An Analytical Study Of Some Aspects Of The Continuous Internal Evaluation System At The Tertiary Level

A Thesis
Submitted in Partial fulfilment of
the requirements of the degree of DOCTOR OF PHILOSOPHY

BY
ANITA DUBEY

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE PILANI (Rajasthan)
 July, I98I

This is to certify that the theole entitled

- An Analytical study of som ampecta of the Contlnuous Intermal Evaluation Syatem at the Tertiary Lovel' and submitted by (Mss.) Angta Dubey Id. P0. 76593001 for awand of Ph.D. degree of the Institute abodien original work done by her under my supervision.

Slgnature in 1011 of the aupervieor

Name in capltal block lettera

Date July 10, 1981

Dosignation

Professor \& Dean Practice School Dfvisio

Ackeronreporysary

Sto words would be edequate for me express ny deep aance of gratituce to my mpervisor Dr. $\mathrm{V}_{\mathrm{o}} \mathrm{V}_{\mathrm{o}}$ Mandice, Prolessor of Rlectrical \& Eloctronice Bnglneering and Dean. Practice School Divialon for his inapizing guldance throughout the course of thla work. without his halp this work could nevar be comploted.

It is my great pleagure to thank ProE.C.A.S.Naidar for hide valuable aggostions and most helpiut discussions. I am greteful to Mre. Parimal Mandica for hor personal intorest in ury work and all the halp. I am thanictul to all the mambers of 'Sclence and sociaty' sominar group and eapecially to the Group coordinator proz. H.C. Mohte for various Exuttiul dibcuasions and juggations. I also wieh to thank Brof. S.C. strukla for reading tho manuscript and hia useful cormonte.

I am grateatul to all the radulty nandors of tho Instituto who were kind enough to aupply the zecuined data on exandnations and also suaponced to my guestionnainon. I racelved a lot of encouragoment and help from all my tachars at BITS which maclo my takk that mach easior. In particular I folsh to thank
 Diroctore, For thair intareat in mar worit and oncouragoment.

I whah to expreas my aincere thanka to Dr. P. Bhyani who holpod mo with the computer prograns as well as many othrer aspocte of tha vork. I also wieh to thank membera of atall of IRC, in partloular Mr. O. in taini for help in the compilation of cata and to Mr. B. P. Eingh and Mr. Ravincra rumar zor assistance in coryputer work.

I wish to thank Deea PS DIvision, Dean REC Division, Dean P.D. III. Chles of IPC and Librarian for providing the noceseary facllitios and also to other monbars of etaff of these diviaions and unite for tholr Iriendy and holpful attitude.
 their typing worke and to Mr. Kollobharma for draing tho Elgunes.

It is a pleasjo to thank soveral of my iriends who have given thair generous holp, encouragenent and support. In particular, I wish to mantion Nri. Shuro Dovi S. NIdh1, Ew. (Mrs.)
 Mre. Moora Bancriea, Mise Anuradha Mitra, Mise Suahna Malnra, M1se Noelima Malnra, Dr. (Mrw.) Moenakehi Agarewal and Dr. (Mra.) Chandrakala rerlpathi.

The award of research follownhips Erom the University Grants Comonsalon, India and biss are gratoluliy acknomledged.

I expreas my appreciation for the hals given by my mother and other Lamily mambere in particular Hes. Sharad Tewary. Dr. V.K. Tewary. Anuranjita and erectally to Kanupriya who halpac In the checking and the organiaxtion of the marnuecript.

I whah to xacora my daep sonse of gratitude to Dr.C.R.MAtra, pirector of aits for hia interent in this work and his constant. encouragement and halp.

A very spocial word of thaka goos to my luaband Aall who inspite of boing oovaral thoutand milen away from mo. constancly encouraged and aupported mo. Finaliy. I dedicata this thanis to my fathar who cousd not Iivo long enough to sod it complated but I could alway feel his inspiring and atrongthontng preannce with mu.

ABSTRACT

The thesis has studied some aspects of the internal continuous evaluation system at the tertiary level. Towards this, the thesis hes extensively drawn from the deta-base as available through the educational operations at BITs, pliant. To begin with the thesis has analysed the teachers' perception of the objectives of education as also the objectives, techalques and nature of examinations in the above context. Then for 83 examinations, consisting of 7 guises, 52 tests and 24 comprehensives, using the AOV approach, the thesis has studied the reliability comeficionts and the same have then been further critically analysed vis-a-vis parameters such as number of questions in an examination, number of students. examination duration, type of examination, level of the course. category of the course, course discipline, etc. The thesis has also investigated intercorrelations for an many as 303 evaluation component pairs, covering a spectrum of evaluation components extending beyond the traditional examinations of quizzes, tests and comprehensives. Further, the thesis has also studied the them of course reliability. Next, the thesis has investigated the predictive validity for the student perFormance in Higher secondary as also for the student performances in courses of 'Concepts in science' and 'Modern Physics'. Towards this the database 1 s provided by the 2976 Input to BITs of 310 students and 1977 input of 316 students.

Purther, the thesis has also investigated the thom of concursent validity. This then is followed by ntudy of tho ovaluation ystem as under the Practice school (PS) ayatem of education, Using the data base as avallable from two sasslons of the Mogde PE-II station, the thesis has inventigated varlous aspects of Pg evaluation auch as rellabllity of PS evaluation componente of quis and vivas examiner rellability Lor PS-II evaluation components of seminar. group-diecuasion, project report and observation; PSeII course reliabliltys Inter-correlation between difterent PS-II evaluation componentes content validity of the PS evaluation etc. Pinally, abstracting from the educatlonnl organisation as under the M.E.(Collaborativo) programe, the theale has discusaed a model for a mitiple objective aseessmant in a claseroom based situation. Towards thls. tha thens has used the concopt of the "tranafer of learning'.

conveynes

cortilleate (1)
Acknowlofgramta (11)
Abrtract (เv)
Chaptar 1 Conoral Introctuction
1.1 Introduction 1
1.2 Historical backgreusad 2
2.3 A revien of the ilteratura 6 on examination reform
1.1 Objective of the present 10 stusdy
1.5 Surmery of Chaptarm 13
Chaptes 2 On the objectivea of Education and Examdnationa
2.1 Introduction 15
2.2 neod for cotining objoctives 16 or ocumatum
2.3 The Porraliation of ObJactives 17
2. 5 The Literature Revion 19
2.4.1 Reemarchen which Reported on 19
zinding of educational objectivan
2.6.2 The prooodure for obtaining the 21 Obfectives: The survey Mothod
2.4.3 reviem of the Corpocenansivo 24 stasy on Objectlver: Thaxanory of stucatlonal Objactivas
2.5 objectives of the frement 3tudy 26
2.5.1 Pakt Ona! Dotarmining 26
ODJectiven of Sducstion
2.5 .2 Part Two Datarminting 26 Objectiver of Examinations
2.6 Semple and Data Collection Prooddura 27
2.6.1 The sample and pate collection 28
Proceduran for the Cruantlomanire I on Dotarmining the Cbjoctlvea of scurcation
2.6.2 The semple and Dats Collection 29
Procedures for the ovartionmalve II on Doternining tha Objectiven, Hatuze and Techniquas of Exmannetions
2.7 Rosults and Abalyada 32
2.7.2 Rosurter and Anolyzis Towards 32 Dotermining the objective of Education
I Oonstion 2: Resulto and Annlyais for 35 tho Oualitias consldarad Iqportant in life
II Cvartion 2 Results and Amalyala 37
of cualities viocouvis the ovostion as to Which of thasa oualitien the education should tery to Achieve.
IIX Quabtion 3: Roaulte and Analyala 39
of Dualltiea vismbevia the oupation as to which of the rualities tha Soucation can Achieve
IV Quastion if Roaut tien and Anals 40
of Cualitios vioma-via tha curestion as to wich of the sualities have been Achieved by the Elucation
\checkmark Corrolations Botweon Remponase 40 to Various Ruestions in Quastionnalze I
VI Sumary of Obararvationa 42
2.7.2 Romulte and Analyais along with 43 gmarging Observations for the Qupationnalre on botornining ObJectives. Techniquen and Nature of swaminations.
I Konulta and Analyais as also Emerging 44 Obaervations for Part A of Guestlonnalso II on Dotommining objocetvas of zraminationa

> II Roarlta and Anciyols as also Emardng 54 Oparrvatlona for part B of Devetionnalt II on oatormining techanquas of Examinations

III Rosules and Analyela as also 61 tmarging Obarvations lor part C of Duodetonacis. II on Dotorminting ths sature of Examinations

