. C; HK = 13,550 

lb. T]DL = 25,450 lb. C. 

Problem 2. Determine the reactions and stresses in the 

bridge truss, shown in Fig. 56. Scales: 1 in. = 10 ft.; 1 in. 

= 10,000 lb. Coordinates: Left end of truss—i in., 10 in.; 

point H in force diagram—22| in., 6 in. 

Ans. HA = 77,500 lb.; AI = 96,875 lb. C; JK = 12,000 

lb. C; LF = 106,250 lb. T. 
Problem 3. Determine the reactions and stresses in the 

Warren bridge truss, shown in Fig. 57. Scales: 1 in. = 5 ft.; 

1 in. = 2000 lb. Coordinates: Left end of truss—2 in., 12 

in.; point G in force diagram—21 in., 7 in. 
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Ans. GA = 12,330 lb.; AH = 15,800 lb. C; HG = 9800 
lb. T) CK = 13,800 lb. C. 

Problem 4. Determine the reactions and stresses in the 

cantilever bridge truss, shown in Fig. 58. Scales: 1 in. = 20 

ft.; 1 in. = 100,000 lb. Coordinates: Left end of truss—1 in., 

8 in.; point A in force diagram—14 in., 12 in. 

^rts. GA = 860,000 lb.; AM = 540,000 lb. C; HE = 
282,800 lb. T] EN = 705,000 lb. F; KJ = 217,000 lb. T. 

Fio. 59. 

Problem 6. Determine the reactions and stresses in the 

cantilever bridge truss, shown in Fig. 59. Scales: 1 in. = 20 

ft.; 1 in. = 50,000 lb. Coordinates: Left end of truss—1 in., 

9 in.; point A in force diagram—13 in., 14 in. 

Ans. HA = 520,000 lb.; LA = 295,000 lb. C; ID 
250,000 lb. T; DN = 440,000 lb. T; NP = 204,000 lb. C. 
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Problem 6« Determine the reactions and stresses in the 

Fink roof truss, shown in Fig. 60. Scales: 1 in. = 6 ft.; 1 

in. = 5000 lb. Coordinates: Left end of truss—1 in., 4 in.; 

point A in force diagram—20 in., 15 in. 

Ans. RA = 28,300 lb., PQ = 9000 lb.; QR = 21,600 lb.; 

CS = 54,300 lb. C; TV = 9700 lb. T] RY = 18,200 lb. T\ 
CrW = 50,600 lb. C; FZ' = 11,800 lb. T; MT = 41,800 lb, 

C. 
Problem 7, Determine the reactions and stresses in the 

cambered Fink truss, shown in Fig. 61. Scales: 1 in. = 6 ft.; 

1 in. = 4000 lb. Coordinates: Left end of truss—2 in., 5 

in.; point A in force diagram—^22 in., 14 in. 

Ans, RA = 19,600 lb.; BS = 34,100 lb. C; TV = 3200 

lb. T; RY = 18,400 lb. T; IW' = 33,300 lb. C. 
Problem 8. Determine the reactions and stresses in the 

airplane truss, shown in Fig. 62, Scales: 1 in. = 10 in.; 

1 in. = 300 lb. Coordinates: Left end of truss—1 in., 10 in.; 

point A in force diagram—16 in., 13 in. 
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Ans. GA = 2805 Ih.; JK = 1910 lb. C; ML = 1140 lb. C; 
LK = 810 lb. T. 

Problem 9. Determine the reactions and stresses in the 
tower, shown in Fig. 63. The internal diagonals can take 
tension only. Scales: 1 in. = 6 ft.; 1 in. = 1000 lb. Coordi¬ 
nates: Top of tower—5 in., 13 in.; point A in force diagram— 
19 in., 12 in. 

Ans, EF = 6890 lb.; AL = 4030 lb. C; JK = 1270 lb. T; 
HA = 6170 lb. C. 

!000 

Problem 10. The cantilever truss, shown in Fig. 64, is 
supported by a column which is hinged at the bottom and 
supported horizontally at point Y as shown. Determine the 
reactions on the column at Y and Z and the internal stresses 
in the members of the truss. Scales: 1 in. = 4 ft.; 1 in. = 
2000 lb. Coordinates: Left end of truss—1 in., 11 in.; point 
A in force diagram—14 in., 11 in. 

Ans, MN = 18,700 lb.; NW = 15,480 lb. C; CQ = 3450 
lb. T\ VW = 12,150 lb. T. 

Problem 11. The railway-platform roof truss, shown in 
Fig. 65, is supported by a column which is hinged at the bottom 
and supported horizontally at point Y as shown. Determine 
the reactions on the column at Y and Z and the internal 
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stresses in the members of the truss. Scales: 1 in. = 5 ft.; 
1 in. = 5000 lb. Coordinates: Left end of truss—2 in., 10 in.; 
point A in force diagram—14 in., 12 in. 

Arts. KL = 5900 lb.; CM = 19,800 lb. T; NP = 7300 
lb. T; IQ = 10,300 lb. C. 

Problem 12. The columns of the bent, shown in Fig. 66, 
are hinged at the bases. Assuming the left column to carry 
all of the horizontal reaction, determine the reactions on the 
columns and the stresses in the members of the truss. Scales: 

1 in. == 6 ft.; 1 in. = 4000 lb. Coordinates: Base of left 
column—4 in., 9 in.; point A in force diagram—18 in., 9 in. 

Ans. JK = 13,400 lb.; LM = 23,800 Ib. T; DP = 38,500 
lb. C; KR = 19,400 lb. T; HS = 24,300 lb. C. 
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Problem 13. The columns of the flat top bent, shown in 
Fig. 67, are hinged at the bases. Assuming the right column 
to carry all of the horizontal reaction, determine the reactions 
on the columns and the stresses in the members of the truss. 

Scales: 1 in. = 5 ft.; 1 in. = 3000 lb. Coordinates: Base of 
left column—3 in., 8 in.; point A in force diagram—12 in., 13 
in. 

Arts, JA = 6900 lb.; CL = 8000 lb. T; JM = 7840 lb. C; 
ST = 23,500 lb. C. 

Problem 14. The columns of the bent, shown in Fig. 08, 
are hinged at the bases. Assuming the left column to take all 

of the horizontal reaction, .determine the reactions on the 
columns and the stresses in the members of the truss. Scales; 
1 in. == 6 ft.; 1 in. = 6000 lb. Coordinates: Base of left 
column—3 in., 8 in.; point A in force diagram—20 in., 12 in. 

Ans. QR = 24,900 lb.; RZ == 38,000 lb. T; RS = 34,800 
lb. T; DT == 80,800 lb. C; UV = 12,400 lb. T; YZ = 50,800 

lb. T; RS' = 0. 
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Problem 16 The columns of the flat top bent, shown in 
Fig. 69, are hinged at the bases. Assuming half of the hori¬ 
zontal reaction to be carried at each column, determine the 
reactions on the columns and the stresses in the members of 
the truss. Scales: 1 in. = 6 ft.; 1 in. = 5000 lb. Coordi¬ 

nates: Base of left column—2 in., 6.in.; point A in force 
diagram—20 in., 10 in. 

Ans, NA = 14,750 lb.; MU = 38,400 lb. T; MP = 8200 
IK T. 

Problem 16. The columns of the bent, shown in Fig. 70, 
are hinged at the bases. Assuming the right column to take 

all of the horizontal reaction, determine the reactions on the 
columns and the stresses in the members of the truss. Scales: 
1 in. = 6 ft.; 1 in. = 5000 lb. Coordinates: Base of left 
column—3 in., 3 in.; point A in force diagram—14 in., 12 in. 
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Ans. RA = 22,600 lb.; RZ = 7900 Ib. C; BS = 19,200 
lb. T; UV = 37,400 lb. C; HX = 8600 lb. C. 

Problem 17. The columns of the bent, shown in Fig. 
71, are hinged at the bases. Assuming the right column to 
take all of the horizontal reaction, determine the reactions 
on the columns and the stresses in the members of the truss. 
Scales: 1 in. = 6 ft.; 1 in. = 5000 lb. Coordinates: Base 
of left column—2 in., 5 in.; point A in force diagram—18 in., 
12 in. 

Ans. QA = 26,400 lb.; WP == IbOO lb. T; DR = 16,400 
lb. T] TW = 12,800 lb. T, 

Problem 18. The columns of the bent, shown in Fig. 71, 
are hinged at the bases. Assuming the left column to take 
all of the horizontal reaction, oolve for the reactions on the 
columns and the stresses in the members of the truss. Scales: 
1 in. = 6 ft.; 1 in. = 6000 lb. Coordinates: Base of left 
column—3 in., 8 in.; point A in force diagram—20| in., 8 in. 

Ans, WP - 27,200 lb. T\ DR = 42,000 lb. C; TW - 

28,300 lb. T. 
Problem 19. The columns of the flat top bent, shown in 

Fig. 67, are fixed at the bases. Solve for the stresses in the 
members of the truss. Use scales and coordinates as given 
in Problem 13. 

Ans. JK = 2500 lb.; KA = 8300 lb.; CL = 2500 lb. C\ 
JM = 10,550 lb. T; ST = 20,900 lb. C. 
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Problem 20. A truss of an airplane fuselage is shown in 
Fig. 72. The diagonals in the last four panels can take 
tension only. The loading given is for a three-point landing. 

K. 20-0''.>1 
- ->|< —36*->|» - -26''- - • -30 - -->f» - - 30 - - - -30 ■ - - 24 - 

Determine the reactions and all internal stresses. Scales: 
1 in. = 20 in.; 1 in. = 60 lb. Coordinates .Left end of truss— 

4 in., 12 in.; point V in force diagram—17 in., 14 in. 
Arts. (Factor omitted) Reaction LM = 165 lb.; RS = 98 

lb.; UV = 788 lb.; EG' = 233 lb. C; HT = 140 lb. T. 

r
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CHAPTER IV 

CRANES, DERRICKS AND DREDGES 

34. Cranes, Derricks and Dredges. 

Cranes, derricks and dredges are structures used to 
raise, transfer and lower heavy loads. The loads can 
be moved horizontally as well as vertically. The two 
principal classes of cranes are rotating and translating 

E 

cranes. The main feature of the rotating crane is the 
mast with a boom hinged or fixed to it, as shown in Fig. 
73. The boom generally is capable of motion in a 
vertical plane and can rothte about the mast. The mast 
is supported by a suitable pivot at the base and by guy 
wires or stiff legs at the top. The motions of the boom 
and its load are controlled by cables and pulleys. 

The rotating crane will be considered in this chapter. 
This class of cranes has several important types: the 

71 
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pure crane which has a fixed boom, the derrick which 
has a movable boom and the dredge which is so designed 
that it operates below the ground level. The derrick 
type is shown in Fig. 73. AE is the mast, and Cl 
is the boom hinged to the mast at point C. In most 
structures of this type the mast and boom are three- 
force members, as defined in Art. 0. IJHBL and 
FGFDBK are cables which lead from their supports 
at I and F to suitable power drums near L and K. 
EM, EN and EO are supporting guy wires which are 
capable of carrying tensile stress only. If only two 
supports are used, such as EM and EN, they must be 
stiff members capable of carrying either tension or 
compression. If, instead of the cable, a single tie DH is 
used to support the boom at a fixed level, the structure 
becomes the pure crane type. The dredge is shown in 
Fig. 77. In addition to the mast and boom the dredge 
has the handle which supports the load by means of a 
bucket or dipper. The bucket is not shown in Fig. 77. 

