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Preface 

This sec>ond oditiori extends the scope of Fundamentals of Electric 
Waves, giving more discussion of some of the most important applications 
and carrying theory somewhat further. 

New material is included on wave guides. The chapter on antennas 
is rewritten. Discussion of reflection is substantially increased and re¬ 
organized. Wave propagation in semi-conducting media is considered. 
Propagation in ionized regions is discussed in a short chapter on the iono¬ 
sphere. 

The rationalized system of meter-kilogram-second units, the Giorgi 
system, is used throughout this edition. For the benefit of those who 
arc more familiar with the ccntimeter-gram-sccond system, explanatory 
notes in the early chapters provide a transition. It is now clear that 
students will find inks units the most commonly used in current litera¬ 
ture, and it appears that the sooner that system is learned the easier 
the students’ work will be. 

When the first edition was written, largely in 1941, a course in electro¬ 
magnetic theory was ratluu' a luxury for electrical engineers. Wartime 
developments quickly changed that view. There is no longer any need 
to explain in this preface the practical value of centimeter waves, or to 
tell of the importance of wave guides. 

This book has been found effective for electrical engineering students 
at about the senior college year. It is arranged for those who do not 
necessarily have any previous knowledge of electromagnetic theory: all 
that is recpiired is general college physics and mathematics through cal¬ 
culus. Vector analysis is introduced for use in the book, but it is not 
expected that the reader should have any earlier acquaintance with it. 

The opening chapters of the book are concerned with electrostatics, 
the use of vector analysis, and similar matters that will be discouraging 
to the impatient reader. To some these opening chapters will be fas¬ 
cinating, to others, tedious. In any case they cannot be helped, for one 
cannot have waves without electric and magnetic fields, nor can one 
understand a wave until the basic fields are thoroughly familiar. 

Maxwell’s equations, appearing about the middle of the book, are 
presented as logical conclusions of the work that has gone before. Then, 
with their aid, radiation and wave propagation are readily developed. 
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and these topics lead to a short discussion of antennas, transmission 

lines, and wave guides. 

Problems are given with each chapter, and they are an integral part 

of the book. Most of them supplement some idea that is left ^vithout 

complete discussion in the test. They are arranged in the same order 

as the text material with which they are to be used, and in general one 

or two of them should be worked day by day. Also—and this is very 

important—many of the concepts of the book are new to the reader and 

will cease to seem strange only after continued and repeated use. Abraham 

and Becker, at the beginning of the examples in their Classical Electricity 

and MagnetisrUy refer the student to James 1 : 22; I cannot think of any 

better advice. 

Preparation of this book has left me indebted to many people. First 

is Hazel Dillon Skilling, my wife, whose name should properly appear 

on the title page as coauthor, except that she will not have it so. 

Stanford University has a farsighted and generous policy that encour¬ 

ages publication. This book is a result of that policy, administered by 

Chancellor Wilbur, President Tresidder, and Dean Terman. 

For technical aid, also, I am indebted to Terman, and to many other 

authors including Stratton, Schelkunoff, Everitt, Fink, Albert, Ilarnwell, 

Guillemin, Ramo and Whinnery, Pierce, Page, Mason and Weaver, 

Abraham and Becker, King, Slater, Barrow, Ballantine, Carson, C'hu, 

Southworth—too many to list. 

Further reading in theory and in practice beyond the scope of this 

book is strongly recommended. The literature of elcc^tromagnetic theory 

as related to engineering is now so extensive that a bibliography is not 

even attempted. King gives a good list of books in Electromagnetic En¬ 

gineering (McGraw-Hill Book Co., 1945, Vol. I, page 539). In addition 

to the standard texts and reference books, current periodical literature 

is often of particular interest and offers up-to-date lists of references. 

I take the opportunity to express sincere thanks to professors who 

have advised me regarding this revision. I am grateful for the benefit of 

their experience with Fundamentals of Electric Waves in more than fifty 

schools. Their suggestions have guided me in preparing the new edition. 

Hugh Hildketh Skilling 
Stanford University 

May 1948 
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CHAPTER I 

Experiments on the Electrostatic Field 

Fields. The study of electricity commonly begins with electric cir¬ 

cuit theory. Current is considered to flow in a wire, being driven 

through resistance, inductance, and capacitance by the appropriate 

voltages. This is the natural approach to the subject, for electric cir¬ 

cuits are tangible, and to most people they are reasonably familiar.^ 

The historical development of the subject, however, was quite the 

opposite: magnetic and electrostatic were well understood before 

circuit theory was developed—before even Ohm^s law was discovered. 

Logically, also, as will later be seen, circuit theory may be considered 

as a special case of the more general theory of electromagnetic fields. 

There are various kinds of fields. There are vector fields and scalar 

fields. A gravitational field, for example, is a vector field. Consider 

the gravitational field within a room. If an object of unit mass were 

placed at any point of space within the room, there would be a force 

upon it. This is a particularly simple example of a field of force, for in 

it the force is practically the same at every point within the room; it 

is th(^ same in magnitude and vertically downward in direction. It is 

a vector field, for it is not fully defined until it is known at all points in 

both magnitude and direction. 

Fields of force are always vector fields. A scalar field may be illus¬ 

trated by temperature. A temperature field would be determined if 

one were to measure the temperature at each point in a room with a 

thermometer. There is a value of temperature at each point, but no 

direction is associated with temperature. The temperature field is 

therefore a scalar field. 

Electric and magnetic fields are vector fields. The electrostatic 

field will be considered first, for it is in some ways the simplest. 

Experiment I. The Electric Field, It is found by experiment that 

there is a field of force about any object that has an electric charge. 

This field of force is made evident when an exploring particle that carries 

' This approach is used in Tramient Electric Currenls, H. H. Skilling, McGraw- 

Hill Book Co., New York, 1937. 

1 



2 EXPERIMENTS ON THE ELECTROSTATIC FIELD 

on itself a small electric charge is placed at some point in the region 

near the charged body. If it is placed at point a in Fig. 1, there is a 

force Fa; at points b and e, there are forces and Fc. If the charge on 

the exploring particle is changed, force upon the particle changes in 

proportion. This experiment, which w ill be called l^kperimcnt I, makes 

it possible to give the following definition of the electrostatic field. 

By definition, the electrostatic field strength at each point is equal 

in magnitude and direction to the force exerted on a small exploring 

particle carrying unit charge of 

])ositive electricity that is at rest 

at that point. 

Symbol icall}^ 

F = aQE [1] 

where F and E are force and elec¬ 

tric held strength, respectively, 

and Q is the charge on the ex¬ 

ploring particle. Note that this equation is not limited to any one 

point but applies at all points. It is therefore a field equation, and, 

since it relates both magnitude and direction, it is a vector field 

equation. 

The quantity a is merely a factor of proportionality, and its value 

depends on the units used. Proper definition of th(^ unit of electric 

charge and the unit of electric fi(;ld strength will make a = 1, so that 

F = QE [2] 

Thus, Q may be measured in statcoulom})S and E in statvolts per centi¬ 

meter, and F wall be in dynes in ecpiation 2; or Q may be in coulombs, 

E in volts per meter, and F will be in newtons. 

Equation 2 defines the electric field. 

Having defined the electric field, we may study its properties, flow 

does it arrange itself in space? For this purposi', more experimentation 

is necessary. Three more experiments with the exploring particle wall 

be considered. 

These experiments are not suggested as practical experiments to be 

done in the laboratory. They would be difficult to pcaTorm. But they 

are exceptionally irseful experiments to seiwc as a foundation for theory. 

Let us accept, for purposes of this discussion, that the following experi¬ 

ments have been performed with the results given belowa 

Experimknt II. An exploring particle, which carries a small electric 

charge, is moved through a nigion in w'hi(;h there is an electrostatic 

field. It is found that, when the particle is moved in a closed path so 

Fia. 1 



FIELDS 3 

that it returns to the point from whi(;h it started, no total work is done 

either on the particle or by the particle. 

In Fig. 2, for example, an exploring particle a may be moved around 

the path indicated by the dash line. While the particle recedes from 

the charged body from which the electric field radiates (as indicated by 

arrows E), work is done by the electric field upon the particle. But, 

as the particle returns toward the charged body, following the other 

half of the path indicated, it must do equal work in moving against the 

force of the field. 

It will be noted that this conclusion is in agreement with the principle 

of conservation of energy. If the particle returned to its initial point 

with an excess of energy, it could go around 

again and continue to go around, each time 

gaining a little eiua’gy without a correspond- 

ing loss of energy in aimthcr part of the la \ 

system. This would make perpetual motion / Q° j ^ 

feasible and is contrary to the principle of 

conservation of cnei*gy. It is equally im- Yio. 2 

possible that the particle should return to its 

initial point with a d('fici('nc.y of energy, for (assuming no friction) the 

total energy of the system would then have diminished. 

Tlie conclusion from Fxi)eriment II is entirely independent of the 

shape of the path followed by the exploring particle; it may be circular, 

('lliptical, s(glare, or any other closed path. The conclusion is also 

independent of the source of the electric field, which may emanate from 

a charged body, or from a number of charged bodies, or from a charge 

that is diffuse in spac(\ The charge that produces the electric field 

must not change in any way wliile the exploring particle is making its 

complete circuit, for this is an dovirostatic experiment; and it follows 

that the charge on the (‘xploring particle must be so small that its pres¬ 

ence does not appreciably alter the distrilnition of the main charge. 

Since energy is ecpial to the product of force and distance, and the 

net energy is the summation, or integral, of the individual energies 

contributed by each increment of distance around the closed path, it 

follows that 

)F ds = 0 

Then, since the force field and the electric field are related by a constant 

factor, as in etpiatioii 2, we obtain 

• ds = 0 [4] 
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This expression is a line integral, s representing distance along the path 

of integration. The small circle superimposed upon the integral sign 

indicates that the integration is to be carried out around a closed path. 

The notation will be further explained in Chapter II. 

Experiment III. A closed surface is located in space. It may be 

any shape: spherical, ellipsoidal, cubical, or irregular, but it must be 

completely closed and must not be, for example, a sphere VNith a hole 

in it. It is a purely imaginary surface and is used only to isolate the 

space ^^'ithin from the space outside. 

Let us choose the imaginary (closed surface so that it does not pass 

through any solid or liquid material. (This is a restriction that will l)c 

remo\'ed later, but at present it simplifies the 

discussion.) It would be better from the 

theoretical point of view if the imaginary 

surface did not ])ass through any material 

substance, including air; but air affects the 

results of l^ixperimcnt III by less than a tenth 

of a per cent and is usually negligible. 

Experiment III is now i)erforined by 

measuring the electric field strength (by 

means of an exploring ])arti(‘le) at every 

point on the cIosikI surface. This can best 

be done by dividing the surface into a 

very large number of small sections, as in Fig. 3, each having an area 

da. The component of the electric field normal to the small area da is 

then determined. If the normal component is outward it is called 

positive, if inward it is negative. ■ Then all tlie normal components are 

multiplied by their respective areas, and the results arc added together 

(as in the left-hand member of eciuation 5). When this experiment has 

been tried for all possible surfac.es under the widest imaginable variety 

of circumstances, the conclusion is reacluHl that the summation de¬ 

scribed above is proportional to the amount of electric charge enclosed 

within the surface on whiclTmeasurements arc made. If eo is a constant 

and Q is the amount of charge within the surface, 

€o^E • da = Q. (in vacuum) [5] 

This is a surface integral, a representing area. The small circle upon 

the integral sign here indicates that integration is to be carried out over 

a closed surface. 

If, in Fig. 3, the summation of the normal component of E oyer the 

entire surface is zero, it follows that there is no electric charge within 
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the surface or, if there is any positive charge within, there is also an 

equal amount of negative charge. If the summation is not zero, there 

is a net electric charge within the surface, and the amount of contained 

charge is proportional to the summation of the electric field strength 

over the surface, as in equation 5. 

The value of cq depends on the units in which electric field strength, 

area, and charge are measured.^ Using ‘'practical'' units, with E in 

volts per meter, a in sc^uare meters, and Q in coulombs, eo is very nearly 
10-i> 

—-— , or a little more nearly 8.855 X 10“^^. 
(9 X 47r) 

Experiment IV. Now let us repeat Experiment III, this time taking 

measurements of electrostatic field strength at points on an imaginary 

surface in oil. As before, the field strength is measured by determining 

the force on a charged exploring particle, but, whereas in Experiment III 

the charged particle was in air (or, strictly, in vacuum), now each meas¬ 

urement is to be made with the particle in oil. The value of the integral 

of equation 5, corresponding to a certain amount of electric charge 

within the enclosing surface, proves to be different from the value 

obtained when the same amount of electric charge was contained within 

a closed surface in air. 

In petroleum oil, the experimental value obtained for the integral of 

equation 5 is about half the value in air. If the experiment is repeated 

in other substances, other different values will be found. To make 

ecpiation 5 apply generally for all substances, it is necessary to include 

in the equation a factor that is characteristic of the material in which 

measurements are made. This will be written k and is called the rela¬ 
tive dielectric constant (sometimes the “specific inductive capacity") of 

the material. 

2 The common unit systems for electrostatic work arc the “electrostatic’’ cgs 
(centimeter-gram-second) system using the statvolt, statampere, statohm, etc., and 

the “practical” mks (meter-kilogram-second) system employing volts, amperes, and 

ohms. All equations of this chapter apply equally well with either system. Units 

are discussed further on page 8. 
Another choice affect ing uni Us t hat must he made at this time is between a “ra¬ 

tionalized” and an “unrationalized” system of equations. These differ by a factor 
of 47r in defining to. Equation 5 is writUm “rationalized”; the “unrationalized” 

form is 

eo^E • da ~ 47r Q [5al 

“Rationalized” equations may use either cgs or mks units; so may “unrationalized” 
equations. The “unrationalized” cgs system is the Gaussian. The “rationalized” 

mks system is the Giorgi system. The numerical value of to in equation 5a in the 

Gaussian system is unity. 
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Then 

Keo^E ‘ da = Q [0] 

The factor k is called relative because it shows how much less the electro¬ 

static forces are in a given material than in empty space. The value of 

K depends mainly on the nature of the material, but it changes somewhat 

with temperature and other physical conditions. For most oils that 

are derivatives of petroleum its value is between 2 and 2.5. In cotton¬ 

seed or olive oil it is about 3. In ethyl alcohol at room temperature it 

is about 25, and in pure distilled water about 80. In empty space k 

is 1, of course, and in air about 1.0006. 

To conclude Experiment IV, Ave make measurements on surfaces 

that pass through various different substances. The surface of int(‘- 

gration may thus be partly in air and })artly in oil. llie value of k 

must then be changed as we pass from one material to another, and 

equation 6 is more properly written 

£k€()E ‘ da = Q [7] 

for K varies during the process of integration. 

Frequently the constant k, which has to do with the characteristics 

of the material in the electric field, and the constant eo, which takes 

care of dimensions and units, are combined into a single constant, e. 

Then,3 with e = kcq, 

^eE-da = Q [8] 

Electrostatic Flux. By way of introducing electrostatic flux, con¬ 

sider a vector D defined as 

D = €E [9] 

When this new symbol is used, equation 8 becomes 

f D - da = Q [10] 

We are interested in the product of D and area. D is called electric 

flux density, and the product of D and area is called electric flux. 
By definition 

Electrostatic flux = J*D • da [11] 

^ In Gaussian units, with €o = 1 and the unrationalized equation 5a; 
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(The notation of this expression is explained in the next chapter, but 

its meaning is clear from this discussion.) In Fig. 4 the flux-density 

field is shown normal to a surface, and the flux passing through the sur¬ 

face is simply D times area. If the field is not normal to the surface, 

flux is equal to the product of area and the normal component of the 

field. In the extreme case, with D parallel to the surface, there is no 

normal conii)onent and no flux penetrates the surface. 

With this definition of flux, the left-hand member of ecpiation 10 is 

flux passing through the closed surface of integration. The equation, 

then, is a mathematical formulation of the following statement: the 

flux passing tlirougli a closed surface is ecpial ^ to the electric charge 

contained within tiie surface. 

Lines of flux can be drawn (or at least imagined) emanating from 

positive c*harg(^, passing through space in the direction of the electric 

li(4d, and terminating on negative charge. If each line represents a 

unit amount of flux, there w ill be one line issuing from each unit of posi¬ 

tive charge, and one line terminating on each unit of negative charge. 

In space where there is no electric charge, the flux lines must be con¬ 

tinuous, for they cannot terminate. 

When lines of flux pass from a charge +Q to a charge — Q, as in Fig. 5, 

all the flux lines will penetrate any surface that completely surrounds 

the charge +Q. Such a closed surface is indicated by the dash line a. 

By counting the flux lines that pass through this surface, it is possible 

to know how much charge is within the surface. Lines going outward 

^ In Gaussian units • (ia = Itt Q, and 4ir flux lines emanate from one unit of 

charge. 
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are counted as positive, lines inward as negative. Hence, within the 

surface b there is no charge, for the algebraic sum of lines through the 

surface is zero. Within c the charge is negative. Within d there is 

no net charge; the algebraic sum of lines penetrating the surface is zero, 

and the amount of positive charge within the surface is equal to the 

amount of negative charge. 

Units. Besides Q, the charge, five electrical (piantities have now 

been introduced. It will be well to review them. 

E is electric field strength, a vector quantity, det<‘rniin(5(l by the force on a charged 

exploring particle. In practical units it is in(*asured in volts per meter. 

D is electric flux deiLsity, a vector quantity, determined by the dinjction and den¬ 

sity of flux lines that emanate from electric charge and follow the; direction of 

the electric field. In practical units it is measured in coulombs ])er square 

meter. 

c is the ratio of D to E; it is difT(;rent for different materials. It is called absolute 

dielectric constant or permittivity. 

€0 is the ratio of D to E in vacuum; in practical units it is 8.S55 X 10“ ^“. It is 

called the absolute diel(‘ctric constant, or permittivity, of free spacer. 

K is e/eo- It is called the n^lative dielectric; (constant, or specific inductive capacity, 

and is characteristic of the dielectric material. 

“Practical units^^ as niferred to in this chapter means the system in¬ 

cluding the volt, ampere, coulomb, farad, henry, ohm, watt, and am- 

pere-tum, with distance in meters, mass in kilograms, and time in 

seconds. The unit of work is the joule (or watt-second), and the unit 

of force is the newton (or joule per meter). One newton is 10*^ dynes, 

a convenient force of about 102.0 grams or a little over 3-^ ounces (this 

book weighs about 6 newtons). This system, comprising the practical 

electrical units, is the rationalized mks or Giorgi system. 
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The subject of units and dimensions is a fascinating one.® As eveiy 

author is inclined to introduce a few novelties to suit his personal prefer- 

(uice, the subject is extremely complex. However, most electrical en¬ 

gineering literature on electromagnetic theory now uses practical units 

in the rationalized mks or Giorgi system, with or without the author^s 

individual modifications, and the mks system has been recommended 

by various international conferences.® 

The outstanding advantage of the mks system is that it uses familiar 

volts, amperes, ohms, and other electrical units. The disadvantage is 

that peculiar values are assigned to the dielectric constant and perme¬ 

ability of free space. Inconveniences occur in all systems, but the 

Gi(wgi system is cleverly arranged to have the powers of 10, the factors 

of 3 X 10^^, and most of the factors of 47r all bound together in €o and 

Ho] once the odd values of these constants have been mastered, the petty 

annoyances arc largely over. 

Information about electrostatic fields that will be needed in later 

(chapters can be deduced from ccpiations 2, 4, and 8. This is done by 

mathematical methods, and the most convenient mathematicjs to use 

is vector analysis. It is desirable, therefore, to introduce some of the 

gc'ucral mathematical relations of vector analysis before going on to 

further study of the electric field. 

PROl^LEMS 

1. A body rarryinp; a positive (‘k'ctric charge of 1000 micromicrocouloiribs (100 X 

10 '“) is ill an electric field of 5000 volts per centimeter. What is the electric force 

on the body in newtons? In milligrams? 

2. Electric fic'ld strength is measured at all points of a spherical surfacii of 10- 

(•(‘iitirneter radius in air. It is found to be everywIkti* normal to the surfac(^ 10,000 

volts pi^r meter in magnitude, and directed outward. How much electric charge 

(in microcoulombs) is contained within the spheri(;al surface? 

3. What quantity of electric, flux comes out of the sph('rical surface of Problem 2? 

What quantity would (aime out of the same charge in pc'troleum oil? What would 

be the value of E at the surface in petroleum oil? 

® For an (^xcelUmt summary see “Physical Units and Standards” by Ernst Weber, 

Section 3 of Handbook of Enginecruig Fundamcntalsy John Wiley & Sons, New York, 

1930. 

® “I.E.C. Adopts MKS System of Unit«,” Arthur E. Kennelly, Trarm. AIEEy Vol¬ 

ume 54, 1935, pages 1373-1384. 

“Recent Developments in Electrical Units,” Arthur E. Kennelly, Electrical Engi¬ 

neering y Volume 58, February, 1939, pages 78-80. 

“Revision of Electrical Units,” E. C. Crittenden, Electrical Engineeringy Volume 

59, April, 1940, pages 160-103. 



CHAPTER II 

Vector Analysis 

Vector Multiplication. Vectors are useful for various purposes. 

Force can be represented by a vector. So can distance. If a force F 
acts on a body while that body is moving through a distance s, as in 

Fig. 6a, the work done by the force is the product of force and distance. 

But it is not the simple algebraic product, for the angle between the 

direction of the force and the direction of travel is important. If the 

magnitude of the force is represented by F, the magnitude of the dis¬ 

tance by 5, and the angle between their directions is then the work 

done is 

W == Fs cos 0 [12] 

Note that the vector quantities for force and distance are written F and 

s, whereas their scalar magnitudes are F and s; this sytern of notation 

is rather generally adopted and will be used consistently in the present 

discussion. 

Since the type of multiplication indicated in etpiation 12 is quite 

common in physical problems, it is given a special symbol in vector 

analysis: when two vectors are written with a dot between them, it is 

an indication of multiplication of this type. Hence, equation 12 may 

be written 

IF = F • s [13] 

In the general case of any two vectors A and B, the so-called “scalar 

product'' or “dot product" is defined as follows: 

A • B = AB cos d [14] 

As in the case of work, in equation 13; this kind of product is always 

a scalar quantity, although the quantities multiplied together are both 

vectors. It is for this reason that it is called the scalar product. 
There is also another type of multiplication commonly encountered 

in physical problems. The simplest example is the computation of 

area, as in Fig. 66, where two vectors A and B arc shown as the sides 

10 
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of a parallelogram. The area of the parallelogram is 

Area = AB sin 9 [15] 

The same type of multiplication is encountered in finding the force on a 

conductor carrying current in a magnetic field. In Fig. 6c, current of 

I amperes (a scalar quantity) is flowing in a conductor the direction 

and length of which are represented by a vector L. The magnetic field 

is represented in magnitude and direction by the vector B. Then the 

force on the conductor will be the vector quantity F which is perpen- 

Fig. 6 

dicular to both L and B. This defines its direction, and its magnitude 

is given by 

F = ILB sin 6 [16] 

The sense of the force is upward in the figure, in accordance with the 

rule for force in a magnetic field. 

Because this type of multiplication is quite common, it also is given 

a special symbol. The vectors L and B are written with a cross between 

them so that equation 16 is written 

F = 7LxB [17] 

This type of operation gives what is known as the cross product or 

vector product. The latter name comes from the fact that the result 

of this type of multiplication, such as the force in equation 17, is itself 

a vector. 

It is not at once apparent that the area of Fig. 65 is a vector quantity. 

But a surface obviously does have an orientation in space, and, by 

convention, an area is represented by a vector whose direction is nor¬ 

mal to the surface, and with length proportional to the area. Hence 

the area of Fig. 66 is represented by a vector perpendicular to the plane 

of the paper. 
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A question naturally arises regarding the sense of the resultant vec¬ 

tor, such as F in equation 17. What is there in the equation to signify 

whether the force is upward or downward? If, for example, L and B 

were to be interchanged, as indicated in Fig. 6d, the magnitude of the 

force would be unchanged, but the sense would be reversed and would 

become downward. To avoid ambiguity in the mathematical state¬ 

ment of such a problem, the vector product is so defined that the sense 

of the resultant vector is indicated by 

the order in which the two component 

vectors are written. 

This is a useful and thoroughly satis¬ 

factory means of defining the direction 

of the vector product. Yet expressing 

in words the defining relation is some¬ 

what awkward. It is customary to 

remember the relation by a certain ar¬ 

rangement of fingers and thumb on the 

right hand, or in terms of the rotation of 

a so-called ‘Tight-hand’' S(*rew thread. 

The product of two vectors, A x B, is 

itself a vector of magnitude AB sin 0, in 

direction normal to the plane tliat con¬ 

tains both A and B, and of such vsense 

that, if a right-hand screw (sec Fig. 7) 

were rotated from A to B (through the 

angle that is less than 180 degrees), it would 

screw in the direction of the prodiud. 

Following this rule, equation 17 is seen to give the proper direction 

of force in either Fig, 6c or 6d, and the vector AxB which repn'sents 

area in Fig. 66 is properly into the sheet of paper. Note, however, that 

the product B x A is, by the same rule, a vector directed outward from 

the sheet of paper; this is merely an illustration of the general rule that 

Bx A = -(AxB) [18] 

It will be seen that this operation does not follow the fundamental 

(commutative law of ordinary alg(ibra which says that ah = ha. It is 

natural to ciuestion what justification there can be for denying a funda¬ 

mental law of algebra, and a short discussion may be helpful in this 

connection. 

All the operations of algebra, including multiplication, are defined 

for use with numbers. The nile for multiplication is particularly easy 

for integers; for instance, 7 times 5 is five 7’s added together (or, by 
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the commutative law, it is also the sum of seven 5’s). This rule is 

extended quite readily to the multiplication of fractions, and by an 

additional convention regarding sign it can be made to serve for negative 

numbers also. But it simply has no meaning if one tries to apply it to 

vectors. There are, however, certain operations so commonly per¬ 

formed upon vectors that it seems desirable to give them names; two 

of these operations are discussed above, and the confusing thing about 

the situation is that they arc hath called multiplication. Actually, it 

is very doubtful if either shoul4 properly be called multiplication; 

probably that name should be reserved for the algebraic product of two 

scalar quantities, and c(unpletely new names could then be assigned to 

the operations upon vectors that are known (however improperly) as 

vector multiplication leading to the scalar product, in one case, and to 

the vector product, in the other. But the nomenclature is so well 

established that it cannot be avoided.^ 

It now becomes clear that, since the vector product is not algebraic 

multiplication but is defined (luitc independently, it is not constrained 

to follow algebraic laws. It is not surprising that the commutative 

law fails to apply to the vector product. Rather, it is to be remarked 

that the commutative law does apply in the case of the scalar product, 

as defined in equation 14. 

Unit Vectors. No single (‘xpression has yet been given to define 

the vector i)roduct. The following may be used, although it requires 

a short explanation: 

AxB = nABsmd [19] 

In this expression, A and B are the scalar magnitudes of A and B, 6 is 

the angle between A and B, and n is a vector of unit length in a direction 

normal to both A and B and with sense, as defined above, forming a 

right-hand system with A and B, 
The right-hand side of ecpiation 19 illustrates a method of describing 

a vector. The magnitude of the vector product is given by AB sin 6, 

but this expression does not give direction. The unit vector n serves 

^ Yot anotlK'r kind of inultiidiration, so calked, is defined for use with complex 

quantities. This is the operation according to which 

This law is familiar to students of alternating-current phenomena, for it is very 

widely used in connection with a convention that makes it possible to represent real 

(luantities that vary sinusoidally with time by means of complex quantities. The 

complex quantities, which are themselves scalar, can then be represented by rotating 

vectors in the complex plane. This may be considered a third type of multiplication 

of vectors, entirely different from either of the other two. 
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to define a direction normal to A and B and thereby specifies the di¬ 

rection of the vector product. This artifice of employing a unit vector ^ 

to give direction is very often useful. 

The most common use of unit vectors to define direction is in connec¬ 

tion Avith coordinate axes. In Fig. 8, three axes are shown, marked 

X, Y, and Z. The position of any point in space may be defined by 

reference to such axes, in the familiar manner of analytic geometry, 

using Cartesian coordinates. Similarly, the length and direction of any 

vector can be expressed by giving the projections of the vec^tor upon the 

three axes. Any vector A may be 

described as being made up of 

three mutually perpendicular com¬ 

ponents (as in Fig. 8): in the x 

direction, A y in the y dii'ection, A ^ 

in the z direction. 

Now Ax is a scalar quantity. 

It is the length of the x component 

of A. Ay and A^ are also scalar 

quantities. It is consequently not 

correct to say that the vector A 

is equal to the sum of Ax, Ayy 

and A 2. But it is correct to say 

that A is equal to the sum of a vector in the x direction of length Ax, 

a vector in the y direction of length A^, and a vector in the z direction 

of length A 2. 

Such a statement of equality is cumbersome, but it can be simplified 

by defining three unit vectors as follows: The vector i is a vector of 

unit length in the x direction (sec Fig. 8); the vector j is a vector of unit 

length in the y direction; the vector k is a vector of unit length in the 

z direction. Now, when it becomes necessary to write of ^‘a vector in 

the X direction of length Ax,” it is only necessary to set down ^^iAx,” 

which expresses exactly the same idea. So it is correct to write 

A = iAx + ]Ay + kA* [20] 

and this notation will be used frequently. 

Products involving these unit vectors are of frequent occurrence and 

deserve special consideration. Consider the dot product i • i; both i’s 

* It should be noted that no equation can be correct unless cither both sides are 

scalar quantities or both sides are vector quantities. A vector cannot be equated 
to a scalar. Hence equation 19 could not l)e correct in the absence of the symbol n, 

for without it the left-hand member would be a vector and the right-hand member a 

scalar. 
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are of unit length and the angle between them is zero; therefore, by 
equation 14, the product is unity, a scalar value. But consider i • j; 
the angle between these two is 90 degrees; hence by equation 14 their 
product is zero. Physically, the projection of i upon i is unity, and 
the projection of i upon j is zero. 

Consider the vector product i x j; by equation 19 the product will be 
a vector of unit length normal to both i and j, and in the direction that 
would be taken by a right-hand screw while being rotated from i to j. 
A moment’s study of Fig. 8 shows that this product is identical with k. 
Hence i x j = k. But note that j x i = — k. 

Because the angle between tw^o similar unit vectors is zero, it is 
apparent from equation 19 that i x i is zero. This is illustrated by the 
fact that the area of a parallelogram, as in Fig. 66, approaches zero as 
the two adjacent sides approach each other. 

A partial tabulation of products of unit vectors follows: 

i • i = 1 ix i = 0 

i-j = 0 ixj=k [21] I 

i k = 0 ixk = -j 

Coordinate systems are essential in connection with vector analysis, 
and it will be helpful to express some of the more important vector 
operations in terms of Cartesian components. (A right-hand system 
of rec^tangular (coordinates, as in Fig. 8, is used.) 

The scalar product of any two vectors A and B may be expanded into 

A • B = + AyBy + A,B, [22] 

To prove that this is true, substitute equation 20 for A and a similar 
expression for B, and multiply term by term: 

A • B = {iAjc + + kA^) • {iB^ + iBy + kB^) 

= i • lAj^Bjc + j • iAyBy + k • kA^B^ 

+ i • jA.rB^ + i • kAj-B^ + j • iA^B^ + j • kA^B, 

+ k • iAjBj + k * jAzBy [23] 

The first three terms of this expansion give the right-hand member of 
equation 22, for the dot products of identical unit vectors are unity, 
and the other six terms disappear because all the dot products of the 
unlike unit vectors are zero. 
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As a physical illustration of the expansion of the scalar product in 

equation 22, consider the product of the force F and the dist^ince S as 

shown in Fig. 9. The coordinate axes are selected in such a way that 

both force and distance lie in the X-Y plane, so the problem is merely 

a two-dimensional one. The vectors shown have the components 

and Fy, and and Sy. Tt is physically evident that the component of 

force Fx acting through the distance Sy does not represent any work, for 

the force and distance are perpendicular. The same is true for the 

force Fy acting through the distance S^. But the force F^ applied 

through the distance Sx results in work equal to FxSxy and the other 

components give FySy. These latter terms, consecpiently, are retaiiK'd 

in the scalar product, the full three-dimensional form of which is given 

in ecpiation 22, while products of components along different axes (the 

zero terms of equation 23) contribute nothing to the scalar product. 

The vector product, or cross product, of any two vectors may be 

expanded in a similar manner: 

AxB = i(AyB, - A,By) + i{A^Bx - AxB,) + k{AxBy - AyBx) [24] 

The proof of this is exactly parallel to the proof of ecpiation 22. 

A physical illustration of the significance of terms in equation 24 is 

found in considering a current element (/L) in a magnetic field B, and 

the force 7L^B that results upon the current-carrying conductor. Se¬ 

lect coordinates so that both (ZL) and B lie in the X-Y plane, as in 

Fig. 10. The current component {IL)x and the magnetic field compo¬ 

nent Bx do not react, for there is no force on a current parallel to a 

magnetic field. But (IL)x and By^ being at right angles, react to give 

the force (IL)xBy in the direction of the Z axis. And {lL)y and Bx 
produce a force of magnitude {IL)yBx that is directed along the Z axis 
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in the negative direction. Total force consequently is the algebraic 

sum of these two, or 

(/L),/i, - [25] 

This expression will be seen to correspond to the last term of equa¬ 

tion 24. The other terms of ecjuation 24 appear if (/L) and B have 

Z components also. Products of components with like subscripts, such 

as (IL)j:Bxy or {IL)yBy, do not appear in the expansion of the vector 

product. 

It is convenient to express the (expansion of the vector product as a 

determinant, and it makes it easier to remember. 

i j k 

A <B - d. Ay A, 

Bx By B, 

[2()] 

If this determinant is ex])anded according to the ordinary rules (which 

may be found in algc'bra i)ooks or in the mathematical sections of 

handbooks), it is identical with ecpiation 24. 

Triple Products. Tlu' V(H‘tor product of two vectors is itself a vector, 
and its product with some otlaa* V(‘ctor may be found. The s(‘(‘ond 
multiplication may Ije either a scailar or a vector product, thus: 

(AxB) -c [27] 

(A=<B)xC [28] 

These are obviously different, and must l)e considered one at a time. 

First consider expression 27. If A, B, and C are any three vectors, 

as in Fig. 11, the scalar triple product of 

expression 27 is the volume of the parallel- 

opiped shown, of which A, B, and C arc 

the three edges. Tins is evid(nit when it is 

realized that A x B is the anxi of the top 

of the parallelopiped, and (A ^ B) • C is the 

product of this area and th(i normal com¬ 

ponent of the ('dge C. 

The volume of the same paralleloi)iped will be found when the area 

of the side bounded by B and C is multiplied by the normal component 

of A, and consequently 

(AxB) - C = (BxC) • A [29] 

and similarly either of these is ecjiial to (C x A) • B. 
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This scalar triple product is sometimes written [ABC], and this is an 

adequate notation, for a little study will show that the vectors may be 

multiplied in any order provided the cyclic order ABC be retained, but 

that 

[ABC] = -[CBA] [30] 

The dot and cross may be inserted as desired in expression 30. 

The vector triple product, expression 28, leads to a vector that lies 

in the same plane as A and B. It may be expanded as follows: 

(AxB)xC = B(C-A) - A(B-C) [31] 

Proof of this expansion will not be given, but it is (piite simply obtained 

by expansion of both sides of equation 31 in rectangular coordinates. 

Vector Fields. Vector and scalar fields may be plotted or diagrammed 

in various ways, and plotting such fields is helpful in understanding 

their mathematical behavior. 

Contour maps are particularly interesting because they are plots of 

a scalar field, elevation. Figure 12, for instance, is a map of a moun¬ 

tain. It is a singularly symmetrical mountain, rising to a peak in the 

center of the map. Elevation, as plotted on a contour map, is a scalar 

quantity; each point is at an elevation of .so many feet, and, when all 

points of equal elevation are connected by contour lines, the form of the 

earth^s surface is completely defined. 

Consider a marble placed upon the mountain of Fig. 12; it will try 

to roll down hill. Wherever it is placed upon the mountain slope, a 

certain force will be required to hold it, and in this way a vector field 

of force is defined. In Fig. 13a, another map of the mountain, arrows 
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are drawn to indicate the amount and direction of the force required 

to hold the marble at various places. Such arrows are not essentially 

different from the hachure markings commonly used on geographic 

maps to indicate mountains, as shown in Fig. 136. A map with hachure 

marks may be (Considered to be a rather primitive plot of a vector field. 

It is apparent that there is a relation between the scalar field of eleva¬ 

tion and the vector field of force-on-a-marble. It is a simple and 

familiar one: The force is dependent upon the steepness of the slope, 

or, in other words, upon the rate of change of elevation with respect to 

distance. 

This rate of change is a derivative, similar in nature to the ordinary 

derivative of differential calculus. It is complicated, however, by the 

necessity of finding the direction of steepest slope to determine the di¬ 

rection in which the marble will tend to roll. The steepest slope at a 

given point is known as tlie gradient at that point. It is a vector quan¬ 

tity at each point, and therefore constitutes a vector field. 

Gradient. In the lower left corner of Fig. 13a, a section of the map 

is indicated by dash lines. This rectangular section is enlarged in 

Fig. 14, and a pair of coordinate 

axes is superimposed for refereiu^e 

purposes. The gradient in this 

small section of the field is prac¬ 

tically uniform, being much the 

same at all points in magnitude 

and direction, and it is indicated 

by a vector. This vector of 

gradient is made up of two com- 

i;oncnts, one the steepness in the 

X direction, dP/dx^ and the other 

the steepness in the y direction, 

dP/dy. Filevation is indicated by the symbol ^ P, and in this two- 

dimensional field 

dP dP 
Gradient = i-f- j — [52] 

dx dy 

Two characteristics of gradient are so important that they must be 

mentioned at once. First, the gradient vector will always be at right 

angles to the contour lines. This is evident because the gradient is the 

steepest slope; the steepest slope will be found in descending unit ele¬ 

vation in the shortest horizontal distance; travel from one contour line 

to the next results in unit change of elevation and this is accomplished 

* The symbol P is used because elevation is a gravitational potential. 
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in the shortest horizontal distance by taking a path perpendicular to 

the contour lines. 

Second, the closer the contour lines are spaced, the steeper the slope 

and the greater the gradient. 

If the elevation at every point is known and can be expressed ana¬ 

lytically, giving P in terms of x and it is easy to apply equation 32. 

A simple example may be considered, referring to Fig. 14: h]levation at 

the origin is 1000 feet, and the hillside slopes up to the northeast. 

Wlien traveling due cast the ground rises 4 feet per mile, while toward 

the north the slope is 3 feet per mile, and so (within this limited region) 

elevation at any point can be found from 

P = 1000 + 4.r + 3// [33] 

Substituting equation 33 into e(iiuition 32 gives 

Gradient = il + j3 [34] 

This indicates that the slope is cverywhcix' the same (.r and y do not 

appear in equation 34), and in such a direction that a rolling marble 

would go 3 feet south for each 4 feet west. The stec'pest slope, or gra¬ 

dient, is equal to the square root of the sum of the stpuires of the com¬ 

ponent slopes and is 5 feet per mile. 

Another numerical example will illustrate a slightly less simple case: 

Consider the origin of coordinates to be at the top of a 1000-foot hill of 

such a shape that 

p = 1000 - x" - if [35] 

Equation 32 gives 

Gradient = —i2x — }2y [30] 

The gradient is zero when x and y are zero, which is natural, for that is 

the precise top of the hill. As one moves out in any direettion, the gra¬ 

dient becomes greater. The gradient, moreover, differs in direction at 

different points of the liilFs surface. Full information is given by 

equation 36. 

The above discussion of gradient refers to a two-dimensional field or 

surface. An electric field is a three-dimensional field in space. Flow 

of water as, for example, circulating currents in a large tank, may be 

represented by a three-dimensional vector field wherein the vectors 

represent velocity of flow. Temperature in a large block of unequally 

heated metal is a three-dimensional scalar field. Flow of heat in such 

a block of metal is determined by the temperature gradient. 

A three-dimensional gradient, such as this gradient of temperature, 

is exactly analogous to the two-dimensional gradient of elevation that 
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has been considered, and its definition is similar. Given a three- 

dimensional scalar field P, the gradient of P is the vector field given by 

dP dP dP 
Gradient ofP = i-hj-hk — [37] 

dx dy dz 

Equation 32, in which P is a function of x and y only, is a special case 

of this more general definition. 

Certain statements have been made about gradient that have not 

been proved. They have merely been illustrated by numerical ex¬ 

amples. For proof, consider an infinitesimal length ds, the components 

of which are 

(Is = i dx i dy k dz [38] 

This short length lies in a scalar field P, of which the gradient is a vec¬ 

tor field defined by eciuat-ion 37. Multiplying equation 37 by cijuation 

38 gives 

dP dP dP 
(Gradient of P) • ds = — dx H-dy H-dz [39] 

Ox dy ' dz 

The right-hand member will be recognized as the total differential of P, so 

(Gradient of P) ♦ ds = dP [40] 

As discussed in any differential calculus book, the total differential 

dP is the change in as one moves a distance ds. If one can move a 

distance ds with no change in Py so that dP/ds = 0, the movement is 

said to be along an e(iiiipotential surface. By equation 14, the left- 

hand member of eejuation 40 is zero when the vector ds is normal to the 

V(H'tor (Gradient of P); this makes dP = 0, and, hence, when ds is nor¬ 

mal to the vector (Gradient of P), ds lies in an equipotential surface. 

The vector (Gradient of is then^fore normal to the equipotential 

surface. 

Also by equation 14, the left-hand member of equation 40 is maximum 

if the vector ds is in the same direction as the vector (Gradient of P). 

Hence the direction of the gradient is the direction of the maximum 

value of dP/ds, the direction of greatest rate of change of the function. 

Finally, the magnitude of the gradient may be found as the square 

root of the sum of the squares of its Cartesian components. In this it 

is just like any vector, and, considering that the gradient is defined as 

the vector of equation 37, it will be seen that 

Magnitude of gradient of P = 
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Divergence. The quantity called gradient is a rate of change in a 

scalar field. A vector field also changes from point to point, but in a 

more complicated manner. It cannot be said to have a gradient, but 

there are other ways in which the rate of change of a vector field can be 

described. One of the most useful is known as divergence. The di¬ 

vergence of a vector field A is: 

dAx dAy 
Divergence of A =-1-h 

dx dy dz 
[42] 

Ax is the magnitude of the x component of A, and, since A is a three- 

dimensional vector field, 1 is a three-dimensional scalar field. Ax 

b 
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may vary from point to point and is, in general, a function of x, y, and 

z. Its derivative with respect to x is the first term of equation 42. 

The second and third terms are found in similar manner from the y 

and z components of A. 

It has been mentioned that divergence is a useful quantity. Its 

application is nicely illustrated in the flow of fluids. Figure 15a shows 

a pipe through which water is flowing. The dash line within the pipe 

represents an imaginary surface; water passes through this surface. 

The surface is completely closed, and water will flow in through one 

side and out through the other. The water may flow in any irregular 

fashion whatever, but (since water is incompressible) the same amount 

of water must flow out that flows in. It will be proved a little later 

that this is the same as saying that water, being incompressible, must 

flow in such a way that, if its velocity is represented by the vector field 

V, the divergence of V must everywhere be zero. It is from this con¬ 

cept that the name ‘‘divergence'' arises: Water cannot diverge from any 

point for it would leave a vacuum; it cannot converge to any point for 

it is incompressible. 

But the flow of air is different. Figure 155 represents a tube of 

compressed air, capped on one end. A similar cap has just been re- 
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moved from the other end and air is rushing out. Consider the closed 

surface within the tube that is represented by a dash line; because 

the air is expanding, more air is passing out (through one end) of the 

indicated surface than is entering the surface (through the other end). 

Consequently there is a divergence of air. There is divergence at every 

point where air is expanding and, if velocity of air is the vector field V, 
the divergence of V is not zero. 

Curl. Another important way of describing a rate of change in a 

vector field is given the name of curl. Consider a tub of water; Fig. 

h 
Fig. 16 

16a shows the tub as seen from above. The water in it has been stirred 

with a paddle and the vectors represent velocity V. A small paddle- 

wheel is shown beside the tub; if this paddle-wheel, mounted on fric¬ 

tionless bearings, is dipped into the center of the tub, it will be turned 

in a counterclockwise direction. At whatever point the paddle-wheel 

may be place in the tub, it will be turned by the water, for, even if it 

is not in the center of the tub, the water will be going more rapidly past 

one side of the wheel than past the other. The turning of the paddle- 

wheel is an indication that the water is moving in the tub in such a way 

that the vector field of velocity has a rate of change of the type called 

^^curl.^^ 
The name ^^curF^ indicates an association with motion in curved 

lines. This is not necessary, however, for straight-line motion may 

also have curl. If water flows in a canal, as in Fig. 166, in such a way 

that it flows more rapidly near the surface than it does along the bottom 

of the canal, every particle of water may move in a straight line, but 

nevertheless there is curl, as will be recognized when an exploring 
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paddle-wheel is considered. The exploring wheel as seen in the figure 

will be turned in a clockwise direction, for the stream is more rapid on 

its upper blades than on its lower ones. 

Figure 17 shows a map of another canal, in which the water flows 

without curl. In the straight part of the canal, tlie velocity of flow is 

uniform, and it is obvious that the paddle-wheel at position a will not 

turn. At 5, in a bend of the canal, it is possible for water to turn the 

corner without curl, provided it flows faster along the inner margin of 

the channel in just the right proportion. An enlarged view of the 

paddle-wheel at h is shown (it must be understood that the ex{)loring 

paddle-wheel is in fact so small that 

it does not interfere with the flow 

of water), and litthi ai'rows indicate 

the reaction of the water on each 

of its blades. Because of the cur¬ 

vature of the lines of flow, more 

than half of the blades are driven 

clockwise. But the velocity of 

water is greater on the inner side, 

and, although fewer blades are 

driven counterclockwise, they are 

each acted on more forcefully. It 

is readily conceivalfle that cur\'ature 

and variation of velocity might be so related that the wheel would 

have no total tendency to turn. Curved motion is therefore possible 

without curl. This kind of flow is, as a matter of fact, characteristic 

of a truly frictionless liquid. It is the purpose of “streamlining’^ to 

provide a surface past which air or water will flow with a minimum 

of curl, for motion with curl develops eddies that waste energy. 

Divergence of a vector field is a scalar (piantity. There is divergence 

from a point or to a point (positive or negative), but no idea of direction 

is involved. Curl of a vector held, on the contrary, is a vector. If curl 

is visualized as an eddy, it is evident that the eddy must be about some 

axis—perhaps a vertical axis, perhaps horizontal, perhaps at some 

angle. The direction of such an axis is, by definition, the direction of 

the vector that reprCvSents curl. Referring to the hypothetical paddle- 

wheel, when it is in the position in which it turns most rapidly, its axis 

is in the direction of the curl vector. Each component of the vector 

of curl may be found by placing the paddle-wheel axis parallel to the 

appropriate axis of coordinates. 

The sense of the curl vector is determined by the direction of rotation 

of the paddle-wheel: if the paddle-wheel turns a right-hand screw, it 

will screw itself in the direction of the curl vector, as in Fig. 18. 
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Mathematically the curl of a vector field A is defined by 

3/1 . (dAy dAA 
1» . _ _ „ 1 , ■ 

+ j(- -) 
\ dy dz / V dz dx ) ' \ dx dy ) 

It will be shown later that this is eciiiivalent to the physical concept 

of curl that has been discussed in the preceding paragraphs. 

Nabla. Time is saved in writing the eiiuaiions of vector analysis, 

and, what is more important, they are made easier to remember, by 

the use of a symbol known as ''nabla'’ and written Its formal 

definition is 
Odd 

V^i.+ j—+ k~ [44] 
dx dy dz 

It will be seen that this vsymbol by itself has no meaning. It has the 

formal appearanc^e of a vector for which the .r, /y, and -2 components are, 

respectively, d/dx, d/dy, and d/dz. But, like d/dx, nabla is an operator 

and must have something on which to operate. If it is allowed to 

operate on a scalar function, it gives the gradient of that function; 

operating on P it gives 

Odd 
VP ==i + } — P + k--P [45] 

dx dy dz 

and this, by comparison with equation 37, is seen to be the gradient of 

P. The expression VP is expanded exactly as if it were the product of 

a vector quantity V by a scalar quantity P. Actually it is not a multi¬ 

plication at all, but an operation of differentiation. 

^ This symbol is frequently given the name “del,” but this has been found to 

lead to confusion with the Greek letter “delta,” which is similar in appearance but 
which conveys an entirely different matluunatical meaning. Therefore the Hamil¬ 

tonian name of “nabla” is returning to common use and is recommended, for ex¬ 

ample, by the American Institute of hdectrical Engincei-s. The original nabla was 
a Hebrew harp of triangular shape, ^ 1 J, the psaltery of the Psalms. 
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The symbol V, as defined in equation 44, can be put through many 

algebraic transformations as if it were indeed a vector (iiuiiitity, and 

this is one of the advantages of its use. For instance, a quantity written 

formally as the dot product of V and a vector field gives the divergence 

of that field. Referring to equation 22 we write: 

d d S 
= + — + [46] 

dx dy dz 

which, by comparison with equation 42, is the divergence of B. 

Similarly, a quantity written as the cross product of V and a vector 

field gives the curl of that field. Referring to equation 24, the cross 

product is expanded: 

+ k [47] 

and by comparison with equation 43 this is recognized as the curl of B. 

The equation for curl is formally similar to the equation for the cross 

product, and it also may be expressed as a determinant. The deter- 

minantal form is much easier to remember than the expanded form of 

equation 47: it is 

VxB 

i j k 

d d d 

dx dy dz 

Bx By 

[48] 

The following tabulation collects information relating to dilTerential 

operations on vector and scalar fields. 

Type of Operation Symbol 

Gradient of A VA 

Divergence of A V • A 

Curl of A V X A 

Must Be Applied to: 

Scalar field 

Vector field 

Vector field 

Yields: 

Vector field 

Scalar field 

Vector field 

Divergence and curl are both derivative operations on vector fields. 

They are both space derivatives; that is, they are partial derivatives 

with respect to the distances x, t/, and z. The essential mathematical 

difference is quite simple. Divergence is a rate of change of the field 

strength in the direction of the vector field] thus in the definition of diver- 
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gence, equation 46, one takes the partial derivative with respect to x 
of the X component of the field, the partial derivative with respect to 

y of the y component, and with respect to z of the z component. A 

physical example is seen in Fig. 156. Curl is a rate of change of the field 
strength in a direction at right angles to the field; thus, in equation 47 one 

finds curl by taking the y and 2 derivatives of the x component, the 

X and z derivatives of the y component, and so on, but not the x deriva¬ 

tive of the x component. Figure 166 shows a simple example of a field 

that varies across the field but not along the field, and so does Fig. 196. 

Illustrative Examples. The most satisfactory way to become familiar 

with gradient, divergence, and curl is by study of a few simple illus¬ 

trations of vector fields. These will be mere geometrical fields, with 

no physical meaning attached at the present time. Some of them will 

later be found to be of electromagnetic importance. 

Only two-dimensional fields will be considered in this section; an 

extension to three dimensions is simple when the two-dimensional case 

is understood, and two-dimensional illustrations are clearer because they 

are less obscured by mathematical manipulation. Moreover, a great 

many practical cases in three dimensions can be reduced to two-variable 

problems by such choice of coordinate axes that the quantities being 

studied are functions of two variables only. 

When working with a scalar field that is the same for all values of z 
and therefore has derivatives with respect to x and y only, it is evident 

from equation 45 that the gradient is merely 

dP dP 
VP = i -- -h j — [49] 

dx dy 

For a two-variable vector field A, divergence is 

V • A = 
dAx ^Ay 

dx dy 
[50] 

If it is also true that the vector field has no component in the z direction 

(Ai = 0), the curl is 

Vx A 
BAA 

dy ) 
[51] 

Equations of vector analysis are collected for ready reference in 

Table II (inside back cover). 

Example 1. Consider a vector field defined by the equations 

A^ = l Ay = 2 [52] 
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These are, of course, the components of the vector field A and 

A = L4^ + iAy = il + j2 [53] 

In Fig. 19a this field is indicated, the lines showing the direction of the 

vectors; it has already been mentioned that graphical representation of 

a vector field is not easy and some effort of visualization will be required. 

From the defining equation it is seen that the field intensity at any point 

{P in the figure) is 1 unit in the x direction and 2 units in the y direction, 

as shown. This is the same everywhere, for neither nor Ay is a 

a 

h 

Fig. 19 Fig. 20 

function of either x or y. This field has neither divergence nor curl. 