2.8 Conclusion 70
Chapter 3 Rollabllity Analysia - An NOV Approach
3.1 Introduction 74
3.2 gtatistical porametara Uaod In tho 75 Tont Analyala
3.2.1 Oonfstchant of Rollablilty 75
3.2 .2 Consficlent of Corzolation 75
3.3 Rellabilsty of Ma Rxamination 76
3.3.1 Jxamination as a Moasuring Instrumont 76
3.3.2 思rrora in mxaminationa 78
3.3.3 safomguarda to zeduce the oxrort 82
3.3.4 Coothictont of Rollability 84
3.3.5 Mathods for calculating tho 66 ocerficlant of reliability
3.3.6 Formala for Calculating Rollability of 93 Rraminations pemiltetng Cholce ot Ounations
3. 4 Conitictont of noliablitey zor a omplata 94 couras
3.5 Reviow or tha Litartatura 95
3.6 Objectivas of fine pmaeent atuky 102
3.7 sampla of Couraes Choman for Toat Analyala 203 and Data Collaction Frocaduro
3.8 Restalts 100
3.9 Analysia of Resulta 130
3.9 .1 malyale of Renulta for the 130
Rellabllity of Exandmations
.2 rellabillty Observations Accorsing 132
to Nuaber of Duastlons
II Rallabllity Obmarvations nccording to 148 tho Duration of gxaminationa
III Rellablilty Obsorvations According 155 to the Number of 3tuciente
IV Rellabillty Obsazvations Accosalag 165 to the Lavel of Coursas
V Rollabllisty Obmarvetion According to 184 the Core Courses and professional coursen:
VI Rellehlilty Onmervationa According 182 to Course biectplive
VII Rellabillty Obaervations According 190 to the type of ovasthona
VIII Rellablilety Ondozvations According 197
to the choles of avastions in the Exarilnation:
3.9.2 analyala of tha Rosults on tha 199
Commlations botwoon variouv sxaminationa of a course
3.9.3 Analysia of tho Ranuta on the 207 Conse Reliaillity
3.20 Concluation 208
Chaptar 4 Vallasty Analyale with particular Refonence to the criterion-Related Volidity
4. 2 Introduction 213
4. 2 Validity Daitnitions 214
4.2.1 Brond Datindtions 215
4.2.2 Tyyon of Valiatey and thetr 215
4.3 Roviow of Literatur on Valldsty studies 218
4.3.1 studios an Velsdity ortaso Indse 218
4.3.2 studioe on Valldity in India 220
4.4 Objoctive. Asmuptions and the Statoment 224 of the present study
4.3 Procodare of Eatimating Goltarion-zolated 227 Vallaty
4.5.1 Prealctive Valldiey 227
4.5.2 Concurrent Vallasty 228
4.6 sample and Data Collaction 229
4.7 Resulta for the Criterionmwalatod 232 Validity stuady
4.7. 1 Reausta of the prediative Valiatty 232
struay
4.7.2 Romnitn for Concurmont Valldsty 248 Stuay
4.8 Analyule of Rooulta on Cxitorion-roiatod 250 valldity study
©.B.1 ABnumptiona 250
4.0.2 Aamymis for tha 1976 Batch zor the 250 cholce of the Bett predifetor
4.8.3 Analyata 40% tha 1977 Batch 50% the 250 जhole of the jant Preatictor
4.8.4 Rnalysia at the Noulem inysien as tho 263 Dredictor for tha Cnolew of the batt Eritexion
4.8. 5 Jhalyols of tha Rasulta on tho 27 a Concurnent Valldityy study
4.9 Conelusion 290
Cheptar 5 on the Iractico setool syatam of sumeation - A come of miltiple objective ratantnations
5.1 Intraductan 284
5.2 Practice school Educatlon 285
S. 3 Changlng rale of Faculty and studenta - 291 Conaumer OAllgations
5.4 Praction schoal ivaluation and 1 te 300 shateiple Objective Naturo
Crapter 6 Some Aopocts of Rollabllity and valldity studlen for tha Practice School Examanationa
6.1 Introduction 303
6.2 On the Rellability of P2 Evaluation components of Viva and Duta 304
6.3 On tho lixurdnar Rallability for the 308 Componante of reactice schoal Evaluation
6.4 Courno Railmillity Ior a zaction School 313 couras
6. 5 Intarmoorralatlons Batwoen tho Eraction 315 School Evaluation Componanta
6.6 On the Contant Vallatity of the prection 328 achool Evaluation
6.6. 2 Contant Validation Wathodalogy 318
6.6.2 Contont Vajidation Nnalysis Cox 320 the zwacelcm Schond Sraluation
6.7 concluston 329
Chaptar 7 On Muletplo Dijectiva Examinaetona in Clapsoora Bamel traching at the mertiary Lavel
7. \& Intrakuetion 333
7.2 Trans無樶 Of lomenlng 334
7.3 The riodal 340
7.4 Conctuston 364
Craptar 8 conclunion 365

Roferences

Chap. 1 377
Chap. 2 379
Chap. 3 382
chap. 4 386
Chap. 5 387
Chap. 6 389
Chap. 7 389
Appondlcas
A monthomalre I 390
B Queatlonnalie II 393
C Evaluation Schem for Practice achool-II 402
D A Typicel PS-I Evaluation schmen as 404Implemantend at chotri in surnine, 2973
\& A Tpplcal pini Evaluation schane as 405 Implemented at Whotri curling summer 2074.
F practicomil riviluation schan as Inplementad 406 curing 1973-75
G Rating Shout 407
\% scaderac recruatima - Clitan 22.2 408
I Complitar frogramma
(1) Program for cormalation coneflefenta 409
(1i) Amalyala of Variance progran for tont 412 moliability and courte rellability
(1is) Analyals of Varianco program for calculating 4.4rellability of Examaketons, Whase choiceof Duestions is milowad.
(1v) Foogram for fatymis ot Phezy svaluation 416 marad on sturontal sobluams

CHAPTER - 1

GENERA INTRODUCTIOS

1.1 Introduction

Examinations are deaigned and adminlstered at different
stages of education. They may bo used for classiflcation. grading, guldance, certification and so on. Their particular Importance at the tertiary level can not be over-emphasized because, among other things, they define the employment value of the students in the contemporary society. It is this, that has led many to seriously think about the examinations. Various types of reform over the traditional examination system have been proposed and atlenst partly practiced to make the axaminations more meaningful and relevant. One of the major steps in this direction is the internal continuoue evaluation symtem.

Whatever may be the flaw in the traditional examination syatem which is based on a single main examination with an external examiner. it has the advantage of social acceptance. The internal avaluation gyatem with whatever academic advantage it may possess is yet to be fully socially accepted. An axamination system in which the teacher on his own gives grades to his students without any external monitoring with respect to the standard of teaching and examination has an important responsiblifty of continuously establishing its own credibility. The question is not so much regarding the integrity of the teachers, but whether the whole system is academically rellable.
som of the questions which arise in this connection are whether the examination are reliable and whether they are valid? Do different examinations in varlous courses for the same set of ntudents ahow a reasonable corrolation? Those questione are important becauee. In the internal evaluation syetem, occasifonaliy. a very junior faculty membar will be teaching and grading the stucents in contrast to the external examination syztem in which ueually experienced teachers are chosen as examiners. In such caee, theno if oxaminntions are haphazardly planned, their rellability and valldity will be limited and thay will not be correlatad.

Thus, it is important to study examinations and develop methods for tholr limprovemants.

It is against the above frame of reference that aection 1.2 presente a historical background of the suioject matter of exmmination reforma. Thia. in section 1.3. ia followed by a brief review of the ilterature on examination reforms. Section 1.4 then prosents the objective of the prosent study. followed by a brief description of the chapter-wise contente of the thesis given in rection 1.5 .

1.2 historical Aackozound

Examination System is perhaps older than any other bystem of education. Teachera have beon developing and using their own evaluation procedures for thoir respective education syatems through the ages. Presentiy, the examinations are becoming extremaly vital because people are branded for 11fe on the basia of their examination performance. A clear
case in this context is in terms of profenional examinations which act es certificetee or licenge for people to perform any akill under reference.

As the (oxamination) systom has grown historically. examinations can be broadly clansified in terme of categories such as performancu-based, oral. written, objective type. ehort-anower type, longanswer type, traditional essay type. external. internal, continuous, annual. etc.

Tho ayatem of traditional essay type examinations was E1ret Etarted in China (herper \& Mara, 1976). Those examinetions used to last for days and nighte. The objective was to ldentlfy men for the service of the state. By the 19th century,western countrios adopted it for awarding degrees and diplomas. Thls syatom got transported to India around the ama time when the tank was initiated on the Indian soll to remconstruct 1 ts aducational system as par the model of British Universitien. In 1854, hood's despatch recommended the ostablishment of universities in India. A a reault three universities ware established at Calcutta, Bombay and Madras. Thase universities were modelled on the lines of the 19th century britiah Univeraities. In this context, there were two options open at that time, viz.. the universitiea of Cambridge and London.Universities in India understandably chose the latter in view of its aecular character (Mitra, 1973). Univeraity of London offered degree courses in Arts, Law and Medicine. The prexequisite for entering commerce. Arts. etc. wan the entrant's auccess in matriculation oxamination. The
B.A. degree wee for two yoars and included only one examination. The next higher degree, 1.e. M.A., also required two yeare of atudy. Thus, the Indian Unlvernities borsowed the London University pattern but with one modisication, namely, the Introduction of an intexmediate examination to be given after two years of matriculation (singha, 2977). This moditication mainly was done with a thought of having a tarminal atage of two peare after matriculation examination (preparatory etage). As a consequence, owing to the recommendetions of the Calcutta Univeralty Commiselon (1917-19). also called Sadier Commianion. boarda of secondary education started coming up. They had the responibiblity of organialng curricula and examinations at the secondary stage. The responalbility for all the matriculation examinations were passed on to these boarde except in the case of U.P.. Whare the boards were given the responsiblilty for the intemmalate axaminations, too. Indeed, this pattern more or less has bean in operation to this day.

Briefly apeaking, axamination reformm have alwaya been uppermost in the minds of oducators and, in terms of the Indian educational scene, ample proof of this is found in report of various commiasions and comnittees. such as wood"s univensit'y respatch (1854). the Incian commisaion (1902). the calcutta University Comaission (1917). the Inter-univeraity noard of India 6 Caylon (1924). The Sargent Report (1944). the Univeraity Education Comasaion Report (1950). and finaliy the Indian Education Commiasion (1966).

Emphasis on the impoovement in examination syetem became a regular feature only alter the report of Indian Education Commiseion (1891-82). Thus, both Lord curson and the Indian the University Commselon (1902) pointed out the Rlaw in syetem of examinations in the following wordes

The greatest ovil from which the system of univerelty education in India suffers is that teaching is subordinated to examinations and not examinations to teaching".

The calcutta university Commission (1917-19) also criticized the syatem of examlnation, but no positive steps were taken to $2 m p r o v e ~ L t$.

After Indla became free, the major emphasis on examination relorm wae Elrst given by the Radhakrlshnan Commisaion (1948) It etreased that 12 we are to auggest any single reform in university education. it would be that of examanations". Thus the neod for reforming examinations was badly realised and various comittees and conferences were organlaed. Ae a result, the All India Council of Secondary tavation. v.G.c. The Contral Miniatry of Education, the Contral Evaluation Units and several state education departmenta discusaed from time to time the issue of examination reforme realiaing the present syatem of examination was a great obstacie in the educational proces.

In 2965, the U. G. C. appointed a committee to look into the problems of univeralty axaminations. This was followed
by the Kothari Commisaion (1964-66). This commission, like the previous one also felt the need for reforming examinations. One of the important documents regarding examinations came Erom the U.O.C. In 1975. It was titled "A Plan or Action" and It attempted to provide a practical way lor reforming axaminations in the Indian universities.

The above then is an overview of the theme of 'examination reform' in its hiatorical context. Aa can be seen from the detalla given, this subject matter has always been of intexent to the various sections of the society. And. it is in terms of this universaitityn this area has been recelving a detailed attention of the researchers in the field of education.

1.3 A Review of the Iiterature on Examination Retorna

A review of the work done on rellability and validity of examinations wili be discussed in chaptars 3 and 4 . respectively. Thus, this aection will mainly concern itaele with the work in the area of intarnal assesmment.

Traditional easay type external examinations have been criticised on many occasions. Aa a result, internal assessment systom has been implemented in a number of universities from abroad at well as from India; providing a ready canvas for the educational researchers to explore the efticiency of thia alternatera aystem of evaluation.

Indeed the viewa and opinions of educationists and researchers on the subject of internal asseasment cover
extromes of every type. Thus. whilo. Secondary Education Comaission (1952). the M1nistry of Ecuucation (1956). Gayan at.al. (1961), the secondary Education Committee, Assam (1965). Rao(1970), Singh (2970) and Gayen (2970) and several others have recomended that in the traditional system of external examination some weightage should be given to internal assessment type evaluation, Raina (1967) has expressed a contrary view in thiv motter.