36. Pulley Alignments. 

In the problems of this chapter the stress carried by 
any cable will be considered as constant throughout its 
entire working length. The alignment of pulleys will 
be made with this assumption and any slight angularity 
of the cables will be neglected. One arrangement of 
pulleys and cables is shown in Fig. 74. The line of the 
load L bisects the distance MG. 

Figure 75 shows another arrangement of pulleys and 
cables. The cable is fastened at A and the angularity 
of strand AC will be neglected. With two strands on 
the right side and one on the left, the line of action of 
load Q will pass r/3 from B, r being the radius of the 
pulley. This can be proved by using pulley A as a 
free body and writing the equation of moments with 
respect to point B. 
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A third arrangement of pulleys and cables is shown in 
Fig. 7<)(a). The length of CD must be known. To 

1^ 

Flo. 74. Fig. 75. 

locate the direction of CD the parallelogram in Fig. 
76(6) is laid off in proper stress proportion, two to one 
in this case. AD and DE of Fig. 76(6) are parallel to 

Fig. 76. 

AD and the cable at E, respectively, of Fig. 76 (o). 
The diagonal of this parallelogram represents the 
approximate line of action of the force in member CD. 
If the length CD is large, another parallelogram similar 
to the one shown in Fig. 76(6) must be drawn, using AD 
parallel to BC of Fig. 76(a). The diagonal of the 
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resulting parallelogram will give a closer approximation 
to the true line of action of the force in member CD. As 
explained earlier in this article, C' is distant r/2 from 
C. ABC' is a straight line and is the line of action of the 
resultant stress in the two strands of cable. If CD is 
small and AD very large, the error in assuming that 
ABCD lies on AD is very small. Often, instead of the 
short link CD, the pulley is fastened to the mast by a 
bracket. In this case no alignment problem of impor¬ 
tance exists. 

36. Pin Reactions and Cable Stresses. 

The dredge shown in Fig. 77 consists of the platform 
AC) handle DF, weight 10,000 pounds, acting at its 

B ■ 

middle point; boom CE, weight 20,000 pounds, acting 
at its middle point; tie BE) mast BG) cable EFEBH 
and two backstays at AB. 

In solving for the pin reaction at D and the cable 
stress EF, member DF is used as a free body. It is a 
three-force member with five forces acting upon it as 
follows: reaction D, two cable pulls EF, its own weight 
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of 10,000 pounds and the load of 50,000 pounds at F. 
The cables are two-force members, so the directions of 
their stresses are known. Figure 78(a) shows this free 
body with its loads, known and unknown, in place. 
By inverse proportion, as explained in Art. 17, the load 
of 50,000 pounds and the weight of 10,000 pounds are 
combined into their resultant Ri = 60,000 pounds. 

B 

(a) Space Dioi9ram Cb) Force Dia9rom 

Fig, 78. 

This resultant intersects the line of action of the resultant 
cable stress at point 0. Since three forces in equilibrium 
must meet in a common point, the reaction at D must 
act through points D and 0. The triangle of forces for 
this free body is shown in Fig. 78(6) and from it can be 
scaled the reaction Rd as 10,000 pounds, and the cable 
stress as half of FE or 32,500 pounds tension. 

For a second illustration, Fig. 77 is again considered. 
Let it be required to find the pin reaction at C and the 
tie-rod stress EB. In making this solution, the free 
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body consists of CDEF, the boom, handle and load, as 
shown in Fig. 79(o). The known forces are the three 
weights, 10,000 pounds, 50,000 pounds and 20,000 
pounds, and the tensile stress in the cable of 32,500 
pounds. The unknown external forces are the two 
required forces, the pin reaction at C and the tie-rod 
stress EB. By inverse proportion, the 10,000-pound 
load and the 50,000-pound load are combined into 

their resultant Ri — 60,000 pounds. This resultant, 
by the same method, is combined with the 20,000- 
pound load into the resultant i?2 = 80,000 pounds. 
Force R2 and the cable stress EB' of 32,500 pounds 
are then combined by the parallelogram method into 
the final resultant R3 = 71,000 pounds. (The cable 
stress EB' was obtained in the last paragraph.) R3 

intersects the line of action of the unknown tie-rod 
stress at point 0. The pin reaction must therefore act 
through points C and 0. The force triangle for this 
free body is shown in Fig. 79(6) and from it the tie-rod 
stress EB scales 73,300 pounds tension, and the pin 
reaction at C scales 99,000 pounds. 
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A still different case occurs in the derrick shown 
in Fig. 80. In this derrick the cable is fastened to the 
boom at L, and the resultant of the stresses in CE and 
LE must be considered. In solving for this cable stress 
and the pin reaction at G, the three-force member BG 
is used as a free body. Upon this free body, as shown 
in Fig. 81(a), there are six external forces acting: two 
weights, 12,000 pounds and 4000 pounds; the cable 

stress BL which is one-third of 12,000 pounds; the 
unknown pin reaction at (?; and the stresses in the two 
strands of cable EC and the one strand of cable EL. 
The resultant of the three known loads can be deter¬ 
mined by the methods already explained. This result¬ 
ant is 16,500 pounds. LECEGK is one cable and the 
stress in it is assumed to be constant throughout its 
entire length. Before a solution can be made of this 
free body, the line of action of the resultant cable stress 
must be determined. There are two strands of cable 
EC and one strand EL; therefore, with any convenient 
scale, a length of two units is laid off from 0 on OC 
to represent the stress in the two strands of cable EC, 
and from 0 on OL a length of one unit is laid off to 
represent the stress in the one strand of cable EL, 
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On the diagonal of the parallelogram thus formed will 
lie the line of action of the resultant stress in the cable. 

The loads on this free body are thus reduced to three, 
namely: the resultant of the known loads which is 16,500 
pounds, the unknown pin reaction at G and the unknown 
resultant stress in the cable. These three forces must 

(b) Force Diagram 

Fia. 81. 

intersect at one point. The known resultant intersects 
the line of action of the resultant cable stress at point Q. 
The line of action of the pin reaction at G therefore 
lies on GQ. The force triangle for this free body is 
shown in Fig. 81(6) and from it the pin reaction at G 
scales 30,100 pounds and the resultant stress in the cable 
scales 31,600 pounds. This resultant stress in the cable 
is resolved into its two components: one parallel to 



CRANES, DERRICKS AND DREDGES 79 

OC; the other parallel to OL. The component OC 
gives the stress in CE and scales 21,200 pounds tension, 
and the component OL gives the stress in EL and scales 
10,600 pounds tension. The stress in one strand of 
cable is of course 10,600 pounds tension, 

37. Mast and Backstay Stresses. 

Cranes, derricks and dredges in which the mast and 
backstays may be considered as two-force members 
may be solved in the following manner. 

Figure 82 shows a dipper dredge. The mast EF and 
the backstays AF and CF will be considered as two- 

r 

force members. The cable is HIHFD, and FH is a tie 

rod. 
As explained in Art. 36 the handle must be the first 

free body, and from it the pin reaction at G and the 
tension in the cable HI are found to be 14,000 pounds 
and 14,300 pounds respectively. Next, the boom EH, 
or the boom and handle -EGHJ, is used as a free body 
from which the pin reaction at E and the tension in the 
tie rod FH are found to be 42,400 pounds and 23,300 
pounds respectively. The next free body is the joint 
at F, as shown in Fig. 83. The known cable stresses 
FD and FH and the tie-rod stress FH are combined into 
their resultant R which is 39,500 pounds. With the 
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boom and handle in the plane of BEF, the stress in the 
mast and the resultant of the stresses in AF and CF are 
obtained. The force triangle for this free body is 
shown in Fig. 83(6). The stress in the mast EF scales 

F 

(a) Space Diagram 

Fig. S3. 

43,800 pounds compression and the resultant FB scales 
35,000 pounds. 

In solving for the component stresses in AF and CF, 
a plane is passed through ABCF, as shown in Fig. 84(a). 

Fig. 84. 

FD ^35000 

<b) Force Diagram 

The solution is shown in Fig. 84(6) from which AF and 
CF each scale 18,000 pounds tension. 

38. Tipping Forces. 

In solving for backstay or guy-wire stresses for cranes 
and derricks of the type shown in Fig. 85, another 
method will be explained. 

The two cables NDJDJDGH and KLKEGH enter 
the mast at H and thence pass to power drums. These 
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cable stresses and the pin reactions at I and F must be 
obtained by the method of Art. 36. 

The tipping force is the horizontal force at 0 produced 
by all of the loads on the mast, boom, handle and bucket, 
and is the force that produces a stress in the backstays 
or guy wires. 

To obtain this force the mast, boom, handle and 
bucket together are considered as the free body, as 
shown in Fig. 85, and all of the known external loads 
are combined into their resultant R = 26,300 pounds. 
(The solution for R is not shown on the figure.) This 
resultant should really contain the cable stresses at 
H, but since in this case they act at the base of the mast 
and have no effect on the tipping force at 0, they have 
been omitted. This resultant R is resolved into two 
components: one horizontal through point 0; the other 
acting through the base of the mast at H. The tipping 
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force Oh from this solution scales 20,200 pounds. The 

reason that Ou is the true tipping force becomes obvious 

if the equation of moments wi’^h respect to point H is 

considered. 

39. Maximum Stresses. 

For illustration let it be required to find the maximum 

tensile stress in the guy wire OA of the derrick dredge 

shown in Fig. 85. The horizontal projection of the 

guy wires is shown in Fig. 86(a). The three supporting 

P6' 

( a) Space Diagram 

Fu;. 86. 

members OA, OB and 00 are guy wires and therefore 

can carry tension only. The tipping force Oh of 20,200 

pounds as obtained in the preceding article acts at 0 

and may swing through the entire circle. As shown 

below, the position of Ou to produce the maximum tension 

in OA will be at an angle of 90° from OBh. OC, being a 

guy wire, cannot carry compression and therefore has 

zero stress. From the triangle of forces in Fig. 

the value of OAh may be scaled as 24,20C pounds. The 

true stress in OA is now obtained from Fig. 86(c) where 

the true length and inclination of OA are shown. From 

point 0 the value of OAh is laid off horizontally. The 
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vertical component OAv is laid off from the end of OAu. 
The diagonal thus formed, which lies on the line OA, 
Fig. 86(c), represents to scale the true maximum tension 
in OA and scales 28,800 pounds. 

The proof that = 90° for maximum stress is as 
follows: P’rom Fig. 86(6), by the law of sines, OAh = Oh 
sin (p/sin d. On and 6 are constant, but <f may vary. 
To give the maximum value of OAu the sine of <(> must 
))e 1.00 and, therefore, <p = 90°. 