That there is no divergence is shown when and Ay are substituted 

into equation 50, for the partial derivatives are both zero. Likewise 

there is no curl, for the partial derivatives of equation 51 are both zero. 

Example 2. Consider a vector field defined by 

A^ = 1/ + 10 A, = 0 [54] 

This field is shown in Fig. 195. The field is entirely in the x direction 

because A^ is evcry\vhere zero, and it becomes more intense toward the 

top because Ax increases with y) this is shown in the figure by drawing 

the lines that indicate direction of the field closer together in the more 

intense region (as is customarily done with magnetic and electric lines 

of force). If y were less than •—10 the direction of the field would 

reverse, and along the line ?/ = —10 there is zero field, but the diagram 

is not extended to that region. 

Equation 50 tells us that this field has no divergence. In applying 

equation 51, we find that dAy/dx = 0, but dAxIdy = 1. Hence the 
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curl of the field is everywhere —k. (Consider the exploring paddle- 

wheel or curl-meter of Fig. 18.) 

Example 3. Next it is desired to consider a field that has everyAvhere 

unit intensity and is everywhere radial from the origin of coordinates in 

direction. Such a field is suggested in Fig. 20, in which an altc^mpt has 

been made to keep the density of radial lines everywhere the same. 

Consider any point p with coordinates x and y; since A is to be radial, 

Ax must be A cos d and Ay must be A sin 6. Hence if A is everywhere 

unity. 

Ax = 

Vx^ + y^ Vx^ + J/2 
[55] 

These equations define the field at all points in any quadrant. In 

computing divergence and curl it is necessary to determine the four 

partial derivatives: 

M X _ 1 
[56] 

dx + /)'■' (x^ + y‘^y‘ 

I
t

 

1 1 
[57] 

dy (V + y'-)^ (x^ + 2/^)'^ 

dA y ^ xy 
[58] 

dx {x^ + 

aAx ^ xy 
[59] 

{x^ + y-yi 

Adding the first two to obtain divergence gives 

V • A = 
+ 2/^)^ ;• 

[60] 

Subtracting the fourth from the third to obtain curl gives 

VxA = 0 [61] 

The divergence in this field is particularly interesting. The presence 

of divergence is associated with the necessity for starting new' radial 

lines in the diagram in order to indicate a constant intensity of field. 

It is apparent that, if lines start within a region of space, there must 

be more lines coming out of that region than enter it; in such a case 

there is divergence in that region. Qualitatively, it may be seen in 

Fig. 20 that divergence is greatest near the origin, for that is w here most 

lines originate; quantitatively, equation 60 tells us that divergence 
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is inversely proportional to radius and increases without limit as the 

origin is approached. 

A differentiating operation upon a field can be repeated, giving a 

quantity analogous to a second derivative. In the above example the 

divergence of A is itself a scalar field of which the gradient can be found. 

This will give the gradient of the divergence of A [symbolically V(V • A)]. 

Id d 
V(V • A) = V = i - (x^ + + j - (x=^ + 

V + 2/ dy 

[62] 

This result is a vector field, which we can again differentiate to find its 

curl or its divergence. Finding its curl, two partial derivatives are 

needed: 

= (-2/) (- §) + 2/^)“'^'(2x) 
dx\ r/ dx 

_ [G3] 

^+ y^)~’'} = (-x)(- §) (x^ + y^)~’^\2y) 
dy \ rf dy 

Subtracting these partial derivatives gives the curl, and since they are 

equal the curl is zero. That is, the curl of the gradient of 1/r is zero: 

1 
V X V - = 0 [64] 

r 

It is not a coincidence or a special property of this particular field that 

the curl of the gradient is zero; it will be shown in the next paragraph 

that the curl of the gradient of any scalar field is always identically 

zero. 

A Field That Is the Gradient of Something Has No Curl. 
(Vx VF = 0.) To prove this theorem, consider any scalar field. This 

field will be denoted by F. First write its gradient, using equation 45: 

dF OF OF 
VF = i — + j -- + k - - [65] 

dx dy dz 

Note that this gradient is a vector with components dF/dx^ dF/dy, and 

dFfdz. The curl of this vector is found by substituting into equation 47: 

Vx (VF) 
d dF 

dy dz 

d dF\ 

dz dy) 

d dF 

dz dx 

/ d dF d dF\ 

\dx dy dy dx) 

d dF\ 

dx dz) 

[66] 
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This completes the proof, for, since the order of differentiation of a 

second partial derivative is immaterial, each of the parentheses in the 

above expression is identically zero. 

Another similar theorem states that for any vector field A, 
V • V X A = 0. In words, a field that is the curl of something has no 

divergence. This is illustrated by Problems 11 and 12. The general 

theorem is easily proved (as Problem 13) by a method quite similar to 

the proof of the identity V x vF = 0. As in that case, expansion leads to 

equal and opposite second partial derivatives. 

There is one other repeated differentiation of great importance in 

applications to physical problems, that is, the divergence of the gradient. 

The divergence of the gradient is of so much importance that it is given 

a special name; it is called the “Laplacian,^^ after the famous French 

mathematician of a century and a half ago. It is, moreover, given a 

special symbol; although the Laplacian of F would properly be written 

V • VF, it has become customary to abbreviate this to V^F, the meaning 

of course being the same. The Laplacian, being divergence, is a scalar 

field. Expressed in terms of second partial derivatives, it is extraordi¬ 

narily simple and of obvious importance: 

= V • (VF) = 

The Laplacian is not, in general, equal to zero. (The curl of the gradient 

and the divergence of the curl are the only two second-derivative opera¬ 

tions that are always identically zero.) Yet the Laplacian is frequently 

zero in physical problems, depending upon the physical conditions. 

In electrostatics, for instance, the Laplacian of the electric potential is 

zero in any space that does not contain electric charge; this will be 

shown in a later chapter. 

Equation 67 gives the Laplacian of a scalar field F. The Laplacian 

of a vector field is also useful. The Laplacian of the vector field A is 

written V^A, and it is interpreted to mean 

V^A = v2(L1^ + ]Ay + kA,) [68] 

The Laplacian of a vector field is therefore the vector sum of the La- 

/ SF dF 
+ k^ 

dy dz/ 

d dF d dF d dF 

dx dx dy dy dz dz 

\dx^ 

d^\ 
[67] 
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placians of the three scalar components of the vector field.® It is fre¬ 

quently important to know whether the Laplacian of a vector field is 

zero. The answer is that it is zero if and only if the Laplacians of the 

component scalar fields, Ay, and Azy are each independently zero. 

Polar Coordinates. It will have been noticed that several examples 

and problems in the earlier part of the chapter are naturally adapted to 

the use of polar coordinates. Example 3 and Fig. 20, for instance, have 

symmetry about the origin in such a way that reference to the radial 

distance r and the angle 6 could hardly be avoided. Would it not be 

possible, then, to use polar coordinates instead of rectangular coordi¬ 

nates in connection with fields of radial symmetry, and thereby simplify 

the calculations? 

That cpiestion introduces an aspect of vector analysis that is of the 

utmost importance. It is this. Vector analysis is fundamentally 

independent of coordinate systems. An electric field, or a field of ve¬ 

locity, or a field of force exists, physically, whether or not any mathe¬ 

matician has yet laid out a set of coordinate axes. The field has diver¬ 

gence or curl or gradient, or it has not, depending upon the properties 

of the field itself and without regard to any system of coordinates. 

Scalar products, vector products, sums and differences of vectors, line 

integrals, and surfac’e integrals are all of significance without reference 

to coordinates. Nature does not provide systems of coordinates (ex¬ 

cept in special cases in which the properties of matter are different in 

different directions). 

It is evident that a system of mathematics in which general relations 

can be stated without reference to coordinates is simpler than a system 

in which arbitrary axes must first be introduced as a frame upon which 

to hang the mental processes. Ihmce the theorems and generalizations 

of vector analysis are much easier to comprehend than the similar 

statements of coordinate geometry. 

For actual computation, unfortunately, it is usually necessary to 

refer to coordinates. The axes are recpiired for calculations, for how 

can a field be defined at every point in space except by identifying each 

point by means of coordinates? But, at least, generalized thinking can 

be done in terms of vector analysis, and then any convenient set of 

coordinates can be used to facilitate computation. It is for this purpose 

that operations of vector analysis, after being defined in terms of the 

vectors and the fields themselves (as in cq\iations 14 and 19), are also 

expressed with reference to a coordinate system (as in eciuations 22 and 

24, and 45, 46, and 47). 

® This may be taken an the definition of the Laplacian of a vector field. An alter¬ 

native definition that j^ive.s tl»e Laplacian the same value but avoids defining it in 
U^rrns of Hptjcific cfxirdinaU^s is: V‘^A = V(V • A) — V x (V x A). 
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Some coordinate systems are more convenient than others in specific 

computations. As illustrated in Problem 6, the choice of coordinate 

system makes no difference in the result. And, since polar coordinates 

are better adapted to many problems than are rectangular coordinates, 

it will be desirable to express some of the vector operations in polar 

coordinates. 

Consider a two-dimensional polar system using as coordinates radial 

distance r and angle 6. First, it is necessary to be able to find r and 6 

when X and y arc known, or vice versa. The formulas are familiar: 

X — r cos 9 

r = 

y = r sin 9 

. y 
9 — tan ^ - 

X 

[69] 

Next, it is necessary to express in polar coordinates a vector that is 

given in rectangular coordinates. If Ax and Ay are known, it must be 

possible to find Ar and Aq {Ar is de¬ 

fined as the length of the component 

of A in the radial direction. As is the 

length of the component of A that 

is normal to Ar). Figure 21 shows 

the relation: at a point with coordi¬ 

nates {x^y) or there is a vector 

A. The polar components of the 

vector, Ar and are shown; so 

also arc the rectangular compo¬ 

nents Ax and Ay. Two right tri¬ 

angles are drawn; Ax is the hypote¬ 

nuse of one and Ay is the hypotenuse 

of the other. One angle of each triangle is 9. 

of the figure it may be seen that 

From the construction 

Ar = Ax cos 9 + Ay sin 9 

Ae = Ay cos 9 — Ax sin 9 
[70] 

This is the desired relation when finding polar components from rec¬ 

tangular components; when the polar components are known and the 

rectangular ones are desired, the following equations are used. They 

arc obtained from equations 70 by simultaneous solution, or by slightly 

different construction in Fig. 21. 

Ax = Ar COS 9 — Ae sin 9 

Ay = Ar sin 9 + Ae cos 9 
[71] 
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Gradient in polar coordinates is now easily found. In two-dimensional 
rectangular coordinates it is 

dP dP 
VP = i — + j — [49] 

dx dy 
From equations 69 

X = r QOS 6 and y — r sin 6 

so, by the rules for differentiation of a composite function (see a calculus 
book): 

dP ap 
— cos a -- 
dr 

aP sin a 
[72] 

dx dd r 

dP dP 
— sin a + 
ar 

dP COS a 
[73] 

dy aa r 

Gradient is a vector, and it is seen from the expression for VP that its 
X and y components are given by equations 72 and 73 respectively. 
But it is not sufficient to know the x and y components; it is necessary 
to find the r and 6 components. This is done by means of equations 70, 
substituting equation 72 for the x component and equation 73 for the 
y component, giving the following radial and angular components: 

/ap ap sin e\ zap ap cos d\ 
(VP)r = ( — cos a-) cos a + ( — sin a H-) sin 6 

\dr aa r / \ar aa r / 

ap 
dr 

[74] 

(VP)^, = 
/ap 
( — sin a + 
\ar 

ap cos a\ 
-I 0 _ 
aa r / 

a 
ap sin a\ 
-) sin a 
ee r / 

lap 
r aa 

[75] 

Hence, if 1, is a radial unit vector at any point under consideration 
and I9 is a unit vector normal to Ir, gradient in two-dimensional polar 
coordinates is 

dP 1 dP 
VP = lr— + 1«- — 

dr r dd 
[76] 

On page 20 the shape of a hill was described by equation 35. In 
polar coordinates the elevation of each point is 

P = 1000 - [77] 
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(Equation 77 may be obtained from 35 by means of 69 if the transfor¬ 

mation is not obvious.) To find the gradient, which is the slope of the 

hill, use equation 76: 

VP = -lr2r [78] 

Is this equivalent to the value of gradient given in equation 36, computed 

in rectangular coordinates? 

Divergence can also be expressed in polar coordinates. Starting with 

rectangular coordinates, in two dimensions. 

V • A 
dAx dAy 
— + — 
dx dy 

Substituting equations 72 and 73 gives 

[50] 

dAjc BAx sin B 
V • A =-cos 6- 

dr 36 r 

dAy dAy COS 6 
H-sin 6 H- 

dr dd r 
[79] 

The components of A must now be changed from rectangular components 

to polar components by means of equations 71. 

d{Ar COS 6 — Ae sin 6) d{Ar cos 0 — sin 6) sin 6 
V . ^ =-CQg 0- 

dr 

d{Ar sin B + Ae cos B) 
_|-gin B 

dd r i4j 

dr 

+ 
d{Ar sin B + Ae cos B) cos B 

dB r 
[80] 

The partial derivatives of equation 80 are now expanded, noting that 

B is not a function of r but that Ar and Aq are each functions of both r 

and B. Wlien the resulting terms are collected, the final expression for 

divergence is 

V • A 
dAr 1 BAq Ar 

dr r dB r 
[81] 

Curl can be expressed in polar coordinates also, and the transforma¬ 

tion from rectangular coordinates is similar to the transformation for 

gradient. The resulting polar expression for curl in two dimensions is 

Vx A k 
dAe 

. dr 

IdAr 

r r / 
[82] 

Example 4. To illustrate the use of equations 81 and 82, find diver¬ 

gence and curl of the vector field that is discussed in Example 3, page 29, 
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and illustrated in Fig. 20. From the description of the field it is evi¬ 

dent that its polar components are: 

Ar = 1 and Ao = 0 [83] 

From equation 81 the divergence of the field is 1/r. Since each term of 

equation 82 is zero, the curl is zero. These are the same as the results 

found previously using rectangular coordinates, as given in equations 60 

and 61, but the computation is so much simpler in polar coordinates 

that the advantage of their use is apparent. 

Tabulation. Formulas for gradient, divergence, curl, and the Laplac- 

ian in rectangular, cylindrical, and spherical coordinates are included 

in Table II, inside the back cover. 

PROBLEMS 

1. Complete the tabulation of equation 21 to include all possible scalar and vector 

products of the unit vectors i, j, and k. 

2. (a) Prove that equation 24 is correct, (b) Prove that equation 31 is correct. 

3. A farm has the shape of a parallelogram, one boundary lino running east 7 

miles and another directly northeast 5 miles. Using equation 24, find the area of 

the farm. 

4. Rain, blown by a south wind, falls at an angle of 30 degrees to the vertical at a 

speed of 60 feet per second. There is 1 ounce of rain in each cubic yard of air. How 

much rain falls on each square yard of the south wall of a building? On the west 

wall? On the flat roof? Use equation 22 for this problem, representing area by a 

vector. 

5. Draw a contour map of the hill of equation 35 and a sketch of its shape in thrive 

dimensions. Draw vectors on the contour map to show gradient at the following 

points: (0,0), (0,1), (0,3), (0,-3), (3,0), (2,2), (2,1), (1,2), (-1,-2), (-2,1), (-1,2). 

6. If, in Fig. 196, the coordinate axes had been chosen at 45 degrees to their indi¬ 

cated position, the field would have been defined by A = --(i -f j). 

Find the curl and divergence at every point using these less fortunately chosen axes. 

7. Vz = siny, Vy = 0. Sketch the field of V (as in Fig. 19) and find its diver¬ 

gence and curl. 

S. VX — ~Ty-^ Vy = -TT^—^ • Sketch the field of V and find its divergence 

and curl. 

9. Sketch contour lines of constant divergence for equation 60, and sketch the 

vector field of the gradient of this divergence, from ec^uation 62. 

10. Find the curl of the gradient of P in equation 35. 

11. Find the divergence of the curl [V* (V x V)| of the vector field defined in 

Problem 7, using equation 46. 

12. Vx ^ - Vjj = —» Skctch the field defined by thevSe cqua- 

tions and find its divergence and curl, and the divergence of the curl. 
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13. Prove that V • V x V - 0. 

14. Find the Laplaciari of P as given in equation 35. 

15. Find the Laplacian of P if P = —In r (r being the scalar distance of any point 

in a plane from a fixed point, so that by proper choice of coordinates -J- y^). 
16. Find the Laplacian of P if P = 1/r (r being the scalar distance from a fixed 

point) in both: (a) a two-dimensional field, and (6) a three-dimensional field. 

17. Prove by means of equations 69 and 70 that equation 78 is equivalent to 
equation 36. 

18. Working from equation 51, prove that equation 82 is correct. 

19. Express the field of Problem 8 in polar coordinates and find its divergence 
and curl. 

20. Determine whether it is advantageous to use polar coordinates in solving 

Problem 12. 

21. In Table II (inside back cover), the scalar product A • B is expanded in rec¬ 

tangular coordinates. Expand A • B in cylindrical coordinates. Expand A • B in 

spherical coordinates. 

22. In Table II (inside back cover), the vector product A x B is expanded in rec¬ 

tangular coordinates and expressed in the form of a determinant. Express A x B 

similarly in cylindrical and spheri(*al coordinates. 

23. Expand the determinant for curl in spherical coordina-tes given in Table II 

(inside back covc^r); perform as many of the indicated differentiations of products as 

possible and simplify the result. 



CHAPTER III 

Certain Theorems Relating to Fields 

Divergence. The general idea of divergence was introduced in the 
previous chapter. Divergence occurs in a region in which lines of flow 
(the literal meaning of '‘flux lines’') appear to originate. An equation 
for computing divergence (equation 46) was given, but no proof or 
demonstration was included to show that this equation was truly related 
to the physical idea of divergence. Such demonstration will now be 

Fig. 22 

given. It will not be rigorous, but it will indicate the principal steps 
of a rigorous proof. 

Consider a small rectangular prism with its edges parallel to three 
coordinate axes X, 7, and Z, as in Fig. 22a. The limiting case is to be 
considered, in which the prism is so small that its edges are dx, dy, and 
dz in length. Figure 226 shows a side view of this prism, with the plane 
of the figure parallel to the X-Y plane. . We are looking upon a side 
with area dx dy. Each end has area dy dz, and the top and bottom 
dx dz. 

This small prismatic volume is located in a vector field which, for 
convenience, we will call D. Flux lines of this field pass through the 
prism, entering through one surface and leaving through another. We 
wish to find how many lines, if any, originate within the volume. 

38 
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Referring to Fig. 226, the number of flux lines entering the left-hand 

side of the prism is equal to the area of the left-hand surface times the 

normal component of field strength, which is Dx dy dz. The number 

leaving the right-hand surface is different if Dx changes in the distance dx. 

dDx 
If Dx is changing at the rate-as one passes from left to right, the 

dx 

dDx 
amount of change in the distance dx is-dx. Hence the number of 

dx 

flux lines leaving the right-hand surface 
/ dDx \ 

is ( Dx H-dx ] dy dz. Sub- 
\ dx / 

tracting, the number of lines that leave the right-hand side in excess of 

dDx 
the number that enter the left-hand side is-dx dy dz. 

dx 

Similarly, the number of lines leaving the top of the prism in excess of 

dDy 
those entering the bottom is-dydxdz; and the number leaving the 

dy 

front surface is greater than the number entering the back by 

dD, 
-dz dx dy. 

dz 

Combining these quantities, the total number of flux lines leaving the 

volume that do not enter it is 

/dDx dDy dD,\ 
(-1-1-) dx dy dz [84] 
\ dx dy dz / 

But divergence is defined as the number of flux lines originating per unit 

volume; so, if the volume of the prism is dv, 

VD 
/ dDx 

\ dx 

dDy dDA 
+ — +—) 

dy dz / 

dx dy dz 

dv 
[85] 

Since the volume of the prism dv is equal to dx dy dz, it follows that 

dDx dDy dD^ 
V-D =-+ —+- 

dx dy dz 

and this is equation 46. 

[86] 

Gauss’s Theorem. Now consider that space is divided into an un¬ 

limited number of small cells of volume dy, as in Fig. 22c. The num¬ 

ber of flux lines leaving one such cell, marked a in the figure, is greater 

than the number entering that cell by V • D dv. The number originat¬ 

ing within the adjoining cell 6 is likewise the divergence at that location 
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times the volume of that cell. The number of lines emanating from 
the two cells together, considered as a unit, is the sum of the two prod¬ 
ucts of divergence and volume. Adding more cells to the group thus 
begun, the number of lines of flux issuing from any volume is greater 
than the number entering that volume by the summation (or integral) 
of all the individual products of divergence and volume. Hence 

Excess outward flux = dv [87] 

In Chapter I, flux of the vector field D passing through an area a 
was defined as 

J'oda [11] 

and from this it follows that the net flux passing outward tlirough any 
closed surface (the excess of the outward flux over the inward flux) 
is found by integrating over the whole closed surface: ^ 

f D • da [88] 

Now equation 88 and equation 87 are different expressions for the 
same quantity of flux and hence may be equated, giving 

f Dda V ■ D dv [89] 

This is a theorem of great importance. It relates the integral of diver¬ 
gence within any volume to the integral of the vector field strength over 
the surface enclosing that volume. It is sometimes called the diver¬ 
gence theorem and sometimes Gauss's theorem or Green's theorem. 

A number of illustrations of the application of this theorem are given 
in the preceding chapter, especially with reference to Fig. 15. 

^ Two comments regarding notation: A small circle superimposed on the integral 
sign indicates integration over a closed path, either a closed line or a closed surface, 
depending upon whether the integration is with respect to distance or area, as indi¬ 
cated by the nature of the differential quantity. In this case da indicates that the 
integration is over an area, and the circle upon the inUigral sign indicates that the 
surface over which the integral is taken must be a clostid surface. 

In equation 4 the differential quantity ds, « being distance, indicates integration 
along a line; that it must be a closed line is shown by the circle on the integral sign. 

The area da is a vector quantity, as discus.sed in Chapter II. The direction of 
the vector da is normal to the area and, by convention, it is outward. It is obvious 
that this convention is useful only for a closed surface. 
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Curl. The idea of curl was developed in Chapter II with reference 

to a hypothetical paddle-whecd in a vector held of fluid velocity. Rota¬ 

tion of the paddle-wheel occurred when the summation of the com¬ 

ponents of held strength tangential to the paddle-wheers circumference 

failed to add to zero. This was illustrated by reference to the force 

exerted on specific paddles, a painfully crude illustration. The idea 

of curl is much better formulated in terms of the circulation of the vector 

held about the periphery of the paddle-wheel. The paddle-wheel may 

then be removed entirely, leaving curl dehried in terms of the circulation 

about a small closed path. 

The mathematical quantity circulation is the line-integral of a vector 

held along a given path. If the vector field is E, its circulation about a 

closed path is 

^E-ds [90] 

This is merely a mathematical expression of the ordinary concept of 

circulation, as of air or water, and it is clearly the circulation of fluid 

about its periphery that makes a paddle-wheel turn. 

Curl is a microscopic circulation. Consider the exploring paddle- 

wheel in a vector field, and oricait it so that its speed of rotation is 

maximum. (44iis determines the orientation in which the circulation 

around its circumference is maximum.) Now allow the paddle-wheel 

to vanish, but retain its circumference as a circular path in space. The 

cire.ulation of the vector field about this path (found from the above 

definition) depends upon the Jirea enclosed within the path. Dividing 

circulation by area gives a rat io that is substantially independent of the 

size or shape of the path pi*ovided the path is small. This ratio is 

Circulation about a small closed i)ath 

Area of surface bounded by that path 
[01] 

The limit approac’hed by this ratio as tlic path is allowed to shrink to 

a mere point is the curl at that point. 

Curl is thus the limiting value of circulation per unit area. It follows 

that the circulation of a vector field around a closed path of infinitesimal 

size depends upon the curl of the field at that point and the infinitesimal 

area within the path. But the circulation about a small closed path 

also depends upon its orientation. Curl must be treated as a vector 

quantity. The direction of the curl vector is defined as normal to the 

plane in which circulation is maximum, and the circulation about an 

infinitesimal closed path in cither that or any other plane is the scalar 

product of the curl vector and the area vector: (V x E) • da. 
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Now curl has been defined in terms of circulation. To find an expres¬ 

sion for curl in terms of the vector field itself, we determine the circula¬ 

tion about a small closed path in the vector field. It is not necessary 

that such a path be circular. Let us 

assume a small rectangular closed path, 

as in Fig. 23a, located in the A^-F 

plane. It is desired to find the circula¬ 

tion about it, and this is done (in ac¬ 

cordance with the definition of circula¬ 

tion) by multiplying the length of ea(;h 

side of the rectangle by the component 

of field strength parallel to that side. 

The lengths of the sides are (in the 

(ct) limiting case) dx and dy. Starting at 

the lower left corner in Fig. 23a, con¬ 

sider the bottom of the rectangle: the 

length is d.r, in a positive direction, 

and the component of the field along 

the bottom of the re(*tangl(i is at yr 

The bottom of the n'ctangle therefore 

provides the first term of the following 

expression for circulation, the other 

three terms being obtained from the other three sides of the rectangle 

taken in order, counterclockwise: 

Circukiti(jii = dx + dij - dx - Ey d\j [92] 

The third and fourth terms are negative i)ecause, in maintaining a 

counterclockwise direction about th(i rectangle, the lop and left-hand 

side are traversed in a negative direction. The distance traveled along 

the top is —dx, and, along the left side, —dy. 

Regrouping terms, 

Oiiculation U^^yiitx2 ^^^yviixi^dy (.Exaty^ Exuiy^) dx [9»1] 

The first parenthesis of the right-hand member is the amount by which 

Ey increases in the distance dx between and X2; it is therefore ccpial to 

The quantity in the second parenthesis is similar and corre¬ 

sponds to the change of Ex in the distance yi to ?/2- Hence equation 93 

may be written 

(dEy \ /dEx \ 
lyirculation = -dxjdy — J 
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Since, as seen above, circulation about an infinitesimal path is equal 

to (V X E) • da, a being the area within the path, we may write 

dEy dEx 
(V X E) • da = -— dx dy-dy dx [95] 

dx dy 

The differential area within the rectangular path is equal to dx dy, and 

both sides of the ecpiation may be divided by this quantity. Since da 

represents an area in the X-Y plane, ec^uation 95 gives the component 

of curl normal to that plane. In the two-dimensional field this is the 

total curl, and 

This is identical with equation 51. In a three-dimensional field this 

is one component only, the complete expression for curl being given 

by equation 47. 

Stokes’ Theorem. The discussion of the previous section concerns 

curl at a single point, or the region within an infinitesimal rectangle. 

It is now desired to determine the integral of curl over a surface of finite 

extent. This may be done by finding curl at every point of the surface 

and integrating. But there is a very helpful theorem, due to Stokes, 

that frequently saves a good deal of trouble. 

Consider the small rectangle marked a in Fig. 235, assumed to be in 

a vector field. There is circulation around this rectangle, as indicated 

by the arrows, corresponding to curl of the vector field within the area a. 

Now consider the adjoining rectangle marked b. There is circulation 

about this rectangle also, corresponding to curl in the area h. But, 

since the rectangles a and h have one side in common, this contributes a 

certain amount of circulation in one rectangle and an exactly equal but 

opposite amount in the other. Therefore, the sum of the curl in rec¬ 

tangle a plus the curl in rectangle h can be found by measuring the circu¬ 

lation around the outer perimeter of the larger rectangle made up of 

both a and h together, and giving no further attention to the equal and 

opposite components contrilnited by the common side. 

Other rectangles may be added to these two, in any number. Always 

the circulation along common sides may be discarded, so that, no matter 

how large the final area or what its shape, the summation of curl at 

all points of a surface is equal to the circulation about the perimeter of 

the surface. Mathematically, the line integral of a vector, which de¬ 

fines circulation, may be eciuated to the surface integral of the curl of 

the vector, and the result is Stokes’ theorem: 
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This theorem is not limited to a plane surface. Although the above 

discussion has been illustrated by reference to the plane surface of 

Fig. 23, the theorem applies and can be rigorously proved for a surface 

of any shape. The surface over which curl is integrated in equation 97 

might, for example, be concave like a cup or a kettle. In the latter 

case the integration of curl all over the kettle would be equal to the 

circulation around the rim of the kettle. 

But suppose the kettle has a lid, placed upon the kettle in the usual 

manner. The rim of the lid and the rim of the kettle coincide. Hence 

the integration of curl over the lid must be equal to the integration of 

curl over the kettle. That is to say, in more abstract terms, the inte¬ 

gration of curl over a surface in a vector field, as indicated by the right- 

hand member of equation 97, is the same for all surfaces having a com¬ 

mon perimeter and is quite independent of the shape of the surface. 

Comparison of Theorems. Gauss’s theorem and Stokes’ theorem are 

very similar in their essential natures, for they reflate large-scale phe¬ 

nomena to small-scale phenomena—the macroscopic to the microscopic. 

If a vector field is examined minutely at a particular point, as with a 

microscope, it will be found to have a certain divergence at that point. 

This examination is performed, as a matter of fact, not with a micro¬ 

scope, but with a partial derivative, and equation 86 gives the divergence 

when the partial derivatives at the point are known. 

But divergence has a large-scale result that can be detected without 

the aid of a microscope (or a partial derivative). This is flux: if flux 

issues from a volume, there is divergence within that volume, and 

Gauss’s theorem gives the relation. One side of Gauss’s theorem is in 

terms of the field passing through a surface; this is a surface of finite 

size and is the macroscopic quantity. The other side of the theorem 

is in terms of the divergence throughout a volume; this must be con¬ 

sidered point by point and is the microscopic quantity. 

Similarly, Stokes’ theorem relates the macroscopic effect, circulation 

along a closed path, to the microscopic phenomenpn, curl at every point 

of a surface bounded by that path. 

These theorems are frequently useful when the microscopic nature 

of a field is known and the macroscopic nature is desired (that is, when 

one knows the derivatives and wishes to find the field) or vice versa. 

Such applications will be illustrated in the next chapter, in which our 

study of the electric field is continued. 

Scalar Potential. The scalar field of elevation-above-sea-level is a 

potential field. It is a field of gravitational potential. Its value at 

any point is defined as the work required to move a body of unit mass 

to that point from sea level, or as the amount of potential energy gained 

by the body in being so moved. 
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A level surface—or, more precisely, a surface of constant elevation 

above sea level—is an equipotential surface, for a body can be moved 

from one point to another of such a surface without any change of 

gravitational potential, and without any work being done. Equi¬ 

potential surfaces near sea level are shown in Fig. 24a, and equipotential 

surfaces at gn^ater distanc.es from the earth in Fig. 24?>. 

The gravitational field is a field of force. It is therefore a vector 

field. Its value at each point is ecpial, l)y definition, to the gravitational 

force on a body of unit mass at that point. It is a field directed down¬ 

ward, toward the center of the earth. 

Gravitational potential is defined in terms of work, and the gravita¬ 

tional field in terms of force, so there is a simple relation between them. 

The field is the negative of the gradient of the potential: 

F = -VP [98] 

Although written with reference to the gravitational field, this equa¬ 

tion expresses a general relation between potential and force. The 

force field may be found from the potential field by differentiation. 

ICvery potential field has a gradient, and F can always be found from P. 

But it is not always possible, knowing a field of force, to find a corre¬ 

sponding potential field; a i)otential field does not always exist. For¬ 

tunately, there is a simple criterion by which we may know whether 

there is a potential field corresponding to a given field of force. 

It was shown in Chapter II that, if a vector field is the gradient of some 

scalar field, the vector field has no curl. The converse of this theorem 

provides us with the desired criterion: If a vector field is found to have 

no curlj that vector field is the gradient of some scalar field. Symbolically, 

If V X F = 0 then F = - VP [99] 

This says that, if a vector field has no curl, some scalar field exists 

whose gradient is everywhere identical with the given vector field; it 
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does not tell how to find that scalar field, but it does give assurance of 

its existence. When the scalar field P is found to exist, it is called a 

'potential field. 

The electrostatic field offers an example. As will be seen in the next 

chapter, the electrostatic field has no curl. Therefore we know from 

the above corollary that an electrostatic potential field exists. Indeed, 

it is well known that electrostatic potential exists, and that voltage is 

electrostatic potential difference. 

The static magnetic field has no curl in regions that are not carrying 

current. This will be discussed in Chapter VI. Hence, if a wire is 

carrying current, there is a magnetic field around that wire which has 

no curl. A scalar field of magnetic potential can be found in the space 

around the wire. (If the wire is straight, the cciuipotential surfaces of 

this magnetic scalar-potential field will be radial planes.) But within 

the wire, where current is flowing, there will be a magnetic field of which 

the curl is not zero. Within the wire, then, no field of magnetic scalar 

potential can be found. 

As another example, flow of heat through a solid body is a vector 

field that has no curl. Therefore a scalar field of heat potential must 

exist. It does; it is temperature, and the gradient of temperature is a 

vector field proportional to heat flow. 

In the gravitational field, one surface will contain all points at sea 

level (Potential = 0) and another all points 100 feet above sea level 

(Potential = 100) and so on. (See Fig. 24a and h.) By these equipo- 

tential surfaces, all space is divided into thin plates or shells called 

lamellas. 

Only vector fields without curl have this characteristic of dividing 

space into lamedlas (thin laminations) by means of equipotential sur¬ 

faces, so, following the usage of James Clerk Maxwell, a vector field 

without curl is called a lamellar field. Sometimes a lamellar field is 

called irrotational because it has no curl. 

Solenoidal Fields and Vector Potential. It was also seen in Chapter 

II that, if a vector field is the curl of another vector field, it has no di¬ 

vergence. Expressed in symbols: 

If B = V X A then V • B = 0 [100] 

This theorem also has its converse: If a vector field has no divergence, 

that vector field is the curl of some other vector field. Symbolically, 

IfV*B=0 thenB = VxA [101]., 

* The physical meaning of this is that, if a magnetic pole could be placed within 

the conductor (the conductor may be vi.sualized as Ixiing mercury), the work done in 

moving the magnetic pole from one point to another would depend upon the path 
followed, and no value of potential can be assigned. 
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In other words, if the vector field B has no divergence (as is tme, for 

instance, in a field that represents the velocity of flow of an incom¬ 

pressible liquid), then some other vector field can be found, which we 

choose to call A, such that the curl of A is everywhere equal to B. At 

least, it is to be hoped that the field A can be found. The process of 

finding it is sometimes difficult and sometimes impossible, but, if A 
exists, whether or not its computation is feasible, it is given the name of 

vector potential. 
The vector potential is somewhat analogous to the scalar potential 

of the previous section. Nevertheless, it must be emphasized that it 

is an entirely different quantity. If a vector field has neither curl nor 

divergence, it will have both a scalar potential and a vector potential, 

and they will be different quantities with little resemblance to each 

other. 

A vector field without divergence is spoken of as solenoidal or 

sourceless. All the lines of flux are closed curves, having neither be¬ 

ginning nor end, a fact that follows necessarily from there being no 

divergence. Nvery solenoidal field has a vector potential. All mag¬ 

netic fields are solenoidal, and therefore there is always a magnetic 

vector potential. 

Example. Figure 16a, page 23, shows water circulating in a tub. 

It might equally well be interpreted as the magnetic field within a con¬ 

ductor of circular cross section. Assume a set of cylindrical coordinates; 

this is a three-dimensional set in which r is radial distance from an 

axis, z is distance parallel to the axis, and 0 is angle as in polar coordinates 

(equation 69). The system of coordinates should be assumed with 

its axis coinciding with the axis of rotation of Fig. 16a; it is then the 

simplest and best adapted system to use for a problem of this character. 

(Formulas in terms of cylindrical coordinates are given in Table II.) 

The field of Fig. 16a, whether considered to be velocity of ^^’ater or 

magnetic field strength, is described by the equations 

Hr = 0 

Ho = ar [102] 

Ih = 0 

where a is a known constant. It is desired to determine the scalar and 

vector potentials of this field. 

To determine whether a scalar potential exists, find the curl of the 

given field H. Since H is essentially two-dimensional, equation 82 is 

adequate (or the complete expression for curl in Table II may be used) 
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and the result is 

/ dr ar\ 
VxH-kla-0 + — ) = k2a [103] 

\ dr r / 

Hence the curl is not zero, the field is not lamellar, and it is useless to 

try to find a scalar-potential field, for none exists. 

To determine whether a vector potential exists, find the divergence of 

H. Using equation 81, each term of which is zero, it is evident that the 

field does not have divergence, and hence it should be possible to find 

a vector potential. Let us call the 

assumed vector-potential field A, and 

try to find what it is. 

The curl of A must be H, so, if little 

paddle-wheels—the ^‘curl-meters^^ of 

Fig. 18—are placed with their axes 

along lines of H, as in Fig. 25, they 

must be turned at proper relative 

speed by the vector-potential field A. 

(As an alternative way of considering 

the problem, if all the curl-meters of 

Fig. 25 are driven at the proper 

speed, in proportion to the strength 

of H along their axes, they will act as pumps and, by churning the hypo¬ 

thetical liciLiid in which they are supposed to be, they will impart to it 

a velo(!ity equivalent to the vector-potential field A.) 

Now, by consideration of Fig. 25, it becomes clear that one possible 

solution for vector potcmtial would be a vertical field that has zero 

intensity in the center of the tub and that increases in vertically down¬ 

ward intensity nearer the sides. This would spin all the curl-meters in 

the proper direction and suggests a vector-potential field parallel to the 

Z axis. The strength of this vector-potential field will vary with radius, 

but, since it will presumably be symmetrical, it will not vary with either 

6 or 2. TTie manner in which the vector potential varies with radius is 

unknown and will just be expressed as a function of r, written symboli¬ 

cally/(r). Thus 

Ar =0 

Ae =0 [104] 

A. = fir) 

This formulation for A is merely a guess, but if it is correct it will satisfy 
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the requirement that V x A = H. For this to be true, each component 

of the curl of A must equal the corresponding component of H. Writing 

out the components of V x A using Table II, and equating to components 

of H from equation 102, we find the following three equations that must 

be satisfied: 

1 /dA, 5M«)\ o
 II 1 i 1 [105] 

OAr OA, 
-= ar [10(3] 
dz dr 

1 /d(rAg) 
[107] 

r \ dr on) 

Equations 104 arc tested by substitution into equations 105, 106, 

and 107. Substitution from equations 104 reduces equations 105 and 

107 immediatc4y to identities, and eciuation 106 becomes 

dA z 
—-= ar [108] 

dr 

This is a differential ecpiation, tlie solut ion of which is the desired func¬ 

tion Az. In this simple case, tlie solution is found by integration: 

o 
ar“ 

in which b is a constant of integration that may have any constant 

value (but may not be a function of r or 6). 

Az from equation 109, and Ar and Aq from equation 104, give the 

answer to our problem. They describe a field whose curl is H. How¬ 

ever, this is not the only field whose curl is H. A field is not uniquely 

defined by specifying only its curl. It will be seen in a later chapter 

that divergence of A may also be specified, as well as curl. For the 

present it is enough to say that the vector-potential field A determined 

above, is of particular interest because it not only has the correct curl 

at every point, but it also has everywhere zero divergence. 

’ Indeed any irrotational function may be added to A, for the curl of any irrota- 

tional function is zero. 
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PROBLEMS 

1. Derive an expression for curl in polar coordinates, as in equation 82. Do not 

merely transform from an expression in rectangular coordinates, but start by sum¬ 

ming circulation around an area such as that shown in the accompanying figure. 

2. Figure 19a shows a vector field which, being without curl, must have a scalar 

potential. Assuming the potential at the origin of coordinate's to be zero, find the 

potential at all other points. On a sketch of the field, draw lines (equipotential lines) 

connecting points of equal potential. 

3. Study Fig. 196 to determine whether equi¬ 

potential lines can be drawn. Is there curl? 

4. Does the vector field of Fig. 20 have a 

scalar-potential field? Can you determine it? 

5. Gravitational potential is inversely pro¬ 

portional to distance from the center of the earth. 

What is the nature of the gravitational field, using 

equation 98? 

0. Do ecpiipotential surfaces exist within the 

canal of Fig. 17 (surfaces that define the scalar 

potential of the indicated velocity field)? Can 

you locate them? 

7. A vector field V is defined by Vx = 10, Vy — Vz — 0. Find its scalar-potential 

field. Find its vector-potential field. Both v(*ctor and scalar potential are to be 

zero at the origin of coordinates. 

8. Consider the possible exisUaice of a vector fi(dd with zero divergences and zero 

curl at all points. Then impose' the further reistrictie)n that the field strength must 

not anywhere be infinite. Then reejuirc alse) that the fie;lel strength be zero at an 

infinite distance in all directions. 

9. Starting with an api)ropriate small .sectiem of spacer (as in Fig. 22a, but with 

shape adapted to the ce^ordiriate syste;m), finel the flux leaving sue*h an elementary 

volume, and relate it to the expression (Table II, inside back cover) for divergence 

in spherical coordinates. 

10. A vector field is defined by Er = R/r, Ee = 0, Ez = 0 ((;ylindrical coordi¬ 

nates). Find a vector potential field A such that V x A = E and V • A = 0. Can 

A be zero at an infinite distance? 

11. A vector field is defined by Er = R/^, Ee = 0, E^ = 0 (spherical coordinates). 

Find a vector potential field A such that VxA=»E, V*A=*0, and A is zero at an 

infinite distance. 



CHAPTER IV 

The Electrostatic Field 

In C'haptcr I, four experiments were described. In order to be useful, 

the results of these experiments were expressed in mathematical form 

as eciuations 2, 4, and 10. JOciuation 2 relates the force on a charged 

exploring particle to the electric field strength: 

F = QE [2] 

Ec^uation 4 states that the line integral of the electrostatic field about 

any closed path is zero: 

<^E • ds = 0 [4] 

h^cpiation 10 states that the total flux leaving any closed surface is pro¬ 

portional to the excess positive charge within that surface: 

D da eE • da = Q [10] 

Equation 2 is found to be true at all points. 

E(piation 4 is found to be true along every possible closed path of 

integration. 

Equation 10 is found to be true over every possible closed surface of 

integration. 

Ecpiations 2, 4, and 10 contain all necessary knowledge of electro¬ 

statics. No further experimentation is needed to develop the science 

of electrostatics in free space or isotropic material. Mathematical 

manipulation based on these equations will determine any electrostatic 

field when the charges that produce that field are known. The mathe¬ 

matics, however, is rarely easy. This chapter will be devoted to the 

fundamental principles of the mathematical solution, followed by a 

few examples. 

Consider, first, equation 4. Applying Stokes^ theorem (equation 97) 

gives: 

^E-ds = J’(VxE)-da = 0 [110] 

51 
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The conclusion from this equation is that the electrostatic field has no 

curl. This conclusion would not result from any single measurement 

that gave a value of zero for the line integral of E around some one 

closed path, for such an experimental result would not preclude the 

possibility that curl might exist at various points in the field, even 

though the integral of curl over the surface of integration of equation 110 

chanced to be zero. But it was specially emphasized that equation 4 

applies to all closed paths, and therefore equation 110 applies to all 

surfaces, and the only way that eciuation 110 can apply to all surfaces of 

integration is for the curl of E to be zero everywhere. Hence 

VxE = 0 [111] 

It follows from equation 111 that the electrostatic field is lamellar, 

and an electrostatic potential exists. If potential is called V, the electric 

field will (by equation 98) be the gradient of V (with a negative sign) 

so that 

E=~V7 [112] 

Often in the solution of an electrostatic; problem V can l>e found. It 

is then easy to find E by means of equation 112. 

Another fundamental relation is expressed by equation 10. Applying 

Gauss’s theorem to this equation gives 

■ da = j'(V-D)dv = Q [113] 

In any region in which there is no electric charge, so Q = 0, 

dv = 0, and hence the divergence of D is zero. 

But, where charge is not zero, divergence is not zero. It is convenient 

to express divergence in terms of the density of electric charge (charge 

per unit volume) which may be called p. The charge within a closed 

surface is equal to the integral of the charge density through the con¬ 

tained volume. If the charge Q in equation 113 is expressed as f pdVj 
the equation becomes 

J(V •D)dv =Jpdv [114] 

The two integrals of this equation are both volume integrals. More¬ 

over, they are integrals throughout the same volume: through the 

volume, that is, contained within a specified closed surface. Finally, 

that closed surface is purely arbitrary; it may be any closed surface, 

of any size, shape, or location. Equation 114 can be true under this 
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variety of conditions only if the integrand on one side of the equation 

equals the integrand on the other; if, that is, 

V*D=p [115] 

Within a homogeneous material, where c does not change from point to 

point, this can be written 

V-E = - [110] 
€ 

This is an expression that relates electric field to charge density. It 

is also possible to relate electric potential to charge density by substi¬ 

tuting equation 112 into 116, giving: 

V-(VF)=-- [117] 

When the meaning of the operator riabla is considered, it is evident 

that this is a second-order partial differential equation. It is of such 

importance that it is given a name: it is Poisson’s equation. In the 

special case that applies to space containing no charge, it reduces to 

V^V = 0 [119] 

This is an even more famous differential equation, called Laplace’s 
equation. 

The study of electrostatics is essentially the solution of these equa¬ 

tions. To sum up: 

V^V = - 

These relations completely define an electrostatic field, and their appli¬ 

cation to specific problems will now be considered. 

Conductors. A conducting material is one in which electric charge 

can flow. Conducting materials contain electricity that is free to move 

when it is acted upon by the force of an electric field, and this is true 

even though they are ^^uncharged” in the sense of having no excess of 

either sign of charge. 

Since charge can flow within a conductor, there can be no electro¬ 

static field within the conducting material, for if there were it would 
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exert force on the charge and move it from one point to another until 

the electric field was reduced to zero by the redistribution of the charge. 

Hence, within a conductor, in the electrostatic case: 

E = 0 

from which: [120] 

V is constant 

Since E is zero it follows that V • E = 0, and hence that p = 0. There¬ 

fore, there can be no electric charge at any point within the material of 

a conductor. But E is not necessarily zero at the surface of a con¬ 

ducting body, and electric charge may be located on the surface. The 

conclusion is that all the charge on a conducting body will flow to the 

surface and remain there. 

Certain general conclusions may be drawn about the electrostatic 

field in space just beyond the surface of a conductor. Since the entire 

conductor is at the same potential (equation 120), the surface of the 

conductor is an equipotential surface. The electric field is always nor¬ 

mal to equipotential surfaces; electric field is the potential gradient^ and 

gradient is always normal to the ecjuipotential surfaces of the field from 

which it is derived, as considered in Chapter II. The electrostatic 

field at the surface of any conductor will therefore be normal to the 

surface of the conductor. 

The previous paragraph gives the direction of the field at the con¬ 

ductor surface; something may also be said about the strength of the 

field. Since charge on the conducting body is distributed over the 

surface, it is convenient to speak of the density of charge in terms of 

charge per unit area. As p was used in equation 114 to represent charge 

per unit volume, a will now be used to represent charge per unit area of 

surface, and total charge is found from 

j<7da = Q [121] 

If the charge density per unit area of a conducting surface is <t, there 

must be o’ flux lines extending normally outward from each unit area. 

This follows from the fact that one line emanates from each unit of 

positive charge. The electrostatic flux density in space just outside 

a charged conducting surface is therefore equal to the density of charge 

on the surface, and in direction it is normal to the surface. D is flux 

density, and its normal component at the surface (which may be writ¬ 

ten Dn) is 

Dn =S = (T [122] 
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So, if the distribution of charge on the surface of a conductor is known, 

the electric field just outside the conductor can be found. Similarly, 

if the field is known, the charge distribution can be found. Ordinarily, 

however, neither is known, and both must be found from the fact that 

the conductor surface is an equipotcntial surface with a known total 

charge, which makes the solution more complicated. 

A Charged Sphere. Consider an isolated spherical conductor with a 

known charge Q upon it. Find the electric field about the sphere, in 

space that is filled with material of relative dielectric constant k. 

The problem may be solved by finding a 

potential field that satisfies Laplace^s equa¬ 

tion 

V^V = 0 [119] 

and at the same time satisfies the boundary 

conditions that (1) the surface of the sphere 

is an ecpiipotential surface, and (2) the total 

charge on the sphere is Q. 

The expansion of Laplace^s equation in 

rectangular coordinates was given in equa¬ 

tion 67, but, for use in a problem concerning a sphere, it will 

be much more convenient to expand in spherical coordinates. In 

using spherical coordinates, each point in space is located by a radial 

distance r and two angles 0 and </>, as in Fig. 26. The derivation of the 

Laplacian in splic'rical coordinates will not be given here (it may be 

found in advanced calculus books); the result is included in Table II 

(inside back cover). It is 

^ d^V 1 d-V 1 d-V 2dV cot9dV 
y2y _ —_ - 4- -H-1-^-[123] 

dr H dd'^ sin" 6 dej)^ r dr dO 

A solution of our problem, tlien, is an expression for potential that 

will make equation 123 equal zero and that at the same time wall make 

the surface of the conducting sphere an eciuipotential surface. 

Fortunately, the problem can be greatly simplified by consideration 

of symmetry. Since our charged sphere is isolated in space, whatever 

happens on or about the sphere must be independent of any direction 

except radial direction. No other direction can be defined. To dis¬ 

tinguish any other direction, it would be necessary to have another ob¬ 

ject in space, for comparison. 

So, if there is no distinction between different directions, the electric 

potential V about the sphere cannot be different in different directions. 
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It must be the same for all values of 6 and </> (referring to Fig. 26 and 

assuming the center of the charged sphere at the origin of coordinates), 

varying only when r is changed. 

Since F is a function of r only and docs not vary with 6 or </>, Laplace’s 

equation reduces to 

, d^V 2 dV 
= — +-= 0 [124] 

dr^ r dr 

Now this is an ordinary differential cciuation that is reducible to a linear 

equation with constant coefficients. The solution is 

V = - + b [125] 
r 

in which a and h arc any arbitrary constants. To check the correctness 

of this solution, it may be substituted back into equation 123 which is 

thereby reduced to an identity. 

Next, a and b must be evaluated from boundary conditions.^ Assume 

that the potential at a very great distance from the sphere is unaffected 

by the charge on the sphere, so that when r = oo, F = 0. Substituting 

these values into equation 125 gives 5 = 0, and the equation reduces to 

F = - [126] 
r 

The remaining constant a must be evaluated in terms of the (ffiarge on 

the sphere. 

First, the radius of the sphere must be known; let it be ro- Since the 

charge Q must be distributed symmetrically over the entire surface of 

the sphere, the charge per unit area a is 

47rro^ 

^ Solutions of differential equation.s, in g(‘neral, contain terms that must be eval¬ 

uated from boundary conditions. Tln^se are terms (constants or functions) that 

vanish when the solution is substituted into the differential equation, and hence 

they cannot be determined from the differentiarequation. But any physically useful 

solution must coincide with certain known boundary conditions, and this gives a 

means of evaluating the undetermined coefficients in a physical problem. For practi¬ 

cal purposes, a solution of a differential equation that agrees with all initial and 

boundary conditions is a unique solution. Specifically, a unique solution of Laplace’s 

equation is obtained if the Laplacian is everywhere zero and if th(^ function meets the 

boundary conditions over a closed surface and vanishes at infinity. (See also foot¬ 

note 8 on page 92.) 

[127] 
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and from equation 122 it follows that the field strength at the surface 

of the sphere, radial in direction, will be 

E 
Q 

iir ero^ 
[128] 

Now, since potential docs not vary with 0 or </>, the potential gradient 

is everywhere radial, and the magnitude of the electric field strength at 

any point is found ^ as 

dV _ a 

dr 
[129] 

This is true everywhere, so it is true at th(' surface of the sphere, and, 

equating 129 to 128 with tlie provision that r = Tq: 

a Q 

‘\r ero^ 
[130] 

from which a = Q/47r e. Finally, then, at any point external to the 

charged sphere, 

Itt er 

Q 
47r 

Q Q 
47r er^ 47r 

[131] 

The physical interpretation of these quantities may well be repeated. 

£, the electric field, is a force; it is ecpial at any point to the force on an 

exploring particle with unit positive charge. F, the potential, repre¬ 

sents work; the potential of a point in space is the work required to move 

to that point an exploring particle with unit positive charge, starting 

an infinite distance away. 

The electric field is everywhere away from a positively charged body, 

because the force on a positive exploring particle will be repulsive; and 

potential increases as one approaches a positively charged body, be¬ 

cause one must do work in moving an exploring particle against the 

force of the electric field. 

Spherical Condenser. A charged conducting sphere A of radius a is 

concentrically located within a hollow conducting sphere B of inside 

* See expression for gradient in spherical coordinates in Table II. 
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radius 6, as in Fig. 27. The electric field in the space between spheres 

A and B is identical with the field in the same region about an isolated 

sphere similar to A and with the same charge. It is radial in direction, 

and its strength is 

E = 
Q 

4ir €r^ 
[132] 

The outer sphere B carries an electric charge equal and opposite to that 

on A, and the electric field terminates on the 

inner surface of B, The two spheres constitute 

a condenser; it has capacitance, and there is 

voltage between the spheres. Note that, with 

a given charge, the electric field strength E 

depends on k, the dielectric constant of the 

material between the spheres, although the flux 

density D does not. 