In the above context, several other researchors have studied the subject of lnternal assessmant at the macrolevel as lso at the micromlevel. Thus, Gayen et.al.(1962) and et.al.
Lule (1962) obsarved variation in axternal and internal assessments, and suggested that marice of both the examinations should be scaled before they are added up. Taylor (1962) holds that the two asseaments should not be comblned uniess et.al.
they are checked for their accuracy. Gayen (1962) observed that the total of internal plus external assesmment is more rellable than taking tham separately. Misra (1903) stated thet the internal assessment is more consistent Erom yearto: yoar than the external asaesmment. Further. Natrirajan (1977) ha argued that combining the two sets of scores (namely. those obtained in internal and external examinations) is not an academically sound procedure, as these two forms of assessment test two different set: of abilities and thus auggeste that it 1 s tharafore important to assesa them separately and alao show them separately.
Singh (1971) in the article titled Examination foform: Internal Assessment discussew the concept of internal
ascessment, lte advantages and the problem related with it. Lingamurthy (1970) states that. along with memory, proper evaluation of atudents' permonality tralta should also be done. He obecrves that along with Jiyanatm, Vigyanam should also be tested'. Kahion (1977) in his paper 'student Evaluation and Intemal Asseasmont' talk about the following objectives which can be achieved through an internal syetem of ovaluation In the manner given belows

1. It assists In the evalustion of personality characteristlcs. In addition to those which are needed for the success in a chosen ileld.
2. It gives an accurate comparison of an individual performance vis-a-קis thet of the othore.
3. It improves the basis of prediction of auccess in the educational. occupational and professional soheres.
4. It identifles the student's capacity, his potentiality as well as hia limitations.

Kahlon further atates: Wechniques amployed for students' ovaluation should achleve these objectives and build up the confidence in the mind of a stucient about the objectivity of the ayatem".
 presents Scheme of Comprehensive Internal Assesmment and Manual of Instyuctions* This acharn attempts to bring into focue the important nonmeholastlc achievemente in personal and aocial qualitisa $l i k e$ regularity, punctuality. initistiva. cooperttive apirit, sense of reaponsibility, industry, civic
conclousness. disciplim and aplrit of social service in addition to intereste and ateltutces in literary and sclentlic apheres. It also take into consideration participation and performance in the co-curricular ileld such as acouting. mCC and culturel activitien.

The scheme observes: "Any evaluation, if it is to be scientiflc mould be developed as the rlght tool to assese the veratile capabilities of the pupils. It ahould never be designed as trap or man-hole to corner and eaten the pupils at their woak mpots". The alm of any evaluntional pregram should be to identify and asamse the orlginal potontlalities in the pupils.

One of the important document regarding interaal asseasment is brought out by the Amaociation of Indian Univeraities called. Monograph on Internal Assenament for Univaraities'. Tha basle queation posed here is 'who should make a design for the internal assessment'. The answer given 1s that 'the teachar. who teaches the student, would be beat Eor this purpose' This monograph further invastigates the design aspect of intornal assassment. For this puxpose a questionnaire was prepared and the consensus was worked out based on the opinlona of the teachera. The monograph includes this aspect in tha section on 'Design of Internal Assesmment'. In addition to this. the monograph includes the theory of continuous internal evaluation, the nead for it in the Indian contert, its basic principles. the mechanics of continuoua internal assesmnont anc, finally, the issuas of proper
recording and atoring machinery for the succeseful implematation of this valuation schemo. It also containe a good bibllography on the subject of internal assesement.

The above then is a bried review of the literature on the subject of 'internal assessment' as puraued particularly in the Indian context. As can be seen, much of the work is particularly in terme of partly-external-partly-1nternal type evaluation situations which seem to have recelved much more attention of the researchers than the examinationsconing under what is often termad as the 'totally internal syatem of evaluation'.

1.1 oblectives of the prosent study

This thesis is devoted to the study of internal contiauou evaluation syathm at the tertiary leval. one of tho main investigations aimed at through this thesis portains
 teste and comprehensives, as conducted under the internal aymem of continuoun evalustion. Along with this. as a natural corcilari. the thesis ano concerns ltsalf with the them of "course-rellability" as also with the correlation studieu between various examinations or evaluation components of quizzes, viva, seminar, teats, project-work, groupdiscussion, comprehensives. atc.

Anothac main inveatigation aimed at through this thesis concerna the validity atudies for the examinatione under the internal syetem of contimuous evaluation. Here the objective

1s to delineate technique for auch an inveatigation through a detalled 11 luetration. Thus, in this context, the thenis studies the them of predictive valldity, taking the student performances in the courses of "Concepta in Sclence" and 'Modern Physics' an prodictors, the other host of student performance indices as avallable in an internal syatem of continuous evaluation being candidates for the role of critdrion. A cimilar stuçy 1a also undertaken with the student performance 1n Higher secondary playlag the role of a predictor, thus, in turn, making lt posilble for the invertigation to compare the student performances in Higher Secondary. Concepte in Science and Modern Physica for the cholce of the best predictor.

Another important aspect of the validity study almad at in the above context concerns the theme of the 'concurrent validity'.

In addition to the above stated rellability and valldity studies. the theale almo alms at investigating teachors' perception of tho objectives of education under the internal syatem of continuous avaluation at the tertiary leval. Further. the thesi: also studies teachers' percoption and, wherever feasible, practicen as followed by thom in texma of objectives. techniquas and nature of examinations in the above context.

Further, as another of its main inventigation, the thesis also aims at studying the internal continuou evaluation system as under the "Pxactice School (PS) method of education'. As an overview, the PS can bast be described as an attempt to build the much needed bridge batween the profesaional world
and the academic world. Thus. juat as a medico undergoes an internahip before graduation, aimilarly the pS syatem of education requires studente of engimeering, aclence and hunanitiee to practice their proiession during their educational years. the moat important feature of the $P S$ aystem of evaluation ia in terme of the lact that, consiatont with the theme of internal asseasmont, the entix student education and ovaluation under PS 10 the total responalibllity of the univereity laculty residont at the univeralty's PS centre. In tha context of this investigation, the theols firat concerns itself with presenting the themes of "consumer obligation" and "multiple objective" testing, which are central to the PS aystem of education, and then devotes 1tself to study som of the rellabllity and correlation aspecte for examinations uncior PS. Another Important invemelgation that the theals alms at in this context pertains to the question of the content valldation of the ps evaluation.

Pinally, in the context of the educational innovation of the Manter of Engineering ($M_{\circ} \mathrm{E}_{\circ}$) (Oollaborative) programmes. Which conmtitute a hatural corollary to the ps gystem of education, the thesis applies itself to the inveatigation as to what can be the model of internal continuoue evaluation Byatom, if the multipla objective evaluation were to be incorporated in the class-room bawed teaching effort.

The above then 13 a comprehensive statement of the objectives as pursuad under the present study.

At th1s atage, it may be mentioned that, towards the information and the data base required for the above stated objectives, this thesia heavily draw from the educational operations at the Birla Institute of Technology science, (BITS). P11an1. As 'deemed university'. committed to the theme of 'educational innovation'. right since its inception, BITS has adapted the semester pattern of total internal continuous eraluation, characterised by letter grading. Its educational syatem. alming at interdisciplinary student training. is broad-based but integrated in character, with heavy emphasis on the analytical techniques. Since the academic year 1972-73, aits has also introduced across ite discipilnes of ongineering, science and humanities the practice school system of eduation. And, since the academic year 1979a80, BITS has initiated the M.E.(Collaborative) programes at itz off-campue educational centres. Further, as an all India Inatitute, biss attracts atudents f rom all parte of the country. Similarly, its faculty 1 s also of all Incla character, and reflects all shades of higher education, from India as also from abroad. It is in this context that the thesis has thon looked upon the educational operations at BITs as : on-going educational experiments for generation of the much needed data-base for the pursu申ing of the purposed educational research.

1.5 Sumnary of Chaptere

It is against the frame of reforence as deacribed in the previous section that chapter 2 balcally deals with finding teachare' perception towards objectives of education and
examinations in continuous internal evaluation ayatem. Various other aapects of the continuous internal evaluation ayatem are discussed in chapters which follow.

Thus. Chapter 3 gives a study of rellabllity of various claseroom examdnations and courses and also correlationsbetween various examinations.

Purther, Chapter 4 concerns leself with the criterion related validity of certain clasa-room examinatione.

Chapter 5 provides a brial description of the practice School (ps) byatem of education and, in this context, introducea the concept of "consumer obligation' and 'multiple objective a,psesement'.

It is in the above context that Chapter 6 then proceeds to atudy some of the rellablilty and validity aepects for ps evaluation in terms of rellability of two evaluation components. namely. Viva and quis examiner reliability of soveral components course rellability inter-corralations between varlous componente of PE evaluationg and. Iinally its content validity.

Chapter 7. using the data base as avallable from the recently introduced ME(Collaborative) progranmea at BITS, concern itself with them of avolving of a model for a multiple-objective assessment with reference to the claparrom based teaching effort

Finaliy, Chapter 8 concluaies the thesis. Thit is then Eallowad by various Appandices.

Nondess to ayy the detalls of the above chapters have from timen to time involved data processing activity. Towards this the thasia has extenaively used the Iam 1130 aigital computer. The programmes have been pursued in the fortran language. these have been given in Appendix I.

CHAPTER - 2

ON THE OBSECTIVES OF EDUCATION AND EXAMINATIORS

2.1 Introduction

It is lmportant to dellise the objectives of education bofore an esficient syetem of education can be coaigned. To achleve thle goal. the educator, according to Tyler (1949). will have "to 1 irst dotermine the objectivic which ho seoke to attain. select the most appropriate learning strategien to obtain thease objectives and organdse their sequencing, and, linaliy, evaluate the axtent to which thoy have beon obtalned". Thus, clozely Linked with the objectives of oducation is the objoctive of examination. If the examinations are to play the dealred role as an integral part of the educational syatem, it is of paranount lmportance that the objectives of the examinations should be precicely detined and linked with the objectives of education. Thie ilnkage or integration of examinationa with the oducational aystom should be relatively eagy to achieve in an internal ovaluation gyatem where the teachers are aleo examiners. Thla chapter makes an attempt to find out directly from the teachers their own percaption of the objectives of education and the objectiven of examination in an internal evaluation ayetom. For this purpoos, teachers involved in such a aystem an at BITs have been selacted as a datambase. Further, thls chapter almo atates the various techniques of evaluation. i.e., quizses. tests. hom anelgnments, etc., uned by the teachers to achiave the objectiven of evaluation.

The chapter has elght sections. Section 2.2 diacuases the need for desining objectives of education. The formulation of objectives is given in soction 2.3. Some work on determination of the objectives of education is given in eection 2.4. whoreas sectlon 2.5 provides the objective of the present atudy. The chosen sample and method for data collection have been descrlbed In section 2.6 and the resulta with their analyals are presented In section 2.7 . Pinally, the conclusions of the atudy have been mumarised in section 2.8 .