In this illustration the tipping force Oh might have 
been placed at an angle of 90° with OCu, but in this 
position OAh is not as large as when vector On is placed 
at an angle of 90° with OBu. To determine which of 
these two possible positions governs, the procedure is 
as follows. Figure 86(a) is reproduced in Fig. 87. 
Vector Oh is placed at an angle of 90° with OBh and the 
force triangle OPQ is drawn (stress OC = 0). Next, 
vector Oh is placed at an angle of 90° with OCh and its 
force triangle OP'Q' is drawn (stress OB = 0). From 
the figure it is seen that OQ, and not OQ', gives the great¬ 
est value of 0Ah‘ The governing position for the boom 
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or tipping force On is that position in which a, the angle 

which Oh makes with the line of OAu produced, is the 
larger. 

40. Examples. 

As a review and further illustration of the principles 

and methods taken up in this chapter, the following 

examples are given with their complete graphic solu¬ 

tions. A statement of the steps taken, together with a 

brief explanation, accompanies each solution. 

Example 1. The derrick crane shown in Fig. 88(a) has a 
mast OA, 48 ft. long; and boom OB, 64 ft. long. The boom 
weighs 8000 lb. and its center of gravity is 30 ft. from 0. All 
pulleys are 2 ft. in diameter. Angle AOB may vary between 
15^ and 75®. The boom may swing from OC to OD. Solve 
for the reaction at 0 and the stress in cable AB, Place the 
boom in the position for maximum tension in AC and solve 
for this tension and the corresponding compression in the 
mast. 

Solution: Since the 20,000-lb. weight is held by four strands 
of cable, the stress in each strand is 5000 lb. 

The boom is the first free body. The loads of 20,000 lb. 
and 8000 lb. and the cable stress of 5000 lb. are combined into 
their resultant which scales 29,700 lb. The pin reaction at 0 
acts through 0 and the point where the 29,700-lb. resultant 
intersects the line of action of the resultant cable stress AB. 
The solution for this free body is shown in Fig. 88(6) from 
which Ro scales 38,000 lb., and AB scales 34,400 lb. The 
stress in one strand of cable along AB m therefore 6880 lb. 
tension. 

The tipping force at A is bbtained as the horizontal com¬ 
ponent of AB and is 30,600 lb. (This is true only when the 
mast is a two-force member, otherwise the method described 
in Art. 38 is to be used.) 

Figure 88(c) shows the plan view and the position of the 
boom for maximum tension in AC. The force triangle for 
this projection is shown in Fig. 88(d), from which ACh scales 
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31.700 lb. and ADh scales 8300 lb. On this force triangle 
are erected the triangles from which the true stresses and the 
vertical components of these stresses are obtained. ACv is 
perpendicular to ACh, and AC is drawn at an angle of 60° 
with ACu. AC (maximum) scales 63,400 lb. tension. Simi¬ 
larly ADv is perpendicular to ADu, and AD is drawn at an 
angle of 46° with AD//. AD scales 11,700 lb. compression. 

To get the compression in the mast, the vertical components 
of the forces at A are added algebraically. This is shown in 
tabular form in Fig. 88(e). The compression in the mast is 
69,080 lb. 

Example 2. Figure 89 shows a dipper dredge. The A- 
frame is vertical, and line AD is normal to the plane BCE. 
The pulleys are 2 ft. in diameter. Cable HGI extends to a 
hoisting engine. Boom GD weighs 24,000 lb. with its center 
of gravity at its middle point. Handle JH weighs 5000 lb. 
with its center of gravity at its middle point. The bucket 
and load weigh 10,000 lb. In the dumping position the boom 
is at an angle of 15° with the horizontal, handle JH is at an 
angle of 30° with the horizontal and the boom and handle are 
swung toward C through an angle of 45°. Solve for the pin 
reactions at J and D, the stress in the cable and the stresses 
in the three supporting stays when in this dumping position. 

Solution: The first free body consists of the bucket, load 
and handle. The 10,000-lb. and 5000-lb. loads are combined 
into their resultant which is 15,000 lb. The pin reaction at 
J acts through J and the point where the 15,000-lb. resultant 
intersects the line of action of the unknown cable stress GH. 
The force triangle for this free body is shown in Fig. 89(6). 
Vector Rj scales 10,900 lb., and the tension in the cable GH 
scales 21,200 lb. 

The next free body consists of the boom, handle^ bucket and 
load. The resultant of all of the known loads, 10,000 lb., 
5000 lb., 24,000 lb. and 21,200 lb., is 49,000 lb., as shown in 
Fig. 89(a). The pin reaction at D acts through D and the 
point where the 49,000-lb. resultant intersects the line of 
action of the unknown tie-rod stress GB. The force triangle 
for this free body is shown in Fig. 89(c) from which Rn scales 
55.700 lb. and GB scales 37,900 lb. tension. 
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The stress in GB is next resolved into three rectangular 
components as explained in Art. 23. First, as shown in Fig. 
89(c), it is resolved into GByj 22,300 lb.; and GB^y 30,500 lb. 

GBh is then resolved, as shown in Fig. 89(d), into GBx and 
GBx, each 21,600 lb. 

Stresses GBx and GBy act in the plane of ABD and in this 
plane the value of the stress in the backstay AB can be 
obtained. Its force triangle is shown in Fig. 89(e) from which 
AB scales 25,000 lb. tension. 
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Figure 89(/) shows the projection of the forces at B on the 
plane of BCE^ and also shows the solution for the stresses in 
members BC and BE. GBy, A By and GBz are combined into 
their resultant, 41,000 lb. The triangle of forces of this 
resultant, BC and BEy gives the required stresses. BC scales 
56,800 lb. compression, and BE scales 20,500 lb. tension. 

Example 3. Figure 90 shows a derrick. The boom is 30 ft. 
long and weighs 4000 lb. with its center of gravity at N. The 
mast HD is 20 ft. high. There are two cables, ABABI and 
NECEGJ. The boom is horizontal and may swing in the com¬ 
plete circle. Solve for the pin reaction at F, the cable stresses 
and the maximum tension in DL. 

Solution: The first free body is the pulley at A from which the 
cable stress of 4000 lb. is obtained by inspection. The next free 
body consists of the 12,000-lb. load and the boom BF. The 
known loads of 12,000 lb., 4000 lb. and the 4000-lb. cable stress 
are combined into one resultant, 16,500 lb. The point of inter¬ 
section of this resultant and the line of action of the resultant 
stress in the cable NECEGJ is a point on the line of action of 
the pin reaction at F. The line of action of this resultant cable 
stress, OPy must be determined by the method of Art. 36. 
The force triangle is shown in Fig. 90(5) and from it the stress 
in the cable scales 10,600 lb. tension, and the pin reaction at F 
scales 30,100 lb. 

The boom and mast together constitute the next free body. 
The resultant of all the external loads, 12,000 lb., 4000 lb., the 
4000-lb. cable stress and the 10,600-lb. cable stress, is 21,600 
lb. By the method of Art. 38 this resultant is resolved into 
two components, the tipping force at Z), 19,900 lb., and a 
component through the base of the mast. This construction 
is shown in Fig. 90(a). 

The plan view of the guy wires is shown in Fig. 90(c). The 
two possible positions for maximum tension in DL are shown, 
and, as ot\ is larger than a2, the tipping force must be placed 
at an angle of 90° with DM (stress DK = 0). The solution 
for DLh maximum is shown in Fig. 90(d) and its vector scales 
28,200 lb. The final part of the solution is shown in Fig. 90(c) 
where the true length and inclination of DL are shown to scale. 
Vector DLff maximum is laid off and vector DLv completes 
the triaruzle from which DL maximum scales 32.300 lb. tension. 
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PROBLEMS 
Note: In the following problems, the scales given are 

based on the standard-size drawing plate as recommended in 
Art. 3. 

Problem 1, Figure 91 shows a smokestack. Consider the 
resultant wind pressure of 3000 lb. as acting at the center of 
the stack. With this wind pressure in the position to produce 
maximum tension in AD, solve for this tension. Scales: 1 in. 
- 10 ft.; 1 in. = 600 lb. 

Ans. AD = 6190 Ib« T 

Problem 2. The tripod, shown in Fig. 92, has a load of 6000 
lb. acting vertically at A. Solve for the stresses in AD, AC 
and AD. Scales: 1 in. = 5 ft.; 1 in. = 1000 lb. 

Ans, AB = 2720 lb. C; AC = 2650 lb. C; AD = 1550 lb. C. 
Problem 3. The tripod, shown in Fig. 93, supports a load 

of 4000 lb. by means of a cable over a pulley at A, The cable 
T passes thence to a pulley at E, Solve for the stresses in 
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AB, AC and AD. Scales: 1 in. = 5 ft.; 1 in == 1000 lb. 
Ans. AB = 3480 lb. C; AC = 700 lb. T; AD = 5250 lb. 

— 

Fig. 93. 

Problem 4. Figure 94 shows a derrick. The boom weighs 
8000 lb. with its center of gravity 10 ft. from E, and is placed 

o 

Fig. 94. 

15® below the horizontal. Mast OG weighs 10,000 lb. Dis¬ 
tances GF, FE and ED are each 1 ft. and height of mast OG is 
20 ft. The backstays OH and OH' form an isosceles triangle 
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with the vertex at 0 and base HW 10 ft. All pulleys are 1 ft. 
in diameter and the wheels are 2 ft. in diameter. There are 
two cables, OCOFS and BABDP, Solve for the cable stresses, 
the pin reactions at E and (7, reactions Ri and R2 and the 
stresses in OH and OIF. Scales: 1 in. = 4 ft.; 1 in. = 10,000 
lb. 

Ans, R2 = 20,700 lb.; OH = OH' = 18,500 lb. T. 
Problem 6. Figure 95 shows an excavator. The boom 

weighs 4000 lb. with its renter of gravity at its middle point 
and is placed at an angle of 30° above the horizontal. The 
mast, weight neglected, is 60° with the horizontal. The two 

backstays form an isosceles triangle with its vertex at E and 
base FF' 12 ft. long. Tie JB is 4 ft. long. All pulleys are 
1 ft. in diameter and the wheels are 2 ft. in diameter. Solve 
for the cable stresses, the pin reactions at A and C, the stresses 
in EF and EF' and the reactions Ri and R2. Scales: 1 in. = 
6 ft.; 1 in. = 6000 lb. 

Ans. EF = 14,000 lb. T; R2 = 106,000 lb. 
Problem 6. The structure, shown in Fig. 96, is an extension 

boom derrick. EG may vary from 4 ft. to 20 ft. The plat¬ 
form weighs 100,000 lb. with its center of gravity midway 
between wheels A and B. The boom weighs 20,000 lb. with 
its center of gravity, when fully extended as shown, 20 ft. 
from E. The pulley near is on a bracket fastened to the 
boom, and, for the position shown, DE is a straight line. All 
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pulleys are 1.5 ft. in diameter and the wheels are 3 ft. in 
diameter. The pulley near E \s 2 ft. from the boom. Solve 
for the stresses in the cables, the pin reaction at H and the 
reactions at A and B when the load at / is 5000 lb. Scales: 
1 in. - 6 ft.; 1 in. = 6000 lb. 

Ans. Ru = 51,400 lb.; Rb = 102,000 lb. 

Problem 7, With the same general data as in Example 1, 
place the boom in the position to produce: (a) maximum 
tension in AD; (h) maximum compression in AC, Solve for 
these maximum stresses and the corresponding stresses in the 
mast. Scales: 1 in. = 10 ft.; 1 in. = 6000 lb. 

