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PREFACE 

The need for understanding and analyzing electrical transients 

is becoming indispensable in the improvement of existing elec¬ 

trical devices and systems, and especially in the development of 

many of the forthcoming advances in the electrical field. To 

fill this need, electrical engineers are finding it necessary to equip 

themselves with means for recognizing and solving technical 

problems in transients. 

Ultimately, a powerful and general method of transient 

analysis' is the only satisfactory tool, because a method that is not 

general fails in many instances and sometimes leads to erroneous 

results. Several fairly general methods of transient analysis 

exist at present, and they are continually being broadened and 

improved upon. Because most of them involve mathematics 

that is often unfamiliar, they are not accessible without the 

exertion of considerable effort. This is rather unfortunate, but 

transient analysis is inherently a complicated mathematical 

subject. Nevertheless, it is possible to proceed to some extent 

into the subject of transients without introducing new concepts 

and new methods. Such a penetration cannot be too deep before 

it becomes clear that a more powerful approach is required. 

It is the purpose of this book to analyze transients in mathe¬ 

matical terms that are familiar to most electrical engineers and 

engineering students in order to set the stage for a more advanced 

study of the subject. This is done by the exclusive use of the 

classical method which employs conventional differential 

equations only. Admittedly, the classical method is limited in 

its applications; nevertheless, it has utility in many practical 

instances. Those who study this book should be conscious of 

its scope and intent. Among the principal things to be gained 

are 

1. A feeling for the distinction between transient and steady- 

state network behavior. 

2. An understanding of the underlying factors governing the 

transient behavior of networks. 
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3. A familiarity with the interpretation of mathematical 
results in terms of the phenomena that they describe. 

4. A method of analysis which is applicable to a variety of 
networks and which does not involve unfamiliar mathematical 
concepts. 

5. A realization of the limitations of the classical method and 
an appreciation of the need for a more powerful method. 

This book deals with fundamentals, and little emphasis is 
placed upon practical applications except in the last chapter. 
The results should be useful to both power and communication 
engineers since many of the transient problems are fundamentally 
the same in the two related fields. The problems at the end of 
each chapter are not “practical” problems. They are primarily 
exercises that illustrate fundamental principles and should help 
the student to obtain a firmer grasp of the ideas. 

It is hoped that undergraduates in their junior or senior year 

will find that this book offers interesting and useful applications 
of differential equations to electrical problems. The material 
presented can be used as a foundation for a one-semester course, 

can supplement an elementary course in differential equations, 
or can form the first portion of a comprehensive course in general 
transient analysis. 

Without the constant help and inspiration of the authors wife, 
Gilda, this book could not have been written, and her efforts 
are gratefully acknowledged. In addition, thanks are due to 
Messrs. James E. Shepherd, Walter Selove, and Melvm B. 
Gottlieb, who offered invaluable suggestions after examining the 
manuscript. The oscillograms were obtained through the 
courtesy of the Sperry Gyroscope Company. 

Ernest Frank. 
Hempstead, N.Y., 

Jvly, 1945. 
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PULSED LINEAR NETWORKS 

CHAPTER I 

INTRODUCTION 

Electrical-network theory is one of the most necessary and 
one of the most frequently used tools in electrical work. A large 
portion of this theory is devoted to electrical networks that are 
in steady operation; i.e.} in which voltages and currents are 
either invariant with time or are varying in a periodic or regular 
manner. This is well, because the study of the behavior of 
many networks under steady operating conditions is of great 
utility. Another classification of network theory is that which 

applies to networks in which the voltages and currents are 
variable in a nonperiodic manner; or, in other words, in which an 
irregular or transient state exists in the network. This behavior 
is also of interest and has practical significance. In general, if a 
network changes from one steady operating condition to a 
different steady operating condition, a transient state exists 
during the change and becomes nonexistent when the new steady 

state is reached. Quite often the transient is not desired, but in 
numerous cases the transient behavior is used to good advantage. 

The analyses in this book deal with the transient behavior of 

networks. It should be recognized from the outset that this is a 
rather confined subject. The manner in which the network 
operation undergoes a transitional change depends upon the 

particular network and upon the causes of the change. Conse¬ 
quently, any theory that attempts to be general must of necessity 
be exceedingly complex. To avoid this complexity, the theory 
presented in this book is confined to one particular kind of driving 
force, a rectangular pulse voltage, which produces the change in 
network operation. 

TRANSIENTS AND TRANSIENT ANALYSIS 

Before discussing the methods by which transient-network 
operation can be analyzed, it is well to become familiar with 

1 



2 PULSED LINEAR NETWORKS Chap. I 

transients and to find a suitable definition of both transient and 
steady-state operation. A few simple illustrations will serve 
this purpose. 

1. Examples of Transients.—The simple act of turning on an 
electric light with a switch is an exceptionally good example 
for study. Until the time that the switch is moved, the bulb 
is dark and emits no light. After the switch is thrown, light 
appears immediately as far as human perception is concerned. 
The bulb has passed from one steady state of operation to a new 
steady state of operation almost instantaneously. In this case, 
the transient state goes unnoticed and for most practical purposes 
is unimportant. However, a finite time must elapse between 
the instant the switch is moved and the instant the light appears, 
and the fact that human perception fails to identify the transi¬ 
tory state is no assurance that it does not exist. In this small 
time interval: the switch is moved, the switch mechanism 
responds and makes an electrical contact, current begins to 
flow through the bulb filament, and the filament heats up until 
it emits light. This succession of events takes time and deter¬ 
mines the operation during the brief transition period. 

An additional transient that is perceptible to the human 
senses is also started when the light switch is thrown. The 
bulb is cool, say at room temperature. After the switch is 
thrown, the bulb begins to get warm and after an appreciable 
time can become uncomfortably hot. If no air circulates in 
the room, the bulb will ultimately reach an equilibrium or 
steady-state temperature that will be different from its tem¬ 
perature before the switch was thrown. Thus a lapse of time 
is necessary to pass from one steady temperature to a new steady 
temperature. During this time the bulb temperature is changing 
in a nonrepeating manner. 

Returning to the light emitted by the bulb, which reaches 
steady intensity almost instantly, assume that the current 
causing the filament to emit is alternating current. In this 
case, even though a steady operating condition has been reached, 
the light is actually pulsating at a regular rate, though the 
pulsations are not ordinarily perceptible. If the alternating 
current is of low enough frequency, the pulsations become 
noticeable, for instance, when the frequency is about 25 cycles 
per second. Hence, it can be seen that a steady state of opera- 
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tion is possible even when variations are occurring. The 

important point is that these variations are regular and recurrent, 

as distinguished from a transient condition of operation where 

the variations are nonrepeating. 

To carry this example further, suppose the light switch 

is turned off. The light subsequently goes out almost immedi¬ 

ately, although human perception may in this instance lead 

one to believe that the light remains for an appreciable length 

of time. This is because the retina of the human eye has certain 

properties of retention—also a transient or fleeting phenomenon. 

A finite time is required for the bulb to stop emitting light* 

i.e., the filament must become cool enough to stop emitting 

light. Also, a finite and longer time is required for the bulb 

temperature to recede to room temperature once more. Thus, 

in turning a light on and then off, there are two distinct transients 

and two distinct steady-state operating conditions. 

Suppose the time between switching the light on and then 

off is made so short that the bulb never attains its higher equi¬ 

librium temperature. In this instance the steady-state temper¬ 

ature during the time that the light is on is never reached. 

Nevertheless, there is a hypothetical steady-state temperature 

that may be predicted if enough facts are known. 

There is another type of transient that might more aptly 

be called a disturbance. This type of transient is fundamentally 

the same as in the case of the electric light, but here both the 

initial steady-state and final steady-state conditions are the 

same. For this reason the transient condition usually can 

be readily distinguished from the steady condition. There 

are numerous examples of this type of transient. For instance, 

suppose a man is going to dive into a swimming pool from a 

springboard. Before he goes out on the board, it is at rest at 

a certain angle with respect to the water surface. When the 

man runs to the end of the board, it is displaced. As the man 

goes into the air, the board vibrates up and down with diminish¬ 

ing amplitude and finally comes to rest in its original position. 

This vibration is repetitive in a sense, but it is not periodic 

because of the diminishing amplitude of vibration. It is, 

therefore, a transient. Another transient of the same type 

occurs on the water surface. Assume that the water surface 

is smooth before the man hits. When he hits, a splash occurs 
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and waves are set up. The surface of the water eventually 

returns to an undisturbed state after the man has climbed out 

of the pool. 

2. Characteristics of Transients.—There are certain signifi¬ 

cant similarities in both the electric light and the diving examples. 

These similarities are 

1. The steady or prevailing condition is either invariant with 

time or a regular periodic function of time. 

2. The transient or transitional condition is varying with time 

in a nonrepeating manner and is not periodic. 

3. The steady-state condition, which can exist after the 

transient condition becomes negligible, is not necessarily always 

attained. In the case of the electric light the switch could be 

turned off before the bulb became very warm, and in the case of 

the diving board, other divers could follow the first and keep 

the board in continual motion, thus forestalling the steady 

condition of no motion. 

4. The steady-state and transient conditions depend upon 

certain tacit assumptions. In the case of the light bulb it 

was assumed that the bulb would not burn out, that the line 

voltage was steady, etc. The diving-board example assumed 

that the man was not so heavy that he could produce a permanent 

displacement of the board or that, even worse, he could crack 

the board in diving. Either of these eventualities would cause 

the steady conditions after the dive to differ from those before the 

dive and would also affect the vibration of the board. Sim¬ 

ilarly, it was assumed that the water level in the pool did not 

change. All of these assumptions are hidden and for that 

reason are dangerous. In the electrical cases to be treated the 

necessary assumptions will be stated beforehand to avoid any 

pitfalls. 

5. In each of the examples given the transient was caused 

by a sudden change. In the case of the electric light, the switch 

was suddenly turned on. In the diving example, the man 

exerted a sudden impact on the springboard. When a transient 

is produced by this type of disturbance, the nature of the tran¬ 

sient is governed by factors that are not dependent upon the 

disturbing force. For instance, in the electric-light case the 

transient behavior depends upon the characteristics of the light 

filament, room temperature, etc. In the diving example the 
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vibration of the board depends upon its means of support, 
characteristics of the wood, etc. Thus the nature of the transient 
is ruled by factors other than the disturbing force. Neverthe¬ 
less, this type of disturbing force can affect the magnitude 

of the transient, even though it does not influence its nature. 
The magnitude of the transient depends upon the line voltage 
in the electric-light example, while the magnitude of the vibra¬ 
tion in the diving example depends upon the initial impact. 

In view of the foregoing examples it is possible to define 
steady-state and transient operation of electrical networks. 

Steady State.—An electrical network is operating under steady- 
state conditions when all voltages and currents in the network 
either are invariant with time or are periodic functions of time. 

Transient State.—An electrical network is in the transient 
state when not in the steady state, in other words, when the 
voltages and currents in the network are variant in a nonrepeating 
manner. 

The distinction between transient and steady-state operation 
in some networks is not sharp. However, when a single disturb¬ 
ing force is considered, the two states of operation are usually 
clearly distinguishable. 

3. Transient Analysis.—There are a number of methods by 
which networks can be analyzed for their transient behavior. 
Some of them are 

1. Classical method. 
2. Heaviside operational calculus. 
3. Fourier and LaPlace transforms. 
4. Fourier integral. 

Because differential equations are generally more familiar 
than the mathematics required in methods 2, 3, and 4, it is worth¬ 
while to use the classical method wherever possible since it 
employs differential equations exclusively. In addition, the 
classical method does not require any electrical concepts beyond 
the basic electrical laws and is not accompanied by operational 
or shorthand manipulations that may be difficult for some 
people to grasp. For these reasons the classical method is 
used throughout this book. 

On the other hand, it is important to realize that the sim¬ 
plicity of this method has some undesirable consequences. 
Of the four methods the classical is the most limited in its 
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applications and, except in the case of simple networks, is the 
most arithmetically laborious. In complex networks the 
classical method often fails because it is not possible to obtain 
a sufficient number of “initial” or boundary conditions to 
evaluate the arbitrary constants that appear in the solution 
of the differential equation. There is a rather definite degree 
of network complexity where it becomes vital to use methods 
other than the classical because of this inherent limitation. 
However, there are innumerable networks that occur in practice 
that can be handled conveniently by means of differential equa¬ 
tions and in which the arbitrary constants can be evaluated 
easily. In this book the classical method will be carried to the 
point beyond which the solution becomes impractically cumber¬ 
some or unduly laborious. 

ELECTRICAL NETWORKS 

The general question in network transients can be stated 
as follows: When a disturbing electromotive force that is a 
function of time is applied to the input terminals of a four- 
terminal network, what will be the resulting potential differ¬ 
ence as a function of time at the two output terminals of the 
network? As an example, suppose the input is a voltage pulse 
of some specified shape and amplitude. If this pulse is applied 
to the two input terminals of a four-terminal network, then 
what is the shape and amplitude of the pulse that appears 
at the two output terminals? This question is quite general 
and the answer cannot be found from ordinary steady state 
network theory. 

In all methods of transient analysis, certain simplifying 
assumptions are made in obtaining a solution. This is because 
the results of an exact analysis, which is usually extremely 
complicated, are often negligibly different from the results 
of a simpler approximate analysis.1 There are essentially two 
realms of these simplifications: (1) the electrical network and 
(2) the disturbing force. At the same time, the simplifying 
assumptions must be close enough to reality so that the results 
will be approximately applicable to the actual situation. The 
simplifying assumptions required for the network whose transient 
characteristics are desired are much the same for all types of 

1 See Chap. IX, p. 230, for a discussion of this point. 
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transient analysis. These assumptions are fundamental and 
should always be kept in mind in relating the theoretical analysis 
to the practical network. The justification for the assumptions 
to follow is that they enable an analytical solution while, at 
the same time, they generally do not impose unrealistic limita¬ 
tions upon the actual network. 

4. Four-terminal Networks.—A general four-terminal net¬ 
work is shown in Fig. 1. It consists of two input terminals, 1-2, 
across which a voltage is impressed, and two output terminals, 
3-4, across which a voltage appears as a result of the applied 
voltage. 

In general, the network can contain any electrical elements 
whatsoever in any conceivable configuration. These elements 
can be either linear or nonlinear and can be lumped or distributed. 

1 _3 
o- 

INPUT FOUR-TERMINAL OUTPUT 

TERMINALS NETWORK TERMINALS 
O- n 4 

Fig. 1.—A general four-terminal electrical network. 

6. Electrical Elements.—There are three different types of 
linear electrical elements. They are commonly known as 
resistors, inductors, and capacitors. These elements exhibit 

electrical properties of resistance, inductance, and capacitance, 
respectively. Strictly speaking, any single practical element 
exhibits all three electrical properties. For instance, a coil of 
wire (inductor) consists of inductance of the windings, resistance 
of the wire, and capacitance among the turns. However, 
in many instances two of the three constituents of a practical 
electrical component are negligible compared with the third. 
In such cases it is often justifiable to neglect all electrical prop¬ 
erties except the predominant one. A linear electrical component 
that exhibits essentially one electrical property is called an ideal 
element. 

An ideal resistor is an electrical element in which the ratio 
potential/current is constant; i.ethe voltage across an ideal 
resistor is directly proportional to the current flowing through 
the resistor. 

An ideal inductor is an electrical element in which the ratio 
potential/(rate of change of current) is constant; i.e., the volt- 
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age across an ideal inductor is directly proportional to the rate 
of change of current through the inductor. 

An ideal capacitor is an electrical element in which the ratio 
potential/charge is constant; i.e.f the voltage across an ideal 
capacitor is directly proportional to the charge that exists upon 
the capacitor. 

6. Linear and Nonlinear Elements.—The behavior of a linear 
element can be described by means of a linear equation. For 
example, the behavior of an element that consists solely of resist¬ 
ance is described by Ohm’s law, eR — RiR. This law states 
that the relationship between the instantaneous voltage eR 

across an ideal resistor equals a constant R times the instan¬ 
taneous current iR flowing through the resistor. R is called 
a 'parameter of the element, and the fact that it is constant 
means that the element is linear. In general, if the variables 
involved in describing the electrical properties of an element 
are graphed and a straight-line relationship exists between the 
variables, the element is linear. In the case of an ideal inductor 
the linear equation is eL = L (diL/dt) where C/., the instantaneous 
voltage across the inductor, is a linear function of the instan¬ 
taneous rate of change of current diL/dt through the inductor. 
In the case of an ideal capacitor the linear equation is ec = qc/C 

where eCf the instantaneous voltage across the capacitor, is a 
linear function of the instantaneous charge qc on the capaci¬ 
tor. The constant parameters of these elements are L and C, 
respectively. 

Strictly speaking, no practical electrical element is i ruly 
linear, but in many cases the departure from linearity is so slight 
that it is experimentally impossible to distinguish between the 
actual element and the assumed linear element. Nonlinearity 
in an element generally becomes evident when the operating 
range is large. For example, the voltage across a resistor may 
be directly proportional to the current through the resistor for 
low values of current, but if the current is increased to a large 
enough value, this linear relationship breaks down and the 
resistance undergoes a change. In some cases an element can 
be nonlinear before it is subjected to extreme operating ranges. 
An excellent illustration of this is an iron-core inductor where 
the presence of a magnetic material introduces a nonlinear 
relationship between eL and diijdt. When elements are non- 
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linear, obviously their behavior can no longer be described by 
constant parameters. 

There are nonelectrical examples of linear and nonlinear 
elements. A steel coil spring is ordinarily a linear element 
because the relationship between the stretching of the spring 
and the force required for stretching is a straight-line or linear 
relationship. If too much force is applied, however, the spring 
becomes permanently deformed and the relationship between 
stretching force and displacement is no longer constant. To 
return to the previously mentioned diving-board example, for 
light-weight men the diving board is a linear element because 
its elastic limit is not exceeded. However, a heavy diver might 
crack the board, and the linear relationship between applied 
force and displacement of the board would no longer exist. 

In the networks to be treated in this book all elements (1) 
are assumed to be linear and (2) are assumed to exist alone 
as either pure R, pure L, or pure C. The first assumption must 
always be kept in mind and must be recognized as a limitation. 
Fortunately, many network elements are approximately linear 
or their departure from linearity is slight. The second assump¬ 
tion is also applicable to many physical elements. In cases 
where this assumption is not valid, it is often possible to over¬ 
come the difficulty. For instance, a coil may have negligible 
capacitance between windings, but the coil wire may have 
appreciable resistance. In this case it is often possible to 
assume that the coil can be represented by a combination of two 
parameters, one a pure resistance and the other a pure inductance. 

7. Lumped and Distributed Elements.—The distinction 
between lumped and distributed elements is that there are no 
space considerations in the former, whereas, in the latter, 
space must be considered. As an example of a lumped element 
consider a 50-ft. length of resistance wire through which current 
is flowing. If at any instant the current in one part of the 
wire is exactly the same as the current in every other part 
of the wire, then the wire can be replaced by a very small fixed 
resistor that has a resistance equal to the resistance of the wire, 
without altering the electrical considerations. 

Under certain conditions the current in one part of an element 
is different from the current in another part of the same physical 
element. This phenomenon becomes increasingly evident at high 
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frequencies. In such a case it is not possible to consider the 
element to be lumped or concentrated at one point, and its 
distributive or space properties must be taken into account. 

All networks in this book consist of lumped parameters. 
This does not exclude distributed network elements entirely, 
because in many instances a distributed element can be regarded 
as consisting of a combination of lumped parameters. Never¬ 
theless, it should be remembered that each time 7?, L, or C is 
used, it represents a linear lumped network parameter. 

8. Disturbing Force.—All networks to be analyzed in this 
book are subjected to one particular type of disturbing force 
which is shown in Fig. 2. It is a single rectangular-pulse voltage. 

QJ 

P 

§ 
Jj5 

<D 

£ 
O 

Time— 
Fig. 2.—Rectangular pulse gen¬ 

erator voltage of amplitude E and 
duration T. Zero time is arbi¬ 

trarily chosen at the instant the 
pulse voltage changes from zero 
to E. 

Fig. 3.—Simple switching ar¬ 
rangement which can be used 
to produce a voltage that is 
approximately rectangular. The 
internal generator resistance is 
represented by r. 

The magnitude of this pulse is any voltage E, and its duration 
is T seconds. It is assumed that up to some arbitrary time 
that will be called zero time, the voltage is zero; that the voltage 
E is attained instantaneously at zero time; that during the 
subsequent time interval T the voltage is a constant value E] 

and that the voltage becomes zero instantaneously at the end 
of the time interval T. Such a pulse cannot be produced in 
practice. Nevertheless, it is justifiable to consider this ideal 
pulse because 

1. This ideal pulse can be closely attained in practice (refer 
to Fig. 4). 

2. The results are applicable to pulses that are reasonably 
similar to this ideal pulse. 

3. It is convenient to analyze networks that are subjected to 
such a pulse. 
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4. The results of analyses based upon such a pulse can indicate 
a great deal about the general transient behavior of the network. 

There are numerous means by which approximately rectangu¬ 
lar pulses can be produced. One crude method is to use a battery 
of voltage E and a switch. In Fig. 3 the switch is in position 
A up to the time t = 0. Then it is very quickly switched 
to position B and held there for a time T. Then the switch is 
very quickly returned to position A. The voltage at the termi¬ 
nals 1-2, which might be the two input terminals of a network, 
will resemble the ideal pulse assumed in Fig. 2. The internal 
resistance of the pulse generator is represented by r. Notice 
that the resistance across the terminals 1-2 is independent 
of the position of the switch 
inasmuch as the battery resist¬ 
ance is assumed to be zero. 

A more refined method by 
which approximately rectangular 
pulses can be produced is by 
electronic means. It is possible 
with ordinary vacuum tubes to 

produce rectangular pulses which 
rise to a voltage E as quickly as 
one-ten-millionth of a second 
(0.0000001 sec.) and which be¬ 
come zero, after a duration T, in 
a comparable time. The oscil¬ 
logram in Fig. 4 shows a rectangular pulse that was produced by 
a vacuum-tube multivibrator circuit. 

9, Statement of Problem.—It is nowr possible to state the 
specific problem to be treated in this book. The general problem 
in transient analysis is depicted in Fig. 5a, while the simplified 
problem is given in Fig. 56. This figure show s that one particular 
disturbing voltage is to be used, that the internal impedance 
of the voltage generator consists of pure resistance, and that the 
network consists of lumped linear parameters only. The ques¬ 
tion to be answered for various networks is: What voltage 
appears across the output terminals 3-4 as a result of the applica¬ 
tion of a single rectangular pulse of voltage E and duration T 

across the input terminals 1-2; in other words, what is the pulse- 
response characteristic of the network? Since the differential- 

Fig. 4.—Rectangular pulse pro¬ 
duced by a vacuum-tube multi¬ 
vibrator circuit. 
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equation method of analysis is to be employed, an auxiliary 
question is: How many different types of networks can be con¬ 
veniently handled by this method, and what are its limitations? 

In some instances a series of pulses, rather than a single pulse, 
is applied to networks. This analysis is applicable with the 
provision that the network transient diminishes to a negligible 
value between generator pulses. In other words, the decay time 
of the transient must be small compared with the period of the 
generator pulses. 

(a) (b) 
Fig. 5.—Comparison of general pulsed network and simplified network. 

In cases where the generator does not contain an internal 
resistance only, the necessary additional parameters can be 
connected between the generator and the network. 

ELECTRICAL CONCEPTS 

Before proceeding with the analysis, it is well to review some 
of the basic concepts that will be required. There are very few 
special ideas necessary. This is one of the outstanding features 
of the classical method. 

10. Basic Laws.—Some of the electrical concepts required 
have already been stated, namely, the laws for voltage across 
the three network parameters R, L, and C. These laws can be 
expressed in several ways. To establish a multiplicity of ways, 
the definition of current in terms of charge is required. The 
instantaneous rate of change of charge is equal to the instan¬ 
taneous current, or mathematically 

This can be written 

q — fi (it 

(1) 

(2) 
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Therefore, the three voltage laws can be written 

Cr = Rin = R (3) 

. dih . d2qL 

CL = Llt=L-W 
(4) 

t 

ec = ^ J icdt (5) 

where cr, eL, and ec are instantaneous voltages across the parame¬ 

ters R, Ly and C, iR is the instantaneous current through Rf 

diL/dt is the instantaneous rate of change of current through 

Ly and qc is the instantaneous charge on C. These laws are 

essentially definitions of the parameters R, L, and C. 

11. KirchhofTs Laws.—KirchhofTs voltage law states that 

the algebraic sum of all instantaneous voltages around a closed 

network is zero. Mathematically this law can be stated by the 

equation 

e\ + e2 + <?3 + * * * + Cn + * • * =0 (G) 

where e 1, e2, c3, . . . en are instantaneous voltages that can 

be either positive (voltage rise) or negative (voltage drop). 

KirchhofTs current law states that the algebraic sum of all 

instantaneous currents at any junction in a network is zero. 

12. Elements in Series.—It is possible for a single parameter 

to represent any number of electrical elements in a network. 

Specifically, when any number of like ideal elements are con¬ 

nected in series, it is possible to represent all of these elements 

bv a single parameter. To demonstrate this, KirchhofTs laws 

can be applied to a few illustrative net works. 

Resistors in Scries.—Figure Ga shows a series network in 

which the instantaneous current is i!{. The same current 

flows through each ideal resistor since they are all connected in 

series. The algebraic sum of the instantaneous voltages around 

this closed network is zero. 

Cf, — IrR 1 — IrR'2 — — IrR\ — 0 

or c0 = ir(Ri + Ro + Rz + Ri) 

Xow, a single resistance 

Rs = R\ -f- R'l + R3 + R4 (7) 
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can replace the series combination without affecting the current 
flow. Therefore, the network in Fig. 66 is exactly the same as 
that in Fig. 6a insofar as the generator and network current is 
concerned. Thus a single resistance Rs is equivalent to the 
series resistors Rh R»y R$y and J?4 irrespective of the generator 
voltage. 

Inductors in Series.—In Fig. 7a a series of ideal inductors is 
connected across a generator of any instantaneous voltage e„. 

The current in each inductor and the rate of change of current 

/?/ JR2 Rj /?4 

(a) (b) 
Fig. 6.—Equivalent series networks containing resistance only. 

Lit L2 Lj L4 

(a) (b) 
Fig. 7.—Equivalent series networks containing inductance only. Mutual effects 

are neglected. 

in each inductor are the same. Sum the voltages in accordance 
with KirchhofTs law. 

eu =* (L\ + L2 + L& 4* La) 

A single inductance 

Ls — L\ + L2 + Lz + La (8) 

placed across the generator terminals as shown in Fig. 76 will 
cause the same instantaneous current to flow and will result 
in the same rate of change of current as in the case of Fig. 7a. 

Therefore, the single inductance Ls is equivalent to the series 
of inductors, and the networks in Figs. 7a and 76 are equivalent. 

Capacitors in Series.—When any number of ideal capacitors 
are connected in series, as indicated in Fig. 8a, there is a single 
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capacitance that, when connected across the generator, will 
draw the same instantaneous charge from the generator as the 
series of capacitors. To demonstrate this, apply KirchhofTs law 
to Fig. 8a where the instantaneous charge on each capacitor must 
be the same. 

From this equation it can be seen that a single capacitance 
Cs will draw the same charge from the generator as the series 

Cj C2 C3 C4 

cs-c/c/c/c4 

Fie.. 8.—Equivalent series networks containing capacitance only. 
effects are neglected. 

Mutual 

capacitors, no matter what the value of generator voltage, 
provided 

Cs 
+ i + i + c\ + c, (9) 

Thus the network in Fig. % is equivalent to that in Fig. 8a. 
13. Elements in Parallel.—In a similar manner it can be 

proved that a single parameter is equivalent to any number of 
like elements connected in parallel. For parallel resistors 

-L = _L+J- + J- + 
RP Rx + ^ R, + R,+ 

(10) 

For parallel inductors 

Lp 
1+1+1+ 
Li Li Li + Ln + 

For parallel capacitors 

(11) 

Cp = Cl + C2 + Cz + * * * + Cn + ‘ * * (12) 

Equations (10), (11), and (12) apply to ideal resistors, inductors, 
and capacitors. Furthermore, mutual effects sometimes sig¬ 
nificant in practice are neglected in obtaining these equations. 



PI LX til) LINEAR NETWORKS [('ha i*. 1 Hi 

In general, any combination (either series, parallel, or series- 

parallel) of like elements can be replaced by a single equivalent 

Ri 

(a) (b) 
1'iG. 9.— Equivalent series network for a series-parallel network containing 

resistance only. 

parameter. For instance, the network in Fig. 9a can be replaced 

by a single equivalent resistance. The value of this resistance is 

/f„u = R i + R2 + b t p 
R 3 I R 4 

14. Thevenin’s Theorem.—A very useful network theorem 

can be explained with the aid of Fig. 10. This theorem is a 

special form of Thevenin’s theorem and is not stated here in its 

most general terms.1 

In Fig. 10a a generator of instantaneous voltage e„ and internal 

resistance r is delivering current to a simple network that 

(a) (b) 
Fia. 10.—Equivalent networks as obtained by Th6venin’s theorem. 

consists of a resistance R. Across the output of this network, a 

general network with any properties whatsoever is connected. 

This theorem enables e0} r, and R to be replaced by an equiva¬ 

lent generator and an equivalent series resistance, thus sim¬ 

plifying the network. The equivalent generator in series with 

the equivalent resistance will deliver the same current to the 

1 For a general statement of Thevenin’s theorem refer to W. L. Everitt, 

“Communication Engineering,” 2d ed., p. 47, McGraw-Hill Book Company, 

Inc.. New York, 1937. 
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load as the actual network, will produce the same voltage across 

terminals 3-4 as the actual network both when the load is con¬ 

nected and disconnected, and will present the same resistance 

across terminals 3-4 as the actual network. In other words, the 

equivalent series network is exactly the same as the actual net¬ 

work insofar as the output terminals 3-4 are concerned. To find 

the value of the equivalent generator voltage and equivalent 

series resistance disconnect the load from terminals 3 -4. The 

voltage across 3-4 with the load disconnected is the voltage of 

the equivalent generator, and the resistance across 3-4 with 

the generator short-circuited is the equivalent series resistance. 

Figure 10b shows the equivalent series network. The equiva¬ 

lent generator voltage is euR/(R + r) and is obtained by discon¬ 

necting the load and noticing that the current flowing through R 
is eu/(R + r). This current multiplied by R is the voltage across 

3-4. The equivalent resistance is obtained by removing the load 

and replacing the generator by a short circuit. The resistance 

across 3-4 is then R in parallel with r, or a single resistance of 

value RP = Rr/{R + r). 

As a simple demonstration of the equivalence of the two net¬ 

works, suppose the load is a resistance R\. 
Actual Nctivork.—In the actual network the current that 

flows from the generator is 

iu 
r + 

RRi_ 
R + 

'Phis current produces a voltage drop across r equal to 

= 
e„r 

r + 
RRt 

R + R i 

Therefore, the voltage across 1-2 and across 3-4 is 

_ . _ e„RRi . . 
<Wi V Rr + Ri). + RRi (Id) 

The current flowing through the load in the actual network is 

consequently 

• Clotul   ^fjR 
Ri ~ W+ Ri>' + RR] 

1 load (14) 
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The current that would flow in the actual network if 3-4 were 

short-circuited is 

I'BC — (15) 

As stated before, the voltage across 3-4 with the load removed is 

Cqc — R + r (16) 

and the resistance across 3-4 with Ri removed and the generator 

short-circuited is 

Rp 
Rr 

R + r (17) 

Equivalent Network.—Now, in the equivalent network the 

load current is 

? load 

euR 
R + r etJR 

Ri + 
Rr 

R + r 

Rr + R\r -f~ RR\ 

which is exactly the same as Eq. (14) for load current in the 

actual network. The load voltage is 

_ : l? — _CyRRl 
^ 1 Rr + Rtr + RR][ 

which is exactly the same as Eq. (13). In the equivalent net¬ 

work, the voltage across 3-4 with Ri disconnected is equal to the 

equivalent generator voltage 

c = is. 
°c R + r 

which is exactly the same as Eq. (16). In the equivalent net¬ 

work the resistance across 3-4 with R i removed and the generator 

short-circuited is 

Rp 
Rr 

R + r 

which is the same as Eq. (17). 

These two networks are exactly equivalent as far as the 

output terminals 3-4 are concerned, and the equivalence is 
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valid irrespective of the value of the generator voltage and 

of the value of R1. However, it is important to notice that 

they are not equivalent as far as the generators are concerned. 

When R\ is removed, the generator current in the actual network 

is eu/{R + r), while in the equivalent network the generator 

current is zero. The generator currents are also different when 

the load is connected. 

16. Dimensions of Electrical Quantities.—Equations (3); (4), 
and (5), which define R, L, and C, also define the units of R, L, 

and C in terms of the units of voltage and charge. Equation (1) 

defines the unit of current in terms of charge. If the units of 

voltage, charge, and time are taken as basic units, then the 

units of current, resistance, inductance, and capacitance can 

be stated in terms of voltage, charge, and time. From Eq. (1) 

the unit of current is charge/time or symbolically q/t, where t 
denotes time. From Eq. (3) the unit of resistance is 

voltage voltage X time Yt 
-^ -or — 
current charge q 

From Eq. (4) the unit of inductance is 

voltage X time _ voltage X (time)2 Vt2 

current charge q 

From Eq. (5) the unit of capacitance is or -^* These 
n voltage \ 

dimensional relationships enable others to be derived. For 

example: 

RC: — X = / 
Q * 

L.VtVq _ 
R' Vt/q 

time 

► time 

VLC: ^ X RC = Vt- -* time 

IL IvF/q Ivy- vt 

\C: yj-W = V-?" = 7"re nce 

R*C 

Z, 
R2 

vh* q_ _ rr- 
f2 x y T v q 

Vt*/q q _ 
VH*/qn- V 

inductance 

capacitance 
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Table I.—Primary Symbols 

a constant 

A constant 

a 4 4 4 . -.V'.l/’- Y 
constant * tanh 1 -.- — 

ii/ 

b constant 

B constant 

$ constant = tan 1 ^ — 

c constant 

C capacitance parameter 

« constant = 2.71828 . . . 

e instantaneous output voltage 

eg instantaneous output voltage during the time that tl lc generator 

voltage is E 
e0 instantaneous output voltage after the generator voltage has 

become zero 

ea instantaneous generator voltage of any shape 

E generator-pulse voltage 

F filtering ratio 

G constant 

li constant 

i instantaneous current 

3 constant = \/ — \ 
K arbitrary constant in the solution of a differential er piation 

L inductance parameter 

M12 = *17ji mutual inductance parameter 

M * f R r constant = — 
ZL 

M amplification factor 

.V constant — 1 /LG 

V instantaneous power 

F constant 

Q instantaneous charge 

r internal generator resistance 

R resistance parameter 

S constant 

t time 

T generator-pulse width 

V voltage 

w instantaneous total energy 

OJ 2?r times the frequence 
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These combinations of R, L, and C arise in the analysis, and it 

will prove useful to remember the dimensional relationships. 

NOTATION 

The notation used throughout this text is consistent, and an 

attempt has been made to use standard symbols wherever 

possible, but above all to use notation that is not meaningless. 

A list of primary symbols used and the meanings of the symbols 

are shown in Table I. 

Subscripts are used frequently throughout, and in general 

their meaning should be self-explanatory. However, in the 

case of the subscript T it must be understood that it refers to 

the last instant at which the rectangular generator pulse exists. 

Problems 

Prob. 1. Three resistors have values Ri = 600 ohms, R2 ~ 200 ohms, 

and Rz = 150 ohms. 

a. When R\, R2y and R3 are connected in parallel, what is the equivalent 

resistance of the combination? 

b. When Ri, R2l and RA arc connected in series, what is the equivalent 

resistance of the combination? 

r. When R\ and R» are connected in parallel and this combination is con¬ 

nected in series with R3, what is the equivalent resistance? 

Prob. 2. Two inductors L\ and L2 are connected in parallel. What is 

the ratio L2/Li if the equivalent inductance of the parallel combination is 

equal to 95 per cent of /. 1? 

Prob. 3. Three capacitors (\, f«>, and (\ are connected in series and the 

equivalent capacitance is 0.08 ^f. When they are connected in parallel, 

the equivalent capacitance is 1.16 *tf. When C\ and (\ are connected in 

series and this combination is connected in parallel with C>, the equivalent 

capacitance is 0.32 yuf. What are the values of T,, C», and Cs? 

Prob. 4. Refer to the network below. 

300^ 1 200^ 3 

R-400^ 

2 4 

a. Find the currents /„ and i by means of Kirchhoff’s laws. 

b. Remove R from the terminals 3-4 and determine the equivalent series 

network by means of Thevenin’s theorem. 

c. When It is connected to the equivalent series network, what is the 

current through /?? What is the current through the equivalent 

generator*when R is connected? 
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Prob. 5. An electric-light bulb is turned on at a time corresponding to 

zero in the table below, and the bulb temperature is measured at different 

times. The light is then turned off, and again temperatures are measured 

at various times. This is done for three different time-on periods. 

Test 1 Test 2 Test 3 

Temp., °F. 
Elapsed 

time, min. 
Temp., °F. 

Elapsed 

time, min. 
Temp., °F. 

Elapsed 

time, min. 

70 0 on 70 0 on 70 0 on 

89 1 90 1 88 1 

100 2 off 104 2 115 3 

96 3 126 4 140 6 

91 5 144 7 off 150 8 

83 9 129 10 165 15 

77 14 116 13 169 25 

73 19 107 16 170 30 

71 24 96 20 170 35 off 

70 30 87 24 152 36 

70 35 80 29 137 37 

72 40 114 39 

87 44 

71 60 

Make a graph of these data using time as the abscissa and temperature as 

the ordinate, and then answer the following questions: 

a. What is the steady-state value of temperature in each test during the 

time that the bulb is on? 

b. What is the steady-state value of temperature in each test during the 

time after the bulb is turned off? 

c. In test 3 what percentage of the total increase in temperature has taken 

place in the first 5 min.? 

d. In test 3 what percentage of the total decrease in temperature has taken 

place 5 min. after the bulb is turned off? 

e. What is the maximum time that the bulb can remain on before its 

temperature exceeds 158°F.? (Assume its temperature is 70°F. at the 

instant it is turned on.) 

/. On the temperature-versus-time graph, draw curves for each of the 

tests showing light intensity versus time. (Use an arbitrary scale 

for the light intensity, which reaches maximum intensity in a fraction 

of a second.) 

Prob. 6. What are the dimensions, in terms of either resistance, induc¬ 

tance, capacitance, or time only, of the following: 
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if) Vlr*c 

Prob. 7. A variable voltage is applied to a resistor and measurements of 

applied voltage and the corresponding current through the resistor are taken. 

Voltage, Current, 

Volts Milliamperes 

0 0 

3.5 2.8 

14.5 11.6 

27.5 22.0 

34.2 27.3 

61.5 49.0 

78.0 61.1 

84.3 65.6 

95.9 73.0 

112 81.4 

128 88.0 

149 95.9 

161 99.0 

(Note: A graph of resistance versus current will be helpful in this problem.) 

a. Over what range of current is the resistor “linear” within 1 per cent? 

b. What is the value of the “linear ” resistance? 

c. If the voltage is increased without limit, what will be the ultimate 

value of the resistance? 



CHAPTER TI 

DIFFERENTIAL EQUATIONS 
AND HYPERBOLIC FUNCTIONS 

This chapter is intended to equip the reader with the mathe¬ 

matics required for the analysis of the linear networks to be 

treated in this book. An important function of this chapter 

is to isolate from a voluminous mathematical subject the small 

amount of material which is required for the classical method.1 

In doing this, the mathematical ideas are presented with phys¬ 

ical interpretations in terms of the particular study of pulsed 

linear networks. 

DIFFERENTIAL EQUATIONS 

The primary mathematical tool of analysis used in the classical 

method is differential equations. A differential equation is 

simply an equation that involves differentials or derivatives. 

1. General Differential Equation.—When Kirchhoff’s voltage 

law is applied to a network, an equation involving differentials 

generally results. This is because the voltage across a network 

element is defined in terms of differentials. For instance, the 

voltage across a resistance is R{dq/dt), and the voltage across 

an inductance is L(d2q/dt2). 
The most general differential equation that can result from the 

application of Kirchhoff’s laws to a linear network of any con¬ 

figuration is of the form shown in Eq. (18). 

6n^+ ' ' ' + biW* + bll?t + b,'q = €‘ (,8) 

where n is any positive integer; bn . . . b2y bh b0 are constants 

determined by the network parameters; q is the instantaneous 

charge that is a function of time t only; and ea is the instantaneous 

generator voltage that is a function of time only. Equation (18) 

1 For a more detailed treatment of differential equations refer to A. Mur¬ 

ray, “ Differential Equations,” Longmans, Green and Company, or any 

other standard differential equations text. 

24 
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is called a homogeneous, linear, first-degree equation of the ntb 
order with constant coefficients. Notice that .there are no 

terms of higher degree than the first; i.e., no differentials are 

squared, cubed, etc., and there are no products of variables such 

as (dq/dt)(d2q/dt2) or q(dq/dt). All of these restrictions make it 

one of the simplest types of differential equations. 

2. Restrictions on General Differential Equation.—Two addi¬ 

tional restrictions can be placed upon Eq. (18) to make it repre¬ 

sentative of a typical equation resulting from the application of 

Kirchhoff’s voltage law to the linear networks in this book. 

One of these restrictions is that the highest order shall be the 

second order. Upon superficial examination, this may appear to 

be a rather drastic limitation but fortunately it does not exclude 

many practical networks. As a matter of fact, no series networks < 

whatsoever are excluded; however, many series-parallel networks 

give rise to differential equations of higher order than the 

second. Such networks are not treated in this book because 

their solution is usually too involved when the classical method 

is used. 

The second additional restriction involves ev. In all networks 

cu is to be a single rectangular pulse, Fig. 2. One means of 

expressing such a voltage as a continuous function of time 

is by use of the Fourier integral.1 However, when the single 

rectangular pulse is expressed as a discontinuous function of 

time, it can be handled very simply. The equation for cy 
during the interval t = 0 to t = T is cQ = E, where E is a con¬ 

stant. And eu for all values of t outside the interval / = 0 to 

/ = T is a constant equal to zero. Therefore, the restriction 

placed upon eu is that it be a constant with the understanding 

that the equation hold for restricted values of time t. In 

most cases this means that two differential equations will be 

1 The Fourier integral that expresses a single-pulse voltage E and duration 

T as a continuous function of time is 

_ ET /* + » sin co772 
C‘ “ 2rr J- . "at/2 

do) 

where « =» 2rX frequency and j *» \/ — 1. From the Fourier integral view¬ 

point a single rectangular pulse is regarded as being the sum of an infinite 

number of sinusoidal waves. These sine waves completely cancel one 

another from t *= — « to t * + « except during the pulse interval. During 

the pulse interval, the sum of the sine waves is a constant value E. 
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required, one that applies during the generator pulse and one 

that applies at all other times. 

Incorporating these two restrictions, Eq. (18) becomes 

b’W + b‘7, + ^~E <19) 
where the constant E has a value of zero if t lies outside the 

interval t = 0 to t = T. Equation (19), then, is the form of the 

most complicated differential equation that will be solved 

in this book. 

Each term in Eq. (19) represents a voltage. The first term 

is of the form of a voltage across an inductance, L(di/dt); the 

second term is of the form of a voltage across a resistance, Ri; 

the third term is of the form of a voltage across a capacitance, 

q/C; and E is the generator or applied voltage. It follows that 

62 is an inductance parameter, b 1 is a resistance parameter, and 

bo is the reciprocal of a capacitance parameter. 

3. Particular Integral.—The problem presented by the differ¬ 

ential equation is to find values of q that, when substituted into 

the differential equation, result in an identity. Any values of q 

that result in an identity are called solutions of the differential 

equation. Inspection of Eq. (19) reveals that if q = E/b0 = con¬ 

stant, then Eq. (19) becomes an identity E = E, because 

d2q/dt2 = dq/dt = 0 when q is constant. This constant value 

of q that satisfies the differential equation is called, mathe¬ 

matically, the particular integral. In terms of the network 

to which the differential equation applies, the particular integral 

has important significance and is known as the steady-state term. 

The particular integral gives the steady-state condition because 

it is a solution when d2q/dt2 and dq/dt are zero, i.e.f when q is 

not varying. 

4. Complementary Function.—The particular integral is not 

the only possible value of q that will satisfy the differential 

equation. There is another value of g, called the complementary 

function, that when added to the particular integral and sub¬ 

stituted into the differential equation results in an identity. 

When referring to a physical network, the complementary 

function is called the transient term. This nomenclature is 

appropriate because the complementary function is a function 

of time, as is the transient in a physical network. 
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For a linear, second-order, first-degree equation with constant 

coefficients it can be demonstrated that the complementary 

function is always of the form 

q' = Ke~At (20) 

where K is an arbitrary constant, and A is a constant deter¬ 

mined by the network parameters. . The manner in which K and 

A can be evaluated is indicated below. 

The complete solution of the differential equation consists 

of the sum of the particular integral and the complementary 

function. 

q = ? + Kr-U (21) 
Oq 

To demonstrate that this is a solution, differentiate 

dq 
dt 

— AK*rM\ 
ePq 

dt2 
A2Ke~At 

and substitute into the original differential equation. 

b2(A2Ke~At) + bi( — A Ke~At) = E 

Collect all terms involving Ke~At. 

* Ke~At(boA2 — biA ~t~ bo) + E = E 

Now this equation is an identity, and therefore Eq. (21) is a 

solution, if 

K = 0 
or if e~At = 0 

or if {boA2 — biA + M = 0 

The first two possibilities are trivial since in either one the 

complementary function, Eq. (20), is always zero. The third 

possibility is significant and determines the value of .4, in terms 

of the network parameters, that is required for the exponent 

of the complementary function. This equation for A is called 

the auxiliary equation and can be solved by the quadratic 

formula. There are two values of A that satisfy the auxiliary 

equation. They are 

A fei 4“ yfbi2 — 
(22) 
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A2 bi — VV2 — 4<>ob2 

2b. (23) 

It should be clear that if either of the above values of A is used 

as the exponent of the complementary function, an identity will 

result upon substitution of the sum of the complementary 

function and the particular integral for q in the original differ¬ 

ential equation. 

Because A can have two different values that reduce the 

differential equation to an identity, the whole complementary 

function consists of two terms, each of which is the same form 

as Eq. (20); i.e., the complementary function is 

q' = Kte-A" + K2e~Ait (24) 

The fact that the complementary function consists of the sum 

of these two terms can be shown by substituting once again 

into the original equation. When this is done, the following 

result is obtained: 

- Ml + bo) + Kx-^Qy.A'? - M2 + bo) + E= E 

Each of the terms in the brackets is zero for the values of A i and 

A2 given by Eqs. (22) and (23), and therefore this expression is 

an identity. Notice that the values of Kx and K.knve no bear¬ 

ing on the fact that 

q = £ + Klt~^ + K*r** 
o o 

is a complete solution of the differential equation. This is 

why K i and K2 are called, mathematically, arbitrary constants. 

It is very important to note that if E is set equal to zero in 

Eq. (19), the complementary function will be the complete 

solution of the reduced differential equation. 

5. Arbitrary Constants.—Although the constants Kx and K2 

are arbitrary in the sense that the complementary function 

is determined irrespective of their values, these constants 

are not arbitrary in a physical network. They are uniquely 

determined in a physical network by so-called initial condi¬ 

tions, or the conditions that exist at the first instant the differ¬ 

ential equation applies. Numerous examples of the evaluation 
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of these constants will be found later on. For instance, refer to 

Chap. Ill, page 41. 

In general, the number of arbitrary constants contained 

in the solution of a differential equation is equal to the order 

of the equation, and any solution that does not contain the 

required number of arbitrary constants is not a complete solu¬ 

tion. In the case of Eq. (19), a second-order equation, two 

arbitrary constants must appear in the complete solution. 

6. Roots of Auxiliary Equation.—When the roots of the 

auxiliary equation given by Eq. (22) and (23) are real, i.e., 

bi2 > Abobz, the foregoing solution applies. It is possible in some 

networks for the roots to be equal or even imaginary. These 

eventualities are worthy of consideration. 

Equal Roots.—When the roots are equal, = 4b()b2 and 

A i = .12 = 6i/26>. From Eq. (24) this means that the comple¬ 

mentary function is 

q' = (A\ + A2)c ^ = AV 26,1 

and contains only one arbitrary constant. Since the particular 

integral has no arbitrary constants, this cannot be the complete 

solution. 

To obtain the complete solution, consider the case where 

the two roots of the auxiliary equation differ by a small amount 

a, and then allow this small difference to approach zero. Sup¬ 

pose that 

A i = .4 2 Oj 

The complementary function will be 

q' = Kie~Alt + K*rA* 

which can be written 

qf = + Ao) 

The next step is to expand e~at in an exponential series.1 The 

1 Granville, Smith, and Ixmgloy, “Elements of the Differential and Inte¬ 

gral Calculus,” Ginn and Company, or any other standard calculus book. 
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complementary function then becomes 

, -A*t\ fTT I zr \ v * i Kia2t2 Kid*t* 1 q> = .(JCl + k2) - Kiat + -+ • • • I 

Now let a become smaller and smaller. All terms involving a2 

a3, • • • will become negligible, and the complementary func¬ 

tion becomes 

qf = €-^(K3- K4) 

where Kz = K\ + K2 and K\ = K\a. K i and a are chosen so 

that K4 is finite as a approaches zero. This complementary 

function contains two arbitrary constants. Therefore, the 

complete solution for the case where the auxiliary equation has 

equal roots is 

q = ^ + (A'3 - (25) 
0 o 

It will be found that an identity results when this value of q is 

substituted into Eq. (19), assuming A\ — A2 = fei/262. This 

verifies the solution. 