2.2 hoed for Cefining Obioctives of Education

The basic task of an educator liated by Tyler (1949) are as follows:
(1) Determination of the objectives shich the course, curciculum (or the institution) should seek to attain.
(2) Determination of the extent to which the objectivea are attained.

The Rirnt taak ilated by Tyler relatee to the atatement of objectives of the currlculum and course-work. The aecond task. of courac. 1s IInked with the atatement of objectives of the evaluation/examination process.

It is therefore important to evaluate the extent to which objectives of the curriculum have been achieved and this, as 1a obvious. can only be done by a proper assessment/examination. Heywood (1977) while discussing the educational system obsoryses "Deoplte the fact that it is generally agreed that assesmant procedure have a powerful inzluence over learning. little has been done to lategrate them into the curriculum process. Thore is a real danger that techniquea and proceases (e.g.
continuous assesament) will be introduced without refexence to the objectives they are supposed to obtaln. As a consequence, they may be unsuitable for evaluation(examination) because they may not be valid masure of the objectives which it is hoped w111 be tested. Hi cannot expect to limprove the educational procen wlthout adoquate ovaluation (examinatlon) of learning. ho cannot have effective evaluationkexamination) without tome form of anesement(oxamination) carefully related to specified objectiven and learning stretegiea dealgned to obtaln those objectivea".

Thus, with suitably deilned objectives, it would becom easler for educatore to plan the course work, choose sultable learning tochniques and. finally, plan proper exanlmation to evaluate whether the desired objectives of education have been achieved.

2.3 the Formilation of Oblactivar

The next significant question which sxises is how the objectithe should be formulated. This has been given in detall by Bloom (1979d) in his Taronomy of educational Objectives. Volume 2. Defining educational objectives meang formulating the waye In which atudents are expected to be changed by the education process. The changes may be in their thinking, their feelings and their actions. "There are many possible changes which can take place á a reault of learning procese but since time and resources of the institutione are limited only a few posalbilitiea can bo realised". (Gloom. 1979a). Bloom furthor remarke that, it is important, therefore, what the major
objectives of the school or unit of instruction be clearly ldentifled if time and effort are not to be wanted on loss 1mportant thinge".

In an internal evaluation syetem the teacher has to play difterent roles. He is the curriculum denigner, teacher and evaluator. Hence, in such a systom the teacher is an important 11ak in the chain of formulating oblectives. The integration of examinationa with the educational system ahould bo relatively easy to achieve in an interaal evaluation gystam where the teachere are also examiners.

Some of the major criticisam of axamations pertaining to 111 deEinad or inconsistently depined objectives are deacribad below:
2. Fixaminations are not deelgned around clearly de\&ined objectives. There f.s not a close relationship between curriculum. learning axperience and the assessmant/mxamination procedure. They arn seldom used as a part of an integrated educationve procese. Indew, one ean never have effective evaluation unleas examinatione are related to apmcitied objectiven and lemening strategies deaigned to obtain those objectives. Heywood (1977) has emphasized this by stating that. "A positive approach to examinations is likely to have poworful and beneficial effect on leerning. To achleve tini goal. evsluation must become an integral part of the teaching activity.
2. The evaluation (examination) ahould begin by obtaining a clear uncerstanding of what it is that wishem to achlove. some of the variance in the student masament is undoubtedy due to the fact that there axe unconecious differences of
opinion amonget examinere about the objectives of the examination. It has been reported by many studles (Bloom, 1979a) that quite often the examinars axe not consistent about the objectives of examination, the iuleilment of which they expect out of their atudents.
3. Examinations do not assess the objectives they intenas to measure. Indeed this is the aspect pertaining to the validity of the examinations.

2.4 The Literaturo Roviow

The ifterature on higher education contalne quite a mumber of studias on the Identification of the objectiven of educatlon. is stated by Heywood (1977) the most common mothod of obtalning tho objectives is to make asurvoy". Though other methods e.g. "Dolpini" and "Task analyo1s" given by Heywood. can also so adopted. the "survey" aeems to be the most convenient and 1 s hence common. Datalied liating of the objectives of education Along with comprehensive deacription of the each objective is given in "Taronomy of Educational Objectives" by מloom (1979a).

It would be useful co alscuss the review of the work done by varloua researdherw on objectives of aducation under the following heada:

- Fescarcine reported on flixing of whuctional objectives.
- The procedura for obtiming objectivel The survay Nethod
- Reviaw of the somprinensive stucy on objectives: Taxonomy of educational objectives.
which
2.t.1 Reaearcher reported on finding of sducational obiectives A comprehenatve reviow of the work on the luentilication of objectives of education has bean made by lieymood (1977).

Beard. Healy and Holloway (1974) observe that quite a number of etudies for various subjects/diaciplines have been carried out in this area, but the overall impact of the thinking by the educational researchers in mall and eoome to have beon gencrated mainly in the acience and technology part of the spectrum. According to tham, studies in the othor dieciplines are Eev compared to those in science and technology. As regards to such etudien for the modical educetion, the same have been carried out by Miller (1962). Mcaulre(1967), Russel and Walton (1970). Ereeman and Byrne (1973) and W.H.O.(1974). According to ther. Medical profeasion has concerned lemelf with objectives in the etrictly bohavioural sanse and seoms to have been the only profession to have really tet about this activity in the formal style of curriculum evaluation".

The ilterature reporte an interesting effort in the divection of evolving the ecucational objectives. In epecific terme, a couree in educational technology demeribed by Sxiksson (2963) glves students an introcuction which relates education to the attucture of moclety and teaches methods to determin educational abjectivas. Tinis is what sound educational system should do.

Alme and objactives of education have also boen worked out in a number of reporte by Unesco (1966). Mac Ewan(1970). Long. Meltzer and HLlton (1970), Sheiziald (1970), Cowan(1971). parcen ant Txim (1971), this (1971), wain (2972), Vaugham and Rouve (1.972). and Cacter and Lee (1974).

As betad earlier, there IIave bean more studies on Einding abjectives of aducation in the feld of science and technology
as compared to the humanitiea. However, as quoted by Heywood (1977), some important work in the area of humanities has been carried out by researchera like Yudkin (1954). Plumb (1964), and Kayzen (2973).

Incoed, the formulation of objectives in education is not the end of the problem but the selection of the most important objectives $1 s$ also a major lssue to be considered. Dressel (2965) points out this lact and states that quite often teachers formulate more objectives than can be achieved by the studonts. He auggeste that it is better to select a few well chosen objectivea. Bloom (1979a) also has aimilar view point. To overcom the problema regarding formulation of objectives, prioritios of the objective to be incorporated in education will have to be set up. This is necemary because the time and resourcen ayailabie to the infitutions are ilmited.

Priorities of aim and objectiven, an Hoywood (1977) belleves, may be accomplished by rating oijfectives against the philosophical and social alme of the curricuiun. Which objectives are likely to achiove these ajna? Which of these alms are important? These may be some of the questions which couldbe of halp in deciding the prioritios among alms and objectives.

2.4.2 The Erocedure for obtaining the cbiectived: The Survey Mathod

Haywood (1977) writes, The survey is probably the most populer aethod of obtaining informstion, particulariy about the neede of proferolonal peoplis in relation to the ayllabus." Further, he bays, "Because of isa simplicity, the aurvey is an
extremely useful way of obtalning fact and opinion". In recent yeare everal researchea have obtalned through the survey technique ratinge of objectives from profeanional people, teachers and students. Indoed. Meyrood (1977) points out a danger in auch an approach in the sense that. "opinions will be (may get) accopted as a fact without further qualifying tosta". But then, leaving aside auch drawbacks, which can be taken care of through proper Eurther examinations of the data-base collected, the aurvey has been the most popular tool for obtaining information. The study now quotes son of the 1 mportant educational mesearches based on surveys which may be of use an far as the subject matter of finding objectives is concexned.

Lee (1969) akked ample of machanical engineere to rate twenty behevloural objectivee of laboratory work. Also he aaked teachera to indicate by rating which of the bent two teaching methodi would be most aulted in order to achleve these objectives. They mere also asked to give their opinions about the four most important objectivea. Remults of the aurvey concucted by lee amphasize the significance of affective domain to atudents at tertiary level. Teachere also suggested the dominance of objectives from 'affective domain' over "cognitive domaln'. The terms 'affective' and "cognttive" would be discussed in the next subusection.

Gurke (1969) has reported that in the university of Lancaster a group of ataff and students used to meet regularly between 1965 and 1967 to discuss probleme arising in the univeraity. Euch discussions ware helpeul in daciding the aims and prioxities of education.

Dewoltughes and thelr comworkere (1966) had similar types of encounterswith the studente. They surveyed opinions of all the members acrost the univorsity. Fach and evary paraon of the university, whether teacher or atudent. wan asked to list the qualities he would like the axamination yytem to assess. Many suggestlons overlapped and Elnally the quallelos that - merged with maximun concensur are glven belows

A11 of them agreed to the auggestion that the examination system shoula evaluate "acadamic abllity". What they maant by 'academic abllity' has been 11sted as.

Cceativitys abeorption, aselmilation, eynthesis and application.

Objectivitystransferablilty of values and methode.
Pexception: Analysia. speed and depth.
Knowloage: knowledge of Lacts or of sources. memory and uncleratanding.

Coherences Communication. both written and spoken.
Rest of the suggastions wero on paraonality factors which
affect academic abllity. These factore ares

- motivation and interest in the subjact
- Outside intoreats
- aillgence
- ablilty to work on your own and with others.
- responmibility to one's own ldeas. and to onemele and to others
- bahaviour under atress - clarity of thought and xeaction uncier challenge.

2.4.3 Roview of the Comprehongive study on Oblectives raxonomy of the educational objectives

A comprehensive work on objectiven of education 18 found In the "Taxonory of "Educational Objectiven" by Bloom (19791, 1979b) This section gives very short sumary of this work.

Along with the development, malnly at the achool level. of objective testing, an attempt to design at the tertiary level test ltems to test hlgh level akills auch an abllity to plan. analyse. judge, erc. has com up. These skllyare called bohavioural objectives and along with the various objectives of the tests/examinations at the various levele of chooling go to form the univerae of educational objectives. When the outm comes of learning are evaluated in terms of its objectives. It is termed as an "objective approach". The taxonomy of educational objectives by moom is major breakthrough in the Eleld of appilcation of the objective approech to the problem of studying the rellability and validity of the examinations at the tertlary level. Though the work of Bloom centres around the detalls pertalning to a speciflc group, due to its comprehensiveness It has become quite univerwal, as it covers the entire spectrum of educational objectives cutting across all the l,evels of education.