Ans. (a) AD = 44,900 lb. T; AO = 39,780 lb. C. (b) 
AC = 63,400 lb. C; AO = 24,100 lb. T. 

Problem 8. Figure 97 shows a dredge. The A-frame BCE 
is vertical. Line AD is normal to the plane BCE. All 
pulleys are 2 ft. in diameter. The boom weighs 24,000 lb. 
with its center of gravity at its middle point. Handle JFH 
weighs 5000 lb. with its center of gravity at its middle point. 
The bucket and load weigh 10,000 lb. with the center of gravity 
at H, In the filling position, boom GD is at an angle of SO'^ 
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with the horizontal; handle JFH is at an angle of with the 
horizontal; and the pressure normal to the handle at the bucket 
is 6000 lb. The boom and handle are in the plane of ABD. 
Solve for the stress in the cable, the pin reactions at F and D 

B 

and the stresses in ABy BC and BE, Scales: 1 in. = 10 ft.; 
1 in. = 6000 lb. 

Ans. aB = 27,200 lb. T; BC ^ BE ^ 13,700 lb. C. 
Problem 9. Figure 98 shows a dredge with a sloping 

A-frame. The boom weighs 16,000 lb. with its center of 

gravity 14 ft. from Ey and is at an angle of 15® with the 
horizontal. The handle weighs 4000 lb. with its center of 
gravity at its middle point and is at an angle of 30° with the 
horizontal. Pulley 7 is 2 ft. in diameter; all other pulleys 
are 1 ft. in diameter. Tie rod FL is 1 ft. long. The boom is 
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I’otated toward D through an angle of 60° from the plane of 
AEF. With the boom in this position, solve for all cable 
stresses, pin reactions, and the stresses in AF, BF and DF. 
Scales: 1 in. = 6 ft.; 1 in. = 6000 lb. 

Ans, AF = 56,400 lb. T; BF = 4900 lb. T; DF - 83,600 
lb. C. 

Problem 10. With the same general data as in p]xample 3, 
place the boom in the position to produce maximum tension 
in DMj and solve for this maximum tension. Scales: 1 in. = 
6 ft.; 1 in. = 6000 lb. All pulleys are 1 ft. diameter. 

Ans. DM = 31,500 lb. T, 
Problem 11, Figure 99 shows a derrick. The boom AG 

is 60 ft. long and weighs 4000 lb. with its center of gravity 

at its middle point. Pulley O is on a bracket with its center 
1 ft. from the axis of the mast. Angle AGD may vary from 
15° to 90°. The boom may swing through the complete 
circle horizontally. AB = 4 ft.; AC — 1.5 ft.; NG = 24 ft. 
All pulleys are 1 ft. in diameter. DKj DL and DM ar(^ guy 
wires. HK = 40 ft.; 50 ft.; HM = 65 ft. Solve for 
all of the cable stresses, the pin reaction at G and the maximum 
tension in DK, Scales: 1 in. = 6 ft.; 1 in. = 6000 lb. 

Ans. DK = 54,100 lb. T. 
Problem 12. Figure 100 shows a derrick. The boom is 

50 ft. long and weighs 4000 lb. with its center of gravity at 
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its middle point. Pulley is on a bracket with its center 1 ft. 
from the axis of the mast. Angle AGD may vary from 15® 
to 75°. The boom may swing through the complete circle 

Fio. 100. 

horizontally. DK, DL and DM are guy cables. HK = 30 
ft.; HL = 56 ft.; HM = 65 ft.; AO = 2 ft.; AN = 20 ft.; 
GN = SO it.; AB = S ft.; CD = 3 ft. All pulleys are 1 ft. 
diameter. Solve for all cabhi stresses, the pin reaction at G 
and the maximum tension in DL. Scales: 1 in. = 6 ft.; 
] in. = 6000 lb. 

Ans. DL = 50,500 lb. T. 



CHAPTER V 

MACHINES 

41. Machines. 

The computation of the various stresses and reactions 
set up in a machine often becomes a very tedious process. 
This is especially true when there are many moving 
parts and friction is considered. Such problems may 
often be solved much more readily by the graphical 
method than by any other. 

The principal types of reactions involved in machines 
are reactions at sliding surfaces, reactions between 
journals and bearings, reactions between gears and 
reactions at rolling surfaces. These will be taken up in 
order. 

42. Reactions at Sliding Surfaces. 

In general the resultant reaction between two sliding 
surfaces will consist of two components, one normal to 
the surfaces and the other tangent to the surfaces, the 
latter being due to friction. When 
slipping is occurring, the ratio of the 
tangential component to the normal 
component is called the coefficient of 
kinetic friction. Within certain limits of 
temperature, speed, time, etc., this coeffi¬ 
cient is practically a constant, depend¬ 
ing only on the materials. 

In Fig. 101, which represents a block being pulled 
along a horizontal surface by force P, the reaction R 
of the surface upon the block is the resultant of the 
normal pressure N and the frictional resistance F. 

97 
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By the definition above, the coefficient of friction / 

is the ratio of F to N. Thus, / = F/N or F = fN. 

The angle (p between the resultant R and the normal to 

the surface is called the angle of kinetic friction or, more 

simply, the angle of friction. From the figure, tan 

<p = F/Nj or <p — tan^V* This shows that the resultant 

reaction at sliding surfaces is inclined to the normal 

at an angle whose tangent is the coefficient of kinetic 

friction. It should be noted in particular that the 

resultant reaction is inclined to the normal in such a 

direction as to oppose the motion of the free body, relative 

to the surface with which it is in contact. If the friction 

is so small as to be negligible, the tangential component 

F disappears and the resultant reaction becomes normal 

to the surfaces. 

The wedge and block, shown in Fig. 102(a), will be 

used as an example. Let it be required to determine 

the force P necessary to raise the block A, if the coeffi¬ 

cient of friction is 0.2 at all surfaces. 

The free-body diagram for the block A is shown in 

Fig. 102(fc). The resultant reactions, Ri between A 

and C, and R2 between A and B, are each inclined to 

their respective normals at the angle ip whose tangent is 

0.2. The angle ip is easily laid off in the following way. 

With any convenient scale, ten units are laid off from 

the surface in the normal direction and from this point 

two units are laid off in the tangential direction. The 

diagonal is then drawn. The tangent of the angle 

between the diagonal and the normal is thus 0.2. The 

reactions Ri and R^ must each be inclined so as to oppose 

the motion of the block A. Since the block moves 

upward relative to the wall C, the reaction Jf2i must have 

a component downward and thus lies on the upper side 

of the normal. Since the block A moves to the left 

relative to the wedge B, the reaction R^ must have a 

component acting to the right and therefore lies on thf 
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left side of the corresponding normal. The force 
triangle of Fig. 102(c) is then laid off to some convenient 
scale and the values of R, and arc found to scale 449 
pounds and 95(3 pounds respectively. 

The reaction R2 thus obtained now becomes the known 
force on the wedge B whose free-body diagram is shown 
in Fig. 102(d). The triangle of forces for this free body 
is shown in Fig. 102(c) from which P scales 595 pounds 
and Rs scales 875 pounds. The two force triangles 
may be combined into a single force diagram as shown 
in Fig. 102(/). 

If friction were negligible, each of the reactions 
would be normal to the surface on which it acts. The 
subsequent procedure involved in the solution would 
be the same as that in the above example with friction, 
and the results obtained would be; R^ = 268 pounds, 
Ri = 899 pounds, Rz = 866 pounds and P = 232 
pounds. 



100 GRAPHIC STATICS 

43. Journal Reactions: the Friction Circle. 

For obvious reasons a bearing must be slightly larger 
than the journal which rotates within it and this differ¬ 
ence in size is gradually increased by wear in service. 
It is seen, therefore, that a journal is in contact with its 
bearing only along a narrow arc instead of around the 
complete circumference. For all practical purposes, the 
pressure may be considered to be acting along a line of 

contact at the middle of the arc of pressure, which in 
the plane projection of the bearing becomes a point. 
If the friction is so small as to be negligible, this point of 
contact is not changed in position when the journal 
rotates. The reaction between the journal and its 
bearing must pass through this point and must be 
normal to the surfaces. It must therefore pass through 
the center of the journal and the center of curvature 
of the bearing. If the friction is appreciable, however, 
the journal will roll from its position of rest imtil the 
resultant reaction of the bearing acts at the angle of 
friction <p with the normal or radius at the point of 
contact, when slipping of the journal on the bearing 
will take place. If the coefficient of friction remains 
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constant, the journal will remain in this position as it 
rotates. This condition is shown in Fig. 103. The 
driving force P causes the crank to rotate clockwise 
against the resistance Q. The journal of the crank rolls 
up the right side of the bearing until it reaches point A 

where it begins to slip. At this point, the resultant 
reaction R is inclined at the angle of friction tp with 
the normal and in such a direction as to oppose the 
slipping. It will be seen that the reaction R does not 
pass through the center of the journal and bearing but is 
tangent to a small circle, concentric with the journal 
whose radius is r sin ip. This circle is called the friction 

circle. If the coefficient of friction is small, sin (p may be 
taken as equal to tan <p with no appreciable error. 
Then the radius of the friction circle becomes r tan <p 

or fr. 
When the radius r and the coefficient / are known, the 

friction circle can be drawn and then used to locate the 
point of contact of the journal and its bearing. In 
Fig. 103, P and Q are extended to intersect at point B. 

The resultant reaction R must pass through point B 

and must also be tangent to the friction circle. The 
point of contact A is thus determined. In order to 
determine on which side of the friction circle the reaction 
must be tangent, any one of the following rules may be 
used: 

1. The reaction is tangent to the friction circle on that 

side of the hearing toward which the journal rolls. In 
Fig. 103, the journal is seen to roll upward on the right 
side of the bearing. Therefore, the reaction R is tangent 
to the friction circle on the right side. 

2. The reaction is tangent to the friction circle on that 

side which reduces the mechanical advantage. Friction 
always opposes the driving force and aids the resistance. 
In Fig. 103, the reaction R must be tangent on the right 
side of the friction circle, so as to reduce the lever arm 
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of the driving force P and increase the lever arm of the 

resistance Q. 
3. The reaction is tangent to the friction circle on that 

side where the pressure exerted hy the free body is in the 
same direction as its relative rotation. The resultant 

N action of forces P and Q upon the crank causes 

the latter to press downward toward the right 

upon the bearing. The direction of rotation of 

\ the crank is clockwise. It will be seen, from 

Fi 'io4 direction of the pressure 
exerted by the crank upon the bearing and the 

direction of rotation of the crank coincide on the right 

side of the friction circle and are opposite on the left side. 

This rule is perhaps somewhat mechanical in its manner 

of application, but, when once understood, it furnishes a 

very quick way for determining the side of tangency. 

The above rules apply equally well if the journal is 
stationary and the bearing turns. Therefore, in the 

analysis of a given free body, the journal may be made a 

part of the free body with the bearing external, or the 

bearing may be considered as a part of the free body 

with the journal external. In order to illustrate further 

their manner of application, each of the above rules 

will be used in turn in the analysis of subsequent 
problems. 