Voltage, which is essentially potential differ¬ 

ence between two points (ordinarily between 

two metallic conductors), is defined as 

Vt2=f^Eds [133] 

That is, voltage from point 1 to point 2 is the line integral of the electric 

field along any path from point 1 to point 2. This is the amount by 

which point 1 is at a higher potential than point 2. 

It is interesting to notice that potential difference or voltage between 

two points is the work that will be done by electric force on a unit elec¬ 

tric charge that is allowed to move from one point to the other. Sub¬ 

stituting equation 2 in equation 133, 

= ^ I F ds [134] 

and, since the integral of force times distance is work, 

Fig. 27 

Q 
[135] 

Voltage between spheres of the spherical condenser is found by locating 

a point 1 on the surface of A and a point 2 on the surface of B. The 

integration to determine voltage is simplest if 1 and 2 are on the same 
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radial line, for then the line of integration is parallel to the electric field, 
and all the distances are radial. In that case. 

Vab = dr = 
Q(b - g) 

47r eab 
[136] 

Capacitance of a condenser is, by definition, the charge divided by 
the voltage. 

C = - [137] 
V 

The capacitance of the spherical condenser is therefore 

4t eab 
C =- 

b — a 
[138] 

a quantity that is determined entirely by the geometry and material 
of the condenser. 

Occasionally one encounters references to the capacitance of an iso¬ 
lated sphere. This may be considered to be the limit approached by 
the capacitance of the spherical condenser as the outer sphere is allowed 
to become large without limit. Letting b in equation 138 approach 
infinity, we obtain, as the limiting value of capacitance, 

C = 47r ea ^ [139] 

The capacitance of any condenser is proportional to e, the dielectric 
constant. This fact suggests a means of measuring dielectric constants 
of materials, and such a means was actually used by Faraday and others 
in the classical determination of dielectric constants. 

Polarization. It is convenient to speak of the relative dielectric con¬ 
stant of a material such as glass or oil or polystyrene and to use the 
appropriate value of k in computation, but it is not clear without fur¬ 
ther consideration why the effect of one charged particle on another 
should depend on the nature of the material between them. Why is 
the electric field less in any solid or liquid dielectric material than in 
empty space? 

It is supposed that all non-conducting material contains positive and 
negative charges bound together, perhaps by being part of the same 
atom. When material of this kind is in an electric field, the positive 
charges tend to move one way and the negative charges the other, but, 
since they are bound, they can move only as far as the elastic nature of 
the bond permits. Each atom is somewhat distorted, therefore, by the 
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stress of the electric field and becomes positive on one side and negative 

on the other. 

Figure 28 shows a block of dielectric material between a pair of 

charged metal plates, one with charge +Q and the other with — Q. In 

the upper part of the diagram, the material is shown so much enlarged 

that the elementary particles can be seen; they are strained by the 

electric field so that each is negative on the left and positive on the right. 

The result is that the left-hand surface of the material is predominantly 

negative and the right-hand sur¬ 

face positive. Any cubic centi¬ 

meter of the material, however, 

contains equal numbers of posi¬ 

tive and negative elements and 

is neutral. 

In this way, without any flow 

of free charge through the ma¬ 

terial, but merely as a result of 

polarization, the material has 

acquired the equivalent of a sur¬ 

face charge. This explains why 

the electric field strength E is 

less in dielectric material than 

in free space; the surface charges 

of polarization partially shield 

the region within the material. 

Surface charge of polarization is 

not considered in any of the equations of this book; its effect is cared 

for by introducing the relative dielectric constant k. It is possible, 

however, if desired, to develop a complete mathematical theory in 

terms of polarization, and this is done in comprehensive books on 

electrostatics. 

Inverse Square Law. There is a radial electric field about a sphere 

with charge Qi, the strength of which is given by equation 131 as 

+Q -Q 

Fig. 28 

Qi 

47r cr? 
[140] 

A second charged sphere, with charge Q2, is moved into the electric field 

of the first sphere. It is required to find the force exerted on the second 

sphere by the electric field of the first. 

By equation 2, 

F = Q2E1 [141] 

and, if the distance from the center of one sphere to the center of the 
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other is r, equation 140 gives 

QiQ'i 
^ ^ 

47r tr^ 
[142] 

This is the well-known Coulomb’s law. Historically, it was dis¬ 

covered in the latter part of the eighteenth century by direct experiment 

by Coulomb, who used his newly invented torsion balance. Much of 

the science of electrostatics was deduced from it. In the present dis¬ 

cussion, however, Coulomb’s law is itself deduced from the experiments 

described in Chapter I. 

There is one important provision to be made in connection with equa¬ 

tion 142. It is accurate only if the two charged spheres are so far apart 

that neither disturbs the distribution of charge on the surface of the 

other. For, if the charge on the first sphere were redistributed to any 

noticeable extent by the electrostatic attraction or repulsion of Q2, the 

electric field about the sphere would no longer be strictly radial at all 

points. Perfect symmetry would not, then, exist. If the radius of each 

sphere is small compared with the spacing between spheres, no apprecia¬ 

ble disturbance will take place and equation 142 will be accurate. For 

mathematical rigor, the limiting case is considered: the charges Qi and 

Q2 are assumed concentrated at points, rather than being distributed 

on spheres. But this has the disadvantage of being physically impossible. 

It may be emphasized that force is inversely proportional to € and 

hence is less in any dielectric medium than in free space. Two charged 

bodies in oil, for example, would attract each other less strongly than inair. 

Field within a Hollow Charged Sphere. Coulomb’s law is quite dif¬ 

ficult to substantiate experimentally with a high degree of accuracy, be¬ 

cause the force that must be measured is small. The best verification 

of the law is based on the experimental evidence that the force on a 

charged exploring particle inside a hollow charged sphere is everywhere 

exactly zero. This measurement, made by Cavendish even before Cou¬ 

lomb’s direct measurements of force and repeated with greater accuracy 

by Maxwell in the latter half of the nineteenth century, is an experimen¬ 

tal proof of the inverse square law, for, if electric force from a point 

charge followed any other law, there would be a resultant force either 

toward or away from the walls of a hollow charged sphere. This can 

be proved by integrating to obtain the resultant force exerted on an 

exploring particle by charge distributed uniformly over the surface of 

the sphere. 

In following the line of argument that has been developed in the 

preceding chapters, however, the conclusion that there is no electric 

field within a hollow conducting surface of any shape may be reached 

from Laplace’s equation. Consider any closed conducting surface sur- 
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rounding empty space. The surface, being conducting, must be equi- 
potential. If any flux lines extend from the surface into the interior 
space, they must be normal to the surface. No flux lines can extend 
into the interior space and terminate there, for if they did there would 
be divergence in empty space, and this is inconsistent with Laplace’s 
equation. No flux lines can start from an equipotential surface and 
return to that same surface; if they did there would be curl in the field, 
and this is not permitted by Laplace’s equation. Therefore no flux lines 
can enter the interior space from the conducting surface, and there can 
be no electrostatic field in a cavity (that contains no charge) within a 
closed conducting surface. 

The Potential Integral. An electric field can be found, if its potential 
field is known, by equation 112, and the distribution of electric charge 
can be determined from the electric field by equation 115. In homo¬ 
geneous material these relations can be combined in Poisson’s equation 
which relates charge distribution directly to the potential field; 

V^v = - - [118] 
c 

Since the Laplacian operation is a differentiation that is fairly easy to 

perform, we can readily find charge distribution in a known potential field. 

The potential field, however, is not usually known as the starting 
point of a problem. More commonly the charge distribution is known 
and the potential field is to be found. Equation 118 then becomes a 
more or less complicated differential equation, a very simple example 
of which was the determination of the field about a charged sphere. If 
an explicit expression for potential in terms of charge could be found, 
not requiring the solution of a differential equation, it would be valuable. 
This can, indeed, be done and gives a result in the form of an integral. 

By equation 131 the potential at a point that is rj meters distant 
from the center of a small sphere with electric charge Qi is 

4iir cri 

If there is also a second charged sphere in the neighborhood, the poten¬ 
tial at the point under consideration will.be 

V = 
Qi Q2 

47r eri 4t cr2 
[144] 

If there are many charged bodies, the potential at a point will be the 
sum of the potentials resulting from each: 

4w € r 
[145] 
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Finally, if the charge is distributed in space with density (charge per 

unit volume) represented by p, the amount of charge in a differentially 

small volume dv will be p dv and potential takes the form of an integral 

which sums the increments of potential resulting from each infinitesimal 

charge: 

1 r pdv 
7 =- I — 

4:ir eJ r 
[146] 

This is the desired expression for potential in terms of charge. The 

meaning is clear from the derivation: the numerator of the fraction is 

an infinitesimal bit of charge, r is the distance from that bit of charge 

to the point at which potential is being determined, and the integra¬ 

tion gives the summed effect of all charges present. The limits of the 

integration are such as to include all the region containing charge; if 

charge were distributed through a spherical region, for example, the 

integration would be throughout the sphere. If charge were distributed 

on the surface of a sphere, however, the differential element of charge 

would be <r da rather than p dv in equation 146, and the integration 

would only need be over the surface of the sphere. 

The distance r depends upon the coordinates of the point at which V 

is being determined, and also the coordinates of the point at which each 

bit of charge is located. The formulation of an expression for this dis¬ 

tance is unfortunately so complicated that the integration is impractical 

except for the simplest electric fields. However, the general method is 

of great importance in determining the radiation from antennas. In 

preparation for that use, a simple example will be given here. 

Example, Consider the electric field between two uniformly charged 

parallel planes, as in Fig. 29. The planes are of infinite extent; the lower 
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plane has a charge of c per unit area, and the upper ol —a per unit 

area. Coordinates are chosen with the X and Z axes lying in the lower 

plane. Point P is any point between the planes, and its coordinates 

are xi, 2/1, and Zi, In an infinitesimal area da located at (x,0,2) in the 

lower plane, there is electric charge a da — <j dx dZj and, directly above 

it in the upper plane at a point (.r,2/2,2), there is an opposite charge 

—adx dz. The distance from the electric charge in the lower plane to 

the point P is \/(a: — Xi)'^ + 2/1^ + (2 — Zi)^, and from the electric 

charge in the upper plane to P is a/(x — xi)'^ + (^2 Vif' + (2 — 21)^. 

The integral can now be written: 

1 r a da 
7 =- - 

Att € J r 

— ^--— -- „ —=51 dx dz [147] 
V {x-xiY+{y2-yiY + {z-ZiY\ 

The process of integration is moderately involved, but the result is 

simple: 

I148I 

This same answer could have been obtained, and much more easily, 

by solution of Laplace^s equation (see Problem 2, page 67). 

Electrostatic Energy. A certain amount of energy must be expended 

to produce an electrostatic field. An exactly ecpial amount of energy 

is released when the electrostatic field ceases to exist. While the elec¬ 

trostatic field exists, this energy is stored in the field (or, at least, this 

is the customary assumption). It is even possible to determine the 

distribution of this energy in the field. 

Consider two conducting bodies of any shape, such as A and B of 

Fig. 30. At first they are uncharged, but electric charge is gradually 

removed from B and added to A. Because of electrostatic force, a 

certain amount of work must be done in transferring charge from one 

body to the other. Since energy is the line integral of force, and poten¬ 

tial is the line integral of electric field, it follows from eciuation 2 that 

the incremental energy required to transfer a small charge dQ through a 

potential difference V between the bodies is 

Incremental energy — V dQ [149] 
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But V can be expressed in terms of the capacitance of the bodies and 
of the charge that has already been placed on A before the small charge 
dQ is transferred, giving 

Q 
Incremental energy = ~dQ [150] 

(J 

The total energy expended in placing a total charge Q upon the bodies 

is the summation of the small amounts of energy required by the small 
increments of charge, so the total 

Energy 
Jo C 

dQ 
2C 

Since C is, by definition, Q/V, this may be written 

Energy = \QV 

[151] 

[152] 

The total energy of the system is therefore one-half the product of 
the charge on one of the bodies and the potential difference between the 
bodies. The total energy can be subdivided to determine its distribu¬ 
tion in space. 

First, the energy corresponding to a given amount of charge is pro¬ 
portional, as in equation 152, to the potential difference through which 
the charge is moved. Let Vi and V2 be the potentials of equipotential 
surfaces enclosing the body A. A part of each of these surfaces is shown 
in Fig. 30. These could be actual thin metallic surfaces without alter¬ 
ing the electric field. The charge +Q might then be moved from the 
body A to the surface with potential Vi (which completely encloses A) 
and the electric field between A and Vi would then cease to exist. The 
electric field between the surface at Vi and the body however, would 
be unchanged. The surface at Vi would still be, as before, an equipo- 
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tential surface; the same amount of flux would issue from it and would 
have the same distribution. Now let the charge be moved to the other 
equipotential surface V2; the field from V2 to B will remain unchanged, 
but the field from Fi to 72 will be eliminated. At the same time the 
energy of the system will be reduced from to ^¥2 {Vi and V2 

being the potentials of the respective surfaces relative to B), Hence 
it is reasonable to say that the energy stored in the space between those 
surfaces was 

hQ(Vi - V2) [153] 

This discussion may be extended to show a division of energy in shells 
between equipotential surfaces throughout the entire electrostatic field. 

Second, the energy of the field may be distributed among the flux 
lines. If each one-hundredth of the charge on A is responsible for one- 
hundredth of the energy of the system (which is reasonable from equa¬ 
tion 152) and since there issues from that part of the charge one- 
hundredth of the flux, we may say that this proportion of the energy 
is located in the space through which the corresponding flux lines pass. 
In Fig. 30 a tubular section of the space between the charged bodies is 
indicated as containing flux passing from the small area m on A to n 
on B. The energy in the tube of space from m to n is proportional to 
the number of flux lines traversing this tube. 

If the tube from m to n is so slim that its cross-section area where it 
intersects the equipotential surface F2 is da, and the electric flux density 
at this cross section is D, the amount of flux in the tube is D • da,. The 
total electrostatic flux is Q. The energy in the tube is D • da/Q times 
the total energy, or, from equation 152, 

i(D-da)VAB [154] 

If this tube of differential cross-section area is now cut by equipotential 
surfaces Vi and V2J the energy in the tube between those surfaces is, 
by equations 153 and 154, 

HJ>-da)iVi-V2) [155] 

Finally, if the spacing between equipotential surfaces is reduced to the 
differential distance ds through which tjie potential drop Fi — 72 = 
E • ds, the energy in the differential volume of space dv is 

^(D ‘ da)(E • ds) = i(D ^E)dv = dv [156] 
2 

This may be interpreted to mean that the energy density (energy per 
unit volume) at any point is • E or Also it indicates that 
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energy in any given region of space is obtained by integrating through 
that region: 

Energy = | • E dv [157] 

Energy in the entire electric field is found by integrating through infinite 
space. 

That this infinite integral does, indeed, equal the total energy given 
by equation 152 can be proved directly. But it must not be overlooked 
that there is no definite proof that the energy is stored in space as sug¬ 
gested by equation 156—we can only say that it behaves as it would 
if it were so stored. The distinction is fundamental and is related to the 
great controversy between ^^field theory'’ and ^‘theory of action at a 
distance" that raged during the nineteenth century. More will be said 
of this controversy in a later chapter. 

PROBLEMS 

1. A charge Q is placed upon an isolated metal sphere of radius ro. Find electric 

field strength and potential at all points within the sphere. 

2. Two parallel conducting plane surfaces form a condenser. Solve Laplace's 

equation for the electric field between the surfaces when they have charge w and —« 

per unit area. Find capacitance per unit area. (Consider 

a region that is so far from the edges of the surfaces that 

the electric charge Is uniformly distributed.) 

3. Find the electric field between two charged plane con¬ 

ducting surfaces set at an angle a, but not quite touching. 

Find the distribution of charge on the surfaces. Consider, 

as in Problem 2, a region distant from the edges, so that the 

result is not influenced by edge effects. Voltage between the 

plates is V. 

4. Find the electric field about an isolated cylindrical con¬ 

ductor of radius ro and unlimited length with a charge of q 

units per unit length. Find the curl of this electric field. 

5. Find the potential difference between the conductor of Problem 4 and any 

point in space. 

6. Find a law (similar to the inverse square law for charged spheres) to be used 

for force per unit length between charged parallel cylinders of unlimited length. 

7. Find the energy required to charge unit area of the condenser of Problem 2, 

using equation 152. Find the energy in the electrostatic field of that condenser, per 

unit volume, using equation 156. 

8. Two parallel metal plates are close together but insulated. They are charged, 

one being pasitive and the other negative. They are connected by flexible wires to 

an electroscope. Without permitting any change in the charge on either plate, the 

plates are separated. Explain why the electroscope indicates a greatly increased 

voltage between plates as the plates are drawn apart. If the initial separation is 

0.1 millimeter and the initial voltage difference 100 volts, find the voltage between 
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them when they are separated 10 centimeters. (Note: This explains the high volt¬ 

ages of lightning.) 
9. Find the capacitance per square centimeter of a pair of large parallel plates 1 

centimeter apart in air. Convert the result to micromicrofarads farad). 

Remember this result, at least approximately, for it is often useful in estimating 

capacitances. 
10. Find the capacitance of a spherical condenser as in Fig. 27 if the space sur¬ 

rounding the inner sphere A is filled with paraffin out to a radius equal to ^ (a + h). 

Find the electric field in both paraffin and empty space that results from a charge 
Q on the condenser. 

11. Referring to Problem 8: if the initial separation is 0.1 millimeter of 'paraffined 

paper with a dielectric constant of 2.3, find the voltage when the plates are separated 
by 10 centimeters of air. 

12. Write in detail the integral for potential (equation 146) about an isolated 
charged sphere, with radius ro and charge Q. Do not integrate. 

13. From equation 148, find E between the condenser plates in the example of 
Fig. 29. Find the voltage difference between the plates. 



CHAPTER V 

Electric Current 

In electrostatic problems, materials are divided into two classes: 
conductors and non-conductors. Electrostatics is not concerned with 
the relative ability of different conducting materials to permit charge 
to flow, for if there is any motion of charge the condition is not elec¬ 
trostatic. 

If an electric field exists in a conducting material, electric charge in 
the material will be driven to flow in the general direction of the electric 
field. Such flow of charge is called an electric current; the electric cur¬ 
rent through any given surface is equal, by definition, to the rate of 
flow of electric charge past that surface. That is, 

in which Q is the total charge that has passed through the surface. 
An experiment is now necessary to determine the current-carrying 

characteristics of various conducting materials. This experiment, 
which will be called Experiment V, is actually the work of Georg Ohm, 
and the result is Ohm’s law. 

Experiment V. Current flowing in a metallic conductor is measured, 
and the voltage difference is determined between the ends of a section 
of the conductor (each end of the section is an equipotential surface). 
The voltage is maintained constant while the experiment is performed. 
This is done for an unlimited variety of sizes and shapes of conductors, 
and for many different metallic materials. It is found that the current 
and voltage are always related by 

7 = 4^ [159] 
K 

where is a constant determined by the composition and geometry of 
the conductor.^ It is found, moreover, that R is directly proportional 

^ Temperature and other physical conditions affect R to some extent. The essen¬ 
tial point is that a given sample of material has a certain resistance which is a char¬ 
acteristic of the material and is not dependent upon the amount of current flowing 

or the voltage applied. 

69 
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to the length of a conductor of constant cross section, and inversely 
proportional to the cross section of a conductor of constant length, so, 
with 7 as a coefficient that is characteristic of the conductor material. 

1 area 
— = 7- 
R length 

[160] 

The coefficient y is called the conductivity of the material. 
Voltage was defined by equation 133 as the integral of electric field 

strength: 

-f 7 = E • ds [161] 

It is now desirable to introduce a new term, current density i, which is 
so defined that the integral of it over 
a surface gives the current through 
that surface: 

I 

f / = I i • da [162] 

Since Ohm’s law applies to all 
shapes and sizes of conductors, it 
applies to a section of differentially 
small size. Consider the section 
shown in Fig. 31. The current flow¬ 
ing through this section is i • da 

(from equation 162) and the voltage from end to end is E • ds (from 
equation 161) and 

1 da 
= 7 -r [163] 

R ds 

from equation 160. Combining these in Ohm’s law, equation 159, 

da 
I - da = 7 — E • ds 

ds 
[164] 

Since ds and da, considered as vectors, have the same direction as E 
and i, current density and electric field strength are related simply as 

1 = 7E ^ [165] 

This resulting equation is a microscopic Ohm’s law. It says that the 
current density at any point in a conductor is proportional to the electric 
field strength at that point, and in the same direction. This is true for 
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metallic conductors, to which the above discussion has been limited. 
It is true for electrolytic conductors, also, and for many other conduct¬ 
ing materials. (But it is not true for certain crystalline substances, 
such as carborundum, in which current is not proportional to voltage, 
nor to anisotropic material in which conductivity is not the same in 
different directions, nor to the passage of electricity through gases; 
Ohrti^s law does not apply to these cases without special interpretation. 
Cases in which equation 165 does not apply will not be considered 
further.) 

When the electric field is not varying (as was specified in Experi¬ 
ment V) there can be no change of 
accumulated charge, for, if there were 
a change of charge, there would be 
a change of electric field also. It 
follows that whatever electrostatic 
charge there may be on the surface of 
the conductor will remain there, un¬ 
changed, while current flows through 
the cross section of the conductor. 
To repeat, since there is no change 
of electric field, there is no change of 
charge density at any point. Since 
there is no change of charge density Fig. 32 

at any point, the lines of current 
flow do not terminate. Since the lines of current flow do not terminate, 
the vector field of current density has no divergence. That is, 

V • i = 0 [166] 

or, from equation 165, within the conductor, 

V • tE = 7V • E = 0 [167] 

when the flow of current is steady and the electric field is unchanging. 
Kirchhoff’s first law may be stated: The algebraic sum of the currents 

flowing toward a junction in an electrical network is zero. This is 
clearly a special case of the more general relation of equation 166 and 
may be considered to be derived from it. 

If, as a result of current flowing, charge is accumulating in some part 
of the circuit, equations 166 and 167 do not apply. Consider, for in¬ 
stance, the parallel-plate condenser of Fig. 32. Current is flowing into 
the left-hand plate, and from the right-hand plate. No current, how¬ 
ever, is flowing in the space between the plates, but the electric field E 
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in that region is constantly increasing as charge is deposited on one plate 
of the condenser and removed from the other. 

Now imagine a closed surface about one of the plates, as indicated by 
the dash line. Charge is entering this closed surface, because of the 
current /, but no charge is leaving it. Consequently the amount of 
charge within the surface is increasing, and therefore the amount of 
electric flux passing out through the surface is increasing. 

The rate of increase of charge within the surface is /, for, by equation 
158, 1 = dQ/dt. Since one line of flux emanates from each unit of 
charge, the rate of increase of flux passing through the surface is 

However, 

IL 

-jQ^I 
dt 

[168] 

Flux = da [169] 

so the current entering any closed surface is related to the flux passing 
out through that surface by 

= - (fo 
dtJ 

fdD 
— • da 
dt 

[170] 

The current flowing out through a closed surface is found by inte¬ 
grating current density over that surface: 

f i • da 

and, since equation 170 is for current entering^ we may equate 

’ dD £ £dD 
- (p L • da = q) — da 
J J dt 

[171] 

[172] 

The two integrations of equation 172 are performed over the same closed 
surface, so 

[173] 

whence, by Gausses theorem. 

dv = 0 [174] 
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and, since this is true for the space contained within any closed surface* 
however large or small, it follows that everywhere the quantity in 
parentheses has zero divergence: 

V ■ = 0 [175] 

Two obvious substitutions in equation 175 then give 

/ dE\ 
V (,E + .^).0 [176] 

Comparison of equation 175 with 166 is very enlightening. Equa¬ 
tion 166 tells us that current has no divergence in steady flow, that is, if 
the electric field strength is unchanging. If the electric field is chang¬ 
ing, however, current does not flow without divergence. But, as we are 
informed by equation 175, if another term involving the rate of change 
of the electric field is added to current density at every point, the result 
is a quantity that has zero divergence under all circumstances. 

We are tempted to look upon this additional quantity, this dD/d^, as 
something similar to current—perhaps even as a kind of current itself. 
It is not a conduction current, which is the name given to y E, so we 
will call it a displacement current. The total current, the sum of con¬ 
duction current and displacement current, according to this terminology, 
is made up of two parts: 

dD 
If = ic + = tE H—— [1-77] 

at 

The divergence of this total current density is always zero, and it is 
therefore solenoidal. 

Electromotive Force. The electric field E, as it has been considered 
so far in the discussion, results from the presence of free electric charge. 
The flux lines of the field begin and end on electric charge. But any 
source of electromotive force can also contribute to the electric field: a 
familiar and important example that will receive a good deal of atten¬ 
tion in later chapters is the induced electric field that appears in the 
neighborhood of a changing magnetic field. If the component of elec¬ 
tric field that is due to electric charge is called E^ and the component 
resulting from electromotive action is called E,^, then we may continue 
to use E for the total electric field strength at any point, and 

E = Es + Eni [178] 
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Voltage, as that term is commonly used, is the line integral of 
Voltage was defined with this meaning in equation 133, which should 
now be written more explicitly as 

F=Je.-ds [179] 

Electromotive force is a similar line integral of E;,^: 

Electromotive force = • ds fl80] 

As mentioned above, electromotive force may result from magnetic 
action, as in a generator or a transformer. It may also come from 

chemical action in a battery, or from heat in a thermocouple, or from 
various other physical processes. In general, an electromotive force 
appears when energy of some other kind, such as chemical energy, or 
heat energy, or mechanical energy, is changed into electric energy. 

Ohm^s law is written in equation 159 for a section of circuit in which 
there is no electromotive force, and current flows as a result of applied 
voltage only: 

712 = y =Je.-ds [181] 

But, in a part of a circuit where there is electromotive force, the electro¬ 
motive force will contribute to the flow of current, and 

IR = V Electromotive force [182] 

Thus, in the circuit of Fig. 33, the applied voltage is V, the resistance 
is Rf and the electromotive force of a battery assists the flow of current. 
Current is therefore 

V + Electromotive force 

R 
[183] 
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as in equation 182. Equation 182 may also be written 

IR = • ds 4- ■f: = E-ds [184] 

Voltage in Fig. 33 is mathematically the line integral of between 
the upper and lower terminals, following any desired path of integration. 

These terminals and the wires connected to them are, of course, charged 

bodies. If the path of integration is so chosen that it does not pass 

through any region in which any electromotive force exists, so that Em 
is zero, the voltage is equally well expressed as the line integral of E, 

as may be seen from equation 184, for, in the absence of electromotive 
force, E = Ea. 

A particularly interesting special case appears in a closed circuit con¬ 

taining electromotive force. If the section of circuit under considera¬ 
tion in equations 182 and 184 is expanded until it becomes the whole 
circuit, and if the two terminal points approach each other until they 

coincide, the paths of integration of the line integrals become closed 
paths. But the line integral of Ea about any closed path is zero (equa¬ 

tion 4) and equation 184 thus reduces, for a closed circuit, to 

IE = Electromotive force = f E-ds [185] 

This relation will be of use in the next chapter, in exploring the magnetic 

field. 
It may be noted in passing that the term that appears in ordinary 

alternating-current circuit computations as ^finductive reactance volt¬ 

age drop” is, in equations 182 and 184, part of the electromotive force 

term, for it is fundamentally a ^^countcr electromotive force” produced 

by changing magnetic field. If there is a condenser in a circuit, its 

voltage is part of the Ce^ • ds term. 

PROBLEMS 

1. Find, from tables or otherwise, the conductivity of silver, gold, copper, iron, 

and aluminum. Give values in mhos per meU^r. What is the mks unit of resistivity? 

2. Derive KirchhofT’s first law, as stated on page 71, from equation 166. Kirch- 

hoff's second law says, in effect, that, in the absence of electromotive forces, the sum 
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of the voltages around any circuit of a network is zero; derive this law, also, as a 

special case of an equation in Chapter V. 

3. A flat metal plate of uniform thickness is bounded by two quarter-circles and 

two radial lines, as shown in the figure. A constant direct voltage is maintained at 

the edges bounded by radial lines. Find the distribution of current density in the 

plate. 

4. Thickness of the plate of Problem 3 is tfe the inner edge has 1-inch and 

the outer edge 2-inch radius of curvature. Total current is 100 amperes. Find the 

maximum current density in the plate. 

5. The material of the plate of Problems 3 and 4 is aluminum. Find the voltage F. 

6. From the terminals of a 10-kilovolt-ampere alternating-current generator, 

two parallel wires extend 500 yards to a load consisting of an electric heater, a static 

condenser, a magnetic relay coil, and an induction motor all connected in parallel. 

Using the definitions of the section on electromotive force, where does exist? 

Where is there E,? Where can voltage be measured accurately with an ordinary 

voltmeter? Indicate in a diagram the flux lines of E*. Can flux lines of Em be 

drawn? Explain. 



CHAPTER VI 

The Magnetic Field 

Magnetic Force. When a conductor is carrying current, there may 
be a mechanical force exerted upon it. This is quite distinct from 
electrostatic force and from all non-electrical forces, for it disappears 
when current ceases to flow. This force is observed when the conductor 
is in the neighborhood of another conductor that is also carrying cur¬ 
rent or when it is in the neighborhood of 
a magnet. It is therefore called magnetic — curr^ ' 
force. 

Experiment VI is performed to study 
magnetic force. The apparatus is in- 

clicated in Fig. 34. A short, straight short, straight wire 

section of conducting wire is mounted in length l 

such a way that force exerted upon it can 
be measured while current is flowing 
through it from end to end. Since the 
short section of wire must be free to -^ 
move, in order to measure force, some Fig. 34 

kind of flexible connection is used to 

carry current to it. An arrangement of pools of mercury might well 
be employed.^ 

The experiment shows that magnetic force on the exploring wire is 
always normal to the wire. The amount of the force is proportional to 
the amount of current flowing through the wire. The force is also pro¬ 
portional to the length of the exploring section of wire. All these factors 
are easily understood, for they depend upon the exploring wire and the 
current in the exploring wire. But the amount and direction of the 
magnetic force are also dependent upon the location and the orientation 
of the exploring wire in space, particularly \vith reference to magnets and 
to other circuits carrying electric current. This suggests that there is 
some condition in space (especially in the space about magnets and 

^ Historically, various forms of this apparatus were used by Ampere in 1821 in 

establishing the law of force between conductors that is known as “Ampere’s law.” 
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* Current 

Short, straight wire 
of length L 

J 
Fig. 34 
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electric currents) which produces the magnetic force. It suggests that 
we would do well to consider the possible existence of a magnetic field. 

The experimental evidence tells us that at any point in space it is 
possible to orient the exploring wire in such a way that there is no 
magnetic force upon it. If the exploring wire is held at the same point, 
but turned to a new orientation, there is then a magnetic force; and the 
amount of the force is proportional to the sine of the angle between the 
direction of the exploring wire and its direction when the force is zero. 
The magnetic force reaches a maximum when the wire is perpendicular 
to its null direction. The direction of the magnetic force, in addition to 
being normal to the wire, is also normal to the null direction. 

From these experimental results it is seen that the idea of a magnetic 
field is quite reasonable. It must be a vector field with direction as 
well as magnitude. There is only one uniquely defined direction: the 
direction of the exploring wire when the magnetic force upon it is zero. 
This is taken, by definition, to be the direction of the magnetic field. 
The strength of the magnetic field is found from the maximum magnetic 
force that appears when the exploring wire is normal to the null position; 
the magnetic field strength is defined as proportional to this maximum 
force. The sense of the field is also defined in terms of this maximum 
force, for a ^^right-hand” relation is assumed between the positive direc¬ 
tion of current flow in the exploring wire, the positive direction of mag¬ 
netic field, and the sense of the resultant force. 

With these definitions we are able to compute the magnetic force upon 
the exploring wire from the following equation: 

F = ILxB [186] 

The for^ is represented by F, L is the length and direction of exploring 
wire on which the force is exerted, and I is the current that it carries. 
B is called the magnetic induction (as will be seen later, it is also the 
magnetic flux density). With F in newtons, L in meters, and I in am¬ 
peres, B is measured in webers per square meter; no factor of propor¬ 
tionality is required in the equation.^ It will be noticed that the cur¬ 
rent is written as a scalar quantity, whereas L, the length of the wire 
that carries the current, is a vector, and its direction is obviously the 

* Equation 186 is correct also for the ‘^electromagnetic'^ cgs system of units: F in 

dynes, L in centimeters, / in abamperes, B in gausses. The Gaussian system, which 

uses the same cgs units except that I is in statamperes, requires a factor of propor¬ 

tionality (between abamperes and statamperes) usually designated c and equal to 

2.998 X 10^®; with Gaussian units 

F 
ZLxB 
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direction of the wire. The positive sense of L is arbitrarily selected, 
and when current flows in the positive direction it is positive current. 

Equation 186 takes into account all the facts discovered by Experi¬ 
ment VI. The reader may well review the experimental results as de¬ 
scribed above and see how they are incorporated in the equation. The 
similarity of equation 2 for electrostatics and equation 186 for magneto¬ 
statics is interesting; so, also, are their differences. 

Magnetic Flux, Lines of magnetic flux may be conceived just as 
were lines of electrostatic flux, and the definition is similar. 

Magnetic flux = ^ = J'b • da [187] 

The quantity B is magnetic flux density, for, when multiplied by an area 
(or integrated over an area, as in equa¬ 
tion 187), the product is flux. The mks 
unit of flux is the webcr (1 weber is 10^ 
maxwells) and hence the mks unit of flux 
density is, as in equation 186, the weber 
per square meter.^ 

Experiment VII. Another experiment 
will now be performed to study the re¬ 
lation between the magnetic and the 
electric fields. The discovery that an elec¬ 
tric field could be produced magnetically 
was made by Michael Faraday in England 
in 1831, and it is often considered to be 
the most significant of his many valuable 
experiments. It was made independently, 
but a few months later, by Joseph Henry in the United States. 

The apparatus for Experiment VII is a loop of wire connected to a 
ballistic galvanometer. The arrangement of the apparatus may be as 
in Fig. 35 in which a twisted pair of wires is indicated between the loop 
and the galvanometer. The reading of a ballistic galvanometer is a 
measure of the electric charge that passes through it, and it is found that, 
if the loop is in a magnetic field, the galvanometer indicates that charge 
flows whenever the magnetic field strength is increased or decreased. 
We measure the magnetic flux density at the loop by the methods of 
Experiment VI and find that the reading of the ballistic galvanometer 
is proportional to the increase or decrease of flux passing through the 
loop of our apparatus. It is also determined that deflection of the gal- 

* The weber per square meter, being 10 kilogausses, is a unit of convenient size. 
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vanometer is inversely proportional to the total resistance of the ap¬ 
paratus including loop, leads, and galvanometer. Since the galvanom¬ 
eter measures electric charge, we write 

Q = - ~ [188] 
Jti 

The negative sign in equation 188 indicates that, if the positive direction 
of flow of charge around the loop is related to the direction of positive 
flux by the ^‘right-hand rule,’' a positive increase of flux produces a 

negative current. 
From equation 188, Faraday’s law of induction is deduced. The 

equation can be written 
TiQ = [189] 

and by differentiation 

= m = 

dt 
[190] 

It was shown in Chapter V that in a closed circuit the product RI is 
equal to electromotive force around the circuit, so, from equations 185 

and 190, 

E • ris =- [191] 
dt 

This is Faraday’s famous law. The flux is that which passes through 
a surface bounded by the conductor and corresponds to the usual con¬ 
cept of flux linkages (see page 91). Flux is measured in webers and 
electromotive force in volts. 

Magnetically induced electromotive force around a loop of wire is 
given by equation 191, and it is expressed as the line integral of the 
electric field along the conducting loop. A generalization of this experi¬ 
mental relation will now be made: It will be assumed that a changing 
magnetic field induces an electric field according to equation 191, not 
only in conducting material, but also in non-conducting material and 

even in empty space. This is reasonable, for, if the loop of copper wire 
of Experiment VII is replaced by a loop of poorly conducting material 
such as a nickel-chromium alloy, the induced voltage in the loop remains 
exactly the same. Voltage is induced even in a piece of wood in a chang¬ 
ing magnetic field, and, if the current that flows is very small, it is merely 
because the resistivity of the wood is quite high. This fact can be es¬ 
tablished experimentally, if suitably delicate instruments are available. 
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and it is not a difficult step to assume that, if this is true in all materials, 
it is true in air or even in empty space. At first sight this would appear 
to be a mere quibble, for what does it matter whether an electric field 

is produced if there is no material present for it to act upon? But it 
will be seen a little later that this concept is in reality of the utmost 
importance, and that without electric and magnetic fields producing 
each other in free space there could be no transmission of radio, light, 

or other electromagnetic waves through vacuum. 
With this assumption (which establishes that there is an induced 

electric field that is continuous in space), Stokes^ theorem can be applied 
to the integral of equation 191. At the same time expression 187 may 
be substituted for flux, giving 

rdB 
(VxE) ‘da = - —-da [192] 

J dt 

These two integrations are both over a surface bounded by the con¬ 
ductor of the experimental apparatus, which may be of any size, shape, 
or orientation, and the two sides of the equation can be equal under all 
circumstances only if 

dB 
V X E =- [193] 

di 

This equation shows that an electric field will have curl in a region 
in which the magnetic field is changing with time. The electrostatic 
field, it will be remembered, in which nothing changes with time, has 
no curl. The great importance of this equation will appear in Chap¬ 
ter VIII. 

Voltage Induced by Motion. In deriving the right-hand member of 
equation 192 from equation 191, it is assumed that flux through a loop 
changes only because the magnetic flux density is changing. But it is 
also possible for the loop to be traveling through space, as, for example, 
in an electric generator, and its motion through the magnetic field may 

then alter the amount of flux that passes through the loop even though 

the strength of the magnetic field at every fixed point of space is con¬ 

stant. In general,^ if a medium is moving with velocity v through 

* See a more advanced treatise on electromagnetic theory, such as Classical Elec¬ 

tricity and Magnetism, by Abraham and Becker, G. E. Stechert & Co., New York, or 

Principles of Electricity and Electromagnetism, by G. P. Harnwell, McGraw-Hill Book 

Co., New York, 1938. 
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space in which the magnetic field is B, there will be an electric field in¬ 

duced in the medium, as a result of its motion, equal to v x B. This is 

in addition to any electric field that results from a changing magnetic 

field strength, and, when it is considered, equation 193 (which is valid 
for media at rest) becomes (for moving media) 

V X E 
dB 

-- + Vx (vxB) 
dt 

[194] 

Experiment VIII. A magnetic field has been defined in terms of 
the force exerted on a wire carrying current. It has also been seen that 

a changing magnetic field induces an electric field. But neither the 

source of the magnetic field nor its configuration in space has yet been 
considered. More experimental information is required for this pur¬ 

pose, and two more experiments will now be described. These are very 

closely analogous to Experiments II and III that were performed in 
studying electric fields. It will be seen that both of these experiments 

in the magnetic field. Experiments VIII and IX, can be done only in a 

magnetic field that is not changing with time; such a field, by analogy 

to the electrostatic field, is called magnetostatic. 
Experiment VIII is performed with an instrument for measuring 

magnetic flux density. It may be either the current-carrying wire that 

was used in Experiment VI or the loop and ballistic galvanometer of 

Experiment VII. The latter would be the more practical. Indeed an 

exploring loop, usually of many turns wound tightly together, connected 
by flexible leads to a properly calibrated ballistic galvanometer of ex¬ 

tremely long natural period, is a common laboratory instrument known 

as a ^^fluxmeter.^' 

The instrument for measuring magnetic flux density is used to deter¬ 

mine the normal component of the quantity B at all points on a closed 

surface in a magnetic field. The closed surface is merely an imaginary 
one, and it may have any shape or size. This experiment must be re¬ 

peated for very many such surfaces, and the conclusion from the experi¬ 

mental data is that in all cases the summation of the magnetic field 
over every closed surface is zero. That is, 

• da = 0 [195] 

Applying Gauss’s theorem to this experimental result, it appears that 
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the magnetic field has no divergence under any circumstances: 

V • B = 0 [196] 

Lines of magnetic flux are therefore continuous, for it follows from 
equation 196 that no magnetic flux line has a beginning or end. Every 
one is a closed loop. 

Experiment VIII is performed in material substance of all kinds, as 
well as in free space, and the result is the same: divergence of the mag¬ 
netic field is always zero. It is obviously impossible to explore the 
magnetic field within a solid substance such as brass or iron by measur¬ 
ing force on a conductor, but the fluxmeter loop can be used to determine 
the total magnetic flux within any piece of solid material, and the result 
is found to be always consistent with equation 196. 

Experiment IX. This, the last of our experiments, may be done 
with either of the instruments suggested for Experiment VIII. As 
before, however, the exploring loop of a fluxmeter is the only way to 
determine the amount of magnetic flux within solid material. The 
measuring instrument is used in Experiment IX to determine the mag¬ 
netic flux density at every point of a closed path, and, by summing 
the tangential component of the magnetic flux density along the chosen 

path, the integral^B • ds is evaluated. 

It is first discovered that, if the path of integration lies in homogeneous 
material, the value of the integral is proportional to the amount of elec¬ 
tric current surrounded by the path of integration. If no electric current 
flows through a surface bounded by the path of integration, the value 
of the integral (in homogeneous material) is zero. If current flows in 
such a way as to link the path of integration, however, the value of the 
integral is given by 

-(fs-ds = I [197] 

The current is 7, and /x is a value that is characteristic of the material. 
The coefficient ju is called permeability. The permeability of empty 
space ® is designated by no, and, when I is in amperes, B in webers per 
square meter, and s in square meters, mo = ^tt X or nearly 
1.257 X 

® The permeability of free space is arbitrarily made to be unity in the unration¬ 
alized system of electromagnetic units; this requires that current be measured in 

abamperes, B in gausses, s in centimeters, and that the right-hand member of equa¬ 

tion 197 include a factor of 47r. In Gaussian units, the factor in equation 197 is 

47r/c, as current is in statamperes. 
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This experiment may be performed on a ring of iron, as in Fig. 36. 
The exploring loop of the fluxmeter is wrapped around the iron to meas¬ 
ure the flux that exists within the metal. A wire is threaded through 
the ring and is adjusted to pass normally through its center. A known 
value of current is then allowed to flow in the wire, and the resulting 
deflection of the ballistic galvanometer is observed. This is repeated 
with the exploring loop at various places on the ring (although it is 
found that the galvanometer reading is the same at all locations). The 
iron ring is then removed, and the experiment is repeated with the ex¬ 
ploring loop of the fluxmeter enclosing merely empty space. Since the 
readings of the fluxmeter when used on the iron ring are some hundreds 

of times greater than when iron is absent, it follows that the permea¬ 
bility of the iron (under the conditions of the experiment) is several 
hundred times the permeability of free space. 

The permeability of a material, such as iron, is represented by /x. 
The permeability of free space is pio; with the numerical value given 
above. The relative permeability of any material (relative, that is, to 
free space) is /x/mo, and it is this value of relative permeability that is 
usually found in tables and charts showing the magnetic properties of 
materials. 

Experiment shows that the permeability of most materials is practi¬ 
cally that of free space. Only iron, cobalt, nickel, and certain alloys’ 
have magnetic permeabilities differing from /xq by as much as a few parts 
in a million. These have high relative permeabilities, ranging up to 
many thousand, and, because iron is typical of the group, they are 
known as ferromagnetic materials. They are extremely unsatisfactory 
for analytical study because their permeability is not constant but de¬ 
pends upon the magnetic flux density (as exemplified in the extreme 
case by magnetic saturation) and, what is worse, the permeability is 
affected by the previous magnetic history of the material (as seen in 
the phenomena of hysteresis and permanent magnetism). Fortunately 
it is not often necessary to consider ferromagnetic materials in connec¬ 
tion with electric waves. In this chapter it will be assumed that per- 
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meability is constant even in those ferromagnetic materials in which it 
differs significantly from unity. 

Finally, when the investigation of Experiment IX is extended to the 
measurement of magnetic flux density along paths that are partly in one 
material and partly in another, it is necessary to associate the proper 

Fig. 37 

CO 

value of permeability with each part of the path. For a path of integra¬ 
tion in non-homogeneous material, ecpiation 197 accordingly becomes 

fB • ds ^ ^ 
-- = 1 [198] 

/X 

By introducing a new symbol H representing the vector field of mag¬ 
netic intensity, d(ifined in accordance with the relation B = /iH, it is 
possible to write eciuatioii 198 as: 

= I [199] 

This equation is found to be true for all possible closed paths of integra¬ 
tion, and it sums up the results obtained by performing Experiment IX. 

Equation 199 is an equation of magnetomotive force. The current 
I may be the current in a jingle conductor, as in Fig. STa, or in several 
conductors, as in Fig. 376, c, or d,^r in^rt of^a^cqiidjictp?, as in e. 
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The current may be merely a diffuse flow of charge throughout the en¬ 
tire region, as in /. In any case it may be defined as the integral of the 
current density over a surface bounded by the path of integration of 
equation 199: 

I = [200] 

The surface of integration of equation 200 may be any surface bounded 
by the closed path, for (under the circumstances of the experiment), 
if a line of current flow links the path of integration, the line will pass 
through any surface bounded by that path. 

Magnetomotive force, the left-hand side of equation 199, is directly 
proportional to current. In practical units, as in equation 199, it is 
numerically equal to current, and the unit of magnetomotive force is 
the ampere or ampere-turn. Dimensionally it is enough to say that 
magnetomotive force is measured in amperes, but in many practical 
cases the magnetic effect of a small current is multiplied by winding a 
wire into a coil of many turns, as in Fig. 37c, and it is customary to 
speak of magnetomotive force in ampere-turns. But multiplying am¬ 
peres in a wire by turns in a coil of that wire is merely a way to evaluate 
the integral of equation 200. 

Magnetic intensity or magnetizing force H is measured in units of 
ampere-turns per meter, which gives a nice physical picture of its mean¬ 
ing. 

Introducing equation 200 into 199 gives 

(fn •ds=-fida. [201] 

By means of Stokes’ theorem, the left-hand member of equation 201 
can be changed from a line integral around a closed path to a surface 
integral over a surface bounded by that path: 

H-ds [202] 

The second and third members of equation 202 can therefore be integra¬ 
tions over the same surface, which may be any surface, and it follows 
that at each point 

VxH = i [203] 

This equation says that the curl of the magnetic field at any point is 
proportional to the current density at that point. Where there is no 
current, the field has no curl and is therefore lamellar, but, in space 
through which current is flowing, the magnetic field has more or less 
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curl. There is curl, for instance, in a magnetic field within a wire that 
is carrying current. 

Convention Regarding Sign. In equations 197, 198, and 199, the 
meaning of the algebraic sign is as yet undefined. Equation 199, for 
example, states that current flowing in a wire produces magnetomotive 
force along a path encircling that wire. The question must arise: In 
which way is the magnetomotive force directed? What is meant by a 
positive current or a positive magnetomotive force? 

A X B is defined as boreal 
to angle from A to B 

(d) 

/Z Area vector defined 
Boreal coordinates ^ boreal to 

(Z boreal to angle X-Y) integration 

if) 

Fig. 38 

To clarify this situation a new definition is needed. When direction 
around a circle is to be related to direction normal to the plane of the 
circle, one or the other of the possible relations must arbitrarily be ac¬ 
cepted as positive. It is customary to assume that, if a circle were 
drawn in the plane of this page, and if the positive direction around the 
circle were taken to be counterclockwise, the positive normal direction 
would be out of the page. If, on the other hand, the positive direction 
around the circle were taken to be clockwise, the positive normal direc¬ 
tion would be in. To express this relation in a single word, let us use 
the term boreal.^ This makes it possible to state quite simply the 
accepted convention relating circuital and axial directions: the boreal 
direction is positive. 

® Boreal is derived from the rotation of the earth and signifies a northerly direction 

compared to the rotation of the earth, or any similar relation between axial direction 

and rotation. It is from the same root (boreaSj the north wind) as “aurora borealis.^' 

This term is based upon the rotation of the earth as a defining standard, as are 

Faraday's terms anode and cathode, from west and east. The opposite of boreal is 

australy as in “Australia.” 
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When a so-called right-hand screw is turned, it advances in a direction 
boreal to its rotation. The thumb of the right hand is boreal to the 
fingers when held as in Fig. 38c. This establishes the ^Tight-hand rule’’ 
which is, indeed, the most convenient way to find the boreal direction 
in individual cases. As in equation 199, current in a wire is boreal to 
the magnetomotive force it produces; hence, if the right thumb is 
pointed along the wire in the direction of current flow, the fingers indi¬ 
cate the positive magnetomotive force (sec Fig. 386). 

Equations 201 and 202 relate a surface 
integral to a line integral, the line integral 
being taken about the boundary of the 
surface. Here, again, a convention regard¬ 
ing sign is required. If area is to be con¬ 
sidered a vector quantity, represented by a 
vector normal to the surface, it must be 
known which sense the vector is to have. 
In previous chapters it has been enough to 
say that the sense of the vector was out¬ 
ward from a closed surface; but in equations 
201 and 202 the surface is not a closed sur¬ 
face, and ^Tutward” has no moaning. 
WTien a surface is not closed, it has a 

boundary, and it is sufficient to relate the direction ^ of the area 
vector to direction around the boundary; the accepted con¬ 
vention is that the boreal direction is positive. Thus in equation 201 the 
line integral of the left-hand member may be taken in either direction, 
selected arbitrarily, and this choice of direction around the boundary 
defines also, by the above convention, the positive sense of area in the 
right-hand member of the equation. With this convention all ambiguity 
is removed. 

Example. As an example of a solution for a magnetic field, let us 
compute the field in air about a long straight wire of circular cross 
section, as in Fig. 37a or 39. The wire is carrying current 7, and the 
three components of the magnetic field are to be found. 

Equation 199 gives the integral of the magnetic field along any closed 
path surrounding the wire. First, to apply this equation, let us select 
a circular path of integration that is concentric with the wire as in 
Fig. 39. Along this path, H is constant; this must be true because of 
symmetry, for one point on this circle about a circular conductor can¬ 
not be distinguished from another. 

Call the component of H that is tangent to this circular path of inte¬ 
gration Hq. Only this component will contribute to the scalar product 
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of equation 199, so 

[204] 

But since, at any constant radius r, lie is constant, this becomes 

I [205] 

The integral of ds is merely the length of the circular path of integration, 

and at radius r 

from which 

H02Tr r = I [206] 

[207] 

Call the component of H that is parallel to the axis of the wire Hz. 

If such a component exists, it must, because of symmetry, be equal at 

all points that are equal radial distances from the wire. 

Then call the component of H that is in a radial direction //r. Con¬ 

sider a surface around the conductor and coaxial with it, the general 

shape of a tin can or a round pillbox. That is, the surface is a closed 

surface, composed of a cylindrical section and two circular plane sections 

fis in Fig. 39. It is desired to obtain Tb • da over this surface for use in 

ecpiation 195. Since lie does not intersect this surface it contributes 

nothing toJ*B - da. ^Fhe axial component Hz contributes nothing to 

^B • da, for, being equal at c(iual radial distances from the conductor. 

if it adds to the integral over one plane surface, it subtracts an equal 

amount over the other, and it does not intersect the cylindrical surface. 

If the radial component Hr existed, however, it would give J*B • da 

over this tin-can-like surface some value different from zero. Since 

equation 195 says ^B • da is always zero, it follows, when all possible 

tin-can-like surfaces are considered, that Hr must be zero everywhere. 

It remains to evaluate Hz- Consider a line of integration as indicated 

in Fig. 39. It is rectangular in shape. One of the sides is parallel to 

the axis of the wire and is fairly close to the wire; the other parallel side 

is unlimitedly far away. When integrating H • ds around this rectangle. 
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nothing is contributed to the integral by which is everywhere nor¬ 
mal to the path. It has been shown that Hr = 0. There remains only 
Hzj which will (if it exists) contribute to the integral along the short 

sides of the path. 
The total integral around the path is zero, for the path links no cur¬ 

rent (equation 199). The contribution of IIz to the integral must 
therefore be zero, and this i possible only if Hz has the same value near 
the conductor that it has at an unlimited distance, or if IIz — 0. Since 
it is impossible that a conductor carrying finite current should produce a 
uniform magnetic field through infinite space (for this would require 
infinite energy), it must be concluded that as well as //r, is zero. 

Finally, therefore, we determine that only 11$ exists, and its value is 
given by equation 207, which is known as the Biot-Savart law. 'J'he 
solution of this simple problem has been carried out in great detail be¬ 
cause it illustrates the use of special paths of integration for reaching 
conclusions regarding magnetic and electric fields. 