The taxonomy 1 s published in two volumest volume 1 deala with the "cognitive domain" and Volume 2 with the "aftective comain'. Bloom defines these broader areas as followns
(I) Coonitive Domaln: It Includes, those objectives which deal with the recall of recognition of knowledge and tho development of intellectual abilities ane skilis"。

Alfoctive Domaln:

It, "Includee objectives which describe changen in interet., attltudes and values, and the development of apprectations and adequate edjustment".

This taxonomy has been constructed by a group of educationista and fs an attempt to define the skille of learning. They beliove that akllis are hierarchically ordered. In cognltive domain the skill of 'abllity to evaluate alternatives ia at the top of the hlesarchy, while "knowledge" is at the bottom. The main titlea of the okille have been 11sted in the following table:

TABLE 2.1

Theles of Maln sellils in tho Connltive and
Alfective Domalns indicating thels order of Hierarchy

Maln Skills from the Cognitive Domald in the Increasing Order of Hierarchy	Maln skill fsom the Arfective Domaln in the Increaning Order of Hlerarchy. \qquad
1. Knowledge	1. Recelving
2. Comprehension	2. Reaponding
3. Application	3. Valuing
4. Analysia	4. Organisation
5. Synthasia	5. Characterisation
6. Evaluation	by a value or value complex.

other than 'cognitive" anc "affective" and has named it as - paychomotor comain'. Which, accoraing to bloom (1979a), "1a the manlpulative or motormakill area" Apparantiy, this tiald of study, as of today, is yet to recelve any detalled attention of tho educhtional reatorchers.

2.5 Objective of the Present Itudy

The above then in the state of the art in terme of the reo search in the area of determining of the educational objectives. Indeed, as cen be seen from the details given, not much work 10 roported in India in this area and certainly there is no atudy in terms of much investigation for the internal system of continuous evaluation the tertiary level. It 1 a against this background that, in the pages to follow, this chapter investigates. as a case study, the education mytom at BITS, with a view to underatand the alm and objectiven of an education system characterised by the internal syatem of continuous ovaluation under the semester pattern of the course ofterings.

The present study has been done in two pares the objectives of which have boen stated eapssataly.

2.5.1 Part ons: "Dotormining Obloctiven of Education"

The objective of this part of study is tae find out the opinion of toachers about the qualitien that a succesaful person should have. "Should these qualitias be imparted through aducation, or, can these qualitlea passed on through an educational aystem like that of 日ITg" are some of the quastions on which the opinions of teachers were sought. The last question pertalning to ptudy tries to Ifind out how far the teachery have been able to incorporate in education the qualities which ase also very essential sor success in 11 fe.

3.5.2 Part Two: Determining Obiectives of Examinations"

Inis part of the stucy alm to establish the objectives Which exarinations in an internal continuous ovaluation systar

Abstract

are endeavouring to accomplish. It also alms to lind out the techniques of examinations such as, quizzes, tests. etc., that are included in evaluation in order to attaln the objectives. The final section of this part enguires about the types of question-papers (objective, short-anawer, etc.) that are designed in order to achieve the objectives at hand. Thus,this part of the atudy is solely concernad with the objectives of the examinations.

2.6 Sample and Data Collection Procedure

Towards the proposed study, a survey was conducted by giving two prepared questionnaires to the teachers involved in the internal continuous evaluation aystem. As mentioned earlier. the teachers of BIT8 were selected as the data-base because the faculty ase from all over India, trained abroad as well as in India, and belong to all the disciplines and are aquainted with $a 11$ the levels as also the patterna of education. Hence, the faculty at BITS provided a sultable sample for the study.

Pirst questionnaire which deals with the determination of objectives of education 1 a given in Appendix A, whereas the second questionnaire dealing with the determination of objectivea as also the nature and technicues of examinations la given in appendix B.

The pracedurea for conducting the survays for the two above mentioned questionnalres along with the description of the correaponding faculty compositions which respondad to it (i.e. survey) is given below.

```
2.6.1 The sample and Data Collaction procedures for the
Omestiomnalre I on 'Dotermining the Objectlves of
Education'
```

For the purpose of the interview the researcher personally contacted the teachers. The total sample thus emenging consisted of 51 teachers dram from across the Institute' disciplines. The sample is described in rable 2.2.

Table 2.2
Teacher Exoin Different Disclodines who Responded
to the ovartionnalre I supported by the Intervien

Dlectpline of the Teacher	Number of Teachers
Sclence	26
Engineering	12
thumanlties	10
Management	3
Total	51

Thus. it can be seen from table 2.2 that almost 50% of the teachers who responded cam from Science disciplines. while the remaining 50\% cama from the disciplines of Engineering, fumanitiea and Management.

The purpose of this aurvey study being to find out the objectiven of education. The questlonnralre i had enumerated some of the qualities which are common to mote adult situations. considered essential for Ilving. The teacher ware requeated to rate/rank these
qualities. Further, the teachers were also asked questions in tera of wich of these quelities the proces of formal aducation should try to achleve, which can be achleved and, finally, which have been achleved. The anmer to these questions were sought under 'yas' or 'no' type categories.
2.6.2 The Sample and Date collection Procedures for the
puestionaise II on Dotermining the oblectivese
hature and Techniouen of Exarinations'

Like in tho case of the oueationnalre I. the questionnaire II was also distributed to all the teachera acrose the Institute. The total number responded to was 72. While answering the questions of the questionsaire II, each teacher had kept in mind the examination detaila pertaining to a given delinite course of hla cholce that he has been teaching ovar the years. Table 2.3 gives the teacher'Buownolsciplinewwise as also the coursemisciplinemiae categorization of the responsas recelved.

Table 2.3
Teacher-Disciplinewise as also Courso-Discipline-wise Btatistice Eor the Responsen Regivad for the Queatlonnalre II

Discim own pline Disclpline of the coure	Science	Enginaering	Humanttiea	Management
Science	29	2		
Engineoring	4	19		2
Humanitiea	1		13	
Management		2		1
Total	34	22	13	3

The questionnalre II was so designed as to be selfexplanatory. However, whenever needed, the researcher elso percoaally Gontacted the faculty to elaborate on the information sought through the questions posed.

The questionalire in all had three parte, namedy, part A, Part B and part 6 . These parts are briefly deecribed belows

Part A: On Duteruining Obiectives of Exanination

This section of the questionnalre included a list of objectives of evaluation based on Bloom' : Taxonomy of Educatlonal Objectives an coming uncier the cognitive domaln. if The objectives considered were knowledge, comprehension, application, analyais. syntheals and evaluation. The researcher with the help of the aupporting illustrations explained to the teachera In detall as to what was meant by these objectives. Clarifications regarding the objectives wore also given in the explanatdry noter which were included with the questionnaire. One of the quastions posed to the teachers under thia part of the questionnair wat which of the objoctives ald they incorporato in their ovaluations. Teachers were to answer this queation aparately for quizzen, test anc comprehonaives. Anawers were sought in terms of an incication as to that percentages of the total aspasmment as almed at through the examination corresponded to the alfferent objectivas atated to be puraued under that examination. Neadlese to asy, to answer this queation, then, the teachera had to recall the quagtion papars for the courses against the axamination cetails of which they were anawering the outstlonnalre II. As reeult. it may be mentioned thet almost all (1.e. about 95%) of the teachers had kopt the respective queation
papers before themelves while answering the questionnaire. Thus. In the context of the examination paper uncier consideration. a teacher could arrive at the various percentages for the difierent educational objectives corresponding to the sald examination oy aturying in detall the educatlonel objectivese for each of the test items pertaining to the questionpaper.

Part B : On Determining Techniques of Examinations

This section of the queationnalre wag related to the technlques of evaluation as practiced by the teachers. Here the questions posed to the teachers was. "How many gulezes and teste do you conduct in the course in a semester'? The teachere were asked to Indicate the number of quirses and tests and almo of 'any other' components of evaluation along with the walghtagea aselgned to them, conetltutiag the total evaluation scheme lor the course under conslderation. Other components of evaluation could be home assignmente, lab work. project work, viva, seminar, group discussion and so on. Further, iniormation is mought on, what objectives teachera are trying to achieve through these other componanta of evaluation

篗慮 C On Determining Nature of Examinations

Part c of the questiomnaire containad questions about the nature of examination aystem, viz.. whether the exmination was closed-book, open book or a combination of both. Another question asked was "whether the axaminations permitted any choice of questions/marks or not". The teachera' opinion on giving of the choice of questions in the
examinatlons was also sought. The lant quection in this part was about the type of questions included in the examinations. Based on the different types of queatlona, the examinations were broadly classified in terms of following categorles:

1. Obiective Type

The objective type test includes purely multiple cholce questions. For example, the questions can elther be true-falae or choose-the-correct-alternative type or $1111-1 n-t h e-b l a n k=$ type. and so on.
2. Short-anawor Dascriptive

As the nome incicates, quostions in thla case require short answars and are memoryworlented.
3. Short-anaver Eroblan Solving

Thin category requires short answers and the questions are appl1eation-orlented.
4. Lony-answer Dascriptive

Dueations are mevory-oriented and sequire lengthy anzwera.

5. Long-answer Problemi Solving

Answors are lengthy and applicationmorlented.
2.7 Resulta and Anolyas

2.7.1 Resulta and Analysis Jowards Determining the objectives of Education

As describad in the previous section, the quectionnalre I was concerned with the oljectives of oducation. There were four queations in this quegtionnaire which centered around the

Perception Analysis
magnosie
Problen Solvingi
Judgenent
Communication
Understanding
Sympathy
Tolerance
Sense of
Responslbility
Leadersh1p Decision Making
Copling vith Fruatration
Knowledge
Creativeness Self Rellance Confldence sense of mumor Abllity to mbx hell
wide interest Independence Honesty Anbition common Sence Iogical Thought