The hoisting mechanism, shown in Fig. 105, will be 

used as the first example. The mechanism consists of a 

drum C from which the load is suspended by means of a 
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flexible cable, a connecting rod AB and a crosshead A 

which is acted upon by the steam pressure P, trans¬ 
mitted through the piston rod. The force P, required 
to raise the load, is to be determined when the crank 
pin B is in the position shown. All bearings are 3 
inches in diameter. The coefficient of friction is 0.15 
for the bearings and 0.3 for the crosshead A and guides. 

The first free body is the rotating drum. Fig. 106(a), 
which is acted upon by three forces, the 1000-pound 
load, the tension in the connecting rod AB and the 
bearing reaction at C. The line of action of the stress 
AB must be tangent to the friction circles at A and B. 

The diameter of these circles, as previously explained, 
will be the product of the diameter of the journal and 
the coefficient of friction or 3 inches X 0.15 = 0.45 
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inch. By applying the first rule to the friction circle 
at A, assuming the connecting rod to carry the journal 
and the bearing to be a part of the crosshead, it will 
be seen that the tension in the rod AB pulls the journal 
at A to the left side of the bearing. The journal at A 

is rotating counterclockwise in this bearing and there¬ 
fore, due to friction, tends to roll up. Hence the line 
of action of the stress AB is tangent on the upper side 
as shown. 

By applying the second rule to the friction circle at B, 

it is seen that in order to diminish the mechanical advan¬ 
tage of the driving force AB, its lever arm with respect to 
C must be shortened by making its line of action tangent 
to the friction circle on the lower side. The direction of 
stress AB is thus determined by the common tangent 
to the friction circles at A and B. . 

The reaction Rc must pass through the intersection 
of the force AB and the line of action of the load, and 
at the same time must be tangent to the friction circle 
at C. The resultant effect of force AB and of the load 
upon the drum is to cause the journal to press downward 
and to the right upon the bearing. The drum rotates 
clockwise. By applying the third rule, it is seen that 
the reaction Rc must be tangent on the right side of the 
friction circle because the pressure is in the direction 
of rotation on this side. 

The directions of the forces having been thus deter¬ 
mined, the force triangle, Fig. 106(6), can be drawn, 
from which Rc and AB scale 1975 pounds and 1471 
pounds respectively. 

The crosshead A is now taken as the free body, the 
external forces being AB, P and the guide reaction Ra. 

If a small clearance is assumed between the crosshead 
and the guides, there will be contact on one side only. 
Since the connecting rod AB is in tension, it will tend to 
lift the crosshead up against the upper guide. Thus 
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the guide reaction will be exerted downward on the 
upper side of the crosshead. This reaction must pass 
through the intersection of forces AB and P and must 
be inclined to the normal at the angle (p whose tangent 

is 0.3, and in such direction as to oppose the motion 
of the crosshead. This is shown in Fig. 107(a). From 
the force triangle, as drawn in Fig. 107(6), forces P 

and Ra scale 1539 pounds and 389 pounds respectively. 

The various parts of the solution of the above problem 
are shown united into a single diagram in Fig. 108. 

If friction were so small as to be negligible, the forces 
AB and Rc in the above example would pass through 
the centers of their respective bearings, and force Ra 
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would be normal to the guide. From the solution of 

the problem under such conditions, the following results 

would be obtained: Rc = 1900 pounds, AB — 1378 

pounds tension, Ra = 366 pounds and P = 1328 pounds. 

44. Gear Pressures. 

It is shown in standard texts in Mechanism that, 

for involute gear teeth, the line of action of the pressure 

is constant in direction at some angle a wdth the common 

tangent to the pitch circles. The angle of obliquity a 
is usually 15° and will be so taken in all of the examples 
and problems to follow. Figure 109(a) shows two 

involute gears in mesh, A being the driver and B the 

follower. Pressure will occur at points M and JV. 

If friction were negligible, the pressure line MN would 

be normal to the surfaces of the teeth and would pass 
through the pitch point 0, at an angle of 15° with 

the common tangent to the pitch circles or 75° with the 

line of centers on the entering side of the driver. The 

arrowhead indicates the direction of the pressure exerted 

by the driver A upon the follower B] the reaction or 

resistance of the follower B upon the driver A would 

be in the reverse direction. 

The effect of friction will now be determined by an 

approximate method which is sufficiently accurate for 

all practical purposes. Since sliding is occurring at 

points M and N of Fig. 109(a), the resultant pressure 
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lines, considering the effects of friction, will be R„ and 
each making an angle ip with the common normal 

MN. The resultant force exerted by A upon B will 
be P, the resultant of Rm and R^, as shown in Fig. 109(fe). 
If it is assumed that the tooth spacing is so perfect that 
the pressure is equally divided between the two contact 
points, then Rm and Rn are equal. P will consequently 
bisect the angle between Rm and Rm, and therefore 
must be parallel to the line MN which is the pressure 
line when friction is neglected. If these conditions 
are assumed to be true throughout the cycle of tooth 
action, it follows that the effect of friction is to displace 
the pressure line parallel to itself. From Fig. 109(6), 
which represents the conditions of Fig. 109(a) on an 
enlarged scale, the perpendicular displacement OQ 

is equal to ^MN tan tp or If-MN. Also, MN = p 

cos a, where p is the circular pitch. Hence, OQ — \fp 

cos a. The radial displacement s along the line of centers 
will be OQ/cos a — Ifp. In subsequent problems the 
value of the distance s will be stated in preference to 
assigning values to / and p. 

It should be noted that this shifting of the pressure 
line is in the direction from the driver to the follower, 
thus increasing the lever arm of tfie resistance acting 
upon the driver and decreasing the lever arm of the driv¬ 
ing force upon the follower. 

In the case of the less commonly used cycloidal teeth, 
the pressure line is not constant in direction but its 
average will not differ much from that of the involute 
system. An approximate solution may be made on this 
basis. 

In the graphic solution of problems involving gears, 
it is unnecessary to draw the outlines of the teeth since 
the direction of the pressure and its point of applica¬ 
tion are all that are required. This is shown in the 
simplified diagram. Fig. 110. Here, the two pitch circles 
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are shown tangent to each other at 0, the pitch point. 
The line MN, drawn through the point 0 at an angle 
of 75° with the line of centers on the entering side of the 
driver, would be the pressure line if friction were neg¬ 

lected. With friction considered, the vector P, parallel 
to MN but displaced by the distance s from 0 along the 
center line, shows the line of action of the pressure. 

The hoisting mechanism shown in Fig. Ill will be 
used as an illustration of the solution of a simple problem 
involving gear pressure. It consists of a belt-driven 
pulley A, rigidly attached to a gear wheel B which 
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meshes with another gear C rigidly attached to a drum 
D, from which the load W is suspended by a flexible 
cable. The bearings are 3 inches in diameter, f = 0.2 
and s = 0.3 inch. The load W that can be raised by the 
given belt pulls is to be determined. 

Pulley A and gear B are taken as the first free body. 
There are four forces acting, the two known belt tensions, 
the gear pressure P and the bearing reaction at E. 

In accordance with the explanation previously given, 
the gear pressure P is laid out at an angle of 75"^ with the 
line of centers on the entering side of the driver B and 
passes through point H which is 0.3 inch from 0, the 
point of tangency of the pitch circles. The displace¬ 
ment OH is from the driver B toward the follower C, 

as shown. The parallel belt pulls are combined by 
the method of inverse proportion into their resultant 
R\. The number of forces is thereby reduced to three, 
Ri, P and the reaction at bearing E. These forces 
must be concurrent at the point where Ri and P inter¬ 
sect. The bearing reaction Rk must therefore pass 
through this point and must also be tangent to the 
friction circle at E. The resultant of forces Rt and P 

tends to lift the journal at E to the upper right side of 
the bearing. The rotation of the journal is counter¬ 
clockwise and so the journal tends to roll downward on 
the right side of the bearing. Thus, Rx is shown tangent 
on the lower side of the friction circle. Since the 
directions of the unknown forces have now been deter¬ 
mined, the force triangle can be constructed as indicated. 
From it P scales 341 pounds, and Re scales 878 pounds. 

The gear C and the drum D together constitute the 
other free body, the external forces being P, W and the 
bearing reaction at F. The latter force must pass 
through the intersection of P and W, and also must be 
tangent to the friction circle at F. The resultant of 
forces P and W upon the free body causes the journal 
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at F to press downward upon the bearing. The rotation 
of the journal is clockwise. These directions coincide 
on the right side of the friction circle, and so Rf is drawn 
tangent to this side. Since the directions of all of the 
forces are now known, the force triangle is constructed 
as shown, and from it Rf and W scale 708 pounds and 
424 pounds respectively. 

If friction were neglected in the above example, the 
gear pressure P would be drawn through the pitch point 
0 and the two bearing reactions would pass through 
the centers of the corresponding bearings. The following 
results would then be obtained: Rk = 943 pounds, 
P = 417 pounds,= 938 pounds and IF = 600 pounds. 

Fig. 112. 

45. Reactions at Rolling Surfaces. 

If a wheel or roller and the surface upon which it 
moves were perfectly rigid so that no deformation could 

take place, the surface of contact would 
be reduced to a line which would appear 

II as a point in the plane projection. The 
' J reaction between the rolling body and the 

surface would necessarily pass through 
this point of contact. However, since all 
materials possess some elasticity, there 

will be a flattening of the rolling body at the surface of 
contact and a depression in the surface upon which the roll¬ 
ing takes place. The effect on the moving body then is 
the same as if there were a small obstruction constantly 
in its path. This condition is shown in Fig. 112 which is 
drawn with all of the deformation shown in the plane. 
The resultant reaction R acts through the point B at the 
distance a in front of the normal radius. Experiments 
show that the distance a is practically independent of the 
size of the rolling body or of the load, and depends only 
on the materials. It is called the coefficient of rolling 
resistance. 
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In the graphical solution of problems in which rolling 
resistance is involved, the reaction of a guide or track 
upon a simple roller will therefore act through a point 
at distance a ahead of the normal radius, as shown in 
Fig. 113(a). If, instead of being a simple roller, the 
rolling body consists of a wheel supported by a bearing, 
the reaction must not only conform to the above require¬ 
ments, but must also be tangent to the friction circle 
at the journal, as shown in Fig. 113(?>). 

The elevator shown in Fig. 114 is an example of a 
mechanism involving rolling resistance. It consists 
of a cage A BCD, with a wheel attached at each of the 
four corners. The wheels roll on the vertical guides 
M and N. The cage is loaded as indicated and raised 
by means of the tension T in the supporting cable. 
The wheels are 12 inches in diameter, the bearings are 
4 inches in diameter, / = 0.3 and a = 0.5 inch. The 
tension T necessary to raise the elevator with uniform 
speed is to be determined. 

The cage and the attached wheels constitute the free 
body. If a small clearance between the guides is 
assumed, the rotational effect of forces T and W upon 
the cage causes the wheels B and D to swing free of the 
guides, and these are therefore not acting. There are 
now four external forces on the free body, consisting 
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of the tension T, the load W and the reactions upon 
the wheels A and C. The reaction Ra must pass through 
a point 0.5 inch above the normal radius of the wheel 
A and must also be tangent to the friction circle. The 
journal of the wheel A presses to the left on the bearing 
and its rotation is clockwise. The directions of the 
pressure and the rotation coincide on the lower side; 
hence, the reaction Ra must be tangent on the lower 

side of the friction circle. Similarly, the reaction Rc 
of the guide M upon the wheel C must pass through a 
point 0.5 inch above the normal radius and must be 
tangent to the friction circle on the lower side. 