Imaginary Roots.—If b\2 < 460f>2, then the roots of the auxiliary 

equation are imaginary. Refer to Eqs. (22) and (23). This 

case will not be considered in detail here but will be worked 

out when it appears in the network analysis.1 Suffice it to say 

at this time that when the roots are imaginary, the comple¬ 

mentary function can be placed conveniently into trigonometric 

form. 

In general, notice that the form of the solution depends 

upon the roots of the auxiliary equation insofar as they are 

real and unequal, real and equal, or imaginary; this in turn 

depends upon the values of the network parameters b2, 6i, and 60. 

7. First-order Differential Equation.—A special form of 

Eq. (19) results if, for instance, b2 is zero. If this is the case, 

Eq. (19) becomes 

i>i Jt + M = E (26) 

Another example is if 60 is zero. Equation (19) then becomes 

b2jt + bj = E (27) 

xFor example, see Chap. V, p. 122. 



Sec. 7] DIFFERENTIAL EQUATIONS 31 

because 

and 

Each of these equations is a first-order equation because no 

higher derivative than the first appears in them. 

The solution of an equation of this type is similar to that 

of the second-order type; namely, it consists of the sum of the 

particular integral (steady-state term) and the complementary 

function (transient term). First-order equations can result 

from electrical networks, so their solution is of interest. For 

the first-order type of equation, only one arbitrary constant 

appears in the complete solution. 

Particular Integral.—By inspection, the particular integral of 

Eq. (27) is i = E/bi and is obtained by setting di/dt = 0. 

Complementary Function.—The complementary function is of 

the form 

i' = Ke~At 

and the complete solution is 

i = ^ + Ke~At 
bi 

Differentiate to find the auxiliary equation. 

% = -AK(~U 
dt 

Substitute into Eq. (27). 

b2(-.4AV“) +bi(j~ + = E 

Group all terms containing Kt-At. 

K*~At(— A b2 -f- &i) -f- E == E 

The auxiliary equation in this case is 

— Ab2 “h bi = 0 

The condition on A, then, for this to be an identity is 

d2q _ di 
dt2 ~ Jt 
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Therefore, the complete solution becomes 

* = r+A'«"k (28) 
01 

Separation of Variables.—The general method of determining 

the particular integral and the complementary function is not 

the only means by which a solution for the first-order type of 

equation can be found. In fact, a shorter method is feasible 

in this case. Examination of Eq. (27) shows that integration 

is possible if the variables i and t are separated. This means 

that the solution can be found in essentially one step. Rear¬ 

range Eq. (27) so that the variables are separated on either side 

of the equation. 

di _ dt 
E — b\i b2 

Integrate both sides of the equation, and the solution is obtained. 

- £ In (E- 6,0 = £ + A', 

Ki is a constant of integration. This equation can be written 

In K,(E - bit) = - £’ t 
h 2 

Convert this solution to the exponential form in order to solve 

for i.1 

- ut 
Kn(E - bXi) = € ** 

Solve for i. 

■ A 1 - r* 'J — - --f "I 

hi b1K2 

This is exactly the same solution as Eq. (28), which was obtained 

by the general method. The relationship between the arbitrary 

constants in the two cases is K = — \/biK2. 

8. Summary.—To condense the general ideas behind the 

differential equations to be used in this book, the following 

tabulation of significant features may be helpful: 

1 The general equivalence of logarithmic and exponential equations can 

be stated as follows: if log0 b = c, then ac = b. A conventional shorthand 
notation for log« is In. 
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1. Differential equations arise when KirchhofTs voltage law 

is applied to a pulsed network. 

2. The most complicated differential equation to be encoun¬ 

tered is a linear, second-order, first-degree equation with constant 

coefficients and with a second member that is constant. 

3. The solution of this differential equation is characterized by 

а. The particular integral or steady-state term that can 

be obtained by setting all derivatives equal to zero and 

solving for the remaining variable. 

б. The complementary function or transient term that is a 

solution of the differential equation when the second 

member is set equal to zero. 

c. The complete solution that is the sum of the above. 

d. Two arbitrary constants that can be evaluated from 

initial conditions. 

4. The form of the solution depends upon the roots of the 

auxiliary equation, which in turn depend upon the values of the 

network parameters. 

5. The first-order differential equation is a special case and 

can be solved by direct integration. Its solution also consists 

of a particular integral and complementary function, but it 

contains only one arbitrary constant. 

HYPERBOLIC FUNCTIONS 

It has been indicated that the complementary function of 

a linear, second-order, first-degree equation with constant 

coefficients and constant second member can be of the form 

q = Kxt~ut + K2e-AJ 

When such a form of the complementary function arises (and A i 

and .42 are real numbers), it is usually convenient to express 

it as a hyperbolic function. Because hyperbolic functions are 

to be used, it is advisable to understand their significance. 

It is the purpose of this section to introduce the elements of 

hyperbolic functions, and to consider some of their properties 

that will be useful in the analysis of pulsed linear networks. 

9. Definitions.—The defining relations for hyperbolic functions 

in terms of exponential functions are 

e.o _ e-At 

sinh At = - 
2 
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cosh At — 

tanh At = 

2 
sinh At 

cosh A t 

-At _ -—At 

+ r 

1 - 
1 + 

To aid in understanding how these hyperbolic functions depend 

Fia. 11.—Graphical representation of three hyperbolic functions. The curve of 
is included to show its relationship to sinh At and cosh At as + At increases. 

upon the value of f, the graphical representations in Fig. 11 

will be helpful. Several pertinent features of these curves are 

1. sinh At is zero at t = 0. 

2. cosh At is 1.0 at t = 0. 

3. tanh At is zero at t = 0. 

4. Both sinh At and cosh At approach }^At as At becomes a 

large positive number. 

5. tanh At approaches ±1.0 as t becomes large. 
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A table of values of the hyperbolic functions is given in Appen¬ 

dix I. 

10. Hyperbolic Identities.—Hyperbolic identities can be 

developed from the three defining relations. Some examples 

of the method used in proving identities are presented below. 

Identity 1. sinh ( — At) = — sinh At 

Proof: sinh ( — At) = 

Identity 2. cosh ( — At) = cosh At 

Proof: cosh (—At) — 
£—At l *At 

iv/wx. wou \ 2 2 

Identity 3. tanh ( — At) = — tanh At 

= — sinh At 

cosh At 

Proof: tanh ( — At) = 
sinh ( — At) 

* v * ' cosh ( — At) 

Identity 4. cosh2 At — sinh2 At = 

sinh At 

cosh At 
= — tanh At 

Proof: cosh2 At 
/«•» + <r4,y = £ + 2 + e-2A‘ 

= I + £ 
2 

2.-U 1 *—'lAt | 1 

- - = - -f - cosh 2A* 

sinh2 A/ v') 
e2A< + e- 

4 

* - 2eAte~At + e~2At 

4 

= — 2 + 2 cos^ 

cosh2 At — sinh2 A/ = }•> + Yi cosh 2At + — Y cosh 2At 

= + Vi — 1 

Many other identities can be found in a similar manner. It 

is generally advisable to verify all new hyperbolic identities by 

substituting the exponential definitions. 

11. A Special Identity.—An identity that will be used in the 

network analysis to follow is 

P sinh At ± S cosh At ^ y/P'2 — S2 sinh ^ At ± tanh-1 (29) 

where P and S are constants. The proof of this identity follows: 

Suppose that 

P sinh At ± S cosh At s= G sinh (At ± H) (30) 

where the constants G and H are to be determined. It is neces¬ 

sary to introduce a new hyperbolic identity. 

<7 sinh (At ± H) s= (?(sinh At cosh H ± cosh At sinh H) 
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Substitute this identity in Eq. (30). 

P sinh At ± S cosh At = G cosh 11 sinh At ±G sinh H cosh At 

By inspection 

P = G cosh H 
and S = G sinh II 
Now G2 cosh2 H - G2 sinh2 II = G2 = P2 - B2 

Therefore, G is evaluated in terms of P and S. 

G = VP^ S'2 

To find H in terms of P and S 

and 

tanh II = 
G sinh H 
G cosh H 

S 
P 

II = tanh-1 p 

Hence, the identity, Eq. (29), is proved. 

A particular form of Eq. (29) is 

sinh At cosh B ± cosh At sinh B = sinh (At ± B) 

In this identity P = cosh B and S = sinh B, so 

G = \/P2 - S2 = VcoSsinh^g = 1 

and H = tanh-1 -S-n[j 5 = tanh-1 tanh B = B 
cosh B 

A trigonometric identity that is similar to Eq. (29) will also 

be used. 

P sin At ± S cos At = y/P2 + S2 sin ^At ± tan-1 ~ 

The proof of this identity is analogous to that for the hyperbolic 

functions. It will be found that the following trigonometric 

identities are necessary for the proof: 

sin2 At + cos2 At = 1 

sin (At ± B) ss sin At cos B ± cos At sin B 
, ., sin At 
tan At =-7- 

cos At 

12. Imaginary Numbers.—There are some interesting proper¬ 

ties of the hyperbolic functions when the exponent is imaginary. 
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Before proceeding to show these properties it is necessary to know 

that 

t±iAt = cos At ± j sin At1 

where j = \/ —1. Consider the hyperbolic sine of an imaginary 

number. 
JAt _ f~jAt 

sinh jAt = -^- 

Expand tjAt and e~jAt. 

. . . ., cos At + j sin At — cos At + j sin At . . ., 
sinh jAt =---^--- = J sin At 

Another identity is 

cosh jAt = cos Af 

Proof: cosh jAt 

cos .U + j sin At + cos .1/ — j sin At 
= cos At 

Thus it is seen that there is a connection between the trigo¬ 

nometric functions and the hyperbolic functions. 

13. Differentiation.—The derivatives of the hyperbolic sine 

and hyperbolic cosine are of interest. 

d / . 1 i ,\ 4 1 1 4 
(sinh At) — A cosh At 

Proof: ~ (sinh 
dt Al^ = It = I + 

. ,, - .-i cosh A, 

— (cosh At) = A sinh .4/ 

1 To demonstrate that this equation is true, expand each of the three terms 

by Maclaurin’s theorem. 

cos .4^ = 1 

j sin At « 4* jAt 

AV .AV 
+ 

AV 
Aj 

AV 
4- 

2! 3 3! 4! 5! 

AV 
+ 

AV 
+ 

2! 4! 

. AV 
+ j 

AV 
4- ~3 3! 5! 

Therefore, * cos At A-j sin .4* s ejAt 
and e~iAt - cos (-A0 +j sin (-.10 = cos At - j sin At 
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Proof: | (cosh At) = ~ = 1 -A, -) 

= A ^ == ^ sinh ^ 

14. Conclusion.—The material on hyperbolic functions that 

has been presented in this chapter consists of miscellaneous 

fragments taken from the general subject.1 This material repre¬ 

sents the minimum amount that is required as background for 

the analytical work to follow. 

The reason for using hyperbolic functions in this book is to 

place the mathematical results in a more concise form than is 

possible with the sole use of exponentials. Equations involving 

hyperbolic functions can be evaluated from the tables appearing 

in Appendix I. 

Problems 

Prob. 1. Find the complete solution of the following differential equations: 

<«)l|+JK-0 

Prob. 2. If R* = 4L/C, what is the solution of the following differential 

equation? 

tl + Ki+^,0 

Prob. 8. The current in a network is governed by the following differen¬ 

tial equation: 

Ri + 
J* dt 

C 
E 

а. What is the steady-state value of current? 

б. What is the expression for the transient term? 

c. What is the ratio of the instantaneous current at t = RC to the instan¬ 

taneous current at t **• 2RC? 
Prob. 4. In Prob. 16 the instantaneous charge q is zero when t * 0. 

а. What is the steady-state value of charge? 

б. What is the rate of change of instantaneous charge at t *0? 

1 For a detailed treatment of hyperbolic functions refer to H. W. Reddick 

and F. H. Miller, “ Advanced Mathematics for Engineers/' Chap. II, John 

Wiley & Sons, Inc., New York, 1938. 
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Prob. 5. Find the value of At required to have 

sinh At + 0.1 = cosh At 

Prob. 6. Prove the identity 

sinh 2At = 2 sinh At cosh At 

Prob. 7. What restriction must be placed upon the relative values of 

A and B in the expression sinh At) to ensure that the expression has a 

limiting value of zero when t approaches infinity? 



CHAPTER III 

SERIES NETWORKS CONTAINING RESISTANCE 
AND CAPACITANCE 

Series networks containing resistance and capacitance are 
relatively simple to analyze by means of ordinary differential 
equations, and the analysis yields very useful results. This 
type of network occurs repeatedly in many branches of electrical 
work, and a fundamental knowledge of its behavior is obtained 
by applying the classical method. 

BASIC RC NETWORK WITH CAPACITANCE ACROSS OUTPUT 

The four-terminal network shown in Fig. 12 is subjected 
to a rectangular-pulse voltage E. The object of this analysis 

is to find the resulting output voltage e. 
The differential-equation method re¬ 
quires two separate solutions: one for 
the time during which the generator 
pulse exists, and the other for the 
time after the generator pulse has 
disappeared. 

1. Equation for Output Pulse; t ~ 0 
to t = T.—Considering the first inter¬ 

val, the differential equation that applies from i = 0 to t T is 

Fig. 12.—Bame series RC 
network with a rectangular- 
pulse generator. Capaci¬ 
tance output. 

E = rit; + RiE + g (31) 

This is a statement of Kirchhoff's voltage law: the algebraic 
sum of all voltages around a closed network is zero. The sub¬ 
script E signifies validity only during the time that the gen¬ 
erator voltage is E. During the pulse interval the generator 
voltage has a constant value E that equals the sum of the 
instantaneous voltage across r, riE; the instantaneous voltage 
across i?, RiE; and the instantaneous voltage across C, qE/C. 
Since the rate of change of charge dqE/dt equals the instan¬ 
taneous current iE, dqE/dt can be inserted for iE in Eq. (31). 

40 
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E = (R + r) + y. (31a) 

This is a linear, first-order, first-degree equation that can be 

solved by the method of separation of variables. Separate ? 

and qey the two variables. 

dqE _ dt 
E- (qE/C) ~ ~R+~r 

Integrate both sides of the equation. 

[ —(1/C) dqE 
J E- (qE/C) 

1 
R + r / dt 

The solution is 

ln “ r) = " (R + r)C + Kl 

The constant of integration Ki can be evaluated by investi¬ 

gating conditions at the time t = 0, the first instant at which 

the differential equation is applicable. At this time the gem 

erator voltage is E. The value of the instantaneous charge at 

t = 0 can be found indirectly by rearranging Eq. (31a). 

dqE _ E — (qs/C) 
dt R + r 

Inspection of this equation discloses that dqs/dt is finite if 

(R + r) or C is not equal to zero, and if E is finite. A finite 

value of dqK/dt means that it is impossible for charge to accum¬ 

ulate instantly. In other words, a finite time must elapse 

before charge can appear on C. Hence, at t = 0, qE = 0, and 

accordingly 

tfi = ln E 

Thus the solution becomes 

ln (E - c ) ■ - (KT75C + ln * 
which can be written 

B-(q,/C) 

L E 
t 

(R + r)C 
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Convert to the exponential form. 

* ” (R+rVC — ^ ~ (Qe/C) 

E 
Solve for qE. 

qE = CE[ I - (32) 

The voltage at the output terminals is qE/C. Hence, the 

solution for the output voltage during the pulse interval is 

eE = g = E[\ - j (33) 

The internal generator resistance is included in the mathe¬ 

matical analysis because it is usually important and sometimes 

overlooked. However, Eq. (33) can be simplified if the gener¬ 

ator resistance is very small compared with /?, or mathematically 

if (r/R) << 1. Then the output voltage during the pulse 

interval simplifies to 
t 

eE ~ E( 1 - € RC) (33a) 

2. Network Behavior; t = 0 to / = T.—With the analytical 

solution obtained, it is now appropriate to discuss the results 

descriptively and graphically and thereby to interpret Eqs. (32) 

and (33). During the time interval t = 0 to t = T, the capacitor 

is charging from the pulse source, and the charge accumulates 

exponentially as illustrated in Fig. 13 and as indicated by Eq. 

(32). 

The time equal to (R + r)C is defined as the time constant. 
At this time the instantaneous charge on C is 63.2 per cent of 

CEA 

(qE)t-(R+r)c = CE(l - €-0 = CE( 1 - 0.368) = 0.632 CE 

The time constants useful for describing how quickly steady- 

state values are attained in capacitive or inductive circuits. 

The dimension of resistance times capacitance is time (Chap. I, 

page 19). 

Another interpretation of the time constant is suggested 

in Fig. 13 by the sloping line through t = 0. This line is tangent 

to the growth-of-charge curve at t = 0, and its slope is therefore 

1 See Table of Exponentials, Appendix J. 
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equal to the initial rate of change of charge. If the initial 

rate of change of charge were maintained, the final value CE 
would be attained in a time equal to the time constant. This 

CE 

0J5CE 
0.632CE 

0.5 CE 

cr 0.25 CE 
C5 

■5 o 
S 
S -025CE 
c 

c -0.5 CE 
<5 

JE -075CE 

-CE 
Fiq. 13.—Exponential growth of charge on C for a pulse width equal to 

4(R + r)C. The sum of the transient and steady-state terms at any instant 
equals qe. 

can be demonstrated mathematically by setting qE = 0 in 

Eq. (31a) to evaluate the slope at t = 0. 

dqA = E 
(It )t~o R + r 

If this rate of change of charge were maintained for a time 

equal to (R + r)C, then the value of charge at t = (R + r)C 
would be 

= ^rr(R + r)C = CE 

Actually, the initial rate of change of charge is not maintained, 

and the charge on C approaches a value CE but reaches it only 

after infinite time. (This explains why it would not be useful 

to define a “time constant” that is equal to the time required 

for the steady state to be reached. Mathematically, such a 

“time constant” would have a value of infinity for most net¬ 

works.) However, if the pulse duration is four times the time 

constant, the charge will be slightly more than 98 per cent of CE. 
To verify this, suppose that t = 4(R + r)C. From Eq. (32) 

= CE( 1 - €-*) = CE(1 - 0.0183) = 0.982 CE 
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In Fig. 13 two curves in addition to the growth-of-charge 

curve are shown. A study of these curves will cast further light 

on the network behavior during the interval t = 0 to t = T. 
Equation (32) consists of two terms: one is CE, which is the 

t 

value of charge approached, and the other is — CEe (i2+r)C, 

which is a term becoming smaller as time increases. These two 

terms are very important. The first term, CE, wdiich is constant , 

is the steady-state term because it is the value of charge on C 
after all network variations have died out. This term could 

have been obtained from the original differential equation by 

recognizing that the rate of change of charge dqE/dt is zero w hen 

the steady state is reached. Placing dqE/dt = 0 in Eq. (31a) 

yields the steady-state term qE — CE. Recall that the steady- 

state term is the same as the particular integral of the differential 
t 

equation. The second term —CEt <ff+r)C is the transient term 

because it contains all the information about the behavior 

of the varying conditions in the network. The transient term 

could have been found from the original differential equation 

by setting E = 0 and solving for qE. In other words, the tran¬ 

sient term is the same as the complementary function. In 

Fig. 13 the transient term is largest at the instant the generator 

pulse appears, and then it decreases exponentially. Meanwhile, 

the sum of the steady-state and transient terms always equals 

the instantaneous charge. One viewpoint on the transient term 

is that it acts as a “shock absorber” that always makes up 

the difference between the existing value of charge and the 

steady-state value. 

In most networks where transients occur the equations for 

voltage, current, or charge contain these two terms. It is 

useful to keep this idea clearly in mind whenever it becomes 

necessary to distinguish between voltage, current, and charge 

due to transient (time-vaiying) conditions or those due to steady- 

state (constant) conditions. For instance, if the pulse width is 

large compared with the time constant of the network, then 

at t = T the network transient is practically zero and the 

steady-state condition prevails. However, if the pulse width 

is comparable to the time constant, then in the interval t = 0 to 

t = T the transient condition has not had time to become neg- 
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ligibly small, and it will continue to contribute to the network 
behavior from the time T on. 

The output voltage will vary in the same manner as the 
charge since charge on C and voltage across C are directly pro¬ 
portional. Figure 14 shows the output voltage as a function 
of time during the pulse interval, Eq. (33), where the pulse 
interval is twice the time constant. 

To compute the value of the output voltage at the instant 
the pulse disappears from the generator, Eq. (33) can be used. 

interval only. 

For example, if the pulse width is twice the time constant, the 
output voltage at the instant the pulse disappears from the 

generator will be 

eKT = E{1 - c-2) = E( i - 0.135) = 0.865# 

Of course Eq. (33) can be evaluated for any time (, and expressing 
t in terms of the time constant is done merely to simplify the 
calculations. 

3. Equation for Output Pulse; t = T to t = <».—Equation 
(33) is only part of the solution because the pulse ivill disappear 
from the generator terminals after a time T, and the output 
voltage will no longer behave in the manner indicated by Eq. (33) 
and Fig. 14. To obtain the rest of the solution, the differential 
equation that applies at the instant the pulse disappears from the 
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generator must be considered. The required equation is obtained 
by setting E equal to zero in Eq. (31). 

0 = (R + r)i0 + g,- 

The subscript 0 signifies validity only during the time that the 
generator voltage is zero. Substitute for i0 its equal, dqo/dt. 

{R + r)if = 
qo 
C 

Separate variables and integrate. 

1 

(R + r)C 
The solution is 

ln 90 = ~ (ft + r)C + Ki (34) 
To evaluate the constant of integration K2, the instantaneous 

charge on C at the time the pulse disappears from the generator 
must be known. From Eq. (32) its value is 

qEr = CE[\ - 

where qET denotes the instantaneous charge on C at the time T. 
K2 is accordingly 

Kt = In {CE[ 1 - 

J qo 

Therefore, Eq. (34) becomes 

(STTjC + >» IC£[. - .-*^11 + 

which can be written 

In 
(B+r)Cj* 

0 - T) 
(ft + r)C 

Convert to the exponential form. 

T (t-T) 

q9 = CE[ 1 - « (B+r)C 
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This simplifies to 
t t 

qQ = CE[e^)C _ l]e (R+r)C (35) 

The output voltage is 

T t 

e0 = - 1]€ (*+dc (36) 

Thus the complete solution for the applied rectangular pulse 
is twofold. During the generator pulse the output voltage is 
governed by Eq.% (33), and after the generator pulse has dis¬ 
appeared, the output voltage varies in accordance with Eq. (36). 

The form of Eq. (36), a constant times an exponential, is 
fixed. Under special conditions, however, Eq. (36) takes 
on a simpler appearance. Suppose, for instance, that r is 
negligible compared with R. Then Eq. (36) could be written 

T _t_ 

€0 « E(e*C _ 1)€ RC (36a) 

If the pulse width were large compared with the time constant, 
then eE would be practically equal to E when the pulse dis¬ 
appears, and Eq. (36a) could be further simplified to 

(it-T) 

e0 « Ee RC (366) 

Mathematically, this can be shown by recognizing that if 
RC < < T, then 

T JL 
tRC _ 1 ~ eRC 

4. Network Behavior; t = T to t = «.—Equations (35) and 
(36) will now be discussed in terms of the network. At the 
instant the pulse disappears from the generator, the capacitor 
stops charging and commences discharging through R and the 
generator resistance r. The charge decreases in accordance with 
Eq. (35). Suppose the pulse width is large compared with 
(R + r)C. Then when the generator pulse disappears at 
t = Tf the charge on C will be practically CE. The charge will 
decay exponentially as indicated in Fig. 15. After a disch^i^e 
time equal to (R + r)C, the charge on C will have been reduced 
by 63.2 per cent or will be 36.8 per cent of CE. This can be 

(t-T) 

deduced by recognizing that Eq. (35) becomes q0 = CEe <R+r>c 
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if T > > (R + r)C. Now, when t = T + (R + r)C, then 
qo = CEt~x = 0.368 CE. Mathematically, the charge reaches 
zero only after an infinite interval of time, but the remaining 

Fio. 16.—Exponential decay of charge on C for a pulse width large compared 
with (R + r)C. The value of charge at t ■= T equals the steady-state value of 
charge shown in Fig. 13. 

Tr0.4(R+r)C T2~!£(R*r)C T3-4.8(R*r)C T4'60CR+r>C 

Fio. 16.—Complete output voltage of the network in Fig. 12 for four generator 
pulses of equal amplitude E but different pulse widths. 

charge is less than 2 per cent of qEr after a time equal to four 
times the time constant. This is true irrespective of the value of 
charge at t = T. To demonstrate this, substitute 

t - T + 4 (R + r)C 

into Eq. (35). 
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T _T+4(R+r)C 

qo = CE[^R^C - l]e ""(«+DC 

= CE[\ - e («+‘r)C]e-4 = o. 

2?[€(ie+r)C — l]*“<i*+r)<V 

= 0.0183?* 

The steady-state ten^^W!q. (35) is zero because the voltage 
applied to the nelJjBjP^m the time T on is zero. Conse¬ 
quently, the tranj^BTterm accounts for all of the charge in 
the network. After the tran- _ 
sient has become negligible, the 
steady-state condition of zero 
charge prevails. 

Figure 10 reveals the com¬ 
plete history of output voltage 
versus time for generator pulses 
of various time durations and 
equal amplitudes. The oscillo¬ 
gram in Fig. 17 is an illustration 
of the output voltage obtained 

in a practical RC network. The Fig 17._0utPut pulse of the 

charging time constant is less network in Fig. 12 for a pulse width 
.» i-i • -• that is large compared with the 
than the discharging time con- ne,work time constant. 

stant because the internal gener¬ 
ator resistance is smaller during the generator pulse than after 
the generator pulse. 

5. General Network Behavior.—Some general remarks con¬ 
cerning the behavior of the network are pertinent now. Figure 
lb indicates that the output voltage approaches more and more 
closely an exact reproduction of the input voltage as the time 
constant is made smaller compared with the pulse width. This 
can be qualitatively explained on the basis of the definition 
of the time constant, which states that the time constant is 
directly proportional to both the resistance and the capacitance. 
There are essentially two means by which the time constant 
can be decreased: reduction of resistance, or reduction of capaci¬ 
tance. If the resistance is reduced, the amount of charge 
required to produce a given output voltage can accumulate 
more rapidly, since there is less resistance to the flow of charge. 
If the capacitance is reduced, the amount of charge required to 
produce the same output voltage is less. In either case, the out¬ 
put voltage tends to follow the generator pulse more closely. 
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It also can be proved mathematically that the output pulse 
will approach the shape of the generator pulse when the net¬ 
work time constant is small compared with the pulse width. 
Furthermore, this is true irrespective of the generator-pulse 

GENERATOR PULSE 

(R+r)C=g T (R+r)C=-fcT (R+r)C*jgT 
(a) (b) (c) 

OUTPUT PULSE 
Fig. 18.—The output pulse duplicates the generator pulse more exactly 

in shape and amplitude as the network time constant is made smaller compared 

with the pulse width. 

shape. If any generator voltage e0 is applied to the network in 
Fig. 12, the equation for instantaneous voltage is 

e0 = (R + r)i + — 

which can be w ritten 

Ceg = i(R + r)C + q 

The term i(R + r)C becomes small compared with q almost 
immediately because (1) the steady-state value of charge is 
attained almost immediately when (R + r)C is small, and (2) 

the instantaneous current becomes small as the steady-state 
value of charge is approached. Therefore, 

Ceg « q 

~ 1 
q ~ n and e< (R + r)C <<T 
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This shows that the output voltage e is approximately equal 
to the generator voltage. In Fig. 18 the generator and output 
voltages are illustrated for networks that have time constants 
equal to and of the pulse width. 

Conversely, as (R + r)C is made larger compared with the 
pulse width, the output voltage becomes less similar to the 
generator pulse voltage in both shape and amplitude. This 
behavior can be readily understood qualitatively: if the voltage 
builds up too slowly across C, the generator pulse will have 

GENERATOR PULSE 

(R+r)C=T (R+r)C=2T (R+r)C=5T 
(a) (b) (c) 

OUTPUT PULSE 

Fig. 19.—The output pulse departs more and more from the generator pulse 
in !>oth shape and amplitude as the network time constant is made larger com¬ 

pared with the pulse width. 

disappeared before the voltage across C has reached the pulse 
voltage E. Figure 19 presents output voltages for networks of 
time constants equal to 1.0, 2.0, and 5.0 times the pulse duration. 

6. Pulse Integration.—Figure 19c suggests a use for the net¬ 
work in Fig. 12 because the output pulse is approximately the 
integral of the input pulse. As a matter of fact, this network is 
used to “integrate” pulses, not only rectangular in shape but of 
various shapes. The property of integration can be verified 
in a crude way by graphically taking the derivative (slope) 
of the output voltage wave form and observing how^ closely it 
resembles the input voltage. (This is valid because if a second 
quantity is the integral of the first quantity, then the derivative 
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of the second quantity is the first.) This has been done in Fig. 20 
where the property of integration is crudely indicated. The 
oscillogram in Fig. 21 shows an output voltage that approaches 
the integral of the generator pulse even more closely than does 
Fig. 19c. 

Another more general means of verifying the property of 
integration is to apply to this net¬ 
work any voltage eg, a function 
of time only. The equation that 
sums all of the instantaneous volt¬ 
ages around the network is 

eg = (R + r)i + ~ •H 

GENERATOR 
PULSE 

(R+r)C=5T 

OUTPUT 
PULSE 

-H7r- 

DER1VATIVE 

OF OUTPUT 
PULSE 

Fig. 20.—The output pulse is 
approximately the integral of the 
generator pulse when 

(ft + r)C > > T 

The lowest curve is obtained from 
the slope of the output pulse. 
Before the interval T, the slope 
of the output pulse is zero. Dur¬ 
ing the interval T, the slope of the 
output pulse is positive and essen¬ 
tially constant. After the interval 
T, the slope of the output pulse is 
negative but smaller in magnitude 
than the slope in the interval T. 

which can be written 

{ 4-i_ 
R + r ^ (/? -r r)C 

The term q/(R + r)C is negligible 
compared with t when (R + r)C 
is large compared with the gener¬ 
ator-pulse width. This is because 
a very small amount of charge ac¬ 
cumulates on C, and the current i 
is very nearly equal to its maxi¬ 
mum value during the entire gen¬ 
erator pulse. In other words, 
almost all of the generator voltage 
appears across (R + r) during the 
generator pulse, and the current is 
mainly determined by (R + r) and 
ea. The resulting equation is 

eu . dq 
R + r~ 1 "" dt 

which, when solved for g, yields 

Q 
1 

R + r / eg dt 
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Hence, the output voltage is 

Q „ 1 e = ^ (sgdfr y 

53 

(ft + r)C > > T 
C (ft + r)C 

and is approximately proportional to the integral of the input 
voltage, irrespective of its shape. 

BASIC RC NETWORK WITH 
RESISTANCE ACROSS OUTPUT 

If the series network is rear¬ 
ranged as in Fig. 22 so that the 
output voltage appears across 
ft instead of C, the network will 
exhibit characteristics that are 
quite different from the case 
already considered. This net¬ 
work is also encountered fre¬ 
quently. The mathematical 
solution has in effect already 
been obtained and needs only 
slight reworking for application to this particular network. The 
fundamental point to recognize is that the time derivative of the 
instantaneous charge, equations for which have already been 
derived, is the instantaneous current. With the instantaneous 
current in the network known, the instantaneous output voltage 

is easily found. 
7. Equation for Output Pulse; t = 0 

to t = T.—Taking the time derivative 
of Eq. (32), which applies for the time 
interval during which the generator 
pulse exists, the equation for the 
instantaneous current is 

Fig. 21.—Oscillogram of the out¬ 
put voltage observed in an “inte¬ 
grating” network. 

Fig. 22.—Basic series RC 
network with a rectangular 
pulse generator. Resistance 
output. Ik 

_ dqK _ E 
~ dt ~ ft + r ( 

The instantaneous output voltage, therefore, is 

(R+r)C 

p. ER 
t 

__* (iB+r)C 

(37) 

(38) 

If the generator resistance is small compared with R, i.e.. 
(r/R) < < 1, then it is reasonable to approximate the output 
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voltage during the pulse interval by the equation 

_t 

eB~ E* RC (38a) 

8. Network Behavior; t = 0 to t = T.—Equation (38) can be 
interpreted ih' terms of the current in the network. At the 
instant the g^fterator pulse arrives, the charge on C is zero, since 
it takes a finite time for charge to accumulate. Therefore, at 
this instant tbfe ^teross C must be zero. Nevertheless, 
the generator voltage is E at t = 0 and an equal voltage must 
be developed somewhe^ felse in the network. The voltage 
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0 (R+r)C 2(R+r)C 3(R+r)C 4(R+r)C T 

Time-* 
Fig. 23/—Exponential decay of current for a pulse width large compared with 

(R + t)C. The steady-state value of current is zero. 

appears across R and r, and must be exactly equal to E. In 
order to produce such a voltage, current must flow from the 
generator at/ = 0 and must have a value equal to E/(R + r). 
Equation (37) contains this information, for if t = 0, then 
ie = E/{R + r). In other words, at t = 0 the instantaneous 
charge on the capacitor is zero, but the time rate of change of 
charge, which is the instantaneous current, is not zero. Refer 
to Fig. 13 where the slope of the growth-of-eharge curve is equal 
to the instantaneous current. When current flows, charge must 
accumulate on C, and consequently a voltage proportional to this 
charge will appear across C. This means that less current will 
flow from the generator because the voltage across (R + r) 
will be E minus the voltage across C. Thus the current decreases 
in the same manner in which the charge on C increases, namely, 
exponentially. This also explains why the initial rate of change 
of charge is not maintained. Figure 23 shows the behavior 
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of the current as indicated by Eq. (37) up to the time that the 
generator pulse disappears. If this curve is turned over in the 
time interval from t = 0 on, it will conform to the curve for 
growth of charge on C. The same time-constant considerations 
apply; consequently, at t = {R + r)C, iE = 0MSE/(R + r), 
and at t = 4 (R + r)C the current will be less than 2 per cent of 
E/(R + r). 

The output voltage will vary in the same manner as the 
current since the output voltage is directly proportional to 
the current. Figure 24 illustrates the output voltage as a func- 

l'lG. 24. —Output voltage of the network in Fig. 22 during the gererator-pulbe 
interval only. 

tion of time during the generator-pulse interval when the pulse 
interval is twice the time constant. 

To compute the positive output voltage at the instant the 
generator pulse falls to zero voltage, t = T can be inserted 
into Eq. (38). For example, suppose the pulse width is three 
times the time constant. Then from Eq. (38) 

( \ ER n/ino ER \6e) tmm3(R-\-r) C = 75—j  € 3 = 0.0498 75—-  
K r It + r 

9. Equation for Output Pulse; t = T to t = 00.—To obtain 
the solution for the time after the pulse disappears, Eq. (35) 
can be used. Taking the time derivative of Eq. (35), the equation 
for instantaneous current after the pulse disappears is 



5G PULSED LINEAR NETWORKS [Chap. Ill 

E 
R + r 

T 
[€(ft+r)C _ l]€ 

t 
(«+r)C 

The instantaneous output voltage is then 

€q — Rio 
ER 

R + r 

T 

[«(*+D<? - 1]€ 
t 

(R+r)C 

(39) 

(40) 

The output voltage is zero before the time t = 0, Eq. (38) 
describes the output voltage from t = 0 to t = T, and Eq. (40) 
expresses the output voltage from t = T to t = co. Thus the 
complete output voltage behavior has been found. 

If the generator resistance is negligible compared with R> then 
Eq. (40) simplifies to 

t _t__ 

eQ ~ —E(eRc - l)« RC (40a) 

This equation takes on a simpler appearance if the additional 
condition that the time constant is much less than the pulse 
width is applicable. It then becomes 

(t-T) 

e0 » -Et RC (40b) 

T T 

because eRC — 1 « eRC when RC << T. 
10, Network Behavior; t = T to t = «.—At the instant the 

generator pulse disappears, t = T, and current stops flowing from 
the generator, but at that instant (R + r) is subjected to the 
voltage attained across C during the pulse. Hence, current will 
flow, but now in the opposite direction, since formerly C was 
charging and now C is discharging. Therefore, there \vill be 
a sharp discontinuity in current flow at the instant the pulse 
disappears from the generator. As time goes on, the charge on 
C decreases because it is discharging through r and R in series; 
consequently, the magnitude of the current decreases. Equa¬ 
tion (39), which applies to the discharge interval after the 
generator pulse disappears, is drawn in Fig. 25. The current is 
shown negative, which signifies that its direction has been 
reversed. The output voltage is directly proportional to i0, and 
hence its polarity will also be reversed. 

11. Network Behavior; t = 0 to t = oo.—The graphical pic¬ 
ture of output voltage for all times can now be considered in 
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Fig. 26. Output voltages are indicated for four generator pulses 
of equal amplitudes, but with durations equal to 0.2, 1.0, 2.4, 
and 5.6 times the time constant. For any given pulse width Ty 

Ti me—► 

Fig. 25.—Exponential decay of current for a pulse width large compared with 
(R r)(j. The value of current at t = T is negative and is due to the fact that 
during the pulse the capacitor charged to a voltage E and at t = T is beginning 

to discharge through (R 4* r). 

Fiq. 26.—Complete output voltage of the network in Fig. 22 for four generator 
pulses of equal amplitude E but different pulse widths. 

the negative output voltage at t = T can be computed from 
Eq. (40), which becomes 

*+r)C] 

when t = T. This is the equation for the envelope of the most 
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negative value of e0 for any pulse width. The envelope is shown 
in Fig. 26 where it is clearly seen that it consists of the positive 

output-voltage curve displaced 
in the negative direction by an 
amount ER/(R + r). The os- 
cillogtam in Fig. 27 pictures the 
output voltage across the resist¬ 
ance when the generator-pulse 
width is slightly less than the 
network time constant. 

12. General Network Behav¬ 
ior.—The behavior of this net¬ 
work is quite opposite from the 

Fig. 27.—Output pulse of the behavior of the network where* 
network in Fig. 22 when the pulse ^ . . 
width is slightly less than the net- the Output Voltage is taken 
work time constant. across C. Recall that in tilt* 

latter case, as the network time constant was made smaller com¬ 
pared with the pulse width, the output voltage became more closely 
similar in shape to the input pulse. However, in this network 
the opposite is true: as the network time constant is made 

GENERATOR PULSE 

(R+r)C=JJT (R+r)C-20T (R+r)C*100T 
(a) (b) (c) 

OUTPUT PULSE 
Fig. 28.—The output-pulse shape duplicates the generator-pulse shape 

more closely as the network time constant is made larger compared with the 
pulse width. 

smaller compared with the pulse width, the output voltage 
differs more in shape from the input pulse; and when the time 
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constant is made larger, the output pulse approaches the shape 
of the input pulse. To explain this qualitatively consider 
the following: If the time constant is large, charge will accumulate 
very slowly on C. Now the appearance of voltage across C 
is the only thing in the network that will distort the output-pulse 
shape. (If the voltage on C is always zero, then the output 
voltage will have the exact shape of the generator pulse.) It is 
reasonable, then, to say that the output pulse will resemble the 
input pulse more closely if charge cannot quickly flow on C. 
Conversely, if charge can accumulate on C quickly compared 
with the time duration of the pulse, then the presence of voltage 
across C will introduce a different shape of output pulse. These 
remarks are illustrated in Figs. 28 and 29. 

The fact that the output pulse resembles the input pulse 
more closely as the network time constant is made large com¬ 
pared with the generator-pulse width can be verified mathe¬ 
matically. For the network in Fig. 22 and for any generator 
voltage e01 

ea = (R + r)i + — 

or Gey = i(R “T r)C -b q 

Now q is negligible compared with i(R + r)C when (R + r)C is 
very large compared with the generator-pulse width. Therefore, 

eu ~ i{R + r) 
CyR . r» 

or p-r~ ~ R + r 

However, e — iR, and consequently 

This demonstrates that the output voltage is approximately 
proportional to the generator voltage, irrespective of its shape. 

13. Pulse Differentiation.—It has been shown in the network 
where the output voltage is taken across C that it is possible 
for the output pulse to be approximately the integral of the 
generator pulse (see pages 51-53). Thus far an opposite behavior 
has been seen for the same network but with voltage taken across 
/2. It is not surprising to find that the opposite of integration, 
which is differentiation, can be performed by this network. A 
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careful examination of Fig. 29 will show that as the time constant 
is made smaller compared with the pulse width, the output wave 

GENERATOR PULSE 

(a) (b) (c) 
OUTPUT PULSE 

Fio. 29.—The output-pulse shape departs more and more from the generator- 
pulse shape as the network time constant is made smaller compared with the 
pulse width. If the network time constant is made sufficiently small, the output 
voltage is approximately the derivative of the generator pulse. 

form approaches the derivative of the generator pulse. When 
an extremely small time con¬ 
stant is approached, Fig. 29c, 
the output pulse will consist of 
two lines, which is approximately 
the derivative (slope) of the gen¬ 
erator pulse. Figure 30 illus¬ 
trates the output voltage of 
a practical “differentiating” 
network. 

To demonstrate in another 
way that this can be a derivative 
network, suppose that any volt¬ 
age e01 a function of time, is ap¬ 
plied. The equation that sums 

all of the instantaneous voltages around the network is 

Fio. 30.—Oscillogram of the out¬ 
put voltage observed in a “differ¬ 
entiating” network. 

e„ = (R + r)i + % 
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which can be written 

Ceg = i(R + r)C + q 

When (R + r)C is very small compared with the generator-pulse 
width, then i(R + r)C is negligible compared with q and Ceu « q. 
Take the derivative. 

ri d€ff ^ dq 
dt ~ dt 

How ever, i = dq/dt and hence i « C (<deg/dt). The output voltage 

will be 

e = iR ~ RC (R + r)C << T 

and is approximately proportional to the derivative of the 
generator voltage, irrespective of its shape. 

POWER AND ENERGY RELATIONS 

Before proceeding with the analysis of other series networks 
containing resistance and capacitance, it is interesting to investi¬ 
gate the power and energy relations for the two simple networks 
discussed thus far. 

14. Energy Transfer and Transformation.—The generator 
delivers current to the network during the time interval t = 0 
to t = T. This current flow represents a transfer of energy from 
the generator to the network. A portion of this transferred 
energy is dissipated in the resistance and transformed into 
heat; the remainder is stored in the electric field of the capacitor. 
From the time t = T on, the generator no longer supplies energy. 
In general, however, current continues to flow after the time 
t =* T. The source of this current is the stored energy in the 
electric field of the capacitor. All the stored energy is eventually 
dissipated as heat in the resistance. Thus the qualitative energy 
picture is clear. 

15. Instantaneous Power and Instantaneous Total Energy.— 
If more than a qualitative idea of the energy transfer and 
transformation is desired, it is necessary to perform a mathe¬ 
matical analysis. This can be done in essentially two steps: 
(1) power analysis, and (2) energy analysis. Before the power 
and energy analyses can be made, mathematical definitions of 
electric power and energy are necessary. 
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Power is defined as the product of voltage and current. In 
the networks under consideration all voltages and currents 
may be functions of time, and consequently their products, 
power, will also be functions of time. Therefore, power, as 
well as current and voltage, is an instantaneous quantity since 
it generally will have a different value at each instant. Equation 
(41) relates instantaneous power, ph for any network element 
to the instantaneous current flowing through that element, and 
the instantaneous voltage produced across that element, e\. 

Pi = ci ix (41) 

Mathematically, energy is the time integral of power and is 
defined by Eq. (42). 

w i = jriiidt (42) 

This integral will have a value that depends upon the time 
interval over which the integration is performed, so the energy 
depends upon the time interval considered. The energy is not 
the same sort of instantaneous function as current, voltage, 
and power. The relation between current, voltage, power, and 
time gives the existing instantaneous power at any specified 
time. But the relation between energy and time gives the total 
or sum of the energy up to any specified time. In other words, 
it is the total energy stored or dissipated over a time interval 
that starts and ends at specified times. When this time interval 
is measured from t = 0, the energy will be called the instan¬ 
taneous total energy. It is important to understand clearly 
this definition of instantaneous total energy when an interpreta¬ 
tion is made of the mathematical results. 

Table II lists the fundamental equations and the special 
forms of the power and energy equations for the network ele¬ 
ments to be considered. 

16. Power Relations.—First the power relations will be dis¬ 
cussed. Direct substitution of the equations for q and i into the 
power equations yields 

During Pulse 

(R + r)C 

21 

(R-fr)C 
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Pc = 
Ei 

,[« 
(fl+r)C 

ft + r1 
After Pulse 

2t 
(ft-fr)Cj 

Vq = 0 

= 

= 

E2 
ft 4- r 

E2 

[e (H+r)C 

ft + r 

T_ 
[€(«+r)C 

21 
]]2C («+r)C 

♦21 
— lpc («+r)C 

These equations are represented graphically in Fig. 31 for 
a pulse width that is equal to four times the time constant. 
Curves for i and q are also indicated. They suggest graphically 
the means by which the power curves can be obtained. 

Power during Pulse.—Power is delivered by the generator 
only during the time interval t = 0 to t = T. Refer to Fig. 31a. 
In this interval the instantaneous supplied power decreases 
exponentially with time in accordance with a time constant 
equal to (ft + r)C. This power is delivered to the resistance 
and the capacitance. The instantaneous power being delivered 
to (ft + r), Fig. 316, decreases exponentially with time in 
accordance with a time constant equal to J^(ft + r)C. In the 
early part of the interval / = 0 to t = T, the instantaneous power 
delivered to (ft + r) is greater than that delivered to C, which is 
evident from a comparison of Figs. 316 and 31c. The instan¬ 
taneous power delivered to (ft + r) is a maximum at t = 0, w hile 
the instantaneous power delivered to C reaches a maximum during 
the pulse interval at a time equal to 0.693(ft + r)C, the maximum 
value being J4E2/(R + r).1 If the pulse width is made small 
compared with the time constant, it can be deduced that prac¬ 
tically all of the generator power will be delivered to the resistance 
and practically none to the capacitance. Thus, when the net- 

1 To obtain this maximum value, take the time derivative of pc and equate 
to zero. Substitute the resulting value into the equation for pc- 

dpc 
dt 

A \ E* 
dt \R -f r [« <*+r)C _ 

_21 
'(R+r )c,J , 

t 
€ (*+r)C - K; t - 0.693(ft + r)C 

E* (l 1\ 1 ft3 
R + r \2 4/ “ 

0 

Therefore, 
4# -hr 



Fia. 31.—Behavior of instantaneous power in a basic RC network that is sub¬ 
jected to a rectangular-pulse voltage. The pulse width is equal to 4(R -f r)C. 

05 
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work is used for integration, very little power is delivered to the 
output terminals. 

The equations for instantaneous power during the pulse 
interval show that the sum of the instantaneous power delivered 
to (R + r) and to C is always equal to the instantaneous power 
supplied by the generator; *>., 

Vu = + pc 

Power after Pulse.—In the time interval from t = T on, 
the power previously delivered to C is released and delivered 
to (R + r). A glance at the power equations for this time inter¬ 
val reveals that pc and pR+r are always equal and opposite. 
The significance of negative instantaneous power is that the 
direction of current flow is opposite to the polarity of the voltage. 
The power delivered by C to (R + r) decreases exponentially 
in accordance with a time constant equal to + r)C. 

17. Energy Relations.—After this treatment of instantaneous 
power relations, it is possible to proceed to the instantaneous 
total energy relations. As indicated in Table II, integration 
of the power equations is necessary to obtain the energy equa¬ 
tions. This integration is straightforward and has been carried 
out with the following results: 

During Pulse 

wu = CEJ[ 1 - € <*+'>*] 
21 

wR+r = } 'iCK-[ 1 - e («+r)C] (•»3) 

Wc = }-zCE2[\ + « “(« + r)C _ 2t~ (-N) 
After Pulse 

s
 II O
 

T T 21 
wR+r = )iCE*\2[1 - € <*+'>*] — [e(« + r)C _ I]2* C*+rX'' j (45) 

T 21 
Wc = 1 $CJ0*[«(*+,,c - lp« <*+r)C (40) 

The graphical representation of these equations is given in 
Fig. 32 for a pulse width that is equal to four times the time 
constant. These curves show the total amount of energy 
at any time, measured from t = 0. The energy supplied by the 
generator during the pulse interval increases exponentially 
according to a time constant equal to {R + r)C. After the time 



Sec. 17] SERIES RC NETWORKS G7 

t = T, the additional energy supplied by the generator is zero, 

and therefore the total energy supplied up to the time t — T 

is the same as the energy from the time t = T on. 

Energy during Pulse.—If Eqs. (43) and (44) are added, their 

sum is seen to be exactly equal to the equation for energy sup¬ 

plied, wa, In other words, the sum of the stored energy and 

dissipated energy is always equal to the energy supplied by the 

generator. 