22.0	1	3	0	1	0	1	0	0	2	2	8	0	0	0	1	3	5	2	0	4	1	1	1	2	1
12.5	-	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	1	0	1	0	0
13.0	3	0	3	0	2	0	1	1	2	0	0	2	2	2	1	1	2	0	2	1	1	3	4	2	0
13.8	0	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14.0	0	2	J	2	2	2	2	2	1	1	3	0	0	1	1	0	2	2	0	3	2	2	3	1	2
14.5	0	3	1	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	1	0	1	0	0
13.0	0	2	1	1	2	3	2	0	3	1	1	1	3	1	2	1	-	1	1	2	0	2	3	2	2
15.8	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0	1	0	0
16.0	2	1	2	\cdots	1	2	2	1	2	1	2	3	1	0	1	3	3	1	2	2	\wedge	0	1	1	1
16.5	1	0	1	0	0	0	1	0	0	0	0	1	0	1	0	0	0	0	1	0	0	0	0	0	0
17.0	1	2	1	2	2	4	2	3	1	$?$	2	2	1	5	3	2	0	4	2	3	5	2	1	\wedge	4
18.5	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
18.0	1	1	0	1	2	3	1	3	2	0	2	1	0	0	1	1	0	1	4	2	1	0	4	2	1
10.8	0	0	0	0	0	0	c	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
19.0	1	1	2	1	2	3	3	1	4	1	0	0	1	0	1	0	2	2	4	3	1	0	0	1	2
19.5	0	0	0	0	0	0	0	0	0	0	-	0	0	0	D	0	0	0	1	1	0	0	0	0	0
20.0	0	2	1	2	0	0	1	5	3	1	0	1	1	\square	0	2	0	3	1	1	1	1	2	2	0
20.5	1	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0	0	1	1	2	1	0	1	0	0
21.0	0	1	1	0	1	4	0	1	2	1	2	0	3	4	3	0	0	2	3	2	1	2	0	0	1
21.5	0	0	0	0	0	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22.0	1	1	0	0	0	2	0	2	1	0	2	2	5	3	3	1	1	3	3	2	3	1	4	0	0
22.5	0	1	1	1	D	1	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0
23.0	0	1	1	1	1	3	0	0	0	0	2	0	4	1	0	0	0	3	4	3	3	1	2	2	1
23.3	0	0	0	1	0	0	0	2	1	0	1	0	. 1	0	0	0	0	0	0	0	0	0	0	0	0
24.0	1	1	2	1	1	0	0	2	0	0	-	0	0	0	1	0	0	5	2	6	2	0	0	0	0
24.5	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0
23.0	1	0	1	2	0	0	0	1	2	0	0	0	B	2	0	0	0	2	1	1	3	2	1	1	0

objectives of aducation. The results and analysis for these four questons are aparately discussed belows
(I) quastion I' Revilte and Aaslyals for the Quslities connidered Important in Iffe.

As mentloned earlier, the teachers were requasted to rank the already ilsted sot of qualities as per their (toachere') visualleation of the inportance of those qualities in ilfe. The resulte, 1.0., the teacher reoponses obtalned in this context are given in Table 2.4.

Por the purpose of analyals, the tescher remponses are procesed an follow:
(1) Delining of the ranluwise categories and Ansioning of walanta to tham

A11 the ranks have been classifled into aix categories. Further, n welghtage has benn assigned to each category as shown below in table 2.5.

Talole 2.5

Description of the Welohtanes Asplonod to dikferent rant-wise categorlations.

Rank-wise Catogorization	Woightage Aasigned
Categorization C_{1} for ranke between 1 to 5.5.	$W_{2}=10$
Categorization C_{2} for ranke between 6 to 10.5	$W_{2}-8$
Categorizacton C_{3} for ranka between 11 to 15.5	$W_{3}=6$
Categorization Cg for ranks between 16 to 20.5	$\mathrm{H}_{4}-4$
categorization C_{5} for ranke botweon 21 to 25	$45-2$
categorization σ_{0} indicating "no rank' assignid.	$W_{0}=0$

Purther, as can be seen srom table 2.t. some of the qualitiea occupy partial ranke eay. 5.5. Procedure for axriving at such a rank (5.5) de as Sollowis

For exampla. toacher gavo rank 5 to two qualitlea say, percoption and analysis. Tor the purpose of analysis, Inctoad of ranking one quallty as 5 and the other 6 . or both 5 or both 6, the reacarcher simply averaged the ranke and gave each bove mentloned qualitlen rank of 5.5.

(11) Calculation of tho 'Avorage=Importanco-Index'.

To obtain the 'average-importance-index' for a given quallty as emerging from the toacher responsea. first a srequency distribution corresponding to the quallty under conslacration is obtained indicating how many times the 'quality' hat reaponsea uncer the given zankwise category as 11 sted above. Thum. for. say, the $1^{\text {th }}$ quality one gets a (x frequencies (corresponding to the $51 x$ above liatad rankwise categorien from c_{1} to c_{5} and c_{0}) namely, $\mathcal{E}_{11} \mathcal{E}_{12}{ }^{\prime} \mathcal{E}_{13}$ 。 $\varepsilon_{10} \mathcal{E}_{15}$ and ε_{10}.

Then, the average importanco-index, \bar{I}_{1}, for the $1^{\text {th }}$ quality 10 given bys

$$
\bar{x}_{2}=\frac{\sum_{j=0}^{5} \varepsilon_{i j} w_{j}}{\sum_{j=0}^{5} \varepsilon_{i j}}
$$

$$
2.1
$$

Where. $\mathrm{I}_{\mathbf{1 J}}$ - Hrequency of responses for $\mathrm{i}^{\text {th }}$ quality in terme of 1 t being aseigned $j^{\text {th }}$ rank-wise category. and w_{j} walghtage, assigned to the $j^{\text {th }}$ rank-w1ae eategory.
(111) Obtaining the mean. \bar{I}_{O}. as also the standard deviation, σ. for the sequence of the averageimportancesindex $\left\{\overline{\mathbf{I}}_{1}\right\}$

Esxt. for the aequence of the average Importance index $\left\{\bar{I}_{1}\right\}$, creverlated the arithmetic \bar{I}_{0}. and the standard deviation ${ }^{\sigma}$ are calculated.
(1v) Categorization of qualities baeed on \bar{I}_{Q} and σ_{0} : It 18 on the basis of the values of \bar{I}_{0} and σ_{0} that then the various qualities as per thelr importance or aignifica or priority level are clasalifiod as followas

Table 2.6
guallty Priority Lavel Deseription

Range of the Average Importance Index

Deacription of the cuality imporeance/algniflcance/ priority lovel.
$\left(\bar{I}_{0}+3 \sigma_{0}\right)$ to $\left(\bar{I}_{0}+2 \sigma_{0}\right)$
($\bar{I}_{Q}+2 \sigma_{Q}$) to ($\bar{I}_{0}+\sigma_{Q}$)
$\left(\bar{I}_{0}+\sigma_{Q}\right)$ to ($\left.\bar{I}_{0}\right)$
(\bar{I}_{0}) to $\left(\bar{I}_{0}-\sigma_{0}\right)$
$\left(\bar{I}_{0}-\sigma_{Q}\right)$ to ($\left.\bar{I}_{0}-2 \sigma_{Q}\right)$

Highegt priority
Good priorlty

Average priority

Lass than Average priority

Least prlority

The resulta of table 2.6 ara then analysed along tho above stated approach and the amerging priority-leval wise eategorization of the qualities considered important in ilfe 18 reported in the lst column of the table 2.9.

Question 2:
(II) \wedge Results and analysia of Dualities vis-a-vis the ouestion as to shich of theso qualitier the aducation thould tey to achleve
A indicated in section 2.6 .1 , the responses requasted

TABLE 2.7

Icechars' Responeen in terme of Parcontages of 'Yes' for guogtlons 2. 3 and 4 of oustlonnatre I

from the eachers in terms of the query as to which of the quallties the education should try to achleve were of the "Yes" or "No" type. The resulte of this survey in texme of the percentage of 'Yen' agalnot each quallty are given in Table 2.7. Por the purpose of analyolw, these qualltiea are then classified in terms of various priority levol wise categorien as defined in table 2.8.

Table 2.8

CMallty Priorfty Level Description

Range of the percentage of the tavourable 1.e. "Yes" type reaponse	Description of the priority/ feacibllity/implemontation level
100\% - 85\%	Higheat priorlty
84\% - 70\%	Cood priersty
69\%-55\%	Average priordey
54\%-10\%	Less than Average priority
Lese than 40x	Leant priorlty

The resulta of the table 2.7 with respect to the subject matter at hand are then analyaed consiatent with the framework presented in table 2.8 and the omerging priority level wise categorization of the qualities that are considered to be lipportant for being pursued by oducation is reported In the columa 2 of table 2.9.

Question 5:
(III) Rosults and Analysin of oualition vig-a-yls the quastion as to which of these suallties the education can achleve

The reaponaes in this context. ag in the earlier situation, were also aought to be of the "Yes" or "No" type.

The details of this inveatigation thea more or less follow those of the previous investigation.

In specific terms, the resulte of thle arvey are given in tabla 2.7. These remults are analysed consistent with the Eramowork reported in table 2.8 and the emerging "feasibllity' level wise categorization of the qualities that can be achieved through equcation is reported in the colunn 3 of table 2.9 . Question 4:
(IV) ARosults and Analuels of pualitles vie-a-vis the quastion as to which of the qualitios have been achloved by the education.

The reaulta of this investigation are givon in table 2.7 These results are analysed consiatent with the framework reported in table 2.8 and the omerglng "Implementation" level wise categorization that has been achieved through the -ducation 1s raported in the fourth column of the table 2.9.

Thus. table 2.9, which 10 selfooxplanatory, preaente the total analyeis of the ouentionnaixe I.
(v) Cocrelations Botweon Reyponses to various Ouastions In ougstionnalre I

The correlations betwean responses to various questions In queationnmir I have been given in Table 2.10.