All the forces acting on the free body are now known 
in direction and one, the load W, is also known in 
magnitude. This is therefore an example of the four- 
force system as explained in Art. 24. Forces W and Rc 
are extended to intersect at point 0, and forces T and 
Ra at Q. Since, for equilibrium, the resultant of one 
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of these pairs must be colinear with the resultant of the 
other pair, the line OQ must be the line of action of 
these resultants or the closing line. At point 0, a 
triangle is laid out of forces W, Re and their resultant Ri, 
from which Rc scales 142 pounds and Ri scales 543 
pounds. At point Q, the resultant Ri of the other 
pair of forces is laid out, equal to Ri but opposite in 
direction, and another triangle is constructed from 
which Ra scales 142 pounds and T scales 552 pounds. 

If friction and rolling resistance in the above example 
were negligible, each of the two guide reactions would 
be normal to the guides and would pass through the 
center of the corresponding wheel. The results obtained 
under these conditions would be: Ra = 139 pounds, 
Rc = 139 pounds and T = 500 pounds. 

46. Efficiency. 

The efficiency of a machine is defined as the ratio 
of the energy output to the energy input. For a machine 
with friction, the efficiency must necessarily be less 
than 100 per cent. It may easily be shown that, when 
the driving force is the same for both cases, the efficiency 
is the ratio of the resisting force that can be overcome 
with friction to the resisting force that could be overcome 
without friction. Or, if the resistance is the same in 
each case, the efficiency is the ratio of the driving force 
which would be required without friction to the driving 
force required with friction. 

For example, the efficiency of the wedge and block of 
Art. 42 is the ratio of the driving force P without friction 
to the force P with friction, or f|| = 0.39, or 39 per 
cent. The efficiency of the hoisting mechanism of Art. 
44 is the ratio of the resistance W with friction to that 
without friction, or = 0.707, or 70.7 per cent. The 
low efficiencies obtained in these two examples, and in 
many examples and problems that follow, are due to 
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the relatively high values assumed for the coefficients 
of friction. These high values, approximately those for 
dry or poorly lubricated surfaces, have been used in 
order that the friction circles might be of appreciable 
size on the small-scale drawings necessary. 

47. Examples. 

The following examples serve to illustrate further the 
application of the principles and methods taken up 
in this chapter and to indicate how certain special 
situations may be handled that often arise in the graphic 
solution of machines. In these examples, as well as 
in the problems which follow, only a rough outline of 
the framework of the machine is given since a detail 
drawing is not essential. 

Example 1. A steam hoist, consisting of an elevator and 
hoisting mechanism driven by a reciprocating engine, is shown 
in Fig. 115. The elevat or carries a 2200-lb. load and is raised 
or lowered by the flexible cable T. The wheels A and B are 
attached to the elevator and roll upon the fixed vertical 
guide MN, The cable T winds on a drum C which is rigidly 
attached to a gear D, The latter meshes with another gear 
F which is driven by the connecting rod GH. The crosshead 
H moves horizontally between fixed guides under the action 
of the steam pressure P, communicated through the piston 
rod. All bearings are 3 in. in diameter, wheels A and B are 
8 in. in diameter, / = |, a = f in. and s = J in. Solve for 
force P necessary to raise the load when the connecting rod 
and the crank pin are in the position shown. 

Solution: The first free body is the elevator which is acted 
upon by four forces: the load IT, the cable tension T and the 
reactions Ra and On account of rolling resistance, the 
reaction Ra must pass through a point | in. above the normal 
radius of wheel A and, since there is friction at the bearing, 
it must be tangent to the friction circle. The journal of the 
wheel A presses to the right on its bearing and rotates counter¬ 
clockwise. Since pressure and rotation coincide in direction 
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on the lower side, the reaction must be tangent on the lower 
side of the friction circle and the direction of the reaction Ka 
is thus determined. Similarly, the reaction Rb must pass 
through a point j in. above the normal radius of the wheel B 
and must also be tangent to the friction circle on the lower 
side. It is now seen that the directions of all of the four 

forces are known and the magnitude of one, IF, is known. 
The elevator is thus a four-force body and is solved in the same 
way as the elevator in Art. 45. The forces W and Ra are 
extended to intersect at point 0, and the forces T and Rb 
intersect at point Q. The line OQ is the closing line or line of 
action of the resultant of each pair. At point 0, a triangle 
is laid out of the forces W, Ra and their resultant Ri, from 
which Ra and Ri scale 2580 lb. and 3700 lb. respectively. At 
point Q, a triangle is laid out of forces T, Rb and their resultant 
fii' which is equal and opposite to Ru From this triangle, 
Rb and T scale 2580 lb. and 3130 lb. respectively. 
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The second free body, consisting of drum C and gear D 
together, is acted upon by three forces: the cable tension T, 
the gear pressure E and the reaction Rj at the bearing. The 
gear pressure E is shown acting at a distance of J in. from the 
point of tangency of the pitch circles, this distance being laid 
off toward point J so as to reduce the lever arm of the driving 
force E upon the follower D. The bearing reaction Rj passes 
through the intersection of forces T and E and is tangent to 
the friction circle at J on the right side, because the journal 
tends to roll up the right side of this bearing. The force 
triangle of these forces is shown drawn on the space diagram and 
from it Rj scales 5260 lb. and the gear pressure E scales 2770 lb. 

The third free body is the gear F which is acted upon by the 
known gear pressure £', the tension GH in the connecting 
rod and the bearing reaction at K. The line of action of the 
stress GH must be tangent to the friction circle at each end 
of the connecting rod GH. The reaction Rk must pass through 
the intersection of forces E and GH and must also be tangent 
to the friction circle at K. (It is left to the student to check 
the positions of these forces, relative to the friction circles.) 
The force triangle for this free body gives Rk == 9300 lb. and 
tension GH = 7130 lb. 

The fourth free body is the crosshead H which is acted upon 
by tension GH^ the guide reaction Rj and the piston-rod ten¬ 
sion P. The force triangle is shown in Fig. 115, from which P 
and Ri scale 7360 lb. and 900 lb. respectively. 

To obtain the efficiency, it is necessary to solve for P with 
friction neglected. The resulting solution gives P = 4030 
lb. Hence the efficiency is = 0.547, or 54.7 per cent. 

Example 2. The mechanism shown in Fig. 116 is known as 
the Evans straight line motion. All bearings are 3.25 in. in 
diameter, f = \ and s = 0.3 in. Assuming = 2Ti, deter¬ 
mine the belt tensions necessary to raise the load Q when the 
crank pin D is in the position shown. 

Solution: The first free body is the walking-beam BEFH 
which is acted upon by four forces, all of which may be deter¬ 
mined in direction. One of the forces, Q, is also known in 
magnitude. The known load Q acts vertically and must be 
tangent to the friction circle at B. The member DE is in 
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compression, and the line of action of this stress must be 
tangent to the friction circle at each end. The link AB" is in 
tension, and the line of action of this stress must likewise be 
tangent to the friction circles at the ends. The block H is 
sliding to the left and presses against the upper side of guide 

G. The latter fact may be shown by considering moments 
with respect to the intersection of AF and ED. The load Q 
tends to rotate the free body counterclockwise about this 
point and thus to lift the block H upward. The guide reaction 
Ro must therefore be downward and to the right, and at the 
same time tangent to the friction circle. The directions of aU 
of the forces are now established. 
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As shown previously, the forces are paired: Q with DE, and 
Ro with AF, The line connecting the two intersections must 
be the line of action of the resultant of each pair. The triangle 
of the forces Q, DE and their resultant Ri is drawn as shown, 
giving Ri = 1980 lb. and DE = 3630 lb. compression. The 
resultant Ri' of forces Ra and AF is equal and opposite to the 
resultant just obtained, so another force triangle at their 
intersection gives the values of Rq and AF which scale 1150 
lb. and 1780 lb. respectively. 

The second free body is the gear C which is acted upon by 
three forces: the known stress DEy the gear pressure K and the 
reaction at the bearing 7. The solution of this free body 
involves no new procedure and is shown in Fig. 116. Reaction 
Rj scales 5580 lb. and gear pressure K scales 2260 lb. 

The third free body consists of gear J and pulley L, which 
are rigidly fastened together. There are four external forces: 
the known gear pressure iv, the belt pulls Ti and and the 
bearing reaction Rm- Although the belt tensions arc as yet 
unknown, the relationship T2 = 2Ti makes it possible to 
locate their resultant by inverse proportion, using any con¬ 
venient scale. This reduces the system to three forces and 
the solution is readily completed as shown in Fig. 116. After 
the resultant belt pull Ti + T2 has been obtained, it may be 
resolved into its components Ti and T2. From the force 
diagram, Rm = 2290 lb., T^ = 1370 lb. and T2 = 2740 lb. 

Example 3. A lifting table operated by hydraulic pressure 
is shown in Fig. 117. The table L moves vertically between 
fixed guides E and F. The bearings A and F of the two gear 
sectors are fixed in position. The wheels D and E are 10 in. 
in diameter; all bearings are 4 in. in diameter; / = 0.2, s = 
0.2 in. and a = 0.2 in. With a 12,000-lb. resistance Q acting 
against the table, determine the driving force P necessary to 
raise the table when it is in the position shown. 

Solution: The table L is the first free body. It is acted 
upon by four forces: the load Q, the stresses in links BC and 
GH and a guide reaction upon the wheel at D or E. To deter¬ 
mine whether D or E is acting, the position of the load Q must 
be considered. Since Q is nearer the supporting link GH, it 
will cause the stress in link GH to be larger than that in link 
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BC, The horizontal component of the thrust of GH upon 
the table will consequently be greater than that of BC; hence, 
the resultant horizontal action upon the table L is toward the 
left and brings the roller D into action. The reaction Ho of 

the guide upon the wheel A passes through a point at a dis¬ 
tance a above the normal radius and is also tangent to the 
friction circle. The lines of action of the stresses BC and GH 
must be tangent to the friction circles as shown. The direc¬ 
tions of all of the forces are thus determined and the magnitude 
of one is known. In the resulting four-force solution, shown 
In Fig. 117, the force BC is paired with reaction Rd, and force 
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GH with load Q, The closing line is drawn connecting the 
two intersections and thus determines the direction of the 
resultant of each pair. The triangle of the forces Q, GH and 
their resultant Ri is drawn, from which the compression GH 
scales 10,100 lb. and Ri scales 3900 lb. The resultant Ri 
of the forces BC and Rd is equal and opposite to the resultant 
i^i just obtained, so another force triangle at their intersection 
gives the values of R^ and BC, which scale 2200 lb. and 2900 
lb. respectively. 