Force Between Currents. In Experiment VI it was found that there 
is a mechanical force on a conductor that carries current in the neigh¬ 

borhood of another conductor also carrying 

current. The effect must be mutual, and 
each current exerts a force on the other. 
The amount of this force can now be de¬ 
termined. 

The determination of force between par¬ 
allel wires is simplest and will be illustrated 
here. The same method can ))e applied, 

if desired, to the general case of any conductors. 
Figure 40 shows a cross section of two conductors. Currents Ii and 

/2, measured in amperes^ are flowing in the conductors, both being di¬ 
rected out of the page. If the distance in meters between the two con¬ 
ductors is d, the magnetic field produced by Ii at the distance of con¬ 
ductor 2 is (by equation 207) 

= ^H^ = ~ [208] 
2xd 

O 
/. 

A 
Fig. 40 

The direction of this field is normal to a line connecting the two con¬ 
ductors, as shown in the figure. There is a mechanical force on conduc¬ 
tor 2 as given by equation 186, and, when equation 208 is substituted 
into equation 186, it is seen that the magnitude of the force is 

F = I2L2 
nil jJL III 2 

2Tr d 2Tr d 
lJ2 [209] 
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or the force in newtons per meter length of conductor 2 is 

F _ M hh 
Z/2 2^ d 

[210] 

This is a scalar equation. It gives magnitude of force only. The 

vector product L x B in equation 186 is here equal in magnitude to the 

product of the scalar magnitudes L and because L and B are normal 

to each other; the direction of force is given by the direction of this 

vector product, and, since, in Fig. 40, L is out of the page (corresponding 

to the direction of flow of current), and B is up, F, being boreal to the 

angle from L to B, is directed toward conductor 1. 

It is evident that equation 210 gives also the magnitude of the force 

exerted on conductor 1 by the current in conductor 2. The direction 

of such a force is toward conductor 2. Therefore we have determined 

that two conductors carrying current in the same direction attract 

each other, the amount of force being given by equation 210. This is 

a simple form of Ampere’s law. As given here it assumes that the 

spacing between conductors is large compared to the diameter of either 

conductor and that the conductors are straight and parallel for an 

unlimited distance. 

If either current were reversed in direction, changing the sign of I 

in equation 186, the direction of the force between conductors would be 

reversed and would become repulsive. But, if both currents were re¬ 

versed, there would again be attraction. From this has arisen the easily 

remembered but somewhat loose statement that “like currents attract, 

unlike currents repel.’’ 

Magnetic Flux Linkages. Current flowing in a coil of wire, as in 

Fig. 37c, produces a magnetic field. The configuration of the field is 

such that flux lines extend axially through the coil and return, rather 

widely dispersed, in outer space. Each flux line thus passes at least 

once, and possibly several times, through a surface bounded by the 

conductor. Such a surface in Fig. 37c can be visualized as a sheet of 

Ribber with its edge attached to the conductor. When the wire is bent 

into a helix, the rubber sheet is stretched into a complicated shape that 

can be imagined more readily than it can be drawm or described. The 

closed line shown in Fig. 37c might represent a flux line; such a line 

passes three times through the surface bounded by the conductor. It 

will be recognized that each penetration of this surface by the flux line 

is equivalent to the ordinary concept of a “flux linkage.” 

Magnetic Potential. In the discussion of electrostatic fields, a good 

deal of attention was given to the potential field F. This is a scalar 
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field. It is known to exist because V x E = 0, and its gradient (with 

negative sign) is E. 
Now one naturally inquires whether there is a similar magnetic scalar 

potential field. Equation 203 is enough to give warning that such a 

field may not exist, for V x H is not always zero. This much can be 

said: in any region where there is no current flowing, the (static) mag¬ 

netic field has no curl, and a scalar magnetic potential exists. It is 

sometimes useful, but not in connection with waves, and so it will not 

be discussed here. 

Vector potential was mentioned in Chapter III. No effort was made 

to find an electrostatic vector potential, for the divergence of the electro¬ 

static field is not always zero, and where it is not the vector potential 

field will not exist. To be sure, an electrostatic vector potential might 

be found in space that contains no charge, for there divergence is zero. 

The magnetic field, on the other hand, has zero divergcaice everywhere 

(equation 196), and it is possible to find a magnetic; vecdor potential 

that turns out to be of real value. 

Let us call the magnetic vector potential A. By definition,^ then, A 
is such a field that 

H = VxA [211] 

Since i = V x H, from equation 203, it follows that 

I = Vx Vx A [212] 

By using the identity given in footnote 5, page 32, this becomes 

i = V(V • A) - V^A [213] 

Equation 213 is somewhat similar to Poisson’s equation for electro¬ 

statics and gives a means of finding current distribution if the magnetic 

vector pcjtential field A is known. However, A is not known; it is not 

yet even fully defined. All that is known is the curl of A. Any num¬ 

ber of fields may have the same curl, but only one field can have a given 

curl and also a given divergence.® I^t us therefore specify the diver¬ 

gence in some convenient manner, and A will be fully defined. For 

^ Many authors define B = V x A. These definitions of A differ by a factor /i, and 
either is satisfactory if used consistently. 

® Boundary conditions as well as divergence and curl mast be known for the field 

to be completely defined. It is here sufficient to know that the vector-potential 

field vanishes at infinity. There is a theorem, known as the theorem of uniqueness, 

that says, “A vector field is uniquely determined if the divergence and curl are 

specified, and if the normal com|x>nent of the vector is known over a closed surface, 

or if the field vanishes (at least as rapidly as 1/r^) at infinity. 
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the magnetostatic field the most convenient choice is the obvious one: 

let us say that 

V • A = 0 [214] 

Then equation 213 is simplified to 

V^A = -i [215] 

and this is quite analogous to Poisson’s ecpiation 

V'^V ^ [118] 

If current is known and the magnetic vector potential is to be found, 

equation 215 is a differential equation for which a solution must be 

sought. It was shown in Chapter IV that Poisson’s ecpiation has an 

integral solution: 

pdv 

r 
[146] 

and this helps to find the solution for the magnetic vector potential. 

Equation 215 is a vector equation; when it is expanded into three 

scalar eciuations, each one is seen to be identical in form to equation 118. 

The mathematical solution of each must therefore be formally identical 

with 146, with only a change of symbols. These component equations 

and their solutions are as follows: 

. 1 Cixdv 

~T 

= —l.y 
\ riydv 

""ij ,• 
[216; 

= -t. 
1 r Lz (h 

Axy Ay^ and A^ then combine to give 

[217] 

The interpretation of equation 217 is similar to that of equation 146. 

Vector potential is found by integrating over as much of space as may be 

carrying current, r being the distance from each elementary unit of cur¬ 

rent to the point at which vector potential is being determined. If 

current is flowing in a circuit, the integration need only be performed 
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about the circuit; elsewhere, where there is no current density, the con¬ 

tribution to the integral is zero. The result of the integration is the 

vector-potential field. 

It will be seen that current flowing in the x direction produces only an 

X component of vector potential. In general, the direction of the vector 

potential is the same as that of the element of current by which it is 

produced. Also, the vector-potential field is strongest near the current 

that produces it and fades away gradually at greater distances. The 

vector-potential field is sometimes de¬ 

scribed as ^‘like the current distribution 

but fuzzy around the edges,or ^flike a 

picture of the current out of focus.’’ 

These inelegant ideas are distinctly help¬ 

ful. It is interesting to consider how 

they apply to the example at the end 

of Chapter III (page 47). 

Computing a magnetic vector potential 

from equation 217 is as difficult as com¬ 

puting electrostatic scalar potential from 

equation 146. It has such important 

applications, however, that an example will be given for which an ap¬ 

proximate solution is found. 

Example, Let us consider a short length of wire carrying alternating 

current 

i = / sin cjt [218] 

The wire is isolated in space. How current is supplied to it is a problem 

that need not concern us at the moment (but it can be visualized as 

part of a circuit). The frequency of alternation of the current is so 

low that the equations of magnetostatics apply, and we are thus con¬ 

sidering what is known as the quasi-stationary state. In other words, 

our little antenna does not radiate. 

The length of the wire is I, and we locate coordinates in such a way 

that the conductor extends from —1/2 to +?/2, as in Fig. 41. 

We want to use equation 217 to find the magnetic vector potential 

field about the wire. The only current in which we are interested is 

that flowing in the wire, so the integration is performed along the wire 

only. Since current flows only in the x direction, there is only an x 

component of vector potential. If the wire has small cross section da, 

the element of current is merely i dx, instead of Lx dvy for lx dv = da dx 

= i dx. Then 
1 I sin o)t 

Ax — — I -dx 
47r J—112 T 

[219] 
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The exact solution of this would be difficult, for strictly speaking the 

quantity r is the distance, to a point in space, from a point on the wire 

that moves as the integration proceeds, so that r is a function of x. 

But, if potential is being determined at a distance from the wire that 

is many times greater than the length of the wire, making r » I, then r 

may be measured from the middle of the wire as in Fig. 41 with very 

little error. This approximation permits integrating with r constant, 

and the vector potential is simply 

I sin U II . il 
Ax —--- I dx =-sin (Jit =- [220] 

47r r J—112 47r r 47r r 

This is the magnetic vector potential (the other two components of 

A being zero). H can be found by computing the curl, by equation 211. 

It must be remembered that this solution is not accurate quite close to 

the wire that carries current, and it does not give detail of the magnetic 

field near the wire; it is good at a reasonable distance, however, and the 

solution can be identified with the magnetic field about an oscillating 

doublet. 

Magnetic Energy. Energy Is required when the magnetic field is 
produced. The energy comes from the electric circuit, as follows. 

When current starts to flow in a circuit, it produces a magnetic field 

(equation 198). As the magnetic field grows it induces an electric field 

in and near the region of the magnetic field; the integral of this electric 

field along the circuit is electromotive force (equation 191). An increas¬ 

ing magnetic field induces electromotive force in the circuit in such a 

direction that it opposes the incnuise of current.® This induced elec¬ 

tromotive force must be overcome by the applied voltage. It is readily 

shown that the product of current, voltage, and time is energy. Thus 

energy is taken from the circuit as the magnetic field is produced. An 

equal amount of energy is returned to the circuit when current ceases to 

flow, as the magnetic field dies away. 

It is assumed that energy taken from the electric circuit during the 

formation of a magnetic field is stored throughout that field. If mag¬ 

netic energy density is taken to be • H or total energy existing 

in a magnetic field is 

Magnetic energy = B • H dv [221] 

Since it can be shown that this is equal to the total energy required to 

establish a magnetic field, the assumed value of energy density is jus¬ 

tified. 

•Thus Lenz^s law is deduced from equations 191 and 198. 
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The problem is analogous to that of electrostatic energy in Chapter TV, 

and it will be seen by comparison with equation 157 that the expression 

for magnetic energy is quite analogous to that for electrostatic energy. 

Theories. There are two usual points of view for considering the 

magnetic behavior of materials. One considers the magnetic intensity 

H, produced by electric current or by a permanent magnet, to be a kind 

of magnetic driving force, and B is considered the resulting magnetic 

flux density. Permeability, then, is a measure of the ease with which 

flux can be produced in a given material. Consistent with this concept, 

the line integral of H is called magnetomotive force. Magnetomotive 

force is considered to be analogous to electromotive force in an electric 

circuit, in which case B is analogous to current density and flux to 

current. 

Because of analogies to familiar concepts, this view of magnetic be¬ 

havior is very convenient for visualizing magnetic fields and quite use¬ 

ful in computation. But, for theoretical purposes and for gaining an 

understanding of the physical processes underlying magnetic behavior, 

an entirely different concept is generally accepted. 

It is believed as a physical theory that the field B is not dependent 

on the nature of material but is determined by the flow of electric cur¬ 

rent, and nothing else. The introduction of an unexplained factor 

called “relative permeability’^ is thus avoided. But this concept is 

valid only if all currents are taken into account. This includes currents 

within the atomic structure of matter, as well as ordinary currents which 

are carried by electrons between the atoms of conducting material. 

I^et us consider iron first, because it is an extreme case. 

It is believed that material is made of atoms, and that ea(‘h atom con¬ 

sists of a nucleus with electrons about it. Because of electronic rota¬ 

tions and spins, which constitute circulating currents within the atom, 

some atoms are eciuivalent to small loops carrying current and will 

produce magnetic fields. This is true in paramagnetic materials with 

ferromagnetic substances as extreme examines. 

In ordinary iron the many atoms are oriented at random, and, al¬ 

though each atom is a small circuit forever carrying current, a piece of 

iron containing a great number of atoms is on the whole not a magnet. 

However, if it is placed in an external magnetic field, there is a force on 

each atom that tends to orient all atoms the same way. Atoms of iron 

are able to respond to this force; in a magnetic field they reorient them¬ 

selves, apparently in small groups, and become aligned with the external 

field. Then, in an extreme case of polarization, all the many sub¬ 

atomic electric currents will cooperate in strengthening the electric field 

that caused their orientation. This results in a total magnetic field that 
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is tremendously stronger than can be accounted for by electric current 

in the external circuit alone, which serves mainly to orient the iron 

atoms. 

Diamagnetic Materials. A word must be said about diamagnetic 

materials, although diamagnetism is an extremely slight effect. It is 

supposed to result from what may be considered induced currents within 

the atoms of material. 

Figure 42 shows a coil of wire to which a battery may be connected, 

and a ring of liighly conductive material. When the battery is con¬ 

nected to the coil, a magnetic field is produced, part of which links with 

the ring. Formation of such a field through the ring induces electro¬ 

motive force in the ring, and current flows; the result of this induced 

current in the ring is to weaken the magnetic field produced by the coil. 

If the material of the ring had perfect conductivity, current induced in 

the ring would flow as long as there was current in the coil, and the total 

magnetic field would be always less inteuise than it would have been in 

the absence of the ring. 

It is believed that electrons within atoms of material substance act 

like the ring of Fig. 42. When a magnetic field is produced, their mo¬ 

tion will be altered, producing the equivalent of a demagnetizing cur¬ 

rent. Hence the magnetic field in the material is weaker than it would 

have been in free space', and the material is diamagnetic. 

This effect is cpiite indepe'iident of the orientation of polar atoms wliich 

constitutes paramagnetism. In fact, it is supposed that all materials 

are diamagnetit^ but that some have also a paramagnetic tendency, and 

that the latte^r elTect is in many cases more marked than the former, with 

the result that the material is on the whole paramagnetic or even 

ferromagnetic. 
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The demagnetizing circulating current of diamagnetism is always 

extremely small, as it affects the magnetic field by only a few parts in 

a million. 

PROBLEMS 

1. Would it be possible to define magnetic field strength as a vector parallel to 

the magnetic force on the exploring wire of Fig. 34? 

2. What is the direction of the magnetic field in Fig. 34 if current is flowing down¬ 

ward in the exploring wire? Check with equation 186. 

3. If magnetic flux links a coil of wire of several turns, the voltage induced in the 

coil by a change of flux is proportional to the number of turns. How is this expressed 

by equation 191? What is the surface of integration for that equation in such a case? 

4. There are ten turns of wire wound in a layer on a wooden spool, and a current 

of 5 amperes flows in the wire. Ttm more turns are then wound close upon the first 

layer, and current is passed through all turns in the same din'ction around the spool. 

With the added turns, current is reduced to 4 amperes. Using equation 201 with a 

path of integration passing axially through the spool, find how much the magnetic 

field near the center of the spool is changed. Draw a sketch showing the direction 

of current, the direction of flux, and the path of integration of equation 201. 

5. Show that the magnetic field at a radias r within a copper conductor carrying 

current I is (/r)/(2T ro^). The radius of the cylindrical conductor is ro, which is of 

course greater than r. Current is uniformly distributed across the conductor cross 

section. 

6. Find the curl of the magnetic field of Problem 5. Do(\s it agree with equation 

203? 

7. How is the magnetizing curnmt of a transformer related to the number of 

turns of the primary winding, if there is no change of the gt*n('ral dimensions of the 

transformer or of the applied alternating voltage? From which equations do you 

reach this result? 

8. Find and plot the magnitude of magnetic vector potential A along a radial 

line pa.ssing through the center of the conductor of Problem 5. Show, in a single 

curve, the intensity of the vector potential both within and outside the conductor. 

The following conditions are to be met: VxA = H;V»A ==0; when r = 0, A = 0; 

there is no discontinuity in A at r = ro. 

9. Compute (from the vector-potential field of equation 220) the magnetic field 

about a short wire carrying alternating current. Spherical coordinates are suggested; 

see Table II and Fig. 58. 

10. Draw arrows in the X~Z plane of Fig. 41 to show A; use dots and crosses to 

show H. 
11. Compare the result of Problem 9 with the magnetic field of an oscillating doub¬ 

let (or dipole) as given in electrical physics books. 



CHAPTER VII 

Examples and Interpretation 

Most of the physical relations that have been discussed in the previous 

chapters are familiar. They are simple laws of electrostatics, magnetic 

flux, the steady flow of current, and induced voltage. If they have 

appeared strange it is because they have been generalized to apply to the 

broadest possible range of conditions. These generalized relationships 

have something in common with disembodied spirits and seem unsub¬ 

stantial to most of us until they are attached to concrete situations. 

The unaccustomed notation of vector analysis 

has done nothing to relieve this situation, 

although it has done a great deal to save us 

from wandering in a maze of diffprential equa¬ 

tions. 

The purpose of this chapter is to supply a 

few concrete illustrations. There will be no 

new experimental evidence. 

Example 1. A solenoidal coil of many turns 

of fine wire is wound on a wooden core, the 

shape of which is shown in Fig. 43. The core 

is a ring of rectangular cross section. There 

are N turns of wire wound upon it, each carrying 

current I. It is desired to find the magnetic 

field produced by the current, and the inductance of the coil. 

Cylindrical coordinates may best be used for reference, with the Z 

axis coinciding with the axis of the ring. The radius of the inner sur¬ 

face of the ring is ri and of the outer surface r2. 

From the symmetrical arrangement of the current and from the 

known nature of the magnetic field, it is apparent that the magnetic 

field in this case will be circular. That is, He will exist, but Hr and Hz 

will be zero.^ This could be proved, of course, but time will be saved 

if it is accepted without proof. 

' If there is a single layer of turns of wire wound on the core, so that the current 

follows once around the core while spiraling through the winding, there will be a small 

component of field (//*) passing vertically through the space within the core. If a 

double-layer winding is used this may be completely eliminated, and in any coil it 

may usually be neglected. 

99 
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To find the strength of the field, consider a circle of radius r (shown 

by the dash circle in Fig. 43), to be the path of integration for equation 

201: 

^H-rfs=Ji-rfa [201] 

With the line integral on the left-hand side of this equation taken 

around the circle of radius r, the right-hand member gives the total 

current passing through the space Avithiii the circle. If r is less than 

Ti and lies within the ring, or if r is greater than 72, or if the circular 

path of integration lies above the ring or below it, no current passes 

within the circle. In such a case H is zero, and there is no magnetic 

field in these regions. 

But, if the circle lies within the coil as shown in the figure, the current 

I passes N times through any surface bounded by the circle, and 

H^ds-= NI [222] 

By symmetry, the value of H is constant along a circular path that is, 

like the one under consideration, concentric with the ring, and, since 

only He exists, it follows that 

ds = 2ir rlh = NI [223] 

from which 

NI 

According to this equation the magnetic field is not uniform within 

the coil, but is stronger nearer the inner surface, the field strength being 

inversely proportional to the radius. 

It may be recognized that • ds is magnetic potential difference 

(magnetic scalar potential), analogous to electric potential difference or 

voltage. The magnetic potential difference around a closed path, as 

in equation 222, is commonly given the name magnetomotive force 
(see page 85). 

Let us compute the amount of flux within the solenoidal coil. To 

find the total flux we integrate B over the cross section of the core. 

Since B = /zH, the desired value is 

<!> - f B • da. da [225] 



EXAMPLES AND INTERPRETATION 101 

If the thickness of the core parallel to the Z axis is Ziy 

-r 

i uNI fiNIzi r2 
-zi dr —-In — 

/ri 2t r 27r ri 
[226] 

Now the inductance of the coil can be determined. The inductance 
is, by definition, 

L = 
N<P 

[227] 

<I> is the flux that passes through a single turn of the conductor and is 

+ -f + 

+ 

+ -f 

— 

^ ‘ 

Fig. 45 

therefore the flux in the core. Substituting equation 226 into 227, the 

inductancM^ of the toroidal coil is 

ixN'^Zi r2 
L =-= -In — 

I 27r ri 
[228] 

This inductance is in henrys, and dimensions are in meters; since the 

core is wood, = 1.26 X 10~^. The symbol In indicates the natural 

logarithm. 

Example 2. Figure 44 shows an old-fashioned carbon filament for 

an electric light. The thickness of the filament is exaggerated so that 

arrows may be drawn to show the electric field within the filament. A 

steady current is flowing through the filament, and it is desired to find 

the electric field that exists. 

Within the filament there is uniform current density, flowing every¬ 

where parallel to the surface of the conducting filament, and, since 
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electric field strength is proportional to current density (equation 165), 

the electric field is also directed along the filament and is uniform in 

magnitude. If the filament is 10 inches long and the applied voltage 

is 110 volts, the electric field strength within the filament is everywhere 

11 volts per inch. This field is in no way affected by turns and twists 

of the filament, and the same situation exists in any wire of uniform 

cross section that is carrying steady current. In a conductor that is 

not carrying current, there is no electric field. 

This last statement might seem contradictory to the fact that an 

electric field may be induced in a conducting rod that is not part of a 

circuit and hence cannot carry a steady flow of current. But let us 

suppose a copper rod, as shown in Fig. 45, is in a changing magnetic 

field that induces an electromotive force upward in the rod. At the 

instant the magnetic field begins to induce electromotive force, there will 

be an electric field in the copper, and for an instant current will flow. 

Almost at once, however, enough positive charge will accumulate at the 

top of the rod, and enough negative charge at the bottom, to produce a 

field equal and opposite to the induced field, and the charge will dis¬ 

tribute itself in exactly the right manner to give zero resultant electric 

field within the copper and there will then be zero current. Although 

there is no field within the rod in such a case, it does not follow that 

there is zero electric field elsewhere. There will, indeed, be electric 

flux emanating from the top of the rod and returning at the bottom, 

and a voltmeter (if its leads were not in the changing magnetic field) 

would indicate the value of the induced electromotive force. Sec page 

73 for a discussion of electromotive force, of which this rod is an 

example. 

Returning to consideration of the electric-light filament, there will 

be electric field also in the space about the filament. There is a po¬ 

tential difference of 110 volts between the two ends of the filament, 

so there must be electric field in the intervening space. This emanates 

from charge located on the surface of the filament; charge that was 

driven at the instant voltage was applied to the filament by a component 

of field within the filament normal to the filament surface. When this 

charge reached its final position in proper amount, the normal com¬ 

ponent of field within the filament was reduced to zero, and thereafter 

the surface charge remained constant. 

The electric field in space around the filament is quite complicated. 

There is a component normal to the surface, due to the surface charge. 

There is a component tangential to the surface, equal to the field within 

the filament. The geometry of the filament is not simple, and we will 

not attempt any quantitative solution of this problem, but merely note 
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that the line integral of E • ds from any point on the filament to another 

point on the filament, following any path, must be equal to the potential 

difference between those two points, and the electric field strength will 

be distributed so as to make this true. The electric field in space near 

the surface of the filament, particularly at the ends of the filament, 

may have an intensity of thousands of volts per inch. 

Example 3. When current is changed in the toroidal coil of Example 

1 (Fig. 43), the magnetic field is changed proportionately, and the 

changing magnetic field induces an electric field in and around the 

toroid. Equation 193 tells us that the induced electric field has curl 

within the core of the toroid, the amount of curl being 

dB 
V X E =- [229] 

di 

Integrating each side of this equation over the cross-section area of the 

coil, and applying Stokes’ theorem to the left-hand member, gives 

/V X E • da = (^E • ds =-Tb • da 
J dtJ 

[230] 

The second member of this equation is a line integral of electric field. 

For our purposes we select a path of integration that surrounds the core 

of the solenoid; it may be practically identical with one turn of the 

^vinding that is wrapped upon the core. The integral of induced elec¬ 

tric field along such a path is the electromotive force induced in one 

turn of the coil (as in equation 191); and there are N turns. The 

surface integral in the right-hand member of equation 230 is, from 

equation 187, the magnetic flux through the core. So the total electro¬ 

motive force induced in all N turns is 

l^^lectromotive force = —N— [231] 
dt 

This is a familiar equation. Another familiar form results when the 

definition of inductance given in equation 228 is substituted into equa¬ 

tion 231, giving 
dl 

Electromotive force = —L— [232] 
dt 

The negative sign indicates that, if the current is increasing so that the 

rate of change of current is positive, the induced electromotive force is 

negative and opposes the flow of current. 

Example 4. When a magnetic field is changing, it induces an electric 

field even in empty space, as discussed in Chapter VI. The electric 
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field so induced is capable of exertinj^ force on any charged particles 

that exist in the region of changing magnetic field, and this principle 

is used 2 in the ^‘induction accelerator” to drive electrons for “atom- 

smashing” purposes. 

Consider a narrow evacuated space between the large, round, flat 

faces of iron magnetic poles. The evacuated space is rather disk-like, 

thin from top to bottom, but large in diameter, and a strong magnetic 

field passes through the thickness of it from the magnetic pole face 

above to the magnetic pole face below. The magnetic field is produced 

by current flowing in many turns of wire about the iron field structure 

(see Fig. 46). 

Now consider that current through the winding can be increased 

from zero to some given value in a veiy small fraction of a second 

(1/600 second); the magnetic field in the evacuated space will increase 

at a correspondingly rapid rate. This will induce an electric field in 

the space, and electrons or other charged particles released into the 

evacuated space will have force exerted on them and will be accelerated 

in a more or less spiral path, gaining velocity. 

As a first approximation we may consider that the magnetic field is 

uniform in the region directly between pole faces, falling suddenly to 

zero as one passes out from between the iron plates. This is not truly 

correct, for it is impossible to have an abrupt change from a region of 

magnetic field to a region of no magnetic field; an abrupt change of 

magnetic field strength implies infinite curl in the magnetic field (con¬ 

sider the “curl-meter” of Chapter II). In the actual case of magnetic 

field between pole faces, there will be, as is well known, “fringing” of 

the lines of force, allowing the field strength to decrease gradually to 

* ‘‘Acceleration of Electrons by Magnetic Induction,” D. W. Kerst, Physical 
Review, Volume 60, July 1, 1941, pages 47-53. 
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zero without curl. (As a matter of fact, the actual accelerator, or ^^beta- 

tron,^^ is designed with a non-uniform field, even between pole faces, to 

provide stability of electron orbits, but this non-uniformity will not be 

considered here.) 

Where the magnetic field is changing with time, there will be curl of 

the electric field (equation 193), and the next step of the problem is to 

find the electric field. When current in the winding is changed, there 

is a change of magnetic field in the space between pole faces, and, since 

the field is increasing in intensity without changing in direction, it 

follows that the rate of change is in the same direction as the field itself. 

The curl of E is, therefore, by equation 193, also uniform and in the 

opposite direction. The problem is to find an electric field that has such 

a curl in the circular region between magnets and no curl elsewhere. 

Visualize a battery of paddle-wheel ‘^curl-meters^^ as in Fig. 46, all 

turning at the same speed and in the same direction. It is apparent 

that their rotation may l^e caused by an electric field revolving as a 

whirlpool with the greatest intensity at the circumference. It mil be 

well to be definite regarding direction. 

If an increasing magnetic field is produced by a counterclockwise 

current in the field winding, as indicated, the magnetic field, being 

boreal to the current, will be out of the page. Because of the negative 

sign in equation 193, the curl of the electric field will be into the page, 

and the circulation of the electric field, being boreal to its curl, will be 

clockwise. Note that it is this same clockwise field that, induced in 

the conductor of the field winding, opposes the increase of current ac¬ 

cording to Lenz’s law. 

Assuming cylindrical coordinates with the Z axis coinciding with the 

axis of the magnetic poles, the electric field is in the negative d direction. 

Let us assume ^ it to be proportional to r: 

Eq = -Ar [233] 

The value of A is to be determined; but it is not a function of r, d, or z. 

From Table II, the curl of the electric field is 

VxE = -k = -k2A 

and, from equation 193, 

dB SB 
— = k2A or — = 2A 
dt dt 

[234] 

[235] 

* See the similar example, more fully worked out, on page 47. 
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This evaluates A for use in equation 233, and it follows that between 

the magnetic pole pieces 

r dB 
Ee^- [236] 

2 dt 

Although proportionality between field strength and radius was merely 

assumed in equation 233, the correctness of the assumption is proved 

by showing that equation 193 is satisfied by the electric field of equation 

236 and the given magnetic field of uniform distribution. 

The induced electric field has its maximum value at a radius Tq equal 

to the outer radius of the magnetic field. The electric field does not 

then cease abruptly but dies away at radii greater than ro in such a 

manner that the electric field has no curl. (This would be but slightly 

modified if fringing of the magnetic field were considered.) To deter¬ 

mine the electric field that lies in outer space beyond the magnetic field, 

it is necessary to find a field that (1) has no curl, (2) is continuous with 

the field of equation 236 at radius ro, and (3) vanishes at infinite radius. 

Conditions (1) and (3) are satisfied by 

A' 
Ee=- [237] 

r 

At radius ro, this must be equal to equation 236, so 

A' ro dB 

ro 2 dt 
[238] 

From this the value of A' can be determined, and, in the outer region 

Ee = — 

r^d_B 

2r dt 
[239] 

Equation 239 follows from an assumption of unlimited empty space. 

In fact, of course, the magnetic field structure and other apparatus 

must interfere with this ideal condition, and equation 239 is a more or 

less accurate approximation of the electric field at radii that are not too 

much greater than ro. 

It is very interesting to compare the electric fields that, in this ex¬ 

ample, result from a changing magnetic field with the magnetic fields 

that were shown in Chapter VI to result from current in a long straight 

wire. The field distributions in and around a long conductor are 

strictly analogous to those of equations 236 and 239 respectively.'* 

* The reason for the analogy is simply that the two field distributions are parallel 

solutions of the two Maxwellian equations. 
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Equations 236 and 239 are not the only possible solutions of equation 

193 within the regions under consideration. In fact any electric field 

without curl could be added to these solutions^ and the sum would also 

be a solution of the equation. (A field without curl is, in this case, 

analogous to a constant of integration.) But there simply is no field 

that is without curl and without divergence and that becomes zero at 

an infinite distance and is nowhere of infinite strength. Within these 

obvious physical limitations, our solutions are the only ones that satisfy 

both the electromagnetic equations and the boundary conditions. 

One factor, however, has been neglected. It is safe to do so in this 

case, for its quantitative importance is insignificant. But in other ex¬ 

amples it will be found to be the only important part of the solution. 

It is radiation. When the changing magnetic field produces an electric 

field about the magnet, a wave of electromagnetic energy travels out¬ 

ward from the apparatus. It carri(\s away from the ^‘induction acceler¬ 

ator’^ of the present example so small a fraction of the total energy that 

it is entirely negligible. 

But radiation is not always negligible; in radio communication it is 

the sine qua non of practical value. The electromagnetic theory that 

has been developed in the preceding chapters fails to account for radi¬ 

ation. It deals with electric fields that are quasi-stationary—fields, 

that is, that change so slowly that at any instant they may be regarded 

as electrostatic. 

We have gone farther in magnetics, for we have discovered that the 

rate of change of a magnetic field is important. A changing magnetic 

field is capable of producing an electric field. We owe to James Clerk 

Maxwell the idea that a changing electric field is likewise capable of 

producing a magnetic field. With the consideration of this additional 

hypothesis we advance from the quasi-stationary state to the electro- 
dynamic state. 

PROBLEMS 

1. A coil of many turns of fine wire is wound on a long wooden cylinder. There 

are n turns on each meter of length, and each turn of the coil carries current 7. The 

radius of the coil is r. Show that the inductance per unit length of the coil is 

microhenries per meter. (Note: This is for an infinitely long coil, but is in error by 

less than 10 per cent if the length of the coil is more than four times its diameter.) 

2. A coil is wound on a core as in Example 1, page 99, except that the core is a 

square frame instead of a ring. Also, the core is iron, not wood. Prove definitely 

whether or not the magnetic flux can be entirely confined to the iron or will “cut 
corners” in air. 

3. Repeat Example 1, page 99, for a coil wound on a toroidal core of circular 

cross section. Find the magnetic flux in the core, and the inductance. Check the 

computed inductance with a value that may be obtained from a handbook. 
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4. Prove that the field of equation 237 has no curl (as is stated on page 106). 

5. The idea of ampere4urm is a convenient short cut for integrating what vector 

field over what surface? 

6. The idea of flux-linkages is a convenient short cut for integrating what vector 

field over what surface? 

7. Using the concepts of this book, what is: (a) voltage, (b) current, (c) induct¬ 

ance, (d) capacitance, (e) electromotive force, (f) magnetomotive force? 

8. Outline the important steps in deriving, from the experimental evidence of this 

book: (a) Kirchhoff’s two laws, (b) Lenz^s law, (c) Faraday^s law of induction, (d) the 

BiotrSavart law, (e) Ampere’s law, (f) Coulomb’s law, (g) Poisson’s law. 



CHAPTER VIII 

Maxwell’s Hypothesis 

The experimental evidence is now before us. From nine experiments 

described in the preceding chapters, we are fully informed regarding 

electric and magnetic fields. The results of the experiments are sum¬ 

marized below, and included with them are two assumptions that are, 

essentially, definitions: 

From Experiment I, 

From Experiment II, 

From Experiment III, 

From Ex[)crimeiit IV, 

From Experiment V, 

From Experiment VI, 

From Experiment VII, 

From Experiment VIII, 

From Experiment IX, 

an electric field is found to exist and is 

defined. 

the electrostatic field is lamellar (without 

curl). 

divergence of the electrostatic field is pro¬ 

portional to charge density. 

the behavior of dielectric substances is 

known. 

Ohm’s law is established. 

a magnetic field is found to exist and is 

defined. 

a changing magnetic field is found to induce 

an electric field. 

the magnetostatic field is solenoidal (with¬ 

out divergence). 

the curl of the magnetostatic field is pro¬ 

portional to current density. 

It is assumed that the dynamic electric field has divergence propor¬ 

tional to charge density. (This is proved in Experiment III for the 

sialic electric field only.) 

It is assumed that the dynamic magnetic field has no divergence. 

(This is proved in Experiment VIII for the static magnetic field 

only.) 

The information obtained from these experiments is the basis of the 

following discussion of electromagnetism. Either these experiments or 

others that yield equivalent data must be the foundation of any de¬ 

velopment of electromagnetic theory. 
109 
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Information regarding electric and magnetic fields was available to 

scientists about the middle of the nineteenth century. It was not in 

the mathematical form in which it is given here; indeed the very con¬ 

cept of an electric or magnetic field was at that time a new idea of 

Faraday’s, considered with doubt by most scientists. The important 

controversy between believers in ^^action at a distance” and converts 

to the newly proposed “field theory” was at its height. Of course, 

electrostatic and magnetostatic fields had been computed and graphi¬ 

cally indicated for the better part of a century, but Faraday was the 

first (according to James Clerk Maxwell) actually to believe in the 

existence of the electromagnetic field. Previously, fields had been 

looked upon as convenient means of visualizing the arrangement of 

forces that resulted from electric and magnetic action, but to Faraday 

(as to us) the magnetic field was the actual means by which magnetic 

force was exerted. 

From the time of Ampere’s work (1820 to 1825), it had been considered 

that one wire carrying current exerted a fon^e on another wire carrying 

current, and no intermediate agency for exerting that force was taken 

into account. This was the action-at-a-distance theory, and it followed 

logically Newton’s famous law of gravitation, then a century old and 

universally accepted. Newton’s law assumed action at a distance, for 

it did not consider any medium necessary for the transmission of gravi¬ 

tational force. It was only natural that electrical scientists of the early 

nineteenth century would follow this illustrious precedent. 

Faraday, however, conceived the physical reality of electric and mag¬ 

netic fields, and Maxwell undertook to express the mathematical rela¬ 

tionships involved. It was Maxwell who pointed out that a “displace¬ 

ment current” (as in our equation 177) would simplify and improve the 

mathematical system. Then Maxwell made a most remarkable pro¬ 

posal as follows: It is known by experiment that conduction current 

produces a magnetic field; total current is for mathematical purposes 

best expressed as the sum of conduction current and displacement cur¬ 

rent; is it not, then, likely that displacement current also produces a 

magnetic field? Experimental technique did not permit this to be either 

proved or disproved by direct investigation in Maxwell’s time, for the 

quantities involved were too small. But this hypothesis led to a con¬ 

clusion of fundamental importance, for Maxwell showed that, if it were 

true, energy would be transmitted as electromagnetic waves. 

The action-at-a-distance theory assumed that electrical action ap¬ 

peared instantaneously at all points, however remote. Maxwell’s 

theory, on the other hand, required that energy be transmitted by 

waves traveling at a finite speed. This speed of wave propagation 
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could be computed. Perhaps some experimental verification of the 

theory would be obtained by studying the velocity of electromagnetic 

disturbances. Before considering experimental evidence we will follow 

MaxwelFs reasoning that leads to electromagnetic waves. 

MaxwelPs hypothesis was that, in general, when there are varying 

electric fields, a magnetic field is produced by the sum of the conduction 

current and the displacement current. In equation 203, which is 

VxH = i [203] 

the right-hand side of the equation, according to Maxwell, should be 

the total current density, as in equation 177, and 

aD 
V X H = I d- [240] 

dt 

This is one of the equations known as Maxwell’s equations. The 

other is equation 193 of Chapter VI: 

aB 
VxE=- [193] 

dt 

The other two fundamental field equations are 

V • B = 0 [196] 

V-D = p [115] 

These are the basic equations of electromagnetic theory. They arc 

repeated for ready reference in Table III (inside back cover). 

It will be noted that Maxwell’s equations become beautifully simple 

and symmetrical when applied in a homogeneous medium in which 

there is no charge and no conductivity: 

VxH = e — [241] 
dt 

dK 
V X E = —/X — 

dt 
[242] 

V H = 0 [243] 

O
 II 

>
 [244] 

It will be well to consider once more the physical meaning of these 

equations. Equation 241 says that a changing electric field will produce 

a magnetic field, and equation 242 says that a changing magnetic field 
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will produce an electric field. The latter relation is the familiar prin¬ 

ciple on which transformers work; the former is MaxwelPs hypothesis 

which says that displacement current as well as conduction current is 

able to produce a magnetic field. Equation 241 does not contain a 

term to account for magnetic field produced by actual conduction cur¬ 

rent because the equation is a simplified one applying to a region in 

which 7 = 0 and hence i = 0; equation 240 is the complete equation. 

But equations 241 and 242 are particularly interesting to consider 

relative to the propagation of electric waves. It will be seen at once 

that, if a changing electric field produces a changing magnetic field, and 

that in turn produces an electric field which produces a magnetic field, 

and so on, some kind of a series of energy transfers is started whenever 

any electric or magnetic disturl)ance takes place. Energy will be trans¬ 

ferred from the electric field to the magnetic, and back to the electric, 

and so on indefinitely. If (as is actually true) the magnetic energy is 

not confined to precisely the same location in space as the electric energy 

from which it is derived, but extends a little beyond, and, if the electric 

energy derived from that magnetic energy is again a little farther ad¬ 

vanced in space, and so on, so that as the energy is changing from form 

to form it is also being propagated through space, the result may quite 

reasonably be expected to be a traveling wave of electromagnetic 

energy. 

Consider a somewhat analogous situation. By some means a small 

volume of water in the middle of a lake is artificially set into vertical 

oscillatory motion. Perhaps a bucketful of water is suddenly dumped 

into the lake. Whatever the character of the disturbance, the surface 

of the water at that point rises and falls in an oscillatory manner. But 

it is not possible for the bucketful of water to oscillate independently 

of the water surrounding it. Its periodic excesses and deficiencies of 

pressure are transmitted to the surrounding water, which thereby re¬ 

ceives energy and is, in turn, put into motion. In its resulting un¬ 

dulation it also transfers energy to the next outer region. By this 

process a wave is propagated across the surface of the lake. 

The fundamental reason for the existence of a water wave is this: 

the motion and pressure of a given volume of water are not independent 

of the motion and pressure of the water surrounding that volume, and, 

as the given volume of water is disturbed, it transmits energy to the 

water next to it. 

The fundamental reason for the existence of an electric wave is very 

similar. A changing magnetic field induces an electric field, both in 

the region in which the magnetic field is changing and also in the sur¬ 

rounding region; likewise a changing electric field produces a magnetic 

field in the region in which the change takes place and also in the sur- 
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rounding region.^ Consequently when there is a disturbance of either 

the electric or magnetic conditions in a given region of space, the dis¬ 

turbance cannot be confined to that space. The changing fields within 

that region will induce fields in the surrounding region also, and those, 

in turn, in the next surrounding space, and energy is propagated out¬ 

ward. As this action continues a wave of electromagnetic energy is 

transmitted. 

When there is an excess of electromagnetic energy in unbounded 

space, it cannot stand still, any more than a mound of water can be 

stationary on the surface of a lake. It cannot merely subside. It can 

only travel as a wave until the energy is dissipated. 

To show that this is indeed the action prescribed by MaxwolFs equa¬ 

tions, we will develop from them the so-called wave equations. We 

have two equations to begin with, each of which contains both E and 

H, and the first step is to solve the eciuations simultaneously in order 

to eliminate one of the variables and retain the other. Let us eliminate 

H and thereby obtain an efiuation in which the only variables are E 

and time. Such an eciuation will be more (easily interpreted. 

Before going farther it is well to remark that Maxwell’s equations 

are partial differential ecpiations. liquation 242, for example, ecpiates 

the rate of change of electric field through space (the curl) to the rate 

of change of magnetic field with time. It is too mu(;h, therefore, to hope 

for any single simple solution, for that is not commonly to be obtained 

from simultan(x)us partial differential ecpiations. As in all problems 

involving such cciuations, boundary conditions are all-important. 

It was stated above that, according to equation 241, a changing 

electric field will produce a magnetic field. Strictly, the equation says 

that a changing electric field will produce a space derivative (curl) of 

a magnetic field. But it is obvious that, if a magnetic field has some 

value of curl and therefore varies from point to point in space, it cannot 

everywhere be zero. Since curl of H cannot exist without H also ex¬ 

isting, we may safely say that a changing electric field produces a 

magnetic field. 

Now we are ready to proceed with the simultaneous solution of equa¬ 

tions 241 and 242. First take the curl of each side of equation 242, giving 

dH 
Vx (VxE) = -mVx— [245] 

dt 

‘ Perhaps it is hc'lpful to think of it this way: current flowing in a wire produces 

magnetic field in the wire, but it also })roduces magnetic field in space around the 

wire—space in which no curnuit is flowing. Similarly, displacement current (which 

results from a changing electric field) produces magnetic field in the region in which 

displacement current exists (where the electric field is changing) and also in the 

surrounding region. 
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On the right-hand side of this equation it may be noted that the curl, 

which is a partial derivative with respect to distance, operates on a 

partial derivative with respect to time. It is a well-known mathematical 

principle that the order of partial differentiation makes no difference, 

and therefore 

d 
V X (V X E) = -M - (V X H) [246] 

dt 

(If this is not clear, expand the curl in rectangular coordinates.) 

But the curl of H is known from equation 241 and may be substituted 

into equation 246, giving 

a / aE\ 
VMV.E) 12471 

This equation is entirely in E, as desired, but it may be simplified. 

The left-hand member of equation 247 is the curl of the curl of a 

vector. It may be shown as a general mathematical relation that the 

curl of the curl of any vector is equal to the gradient of the divergence 

of that vector minus the Laplacian.^ Symbolically, 

V X (V X A) = V(V • A) - V=^A [248] 

This theorem is applied to equation 247. The divergence of the elec¬ 

tric field is zero because it has been assumed that there is no free charge 

present. The first term of the expansion drops out, leaving simply 

^2e 

V^E = Hi— (249’ 
do 

To some readers equation 249 will be a familiar form, recognizable as 

a wave equation. To others its nature will be clearer if the vector 

quantities are expanded in Cartesian form: 

d^E^ d^E, d^E^ 

d^Ey d^Ey d^Ey _ E y 

dx^ dy^ ^ dl? 
[250] 

d'^E^ d^E^ d^E^ d^E, 

* See footnote 6, page 32. 
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If a simple special case is now considered in which Ex and Ez do not 

exist and with Ey a function of x but not of y or 2, the equations 250 
reduce to 

Ex^Q Ez = 0 

d^Ey _ d^Ey [251] 

dx^ ^ df 

Each of the restrictions leading to equation 251 has a physical meaning 

that will be discussed in a later chapter. 

Equation 251 is the simplest form of the traveling-wave differential 
ccjuation. Its solution is 

J^y = /(^ ~ ^^0 [252] 

in which v = l/\//x€. The function f(x — vt) represents any function 
of the quantity {x — vt). [Equation 251 has other solutions also, one 

of which is /2(x + vt). We are not at present interested in these other 

solutions,] To prove that equation 252 is a solution of equation 251, 

it may be substituted into that equation and the indicated differentia¬ 

tions performed, as in Problem 5. 

It is now necessary to recognize that equation 252 describes a trans¬ 

verse wave of constant size and shape that is traveling in the positive 
direction along the X axis with velocity v. Readers to whom this is 

unfamiliar will find it helpful to consider specific functions of (x — vt) 

and to plot/(x) for a number of successive values of time. 

Let us consider one such example. First, assume that the wave is 

traveling in free space; the velocity is then called c (a specific value of 

V that applies to free space) and, from the definition following equation 

252, 

I^et us assume the wave is a sinusoidal wave that can be described by 

the function 

Ey = sin (x — ct) [254] 

Figure 47 shows one cycle of this wave, plotted as a function of x for 

several different values of time. In other words, if the wave as it 
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traveled through space were visible, Fig. 47 would be a succession of 
snapshots of it, taken at the instants at which ct equals 0, tt/G, tt/S, and 
7r/2. It is apparent from the equation that all these will be sine curves 
of the same shape and amplitude. But the curve for which ct = tt/G 

^vill be displaced with reference to the one for whi(;h ct = 0, and each 
of its corresponding values will occur at a value of x greater by tt/G. 

That is, to keep the quantity in parentheses unchanged, and therefore 
to have the same value of Ey^ x will have to increase as time increases. 
The result will be a wave moving from left to right as time passes. 
Time and distance are related by the factor c as by a velocity. (It 

Fig. 47 

should nevertheless be noticed that no physical entity is moving at 
velocity c. The electric field is not moving; it is merely changing in such 
a way that if it were visible there would appear to be waves of that 
velocity.) 

The wave of equation 252 is transverse because the electric field Ey is 
in the y direction and the wave is propagated in the x direction. 

Equation 249 is obtained by eliminating H and retaining E in equa¬ 
tions 241 and 242. If the opposite procedure is followed, eliminating 
E and retaining H, a similar wave equation is obtained for the magnetic 
vector: 

V^H = [255] 
ar 

The solution of this equation is a traveling wave of H. 
It is evident that it is not possible to have an electric disturbance 

without having a magnetic one also, and vice versa, and it will be found 
that every electromagnetic wave has an electric portion and a magnetic 
portion traveling along together. To have one without the other would 
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be analogous to having a water wave in which there is motion without 

displacement, or displacement without motion. Although there are 

separate wave equations for E and H, they represent physically insepa¬ 

rable quantities. 

Recognition of the fact that his electromagnetic equations had a 

traveling-wave solution led James Clerk Maxwell to very interesting 

speculations. Tn the first place, if it could be shown that electromagnetic 

waves exist, Maxwell’s hypothesis relating to the ability of a displace¬ 

ment current to produce a magnetic field would be justified, for without 

that hypothesis no wave solution would result. The situation would 

be like a lake in which the water has weight but no mass—waves could 

not exist. 

If electromagnetic waves do exist they should travel in free space 

with the velocity c, from equation 253. But c is a known quantity, for 

it can be computed from /xq and €o. These latter are dimensional con¬ 

stants that can be evaluated by measuring electrostatic and magnetic 

forces. By balancing one force against the other in an ingenious kind 

of current balance, Maxwell found, about 1865, that the numerical 

value of c is a little less than 3 X 10^. This being so, electromagnetic 

waves should travel, if they exist, at the rate of some 3 X 10^ meters 

or 300,000 kilometers per second. 

In what medium do electric Avaves exist? In Maxwell’s time it Avas 

commonly accepted that ordinary visible light is a Avave motion of a 

luminiferous aether, an aether pervading all space and all material, 

without weight but Avith remarkable elastic properties that permit it 

to propagate transverse Avaves. MaxAvell’s Avave equations indicated 

that electromagnetic disturbances Avere propagated as transverse waves 

in some similar medium. Could it be that light is merely a form of 

electric Avave? 

Faraday had speculated upon this possibility several years earlier 

and had pointed out that, Avhereas one infinite and all-pervasive im¬ 

ponderable aether is a severe strain upon one’s imagination, belief in 

tAvo co-existent, infinite, all-pervasive, and imponderable aethers, one 

for light and one for electricity, is simply beyond the limits of credulity. 

Therefore he suspected, on this basis alone, that light is an electric 

phenomenon. 

MaxAvcll had a more substantial reason for coming to the same con¬ 

clusion, for he collected all the best measurements of the speed of light 

in vacuum, and he found that the average of those available to him 

was amazingly close to 300,000 kilometei-s per second, Avhich Avas the 

velocity that he had predicted for electric Avaves from laboratory meas¬ 

urement of electrical units. 
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This being so, Maxweirs hypothesis was substantiated, and it ap¬ 
peared at least highly probable that light is indeed an electric wave. 

Although Maxwell accepted these conclusions, many other scientists 

did not until Hertz, about twenty-five years later, proved the physical 
existence of electromagnetic waves. lie accomplished this by showing 
their interference, reflection, and refraction. After that it was no 

longer possible to doubt that electromagnetic energy is propagated as 
wave motion. It is still safest to avoid the embarrassing question of 
the character of the medium in which such waves are transmitted. The 
best we can do is to follow Faraday's ^^shadow of a speculation" and 
^^dismiss the aether but keep the vibrations." 

PROBLEMS 

1. Expand Maxwell’s equations 241 and 242 in rectangular coordinates. By 

equating like components, derive from each three scalar equations (as in equations 

264 to 266). 

2. Prove equation 248 by expanding in Cartesian components. 

3. Find the Laplacian of H, equation 255. Assume zero conductivity. 

4. Extend Problem 3 by assuming the region to be conducting. 

5. Prove that equation 252 is a solution of the wave equation 251. The composite 

function f(x — vt) is differentiated ac(‘ording to m(5thods discusscxl in calculus books. 

6. Show that Ey f{x — vt) is a solution of eciuation 251 using the following 

functions: f{x) = f{x) = /(^) = xe~^^y f{x) = sin ax cos6x, 

f{x) = Ai sin + A2 sin 2(3x,f{x) = 00 -f aix -j- a^x^ + a^x^. (Note: Which of these 

functions can you identify as having practical importance as traveling waves?) 

7. Show that Ey = f{x vt) is a solution of equation 251 for one of the functions 

given in Problem 6 for f(x). 
8. Derive equations 243 and 244 from equations 241 and 242, assuming the fields 

are not static. 
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Plane Waves 

When light starts from a point on the sun it radiates outward in all 

directions and travels as a spherical wave. Part of that wave eventually 

reaches the earth, where we can observe it and measure it in our labora¬ 

tories. The part that reaches us appears as a plane wave. That is 

simply because we are limited by 

the size of the laboratory (or at 

most by the size of the earth) 

and can observe only a very 

small part of the whole spherical 

wave. Just as the ocean appears 

flat to a man who can see only a 

few" miles around him, so the 

w^ave appears plane to an ob¬ 

server Avho can study only a 

small part of it. 

Much the same thing is true of 

radio weaves. From the point of 

view of a transmitting antenna, 

the w"ave is radiated in all di¬ 

rections. Indeed the radiation 

pattern is an important prac;- 

tical consideration. But, from 

the point of view of the receiving 

antenna, any wave from a sta¬ 

tion several miles aw^ay is prac¬ 

tically a plane wave. (This state¬ 

ment neglects possible complications such as the effect of ground or 

reflections from the ionosphere.) 

Let us consider a simple example of a plane w-ave. In Fig. M8a a 

cross section of a plane wave is indicated. Electric and magnetic vec¬ 

tors are shown in a plane parallel to the Y-Z plane. The wave is 

traveling from left to right along the X axis; it fills all the region shown 

in the figure, but only one cross section is indicated. The electric field 
119 
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is vertical; it is uniform throughout the plane in direction and magnitude. 