Fig. 32.—Behavior of instantaneous total energy in a basic RC network that is 
subjected to a rectangular-pulse voltage. 

If the pulse width is large compared with the time constant, 

then at the time t = T the energy equations become 

Wg = CFS \ 

wH+r = ViCE- 1 t = T and T >> (R + r)C 

wc = ViCE- ] 

T _2 T 
because, when T > > (R + r)C, both c (*+»•)£ and c (R+r)c are 

much less than 1. This is an interesting property of the net¬ 

work; half of the supplied energy is dissipated and half is stored 

under these special conditions. When the pulse width is not 

large compared with the time constant, the dissipated and 

stored energy are not equal even though their sum equals 

the supplied energy at all times. Figure 32 indicates this while 

Fig. 33 is a curve showing the variation in the difference between 

dissipated and stored energy. This difference has a maximum 
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value of y±CE2 at a time equal to 0.693(7? + r)C. The values 

of wc and wR+r at this time are \iCE2 and %GE2, respectively.1 

Energy after Pulse.—In the time interval t = T to t — 

whatever energy has been stored in the electric field of the 

capacitor must be dissipated in (R + r). This can be deduced 

Fio. 33.—Difference between the dissipated and stored energy during the 
generator pulse. 

from energy-conservation principles or from the energy equa¬ 

tions, which embody these principles. Rewrite Kq. (45). 

= CE2[ 1 - €~<^] - }tCE2[<p£w - !]*-(*£)* (45a) 

The first term is a constant equal to the total energy supplied 

by the generator for any pulse width T. The second term, which 

becomes smaller with time, is exactly equal to the energy stored 

in the electric field of the capacitance, Eq. (46). Therefore, 

the energy dissipated in (R -f r) increases by exactly the same 

amount that the electrostatic energy decreases. 

1 To find the maximum value analytically, differentiate (wR+r — u'c) 

with respect to time, set the derivative equal to zero, and insert the resulting 
value in the original expressions for and wc. 

Jjj (wR+r — wc) 
d /I 

dt 

n _ 2<„_ 
(«+riC+2€ )Cl} - 0 

« (k+r)C - y2-t t « 0.693(ft + r)C 

WR+T ■CE2 

Wc - ^ CE2 

1 - 
■CE2 

[—ffl+GN-i" 
(WR+r ~ Wc)mt 

- 0.693(ft + r)C 

| CE* - i CE1 - i CE* 
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To show that all of the energy supplied by the generator 

is eventually dissipated in (R + r), allow t to approach infinity 

in Eq. (45a). It is found that 
T 

Wn+r = CE*[ 1 - € &+r)C] 

when t = oo. This is exactly the same amount of energy sup¬ 

plied by the generator during the pulse interval. When t = <», 

the energy stored in C is equal to zero. 

At the instant the pulse disappears from the generator, 

the energy in the electric field of the capacitor is a maximum, 

because from that time on the source of energy is removed. 

After the generator pulse disappears, a lapse of time equal 

to twice the time constant results in the dissipation of approxi¬ 

mately 98 per cent of this maximum energy in the resistance. 

This is because the reduction of stored energy (or increase of 

dissipated energy) is in accordance with a time constant equal to 

H(R + r)C. 
A graphical correlation between the instantaneous-total- 

energy curves (Fig. 32) and the instantaneous-power curves 

(Fig. 31) can be made. The integral of the instantaneous-power 

curve represents the area enclosed under the curve and also 

represents the instantaneous total energy. The instantaneous 

total energy supplied by the generator is always equal to the 

sum of the dissipated and stored energy. Consequently, the 

sum of the areas under the instantaneous-power curves for 

the resistance and capacitance is always equal to the area under 

the instantaneous-power curve for the generator. 

Energy Summary.—A summary of the energy relations on 

the basis of Fig. 32 may be worth while. From these curves, 

the following pertinent features should now be evident: 

1. The generator supplies energy only during the pulse 

interval. 

2. The energy supplied by the generator can be as much as 

CE2 if the pulse width is large compared with the time constant. 

3. The sum of the dissipated and stored energy is always 

equal to the energy supplied by the generator. 

4. For a large pulse width the dissipated energy and stored 

energy are equal and of value }$CE2. 

5. For a short pulse width, more energy is dissipated than is 

stored. 
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6. All of the generator energy is eventually dissipated in the 

resistance. 

BASIC RC NETWORK WITH BOTH RESISTANCE AND CAPACITANCE 
ACROSS OUTPUT 

The two series networks in Figs. 12 and 22 are used extensively 

in many applications, but variations on series RC networks 

are also common. It is interesting to study other series combina¬ 

tions to see how the differential-equation method of analysis 

applies, to discover what other behavior 

is possible when a rectangular-pulse 

voltage is applied, and to arrive at a 

general equation for any series RC net¬ 

work. One additional network will be 

treated. It is shown in Fig. 34. 

18. Equations for Output Pulse.— In 

this network the equations for instanta¬ 

neous current and instantaneous charge 

are identical with Eqs. (32), (35), (37), and (39), which are given 

below for convenience. 

r 
"X 

i 

e 

A 
Fig. 34. Series RC net¬ 

work with a rectangular- 
pulse generator. 

During Pulse 

qK = CE[ 1 - e~(R^c] (32) 

F - 1 
= € (« + r)C 

U Ii + rt 
(37) 

qo 

to 

After Pulse 
t _ t 

CE[^R+r)C - lie (R+oc 

E_ 

R v 

T _ 1 
[e(« + r)C _ |]€ (ft + r)C 

(35) 

(39) 

It is necessary to add the instantaneous voltages developed 

across R and C in order to obtain expressions for the instan¬ 

taneous output voltage. Since ec = q/C and eR = Ri, then 

clearly 

During Pulse 
t 

€cg = E[ 1 - € (*+'><?] 
t 

Ml / n 
€rm = ER € <R+r)C 

R + r 

After Pulse 
T t 

€Co = EWR+r>c - l]e <*+'>* 
Pft T _t 

en, = - [«<*+'>'* - 1]« <*+r>c 
n + r 
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The sum of ec and eR is accordingly 

71 

During Pulse 

L B + r 

After Pulse 

e0 = jj-qry. ^(*+r)C — 1J« <*+'>* (48) 

19. Familiarization with Output-pulse Equations.—In order 

to attach physical significance to these equations before pro¬ 

ceeding with their general meaning, it is easy to impose some 

special conditions on the network that r 

make it possible to obtain the answer r^wvw-o j j 

just by common sense without the use < ; 

of Eqs. (47) and (48). Then the same </? e 

conditions will be inserted into the y j 
equations for mathematical verification. '---1--* 

Example 1. R = 0, C = aoSup- 4l Fu\ 35r7Re,du(,t^V of 
r 71 the network m hig. .34 to a 

pose that R and C are replaced by simple voltage divider when 

short circuits; i.e., R — 0 and C = &. c = 50* 

It is obvious that the output voltage both during and after the 

pulse will always be zero since the output is completely short- 

circuited. When this is checked in Eq. (47), 

Fig. 35.—Reduction of 

the network in Fig. 34 to a 
simple voltage divider when 

C = *>. 

’e = E ^1 - r-t ’•“) = E( °) = E( 1 - 1) = 0 

and in Eq. (48), 

e« — («r* = E(e° - l)r° = E( 1 - 1) = 0 

It is seen that e = 0 always when R = 0 and C — . 

Example 2. C = «.—Another supposition is that C — <*>: 

i.e., only the capacitor is replaced by a short circuit. From a 

physical basis, if C = , the network reduces to Fig. 35. Evi¬ 

dently the output voltage will be an exact reproduction of the 

input voltage in shape, but its amplitude will be governed by r 

and R, which comprise a voltage divider. In fact, the output 

voltage will be es = ER/(R + r) during the pulse and zero at 

the instant the pulse disappears from the generator. To check 

this reasoning, insert C — «© into Eqs. (47) and (48). 
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eR 

€o = 

-E['~ ST^r"+‘>-]-E(1-ffT?)- 
T t 

[e(*+r)« _ l]e (ft+r)«o _ 

ft+ r' 

£V 
ft + r 

ER 
R + r 

(«° - l)€-° = 0 

Again the equations contain the special solution. 

Example 3. r = 0.—An interesting check is obtained when 

the generator resistance r is assumed to be zero. The output 

voltage must at all times be exactly equal to the generator 

voltage because it is taken directly across the generator. The 

conclusion is that during the pulse eK = E} and after the pulse 

Co = 0. To see if the equations contain this information set r = 0 
and evaluate e. 

eE = E ^1 - |= £(1 - 0) = E 

eo 
E-0 

R 

T _J_ 

RC — 0 

In this check a significant point may be brought out. It 

has been shown that the sum of ec and eR is equal to E during 

the pulse and equal to zero after the pulse. Nevertheless, 

ec and eR considered separately are not of that form. (See 

Figs. 14 and 24.) The explanation is that during the pulse 

€cg and eRm add up to a constant value E, and after the pulse eCo 
and eRo add up to zero at all times. Figure 36 illustrates this. 

Note that the sum of ec and eR will be a rectangular voltage for 

any pulse width. 
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While these special examples do not show the complete gen¬ 

erality of Eqs. (47) and (48), the equations are general, never¬ 

theless, since no special values of r, and C were assumed in 

their derivation. 

Time-* 
Ki<;. 37.-—Voltage across C and across R for the network in Fig. 34 during 

the generator-pulse interval only. Three curves are shown for different ratios 

of r/R but for constant (R 4* r)• 

Fig. 38.—Output voltage of the network in Fig. 34 during the generator 
pulse for throe values of r/R but for constant {R + r). These curves result 
from the addition of ecu and crk in Fig. 37. 

20. Network Behavior.—It is now appropriate to discuss the 

network more generally under conditions where r, R, and C 
have values different from zero or infinity. Instead of consider¬ 

ing Eqs. (47) and (48), it is clearer to consider ec and eR sep¬ 

arately and then to take their sum. First, consider the interval 

during which the pulse exists at the generator terminals. The 

voltage across R and C in this interval is given in Fig. 37, where 
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have been drawn for eRo. The graphical sum of the curves is 

shown in Fig. 40. 

The complete wave form of e depends upon the ratio r/R 
and upon the relative values of T and (R + r)C. Various output 

voltages are indicated in Fig. 41 for different conditions. The 

Fit;. 41.—Complete output voltage for the network in Fig. 34. The output 
voltage depends upon r/R and the relative values of T and (R ■+* r)C\ 

dotted lines represent ec and eR, and the solid lines indicate the 

algebraic sum of ec and eR, which is the output voltage. 

SUMMARY AND GENERALIZATION OF RESULTS 

To summarize this chapter and to generalize the results, 

it is illuminating to reflect upon the three series networks that 

have been analyzed so far. The three networks are shown 

in Figs, 12, 22, and 34. Each has been analyzed for output 

voltage as a function of time for perfectly general values of 

r, R, and C. Is it possible to extend the analysis to any series 

network that contains only resistance and capacitance? The 

considerations that follow demonstrate that it is possible and, 

moreover, that the analyses already made will pertain equally 
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well to any series network containing resistance and capacitance 

only, if the equations are judiciously applied. 

21. Example of Extension of Results.—As an illustrative exam¬ 

ple of the extension of the results to other networks, suppose 

the output voltage as a function of time is required for the 

network in Fig. 42. By combining all resistors and all capaci¬ 

tors into a single equivalent resistance and a single equivalent 

capacitance, the network in Fig. 43 results (Chap. I, page 14). 

This equivalent network will produce exactly the same current 

flow as that of Fig. 42, and the capacitor Cs will acquire the 

same charge as Ci and C2, even though the identity of the output 

terminals has been lost. 

Fio. 42.—Series RC network with a Fig. 43.—Equivalent series network for 
rectangular-pulse generator. the network in Fig. 42. 

Now the flow of charge for the series net work shown in Fig. 43 

is given by Eq. (32) during the pulse interval and by Eq. (35) 

after the pulse disappears, because these equations apply for 

any value of resistance and capacitance. In the case of the 

equivalent network in Fig. 43, these equations become 

q* = CsE[ 1 - €“(«^rcS] (32a) 

_T_ _t 

q0 = CsE[i<<R*+oca _ i]€ (Rs+rjcs (35a) 

Once these equations are known, the output voltage is readily 

obtained by dividing the charge by the capacitance C2, which is 

connected across the output in the actual network. The output 

voltage, therefore, is 

„ - CsE h 
* = cr11 
e0 = ~ [,<*.+r)C. 

c2 

€ (Rs+r)Cs] 

T 

1]€ (Rs+r)C9 

where Ra = Ri + Rt + Rt and Ca = CiCt/(Ci + Ct). 
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In a similar manner the equations already derived can be 
used to obtain the output voltage for any series network con¬ 
taining resistance and capacitance only. 

22. General Series RC Network.—The single general net¬ 
work that represents any conceivable arrangement of series 
resistors and capacitors is given in Fig. 44. The values of 
R' and C' are unrestricted. Either Rf or C" or both may be 
zero, infinity, or even the equivalent resistance and capacitance 

Flu. 44. A general series RC network with a rectangular-pulse generator. 

of any number of series resistors and capacitors across the 
output terminals. 

Evidently the equations for the output voltage of this net¬ 
work will also be general. These equations are obtained merely 
by extension of Eqs. (47) and (48). To make clear the derivation 
of the general equations, the series equivalent network of Fig. 44 
is presented in Fig. 45. The equations for instantaneous 
current and instantaneous charge in this equivalent network are 

Flu. 45.—Equivalent series network for that in Fig. 44. 

Eqs. (32), (35), (37), and (39), which arc valid for any values 
whatsoever of resistance and capacitance. These equations, 
written for the general values of resistance and capacitance, are 

During Pulse 

qE = CSE[l - €‘<*-+r>c.] (32') 
E _ _ 

iE = -D-:- € (rta+r)Ca (37') 
Its i“ T 
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Qo 

io 

After Pulse 

t t 

= CsE[€iRs+r)Ca — l]c (r«+dcs 

E 
Rs + T 

- [€(fla+r)C* — 1]€ (R* + r)CZ 

(35') 

(39') 

The general output voltage will be the algebraic sum of the 

voltage across Cf and across R'. The voltages to be summed are 

obtained directly from the relations ec* = q/Cf and e# — R'i. 

During Pulse 

[1 - € <*■+'>*] 

ER' - -* 
e„, = —_ t <Jl* + r)C* 

Rs + r 

After Pulse 

f* p T _ t 
eC'Q = ^ [e(R« + r)Ca _ i]e lm + rjci 

Fft' T _ 1 _ 
Po, =_\ARs+r)Cs _ 11, (Rn + r)Ca 

**' R« + r[ J 

The algebraic sum of e<? and eR> yields the general equations for 

output voltage, which are 

_ CsE { [ R[C_" 
C' | Cs(Rb + r) 

t 
~(Rs + r)Cs (49) 

e« = ~ [t - 11 CSB^T)] <“> 

These equations represent in mathematical form a complete 

summary of the outputrvoltage analysis of this chapter, because 

they contain the solution for any series network containing 

resistance and capacitance only. 

As an illustration of the use of these general equations, return 

to the network in Fig. 22 and recall that the equations for the 

output pulse were found to be 

eK 
ER - 

R + r‘ 

t 
(fi+r)C 

ER 
R +r 

T 
[e(R+r)C _ 1]€ 

t 
(«+r)C 

(38) 

e0 = - (40) 
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The parameters of the general network in Figs. 44 and 45 become, 

in the case of the network in Fig. 22, 

C' = * 

Rs = R' = R 
C, = C 

These values substituted, the general equations become 

eK = C*E I— + I  —---L1 .“‘(Rs+DCsl 
* s |r + [Cs(Rs + r) C'J ) 

= C7? f — + [ —-—1 t~(R+r)cl 
1« LC(« -|- r) »Je | 

= whr^T)" (49fl) 

Cn = r',KrfrRTFr)Cs _ 11 I _L-__ ~(R»+r)Cl 
e° •’ l< 1 Lc' Ca(fts + r)J 

- ~r~ r i « i ■ 
= - 11 —-—- <(«+r)C 

1 l,[oo C(ft + r)J€ 

= - [e(R+DC _ ^“(R+oc (50a) 

Equations (49a) and (50a) are the same as Eqs. (38) and (40). 

23. Conclusion.—In concluding this chapter it is well to 

examine some of the broader aspects of what has been accom¬ 

plished. It has been shown for a simple type of network that 

a general solution by ordinary differential equations is possible. 

Further, it has been demonstrated in some special cases that 

the results are applicable to generator voltages of any shape 

whatsoever. The major pulse-response characteristics of the 

network have been uncovered by means of this analysis along 

with an examination of what is actually happening in the network. 

A fundamental point concerning the transient network 

behavior should be emphasized. As was mentioned in Chap. I 

(page 4), the nature of the transient that results from a sudden 

change is independent of the disturbing force. The magnitude 

of the transient, however, does depend upon the disturbing 

force. If any output voltage equation in this chapter is exam¬ 

ined, it will be found that the transient is invariably exponential 

in nature, irrespective of the value of 2?, and that this exponential 

behavior is governed by the network parameters and not by the 

generator voltage. 
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It is well to understand this chapter thoroughly because 

the same underlying principles that have been introduced will 

be used repeatedly. Furthermore, this chapter, along with 

Chaps. IV and V, comprises the foundation for the analysis of 

series-parallel networks. 

Problems 

Prob. 1. The parameters of the network in Fig. 12 have the following 

values: E = 200 volts, T = 0.015 sec., r = 4,000 ohms, R — 6,000 ohms, 

and C — 0.5 /if. 

a. Find the instantaneous charge and instantaneous current at t =0. 
b. What is the time constant? 

c. Find the instantaneous charge and instantaneous current at t = V. 
d. What is the maximum output voltage? 

e. At what two values of t is the output voltage equal to 180 volts? 

Prob. 2. The parameters of the network in Fig. 22 have the following 

values: E — 14 volts, T = 0.03 sec., r = 4,000 ohms, R — 10,000 ohms, and 

C = 0.25 /if. 

а. What is the maximum positive output voltage? 

б. What is the output voltage at t — 0.0307 sec.? 

e. What is the output voltage 0.03 sec. earlier than the time in b? 
Prob. 3. The parameters of the network in Fig. 22 are the same as those 

given in Prob. 2 with the exception of the pulse width 7’, which is variable. 

a. What value of T is required in order that the positive output voltage 

at t — T be exactly equal in magnitude to the negative output voltage 

at t = 77 
b. What is the magnitude of the output voltage in (a) at t — 77 

Prob. 4. The parameters of the network in Fig. 22 have the following 

values: E — 50 volts, r — 100 ohms, R — 400 ohms, and C = 0.05 /if. 

The output pulse at / = T has a positive amplitude equal to 36.2 volts. 

a. What is the generator-pulse width? 

b. What is the most negative value of output voltage? 

Prob. 5. Refer to the network in Fig. 12. 

a. What is the ratio of the steady-state value of charge on C to q 
the charge on C at the instant the power delivered to C is a maximum? 

b. What is the ratio of the current at t — 0 to ip™**, the current at the 

instant the power delivered to C is a maximum? 

Prob. 6. In the network in Fig. 12, the time constant is 0.1 sec., the 

generator-pulse width is 0.01 sec., and E = 100 volts. 

o. If the voltage increased linearly during the generator pulse in accord¬ 

ance with its initial slope, what would be the value of output voltago 

at / - 77 

b. What is the actual value of output voltage at t « 77 

Prob. 7. In the network in Fig. 12 it is desired to prevent the output 

voltage from exceeding 1 per cent of the generator voltage. What is the 

largest ratio of pulse width to time constant that is tolerable? 



SERIES RC NETWORKS 81 

Prob. 8. A series RC network contains three resistors of values 300, 400, 
and 800 ohms, and three capacitors. The generator-rectangular-pulse 
voltage is 40 volts. The internal resistance of the generator is 500 ohms. 
What is the maximum value of the voltage that appears across the 400-ohm 

resistor? 
Prob. 9. A series RC network has a time constant equal to 0.1 sec. A 

rectangular-pulse voltage is applied to the network. The stored energy 
reaches a maximum value equal to 5 per cent of the total energy supplied 

by the generator. What is the generator-pulse width? 



CHAFTER IV 

SERIES NETWORKS CONTAINING RESISTANCE 
AND INDUCTANCE 

In the preceding chapter series networks containing resistance 
and capacitance were analyzed by differential equations tor a 

rectangular-pulse applied voltage. The analysis of three basic 
series networks led to the generality that any combination of 
series resistors and capacitors could be analyzed by the same 
method and by the use of generalized equations. This chap¬ 
ter will develop a similar analysis for series networks con¬ 
taining resistance and inductance. Three basic networks will 
be analyzed in detail, and then the results will be generalized 

to include all possible series networks containing resistance and 
inductance only. 

BASIC RL NETWORK WITH RESISTANCE ACROSS OUTPUT 

The first network to be considered is given in Fig. 4b, where 
a single rectangular pulse is applied. The solution for output 
voltage must be obtained in two steps corresponding to the time 
intervals t = 0 to t = Tt and t = T to t = . The general 
method is to set up the differential equation for each time 
interval, and to obtain from each differential equation the 

equation for output voltage as a function of time. 
1. Equation for Output Pulse; t = 0 to t = T.—To determine 

the differential equation that applies during the pulse interval, 
it is necessary to equate the sum of the instantaneous voltages 
around the network to zero. If is is the instantaneous current 
that flows, the instantaneous voltages around the network 
during the pulse interval are 

Generator voltage = E 
Instantaneous voltage across internal resistance = —riK 
Instantaneous voltage across inductance = — L (dig/dt) 
Instantaneous voltage across resistance = —Riv 

82 
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The negative sign indicates that the polarity of the voltage 

is the reverse of the generator-voltage polarity. The generator 

voltage is the only one that is constant since iK varies* with 

time as long as the transient exists. (The terminal voltage 

of the generator is not constant, however, the terminal voltage 

being E — riE.) When the algebraic sum of all the individual 

voltages around the network is equated to zero, the differential 

equation that applies during the 

pulse interval is 

E - ri, - L dl;: - Hi,. = 0 
(It 

This is a first-order, first-degree 

equation that can be solved by the 

method of separation of variables. 

The equation can be rewritten by 

grouping terms and separating iK and /, the two variables. 

Fig. 46.—Basic series RL net¬ 
work with a rectangular-pulse 
generator. Resistance output. 

dt 

L 
dig 

E - (It + r)iK 

Integrate both sides of this equation. 

1 f 1 f -(It + r) dig 

L J (It + r)J E - (R +j)ig 

The solution is 

- (It + r)j = In [E — (R + r)i,] + Kx (52) 

To evaluate the constant of integration AT, the initial con¬ 

ditions in the network must be utilized. Before the time 

/ = 0, the current is zero. At the instant t — 0, the generator 

pulse has just arrived and has a value E\ however, the presence 

of inductance in the network tends to oppose any change in 

current, so at this instant iK is still zero. A mathematical 

explanation of the fact that iE = 0 at t = 0 can be made by 

showing that the rate of change of current is finite. If this is 

true, then the current cannot change instantly. To demonstrate 

this, rearrange Eq. (51). 

din_E — (R -f* r)ijr 
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Since E and (R + r) are finite, and L is not zero, then diE/dt must 

be finite. Consequently, iE = 0 at t = 0. Setting iE = 0 and 

$ = 0 in Eq. (52) results in an evaluation of K\. 

K! = - In E 

When this value of Kx is inserted into Eq. (52), the solution 

becomes 

— (R + r) j- = In [E - (R + r)i*] - In E 

This can be written 

~(R + >■)[ = In — (Re+ r)tK] 

Convert to the exponential form. 

Solve for is. 

-LI+xX E - (R + r)i* 

4 “ E 

tE 
E 

R + r 
[1 - e 

(R+r» 

L ] (53) 

The voltage at the output terminals is Rik. Therefore, the 

solution for the output voltage as a function of time during 

the pulse interval is 

d- ER rt 
«« = = ji+-r t1 “ « 

(fi-fr)f 

L ] (54) 

Equation (54) represents a complete mathematical statement 

of the behavior of output voltage with time during the pulse 

interval. This equation can be simplified if the internal resist¬ 

ance of the generator is negligible compared with R. Equation 

(54) then becomes 
_Rt 

eE « JJ(1 - € L) (54a)- 

2. Network Behavior; t = 0 to t - T.—An interpretation of 

Eqs. (53) and (54) in descriptive and graphical terms is useful 

to investigate the physical nature of the network behavior. 

From a discussion of instantaneous current in the network the 

output-voltage behavior can be deduced. 

At the instant the pulse arrives at the generator, current 

begins to flow. The inductance tends to prevent a change in 
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the flow of current, and the growth of current in the network 

increases according to Eq. (53), which is illustrated in Fig. 47. 

Figure 47 indicates that the current increases exponentially 

and approaches a value E/(R + r). The time constant of the 

network, which is the time required for the current to change from 

Fui, 47.—Exponential growth of current for a pulse width large compared 
with L/{R -f r). The sum of the transient and steady-state terms at any 

instant equals it;. 

zero to G3.2 per cent of E/(R + r), is equal to L/(R + r). At 

t = L/(R + r) the instantaneous current, from Eq. (53), is 

(1°-832«tt 

The dimension of inductance divided by resistance is time 

(Chap. I, page 19). 

The initial rate of change of current can be obtained from 
Eq. (51) by setting iK and t equal to zero, since the current is 

zero at t = 0. 

/ di A _ E 
\ (it /<«o E 

If this rate of change of current were maintained, the steady- 

state value E/(R + r) would be reached in a time equal to 

L/(R + r), the time constant. This is indicated graphically in 

Fig. 47. However, the initial rate of change of current is not 
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maintained and the instantaneous current reaches the value 
E/(R + r) only after infinite time. When the pulse duration 
is four times the time constant, the current will be slightly more 
than 98 per cent of E/(R + r). 

An examination of Eq. (53) reveals the existence of two distinct 

E E + 
terms: 77,--—r> which is constant, and — — e L , which 

(K +r) H ~r r 
decreases in magnitude as time increases. These are the steady- 

Fig. 48.—Output voltage of the network in Fig. 46 during the generator-pulao 
interval only. 

state and transient terms that are indicated in Fig. 47. Their 
algebraic sum equals the instantaneous current. 

The output voltage will vary in the same manner as the 
current, since the current through R and the voltage produced 
across R are directly proportional. Figure 48, which is derived 
from Eq. (54), represents the output voltage as a function of 
time during the pulse interval when the pulse interval is twice 
the time constant. 

Equation (54) can be used to compute the value of the output 
voltage at the instant the pulse disappears from the generator. 
For instance, if the pulse width is one-half the time constant, 
the output voltage at the instant the pulse disappears from the 
generator will be 
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t \ ER _u\ a oao EH 
K-|/+r = K+~r (1 “ 4 ) = 0393 RT~r 

3. Equation for Output Pulse; t ~ T to t = «.—To obtain 
the equation for output voltage for the time interval t = T to 
t = oo, which is the time interval starting at the instant the 
generator pulse disappears, the differential equation for this 
interval must be found. The necessary equation is obtained by 
setting E equal to zero in Eq. (51). 

ri0 + L^r + Rio = 0 at 

This equation can be solved in the same manner as Eq. (51). 
Separate variables. 

- (R + r) ~ 
Lj to 

Integrate to obtain the solution. 

~(R + r)y = \n i0 + (55) 
lJ 

The constant K2 can be evaluated if the value of z, can be 
determined at the time l = T. From Eq. (53) the required 
value of i0 is obtained by equating t — T. 

_ E r. 
Et 7? + r[ 4 

(R + r)T 
"h i 

iEr denotes the instantaneous current at the time T. Theiefore, 
K2 can be evaluated. 

T I V _CR+r)7’ \ 

JCl-_(J2 + 0^_in{KA_Ii_ jJ 

Substitute this value of Kt into Eq. (55). 

■ (R + r) = In fo — (R + r) ^ — In 
E 

R + r [1 

(R+rVI’ 

Collect like terms. 

-(R + r) — . T) = In 
( (R + r)i, 
C _<RH 

\E[i - r j 

r)io 
(R+r)T 

L 1 
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After conversion to the exponential form, the equation for i0 as a 
function of time becomes 

to = R + r [1 

(R+r)T (ft+r)(/-D 

L ]C * 

which simplifies to 

to = 
E 

R + r 

(R+r)T 
L __ 1]« 

(R+r)t 

(56) 

The output voltage for the time interval / = T to t = » is 

e0 = Rio = 
ER 

R + r 

(R±r)T 

* L - 1]« 

(tf+r)/ 

(57) 

If the generator resistance is very small compared with Rf 
then Eq. (57) becomes 

RT _Rt 

e0 - E(t L - l)e L (57a) 

If, in addition, the pulse width is very large compared with L/R, 
then Eq. (57a) can be further reduced to 

_ R(t — T) 

Co ~Ee l (57b) 

Mathematically, the condition that 

RT RT 

€ L — 1 « € L 

must be true for Eq. (576) to be valid. This condition will 
RT 

be true when tL > > 1; i.e., (RT/L) > > 1, or T > > L/R. 
4. Network Behavior; t = T to t = oo.—At the instant the 

pulse disappears from the generator, current is no longer supplied 
to the network. However, the current will not become zero 
immediately because the inductance tends to maintain the 
current flow. The current will decrease in accordance with 
Eq. (56). Suppose, for simplicity, the pulse width is very 
large compared with L/(R + r). This means that at t = T> the 
instant the generator pulse disappears, the current in the network 
wall be practically E/(R + r), the steady-state value. The 
current will subsequently decay exponentially as shown in Fig. 49. 
After a decay time equal to L/ (R + r), the current will have an 
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instantaneous value that is 36.8 per cent of its value at t — T. 
To verify this recall that the value of iB at t = T is 

V _(*±r)r 

In Eq. (56), when t = T + *zr~r ' 
R + r 

F (R+r)T (R+r)T 

r~~*~ L -1 

P _(R+r)T 

= ~ —:— [1 — e L ]e-1 = it:T€~1 = 0.368 iEj 
Jtt + r 

Therefore, the instantaneous current decreases to 36.8 per cent 
of the value it had at t = T during a decay time equal to the time 

Fig. 49.—Exponential decay of current for a pulse width large compared with 
L/(R -f t). The value of current at t == J1 equals the steady-state value of 
current shown in Fig. 47. 

constant. This is generally true, and not dependent upon the 
actual value of is at the time t = T. Precisely speaking, an 
infinite length of time must elapse before the current decays to 
zero. But after a decay time equal to four times the time 
constant, the current is less than 2 per cent of its initial value 
at t = T. 

The transient term during the decay of current is completely 
responsible for all current flow, because the voltage applied 
to the network from the time T on is zero, and hence the steady- 

state term in Eq. (56) is zero. 
5. General Network Behavior.—Figure 50 shows the output 

pulse obtained for the network in Fig. 46 when the pulse width 
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is approximately equal to the network time constant. Figure 51 
reveals the complete output volt¬ 
age versus time for generator 
pulses of various time durations 
and equal amplitude. As the 
network time constant is made 
smaller compared with the gen¬ 
erator-pulse width, the output 
voltage is seen to approach more 
and more closely an exact repro¬ 
duction of the input voltage. 
This can be qualitatively ex- 

Fig. 50.—Oscillogram of the out- plained on the basis of the 
put pulse for the network in Fig. 46 . r . 
when the pulse width is comparable expression for the time constant. 
to the network time constant. The time constant is directly 

proportional to the inductance and inversely proportional to 
the resistance. There are essentially two means of reducing 

the time constant: reduction of inductance or increase of resist¬ 
ance. If the inductance is reduced, there is less opposition to 
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establishment of current in the network. On the other hand, if 
the resistance is increased, a smaller change in current will be 
required to produce the output voltage pulse and the opposition 
to this smaller change will be less. In either case, the output 
voltage, which is proportional to the current, will follow the 
generator pulse more closely. Figure 52 gives a graphical idea 
of the relative values of pulse width and time constant necessary 
to approach various degrees of pulse reproduction. 

GENERATOR PULSE 

(a) (b) (c) 
OUTPUT PULSE 

Fig. 52.—The output pulse approaches the shape of the generator pulse as the 
network time constant is made small compared with the pulse width. 

A mathematical examination of the differential equation 
under the condition that L/(R + r) is very small compared with 
the generator-pulse width bears out this qualitative conclusion. 
For any generator voltage eUy Eq. (51) becomes 

c„ = (R + r)i + L jt 

which can be written 
f’y_ . ,_L__di 

R + r~l± llf+ r) dt 

The term 
di. 

(R + r) dt 
is negligible compared with i because (1) the 

steady-state value of current is attained very quickly when 
L/(R + r) is small compared with the generator-pulse width, 
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and (2) di/dt becomes small as the steady-state value of current 
is approached. Therefore, 

Multiply each side of this approximate equation by Ry and 
remember that e = Hi. 

R + r 
Ri = e; 

R + r 
<<T 

This proves that the output voltage e is approximately pro¬ 
portional to eg irrespective of the shape of the generator voltage. 

GENERATOR PULSE 

(a) (b) (c) 
OUTPUT PULSE 

Fig. 53.—The output pulse departs more and more from the generator pulse 
in both shape and amplitude as the network time constant is made largei com¬ 
pared with the pulse width. If L/(R + r) is very large compared with 7\ the 
output voltage is approximately the integral of the generator pulse. 

Figure 51 also indicates that the output voltage becomes 
less similar to the generator-pulse voltage as the time constant 
becomes large compared with the pulse.width. This behavior 
can be understood qualitatively by visualizing the situation 
where the increase of current in the network is so slow that 
the generator pulse disappears before appreciable current flows. 
In Fig. 53 the output-voltage departure from the generator 
pulse in both shape and amplitude is illustrated for three repre¬ 
sentative cases. 

6. Pulse Integration.—The ability of this network to produce 
an output voltage that is approximately the integral of the 
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generator pulse is indicated by Fig. 53c. To show by graphical 
means that Fig. 53c is approximately the integral of the generator 
pulse, the construction of the derivative of the output pulse can 
be carried out (see Fig. 20, page 52). 

Another more general means of showing the property of inte¬ 
gration is by considering that any voltage e0l a function of time, is 
applied to this network. From Eq. (51) the equation that sums 
all of the instantaneous voltages around the network is 

e0 = (R + r)i + Ljt 

which can be written 
eu _ . , L di 

R+~r ~ * + ~(R + r) dt 

When L/(R + r) is very large compared with the generator-pulse 

width, i is negligible compared with 
L_ di 

(R + r) dt 
Therefore, 

Separating variables and integrating will lead to an approximate 
equation for i. 

The output voltage is Ri, and therefore 

cud(] 
L 

R r 
>> r 

This proves that the output voltage e is approximately pro¬ 
portional to the integral of the generator voltage, for a generator 
voltage of any shape whatsoever. 

BASIC RL NETWORK WITH INDUCTANCE ACROSS OUTPUT 

If the output voltage is taken across the inductance instead 
of across the resistance in the network of Fig. 46, the network 
will exhibit different pulse-response characteristics. Figure 54 

shows this arrangement. 
7. Equation for Output Pulse; t = 0 to t = T.—It is extremely 

simple td obtain the output-pulse equations for this network 
because the instantaneous current in the network has already 
been determined. It is only necessary to recall that the voltage 
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across the inductance is L(di/dt). The time derivative of 
Eq. (53), which applies during the generator pulse, is 

diE 
dt 

E - 
7/ 

(R+r)t 

L (58) 

(59) 

So the output voltage for this time interval is 

diF -(R+r)‘ 

If the internal resistance of the generator is negligible com¬ 
pared with the resistance R} then Eq. (59) becomes 

Rt 

eK « Ee L (59a) 

8, Network Behavior; t = 0 to t = T.—In order to attach 
physical significance to Eqs. (58) and (59), they will be examined 

in terms of the network in Fig. 54. 
Equation (59) shows that the 

output voltage is exactly equal to 
the generator voltage E at t = 0. 
If this is true, then the current at 
t = 0 must be zero because any 
flow of current would result in a 
voltage drop across (R + r) and 
would therefore make the output 

voltage less than E. The fact that the output voltage equals 
E at t — 0 could have been deduced by considering that 
the inductance opposes any change in current, and that the 
current in the network cannot change instantly if inductance 
is present. If the current is zero at t = 0, all of the gen¬ 
erator voltage must appear across the inductance in order to 
have the instantaneous sum of all voltages around the network 
be zero. 

Although the instantaneous current is zero at t = 0, the 
rate of change of current has a value equal to E/L. This is 
indicated in both Fig. 47 and Eq. (58). Consequently, at some 
time after t = 0, current will be flowing and producing a voltage 
drop across (R + r), thus detracting from the voltage across the 
output. Another viewpoint also leads to the conclusion that 
the output voltage decreases with time. Figure 47 reveals that 
the rate of change of current (the slope of the current curve) 

Fig. 54.—Basic series RL net¬ 

work with a rectangular-pulse 
generator. Inductance output. 
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becomes smaller with time. The output voltage that appears 
across the inductance is directly proportional to this rate of 
change of current, and consequently the output voltage decreases 
with time. Figure 55 gives the output voltage during the 
time interval t = 0 to t = T where the pulse width is large 
compared with the time constant. When a time equal to the 
time constant has elapsed, the output voltage is 36.8 per cent 
of the value it had at t = 0. When a time equal to four times 
the time constant has elapsed, the output voltage is less than 
2 per cent of E. 

Fig. 55. Output voltage of the network in Fig. 54 during the generator pulse. 

To compute the positive output voltage at the instant the 
generator pulse disappears, substitution of the pulse width 
in Eq. (59) is necessary. For instance, suppose the pulse width 
is equal to 1.5 times the time constant. Then from Eq. (59) 

(eK) \..)L = £V-L6 = 0.223£ 

The steady-state value of output voltage is zero since there 
is no constant term in Eq. (59); thus Fig. 55 represents the 
transient term as well as the output voltage. 

9. Equation for Output Pulse; / = T to t = <*>.—The output 
voltage during the time interval / = T to t = » can be deter¬ 
mined by differentiating Eq. (56) and multiplying by L. From 

Eq. (56) 

dlo 

dt 

V (ft + rVT + 

j [e L - ^ (60) 

— L 
di o 

(R+r)T _(R+r)t 

-E{* L - lb L and (61) 
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When r < < R, Eq. (61) becomes 

RT Rt 

e0 « —E(eL _ i)c"T (61a) 

If, in addition, the pulse width is very large compared with 
the time constant, Eq. (61a) simplifies further. 

R(t-T) 

e0 « -Ee L (616) 

RT RT 

Equation (616) is valid only when e L — 1 « eL and r << K. 
10. Network Behavior; t = T to t = <*>.—To complete the 

graphical picture of output voltage and to investigate the 
physical behavior of the network after the pulse disappears 
from the generator, Eq. (61) will be interpreted. 

Time —*■ 

Fig. 56.—Output voltage of the network in Fig. 54 after the generator pulse 
disappears and for a pulse width large compared with the time constant. 

At the instant the generator pulse disappears, the current 
supplied by the generator becomes zero. However, current 
continues to flow in the network because the presence of induct¬ 
ance will not permit the current to change instantly. The 
behavior of current is illustrated in Fig. 49. The rate of change 
of current, or slope of the instantaneous current curve, is negative 
and decreases with time. Therefore, the output voltage, which 
is the inductance times the rate of change of current, will be 
negative and will also decrease with time. When a voltage 
changes from positive to negative, it merely indicates reversal of 
polarity. 

At the instant t = T, the output voltage will have a maximum 
negative value. One explanation for this can be made by 
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recognizing that the negative rate of change of current is a 
maximum at t = T. A slightly more involved but none the less 
applicable explanation can be made on the basis of transient 
and steady-state terms. At t = T the current in the network is 
a maximum and therefore departs more from its steady-state 
value, zero, than at any other time in the interval t = T to 
t = oo. The transient term always makes up the difference 
between the existing value of current and the steady-state value. 

Figure 56 shows the output voltage as a function of time 
from the time T on for a pulse width that is large compared 
with L/(R + r). This is the characteristic exponential decrease 
of voltage, which has a value equal to 36.8 per cent of E after a 
decay time equal to L/(R + r), and a value less than 2 per cent 
of E after a decay time equal to 4L/(R + r). 

Fig. 67.—Complete output voltage of the network in Fig. 54 for four generator 
pulsea of equal amplitude E but different pulse widths. 

11. Network Behavior; t = 0 to t = °o.—Equations (59) and 
(61) can be combined graphically to represent the complete 
output-pulse shape and amplitude. Figure 57 represents Eqs. 
(59) and (61) for four generator pulses of equal amplitude E but 
with durations equal to 0.2, 1.0, 2.4, and 5.6 times the time 
constant. These pulse widths have been chosen to illustrate the 
trends in the output-pulse shape and amplitude for various pulse 
widths. Before discussing these trends, it is interesting to 
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observe that the most negative values of output voltage for 
various pulse widths lie along a definite curve or envelope. The 
equation of this envelope can be obtained by setting t = T in 
Eq. (61) with the following result: 

_(«+r>jr 
Co = -E[ 1 - 6 “L ] 

This is the equation of the envelope that is drawn in Fig. 57. 
Two illustrations of output pulses obtainable in practice are 

given in Figs. 58 and 59. 

Fig. 58.—Oscillogram of the out¬ 
put pulse for the network in Fig. 54 
when the pulse width is less than the 
time constant. 

Fig. 59.—Output pulse of the net¬ 
work in Fig. 54 when the pulse width 
is approximately four times the time 
constant. 

12. General Network Behavior.—A study of Fig. 57 reveals 
some general information about the pulse-response character¬ 
istic of the network when the generator-pulse width is changed 
relative to the network time constant.. Two definite trends 
can be seen: (1) For a generator-pulse width that is short com¬ 
pared with the time constant, the output pulse tends to be a 
reproduction of the generator pulse, and (2) for a generator pulse 
that is long compared with the time constant, the output pulse 
tends to depart more and more from the shape of the generator 
pulse. 

Both of these trends can be explained in mathematical and 
physical terms. The mathematical explanation for (1) can 
be made on the basis of Eq. (51), which, if rearranged, becomes 

. i Ij d% 



Sec. 12] SERIES RL NETWORKS 99 

when the voltage E is replaced by a general generator voltage 
eg. If the time constant is large compared with the generator- 
pulse width, this equation becomes approximately 

T di 
e“ ~ Lit~e; 

T < < 
L_ 

R + r 

which shows clearly that the output voltage is approximately 
equal to the generator voltage. 

GENERATOR PULSE 
r 

E 

\ 

r- 

(a) (b) (c) 
OUTPUT PULSE 

Fiu. 60.—The output pulse duplicates the generator pulse more closely in 
shape and amplitude as the network time constant is made larger compared 
with the pulse width. 

A physical explanation is possible when the effect of a large 
time constant on the voltage across (R + r) is considered. 
The appearance of voltage across (R + r) is the factor that 
introduces distortion of the output pulse relative to the gen¬ 
erator pulse since the voltage across (R + r) is the difference 
between E and e. If it can be deduced that the voltage across 
(R + r) becomes smaller as the time constant is made larger 
relative to the pulse width, the necessary explanation will have 
been found. If the time constant is increased by increasing 
the inductance, there will be more opposition to change in 
current, and consequently less current will flow during the 
pulse interval. Less current flow means less voltage, across 
(/? + r) and hence less output-pulse distortion. If the time 



100 PULSED LINEAR NETWORKS [Chap. IV 

constant is increased by reducing the resistance, less voltage 
will appear across the resistance for a given current. Again 
the distortion due to voltage developed across (R + r) is reduced. 
Figure 60 presents output pulses for various generator-pulse 
widths that are small compared with the time constant. 

The mathematical explanation for trend (2) is given in the 
next section. A physical explanation can be made by again 
applying the principle that voltage produced across (R + r) is 
a measure of the output-pulse distortion. If the time constant 
is made smaller compared with the generator-pulse width, which 
corresponds to the case where the generator-pulse width is 
made larger compared with the time constant, the output pulse 
bears less resemblance to the generator pulse. Suppose the 
time constant is reduced by reducing L. Less inductance leads 
to less opposition to change of current and hence to more cur¬ 
rent flow during the pulse interval. This results in an increased 
voltage drop across (R + r). If the time constant is reduced 
by increasing (R + r), again there will be an increase in the 
voltage that appears across (R + r) during the generator 
pulse. Either method of reducing the time constant leads to an 
increase in the voltage across (R + r), which indicates that the 
shape of output pulse is made less similar to the generator-pulse 
shape. Figure 61 shows output pulses for various generator- 
pulse widths that are large compared with the time constant. 

13. Pulse Differentiation.—Figure 61c suggests that the out¬ 
put voltage tends to approach the derivative of the generator 
voltage as the network time constant is made very small com¬ 
pared with the generator-pulse width. The derivative of the 
generator-pulse voltage consists of two lines, one at t = 0 
extending in the positive direction and one at t = T extending in 
the negative direction. Although this network cannot produce 
an output pulse that is exactly equal to the derivative of the 
generator pulse, a close approximation is nevertheless possible. 

The property of differentiation can be deduced from mathe¬ 
matical as well as graphical considerations and, moreover, 
for a generator pulse of any shape whatsoever. Rewrite Eq. (61) 
in terms of a general generator voltage eg instead of the rec¬ 
tangular voltage E. 

6g . * Ij d% 

R~+~r = 1 + (if+7j It 
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When Lj (R + r) is small compared with the generator-pulse 
L di 

width, the term ^ ^ is negligible compared with i} and 

/> 

The derivative of the current times L is the output i « 
R + v 

voltage. Therefore, 

di 
Ljt = e 

de„ L 
(R + r) di’ R + r 

< < T 

This shows that the output voltage is approximately proportional 
to the derivative of the generator voltage. 

GENERATOR PULSE 

(a) (b) (c) 

OUTPUT PULSE 
Fig. 61.—The output-pulse shape departs more and more from the generator- 

pulse shape as the network time constant is made smaller compared with the 
pulse width. If the network time constant is made sufficiently small, the out¬ 
put voltage is approximately the derivative of the generator pulse. 

POWER AND ENERGY RELATIONS 

The power and energy relations for the' networks in Figs. 46 
and 54 are helpful in obtaining a further understanding of the 
network behavior. The same power and energy concepts intro¬ 
duced in Chap. Ill will be applied here. 

14. Energy Transfer and Transformation.—The generator 

delivers current to the network during the time interval t = 0 
to t ~ T, This current flow represents a transfer of energy from 
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the generator to the network. Some of the energy is stored in 
the magnetic field of the inductance, and some is dissipated 
in the resistance. After the generator pulse disappears, no 
additional energy is supplied to the network. The stored 
energy in the inductance is gradually released and dissipated 
in the resistance. This release of energy is accomplished through 
the medium of current flow. Eventually, the stored energy 
becomes negligible, and all of the energy that the generator 
supplied has been dissipated in the resistance. This is a quali¬ 
tative picture of the energy relations. Mathematical analysis 
shows up many details which are otherwise obscured. 

16. Instantaneous Power and Instantaneous Total Energy.— 
Applying the basic power and energy relations, Eqs. (41) and 
(42), to this network will yield an exact description of the network 
behavior. Table III is a tabulation of the relations that will 
be required for this analysis. The equations in this table 
have either been previously derived or can be obtained by direct 
substitution into the fundamental power and energy equations. 

16. Power Relations.—First, the power relations will be con¬ 
sidered. Direct substitution of the equations for i and di/dt 
into the power equations yields 

During Pulse 
Jv*2 _~(R + r)t 

P« = (' “ « L ] (<>2) 

= ,r+~tAl ~ 2(~ L +t L ] ((i3) 
E" _(R + r)t 4-rJf 

P’ = R L V 1 («) 

After Pulse 

= 0 

(R + r)T 2(R + r)t 

Px+r 
= « + ,'• '• 1 

(65) 

ro (R + r)T 2(R+r)t 

Pl (66) 

These equations are illustrated in Fig. 62 for a pulse width 
that is equal to four times the time constant. Curves of et}, i, 
and di/dt are also shown. They indicate that the generator 
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power is proportional to the product egi, that the resistance power 
is proportional to i2, and that the inductance power is propor¬ 
tional to the product of i and di/dt. 

Power during Pulse.—Power is delivered by the generator 
only during the time interval t = 0 to t = T. See Fig. 62a. 
The instantaneous supplied power increases exponentially in 
accordance with a time constant equal to L/(R + r). This 
power is being delivered to the resistance and inductance. 
The instantaneous power being delivered to (R + r) increases 
continuously with time, Fig. 626, while the instantaneous power 
being delivered to L, Fig. 62c, reaches a maximum value of 
}4E2/(R + r) at a time equal to 0.693L/(R + r) and then 
decreases.1 

Inspection of Eqs. (62), (63), and (64) reveals that the instan¬ 
taneous power supplied by the generator is always equal to 
the sum of the instantaneous power delivered to (R + r) and 

to L. 