The second free body is the gear sector F and its attached 
arm FG, It is acted upon by only three forces: the known 
stress GHf the gear pressure K and the reaction Rf at the 
bearing. A difficulty arises here, however, in the fact that 
the stress GH and the pressure K are so nearly parallel that 
they do not intersect on the drawing sheet. To overcome this 
difficulty, the force GH is resolved at any convenient point on 
its line of action into two components. One of these, GH\ 
must intersect the line of action of force K; the other, GH"j 
must pass through some point on the line of action of the 
reaction Rp. Since the latter is unknown in direction but 
must be tangent to the friction circle at F, there is only one 
point known to be on its line of action; this will be the point 
of tangency on the left side of the friction circle. The com¬ 
ponent GH" is therefore drawn through this point. There are 
now four forces instead of three, and the four-force method of 
solution is used. The force GH' is paired with gear pressure 
Kj and the force GH" with the reaction Rp. The line of 
resultants or closing line is then drawn. The triangle of the 
forces GH', K and their resultant R2 is drawn as shown in Fig. 
117; from it, the gear pressure K scales 13,600 lb. and the 
resultant R2 scales 21,600 lb. The resultant R^ of the forces 
GH" and Rp is equal and opposite to the resultant R2 just 
obtained. Therefore, the triangle of forces Rp, GH" and 
their resultant R2' gives both the amount and direction of the 
reaction Rp which scales 23,700 lb. 

The third free body is the gear sector A and its attached 
arms AB and AT, It is acted upon by four forces: the stress 
BC, the gear pressure K, the connecting-rod stress IJ and the 
reaction Ra at the bearing. Since the forces BC and K are 
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known and intersect on the drawing, they may be readily 
combined into their resultant which scales 11,250 lb. 
This reduces the system to three forces and the remainder of 
the solution of this free body is completed in the usual way, 
as shown in Fig. 117. The stress IJ scales 23,400 lb. com¬ 
pression, and the reaction Ra scales 32,300 lb. 

The fourth free body is the sliding block J which is acted 
upon by three forces: the known stress JJ, the hydraulic 
pressure P and the guide reaction R^f. The solution of this 
free body is also shown as part of Fig. 117 and gives Rm = 
8600 lb. and P = 23,600 lb. 

PROBLEMS 

Note: In the following problems, the scales given are 
based on the standard-size drawing plate as recommended in 
Art. 3. 

Problem 1. The wedge shown in Fig. 118 is being forced 
under the block. Solve for force P and all reactions (1) 

without friction; (2) with friction, if / = 0.4 at all sliding sur¬ 
faces. Scales: 1 in. = 600 lb, 

Ans, (1) P = 600 lb. (2) P = 2860 lb. 
Problem 2. In the steam hoist, shown in Fig. 119, all 

bearings are 3 in. in diameter and / == 0.3 for all moving sur¬ 
faces. With crank pin B in the position shown, solve for force 
P, guide reaction D, stress in the connecting rod BC and 
bearing reaction A, both without friction and with friction. 

Scales: 1 in. = 1 ft.; 1 in. = 5000 lb. 
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Ans. Without friction: BC = 25,300 ib. C; P = 25,200 

lb With friction: BC = 28.700 lb. C; P - 29,500 lb. 

Problem 3. In the toggle-joint press, shown in Fig. 120, all 

bearings are 1 in. in diameter and / = 0.2 at all moving sur¬ 

faces. Determine the resistance Q and all reactions and 

stresses both without friction and with friction. Compute 

the efficiency. Scales: 1 in. = 3 in.; 1 in. = 400 lb. Coordi¬ 

nates. point A—9 in., 5 in. 

Ans. Without friction: BC = 750 lb. C; DF = 2630 lb. 

C; Q = 4900 lb. With friction: BC = 740 lb. C; DF = 2480 

lb. C; Q = 3550 lb. 

Problem 4. In the interlocking signal levers and com¬ 

pensator, shown in Fig. 121, all pins are 1 in. in diameter and 

/ = 0.2. Solve for the force at 0, (1) without friction; (2) 

with friction. Tabulate the values of all reactions and stresses 

and compute the eflBciency. Scales: 1 in. = 4 in.; 1 in. = 

10 Ud. 
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Arts, Without friction: = 64.4 lb.;F(? = 40 lb. C; == 
59.4 lb.; 0 = 37.5 lb. With friction; Re = 61.2 lb.; FG = 
37.5 lb. C; Rk = 53 lb.; 0 = 32 lb. 

Problem 6. In the vertical piston pump, shown in Fig. 122, 
the center of the eccentric B is 3 in. from the center of the gear 
wheel A to which it is fastened. All bearings are 2 in. in 
diameter, / = 0.15 and s = 0.25 in. Assuming T2 = 27'i, 
determine the belt pulls required, with friction only, to over¬ 
come the resistance Q when the eccentric is in the position 
shown. Scales: 1 in. = 4 in.; 1 in. = 300 lb. Coordinates: 
point A—12 in., 4 in. 

Ans. BC = 2070 lb. C;F = 590 lb.; T2 = 353 lb. 
Problem 6. Figure 123 shows an ore crusher with belt 

drive. All bearings are 3 in. in diameter, f = 0.2 and s 
= 0.25 in. Determine all reactions and stresses and the resist¬ 
ance K for the position shown, first without friction, then with 
friction. Scales: 1 in. = 6 in.; 1 in. = 3000 lb. Coordinates: 
point C—14 in., 11 in. 
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Fig. 123. 
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Ans. Without friction: B = 3150 lb.; DG = 16,700 lb. T] 
Rj = 9600 lb.; K = 23,100 lb. With friction: B = 2850 lb.; 

DG = 12,400 lb. T; Rj == 6700 lb.; iC = 15,200 lb. 

Problem 7. With crank pin B in the position indicated, 

solve for the driving force P and all reactions and stresses in 

the steam hoist shown in Fig. 124, first without friction, then 

with friction. All bearings are 3 in. in diameter, / = and 

s = 0.25 in. Scales: 1 in. = 10 in.; 1 in. = 300 lb. Coordi¬ 

nates: point A—12 in., 13 in. 

Ans. Without friction: G — H = 2.50 lb.; D — 700 lb.; 

P = 1720 lb. With friction: G = H -- 260 lb.; D = 880 lb.; 

P = 2560 lb. 

Problem 8. Assuming T2— 27^1, solve for the belt ten¬ 

sions required to drive the power water pump in Fig. 125 when 

in the position shown, first without friction, then with friction. 

All bearings are 1.5 in. in diameter, / = 0.1, and 5 = 0.25 in. 

vScales: 1 in. = 2 in.; 1 in. = 200 lb. Coordinates: point A 
“9 m., 11 in. 
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Ans. Without friction: H = 490 lb.; Ra = 704 lb.; T2 = 

556 lb. With friction: H = 535 lb.; Ra = 773 lb.; 7^2 == 

676 lb. 

Problem 9. Solve Example 3 if the load Q acts at a point 

24 in. on the left of the center of the table. Scales: 1 in. = 10 

in.; 1 in. = 3000 lb. Coordinates: point A—10 in., 6 in. 

Ans. I = 2300 lb.; BC = 10,000 lb. C; K = 3700 lb.; 

Ra = 24,600 Ib.;P - 22,100 lb. 

Problem 10, A lifting table for steel ingots is shown in 

Fig. 126. Journals A and E are 6 in. in diameter; all other 

journals are 4 in. in diameter; / = 0.2; and s = 0.5 in. Arni 

AB and the gear sector are both keyed fast to journal A. 

Arms EF and EG and the corresponding gear sector are all 
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keyed fast to journal E, iiT is a fixed vertical guide. Solve 

for the pressure P and all reactions and stresses as the table is 

raised against the resistance Q: (1) without friction, (2) with 

friction. Scales: 1 in. = 10 in.; 1 in. = 3000 lb. Coordi¬ 

nates: point A—6 in., 10 in. 

Arts, Without friction: = 2300 lb.; GII = 11,600 lb. 

C] J = 4840 lb.; Re = 22,750 lb.; P = 23,650 lb. With 

friction; Rj, = 2170 lb.; GH = 11,530 lb. C; J - 5950 lb.; 

Re = 25,650 lb.; P = 27,000 lb. 

Problem 11. The block D in the quick-return shaper, 

shown in Fig. 127, is pinned to the gear A and slides in the 

slotted crank BC, Journal A is 4 in. in diameter; journal D 
is 3 in. in diameter; journals B, C and E are each 2 in. in 

diameter; / = 0.2; and s = 0.25 in. Solve for all forces, both 

without friction and with friction. Scales: 1 in. = 6 in.; 1 in. 

== 100 lb. Coordinates: point A—10 in., 6 in. 

Arts, Without friction: ftp = 26 lb.; Rd = 600 lb.; H = 

300 lb. With friction: Rp = 21 lb.; Rd = 628 lb.; H — 
384 lb. 

Problem 12. Figure 128 shows an embossing press in 

which P is the driving force which presses the table upward 

against the resisting force Q. Rollers J and N are 4 in. in 

diameter; all bearings are 2 in. in diameter; / = 0.2; a = 0.1 
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in. and s = 0.2 in. With the mechanism in the position 

shown, solve for all reactions and stresses and the driving 

force P, with friction only. Scales: 1 in. = 5 in.; 1 in. = 

4000 lb. Coordinates: point B—12 in., 5 in. 

Ans. Rj = 6700 lb.; KL = 24,700 lb. C; KE = 33700 

lb. C. Reaction of guide on sliding block = 20,000 lb.; 

Rb = 13,500 lb.;P = 3100 lb. 

Fig. 128. 

Problem 13. Solve Problem 12 if the load Q acts at a point; 

12 in. on the right of the table center. 

Ans. P = 2900 lb. 

Problem 14. In the press, shown in Fig. 129, D consists of 

two independent wheels and a journal. The outer wheel, 8 

in. in diameter, rolls upon the cam C; the inner wheel, 6 in. 

in diameter, rolls between the fixed vertical guides. The 

circular cam C, 8 in. in diameter, is keyed fast to the gear B, 
6 in. in diameter, which is driven by the gear A whose diameter 

is 4 in. The common line of centers of cam C and gear B is 

30° with the vertical, the center of C being 1 in. from the 

center of B. Rollers K and L are 4 in. in diameter; all bearings 

are 2 in. in diameter; / = 0.2; a = 0.1 in.: and s = 0.25 in. 
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Assuming Ti = 37"2, solve for these tensions and all reactions 

and stresses, with friction only, when the mechanism is in the 

position shown. Scales: 1 in. = 4 in.; 1 in. = 4000 lb. for all 

forces up to and including Z>, and 1 in. = 600 lb. for all 

remaining forces. Coordinates: point A—12 in., 8 in. 

Ans, El = 2750 lb.; IE = 28,800 lb. C; DE = 12,400 lb. 

C. Reaction of guide on roller D = 6500 lb. Reaction 

between cam and roller = 6<5001b.; 0 = 45901b.; = 1840 

lb. 

Problem 16. The ore car, shown in Fig. 130, is drawn up 

the incline by the counterweight W, All bearings are 3 in. in 

diameter, / for bearings = 0.25 and a = 0.6 in. Solve for 

the counterweight necessary to draw the empty car weighing 

1000 lb. up the incline with uniform velocity with the brakes 
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off. Scales: 1 in. = 1 ft.; 1 in. = 400 lb. Coordinates: 

point A—14 in., 8 in. 

Ans. Rk = 475 lb.; D = 590 lb.; r = 630 lh.]W = 1320 lb. 