Electric Field. We must describe this wave mathematically. First, 

in common with all electromagnetic waves, it must satisfy the wave 

equation: 

V^E = fie 

dl- 
[249] 

Next, because the electric field is entirely in the y direction, 

= 0 = 0 [256] 

Finally, it is assumed that the electric field strength is uniform through¬ 

out the plane of the wave and docs not vary from point to point in that 

plane as either ?/ or 2 is changed. Thus 

dE dE 
— = 0 — = 0 
dy dz 

[257] 

Equation 249 can be expanded into three ecpiations representing its 

Cartesian components, as in ecpiation 250, page 114. AVhen this is done 

and the simplifying conditions of ecpiations 256 and 257 are introduced, 

the wave equation becomes merely 

dx^ 
[258] 

The solution of this e(iuation ^ will be a mathematical expression of our 

wave. 

The complete wave solution of eejuation 258 is 

Ey = /i(^' - vt) + + vt) [259] 

The first part of this solution was discussed in C-hapter VUI and rep¬ 

resents a wave traveling in the direction of the axis, as in Fig. 47. 

The function fi may be any function and depends upon the type of 

disturbance that starts the wave. Most radio waves are approximately 

sinusoidal functions, and for these /i would be a sine or cosine function 

of (x — vt). 
The second part of the solution is also a traveling wave, but it repre¬ 

sents a wave traveling in the negative x direction. Thus the complete 

'It may be notM that this is identical with e(|uation 251, which resulted from 

mathematical assumptions similar to equations 256 and 257 but without any physical 

interpretation at the time. 
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solution describes two traveling waves,- one going in each direction, 

simultaneously passing through the same space, and the equation in¬ 

forms us that they travel indei)endently of each other. For the present 

it will be convenient to let /2 = 0. This leaves only a pure travehng 

wave. 

Magnetic Field. So far only the electric component of the wave has 

been discussed. This must be accompanied by a magnetic component 

which can be determined from the electric component by means of 

Maxwell’s equations. The general method is as follows. One of Max¬ 

well’s equations (Table III) says 

dB 
— =-VxE [260] 
di 

E is known, and its curl can be found. Thus, the time derivative of 

B is determined. Integration with respect to time then gives B. 
This solution for the magnetic field can proceed to a certain extent 

in general terms, but it is more intelligible to consider a specific wave. 

It has been mentioned that the most common wave in practice is ap¬ 

proximately sinusoidal. Let us, therefore, assume a wave in which the 

electric field is described by 

Ex = 0 Ey = Eja cos /3(.r — vt) Ez = 0 [261] 

It will be seen that this is consistent with equation 259, for it gives the 

y component of the electric field as a function of (x — vt). It is there¬ 

fore a solution of the wave equation. The coefficients Ejn and ^ can 

have any value; from the mathematical })oint of view they are merely 

arbitrary constants, but physically the former determines the ampli¬ 

tude of the wave and the latter (known as the phase constant) deter¬ 

mines the frequency of its sinusoidal variation. Such a sinusoidal wave 

is indicated in Fig. 486. 

A more usual form of the same equation is obtained by letting = co 

and writing 

Ex = 0 Ey = Ejn cos {cA)t — ^x) Ez — 0 [262] 

From its association with time in this equation, o) is identified as 27r/, 

f being frequency. Introducing X as wavelength, and using v as the 

* Other terms might be added to equat ion 259 as a solution of equation 258. A 

constant term could be added, and U^rms (iontaining either x or t in the first degree, 

for the second derivatives of all such terms would vanish. But such terms do not 

represent wave action and may be disregarded in the present discussion. 
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velocity of phase propagation in a given medium, the following simple 
but frequently useful relations ® arc apparent: 

03 f 
v = - = 2w- 

V 27r 
[263] 

The phase constant jS is inversely proportional to wavelength; X is meas¬ 
ured in meters per cycle, and in radians per meter. 

The first step in determining the magnetic field is to expand Maxwell’s 
equation 260 into its component parts: 

dBx /dE, dEy\ 
[2G4] -(- dt \dy dz ) 

dBy /dE^ dEA 
[265] ■(- -) dt \ dz dx ) 

dBz /dEy dEA 
[266] -= - 

-(ij- ~ dy) dt 

For the particular wave under consideration, as described in equations 
262, these components of Maxwell’s equation become 

dBx dBy 
-= 0 — = 0 
dt dt 

dBg dEy 
-—-= —pEm sin — 3x) 
dt dx 

[267] 

[268] 

The components of the magnetic field are found by integration with 
respect to time: 

= 0 

Bj, = 0 [269] 

Bz — - Em COS {oil — fix) 
0) a> 

Remembering that u)/0 is the velocity of phase propagation, 

Ey = vBz [270] 

® These and others are collected for ready reference in Table III, inside back cover. 
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Thus, in a simple plane wave traveling in a dielectric medium, the 
electric and magnetic components of the wave are identical in form and 
perpendicular in direction. They are both perpendicular to the direc¬ 
tion of travel of the wave. In magnitude, the electric field in volts 
per meter is equal to the magnetic flux density in webers per square 
meter times the velocity in meters per second. The velocity v was 

shown to be when the wave is in free space, this has the nu¬ 
merical value of c, about 2.998 X 10^—or, for most purposes, 3 X 10® 
meters per second. 

Since B = /iH, we can also write 

This gives a relation between E and H. The ratio of to in a wave 
is so often useful that it is given a special symbol r), and a name, intrin¬ 
sic impedance. Eejuation 271 shows that, for a simple plane wave in a 
dielectric medium, 

[272] 

Intrinsic impedance is somewhat analogous to the characteristic im¬ 
pedance of a transmission line. It has the dimensions of ohms, for E 
is volts per meter and H is amperes per meter. The value of rj in free 

space is vVo/^o = 47r c • 10“^; this is very nearly 376.7, and for most 
purposes it is remembered as 377 or 1207r. 

Lines of electric and magnetic field are shown in Fig. 48a. Through¬ 
out the plane indicated in that figure, E and H are uniform. If the 
plane shown in the figure is visualized as being fixed in space, E and H 
in that plane are constantly changing with time. If, on the other hand, 
the plane indicated is visualized as advancing along the X axis with the 
speed of light, E and H in that plane are constant and unchanging. This 
is, indeed, the distinctive and defining quality of a plane wave. 

Figure 486 is a graphical representation of the sinusoidal wave. It is 
traveling in the positive direction along the X axis. Vectors of E and H 
are shown, and each arrow represents the electric or magnetic intensity 
throughout the entire plane in which it lies. The length of each vector 
shows the strength of the field. The fields vary sinusoidally along the 
X axis, and, when it is remembered that the entire wave train is moving 
along tlie X axis, it is apparent that at any fixed point the electric and 
magnetic intensities vary sinusoidally with time. 
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Neither Fig. 48a nor 486 is a complete representation of the wave. 

To show the wave as it exists in three-dimensional space would require a 

combination of these diagrams, with the distribution of the electric and 

magnetic fields shown throughout many planes. Even this would be 

only an instantaneous picture of the wave and would fail to show its 

motion; for a complete picture the imagination must be called upon to 

visualize what cannot be drawn upon paper. 

Polarization. This wave is a plane wave. It is also a polarized 

wave. If the electric vector oscillates as the wave passes but maintains 

the same direction, the wave is said to be polarized. Mathematically, 

equation 256 specifies that the wave is polarized, and equations 256 and 

257 together specify a polarized plane wave. In the general case of an 

unpolarized wave, the electric and magnetic vectors change direction as 

well as magnitude as the wave passes. (The illustration of transverse 

waves traveling along a stretched rope is generally familiar: if the rope 

vibrates in a single plane its wave motion is polarized.) 

The polarization of radio waves is determined mainly by the trans¬ 

mitting antenna. The received “ground wave’’ from a vertical antenna, 

as commonly used in the standard broadcast frequency band, is verti¬ 

cally polarized because the electric field from a transmitting antenna to 

ground is substantially vertical. High-frequency antennas, on the con¬ 

trary, are usually horizontal, and the electric field from end to end of 

the antenna produces a horizontally polarized wave at the receiver. 

Ordinaiy light is not polarized; but, if it passes through some material 

that reflects, refracts, or absorbs one component of vibration while 

allowing the other to pass, the portion of light that is transmitted is 

then polarized.'* 

Exponential Notation. In the preceding sections the electric field of 

a wave was described by equation 261, using a cosine function to rep¬ 

resent the sinusoidal variation of the field as a function of x and also as 

a function of time: 

Ey = Em cos (o)t — fix) [261] 

Another possible mathematical formulation is to use an exponential 

function and write 

Ey = Real part of [273] 

The equivalence of these two expressions appears when the exponential 

* In optics the plane of polarization is the plane (parallel to the direction of propa¬ 

gation) that contains the magnetic vector. This definition is arbitrary and was 

adopted before the electromagnetic nature of light was suspected. In radio work 

it is common to consider the wave polarized in the direction of the electric vector. 
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is expanded according to the general formula ^ 

= cos X j sin X 
giving 

Ey = Real part of {£^^[cos io:t — fix) + j sin {oit — /3x)]} 

= Em cos — /3x) [274] 

It must be emphasized that the physical quantity {Ey in these equations) 

is represented by only the real part of the exponential function, and the 

equations should contain the words “Real part of'" or some symbol with 

the same meaning. Nevertheless, it is customary to omit any such 

symbol and write 

Ey = [275] 

leaving the reader to understand that only the real part of the exponen¬ 

tial function is to be used. This practice may occasionally lead to 

trouble, as will be seen later, but difficulties can always be removed by 

writing “Real part of’^ where it belongs. 

Use of the exponential function is very helpful in manipulation of 

equations, and it is common in alternating-current circuit work as Avell 

as field theory. Indeed, use of the exponential function is tacitly as¬ 

sumed whenever “impedance’^ is mentioned, for impedance is the ratio 

of an exponential voltage to an exponential current—not the ratio of 

voltage to current when expressed as a sine or cosine function. 

Propagation in Conducting Material. Until now we have considered 

waves traveling in a perfect dielectric medium. The restriction to a 

perfect dielectric was introduced by setting 7 = 0 in Maxwell's equa¬ 

tions. The wave solution can be extended to include waves in material 

with finite conductivity, but the mathematical difficulty becomes very 

great unless the solution is restricted to sinusoidal waves. However, a 

solution for sinusoidal waves is what is usually wanted, especially since 

any periodic wave can be analyzed into Fourier components. There¬ 

fore, in the following work we shall assume from the beginning that the 

electric and magnetic fields vary sinusoidally with time. HaAung as¬ 

sumed this, we know that both E and H will contain a time-variation 

factor that may be written and we write 

E = Eo H = Ho c'"' [276] 

Eq and Ho are vector fields, functions of space coordinates but not of 

time. They may be considered snapshots of the fields taken at the 

® The italic j is by definition x/ — I, and it is not the same as the bold-faced j which 

is one of the unit vectors of a Car(<^‘sian coordinate system. Vector notation is not 

to be confused with complex-quantity notation. See also footnote 1 on page 13. 
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instant ^ = 0. We now solve for Eq, and the first step is to write the 

wave equation in a form to include conductivity, but simplified by being 

restricted to sinusoidal waves. We start with the general equations 

(from 193 and 240): 

dH 1 II X
 

>
 [277] 

dt 

dE 
V X H = 7E + e — 

dt 
[278] 

Substituting equations 276 and differentiating with respect to time, 

V X Eo e""' = -jeo/xHo [279] 

V X Ho = 7E0 + JcucEq [280] 

Since curl is differentiation with respect to distance, the exponential 

time factor can be divided out, leaving 

V X Eo == —jwjuHo [281] 

V X Ho = (7 + Jwc)Eo [282] 

These are purely space equations; time has been eliminated. 

Taking the curl of each side of equation 281, substituting into the 

result equation 282 to eliminate Ho, and using the identity of equation 

248 (with the assumption that there is no free charge present), 

V X V X Eo = X Ho) 

= — V^Eo = — ic*JM(7 +ia;e)Eo [283] 

For convenience, let us use to represent the coefficient: 

= jo)IJL{y + jwe) [284] 

so that 

V^Eo = r^Eo [285] 

This is the wave equation for a sinusoidal wave, including conductivity. 

Now let it be assumed, as it was on pages 115 and 120, that we are 

interested in a plane wave polarized in the Y direction, so that 

= E, = 0 
dEy dEy 

dy dz 

Then equation 285 becomes merely 

d^Eoy 

dx^ 
T^Eoy 

[286] 

[287] 
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and the solution of the wave equation for a polarized plane wave is 

Eov = [288] 

That this solution is correct is obvious when it is substituted into equa¬ 

tion 287, and Em can be any constant. Ey, the only component of the 

electric field, is therefore 

Ey = Eoy(^^' = Em^^'e^^'^ 

= Em [289] 

The meaning of the symbols may be reviewed. E is the electric field; 

Eo is its initial value and is not a function of t] Eoy is the Y component 

of Eq. Em is a constant (it is the value of Eoy at the origin) and is not 

a function of y, z, or t. 
If equation 289 is applied to propagation in a perfect dielectric, in 

which conductivity is zero, the equation reduces to a familiar form. 

With 7 = 0 in equation 284, 

— 7*C*J 

= -— = 
V 

Substituting jfi for P in equation 289 (retaining only the minus sign) 

gives 

[290] 

Considering the meaning of the exponential notation, this is identical ® 

with equation 262. (The ± sign in equation 289 means that the wave 

we are discussing may, within the restrictions laid down, be traveling 

in either direction, as discussed on page 120.) 

In general, from equation 284 

® In equation 262, lacking the convenience of exponential formulation, Em is neces¬ 
sarily real, and phase is indicatxid by an additional term in the argument of the cosine. 

Thus, if a phase difference of is to be included, equation 262 becomes 

Ey = Em COS (w( — fix + <t>) [2911 

The corresponding form of 289 is 

Ey = \ Em 1 [2921 

which may equally well be written 

Ey=^\Em\ * Em 

where Em * | | This inclusion of phase in Em is customary. 

[293] 
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If conductivity is zero, P simply reduces to jco = j/3, as noted above, 

but, if conductivity is not zero, V is complex. T will have a real part 

and an imaginary part, and, if these are called a and jjS, respectively, 

we may write 

r = « + [295] 

The values of a and /3 are computed from equation 294. Using these 

values in eciuatioii 289, the traveling wave in conducting material is 

described by 

Ey = E,n [296] 

(This describes a wave traveling in the positive x direction, for only 

the negative sign preceding F in equation 289 has been retained.) 

The wave in conducting material is similar to the wave in space or 

in a perfect dielectric except that it grows smaller as a result of losing 

energy as it travels. The factor in eciuation 296 shows this at¬ 

tenuation. If the conductivity of a dielectric is small, the wave travels 

with little attenuation, for a is small. In a good conductor, such as 

metal, the attenuation is so rapid that practically all energy carried by 

a wave into the metal is lost in a small fraction of a millimeter (see 

problem 9, page 136). In a moderate conductor, such as moist earth, 

radio v'aves of broadcast frequency can penetrate several meters before 

being almost entirely dissipated. Obviously it is only the energy that 

enters the conducting material that is attenuated in this way; the re¬ 

flection of energy from a conducting surface is a different problem that 

will be considered in Chapter X. 

The phase constant in conducting material is different from the 

phase constant in non-conducting material of the same dielectric con¬ 

stant and permeability; increases with conductivity (see problem 11, 

page 136). Hence wavelength corresponding to a given frequency be¬ 

comes smaller, and velocity of propagation ^ is less. In a substance 

that has the conductivity of a poor insulator (a quasi-dielectric), the 

change in wavelength resulting from conductivity may be inappreciable, 

but, in a fairly good conductor, the wavelength is a small fraction of 

the wavelength in free space. 

The magnetic field of a traveling wave in conducting material is not 

in phase with the electric field, as we found it to be in a perfect dielec- 

^ Velocity of propagation v == jeo/jp. Some authors call jio/V the “complex veloc¬ 

ity'^ and use it to account for attenuation as well as speed. In a somewhat similar 

manner, ell ~ ) may 1x3 called the “complex dielectric constant." Q we/y 
\ Jwe/ 

is a convenient factor for some purposes, partially analogous to the Q of a resonant 

circuit. These concepts, confusing at first, become useful with experience. 
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trie. This appears when H is found from E by means of equation 281: 

V X Eo = — jw/zHq [281] 

In the plane wave under discussion 

V X Eo 

dx 

Introducing this value for curl into equation 281: 

jccmHo = 

from which the intrinsic impedance is 

__ __ 

Using equation 281 to expand T, 

[297] 

[298] 

[299] 

[300] 

This expression for intrinsic impedance clearly reduces to V^/z/e, as 

in a perfect dielectric (see equation 272), if the conductivity 7 is zero. 

But in a conducting medium it is a complex quantity and, since Ey == 

rjHgy it describes a phase difference as well as a difference in magnitude 

between electric and magnetic fields of a traveling wave in conducting 

material. Since ?; is a complex quantity in the first quadrant, the elec¬ 

tric field leads the magnetic field in time phase. 

Dielectric Loss. In good insulating materials, of the kind ordinarily 

used for their dielectric qualities, loss owing to actual conductivity of 

the material is negligible. Another source of loss, however, known as 

dielectric hysteresis, is of the greatest importance. 

In an alternating electric field, energy is stored and released during 

each half cycle. If there is some material substance present in the 

electric field, the recovery of energy is not complete; a small fraction of 
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the stored energy is lost, possibly owing to a molecular frictional effect. 

This loss is repeated each half cycle, and hence the power loss is propor¬ 

tional (or approximately proportional) to frequency. 

Because dielectric hysteresis loss is nearly proportional to frequency, 

it is convenient to express the loss in a given substance in terms of a 

power factor. This is the power factor of an otherwise perfect condenser 

in which the given substance is used as the dielectric material. Power 

factor is independent of size and shape of the dielectric material, but it 

usually increases with temperature and humidity; it is reasonably in¬ 

dependent of frequency, but, since it may change appreciably if the 

order of magnitude of the frequency is changed, it is safest to determine 

the power factor for the approximate frecpiency to which it is to be 

applied. Dielectric power factors range from the order of 0.0005 for 

mica, quartz, and polystyrene, to 0.005 for glass anti steatite, and to 

0.05 for phenol products.® 

It is customary to account for dielectric loss by determining an equiva¬ 

lent conductivity that would cause the same amount of loss at the given 

frequency, and to use this value in the ecpiations of the preceding sec¬ 

tion. The equivalent conductivity is found by considering 1 square 

meter of a condenser in which the dielectric material is 1 meter thick; 

if loss is conductive, the power factor is 7/0)6 (this negl(H.‘ts the difference 

between the sine and tangent of the small power factor angle). The 

equivalent conductivity of a dielectric to represent hysteresis loss of 

known power factor is therefore o)6 X (power factor). 

Knowing the power factor of a medium, the attenuation of the field 

strength of a traveling wave is readily (ixpre.ssc^d in t(‘rms of the pow(‘r 

factor. Using the first term of a binomial-series expansion of F, a good 

approximation is 

a = X (power factor) 

Converting to power loss in decibels (multiplying a by 8.686), gives loss 

= 9.1/'s/k X (power factor) X 10“^ decibels per meter, / being fre¬ 

quency in cycles per second and k the relative dielectric constant of the 

medium,® with g = go- 

® Values are given in radio handbooks. See, for instance, Radio Engineers* Hand- 

hookf F. E. Terman, McGraw-Hill Book Co., 1943, page 111; Microwave Transmis¬ 

sion Design Data, Sperry Gyroscope Co., 1944. 

® Although derived for a specific form of wave, this formula is fairly general. It 

gives attenuation owing to dielectric hysteresis in a coaxial transmission line with 

solid insulation—or, indeed, for any line with a TEM wave. If divided by the guide 

factor G of Table VIII, page 212, it gives the attenuation owing to dielectric loss in a 

dielectric-filled wave guide. 
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Power and the Po5mting Vector. A very important aspect of wave 

propagation is the flow of power through space. It is apparent that a 

traveling wave carries energy with it, as a radio wave, for example, 

carries energy from the transmitter to the receiver. 

As a wave passes through an imaginary surface in space, its energy 

will pass through that surface, and at any instant there will be a flow of 

power through each unit of area of the surface. This quantity, in watts 

per square meter, will be denoted by the symbol P. The product P • a 
is power passing (at a given instant) through an area a. P is a vector 

quantity, called the Poynting vector after a mathematician of the nine¬ 

teenth century, and, Avhcn flux lines of the vector field of P are drawn, 

they show the flow of electromagnetic energy. The Poynting vector 

field is remarkably useful in electrodynamics, and the mathematical for¬ 

mulation of the Poynting vector is much simpler than might be expected. 

Consider a region of space, enclosed within an imaginary surface. 

The rate at which electromagnetic energy flo^vs out of this region is 

found by integrating P over the enclosing surface. Thus 

Outward flow of power * do, [302] 

But, if energy is flowing out of the region, there must be a corresponding 

loss of electromagnetic energy stored within the region. Electromag¬ 

netic energy is the sum of the electric and magnetic energies given by 

the volume integrals: 

I'dectric energy = D • E dD [157] 

Magnetic energy = i - H dD [221] 

Total energy = |^(B • H + D • E) dD [303] 

The rate at which this stored energy diminishes is found by differentia¬ 

tion: 

Rate of decrease 
of stored energy • H + D • E) dD [304] 

Ill this chapter ‘“U” is used as the symbol for volume, to avoid confusion with 

the use of v for velocity. 
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Ajssuming that electrical energy is not being changed to heat by flow of 

current within the region, an assumption that is correct if there is zero 

conductivity within the region (as, for example, in free space, or in any 

perfect insulator), there can be a decrease of stored energy only if there 

is an equal outward flow of power. Equating 302 and 304: 

-^2 J(B • H + D • E) rf-U 

\ r d 
= -- +eE-E)^^) 

2 dt 
[305] 

When the indicated differentiation is performed, the right-hand member 

becomes 

r/ dH dE\ ct aD\ 
- (mH—+ €E—)d*U= - (H—+ E. —Id'U [306] 

J \ dt dt/ J \ dt dt/ 

Now MaxwelPs equations are used to substitute for the time deriva¬ 

tives, giving 

+J[H-(VxE) -E-(VxH)]d'U [307J 

As a purely mathematical theorem, applying to any vector field, it 

can be shown that 

V-(MxN) =N-(VxM) -M*(VxN) [308] 

The right-hand member of this equation corresponds exactly with the 

quantity in brackets in expression 307, and substitution into 307 gives 

J’v-(E»H)dV [309] 

Divergence is here integrated through a volume, and by Gauss’s theorem 

we may substitute for this an integration over the surface enclosing that 

volume. When this is done, and the result is substituted for the right- 

hand member of equation 305, 

^P.da = ^(ExH)da [310] 

Both sides olf equation 310 are surface integrals, and both are inte¬ 

grated over the same surface enclosing an arbitrary region of space. 
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Equation 310 is clearly satisfied if the Poynting vector is 

P = ExH [311] 

and thus the flow of power in wave motion is obtained. 

This derivation of the Poynting vector considers a region without 

conductivity, thereby eliminating resistance loss of energy. This is for 

simplicity only, and if conductivity is taken into account the result is 

exactly the same: equation 311 expresses the flow of electromagnetic 

energy in either a conducting or non-conducting region. 

As a simple example of the Poynting vector field, consider a long 

cylindrical conductor carrying current. In Fig. 49 a steady current is 

flowing upward in a cylindrical conductor, the front half of the conductor 

being cut away in the diagram. The electric field within the conductor is 

correspondingly uniform and upward. The electric field outside of the 

conductor is much stronger, having a tangential component equal to the 

'' Equation 310 is equally well satisfied if there is added to 311 a function for 

which the integral over every closed surface is zero; a function, that is, with zero 

divergence. Hence, although the integral of P over a surface may commonly be 

taken to represent power flow, this idea may sometimes lead to absurd interpreta¬ 

tions (i.e., if an electrostatic field and the field of a permanent magnet exist in the 

same region). But the integral of P over a closed surface is always the true outward 

flow of power. 
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field within the conductor and a radial component that terminates on 

some other part of the circuit. The magnetic field within the conductor 

is circular, and its strength is proportional to the radius. The Poynting 

field within the conductor, being E^H, is radially inward, growing 

weaker as it penetrates the conductor. 

The increasing weakness of the Poynting field indicates the consump¬ 

tion of energy. Energy enters the surface of the conductor and flows 

toward the center; it is used to supply resistance loss in the conductor, 

and, as the center of the conductor is approached, the inward flow of 

energy decreases to zero. This energy is supplied from the external 

electromagnetic field. The Poynting field outside of the conductor is 

primarily parallel to the conductor, showing that energy is being carried 

in the direction of the conductor (to seiwe as a guide for energy is, in¬ 

deed, the purpose of most conductors). But the external field has a 

sufficient radial component to give an inward flow of energy to provide 

for the loss in the conductor. Only around a conductor of perfect con¬ 

ductivity would the Poynting field be wholly parallel to the conductor. 

Quantitatively, the electric field in such a conductor as the one in 

Fig. 49 is 

E = ~ [312] 
7 

from which, if the conductor radius is r, and the total current /, 

Ez = ~ [313] 
irr^y 

The magnetic field at the conductor surface is, from equation 207, 

[314] 

Hence the Pojmting field strength just within the conductor surface is 

[315] 

where the negative sign indicates that P is directed radially inward. 

The total power entering length I of the conductor is found by multiply¬ 

ing Pr by the surface area 2Trrl: 

IH 
Entering power [316] 
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But the resistance R of the conductor is (from equation 160): 

= -4- [317] 

When this is substituted into equation 316, we find that the energy 

supplied by the Poynting field is 

Entering power = PR [318] 

This result is obviously in agreement with the well-known expression 

for power consumed in resistance. It is here derived by what amounts 

to an integration of the Poynting field to obtain flow of energy into the 

conductor. It illustrates a means of computing power. This method 

is used in a later chapter, where power radiated from a radio antenna is 

found by integrating the Poynting field over a surface completely sur¬ 

rounding the antenna. 

The Poynting field of the plane wave of Fig. 48 is readily determined. 

From equations 262 and 271: 

E ^ 
p = E X H = i -- cos^ - fix) [319] 

v 

This Poynting field is everywhere in the positive x direction, a result 

that agrees with the obvious direction of flow of energy. It is maximum 

where E and H are greatest, whether they are positive or negative, and 

it is zero where E and H are zero. 

Note particularly that the Poynting vector, and therefore the direc¬ 

tion of travel of a wave, is boreal to the angle from E to H. If the fingers 

of the right hand curve from E to H the thumb shows the direction of 

This is one of the placets, prt'viously mentioned, where the exponential form of 

expression can lead to trouble unless care is used. One can not write from equation 

276: 
P - E X H = (Eo X (Ho = (Eo x Ho) 

It is, however, quite convet to write 

P = Real part of (Eo ^ Real part of (Ho 

which is not the same thing. As has been stated, uncertainties can alw ays bo cleared 

away by filling in the phrase “Real part of” (or its customary abbreviation “Re”) in 

the equations w here needed. Thus, in general, 

(Re c^’^)(Re c'*') ^ Re (c^’V^’*') 

(Re -f (Re = Re (c>^ -f c^*') 
But note 
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travel of the wave. This very important relation is easily remembered 

if “ExH” is firmly impressed on the mind. Obviously a reversal of the 

order of these vectors would be ruinous, but the memory can be helped 

by noting that E precedes H as in the alphabet. 

PROBLf]MS 

1. If, in equation 2G1, == 1, what are the wavelength and frequency? 

2. The direction of travel of a plane wave is normal to the Z axis and midway 

between the X axis and the Y axis (at 45 degrees to each of the latU'r). The wave is 

polarized with the electric vector parallel to the X-Y plane. Write the necessary 

defining equations (similar to equations 256 and 257) and introduce them into the 

wave equation. Find solutions for the components of E and H, as in equation 259. 

3. Prove that E and H are perpendicular in direction, identical in form, and pro¬ 

portional in magnitude when the wave is an undefined function Ey = f(x — f/), and 

not only for the sinusoidal wave of equation 261. 

4. Prove that equation 308 is correct. Explain why the relation V • (B x C) == 

C • (V X B) — B • (V X C) is not analogous to A • (B x C) =» C • (A x B) = 

-B- (AxC). 

5. What is the intrinsic impedance of (a) soft glass, (b) polystyrene, (c) steatite? 

(Compute from data from a reference book, giving source. Use values applicable at 

frequency about 10®; normal temperature.) 

6. Consider the equation V — ZI from ordinary alternating-current circuit 

theory, Z being complex. Show that this is consistent with v — Em and i = 

(Im e“^^) If t; = Em cos o)l and i - Im cos {U — </>), what is impedance? 

7. A w'ave is defined by Ex — Eg — 0, Ey - 55 Write expre.ssions for 

E, Eo, E^yj and Em- 

8. Compute F, a, and ^ at 1-megacycle frequency for moist earth (see values in 

Table V, page 184). 

9. Compute F, a, and ^ at 1-megacycle freciuency for copper, taking conductivity 

from a reference book (give source) and neglecting dielectric constant. 

10. Compute F, a, and /3 at 1-megacycIc frequency for hard rubber. Relative 

dielectric constant is 2.8. Power factor is 0.007 at 1 megacycle. 

11. Compare wavelength of a 1-megacycle wave in air, in moist earth (Problem 8), 

copper (Problem 9), and hard rubber (Problem 10). What is the wavelength in 

hard rubl:>er if lass is neglected? 

12. Show that, as stated, a good approximation for attenuation of a plane w'ave 

in a dielectric material is 9.1/V^k X (powder factor) X 10 ^ decibels per meter. 

13. Show that a good approximation for attenuation in a semi-conducting medium 

is a *» ^717. How should use of this approximation be restricted to avoid error in 

a of more than about 5 per cent? 

14. If P is power in watts per square meter of surface parallel te the plane of a 

wave in air, and if E is volts per meter, find n in P « nEi^. Check your result with 

a radio reference book. 

15. Show that, in the wave of equations 261 and 260, half the energy is electric 

and half magnetic. In a medium in which k =* 4 and /x =* /no, what fraction of the 

total energy is in the electric field? 
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16. A wire is bent into a loop and the ends are attached to binding posts. A con¬ 

stant voltage is applied betwee^n binding posts, and current flows in the wire. Sketch 

the Poynting vector field about the loop of wire. 

17. Considering the possible reception of radio sigimls by a submerged submarine, 

compute the distance of travel in sea water that will reduce the field strength of a 

radio wave to 3/io of its initial value. Use k = 81 and r(;sistivity = 1/7 = 0.20 

meU^r-ohm (see Tahiti V, page 184). Compute for signal frequencies of 30 kilocycles 

per second and 30 megacycles per second. 



CHAPTER X 

Reflection 

Boundary Surfaces. Waves travel in free space or in homogeneous 

material in simple fashion, but practical problems must always take 

into account the complicating effects at boundary surfaces. Boundary 

surfaces lie between regions of different dielectric constant (as between 

glass and air), or between regions of different conductivity (as between 

air and copper). There are also boundary surfaces between regions of 

different permeability which are interesting m general but have little 

importance as related to waves. 

An electric wave is reflected, for example, by a sheet of copper, and 

reflection is a boundary problem. A wave falling upon a body of di- 

(a) ib) (c) 

Fig. 50 

electric material is partly reflected and partly transmitted. The trans¬ 

mitted portion undergoes refraction; refraction is also a boundary prob¬ 

lem. The reception of energy by a receiving antenna is determined by 

boundary conditions at the surface of the antenna wire. A wave guide 

makes obvious use of boundary surfaces, and the determination of fields 

about a transmission line is equally although less evidently a boundary 

problem. Any conducting wire, as a matter of fact, is important elec¬ 

trically because it offers a boundary surface for an electromagnetic 

field; but this is an extreme interpretation when applied to, let us say, a 

lamp cord. 

Where an electric field passes from one substance into another of 

different dielectric constant, as from air into oil, certain conditions must 

be met. If the field is normal to the surface as in Fig. 50a, there can 

be no change in the strength of D at the surface, for Experiment IV 
m 
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has shown that the divergence of D is everywhere zero, except where 

free charge is located, and it is assumed that there is no free charge on 

the surface under discussion. D must therefore be the same just within 

the oil as it is just above the surface. E, correspondingly, is less in the 

oil; if the relative dielectric constant of the oil is 2 (k = 2), E is half as 

great in the oil as in the air. 

If an electrostatic field is tangential to a dielectric boundary surface, 

however, as in Fig. 506, it is E that must be continuous in value above 

and below the surface, for a discontinuity of the tangential field would 

correspond to curl of the field at the surface, and Experiment II showed 

that curl of E is everywhere zero. Since the tangential component of 

E must be continuous, D cannot be continuous but must be inversely 

proportional to dielectric constant; D, in this case, is twice as great in 

oil as in air. 

Experiment II, from which this conclusion was drawn, is limited to 

the electrostatic state, and in general the curl of E is not zero but is 

— dB/dt] we must consider whether this changes the conclusion that 

tangential E is continuous through the boundary. First, it must be 

recognized that an actual discontinuity of E at the boundary not only 

would result in curl, but there would be, at the boundary surface, in¬ 

finite curl. A discontinuity corresponds to an infinite rate of change 

of the function. Since there cannot be an infinite value of dB/dt, it 

follows that, in the dynamic as well as in the static state, there can be 

no discontinuity in the tangential E. 
Finally, if the electric field is at an angle to the boundary surface, it 

is most readily discussed by considering separately its two components, 

normal and tangential. Figure 50c shows a field at an angle with each 

component behaving in accordance with the above rules. As a result, 

D and E are parallel in air and in oil, but the angle of both changes as 

they pass through the surface. The proportion of D to E in oil is twice 

that in air, corresponding to k = 2. 

At a boundary between materials of different permeability, the mag¬ 

netic field behaves in a similar way: normal B is continuous through a 

boundary to avoid divergence, and the tangential component of H is 

continuous as there cannot be infinite curl. 

Conductor as Boundary. At the boundary surface of conducting ma¬ 

terial, there are two particularly important effects. A conductor is 

likely to have electric charge on its surface, for charge can flow freely 

to the surface from any point within the conductor. Also, a conductor 

is likely to carry current parallel to the surface. Surface charge pro¬ 

vides a boundary to terminate electric field, and current provides a 

boundary for magnetic field. 
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First let us consider surface charge. Assume a normal component of 
electric field just outside a conductor; either this field is terminated at 
the conductor surface by charge which, by equation 122, is a = DnV or 
else it penetrates into the conductor. However, if field exists in the 
conductor, there must be a corresponding current in the conductor, 
I = 7E (equation 165), and this current will quickly carry electric 
charge to the surface. Such charge, collecting at the surface, will then 
terminate the electric field, thereby eliminating penetration of field into 
the conductor and stopping the flow of current. It follows, as men¬ 
tioned in Chapter IV, that there can be no static electric field within 
a conductor. The higher the conductivity, the more quickly the in¬ 
ternal field will be eliminated. In a rapidly changing dynamic field, 
there can be some electric field within a poor conductor l)ut very little 
in a good conductor. In the limiting case of a perfect conductor (in¬ 
finite conductivity) there can be no electric field. 

The basic principle of shielding a circuit or part of a circuit from 
electric field by enclosing it within a metal container is evident from the 
above discussion. The possibility of shielding from magnetic induction 
will next be considered. 

Changing magnetic field induces current in a conductor. First con¬ 
sider a magnetic field outside a conductor and tangential to the surface, 
as indicated in Fig. 51. The magnetic field is assumed to be increasing 
with time, so dB/dt is positive. The material of the block shown in the 
diagram is a reasonably good conductor of conductivity 7; since it is 
not a perfect conductor some magnetic fi(‘Id will exist within the ma¬ 
terial. This magnetic field within the material is increasing with time, 
and hence there will be an induced electric fi(^ld ((Mpiation 193) and cur¬ 
rent will flow (equation 165) as shown by the dotted lines. However, 
on account of the flow of current, the magnetic field will have curl 
(equation 240) in the direction of the current flow,^ and this means that 
B will diminish at increasing depths within the conducting material. 
Thus, in a conductor that is good but not perfect, an increasing magnetic 
field will penetrate to some extent; it will induce voltage, and current 
will flow, and the current will automatically distribute itself in such a 
way as to weaken the magnetic field and prevent the field from pene¬ 
trating deeply into the material. 

If the tangential magnetic field ceases to increase with time and be¬ 
comes static, it will no longer induce an electric field in the conductor; 

^ By equation 240, V x H = t -h dB/dt =* 7E -f < dE/dt. Sinne 7 is high for most 
metals (of the order of magnitude of 10’ mhos per meUir) and e is low (of the order of 
10~'0 the term dB/dt in equation 240 is negligible in conducting material, even at 
very high frequency, and approximately V x H =* i. 
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current will then quickly cease, and with no current density there will 

be no curl in the magnetic field. The magnetostatic field will there¬ 

after be the same in the conductor as it would have been in a non-con¬ 

ductor of the same permeability. But it will have required time to es¬ 

tablish magnetic field in conducting material. If the external magnetic 

field is alternating, there is never time for the field to be completely es¬ 

tablished, and, the higher the frequency, the less the magnetic field that 

will exist within the conducting material. Also, the higher the fre¬ 

quency, the more the current will be concentrated near the surface of 

the conductor. This is ‘‘skin effect.” 

Fi(i. 51 Fia. 52 

The higher the conductivity of the material, in Fig. 51, the greater 

the current density that rev^ults from a given induced electric field. A 

material of high conductivity will thus have high current density near 

the surface, but there will he less penetration of magnetic field and cur¬ 

rent into the material. Skin effect will be more marked. If the ex¬ 

treme case of ideally perfect conducting material (7 = oo) is considered, 

there will be infinite current density just at the surface and no penetra¬ 

tion at all. 

Current may be thought of as providing a boundar}^ for the magnetic 

field. The current permits the field to have curl and thus to diminish 

to zero (or substantially zero), at or near the surface of the conductor. 

Wlien current provides a boundary for magnetic field, the total amount 

of current in the conducting material is not dependent upon conduc¬ 

tivity of the material but is determined simply by the strength of the 

external magnetic field. Distribution of current density depends upon 

conductivity and freciuency, but total current is proportional only to 

the strength of the external field. To show this, consider Fig. 52 which 

shows a cross section of the same block of material shown in Fig. 61, 

in a plane parallel to the field. 
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The rectangle abcda is a path of integration for evaluating the left- 

hand member of equation 199: 

^11ds = I [199] 

(This was originally a magnetostatic equation, but, since we have al¬ 

ready considered that displacement current dD/dt is negligible within a 

good conductor, this equation may be considered to be derived from 

240.) If the length of the side ab is I, integration along ab yields, as its 

contribution to the contour integral, III Integration along be and da 

adds nothing to the integral as these sides are normal to the field. The 

side cd is chosen to be so deep within the material that H along cd is 

negligible and integration along al adds nothing to the integral. Hence 

7, which is total current through the rectangle abeda^ flowing into the 

sheet in Fig. 52, equals //i, or 

I 
11 [320] 

The idea of surface current is helpful in problems concerning gocxl 

conductors, such as metals, in a high-fre(iuency field. The total cur¬ 

rent in the metal will be concentrated almost entirely in a region just 

under the surface, and the amount is easily computed from equation 

320.2 For certain purposes it is satisfactory to assume that the metal 

is a perfect conductor and that the total current will flow in an infinitely 

thin sheet right at the surface. This is known to be untrue, and it re¬ 

sults in an infinite current density at the surface, but it is a great con¬ 

venience and a permissible approximation in some problems, such as 

reflection of waves from a metal surface. 

In this discussion we have been speaking of a tangential external mag¬ 

netic field and its relation to what goes on within the metal. The rea¬ 

son for this emphasis on the tangential field is that, in a perfect conductor 

(or at high frequency), a tangential field is the only kind that can exist 

to any significant extent. At first it would seem that there might also 

be a normal component of magnetic field, but it must be remembered 

that, if there were a normal component of B just external to the surface, 

the same normal component would have to appear in the metal just 

* If the fiurfaee of the conductor docs not happen to be a plane surface, as shown 

in Fig. 52, equation 320 is nevertheless valid. The path of inUjgration in eejuation 

199 is then m cho.sen that ab is parallel and clostj to the surface, he and da are every¬ 

where normal to H, and cd is so deep within the material that the magnetic field is 

negligible. 
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within the surface because there can be no divergence of B. However, 

there can be no changing field within a perfect conductor because of 

the process that was described above: the changing magnetic field will 

produce an electric field, which will produce a current, which will pro¬ 

duce an opposing magnetic field, and in material of perfect conductivity 

the current will flow in whatevc^r amount is necessary exactly to cancel 

out the penetrating magnetic field. Thus, the magnetic field within 

the conductor is zero, and the magnetic field normal to its surface must 

be zero also. From the point of view of the external field, magnetic 

flux lines approaching a perfect conductor will not penetrate its surface 

but will bend away and pass by tangentially. With high-frequency 

fields and ordinary metallic conductors, even though the conductivity 

is something less thiin perfect, this statement is a good approximation. 

Skin Effect. The limitation of current and magnetic field to a sur¬ 

face layer is commonly called “skin cffect.^^ It appears in different 

guises in such problems as effective resistance of transmission-line con¬ 

ductors, attenuation in wave guides, shielding of one part of a radio 

circuit from fields produced in another, and penetration of flux into the 

rotor of an indiuflion motor. These problems are essentially similar 

and their solutions require appropriate use of the wave equation as 

applied to propagation within conducting material. 

Equation 288 is a solution of the wave eciuation for electric field in 

conducting material: 

■^^^0]/ = [288] 

Since current density in a conductor is proportional to the electric field, 

a similar equation for current distribution can be written: 

loy = hn [288a] 

In this equation = Ju/x(y -f i<o<). However, as mentioned in foot- 

note 1, page 140, when considering fields in ordinary metals, in which 

conductivity is vastly greater than the dielectric constant, the term 

jo3e within the parentheses is negligible compared with y unless the fre¬ 

quency is of the order of magnitude of that of visible light. Hence for 

fields of even the highest radio frequency in metal conductors 

r = VjcomT = (I +j) = —^ 
_ * 0 

if 5 is defined as l/V^Tr/juT. 

Equation 288a describes the current distribution shown in Fig. 51 if 

coordinate axes are so oriented that current t is in the y direction, B 

is in the z direction, and the A" axis points downward. Assume the top 

surface of the block of conducting material to be at x = 0. 
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It will be seen that the equation permits a choice of sign in the ex¬ 

ponent. However, in this block of material, so thick that it is considered 

to be semi-infinite, the positive sign is discarded, as a term with positive 

sign would describe a current density increasing without limit deep 

within the metal. (Actually, such a term is re(iuired if the metal is of 

finite thickness, and there is current penetrating all the way through 

from the other side.) It is therefore enough to write 

^-x/5 ^-Kx/5) 

This equation, which gives the current density at any depth x within 

the material, relates the current density at any depth to the current 

density Lm at the surface, where x = 0, but it does not evaluate im- To 

do this, we must use the information from equation 320 that the total 

current, obtained by integrating current density from the surface to 

an infinite depth, equals the magnetic field tangential to the surface. 

The current carried in a section of the medal block that is one unit wide* 

and that extends from the surface to an unlimited depth (see Fig. 52) is: 

I 

1 
II 

This is an equation with many uses. It leads, for instance, to an 

expression for power loss when there is skin effect. Basically, the power 

loss per unit volume is | \/y. Integration to lind the time-average of 

power loss in a semi-infinite conductor (per unit of surface area) gives 

This is a particularly intca-esting expression because it is 

easily show n that, if all the current in the semi-infinite conductor flowed 

with uniform distribution in a surface lay(‘r of thickness 5, the loss 

would be exactly equal to the actual loss. Ihmce, by finding the direct- 

current resistance of a layer of thickness 6 at the surface of the conduc¬ 

tor, a value called the effective resistance is olRained. It is this that 

leads to b being called the ^^equivalent dt^pth of penetration'^ of the cur¬ 

rent, or the “skin depth." Actually the current penetrates in appreci¬ 

able amount to many times the “skin depth," diminishing exponentially. 

Although the above derivation of effective resistance is for a semi¬ 

infinite block of conducting material, it can be used as a good approxi¬ 

mation for any large conductor carrying current at high frequency. 

Specifically, it is a good approximation if all dimensions of a conductor 

are many times the “skin depth" b. As an example, the effective re¬ 

sistance of a round wire at high radio frequency is approximately th(‘ 

direct-current resistance of that part of the wire that is within a distance 

5 of the surface. Since an exact expression for the effective resistances 
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of a round wire can be computed by finding a solution of the wave equa¬ 

tion in a conducting cylinder, it is interesting to compare the approximate 

and exact results. The approximate result, considering the effective re¬ 

sistance to be the direct-current resistance of a surface layer, is in error 

by less than 10 per cent if the radius of the wire is as much as six 

times 5. 

Another concept related to skin effect is “surface resistivity^^ of a 

conductor. With this meaning, “surface resistivity’^ is the direct-cur- 

rent resistance (as measured between two opposite edges) of a square of 

metal 1 meter long and 1 meter wide and 8 thick. Hence the “surface 

resistivity” is 1/76, and this value will be used in the later chapter on 

wave guides. 

Reflection from a Conductor. When an electric wave is traveling 

through space, there is an exact balance between the electric and mag¬ 

netic fields. Half of the energy of the wave, as a matter of fact, is in 

the electric field and half in the magnetic. If the wave enters some 

different medium, there must be a new distribution of energy. Whether 

the new medium is a dielectric material, a magnetic material, a conduct¬ 

ing material, or an ionized region containing free charge, there will have 

to be a readjustment of energy relations as the wave reaches its surface. 

Since no energy can be added to the wave as it passes through the bound¬ 

ary surface, the only way that a new balance can be achieved is for 

some of the impinging energy to be rejected. This is what actually 

happens, and the rejected energy constitutes a reflected wave. Hence 

one sees reflection of light from a conducting metal surface and from a 

dielectric glass surface. Often, indeed, the transmitted wave is rapidly 

absorbed and lost, as when light falls upon porcelain, or wood, or gold; 

yet, if the porcelain or wood or gold is thin enough, some of the trans¬ 

mitted light will pass through. 

The simplest reflection to discuss is that of a plane wave falling upon a 

perfectly conducting plane surface. This is an extreme case, for in a 

perfectly conducting material the electric field strength is always zero, 

and it will be shown that a wave falling upon such a surface is totally 

reflected. 

In P"ig. 53 a set of coordinate axes is oriented with the Z axis down¬ 

ward. A perfectly conducting surface coinciding with the X~Y plane will 

then be horizontal. A polarized plane electromagnetic wave falling on 

this surface from above is delined by 

Exi = Ejn cos fi{vt — z) [321] 

This equation, from its similarity to equation 252, is seen to describe a 

wave traveling in the positive z direction, polarized in the x direction. 
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But equation 321 gives only the incident wave, and when there is a 

reflected wave the complete solution of the wave equation must be 

used. As in equation 259, this includes a wave traveling in the opposite 

direction, which may have any fonn and which will bo indicated merely 

as some function foivt + z). The nature of this function must be de¬ 

termined from conditions at the boundary surface. 

In space above the X-Y plane, then, 

« Em cos -z)+ f2ivt -f z) [322] 

The given boundary condition is that the plane surfaces is perfectly con¬ 

ducting and therefore within the surface E^ = 0. Since the tangential 

Electric Field Magnetic Field 

component of E must be continuous through the boundary surface, Ex 

must be zero just above the surface as well as just below, and at z = 0, 

Ex = 0. Substituting this in equation 322 gives 

0 Em cos + S2(vt) [323] 

whence 

*•0 

S 1 II [324] 

Changing the argument of the function /2 from (vt) to {vt + z): 

f2{vt + 2) = —Em cos fi{vt + z) [325] 
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It is thus seen that, in order to satisfy the boundary condition at the 

perfect conductor, the complete electric field of equation 322 must be; 

Ex = Em cos — z) — Em COS 0{vt + z) [326] 

Introducing fiv — o (Table 111): 

Ex == Em cos {(J)t — fiz) — Ern COS (o)t + fiz) 

Ey ^ E, = 0 

[327] 

This result could have been obtained as an exponential function, in 

which form equation 327 is 

Ex = Em - Em = Em 

Ey = £, = 0 

[328] 

The electric component of the field above the reflecting surface is 

now known; the magnetic component is readily found from Maxwell’s 

ecpiations as was done for a simple wave in equation 269. The result is 

or alternatively 

and 

Em 
IIy = — [cos {oit — fiz) + cos {o)t + fiz)] 

V 

E 

Hy = — 

V 

IIx = //. = 0 

[329] 

[330] 

Both electric and magnetic components arc indicated in Fig. 53; each 

arrow indicates the field strength throughout the corresponding horizon¬ 

tal plane, so electric and magnetic vectors at the same height above the 

reflecting plane arc really coincident. Note particularly that, whereas 

the electric wave is reflected with reversal of sign so that the electric 

field at the reflecting surface is always zero, the magnetic field is reflected 

with unchanged sign and so is doubled at the reflecting plane. The 

correspondence to traveling waves on transmission lines ® is more than 

an analogy, for indeed the wave traveling along a transmission line is a 

* See Transient Electric Currents^ II. H. Skilling, McGraw-Hill Book Co., N. Y., 

1937. 
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plane electromagnetic wave, and its reflection is an example of the type 

of reflection considered here. 

Conditions in the conducting plane must be considered, to show that 

they are consistent with the principles of electrodynamics. The electric 

field in the reflecting plane must be zero. When the incident wave 

arrives, current flows in the plane, which can carry unlimited current 

with zero voltage; the current density is infinite, but its depth of pene¬ 

tration into the plane is zero. Magnetic intensity just above the surface 

is finite; just below the surface it is zero. This change takes plac^e in 

zero distance, for it occurs precisely at the surface, and consequently the 

curl of the magnetic field at the surface is infinite. This is not only per¬ 

missible but necessary if the current density at the surface is infinite. 

Study of Fig. 53 will show that the directions of current, curl, and 

magnetic field are in accord with Alaxwcll’s equations. 

A heavy line in Fig. 53 shows the sum of the two traveling waves. 

This resultant is continually changing, but it is not a traveling wave. It 

is oscillating in magnitude but fixed in space: it is a ^‘standing’^ wave. 

The total electric intensity is always zero at the reflecting surface, at a 

distance of one-half wavelength from the reflecting surface, and at mul¬ 

tiples of one-half wavelength. These points are nodes. There are also 

nodes in the magnetic field, at one-fourth wavelength, three-fourths 

wavelength, and so on. 

It was by detection of these nodes in front of a reflecting sheet of zinc 

that Hertz first proved the existence of electromagnetic waves. He 

explored the field with a wire loop about a fo(^t in diameter, with the 

ends of the loop separated by a very minute distance; electric sparks 

across this small gap indicated an indiuaKl electromotive force in the 

loop, and the absence of sparks indicated that his loop of wire was lo¬ 

cated at a node. Since there can be nodes only if there arc waves, 

Maxwell’s theory was proved true. 

The standing waves are best seen in mathematical form by changing 

equation 328 to 

E, = -^-jV- [331] 

= [332] 

This expreasion really means 

E^ = Real part of [2Em sin fiz( -j f/"")] [333] 

To find the real part, the exponential is expanded as on page 125, using 
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—i = —i(cos bit + j sin o)t) — sin o)t — j cos coL Retaining only the 

real part ^ leaves 

Ex — 2Eni sin sin oct [334] 

(This result could have been obtained from equation 327 by trigono¬ 

metric substitution, but less easily.) 

Equation 334 gives the electric field in space above the reflecting 

plane. The magnetic field is found from equation 330 to be 

2Ern 

Hy =-COS fiz cos Oil [335] 
V 

These last two equations describe waves that do not travel but stand 

in a fixed position along the Z axis and pulsate. Maximum pulsation 

occurs at “loops,” and zero pulsation at “nodes.” It will be seen that 

loops of electric field occur where sin jSz = ztl; nodes, where sin ^z 

= 0. Where there are loops of electric field, there are nodes of mag¬ 

netic field. Also, the standing waves of magnetic and electric field 

pulsate out of phase in time, so that when the magnetic field is every¬ 

where zero, the electric field is everywhere maximum, and vice versa. 

Thus the standing wave has a very different appearance from a traveling 

wave, although it is actually nothing more than the sum of two travel¬ 

ing waves. 

This discussion has considered reflection at a plane of infinite conduc¬ 

tivity. At a surface of finite conductivity, such as copper, conditions 

will be nearly the same. A small amount of energy but not much will 

be carried by a weak transmitted wave a short distance into the copper, 

while most of the incident energy will be reflected as from a perfect 

conductor. 