Vu = P*+r + Pl 

Power after Pulse.—In the time interval from t — T on, 
the power delivered to L is released and delivered to (R + r). 
Examination of the power equations for this time interval 

leads to the conclusion that pL and pR+r are always equal and 
opposite. The instantaneous power delivered by L to (R + r) 
decreases exponentially in accordance with a time constant equal 

to V2L/(R + r). 
17. Energy Relations.—To investigate the energy relations 

refer to Table III where it is indicated that the power equations 
must be integrated to find the energy equations. The results of 

the integration are 

During Pulse 

(R+r)t 

wg = Elt + L/2[e L - 1] 

= Elt + MLP[4e L - e 
(R+r)t 

wL = MLP{ 1 + « L -2t L } 

2(«+r)f 

L -31 

(67) 

(68) 

(69) 

1 See Chap. Ill, p. 64. In this case Pl is of the same form as pc in Chap. 
III. 
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After Pulse 

wu = 0 

Wn+r == EIT 
_{R + r)T (R+r)T 2(R+r)t 

+ }£LP\2[e 1 ~ 1] - [€ L - lpe i } (70) 
lti + r)T _2(R+r)t 

wL=HLP[e L - l]-c L (71) 

I = steady-state value of current = E/(R + r). These equa¬ 
tions are illustrated in Fig. 63 for a pulse width that is equal to 
four times the time constant. 

Fig. 63.—Behavior of instantaneous total energy in a basic RL network that is 
subjected to a rectangular-pulse voltage. 

Energy during Pulse.— If the energy equations for wL and 
Wr+t are added in the time interval t = 0 to t = 7T, their sum is 
seen to be exactly equal to the energy equation for wa. This 
means that the sum of the stored and dissipated energy must 
always equal the energy supplied by the generator. 

If the pulse width is large compared with the time constant, 
then at the time t = T the energy equations become 

= EIT - LP 

WR+r = EIT - %LP 

wL = V2LP 

T >> 
R + r9 

t = T 

2{R+r)T _(K+r)7* 
because both e L and t L are much less than 1 when 
T >> L/(R + r). This indicates that the energy supplied by 
the generator and the energy dissipated in (R + r) is continually 
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increasing during the pulse, but the energy stored in L reaches 
a maximum value of )iLP and increases no further. Refer to 
Fig. 63. 

When the pulse width is small compared with the time con¬ 
stant, very little energy is dissipated in (R + r) during the 
pulse, and most of it is stored in the magnetic field of L. This 
is shown clearly in Fig. 63 during the early portion of the pulse 
interval and explains why very little energy is delivered to the 
output terminals during the pulse when the network is used for 
‘'integration.” 

Energy after Pulse.—In the time interval t = T to t = « 
whatever energy has been stored in the magnetic field of the 
inductance must be dissipated in (R + r). The amount of 
energy lost from the inductance is always exactly equal to the 
amount of energy dissipated in (It + r) during this time interval. 
This can be shown conveniently by rearranging Eq. (70). 

_(«+r)T 

Wn+r = EIT + LP[t L -1] 

(R + r)T _2(ft+0* 

- }2U*[€ L — l]s€ L (70a) 

The first two terms are equal to the total energy supplied by 
the generator during the pulse interval. The last term is 
exactly equal to the energy stored in the magnetic field of 
the inductance, Eq. (71), except for sign. Therefore, the energy 
dissipated in (R + r) increases by exactly the saitie amount that 
the electromagnetic energy decreases. When t — «, both 
Eq. (71) and the last term in Eq. (70a) become zero, and all the 
energy delivered by the generator has been dissipated in (R + r). 

Energy Summary.—A summary of the important energy con¬ 
siderations can be made on the basis of Fig. 63. From this figure 
the following facts should now be evident: 

1. The generator supplies energy only during the pulse 
interval. 

2. The amount of energy supplied by the generator to the 
network can increase without limit as the pulse width increases. 

3. The sum of the dissipated and stored energy is always equal 
to the energy supplied by the generator. 

4. The maximum energy that can be stored in the inductance 
is J^L/2 where I is the steady-state value of current equal to 
E/(R + r). 
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5. During a pulse that is of short duration compared with the 
time constant more energy is stored than is dissipated. 

6. All of the generator energy is eventually dissipated in the 
resistance. 

RL NETWORK WITH BOTH RESISTANCE AND INDUCTANCE 
ACROSS OUTPUT 

If the resistance inherent in a “practical” inductor is not 
negligible, it will have an influence upon the pulse-response 
characteristic, especially when the output voltage is taken 
across the inductor. Such a situation is shown in Fig. 64 where 

r R represents the resistance contained in 
7 the inductor. It is tacitly assumed that 

i an inductor that has an appreciable 
T amount of resistance can be represented 

by the resistance of the coil in series 

„ . __ with a “pure” inductance. This net- 
work with a rectangular- work can be analyzed quite readily be- 
pulse generator. cause the equations for voltage across 

R and across L have already been developed for such a network. 
18. Equations for Output Pulse.—The equations for voltage 

across R and across L in the network in Fig. 64 are 

During Pulse 

€Rm 

eLM 

[i - 
_ER 

R + r 
_(S+r)< 

= Et * 

(R+f)< 

« L ] 

e«. = 

ei., = 

After Pulse 

ER r)T 
U L 

R + r 1 
(«+r)T 

-E[t L 

<R+r)t 

- l]c 

-1]« 

(R+r)< 

(54) 

(59) 

(57) 

(61) 

Since the output voltage is the sum of the voltage across R and 
across L, then 

Tji _ (R 4-r)< 

eM - e»s + eLa = jj^[R + r* ~ L ] (72) 

pr i!*+AT- _<_*±L>< 
6o = + eLa — — ^ U L ~ 1 ]* L (73) 
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19. Network Behavior.—The behavior of the network in 
Fig. 64 is quite similar to that in Fig. 54 with a few notable 
exceptions. At t = 0, Eq. (72) indicates that the output voltage 
is E. This is to be expected because in any series RL network 
all the generator voltage will appear across the inductance 
at the instant the generator pulse arrives. After t = 0, the 
output voltage decreases in accordance with a time constant 
equal to L/(R + r). The steady-state value of output voltage is 
ER/(R + r) and is reached when the voltage across the induct¬ 
ance becomes negligible. 

If the pulse width is large compared with the time constant, 
then at t = T the output voltage equals the steady-state value. 
At the instant the generator pulse disappears, the output voltage 
changes instantly from a value ER/(R + r) to —Er/(R + r). 
This can be seen from Eq. (73), which becomes 

pr _{R+r)«-T) 

e° ~ ~ 

(tf + r)T 

when T is so large compared with L/(JR + r) that e L > > 1. 
From the time T on, the output voltage approaches zero expo¬ 
nentially with a time constant equal to L/(R + r). 

To see what influence the relative values of R and r have 
upon the pulse-response characteristic, consider two extreme 
examples. 

Example 1. It < < r.—When R is negligibly small compared 
with r, then Eqs. (72) and (73) reduce to 

_ rt 

e* « Et i: (72a) 
rT _rt 

Co « -E{tL - 1)« c (73a) 

From these equations the following facts are evident: 
1. The time constant is determined essentially by r and L. 
2. The steady-state value of voltage during the generator pulse 

is essentially zero. 
3. The output voltage can have a maximum negative value 

that is approximately equal to E if the generator pulse width is 
large compared with L/r. 

4. The output voltage is of the same form as that of the net¬ 
work in Fig. 54. [Compare Eqs. (59) and (61) with Eqs. (72a) 
and (73a) when (R + r) « r.] 
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Example 2. R >> r.—When the generator resistance is very 
small compared with /?, then Eqs. (72) and (73) become 

e* « E (72b) 
e0 « 0 (736) 

This shows that the output pulse is essentially the same as 
the generator pulse in shape and amplitude. Recall that the 
voltages across R and L considered individually are not the 

Fio. 65.—Output voltage of the network in Fig. 64 when R = r and 
T « 4.8L/(R + r). 

same as the generator voltage; nevertheless, their sum is a 
constant during the generator pulse and zero after the generator 
pulse. Refer to Fig. 36 for a graphical representation of this 
condition. 

Figure 65 illustrates the output pulse of the network in 
Fig. 64 for a generator pulse that is equal to 4.8 times the time 
constant, and for R = r. The change in shape of this pulse 
for changes in relative values of R and r can be visualized by 
adjusting the steady-state value and most negative value of 
voltage in an appropriate manner. Output-pulse shapes for 
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other pulse widths can be deduced in a general way from those 
given for the network in Fig. 54. 

SUMMARY AND GENERALIZATION OF RESULTS 

It is advantageous to reflect upon the three RL networks 
analyzed and to arrive at some generalities. The foregoing 
analyses can be manipulated into a form applicable to any 
series network that contains resistance and inductance only. 
Before the general output-pulse equations are developed, recall 
that series inductors are additive.1 Since this is the case, all 
inductors in a series network can be added (lumped) into a 
single inductance. Likewise, all series resistors can be combined 
into a single equivalent resistance. 

Fi«. 6fi.—A general series RL network with a rectangular-pulse generator. 

20. General Output-voltage Equations.—The network in 
Fig. 66 is a general network that includes not only the three 
networks already analyzed, but also any series RL network. 
.Obviously, if the output pulse appears across Rr only, then V 
can be set equal to zero, and 
vice versa. Moreover, Rr and 
V can be the equivalent param¬ 
eters of resistors and induc¬ 
tors that might be connected 
across the output. 

To make clear the derivation Fiu. 67.—Equivalent series network 

of the output-voltage equations fo1 that 111 *lg’ 66‘ 
that apply to this general network, the series equivalent network 
of Fig. 66 is shown in Fig. 67 where R' and L' have been combined 
with the other parameters. The equations for current and rate 
of change of current given by Eqs. (53), (56), (58), and (60) 
will apply equally well to this network because no restrictions 

1 Chap. I, p. 14. 
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were placed upon the values of R and L in their derivation. 
These equations written in terms of the general values of resist¬ 
ance and inductance are 

to 

dio 
dt 

lE = 

dis 
dt 

During Pulse 
_(fts + r)< 

Rs + 

E 

[1 - 

(Ra+r)t 

La 

[« Rs + r 
(Ra+r)T 

La 

Ls 
After Pulse 

(/2a4r)T 
La — 1]< 

(Ra+r)t 

La 

** r 
Ls[t 

u 
-1]« 

(_Rs-\-r)t 

La 

(53') 

(58') 

(56') 

(60') 

The general output voltage will be the algebraic sum of the 
voltage across R' and across U. The voltages to be summed are 
obtained by multiplying the current equations by R' and the 
rate of change of current equations by L'. 

eR'x = 

During Pulse 

JgJfcf (Ra+r)t 

eL'w — 

Rs + r 
EL' - 

[1 ] 
(Rs+r)t 

L, • " 

After Pulse 

(«* + r)r 

La _ i]« La 
ER' . 

**' ~ Rs + r [f 
jnr t (Ra+r)T (Ra+r)t 

eL; = ~ X7 1‘ U ~ 

Addition of these voltages yields the general output equations. 

TP l T/' ~| (Ra+r)t j 

e* = R7h\R' + [Ls(R° + *-R'\r U ) (?4) 
(Ra+r)T T p, j ,1 (Ra+r)t 

* = j* * - l] - * j r U (75) 

These equations represent in mathematical form a complete 
extension of the output-voltage analysis of this chapter and 
contain all of the solutions previously found as well as the solu- 
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tion for an}’ series network containing resistance and inductance 
only. 

As an illustration of the use of these general equations, return 
to the network in Fig. 46. This simple network can be repre¬ 
sented in terms of the general RL network if the following is 
true: 

Rs = R' = R 

L' = 0 
L, = L 

Substitute these values into the general equations. 

E 0 
_L 

O: = w-r \R + |f (ft + r) - R\t 

E 
R v 

ER 
R + r 

[R 

[1 - 

_<R+r)f 

Rt L ] 

(R+t)t 

pr <A+,r)T ,, [ R O' 
e° = Elt 

(* + r)t 

FR 
1|< 

(R+r)t 

(74 a) 

(75 a) 

Equations (74a) and (75a) are the same as Eqs. (54) and (57). 
21. Conclusion.—Before concluding this chapter the striking 

similarity between RL and RC networks should be emphasized. 
Both networks are capable of giving output pulses that approach 
the derivative or integral of the generator pulse, or that approach 
an exact reproduction of the generator pulse. To sharpen the 
comparison between the two types, the following statement is 
useful: In a series RL or RC network where the output pulse 
appears across one element only, an identical pulse output can be 
obtained with either an RL or an RC network provided the net¬ 
work parameters are properly chosen. To verify this, compare 
some of the output-pulse shapes in this chapter with those in 
Chap. III. 

The major pulse-response characteristics of series RL net¬ 
works have been found, which, when combined with those of 
series RC networks, represent a good deal of information. To 
complete the analysis of series networks it is necessary to consider 
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This is done in the case where all three parameters are present. 
Chap. V. 

Problems 

Prob. 1. The parameters of the network in Fig. 46 have the following 

values: E * 120 volts, T — 75 microseconds, r = 1,000 ohms, R =* 5,000 

ohms, and L — 0.3 henry. 

а. What is the instantaneous current at l = 85 microseconds? 

б. What is the maximum output voltage? 

c. “Pulse width” is sometimes defined as the time between the two 

instantaneous values of voltage that are 1,\ 2 times the maximum 

voltage. What is the pulse width of the output voltage on the basis 

of this definition? What is the pulse width of the generator voltage 

on the basis of this definition? 

Prob. 2. The parameters of the network in Fig. 54 have the following 

values: E= 30 volts, T = 230 microseconds, r — 100 ohms, R = 900 ohms, 

and L — 0.1 henry. 
a. What is the ratio of the maximum output voltage to the positive output 

voltage at t = T? 

b\ What is the minimum value of output voltage? 

c. How much energy is stored in the magnetic field of the inductance at 

t = 50 microseconds? 

Prob. 3. A series RL network has a time constant equal to 0.01 sec. The 

voltage across the inductance at the instant a 0.1-see. rectangular pulse is 

applied is 100 volts. 
a. What is the generator-pulse voltage? 

b. Evaluate the following output-voltage ratios: 

(ejp)i-o (Ci;)<-0.01 (ce)i-v m (tn)t-n ok 

(eE)t -0.01 o .02 .08 E 

c. What relationship do the ratios in b have to *? 

Prob. 4. A rectangular-pulse generator has the following properties: 

E • 100 volts, T = 75 microseconds, and r = 1,000 ohms. A 4.000-ohm 

resistor and a capacitor C are connected in series across the generator termi¬ 

nals, and the output voltage is taken across C. What value of C is required 

to have an output voltage that is identical to that in Prob. 1 ? 

Prob. 5. An RL network has a time constant equal to 0.0001 see. The 

inductor has an inductance of 0.1 henry and contains an inherent resistance 

of 100 ohms. The generator-pulse voltage is 80 volts, and the output volt¬ 

age is taken across the inductor (which contains resistance). 

a. What is the maximum output voltage? 

b. What is the steady-state value of output voltage during the generator 

pulse? 
c. What pulse width is required to have the positive output voltage at 

t ■■ T equal in magnitude to the negative output voltage at t * 7’? 

d. What is the answer to c if the 100-ohm resistance of the inductor is 

neglected completely? 
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Prob. 6. It is desired to produce a 10-microsecond “rectangular” voltage 
across an inductor of 0.04 henry. The amplitude of this rectangular voltage 
must not decrease by more than 3 per cent during the generator pulse. 
What is the maximum tolerable value of generator internal resistance that 
will result in the desired output voltage? (Assume the inductor has negligi¬ 

ble resistance.) 
Prob. 7. The “time delay” between generator pulse and output pulse is 

sometimes defined as the difference in time between t = 0 and the time 
when the output pulse has reached one-half its maximum value. What is 
the “time delay” in the network of Prob. 1? 

Prob. 8. A rectangular-pulse generator has a negligible internal resist¬ 
ance compared with the resistance in a scries RL network to which it is con¬ 
nected. The network time constant is 0.005 sec. The voltage across the 
resistance reaches 90 per cent of the generator voltage in a time equal to 
} (o of the generator-pulse width. What is the generator-pulse width? 



CHAPTER V 

SERIES NETWORKS CONTAINING RESISTANCE, 
INDUCTANCE, AND CAPACITANCE 

The networks analyzed so far have been restricted to include 
either inductance or capacitance but not both. Such restricted 
networks occur very often, and the foregoing analysis is useful 
to predict their behavior. Nevertheless, there are many cases 
where R, L, and C are all present. The purpose of this chapter 
is to investigate the pulse-response characteristics of series net¬ 
works that contain resistance, inductance, and capacitance. 

Before proceeding with the detailed analysis, it is well to 
anticipate and evaluate some of the difficulties that will arise. 
The very first problem to be encountered appears when the 
differential equation is written. All of the networks dealt with 
so far have given rise to linear, first-order, first-degree equations 
that have had simple exponential solutions. The differen¬ 
tial equation that arises here, however, is a linear, second- 
order, first-degree equation. While its solution can be obtained 
in a straightforward manner, it is more complicated in form 
than that of the first-order type. An additional complicating 
factor arises from the fact that the roots of the auxiliary equa¬ 
tion, which largely determine the form of the output pulse, are 
dependent upon the relative values of resistance, inductance, 
and capacitance. Furthermore, these roots, as well as the con¬ 
stants of integration, are fairly lengthy algebraic expressions 
that are awkward to handle. 

To ndnimize the rather trivial complications arising from 
lengthy and awkward algebraic expressions, substitutions are 
made. But there is no way to avoid the fact that this type of 
network is more complex than those handled previously. The 
fundamental reason for the complexity can be viewed on an 
energy basis. In this type of network there are two different 
elements that are capable of storing energy: inductance and 
capacitance. The possibility of a momentary transfer of energy 

116 



SERIES RLC NETWORKS 117 

Table IV.—Comparison of Series Networks 

Series networks restricted 

to contain R and L or C 
Series networks containing 

R, L, and C 

Differential equa¬ 

tion 

Linear, first-order, first- 

degree with constant 

coefficients 

Linear, second-order, first- 

degree with constant 

coefficients 

Solution of differ¬ 

ential equation 

Simple exponential; con¬ 

tains transient and 

steady-state terms 

More complicated than 

simple exponential; con¬ 

tains transient and 

steady-state terms 

Constants of inte¬ 

gration 

Simple algebraic expres¬ 

sions involving R and L 
or C 

Cumbersome algebraic ex¬ 

pressions involving /?, L, 
and C 

Form of solution 1 Independent of relative 

values of R and L or C 
Dependent upon relative 

v^Jues of R, L, and C. 
There are three separate 

cases 

Physical interpre¬ 

tation 

Straightforward Rather involved 

Energy considera¬ 

tions 

Only one element can store 

and release electrical 

energy 

Both L and C can store and 

release electrical energy 

and can exchange energy 

Output pulse shape Can approach the shape of 

the generator pulse or can 

approach the integral or 

differential of the gen- J 

erator pulse 

Can approach the shape of 

the generator pulse, can 

approach the integral or 

differential of the gen¬ 

erator pulse, or can be a 

variety of complicated 

shapes some of which bear 

no resemblance to the 

generator pulse 

Fundamental prin¬ 

ciples upon 

which the pulse- 

response charac- 

teristics are 

based 

Both types of network have this in common 
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and also a continued exchange of energy between the inductance 
and the capacitance, even long after the generator pulse dis¬ 
appears, must be recognized. Equations capable of describing 
charges and currents that account for this transfer of energy are 
necessarily complicated. 

This preliminary discussion should indicate that the results 
will lack simplicity in their mathematical expression. However, 
they will contain the desired pulse-response information. A 
comparison of this type of network with the restricted type is 
made in Table IV. 

BASIC RLC NETWORK WITH CAPACITANCE ACROSS OUTPUT 

The first specific network to be analyzed is shown in Fig. 68. 
The generator pulse is perfectly rectangular and has a constant 
value E during its duration T. 

As before, the general method of solution is executed in two 
steps for the two time intervals 
t = 0 to t = 77, and i = T to 
t — oo. The differential equation 
must be found for each time inter¬ 
val and solved for the output 
voltage as a function of time. 

1. Equations for Output Pulse; 
t = 0 to t — T.—Application of 
KirchhofTs laws to the network in 

Fig. 68 leads to the following differential equation for the time 
interval during which the generator pulse exists: 

E = rig + L + RiE + g (7<5) 

The ultimate aim is to solve this differential equation for qK 

as a function of time and to divide qE by C to obtain the output 

voltage. 
Evidently iE and dis/dt must be written in terms of qE. Since 

in — dqg/dt, then diE/dt = d2qE/dt2. Substitution of these 
fundamental relationships into Eq. (76) yields 

+ <* + -■>'§' + ??-* <”> 
This is a linear, second-order, first-degree equation that has a 

solution consisting of the sum of the particular integral and 

Fig. 68.—Series RLC network 

with a rectangular-pulse generator. 

Capacitance output. 
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the complementary function. Recall that the particular integral 

corresponds to the steady-state term and the complementary 

function corresponds to the transient term.1 Since it is not 

possible to solve Eq. (77) by separation of variables, it becomes 

necessary to evaluate the particular integral and complementary 

function individually. 

Particular Integral.—To obtain the particular integral, or 

steady-state term, one can reason that qE will be constant 

when the steady state is reached. If qE is constant, then both 

dqE/dt and d2qE/dt2 are zero; thus Eq. (77) becomes 

qE = CE 

To verify the fact that qE = CE is a solution of Eq. (77), CE 

can be substituted for qE, resulting in an identity. 

Complementary Function.—It was disclosed in Chap. II 

that the complementary function, or transient term, is of the 

form 

qfE = Kt~M (20) 

where A and K are constants that have values determined by 

the network parameters and initial conditions respectively. 

The complementary function will be the complete solution of 

the differential equation when E = 0. If this assumed form of 

q'E is differentiated and substituted into Eq. (77), setting E = 0, 

the following equation results: 

LA2Kt~M - (R + r)AKt~At + ~ t~At = 0 

Factor out Ke~At. 

The auxiliary equation is 

It is convenient to define two symbols at this point: 

M 
ft + r% 

2/7 ’ 
N 

1 
LC 

1 Chap. II, p. 26. 
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where M and N will be called secondary network parameters. 

M and N will be used throughout this chapter rather than r, 

Rf L, and C in order to simplify the notation. The dimension 

of M is l/(time) and of N is l/(time)2. 

There are two values of A that satisfy the auxiliary equation. 

They are 

Ax = M + y/M*-- N 

Ao = M - 

If these two values of A are not equal, the complementary 

function will be1 

q'E = Kxe~^ + (78) 

where Kx and K2 are constants to be evaluated from the initial 

conditions. If A i = A2 = M, which occurs when M2 = N, then 

the complementary function is 

q'E = (Kt - Kj)r"' (79) 

Output Voltage.—Addition of the steady-state and transient 

terms results in the complete solution for instantaneous charge. 

If A i 7* A 2 qK = CE + Alt + K2e Ait 

If Ai = A* = M qK = CE + (Kt - Kxt)t~Mt 

The output voltage is qE/C. 

If AI 9* A 2 eE = E + t--4*' + jr c** 

If A, = A2 - M eB = E + ~ — 

(80) 

(81) 

(82) 

(83) 

The transient and steady-state terms are clearly distinguishable 

in these equations. 

The constants Kh K2, KZy and KA must be evaluated from the 

initial conditions to obtain specific solutions for the output 

voltage. There are three cases that must be considered to 

include all possible forms of the output voltage. The three 

cases are: Ax A2 where A\ and A2 are real, A\ A2 where A\ 

and A2 are complex, and A\ = A2 = M. 

Case 1. M2 > N or (R + r) > 2 y/L/C.—This is called the 

overdamped case for reasons that will become evident. In this 

case A i and A2 are real and unequal, and Eqs. (80) and (82) 

1 Chap. IT, p. 29. 
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are applicable. It is necessary to know the value of charge 

and current in the network in Fig. 68 at the time t = 0 to evalu¬ 

ate K\ and K2. The presence of inductance in the network 

opposes any change in current while the capacitance offers 

no opposition to current at t = 0. Therefore, at t = 0 the 

current must be zero because the current cannot change instantly. 

Consequently, the charge on C must also be zero at t = 0 because 

the flow of charge is current. 

Inserting qg = 0 and t = 0 into Eq. (80) results in one equa¬ 

tion involving Ki and K2. 

Ky + K2 = -CE 

A. second equation results when Eq. (80) is differentiated 

u = - AiKt-™ 

and the condition iB = 0 at / = 0 is inserted. 

0 — —A i A i — .1 j A" o 

Solve these two simultaneous equations for K\ and Kz. 

Kl = 

.1 1 — A 2 

A% = 

Substitute the values of A'i and K2 into Eq. (82). 

When the values of .11 and A2 in terms of M and N are substi¬ 

tuted into Eq. (82a), it becomes 

eM = E--.{[M + VJF- - 
2 y/ XI- — N H 

- [Af - y/M* - 'jV]t-("+'/-v‘-Ar)'i 

Factor out e~Mt and group terms. 

Er 
Cg E — 

y/M‘ 

-Mi f f.y/M'-Nt _ * — y/M* — Nt\ 

.v Lu V-V-) 2 

__/.y/N'-Nt 4. - 
+ y/U*-»{t-V-)J (826) 
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This is a perfectly valid solution for the output voltage, but 

considerable simplification is possible if hyperbolic functions 

are introduced. The first step is to eliminate the exponential 

terms in the brackets by recognizing that the first term can be 

replaced by a hyperbolic sine, and that the second term can be 

replaced by a hyperbolic cosine. 

€ e — E — 

ErMt 

VM5 - N 
(M sinh y/M* - N t + - cosh \/M- - K l) 

Now recall from Chap. II the identity 

P sinh .4< + S cosh At = — S2 sinh ^.11 + tanh-1 — \ 

Therefore, 
E(-'» 

€ g — E 
N 

[v-ip - M- + Arsinh (x/M2 ~ Ar< + tanh-1 

sinh (x^M3 — N t + a) (g4) 

This can be written 

er. = F. 
Er 

x/Jjn-'Nj'/N 

where a = tann~1 
y/'M3 -N 

M — constant. Equation (84) is the 

complete solution for output voltage in terms of the secondary 

network parameters for the overdamped case and during the 

generator pulse. 

Case 2. M2 < N or (R + r) < 2 y/L/C — This is called the 

underdamped or oscillatory case because the output voltage is 

oscillatory. In this case Ai and A2 are imaginary and unequal 

because y/M2 — N is imaginary. Equations (80) and (82) are 

again applicable. Equation (82?>), which is basically the same 

as Eq. (82), becomes 

eg — E — 

rN - M3 L \ y/N' 

+ y/N - M3 
(ti \;N Mu f -J 

2 ;)] 
because y/M2 — N = \/—(N — M2) = j y/N — M‘\ 
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\/N — M2 is a real number when M2 < N. Replace the terms 

in the brackets by hyperbolic functions. 

„ _ F_ E<~"* 

E y/N - M2 

^\[ sinh i v/jV-~ -- + y/N - M - cosh j y/N - M2 

As was shown in Chap. II, hyperbolic functions of imaginary 

numbers are related to trigonometric functions. 

sinh jAt = j sin At) cosh jAl = cos At 

Consequently, 

eE = E - 
Et~* 

y/N - M* 
(M sin y/N - M11 + y/N - M2 cos y/N - W-1) 

Recall the trigonometric identity introduced in Chap. II: 

P sin At + S cos At = y/P- + S'- sin ^.11 + tan-1 

The output voltage therefore becomes 

cK - E 
Etr* 

y/N - M* 

| y/~AP + N - IP- sin ^VA’ - V2 r* + n - m 

This can be written 

es = E - 

t + tan 

ErMt 
M-)/N 

- sin (y/N - M* t + 0) (85) 

where & = tan 
y/N - M2 _ 

M 
= constant. Equation (85) is the 

complete solution for output voltage in terms of M and N 
for the oscillatory case and during the generator pulse. 

Case 3. M2 = N or (R + r) = 2 y/L/C.—This is called the 

critically damped case because it is the borderline case between 

the oscillatory and overdamped cases. Here A\ = A2 = My and 

Eqs. (81) and (83) are applicable. 

The constants K* and K4 can be evaluated if the initial 

conditions qg = 0 and iK = 0 at t = 0 are utilized. Insert 

qE = Oand t = 0 into Eq. (81) to find the value of K%. 
Kz = -CE 
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Differentiate Eq. (81). 

dqE 
dt 

= iE = + MK\h~Mt - KAt~Mt 

Insert the condition iE = 0 at t = 0 to obtain the value of KA. 

K 4 = -MKs = MCE 

Substitution of these values of K3 and KA into Eq. (83) yields 

the equation for the output voltage. 

eE = E - E( 1 + Ml)t~Mt (86) 

This equation is the complete solution for the output voltage 

in terms of M for the critically damped case and during the 

generator pulse. 

2. Network Behavior; t = 0 to t = T.—Before continuing the 

analysis it is wise to attach some physical significance to the 

three out put-voltage equations obtained thus far, and to examine 

the behavior of the network in Fig. 68 for the three cases. 

Case 1. Overdamped.—In this case Eq. (84) describes the 

output voltage. Figure 69 is a graphical representation of Eq. 

(84) for a fixed pulse width and amplitude and two values of M2, 

each of which is greater than N. The voltage is seen to rise 

slowly at first, then more rapidly, and then more slowly to 

approach the steady-state value E, Of course the charge on the 

capacitor is accumulating in a similar manner. The point of 

inflection on each curve, which is the point of maximum slope, 

corresponds to the condition of maximum current flow. This 

point will be treated in detail later. 

Inspection of Eq. (84) bears out this output-voltage behavior. 

For illustration, consider the case where Af2 = 2N. If M2 — 2N, 

then 

a 

Ml = = 0.707Ml 
V2 

tanh""1 
y/M' - N 

M 
tanh-1 

1 

V2 
0.881 

Equation (84) becomes 

er. = E - £«-*" sinh (0.7073// + 0.881) 
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At t = 0, the output voltage is zero. 

(eg)t-o — E — E sinh (0.881) = E — E = 0 

For values of t which are small compared with M, the exponential 

term is close to unity and the transient term is governed mainly 

by the hyperbolic sine. Consequently, the initial increase 

of output voltage approximates the hyperbolic sine. However, 

as t becomes larger, the exponential term btgins to take hold, 

so to speak. The fact that the exponential term approaches 

zero more rapidly than the hyperbolic sine term approaches 

infinity explains why the transient eventually diminishes to zero. 

Fig. 69. Output voltage of the network in Fig. 6S for the overdamped e*u>c and 
during the generator pulse. 

Because the limit of an exponential times a hyperbolic sine 

can be either zero or infinity, it becomes necessary to investigate 

further. Consider t he general case 

sinh (bt + c) 

where a, 5, and c are constants. Convert to the exponential 

form. 

1 
€-«/e&f+eJ l _ c-2(M+e)] 

= ~ €(*-*V[l c-2(W+c)] 
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Proceed to the limit as t approaches infinity. 

• lim €~°* sinh (bt + c) = \ t(b~a) "€*{1 — e~00) = I €V*~o) 00 

Now if a < 6, the limit is infinity, and if a > ft, the limit is zero. 

In the case of Eg. (84), a =M, b = yjM2 — N, and M2 > N. 
Therefore, M > y/M2 — N or a > 6, which proves that the limit 

is zero and that the transient term vanishes as t becomes large. 

The output voltage reaches a steady-state value that is equal 

to the generator voltage when the transient becomes negligible. 

Fio. 70.—Output voltage of the network in Fig. 68 for the oscillatory case and 
during the generator pulse. 

Case 2. Oscillatory.—In this case Eq. (85) applies. Figure 70 

is a graphical representation of Eq. (85) for a fixed pulse width 

and amplitude and two values of M2, each of which is less than 

N. The voltage is seen to rise slowly at first and then more 

rapidly. A maximum value that is greater than the generator- 

pulse voltage is reached and a damped oscillation occurs about 

the generator voltage E. The charge on the capacitor is going 

through a similar behavior. The point of inflection during the 

first rise of output voltage corresponds to a current maximum. 

The current behavior can be visualized by considering the slope 

of the output voltage, the slope being proportional to the current. 

Each time the output voltage is a maximum or a minimum, the 
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instantaneous current in the network is zero, and each time the 

slope of the output voltage is a maximum, point of inflection, 

the instantaneous current is a maximum. Notice that the points 

of inflection do not necessarily occur at times when the output 

voltage equals E. 
An interpretation of Eq. (85) explains this output-voltage 

behavior. The steady-state value of output voltage is E, by 

inspection. To study the behavior of the transient term, it 

is useful to visualize a sine wave of constant amplitude that 

is multiplied by an exponential. In Fig. 71 the two constituents 

I'm. 71.—Graphical representation of the transient term in the oscillatory caae 
as the product of an exponential and sinusoidal term. 

of the transient term are shown along with their product. Thus 

it is seen that the transient term is a damped oscillation that 

diminishes to zero. Hence, the output voltage is oscillatory and 

attains the steady-state value E when the transient becomes 

negligible. 

An inquiry into the period of the oscillation of output voltage 

can be made. The angular velocity of the sinusoidal term is 

\/N — M2 and, since the angular velocity equals 2ir divided by 

the period, the period of oscillation is given by 

letiod = V-V - d/2 (87^ 

This expression becomes approximately 2t/\ZA = 2ir yjLC if 

M2 is so small compared witli N that y/N — M2 « N. 
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If M2 is zero, an impossible case to achieve but one that can 

be approached, Eq. (85) becomes 

eB = E — E sin ^y/N t + ^ 

The period of oscillation is exactly equal to 2tt y/LC, and the 

exponential term has vanished. This means that the output 

voltage oscillates indefinitely between the extremities of zero 

voltage and 2E as illustrated in Fig. 72. This suggests that 

the network is capable of generating a sine wave that has a 

frequency determined by L and C. 

Pig. 72.—Output voltage of the network in Fig. OS when (R + r) = 0. The 

period is equal to 2r y/LC. 

As the value of M2 approaches N, the period approaches 

infinity, which is a trend toward the critically damped case. 

Case 3. Critically Damped.—In this case Eq. (86) contains 

the output voltage information. Figure 73 shows the output 

voltage for the condition that M2 = N. This case is very diffi¬ 

cult to achieve in practice; nevertheless, it can be approached 

very closely. It is the borderline case between the overdamped 

and oscillatory cases; in other words, the network condition is 

such that oscillation is not quite possible. 

A comparison of Fig. 73 with Fig. 69 reveals a similarity, 

but observe that the steady-state output voltage is attained 

more quickly in the critically damped case than in the over¬ 

damped case. This property of the critically damped condition 
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is often used to good advantage in applications where the dura¬ 
tion of the transient must be minimized and where oscillation is 
undesired. 

The transient term in Eq. (80) diminishes to zero as t becomes 
large because €~Mt approaches zero more rapidly than (1 + Mt) 
approaches infinity. This can be demonstrated mathematically. 

lim (1 + — lim e~Mt + lim Mte~Mt 
t~* 00 t —* * t —* 80 

= 0 + lim 
Mt 

Time-*- 
I'Hi. 73.—Output voltage of the network in Fig. 08 for the critically damped 

case and during the generator pulse. 

In the limit this becomes indeterminate, <* /«, so it is necessary 
to differentiate the numerator and the denominator. (The 
value of the new fraction as t approaches infinity is the limiting 
value of the original fraction.1) Differentiate the numerator 
and denominator separately and^proceed to the limit. 

lim 
M 

M\M 

Therefore, the transient term approaches zero, and the output 

1 Granville, Smith, and Longley, “Elements of the Differential and Inte¬ 

gral Calculus,” Ginn and Company, or any other standard calculus book. 
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voltage approaches a steady-state value equal to the generator 

voltage. 
3. Equations for Output Pulse; t = T to t = «.—Equations 

(84), (85), and (86) pertain to the time interval during which the 
generator pulse exists. To complete the solution one must con¬ 
sider the network of Fig. 68 after the generator pulse has dis¬ 
appeared. From the time T on, the differential equation that 
applies is Eq. (77) with the generator voltage set equal to zero. 
Write Eq. (77) in terms of M and N, and set E = 0. 

^ + 2M ^ + Nqo = 0 (77a) 

Particular Integral.—To obtain the particular integral, or 
steady-state term, set d2qQ/dt2 = dq0/dt = 0. Equation (77a) 
indicates that the steady-state term is zero, q0 = 0. 

Complementary Function.—The complementary function must 

comprise the entire solution because the particular integral 
is zero. The solution of Eq. (77a) has been found previously. 
It is given by Eqs. (78) and (79) which are rewritten below with 
the constants K\, K2l Kz, and KA replaced by iv5, K6, K1} and Ks 
because the conditions at t = 0 and t = T are different. 

When Axj* A2 q0 = Kb<rA" + AV"-4rf (78a) 
When A i = A2 = M q0 = (K7 — Kzt)t~Mt (79a) 

Output Voltage.—The output voltage during the time interval 
t = T to t = qc is obtained by dividing Eqs. (78a) and (79a) 
by C. 

When Ai 9* At e« = ~ t~A'‘ + ^ r** (88) 

When A\ = A2 = M c0 = 

It can be seen clearly from these equations that the steady- 
state term is zero. Three cases must be considered to obtain 
specific solutions for the output voltage. 

Case 1. M2 > N. Overdamped.—A\ and A2 are real and 
unequal. To evaluate K* and Kz it is necessary to know the 
values of instantaneous charge and instantaneous current at 
t = r. These values are given by the following equations that 
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are obtained by setting t = T in Eq. (80) and in the derivative 

of Eq. (80). 

qKr = CE + Kxt~A'T + K*-A'-T (80a) 

*«, = - AXtr* (806) 

Inserting the condition q0 = qET at t = T into Eq. (78a) yields 
one equation for Kb and K6. 

Qet = Kbe-A'T + K^T 

Another equation is obtained by differentiating Eq. (78a) and 
then setting i0 = Ikt and t = T. 

Xet = -AlKb€~A'T - A2K6e-*'T 

Solve these two simultaneous equations for Kb and K6. 

K„ = ^ (1 - <A'T) = A,( 1 - «*r) 

A. = - ,CKA \ (1 - tA'-T) = A\(l - <**) 
A i — A 2 

Substitute the values of A5 and A6 into Eq. (88). 

fo = 4 ^ A [.42(l - tA'T)«_A“ - 4,(1 - «*»•)«-*•»] (88a) 

Expand this equation and group terms. 

"E( ) - E\-A,-A, . ) 
€o (886) 

The first term in Eq. (886) is identically the same as the transient 
term in Eq. (82a) which has been shown to become 

Et~Mt 

VCM'r-W)Yti 
sinh (\AV2 - Nt + «) 

when the values of A i and A2 in terms of M and N were substi¬ 
tuted. The second term in Eq. (886) is the same as the first 
term except for sign and the replacement of t by (t — T). So, 
bv analogy, it becomes 

E€-At(t-T) 

\/(AP - N)/K 
= sinh [\/M2 - N (t - T) + «] 
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Thus the output voltage in terms of the secondary parameters 
and pulse width for the overdamped case and after the generator 
pulse disappears is 

* - vW=WS sinh K J' A -T> + 

— sinh (VM2 — N t + a)} (90) 

When T is very large compared with 1/M, tMT is extremely 
large and the output-voltage equation becomes approximately 

e# „ sinh [VM1 ~ N (t- T) + a] (90«) 
y/(M* ~ N)/N V' 

Case 2. M2 < N. Oscillatory.—A i and A2 are imaginary and 
unequal. Under this condition the first term in Eq. (886) 
becomes 

which is the same as the transient term in Eq. (85). The 
.second term in Eq. (886), by analogy with the first term, becomes 

Therefore, the output-voltage equation is 

sin (ViV2 -Mi + t3) 

W~N - M2 (t- T) + /3) 

V(N - M2)/N 

{«J,r sin [\/N — M2 (t — T) + 0] — sin (\AV — M21 + &)} (91) 

This equation is the complete solution for the output voltage 
in terms of the secondary parameters and the pulse width for 
the oscillatory case and after the generator pulse disappears. 

When the pulse width is very large compared with 1/M, then 
€mt is extremely large, and the output-voltage equation becomes 
approximately 

eo - 8in (VN^TM2 (t-T)+ 0] (91a) 
V(N - M2)/N 

Case 3. M2 = N. Critically Damped.—Ai and A 2 are equal, 
and equal to Mf so Eq. (79a) is applicable. The constants K? 
and K% can be evaluated if the initial conditions go - qEr and 
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to = ieT at t = T are utilized. Inserting q0 = qET and t = T into 
Eq. (79a) yields one equation for K7 and K8. 

qET = £K7 - KaT)e~MT 

Another equation is obtained by differentiating Eq. (79a) and 
inserting the condition ?0 = Iet at t = T. 

In these equations the values of qEr and iEr can be obtained 
from Eq. (81). 

q*T = CE + (Kt - KAT)e~MT 

i*T = -Me-”* (k3 - K<T + 

Solve for K7 and K$. 

K7 = CE{ 1 - MT)tMT — CE = As[l - (1 - 3/7>*H 
A* = MCE(l - € = Ka( 1 - 

Substitute these values into Eq. (89). 

= £«-*“{ «"TU + 3/(1 - T)] - (1 + 3/01 (92) 

This equation is the complete solution for output voltage in 
terms of the secondary parameters and pulse width for the 
critically damped case and after the generator pulse disappears. 

When the pulse width is large compared with 1/3/, Eq. (92) 
can be simplified because cAfr is extremely large. Neglecting 
(1 + 3/0, Eq. (92) becomes 

Co « E[i + M{t - T)](92a) 

4. Network Behavior; t = T to t — <*.—Equations (90), (91), 
and (92) are exceptionally cumbersome, and it is well to pause at 
this point to examine what the results mean in terms of the 
network in Fig. 68 for the three cases. The output-voltage 
equations for the condition that the generator pulse is large 
compared with 1/3/ are simpler than the equations that apply 
for small pulse widths. Therefore, this discussion will be 
confined to the special case where the generator pulse is suffi¬ 
ciently large for Eqs. (90a), (91a), and (92a) to be applicable. 
Although generality is lost by doing this, the essential features 
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of the output-voltage behavior after the pulse disappears will be 
disclosed. 

Fig. 74.—Output voltage of the network in Fig. 68 for the overdamped case and 
after the generator pulse disappears. 

Case 1. Overdamped.—If the pulse width is large enough 
for the transient to be negligible at t = 7T, then Eq. (90a) applies. 

Fiu. 75.—Output voltage of the network in Fig. 68 for the oscillatory case and 
after the generator pulse disappears. 

Figure 74 is derived from Eq. (90a) for two values of M2 each 
of which is greater than N. The voltage is seen to decrease 
slowly from its initial value E, then to decrease more rapidly, 



Sec. 4] SERIES RLC NETWORKS 135 

and finally to approach the steady-state value of zero. The 
charge on C decreases in a similar manner. 

Inspection of Eq. (90a) bears out this behavior, and a com¬ 
parison of Eq. (90a) with Eq. (84) shows a similarity that 
should not be overlooked. Equation (90a) is exactly equal to the 
negative of the transient term of Eq. (84) when t is replaced 
by (t — T). In other words, the transient behavior of the net¬ 
work is the, same on discharge as on charge of the capacitance. 
A similar comparison can be made in terms of the figures that 
represent the output voltage. If the curves in Fig. 74 are 

Fig. 70.— Output voltage of the network in Fig. G8 for the critically damped 
case and after the generator pulse disappears. 

inverted so that the initial value at t = T is zero and the steady- 
state value is E, these inverted curves will be exactly the same 
as those shown in Fig. 69, but displaced in time by an amount T. 

Case 2. Oscillatory.—Equation (91a) is presented graphically 
in Fig. 75 for the case of a generator-pulse width that is very 
large compared with l/M. The output voltage is oscillatory. 
The amplitude of the oscillation decreases exponentially and 
finally approaches the steady-state value of zero. 

Equation (91a) lends itself readily to an interpretation of 
the oscillatory output because of the sinusoidal term. More¬ 
over, it is clear from the equation that the amplitude of the 
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sinusoidal term diminishes exponentially. The period of oscil¬ 
lation is the same as that given by Eq. (87). As a matter of fact, 
Eq. (91a) is nothing more than the negative of the transient term 
of Eq. (85) with t replaced by the new variable (t — T). 

Case 3. Critically Damped.—Figure 76 represents Eq. (92a) 
for the case where the generator-pulse width has been long enough 
to allow the capacitor to charge up to the voltage E. Equation 
(92a) is simply the negative of the transient term of Eq. (86) that 
was illustrated in Fig. 73. Notice again that the steady-state 
value is attained more quickly in this case than in the over¬ 
damped case. 

Fio. 77.—Output pulse of the network in Fig. 08 for the overdamped case. 

6. General Output Voltage; t = 0 to t = <*>.—To include out¬ 
put voltages for any pulse width and to consolidate the output 
voltage equations obtained, the complete pulse-response char¬ 
acteristic will be considered now. This can be accomplished 
by a graphical representation of the output pulse for various 
generator-pulse widths of constant amplitude. 

Figure 77 indicates the output pulse that results in the over¬ 
damped case, M2 = 2N, when the generator-pulse width is 11/M. 
At t = T the output voltage has not yet reached the generator 
voltage even though the pulse width is eleven times 1/M. The 
network behavior is even more sluggish for values of M2 that 
are greater than 2N. The output pulse in the critically damped 
case is similar to that presented in Fig. 77, except that the 
voltage rises and falls a little more rapidly. 
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Figure 78 is an example of the output pulse for the oscillatory 
case when the generator-pulse width is equal to 5/M. In 

FlO. 78.—Output pulse of the network in Fig. 68 for the oscillatory case. 

!\j\jwv—- 

Flo. 79.—Oscillatory output pulse of 
the network in Fig. 68 when the tran¬ 
sient is very large at t ■■ T and for 
M% << N. 

Fig. 80.—Oscillatory output pulse of 
the network in Fig. 68 when the tran¬ 
sient is quite small at t m T. 

this instance the transient is practically zero at t = T = 5/M. 
Observe that the output pulse is slightly displaced in time as 
compared with the generator pulse. When such a time delay 
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exists in a network, the time at which the pulse arrives at the out¬ 
put is frequently defined as the time when the output ampli¬ 
tude equals one-half the steady-state value. In Fig. 78 the 
output-pulse voltage is %E at approximately 0.31/Af sec. 

Figures 79, 80, and 81 are illustrations of output pulses 
observed in actual RLC networks. In Fig. 79 the prolonged 

oscillation is due to the fact that 
M2 is much less than N. The 
generator-pulse width is slightly 
less than the interval between 
t = 0 and the first time that the 
output voltage crosses zero volt¬ 
age. The exponential nature of 
the output-voltage envelope is 
indicated clearly after the time 
/ = T. Figure 80 pictures the 
output pulse that results in the 
oscillatory case when the tran¬ 
sient is not quite negligible at 
t = T. Figure 81 depicts an 
output voltage in the over¬ 
damped case when the generator- 
pulse width is approximately 

equal to 2/M. This pulse suggests that the RLC network is 
capable of producing an output voltage that approaches the 
integral of the generator voltage. 

Fig. 81. -Output pulse of the net¬ 
work in Fig. 68 for the overdamped 
case when the generator pulse is 
2/M. This output pulse is approxi¬ 
mately the integral of the generator 

pulse. 

BASIC RLC NETWORK WITH RESISTANCE ACROSS OUTPUT 

If the network of Fig. 68 is rearranged as shown in Fig. 82, 
so that the output pulse appears across R instead of across C, 
the pulse-response characteristics will be different from those 
already obtained. The fundamental mathematical work on 
series RLC networks has really been carried out for the case of a 
capacitance output. Now it is possible to manipulate the pre¬ 
ceding output-voltage equations to find the pulse-response 
characteristics for a resistance output. This mathematical 
manipulation is basically simple, but the expressions that 
arise are again cumbersome for this type of network. 

6. Equations for Output Pulse; t = 0 to t == T.—The output 
voltage during the time interval t = 0 to t = T for the network 
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in Fig. 82 can be obtained if the equation for instantaneous 
current is known, since eB = RiE. The instantaneous-current 
equation can be found without recourse to the differential 
equation for the network, because the equation for instantaneous 
voltage across C has been previously determined. When the 
equation for output voltage across 
C is multiplied by C, it becomes 
the equation for instantaneous 
charge. Differentiation of the in¬ 
stantaneous-charge equation 
converts it to an instantaneous- 
current equation. Finally, multi¬ 
plication of the current equation 
by R yields the equation for 
voltage across R, which is the output voltage of the network in 
Fig. 82. In this manner, the three cases will be dealt with 

separately. 
Case 1. M2 > N. Overdamped.—Multiply Eq. (84) by C to 

obtain the equation for instantaneous charge. 

Fig. 82/—Series RLC network 
with a rectangular-pulse generator. 
Resistance output. 

<\e — CeB — CE — 
CE*rMt 

y/{M* - Nj/N 

, y/W^Jt 
M 

sinh (y/M* — N t + a) 

a - tanhr 

Differentiate to find the instantaneous-current equation. 

CEt~'“ 
If. — 

y/(AP - N)/N 
= [- y/.\P - N cosh (y/JF- - N( + a) 

+ M sinh (y/M* - N t + a)] 

The following identity was proved in Chap. II: 

P sinh At - S cosh At = y/P*- S'- sinh (.At - tanh"' pj 

Therefore, 

y/M* - W + N sinh (y/M* - N t 

, y/M* - NX] 

If. = 
CEt-"‘ 

y/{M* - N)/N 
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NCEt~ut . u /Tn-1Si 
is = —7=.-T=:r=— sinh \/M2 — N t 

y/M2 - N 

= -2EMe^ V^2 - A t (93) 
(ft + r) x/M2 -A 

The output voltage is RiE. 