Sumary of Observations emerging from Queationnalre I

```Iterm for which the oualities of quastionnalre I have bean analysed \\ Degree```	classification of Qualities for 0.1 in terms of Legree of Priority for qualitles consiflered important for 11fe.	Classification of qualities for 0.2 in termas of degree of priority for qualities education should achieve	Claselfication of Ounlities from 0.3 in terme of degree of 1mplamesation for quallties education can achsew.	Claseiflcation of Dualities for 0.4 in terne of degree of foadibllity for qualleles education has been able to achicve
Wighest	Sence of responalbillty, confidence, aelismreliance, common sense	Problen solving, judgemant, aense of responsibility. leaderahip.coping with fruseration. self-reliance. confidence	Ulagnos1s. Problen molving. Tolerance. Sonse of reaponelbillty. Leclsion making. Creative-nese.delf-reliance	Analye1s, dlagnosis. Bympathy. tolerance, leadership.knowledge. creativeness.
cood	iudgemant, Parception. uncierstanking. logical thought. honesty. analyelis. problensolving. creativenase	Perception, Analysis commalcation, uncier atanding, sympathy. decision-making. knowledge, abllity to mix well. wide 1nterest	Perception. Judgemont, commaication underatanding. leaderahip, coping with Erustration. sense of inmour. abllity to mix wel	Problem-8olving. Judgement, comme nlcation. Bense of reaponsibllity. decision making. confidence, senso of humour.
Average	Diagnosis, commanication knowledge, tolerance. decision-auking. ambltion	Tolerance, diagnosis creativerese, sense humoux, independence	Analysis. knowledge contidence.   uide interest	Percuption, coping with frutratansinelfrethmee, abll thy to matr well.
Lese than gverage	Independence, leadership sympathy,wide intereat. ablifty to mix well.sen of humour. copling with irusezation.	-	Syrupathy	-
Weate	-	Honesty, Anbltion. common sense. logica thowght	Independence. honesty, ambition commor Bense. logical thought	wide interest Independence, honast ambition, common . sense. logical thought

## Table 2.10

$\frac{\text { Correlation betwoen Responsen to varlous ovestlonn }}{\text { in questionnalre I }}$

Crestlons	Quention 2 qualit1es that are Important Lot ilfe	Question $2:$   qualltien   that should   be achloved   by education	Question 3: qualitien that can be achleved by education	Question 4 qualitios that have been achlewod by education
Question 1		$\begin{aligned} & -0.01 \\ & \text { (eilghtiy, } \\ & \text { negative) } \end{aligned}$	$\begin{aligned} & 0.07 \\ & \text { (silghtiy } \\ & \text { positive) } \end{aligned}$	$\begin{aligned} & 0.01 \\ & \text { (silghtiy } \\ & \text { positive) } \end{aligned}$
Ounction 2			$\begin{aligned} & 0.72 \\ & (H L g h) \end{aligned}$	$\begin{aligned} & 0.61 \\ & \text { (Moderate) } \end{aligned}$
Ouestion 3				$\begin{aligned} & 0.75 \\ & (\mathrm{Hlgh}) \end{aligned}$

Quastlon 4

It ia against the above presented detalla through tables 2.1 to 2.10 that the next sub-section then gumnarises the emerging obecrvations.

## (vI) Smmmary of Obpervations

Table 2.9 prements the sumary of obeervatlons an emarging Erom the analysia of the teachar reaponsea to the ouestionnalre $I$. Thus. at described earlier, table 2.9 givas the degree of priorityowise classification of the qualities atated uncer the Quastionnalre I in terms of querties as to (i) Eiratiy. which of the qualitios are most necossary in ilfe and (1i) secondiy, which of the qualities should bo almed at by the higher education. further. table 2.9 also gives the degreemofofeasibility wise as woll as the degreemof-implementationowise clasification of the varlous qualities atated in the ouabtionnaire 1.

Againat this, table 2.10 gives correlations betweon tho teacher reeponees to the four questions of the queationnaire $I$. Thus, ope observes that the qualitiea needed most in ilfe (1.0. reaponse to quaation 1) a pereelved by the teacher sample studied, correlate poorly with the qualities that should be achleved by education (1.e. remponse to question 2). Further. the qualities needed mont in life also show poor corralation with the qualitiea that can be achieved by education (1.0. reaponee to queation 3) as well as with the qualitiea that have been achleved by education (1.0. response to quention 4).

Coming to the faculty reaponse to the queryy ae to which of the qualities ahould be achieved by aducation (1.e. reaponse to question 2). ad can be semn from table 2.10, the sama show high cosrelation with the qualitles that can be achieved by education (i.e. respone to quastion 3) and moderate correlation with tho qualities that have been achieved by education (1.0. reaponse to question 4). Flnally, the Eaculty response to the qualitiee that can bo achleved by education (1.e. reaponae to queation 3) indleate high correlation with the qualitien that have been achieved by education (i.e. response to quastion 4

## 2.7 .2 Rqgult \& Analysia along with omprolng obsorvationt zor the Ouoptlonnalre on determining oblectives. Techniomen and Nature of Examinationg

As indicated arlier, this aubsection concern itself with results and analyste for ouestlonnaire II dealing with determination of objectives. techniques and nature of examinations under continuous ayatem of internal evaluation at a tartiary
level as represented by BITS. Detalls describing this survey type quastionnalre (see Appendix $B$ ) as also the type of teacher sample on which the ame was administered have already been given in section 2.6.2. Por the purpose of convenience, this subsection couples resulte and apalyis with emerging observations, presenting them meparately for each of the above atated three facets of exam1nations.

## I. Renulte a Analyole as also emerglpg obecrvations for part A of ouectionnaise il on deternintian oblectivan of Eraminatione

Paxt $A$ of the Quebtionnalre if almed at studying objectiven of oveluation components of quizses, tests and comprehenaivas. Towards this, the Part A consisted of in all three questions. The first question had listed a serios of educational objectives and, with reference to the coursen conducted by them, for each of the above mentioned evaluation components, the teachers were requested to indicate in percentages as to how they normally weigh these objectives in the design of the evaluation components under consideration. For the purpose of the analysis, then, with reference to each of the above mentioned evaluation components, average percentage welghtages based on the teacher responses were found out for each of the above indicated educational objectives, These ovaluation-component-wise average-percentagewelghtagen for the different educational objectiven are deacribed in Eigure 2.1.

Coming to the second question in Part $A$, it almed at exploring what percent of teachers considered that the classroorn evaluation could also measure other qualities auch as


FIG. 21 AVERAGE PERCENTAGE OF WEIGHT GIVEN GY TEACHERS 10 VARIOUS OBJECTIVES (KNOWLEDGE, COMPREHENSION ETC.) in Exambinations.
leaderahlp, sense of responsibllity, comoperation, etc.. and, from those who remponded positively in the above context, the thlrd question trind to find out what could then be the evaluation technique for tho aame. Tablee 2.11 to 2.13 give the malyale Sor reaulte in the contaxt of above two quastions.

## Bumnery of Obseryationa

Bolow then are 1isted some of the observations as emrging 2rom the critical study of Eigure 2.1 as also of teachar remponsea to questlons 2 and 3 as presented through tables 2.11 to 2.13.
2. From the analysia of teacher rasponaes to quastion 1 in part A of ouestlomaire II. it emerges that the educational objectives of knowledge. comprehension, appllcation, analyale. syathesis and evaluation, conmtituting the cognitive domain, are, nomally, evaluated through the avaluation componente of quiszes. teats and comprehensives.
2. More apacifically, an can be seen irom ligure 2.1. while In case of quitses. the percentage weightages for the educational objectives of knowledge, application. comprehontion, analysia. syntheals and evaluation are 40\%, 21\%, 22\%, 9\%, 4\% and 4\% reapectively, the same, in case of tests. are $31 \%, 27 \%, 20 \%$, 10\%, $7 \%$ and $5 \%$, rappetively. And, in case of comprehensives, chese percentigo welightages turn out to be $29 \%, 25 \%, 21 \%$ 10\%, $8 \%$ and $7 \%$, respectivaly.

Thus, the hbove inetcated sequence of aducational objectivea also ptate the percentagemelghtegemise heirarchy of ducational