Dielectric Reflection. When a wave falls onto the surface of a block 

of dielectric material, there is partial reflection and partial transmission 

of the incident energy. Whether energy passing into the dielectric ma¬ 

terial is transmitted through that material without rapid attenuation 

depends on the characteristics of the material; attenuation results if the 

material fails to be perfectly non-conducting, or if there is loss associated 

with each reversal of the electric field (“dielectric hysteresis”). In 

mi(irowave transmission, the latter is much the more important factor, 

* In changing expressions from the trigonometric to the exponential form, there 

are two especially useful relations that have now been developed. They are 

cos X =* Real part of 

sin X =* Real part of —j 

These will be used frequently. 
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for dielectric loss increases approximately with the frequency. At light¬ 

wave frequencies, energy absorption Avithin the atoms is important, and 

thus many dielectrics that transmit radio waves are opaque to light. 

As an example, let us consider a wave in free space, or air, falling nor¬ 

mally upon a large block of dielectric material with constant e. See 

Fig. 54. In the folloAving work a subscript 1 will indicate the incident 

wave, 2 the reflected wave, and 3 the transmitted wave. The same 

orientation with respect to axes will be used as in Fig. 53. It is hardly 

necessary to prove again that the reflected wave will have the same 

functional form as the incident wave, and this will be accepted. Then 

in air 

+ E„,2 1336] 

and in the dielectric material 

= E„3 [337] 

Since the tangential component of electric field is continuous at the 

boundary surface, we know that, at 2 « 0, 

Ez(sLir) = ^x(die\) [338] 

and equating 336 and 337 at the surface, where z ^ 0, gives 

Emi + Em2 = Emd [339] 

As in previous examples, the magnetic field of each traveling wave is 

normal to the electric field and normal to the direction of travel of the 

wave. 

//vwr) = + //„2 [3401 

1341] 
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It follows from Maxwell’s equations, as in earlier examples, that E and 

H are related in magnitude by the intrinsic impedance of the medium 

through which the wave is traveling. 

^ml ” ^m2 ~ Vl^m2 ^m3 ” [342] 

The negative sign for the reflected component of the wave indicates 

that (considering the direction of travel, and the boreal relation of £, 

//, and velocity), when the electric component is positive (along the 

X axis), the magnetic component (along the Y axis) is negative. At the 

boundary surface the tangential component of H is continuous, so, when 

2=0, “ ^-^zCdiel) ^^id 

”i" ^^m2 ~ m3 

or 

^7nl Ejm2 ^mS 

Vl Vl 

From eciuations 339 and 344 the relative magnitudes of incident, re¬ 

flected, and transmitted waves are found: 

[343] 

[344] 

^3 - ryi 
^m2 — E, 

IIm2 = - 

IZ + 

Vz - ll 

m3 
VZ + Vl 

Emi [345] 

^3 + 
Hrnl 

2r?i 
Hmz =-^-Hml [346] 

iz + 

The fraction (7/3 — vi)/{vz + ^1) called the reflection coefficient. 
It is more interesting to consider a special case than to attempt any 

discussion of these general results. Let us suppose the dielectric material 

of this example to have a relative dielectric constant of 4 (Bakelite, per¬ 

haps) so that €3/61 = 4. Since 77 = V)u/e, and /x is practically the 

same for air and any dielectric material, we find rji/vz = 2. For this 

special case, equations 345 and 346 become 

Em2 “ 3 -S'm3 “ f [347] 

ffm2 = ^ ^^ml ^^mZ = 5 [348] 

Note that E and // in the reflected wave have the same ratio of magni¬ 

tude as in the incident wave, and the reflected wave has one-third the 

amplitude of the incident wave. The reflection coefficient is —3^. 
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The transmitted wave, being in a different medium, has a different 

ratio oi E to H as determined by the value of rj. 

In this simple wave it is safe to consider power of each component 

wave individually. The Poynting vector of power per unit area at 

2 = 0 in the incident wave is 

Pi = El X Hi [349] 

This is entirely in the z direction, and its scalar magnitude is 

Pi = ExlPyl 

— EjffiY cos Ojt 11 ffi\ cos Oit 

= E mil I mi COS“ 0)1 [350] 

Energy in the incident wave is thus arriving at the dielectric surface 

as a double-frequency puls^ition that is always positive. The maxi¬ 

mum value, Pmij is 

P mi E^millmi 

77 2 

[351] 

The maximum value of power in the reflected wave is similarly 

Pm2 — Pm2llm2 

and in the transmitted wave 

Pm3 Efn3ll m3 

1 rw 

9 Vi 

8 Ernl^ 

9 Vi 

[352] 

[353] 

It is seen that 3^^ of the incident energy is rejected at the surface and is 

carried away by the reflected wave, while of the energy passes on 

into the dielectric material. 

We may now inquire whether the electric field in the region above the 

dielectric reflecting surface can be expressed as a standing wave, as it 

was with a perfectly conducting reflecting surface. The answer is that 

it cannot, but it can be expressed as the sum of a traveling wave and a 

standing wave. If the reflection coefficient is near unity (this corre¬ 

sponds to an extreme change in €, ;x, or 7 at the reflecting surface), the 

reflected wave is nearly as large as the incident wave, and the total 

field has a standing-wave appearance. See Fig. 55. 
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If the reflection coefficient is near unity, the maximum (or rms effec¬ 

tive) field strength will vary as a function of distance above the surface, 

with marked nodes and loops. The standing-wave ratio, which is de¬ 

fined as the ratio of the field strength at a loop to the field strength at 

a node, will be large. 

If the reflection coefficient is near zero (this corresponds to a small 

change of constants at the reflecting surface), there is very little reflected 

wave, and the total field above the reflecting surface is only slightly 

modified from a pure traveling wave. The maximum (or rms effective) 

(Coefficient near unity) (Coefficient near zero) 

Fuj. 55 

field strength will be almost independent of position above the reflect¬ 

ing surface. The standing-wave ratio in this case is near unity. 

Reflection from a Semi-Conductor. If the resistivity of a conductor 

is so great that there can be a considerable electric field within the ma¬ 

terial, or (wliat is really the .same thing) if the conductivity of a dielec¬ 

tric is enough to permit aj)j)reciable current, reflection from the surface 

shows some interesting results. Propagation in such a medium, which 

is neither a i)erfect dielectric nor a perfect conductor, was considered 

in Chapter IX. The complex propagation factor P was introduced, 

and the intrinsic impedance rj was found to be complex when there is 

conductivity. 

Our discussion of dielectric reflection applies without change to re¬ 

flection from the surface of a semi-conductor if we use the appropriate 

value of r for the propagation factor in the medium, and the proper 

complex value of rj. Thus, if a wave in air falls on a semi-conducting 

material, as in Fig. 54, we \vrite F:} instead of jPs in describing the trans¬ 

mitted wave. Equation 337 becomes 

iV(dio.) = [354] 



154 REFLECTION 

and equation 341 must be written 

/^y(diel) = [355] 

Equation 342 remains just as before, 

Eml = = Vd^^mS [342] 

It must be recognized that 773 is now a complex number, and from equa¬ 

tion 301: 

^3 
/^3 

[35G] 

Because the electric and magnetic fields of the transmitted wave are 

not in time phase with each other (773 being complex and representing a 

phase shift), it follows that the reflected wave cannot be exactly in 

phase with the incident wave at the boundary surface and still satisfy 

equations 339 and 343. 

As an example of the phase shift that occurs when a wave is reflected, 

let us consider a radio wave reflected from the surface of the earth. 

The following constants are typical of moist earth. 

7 = mho per meter 

K = 25 

€ = Keo = 220 X 10“^^ 

M = MO = 1-26 X 10-"^ 

The wave, with a frequency of 10 megacycles per second, and hence an 

0) of 6.28 X 10^, is assumed to fall normally upon the earth's surface. 

The intrinsic impedance of the earth is 

V3 4, 1.26 X 10' 

220 X 10'“^ni.24/-35.9^) 
68.0/18.0^ ohms 

It is interesting to compare this with the intrinsic impedance of free 

space, 377 ohms. The difference is largely due to the high dielectric 

constant of the moist earth, rather than the conductivity; the denomi¬ 

nator under the radical is changed by a factor of 25 because of dielec¬ 

tric constant, and only by 1.24 because of conductivity. However, the 

conductivity gives the 18-degree angle to the intrinsic impedance, indi¬ 

cating that II lags 18 degrees (of time) behind E in the earth. 
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From the practical point of view we wish to know the reflection fac¬ 

tor, for this will tell the magnitude and phase of the reflected wave, 

which is ordinarily the useful component. From equation 345, 

Em2 ^8.0/18.0^ - 377 

"" 68.0/18.0^ + 377 
~Q.7Q5/-6.6^ 

This says the reflected wave is about 0.7 of the incident wave in ampli¬ 

tude (and therefore about half in energy). The reflected wave is al¬ 

most opposite in phase to the incident wave at the reflecting surface 

but, because of the earth's conductivity, it lags 6.6 degrees behind ideal 

phase reversal. 

The example shows that, at 10 megacycles, even moist earth acts 

more like a poor dielectric than a conductor. At very low radio fre¬ 

quencies, on the other hand, the earth acts more like a poor conductor 

than a dielc(;tric. 

Oblique Reflection. The majority of practical problems are con¬ 

cerned not with normal reflection but with reflection at an angle. The 

general problem of a wave of any polarization, traveling in any material 

and falling at any angle onto the surface of any other material, can be¬ 

come fairly complicated. In principle, however, oblique reflection does 

not differ much from normal reflection. 

Let us consider one of the more important examples. A wave in air 

(or other non-conducting medium) falls at an angle onto the surface of 

a semi-conducting material such as the earth. Let us assume horizontal 

polarization (the electric vector parallel to the reflecting surface). This 

is assumed because of the practical interest in earth-reflected waves in 

the very high frequency range, for which horizontal polarization is usual. 

In Figure 56 the heavy dash line shows the direction of travel of each 

wave, and the light lines show the advancing wave-crests of the plane 
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waves. In the statement of the problem, only the incident wave is 

known; the reflected and transmitted waves are to be found. 

The solution is based on the familiar boundary condition: at the re¬ 

flecting surface the tangential components of both E and II must be 

continuous. This is expressed in the eciuations 

+ £3 [357] 

IIti "T II12 ” Ilfi [358] 

The subscript t indicates the tangential component at the surfa(;e, 

© : Vector into Page 

Fia. 57 

as in Fig. 57. Since the incident wave is horizontally polarized, the 

E component is entirely tangential to the surface, and no subscript 

t is needed (although in a more general case the equation would be 

Ell E12 — Et^). 

It is hardly necessary to go through detailed analysis to see that, for 

the sum of the incident and reflected waves to be equal to the transmitted 

wave all over the boundary surface, the waves must all be of the same 

frequency. Also, they must all be moving along the surface in the same 

direction, from left to right in Fig. 56. Also, the distance along the 

surface from wave-crest to wave-crest must be the same for all three 

waves. (This is the distance a-b in the figure, for each component 

wave.) If any of these conditions were not met, ec^uations 357 and 

358 could not be satisfied. 
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Because the transmitted wave travels more slowly than the incident 

and reflected waves (assuming a higher dielectric constant in the earth), 

and the wavelength is therefore less, the only way wave-crests can be 

matched at the surface is to adjust the angle of the transmitted wave. 

It is evident that, since X, the wavelength, is the distance between wave- 

crests as shown in Fig. 56, 

X.3 X1 X2 
Distance a-b =-=-=- [359] 

cos ^3 cos \pi cos ^2 

The angle is the angle of the incident wave shown in the flgure (this 

is the angle usually considered in connection with reflection of radio 

waves, although its complement is the angle defined in optics as the 

angle of incidence). Similarly, ^2 ^uid ^3 are the complements of the 

angles of reflection and refraction. 

Since the incident and reflected waves travel in the same medium, 

Xi = X2 and ypi = ^2- That is, the angle of incidence must ecpial the 

angle of reflection. The angle of refraction, however, is computed from 

equation 359: ^ 

cos i/'i Xi vi ^3 

-= - = - = — [360] 
cos 1/^3 X3 1’3 

Relations in the wave just at the reflecting surface are shown in 

Fig. 57. As in all plane waves, E and II are related by the intrinsic 

impedance: 

~ ^2 Vl^^2 ~ [361] 

From these, and Fig. 57: 

Hi — sin 

Vi 
IIV2 

E'> E- 
sin II(li = —— sin i/'3 [362] 

V3 

The negative sign indicates that, when the tangential component of 

II2 is positive, E2 is negative; this follows from the choice of coordinates 

and the direction of propagation, as in the figure. Substituting into 

equation 358: 

— sin ypi-sm = — sin ^3 

^1 ^3 

* The ratios of equation 3G0 are the “index of refraction” of optics if the incident 

wave is in vacuum. For a non-conducting material this is and for a non¬ 

magnetic non-conducting material (the usual case) it is ea/eo or V^ks. Optical 

values are not, comparable with radio values, however, as « is a function of frequency 

at optical frcquenci(‘s. Nevertheless, the sparkle of a diamond may be attributed to 

its high dielectric constant. 
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Simultaneous solution of this and equation 357 gives the reflection factor: 

E2 V3 sin xj/i — rji sin 

El sin rpi + rji sin \p3 

[364] 

Naturally, the reflection factor for normal reflection is a special case 

of equation 364, resulting when ^ = 90 degrees. For a glancing wave, 

rpi approaches zero but ^3 does not, and E2 therefore approaches —Ei. 

The reflection factor of equation 364 (and, indeed, the entire discus¬ 

sion) are valid whether the refracted wave enters material that is con¬ 

ducting or non-conducting. It applies, therefore, to an actual earth as 

well as to an ideal earth. The only difference is that 7/3 for an actual 

earth is complex, as determined from e(iuation 356, and ps in equation 

360 is the imaginary component of F from equation 294. 

It is interesting and of practical importance (as will be seen in the 

later discussion of antennas) to note that, when a horizontally polarized 

wave is reflected from the earth, the phase of the reflected wave will 

not differ more than a few degrees from complete reversal of the inci¬ 

dent wave. This is shown by the example of the preceding section, 

together with the deduction from equation 364 that normal incidence 

gives maximum phase difference as a result of earth conductivity, and 

that reflection at any lesser angle will come even closer to giving com¬ 

plete reversal of phase. Also, the magnitude of the reflected wave will 

not be greatly different from the magnitude of the incident wave. In 

the example computed it was seven-tenths; it may be somewhat more 

or less than this for other examples of normal incidence; it approaches 

equality with the incident wave for glancing incidence. These consid¬ 

erations help justify the assumption that is often made that at the sur¬ 

face of the earth a horizontally polarized wave is totally reflected with 

perfect reversal of phase. 

A vertically polarized wave can be handled by a mathematical treat¬ 

ment similar to that which we have outlined for the horizontally polar¬ 

ized wave. A wave polarized at any angle can be analyzed into hori¬ 

zontally and vertically polarized components. Thus, with patience, 

the approach that has been suggested here can be applied to most re¬ 

flection problems. 

PROBLEMS 

1. An electric field passes from air into oil (k » 2). The field in air is at an angle 

of 45 degrees to the surface of the oil. What is the angle between the surface and 

the field in the oil? Find this angle for both D and E. 

2. Is electric field always normal to the surface at a metal surface? Explain the 

relations of internal and external field in Fig. 44, page 101. 
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3. Prove that Bnt the component of B normal to a perfectly conducting surface, 
is either zero or static. 

4. Prove that = 0. B^an is the component of B tangential to a perfectly 

conducting surface in non-conducting space, and the derivative is taken normal to 

that surface. (Prove for a plane surface. Can the proof be extended to apply at any 

surface?) 

5. Magnetic field H is tangential to the surface of a semi-infinite conductor. 

Compute current density at distances x within the material such that x/b = 1,2, 

and 3. Show the relation of phase and magnitude of these current densities by 

plotting them as complex vectors radiating from a common origin. On the same 

diagram show the phase of the total current /, and the surface field H. 

6. Find the magnetic field at any depth x within a semi-infinite conductor, know¬ 

ing the magnetic field tangential to the surface. Plot vectors of H at various depths, 

as was done for current density in Problem 5; use x/8 — 0, 1, 2, and 3. What can 

be said about // at a distance 5 above the conductor surface? Compare in phase with 

the current-density vectors of Problem 5. 

7. Show that the time-average of power loss in a sheet of conducting material 1 

meter square and of thickness 5, carrying current parallel to one edge of the square, 

the current being uniformly distributed and the total current being (tm/1 P 1) cos 

is Lni^b/Ay. 

8. What value of t in equation 327 would give agreement with Fig. 53? 

0. If the effective (rms) value of the incident electric field in the wave of Fig. 53 is 

10 millivolts per meter, what current flows in the conducting X-Y plane? Find the 

effective (rms) value. Assume the wave is in air. 

10. A wave in air falls normally on a paraffin surface (k = 2.2). Find the reflec¬ 

tion coefficient and the standing wave ratio. 

11. Repeat Problem 10 for a wave traveling in paraflfin, falling on a paraffin-air 

surface. 

12. Repeat Problem 10 for a wave in air falling normally on a water surface {k = 

80), the frequency being so high t hat the water may be considered a perfect dielectric. 

13. Sketch curve's similar to Fig. 55 showing the results of Problems 10, 11, and 12. 

14. Following equation 350, an example is given of reflection from moist earth. 

WriU* the complete equations for electric and magnetic fields in space above the 

surface, and below. Give numerical values where known, and include time relations. 

15. Find the n'flection factor from moist earth (as in the example following equa¬ 

tion 350) for a wave with a frequency of 10,000 megacycles per second. Repeat for 

a frequency of 10,000 cycles per second. 

16. Find the reflection factor, as in the example following equation 356, for the 

same w’avc from drier earth, with k == 10, 7 = 0.004 mho per meter. 

17. Draw a diagram similar to Fig. 56 showing wave fronts as a w'ave in a dielectric 

material falls obliquely on the boundaiy plane between dielectric and air. Consider 

the critical angle of incidence for which wave fronts in air are normal to the boundary 

surface, and the relation to total reflection. 

18. Derive an equation, similar in form to 364, for the reflection factor for a 

vertically polarized wave (more precisely, a wave with the magnetic vector parallel 

to the reflecting surface). Show that, if reflection is from the surface of a perfect 

dielectric, there is an angle of incidence for which the reflection factor is zero (the 

Brewster angle). 



CHAPTER XI 

Radiation 

Electrod3aiamic Potentials. It is convenient to solve electrostatic 

problems in terms of the electrostatic scalar potential field, for where 

there is no electric charge and the dielectric material is homogeneous 

it is necessary only to solve Laplace’s equation 

V^V = 0 [119] 

In magnetostatic problems there is similar convenience in the use of 

the magnetic vector potential, for in homogeneous material that carries 

no current we merely solve 

V^A = 0 [365] 

For dynamic problems, however, including work with waves, these 

static equations are incomplete. It will be shown that the full dynamic 

equations to apply in free space or in homogeneous material in which 

there is no charge or current are 

V^V - -V = 0 
dl^ 

[3(;(i] 

o 
V^A -/*€— = 0 

dl^ 
[3(i7] 

These equations obviously reduce to the two static equations if the po¬ 

tentials are unchanging with time. 

Comparison with equation 249 shows that 366 and 367 are wave 

equations; that is, both potentials are propagated through space with 

the velocity v = 1/V/Ic. Therefore, when a moving charge or a chang¬ 

ing current initiates a change in potential, that change will not affect 

conditions at a distant point until a lapse of time has permitted a travel¬ 

ing wave to reach the distant point. 

In deriving the dynamic potentials, we begin with Maxwell’s equa¬ 

tions instead of the simpler relations of electrostatics and magneto¬ 

statics. The derivation then proceeds the same, step by step. In 
160 
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TABLE IV 

Static Potentials Dynamic Potentials 

VxE = 0 V xE = - 

VxH = t 
^^~dt 

V • E = - 

V • B = 0 V • B = 0 

V- H = -V- B = 0 

H = Vx A 

Since from 111 

we can let 

VxE = 0 

E = - vr 

Then from 110 

we can let 

V* H = -V- B = 0 
M 

H = V X A 

Then from 193 

VxE=-m — VxA [368] 
dt 

Since from 368 

V X (e + /i = 0 [3691 

we can let 

whence 

- V7 13701 
at 

E--{vv + .i*) 

Then from 116 

V . v7 = VH" 1118) V • (vr 4- i 

From 203 

V xH = I 

V X V X A 

V(V • A) 

= V^F -f M-V - A = [372] 
dt 6 

From 240 

VxH-= I 

X, ^E 
V X V X A - e — [373] 

dt 

V~A = >■ [2131 =V(V-A)-v2A + e^(vF + /x^l 
dt \ dt / 

V ( V • A -f > V^A 4- /u€ 

But we now stipulate 

V • A = 0 

But we now stipulate 

V . A = - 

V"A = - i 

anil as above 

V“7 = 

V^A - .7 = - t [3751 
dt- 

and from 374 and 372 
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Table IV, the familiar derivation of the static potential equations is 

given on the left, and the parallel derivation of dynamic potentials on 

the right. It is assumed that /z and e are constant. 

Except for the changes introduced by using Maxwell’s equations, the 

dynamic equations are similar to the static equations until a stipulation 

is made regarding the divergence of the vector potential. It will be re¬ 

membered from the discussion in Chapter VI that any divergence can 

be specified for A, and the most convenient one is chosen; for static 

fields we let V • A = 0. For dynamic fields the relation of equation 374 

is specified. When this is done, equations 375 and 376 result. 

If a solution for these differential equations, 375 and 376, could easily 

be found, it would be very useful, for, if current and charge were known, 

A and V could then be found, and from them E and H by equations 371 

and 211. The possibility of finding solutions for equations 375 and 376 

can be considered as a single problem, for these equations are of the 

same form. Some of the characteristies of the solution are evident. 

An example will help to show what is meant. 

Let us consider a simple electromagnetic disturbance. A pulse of 

current flows in a short piece of wire (as in an antenna); charge flows 

suddenly from one end of the wire to the other. Before and after the 

pulse, eonditions are static, and the solutions of equations 375 and 376 

must be the static-potential solutions of 215 and 118, which are ^ 

A = — f-d-U V = -^f-dV [MG] 
AirJr W tJ r 

These static solutions must apply both before the disturbance starts 

and after it dies away, but during the disturbance, as seen from equa¬ 

tions 366 and 367, changes of A and V are produced near the antenna 

and are propagated through space as traveling waves. (It will be noted 

that, in this example, equations 375 and 376 reduce to wave equations 

everywhere except within the antenna.) 

We therefore know that the initial static-potential field is changed to 

the final static-potential field by a disturbance in the form of a traveling 

wave. The potential at every point in space is affected by the disturl)- 

ance, but the more distant points will not be affected until after a lapse 

of time proportional to distance. The disturbance travels with a speed 

V (previously defined as t; = 1/V^) and, hence, if the distance from 

' In this chapter is used as the S3niibol for volume, to avoid confusion with 
the use of v for velocity. 
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the antenna to a point in space is r, the potential at that point will 

change after a time delay of r/v. 

To express the same idea a little differently, at a given time t the po¬ 

tentials A and T at a point some distance r from the source of the dis¬ 

turbance will be determined, not by the current and charge in the an¬ 

tenna at that particular time but by the current and charge that 

existed at a slightly earlier time {t — r/v). (This is similar to saying 

that when one looks at a star several light-years distant he does not see 

the star as it is today but as it was some years ago.) 

Using functional notation, if charge density is a function of time it is 

written p(t); this indicates any function of the variable t If p changes 

with time in the same manner as p{t) but a little later, the variable is 

written (t — to) instead of t; this introduces a time delay of to. The 

delayed charge-density function is thus written p(i — ^o)- 

With this notation, equation 146 for the electrostatic potential is 

written: 

V = 
47r c J r 

[377] 

where the t in parentheses merely indicates that p is a function of time. 

Now, in view of the time delay to be expected in the corresponding ex¬ 

pression for the dynamic potential, our discussion indicates that the 

solution of equation 376 might reasonably be 

V = [378] 

thereby making the potential V at time t dependent on charge distribu¬ 

tion at the earlier time (t — r/v). A solution for equation 375 would 

correspondingly be 

A = [379] 

These seem reasonable, but they have been partly based on speculation. 

As with most differential equations, the proof is rather easily obtained, 

once a solution is guessed, by substituting the proposed solution back 

into the differential equation. Thus 378 is substituted into equation 
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376 which is thereby ^ reduced to an identity. The similarity of equa¬ 

tion 375 then shows that its solution is truly 379. 

These dyanmic potentials are often called retarded potentials because 

of the time delay involved. 

It is not always necesvsary to use retarded potentials even in dynamic 

problems. When times are long and distances are short, the retardcnl 

potentials are indistinguishable from the static potentials. Mathe¬ 

matically, if r is small compared to vty a function of {t — r/v) is negligibly 

different from a function of t. Then the simpler statics equations can 

be used even though fields are slowly changing, and this condition is 

called the qnasi-stationary state. All problems at power fre(iuenci(\s 

are quasi-st at ionary except those that deal with long transmission lines. 

The time delay in the propagation of a magnetic field within a generator, 

for instance, is negligible. 

Radiation. The electrical phenomenon that is most essentially a dy¬ 

namic problem is radiation of waves from an antenna. When a short 

radio antenna was considered from the quasi-st at ionary point of view 

in Chapter VI, there was no suggestion of radiation of energy, for radia¬ 

tion is the factor that the quasi-stationar>' solution overlooks. So, to 

determine radiation from an antenna, we will s(H‘k a solution for the 

dynamic vector potential as given by equation 379. That is the pur¬ 

pose for which the concepts of vector potential and retarded potential 

have been introduced. 

* The substitution of V from equation 378 into equation 376 is not entirely slraiglit/- 

forward, however. Direct substitution of eciuation 378 into equation 376 l(*ii{ls to 

difficulty in determining the Laplacian of p/r at points at which r may lx; z(*ro. 

Since r is the distance from an element of chargt' to tlx' point at which {)oti‘ntial is 

being determined, it can be zero only when potential is lx*ing (let<‘rmined at a point 

at which charge is locaU^d. To avoid the difficulty, space is divid(‘d into t wo regions: 

one so close to the point at which poUmtial is being determined that ciuasi-st at ionary 

conditions apply and = —ph) the other containing all the r(‘st of s|)ace. For 

the second region, p/r is regular, and the Laplacian of V is readily expanded in 

spherical coordinates to obtain 

fl 
in e J r Or^ \ vj 

Since both regions contribute to the fx)tential at the point in question, the (;omplete 

expression to be substituUxJ for the Laplacian in equation 376 is 

Thereafter the solution prrxxx.xls without trouble;, and equation 376 reducc's to an 

identity. See, for example, Abraham and BeckeFs (Hwisical Electricity and Mag- 

netism. 
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Let us consider a short length of wire carrying alternating current: 

i = I sin cot [380] 

The wire is isolated in space (there is no ground surface near). Its 
length is and we will locate a set of spherical coordinates in such a 

way that the conductor extends along the polar axis from —1/2 to +1/2] 

see Fig. 58. Using eejuation 379, we write the vector potential about 
this short wire; the integration need be performed only along the wire, 

in the x direction, from one end of the wire to the other, as follows: 

1 

irr f ■ 
, / sin cj - -) 

..dx [381] 

Since (mrrent is in the x direction only, there is only an x component of 
vector potential. (Tiiis may be compared with eciuation 219.) 

Now, if the length of the 
wire is small compared to the 
distance at which A is measured, 
the denominator of the integrand 

is practically constant during the 
course of integration. If the 
length is small compared with 
the wavelength of the radiated 
signal, the numerator is also 
practically constant; this means 
that at any point in space the 
phase of a signal from one end 
of the radiating wire is negligibly different from the phase of the signal 

arriving at the same point from the other end of the wire. With these 

assumptions the integrand of ecpiation 381 is merely a constant and 

II 

47r 

/ 
- sin oj I /-j 
r \ V/ 

[382] 

Thus simply is the vector-potential field found from the known current. 

To find the magnetic field about the short antenna, the curl of the 

vector potential is determined. This may best be done in spherical 

coordinates, using the formula of Table II. Vector potential is readily 
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changed to spherical components, as illustrated in Fig. 58, giving 

II ( r\ 
Ar =-sin o) ( <-) cos 6 

47r r \ v/ 

It / r\ 
Ae =-sin CO ( ^-) sin 0 [383] 

4ir r \ V/ 

A^ ^ 0 

Taking the curl gives, in accordance with equation 211, the magnetic 

field: 

Hr = 0 

He = 0 [384] 

11 [co / A 1 / A1 
=-sin 0 - cos coH-) + -sincon-) 

4irr LV \ v/ r \ v/j 

The electric field can be found from the magnetic field by Maxwell’s 

equation, equation 240, or from the vector potential by equation 371. 

To illustrate the latter method, we must first find the scalar potential 

V from equation 374 

F = --V-J'Adl [385] 

When this is substituted into equation 371 there results an expression 

entirely in A: 

1 r dA 
E = - VV . A d/ - M — [386] 

€ */ dt 

This somewhat disturbing array of symbols indicates operations that 

are easily carried out one at a time, giving 

Er = 

II 

2t tr 
cos 6 T— sin -^-- cas mil-^1 

Lvr \ v/ o)r^ \ v/j 

II [cv / A 1 / A 
Ee =-sin 6 — cos -iH-Hinc*)(^-) [387] 

4ir cr \ v/ rv \ v/ 

— 0 
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It is easier to discover the physical meaning of equations 384 and 387 

if they are expressed in terms of wavelength X and frequency /. Using 

(see Table III): 

V 2tv Ijj. 
X = - =- and 1? = \/- [388] 

f (i) ^ 

they may then be written: 

/Zcos^r 1 
Er = -V- 

rX L Itt^ r 

II sin d[ 1 X^ 
Ea — v —: 

r 1 , ( r \ . IX, f T \ 
-——cos H-sin , 27r-oj^ ) 

X } ' 2irr ' < X / 

IX^/r \ 
~ [2t-bit]-- - sin ( 27r-o)t] 

■Itt^ \ X / 27r r \ X / [389] 

-j- cos ^27r ~ — 

E\ = 0 

Hr 

He 

Let us consider these (equations in two general regions: first, near the 

radiating wire, in the region where r is small compared to the wave¬ 

length X, and second, at a distance of several wavelengths so that r is 

large compared to X. In the region near the antenna, the terms con¬ 

taining X/r in the highest degree predominate. Quite close to the an¬ 

tenna, we may disregard all terms except the first in each bracket in 

equations 389 and 390, and when this is done the equations reduce to 

the quasi-stationary equations of an oscillating doublet.* These terms 

give what is called the induction field about the antenna, that is, the 

field that neglects radiation. 

If, on the other hand, the field is observed at a distance of many wave¬ 

lengths from the source, so that X/r is small, another interesting and 

important simplification appeal's. In this case terms containing X/r 
and X^/r^ are so small that they may be neglected. Only the last term 

need be retained in the expression for Ee, and the entire expression for 

Er is negligible compared to Eq. Also, only the last term for is 

significant. With these approximations, which are good at a distance 

• See equation 220 and Problem 11, Chapter VI. 

II sin 0 
sin ^2x - — + cos ^27r - -- j 
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of several wavelengths from the origin, the wave ecivuitions tUvscribe 

what is called the radiation field: 

Er = 0 

II sin 0 f r \ 
Ee = ri-cos [2%-ciot) [391] 

2rX \ \ / 

E^ = 0 

Hr = 0 

He = 0 [392] 

// sin 9 / r 
Htk — — -cos { 27r-ixit 

2r\ \ X 

These equations 391 and 392 describe a l)eaiitifully simple electro 

magnetic field. It is a wave traveling radially outward. The electric; 

and magnetic ccjmponents arc identic'al in form and are mutually i)er- 

pendicular. Their magnitudes are related by 

Ee = 7///^ [393] 

(a relation similar to that found for plane waves in ecpiation 271). The 

electric and magnetic components become weaker as the wave; travels 

outward because both arc invei*sely i)ro- 

portional to the radius. The Poynting 

vector that describes the flow of energy is 

radially outward and is inversely propor¬ 

tional to the sejuarc of the radius; this shows 

that there is no loss of energy and that the 

energy density merely diminishes as the 

wave spreads. 

Figure 59 shows the ap])earance of one 

section of the wave. It is a spherical wave. 

Lines of the magnetic field are parallels of 

latitude on the sphere, and the electric field is along meridians. Both 

fields are strongest near the eejuator and vanish at the poles. The 

fields at any fixed point in space are, of course, oscillating sinusoidally. 

Any small portion of the spheric^al’ traveling wave (;annot be dis¬ 

tinguished from a plane wave. The similarity of Fig. 59 to Fig. 48a is 

obvious. In equations 391 and 392, the term cos (27r r/X — U) may be 

considered to define a plane wave, and the coefTicaent of that term is 

interpreted as giving the strength of the wave in diiTerent parts of spac^e. 

This is an approximation based upon the fact that, if only a small por- 
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tion of the wave is observed, neither sin d in the numerator nor r in the 

denominator of the coefficient can change appreciably in the region 

under observation. Derivatives of the coefficient will therefore be van¬ 

ishingly small. It is for this reason that a received radio wave can 

usually be considered a plane wave. 

The Spherical Wave. There is a great deal of information in equa¬ 

tions 389 and 390, the complete expressions for the spherical wave, that 

is lost in the approximate expressions 391 and 302. (It should be re¬ 

marked in passing that the latter are not precisely solutions of Max¬ 

well’s ecpiations, and it is not to be expected that ihoy would be.) 

P'igure 60 gives a general idea of the fields described by ccpiations 389 

and 390; a cross sect ion is shown in a plane containing the antenna, with 

lines indicating electric field and small circles or dots to show where 

magnetic flux entei*s or issues from the plane. The magnetic flux lines 

are circular, about an axis containing the antenna. There is actually a 

mucli greater concentration of field very near the antcima than can be 

shown in the diagram. 

It is indi(;ated in Fig. 60 that electi'ic lines in the radiated wave do 

not terminate on chaigc but are closed curxes. The electric field has 
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no divergence; the curves arc closed in the polar regions by the radial 

component The radial component vanishes in the equatorial re¬ 

gion, while Eq vanishes at the poles. In the ^‘induction field,” close 

to the antenna, lines terminate on charge on the antenna. 

The diagram is drawn for time ^ = 0. As time passes, all the outer 

part of the diagram expands with the speed of wave propagation, while 

the inner part, near the wire, pulsates with the current in the 

antenna. 

The phase relations are complicated. Near the wire the ek^ctric and 

magnetic fields are out of phase in time. The magnetic field near tluj 

antenna is in phase with the antenna curnait, whereas the electric field 

is in phase with the charge on either end of the antenna. I'hese in¬ 

duction components of the electric and magnetic fields contain a rela¬ 

tively large amount of energy that is alternating between the electric 

and the magnetic fields. 

But the induction component is negligibly small at a distance of sev¬ 

eral wavelengths from the source, for it diminishes with the scpiare or 

cube of the radius, while the radiation component that diminishes only 

as the first power of the radius becomes predominant. Th(‘ radiation 

component represents energy that is traveling outward and that never 

returns to the circuit from which it was sent. The radiation components 

of electric and magnetic fields are in phase with each other. The in¬ 

duction and radiation componcuits of the electric field, in the region 

where both exist, are in phase opposition, while those of tlu^ magnetic 

field are in phase (piadrature; this unexpected result may be (‘xjilained 

by considering that the radiation component does not originate directly 

from current and charge in the antenna but ratluT from the changes of 

the induction fields surrounding the antenna. 

The induction and radiation terms of both the el(M*tric and magnetic 

fields are eiiual in magnitude when X/r = 27r, or at a radius from the 

origin of approximately one-sixth of a wavedength. Beyond that radius 

the radiation component becomes predominant in proportion to the 

distance. Hence it may be concluded that phenorncaia taking place 

at distances less than one-sixth of a wavelength from a short antenna 

are predominantly inductive and that those at greater distances are 

predominantly the result of radiation. Thus many of the (*arly demon¬ 

strations of “wireless Udegraphy” were primarily the result of induction. 

The distinction between the induction and the radiation terms of 

equations 389 and 390 is a mathematical one: terms containing certain 

powers of r are induction, those with other powers of r are radiation. 

But another distinction is more open to physical interpretation, as 

follows. 
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The dynamic state differs from the quasi-stationary state because 

it takes into account the ai)ility of a changing electric field to induce a 

magnetic field and of a changing magnetic field to induce an electric 

field. Radiation is the result. The radiation components of the elec¬ 

tric and magnetic fields have no such close relation to charge and current 

as have the induction fields. They are cut adrift from their source. 

The electric field of a wave results not from the near-by presence of 

charge but from a changing magnetic component in the wave; the 

magnetic field results not from an actual flow of current but from a 

changing electric field. These are shown in the outer regions of Fig. 60. 

A wave, of course, could not have originated if there had not somewhere 

been a charge and a current but, having once been produced, a wave 

may travel any distance and propagate itself for an unlimited time. 

Consider, for example, the light waves from an extra-galactic nova that 

reach us millions of years after the brilliance that created them has 

ceased and the star become extinct. 

PROBLEMS 

1. Derive equations 387 for E from equations 384 using Maxwell’s equation 240. 

2. At what distance, in wavelengths, is the radiation component of magnetic 

field twice the induction component? At what distance is it 100 times? 

3. Show that the quasi-stationary t(‘rms of equation 387 result from a solution for 

electric potential about an oscillating doublet in the region in which equation 144 can 

be used. (Note: The solution is greatly simplified by making use of the fact that 

the length of the doubli*t, which may be called I, is small compared to the distance 

r from the inid[>oint of the doublet to the point at which the potential and electric 

field are computed. Thus r — f is approximately r^. Also it is permissible to let 

ri = r — (1/2) cos 6 and r2 = r + (1/2) cosS). 

4. Show that equation 370 lu\s also an advaiiced potential solution V = 

Cp(t + r/v) 
-dV as well as the retarded potential solution of equation 378. — f- iireJ 

What is the physical meaning of this “advanced potential”? 

5. A spherical condenser consisting of a metal ball surrounded by a concentric 

metal shell is discharged by making an electrical connection between the inner and 

ouUt spheres. The discharge is oscillatory. Is there radiation? Explain. 

6. Find the Poynting vector field of a radiated wave from equations 391 and 

392. 



CHAPTER XII 

Antennas 

Tlie previous chapter treated radiation from a short conductor with 

the assumption that tlie current was the same throughout the whole 

length of the conductor. This, of coume, is physically impossible un¬ 

less the short conductor is part of a circuit. It may be part of a longer 

antenna wire, for instance, and, if so, there will be radiation from each 

part of the longer wire. Total radiation from the antenna is then found 

by summation, or integration, of the components of radiation from the 

many short sections of the antenna. 

Short Antennas. C'onsiiha* a wire of reasonable length but still much 

shorter than the wavelength of the radiate^d signal. Consider that this 

wire is isolated in space, with no ground surface or other disturbing 

b(xly near by; however, at the middle of the wire there is an oscillator 

or some source of energy to pnxluce current in the wire. See Fig. 61a. 

Current flows because of the distributed capacitance of the wire; the 

current is charging current to the capacitance and tapers in amount 

from a maximum at the middle of the wire to zero at either end. 

As a first approximation, the capacitance of the wire is uniformly dis¬ 

tributed (as along a transmission line), making the current proportional 

to distance from the end of the wire. Current is plotted in this way 

in Fig. 61^. 

To find total radiation, consider the antenna of Fig. 61 made up of 

many sections, each so short that the curnait is substantially constant 

through the length of the section. We wish to find the radiation field 

at a point several wavelengths distant from the antenna and at a dis¬ 

tance, therefore, of many times the length of the antenna. I^ach sec¬ 

tion of the antenna will contribute to the electric field at this point ac¬ 

cording to equation 391. This equation is rewritten bcilow, and, since 

antennas ordinarily radiate into free space or, what is much the same, 

into air, c is used instead of v: 

Eq = 
r}Jl sin 0 
-cos CO 

2rX 
[394] 

172 
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The total field strength at the point of observation is simply a summation 

of the amplitudes of the components received from each short section 

of the antenna. The only factor in equation 394 that varies appreciably 

from one point of the antenna to another is the current I. Each com¬ 

ponent of radiation is directly proportional to the amount of current in 

the section of the antenna from which it is radiated. Thus the radia¬ 

tion received from a section near the end of the antenna of Fig. 61 is 

much less than the radiation from a section of equal length near the 

middle. Taking into account the distribution of current, the total ra¬ 

diation received at any point from the antenna of Fig. 61 is equal to 

the radiation that would he received from an antenna half as long if it 

were possible to have the current in all the antenna ecpial to the current 

/o at the center. 

Such an antenna as that of Fig. 61—isolated, straight, and short 

compared to X—is therefore said to have an eciuivalent length of half 

its actual length. To compute radiation from the actual antenna, equa¬ 

tion 394 is used, but the value substituted for I is the equivalent or 

effective length, half the actual length of the antenna. 

Practically, the effective or root-mean-square value of the field at the 

receiving antenna is usually the quantity desired. This may be written 

in terms of effective length Ic and the effective or root-mean-square cur¬ 

rent at the midpoint of the antenna /o as 

Effective (rms) field strength in volts per meter = 
hh . 

71 — - Sin 6 
2rX 

[395] 
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rj for free space is 377 ohms. 

Iq is effective midpoint current in amperes (rms). 

I is actual length of the isolated, straight antenna in meters. 

Ic is effective length in meters (if I« X, le = 0.51), 
6 is angle between transmitting antenna and a line connecting the 

transmitting antenna to the receiving antenna. 

r is distance from transmitting antenna to receiving antenna in 

meters. 

X is wavelength of signal in meters. 

Half-Wavelength Antenna. When the length of an antenna is con¬ 

siderable compared with the wavelength of the signal, treatment as if 

it were a short antenna is inexact. Two refinements are necessary. 

First, if the antenna length is corn- 

^ parable to the wavelength, current 

in the antenna will not be proportional 

to distance from the end of the 

antenna. An antenna acts much as 

an opcn-cinniited transmission line 

with distnbuted capacitance; if short, 

the current distribution is substan¬ 

tially linear, as in Fig. 61, but, if the 

antenna is longer, this approximation 

is unsatisfactory. Assuming uniform 

Fig. 63 distributed capacitance along the an¬ 

tenna (an assumption that is not pre¬ 

cise but reasonably good and quite generally accx^pted), the current is pro¬ 

portional to the sine of the distance from the end of the antenna. As an 

example. Fig. 62 shows current distribution in a line that is a half wave¬ 

length long; taking current at the center of the antenna as /q, the 

amplitude of current I at any distance x from the center of the antenna is 

I = lo cos 27r - [396] 

A receiving antenna at some distant point will re(;cive a component of 

signal from each short section of the antenna of Fig. 62, and the strength 

of each component will be proportioilal to the value of I in the corre¬ 

sponding antenna section. 

A further complication results because the different components of 

signal may not be in phase with each other when they arrive at the re¬ 

ceiving antenna. Consider the received signal at such a point as p in 

Fig. 63. The distance in the figure is less than r, so radiation travel- 
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ing the path of length r would be more delayed in reaching p and would 

consequently lag in phase behind the radiation traveling the path rg. 

These considerations are to be introduced into equation 394. A short 

section of antenna of differential length dx, located at a distance x from 

the midpoint, has an amplitude of current given by equation 396. The 

distance of this section of antenna from the point of observation p is, 

as in Fig. 63, re. The total field received at p from the antenna is found 

by integrating eciuation 394 along the whole length of the antenna, from 

X = —X/4 to x = +X/4: 

ry/o sin 9e / ^\ / ^e\ 

—\ ^ X/ ^ \-/ [397] 

Here, as in Fig. 63, is the distance from the current-carrying element 

to the point at which field strength is being measured; r is the distance 

from the origin of coordinates at the midpoint of the antenna. Since 

we are interested in the electric field at distances from the antenna 

greater than several wavelengths, the difference between Vg and r in the 

denominator of the integrand is negligible. But in the cosine term the 

distinction between Vg and r is essential, for it is this difference that de¬ 

termines the phase relation of radiation from different parts of the an¬ 

tenna; r — Tg may not be negligible compared to X, although it is cer¬ 

tainly negligil)le compared to r. In the denominator it is quite satis¬ 

factory to substitute r for r^, but in the phase relation it is necessary to 

use an approximation that cannot be in error by more than a small 

fraction of a wa\Tlength. Referring again to Fig. 63, we see that a 

very good approximation is 

Tg — r — X cos 9 [398] 

Finally, the angle 9 is not appreciably different from the angle 9c. With 

these changes 

rjlo sin 9 

2r\ 

I ^X/4 / ^ ^ 

I cos [2w-) cos w ( /-\-) f/.i 
J~x,4 \ X/ \ C C / 

[399] 

Performance oi this integration, although somewhat involved, is es¬ 

sentially simple. The result is 

[400] 

The other components of the electric field are of coui-se zero, as they are 

for a short antenna. 
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The magnetic field is perpendicular to the electric field (as it is for 

each elementary length of antenna) and is related by the intrinsic im¬ 

pedance, giving: 

The other components of magnetic field are zero. In equations 400 and 

401, symbols and units are the same as in e(piati()n 395, and II^ is in 

amperes (or ampere-turns) per meter. 

Equations 400 and 401 are only for antennas that are one-half wave¬ 

length long. The method used to derive these equations can readily 

be extended to antennas of any length. A more general expression for 

current distribution is then used instead of equation 396. However, 

from both the practical and theoretical points of view, the half-wave 

antenna is a very interesting example of a long antenna and is the only 

one that will be worked out in detail here. 

It is interesting to compare equation 400 for a half-wave dipole an¬ 

tenna with ecpiation 395 for a short antenna. The effective (rms) field 

strength at any point in a plane normal to the antenna (for which 

0 = 90 degrees) is, for a half-wave dipole antenna, r; A 
27rr 

For a short 

antenna of efTectivc length U it is 77 bA^: 
2r X' 

These formulas give the same 

result if Ze = X/tt, and for this reason it is said that the effective length 

of a half-wave dipole antenna is X/tt. Since the actual length of such 

antenna is X/2, the effective length is 2/tz times the actual length. 

This tells us that the effective length of a half-wave antenna is 2/7r 

or 0.637 times its actual length, and we know that the effective length of 

a very short antenna is 0.5 times its actual length. One cannot, there¬ 

fore, go radically wrong in estimating the effective length of any dipole 

antenna shorter than a half wavelength to be about five- or six-tenths 

of the actual length. 

Radiation Pattern. Effective length gives comparison of field strength 

in a normal direction only. In comparing the distribution of radiation 

from a half-wave dipole with that from a short antenna in other direc¬ 

tions, the ^^radiation pattern^^ is useful. Vectors arc plotted radially 

from a point (sec Fig. 64), the length of each vector being proportional 

to the field strength at a given distance from the antenna in the direction 

indicated by the vector. A curve connecting the ends of the vectors is 
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then the radiation pattern. The field strength is frequently plotted in 

microvolts per meter at a distance of 1 mile. 

For either a short antenna or a half-wave dipole, radiation normal to 

the antenna is equal in all directions; the radiation pattern in a normal 

plane is therefore a circle, as in Fig. 64a. 

(6) 

Fig. 64 

The radiation pattern of a short antenna in a plane containing the 

antenna is shown by the solid line in Fig. 64^>. The maximum radiation 

is normal to the antenna, and radiation in the direction of the antenna 

axis is zero, lladiation in other directions is proportional to the sine 

of the angle from the axis, as in equation 395, so the pattern is com¬ 

posed of a pair of circles as shown. 

It is sometimes useful to think of Figs. 64a and b as being cross sec¬ 

tions of a solid surface something like a doughnut. Such a surface is 

the complete three-dimensional radiation pattern. 

The radiation pattern of a half-wave dipole antenna is surprisingly 

similar. The peculiar trigonometric function in the numerator of equa¬ 

tion 400 is numerically similar to sin“ 6] this function divided by sin d 
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is therefore not greatly different from sin 6, the corresponding term in 

equation 394. The radiation pattern of a half-wave dipole antenna is 

shown as a dash line in Fig. 64, the scale being adjusted to make radia¬ 

tion normal to the antemia equal the normal radiation from the short 

antenna. 

Since the half-wave dipole radiation pattern of Fig. 64 lies within the 

short-antenna radiation pattern, it follows that less energy need be 

radiated from a half-wave dipole antenna than from a short antenna to 

give the same field strength in the direction normal to the antenna. It 

is sometimes interesting to plot the two radiation patterns assuming 

equal radiated energy rather than ccpial normal field strength. Nor¬ 

mal radiation from the half-wave antenna is some 6 per cent greater 

than from a short antenna radiating equal power. Thus a very small 

degree of directivity is obtained. 

Radiated Power. The total power radiated from an antenna is often 

of interest. There are several ways in which radiated power can be 

computed, but one way or another they involve the Poynting vector. 

As a basic and yet simple example, power from the short antenna of 

equation 394 will be determined. 

Energy is carried away from an antenna by the radiation field, and 

not by the induction field components. Considering only the radiation 

component, the Poynting vector is radial and, since it is in the direc¬ 

tion of E X H, it is outward. The total energy transported by the trav¬ 

eling wave of radiation is found by integrating the Poynting vector 

over an imaginary" large sphcirical surface with its center at the origin. 

Because of the symmetry of the spherical wave, this is an easy integra¬ 

tion and gives 

Jp • Ja = J(E-H) dm 

"//sin / 
-cos OJ ( t - - ) 

L 2rX \ c). 
(2Trr^ sin 6) dd 

"('-D 
2X^ p *'0 

sin^ 0 do 

2vrn 

3X2 
[402] 

The Poynting vector is a function of time, varying as the square of the 

cosine. For most purposes, the average power of the radiated wave is 
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desired, and, since the avera^^e value of the cosine squared function is 

it follows that the average power radiated from a short isolated 

antenna with uniform current distribution is 

riirPf 
Average power =-— 

3X^ 
[403] 

Radiation Resistance, A term that Ls defined as the average radiated 

power divided by the scpiare of the effective value of current in the an¬ 

tenna lead is called radiation resistance. In equation 403, / is the 

niaximuvi value of current; the square of the effective current is §7^, so 

the radiation resistance of a short antenna is 

2Trjl^ 
[404] 

This formula is derived for a theoretical doublet and can be applied to 

a short dipole antenna if the equivalent length h is used for 1. Intro¬ 

ducing the value of rj for free space, radiation resistance of a short di¬ 

pole antenna of equivalent length is 

789 ohms [405] 

This is not correct for a half-wave dipole, however, or for any antenna 

with a radiation pattern appreciably different from that of a doublet, 

even though equivalent length is used. 

To find the radiation resistance of a half-wave dipole, or any other 

antenna, the appropriate functions for E and H are substituted in equa¬ 

tion 402 and integrated. For the half-wave dipole antenna, E and H 

from eciuations 400 and 101 would be used. The result is simple, al¬ 

though the computation is somewhat involved. Badiatioii resistance of 

a half-wave dipole antenna, for any frequency, is 73.1 ohms. 

Antennas Above Groimd. Practically, antenniis are not isolated in 

space; the surface of the earth is rarely very far away. Antennas for 

operation at standard broadcast or lower frequencies are usually verti¬ 

cal and take advantage of the presence of ground to double the effec¬ 

tive length of the antenna. High-frequency antennas, on the other 

hand, are commonly horizontal dipoles at some distance above ground, 

and the signal received at any distant point will consist of both ground- 

reflected radiation and radiation received directly. The ground-re¬ 

flected radiation may be advantageous or disadvantageous, depending 

on the dimensions. 
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Consider first a horizontal antenna at a distance hi above ground, as 

in Fig. 65, with a receiving antenna that is /12 above ground. At the 

receiving antenna there is a total field comprising both radiation re¬ 

ceived directly and radiation received after reflection from ground. 

Radiation is horizontally polarized (the diagrammatic representation of 

field strength in the figure may, if one wishes, be taken to represent the 

magnetic component of the wave). 

Transmitting 
Antenna 

Image of 
Transmitting 

Antenna 

Fkj. 65 

Because reflected radiation travels a longer path, and because of 

phase shift resulting from reflection, the two components of field at the 

antenna will not, in general, add in phase with each other. 

In Chapter X attention was given to oblique reflection from the sur¬ 

face of an imperfect insulator such as the earth. A general expression 

for the reflection coefficient for a horizontally polarized wave was ob¬ 

tained. It was shown that the reflection coefficient for a horizontally 

polarized wave reflected from ordinary earth is not greatly different 

from —1, and that when the wave approaches the earth^s surface at 

nearly glancing incidence the value of —1 is almost exactly correct. 

This means that, if the antenna heights are small compared to the dis¬ 

tance, the reflected ray of Fig. 65 will be reveised in phase by reflec¬ 

tion, but its amplitude will not be diminished. 