2ERM<rMt “ . - /1T?-Tt4 ,ftl. 

(ft + r) \AW2 - N 

Case 2. A/2 < N. Oscillatory.—When Eq. (85) is multiplied 
by C, the equation for instantaneous charge results. 

qE = Ce£ = C£ - sin (VA -~M21 + 0) 
\/(N — M£)/N 

P = tan- 
x/a - j/* 

Differentiate. 

t-, = 
dt V(N - A/2)/A 

[M sin («\/N — M21 + 0) — x^A — M2 cos (x/A — M21 + (S) ] 

Recall the following identity from Chap. II: 

P sin At — S cos .4/ s \/P2 + S2 sin ^4/ — tan*1 

Consequently, 

\/W - A/2)/W 

^ V-V2 + N - M2 sin (x/A3 M2 / + p — tan 
-i VA - A/ 

^ A 

=-2gAf**l„.'. sin y/N - M2 < (95) 
(ft + r) x/A - M2 

The output voltage is /ft*. 

2ERMe~Mt . / Af-to , 
e* = -. ■ , sin vW ~ ^/2 / (96) 

(ft + r) V# ~ M* V V ' 

Case 3. M2 = N. Critically Damped.—Multiplication of 
Eq. (86) by C yields the equation for instantaneous charge. 

qE = CE - CE{ 1 + 
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Differentiate. 

iM = = -CE[M - .1/(1 + 

= CEMHt~Ml = CENU- 

-Aff 
2 EM 
R + r 

U~m 

Multiply by R. 

ce = Rip. 
2ERMU~i“ 

it + r 

(97) 

(98) 

7. Output Voltage; t = 0 to t = 7.—A graphical representa¬ 
tion of the three output-voltage equations, combined with an 

Time—► 
Fio. 83.—Output voltugo of tlie network in Fig. 82 for the overdamped ease and 

during the generator pulse. 

interpretation of the equations themselves, discloses several 
pertinent features that lead to an understanding of the network 
behavior. 

Case 1. Overdamped.—Figure 83 is derived from Eq. (94) 
for two values of M2, each of which is greater than N. There is 
one striking property of this output voltage that is immediately 
apparent; namely, the output voltage is a pulse that rises from 
zero to a maximum and then falls to zero even though the 
generator voltage has a constant value. If one considers the 
slope of the curves of Fig. 69, however, this behavior is not 
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surprising. In fact, the point of inflection on the output-voltage 
curve of Fig. 69 corresponds to the instant that the current is a 
maximum. The fact that the current rises from zero to a maxi¬ 
mum and then falls to zero can also be deduced by examining 
Eq. (93). At t = 0 the current is zero because sinh 0 = 0. 
The current is also zero after a long time has elapsed, since the 
limit of (*~Mt sinh \Al/2 — N t) as t approaches oo is zero when 
M2 > N.1 These two facts combined with the knowledge that 
charge accumulates on C mean that current must flow at some 
time between its two zero values. In other words, the current 
must pass through a maximum. 

The maximum value of output voltage and the precise time 
at which the maximum occurs can be found from Eq. (94) by 
differentiating and setting deE/dt equal to zero. 

deE 
~dt 

d. " 
dt 

2 ERMt-"* 
(ft + r) y/M* - N 

sinh y/Si 2 — N t =0 

y/'M2 - N cosh y/'M* - N t' - M sinh y/.\f* — A' t' = 0 

tanh V-U- - Nt' = 
VM2 - 'N 

M 
= tanh a 

The time t' at which the output voltage is a maximum is 

y/M2 ~ N 
(99) 

The maximum value of output voltage can be found by substitut¬ 
ing this value of t' into Eq. (94). 

Ma 

2ERMt . 
= --—--sinh 

(ft + r) VM2 ~ N 
_Ma 

= 2ERMt 

(.R + r) \/N 
(100) 

It can now be seen that the generator-pulse width must be at 
least equal to /' in order to attain this maximum output voltage. 

Case 2. Oscillatory.—Equation (96) is represented graphically 
in Fig. 84 for two values of M2 each of which is less than iV, 
and for a generator-pulse width that is long enough to disclose 
the complete output-voltage variation during the generator 

1 See p. 126. 
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pulse. The output voltage oscillates about the steady-state 
value of zero with diminishing amplitude. Equation (96) can 
be regarded as consisting of the product of two terms: one, a 
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f 0.2ER 
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Fi<i. 84.—Output voltuge of the network in t ig. 82 for the oscillatory case and 

during tire generator pulse. 
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Fig. 85.—Output voltage of the network in Fig. S2 for the critically damped 

case and during the generator pulse. 

sinusoidal term; the other, an exponential. The graphical 
product of a sine wave and an exponential was given in Fig. 71 
and explains the output-voltage shape in Fig. 84. 

The period of oscillation can be obtained from the angular 
velocity of the sine wave, \/N — M2. This angular velocity is 
the same as that in Kq. (85), so the period is given by Eq. (87). 
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As M2 becomes smaller compared with N, the output voltage 
oscillates with a smaller period. The period approaches infinity 
as the value of M2 approaches N. In the limit, M2 = JV, there 
is no oscillation and the critically damped case exists. 

Case 3. Critically Damped—Equation (98) is shown in Fig. 
85. The network is just on the verge of oscillation, but the out¬ 
put pulse still bears a close resemblance to that in the overdamped 
case. A close examination of Figs. 85 and 83 reveals that the 
output pulse in this case is sharper than in the overdamped 
case; in other words, the output pulse reaches a maximum more 
quickly and the steady-state value is attained sooner than in 
the overdamped case. 

The time at which maximum output occurs can be found by 
setting the derivative of Eq. (98) equal to zero. 

deE d (2ERMte~ 
dt dt\ R + r ) U 
2 ERM<r'“c 

R + r 
(1 - Mt'c) = 0 

It is informative to compare this time with that in the over¬ 
damped case: t’ = a/\/M2 — N. In general, t' > t'Cl which means 
that the critically damped output voltage reaches a maxi¬ 
mum before the overdamped output voltage reaches a maxi¬ 
mum. The difference between t! and t'c becomes smaller as AP 
approaches N in the overdamped case. This can be demon¬ 
strated by recalling that 

to,,), „-JJ-y. 
Now as M2 approaches N, tanh a « a because y/l — N/M2 
becomes very small. Therefore, 

/, _ a _ _tanh a __ \/M2 — N _ J_ _ 

~ y/M2 — N ~ ~ M " M " c 

The maximum output voltage in the critically damped case 
can be found by substituting t = t'c = \/M into Eq. (98). 

2ERM£l 
(R + r)M 

= 0.736 
ER 

(R + r) 
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8. Equations for Output Pulse; t = T to t = <*>.—The output- 
voltage equations that apply after the generator pulse has 
disappeared can be obtained by the same method employed in 
the time interval t = 0 to 11 = T. Multiply Kqs. (90), (91), 
and (92) by C; differentiate each equation, and multiply by R. 
The resulting equations are 

Case 1. eQ = — 
2ERMe~Mt 

(R + r) y/M* - N 
[eMT sinh VJl2 - N (t - T) - sinh y/M* - N t] (101) 

Time-^ 

Flu. SO.— Output voltage of the network in Fig. S2 for the overdamped ease and 
after the generator pulse disappears when T > > 1/JVf. 

Case 2. = — 
2 ERMt-"' 

(R + r) y/JT — M - 

sin y/X — M'1 (/ — T) — sin y/X 

Case 3. 
2 ERMt~m 

R + r 
[(?’ - t)e',T + .1//] 

M* <] (102) 

(103) 

These equations simplify if tho pulse width is very large 

compared with 1 / M. 

— flVH ir*-.v«-r)_ 
Case 1. c0«-—sinh y/M- - N (f - T) (10lo) 

(R + r) v Ms — N 

— 2 RR1 rt-mi-T) _ 

Case 2. - - {R^N VA* - 31* (/- D (102a) 



146 PULSED LINEAR NETWORKS [C'h.u\ V 

Case 3. eo 
2ERM(t - T)f*(*-r) 

R + r 
(103a) 

9. Output Voltage; t = T to t = ».—Figures 86, 87, and 88 
show the output voltage after the time t = T for the three cases, 

Fig. 87.—Output voltage of the network in Fig. 82 for the oscillatory case and 
after the generator pulse disappears when T > > l/M. 

Fig. 88.— Output voltage of the network in Fig. 82 for the critically damped 
case and after the generator pulse disappears when T > > l/M. 

assuming that the generator pulse has been long enough for 
Eqs. (101a), (102a), and (103a) to apply. A comparison of these 
output voltages with those of Figs. 83, 84, and 85 reveals that 
they are exactly the same except they are inverted and shifted 
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in time by an amount T. In other woifts, the network behavior 
is the same, but the direction of the current has been reversed. 

Fig. S9.—Output pul.sc of the network in Fig. 82 for the overdamped case. 

Fiq. 90.—Output pulse of the network in Fig. 82 for the oscillatory case. 

A comparison of Eqs. (101a), (102a), and (103a) with Eqs. 
(94), (96), and (98) discloses that the only difference is that of 
sign and the replacement of the variable ( by (t — T). 
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10. General Output Voltage; t = 0 to t — <*>.—The output 
voltages for the two time intervals can be combined to represent 

Fig. 91.—Oscillatory output voltage Fig. 92.—Output pulse of the net- 
of the network in Fig. 82 when the work in Fig. 82 for the overdamped 
transient is very large at t = T and case when the transient is large at 
M* << N. t = T. 

the complete output pulse. This has been done for two cases in 
Figs. 89 and 90. 

Figure 89 represents the output pulse that results in the 
overdamped case (M2 = 2N) for a generator pulse of amplitude 2? 

and duration T = 11/Af. The 
maximum output voltage is only 
about 0.812?. At t — 11/Jf the 
transient term is still significant 
and the output voltage is approxi¬ 
mately 0.062?. The output pulse 
for the critically damped case is 
similar in shape, but the maxi¬ 
mum output voltage is smaller 
and the transient diminishes 
more rapidly than in the over¬ 
damped case. 

The output pulse for the oeeil- 
case when M2 is extremely large latory case (N = 15M2) and for 
compared with N. a generator pulse of amplitude 

E and duration T = 5/M is given in Fig. 90. There is prac¬ 
tically no resemblance between the output pulse and the gener¬ 
ator pulse. The transient has diminished to a fairly small value 
at t = T. 
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Figures 91, 92, and 93 are oscillograms that provide additional 
examples of the pulse voltage that can appear across R in an 
RLC series network. In Fig. 91 the abrupt change in oscillatory 
output voltage at t = T is the result of the sudden disappearance 
of the generator pulse. The transient endures for a considerable 
length of time after the generator pulse has become zero. Figures 
92 and 93 are illustrations of output pulses that can result in the 
overdamped case when the transient is very large at t = T. 

BASIC RLC NETWORK WITH INDUCTANCE ACROSS OUTPUT 

A third possible arrangement of the network in Fig. 68 is 
that in Fig. 94 where the output pulse appears across the induc¬ 
tance. The instantaneous-current equations that have been 
previously determined can be manipulated into the desired 
equations for voltage across L 
since the network current is the 
same in both cases. 

11. Equations for Output Pulse; 
t = 0 to t = T.—When Eqs. (93), 
(95), and (97) are differentiated 
and multiplied by L, the output- 
voltage equations for the net work 
shown in Fig. 94 are obtained. 
The differentiated current equations are simplified in a manner 
similar to that employed on page 139, and the following output- 
voltage equations result: 

E*~Mt 

Imu. 94.—Series RLC network 
with a rectangular-pulse generator. 
Inductance output. 

Case 1. eE = — 

Case 2. eE = — 

V(4/2 -Nj/N 

E€~Mt 

sinh (vOf2 — N t — a) (104) 

sin (y/N~- M21 - 0) (105) 

Case 3. e* = E( 1 - (106) 

These equations apply only during the time interval t = 0 to 
t = T because Eqs. (93), (95), and (97) are valid only during this 
time interval. 

12. Output Voltage; t = 0 to t = T.—An understanding of the 
output voltage equations can be obtained by a graphical repre¬ 
sentation of the equations and by comparing them with those 
previously derived. 
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Case 1. Overdamped.—Figure 95 is a graphical representation 
of Eq. (104) for two different values of M2 each of which is 
greater than N. The output voltage is different from any 
obtained previously. At t = 0 all of the generator voltage E 
appears across L, but as time increases, this voltage decreases to 
zero and reverses polarity (becomes negative). After reaching a 
maximum negative value, the voltage subsequently diminishes 
to the steady-state value of zero. To explain this output- 
voltage behavior in graphical terms, recall that the voltage 

Fig. 95.—Output voltage of the network in Fig. 94 for the overdamped case 
and during the generator pulse. 

across L is proportional to the rate of change of instantaneous 
current. The curves in Fig. 83 are directly proportional to 
the current, and their slope is proportional to the voltage across L. 

The time at which the output voltage crosses zero corresponds 
to the instant at which the current in the network is a maximum, 
since the output voltage in this case is proportional to the 
derivative of the current. This time has been seen to be 

y/M2 - N 

The time t" at which the voltage is a maximum negative value 
corresponds to the point of inflection in the output-voltage curve 
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shown in Fig. 83 and can be found by setting the derivative of 
Eq. (104) equal to zero. 

(IdE 

dt dt [ 
Et~ 

V(M2 - N)/N 

\/AP - N cosh (V^2 - N t" - a) 

—— sinh (y/M'1 — N t — a) =0 

- M sinh (y/M2 - N t" - a) = 0 

tanh (\/M2 — N t" — a) = —— = tanh a 

Therefore, 

or 

M 
V'M2 ~ N t" - a = a 

2a 
r = 

y/ M 2 ~ N 
= 2 V 

This implies that the time interval between t = 0 and the time 
that the output voltage crosses zero is equal to the time interval 
between the crossover and the time of maximum negative 
output voltage. The value of the maximum negative output 
voltage can be found by substituting t" into Eq. (104). 

(eE)r -- 
V (d/2 - N)/N 

2 Afa 

Ee~ Vm*-n 

' \/(\p - nYJn 
2 Ma 

■Et 

sinh {y/M2 - N t" - a) 

sinh (2a — a) 

A comparison of Eq. (104) with Eq. (84) discloses that the 
transient term of Eq. (84) is the same as Eq. (104) with the 
exception of the sign of a. 

The negative sign in front of Eq. (104) can be rather decep¬ 
tive unless the complete equation is examined as a whole. 
For very small values of t) the hyperbolic sine term is negative 
and hence the output voltage is positive. However, after a 
time equal to t! has elapsed, the hyperbolic sine term is positive 
and consequently the output voltage is negative. Figure 95 
shows this clearly. 

Case 2, Oscillatory.—Equation (105) applies in this case, 
and it is shown in Fig. 96 for two values of M2 that are less than 
N. This is a damped oscillation, the damping being exponential 
and taking place in accordance with a time constant equal to 
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1/M. The oscillation takes place about the steady-state value 
of zero output voltage. The period of oscillation is given by 
Eq. (87). The phase of the sinusoidal term is different from the 

Tig. 96.—Output voltage of the network in Fig. 94 for the oscillatory case and 
during the generator pulse. 

Fig. 97.—Output voltage of the network in Fig. 94 for the critically damped 
case and during the generator pulse. 

oscillatory cases of capacitance and resistance outputs, as can 
be seen from Eqs. (96) and (85). Notice that the transient term 
of Eq. (85) is very similar to Eq. (105). 
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Case 3. Critically Damped.—Figure 97 is a graphical repre¬ 
sentation of Eq. (106). The output voltage is similar to the 
overdamped case even though the network is just on the verge of 
oscillation. 

By inspection of P]q. (106), the voltage crossover point is 
seen to occur at a time when 1 = Mt or when t = t'c — l/M. 
At this instant the current is a maximum as was deduced previ¬ 
ously. Since this time is less than the crossover point in the 

overdamped case, as can he seen by comparing a/ y/M2 — N with 
l/M (page 144), it is evident that the transient diminishes more 
rapidly in the critically damped case than in the overdamped 

case. 
The time at which the output voltage attains its most nega¬ 

tive value can be found by setting the derivative of Eq. (106) 
equal to zero. 

7BT * * 0 
Et-Mt"c[ — M - M( 1 - Ml”)] = 0 
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The ratio of the crossover time and the time of maximum nega¬ 

tive value is the same as in the overdamped case. 

However, t" < t" and t'c < ('. 
Since t” = 2t'c, then t" — t'c = t'c. This shows that the time 

interval between / 0 and the time that the output voltage 

crosses zero is equal to the time interval between the crossover 

and the time of maximum negative output voltage. 

0.6E 

$ OJE 

jf 0.2E 
o > 

■5 0 
CL 

o -0.2E 

3 
c -0.4 E 

Z-0.6E 
£ 

-0.6 E 

-E 
Fig. 99.— Output voltage of the network in Fig. 94 for the oxillutory ease and 

after the generator pulse disappears when T > > 1 /M. 

13. Equations for Output Pulse; t = T to t = <*.—To com¬ 

plete the solution for the network in Fig. 94, the output-voltage 

behavior must be determined from the time 7’ on. Again this can 

be accomplished expediently by differentiation of the instan¬ 

taneous-current equations and multiplication by L. The instan¬ 

taneous-current equations can be obtained by dividing Eqs. (101), 

(102), and (103) by R. The resulting equations for output 

voltage are 
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Ee~Mt 
Case 2. e0 = .-■■=■■■ 

y/(N - M2)/N 
T) - fi] - sin (\/N — M2t — fi)\ (108) 

Case 3. e„ = EcrMt[eMT(Mt - 1) - MT - MU] (109) 

Since these equations are so cumbersome, it is best to discuss 

them in their reduced form for the case where the pulse width 

has been long enough for the transient term to be negligible 

at the time t = T. When T > > 1/M, then eMT is very large 

and the output-voltage equations become approximately 

Fio. 100.--Output voltage of the network in Fig. 94 for the critically damped case 
and after the generator pulse disappears when T > > 1/M. 

R _ 
Case 1. e0 « - — sinh [\/M'— N (t-T)-a] (107a) 

V(M2-n)/n 

v.-mu-t) --- 
Case 2. e0 ~ -> :.r--sin [■- J/2 (<- T) -0] (108a) 

V(N-M*)/N 

Case 3. e„ ~ E[M(t - T) - 1 ]«-"«-« (109a) 

In this form, the striking similarity between these equations 

and the corresponding equations for the resistance and capaci¬ 

tance output is evident. See Eqs. (101a), (102a), and (103a), 

and especially Eqs. (90a), (Ola), and (92a). 
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14. Output Voltage; t = T to t = <».—Equations (107a) 

(108a), and (109a) are shown in Figs. 98, 99, and 100, respec¬ 

tively. The output voltage is seen to be essentially the negative 

of the output voltage during the generator pulse but shifted in 

time by an amount T. Compare these output voltages with 

those given in Figs. 95, 96, and 97. 

Fio. 101.—Output puUe of the network in Fig. 94 for the critically damped case. 

15. General Output Voltage; t = 0 to t = <*>.—The complete 

pulse-response characteristics of the network in Fig. 94 should 

now be clear. Figures 101 and 102 present two possible output 

voltages both during and after the generator pulse. 

Figure 101 indicates the output voltage that results from a 

generator-pulse voltage E and width T = 7/M when the net¬ 

work is critically damped (M2 = N). The transient is negligible 

at t = 7/M. In the overdamped case the output voltage is 

similar in shape, but a longer generator-pulse width is required 

before the transient becomes negligible at t = T. 
Figure 102 demonstrates an oscillatory output voltage when 

N = 15M2 and when the generator-pulse width is 5/M. The 
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transient has time to diminish to a very small value at t = T for 

this generator-pulse width. 

Fig. 102. Output pulse of tho network in Fig. 94 for the oscillatory case. 

Fig. 103.—Output pulse of the net- Fig. 104.—Oscillatory output volt- 
work in Fig. 94 for the overdamped age of the network in Fig. 94 when the 
case when T ■* t'\ transient is very large at t ** T and 

An < < n. 

Figure 103 is an oscillogram of the output voltage in the 

overdamped case. The generator-pulse width is adjusted for 

the condition T = t"\ in other words, the generator pulse becomes 
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zero at the instant the output voltage is a minimum during 

the generator pulse. The equation t" = 2t' can be verified from 

Fig. 103 if linear measurements along the time axis are made. 

The oscillogram in Fig. 104 represents the output voltage 

in the oscillatory case when the transient is still large at t = T. 

DESCRIPTIVE NETWORK BEHAVIOR 

So far, the description of the network behavior has been 

largely mathematical, and only a small amount of attention 

has been paid to the behavior of current, charge, and energy 

in the network for the various cases. The graphical representa¬ 

tion of the output voltage is always a helpful consideration, 

but a more penetrating inquiry into the network behavior 

requires that the physical situation be appraised. This can be 

done by using the graphical and mathematical results as a guide 

but not as a self-sufficient explanation of the network operation. 

A general discussion of the network in qualitative terms should 

serve also as a review of this chapter. 

A description of the network logically divides into two time 

intervals: during the generator pulse, and after the generator 

pulse. Accordingly, the two states of operation will be discussed 

separately. 

As far as energy relations are concerned, a mathematical 

analysis is possible, but a sufficient amount of information 

concerning the energy transfer and transformation can be 

obtained from qualitative considerations that utilize only the 

basic energy definitions. Consequently, a qualitative point of 

view will be taken as regards energy. 

16. During Generator Pulse.—The first time interval to be 

considered is from t = 0 to t = T. During this interval the 

generator pulse exists, and the voltage across C approaches a 

steady-state value that is determined by the generator voltage. 

The initial conditions are q& = 0 and iK — 0 at t = 0. This 

means that at t = 0 all of the generator voltage must appear 

across the inductance, because the voltage across (/? + r) and 

across C is zero. These initial conditions apply irrespective 

of the relative values of M2 and N. However, the network 

behavior after t = 0 will depend upon the network parameters. 

Case 1. Overdamped.—As time increases, current flows and 

charge begins to accumulate on C. This means that voltage 
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begins to appear across (R + r) and across C; hence the voltage 

across L must begin to decrease. The steady-state value of 

current is zero, and if the pulse width is sufficiently large, the 

current goes through a maximum. At the instant the current 

is a maximum, the voltage across L is zero because the rate of 

change of current is zero. Moreover, at this instant the rate 

of increase of charge on C is a maximum and the voltage across 

(R + r) is a maximum. As soon as the current begins to 

decrease, a voltage is developed across L that opposes the change 

in current. This voltage will be opposite in polarity to the 

voltage that existed across L during the time that the current 

was increasing. As the current diminishes (always flowing 

in the same direction), the voltage across (R + r) decreases while 

the voltage across C approaches the steady-state value E. At 

the instant the current is decreasing at a maximum rate, the 

voltage across L will be a maximum. In the steady-state, the 

voltage across L and across (R + r) is zero because the flow' of 

current has ceased, and the voltage across C is equal to the gen¬ 

erator voltage. 

Energy considerations are informative, and the network 

behavior will now be discussed in terms of energy transfer 

and transformation. During the generator pulse, the generator 

delivers energy to the network. Eventually one-half of this 

energy is stored in the electric Held of C and the remainder is 

dissipated as heat in (R + r) if the pulse width is very long. 

But the situation is not quite this simple. When current begins 

to flow’, energy is dissipated in (R + r), is stored in the mag¬ 

netic Held of L, and is stored in the electric field of C. When 

the current is a maximum, the instantaneous dissipation in 

(R + r) E a maximum and the energy stored in L is a maximum. 

The energy stored in L is subsequently released and transferred 

to the electric field of C, during which time additional energy is 

dissipated in (R + r). 

The value of (R + r) relative to 2 y/L/C (or M2 relative to N) 
is a critical factor. In this case (R + r) is greater than 2 y/L/C 
and limits the flowr of current and thereby limits the amount 

of energy that can be stored in the magnetic field of L. When 

this stored energy is released and combined with the energy 

already existing in the electric field of C, the total energy is 

always less than the steady-state energy corresponding to a 
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voltage E across C. Therefore, C never has energy in excess 

of the steady-state value and stores all that is delivered to it. 

When (R + r) is made smaller, as in Case 2, the energy situa¬ 

tion is altered because it is possible for C to have an excess of 

energy that must be released. 

If (R + r) is thought of as a fixed value, then making L 
small enough or C large enough to have (R + r) > 2 y/L/C 
indicates the same energy behavior. If L is made smaller, then 

for a given current the stored electromagnetic energy is less, and 

the energy released from L to C is less. If C is made larger, 

then the amount of energy that C is capable of storing is greater 

and the steady-state energy is greater. These possibilities 

lead to the qualitative conclusion that if (R + r) > 2 y/L/C, 
then the electrostatic energy stored by C is never in excess of 

its steady-state energy. It is important to appreciate that 

the actual values of (R + r), L, and C are insignificant, but 

that the relative value of (R + r) compared with 2 y/L/C is the 

critical factor. 

Case 2. Oscillatory.—In the oscillatory case the current 

increases from zero to a maximum value, then decreases to zero, 

reverses its direction, and reaches another maximum, and so on. 

The charge on C oscillates in a similar manner. Consequently, 

the voltage across (R + r), L, and C is oscillatory. 

The energy relations are particularly useful to describe the 

network behavior. When the current reaches its first maximum, 

the energy stored in the magnetic field of L is a maximum. 

Some of this stored energy is released to C and some is dissipated 

in (R + r). The addition of this released energy to the energy 

already stored in the electric field of C is sufficient to cause the 

total electrostatic energy to exceed the steady-state value. 

Therefore, part of the energy stored in C must be returned to 

the network, some being dissipated in (R + r) and the remainder 

being re-stored in the magnetic field of L. This energy exchange 

between L and C continues as does the corresponding trans¬ 

formation of energy from electromagnetic to electrostatic, but 

each time the transfer occurs part of the energy is dissipated in 

(R + r). This is why the amplitude of the oscillation diminishes. 

Eventually, the energy in C settles at the steady-state value, and 

the electromagnetic energy becomes zero. 

The condition for an oscillatory output is (R + r) <2 y/L/C. 
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This condition can be satisfied for: (a) a fixed value of L and C 
with (R + r) sufficiently small, (6) a fixed value of L and (R + r) 
with C sufficiently small, (c) a fixed value of C and (R + r) with 
L sufficiently large. From an energy viewpoint the requirement 
for oscillation can be stated as the condition under which the 
initial energy release from L to C is sufficient to impart to C an 
energy greater than its steady-state value. With this criterion, 
the oscillation can be descriptively explained for the three 
possibilities above. 

а. If (R + r) is made small, then the current flow is large and 
the energy storage in L is large. 

б. If C is made small, then the steady-state value of energy 
is smaller and less electrostatic energy is required to cause 
the total electrostatic energy to be in excess of the steady- 
state value. 

c. If L is made large, it is capable of storing a large amount of 
energy. 

For all possibilities, the condition for an amount of electrostatic 
energy greater than the steady-state value is encouraged. 

Case 3. Critically Damped.—The behavior of the network 
in this case is very similar to the overdamped case. Here, 
however, the network is just on the verge of oscillation but 
is not actually oscillatory. This means that the energy that 
is imparted to C from L is just enough to bring the total electro¬ 
static energy up to the steady-state value. In other words, the 
energy imparted to C from L is the maximum amount that 
will not result in oscillation. From this consideration it can 
be deduced that steady-state conditions are attained more 
quickly in the critically damped case than in the overdamped 

case. 
17. After Generator Pulse.—The network behavior after the 

generator pulse disappears depends upon the conditions at 
* = T, which in turn depend upon the generator-pulse width and 
the network parameters. 

If the pulse width is so large that the transient is negligible 
just before the pulse disappears, then the voltage across C is 
equal to the generator voltage and the voltage across (R + r) 
and L is zero. All the energy is contained in the electric field 
of C, and no magnetic field exists. When the generator pulse 
disappears, the energy stored in C is released to the network. 
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Some of this energy is dissipated in (R + r), and some is stored 
in the magnetic field of L. The behavior of the energy depends 
upon the relative values of (R + r) and 2 y/L/C. Eventually, 
all the energy stored in C is dissipated in (R + r) and the energy 
in L becomes zero. 

If the pulse disappears from the generator before steady- 
state conditions are reached, the network behavior becomes 
more complicated. In general; both L and C will contain stored 
energy at t = T. In any case, however, the total energy in the 
network at t = T will be dissipated in (R + r) and all of the 
stored energy will become zero. In general, the energy supplied 
by the generator to the network is always eventually equal to the 
total energy dissipated in (R + r). 

CONCLUSION 

Essentially one series RLC network has been analyzed in 
•this chapter, although the output voltages were taken across 
three different elements of the network. It is possible to 
analyze other series RLC networks where the output voltage 
is taken across two or three different parameters. However, 
such networks are not often encountered. Moreover, the equa¬ 
tions for output voltage are much more cumbersome than those 
already derived. Therefore, it is not worth while to obtain the 
output-voltage equations for a perfectly general series RLC 
network. 

It should be obvious that series RLC networks are more 
complex than series RL or series RC networks. In most cases 
networks that contain R} L, and C are more complex than those 
that do not contain both inductance and capacitance. This 
will become especially evident in Chap. VIII. However, the 
additional complexity should not obscure the fact that only a 
small number of fundamental principles is required to effect 
a solution. 

The dependence of the output-voltage shape upon the rela¬ 
tive values of network parameters should reenforce a fundamental 
point; namely, when a sudden change is imposed upon a network, 
the nature of the transient is governed by the network param¬ 
eters and not by the disturbing force. 

This chapter concludes the treatment of series networks, 
but the analyses of all subsequent networks rely upon the results 
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of Chaps. Ill, IV, and V. It will be shown that many series- 
parallel networks behave exactly the same as series networks 
as far as their pulse-response characteristics are concerned. 
For this reason it is imperative that series networks be understood 
thoroughly before proceeding to series-parallel networks. 

% 

Problems 

Prob. 1. The parameters of the network in Fig. 68 have the following 

values: E — 100 volts, T — 200 microseconds, r — 5,000 ohms, R = 15,000 

ohms, L =0.1 henry, and C = 0.002 /if. 

a. What is the maximum output voltage? 

b. At what instant during the generator pulse is the Instantaneous output 

voltage equal to one-half the maximum output voltage? (This is the 

time delay of the network.) 

r. At what instant after the generator pulse disappears is the output 

voltage equal to one-half the maximum value? 

Prob. 2. The network in Fig. 68 has the same parameters as in Prob. 1 

with the except ion of (\ which is 200 /x/if. 

a. What is the period of oscillation? 

b. W hat is the first instant that the output pulse reaches a value of 100 

volts? 

c. After what time during the generator pulse is the amplitude of the 

transient term always less than 5 per cent of the steady-state term? 

Prob. 3. The parameters of the network in Fig. 82 have the following 

values: E — 50 volts, T = 30 microseconds, r = 1,000 ohms, R — 9,000 

ohms, E — 0.005 henry, and (' = 400 /x/xf. 

a. What is the maximum positive output voltage? 

b. At what two instants is the network current a maximum? What is the 

difference of these two times? 

r. If the generator-pulse width is doubled, what is the maximum positive 

output voltage? 
Prob. 4. In the network in Fig. 82, T > > 1 / St. Show for Cases 1, 2, and 

3 that en = — c0 if the variable (/ — T) in the equations for c0 is replaced by /. 

Prob. 6. The parameters of the network in Fig. 94 have the following 

values: E — 40 volts, T = 6 microseconds, r = 500 ohms, R = 3,500 ohms, 

L = 0.001 henry, and C = 390 /x/xf. 

a. What is the maximum positive output voltage? 

b. W hat is the first time after t = 0 that the output voltage is zero? 

c. At what instant during the generator pulse is the output voltage a 

maximum negative value, and what is this value? 

Prob. 6. In the network in Fig. 82, C* is replaced by a short circuit. 

Show that the output-voltage equations for Case 1 reduce to those of a 

simple RE network. 

Prob. 7. The network in Fig. 94 is critically damped and the maximum 

negative output voltage during the 60-microsecond generator pulse is 

— 8.1 volts and occurs at t = 40 microseconds. The inductance has a value 

of 0.02 henry. What are the values of (R + r), C, and F? 
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Prob. 8. A critically damped series RLC network that is subjected to a 
300-microsecond rectangular generator pulse has a value of \F — 7,500 sec.-1, 
and L/R = 400 microseconds. 

а. At what instant during the generator pulse is the voltage across L 
exactly equal to the voltage across R? 

б. At what instant during the generator pulse is the voltage across L 
exactly equal to the negative of the voltage across R? 



CHAPTER VI 

SERIES-PARALLEL NETWORKS CONTAINING 
RESISTANCE AND CAPACITANCE 

Series networks have been analyzed in considerable detail 
in Chaps. Ill, IV, and V. In this chapter series-parallel net¬ 
works containing resistance and capacitance only will be treated. 
Application of the very same principles used in series networks 
yields the pulse-response characteristics for series-parallel 
networks. Moreover, it will be demonstrated that man}' 
series-parallel networks can be regarded as series networks 
insofar as their pulse-response characteristics are concerned. 

RC NETWORK WITH PARALLEL RC ACROSS OUTPUT 

The first network to be considered is that in Fig. 105. The 
two-state analysis requires instantaneous-voltage equations for 
times during and after the pulse. Before proceeding, assume 
two branch currents iH and ic 
which equal dqH/dt and dqc/dty re¬ 
spectively, and each of which flows 
through r. 

1. Equation for Output Pulse; 
t = 0 to t = T.—By utilizing Kirch- 
hoff’s law, three voltage equations 
can be written that apply during 
the time that the generator pulse exists. 

lie}. 105.—Series-parallel 
RC network with a rec¬ 
tangular-pulse generator. 

The equations are 

E = r(ing + icB) + 

E — r{i kk + leg) + 

(110) 

(111) 

Riam = 
Qcg (112) 

Any two of these equations are independent, the third being 
dependent and derivable from the other two; hence, any two 
equations contain all the information. 

165 



166 PULSED LINEAR NETWORKS [Chap. VI 

There are two approaches toward determining the output 

voltage: (1) Find qCa as a function of time and divide by C, 

and (2) find iRa as a function of time and multiply by R. Both 

approaches lead to an identical result. 

Suppose qca as a function of time is sought first. Solve 

Eq. (112) for qCa. 

Solve Eq. (110) for iRa. 

qca — RCiRa 

E n c K 
li + r 

Substitute this value of inB into the above equation for q< K. 

RC .. , 
(ica ft r lU'g) ( 

Since icB — Eq. (IId) becomes 

L,. 
(111a) 

This is a first-order differential equation soluble by separation 

of the variables qcB and t. Separate the variables. 

F - (L + l n 
E lie qc‘ 

Integrate to obtain the solution. 

r ln (A RC <l' *) ~ r + Kl 

To evaluate K\ consider that qCa = 0 at / = 0. 

1 — — Y>—i  11 R + r 

Insert this value of Ki into Eq. (115). 

R + r 

p _ E +__r 
E Ti C <P X 
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Convert to the exponential form. 

_<H+rU 

Ee riiC = E R + T 

Solve for qc 

ERC 
R + r 1 

< fl+r>t 

e HrC 1 

For simplicity, define Ih> = Rr/{R + r) i.e., tlie equivalent 

resistance of R and r in parallel. This is not to he confused 

with physically placing R and r in parallel and is only a simplify¬ 

ing definition. The equation for q( tt then becomes 

qCg = ^ + - (I - ( (1 H>> 

dlie output voltage during the pulse interval is qCa/C. 

ER „ ' 
Ck - [{ r (l -- e R*c) (117) 

To check this result, iliB as a function of time will he found. 

A (piick way of doing this is to find irH from Kq. (110) and 

then to substitute into Eq. (113). Differentiate Kq. (110) to 

obtain iCa. 

. _ dqrK ERCt R>c E 
,r* ~ \<V («'+ r)Rv 

Substitute this value of ir„ into Eq. (1 13). 

E _ r(E/r)e lil'c E - ~ = nn/i)€_ = (I _ e HrC) 

R + r It + r( ’ 

The output voltage is Ring, which is exactly the same as Eq. 

(117). 

€e — RIrm R 4- r 

The steady-state term is ER/(R + r), and the transient term is 

ER - ' . 
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2. Equation for Output Pulse; t = T to t = .—The output 

voltage that exists after the generator pulse has disappeared 

can be obtained after setting E equal to zero in the original 

differential equations. 

0 = r(iR0 + ic0) + Rift0 (110a) 

Ri*„ = (112a) 

A solution for either qCo or will lead directly to the equation 

for the output voltage. 

To solve for qCt} first solve Eq. (112a) for iRo. 

iR° = m (118) 

Substitute this value of iRo into Eq. (110a), replace ic9 by its 

equal dqcjdt, and simplif}' the result by utilizing the definition 

RP m Rr/(R + r). 

»'•- -R'cw 

Separate variables and integrate to solve for qCo as a function of 

time. 

In qc. = - + A\ (119) 

The value of charge at t = T can be found from Eq. (116) and 

leads to an evaluation of K2. 

j?pr* — — 

(qc.)t-T = (1 - * RpC) (116a) 

Substitute K2 into Eq. (119) and convert to the exponential 

form. 

PD/1 T t 

qc. = f~-r (tRpC - D« *'c (120) 

The output voltage for the time after the generator pulse becomes 

zero is qcJC. 

TP p T  L 
__ (JkrC - RrC 
R +rK >€ e0 = (121) 
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It is apparent from this equation that the steady-state term is 

zero. 

For completeness, the expression for iRo can be found, and 

Eq. (121) can be checked. Eliminate qCo from Eqs. (118) and 

(120). 

in. = 7r~-r - I)«"»e 

The output voltage is RiRo and agrees identically with Eq. (121). 

3. Familiarization with Output-pulse Equations.—To help 

grasp the significance of Eqs. (117) and (121) it is beneficial to 

become familiar with them by means of some examples. 

Example 1. R — *>.—If R is removed from the network 

(R = oo), the equations for e should be1 

t !<
r 

i II (33') 

Co = £(«'rC - 1)* rC (360 

To find out if Eqs. (117) and (121) contain this solution, first 

Rt v 
recognize that RP= ~ = ^ equal to r, if R is 

infinite. Upon substituting RP = r, Eq. (117) immediately 

becomes 

€e — E( 1 — € rC) 

and Eq. (121) becomes 

jr _t_ 

e0 = E(e'C _ i)6 rc 

Therefore, Eqs. (117) and (121) contain the special solution 

for the case where R is infinite. 

Example 2. C = 0.—If C is removed from the network 

((7 = 0), the equations for the output voltage must be 

Rr 

€e ~ RT~r 

Co = 0 

1 See Chap. Ill, Eqs. (33) and (36). If (R + r) is set equal to r, the 

above equations result. 
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since the network now consists of the voltage divider r and R. 
Set C equal to zero in Eqs. (117) and (121). 

eE 
ER 

R + r 

ER 

{\ ~ «--) 

T 

ER 
(1 - 0) = 

et = rrr((S'e_1)< 

ER 

R + r 

ER 
R -f r 

ER 

t 

■ RpC 

ER 
R + r 

T 

R + r{{ e’”)< ’ R + r 

(l-t R'c)t 

(1 - 0)0 = 0 

(t -T) 

RpC 

Again Eqs. (117) and (121) contain the special solution. 

Example 3.—r = 0. If the internal resistance of the generator 

is zero, then eE = E and Co = 0 since the output voltage is 

directly across the generator in this instance. If r is set equal 

to zero, then Rr = Rr/(R 4- /’) = 0. Equation (117) becomes 

eE = 
ER 

R + 0 

and Eq. (121) becomes 

ER 

(1 - «--) 
ER 
If 

(1 - 0) = E 

eo = ^ + 0 0 - 6—)€“- = E( 1 - 0)0 = 0 

These special examples are indicative of the fact that Eqs. (117) 

and (121) are general solutions for the instantaneous output 

voltage. m 

Fig. 106.—Exponential growth of current through R and charge on C for the 
network in Fig. 105 during the generator pulse. 

4. Network Behavior; t = 0 to t — T,—While it is important 

to have the mathematical solution for the network, a graphical 

picture is also very helpful. The instantaneous current flowing 

through R and the instantaneous charge on C determine the out¬ 

put-voltage behavior. In Fig. 100 the growth of current through 
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R and growth of charge on C during the pulse interval are shown 

for a generator-pulse width that is greater than the time constant 

RPC. There are several properties of this curve that help to 

understand what is actually occurring in the network during 

the generator pulse. First, qClt and iRli are identical in shape. 

This can be explained by realizing three things: (1) The voltage 

across C is directly proportional to qCB) (2) the voltage across 

R is directly proportional to iR^ and (3) the voltage across C and 

across R is always identical. Hence, the identity in shape of „ 
and qcB can be formulated by the simple mathematical relations 

Fig. 107. -Output, voltage during the generator puls>e of the network in Fig. 105 
for three values of R. The time constant is reduced when R is made smaller, 
but the output voltage is also decreased. 

it can be deduced that Ring = qcM/C, which is the same as 

Eq. (112). Therefore, \rk and qcK vary in exactly the same 

manner with time because R and C are constant. 

The second pertinent point about Fig. 106 is that the steady- 

state value of iitg is E/{R + r)- Referring to the network, 

this means that the flow of charge on C must be zero and the 

voltage across C must be at its maximum possible value when iKu 
equals its steady-state value. This maximum value, which must 

equal the voltage across R, ER/{R + r), is always less than the 
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generator-pulse height E. From the standpoint of maximum 

value of qca, the same conclusion is reached; namely, 

_ _ er 
e£m“ C R + r 

The third point is that the build-up of charge and of current 

is in accordance with a time constant equal to RpC. Rp is of 

course smaller than either r or R, so the time constant is smaller 

than rC or RC. If R were removed from the network, C would 

attain a greater charge, the output voltage would have a steady- 

state value equal to E, and the time constant would be rC. Thus 

it is seen that the addition of a resistance R across C reduces 

the time constant at the sacrifice of output voltage. Refer to 

Fig. 107. 

£ E ____ERC 
R+r 

1 0.5E 
3 R+r\ 

10.368E, 
| R+r 

C5 T 
tn 0 

\ <-■ 

Vc 

t\ RpC 

R+r * 
<u 

0.5ERC If 
/ R+r "5 

0.368ERC § 

( 
Time 

zons feint 
1_ 

! 
i_.j 

^_. 

i 
* R+r £ 

_o 
c 

0 -g 

T T+RpC T+2RjJC T+3RpC T+4RpC £ 

Time—^ 
Fig. 108.—-Exponential deray of current through R and charge on C for the 

network in Fig. i05 after a generator pulse that is long compared with the time 
ronstant has disappeared. 

6. Network Behavior; t = T to t = ».—Suppose that a 

generator pulse of very long duration compared with RPC has 

been applied to the network. At the instant the pulse di*v 

appears, the output voltage will be 

ER 
e*r - ft + r - e°r 

from Eq. (117) or (121) where it is assumed / = T&ndT >> RPC. 
The instantaneous charge on C will be 

n _ ERC 
qcT - eoTC ~ ft + r 

and the instantaneous current through R will be 

Cor E 
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Figure 108 shows the behavior of qCo and z*0 from the time T on. 

The decay is in accordance with a time constant that again 

equals RPC. 
It is interesting to note that e remains positive at all times. 

This can be explained in two ways. The most direct explanation 

is that C, which has been charged to a certain positive voltage 

by the pulse, simply discharges through R and r in parallel 

and suffers no reversal of polarity. Another explanation on the 

basis of current flow through R uncovers an interesting point; 

namely, current through R is always unidirectional. The 

generator pulse causes current to flow through R in the same 

direction as current flow caused by the discharge of C through ft. 

Fia. 109.—A series-parallel network ami a series network that produce exactly 
the same output voltage. 

6. Equivalent Series Network.—Frequently, it is useful to 

correlate new networks with familiar ones by transforming the 

new network into an equivalent network that resembles the 

familiar one. Such a correlation can be made in this case. On 

reexamination of the network behavior, the following properties 

are evident: 

1. The charging time constant is RPC. 
2. The maximum output voltage is ER/{R + r) if the pulse 

width is large compared with RPC. 
3. The output pulse is always positive and rises and falls 

exponentially. 

4. The discharging time constant is RPC. 
This output-voltage behavior is very similar to that of a simple 

series RC network, or that of a series RL network, and suggests 

that there may be a series RC or series RL equivalent network 

for this series-parallel network. The equivalent series RC 
network is shown in Fig. 1096. Insofar as the output voltage 

is concerned, the networks in Fig. 109 are identical. Each of 
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the four properties listed applies equally well to both networks. 

Thus the behavior of output voltage in the series-parallel network 

is exactly the same as the out put-voltage behavior in the equiv¬ 

alent series network. 

Application of Th£venin\s theorem, which was introduced 

in Chap. II, also leads to this same equivalent network. To 

show how the theorem can be applied, refer to Fig. 110. In 

this figure, the network of Fig. 109a has been redrawn but is 

essentially unaltered. The equivalent series network can be 

found by Thevenin’s theorem when C is removed. The voltage 

2 4 
Fig. 130.—Series-parallel RC net¬ 

work which is the same as that in 
Fig. 105. 

r Ls~RrC 

Fig. 111.—A series network that 
produces exactly the same output volt¬ 
age as the series-parallel network in 
Fig. 109a. 

that appears across terminals 3 4 with C removed is the equiva¬ 

lent generator voltage. 

Es 
ER 

ft T- r 

The resistance across terminals 3-4, with C removed and the 

generator short-circuited, is It in parallel with r and is the 

equivalent series resistance. 

Rs 
Jtr 

R~+ 
s Rr 

Thus the network in Fig. 1096 results from Th6venin\s theorem 

as well as from an analogy based upon a complete solution for 

the output voltage. Recall that the network in Fig. 1096 is 

equivalent only as far as the output terminals are concerned, 

and that it is not equivalent as far as the generator is concerned. 

Instead of having the capacitance C across the output of the 

series equivalent network, suppose the resistance R is desired 

across the output. The equivalent network will then be the 

series RL network in Fig. 111. Inspection of this equivalent. 
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network reveals that the same four properties listed for the 

series-parallel network are equally applicable to this network. 

The time constant is LS/(R 4- r) = RrC / (R + r) = RPCy which 

is the same as the time constant in the network shown in Fig. 109. 

[The dimension of (resistance)2 X capacitance is inductance, 

as was demonstrated in Chap. I.] The output voltage rises 

exponentially during the generator pulse and has a steady-state 

value equal to ER/(R + r). The output voltage is always 

positive and decreases exponentially after the generator pulse has 

disappeared. 

7. Equivalent-series-network Method.—This equivalent-net- 

work viewpoint might well be examined more closely. If 

other series-parallel networks have equivalent series networks, 

Fio. 112.—General series RLC network with capacitance output. 

then the pulse-response characteristics can be quickly predicted 

from the work of the preceding chapters. The two equivalent 

networks in Figs. 1096 and 111 have been derived more or less 

intuitively on the basis of an analogy between the complete 

analysis of the series-parallel network and the complete analysis 

of series networks. A search for a precise method by which the 

equivalent series network can be found shows that one need 

proceed no further than the differential equations for the series- 

parallel network. In other words, a solution of the differential 

equations is not necessary to find the equivalent series network. 

Suppose an equivalent series network in which the output 

voltage appears across C only is desired for the network in 

Fig. 105. Such a network is shown in general in Fig. 112. The 

network in Fig. 112 will be equivalent only if the behavior of 

charge on C in the equivalent network is exactly the same as 

the behavior of charge on C in the actual network. The differ¬ 

ential equation for charge on C in the actual network and during 

the generator pulse is given by Eq. (114a). The problem thus 

resolves itself into finding the values of Es. Ls, Rs> and Cf that give 
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the behavior of charge on C required by Eq. (114a). Rewrite 

Eq. (114a). 

ER _ Rr dqcj qCa 
R + r R + r di C 

(1146) 

The differential equation for the equivalent series network in 

Fig. 112 is 

E, -L,^ + Ra df + (i + i) (122) 

It is only necessary to equate the coefficients of the terms in 

Eq. (1146) to the same terms in Eq. (122) to determine the 

values of ESf Ls> Rsy and C" that will make qs in Eq. (122) the 

same as qcM in Eq. (1146). Equate the coefficients of like terms. 

E s = 
ER 

R + r 

Ls = 0 

Rs = 

1 + 1 = L 
C^C' c 

Rr 
R + r 

or 

Rp 

C 

With these values, Eq. (122) becomes ident ical with Eq. (1146); 

i.e., qs = qcM, and the required equivalent series network is that 

shown in Fig. 1096. 

Fio. 113. — General aeries RLC network with resistance output. 

By this method of equating coefficients of like terms, it is 

informative to verify the equivalent series network for the case 

where R only appears across the output. A general series net¬ 

work with resistance output is shown in Fig. 113, and the differ¬ 

ential equation that applies during the generator pulse is 
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The differential equation for current through R in the actual 

network can be obtained by differentiating Eq. (112) and 

inserting the value of dqcJdt — ic, into Eq. (110) with the fol¬ 

lowing result: 

E = r (iKt + RC + Ri«. = RrC + (R + r)i». 

Equate the coefficients of this equation to the coefficients of like 

terms in Eq. (123). 

Es = E 
Is — RtO 

R + r = R' + R or Rf = r 

0 = ~ or C, = 
o s 

Substitution of these values into Eq. (123) requires the current 

is in the equivalent network to be the same as iRb. These 

equivalent-network values give the same network that was 

obtained by analogy in Fig. 111. 