Problem 16. With the same counterweight W, acting as 

resistance on the ore car described in Problem 15, solve for 

the maximum weight ot loaded car that can be lowered down 

the incline at a uniform speed with brakes set so as to cause 

skidding to impend. Solve also for the normal pressure 

necessary on each brake shoe.^ / between wheel and rail = 

0.4. / for brakes = 0.3. 

Ans. T = 690 lb.; D = 750 lb.; Rk = 3200 lb. Weight of 

loaded car = 4840 lb. Normal pressure on M = 2810 lb. 

Problem 17. In Fig. 131, the car is moving down the 

incline against the gear resistance D. All bearings are 3 in. 
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diameter. The various coefficients are: / for wheel on 

rail = 0.25;/ for brake on wheel = 0.2;/ for bearings = 0.2; 

a — 0.6 in. and s = 0.6 in. The brake on wheel A is not 

acting, but the brake on wheel B is set so as to cause skidding 

to impend. Solve for the gear resistance D necessary for 

equilibrium and for all other reactions and stresses, including 

the normal brake-shoe pressure M. Scales: 1 in. = 1 ft.; 

1 in. = 2000 lb. Coordinates: point A—& in., 8 in. 

yins. Rk = 5400 lb.; Ra = 3400 lb.; T = 3380 lb.; D - 

6300 lb. Normal pressure on M = 3120 lb. 





APPENDIX 

48. Purpose. 

The purpose of this appendix is to present the graphical 

solution for some parts of Mechanics not considered in 

Chapters III, IV or V. These solutions, while not 

commonly used, are to be preferred in many cases 

where an approximation is not advisable and the alge¬ 

braic solution is too tedious, if not almost impossible. 

49. Centroid of an Area.^ 

The centroid of an area can be obtained graphically. 

In many very irregular areas the graphical solution 

is to be preferred. 

If an area A is made up of several finite component 

areas whose centroids are known, the equation from 

which the centroid of the entire area can be obtained is: 

Ax == AiX] + A0X2 + • • * AnXn^ (1) 

Area A is the sum of Ai, A2, etc. Each value of x is the 

distance measured from the F-axis of reference to the 

centroid of the area it multiplies. 

If area A cannot be divided into convenient finite- 

component areas, as above, it may be divided into 

differential-component areas. The equation which must 

then be used is: 

Ax — J xdA, (2) 

A is the sum of the differential areas dA. The values 

of X and x are, as before, centroidal distances for their 

^ For preliminary and further referencevS see Poorman’s ^‘Applied 

Mechanics/’ Chap. IX, McGraw-Hill Book Company. Inc., New York. 

ras 
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respective areas. It should be noticed that these 

equations can be written in terms of y and z, as well 

as X. 

Figure 132 shows an irregular area A = BCDE, of 

which the centroid is required. Two parallel axes 

Y and Fi are drawn at a distance b apart and placed 

so that area A lies between them. Any line BC is then 

drawn parallel to axis Y and the bounding points B 
and C projected upon axis Fi at points F and G. From 

these points F and G, straight lines are drawn intersecting 

axis F at any convenient point 0. On these lines, points 

B' and C' on the boundary of a new area A' are obtained. 

This process is continued using the same point 0 until 

the new area B'C'D'E' can be accurately formed. The 

values of areas A and A' may be measured with a 
planimeter. 

The centroidal distance x = bA'JA, 

Proof: Equation (2), Ax = J"xdA. 
From the similar triangles FOG and B'OC', 

y'fx = y/h, 

or 
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xy = by'. 

Substituting in Eq. (2) 

Ax = J'xdA = j'xydx = bjy'dx = bA', 

X = bA'/A. 

Often the centroid of an irregular area can be obtained 

easily by experiment. The desired area must be cut 

out on cardboard or some other suitable material and 

suspended from a point near its boundary and a vertical 

line drawn through this point. Next, some other point 

of suspension is selected and another vertical line drawn. 

These two vertical lines intersect at the centroid of the 

area. The proof for this method lies in the fact that 

the weight of the cardboard must act through its center 

of gravity and be colinear with the reaction at the point 

of suspension. 

PROBLEMS 

Problem 1. Using the graphical method, show that the 
centroid of a triangle is one-third of the altitude measured 
from the base. 

Fig. 133. 

Problem 2. Locate the centroid of the crescent shown in 

Fig. 133. 
Afis, X = 5.66 in. 
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Problem 3. Locate the centroid of the rail section shown 
in Fig. 134. 

V 

Ans. y = 3 in. 

50. Moment of Inertia of Area.^ 

The moment of inertia of an area may be defined as 
an algebraic expression of the form 

j'B CB rB 

^ xHA, yHA and pHA. 

The quantities x, y and p are measured perpendicularly 

from their axes y, x and z to the area dA. 
The moment of inertia of the very irregular area 

A = BCDE, shown in Fig. 135, will be obtained with 

respect to the F-axis. Two parallel axes Y and Fi 

are drawn at a distance h apart and placed so that area 

A lies between them. Any line BC parallel to axis Y 
is then drawn and the bounding points B and C projected 

on axis Fi at F and G. From points F and G straight 

lines are drawn to any convenient point 0 on axis F. 

^ For preliminary and further references see Poorman's “Applied 

Mechanics,” Chap. X, McGraw-Hill Book Company, Inc., New York 
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From these two lines new points B' and C are obtained, 
which are projected on axis Yi at points H and I. From 
these new points H and I, lines are drawn to point 0. 
On these lines B” and C" are obtained. These points 
are on the boundary of a new area A”. This process 
is continued, using the same point 0 until the boundary 
of the new area B"C"D"E” can be accurately formed. 
The value of this area A” may be measured with a 
planimeter. 

The moment of inertia ly = b^A”. 
Proof: The fundamental form of the expression for the 

moment of inertia of area A with respect to the F-axis 
is: 

ly = jxHA = J x^dx. (1) 

From the similar triangles FOG and B'OC, 

y/h = y'Jx, (2) 

and from the similar triarigles HOI and B''OC’\ 

y'/b = yt'/x. (3) 

By eliminating y’ between Eqs. (2) and (3), 

x^y = h^y". 

Substituting this value of x^y in Eq. (1) 
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Ir = f x^ydx — y”dx — b^A”. 

Having obtained Ir, the moment of inertia with respect 
to the centroidal F-axis can be obtained by the well- 
known transfer formula: 

Ir = + dU. 

Ir is the moment of inertia of area A with respect to 
the F-axis. 1,-^ is the moment of inertia of area A 
with respect to the centroidal F-axis and d is the distance, 
measured perpendicularly, between axes F and Fo. 

This transfer formula, as well as the other expressions 
of moment of inertia of areas, can be written in terms of 
X and Z as well as F. 

PROBLEMS 

Problem 1. Using the graphical method, show that the 
moment of inertia of a rectangle with respect to the base is 
bh^/S. 

Problem 2. Determine the moment of inertia with respect 
to the F-axis of the area shown in Fig. 133. 

Ans. Iv = 322 in.^ 
Problem 3. Solve for the moment of inertia of the area, 

shown in Fig. 134, with respect to the centroidal X-axis. 
Ans. Ixq = 69.3 in.^ 

61. Bending Moments in Different Planes. ^ 

The beam shown in Fig. 136 has loads applied in two 
different planes. Let it be required to determine the 
amount and location of the maximum resultant bending 
moment. 

By writing the equations of moments with respect to 
R2 and then Ri, Figs. 136(o) and 136(b), the following 
reactions are obtained: Riv — 229 pounds, Rw = 112 

^ For preliminary and further references see Poorman’s ‘‘Strength of 

Materials/^ Chaps, V and VI, McGraw-Hill Book Company, Inc., New 

York. 
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pounds, i?2r = 201 pounds and Rm = 48 pounds. In 
the vertical plane, Fig. 136(a), the moment equations are: 

iW'(o_2) = 229a: — 15x*. 
= 149a: - 15x* + 160. 

ilf (7_io) = 99x - 15x2 + 510. 

In the horizontal plane. Fig. 136(6), the moment equa¬ 
tions are: 

il/{i_3) = 112x. 
= 480 — 48x. 

In each of these five moment equations, x is measured 
from the left end of the beam and its limits are shown 
in parentheses. 

From these equations, the data necessary to plot the 
moment diagrams in Figs. 136((5) and 136(d) can be 
obtained. These moment diagrams must be plotted 
accurately to some convenient scale. 

In Fig. 136(c), the maximum bending moment in the 
vertical plane occurs at a point 4.97 feet from the left 
end of the beam and is 530 foot-pounds. In Fig. 
136(d), the maximum bending moment in the horizontal 
plane occurs at a point 3 feet from the left end of the 
beam and is 336 foot-pounds. The point of maximum 
resultant bending moment may occur at the point of 
maximum bending moment in the vertical plane or 
at the point of maximum bending moment in the hori¬ 
zontal plane, or at some point between these two limits. 
This maximum resultant bending moment and its loca¬ 
tion are obtained by plotting the resultant moment 
diagram shown in Fig. 136(c). The ordinates for this 
diagram are equal to the square root of the sum of the 
squares of the corresponding values from Figs. 136(c) 
and 136(d). Thus ordinate c in Fig. 136(e) is equal to 
the vector sum of ordinate a, Fig. 136(c), and ordinate 
6, Fig. 136(d). 
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A convenient graphical method from which c can be 

obtained is shown by the triangle in Fig. 136(c). 

The maximum resultant bending moment obtained 

from the diagram shown in Fig. 136(e) occurs at a point 

3.84 feet from the left end of the beam and is equal to 

597 foot-pounds. 
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Proportion, inverse, 11 
Pulley alignments, 72 

Q 

Quantities, vector, 4 

R 

Ray diagram, 33 

Rays of force polygon, 12 

Reactions, of bents, 45 

of gears, 106 

of journals, 100 

of pins, 74 

of rolling surfaces, 110 

of sliding surfaces, 97 

of trusses, 22 

Redundant members, 53 

Resistance, coefficient of rolling, 

no 
Resolution of a force, into com¬ 

ponents, 9, 13 
and recomposition, principle of, 

10 

in space into three com¬ 

ponents, 18 

into two components, one 

fixed in direction, 17 

Resultant, of concurrent forces, 8,9 

of loads, 21 

of nonconcurrent forces, 15, 16 

of parallel forces, 11, 12 

Rigid body, definition of, 1 

Rolling, resistance, coefficient of, 
110 

surfaces, reactions at, 110 

8 

Sections, method ot, 34 

Sliding surfaces, rcmctiotis at, 97 
Space, diagrams, 7 

forces ill, 18 

Static equilibrium, definition of, 1 

Statics, definition of, 1 

Stresses, in bents, 45 

in cranes, derricks and dredges, 

74 

in machines, 97 

method, of joints, 26 

of sections, 34 

of substitution, 42 

partial, 34, 38 

in tniss(\s, 26, 34, 42 

Strings, of funicular polygon, 12 

Substitution, method of, 42 

Systems, of forces, 3 

four-force, 19 

T 

Three-force members, definition of, 
5 

Tipping forces, 80 

Transfer forrnida of moment of 

inertia of area, 138 

Transmissibility of forces, 4 

Triangle law, 9 

Trusses, 20 

stresses in, 26, 34, 42 

Two-force members, definition of, 5 

V 

Vector, quantities, 4 