If the length of path followed by the reflc(;ted ray were the same as 

that of the direct ray, the two components would be exactly out of 

phase at the receiving antenna and would completely cancel. No sig¬ 

nal would be received. This unfortunate situation would be approached 
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if either hi or h2 were very small. But, if the antennas are high enough 

to make the length of path of the reflected ray just one-half wavelength 

longer than the path of the direct ray, the two will add and give a 

doubly strong signal. For other heights, the fields of the two rays will 

add to give a resultant that is determined by the difference of path 

lengths. 

From here on, the problem is one of geometry. If the length of path 

of the direct ray is Vd, and that of the reflected ray r^, and the horizontal 

distance is d, and if curvature of the earth is neglected: 

rj = VcP + (/ii - /i2)2 

Tr = 4- {hi + It2)^ 

[406] 

Expanding each by the binomial series, retaining only two terms of 

each, and subtracting, gives the differen(‘e of path length which may be 

called Ar: 

Ar = Tr - Td -- [407] 
d 

Signal strength from the direct ray is given by 

Ea = 
rjll sin S 

2r,/X 
cos CO [408] 

Considering the phase reversal after reflection, the reflected ray is 

7)11 sin 0 
Kr = - 

II sin 6 / rA 
-cos CO ( /-) 

2r A \ c / 
[409] 

The difference between /\/ and ?v in the coefficient is negligible, and adding 

the direct and reflected components gives 

E = 
7)11 sin 6 

2r\ 
cos W -— cos CO - )] 

A trigonometric cliangc introduces no further approximations: 

till sin ( 
E = 

II sin 0 r / AA / Td ArX] 
- 2 sin o) ( — ) sm ojit-) [411] 
2rX L \2c/ \ c 2c/J 

Since w/c = 27r/X, tlie magnitude of the total received field can be ex¬ 

pressed in terms of the field of the direct ray alone as 

£ I = I Ed |2 sin 
2ith\h2 

\d 
[412] 
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It is clear that this approximation applies under rather restricted con¬ 

ditions, but they happen to be the practical conditions for many cases 

of ultra-high frequency transmission, and this expression is widely 

usedd 

Figure 65 suggests the use of an image of the transmitting antenna to 

replace the effect of ground reflection. This ass\imes that the ground is 

a perfect reflecting surface. The geometry of the image antenna is ex¬ 

actly what an observer would see looking into the perfect reflecting 

plane as, a mirror (and this is only natural when it is realized that a 

mirror is a reflecting plane, and the general principle that the mirror 

produces an image is equally valid for light waves or radio waves). 

But, because of phase reversal, the electric current and charge that must 

be assumed in the image are exactly opposite to the current and charge 

the observer would see (if current and charge were visible) as he looked 

in the mirror. This is a general rule for antennas of any configuration 

above a perfect reflecting surface. It is evident in Fig. 65, and it can 

be extended to more complicated arrangements by consideration of re¬ 

flected rays. 

Practically, it is undesirable to have horizontal antennas too low. 

Equation 412 gives the amplitude of the total field at a receiving an¬ 

tenna in terms of the field Ed that would exist if there were no reflec¬ 

tion. The strength of Fj, the direct ray, varies inversely as distance. 

For relatively small antenna heights, the total field E will vary inversely 

as the square of distance. Therefore, if antenna heights and other fac¬ 

tors remain the same, received energy varies inversely as the fourth 

power of distance. This is true if hih2 is much smaller than 4Xd, clearly 

an unfavorable arrangement. 

The range of radar for detecting low targets is strongly influenced by 

this effect of cancellation of signal resulting from ground reflection. If 

energy reradiated by a target is proportional to energy impinging on 

the target, and if energy at the target varies as the fourth power of 

distance from the transmitter, the reflected energy received back at the 

point of transmission is inversely proportional to the eighth power of 

the target distance. (This is a first approximation for a low target, a 

distance of several kilometers, and a wavelength of decimeters or more, 

and it assumes a fairly smooth ground or sea surface from which radia¬ 

tion is specular and not merely diffuse.) 

Grounded Antennas. Vertical antennas, with voltage applied be¬ 

tween the base of the antenna and ground, are quite commonly used 

^ See, for this use, and for many other antenna applications, Radio Engineers^ 

Handbook, F. E. Terman, McGraw-Hill Book Co., New York, 1943, Sections 10 

and 11. 
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for frequencies less than a few megacycles. Radiation received at any 

distant point, as P in Fig. 66, will comprise a direct and a reflected com¬ 

ponent. If the reflection from ground is perfect, with complete phase 

reversal, we may consider the ground-reflected ray to come from an 

image antenna, as discussed above. The problem of radiation from an 

antenna-and-its-image is simpler than the problem of an antenna-and- 

a-reflecting-plane. 

Reflection from the surface of the earth is not perfect, but it may be 

quite good for typical practical values of frequency and conductivity. 

In an earlier chapter, the reflection of horizontally polarized waves was 

considered. Radiation from a vertical antenna will be vertically polar¬ 

ized (or, more accurately, polarized in a vertical plane containing the 

ray), and its reflection characteristics are different, as follows. 

If the earth were a perfect conductor, the reflection coefficient would 

be — 1 for all angles of incidence, because the sum of the incident and 

reflected tangential components of electric field must always be zero. 

That is, the }iorizontal component of the electric field (sec Fig. 66) would 

be completely reversed by reflection. The vertical component would 

not be reversed; it will be seen from the diagram that an unchanged 

vertical component is necessary to accompany a reversed horizontal 

component after reflection. 

If, on the other hand, the earth were a perfect dielectric material, the 

reflected wave would be smaller than the incident wave, the magnitude 

of the reflection coefficient being greatly dependent upon the angle of 

incidence. Indeed, at one particular angle, known as the Brewster 

angle, all energy falling on the surface would enter the dielectric, and 

reflection would be zero. Whether or not there is phase reversal of the 

reflected ray depends on whether the angle of incidence is greater or 

less than this Brewster angle. Comparable to equation 364, it is not 
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difficult to derive for such a wave, polarized in what is called the plane 

of incidence, the following reflection coefficient: 

^12 _ ■»?3 sin ^3 — sin r/iioi 
— - [4:loJ 

Eti t;3 sin ^3 + 1)1 sin 

Etx and Et2 are the tangential components of the incident and reflected 

waves, respectively; r?i and 773 are the intrinsic impedances in the media 

of the incident and refracted waves; and and ^3 are the angles be¬ 

tween the incident and refracted rays, respectively, and the surface of 

reflection (it should be noted again that the conventional angles of in¬ 

cidence and refraction are the complements of these). Equation 413 

is applicable to either a dielectric or a semi-conducting medium. 

Clearly it is easier to consider the earth a perfect conductor than a 

semi-conductor, and whether this may reasonably be done depends 

largely on frequency. If conduction current in the earth is much 

greater than displacement current, the earth will reflect as a good con¬ 

ductor. Let us determine the frequency for which conduction current 

is ten times displacement current; that is, for which 7/coe = 10. This 

will indicate the order of magnitude of the highest frequency for which 

the earth is a good conductor. Table V gives some typical values of 

TABLE V 

Earth Characteristics 

Relative Resistivity 

Dielectric in Meter- 

Constant, k Ohms, 1/7 

Sea water 81 0.20-0.25 

Fre.sh wak^r 81 50-1000 

Fresh-water marsh 15-25 10- 100 

Moist, rich, pastoral soil 12 15 50- 250 

Dry, rocky, sandy soil 10-14 500-1000 

Solid rock 5-10 1000 and up 

earth characteristics. Using these, we find that sea water fails to re¬ 

flect as a good conductor above about 90 megacycles; typical moist 

earth at a little over 1 megacycle; dry sandy soil above 200 kilocycles. 

These values give a rough indication of the frequency range to which 

the following discussion, based on the assumption of a perfectly con¬ 

ducting ground, may be expected to apply. At higher frequencies the 

assumption of perfect reflection may or may not introduce serious error, 

depending on the dielectric constant, the angle of incidence, and (most 

important) the use to be made of the data. 
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If the antenna is a single short vertical wire above a perfect ground, 

it gives a radiation pattern above the ground surface that is identical 

with that from a dipole antenna consisting of the actual antenna and 

its image. Equation 395 therefore applies, and, since the effective 

height he of the antenna above ground is half the effective length of the 

antenna-plus-imagc combination, that equation becomes 

Effective (rms) field strength in volts per meter = 
hhe . 

7]-Sin 6 
r X 

[414] 

/o is rms current at the base of the antenna, and other symbols arc as 

in equation 395. 

Equation 414 is intended for use with an antenna that is short com¬ 

pared to the wavelength. If A/X, the height in wavelengths, is less 

than the effective height of a vertical wire is practically half the ac¬ 

tual height. 

It would clearly be advantageous to increase the effective height of 

an antenna. This is done by increasing capacitance at the top of the 

antenna, and thereby both increasing the total current and improving 

the current distribution. Enough capacitance at the top will make 

current in the antenna practically uniform, and the effective height is 

then equal to the actual height. Even if current at the base of the an¬ 

tenna were not increased, this would double the radiation field strength 

and multiply the energy radiated by four. 

Any large metal surface at the top of the antenna will provide the 

necessary additional capacitance. One very common method is to use 

a ^‘flat-top’^ antenna, coimecting the vertical wire to one or more hori¬ 

zontal wires in a T or inverted-L form. The primary purpose of the 

horizontal wires is to increase capacitance and thereby to increase cur¬ 

rent in the vertical wire; there is some radiation from the horizontal 

wires also, but that is incidental and may usually be neglected. Ecpia- 

tion 414 is applicable to such an antenna, with he equal to the actual 

height if the total length of horizontal wire is several times the height. 

Radiation resistance of an antenna above ground differs from that of 

a dipole antenna because, although there is the same radiated energy 

in the hemisphere of space above ground, there is none below the sur¬ 

face. Half as much energy is radiated, and radiation resistance is 

therefore half as great. Writing 2hc for Ic in equation 405 and dividing 

by 2 because the energy is half gives the radiation resistance of a short 

vertical or flat-top antenna of equivalent height he above ground: 

Radiation resistance = 1578 [415] 
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This formula, in fact, is a good approximation for a vertical antenna as 

much as a quarter wavelength high if the proper equivalent height is 

used. 

The radiation patterns from grounded antennas are, of course, simi¬ 

lar to those of dipole antennas of twice the length. Thus the solid 

lines of Fig. 64 apply to a short vertical antenna above ground, and 

very nearly to a flat-top antenna. The lower half of Fig. 646 is mean¬ 

ingless for a grounded antenna, however, for it would refer to a region 

below the ground surface. Similarly, the dash lines of Fig. 64 show 

the radiation pattern from a straight vertical antenna that is a quarter 

wavelength high. Up to this height, the radiation pattern is not very 

different from that of a short antenna. 

However, if the length of the antenna above ground is much greater 

than a quarter wavelength, the radiation pattern is radically altered. 

Up to about six-tenths of a wavelength, the horizontal radiation is in¬ 

creased, and the radiation pattern becomes a long, low loop rather than 

a half-circle. Still longer antennas radiate upward at an angle, with a 

relatively weak ground wave. The proper choice of height (particularly 

on an economic basis) is very important in antenna design. 

Antenna Arrays. When an array of sending antennas is used, it is 

sometimes possible to gain a good deal of information by superposition 

of the fields from the component radiating elements. For example, 

two vertical antennas that are excited in time quadrature and that are 

located one-quarter wavelength apart, as in Fig. 67, will radiate in the 

direction from the leading antenna to the lagging antenna, but not in 

the opposite direction. The reason is that a wave traveling from the 

leading antenna to the lagging antenna will be reinforced by the wave 

from the latter, for the quarter-cycle phase lead of the former wave will 

just compensate for the quarter-cycle lead in space of the latter, while 

the wave traveling from the lagging to the leading antenna will be a 

half-cycle out of phase with the wave from the leading antenna, and 

hence the resultant field strength (at a considerable distance) in that 

direction will be zero. This is only one of many antenna arrays of 

practical importance in obtaining desired radiation patterns.^ 

A radiation pattern of particular interest is one that has a concen¬ 

trated beam like a searchlight, with little energy spreading in other 

directions. A sharp beam can be achieved by using a very great num¬ 

ber of radiating elements. If the radiating elements are so many and 

^ A discussion of radio antennas, for which this chapter provides the theoretical 

basis, will be found in Chapter 14 of Radio Engineering (Third edition) by F. E. 

Terman, McGraw-Hill Book Co., New York, 1947. 
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so close that they merge into a single conducting surface, they become 

equivalent to a mirror. Indeed, a single radiator at the focus of an 

actual mirror can be used to gain directivity with short radio waves 

just as with even shorter light waves. 

Radiation Pattern 

(b) 

Fig. 67 

Receiving Antennas. As an electromagnetic wave travels through 

space, a changing magnetic field continually produces an electric field, 

and the resulting electric field continually reproduces a magnetic field. 

When the wave passes any given point in space, the changing magnetic 

field induces an electric field at that point, and, if the wave passes a 

wire of conducting material, it induces an electric field in that wire. 

There are two general ways to consider the action of the conductor as 

a receiving antenna. The most straightforward is to recognize that the 

passing wave will be distorted by the presence of conducting material; 

its electric and magnetic fields will be weakened because there can be no 

field strength within a perfect conductor. Current will flow in the con¬ 

ductor, providing proper termination for the electric and magnetic fields 

of the wave. From this point of view the receiving antenna is a bound¬ 

ary problem. 
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The alternative method is indirect, but it is more useful for practical 

computation. It assumes that electromotive force is induced in the 

antenna by the magnetic field of the undistorted passing wave, that as a 

result current flows, and that this current acts in the antenna as if it 

were a transmitting antenna and produces a new electromagnetic field 

that is superimposed upon the undistorted wave. The flow of current 

in this case is limited by the distributed capacitance and inductance of 

the conductor, and by its resistance (loss resistance) and ^^radiation 

resistance.^’ The problem thus becomes a circuit problem and is much 

easier to handle. 

We will divide radio receiving antennas into three classes for discus¬ 

sion, although any such classification is quite arbitrary. First we will 

consider a straight wire that is isolated from ground. Current flowing 

in such a wire will be charging current that can flow from end to end, 

limited by the capacitance of one end of the wire relative to the other. 

The conductor shown in Fig. 45, page 101, is an example, and in the 

alternating magnetic field of a wave there will be alternating current 

flowing from end to end of such an antenna at the frequency of the 

passing wave. 

The electromotive force induced in the entire length of a straight wire 

that is short compared to the wavelength is the product of the length 

of the wire, the electric field strength of the wave, and the cosine of the 

angle between the wire and the electric vector. (In a longer wire it is 

necessary to take into account phase differences.) The effective elec¬ 

tromotive force is less than this, however, for only an infinitesimal part 

of the antenna current flows all the way from one end of the wire to the 

other. The effective electromotive force depends upon the distribution 

of capacitance and can be increased by increasing the capacitance near 

the end of the antenna. 

The effective length of a receiving antenna is the same as the effective 

length of the same antenna as a transmitter. The effective electromo¬ 

tive force in the receiving antenna is the field strength times the effec¬ 

tive length: V = E • l^. The effective length of a short, straight an¬ 

tenna is half the actual length. 

In making use of an isolated straight wire as an antenna, a radio 

receiving apparatus is located at its midpoint. As much energy as 

possible is abstracted from the oscillating antenna current by the receiv¬ 

ing apparatus. To increase the antenna current, inductance may be 

inserted as part of the receiving apparatus, providing resonance with 

the distributed capacitance of the antenna. The current that flows in 

such a “tuned” antenna is limited only by the energy lost in resistance 

and the energy reradiated from the antenna, for inductance and capac- 
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itance are balanced against each other. Tuning gives the optimum 

operation of an antenna. A tuned antenna can be considered as an 

oscillatory circuit; its voltage, from end to end, may be many times the 

electromotive force induced by the passing wave, for the induced elec¬ 

tromotive force is merely enough to maintain the natural oscillation 

of the antenna current. An antenna one-half wavelength long is natu¬ 

rally tuned without the addition of inductance, for the distributed in¬ 

ductance of the wire itself just balances its distributed capacitance. 

For practical computation it is possible to devise an equivalent cir¬ 

cuit, in which an equivalent lumped voltage (representing the effective 

electromotive force of the antenna) drives current through an equiva¬ 

lent lumped antenna impedance in series with the impedance of the 

receiving apparatus.^ Antenna design is based on an equivalent cir¬ 

cuit of this kind. 

An antenna in the form of a vertical straight wire with one end con¬ 

nected to ground will next be considered. Radio receiving apparatus is 

introduced into the antenna at the point of connection to ground. This 

is the most familiar type of receiving antenna. It receives the compo¬ 

nent of a passing wave that is polarized with the electric field vertical. 

It is non-directional in a horizontal plane, for the directional character¬ 

istics of a receiving antenna are the same as those of the same antenna 

used for transmitting. This follows from the Reciprocity Theorem,^ 

The operation of a grounded antenna is not essentially different from 

that of an isolated antenna of twice the length. Current is limited by 

the capacitance from antenna to ground, and the greater capacitance 

of a grounded antenna compensates for the lower electromotive force 

induced in its shorter length. The effective value of the induced elec¬ 

tromotive force is increased, and the impedance of the antenna to 

ground is decreased, if there is a relatively large part of the capacitance 

to ground near the top of the antenna; this is often provided by con¬ 

necting horizontal wires at the top of a vertical conductor. 

A loop antenna is the third form to require discussion. Its operation 

is not essentially different except that flow of current in the loop is not 

limited by capacitance but by inductance in series with the receiving 

apparatus. Electromotive force is induced in the loop in the same way 

® For discussion of this and other engineering applications see Radio Engineering, 

F. E. Terman, Third Edition, McGraw-Hill Book Co., New York, 1947. 

^ The Reciprocity Theorem: the positions of an impedanceless generator and am¬ 

meter may be interchanged without affecting the ammeter reading. This was applied 

to radiation by J. R. Carson and others. See, for instance. Electromagnetic Waves, 

S. A. Schelkunoff, D. Van Nostrand Co., New York, 1943, pages 476-479. 
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that it is in any conductor; it is induced by the changing magnetic field 
and is equal to the integral of the induced electric field around the loop.^ 

Consider for simplicity a rectangular loop with the sides vertical and 
the top and bottom horizontal. A passing wave is polarized with the 
electric vector vertical. Electromotive force will be induced by such 
a wave in the vertical members of the loop, but there will be none in the 
horizontal members. If the voltages induced in the two vertical mem¬ 
bers are identical, there will be no current in the loop. This condition 
results when the plane of the loop is parallel to the plane of the wave. 
But, if the loop is turned 90 degrees so that its plane is normal to the 
plane of the wave and parallel to the direction of wave propagation, the 
voltages in the two vertical members will be somewhat out of phase. 
The oncoming wave will reach one side of the loop before it reaches the 
other. The total electromotive force around the loop will then be 
the difference of the two induced voltages, and not zero. If the loop 
is small compared with the wavelength of the received signal, the in¬ 
duced electromotive force in either vertical member is proportional to 
the height of the loop; the phase difference between voltages in the ver¬ 
tical members is proportional to the width of the loop; the electromotive 

® A question that very commonly arises in reference to receiving antennas is: Is 
the antenna voltage produced by the electric field of the passing wave, or the mag¬ 
netic field, or both? This is a natural question, but the answer is clear when it is 
considered that anywhere in space the electric field of a traveling wave is the result 
of a changing magnetic field. The electric field induced in an aiiUiima is likewis(^ 
the result of the changing magnetic field, and whether one wishes to consider the 
electromotive force as the integral of the electric field of the wave in space (which 
it is) or as produced by the change of magnetic fi(;ld (whi(*h it also is) is immaterial. 
The above question is analogous to asking whether a cork rising on the crest of a 
water wave is lifU^d by increasing pressure or by the higher water level; in w^ave 
motion there cannot be one without the other. 

If, however, a rcc(;iving anUnma is close to an (ilec.tric disturbance of some kind, 
conditions are quite different. Near the source of the disturbance the induction 
fields predominate, and the radiation fields are negligible. The electric induction 
field emanates from near-by charge, as distinguished from the radiation field that is 
produced by changing magnetic field. An electrostatic shield will protect a loop 
antenna from the induction field of near-by disturbances, for, like an electrostatic 
field, the induction field will not penetrato a closed metal surface. But a shield (in 
the usual form of a pipe that contains the wires of the loop) will not appreciably 
decrease the amount of magnetic flux that passes through a loop and links with it 
when a wave is going by. If the shield could act as a short-circuited turn, it would 
reduce the magnetic field linking with the loop, but a shield for a loop antenna is 
designed with an insulating section .so that it will not carry current around the loop. 
Hence a radio signal is received on an antemna inside the shield, although much of 
the noise brought by induction from near-by disturbances is eliminated. Antenmis 
other than loops cannot be shielded, for their operation depends on their capacitance 
to ground, which a shield would eliminate. 
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force around the entire loop is proportional to the product of height and 

width, and therefore to the area of the loop. 

The same conclusion is reached from a slightly different point of view, 

although the essential principle is the same, if induced electromotive 

force in the loop is considered proportional to the rate of change of 

magnetic flux linkages through the loop (equation 191). It is then 

immediately evident that the area of the loop is a controlling factor and 

that the loop will receive a maximum signal when its plane is normal 

to the magnetic field of the wave. 

Loop antennas commonly have more than one turn of the antenna 

wire, and the antenna voltage is proportional to the number of turns. 

It is quite simple to compute the voltage between the terminals of a 

loop antenna if no current is allowed to flow. But when current flows 

the distributed inductance is important; the resistance of the wire and 

reradiation from the loop as well as the impedance of the receiving 

apparatus must be considered, and these quantities, together with the 

antenna inductance, are either computed or measured. 

PROBLEMS 

1. Compare the equations of this chapter with expressions for radiation field 
strength in another book, such as equation 14-1, Chapter 14, of Radio Engineering 

(3rd edition) by F. E. Terman or equation 35, Chapter XIX, of Communication 

Engineering by W. L, Everitt. 

2. An isolated center-fed antenna 2 meters long is radiating a signal with 20-metcr 

wavelength. The current at the antenna midpoint is 100 milliamperes. What is 

the radiated field strength at a distance of 500 meters? at 1 mile? Use the direction 

of maximum field. 

3. Integrate equation 399 and obtain (equation 400. 

4. An isolated antenna is one wavelength long. Compute an expression for 

radiation field similar to eciuation 400. Plot the radiation pattern. Can you express 

an “effective length”? 

5. Change equation 395 to be in terms of antenna voltage and capacitance (end 

to end) instead of current. If voltage is held constant as frequency is changed, to 

what power of freciucmcy is radiated energy proportional? 

6. In Problem 2, what is the radiated pow(‘r per square meter at a distance of 

500 meters? 

7. What is the radiat ion resistance of the antenna of Problem 2? What power is 

being radiated? 
8. An isolated antenna one-half wavelength long is excited at its midpoint. What 

determines the voltage that must be applied to maintain the required antenna cur¬ 

rent? 

9. A horizontal half-wave dipole antenna is 30 meters above ground. It is trans¬ 

mitting a 1000-megacycle signal. The receiving antenna is 10 miles away and 10 

meters high. Assuming perfect reflection from a plane earth, what fraction of the 

direct ray is the total received signal strength? 
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10. The antennas of Problem 9 are to be raised or lowered to provide maximum 

received signal strength. Determine heights to be used. Discuss practicability of 

such heights. 

11. What is the radiation resistance of a straight vertical antenna one-fourth 

wavelength high, rising from a perfect ground plane? The antenna is excited at the 

base. 

12. A straight vertical antenna is 0.6 wavelength high, rising from a perfect ground 

plane. Compute an expression for radiation field similar to equation 400. Plot the 

radiation pattern. What is the ‘V^ffective height”? (Note: This height gives the 

optimum ground wave.) 

13. Use equation 415 to find the radiation resistance of a simple vertical antenna 

with a height of one-fourth wavelength above ground. Use an effective height of 

0.6 times the actual height. Find the radiation resistance of a similar antenna if 

the radiated wavelength is 5.6 times the h(‘ight. Use an effective height of 0.55 

times the actual height. (See Ballantine “On the Radiation Resistance of a Simple 

Vertical Antenna,” Proc. Inst. Radio Eng.^ Volume 12, 1924, pages 823-832.) 

14. For the antennas of Problem 9, what is the reflection coefficient if the earth is 

good farm land? Would an assumption of pt'rfecff, r(‘fl(H;tion be justified? 

15. Repeat Problem 14 for a vertically polarized signal. Is there reversal of 

phase of the vertical component of electric field at reflection? Would an assunq)- 

tion of perfect reflection be justified? 

16. A wave in air, X = 3.0 centimeters, falls on glass, k — 4.00. Neglect loss. 

Find the Brewster angle. 

17. A loop ant/Cnna 1 meter square, with ten turns of wire, is used to receive a 

radio signal. The signal is transmitWd from a vertical anUmna that rises to a height 

of 5 meters above ground. The wavelength is 50 iiujt^jrs. The receiving antenna 

is 10 kilornebirs from the transmitter and is oriented for maximum reception. It is 

high above the ground .surfaces. Find the .signal strength at tlu; receiver in micro¬ 

volts per meter, and thci open-circuit voltage of the antenna in microvolts. Current 

at the base of the transmitting antcmia is 1 ampere. 



CHAPTER XIII 

Wave Guides 

Guided Waves. When an cloctrie wave is sent out through empty 
space, it naturally becomes a spherical wave, for it travels with equal 

speed in all directions. There are no obstacles, and it can spread freely 

from its source. But the presence of material substance will affect its 
propagation. 

The ability of a conducting surface to act as the boundary of an elec¬ 

tric wave is used in various kinds of wave guides for directing the propa¬ 
gation of electric waves, as the rigid wall of a speaking tube is used to 

guide sound by preventing the sound wave from spreading into space. 

A power line or a telephone line is a wave guide; the surface of the cop¬ 
per wire provides a boundary on which the electric field of a wave can 

terminate and the wave propagates as a plane wave, follo^ving the con- 

<luctor from end to end. Because of the conducting wires, the trans¬ 
mitted wave does not spread as a spherical wave but is able to travel 

as a plane wave, with its energy directed along the route of the trans¬ 

mission line. 
To show the need for a boundary surface, consider the plane wave of 

Fig. 48, page 119. This wave was described in Chapter IX as extending 

without limit in a plane normal to its direction of travel. An un¬ 

bounded wave like this is satisfactory from the mathematical point of 

view, but its energy would be infinite. 

It is possible to put thin sheets of perfectly conducting material into 

the region through which a wave travels without affecting the wave, 

provided they are everywhere normal to the electric field. If con¬ 

ducting sheets were parallel or oblique to the electric field, current 
would flow in them that would distort the field, but conducting planes 

that are normal to the field, as in Fig. 68, will not disturb it. 

Wlien conducting surfaces are placed in the field, the electric lines 

of force will terminate on charge on the surfaces, and a plane wave can 

travel between such surfaces and be limited to the space between them. 

It is not necessary that the wave extend beyond the surfaces. 
193 
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Consider the lower surface of Fig. 68. If a wave exists above it, but 
not below, as indicated, that surface must terminate the electric field 
and also the magnetic field. Electric field can terminate only on elec¬ 
tric charge (for elsewhere its divergence is zero), so there must be an 
appropriate distribution of charge on the surface. Magnetic field can 
cease suddenly only at a surface carrying current (for elsewhere its curl 
is zero), so there must be current in the surface of Fig. 68. These two 
requirements are not independent, for, when the charge on the surface 

changes, as it must do to keep pace 
with the traveling wave, its motion 
constitutes current. This does not 
mean that charge flows as fast as 
the electric wave travels—air mole¬ 
cules transmitting a sound wave do 
not flow with the speed of sound—but 
current flows from regions of decreas¬ 
ing charge density to regions of in¬ 
creasing charge density. 

If the plane wave is to move between conducting surfaces in a normal 
and undistorted manner, the currents flowing in the surfaces must ac¬ 
complish these two requirements: they must at the same time provide 
necessary curl to act as a boundary for the magnetic field and provide 
the proper distribution of charge to terminate the electric field at all 
times. Let us see whether this is possible. 

First, there is a definite relation between the electric field and the 
magnetic field of a wave, as defined by MaxwelFs eciuations: 

aD 
VxH = — [416] 

dt 

Applying this equation to the plane wave of Fig. 68: 

dUg ODy 

dx dt 
[417] 

Second, using a to represent charge per unit area on the lower con¬ 
ducting surface of Fig. 68: 

C^Dy [418] 

As D changes with time, the charge density will change. Consider 
some point on the conducting surface at which the charge density is 
increasing; charge is supplied to this point by current that flows parallel 
to the X axis. If the current conveying this charge is flowing in the 
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positive X direction, is a positive current, and provides positive charge, 
it will be a little smaller after it has passed the point in question and 
deposited thereon some of its positive charge. Quantitatively, the de¬ 
crease of current with respect to distance x is equal to the increase of 
charge with respect to time. If is current in the X direction in a 
strip of the conducting surface of unit breadth. 

dix da 

dx di 
[419] 

Combining this ^ with eciuation 418, the necessary relation between 
changing electric field and flow of current is 

dDy dix 

dt dx 
[420] 

This tells the amount of current necessary to terminate the electric field. 
Thirds the current in the conducting surface of Fig. 68 must be related 

to the magnetic field strength parallel to the surface. As in equation 320 

Ih = h 
By differentiation: 

dih _ dIx 

dx dx 

[421] 

[422] 

Comparing equation 422 with 420, it appears that the same current 
will be satisfactory for terminating the electric field and for bounding 
the magnetic field if the electric and magnetic fields are related by 

dll z dDy 

dx dt 
[423] 

' Equation 419 is a special ease of the “equation of continuity” which may be 

derived as follows. From Maxwell’s equations, 

aD 
VxH = I H- 

dt 
1240] 

Find the divergence of each side of this equation: on the left, the divergence of the 

curl is identically zero; on the right, there results a term for the divergence of D. 

For the divergence of D substitute V • D = p. Then 

V- I 
dt 

from wliich 
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But the electric and magnetic fields are always related in this manner, 

for this is identical with equation 417 derived from MaxwelFs equation. 

The conclusion is that a wave can be limited to the space between two 

perfectly conducting parallel plane surfaces, since the current that flows 

in those surfaces will provide a proper boundary for both the electric and 

magnetic fields of the wave. 

To avoid the necessity of repeating this proof for every conducting 

surface that acts as a wave guide, it can be shown to be true in general. 

The proof is a generalization of the one given here for a plane wave, 

and the result will be accepted in our further discussion of wave guides. 

Finite Waves. Although the wave of Fig. G8 is bounded in one di¬ 
mension, it is still infinite in the other, and so it is not physically attain¬ 

able. But the above discus.sion points the way to two types of wave 

guides that are actually u.seful. 

Consider the lower conducting surface of Fig. 68 bent down and 

rolled into a cylinder, and the upper surface bent up and rolled into a 

cylinder. The result will be as shown in Fig. 69; there will be parallel 

conducting cylinders serving as a wave guide for a plane wave. The 
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lines of electric flux will be bent and stretched into arcs of circles, and 

the magnetic flux lines will curve about the cylindrical conductors in 

an orthogonal set of circles. 

To show that these conductors, which constitute a parallel-wire trans¬ 

mission line, will act as a satisfactory wave guide, it is necessary only to 

show that MaxwelFs equations are satisfied in space between and 

around the conductors. This proof, although rather involved, is not 

difficult. For the simpler fields of a concentric transmission line, the 

proof gives no trouble. See Problem 1, page 226. 

A wave guided by parallel wires is infinite in extent, but its strength 

diminishes in all directions, and its energy is finite. It is therefore a 

physically possible wave. The physical wave on such a line, however, 

differs from the mathematical wave in one way: it must be generated 

at one place and terminated at another, and near the ends of the trans¬ 

mission line the wave is not a plane wave. It goes through some kind 

of a transition, from quasi-sph(n*ical wave to quasi-plane wave. A 

similar disturbance takes place if there is a change of direction of the 

line, or a change of diameter or spacing of the conductors. Wlien the 

wave is not strictly a plane wave, some energy is radiated away from 

the line and goes out into space generally, instead of following the con¬ 

ductors. This lost radiation is negligible at power frequency; at radio 

frequency it may be of great importance. 

Most developments of transmission-line equations are based on the 

assumption that the capacitance and inductance of each short length 

of line may be considered independently of the rest of the line.^ The 

assumption requires justification, for it is not apparent that there will 

be no electric or magnetic inductive effects between successive sections 

of the line. The justification is obtained in the proof outlined above: 

because the assumed electric and magnetic fields satisfy Maxwell’s 

eciuations, they are correct. But this justification is obtained only with 

perfect conductors. If there is resistance, the transmission-line equa¬ 

tions obtained by that method are good and useful approximations but 

not mathematically exact. 

When the cylindrical conductors do not have perfect conductivity 

there is some penetration of current into the conductors; indeed, at 

low frequency, the current will penetrate the entire conductor. The 

speed of propagation is slightly le.ss than tlie speed of light. The wave 

is not strictly a plane wave but is bent back near the conductor. In¬ 

deed, transmission-line equations must be considered as merely good 

approximations except when applied to lines of zero resistance. (This 

* This development is given (with an explanatory note) in Transient Electric 

Currents ^ II. II. Skilling, Chap tec IX. 
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is true even when line resistance and leakage are included in the equa¬ 

tions.) 

Hollow Wave Guides. A suggestion of another type of wave guide 

is obtained from consideration of the parallel planes of Fig. 68. A 

wave between two planes is restricted vertically but not horizontally. 

But let us use two other conducting planes as side walls of a rectangular 

wave guide as in Fig. 70. 

A difficulty is immediately encountered. There cannot be any tan¬ 

gential electric field at the surface of these planes bec’.ause they are 

conducting. Therefore it is necessary to consider a wave in which the 

electric intensity, although everywhere vertical, diminishes to zero at 

the side surfaces of the guide. This is indicated in the diagram by 

decreased density of electric flux. 

Such an electric field, because of its varying strength, has a component 

of curl along the X axis, and therefore requires an A" component as well 

as a Z component of magnetic field. The resultant magnetic field is 

transverse at the middle of the wave guide, but it bends and becomes 

axial at the sides, as indicated by the dash lines in Fig. 70. The mag¬ 

netic lines of flux form closed loops and the magnetic field is therefore 

without divergence, as indeed it must be. 

The arrangement of electric and magnetic fields indicated in Fig. 70 

cannot be produced by any single plane wave of the type that has been 

discussed in this and previous chapters, but it is rather surprising to 

find that it can be produced by two plane waves traveling within the 

wave guide at the same time. Neither of these waves goes axially along 

the guide, but each follows a zigzag path with multiple reflections from 

the walls of the guide as shown in Fig. 71a. 

Only a sinusoidal wave will pass through a wave guide without dis¬ 

tortion; let us therefore assume that waves I and II in Fig. 71a are 
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sinusoidal waves. The angle at which they travel is dependent upon 

the wavelength and upon the size of the guide. 

The essential point is this: two sinusoidal plane waves, of the same 

amplitude and frequency, when superimposed at an angle, will add to 

zero along certain surfaces. 

Consider Fig. 72. Two waves are shown, one shaded black, the 

other white. They are traveling in somewhat different directions as 

shown by the arrows, the white wave almost directly away from the 

reader and the black wave toward the right. The waves are cut off at 

the near edge by a vertical plane through the dash line, the direction of 

which is midway between the directions of travel of the two waves. 

The intersection of the waves with this vertical plane gives the pair of 

sine curves that appear at the edge of the waves in the figure. 

The waves in this figure ix^present the electric intensity in two electro¬ 

magnetic waves. Let the height of the pictured surfaces above or be¬ 

low the neutral plane be a representation of electric intensity. When 

the electric intensity of one wave is equal but opposite to the electric 

intensity of the other wave, the resultant electric intensity is zero. 

This is true all along the dash line, for, where the black wave is above 

the dash line, the white one is below by an ecpial amount and vice versa. 

This is also the situation along another plane, parallel to the dash 

line, that cuts off the waves on the farther side. Along both of these 

planes, the sum of the two waves is always exactly zero. At intermediate 

points, the sum of the two waves is not zero, and the total resultant 

wave has the shape shown in Fig. 73, with a maximum value (where the 

black and white crests of Fig. 72 coincide) of twice the crest of either 

component wave alone. 

Because the resultant electric field strength at the indicated boundary 

surfaces will always be zero, the pair of electromagnetic waves repre¬ 

sented by the diagram may be contained within a rectangular wave 

guide of proper dimensions. They satisfy the requirement that there 

be no tangential component of electric field at a conducting surface: 
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along the top and bottom of the guide the electric field is normal to the 

surface, and along the two side walls it is zero. Both waves follow 

zigzag paths within the guide, as in Fig. 71, and are reflected back and 

forth from side to side. In fact, there is essentially but one wave, for 

each wave is the reflection of the other. 

Chu and Harrow, Couricay I.R.E. 

Fig. 73 

The total result is that a series of electromagnetic pulses go down 

the wave guide as in Fig. 73. This diagram shows the nature of the elec¬ 

tric component of the wave, but it does not indicate the magnetic field. 

Figure 74 shows the distribution of both electric and magnetic com¬ 

ponents in this type of guided wave (known as the TE^^i wave). 

mi 
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Fig. 74 

Group Velocity. Waves in hollow guides have a number of peculiar 

properties and limitations. One is that the transmission of a radio 

signal along the tube will be at a speed somewhat less than the speed 

of light. This is easily explained in terms of the zigzag path followx'd 

by the two components, as shown in Fig. 71. Fach plane-wave com- 
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ponent travels at the speed of light along its zigzag path, but the rate at 

which a signal travels along the guide will be somewhat less because 

the zigzag path is longer than the axis of the guide. If a telegraphic 

dot or dash, or a telephonic modulation envelope could be observed, it 

would be seen to be going along the guide a little slower than the speed 

of light. Its velocity is known as the group velocity, Vg. 
The group velocity of a wave in a guide is dependent upon its fre¬ 

quency. Consider crossed waves, as in Fig. 75, proceeding along a 

rectangular wave guide. Tlu^ direction of travel is normal to the crests, 

as shown. To make tlie electric field zero along both sides of the guide, 

as in Fig. 72, tlui elemeiitaiy waves must cross at such an angle that 

th(\y overlap one wavelength in the width of the guide. Thus wave¬ 

length \c and guide width b determine the angle of the elementary waves. 

The greater the wavelength jof the comi)onent waves, the greater the 

angle a. For a low-freciuency wave, the zigzag path will be squeezed 

up as in Fig. 716, and group velocity will be relatively low. Finally, if 

the half wavelength of the wave becomes as great as the width of the 

wave guide, the two component waves will be reflected back and forth 

across tlie guide, giving a standing wave, but there will be no forward 

progress at all. This is the cut-off frequency for the wave guide, and 

a wave of lower frequency cannot be transmitted because no wave of 

lower frequency can have zero electric field at both side walls of the 

guide. 
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The longest wavelength that can be transmitted along a rectangular 

guide with dimensions a and h as in Fig. 70 is therefore 

Xo = 26 [424] 

and the cut-off frequency is 

Ve 1 

26 
/o [425] 

Note that, in equation 424, Xq is the cut-olT wavelength of the elementary 

wave, or the wavelength of an unbounded wave at the cut-off frequency, 

and that correspondingly the velocity of propagation of an unbounded 

wave, Vc = is used in equation 425. 

The group velocity of the TEq^i wave is, from Fig. 75: 

“(^) 
It is dependent upon X^, the wavelength of the elementary wave. It 

will be seen to approach zero at cut-off, as Xc approaches 26, and to ap¬ 

proach the speed of light for very short waves. 

Phase Velocity. Next let us consider the wavelength of the electro¬ 

magnetic field within the wave guide. This will be the distance from 

hump to hump of Fig. 73, or the 

distan(!e between the points of inter¬ 

section of the crests of the two ele¬ 

mentary waves in Fig. 72 or 75. 

Wave crests are indicated in Fig. 75; 

in this diagram, the distance Xe is 

the length of the elementary waves, 

and X is the apparent wavelength or 

the distance between humps of the 

total wave. The apparent wave¬ 

length is greater than the elementary 

wavelength. 

Corresponding to this apparent 

wavelength is an apparent velocity 

greater than the speed of light. 

Consider the crossed crests of the two elementary waves as shown in 

Fig. 76. The solid lines show the present positions of the crests; the 

dash lines show their positions one unit of time earlier. The velocity 

is given by the distance through which the waves advance in this in¬ 

terval. At the point of intersection of the waves is the crest of the 
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resultant or apparent wave. This point of intersection advances more 
rapidly than do the individual waves. The result is that if the wave 
pattern of Fig. 73 were visible it would appear to travel along the 
wave guide at a velocity greater than that of light. This apparent 
velocity is called the phase velocity, for it is the rate at which a given 
phase of the resultant wave travels. 

It seems paradoxical that the waves should appear to travel in the 
guide at a speed greater than that of light, while a signal conveyed by 
those waves would go at the group velocity which is less than the speed 
of light, yet that is what happens. Consider Fig. 77, which shows a 
^^carrier” wave contained within a modulation envelope.^ If it were , 

Fig. 77 

visible in a wave guide, the carrier wave would appear to be advancing 
at phase velocityy while the modulation pattern would progress at the 
slower group velocity} The carrier wave would therefore seem to be 
slipping forward through the modulation envelope, and each individual 
crest of the carrier wave would change amplitude as it passed through 
the irregularities of the envelope until it disappeared entirely upon 
reaching the most advanced point of the envelope. 

The manner in which the apparent wave can pass out of existence is 
illustrated by Fig. 76. The wave crests in that figure come to an end 
toward the right. That may be considered the farthest point to which 
the signal has advanced. The apparent wave is the resultant of the 
two elementary waves and appeal's as a hump at the point of inter¬ 
section of the elementary waves; the hump advances rapidly from left 
to right until the elementary wave crests have passed beyond each other 
and no longer intersect, and then it simply disappears. Consider two 
waves traveling at an angle to each other on the surface of a body of 
water, and the disappearance of the double crest at their point of inter¬ 
section is easily visualized. 

* Consider also, as a thoroughly non-mathematical example, a hurrying cater¬ 

pillar. Little waves (transvei*sc or comprcssional, depending on the species) ripple 

along its back from tail to head. These waves progress at phase velocity, while the 

caterpillar himself travels at group velocity. 

^ Chapter XIV, pages 228 to 231. 



204 WAVE GUIDES 

An ocean wave, or a large wave on a lake, often approaches a retain¬ 
ing wall along the shore at a slight angle. Instead of advancing squarely 
upon the shore so that its full length breaks upon the wall at the same 
instant, the wave reaches the wall at one end a little sooner than it does 
at the other. When one watches such a wave, there is a surge and 
splash at the point where the wave is breaking against the wall. This 
surge appears at one end of the wall with the first arrival of the wave, 
and then, as the wave breaks progressively from one end of the wall to 
the other, the surge (which marks the wave crest) appears to travel 
with great speed along the wall. Its speed may appear many times 
that of the actual rate of advance of the wave, and the less the angle 
between wave and wall the more rapidly it will seem to go. This ap¬ 
parent speed along the wall is a phase velocity, exactly analogous to 
the phase velocity in a wave guide. 

The phase velocity of the TE^^i wave is, from Fig. 76: 

and it will be seen that the phase velocity is greater than the velocity 
of light in the same proportion as the group velocity is less. For very 
short waves the phase velocity, like the group velocity, approaches the 
speed of light, but at frequencies near cut-olY the phase velocity ap¬ 
proaches infinity. 

Note particularly that a signal cannot travel at phase velocity but 
only at group velocity. 

Derivation. It is obvious tliat, whether one looks upon the phe¬ 
nomena within a wave guide as a single wave or as a pair of zigzag 
waves, the electric and magnetic fields must be consistent with Max¬ 
wells equations. 

Since the electric field of the wave of Fig. 70 is parallel to the Y axis, 

the X and Z components may at once be set equal to zero as in eejua- 
tions 429 below. 

The wave is assumed to be sinusoidal with respect to time, and, since 
it is traveling along the X axis, it will be described by a sinusoidal func¬ 
tion of (x — v^i) where is its phase velocity. If its freciuency is /, 
and w = 27r/, the electric field may be written as the following function 

of time: 

<0 
sin — (x — v^t) — sin {^x — (at) 

H 
[428] 
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The electric field must be zero at 2; = 0 and at 2 = 6. One way to 
accomplish this is to have a sinusoidal variation of electric field strength 

along the Z axis, starting at zero, rising to a maximum value at 6/2, 

and falling again to zero at the side of the wave guide where z = h. 

With this sinusoidal space distribution, if the maximum strength of 

the field is A its strength at any value of 2 is A sin , tt. 
0 

Combining the variation-with-time and the variation-from-side-to- 
side-of-the-guidc in a single equation 

and 

sill {0x — Oil) 

E, = 0 

E, = 0 

[429] 

The wave of eciuation 429 satisfies the boundary conditions imposed 

by the rectangular guide, for the e(iuation was written with that in 

mind, but it is a physically possible electromagnetic wave only if it is 

a solution of the wave eciuation 

V^E = Mc 
di^ 

[249] 

and if 

V-E = 0 [244] 

The latter condition is obviously satisfied. Wlien the wave equation 

is expanded in rectangular coordinates with E^ = 0 and E^ = 0, there 

results simply (see equation 250): 

d-E, d-E, d-Ey 

di/ dr 
[430] 

Differentiating Ey from e(iuation 429, substituting into equation 430, 

and simplifying, one obtains 

— + == [431] 

The conclusion is that the wave proposed in equation 429 is a satis¬ 

factory solution of the wave equation if equation 431 can be satisfied. 
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Noting that P = equation 431 can be satisfied by a wave with 
phase velocity given by 

1 

This is interpreted to mean that the proposed wave can exist only if 
it travels with a phase velocity dependent upon the frequency of the 
Avave and the size of the guide. If the frequency is so low that is 
negative, no real solution for phase velocity is possible, the wave equa¬ 
tion cannot then be satisfied, and the wave cannot exist. This gives 
the cut-off frequency, which will be found to agree with equation 425. 
Equation 432, giving the phase velocity, can be transformed to corre¬ 
spond with equation 427. 

It is now known that the electric wave can travel in the wave guide. 
It can have any amplitude. A, in ecpiation 429, but its frecpiency must 
exceed a certain minimum, and its phase velocity is determined by the 
frequency and the size of the guide. 

To determine the magnetic field of the wave, we use Maxwell’s 
equation: 

dH 
VxE = -u— 12421 

Finding partial derivatives of Ey from eciuation 429 and substituting 
into equation 242, 

dEy dHz /z \ 
-= —M-= pA sin ( - TT) cos (px — o)t) 
dx dt \b/ 

[433] 
dEy dllx TT \ . 

-= —u-=-A cos ( - TT) sin (px — o)t) 
dz dt b \b/ 

The components of magnetic field are found by integrating the second 
and third members of these equations with respect to time. This gives 

1 (z \ 
Hz = — A sin I - TT) sin {px — wO 

/jlv^ \b / 

TT /z \ [434] 
Hx = — A cas I ~ 'w ) cos {px — w/) 

fi(A)b \b / 

Hy = 0 
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All components of the electric and magnetic fields of the guided wave 
are now known, and consideration of equations 429 and 434 shows that 
Fig. 74 is a correct representation of the wave. The line m-n in that 
figure is through a section of the wave at which (fix — cot) is very slightly 
less than 7r/2. 

General Solution for Rectangular Guide. The previous discussion 

has been concerned with one mode of wave propagation only. This, 

called the “dominant mode^^ for a rectangular guide, is the simplest and 
perhaps the most useful, but a rectan¬ 
gular guide is able to carry a variety 
of modes. A general solution of 
MaxwelFs equations should yield all 
possible modes. 

Let us consider a rectangular guide 
as in Fig. 78. Guided waves may 
in general have field components in 
all three coordinate directions. It 
is always possible to consider the 
most general wave as the sum of two 

waves, one of which has only transverse and no axial magnetic field, 
whereas the other has only transverse and no axial electric field. The 

first kind is called a Transverse Magnetic or TM wave, the latter a 

Transverse Electric or TE wave. Some waves, as on a transmission 
line, having no axial components of either field, are called TEM waves. 

To be fully general, assume the electric field in the guide has three 

components, Exy Ey^ and each of which is an undefined function of 

Xy 7jy Zy and t. Although these components are as yet undefined, they 
must satisfy three conditions. They must satisfy the wave equation: 

V^E = — [435] 
dt^ 

They must satisfy the divergence equation: 

V • E = 0 [436] 

They must satisfy the boundary conditions: that is, if the walls of the 
guide are assumed perfectly conducting, with dimensions as in Fig. 78, 

it is necessary that 

At 2 = 0 and Lit z = b 

At y = 0 and at ?/ = a 

Ex = Ey^O [437] 

[438] 
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The following solution is to find functions that satisfy these require¬ 
ments. 

First, let us assume the electric field may be a sinusoidal wave travel¬ 
ing along the guide and determine whether such an assumption is con¬ 
sistent with the necessary conditions. We write the components of the 
traveling wave as: 

E, = 

[439] 

E^ = 

where Emzy Emyy and Emz are functions of y and z but not of x or t. 
Giving attention to E^y the wave equation requires that 

d'^E, d^E, d^E^ d^E. 
+ 2 + , = , 

dx^ di/ dz^ dl^ 
[440] 

Introducing Ex from equation 439 and dividing out the exponential 
function, 

dy^ dz^ 
+ T^)Emx [441] 

A solution of this partial dilTerential equation is found by separating 
the variables into two ordinary diff rential eciuations. Write Emx 
(which is a function of y and z) as the product of two functions: F, a 
function of y only, and Z, a function of z only. Then E^nx = 
substitution into equation 441 gives 

= YZ, and 

d^Y (fZ 
^ Vi- + ^ dy^ dz^ 

[442] 

whence 
1 d'^Y Id'^Z 
v-7V + v7T= Y df Z dz^ 

[443] 

We may arbitrarily let 

1 , 1 d^Z 
---and-- = -N^ 
Y dy^ Z dz^ 

[444] 

from which 
M'^ + N^ = [445] 

Since the right-hand member of this equation is constant (not a func¬ 
tion of y or z)j M and N must also be constants; this makes equations 
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444 ordinary differential equations with the following solutions ® (which, 
if unfamiliar, may be checked by substitution): 

Y = Ai cos My + Bi sin My 
[446] 

Z = CicosNz +DisiaNz 

The product, then, is 

Emx = (^1 cos My + Bi sin My){Ci cos Nz + Di sin Nz) [447] 

where Ai, Ci, and Di are any constants. 
Similar solutions of the wave equation result for Emy and Emzj with 

other arbitrary constants. 

Using equations 437 and 438 to introduce boundary conditions, the 
constants of equation 447 will be somewhat limited. = 0 at z = 0 
requires that Ci = 0, and at ?/ = 0 requires that = 0. Then E^ 

will be zero iit z = b if Nb is some integer multiple of tt; that is, if 

rnr 
N = — where = 0, 1, 2, 3, 

b 

Likewise, to make Ejc = 0 ai y = 

rmr 
M = — where m = 0, 1, 2, 3, • • • 

a 

Hence, when boundary conditions arc satisfied, we have 

TYiTT rnr 
Emx = BiDi sin — y sin — 2 

a b 

[448] 

[449] 

[450] 

7^1 and Di arc both arbitrary constants and can be combined as A"i. 
Then 

rmr mr „ 
Ejc — Ki sin — ?/ sin — 2 

a b 
[451] 

Introducing boundary conditions into the similar solutions for the 
other components gives 

Ey = (A 2 cos il/22/ + B2 sin M2y) 
— Fj: [452] 

(rnr \ . 
D2 -sin — Zj 

(rmr \ „ 
7^3 sin — yj (C3 cos N^z + ^3 sin A32) [453] 

* Solutions may bo expressed in hyperbolic or exponential functions if preferred. 