Strictly speaking, it has been shown so far that the series 

network is equivalent only during the existence of the generator 

pulse. To prove that the same equivalent series network 

applies after the generator pulse disappears is quite simple. 

The differential equation for the series-parallel network after 

the generator pulse disappears can be written by setting E — 0. 

When this is done, equating coefficients indicates that the 

equivalent generator voltage likewise becomes zero. This 

involves no change in the other coefficients of the differential 

equation, and therefore the resistance, inductance, and capaci¬ 

tance of the equivalent series network are unaffected. In other 

words, the same equivalent network applies both during and 

after the generator pulse, and the equivalent generator voltage 

is a rectangular pulse. 

The two foregoing equivalent series networks show that a 

given series-parallel network does not have a unique equivalent 

series network. This is often true. In fact, it is possible to 

have more than one equivalent series network even in the case 

where the element across which the output voltage appears is 

the same. An example of this is given in Fig. 119a. 

Since this method enables the pulse-response characteristic 
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to be determined without solving the differential equation, it is 

expedient to use it wherever possible. It is now becoming 

evident that the analysis of series networks is a very valu¬ 

able tool that can be used to analyze series-parallel networks. 

Although the equivalent series network is very useful, the 

action within the physical network that it replaces is obscured. 

Usually the only part of the actual network that can be pre¬ 

served is the element across which the output pulse appears. 

This is no great loss, however, because the pulse-response char¬ 

acteristic is of chief interest. 

RC NETWORKS WITH CAPACITANCE ACROSS OUTPUT 

There is an unlimited variety of series-parallel networks 

containing resistance and capacitance that have a capacitance 

Fig. 114.—Series-parallel RC network with rectangular-pulse generator. 

across the output. In this section, two specific networks will 

be analyzed for their pulse-response characteristics by the 

equivalent-series-network method. Then the limitations of the 

method will be pointed out. When it is specific that a capaci¬ 

tance is connected across the output, this does not preclude 

the possibility of a shunt resistance across the capacitance, 

even though the two examples to be worked out have capacitance 

only across the output of the series-parallel network. The 

network of Fig. 105, for instance, can be considered to be in 

this class. However, the equivalent series network will have a 

capacitance only across the output. 

8. Pulse-response Characteristic. Example 1.—The first 

network to be analyzed is shown in Fig. 114, where the two 

branch currents are assumed to be i\ and i corresponding to the 

rate of change of branch charges, q\ and q. The differential 

equation for q in terms of t only will enable the parameters 

of an equivalent series network to be determined and therefore 

will lead to the pulse-response characteristic in terms of a 
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known series network Two independent equations for instan¬ 

taneous voltage during the pulse for the network in Fig. 114 are 

E r{i\ + i) + Ri + ^ 

q<rrRi + qc 
Differentiation of Eq. (125) yields the value of ii. 

_ dq\ 
(ft 

r if *!} a. 
' rcrfi 

(124) 

(125) 

Substitution of this value of i\ into Eq. (124) results in the 

differential equation for q. 

+ + .) + ’<■ +1 

Expand and collect terms. 

+ (« + r + &r);f + j 
'The equivalent series network consequently contains the param¬ 

eters ■ jf ‘’***%' 

Es = E 

I.S = RrCi 

Rx = R + r + -jj r 

^ Cs = C 

The equivalent network is given in Fig. 115. A similar 

network hits been studied in detail in Chap. V. To determine 

Flo. 115.—Equivalent aeries network for that in Fig. 114. 

completely the pulse-response characteristics, it is necessary 

to find out whether Rs is greater than, equal to, or less than 

2 y/Ls/C. Before showing that Rs is always greater than 

2 y/Ls/C, which is the overdamped or nonoscillatory case, it is 
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helpful to examine the original network from an energy view¬ 
point. In Fig. 114 it is seen that only electrostatic energy can be 
stored since there is no inductance in the network. Therefore, 
it is impossible for oscillation to take place inasmuch as an 
exchange of energy is required for oscillation. One might 
deduce from this consideration that the network is nonoscilla- 
tory. To show this rigorously, it is necessary to prove that 
Rs > 2 VWC, or Rs2 > 4Ls/C, for all values of R, r, C, and 
Ci that are greater than zero. A proof of this follows: 

ft.,2 = (ft + r + ^ rj = (ft + r)2 + 2 ^ r(ft + r) + r2 (j/j 

4Ls _ 4ftrC, 
C C 

By inspection it is necessary to prove that 

r2 (£)• + (2r2 - 2ftr) ^ + (ft + r)2 > 0 

The term on the left can be considered to be a function of Ci/C 
that must be shown to be positive (greater than zero) for all 
positive values of R, r, and Ci/C. # 

/(^f) = r2 (£)• + (2r2 - 2ftr) ^ + (ft + r)2 > 0 

/(Ci/C) is positive for Ci/C = 0, and if this function has no 
positive real roots it will be positive for all values of Ci/C. 
In other words, if /(Ci/C) were graphed against Ci/C, it would 
have a positive value at Ci/C = 0. The question is: Does the 
graph of /(Ci/C) cross zero at some positive value of Ci/C; i.e.f 

does it have any positive real roots? If it does, this would 
signify that /(Ci/C) has negative values and hence could be 
less than zero, which is contrary to the above inequality. Thus 
the proof resolves itself into demonstrating that /(Ci/C) can 
have no positive real roots for all positive values of R, r, and 
Cx/C. 

From the quadratic formula, /(Ci/C) will have no positive 
real roots if V(2r3 — 2Rr)2 — 4r2(ft + r)2 is imaginary. Expand 
and cancel terms. 

V4r2 - 8ftr* + 4R2r* - 4ft2r2 - 8i?r3 - 4r4 = 4r y/-Rr 
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This is imaginary for all positive values of R and r. There¬ 

fore, /(Ci/C) has no positive real roots when R and r are posi¬ 

tive and 

'(r) >0 
for all positive values of i?, r, and Ci/C. Thus the oscillatory 

case is impossible. 

The critically damped case, as well as the oscillatory case, 

is also impossible in the network in Fig. 115 for all positive 

values of R, r, and C\/C. This can be demonstrated by setting 

Rs2 equal to 4Ls/C. When this is done, the following equation 

results: 

r2 feY + (2r2 - 2Rr) £ + (R + r)* = 0 = /(^) 
Solve for C,/C. 

C, 2Rr - 2r- ± 4r Vr=flr , . 2 ft 
77 = -rr;--- =-1 ± - V-Rr C 2 r2 rr 

This shows that C\/C is imaginary for all positive values of 

R and r. However, C\/C must 

be real and therefore the critically 

damped ca.se is impossible. 

The oscillogram in Fig. 116 is 

an illustration of the output volt¬ 

age obtained for the network in 

Fig. 114. The output voltage 

is overdamped. The same volt¬ 

age could be obtained across the 

capacitance in an equivalent 

overdamped series RLC network. 

9. Pulse-response Character¬ 
istic. Example 2.—The second 

specific network to be analyzed 

is that in Fig. 117. Again it is 

possible to find the differential equation for q as a function of 

time only and to obtain an equivalent series network. Two 

Fig. 116.—Output pulse of the net¬ 
work in Fig. 114 when T > > 1/3/s. 
Note the resemblance between this 
pulse and that in Fig. 77. 
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independent equations for instantaneous voltage during the 

pulse are 

E = r(i\ + /) + —f- Ri + ^ (12(>) 

R\U -+- jrr — fr—f~ R* jh (127) 

In this instance, obtaining q as a function of time is slightly 

more cumbersome than before. First, Kq. (127) can be solved 

for qx. 

f/i = JX; + CiRi +jrq- <’lit til 

Then Kq. (12<>) is solved for i\. 

■ = E H {R + r)i - <<7iQ 

Fig. 117. Series-parallel network, with reetangular-pul.se generator. 

Xow if qi is differentiated, 

dfD _ ; __ (Ti (Ul , r o fU _l_ Cl <j<t 
~dt - lx - T*Tl + Cx,tdt + C dt 

(UR 
<1j\ 
lit 

and the value of i\ is substituted, an equation involving only 

q and i results. 

E - (ft + r)i - 'L - % . .. ,, . 
to ( _ ( i dq (h Ci dq 

r Co dt ^ 1 dt “h C dt 

— C\lt\ 

-Ul+ ’■)<“ 
] dq 

C~2 dt 
i (h 
a dt 

Rewrite this equation in terms of q only. 

E = [RrCx + R&^R + r)] 
(Pq 

dt2 

+ [ft + r + (ftiCi + rCt) ^ + (jr + g) q 
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The equivalent-series-network parameters are determined 

from the coefficients of this equation. The equivalent network 

is shown in Fig. 118. This is also an overdamped network, as 

are all equivalent networks for actual networks containing 

R and C only. Chapter V gives the complete pulse-response 

characteristics for this type of series network. 

R=R+r+(RICprCJ)(+-+£) c2 c* 
- 

Lg -RrCpRjCj i 

[JL)es*e 
>R£,(R+r) 

‘V 
i 

c2 
-Ih 

*rC 

~X I I I i 
e 

Fig. 118.—Equivalent series network for that in Fig. 117. 

10. Limitations on Equivalent-series-network Method.—The 

parameters of the equivalent series network are obtained by 

equating coefficients of terms in the general series network 

differential equation to like terms in the series-parallel network 

differential equation. There is an obvious limitation on this 

method that can make it impossible to obtain an equivalent 

series network. It occurs when the series-parallel network 

differential equation is of higher order than the general series- 

network differential equation. For example, if a third-order 

differential equation for q arose from a series-parallel network, 

there would be no third-order term in the general series-network 

differential equation for equating coefficients. Another way of 

stating the limitation is this: No linear parameter exists that, 

when placed in a linear series network, gives rise to a differential 

equation for q that is of higher order than the second, or to a 

differential equation for i that is of higher order than the first. 

Since it is possible to obtain third and higher order differential 

equations from series-parallel networks, evidently series-parallel 

networks can be more complex than series networks. When an 

equivalent series network does not exist, it becomes necessary 

to solve completely the higher order differential equation to 

determine the pulse-response characteristics. 

A particular limitation on equivalent series networks with 

capacitance output is that the steady-state term during the 

pulse must be different from zero. In some series-parallel 
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networks, the steady-state term during the pulse is zero; for 

instance, if a series capacitor is inserted between r and R in the 

network of Fig. 105. This limitation exists because the stead}r- 

state value of voltage across C during the generator pulse is 

always different from zero in any series network. To overcome 

such a situation it becomes necessary to use either a resistance 

or an inductance across the output of the equivalent series 

network. This will be demonstrated in the next section. 

Fig. 119.—Examples of equivalent networks with capacitance output. 

Figure 119 shows several series-parallel networks with capaci¬ 

tance across the output and their corresponding equivalent series 

networks. 

RC NETWORKS WITH RESISTANCE ACROSS OUTPUT 

In this section series-parallel networks that have a resistance 

across the output in both the actual and equivalent networks 

will be treated. One such network (Fig. 105) has already been 
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analyzed. Two additional examples will be given. The first 

example demonstrates the method for a more complicated 

network than that in Fig. 105. The second example shows 

how an equivalent series network with resistance across the 

output can be found in a case where it is impossible to find one 

with capacitance across the output. 

11. Pulse-response Characteristic. Example 1.—Figure 120 
shows tne series-parallel network to be analyzed. The pulse- 

R2 

Fig. 120.—Series-parallel RC network with reetangular-pulse generator. 

response characteristic can be found indirectly by finding the 

equivalent series network. To do this, the differential equation 

for 1, the instantaneous current through R, in terms of t only is 

required. This can be determined from the equations 

E = r(i! + i) + (R2 + R)i (128) 

Rii, + = (R2 + R)i (129) 
t 1 

The differential equation that results after qi and i 1 = dqi/dt 

LsrC1r(R+R2)+R1CJ (R+R/r) 

Fig. 121. Equivalent series network for that in Fig. 120. 

are eliminated from Eqs. (128) and (129) is the required equation 

for i. 

E = [Cxr(R + K2) + RiC^R + R, + r)] ^ + (22 + + r)i 

The equivalent series network is therefore determined and is 

given in Fig. 121. Refer to Chap. IV for the pulse-response 

characteristic of this network. 
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12. Pulse-response Characteristic. Example 2.—The net¬ 

work in Fig. 122 provides an opportunity to study a case where 

an equivalent series network might be found with either a 

resistance or capacitance across 

the output. A brief examina¬ 

tion of the network reveals that 

the steady-state output voltage 

during the generator pulse is 

zero due to the presence of C i. 

This means that an equivalent 

series network with C across the 

output is not possible as was explained on page 184. Neverthe¬ 

less, if an attempt is made to find an equivalent network with 

C across the output, it will be possible to discover how the 

method fails. Two independent voltage equations are 

Fig. 122.—Series-parallel RC network 
with a rectangular-pulse generator. 

E = r(i, + 0 + J + jr + Ri (130) 

(131) 

The customary procedure is to eliminate q and i from these 

equations in order to obtain the differential equation for qi 
in terms of t only. Solve Eq. (131) for i. 

i ~ 
RC dt 

Separate variables and integrate. 

Substitute these values of i and q into Eq. (130). 

E-r(il + -^ + mOM± + £ + 'L 

Collect like terms. 

Now the last term in this differential equation prohibits an 
equivalent series network because no linear element placed in a 
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linear series network develops a voltage that is proportional 

to the time integral of the charge. This point will be discussed 

in more detail in Chap. VII. 

However, an equivalent series network in which the output 

appears across R can be found, because in a series network 

the steady-state value of voltage across a resistance can be 

Fig. 123.—Equivalent .series network for that in Fig. 122. 

zero. To find the equivalent network it is necessary to obtain 

the differential equation for i in terms of t only. Solve Eq. (131) 

for qi and differentiate to find i\. 

Substitute these values of q\ and ii into Eq. (130). 

E = + T~ ~q~ i + Ri 

Collect like terms. 

E = RrC^- + 
cti 

(r + R £ + R) i + J 

The equivalent series network, 

Fig. 123, is determined from the 

coefficients of this equation. It 

is evident from the equivalent 

network that the steady-state 

value of voltage during the gen¬ 

erator pulse is zero. 

To show that the network 

is overdamped for all positive 

values of R, r, C, and Ci, it musi 

Fig. 124.—Output pul.sc of the net¬ 
work in Fig. 122 when T > > 1 /Ms- 
Note the resemblance between this 
pulse and that in Fig. 89. 

be demonstrated that 

(r + R £ + R) 
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This proof is very similar to the one given on page 180. The 

oscillogram in Fig. 124 is an illustration of the overdamped 

output voltage that is obtained for the network in Fig. 122. 

The same voltage is produced across R in an overdamped series 

RLC network. 

Fig. 125.—Examples of equivalent networks with resistance output. 

Figure 125 shows several series-parallel RC networks accom¬ 

panied by their equivalent series networks. It is suggested 

that these networks be verified to acquire experience in solving 

for the equivalent series network. 

CONCLUSION 

There are many series-parallel RC networks that occur in 

practice for which equivalent series networks can be found. 

In such instances, the equivalent-network viewpoint can be very 

helpful in analyzing the transient response of the network. In 

other words, the use of the classical method is not restricted 

to series networks only. If no series equivalent network is 
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possible, which is the case when a third or higher order differ¬ 

ential equation for q results, the classical method becomes 

quite involved. There is not only the matter of solving a higher 

order differential equation but also the necessity of evaluating 

arbitrary constants that make the classical solution laborious. 

(The number of arbitrary constants is equal to the order of the 

differential equation.) For these reasons, it is usually expedient 

to resort to other methods of transient analysis to obtain the 

pulse-response characteristic of more complex networks. 

13. Equivalent Series Networks.—There are some additional 

properties of equivalent series networks that are rather impor¬ 

tant. One property becomes evident upon examination of some 

of the equivalent networks in this and succeeding chapters. The 

number of elements in the equivalent series network is often 

less than the number of elements in the series-parallel network. 

This means that the same pulse-response characteristic can be 

achieved with fewer elements, if other conditions permit. This 

property can be used to good advantage in some practical cases. 

However, even though the number of elements is less, the equiv¬ 

alent network may contain a parameter that does not exist in 

the series-parallel network. For example, some series-parallel 

RC networks have been shown to contain inductance in the 

equivalent series network. 

The equivalent series network is capable of giving the same 

pulse-response characteristic as the actual network that it 

replaces. However, the total impedance across the output 

terminals of the equivalent network is generally different from 

the total impedance across the output terminals of the actual 

network. This can be an important aspect in some applications. 

In addition, the values of the equivalent-network parameters 

are usually dependent upon the parameter that is connected 

across the output terminals. For instance, the value of the 

resistance in the equivalent network of Fig. 115 is dependent 

upon the capacitance C across the output terminals. Equivalent 

networks that are obtained by means of Th6venin’s theorem 

have neither of these shortcomings; i.c., the total impedance 

across the output terminals is the same in both the actual and 

equivalent networks, and the parameters of the equivalent 

network do not depend upon the load impedance. However, 

Th6venin*s theorem is usually not well suited to the classical 
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method of transient analysis except in cases where only one type 
of parameter is involved. 

A review of the method used to obtain equivalent series 
networks reveals that the equivalent network is valid for any 
generator voltage whatsoever. This is a significant property. 
The fact that the equivalent network is not dependent upon the 
generator voltage can be demonstrated by substituting any 
generator voltage e0 for the pulse voltage E in the differential 
equation. The* equivalent-network parameters are the same, 
and the equivalent generator voltage will be of the same form 
as the voltage e0. Therefore, if a voltage that is not rectangular 
is applied to a series-parallel network, the response character¬ 
istic can still be found on the basis of an equivalent series network. 

14. Summary.—The following statements summarize the per¬ 
tinent features of this chapter: 

1. Many series-parallel RC networks have pulse-response 
characteristics that are the same as those of series networks. 

2. A series network that has the same pulse-response char¬ 
acteristic as a series-parallel network is called an equivalent 
series network. 

3. The equivalent series network can be found directly 
from the differential equation for the series-parallel network, 
and a solution of the differential equation is not necessary. 

4. A series equivalent network does not exist if the differ¬ 
ential equation for the series-parallel network is of higher order 
than the second in q, or of higher order than the first in i. 

5. When a series equivalent network does not exist, the 
series-parallel differential equation must be solved completely, 
and all constants of integration must be evaluated from the 
initial conditions. 

6. The equivalent series network is valid for any generator 
voltage. 

7. The total impedance across the output terminals of the 
equivalent network is generally different from that of the series- 
parallel network. 

8. When the equivalent network for a series-parallel RC 
network contains R} L, and C, it is invariably overdamped. 

9. The procedure for determining the equivalent network is 
a. Using Kirchhoff’s laws, write the instantaneous voltage 

equations for the series-parallel network. 
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b. Decide upon the parameter, R or C, that is desired 

across the output terminals of the equivalent network. 

c. If R is chosen as the output parameter, obtain from 

the voltage equations the differential equation for the 

instantaneous current through R as a function of time 

only. If C is chosen as the output parameter, solve the 

voltage equations for the instantaneous charge on C 

as a function of time .only. 

d. The coefficients of the differential equation for current, 

or charge, in terms of time only determine the param¬ 

eters of the equivalent series network. 

10. The value of the equivalent-series-network method lies 

in the fact that a new network can be regarded as a familiar 

series network insofar as the pulse-response characteristic is 

concerned. 

Problems 

Prob. 1. The parameters of the network in Fig. 119c have the following 

values: E - 10 volts, T = 0.01 sec., r = 2,000 ohms, Ci = 0.25 /if, 

C> = 0.4 /if, and C =0.1 /if. 

a. What is the output voltage at t = 165 microseconds? 

b. What are the values of voltage across (\ Ci, and C2 at t = 0.01 sec.? 

c. What is the output voltage at t = 0.01132 sec.? 

Prob. 2. In the network in Fig. 117, r = 1,000 ohms, R = 2,000 ohms, 

Rx — 4,000 ohms, = 0.25 /if, = 0.01 /if, and C = 0.04 /if. Show that 

the network is overdamped for these values of parameters. 

Prob. 3. Find the equivalent series network for the series-parallel net¬ 

work shown below. 

r Rt 
T 

e 

1 
Prob. 4. Prove that it is impossible to fulfill conditions for critical damp¬ 

ing in the equivalent series network shown in Fig. 123. 

Prob. 6. What are the equations for eg and c0 in the network in Fig. 125a 

in terms of the actual network parameters? 



CHAPTER MI 

SERIES-PARALLEL NETWORKS CONTAINING 
RESISTANCE AND INDUCTANCE 

The preceding chapter has shown that equivalent series 

networks can be found for many series-parallel networks con¬ 

taining resistance and capacitance only. It is also possible 

to find equivalent series networks for many series-parallel 

networks containing resistance and inductance only. In this 

chapter the pulse-response characteristics of series-parallel 

networks containing resistance and inductance only will be 

determined by the equivalent-series-network method. The lim¬ 

itations of the method will be pointed out, and a criterion, 

essentially the same as that for RC networks, will be developed 

that will indicate when the method is applicable. 

HL NETWORKS WITH RESISTANCE ACROSS OUTPUT 

The first class of series-parallel networks to be treated is that 

in which the output pulse appears across a resistance in both the 

actual and equivalent networks. 

1. Pulse-response Character¬ 
istic. Example 1.—The simple net¬ 

work shown in Fig. 12b will be 

analyzed first. Recall that the 

procedure in deriving the equiva¬ 

lent series network is to find the 

differential equation for the instan¬ 

taneous current and then to utilize the coefficients of this differ¬ 

ential equation to determine the equivalent-series-network 

parameters. To find the differential equation for i, the current 

through the output resistance R, apply Kirchhoff’s laws to the 

network. Two independent equations for instantaneous voltage 

during the generator pulse are 

E = r(ii + i) + Ri 

L^ = Ri 
dt 

r 

Fig. 126.—Series-parallel HL net- 

192 

(132) 

(133) 
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Solve Eq. (133) for i\. 

ii = i /*'• 

Substitute this value of i\ into Eq. (132) to obtain the required 

equation for current through R> 

Collect like terms. 

E = (7;v +*) + Ri 

E = (R + r)i + j^q 

The parameters of the equivalent series network are 

Es = E 

Ls = 0 

Its = It + r 

C _A 
Cs ~ Iir 

The equivalent network is given in Fig. 127. The pulse-response 

characteristic of this network, which is the same as that of the 

network in Fig. 12C>, has been analyzed in detail in Chap. III. 

2. Comparison of Actual and Equivalent Networks.—The 

equivalent network is useful in checking back on the conditions 

in the actual network both at the r 

time t — 0, and when steady-state r ^~Rr 

conditions have been reached. At I ^ H f °T 

/ = 0 in the equivalent network, /j-T\ *1§/? e 
the output voltage is equal to \ J s ! 

EltJ{lt + r), which means that the L_1 0 I 
instantaneous value of load current Fu;. 1127.—Equivalent series not- 
at t = 0 is E/{R + r). In the work for th*t i» Fi*. i->6. 

actual network the same is true, because the current through L is 

zero at t = 0 and the instantaneous current flowing from the 

generator is determined by (It + r). 

When the steady state has been reached, which requires that 

the generator-pulse width be large compared with the time 

constant, the equivalent-network current is zero and the out¬ 

put is zero. This is likewise true in the actual network, because 

the voltage across Ly which is the same as the voltage across /?, 

(JUGs-E 

Fit;. 127.—Kquivalcnt scries net¬ 
work for that in Fig. 120. 
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must be zero when the steady-state conditions are reached. This 

is because no voltage appears across L unless the current is 

changing. 

It is important to realize that these two networks are equiv¬ 

alent only as far as the output pulse is concerned. They are 

not equivalent as far as the generator is concerned. For instance, 

the steady-state value of the generator current is zero in the 

equivalent network while the steady-state value of generator 

current is E/r in the actual network. 

The network time constant in the equivalent network is 

RsCs = (R + r)L/Rr. The same time constant results from a 

combination of L in series with R and r in parallel. This is 

indicated clearly in Fig. 131, which is another equivalent network 

for that in Fig. 126. 

Fio. 128.—Equivalent series-parallel networks as obtained by Th6venin’s 
theorem. 

3. Pulse-response Characteristic. Example 2.—A more com¬ 

plex series-parallel network containing resistance and inductance 

only is shown in Fig. 128a. An immediate simplification can 

be made by the use of Th^venin’s theorem: Rt and r can be 

combined and E replaced by an equivalent generator. The 

reduced network is given in Fig. 1286. Two independent voltage 

equations involving i’i and i in the reduced network are 

ERi 
Ri + r (fl + i)+L (w + ti) + Ri{il + i] + Ri 

(134) 

<135) 
To find the differential equation for i in terms of i only, proceed 

as follows: 

dii _ R . 
dt ~ Ul 

Solve Eq. (135) for dii/dt. 
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Solve for iy 
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* _ R ( _ R %x — r J 't dt y Q 
L\ J L\ 

Insert these values of i\ and dii/dt into Eq. (134). 

Collect like terms. 

ER i __ j di 
R7+~~r ~ It ^ (srr,+ «•+ *f + «)■ 

+ 
( RR,r RJi\ 

\(Ri + r)Lx + L, / + 1 £i 

Thus the parameters of the equivalent series network are 

Ea = 

ERi 
/?, + r 

L.« = L 

Ri>‘ 
R, = 

C4 = 

p , + Ji* + j - + ft 
Ri + r h 

Ei 

"Ur?***) 
The equivalent series network is shown in Fig. 129. This 

type of network has been analyzed in Chap. V. In a series 

Fia. 129.—Equivalent series network for that in Fig. 128. 

network containing resistance, inductance, and capacitance, the 

relative value of Rs compared with 2 y/Ls/Cs determines the 

form of the output pulse. In this case, Rs is always greater than 

2 y/Ls/Cs, and consequently the network is overdamped or non- 

oscillatory. This can be deduced from the actual network where 

no capacitance exists and where there can be no exchange of 
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energy in an oscillatory manner. The mathematical proof that 

this network is overdamped is left to the reader. 

4. Limitations on Equivalent-series-network Method.—The 

equivalent-series-network method, which enables a series- 

parallel network to be regarded as a series network insofar as 

the pulse-response characteristic is concerned, is applicable 

to a variety of series-parallel networks. However, an equiv¬ 

alent series network cannot be found for every series-parallel 

(c) 
Fio. 130.—Examples of equivalent networks with resistance output. 

network that contains inductance and resistance only. The most 

precise manner in which the limitation can be expressed is in 

terms of the differential equation that arises from the series- 

parallel network. If the differential equation for charge is 

higher than the second order (or if the current equation is 

higher than the first order), no equivalent series network can 

represent the pulse-response characteristic. In other words, 

no linear network parameter placed in a linear series network 



Sec. 5] SERIES-PARALLEL RL NETWORKS 197 

gives rises to a differential equation that is of higher order 

than the second. This is the same fundamental limitation that 

exists in RC networks. 

If a third or higher order equation results from a series- 

parallel network, it is impossible to equate coefficients to those 

of a series network because terms of higher order than the 

second are# nonexistent in the equation for the series-type net¬ 

work. In this event, the higher order equation must be solved 

completely, and all arbitrary constants must be evaluated to 

determine the pulse-response characteristic. Solutions of this 

type of equation are beyond the scope of this book. 

Several series-parallel networks are given in Fig. 130 along 

with their equivalent series networks. It should be emphasized 

that the series equivalent network is not unique since it is often 

possible to find more than one equivalent network. And it 

should be reiterated that the equivalent series network is exactly 

equivalent only as far as the output pulse is concerned. 

RL NETWORKS WITH INDUCTANCE ACROSS OUTPUT 

Another class of series-parallel networks that contains resistance 

and inductance only is that in which the output pulse appears 

across an inductance in both the actual and equivalent net¬ 

work. Before analyzing this type of network by the equiv¬ 

alent-series-network method, it is well to examine the limitations 

of the method in this particular case. 

6. Limitation on the Equivalent-series-network Method.— 
The aforementioned limitation on the equivalent-series-network 

method; namely, the differential equation for charge that 

arises from the series-parallel network must not be of higher 

order than the second, is also applicable to equivalent net¬ 

works where the output pulse appears across an inductance. 

There are no other limitations. This, perhaps, may be sur¬ 

prising if it is recalled that in Chap. VI (page 183) an additional 

limitation was placed upon series equivalent networks that 

contained a capacitance across the output, especially since 

Chaps. Ill and IV showed a very close correspondence between 

RL and RC networks. However, a careful examination reveals 

the difference in the two cases. In both instances the output 

voltage appears across L or across C, as the case may be, in both 

the actual and equivalent networks. In series networks the 
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steady-state value of voltage during the generator pulse is 

zero across an inductance and different from zero across a 

capacitance. Now if the inductance in a series-parallel network 

is shunted by a resistance, it does not alter the fact that the 

steady-state value of voltage across the inductance is zero 

during the generator pulse. This is because the inductance is 

a short circuit across the resistance when the transient ceases, 

so no current flows through the resistance in the steady state. 

It has been pointed out, however, that if a capacitance in a 

series-parallel network is shunted by a resistance, it is pos¬ 

sible in certain networks for the steady-state value of voltage 

across the capacitance during the generator pulse to be zero. 

Thus it should be clear that the addition of a resistance in 

parallel with an inductance cannot cause the steady-state 

value of voltage across the inductance to differ from the series- 

network steady-state value; on the other hand, it is quite possible 

that the addition of a resistance in parallel with a capacitance 

can cause the steady-state value of voltage across the capacitance 

to differ from the series-network steady-state value. In other 

words, in RL networks of any type the steady-state value of 

voltage across an inductance is always zero during the generator 

pulse, while in RC networks of any type the steady-state value 

of voltage across a capacitance depends upon the network 

configuration. 

6. Pulse-response Characteristic. Example 1.—To demon¬ 

strate that a given series-parallel network can be represented 

by more than one equivalent series network, the network in 

Fig. 126 will be analyzed. Figure 127 shows the equivalent 

series network when the output appears across a resistance. 

Now it is of interest to find an equivalent series network in which 

the output appears across the inductance. To do this, the equa¬ 

tion for i\ is required. This equation can be found by utilizing 

Eqs. (132) and (133). Solve Eq. (133) for i. 

- — — dJl 
1 ~ Rdt 

Substitute this value of i into Eq. (132). 
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Collect like terms. 

e=l(i+£)w+rii 
Divide both sides of this equation by [1 + (r//2)]. 

ER _ T dii . Rr 

R + r~ dt + R + ru 

The equivalent series -network that is represented by this 

equation is given in Fig. 131. The time eonstant of this network 

is exactly the same as the time 

constant of the network m Fig. 

127. The pulse-response charac¬ 

teristic of the network in Fig. 

131 was analyzed in detail in 

Chap. IV. Figures 131 and 127 

are examples of series RL and 

series RC networks that have 

exactly the same pulse-response 

characteristics. The voltage 

across L in Fig. 131 and the voltage across R in Fig. 127 are 

identical at all times. 

Fig. 131.—Equivalent series net¬ 
work for that in Fig. 126. This 
network is also equivalent to that 
in Fig. 127. 

Fia. 132.—Examples of equivalent networks with inductance output. 

The manipulation of Eqs. (132) and (133) was hardly neces¬ 

sary in this case because, by Th^venin’s theorem, the result 
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could have been obtained directly from the actual network by 

combining R and r into a single equivalent resistance and replac¬ 

ing the generator by an equivalent series generator. 

7. Pulse-response Characteristic. Other Examples.—Two 

additional series-parallel net¬ 

works containing R and L only 

and having equivalent series 

networks in which the output 

appears across L are shown in 

Fig. 132. These equivalent net¬ 

works have been found according 

to the usual procedure, and no 

difficulty should be encountered 

in checking their validity. The 

oscillogram in Fig. 133 is an 

illustration of the output volt¬ 

age obtained for the network in 

Fig. 132a when T >> 1 /Ms. 

Evidently the network is over¬ 

damped. This output voltage is 

the same as that appearing across L in an overdamped equivalent 

series RLC network. 

A COMPLEX RL NETWORK 

The network in Fig. 134a is one that cannot be represented 

by an equivalent series network. Nevertheless, it is informative 

to analyze it for the following reasons: 

1. It is an example that demonstrates how the limitation 

on the equivalent series method comes about. 

2. Under certain special conditions it is possible to find an 

equivalent series network. 

3. The network is exactly the same as many already analyzed 

if special conditions are imposed. For instance, if Rx = Lx = oo 

and Ri = L2 = 0, then the network becomes the same as that in 

Fig. 126. Another example is when L\ — oo. Then the network 

becomes the same as that in Fig. 128. 

8. Current Equations.—Suppose an attempt is made to find 

the equivalent series network for the network in Fig. 134a. 

If L is desired for the element across which the output pulse 

must appear in the equivalent network, the differential equa- 

Fig. 133.—Output pulse of the 
network in Fig. 132a when 
T > > 1 /Ms. Note the resemblance 
between this pulse and that in Fig. 
101. 
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tion for iL is required; on the other hand, if R is to be across 

the output in the equivalent series network, then the differ¬ 

ential equation for iR is required. Both differential equations 

will be found in order to include each of these possibilities. 

Before writing any equations the network can be simpli¬ 

fied by replacing Rx and r by an equivalent series resistance RPf 

equal to Rir/(RX + r), and at the same time replacing E by an 

equivalent series generator of voltage equal to ERi/(Rx + r). 

This has been done in Fig. 1346. In this network there are three 

Fig. 134.—Equivalent series-parallel networks as obtained by Thevcnin's 
theorem. This network cannot be represented by an equivalent series network. 

independent variables: n, and i, so three independent voltage 

equations must be found by KirchhofPs law. They are 

ft?T7 = Rp{i,‘ + *'* + i} + U (if + if) + Rl(il + Js) 
+ RlR (136) 

t du u ■ 
L w - Rm (137) 

di . (diL 

In dt ~ L- V dt 
+ + Ri(ii + in) + Ri* (138) 

Equation for iL.—First the differential equation for iL will be 

found. It is necessary to eliminate in and i from Eqs. (136), 

(137), and (138). This can be done by solving Eq. (137) for 

in and solving Eq. (138) for i, then substituting these values of 

iR and i into Eq. (136). The resulting differential equation 

involving n is 

ERX 

Ri + 

+ 

LL2 d2iL 

If Hi2 
4- + L, + --s + + R + 

( 
r, . r> , LRp . LiRp . LRt 
lip t lit t -jj- ~r —j-r 

LRp LL 

R + L 

RtRr 

2Rp\ dih 

1R ) dt 

2Rp\ ■ 
yR ) 

+ 
Ly 

qc (139) 
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Equation for iR.—To find the differential equation for in, 

Eq. (137) can be utilized. 

(Ml 

dU 

di L 

Hi 

lL 

qr. 

Straightforward substitution into Eq. (139) yields the equation 

involving iR. 

R diR 

L~dt 

R . 

Z ** 

R 

= Lq* 

-if qndt 

ERi 

Ri + r 
_ t din , 
~ u rfT + (/? + ~ + Ri + Rr + 

, (RRr , RR2 , RRr , RL 
+ VT + L + TT + ~LL 

UR A . 

A. / '* 

2 R r . R 2 R /J\ 
U + ~U ) 

'RtRr f 
LL, J qRdt (140) 

Equations (139) and (140) indicate why an equivalent series 

network is impossible. In Eq. (139) there is a term dHL/dt2 

which is the same as d*qL/dtz, and no constant parameter exists 

that develops a voltage proportional to the second derivative 

of the current or third derivative of the charge. Similarly, in 

Eq. (140) the term jqitdt prohibits a series-network representa¬ 

tion because no constant parameter exists that develops a 

voltage proportional to the time integral of the charge. Aside 

from these two terms, all others can be represented by equivalent- 

series parameters. 

One might suggest the creation of two fictitious parameters 

ae mathematical devices by which an equivalent network 

could be concocted. Undoubtedly, this could be done, but recall 

that the basic advantage of the equivalent-series-network method 

is that a series-parallel network can be regarded as a series 

network whose pulse-response characteristics are already known. 

Series networks containing R} L, and C are the only networks 
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whose pulse-response characteristics have been analyzed in 

detail. 

An alternative is to consider some special cases of the network 

in Fig. 134 that will cause the coefficient of the second-order 

term in Eq. (139) to be zero, or that will cause the coefficient 

of Jqiidt in Eq. (140) to be zero. If this is done, then an equiv¬ 

alent series network is possible. 

9. Equivalent Networks with L across Output.—To find an 

equivalent series network, it is necessary that LL2/R be zero; 

then Eq. (139) will have terms that are in one-to-one correspond¬ 

ence with the general differential equation resulting from a 

series network. If L2 = 0, L = 0, or R = qo, then LL2/R will 

be zero. The condition that L = 0 is not of interest because this 

means that the output is short-circuited. Refer to Fig. 134. 

If Lo = 0, Eq. (139) becomes 

Ri + r 

and the parameters of the equivalent series network are 

lip + R* + + 
\ Li 

LR2Rp\ . 
LiR )l 

. R2Rp 
l -t f— qL (139a) 

Es = 
ER\_ 

Ri + r 

L.s = L + jt («, + Rr) 

Rs = R2 + R, i +f + 
v El 

Cs 
u 

RtRp 

R2L\ 
rlJ 
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and the parameters of the equivalent series network are 

R-oo 
('» 

Fkj. 135.—Equivalent series networks with inductance output for the network in 
Fig. 134 under two speeial conditions. 

This network is shown in Fig. 1356. 

If additional conditions are imposed upon the equivalent 

networks, they reduce to those already derived. For instance, 

if 7?2 = 0 and R = oo in Fig. 134a, it reduces to the network in 

Fig. 1326. To demonstrate that the equivalent networks will 

be the same, refer to Fig. 1356, which is the equivalent network 

when R = oo. When R2 = 0, the equivalent capacitance 

becomes infinite (short circuit) and the equivalent resistance 

becomes RP • Meanwhile, L, L2, and the equiv¬ 

alent generator voltage are unaffected. This results in an equiv¬ 

alent network that is identical to that in Fig. 1326. 
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10. Equivalent Networks with R across Output.—If the 

equivalent network is to have R across the output,, then Eq. (140) 

applies and it is required that RR2Rp/LLi be zero. If R = 0, 

R% = 0, Ri = 0, r = 0, L = <», or Li = then the coefficient 

of jqR(U in Eq. (140) will be zero, and there will be a one-to-one 

correspondence between the terms in Eq. (140) and the terms 

in the differential equation for a general series network. If 

R = 0 or Ri = 0 in the network in Fig. 134, then by inspection 

the output voltage will always be zero; therefore, these two 

cases are not of interest. 

If R2 

HR i 
R i + r 

= 0 then Eq. (140) becomes 

t (il ff (ij RL>> . RpL \ . 
= ,'!rfT + V'+ 7. + ,i" + -Z, )“ 

, (Rltr , HRr , RLtR,\ 
+ \ L + Ll- + ~LLl-)q,t 

(140a) 

and the parameters of the equivalent series network are 

Es = 
KR\ 

Rx + r 

Ls = /-• 

Rs = R + Rr + RI/- + -?'■ 
Jj L i 

r = L'L ( L \ 
* RRr \Rx + U + 1.) 

If r — 0, then Rp = 0 and Eq. (140) heroines 

»f+-r " W + (B + + ») " + (t) "• <•'10» 

If L — oc, Kq. (140) becomes 

ER\ T din , / i »» ij) i I*iRi\ • 

K7+? - rff + (B + + *' + A, ) '■ 
, (RRr , R>Rp\ 

+ {-l7 + ~Lx-),Jk (140c) 

If L\ = oo, Eq. (140) becomes 

£ + ~ + Ri + /?;>) (« 

, Z/f/f,. , RR2\ .. ..... 
+ ( L-+ -jr ) Q« (140rf) 

ERx (U 
R\ v dt 
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The equivalent series networks that are applicable in each of 

these instances are shown in Fig. 136. 

r^O 

L roo 

Fici. ?3G.—Equivalent series networks with resistance output for the network in 
Fig. 134 under four special conditions. 

If additional conditions are imposed upon these equivalent 

series networks, they reduce to those already derived. In fact, 

the equivalent network for L\ = « is the same as that in Fig. 
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129 because the network in Fig. 134 becomes the same as the 
network in Fig. 128 when L\ = oo. 

A NETWORK CONTAINING MUTUAL INDUCTANCE 

An important type of network that is encountered frequently 
is one in which there is no direct electrical connection between 

the output and the input but which transfers voltage through 
the medium of mutual inductance. The transformer and many 
radio-frequency networks depend upon this principle. A basic 
inductively coupled network is given in Fig. 137. 

11. Induced Voltages.—The network operation depends upon 
the fact that there is electrical interaction between Li and L2 

due to their proximity. This interaction can be explained on 
the basis of the magnetic field produced by current. Current 

r Mt2=M21 

Fig. 137.—A simple inductively coupled network. 

is always accompanied by a magnetic field, and when current 
varies, its accompanying magnetic field varies. A varying mag¬ 

netic field will cause voltage to be developed in conductors 
that are close enough to intercept the changing magnetic field. 
This is called an induced voltage. Hence, when i\ varies in the 
network shown in Fig. 137, the magnetic field produced by Li 
varies, and this varying field intercepts (or links) the con¬ 
ductors that constitute L2. If Li and L2 are in very close 
proximity, a substantial part of the changing field produced 
by Li will intercept the turns of L2 and the induced voltage 
will be large. On the other hand, if Li is moved away from L2, 
the intensity of the changing magnetic field that L2 intercepts is 
decreased and the induced voltage will decrease. 

If the current i\ is not changing, L\ produces a constant 
magnetic field. A constant field is not capable of inducing 
a voltage in another conductor unless the conductor is in motion. 
Therefore, if the position of L2 relative to Li is fixed, the voltage 
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induced in L2 by the field produced by L\ is zero when i\ is 
constant. 

If L2 is part of a closed network, the induced voltage will 
cause a flow of current i2. This current is also accompanied by 
a magnetic field. When i2 is changing, L2 produces a varying 
magnetic field that intercepts the turns of L\ and induces a 
voltage in L\. The induced voltage in L\ affects the current 
ii. This interaction of Lx on L2 and L2 on L\ is appropriately 
described by the term “mutual inductance/' since the effects 
are mutual. 

12. Mutual Inductance.—The induced voltages depend upon 
the proximity of the inductors, their physical size and shape, 
and upon the rate of change of current (or rate of change of 
magnetic field). To describe these induced voltages in mathe¬ 
matical terms an equation relating induced voltage to rate of 
change of current is required. Such an equation is 

e2 = Mu ^ (141) 

where e2 is the voltage induced in L2 due to the varying cur¬ 
rent i\ in Li, and M\2 is the mutual inductance between Lx and 
L2. When the inductors L\ and L2 are in close proximity, MX2 

is large; when the inductors are moved apart, M12 decreases. 
A similar equation for the voltage induced in L\ due to the varying 
current i2 can be written. 

Ci = M2\ (142) 

It will be assumed without proof that the mutual inductance 
A/21 between L2 and Lx is the same as that between L\ and L2. 
It can be shown rigorously that A/i2 = A/21.1 

Equations (141) and (142) are very similar to the defining 
equation for inductance [Chap. I, Eq. (4)]. By analogy, then, 
A/12 can be considered to be a network parameter that is an 
inductance. MX2 will be a constant parameter if the magnetic 
permeability of the medium surrounding L\ and L2 is constant. 
If air surrounds L\ and L2, for example, MX2 will be constant, 
since the magnetic permeability of air is constant for most 

1 R. R. Lawrence, u Principles of Alternating Currents/' 2d ed., p. 187, 
McGraw-Hill Book Company, Inc., New York, 1935. 
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practical purposes. However, if L\ and L2 are wound on an 
iron core, as is often done to confine most of the magnetic 
field to a path that will intercept both inductors, then Mu 

is no longer constant. Since only linear elements are being 
treated, it is assumed that the magnetic permeability of the 
medium surrounding Li and L2 is constant. 

13. Differential Equations for Voltage.—To analyze this 
magnetically coupled network by the classical method, the 
differential equation for voltage must be found. Apply Kirch- 
hoff’s law to the closed network in which i\ is flowing. 

E + ei - n, - L, ^ = 0 (143) 

The voltage e\ is induced in L\ due to the flow of current i2 inL2. 
This induced voltage tends to increase i\ and is therefore of the 
same polarity as the generator voltage E. The differential 
equation for voltage in the closed network in which i2 is flowing is 

e2 - R*u. - U ^ = 0 (144) 

where c2 is the voltage induced in L2 owing to the flow of current 
ii in L\. Since e2 produces the current i2, the polarity of e2 

is opposite to that of the voltage drops across 7?2 and L2. 
Equations (143) and (144) can be rewritten in terms of the 

defining equations for induced voltage. 

E = ri i + U ^ - M«. i ^ (143a) 

0 = ff,t, + U ^ ^ (144a) 

14. Equivalent Networks.—A meaningful interpretation of 
Eqs. (143a) and (144a) has been found in the past by employ¬ 
ing a mathematical trick that really depends upon knowing the 
answer previously. There are two approaches, each of which is 
essentially the same, that can be employed to find an equivalent 
network for that in Fig. 137. One is to find some equivalent net¬ 
work that has differential equations identical to Eqs. (143a) 
and (144a). The other is to manipulate Eqs. (143a) and (144a) 
until they are in a form that is applicable to an equivalent 
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network. The equivalent network is shown in Fig. 138 where no 
mutual inductance exists among the three inductors. The 
differential equations for this network are the same as Eqs. 
(143a) and (144a). They are 

E-Hl + (Lt -«„)§ + *'.,(§-$) <!*»> 
0 = Riii + (L2 ~ Mu) —jj + ~ (1446) 

The fact that these equations are the same as Eqs. (143a) and 
(144a) can be verified by expanding them. Upon expanding 

Fig. 138.—Equivalent network for that in Fig. 137, which is valid for l>oth the 
generator and the load. Both i* and ii flow through the mutual inductance. 

Eq. (1436), the term (-M“W + out; in 

Eq. (1446) the term 
di 2 
dt 

+ M drops out. In each 

case the remaining terms are the same as those in Eqs. (143a) 
and (144a). 

According to the second approach, the term M^xidii/dl) 

is added to and subtracted from Eq. (143a), and the term 
Mnidiz/dt) is added to and subtracted from Eq. (144a). Then 
the terms are grouped as shown in Eqs. (1436) and (1446) and 
the equivalent network in Fig. 138 is deduced. 

This equivalent network shows very clearly that the role 
of mutual inductance can be considered to be the same as that 
played by an ordinary inductance. The networks in Fig. 137 
and 138 are equivalent as far as both the load and the generator 
are concerned. 

Now that an equivalent network has been found that repre¬ 
sents the mutual inductance as an ordinary inductance, it is 
possible to find the pulse-response characteristics according 
to previously developed methods. Specifically, it is possible 
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to find ah equivalent series network for this series-parallel 
network, and thereby to determine the pulse-response character¬ 
istics in terms of a known network. The network in Fig. 130a 
is the same as that in Fig. 138 except for the values of the param¬ 
eters, and therefore the equivalent series network has already 
been determined. It is simply a matter of replacing Lh L2, 
and L3 in Fig. 130a by Mi2, (Li — M2i), and (L2 — Mi2), respec¬ 
tively. The equivalent series network and, of course, the actual 
network in Fig. 137 are invariably overdamped because no 
capacitance exists in the actual network. 

CONCLUSION 

Many of the concluding remarks at the end of Chap. VI 
are also appropriate for series-parallel RL networks. At the 
risk of unnecessary repetition, some of them are restated here 
for emphasis and to summarize the high lights of this chapter. 

1. Numerous series-parallel RL networks, including mag¬ 
netically coupled networks, have pulse-response characteristics 
that are the same as those of series networks. 

2. The equivalent series network that has the same pulse- 
response characteristic as a series-parallel network can be 
found directly from the differential equations, and a solution 
of the differential equations is not necessary. 

3. No equivalent series network exists if the differential 
equation for the series-parallel network is of higher order than 
the second in q or of higher order than the first in i. 

4. The higher order differential equation must be solved 
completely when no equivalent series network exists, and con¬ 
stants of integration, equal in number to the order of the differ¬ 
ential equation, must be evaluated from the initial conditions. 

5. The equivalent series network is valid for any generator 
voltage. 

0. The total impedance across the output terminals of the 
equivalent network is generally different from that of the series- 
parallel network. In addition, the equivalent series network is 
not equivalent to the series-parallel network insofar as the 
generator is concerned. 

7. Series-parallel RL networks are invariably overdamped, 
and when they give rise to equivalent RLC networks, the equiv¬ 
alent networks are likewise overdamped. 
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8. The procedure for determining the equivalent network is 
as follows: 

а. Write the instantaneous-voltage equations for the 
series-parallel network by utilizing Kirchhoff’s laws. 

б. Decide upon the parameter, R or L, that is desired 
across the output terminals of the equivalent network. 

c. If R is chosen as the output parameter, obtain from 
the voltage equations the differential equation for the 
instantaneous current through R as a function of time 
only. If L is chosen as the output parameter, solve 
the voltage equations for the instantaneous current 
through L as a function of time only. 

d. The coefficients of this differential equation for current 
determine the parameters of the equivalent series 
network. 

9. In the case of magnetically coupled networks, the equiv¬ 
alent network that represents the mutual inductance as an 
ordinary inductance parameter must be found first. Thereafter, 
the procedure in obtaining the equivalent series network is 
the same as that used in ordinary RL networks. 

10. The value of the equivalent-series-network method 
lies in the fact that a new network can be regarded as a familiar 
series network insofar as the pulse-response characteristic is 
concerned. 

Problems 

Prob. 1. The parameters of the network in Fig. 130e have the following 

values: E * 80 volts, T — 350 microseconds, R = 10.000 ohms, R\ = 2,000 

ohms, and r «* 8,000 ohms. 

а. What is the time constant of the network V’ 

б. At what instant during the generator pulse is the output voltage equal 

to 24 volts? 

c. What current flows through L at t =* 0? At t — T? 
d. What is the most negative value of output voltage? 

Prob. 2. In the network in Fig. 126 the positive output voltage at t =* T 
is equal in magnitude to the maximum negative output voltage. If 

T * 208 microseconds, what is the time constant of the network? 

Prob. 3. In the networks in Fig. 1306, li = r * 4,000 ohms, L\ * L, and 

Ma *» 6 X 104 sec.“l 
а. At what instant during the generator pulse will the output voltage be a 

maximum? 

б. What is the value of L? 
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Prob. 4. Find the equivalent series network for the series-parallel net¬ 

work shown below. 

Prob. 5. In the network in Fig. 137, E — 20 volts T — 50 micro¬ 

seconds, L\ = 0.004 henry, L2 = 0.016 henry, Mn = Mu = 0.002 henry, 

and Ri — 0. 

a. What is the voltage across r at t = 1.5 micioseconds? 

b. What is the maximum current through L*? (Assume that all inductors 

have negligible resistance.) 



CHAPTER VIII 

SERIES-PARALLEL NETWORKS CONTAINING 
RESISTANCE, INDUCTANCE, AND CAPACITANCE 

Series-parallel networks containing resistance and either 

capacitance or inductance have been discussed in Chaps. VI 
and VII. In many instances, series-parallel networks containing 
resistance, inductance, and capacitance are used. It is therefore 
of interest to analyze such networks. 

The scope of the equivalent-series-network method of analysis 
is generally more confined in the case of series-parallel RLC 

networks than in the case of series-parallel RL or RC networks. 
This should not be surprising because many series-parallel 
RL or RC networks give rise to equivalent series networks 
that contain R, L, and C. When the series-parallel network 
itself contains /?, L, and C, it is less likely that an equivalent 
series network exists; i.e.y series-parallel combinations of R, Ly 

and C frequently behave in a manner that is too complicated to 

describe by the most general series-network differential equation. 
Equivalent series networks can be found whenever the differ¬ 

ential equation for charge resulting from the series-parallel 
RLC network is no higher than the second order. This same 
condition limits the applicability of the method in all types of 
networks, and it is a fundamental limitation. 

RLC NETWORKS WITH CAPACITANCE ACROSS OUTPUT 

Networks that have a capacitance across the output occur 
very often in practice. The capacitance output can be an actual 
capacitor connected across the output or a stray capacitance 
that is an inherent part of the network. Stray capacitances 
are discussed in Chap. IX. 

1. Pulse-response Characteristic. Example 1.—Figure 139 
shows a network with capacitance output that can be analyzed 

by the equivalent-series-network method. The equation for 
charge on C is required. To find this equation Kirchhoff’s laws 

214 
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can be applied to the network. Two independent voltage equa¬ 
tions are 

E-r(i, + i)+L (* + *) + « (146) 

fiti = ^ (146) 

To eliminate i\ from the.se equations, solve Eq. (146) for ih 
and substitute this value into Eq. (145). 

q 
H RC 

dii _ i 
It ~ RC 

Fiu. 139.-—Series-parallel RLC net- Fuj. 140.—Equivalent series network 
work with a rectangular-pulse gen- for that in Fig. 139. 
orator. 

Collect like terms. 

I dj , (R + r) 
1 dt^ R 

i 
C 

Multiply both sides of the equation by R/(R -f r). 

ER _ LR d2q [ RrC + Ll dq q 
R + r R + r dl2 + (R + r)CJ dt + C 

The parameters of the equivalent series network, as determined 
by the coefficients of this equation for q, are 

Es = 

Rs = 

Ls — 

ER 
R + r 
RrC +L 
(R + r)C 

LR 
R + r 

Cm = C 

The equivalent network is given in Fig. 140. The behavior of 
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charge on C in both the actual and equivalent networks is iden¬ 
tical and therefore the pulse-response characteristics of the two 
networks are identical. 

In the equivalent network the steady-state value of output 
voltage during the generator pulse is equal to the generator 
voltage ER/(R + r), because no current flows when the steady 
state is reached. In the actual network the steady-state value 
of the output voltage during the generator pulse is also equal to 
ER/(R + r), but in this case the current in the network is 
E/(R + r). 

Fig. 141.—Output pulse of the net¬ 
work in Fig. 139 for the oscillutory case 
when R3 is only slightly less than 

2 VLs/C and T > > 1 /Ma. 

Fig. 142.—Output pulse of the net¬ 
work in Fig. 139 for the oscillatory case 

when Rs is much less than 2 y/Ls/C. 
The transient is almost negligible at 
t - T. 

The pulse-response characteristics of series RLC networks 
have been determined in Chap. V. Recall that the form of the 
output pulse is dependent upon the relative values of the net¬ 
work parameters. Specifically, if Ra > 2 y/Ls/C, the network 
is overdamped or nonoscillatory; if Ra < 2 y/Ls/C, the network 
is oscillatory; and if Rs = 2 y/Ls/C, the network is critically 
damped and just on the verge of oscillation. In Chaps. VI 
and VII, equivalent series networks containing R, L, and C were 
invariably overdamped, because an oscillatory exchange of energy 
could not take place in the actual network in the absence of 
either L or C. In this instance, however, the actual network 
contains both L and C, so under certain conditions it is possible 
for oscillation to take place. The oscillograms in Figs. 141 
and 142 illustrate two possible forms of oscillatory output 
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voltage for the network in Fig. 139. In Fig. 141 the transient 

is completely negligible at t = T, while in Fig. 142 the transient 

is very small at t = T. Each of these output Voltages can be 

obtained across C in a series RLC network, which is additional 

evidence that the pulse-response characteristic of the series- 

parallel network in Fig. 139 is the same as that of the series 

network in Fig. 140. 

An investigation of the relative values of RSl Ls, and C in 

the equivalent network leads to the conditions on the actual 

network parameters for three possible cases: overdamped, oscil¬ 

latory, and critically damped. _ 

Case 1. Overdamped.—In the overdamped case Rs > 2 y/Ls/C 
or in terms of the actual network parameters 

RrC + L ^ 0 I UR 
(R + r)C \(« + r)C 

A numerical example will serve to show that this inequal¬ 

ity is possible. Suppose that L = 0.25 henry, C = 0.25 nfy 
R = 1,000 ohms, and r = 10,000 ohms. Substitute these 

specific values into the above inequality. 

1,000 X 10,000 X 0.25 X 10~« + 0.25 

(1,000 + 10,000)0.25 X lO"6 

> 2 V(1,C 
0.25 X 1,000 

000 + 10,000)0.25 X 10- 

1,000 
2,000 

Vn 
Case 2. Oscillatory.- 

RrC + L 
(R + r)C 

< 2 4 
In the oscillatory case Rs 

To demonstrate 
LR 

< 2 VLs/C 

that oscil- 
I (R + r)C 

lation is possible, suppose that the values of the parameters 

are L == 0.25 henry, C = 0.25 pf, R = 10,000 ohms, and 

r = 1,000 ohms. Substitute these values into the above 

inequality. 

10,000 X 1,000 X 0.25 X 10“6 + 0.25 

(10,000 + 1,000)0.25 X lO"6 

< 2 4 0.25 X 10,000 

(10,000 + 1,000)0.25 X 10-‘ 

1,000 < 2,000 
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Case 3. Critically Damped.—For critical damping 

°r flrVrfc = 2 yl(R L-fr)C Critical damping is possible 

since both the overdamped and oscillatory cases can exist. The 

actual values of the parameters can be found from the above 

equation for critical damping. One set of values that will satisfy 

this equation is L = 0.364 henry,. C = 0.25 R = 500 ohms, 

and r — 500 ohms. 

Critical damping is possible 

obtained by means of Thevenin’s theorem. 

2. Other Examples.—The networks given in Figs. 143 and 144 

are other examples of series-parallel RLC networks with a 

capacitance across the output that can be regarded as series 

networks insofar as the output pulse is concerned. 

Whenever equivalent networks are used, it is well to check 

at least the steady-state value of output voltage during the 

generator pulse. The steady-state output voltage after the gen¬ 

erator pulse is, of course, invariably zero. The equivalent 

network for that shown in Fig. 143a can be obtained solely 

by use of Th^venin’s theorem. In Fig. 1435 the steady-state 

output voltage during the generator pulse is equal to the gen- 
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erator voltage ER/(R + r), and the equivalent generator current 

is zero. In Fig. 143a the steady-state voltage also equals 

ER/(R + r), but in this case the generator current equals 

E/(R + r). This current flows through R and r only and main¬ 

tains the charge on C at a value CER/(R + r). 

The equivalent network in Fig. 1446 can be found from the 

actual network in Fig. 144a by the usual method. In the actual 

network the steady-state value of output voltage during the 

generator pulse is reached when the currents are constant; t.e., 

?' = 0 and i\ = E/(Ri + r). Therefore, the steady-state output 

voltage is ER\/(R\ + r). This same output voltage exists in 

the equivalent network when the steady state is reached; how¬ 

ever, in this case the generator current is zero. 

In general, series-parallel RLC networks can be either over¬ 

damped, oscillatory, or critically damped. This can be verified 

most conveniently by considering extreme cases in the actual 

network and examining the relative values of Rs and 2 y/Ls/Cs• 

The network condition for specific parameters can be deduced by 

evaluating Rs and 2 y/Ls/Cs. 

RLC NETWORKS WITH RESISTANCE ACROSS OUTPUT 

Two networks that have a resistance across the output are 

shown in Figs. 145 and 110 along with their equivalent series 

(a) (b) 
Fiq. 145.—Equivalent RLC networks with resistance output. 

networks. As an illustration of howT these equivalent networks 

are obtained, the equivalent series network given in Fig. 1406 

will be derived. Kirchhoff’s lawr yields two independent voltage 

equations involving the branch currents i\ and i. 

E = r(t'i +i)+l + ^ + L^t + Ri (147) 

«i*i = L ~ + Ri (148) 
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To eliminate i\ from these equations and thereby to obtain the 

differential equation for i, solve Eq. (148) for i\. 

Since qi = then 

R . . L di 
U~ R1l + iu dt 

R . L . 
qi = R1q + Rl1 

Substitute qi and ii into Eq. (147) and group terms. 

E R + r + W, + It 
L \ . , (R\ + R\ 
he) l + \RxC )9 

The coefficients of this equation determine the equivalent-series- 

network parameters that are given in Fig. 1 !(>/>. 

Fig. 146.—Equivalent RLC networks with resistance output. 

Rather than show mathematically how this network can be 

oscillatory or nonoscillatory from the value of Rs compared 

with 2 y/Ls/Ca, it is informative to investigate the physical 

considerations in the actual network. By deduction it can be 

seen from Fig. 14Ga that oscillation is possible if Ri is made 

increasingly large while (R + r) is made diminishingly small. 

The argument is that if Ri is large enough, it can be removed 

from the network without appreciable effect, and then if 

<* + '>< 

oscillation will take place. On the other hand, even if Ry is 

removed from the network, oscillation will not take place unless 

(R + r) is less than 2 \/L/C. Since both the oscillatory and 

overdamped cases are possible, it follows that the critically 

damped case can exist. 
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The oscillogram in Fig. 147 demonstrates an oscillatory 

output voltage obtained for the network in Fig. 146. The 

oscillogram in Fig. 148 is another illustration of oscillatory output 

voltage when the values of the network parameters are changed 

Fig. 147.—Oscillatory output volt¬ 
age of the network in Fig. 140 when the 
generator-pulse width is long enough 
to allow the transient to heroines small 
at t = T. 

Fig. 148.—Oscillatory output volt¬ 
age of the network in Fig. 146 when Rs 

is only slightly less than 2 y/Ls/C's and 
r > > i/Ms. 

slightly. The close similarity between Fig. 147 and Fig. 90 

in Chap. V indicates that this pulse-response characteristic is 

essentially the same as that of a series RLC network. The 

sharp discontinuity and bright spot in both Figs. 146 and 147 

at t = T is due to the distributed capacitance of the inductor 

that was neglected in the analysis. 

> L+RrC C(R+r) 
S~C(R+r) R 

Km. 14!).—Equivalent RLC networks with inductance output. 

RLC NETWORKS WITH INDUCTANCE ACROSS OUTPUT 

Three series-parallel RLC networks are shown in Figs. 149, 

150, and 151 along with equivalent series networks that have 

the same pulse-response characteristics. The equivalent net¬ 

works have been derived in the usual manner. In all of these 
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networks, both actual and equivalent, the steady-state value of 

output voltage is zero at all times. Another similarity among 

Fig. 151.—Equivalent RLC networks with inductance output. 

the three networks is that an increase in R tends to encourage 
oscillation while a decrease in R tends to bring about an over¬ 

damped condition. 

Fig. 152.—Output voltage of the net¬ 
work in Fig. 149a when Rg is only 

slightly less than 2 y/Lg/Cg• The 
transient is practically negligible at 
t - T. 

Fig. 163.—Oscillatory output volt¬ 
age of the network in Fig. 151a when 

Rg is much less than 2 y/Lg/Cg. 

The oscillogram in Fig. 152 is the output voltage of the 

network in Fig. 149a for the oscillatory case. This output 
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voltage is practically the same as that in Fig. 102, Chap. V, 

and emphasizes the fact that this series-parallel network has 

a pulse-response characteristic that is the same as that of an 

equivalent series network. The oscillogram in Fig. 153 is an 

oscillatory output voltage obtained from the network in Fig. 151. 

In both of these oscillograms, the maximum negative value of 

output voltage exceeds the maximum positive output voltage 

because the generator pulse was not perfectly rectangular; i.e., 

the leading edge of the generator pulse at t = 0 was not as steep 

as the trailing edge at t = T. 

A NETWORK CONTAINING L AND C IN PARALLEL 

An examination of all of the networks in this chapter reveals 

that none contains an inductor that is connected directly in 

parallel with a capacitor. Nevertheless, networks that contain 

L and C in parallel are frequently encountered, and their pulse- 

response characteristics are often desired. 

Rr 

(a) (b) (c) 
Fig. 154. -Networks containing L and C connected directly in parallel. 

The parallel LC networks shown in Fig. 154 are simple exam¬ 

ples that will serve to demonstrate the method of solution. 

Figures 1545 and 154c indicate that a resistance in parallel 

with L and C can be replaced by an equivalent series resistance 

if the generator voltage is appropriately altered. Therefore, 

an analysis based upon the network in Fig. 1545 will include 

the series resistance case of Fig. 154a. 

3. Selection of Output Parameter.—The pulse-response charac¬ 

teristics of the network in Fig. 1545 can be found by the equiv¬ 

alent-series-network method. Since R} L, and C are each 

connected across the output, there are three possible choices 

of output parameter, but an equivalent series network is not, 

possible unless the output parameter is chosen as R. This fact 

can be deduced by trial from the differential equations. How¬ 

ever, it is not necessary to manipulate the equations to realize 

that a resistance output in the equivalent series network is 
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the only one that will satisfy some of the obvious properties of 

this series-parallel network. The reasoning is as follows: 

1. The equivalent series network certainly must contain 

Rf Ly and C because oscillation is possible in the series-parallel 

network, for instance, when R is very large and r is small com¬ 

pared with 2 's/L/C. 
2. The steady-state value of output voltage during the gen¬ 

erator pulse is zero because the voltage across L is zero when 

the current through L is constant. This current is E/r when 

the steady state is reached. 

3. The output voltage at the instant the generator pulse 

appears must be zero because a finite time is required for charge 

to flow onto C. 
On the basis of these three observations, examine a general 

series network that contains /?, L, and C. > If C is connected 

across the output, then the steady-state value of output voltage 

during the generator pulse is E and is contrary to point 2. 

If L is connected across the output, the output voltage at the 

instant the generator pulse arrives is E, which is contrary 

to point 3. If R is connected across the output, however, the 

steady-state value of output voltage during the generator pulse 

is zero, as is the output voltage at the instant the generator 

pulse arrives. While this reasoning does not provide sufficient 

evidence to conclude that an equivalent network is possible 

with resistance output, it shows, at least, that one containing 

L or C across the output is impossible. 

4. Equivalent Series Network.—To find the equivalent series 

network that contains R across the output, it is necessary to 

obtain the differential equation for if the current through Ry in 

terms of time only. When Kirchhoff’s laws are applied to the 

network in Fig. 1546, three independent voltage equations result: 

r{i + it + ic) + Ri (149) 

II 

■s
r
*

 

(150) 

ii <s
>,

 

(151) 

To eliminate n and ic from Eq. (149) proceed as follows: Rewrite 

Eq. (150). 

diL = yirf/ 
L 
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and integrate. 

Rewrite Eq. (151), 

and differentiate. 

qc = RCi 

dQ c _ . _ di 
dt dt 

Substitute these values of u and ic 
into Eq. (149). r Ls'RrC cs"r^. 

E=zr^i-\--j(l'Ji~ RC + Hi 

When like terms in this equation 

are grouped, the desired form of 

the equation for i in terms of time Ile^.'/,rk 'that'inFi'^'iMr'1^ 
only results. 

E = RrC jt + (R + r)i + ^ q (152) 

liquation (152) determines the parameters of the equivalent 

series network that is illustrated in Fig. 155. The pulse-response 

characteristics of this network have been treated in detail in 

Chap. V. 

A SPECIAL NETWORK 

frxc-'R-^ 

The network shown in Fig. 150 is exceptionally interesting, 

although it is very cumber¬ 

some to analyze by the classical 

method for general values of 

resistance, inductance, and ca¬ 

pacitance. However, when /?, 

L, and C have the special values 

indicated in Fig. 156 (equal time 

constants and equal resistances 

in the two series branches), it is 

possible to learn something 

about the pulse-response characteristic without excessive labor. 

The striking property of this network with the assigned 

values of R, L, and C is indicated by Fig. 157, which is an equiv- 

Fiti. 150.-- A special series-parallel RLC 
network. 
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alent series network. Insofar as the pulse-response character¬ 

istic is concerned, the networks in Figs. 156 and 157 are exactly 

the same. This can be deduced quite readily by observing that 

the voltage across r is the same in both networks if i is the same 

in both networks. The output voltage is E — ri. 

5. Proof of Equivalence.—The usual method of finding the 

equivalent series network is not applicable in this case because 

neither iL nor ic appears separately in the equivalent network. 

A special procedure, which follows, is required to prove that the 

network in Fig. 157 is equivalent to that in Fig. 156. 

Three independent voltage equations that apply during the 

generator pulse are 

-s
r*

 

+
 

£
 ii (153) 

ii o
 * +
 

(154) 

e = E — ri (155) 

Equation (153) can be written 

e dt _ Rii/It 
~C ~ ~~C~ 

and then integrated. 

+ q diL 

hf e dt = ^ qL + ^ iL 

Since L/C — R2, this equation can be written 

JL f 
RC J edt = ^ + Riu (156) 

Differentiate Eq. (154) and multiply by L. 

t ds _ r d die , L . 

L dt - LR It + clc 

When L/C is replaced by its equal /£2, this equation becomes 

■L d(5 jr dx C | -try • 
RTt=Llt+Rlc 

Adding e to the left side of Eqs. (156) and (157), and 

(Rh + L^/j and (Ric + g) 

(157) 
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to the right side of Eqs. (156) and (157), respectively, does not 

invalidate the equations. 

e + j e dt = 2Rih + ~ + L (156a) 

L de od* , Qc , T die \ 
e + Rdt = 2Rlc + C+ L~di (157a) 

Add Eqs. (156a) and (157a). 

Wc j + 2R^+ ic) + q~L^j£ 
i t I diL , die 
+ LXdi + -di 

However, iL + ic = i. 

2c + RC / edt + R dt 2^ + RC / ^ dl 
L d(Ri) 

+ R~dT (158) 

Equation (158) is true only if e = Ri, or in other words if 

E — n 

jR |—-VWWN *-o r 

Solve for i. 

R Hr r 

(SL)Z *) %R*Vf 

Therefore, the output voltage becomes Fiu. 157 — Equivalent net¬ 
work for that in Fig. 156 

D. ER provided R = R and L/R — 
e = Ri = «c. 

and the validity of the equivalent network in Fig. 157 is proved. 

6. Network Behavior.—A physical explanation of the equiva¬ 

lent network is easily made when the behavior of {l and ic is 

investigated. Figure 158 shofrs iL and ic and their sum i. For 

the condition R = y/L/C, the sum of iL and ic is seen to be con¬ 

stant. Thus, as far as the generator is concerned, the current is 

flowing just as though a resistor were connected to the gen¬ 

erator terminals. 

The voltages across the individual parameters of the network 

bear certain relationships to each other. For instance, the 

voltage across L and the voltage across the resistance in series 
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with C are identical at all times. To prove this, substitute 

e = Ri = R(iL + ic) into Eq. (153). 

R{il + ic) = Rii. + L -jj- 

From this equation it is evident that 

In addition, the voltage across C and the voltage across the 

resistance in series with L are identical at all times. This can 

be demonstrated by substituting e = R(iL + ic) into Eq. (154). 

R((l + ic) = Ric + 

From this equation it is concluded that 

Rii. = 
qc 
C 

The equivalent network is valid for any generator voltage 

whatsoever. This can be verified by substituting a general 

voltage eg for E in the foregoing proof without affecting the 

result. An important implication of this generality is in the 

case where eg is an alternating voltage of variable frequency. 

For such a voltage, this network is “resonant” at all frequencies, 

including zero frequency. As far as the pulse-response char¬ 

acteristic is concerned, this network is capable of giving perfect 
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reproduction of pulse shape across the output, provided the values 

of the parameters satisfy the condition R = y/LjC. 

CONCLUSION 

The networks in this chapter have been selected from a vast 

variety of series-parallel networks containing R, L, and C, 
and equivalent series networks have been found. This casts a 

favorable light on the scope of the equivalent-series-network 

method, but actually the majority of series-parallel RLC net¬ 

works give rise to differential equations for charge that are of 

higher order than the second. Therefore, it should be empha¬ 

sized that equivalent series networks exist in comparatively few 

instances. 



CHAPTER IX 

ELEMENTARY APPLICATIONS 

In order to apply transient analysis of any kind to a real 
network, i.e.} one that exists physically, a very important 

step must be taken at the outset. Every element in the physical 
network must be considered individually and in relation to all 
other elements in order to determine the simplest configuration 

of parameters that will best represent the actual conditions. 

This important decision will determine how closely the analytical 
results describe the behavior of the physical network. ' The 
choice of parameters to represent a physical network is generally 

a compromise between exactness and simplicity. 

In Chap. I it was mentioned that every physical element 
contains all three parameters, R, L, and C, but that in many cases 

one or two of them may be justifiably neglected. Unfortu¬ 

nately, there is no set of rules that can be applied to discover 
which parameters can be neglected, and it is largely experience 

that governs the choice. Every network that is analyzed 
contains parameters that are based upon assumptions regarding 

the physical elements, and in practically all cases the assump¬ 

tions are approximations. In general, an attempt is made to 

make assumptions that result in excellent agreement between 
the analytical results and the experimental observations in the 

physical network. In some cases, however, an analysis based 

upon assumptions that are known to be inaccurate is performed, 
and the results indicate only roughly the behavior of the physical 

network. This is done mainly in cases where a more accurate 

analysis is unduly complicated, and where the more accurate 
results do not represent a substantial gain in information over 

the less accurate analysis. 
This chapter demonstrates the classical method as applied 

to several elementary physical networks. No attempt is made 

to include all possible applications. The intent is to demon¬ 

strate, by means of a few examples, the manner in which the 
230 
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pulse-response characteristics of a real network can be found 

and the nature of the approximations that are required. 

DIODE DETECTOR 

A diode-detector network, which can be used to produce a 

direct voltage proportional to the amplitude of a train of pulses, 

is shown in Fig. 159 and includes all stray network elements. 

A stray network element is one that is an inherent part of the 

network and that cannot be removed as an individual element. 

1. Simplification of Network.—It would be a tremendous 

undertaking to analyze this network including all of the ele¬ 

ments shown, but fortunately many of them play an insignificant 

role in determining the pulse-response characteristic. It is 

Cpk 

/ 

2 

Fig. 159.—A diode-detector network in which all stray parameters are shown. 

desirable to neglect as many elements as possible in order to 

simplify the analysis. For most practical purposes, many of 

the stray elements can be ignored completely. If the width 

of the pulses to be detected is not too short, then the following 

elements can usually be neglected: 

1. The lead inductances L, provided the physical length 

of the leads is kept as short as possible. 

2. The socket capacitance C,p, because it is usually extremely 

small and cannot be lumped across C \ conveniently. 

3. The inductance LRy inherent in the resistor Ri, because this 

inductance is very small for most practical resistors. . 

4. The inductance Lc, inherent in the capacitor Ci. For 

the type of capacitor that would be used in this application, this 

neglect is usually justified. However, in some capacitors the 

inductance must be taken into account. 

5. The plate-to-cathode capacitance Cp* of the diode. A 

diode with a low CPk should be selected for this application. 
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The reason is not so that it may be omitted in the analysis, 

which is a helpful factor, but because a high CPk might introduce 

an undesired reduction in output voltage. 

In addition to these assumptions, the characteristics of the 

diode itself must be idealized so that is a “linear” element. 

Actually, the diode is not only a unidirectional device but also 

a nonlinear device. It will be assumed that the diode has 

infinite resistance (does not conduct electrons) when its plate 

voltage is equal to or less than its cathode voltage, and that 

it has a constant resistance Rd when its plate voltage exceeds 

its cathode voltage. This is usually a good approximation 

for generator-pulse voltages that are not extremely small in 

amplitude. 

This completes the necessary assumptions as far as the net¬ 

work is concerned. However, no mention has been made, con¬ 

cerning the source of the pulses. It is assumed that the pulse 

source can be represented by a generator with internal resistance 

r. If the generator does not have an internal resistance only, 

the necessary parameters can be inserted in series with the 

generator. A rectangular generator pulse is assumed, although 

this network is relatively insensitive to pulse shape provided 

(1) the charging time constant is very much less than the dis¬ 

charging time constant, and (2) the charging time constant is 

small compared with the generator pulse width. 

All of these assumptions have been incorporated in Fig. 160. 

When the switch is closed, it represents the condition under 

which the diode conducts, and when the switch is open, it repre¬ 

sents the nonconducting condition. 

2. Pulse-response Characteristic.—The analysis of the net¬ 

work in Fig. 160 can be made by the classical method. In 

fact, this network is essentially the same as that in Fig. 105, 

which was analyzed completely in Chap. VI. Suppose a single 

generator pulse is considered first. At the instant the pulse 

arrives, the diode begins to conduct; i.e., the switch in Fig. 160 

closes, and charge begins to accumulate on C. Charge continues 

to flow onto C during the pulse. When the generator pulse dis¬ 

appears, the diode becomes nonconducting; i.e.y the switch 

opens, and C discharges through R. 

For purposes of analysis, Th^venin's theorem can be applied 

to the network in Fig. 160. The equivalent series network is 



Sec. 2] ELEMENTARY APPLICATIONS 233 

shown in Fig. 161. On the basis of this equivalent series network, 

the following behavior is evident: 

1. The charge on C increases exponentially during the gen¬ 

erator pulse. 

Charging time constant 
R(Rh + r)C 
R + Rd 4~ v 

2. The steady-state value of output voltage during the gen¬ 

erator pulse is ER/(R + Rd + r). 

Fig. 160.—Equivalent series-paraJlel network for that in Fig. 159 after neglecting 
some of the stray parameters and assuming a “linear” diode. 

Fio. 161.—Equivalent series network for that in Fig. 160 as obtained by 
Th^venin’a theorem. For either position of the switch, open or closed, the resist¬ 
ance can be regarded as a single equivalent resistance. 

3. The charge on C decreases exponentially after the generator 

pulse disappears. 

Discharging time constant = RC 

4. The steady-state value of output voltage after the generator 

pulse disappears is zero. 

The equations for the output voltage can be found in the 

same manner that Eqs. (117) and (121) were found in Chap. VI. 

They are 

€e = 
ER 

R 4" Rd 4^ r 
[1 - 

e0 
ER 

R + Rd 4~ r 
[l 

(R + Ri+r)t 
R(R<+r)C ] 

(R + Ri±r)T _(±-Q 
R(Rd+r)C ]€ RC 

(159) 

(160) 
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When the pulse width is large compared with the charging time 

constant, Eq. (160) simplifies to 

= ER 
R + Rd + r 

_(J-T2 
e RC (160a) 

Figure 162 shows the pulse-response characteristic of the 

network in Fig. 160 for a pulse width that is large compared 

with the charging time constant, and for a discharging time 

constant that is large compared with the charging time constant. 

E GENERATOR PULSE 
i 
I 
\ 
i 
i 

J_ 

Fig. 162.—Output pulse of the diode-detector network when the pulse width 
is large compared with the charging time constant but small compared with the 
discharging time constant. 

3. Specific Example.—The actual values of the elements in a 

diode-detector network depend upon the particular application. 

In most applications the relationship between the discharging 

time constant and the period of the train of pulses is of primary 

interest. In addition, an attempt is usually made to keep the 

charging time constant small compared with the pulse width. 

When the charging time constant is comparable with the dis¬ 

charging time constant, a train of generator pulses will appear 

in the output as discrete pulses if the pulse width is of the same 

order of magnitude or greater than the charging time constant. 

As the discharging time constant is made larger compared 

with the charging time constant, the output due to a train of 

generator pulses tends to become smoother, and in the practical 

limit there will be no trace of pulses in the output. 



Sec. 4] ELEMENT A R Y APPLICA TIONS 235 

One set of values of network parameters that might be encoun¬ 
tered is 

E = 100 volts 
r = 250 ohms 

Rd = 450 ohms 
Ri = 70,000 ohms 
Rc — 10,000,000 ohms 

c i = 0.01 4 
Or = 1 n4 
Cw = 3 n4 
Ck/ = 4 n4 
C$k = 2 

With these values, R and C in the network in Fig. 160 or Fig. 161 
can be evaluated. 

RiRc R i 

R ft, + Sc 1 + (Ri/Rc) ~ 
C = Ci + Cr + Cw + Ckf + Ctk 

70,000 ohms 

« o.oi 4 

In this particular example R i, Ci, r, and largely determine 
the result. However, this is not always true. For instance, 
if Ci were of the order of 10 n4, then the stray capacitances 
would have considerable influence. 

The charging time constant is 

R(Rd + r)C RC 70,000 X 0.01 X 10~® 
R + Rd + r R 70,000 

+ ~Rd + r + 700 
= 6.93 microseconds 

and the discharging time constant is 

RC = 70,000 X 0.01 X 10“6 == 700 microseconds 

Thus the discharging time constant is approximately 100 times 
the charging time constant. 

The steady-state value of output voltage during the generator 
pulse can be found from Eq. (159). 

ER 
R + Rd + r 

100 X 70,000 
70,000 + 700 

= 99 volts 

If the generator-pulse width is 30 microseconds, for example, 
then this output voltage is very nearly attained because the 
pulse width is more than four times the charging time constant. 
The pulse response in Fig. 162 was derived for a pulse width 
of 30 microseconds and the value listed above. 

4. Repetitive Generator Pulses.—The analysis for a single 
generator pulse can be extended to the case of a train of pulses. 
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However, unless the discharging time constant is small compared 
with the period, or time separation, of the generator pulses, a 
precise analytical solution is difficult. Nevertheless, a graphical 
solution can be made. Suppose, for instance, that pulses of 
30-microsecond duration start every 200 microseconds as shown 
in Fig. 163, and that they are applied to a diode-detector net¬ 
work that has the previously listed values of parameters. The 
output voltage is also given in Fig. 163. Since the period of 
the applied pulses, 200 microseconds, is small compared with the 
discharging time constant, 700 microseconds, the transient due 
to a given pulse is very large when the next pulse arrives. 

OUTPUT 
VOLTAGE 

Fig. 163.— Output voltage of the diode-detector network for a train of rec¬ 
tangular-generator pulses. The pul.se width is large compared with the charging 
time constant, and the pulae period is .small compared with the discharging time 
constant. On the first rise, the output voltage reaches 99 volts. Subsequent 
maximum output voltages are approximately 100 volts. 

The output voltage is approximately saw-tooth in shape. 
Its average value can be computed in an approximate manner 
by averaging the maximum and minimum values. The maxi¬ 
mum value will be 100 volts, and the minimum value can be 
computed from Eq. (160a). A similar shape of output voltage 
would result for any 30-microsecond pulse irrespective of its 
shape. 

There are other interesting features of this diode-detector 
network that can be analyzed in an approximate manner. 
Some of them are expressed in the form of problems at the end 
of this chapter. However, it is not the primary intent to analyze 
a specific network in great detail but rather to examine the 
fundamental considerations. Of principal importance is the 
marked difference between the physical network and the simpli¬ 
fied network that is used in the analysis. For the particular 
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values of parameters that were used in the example, the results 
are quite accurate, and it would have been wasted effort to 
include all of the stray network parameters. However, in some 
cases the approximations introduced to obtain the network in 
Fig. 160 would lead to results that depart considerably from the 
actual network behavior. 

TUNED AMPLIFIER 

In many instances the classical method is useful merely 
to explain the operation of certain networks. An amplifier 
that contains a tuned plate circuit provides a good example 
of this. While a detailed analysis could be performed, this 
section is intended to give a qualitative explanation only, and 
several approximations will be made that would not be justified 
in a mathematical analysis. 

Fkj. 11>4.—A pentode amplifier that contains a tuned plate circuit and a 
rectangular-pulse grid voltage. Most of the significant stray elements are 

included. 

Figure 104 shows an amplifier that has sufficient fixed voltage 
Ecc in its grid circuit to cut off the flow of plate current. The 
plate circuit consists of a coil of inductance L, which contains, 
inherently, a small amount of resistance represented by R 
Co is the output capacitance of the tube, Ci. is the distributed 
capacitance of the coil, Cw is the wiring capacitance, C,p is the 
plate socket capacitance, and Ci is a variable “tuning” capacitor. 
It is assumed that the lead inductance is negligible. In most 
applications the resistance of the coil is very small, and it has 
been neglected in Fig. 165 for the purpose of this qualitative 
analysis. The plate-to-control grid capacitance Cpe has also 
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been neglected in Fig. 165. The generator pulse is inverted 
-in the plate circuit because the plate voltage decreases when the 
control grid voltage is driven above cutoff by the rectangular 
pulse. The resistance rp, which represents the dynamic plate 
resistance of the pentode, is really not a fixed resistance since 
the grid voltage varies over such a wide range. However, rp is 
very large for a pentode, so, as a rough approximation, it can be 
assumed to be a large fixed value. 

5. Pulse-response Characteristic.—The network in Fig. 165 
can be regarded as a series RLC network insofar as the pulse- 

response characteristic is con- 
—jt cerned, as was shown in Chap. 

VIII. (See Figs. 154a and 
e> 155.) The criterion for the 

I form of the pulse-response 
+c +c +r characteristic can be found on 

t l w o sp the basis of the equivalent 

-two*. The relative 
neglecting many factors. D-c elements value of 1 /rp compared with 
are omitted. 2 tumS OUt to be the 

critical factor. Since 1 /rp is always small compared with 2 -\/C/L 
in this particular application, then the condition for an oscillatory 
output is fulfilled. 

Mr 

Fio. 166.—Output voltage of the tuned amplifier for a single rectangular pul.se. 

Figure 166 shows the output voltage for the case of a single 
rectangular pulse. The pulse width is small compared with the 
periodj>f the oscillatory output. The period is approximately 
2k \/LC [see Eq. (87), Chap. V] since RL has been neglected and 
rv is very large. The damping is gradual for the same reasons. 
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The single pulse causes a burst of energy to flow into the 
plate circuit, and this energy is exchanged in an oscillatory, 
manner between L and C. However, the amount of energy in the 
plate circuit gradually decreases because of the fact that rv and 
Rl (which has been neglected) dissipate energy. The actual 
source of energy is the plate supply battery Eu,, and the control 
grid functions as a valve that permits energy to flowr from Eu, 
into the plate circuit during the pulse. 

6. Repetitive Generator Pulses.—When a train of pulses is 
applied to the grid of the amplifier, the transient due to one 
pulse does not have time to diminish to a negligible value before 

Oscillation 

Fio. 167.™Output voltage of the tuned amplifier when a train of generator 
pulses is applied. The amplifier plate circuit is tuned to the frequency of the 
applied pulses. 

the subsequent pulse arrives, unless the pulse period is extremely 
large compared with the natural or freely oscillating period of 
the plate circuit. This property is taken advantage of in two 
important applications. In one, the tuning capacitor C\. is 
adjusted so that the free period of oscillation of the plate circuit 
is exactly equal to the period of the pulses applied to the control 
grid. When the amplifier is used in this manner, it is called a 
Class C amplifier. In practice, the pulses on the control grid 
are derived from the peaks of a sinusoidal signal that has the 
same period as the natural period of the plate circuit. These 
peaks are often assumed to be approximately rectangular for 
ease of analysis. A second common application of this network 
is as a frequency multiplier. When used as a frequency doubler, 
the tuning capacitor is adjusted so that the free period of oscilla- 
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tion in the plate circuit is exactly equal to one-half the period 
of the applied pulses; in other words, the plate-circuit natural 
irequency is tuned to twice the frequency of the applied pulses. 

Class C Amplifier.—Figure 167 shows the output voltage 
for the case when the plate circuit is tuned to the frequency 
of the applied pulses. From this figure it can be seen that 
equilibrium is reached, after a short transitional period, and 
the output voltage consists of a sustained sinusoidal oscillation 
that has a period equal to the natural or free period of oscillation 

Oscr/fotion 
period 

Fig. 168.—Output voltage of the tuned amplifier when the plate circuit is tuned 
to twice the frequency of the applied pulses. 

of the plate circuit. The pulse occurs at just the right instant 
in the sinusoidal cycle to reenforce the oscillation Since the 
natural damping in the plate circuit is not great, the output 
voltage is very nearly a perfect sine wave. 

Frequency Doubler.—If the tuning capacitor is adjusted 
so that the plate circuit is tuned to twice the frequency of the 
applied pulses, the output voltage will again consist of a sus¬ 
tained oscillation. This condition is shown in Fig. 168. The 
output voltage has a period that is determined mainly by 
the parameters L and C; this period is one-half the period of 
the applied pulses. Again the pulse occurs at just the right 
instant in the sinusoidal cycle to reenforce the oscillation. 
Notice the slight effect due to damping because in this case 
two full cycles of free oscillation must take place before the out¬ 
put is reenforced by a succeeding pulse. 

Energy Considerations.—The oscillation in the plate circuit 
is due, fundamentally, to an exchange of energy between L and 
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C; the source of this energy is the plate supply battery. For 
a single pulse, the oscillation endures for a comparatively 
short time and gradually dies out because the energy supplied 
during one pulse is eventually dissipated in rp and RL. How¬ 
ever, when a train of pulses exists, energy is supplied periodically 
to the oscillating circuit. There is an initial build-up of the 
amount of energy involved, and subsequently an equilibrium 
is reached when the amount of energy supplied to the oscillating 
circuit is exactly equal to the amount of energy dissipated in it 
between bursts of supplied energy. 

SIMPLE FILTERS 

In the examples given so far, the pulse-response characteristics 
have been used to good advantage. In the case of the diode 
detector an output voltage was produced that was proportional 
to the pulse voltage and hence contained useful information. 
In the case of the tuned amplifier, advantage was taken of an 
oscillatory condition to produce a sustained sinusoidal oscilla¬ 
tion from a train of pulses. However, in some cases the presence 
of an output voltage that is due to pulses is not desired. Many 
networks have been designed specifically to eliminate from their 
output any voltage due to pulses at the network input. Such 
networks are called filters. 

When the voltage due to a pulse is not desired in the output 
of a network, this does not mean 
that a knowledge of its pulse- 
response characteristic is un¬ 
important. On the contrary, 
advantage must be taken of the 
pulse-response characteristics so 
that the output pulse is mini- 
mixed, and a knowledge of the . ,Ku)-. 169 generator that is 

/ ° delivering power to a load resistance 
transient response, of networks is R. E is a pulse originating within the 

required to get rid of the output «enerator- 

voltage as well as to utilize an output voltage that results from a 
pulse input. 

The network in Fig. 109 shows a source of direct voltage, 
represented by a battery of internal resistance r, that is delivering 
current to a load consisting of a pure resistance It. The source 
of the direct voltage might actually be a dynamo (d-c generator), 

>/? 
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vibrator power supply, or vacuum-tube power supply, to name a 
few. In addition, a rectangular pulse voltage exists that 
originates somewhere within the source of the direct voltage 
and cannot be eliminated from the generator. The appearance 
of a pulse across the load R is assumed to be particularly objec¬ 
tionable. A means of minimizing the voltage across R that is 
due to the rectangular pulse must be found. At the same time 
the d-c conditions must be preserved as nearly as practicable. 

If a network that has a suitable pulse-response characteristic 
is placed between the generator and the load, the undesired 
pulse voltage can be almost completely eliminated from the 
load with little sacrifice in direct voltage. The simple networks 
shown in Fig. 170 can be used in this application. Since the 

(a) (b) 
Fig. 170.—Two filters that can be used to reduce the pulse voltage appearing 

across the load in the network of Fig. 169. 

filtering properties of these two networks are going to be com¬ 
pared, the series resistance Rl is assumed to be the same in both 
networks. This is done in order to make them equivalent 
as far as the direct current is concerned, since in both cases 
the load current will flowr between the terminals 1-3. In other 
words, the same direct voltage drop will occur across each filter 
when it is inserted between the load and the generator. 

It is important to realize that certain assumptions have already 
been made. Some of them are 

1. The lead inductance is negligible in all cases. 
2. The inductance inherent in C is negligible. 
3. The distributed capacitance of L and of the resistor in 

the network in Fig. 170a is negligible. 

4. The capacitance across terminals 1-2 and 3-4 is negligible. 
As a matter of fact, all the elements have been assumed to be 
ideal with the exception of the inductor L whose inherent resist¬ 

ance Rl has been taken into account. These assumptions 
are usually justified for this application. 
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7. Equations for Output Pulse.—Since the filters are equiva¬ 
lent as far as direct current is concerned, it is possible to neglect 
the presence of the battery for the purpose of a pulse analysis. 
To compare these two filters, they can be inserted between the 
source of the rectangular pulse and the load as shown in Fig. 171. 

RC Filter.—The pulse-response characteristic of the network 
in Fig. 171a can be determined indirectly by finding the equiv¬ 
alent series network. The differential equation for the load 

Fig. 171 .--Connection of filters l>ctween the generator and the load. The d-e 
generator has been omitted for the purpose of the pulse analysis. 

current i in terms of t only can be found by applying Kirchhoff's 
laws to the network. Two independent voltage equations are 

E = (Rl + r)(ii + i) + Ri (161) 

^ = Ri (162) 

To eliminate i\ from Eq. (161), solve Eq. (162) for qx and differ¬ 
entiate. 

$1 = RCi 

it-"-RCh 

Substituting this value of ix into Eq. (161) results in the desired 
differential equation for i in terms of time only. 

E = R(R,. + r)C jt + (R + R,. + r)i 

The coefficients of this equation determine the parameters of 
the equivalent series network given in Fig. 172. This equivalent 
network enables a remarkable comparison to be made between 
the two filters: the equivalent series network and the network 
in Fig. 1716 will be identical if Ls = R(Rl + r)C is equal to L. 
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The equations for the output voltage can be found on the 

basis of the equivalent series network, which is the same as the 

network in Fig. 46, Chap. IV. The output-voltage equations are 

es 
_ER_ 

R + Rl "t" j 
; [1 

_(« + /?/.+r)* 
e ft(«L + r)C] 

ER 

R + Rl + r 

(R + Ri+r)T 

- 1]€ 

(R±RL-rr)t 
ft(fit+nC 

(163) 

(104) 

L Filter.—The equations for output voltage for the network 

in Fig. 1716 are of the same form as Eqs. (54) and (57) which 

Fig. 172.—Equivalent serien network for that in Fig. 171a. Note that the two 
filters in Fig. 171 are basically the same. 

were derived in Chap. IV for the same type of network. They 

are 

eK = 
ER 

R + Rl + r 

ER 

e° R + R,.+ r 

[1 - 

frt + «/.+r)< 

L 1 

(« + Rl +r)T 

* L L 

(105) 

(100) 

These equations are essentially the same as Eqs. (163) and (104) 

since the equivalent series network is basically the same as the 

L-filter network. 

8. Filtering Properties.—The equations for output voltage 

show that each network will have an identical pulse-response 

characteristic provided 

Ls = R(Rl + r)C = L 

Therefore, either filter can be equally effective in minimizing 

the voltage pulse that appears across the load resistance R. 

A specific example will serve to demonstrate the effectiveness 

of the filter. Suppose the direct voltage of the generator 

is 200 volts, the internal resistance is 20 ohms, the load resistance 

is 2,000 ohms, the pulse voltage that appears across the load 
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resistance is 99 volts when no filter is employed, and the pulse 

width is 15 microseconds. Figure 173 illustrates the load 

voltage as a function of time for these particular values. 

The direct load voltage is 198 volts because there is a 2-volt 

drop across R due to the direct current. 

... .1 1 u E*<R 200 X 2>°°0 mo ,x 
Direct load voltage = = -2020- = volts 

o 
cr* 
o +- - 
o 
> 

3 
o 

e-- 99 volts 

Er-'198 volts 

T=/S microseconds 

_t__ 
Time—► 

Ku». 173.—Load voltage of the network in Fig. 169 with no filter. 

Since the pulse voltage across the load resistance is 99 volts, 

the generator voltage is 100 volts. 

Pulse load voltage = 
ER _ 2,000£ 

R + r “ 2,020 
= 99 

E = 
2,020 X 99 

2,000 
100 volts 

A suitable criterion for effectiveness of filtering can be defined 

in percentage by the ratio 

F — instantaneous load voltage due to pulse alone 

direct load voltage 

This ratio will be zero for perfect filtering. In the case of no 

filter at all, the ratio is 

F = 9?i9s X 100 = 50 per cent 

Now suppose the filter in Fig. 170a with Rl = 180 ohms 

and C = 0.25 /if is introduced between the generator and the 
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load as shown in Fig. 174. The same filtering will take place 

if the filter in Fig. 1706 is used with a value of 

L = R(RL + r)C = 2,000(200)0.25 X 10~6 = 0.1 henry 

and Rl = 180 ohms 

To evaluate the ratio F, first the direct load voltage can be 

computed. It will be less than 198 volts now’, due to the addition 

of the 180-ohm series resistor. 

tv ^ u E*'R 200 X 2,000 too u 
Direct load voltage = +7^7+7 = " 2,200 " = 182 Volts 

r--20^ Rl=/80~ 

Fig. 174.—Numerical example of an HC filter network. F = 14.1 per cent. 

The peak instantaneous load voltage due to a generator pulse 

of 100 volts can be found from Eq. (163) or (165). The steady- 

state value of output pulse during the generator pulse is 

_ER_ 

R + Rl ~h t 

100 X 2,000 

2,200 
91 volts 

and the time constant is 

L = R(Rl + r)C ^ 2,000 X 200 X 0.25 X IQ"6 

R -f* Rl “hr R Rl v 2,200 

= 45.5 microseconds 

The peak output voltage occurs at l = T. 

15 

(€e)t - 91(1 - € «■*) = 91(1 - «-»■«) = 25.6 volts 

Therefore, the ratio F is 

F = X 100 = 14.1 per cent 

If a greater reduction in pulse voltage is desired, it is neces¬ 

sary to increase the network time constant. As the ratio of 
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the pulse width to the time constant approaches zero, F will 

approach zero. Suppose C is increased by a factor of four to 

a value of 1.0 /if. Then the ratio of pulse width to time constant 

is decreased by a factor of four: from 0.33 to 0.082. The time 

constant with C = 1.0 /if is 

45.5 X = 182 microseconds 
0.25 X 10~* 

The peak pulse voltage is then 

{eE)T = 91(1 - £—0.082) = 91(1 _ o.92) = 7.28 volts 

and the filtering ratio becomes 

(a) Time-’-* (b) Time^* 
Fiu. 175. -Load voltage of the network in Fig. 174 for two filters with different 

time constants. In (a), C = 0.25 pi as shown in Fig. 174. In (5), C «* 1.0 ni. 
T — 15 microseconds. 

The load voltage in each of these cases is shown in Fig. 175. 

The pulse output in Fig. 1755 is approximately the integral 

of the generator pulse since the network time constant is very 

large compared with the pulse width. 
Before concluding this section it is well to point out that 

the two filters presented will give comparable filtering for any 

pulse shape, provided the network time constant is very large 

compared with the pulse width. There are other filter networks 

that give much smaller values of the filtering ratio, and the two 

that have been discussed were presented mainly as simple exam¬ 

ples that demonstrate the fundamental principles. 