The trigonometric form is here more convenient. Note the similarity to transmission 

line equations. 
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The divergence equation requires that 

dEx dEy dEz 
— + —+ — = 0 
dx dy dz 

There is no chance of satisfying this requirement unless B2 and D3 equal 
zero, and M2 = rmr/a, and A^a = mr/h. With these stipulations, how¬ 
ever, the derivatives are 

dEx rmr mr . 
-= — r/Ci sin — y sin — z 
dx a b 

dEz 

dz 

mir rmr 
K2 sin — y sin — z c 

a ah 

Joit — Vx 

mr mr 
sin — y sin — 2 e 

b a b 

ju)t — I’x 

and the divergence equation is satisfied if 

viTT mr 
TKi + — A'2 + — ^'3 = 0 

a b 

It is now possible to write the electric field components as 

niw mr 
Ex = Ki sin — y sin — z 

a b 

jut — Vx 

[454] 

[455] 

TUT mr 
Ey = K2 cos — y sin —z 

a b 
[45G] 

imr mr . , „ 
Ez = Ks sin — y cos — z * 

a b 

with the K's limited by equation 455, and with F from ecjuation 445: 

/rmr 

\ a 
[457] 

Magnetic field components in the guide are found from Maxwell’s 
equation 

an 1 
— = - - VxE 
01 n 

[458] 
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This familiar operation is applied to equations 456 and gives 

TT (n 

joiH \b 

m \ mir 
K2-iCs ) cos — y 

a / a 

— w/n T \ mw 
Hy = — ( 7 + - iv3 ) sin — y 

ju)fjL \b T / a 

TT /m ^ \ 
Hz — -— I H— K2] cos — y si 

joifjL \ a TT / a 

ut 
cos — z e 

b 

i(at—Vx 

U'K . , „ 
COS-2 6^“^ 

b 
[459] 

rnr . , r. 
sin — z 

b 

Transverse Electric Waves. Equations 456 and 459 cannot be used 
until one more fact about the wave to be propagated is specified, for 
they contain too many unknown coefficients. The additional fact 
might be the relative magnitudes of and Hx] as a highly important 
special case let us specify that Ex = 0. The wave is then a transverse 
electric or TE wave. This requires that Ki = 0. Making Ki zero in 
equations 455, 456, and 459 gives the equations of Table VI. Two new 
symbols require explanation: Aq^ the only remaining arbitrary con¬ 
stant, determines the amplitude of each component and hence of the 
whole wave. Physically, Aq depends on the size of the wave sent into 
the guide; mathematically, Aq = K<^ln. G is an abbreviation for a 
combination of constants that appears frequently; it relates the char¬ 
acteristic factors of propagation in the guide to the corresponding fac¬ 
tors in unbounded space, and 

G" = 1 
1 n^\ 

[460] 

As in previous chapters, rj is the intrinsic impedance of the dielectric 
within the wave guide (usually air) and, if there is no dielectric loss, 

r) = \7A. 

TEm.n TABLE VI 

Components of Transverse Electric Waves in Rectangular Guides 

Ex = 0 

Ey - Aq - cos — y sin — 2 * * 
b a b 

in . niw nw -oi-rr 
Et - — Ao — sin — 7/ cos z ^ 

a a b 

Aq in? r?\ imr mr . . 
Hi = ^ { -j + 75 ) cos — ycos — z c'"'" 

i2/u\o-' b-/ a b 
Tx 

Hy = --E, 

n, = -Bv 
(See also Table VIII) 
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TMm,n TABLE VII 

Components of Transverse Magnetic Waves in Rectangular Guides 

//x = 0 
, n . niTT 7i7r 

Hy = Bq- sin — y cos ~ze 
b a b 

U, 
, m mrr 
Bq — cos — y 

a a 

. Wtt 
sm — ze 

b 
ju)t — Vx 

Bq /m“ /r\ mx 
“oT" I “2 +12) — y j2ft \a^ b^J a 

nrr . , 
sin -- z 

b 

Ey = rjGIIg 

Ez = — rjCHy 

(Sec also Table VIII) 

TABLE VIII 

Auxiliary Formulas for Both TE and TM Waves in Rectangular Guides 

1) X 10'® 

4f~ 

(m“ n“\ . . 
4- note) 

= 377 ohms in air 

. 2x/t7 . . 
= j — a imt meter m air 

3 X 10* ' 

2^/0 . 
=- radians ikt m(‘t(T in air 

3 X 10* 

= 3(1 X 10* niotxTs fxT second in air 

Vl^tG 
3 X 10® 

iiKdiTS |M*r se(‘on(l in air 

X = 
3 X 10® 

"/(T' 
meUTS (wavehiiigth in guide) 

Cut-off frequency: U = 0 

Note: The right-hand column is for a hollow or air-dielectric guide. 

In addition to the usual symbols, in Tables VI, VII, and VIII: 

a is the dimension of the guide in the y direction, in meters. 

m is the numlx^r of half-cycles of field patUTn in the guidi^ in tfu* y direction, an 

integer. Thus almia the length of a half-cycle in thii y direction. 

h is the dimension of the guide in the z direction, in mekTs. 

n is the number of half-cycles of field pattern in the guide in the z direction, an 

integer. Thus b/n is the length of a half-cycle in the z direction. 

Aq and Bq are arbitrary constants, giving amplitude. 

/ is frequency in cycles per second. 
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Transverse Magnetic Waves. If, on the other hand, it is specified 
that = 0, giving a TM wave, equation 459 shows that 

n m 
-K2 --A'a = 0 [461] 
0 a 

Using this with equation 455 in the general equations 456 and 459, there 
result the forms in Table VIT. 

Modes. The equations of Table VI (or VII) describe not a single 
wave but many. Both m and n may have any integer value. (For a 

a c 

TEj I Wave 

Sections Sections 
through c - d through a - 6 

-Electric Field 
-Magnetic Field 

• Out 0 In 
Aflrr Ramo and Whinnery 

Fig. 79 

TE wave, either m or n may be zero, but if both are zero the wave 
vanishes; for a TM wave, if either is zero the wave vanishes.) 

Each pair of integers ?n,n corresponds to what is called a mode of 
propagation. It is customary to distinguish the various possible modes 
as TEm,n or TMnt.n modes. Thus, if m = 0 and = 1 in Table VI, 
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the TEq^x mode results, and this will be recognized as the mode dis¬ 
cussed in the early part of the chapter and shown in Fig. 74. (This 
differs from the TE\^q mode only in orientation.) The formulas of 
Tables VI and VIII for the TEq^x mode will be found to agree with 
equations 425 to 434. The TEx,x and TMx,x modes are illustrated in 
Fig. 79. All other rectangular modes result from repeating one of these 
three basic patterns a number of times within the cross section of a 

guide. 
Any number of modes can exist in a wave guide at the same time, 

superimposed. The field pattern in the guide is therefore not limited 
to sinusoidal variation with y and z. The equations of Tables VI and 
VII could properly be written as summations, each having a doubly in¬ 
finite number of terms as m and n take all integer values successiv^ely. 
Such a summation is a two-dimensional Fourier series and can be used 
to describe any distribution of field that may exist in a given cross 
section of the wave guide. The distribution in all other cross sections 
can then be computed from the equations. A non-sinusoidal pattern 
will not be propagated as a simple traveling wave, however; it will be 
distorted as it travels, for different modes are propagated at different 
phase velocities, and modes beyond cut-off will not propagate at all. 

Cut-Off. The guide constant G can be real or imaginary (hut not 
complex). If G is real, F is imaginary and can be written F = with 

a real /3. The equations of Tables VI and VII are then traveling-wave 
equations, describing a wave that travels without attenuation (a result 
of the perfect conductivity assumed in the guide walls). The phase 
velocity of the wave is found from = w/i3, with the result shown in 
Table VIII. Wavelength within the guide is v^/f. Group velocity can 
be found by using equation 467 from Chapter XIV, which gives 

(l^ _ _G_ 
[462] 

and these results also are in Table VIII. 
If G is imaginary, F is real. The equations of Tables VI and VII do 

not then describe traveling waves. Physically a real value of F indi¬ 
cates that the guide is too small to carry a wave of such low frequency 
or of such high order of mode. The lowest frequency that can travel 
in a guide is called the cut-off frequency and is the frequency at which 
(? = 0, for any lower frequency would make G imaginary. Thus, the 
cut-off frequency is 

I 1 (m^ 
|4f,3| 
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Below cut-off, an electromagnetic field introduced into the guide will 
not produce a wave. The equations of Tables VI and VII show that 
instead there will be a field in the guide that diminishes exponentially 
with distance x along the guide, and that alternates in the same phase 
all along the guide. Such a field does not convey energy along the 
guide, and (assuming perfectly conducting walls) the average power en¬ 
tering the guide below cut-off is zero. The exponential decrease of field 
strength in such a guide is not attenuation in the ordinary sense, for it 
is not the result of loss of energy. It is rather like the “attenuation^^ 
in a lossless filter circuit and is sometimes called “reactive attenuation.^' 

From the ambiguity of sign of ecpiation 457, F and hence may be 
either positive or negative. Positive P gives wave propagation in the 
positive X direction; negative /3 in the negative x direction. As a matter 
of fact, there may be propagation in either direction, or in both at once, 
depending on conditions at the ends of the wave guide. For instance, 
if energy is supplied at one end and there is a discontinuity that pro¬ 
duces partial reflection at the other end, both incident and reflected 
waves will exist within the guide. They will combine to give standing 
waves along the guide. Such standing waves are of great practical im¬ 
portance, for they indicate some degree of mismatch at the discontinuity 
and a consequent restriction of flow of energy in the system. 

Since (7, the guide factor, is always less than one, phase velocity in a 
guide is always greater than the velocity of an unbounded wave, and 
group velocity in the guide is correspondingly less. This appears from 
Table VIII. For all hollow rectangular guides (and, indeed, for all 
hollow guides of any shape) 

Cylindrical Wave Guides. The common shape of guide, other than 
rectangular, is of circular cross section. The solution for waves in such 
guides is very similar to that for waves in rectangular guides. How¬ 
ever, one of the e(iuations for a cylindrical guide, corresponding to 
equation 444, turns out to have a solution in the form of a Bessel func¬ 
tion instead of a trigonometric function. 

Using cylindrical coordinates with the Z axis coinciding with the 
axis of the wave guide, the r, 0, and z components of field are found. 
The general form of solution for all modes will not be given, but four 
of the more interesting modes are described in Table IX and illustrated 
in Fig. 80. In Table IX, a is radius of the guide, Jq and Ji are Bessel 
functions,® A is the constant that gives amplitude of the wave, X is the 

® Values may be obtained from matliematical handbooks, such as Tables of FunC'‘ 
iionSf Jahnke and Emdo, Dover Publications, 1943. 
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Lhies of Electric Force -Lines of Magnetic Force 

• Out oin 
Q. C, 8outhiv(frth, Bell Labst courtesy Electrical Engineering 

Fia. 80 
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TABLE IX 

Ckhtain Modks in Cylindkical GniDF^s 

TMq^i Mode 

Ez = AJo (2.405 ^ 

Ef — r}GII$ 

E$ = 0 

II z = 0 

Hr = 0 

Hi = j2.61 aftAJi (2.405 eJ"'-* ' 

TMi,i Mode 

Ez — AJ1 (3.83 cos d 

Er = vGHi 

Et = -vGHr 

Hz =0 

Hr = -j0.42'J ~ AJi (3.83 0 

sin e 

He = -jl.MafeA Jo (3.83 

-- Ji ( 3.83 -A 1 cos 0 c»"‘ 
3.83r \ a/ J 

-Tz 

G 
f oT^ 

/o = 
0.383 

a\/fit 

147 
/<> <> 

^a>€ 

I ^ 

= V' -N 
0.600 

^ a^/^e 

371 

fa^fxe 

Mode Mode 

= 0 2f 
= jl.80 /IJi (l.84 ^ ■ 

sin 0 

. (3.83 Ee = j3.41o/M [^Jo (l.84 0 

-^ f 1.84 1 cos 0 
1.84r V o/J 

Hz = AJi ^1.84 cos e 

Ez =0 

Er = 0 

Jfz AJo (3.S3 

Hr = - ~ Ee 
V 

He = 0 

\ /-a' 
^ 0.600 

a\'^ fit 

:m 

/"aVe 

(7 
Hr = - - Ee 

1 

He =-~Er 
V 

G 
I 0.08 

0.203 
/o = —y= 

0858 

foTfxt 

— Jco \/fitG 

For All Modes 

1 1 
X = t:: 

V 
a = radius of guide 

d — ij^y/fitG ij = y/fii t 

VyutU 

t»g = - ' - /(, = cut-i^fT fro(iueney 
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wavelength in the guide, and /o is the cut-off frequency in cycles per 

second. 

The TEi^i mode is known as the “dominant mode’^ in a cylindrical 

guide, as it has the lowest cut-off frequency for a given size of guide. 

It has a general similarity to the “dominant’^ mode in a rectangu¬ 

lar guide; indeed, if a TEq^i wave in a rectangular guide passes into a 

cylindrical guide, it appears there as the TE'u mode. Note that there 

is no particular similarity between the TEi i and the TMi^\ cylindrical 

modes either in appearance or in desirable characteristics. 

In a cylindrical guide, the first subscript used to identify the mode is 

the order of Bessel function in the axial component, and it is also the 

coefficient of B in the trigonometric factor. The second subscript is, 

for a TM mode, the number of the root of the Bessel function at the 

guide wall (where r = a); and for a TE mode it is the number of the 

root of the derivative of the Bessel function at the guide wall. It is 

necessary to have a root of the appropriate function at the wall of the 

guide in order to have zero tangential electric field at the wall. 

In any pattern, as in Fig. 80, the first subscript can be determined by 

counting the number of zero values of Er as one passes around the cir¬ 

cumference of the guide, and dividing 

by 2. The second subscript is the 

numlier of zero values of Ee along a 

radius, counting the zero at the wall 

but not a zero that may exist at the 

center (or, if Ee does not exist, use Ez). 
Modes in Coaxial Lines. A coaxial 

tran.smis.sion line may carry modes 

other than the simple TEM pattern 

of radial electric field and circum¬ 

ferential magnetic field. The chief 

interest in these higher m(Kles lies in 

knowing how to avoid them. This 

is usually done by using a coiixial line 

too small to propagate any higher 

mode. 

Both TM and TE modes are pos¬ 

sible between the two conductors of 

a transmission line. The mode on a coaxial line with the lowest cut¬ 

off frequency, and therefore the one to be avoided in the choice of di¬ 

mensions, has purely radial electric field; but, if the field is radially out¬ 

ward in half the space, it is radially inward in the other half. Sec Fig. 

81. The magnetic field has an axial component. This mode is very 

-Electric Field 
-Magnetic Field 

• Out ®ln 

Fig. 81 
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like two rectangular TEo,i modes, as in Fig. 74, wrapped around the 

inner conductor of the transmission line. 

As the cut-off wavelength of the rectangular TEo,i mode is 2b (equa¬ 

tion 424), it is to be expected that the free-space wavelength of the low¬ 

est frequency propagated as in Fig. 81 would be about equal to the 

average circumference of the coaxial line. This turns out to be true, 

and it is a good approximation that 

7*2 + n 
Xo = 27r- [465] 

2 

(This is correct within 4 per cent, if r2/ri < 5.) 

Sending and Receiving Guided Waves. A wave is launched into a 

wave guide by producing in one end of the guide an electromagnetic 

field that resembles the field of the desired mode. Thus waves may 

enter a guide from a cavity resonator, the mode being determined by 

the field pattern in the cavity at the mouth of the guide. 

If the inner conductor of a coaxial transmission line is abruptly ter¬ 

minated, the outer conductor, continuing on, may act as a wave guide. 

A TMq^x wave will propagate beyond the end of the inner conductor 

if the outer conductor is large enough to act as a wave guide. Simi¬ 

larly, a TMi^i wave will come off the end of a two-wire line into a cy¬ 

lindrical guide, as might be guessed from Fig. 80. In a rectangular guide, 

a TMi^i wave would be launched from a coaxial line. 

Little antennas in the form of probes or loops within the guide are 

used with a good deal of ingenuity to produce an approximation to the 

desired field pattern. Thus, a straight wire entering the side of the 

guide and projecting parallel to the E lines will launch a TEi^i wave in 

a circular guide or a TEq^i wave in a rectangular guide. A loop enter¬ 

ing the end of the guide in an axial plane will serve the same purpose. 

A loop in a transverse plane will produce a TEq^i mode in a cylindrical 

guide. 

Transmission in the wrong direction is prevented by closing the guide 

at an appropriate distance behind the antenna. A metal plate will 

serve to reflect energy back toward the antenna, reinforcing the signal 

that travels down the guide in the right direction. 

The electromagnetic field at the point of launching is highly compli¬ 

cated, of course; it may be considered as the summation of many super¬ 

imposed modes. The higher modes will fail to be propagated. Com¬ 

monly the guide is so designed that only one desired mode will travel 

along the guide, others being beyond cut-off. 
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Any device used for starting a wave is equally effective for receiving 

at the other end of the guide. Energy may thus be delivered from a 

guide to a line, or into a cavity. 

If the end of the guide is merely left open, energy will radiate into 

space. Radiation from an abruptly terminated guide is not very effi¬ 

cient, for the fields of the guided wave cannot pass directly into being 

the fields of an unbounded wave in free space. They do not match, 

and much of the energy is reflected back into the guide. Standing 

waves result in the guide, as in the case of any mismatch. But, if the 

end of the guide is flared as a horn, it provides a gradual transition 

from guide to space. Thus, radiation from a horn may be made quite 

effective. Some modes, with electromagnetic patterns approximating 

those of waves in unbounded space, radiate more freely than others. 

A well-designed horn is a practical radiator and may have good direc¬ 

tional characteristics. 

Distortion. The previous discussion has been limited to the propa¬ 

gation in wave guides of sinusoidal waves of a single freciuency. Modu¬ 

lated waves require the presence of more than one frecpiency—of side 

bands as well as carrier. The conclusions that have been reached are 

not significantly altered if the band of traasmitted frequencies is nar¬ 

row. However, if the band of frequencies is wide, as in the short square 

pulses of radar and television, it may be necessary to take into account 

the propagation characteristics of the wave guide. Any time function 

may be analyzed into sinusoidal components by Fourier analysis. The 

fundamental and various harmonics (b(‘ing of different fre(iuencies) will 

travel at somewhat different speeds along the guide. The fundamental 

and harmonic components will therefore not have the same phase re¬ 

lation at the receiving end that they have at the sending end. The 

total wave will be diffenait in form. The general tendency will be for 

comers to be rounded and other distinguishing features of the wave to 

become blurred. 

Effect of Loss. It is usually .safe to neglect energy loss and the at¬ 

tenuation of guided waves in short guides. However, in long guides, 

or in guides with solid or liquid dielectric material, the loss may be con¬ 

siderable. Further, loss is high and attenuation is rapid in any guide 

if the transmitted frequency is only slightly above the cut-off frequency. 

Let us first consider loss in the metal walls of a guide. The previous 

discussion of wave guides has neglected loss. If it is necessary to take 

conduction loss into account, it is usually done by assuming the accuracy 

of the foregoing results for all guide characteristics except attenuation 

and then computing attenuation from the loss of energy in the guide 

walls. This method is not strictly correct, for the presence of loss in¬ 

troduces some small change in all characteristics. Because of the re- 
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sistance of the guide walls, the flow of current is never quite so great 

as it should be, the wave is slightly bent back at the edges, and its rate 

of propagation is delayed. Its wavelength is changed. The Poynting 

vector field of the wave is so directed that it has a small component 

into the metal walls. With moderate amounts of attenuation, however, 

all these effects arc so small as to be negligible. This is fortunate, for 

an exact solution of the wave equation in a guide with walls of finite 

conductivity is difficult. 

It may be generally stated that all walls carry current, for if they did 

not they might be removed without affecting the operation of the guide. 

To determine current distribution, let us consider that the purpose of 

the guide is to permit current to flow in the walls and thereby to pro¬ 

vide boundaries for the magnetic field of the transmitted wave. It is 

known from Chapter X that a metal surface may act as a boundary 

for an alternating magnetic field, and that, when it does so, the magnetic 

field is tangential to the metal surface. The direction of current in the 

metal surface is normal to the direction of the tangential magnetic field 

(for it is in the direction of the curl of the field), and the amount of 

current per unit length of guide surface (by equation 320) is numerically 

equal to the tangential component of H. Hence, by considering a dia¬ 

gram of magnetic field, the current in the guide walls may be mapped: 

lines of current flow are normal to the magnetic flux lines at the surface, 

and they are most dense where the magnetic field is most dense. 

It is not necessary, in computing current, to take into account the 

electric field that terminates on walls of the guide. It was shown early 

in this chapter that the same current may serve both to terminate the 

electric field and at the same time to provide the correct boundary for 

the magnetic field. This relation is inherent in any correct solution of 

MaxwelFs equations. Hence, whether there is or is not electric field 

terminating on the wall of a guide, the current in the wall can be found 

from the tangential magnetic field alone. 

Having found the current in the wall, loss is determined from the 

‘^surface resistivity” which was defined in Chapter X. The surface 

resistivity is a function of frequency, being in reality a skin-effect phe¬ 

nomenon. It is equal to 1/t5, and since 5 is the effective depth of pene¬ 

tration of current the surface resistivity may also be wTitten 

It is important to recognize that the surface resistivity is directly pro¬ 

portional to the square root of frequency; this corresponds to a de¬ 

creased “skin depth” at high frequency. Loss is found as 
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To find attenuation after loss is known, it is necessary to compute 

the total energy transmitted along the guide. To do this, the Poyn- 

ting vector field E x H is integrated through any cross section of the 

guide and averaged with respect to time; the result is power at that 

section of the guide. Attenuation is then found in terms of power 

transmitted and power lost. In any length of guide 

p — p /.~2ax 
^ out ^ in 

(Both the electric and magnetic fields are attenuated at the same rate 

a, so power is attenuated at the rate 2a.) Since Pious = ^^out “ 

we have, for a 1-meter length of guide: 

= 1 

Expanding the exponential in series and retaining only the first two 

terms gives an approximation good for small attenutation: 

* loHS 

2P;„ 

A general solution for loss in all guides will not he attempted, hut the 

main steps in finding attenuation in a rectangular guide carrying a 

TE0,1 mode are indicated to illustrate the general principles. From 

Table VI: 

^0 TTZ 
Sin — e' 

b b 
Jwt — lx 

An WZ , 
11^ = -rCOS — 

b 

AoG Ttz . , ,, 

vb b 

In the bottom of the guide (Fig. 70) the square of the magnitude of 

surface current is 

|/|2 = 17,12 + |/,12 = |//, 12 + |//,12 

Multiplying by gives an expression for power loss per unit 

area. The above values for //, and //* are then substituted into the 

expression, and the result is loss per unit area at a given cross section 

(x =* constant) as a function of z and t. The width z appears as a sine 

or cosine squared function, the average of which is one-half the maxi¬ 

mum. Time appears as the square of an exponential function, and, 
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considering that only the real component of the exponential is signifi¬ 

cant, its average is also one-half the maximum. The time average of 

loss in unit length of both top and bottom surfaces of the guide of width 

b is then 

Ao^G^ 
4,^6" iGfVby 

The average loss per unit length of both the vertical walls (z = 0) is 

similarly found from current distribution in those walls to be: 

2R8a 

A 2 

Sfw 

Average transmitted power is the integral of the Poynting field, or, 

in this case, the average of the product of Ey and Hz times the cross- 

section area: 

A(^G 
ab 

Attenuation (nepers per meter) owing to imperfect conductors is then 

half th(‘ ratio of power loss to power transmitted, or 

a 

Rs 
2a 

avO 

Attenuation in decibels per meter, the value usually desired for practi¬ 

cal work, is 8.68Ga. 

If the transmitted frequency is high above the cut-off frequency, the 

guide factor (r approaches one, and a is approximately Ra/cLVy increas¬ 

ing as the square root of frequency. If the transmitted frequency is 

near the cut-off frequency, G approaches zero, and the attenuation rises 

without limit. At an intermediate frequency, some two or three times 

cut-off frequency, there is minimum attenuation. Curves of attenua¬ 

tion for the rectangular TA'o.i mode are shown in Fig. 82, and these 

are fairly typical of other modes and guides. The reason for great at¬ 

tenuation near cut-off is that the axial component of field becomes rela¬ 

tively strong (as (r approaches zero) and contributes to the loss without 

contributing to the transmission of energy. Increase of attenuation at 

very high frequency, on the other hand, results from extreme skin effect. 

One of the most remarkable waves is the TEo,\ mode in a circular 

guide. In this particular wave, shown in Fig. 80, all electric flux lines 

as well as all magnetic flux lines are closed looiis. None of the electric 
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field terminates on the wall of the guide. The only current Carried by 

the wall is to provide a boundary for the axial component of magnetic 

field. Since, in this mode (see Table IX) as in all othei's, the axial com- 

p)onent of field becomes relatively less at high frequency, the current in 

the walls becomes less, and this mode has the unique characteristic of 

being less attenuated as the frequency is increased indefinitely. For 

this mode the curves of Fig. 82 are not typical. 

0 1 2 3 4 5 6 

Times Cut-off Frequency 

Fig. 82 

If there is loss in the dielectric medium within a wave guide, the re¬ 

sulting attenuation is an additional factor to be determined. The im- 

jjerfection of the dielectric can be included in the wave-guide equations 

in the same way it was included in the ecpiations for unbounded waves 

in Chapter IX. When conductivity of the dielectric is not zero, the 

wave equation, derived from MaxwelFs equations, must include 7. 

Assuming a sinusoidal function of time we write, instead of ecjuation 435, 

V^Eo = (—+ jo)ny)Eo 

The wave-guide solution continues from this ecpiation, paralleling the 

solution for waves in the lossless giiidc, except that we find 

r2 = - -) 

The real part of T is a. We introduce (as in Chapter IX) the power 

factor of the dielectric as the most convenient practical measure of loss. 
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and from a binomial expansion of F there results, as a good approxi¬ 

mation of attenuation owing to dielectric loss, 

CJ\/fi€ 

a — --^ X (power factor) 
2G 

This gives a in nepc^rs per meter for any mode or guide. For decibels 

per meter, multiply by 8.G8G. 

Attenuation owing both to imperfect conduction of guide walls and 

to imperfect dielectric material is the sum of the two component at¬ 

tenuations. The a’s may be added either as nepers or as decibels per 

meter. 

Guides and Lines. Current in the cylindrical guide for the TEq^i 
wave circulates around the guide. There is no axial component of 

current along the guide. Tliis seems queer to one accustomed to think¬ 

ing of a transmission line as a means of conveying current. But when 

we consider that current flows in a guide or line only for the purpose of 

providing a boundary for the electric and magnetic Gelds, a new con¬ 

cept results. 

From this point of view, the conductoi's of all wave guides and trans¬ 

mission lines are for the purpose of carrying charge and current to ter¬ 

minate the Gelds and to permit the existence of waves which, being 

guided, do not spread their energy uselessly through space. This con¬ 

cept can be extended, indeed, to all electric wiring, the purpose of 

which is to guide energy in the magnetic and electric Gelds—current 

being incidental. 

Although a conducting surface is the best wave guide, it is not the 

only possible kind. A dielectric surface will also serve as a boundary 

for certain types of waves. The discontinuity between material of high 

dielectric constant and low dielectric constant makes it possible to con- 

Gnc a wave within the material of high constant. The practical ob¬ 

jection to the use of a dielectric wave guide is that the loss in all known 

dielectric materials is too great for satisfactory wave transmission. 

The most suitable wave guide for any particular application depends 

on the conditions and particularly the frequency. At power frequency, 

the parallel-wire transmission line is the best guide. At high radio 

fre(piency, the concentric-conductor line is more desirable, for, although 

more expensive to build, it has negligible radiation loss. Hollow wave 

guides are easier to construct and to use at the frequencies of centi¬ 

meter and millimeter waves, and they work well with certain types of 

tubes, cavity resonators, horns, and highly directional radiators. There 

is no doubt that all three types of wave guides will continue to be used. 
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PROBLEMS 

1. A wave following a concentric transmission line, in which one conductor is a 

solid cylinder and the other a coaxial hollow cylinder, may be described in the empty 

space between the conductors as 

tjQ CO 

Er = — sin - (z — vt) 
r V 

E$ = Ez ~ 0 

(а) This wave can exist only if the electric field has no divergence, and if it is a 

solution of the W'ave equation, equation 435. Determine whether these conditions 

are satisfied. 

(б) From Maxw’ell’s equations, determine the magnetic field of this wave. 

(c) Find the current in the inner conduc'tor, assuming perfect conductivity. 

Show that this current provides a projKT boundary for both the electric and magnetic 

fields. 

(d) Find the Poynting vector field. 

(e) Find the velocity of the wave if the space between conductors is filled with 

oil, as in a power cable, of dielectric constant 2.17. 

2. Relate the group velocity of a wave in the hollow rectangular guide of Fig. 00 

to the angle between the paths of the elementary wave components and the axis of 

the guide. Call this angle a. 

3. Find the angle a of Problem 2 in terms of the wavol(*ngth of the elementary 

wave component and the dimension b of the guide (see Fig. 75). From this derive 

equation 426. 

4. Find the phase velocity from Fig. 76, and show that it may be expres.s('d as 

equation 427. 
5. A w'ave enters a wave guide with the form E =* 7?,„(sin wt -f 3 sin 3aj/). Plot 

the shapt^ of the wave as it (mters, and as it pas.s(*s various jxjsitions along thc^ guide. 

The cut-off frequency of the guide is half the freciuency of the fundamental compo¬ 

nent of this voltage. Neglect attenuation. 

6. Show that the div(?rgence of the electric field descrilx‘d by equation 42t) is 

zero in the space within the gui<le. 

7. (a) Show that the divergence of the magnetics field of ofiuation 434 is zero. 

(6) Prove that the divergence of anj/ magnetic field given by Maxwell’s e(iuation 

193 w ill 1x3 zero. 

8. In footnote 1, page 105, V • i = — Op/Ol is derived from equations 240 and 

115. Show that this expression can 1m3 dcnluced, insteafl, from the definition of cur¬ 

rent density in t(!rms of charge ancl can tlum 1k3 combimul with eciuation 240 to 

derive equation 115 for all non-static field.s. 

9. Derive equation 452 from equation 435, })aralleling the derivation of equation 

451 in the text. 

10. Expre.ss K2 and K3 in equations 456 in terms of the constants of equations 

452 and 453. 

11. Derive equations 459, asing Maxwell’s equation as suggested. 

12. A hollow guide is 5 centimeters square. Plot the factor U (Table VIII) for 

the TEi,o mcxle for frequenci(*H from zero to cut-off, arul from cut.-off to 5 times cut-¬ 

off. Compute the cuLoff frequency. 
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13. Show from the general equations that the rectangular TAfi,o and TMo,i modes 

cannot exist. 

14. A hollow guide is 5 centimeters square. What is the cut-off frequency for 

each of the following modes: TEi^] TE\,\\ TM\Xy TM\,2^ 
15. How dotis the rectangular TEm,n mode differ from the TEn,m mode? 

16. Sketch the TEi,2 mode in a square guide, as other modes are shown in Fig. 79. 

17. Sketch the ve(;tor fields of current den.sity in the guide walls for the following 

rectangular mo(h‘s: TEo,\', TEix Til/i,i. Indicate the relative positions of current 

density and electric and magnetic fields. B(icause of symmetry, the currents in 

any two p(‘rpendicular walls will be enough for each mode. 

18. A hollow guide is 5 centimeters square. The TEi^o mode is excited in the 

guide at fnupK'ncies as follows: (a) 00 per (‘(‘iit of cut-off; (b) 80 per cent of cut-off; 

(c) half cut-off. At what distance along the guide is the signal strength reduced to 

1 per cent of the excitation? 

19. Using tables of Btis.s(d functions, show that the tangential electric field is zero 

at the wall of the guide in the four cylindrical modes of Table IX. 

20. A hollow cylindrical guide is 5 centimeters in diameter. Find the cut-off 

frequency for each of the four modes of Table IX. Compare with results of Problem 

14. 

21. Compare the meaning of G in Table VIII and Tabic IX. 

22. The signal fnKjuency in a 5-centimeter square hollow copper guide is 4000 

megacycles ikt second. It hap{xms that both the TE],o and the TEi^i modes are 

excited. Compan* the ‘‘reactive” attenuation of the TEi,\ mode with the dissipa¬ 

tion attenuation of the TEi,q mode which may be approximated from Fig. 82. 

23. The guides of Problem 22 is filled with polystyrene for which (in this frequency 

range) k = 2.50 and tlu* power factor is 0.0008. \Miat is the additional attenu¬ 

ation of the 4000-megacycle signal in the TEq,i mode resulting from dielectric 

loss? Compare to this the attenuation resulting from guide resistance, as found in 

Problem 22, noting however that the latter is only an approximation for the die¬ 

lectric-filled guide. 
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Waves in the Ionosphere 

Group Velocity and Phase Velocity. The difference between group 

and phase velocity in a wave guide can be explained in terms of elemen¬ 

tary^ waves traveling with continual reflections. The wave guide is a 

special case, however, and it is not usually possible to account for group 

and phase velocity on the basis of 

component waves. The general con¬ 

dition is this: If the velocity of prop¬ 

agation of waves depends upon the 

wavelength, group velocity will differ 

from phase velocity. 

The most familiar illustration is 

found in waves that spread over the 

surface of water. If a stone is 

dropped into a (luiet pond, a band of 

concentric cire.ular ripj)les will travel 

outward from the point of disturb¬ 

ance. There will be a number of 

waves in the group, as in Fig. 83: 

the waves near the middle of the 

group will have the greatest arnplitiide, and the inner and outer waves 

will be vanishingly small. If one watches tlui wavers with care, the in¬ 

dividual waves will be seen to travel faster than the group as a whole. 

A wave will appear at the inner circumference of the band and will 

gain amplitude as it moves outward, while other waves appear, one by 

one, behind it. After the wave has passed the middle of the band of 

waves, however, it will diminish in amplitude, until it becomes the 

outermost wave and finally vanishes. The individual wave moves with 

phase velocity; the band of waves moves with group velocity. 

In Fig. 84, a cross section of such a band of waves is shown. It is 

indicated in the diagram that the band can be considered as the sum of 

two waves of constant amplitude but slightly different frecpiency 

(This obviously corresponds to the analysis of a modulated radio wave 

228 
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into carrier frequency and side bands.) Two of the crests of the wave 

of shorter wavelength are marked 1 and 2; two crests of the wave of 

greater wavelength are marked a and h. The crests 1 and a coincide 

at the instant for which the diagram is drawn, and they add to give 

the greatest of the crests in the resultant wave, marked I. The position 

of the group of waves (that is, the position of the dotted envelope) is 

given by the position of this maximum crest. 

Now assume that the wave in Fig. 84 is traveling from left to right, 

and that the nature of the medium is such that long waves travel a 

little faster (phase velocity) than short waves. At a slightly later 

From Franklin ami Tcrnian 

Fig. 84 

instant of time, crest h will overtake crest 2. When this happens, crest 

a will have moved on beyond crest 1. Consequently, at this later 

instant (all waves having moved a considerable distance toward the 

right), the crest marked II will have become the ma.ximum and central 

crest of the resultant group. Thus, the center of the group of waves 

will have moved a lesser distance to the right (less by one wavelength) 

than the component waves of Fig. 84. The speed of the group of waves, 

known as group velocity, is therefore less (in this instance) than phase 

velocity. 

Mathematically, the phase velocity of a wave is 

0) 

as in Table III. The group velocity is 

do) 

[46G] 

[467] 

Therefore if the phase constant, can be expressed as a function of 
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frequency and differentiated, the group velocity can be obtained.^ By 

this means, equation 426 which gives group velocity in a wave guide 

can be obtained from phase velocity in equation 427 or 432. 

Application of this formula to water waves shows that the phase 

velocity is twice the group velocity (if the waves are large enough to be 

independent of surface tension), as follows. 

The phase velocity of water waves is known to be 

-i- = ^ 

2irf 0) 
[472] 

where g is acceleration due to gravity and / is frequency 

It will be seen that high-frequency waves are propagated 

From equation 466 
9 

(j) 

v<t> g 
and differentiation gives 

dp 2a; 

of the wave, 

more slowly. 

[473] 

whence 

do) g 

Vg 
do) g \ 

(iff 2o) 2 
[474] 

as stated above. 

‘ Derivation of equation 467 follows. Describe the two waves of Fijj;. 84 as 

A — ^ ^fi)z\ [468] 

This defines a wave of two components of equal amplitude, but differing slightly in 

frequency and in the value of d- Rearranging Unins: 

Recognizing the quantity in brackets as twice the cosine, and identifying the real 

part of the final exponential as a casine: 

A 2M cos (Awf — A^x) cos {U — fix) [470] 

This is the product of a traveling wave of low frequency (the envelope) and a travel¬ 

ing wave of high frequency (the carrier). The carrier fretjuency is the average of 

the frequencies of the two component waves. The velocity of this high-frequency 

carrier wave, which is phase vehs^ity, is oj/fi. The envelofx* frequency is half the 

difference; between the frequenci<;s of the two component waves. The velocity of 

the envelope is Aw/A/3. The group velocity is the limit of the envelojx; velocity as 
Ao) becomes small: 

Aco du) 
Vg ~ lim ~ 

A^ dfi 
14711 
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It must be understood that, when the wave motion is sinusoidal and 

steady, group velocity is not apparent. There are no groups; only in¬ 

dividual waves can be observed, and they travel with phase velocity. 

If two frequencies are present, as in the illustration of Fig. 84, or three 

frequencies, such as the carrier and two side frequencies of a steadily 

modulated wave, the situation is fairly simple. However, in a transient 

disturbance, such as the ring of waves that results from dropping a stone 

into water or the short section of radio wave released as a telegraphic 

dot or dash, all frequencies are present. The result is then exceedingly 

difficult to analyze,^ although it is qualitatively similar to the simple 

case. 

To the electrical engineer, the most familiar variation of velocity 

with frequency is on a transmission line with losses. If the resistance 

and leakage losses are not proportioned to give the “distortionless^^ 

condition, phase velocity of waves will be less than on the same line 

without losses. The phase velocity of low-frequency waves will be less 

than the phase velocity of high-frequency waves. Group velocity can 

be computed from phase velocity. On an ordinary transmission line, 

group velocity will always be greater than phase velocity.® 

Another example of variation of phase velocity with frequency is 

the propagation of light through transparent material. In glass, for 

example, high freciueiicies (blue light) travel more slowly than low 

frequencies (red light). One result of this action is the well-known 

dispei’sivc elTect of prisms. Phase and group velocities are both less 

than the specxl of light in free space, and except in special cases the 

group velocity is less than the phase velocity. 

Phase velocity of radio waves in the ionosphere is dependent upon 

freciuency. The effect, in this case, results from vibratory motion of 

electrons in the ionized layer and reradiation of energy in different 

phase. The net result is a phase velocity greater than the velocity of 

light, and group velocity le.ss than the velocity of light. The group 

velocity can be (piite low, and this is believed by some to account for 

the occasional obser\’ation of signals that reach a radio receiving sta¬ 

tion as much as several seconds later than they would have arrived if 

they had been propagated at the speed of light in free space. 

The Ionosphere. The ionosphere is a region above the surface of the 

earth in which there are considerable numbers of free electrons and 

ionized molecules. The ionization exists in fairly well-defined layers 

at about 100 kilometers, 200 kilometem, and higher, varying between 

*Scc, for instance, Cowmmiicafimi Networks^ Volume II, E. A. Guillemin, John 

Wiley & Sons, New York, 1035. 

• See E. A. Guillemin, loc. cit. 
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day and night and from season to season. Radiation from the sun is 

believed to be the cause of ionization. Radio waves reaching the iono¬ 

sphere are reflected back to the surface of the earth if they do not ex¬ 

ceed a critical frequency. The critical frequency for a wave approach¬ 

ing the ionosphere obliquely is greater than that for a wave rising ver¬ 

tically from the earth and approaching the ionosphere at normal inci¬ 

dence. There are no precise boundaries to the ionized layers; the ioni¬ 

zation increases from a negligible value to maximum through a distance 

of kilometers; radio waves therefore penetrate more or less deeply into 

the ionosphere and are affected by the presence of ionization, even 

though they are finally returned to earth. 

The ionosphere does not reflect electric waves in the same manner as 

a metallic conductor because, first, the number of free electrons in the 

ionosphere is relatively limited, and, second, the ionosphere electrons 

are comparatively free to move without interference. An important 

factor in the behavior of a wave in an ionized region is the number of 

electrons per cubic meter. (Ions other than electrons might be con¬ 

sidered in the same analysis; practically, however, experimental data 

show that most of the effect of the ionosphere is the result of free elec¬ 

trons, and this is to be e.xpected because of their much greater mobility.) 

When a radio wave passes an electron, the electric field of the wave 

exerts force on the charged electron, as on any charged body. The 

electron moves in response to the force, and as the electric field alter¬ 

nates during the passage of the wave the electron vibrates. Motion of 

the electron constitutes current, which in turn affects the propagation of 

the wave. 

If the vibrating electron collides with molecules of air it wastes en¬ 

ergy, but if it is free to vibrate without collisions there will be no energy 

dissipation. In the higher levels of the ionosphere and at high radio 

frequency, an electron may vibrate many times without a collision. In 

lower levels where the air is denser and at freciuencies as low as standard 

broadcast frequency, loss may be quite important in attenuating the 

wave. 

Since a moving electron is an electric current, it will have force exerted 

on it by magnetic fields. The effect of the magnetic component of the 

passing wave is too slight to require consideration, but the earth’s mag¬ 

netic field has an appreciable effect; the main result of the earth’s field 

is to introduce new components of polarization into the wave. 

If all effects are considered, the behavior of a wave in the ionosphere 

is rather complicated. The basic principles of ionosphere action arc 

best shown by making certain simplifying assumptions. Fortunately, 

the assumptions to be made are very gocxl approximations for a wide 

range of practical operation. 
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Waves in an Ionized Region. Let us consider an ionized region in 

which there is so little air that electrons may vibrate without colliding 

with molecules, and let us neglect the earth's magnetic field. An elec¬ 

tric wave is passing through the region; it is sinusoidal: 

E = Eo [475] 

The mass of an electron is m and its charge is q (the more usual sym¬ 

bol e is used with another meaning). Mass times acceleration equals 

force, and, if the E is polarized along the X axis, 

d^x 
^ [476] 

dt“ 

Substituting eejuation 475 into 476 and integrating once, 

(Px 
^ ^ = ql^ox 

dr 

dx q 

di jicin 

[477] 

[478] 

This first derivative dx/dt is velocity of electronic motion. If there arc 

N electrons per cubic meter, each having a charge of q and each moving 

with the velocity of ec[uation 478, they provide a current density of 

More generally. 

t, = Nq^E, 
j(j)m 

[479] 

[480] 

This electron current is out of phase with the electric field that pro- 

diK^es it, and this is the chief difference between current that flows in 

the ionosphere in response to a passing wave, and current in any solid 

conductor. In a metal, motion of the electrons is limited by the re¬ 

sistance of the material; in the ionosphere, with the air density so low 

that collisions with molecules can be neglected, motion is limited only 

by the inertia of the elect rons, and the velocity of the electrons is con¬ 

sequently out of phase with the driving force. 

Various short-cuts are possible in deriving equations of wave propa¬ 

gation in an ionized medium, but it seems worth while to go all the way 
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back to Maxwell's equations as a logical starting point. Introducing 

equation 480 into Maxwell’s equations: 

VxH = i + 
aD 

dt 

jNq\ aE 
•-b 4" c — 

ijom dt 

aB an 
V X E =-= —/i — 

dt dt 

[481] 

[482] 

We assumed a sinusoidal electric field in eciuation 475. Since relations 

between the electric and magnetic fields and current are all linear, it 

follows that H will be sinusoidal, also: 

H = Ho [483] 

These expressions in Maxwell’s eciuations give 

V X Ho = f - -- -f- Eo [484] 
\ <j3m / 

V < Eo = ->mHo [485] 

Solving as usual, we take the curl of equation 484. The identity 

VxVxH = V(V-H) — V“H is used, noting that the divergence of the 

magnetic field is zero. Thus 

Vx VxHo = -V^Ho = (- 
\ / 

Using equation 485: 

V^Ho = 

For convenience we shall write 

(VxEo) [480] 

(i-4^)ho [487] 

and, when this symbol is used, equation 487 becomes 

V^Ho = r'Ho 

[488] 

[489] 

which is the familiar wave equation.' 

Let us discuss a specific wave. We may select a polarized plane wave 

defined by 

Hu Hoy e’"' //» = H, = 0 [490] 
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See Fig. 85. When this wave is used in equation 489, it becomes: 

[492] 

The solution of this simple differential equation may * be 

Hoy = //„. e-’’* or IIy = //„ 

Now we find the curl of H, and from equation 484 we write: 

dlly 

dz 

r2 
THy = - Ex 

[493] 

[494] 

Vector into Page 

Fig. 85 

This tells us that is a wave similar to Hyy and may be written 

[495] 

Also, if the intrinsic impedance is defined by Ex = V^yi have from 

eejuation 494, 

It will be recognized from the wave equation that T is the propagation 

factor for a wave in an ionized region. It is either real or imaginary; 

it cannot be complex. If it is imaginary, the wave is undamped and 

travels with undiminished amplitude. Writing F = the phase con¬ 

stant is 

[497] 

* The sign of V may equally well be positive in 493, giving a wave traveling in the 

opposite direction. 



236 WAVES IN THE IONOSPHERE 

If the density of ionization is vanishingly small, the phase constant re¬ 

duces to P — as in a perfect dielectric medium. For larger 

values of Ny j8 is less, and a critical value of N will make zero. 

If, on the contrary, P is real, there will be no wave propagation in the 

ionized medium at all, for equation 495 does not describe a wave unless 

r has at least a component that is imaginary. With a real value of P, 

equation 495 describes a pulsation that is everywhere in phase, dimin¬ 

ishing with positive values of z. This implies that, if a region is so 

heavily ionized and the frequency of an electric disturbance is so low 

that 
cci^em 

> 1, the disturbance will produce not a wave but merely a 

local field that vanishes exponentially with distance. 

Velocity. It is remarkable to find that the vibration of electrons in 

an ionized region has the effect of increasing the j)ha.se velocity. We 

have, from equation 497, 

CJ 
[498] 

If N is zero, this gives the usual phase velocity in a dielectric. With 

increasing values of Ny the velocity is higher, and, as the critical value 

is approached beyond which wave propagation is impossible, the phase 

velocity approaches infinity. 

Group velocity of such a wave, however, is less than in a perfect di¬ 

electric. Knowing that Vg = do)/dPj the group velocity is easily found. 

From equation 497 

whence 

[499] 

[500] 

Since any ionized region in which electrons vibrate freely can hardly be 

imagined to have permeability or dielectric constant differing appreciably 

from free space,* n and e in equations 498 and 500 might well be written 

‘ Perhaps it should be emphasized that m and t have their ordinary meanings in 
/ Nq^ \ 

this derivation. Some authors assign a fictitious value of e I 1-n— ) to the 
\ em/ 

dielectric constant of an ionized region in order to take intx) account the action of 

the electrons; such a value is less than i, which accounts for the higher phase velocity. 
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juo and eo. This is certainly true in the ionosphere. Remembering that 

the velocity of a plane wave in free space is c = l/V^^, phase and 

group velocities can be written: 

c 

It is interesting to notice that 

[502] 

Intrinsic Impedance. The intrinsic impedance of an ionized medium 

is given in eejuation 496. This intrinsic impedance is greater than that 

of an un-ionized region for any value of N less than the critical value, 

indicating that a wave has a relatively weak magnetic field in compari¬ 

son with its electric field. For N greater than the critical value, rj is 

imaginary, showing that the electric and magnetic components of the 

field (not, in this case, a wave) are then out of phase. 

Normal Reflection. If a radio wave arrives at a layer of the iono¬ 

sphere in whi(4i ionization is so dense that the wave cannot be propa¬ 

gated, what happens to the energy of the wave? The energy does not 

pass through, for no wave is transmitted; energy is not absorbed by the 

ionized layer (neglecting collisions of the vibrating electrons with gas 

molecules); hence energy must be reflected. 

This is, indeed, what happens. If a wave is sent vertically upward 

from the earth, it approaches an ionosphere layer at normal incidence; 

it penetrates the lower regions of the layer in which ionization is in¬ 

creasingly more dense, traveling with increasing phase velocity and de¬ 

creasing group velocity as the height of critical ionization density is 

approached. Above the critical level there is not wave propagation, 

but a pulsing field that vanishes at greater heights. 

The “virtual height” of the ionosphere is found experimentally by 

measuring the time required for pulses of waves to travel upward from 

the surface of the earth to the ionosphere, and down again after reflec¬ 

tion. Dividing half the time by the velocity of waves in free space 

gives the “virtual height.” This is not the true height of the level at 

which N has its critical value but somewhat greater, because the ex¬ 

perimental p)ulscs travel with a group velocity less than c while travers¬ 

ing the lower layers of the ionosphere, just before and after reflection. 
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Virtual height and true height of reflection both depend on frequency; 

low-frequency waves are reflected from the lowest levels, whereas centi¬ 

meter waves penetrate all layers of the ionosphere and pass out into 

inter-planetary space. Radar signals that have been received after re¬ 

flection from the moon had to be rather high-freciuency waves to pass 

through the earth’s ionosphere. 

To find whether radio waves will be reflected by the ionosphere if the 

electron density is known, we may use eciuation 488. It was seen that 

upward propagation fails, and hence there is reflection, if 

Nq" 
> 1 [503] 

ITsing the charge and mass of the electron (1.60 X 10~'^ coulomb, and 

9.11 X 10~^^ kilogram), it is found that there will be reflection of a 

wave rising vertically if the fretpiency is less than the critical frequency: 

/ = 9.0 VV [504] 

Frequency ® is in cycles per second; N is electrons per cubic meter. 

Oblique Reflection. Radio waves commonly approach the iono¬ 

sphere at an oblique angle, rather than at normal incidence. It is 

usual to discuss the travel of such a wave in terms of refraction, using 

as index of refraction the ratio of the velocity in free space to the phase 

velocity in the ionosphere. This is consistent with the usual definition 

of the index of refraction in optics, and with eejuation 3G0 in Chapter X. 

Thus 

C I W r 1 
Index of refraction = -— = -v I--— [505] 

^ o)^€m 

Then the ionosphere is looked upon as a region of varying index of re¬ 

fraction, in which an oblique wave follows a curbed path; the radius of 

curvature is determined from the rate of change of index of refraction. 

A ray is turned back to the earth, as in Fig. 86, much as a light wave 

or a wave in a dielectric guide may be trapped by total reflection, un¬ 

able to pass obliquely from a region of higher to a region of lower index 

of refraction. Equation 505 shows that the index of refraction of the 

ionosphere is less than the index of refraction of free space (which, by 

definition, is 1). 

A simpler mental picture results from considering that phase velocity 

is greater in the ionosphere. Referring again to Fig. 86, think of the 

•Note that if N i.s used as electrons p<T cu!)ic centimeter, / will l)e frequency in 

kilocycles. 
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upper edge of a wave crest traveling faster than the lower edge because 

of being in a more highly ionized region. The wave will be turned back 

to earth again, as shown. 

These concepts of ‘‘refraction’’ in the ionosphere are just other ways 

of looking at the same phenomenon that was also called “reflection.” 

The phenomenon, whatever it is called, results from transfer of energy 

of the incident wave to the vibrating electrons of the ionosphere and re¬ 

radiation of energy l)y the electrons in such a way as to give a new wave 

pattern that may, in various cases, be interpreted as reflection or re¬ 

fraction or mere change (jf speed. 

PROBLEMS 

1. Dorivc tlu’ group velocity in an ionized region, equation 500, from equation 

497. Show steps of diffen'iitiation that an' omitted in the text. 

2. What factor in ecpiations 498 and 500 is analogous to the guiile factor (7 of 

Chapter XIH? (S<‘c Tabic VIII.) Di'fine such a factor, which may be called Gi 

and write eciuations 488, 490, 497, 4t)8, 500, and 501 in terms of Gi. Compare with 

similar equation.s in Tables VIII and IX. 

3. A.s.suming that electron density is zero up to some level above the earth and 

for greater heights is proportional to distance above that level, plot group velocity 

and phase v(‘loeity of a vertically traveling wave as functions of height. Plot from 

= 0 to the critical value of N. 

4. Design a tapered wave guide (TE\^o rectangular mode) to have the same 

and Vg as functions of distance of trav(*I jus were plotted in Problem 3. Will thei*e 

1h^ reflection in such a guide corresponding to reflection of a vertically incident wave 

from the ionosph(‘re? 

5. A wave in free sj)a(’e .suddenly (in a small fraction of a wavelength) enters an 

ionizt'd region in which N is 0.8 of the critical value. Treating this as a problem of 

reflection of a wave at normal incidi'nce, find the reflection factor. Explain why 

this is not typical of the ionosphere. 

0. If an ionized n'gion contains an equal number of electrons and positively 

chargisl hydrogen ions, with <‘qual amount of charge but 1838 times jvs heavy, 

what fraction of tlu^ total current produced by a passing radio wave will result from 

vibration of the electrons? Will electron current and ion curivnt add or subtract? 
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7. Following are values of critical frequency, above which there is no normal 
reflection, as ol)served at different hours of a winter day at a time of the sun-spot 
cycle corresponding to relatively intense ionization. These are for reflection of a 
wave vertically incident on the h\ layer of the ionosphere. Find and plot the maxi¬ 
mum electron density in the reflecting layer throughout the day. Local time is 
given; sunrise was about 7:30 a.m. 

Hour Critical Frequency 

Oocal time) (megacycles/second) 

Midnight 5.0 
4 4.8 
6 4.2 
8 8.0 

12 11.8 
16 9.0 
18 7.8 
20 6.1 
24 5.0 
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