PULSE AMPLIFIER 

It is sometimes desired to increase the voltage of small rec¬ 

tangular pulses. This is commonly done by means of a vacuum- 
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tube amplifier. A resistance-capacitance coupled amplifier will 
serve this purpose if the reproduction of pulse shape is not 
an important factor. However, if it is necessary to amplify 
the pulse with minimum change in shape, a video amplifier is 
superior.1 

The resistance-capacitance coupled amplifier shown in Fig. 17G 
will be analyzed. A small positive rectangular voltage E of 
duration T is applied to the control grid of the amplifier tube. 
This pulse will appear in the plate circuit, and the voltage across 
R is the output voltage. The output can be applied to the grid 
of a succeeding amplifier as shown. The object of this analysis 
is twofold: (1) to determine the amplification that takes place; 

Fig. 176.—Resistance-capacitance coupled amplifier in which most of the stray 
parameters are shown. The shunt resistance inherent in Cs is neglected. 

i.e.y the ratio of the output pulse amplitude to the input pulse 
amplitude, and (2) to determine the shape of the output pulse. 

9. Simplification of Network.—Before the analysis can be 
performed, the inescapable job of simplifying the network by 
neglecting factors that are insignificant in determining the 
pulse-response characteristic must be performed. The follow¬ 
ing assumptions are usually justified: 

1. The lead inductances L are negligible provided the leads 
are kept as short as possible. 

2. The plate-to-control grid capacitance* of the pentode 
amplifier is negligible. 

3. The generator internal resistance r is so small that the input 
capacitance C{ connected across the generator is negligible. 

1 D. G. Fink, “Principles of Television Engineering,” 1st ed., Chap. VI, 
McGraw-Hill Book Company, Inc., New York, 1940. 
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4. The pulse voltage applied to the control grid of the amplifier 
is so small that the amplifier operates in a linear manner. 

Other assumptions could be made, but no further simplifica¬ 
tion of the network would result, so no other parameters will be 
omitted; i.e.y Co and C< cannot be neglected, and C,p, CRl, and 
Cwi can be lumped across Co while C9gy Cr, and CWi can be lumped 
across C<. 

These assumptions are represented by the equivalent plate 
circuit in Fig. 177a, where rp is the dynamic plate resistance 
of the tube and ^ is its control grid-to-plate amplication factor.1 

(a) 

Fig. 170 after neglecting some of the stray parameters. D-c elements are 
omitted. 

Since the pulse-response characteristic is of interest, all d-c 
elements have been omitted. The negative generator voltage 
merely signifies that the output pulse will be negative for an 
applied pulse that is positive. 

10. Pulse-response Characteristic.—Application of Th^venin’s 
theorem to the network in Fig. 177a reduces it to that shown 
in Fig. 1776. To determine the pulse-response characteristic 
of this network it is convenient to find the equivalent series 

lFor a treatment of the. equivalent plate circuit of amplifiers refer to 

J. Millman and S. Seely, “Electronics,” Chap. XVII, McGraw-Hill Book 

Company, Inc., New York, 1941. 
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network. This can be done by obtaining the differential equa¬ 
tion for i in terms of time only. Kirchhoff’s laws enable the 
following voltage equations to be written: 

- wrr,+ ■> + Hr + Ri (167) 

S - Hr + Ri o«» 

To eliminate all variables except i and /, proceed as follows: 
From Eq. (168), q2 = RCi and 

dq2 . _ D/nr di 

From Eq. (169) 

gr (q + Qz) + RC1 i 

Substitute qz = RCi for q2. 

qi = 7r1(q + RCi) + RCxi 
C 2 

Differentiate. 

h , _ Ci /. 
7 ~ r,\ + Rcm) + Rc4 

Substitute these relations into Eq. (1(>7). 

—jiERi _ RiTp 
Ri + r, Ri + rp [sc i + RcfJ + RC^i + RC RCi + ‘] 

q + RCi , , 

Collect like terms. 

-nERi _ f RtRrp (CCi , n i Wdi 
It +rv ~ Ui + rAc2 + + l)\dt 
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The coefficients of this differential equation determine the 
parameters of an equivalent series network. The equivalent 
series parameters are 

Es 

Ls 

Rs 

Cs 

Figure 178 shows the equivalent series network that has the 
same pulse-response characteristic as those in Fig. 177. 

Since the actual network is assumed to contain no inductance, 
then the equivalent network in Fig. 178 must be overdamped, 

— nERi 
Ri + rp 
R\Rrp 

Ri + rp \ C2 
(CCx 
\ c2 + c + c 

Rir _ R , RC , 
-r + c; + r1 + 
= c2 

;■) 

vM+0 

i.e.y Ms2 > Ns. The equations for output voltage both during 
and after the generator pulse can be found as in Chap. V, but 
because such a network has already been analyzed, advantage 
can be taken of the equations already derived. Equations (94) 
and (101) pertain to such a network for the case where M2 > N. 
If the values of the network parameters RS} Ls, and Cs are sub¬ 
stituted for (R + r), L, and C in the network in Fig. 82, Chap. V, 
then the following equations can be written directly: 

Ck = 

e0 = 

2EaRMs€~MMt 

Rs VMs2 - Ns 
sinh y/Ms2 — Ns t 

— 2EsRM st~Mat 

Rs y/itV^Na 

[eWsr sinh y/Ms2 - Ns (t - T) - sinh y/MJ - Ns /] 

(940 

(ion 
11. Specific Example.—For a given amplifier tube, there are 

essentially three parameters over which control can be exercised; 
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namely, Rif C*, and ft, because m, rp, C0, and C\ are determined 
by the tube, and C,p. CRxf CWx, C$0, CR, and C.r, can be held to a 
small minimum value in most cases. Suppose a given amplifier 
circuit has the following values: 

rp = 10* ohms 
M = 1,500 

Co = C, = 6 /i/if 
C,p — C,g — C Rl — C H — 1 

CMl = Cu-S = 2 MMf 
C2 = 1,000 /i/if 

fti = 10* ohms 
R = 105 ohms 

Then Ci and C in the networks in Fig. 177 are each equal to 
10 wf or 10~n farad. 

The values of the network parameters and other network 
constants can now be computed. It is usually wasted effort to 
compute values to accuracy that is better than 1 per cent since 
the network elements are usually known to an accuracy of only 
5 to 20 per cent. 

_ —fiERi _ —nE(Ri/rp) 
3 Ri + rp 1 + (Ri/rp) 

_ -1.5 X 103 X E X (loyio*) _ -15E 

L$ — RiRrp 
Ri + r 

1 + (10V10") 1:01 
« -15 E 

_ 104 X 106 X 10- 
1 + (104/10») 

Ca = Ci = 1,000 MMf = 10~9 farad 

11 / 10_u\ 
[2 + « 0.02 henry 

1 

*-i + sS + SBTi(k + l) 
- + ^(yp,1 + l) » 11 X 104 ohms = 10s + 

10s X 10-' 
10-» 

Ms - — =_ 

’ 2La 2 X 0.02 
= 2.75 X 10‘ 

Msi = (2.75)2 X 10'= = 7.56 X 1012 

Na = 1 ■■ . = 5 X 1010 

Ma2 
Na 

eta 

LaCa 0.02 X 10~* 
7.56 X 1012 

5 X 10'° 
= 151 

= tanh- yjl - « tanh-> yj 1 
1 

151 
= tanh~l 0.997 » 3.2 
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Since Ms2 is 151 times Ns, the network is considerably over¬ 
damped. Recall that the output voltage of the network in 
Fig. 178 will go through a maximum during the generator pulse 

< Generator puke, 2 microseconds 

, Generator pulse. 

Fig. 179.—Output pulses of the amplifier in Fig. 176 for three different generator- 
pulse widths of equal amplitude E. 

if the pulse width permits. (See Fig. 83.) The time at which 
this maximum occurs is given by Eq. (99) in Chap. V. 

At as _ ^ CKs _ 3.2 
1 = y/M? - :V7, ~ Ms V^TNs/Ms^) “ Ms - 2.75 X 10* 

= 1.16 microseconds 
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This means that the pulse to be amplified must be at least 
1.16 microseconds in width if the output voltage is to reach its 
maximum value. The maximum value of output voltage is 
given by Eq. (100), Chap. V. 

eEa 
^EsRMs ^ 2EsRM. _a, 

Rs Ns Rs VN~* 
-2 X 15E X 10‘ X 2.75 X 106 _32 

11 X 104 X 2.24 X 106 € 
-13.7E 

Therefore, the magnitude of the voltage gain of the amplifier is 

Peak output voltage _ 13.7E _ ^7 

Peak input voltage E 

The output pulse is shown in Fig. 179 for several different 
pulse widths. The time that is necessary for the output to go 
from zero to one half its maximum value is the time delay, and 
is approximately 0.12 microsecond for this amplifier. 

CONCLUSION 

The illustrations in this chapter represent only a few instances 
in which the classical method can be utilized for a pulse analysis 
of practical networks. There are many other interesting exam¬ 
ples. However, the significant steps in the analytical procedure 
have been covered, and they should serve as a guide for the pulse 
analysis of other networks. These steps are 

1. Examine the physical network and draw a complete circuit 
that includes all stray elements. 

2. On the basis of experience, common sense, etc., omit 
all elements that will have negligible influence upon the pulse- 
response characteristic. 

3. Analyze the simplified network directly, or by converting 
it to an equivalent series network. 

In retrospect, it can be seen that Chaps. Ill, IV, and V 
contain the basic and underlying analyses of all of the networks 
discussed in this book. Subsequent chapters have served 
to show that the equations in Chaps. Ill, IV, and V are not 
necessarily confined to the particular networks from which 
they were derived. A similar pattern is found in the study 
of most engineering subjects; a relatively small amount of 
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information opens the way to a field of numerous and diverse 
applications. 

Problems 

Prob. 1. I Ising the values given on page 235 for the diode detector in 

Fig. 159, compute the approximate average value of the output voltage for a 

pulse width of 50 microseconds and a pulse period of 150 microseconds. 

Prob. 2. In Prob. 1, suppose generator pulses are alternately 100 volts 

and 80 volts in amplitude. It is desired to have the output voltage follow 

this variation in pulse amplitude; ?.e., the voltage across C must decay to 

.80 volts by the time an 80-volt pulse arrives at the input. 

a. If Ri only is changed, what new resistance is required? 

b. If f i only is changed, what new value of capacitance is required? 

c. Draw a sketch of the output voltage. 

Prob. 3. It is desired to reduce the output voltage ripple shown in Fig. 

163. Ksing the values given on page 235. what additional capacitance must 

be connected in parallel with <\ in order to achieve a difference of 10 volts 

between the maximum and minimum values of output voltage? 

Prob; 4. Kxplain by means of sketches why it is impossible for sustained 

oscillation to take place in the plate circuit of the amplifier in Fig. 164 when 

the* natural period of the plate circuit is equal to twice the period of the 

applied pulses. 

Prob. 6. Is sustained oscillation possible in the tuned amplifier in Fig. 164 

when the natural period of the plate circuit is the period of the applied 

pulses? Kxplain. 

Prob. 6. I n Fig. 169, the rectangular-pulse generator voltage is 50 volts. 

T = 10 microseconds, the d-c generator voltage is 300 volts, r = 120 ohms, 

and R = 2,800 ohms. The filter in Fig. 170a is used with Rl = 80 ohms 

and a filtering ratio of 6.3 per cent is achieved. What is the value of 0? 

Prob. 7. In Prob. 6 suppose Rl = 0. What value of C is then required 

to achieve a filtering ratio of 6.3 per cent? 

Prob. 8. The plate load resistor R\ in the pulse amplifier shown in Fig. 

176 is changed from U)4 ohms to 5 X 103 ohms. All other values are the 

same as listed on page 252. 

a. What is the maximum pulse gain of the amplifier? 

b. What is the minimum pulse width that can be amplified without 

encountering a decrease in gain? 





APPENDIX I 
Table V.—Exponentials [«* and «“**] 

50 . 649 
51 1.665 
52 1 L .682 
53 ] L.699 

.11 1.110 

.12 1.127 
13 1.139 

.14 1.150 

0.15 1.162 
.16 1.174 

17 1.185 
.18 1.197 

19 1.209 

0.10 1.221 

.22 1.246 

.23 1.259 

.24 1.271 

0.25 1.284 
.26 1.297 
.27 1.310 
.28 1.323 
29 1.336 

0.80 1.350 
.31 1.303 
.32 1.377 
.33 1.391 
.34 1.405 

0.35 1.419 
.30 1.433 
.37 1.448 
.38 1.402 
.39 1.477 

0.40 1.492 
.41 1.507 
.42 1.522 

47 1.600 
48 1.616 
49 1.632 

.91 2.484 

.92 2.509 

.93 2.535 

1.0 2.718* ».00 1.000 
.1 3.004 I .0110.990 
.2 3.320 
.3 3.669 
.4 4.055 

1.6 4.482 
.6 4.953 
.7 6.474 
.8 6.050 
.9 6.686 

1.0 7.389 
.1 8.166 
.2 9.025 
.3 9.974 
.4 11.02 

2.5 12.18 
.6 13.46 
.7 14.88 

| .8 16.44 
.9 18.17 

8.0 20.09 
.1 22.20 
.2 24.53 
.3 27.11 
.4 29.96 

3.5 33.12 
.6 36.60 
.7 40.45 
.8 44.70 
.9 49.40 

4.0 54.60 
.1 60.34 
.2 66.69 
.3 73.70 
.4 81.45 

5.0 148.4 
6.0 403.4 
7.0 1097. 

8.0 2981. 
9.0 8103. 

10.0 22026. 

*72 4.810 
2ir/2 23.14 
3*72 111.3 
4r/2 535.5 
5*72 2576. 
6*/2 12392. 
7*72 59610. 
8*/2 280751. 

.50.607 1.0.368* 

.51 .600 .1 .333 

.52 .595 .2 .301 

. 53 .589 .3 .273 

.54 . 583 . 4 . 247 

.55 .577 1.5 .223 

.56 .571 .6 .202 

. 57 .566 .7 .183 

.60 .549 8.0 .135 

.61 .543 . 1 .122 

.62.538 .2.111 

.63 . 533 . 3 .100 

.64 .527 .4 .0907 

.65.522 2.5.0821 

.66 .517 .6 .0743 

.67.512 .71.0672 

.68 . 507 . 8 . 0608 

.69 .502 .9 .0550 

.70.497 3.0’.0498 
.71 .492 .1; .0450 
.72.487 .2' 0408 
.73.482 .3.0369 
.74 .477 .4 .0334 

.75.472 3.5.0302 

.76 .468 .6 .0273 

.77 .463 .7 .0247 

.78.^58 .8.0224 

.79 .454 .9 .0202 

.80 .449 4.0 .0183 

.81 .445 .1 .0163 

.82.440 .2.0150 

.83 .436 .3 .0136 

.84 . 432 . 4 . 0123 

.85 .427 4.5 .0111 
QA J09 

.87 .419 5.0 .00674 

.88 .415 6.0 .00248 

.89 .411 7.0 .000912 

.90 .407 8.0 . 000335 

.91 403 9.0 .000123 

.92 .399 10.0 .000045 

.93 . 395 

.94 .391 *r/2 .208 
2*/2 .0432 

.95 .387 3r/2 .00898 

.96 .383 4*/2 .00187 

.97 .379 5*/2 .000388 

.98 .375 6*/2 .000081 

.99 . 372 7*/2 . 0000x7 

* Noth: Do not interpolate in this column. 
• - 2.71828 1/« - 0.367879 logio « - 0.4343 

togio (0.4343) - 1.6378 logt* («•) 
From Marks " Mechanical Engineers' Handbook." 

9A7 

1/(0.4343) - 2.3026 
- «(0.4843) 
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Table VI.—Hyperbolic Sises [sinh x » 12(*' — «“x)] 

X 0 l 2 3 4 5 6 7 8 mm 
0.0 .0000 .0100 .0200 .0300 .0400 .0500 .0600 .0701 .0801 .0901 100 

1 .1002 .1102 . 1203 . 1304 . 1405 . 1506 . 1607 . 1708 . 1810 . 1911 101 
2 .2013 .2115 .2218 . 2320 .2423 .2526 .2629 . 2733 .2837 .2941 103 
3 . 3045 .3150 . 3255 .3360 .3466 .3572 . 3678 . 3785 . 3892 .4000 106 
4 .4108 .4216 .4325 .4434 .4543 . 4653 .4764 .4875 .4986 .5098 110 

0.5 .5211 .5324 .5438 .5552 .5666 .5782 . 5897 .6014 .6131 .6248 116 
0 .6367 .6485 .6605 .6725 .6846 .6967 .7090 .7213 .7336 .7461 122 
7 .7586 .7712 .7838 .7966 .8094 .8223 .8353 .8484 .8615 .8748 130 
8 .8881 .9015 .9150 .9286 .9423 .9561 .9700 .9840 .9981 1.012 138 
9 1.027 1.041 1.055 1.070 1.085 1.099 1.114 1.129 1.145 1.160 15 

1.0 1.175 1.191 1.206 1.222 1.238 1.254 1.270 1.286 1.303 1.319 16 
1 1.336 1.352 1.369 1.386 1.403 1.421 1.438 1.456 1.474 1.491 17 
o 1.509 l. 528 1.546 1.564 1.583 l. 602 1.621 l. 640 1.659 1.679 19 
3 1.698 1.718 1.738 1.758 1.779 1.799 l. 820 1.841 1.862 1.883 21 
4 1.904 1.926 1.948 1.970 l. 992 2.014 2.037 2.060 2.083 2.106 22 

1.5 2. 129 2. 153 2.177 2.201 2.225 2.250 2.274 2.299 2.324 2.350 •>5 

6 2.376 2.401 2.428 2.454 2.481 2.507 2.535 2.562 2.590 2.617 27 
7 2.646 2.674 2.703 2.732 2.761 2.790 2.820 2.850 2.881 2.911 30 
8 2.942 2.973 3.005 3.037 3.069 3.101 3. 134 3.167 3.200 3.234 .33 
9 3.268 3.303 3.337 3.372 3.408 3.443 3.479 3.516 3.552 3.589 36 

1.0 3.627 3.665 3.703 3.741 3.780 3.820 3.859 3.899 3.940 3.981 
1 4.022 4.064 4. 106 4. 148 4.191 4.234 4.278 4.322 4.367 4.412 
2 4.457 4.503 4.549 4.596 4.643 4.691 4.739 4.788 4.837 4.887 
3 4.937 4.988 5.039 5.090 5.142 5.195 5.248 5.302 5.356 5.411 
4 5.466 5.522 5.578 5.635 5.693 5.751 5.810 5.869 5.929 5.989 

9.5 6.0.50 6.112 6.174 6.237 6.3(H) 6.365 6.429 6.495 6.561 6.627 64 
6 6.695 6.763 6.831 6.901 6.971 7.042 7.113 7.185 7.258 7.332 ■r 

7 7.406 7.481 7.557 7.634 7.711 7.789 7.868 7.948 8.028 8.110 
8 8. 192 8.275 8.359 8.443 8.529 8.615 8.702 8.790 8.879 8.969 
9 9.060 9. 151 9.244 9.337 9.431 9.527 9.623 9.720 9.819 9.918 1 

3.0 10.02 10. 12 10.22 10.32 10.43 10.53 10.64 10.75 10.86 10.97 
1 11.08 11.19 11.30 11.42 11.53 11.65 11.76 11.88 12.00 12.12 
2 12.25 12.37 12.49 12.62 12.75 12.88 13.01 13.14 13.27 13.40 
3 13.54 13.67 13.81 13.95 14.09 14.23 14.38 14.52 14.67 14.82 
4 14.97 15.12 15.27 15.42 15.58 15.73 15.89 16.05 16.21 16.38 

8.5 16.54 16.71 16.88 17.05 17.22 17.39 17.57 17.74 17.92 18.10 17 
6 18.29 18.47 18.66 18.84 19.03 19.22 19.42 19.61 19.81 20.01 19 
7 20.21 20.41 20.62 20.83 21.04 21.25 21*46 21.68 21.90 22.12 
8 22.34 22.56 22.7) 23.02 23.25 23.49 23.72 23.96 24.20 2+. **5 24 
9 24.69 24.94 25.19 25.44 25.70 25.96 26.22 26.48 26.75 27.02 26 

4.0 27.29 27.56 27.84 28.12 28.40 28.69 28.98 29.27 29.56 29.86 29 
1 30.16 30.47 30.77 31.08 31.39 31.71 32.03 32.35 32.68 33.00 32 
2 33.34 33.67 34.01 34.35 34.70 35.05 35.40 35.75 36.11 36.48 35 
3 36.84 37.21 37.59 37.97 38.35 38.73 39.12 39.52 39.91 40.31 39 
4 40.72 41.13 41.54 41.96 42.38 42.81 43.24 43.67 44.11 44.56 43 

4.5 45.00 45.46 45.91 46.37 46.84 47.31 47.79 48.27 48.75 49.24 47 
6 49.74 60.24 50.74 51.25 51.77 52.29 52.81 53.34 53.88 54.42 52 
7 '54.97 55.52 56.08 56.64 57.21 57.79 58.37 58.96 59.55 60.15 58 
8 '60.75 61.36 61.98 62.60 63.23 63.87 64.51 65.16 65.81 67.47 64 
9 67.14 67.82 68.50 69.19 69.88 70.58 71.29 72.01 72.73 73.46 71 

5.0 74.20 

If * > 5, ainh r. -■ and logio alnh r *» C0.4343)x + 0.6990 — 1, correot to four 
nignificant figure*. 

From Mark*, ” Mechanical Engineer*’ Handbook.” 
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Table VII.—Hyperbolic Cosines [cosh z = }^(e* -+-€“*)] 

0 1234 5 6789 

0.0 1.000 1.000 1.000 1.000 1.001 
1 1.005 1.006 1.007 1.008 1.010 
2 1.020 1.022 1.024 1.027 1.029 
3 1.045 1.048 1.052 1.055 1.058 
4 1.081 1.085 1.090 1.094 1.098 

0.6 1.128 1.133 1.138 1.144 1.149 
6 1.185 1.192 1.198 1.205 1.212 
7 1.255 1.263 1.271 1.278 1.287 
8 1.337 1.346 1.355 1.365 1.374 
9 1.433 1.443 1.454 1.465 1.475 

1.0 1.543 1.555 1.567 1.579 1.591 
1 1.069 1.682 1.696 1.709 1.723 
2 1.811 1.826 1.841 1.857 1.872 
3 1.971 1.988 2.005 2.023 2.040 
4 2.151 2.170 2.189 2.209 2.229 

1.6 2.352 2.374 2.395 2.417 2.439 
6 2.577 2.601 2.625 2.650 2.675 
7 2.828 2.855 2.882 2.909 2.936 
8 3.107 3.137 3.167 3.197 3.228 
9 3.418 3.451 3.484 3.517 3.551 

2.0 3.762 3.799 3.835 3.873 3.910 
1 4.144 4.185 4.226 4.267 4.309 
2 4.568 4.613 4.658 4.704 4.750 
3 5.037 5.087 5.137 5.188 5.239 
4 5.557 5.012 5.667 5.723 5.780 

2.5 0.132 0.193 6.255 0.317 6.379 
6 0.769 6.836 6.904 0.973 7.042 
7 7.473 7.548 7.623 7.699 7.770 
8 8.253 8.335 8.418 8. .’>02 8.587 
9 9.115 9.2009.2989.3919.484 

3.0 10.07 10.17 10.27 10.37 10.48 
1 11.12 11.23 11.35 11.40 11.57 
2 12.29 12.41 12.53 12.66 12.79 
3 13.57 13.71 13.85 13.99 14.13 
4 15.00 15.15 15.30 13.45 15.61 

3.6 16.57 16.74 16.91 17.08 17.25 
6 18.31 18.50 18.68 18.87 19.00 
7 20.24 20.44 20.64 20.85 21.06 
8 22.36 22.59 22.81 23.04 23.27 
9 24.71 24.96 25.21 25.46 25.72 

4.0 27.31 27.58 27.86 28.14 28.42 
1 30.18 30.48 30.79 31.10 31.41 
2 33.35 33.69 34.02 34.37 34.71 
3 36.86 37.23 37.60 37.98 38.30 
4 40.73 41.14 41.55 41.97 42.39 

4.6 45.01 45.47 45.92 40.38 40.85 
0 49.75 50.2550.7551.2651.78 
7 54.98 55.53 56.09 56.65 57.22 
8 60.76 61.37 61.99 62.61 63.24 
9 67.15 67.82 08.50 69.19 69.89 

6.0 74.21_ 

1.001 1.002 1.002 1.003 1.004 1 
1.011 1.013 1.014 1.016 1.018 2 
1.031 1.034 1.037 1.039 1.042 3 
1.062 1.066 1.069 1.073 1.077 4 
1.103 1.108 1.112 1. 117 1.122 

1.155 1.161 1.167 1.173 1.179 6 
1.219 1.226 1.233 1.240 1.248 7 
1.295 1.303 1.311 1.320 1.329 8 
1.384 1.393 1.403 1.413 1.423 10 
1.486 1.497 1.509 1.520 1.531 11 

1.604 1.610 1.629 1.642 1.655 13 
1.737 1.752 1.706 1.781 1.796 14 
I. 888 1.905 1.921 1.937 1.954 16 
2.058 2.076 2.095 2.113 2.132 18 
2.249 2.269 2.290 2.310 2.331 20 

2.462 2.484 2.507 2.530 2.554 23 
2.700 2.725 2.750 2.776 2.802 25 
2.964 2.992 3.021 3.049 3.078 28 
3.259 3.290 3.321 3.353 3.385 31 
3.585 3.620 3.655 3.690 3.726 34 

3.948 3.987 4.026 4.065 4.104 38 
4.351 4.393 4.436 4.480 4.524 42 
4.797 4.844 4.891 4.939 4.988 47 
5.290 5.343 5.395 5.449 5.503 52 
5.837 5.895 5.954 6.013 6.072 58 

6.443 6.507 6.571 6.636 6.702 64 
7.112 7.183 7.255 7.327 7.400 7o 
7.853 7.932 8.011 8.091 8.171 7X 
8.673 8.759 8.847 8.935 9.024 S<. 
9.579 9.675 9.772 9.869 9.968 95 

10.58 10.69 10.79 10.90 11.01 11 
II. 69 11.81 11.92 12.04 12.16 12 
12.91 13.04 13.17 13.31 13.44 13 
14.27 14.41 14.56 14.70 14.85 14 
15.77 15.92 16.08 16.25 16.41 16 

17.42 17.60 17.77 17.95 18.13 17 
19.25 19.44 19.64 19.84 20.03 19 
21.27 21.49 21.70 21.92 22.14 21 
23.51 23.74 23.98 24.22 24.47 23 
25.98 26.24 26.50 26.77 27.01 20 

28.71 29.00 29.29 29.58 29.88 29 
31.72 32.04 32.37 32.69 33.02 32 
35.00 35.41 35.77 36.I3 36.49 35 
38.75 39.13 39.53 39.93 40.33 39 
42.82 43.25 43.68 44.12 44.57 43 

47.32 47.80 48.28 48.76 49.25 47 
52.30 52.82 57.35 57.89 54.43 52 
57.80 58.38 58.96 59.56 60.15 58 
03.87 04.52 65.10 65.82 66.48 64 
70.59 71.30 72.02 72.74 73.47 71 

If x > 5, cosh x "• K(«'> and logio ooah .r — (0,4343)x -1* 0.6990 — 1, correct to (our 
significant figures. 

From Mark*, "Mechanical Engineers’ Handbook." 
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Table VIII.—Hyperbolic Tangents [tanh 2 *= (*' — «“*)/(«* + «*“*) 

• sinh 2/cosh 2] 

X 0 12 3 4 5 6 7 8 9 Avg. 
diff. 

0.0 rnrmm .0100 .0200 .0300 .0400 .0500 .0599 .0690 .0798 .0898 100 
1 IlilH'Vfl .1096 .1194 .1293 .1391 .1489 .1587 .1684 .1781 .1878 98 
2 BirixV .2070 .2165 .2260 .2355 2449 .2543 .2636 .2729 .2821 94 
3 Kliikfl .3004 .3095 .3185 .3275 .3364 .3452 .3540 .3627 .3714 89 
4 .3800 .3885 .3969 .4053 .4137 .4219 .4301 .4382 .4462 .4542 82 

0./* .4621 .4700 .4777 .4854 .4930 .5005 ..">080 .5154 .5227 .5299 75 
6 .5370 .5441 .5511 .5581 .5649 .5717 .5784 .5850 .5915 .5980 67 
7 .6044 .6107 .6169 .6231 .6291 .6352 .6411 .6469 .6527 .6584 60 
8 .6640 .6696 .6751 .6805 .6858 .6911 .6963 .7014 .7064 .7114 52 
9 .7i63 .72JI .7259 .7306 .7352 . 7398 .7443 .7487 .7531 .7574 45 

1.0 .7616 .7658 .7699 .7739 .7779 .7818 .7857 .7895 .7932 .7969 39 
1 .8005 .8014 .8076 .8110 .8144 .8178 .8210 .8243 .8275 .8306 33 
2 .8337 .8367 .8397 .8426 .8455 .8483 .8511 .8538 .8565 .8591 28 
3 .8617 .8643 .8668 .8693 .8717 .8741 .8764 .8787 .8810 .8832 24 
4 .8854 .8875 .8896 .8917 .8937 .8957 .8977 .8996 .9015 .9033 20 

1.5 .9052 .9069 .9087 .9104 .9121 .9138 .9154 .9170 .9186 .9202 17 
6 .9217 .9232 .9246 .9261 .9275 .9289 .9302 .9316 .9329 .9342 14 
7 .9354 .9367 .9379 .9391 .9402 .9414 .9425 .9430 .9447 .9458 11 
8 .9468 .9478 .9488 .9498 .9508 .9518 .9527 .9536 .9545 .9554 9 
9 .9562 .9571 .9579 .9587 .9595 .9603 .9611 .9619 .9626 .9633 8 

2.0 .9640 .9647 .9654 .9661 .9668 .9674 .9680 .9687 .9693 .9699 6 
1 .9705 .9710 .9716 .9722 .9727 .9732 .9738 .9743 .9748 .9753 5 
2 .9757 .9762 .9767 .9771 .9776 .9780 .9785 .9789 .9793 .9797 4 
3 .9801 .9805 .9809 .9812 .9816 .9820 .9823 .9827 .9830 .9834 4 
4 .9837 .9840 .9843 .9846 .9849 .9852 .9855 .9858 .9861 .9863 3 

2.5 .9866 .9869 .9871 .9874 .9876 .9879 .9881 .9884 .9886 .9888 •j 

6 .9890 .9892 .9895 .9897 .9899 .9901 .9903 .9905 .9906 .9908 2 
7 .9910 .9912 .9914 .9915 .9917 .9919 .9920 .9922 .9923 .9925 2 
8 .9926 .9928 .9929 .9931 .9932 .9933 .9935 .9936 ,9937 .9938 1 

2.9 .9940 .9941 .9942 .9943 .9944 .9945 .9946 .9947 .9949 .9950 1 

3. .9951 .9959 .9967 .9973 .9978 .9982 .9985 .9988 .9990 .9992 4 
1. .9993 .9995 .9996 .9996 .9997 .9998 .9998 .9998 .9999 .9999 1 
5. .9999 If x > 5, tanh x — 1.0000 to four decimal places. 

Table IX.—Multiples of 0.4343 (0.43429448 = logic «) 

x j 0 1 2 3 4 5 6 7 8 9 

0. 0.0000 0.0434 0.0869 0.1303 0.1737 0.2171 0.2606 0.3404 0.3474 0.3909 
1. 0.4343 0.4777 0.5212 0.5646 0.6080 0.6514 0.6949 0.7383 0.7817 0.8252 
2. 0.L686 0.9120 0.9554 0.9989 1.0423 1.0857 1.1292 1.1726 1.2160 1.2595 
3. 1 3029 1.3463 1.3897 1.4332 1.4766 1.5200 1.5635 1.6069 1.6503 l.6937 
4. 1.7372 1.7806 1.8240 1.8675 1.9109 1.9543 1.9978 2.0412 2.0846 2.1280 

5. 2.1715 2.2149 2.2583 2.3018 2.3452 2.3886 2.4320 2.4755 2.5189 2.5625 
6. 2.6058 2.6492 2.6926 2.7361 2.7795 2.8229 2.8663 2.9098 2.9532 2.9966 
7. 3.0401 3.0835 3.1269 3.1703 3.2138 3.2572 3.3006 3.3441 3.3875 3.4309 
8. 3.4744 3.5178 3.5012 3.6046 3.6481 3.6915 3.7349 3.7784 3.8218 3.8652 
9. 3.9087 3.9521 3.9955 4.0389 4.0824 4.1258 4.1692 4.2127 4.2561 4.2995 

From Marks, “Mechanical Engineers’ Handbook." 

Table X.—Multiples of 2.3026 (2.3025851 - 1/0.4343) 

9 0 1 2 3 4 5 6 7 8 9 

M 0.0000 0.2303 0.4605 1.1513 IHilBM VWVflFkX 
M 2.3026 2.5328 2.7631 3.4539 Clr.r£9l 
’|l 4.6052 4.8354 5.0657 5.7565 [ilrlr/ll Itftirrlfl 
jfl 6.9078 7.1380 7.3683 7.5985 7.8288 8.0590 lull MiJ.jiI 
9 9.2103 9.4406 9.6709 10.131 10.362 10,592 10.822 11.052 11.283 
Sj. ! 11.513 11.743 11.973 12.204 12.434 12.664 12.894 13.125 13.355 13.585 

14.276 14.737 14.967 15.197 15.427 15.888 
Jm mWt 17.039 17.269 HrHrF.91 •EHEj] 

■ Kli inPj] 19.342 19.572 rliif&H rMrflyi 
9 wlvKV*m EdLii rill i.*1 21.644 21.875 22.105 22.335 22.565 22.790 

From Marks, “Mechanical Engineers’ Handbook.” 
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A 

Air-core transformer, 207 
Amplification of pulse, 247-254 

Amplification factor, 249. 252 

Amplifier, Class C, 239-240 

equivalent circuits, 238, 249 

gain, 248, 254 

linear, 249 

pulse, 247-254 
resistance-capacitance coupled, 

247-254 

video, 248 

Arbitrary constants, evaluation of, 

28, 41, 46 

number contained in solution, 29, 

31, 189 
physical interpretation of, 28 

Auxiliary equation, determination 

of, 27, 31 

roots of, 28-30, 116, 120 

solution of, 27, 31 

B 

Battery, plate supply, 239, 241 

ms pulse generator, 11 

Blocking capacitor, 248 

Boundary conditions, 6, 28 

C 

(’apacitance, definition of, 8 

dimension of, 19 

distributed, 221, 237, 248 

equivalent, 14, 15, 76 

input, 248 

interelectrode, 231, 237, 248 

output, 237, 248 

parameter, 8, 13 

stray, 214, 231, 237 

Capacitors, blocking, 248 

ideal, 8 

in parallel, 15 

in series, 14-15 

tuning, 237 

Circuit, series, RC, 40-81 
RL, 82-115 

RLCy 116-164 

series-parallel, RC, 165-191 

RL, 192-213 

RLC, 214-229 

tank, 237-241 

Class C amplifier, 240 

Classical method, advantages, 5, 12, 

188 

disadvantages, 6 

limitations, 6, 12, 25, 189 

Complementary function, 26-28, 31 
determination of, 27-28 

interpretation of, 26, 44 

(See also Transient term) 

Conditions, boundary, 6 

for critical damping, 123, 216 

initial, 28 

for oscillation, 122, 216 

for overdamping, 120, 216 

Conservation of energy, 67, 68, 106, 

107 

Constants, arbitrary, 28-29 

of integration, 32 

network (see Parameters) 

time, 42, 85 

Coupling, magnetic, 207 

Criterion, for critical damping, 123, 

216 

for differentiation, 60, 100 

for equivalent series network, 190 

for integration, 51, 92 

for oscillation, 122, 216 

for overdamping, 120, 216 

261 
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Critical damping, advantages of, 

128-129, 153 

attainment in practice, 128 

criterion for, 123, 216 

in series-parallel networks, 181 

Current, branch, 165, 178 

definition of, 12 

Kirchhoff’s law for, 13 

mesh, 207 

D 

Damping, critical, analysis, 123, 140 

description, 128-130, 144, 153- 

154, 161 

Definition, of capacitance, 8 

of current, 12 
of differential equation, 24 

of energy, 63 

of hyperbolic functions, 33-34 

of inductance, 7-8 

of j, 20 

of mutual inductance, 208 

of parameters, 13 

of power, 63 

of resistance, 7 

of secondary parameters, 119 

of steady state, 5 

of time constant, 42, 85 

of transient state, 5 

of zero time, 10 

Delay time, 137-138, 254 

Detector, diode, 231-237 

“linear," 232 

pulse, 232-234 

Differential equation, definition of, 

24 

first-order, 30-32 

interpretation of, 26 

7ith-order, 24 

origin of, 24, 33 

restrictions on, 25-26, 33 

second-order, 25-26, 29, 116 

solution of, 26-28, 30-33 

third-order, 183, 189, 197 

Differentiating network, RC\ 59-61 
RL, 100-101 

Dimensions of electrical quantities, 

19 

Diode detector, 231-237 

equivalent circuit, 233 

ideal, 232 

“linear," 232 
plate-to-cathode capacitance, 231 — 

232 

pulse resj)onse, 234-237 

Distributed elements, 9-10 

Doubler, frequency, 240 

v 

Electrical dimensions, 19 

Electrical elements, distributed, 9-10 

ideal, 7-8 

linear, 8-9 

. lumped, 9-10 

nonlinear, 8-9 

in parallel, 15 

practical, 7, 8 

in series, 13-15 

stray, 231, 237 

Energy, conservation of, 67, 68, 106, 

107 

definition of, 63 

instantaneous total, 63 

in RC networks, 66-70 

in RL networks, 105-108 

in RLC networks, 159-162 

in tuned amplifier, 239, 241 

Equation, auxiliary, 27 *28 

differential, 24-33 

Equivalent capacitance, 14—15, 76 

Equivalent circuit, of amplifiers, 238, 

249 

of diode detector, 233 

of pentode, 238, 249 

of transformer, 210 

Equivalent generator, 16-19 

Equivalent inductance, 14, 15, 111 

Equivalent resistance, 9, 13-16, 76, 
111 

Equivalent series network, depend¬ 

ence upon load, 189 

determination of, 176 

generator voltage in, 177 
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Equivalent series network, limita¬ 

tions, 183, 196, 197, 202, 214 

method, 173-178, 190-191 

number of elements in, 189 

output impedance of, 189 

for RC networks, 173-191 

for RL networks, 192-213 

for RLC networks, 214-229 

utility of, 178 

Expansion of e~at, 29n. 

of >At, 37n. 

Exponential form of hyperbolic 

functions, 33-34 

Exponentials, relationship to loga¬ 

rithms, 32/i. 

table of values, 257 

F 

Factor, amplification, 249, 252 

Field, magnetic, 207 

Filter, L type, 244 

RC type, 243 

Filtering ratio, 245, 247 

First-order differential equation, 30- 

32 

Four-terminal network, general, 7, 

11-12 

simplified, 11-12 

Fourier integral, 5, 25 

for rectangular pulse, 25/i. 

Fourier and Laplace transforms, 5 

Frequency and period, 127-128 

Frequency doubler, 240 

Frequency multiplier, 239 

Function, complementary, 26, 31 

hyperbolic, 33-39 

trigonometric, 36, 37 

Cl 

(Jain, voltage, 248, 254 

(lencrator, equivalent, 16-19 

internal resistance, 11, 12, 232 

pulse, 11 

sine wave, 128, 239-2-41 

variable frequency, 228, 239 

(irid-to-plate capacitance, 237, 248 

H 

Heaviside operational calculus, 5 

Hyperbolic functions, definitions of, 
33-34 

differentiation of, 37-38 
graphs of, 34 

identities, 35-36 

with imaginary exponents, 36-37 

reason for using, 33, 38, 122 

tables of values, 258-260 

I 

Ideal capacitor, 8 

Ideal diode, 232 

Ideal electrical elements, 7-8 

Ideal inductor, 7-8 

Ideal resistor, 7 

Ideal transformer, 207 

Identities, hyperbolic, 35-36 
trigonometric, 36 

Imaginary exponents, 36-37 

Imaginary roots, 30, 122-123 

Impedance, output, 17, 189 

Induced voltage, 207 

Inductance, definition of, 7-8 

dimension of, 19 

equivalent, 14, 15, 111 

lead, 231, 242, 248 

leakage, 210 

mutual, 207-211 

parameter, 8, 13 

Inductors, ideal, 7-8 

iron-core, 8 

in parallel, 15 

practical, 9, 108, 237 

in series, 14 

Initial conditions, determination ot, 

28 

in RC series networks, 41, 46 

in RL series networks, 83, 87 

in RLC series networks, 121, 130- 

131 

Instantaneous total energy, 63 

Integral, Fourier, 5, 25 

particular, 26, 31, 119 
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Integrating network, RC, 51-63, 

66, 247 

RL, 92-03, 107 

RLC, 138 

Internal generator resistance, neglect 

of, 42, 72, 110 

modification of, 12, 232 

practical, 49 

Iron-core inductors, 8 

Iron-core transformers, 209 

J 

j, definition of, 20 

K 

Kirchhoff's laws, 13 

applied to RC series networks, 40, 

46 
applied to RL series networks, 82- 

83, 87 

applied to RLC series networks, 

118, 130 

applied to series-parallel networks, 

165, 168 

L 

L filter, 244 

Laplace and Fourier transforms, 5 

I^tw, Kirchhoff’s, 13 

Ohm’s, 8 

I^ead, inductance, 231, 242, 248 

length, 231 

leakage, inductance, 210 

resistance, 248 

Limitations, of classical method, 6, 

12,25,180 

of equivalent series networks, 183, 

196, 202, 214 

Linear amplifier, 249 

Linear detector, 231-237 

Linear diode, 232 

Linear electrical elements, 8-9 

Linearity, of inductors, 8 

of resistors, 8, 23 

Logarithms, relation to exponentials, 

32n. 

Lumped elements, 9-10 

M 

Magnetic coupling, 207 

Magnetic field, 207 

Magnetic permeability, 208 

Method, classical, 5 

equivalent series network, 173- 

178, 190-191 

operational, 5 

Multiplier, frequency, 239 

Mutual effects, 15 

Mutual inductance, 207-211 

definition of, 208 

parameter, 208 

N 

n«h-order differential equation, 

general, 24 

restrictions on, 25-26 

Network, differentiating, 59-61, 100- 
101 

general four-terminal, 7, 11 

integrating, 51-53, 92-93, 107, 

138, 247 

parameters, 8, 13 

practical, 230-255 

series, RC, 40-81 

RL, 82-115 

RLC, 116-164 

series-parallel, RC, 165-191 

RL, 192-213 

RLC, 214-229 

theorem, 16-19 

Nonlinear electrical elements, 8-9 

Nonlinear resistor, 8, 23 

Notation, subscript, 21 

table of, 20 

O 

Ohm's law, 8 

Oscillation, analysis, 122, 140 

criterion for, 122, 216 
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Oscillation, damped, 127 
description, 126, 142, 151, 160 
period, 127 
in series-parallel networks, 180, 

183 
Output, capacitance, 237, 248 

impedance, 17, 189 
Overdamping, analysis, 120, 139 

criterion for, 120, 216 
description, 124, 141, 150, 158 
in series-parallel networks, 183, 

195 

P 

Parallel connection of L and C, 
223-229 

Parallel resonance, 228 
Parameter, capacitance, 8, 13 

constancy of, 8-9 
definition of, 13 
inductance, 8, 13 
mutual inductance, 208 
practical, 230-255 
resistance, 8, 13 
secondary, 119 

Particular integral, determination 
of, 26, 31, 119 

interpretation of, 26 
(See also Steady-state term) 

Pentode, equivalent plate circuit. 
238, 249 

grid-to-plate capacitance, 237, 248 
Period, and frequency, 127-128 

of oscillation, 127, 143, 238 
of repetitive pulses, 12, 239-240 
of sine wave, 128, 238 

Permeability, magnetic, 208 
Plate resistance, 238, 249, 252 
Plate supply battery, 239, 241 
Power, definition of, 63 

negative, 66 
in HC series networks, 63-66 
in RL series networks, 103-105 

Practical electrical elements, 7, 8 
inductors, 9, 108, 237 
internal generator resistance, 49 
pulse generator, 11 
resistors, 8, 9, 23 

Practical networks, 230-254 
assumptions for analysis, 6, 9, 10, 

11, 230-231 
diode detector, 231-237 
filters, 241-247 
pulse amplifier, 247-254 
stray parameters, 221, 231, 237, 

242, 248 
tuned amplifier, 237-241 

Pulse, rectangular, 10-11 
Pulse, repetitive, 12, 234-237, 239 
Pulse amplifier, 247-254 
Pulse detector, 231-237 
Pulse generators, 11 
Pulse period, 12 
Pulse reproduction, 49-51, 59, 91, 

98, 229 

Q 

Quiescent state (see Steady state) 

R 

RC filter, 243 
RC series networks, 40-81 

comparison with RL, 113, 199 
comparison with RLC, 117 
differentiating, 59-61 
energy in, 66-70 
general network, 77-79 
initial conditions, 41, 46 
integrating, 51-53, 66, 247 
power in, 63-66 
time constant of, 42 

RC series-parallel networks, 165- 
191 

RL series networks, 82-115 
comparison with RC, 113, 199 
comparison with RLC, 117 
differentiating, 100-101 

energy in, 105-108 
general network, 111-113 
initial conditions, 83, 87 
integrating, 92-93, 107 
power in, 103-105 
time constant of, 85 
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RL series-parallel networks, 192- 

213 

RLC series networks, 116-164 
comparison with RC and RL, 

116-118 

conditions for critical damping, 

123-124 

conditions for oscillation, 122-123 

conditions for overdamping, 120- 

122 
energy in, 156-162 

general network, 162 

initial conditions, 121, 130, 158 

integrating, 138 

RLC series-parallel networks, 214- 

229 

containing parallel LC, 223-229 

Ratio, filtering, 245, 247 

Real roots, 27-28, 33 

Rectangular pulse, description of, 

10, 25 

production of, 11, 223 

reasons for using, 1, 10 

repetitive, 12, 234-236, 239 

Resistance, definition of, 7 

dimension of, 19 

equivalent, 9, 13-16, 76, 111 

generator internal, 11, 12 

leakage, 248 

parameter, 8, 13 

plate, 238, 249, 252 

Resistance-capacitance coupled 

amplifier, 247-254 

Resistors, ideal, 7 

linearity of, 8, 23 

nonlinear, 8, 23 

in parallel, 15 

practical, 8, 9, 23 

in series, 13-14 

in series-parallel, 16 

Resonance, parallel, 228 

Ripple voltage in diode detector, 

236, 255 

Roots of auxiliary equation, equal, 

26-30 

imaginary, 30, 122-123 

real, 27-28, 33 

S 

Sawtooth voltage, 236 
Second-order differential equation, 

25-26, 29, 116 

Secondary parameters, 119 

Separation of variables, 32, 119 

examples of, 41, 46 

Sine wave, ('lass C amplifier, 240 

as constituent of transient term, 

127 

frequency doubler, 240 

generation of, 128, 239-241 

period of, 128, 238 

Steady state, characteristics of, 4 

definition of, 5 

existence of, 4 

network theory, 1 

term, 26, 31, 44, 86 

Stray capacitance, 214, 231, 237 

Stray elements, 231, 237 

Subscript notation, 21 

Symbols, table of, 20 

T 

'Fable, of exponentials, 257 

of hyperbolic functions, 258-260 

of notation, 20 

Term, steady-state, 26, 31, 44, 86 

transient, 26, 31, 44, 86 

Thevenin’s theorem, 16-19 

Third-order differential equation, 

183, 189, 197 

Time constant, definition of, 42, 85 

dimension of, 19, 85 

interpretation of, 42-43, 85-86 

in series RC networks, 42, 47-49 

in series RL networks, 85, 88-91 

usefulness of, 42-43 

Time delay, 137-138, 254 

Total instantaneous energy, 63 

Transformer, air-core, 207 

equivalent circuit, 210 

ideal, 207 

iron-core, 209 

Transient analysis, general problem, 

6, 11 
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Transient analysis, methods, 5 

simplified problem, 11-12 

simplifying assumptions, 6-7, 9, 

10, 11, 230 

Transient state, definition of, 5 

description of, 2-5 

distinction from steady state, 5 

existence of, 1 

Transient term, as complementary 

function, 26, 86 

as “shock absorber,” 44 

Transients, characteristics of, 4-5 

examples of 2-4 
nature of, 4, 79, 162 

Trigonometric identities, 36 

Trigonometric functions, 36, 37 

r 

Underdamping (sec Oscillation) 

Unequal roots, 27-28, 33 

Units, electrical, 19 

V 

Variable-frequency generator, 228, 

239 

Variables, separation of, 32, 119 

Video amplifier, 248 

Voltage, induced, 207 

Kirchhoff’s law for, 13 

plate supply, 239, 241 

pulse, 11 

ripple, 236, 255 

saw tooth, 236 

terminal, 83 

Voltage divider, 71, 170 

Voltage drop, 13 

Voltage gain, 248, 254 

Voltage generator, 11, 128, 239 

Voltage rise, 13 

Z 

Zero time, 10 
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