```
 TABKE 2.11
```




Analyeis of Teacher Responses to Question 3 in Part A of the Cuestionnalre II seeking what ovaluation-components in teachers' opinion can be used to assess cualities ouch as losdership. sense of responsibliltue decision makinge copperationa etc.

Distiplinewise categorization of reacher Sample	Teacher responses for various tochniques of evaluation (1.e. evaluation components) as indicated by them to asseas objectives listed in Question 2 in Part $A$ of the puestionnaire II											
	Lab   work   protets	Gase ciscussiona	0bservation action	$\begin{aligned} & E=12 \\ & \text { work } \end{aligned}$	Home project Home coplgment Project work	Sentmar	vive	Question   hour   dincration   based   clomerom   acterity		$\begin{aligned} & \text { Regulardty } \\ & \text { and } \end{aligned}$ behavicur	No ciear cert surges tion	$\qquad$   Teacher disclpline categorywise - Alotribution of teacher 5eaponse
weachers frow profeasional disciplines of Eng9., M.SC. (Tech) (Ligclusive of CS. Instzumentation. museum studies, STD) and Pharmacy.	${ }^{2}$				7	3	1	3		1	1	18
Teachers irom sclence Disciplines			1		21	5	1	7	1	2	1	29
Teachera from Humanitien disciplines of management Econoutes, Manguages f Social Studies		4	1	1	4	4	1	8		1		24
Evaluation-component-wise ciatribution of teacher responee	2	4	2	1	22	12	3	18	1	4	2	71
percentagewise diseribution of teacher reaponsea	2.81	5.63	2.81	1.40	31.04	16.90	4.22	25.35	1.40	5.63	2.81	100 is

## TABLE 2.23

## Hexaschr of various student evaluation techniauns ae emeroing on the kosis ar teacher responan to guestion 3 in part a of cuastionnadre II. fonorted In tablo 2.12.

Student evaluation techalques in the order of decreasing hierarchy of utility as opined by the aample of teechors studied with reopect to the question of measuring qualities such as leadersh1p. sence of responsiblilty. cooperition. etc.

Teacher response for the technlque undar consideration un $\%$ of the total teacher reaponse for all the techniques taken togethor

- Hom Project
- Home Aselgnmonts 31.04\%
- Project work

- Questionmour
and discuseion based 25.35x
clasa-room activity
- Seminar 16.90\%

- fegularity and behaviour 5.63\%

- Gase alscusion $5.63 \%$
men wifl
Viva
4.32\%

- Lab worle/projactéer 2.81\%
c)
- Observation
2.81\%

Interaction


- Pleld work
1.40\%

- 0uta

2. $40 \%$
objectives ac rellected through the evaluation componente of quisees, tests and comprehensives.
3. In another worda, the lower order aducatlonal objectives of knowledge, comprebension and application can be seen to account for $83 \%, 78 \%$ and $75 \%$ of the educatlonal-objectivowlse welghtages for tho quizees, tents and comprehenimes, reapectively. Against thls. the percentage welghtagee for the hlgher order objectives of analysis. syntheals and evaluation are lound to vary from 17\% to $22 \%$ to $25 \%$ as ono moves from quismen to tests to comprehensives.

Thus, while on one hand it emerges that the percentege welghtage for the set of lower order objectives of knowledey. comprehension and application decreasea Iron quizzea to teste to comprehensives, on the other hand it is obmerved that the percentage wightage for the aet of higher order objectives of analysia. synthosis and evaluation increases as one moves Erom quizeas to testa to comprehansives.
4. Table 2.14 given below indicates for quizzen. testo and comprehenalves the degree of dominance of the wet of lower order objectives of krowledge, comprehension and application over the aet of higher order objectives of analysib. syntheais and evaluation.

## Table 2.14

## Deqre of dominance of lower order oblectives over the hioher order obiectiver in the desion of eveluation componarts of quiszefe tents and comprohonsives

Eveluation Degree of dominance of the set of lowar order component objectives of knowledge, cowprehension and spylication over the set of higher objectives of analysin. synthesis and evaluations
$\alpha=$ Degree of dominance for the given evaluation component
\% melghtage for tho set of lower order objectives fox the evaluation component sunder seuds
\% weightage for the set of higher order objectives for the evaluation component under study

Qu1a

$$
\alpha=\frac{83 \%}{1 \%} \cong 5
$$

Teste
$\alpha=\frac{78 \%}{22 \%} \cong 3.5$
Comprehensives

$$
\alpha=\frac{75 \%}{25 \%}=3
$$

Thus, as can be meen from table 2.14. firstly, in the dasign of quizzar. sesta and comprehansives. invariabiy, the Lower order educational objectives greatly dominate the higher ordar objectives, and. seconily, thit degroe of dominance decroames from guismea to teats to comprehensives.
5. In case of all the thxee evaluation $h$ components of quizzes, teate, and comprohensives. the lowest ordar aducational objective of knowledge has highest weightage. Mowever, consistent with the obwervations in (4). thil percentage walghtage decreases from quismes to teata to comprehensives.
6. Thus, in sumary, it is obeorved that, balcally, the quisaes, teste and comprehonoiven alm at asecseing the lowar order qualitien of knowledge, comprehension and application.
7. Table 2.11 gives the teacher-response-wise analyais Sor the guestion 2 in part $A$ of the Duestlonnalre II. Thus. an can be seen from table 2.11. about $60 \%$ of the teacher ample studied have opined that the higher order objective like leadership, sense of responsiblilty, decisionmaking, cooparatlon, etc. can be assessed through the clas-room based ovaluation.

Further, when the teacher sample studied ta clasaifiod In terms of major disciplines to which the teacherm belonged. 1t is observed that wile. from the humanities discipilnes of management. economics, languagen and social atudies, an many as $77.78 \%$ have reaponted Eavourably to the above stated querty. the correaponding percontage for the group of teachera drawn from sciences ia found to be $57.50 \%$ and that for the group of taachera belonging to the spectrum of professional diaciplines $4 s$ observed to be only $47.63 \%$.

Thus, while a majority percentago of tachera think that the personality traits like leadership, sense of remponsibility, deciskonmaking, etc. can be evaluated through class-500m based examinations, this percentage ia seen to decrease as one noven Irom humantties disciplinet to sciences to professional dactplines.
8. Table 3.12 given teacher-major-discipline-wise catogorization of the evaluation techalques or evaluation componants on the basis of teacher responses to question 3 in part $A$ of the cuestionnalre IT. In speciflc teame, the question uncer conalderation had almed at seaking teachern' perception of the ponsible evaluation compoments that thoy would incorporate If the qualitien uch as leadarship, decislosmaking, sense of reaponalbllity. cooperation, otc. mere considered masurable by them through the clamerroon ovaluation.

Thus, all can be seen trom table 2.12. a large apectrum of evaluation components emerged in the above context namely. lab-work and lab-profecta, case discuselons, obeervation and Interaction, field-work, homemprojecte, home-assignmente and project-work, suminar, viva, questlon-hour and Alecussion based clamsmroom activity, quis, and. Einally. regularity 6 Etudent behaviour. Table 2.13 gives the hierarchywwae ordering of the above listed ovaluation-componenta baned on their popularity with the teachera in temm of the subject matter under consideration.

Thus, as can be men from table 2.13, the ovaluatlon componants of homemprofects, homemasalgnnents feproject-work demonatrate maximum acceptability (31.04\%) with teachers in terms of the task of atudent assessmant in the contert of the above indlcated higher order objectives of leadermip. decialon-making, senae of responiblility, cooperation, etc. Next in the hiorarchy, with decreasing degree of acceptability, 1s the evaluation component of question-hour and discusaion based clasm-room activity. (acceptability percentage of $25.35 \%$ ).


#### Abstract

Eollowod by the evaluation component of aminar ( $16.9 \%$ ). Agalnst this, on the other extrem of the degres of accoptance are the evaluation components of 'lab-work $\&$ lab-projecte" and 'observetion \& interaction' with the teacher acceptance of 2.81x ad the eveluation components of "Eleld-work' and "quiz" with mindmur tescher acceptance of $1.4 \%$.

Pinally, it is interesting to note that while the traditlonal class-room based avaluation component of quis has found minimum teacher acceptance (1.4\%), the other traditional clame-room based evaluttion componente of teets and comprehensives have salled even to got any such reaponse from the teacher ample under consideration.


##  for part B of puastionnalse II on determining Technicues of Exantontions

Part B of Cuaftionnaire II aimed at atudying techniquen of examinations/avaluation-componenta ae adapted by teachera so to achieve the educational objectives stated in the firat quastion of part $A$ of the guestionnalre under consideration. Towards thim. Part $B$ consieted of in all thrae questiona.

The Eirat question triad finding out how many quizzas and tasts are conducted per course by taachera. Table 2.15 prosents the porcentage-teachersmvieovaluation-componentErequencywisa analyais for the examinations of quizees and testa.

TABLE 2.15
Percentago-Teacheri-va-Evaluation-Component-Prequency= whe analyals Gor oulsses a Tests

	0	1	2	3	```More than```
cuis	35\%	37\%	19\%	1\%	8x
Teat		1\%	7\%	91\%	2\%

Against this. the 2nd question in part $B$ almed at exploring percentages of teachers incorporsting evaluation components aven beyond quizzes. temts and comprehensives. Various evaluation component炛 considered in this context were homa-assignmats, lab-work, prolect-work, viva, aminar, groupm discusalon, etc. From the teacher sample studied, as many as $62.5 \%$ (1.e. 45 out of tha total response of 72) reaponded favourably to the above query. The analysis of the reeponses of this gxoup of teachers who responded tavourably is givan in Table 2.16.

Binally, the 3rd question in part of the quetionnalre II concerned itself with Einding out what educational objectives toachers keep in mind while designing the above listed evaluation components as under the 2 nd question in part B. Table 2.17 gives the educationaloobjective-venevaluation-component-based analysis of: the teacher responaes in this context. Fuxther, the educational objective so emerging have been hierarchy wlee ordered based

## TARTE 2.16

## Percontages of Toachern Incorporating variou Eveluation Compononts extendinq beyond ouizaes. Tests and Comprchanalves

Evaluation Component	Percentage of Tuachera incorm porating the evaluation conepo nent under consideration	Percentege of Teachers not incorporating the evaluation component under considaration
Home Asslorments	22.22\%	77.78x
Lab Work	16.67\%	83.33\%
Project work	25.00\%	75.00\%
viva	15.28\%	84.72\%
Seminar	16.67\%	83.33\%
Group Discussion	12.50\%	87.50\%

## Any Other

(1) Clasa $2.78 \%$ 97.22\%
(1i) Class participation/ discusaion
4.17\%
95.83\%
(111) Engincering Design 6 Drawing
$2.78 \%$
97.22\%
(1v) Lab. Tost
1.39\%
98.61\%
(v) Field work
1.39\%
98.61\%
(vi) Casceatudy
1.39\%
90.61\%
(vil)Oral presentation inclusive of delatea
95.83\%

On the teacher reaponses for each of the educational objectives and the sanc (1.e. the ordoring) is presented in table 2.18.

It 18 against the above dotadis that below are then 1isted the merging observations:

1. As can be seen from table 2.15, all the $100 \%$ of the teacher sample studled implement the evaluation component of tests. More specifically. as many as 91\% of the teacher population have 3 tests per aemater per course. while only $1 \%$ have more than 3 tests per semester per course. This population of $1 \%$ is observed to belong to the civil engineering group of teachera. From the ramalning population of $8 \%$, $1 x$ teachere have only 1 test per semester per course, while the rest of the 15 have 2 testa per mementer per course. This 8\% of teacher population is meen to belong to the group of computer aclence teachern. From further critical study of the teacher responses from the computer science group, it emerges that this emaller number of testa is mainly due to the heavy emphamis placed by these taachers on the evaluation components of project-work and meminara.

Against the abova, as can be seen Erom table 2.15. while $8 \%$ of the ample fize atudied have more than S quizzes per someter per course. the percontage of the teacher ample conducting only 1 quim per memester per course is as high as $37 \%$, and as many as $35 \%$ of the population in obrerved not to include the ovaluation component of quiz at all.
2. Coming to other details. it omergea that a majority percentage of teachere (62.5\%) incoxposate one or the other avaluation component in addition to those of quimzen, tests and comprehensives. rable 2.16 givea teacher-parcentage wise analyele for auch evaluation
components. Thus, as cas be ceen from table 2.16 within the fram of reference under consideration, it Is the evaluation component of projectmreport which is most popular with the teachers (teacher percentage of 25\%), followed next by home-acsignments (with teacher percentage of $22.22 \%$ ) and $\mathbf{2 a b}$ work and seminar (both whth teacher percentage of $16.67 \%$ ach). Turther, the evaluation component of viva and group discusalon are observad to have teacher percentage of $15.28 \%$ and $12.50 \%$, respectively, Lollowed, In the decreasing order of popularity, by the evaluation components of class participation/discussion and oral presentation inclusive of dabates (both with teachar parcentage of $4.17 \%$ each). classework and elngineering design and drawing (with toachar percentaga of $2.78 \%$ each). and, finally. lab test.field work and case atudy (with teacher percentage of $2.39 \%$ ach).
3. Pinally table 2.17 presente various educatlonal objective kept in mind by teachers while dosigning the different evaluation components liated $\ln (2)$. apart from those of quizmes. teats and comprehansives. The educational objectives $s 0$ emerging have then been hierarchically ordsred based on the teacher responaes for bech of them acrose the entire spectrum of evaluation components under consideration, and the ame (i.e. the ordering) is reported in table 2.18.

Thus, as can be seon from table 2.18, the educational objectivea of ability to make practical suggestions. abllity to evalusta alternativas and problem aolvimg ability. With the percentage-teacher-response of $21.83 \%$, emerge an the most significant of the objectives in the above context. The doove objectives, in docroasing ordar of sigmificance, are then followed by the educatzonal objective: in terma of the 'general


## TE36E 2.20

Hlerarchy of various objectives of evaluation as egrarolng on the balis of toacher rouponsen to
question 3 in part_ 8 of cusstionsaire. Ir_ reported
in Toble 2.17

Evaluation objectives againot the entire spectrum of techniques ilsted in Column 1 of table 2.16. in the order of thelr hierarchy as emerging ficem the analysis roported in table 2.26

Teacher responae for the oblective under conalcerat as percentage of the total number of teacher responses acrose the antire crosssection of the objectives also the techniques.

- Ability to make practical auggestione
- Abllity to evaluato
alternatives
- Problum solving ablilty
- General professional pereonality inclusive of regulasity, selt reliance, sense of responsibility. leadership, sincerity. praciuion \& reliability.atc.
- Intellectual Abslity
- Knowledge 26.24\%
- Comprehenaion
- Ability to articulate
- Ability for oral and 15.23\% written presantation
- Abllity to anply knowledge to known/unknown si tatione $14.72 \%$
- Underetanding analytical cechniques
- Intexdiackplinary approach 2.03\%
- Information processing ability inclusive of information
profesaional personality characterlatice' such at regularity, eelf-reliance, leadershlp. ctc. (with percentage-tecchermereponse of $20.30 \%$ ). which, in turn are followed by the educational objectives of 'Intellectual abllity, knowledge and comprehenaion' (parcentage-teacher-reaponse of 16.24 ).

Finally, on the other extrome of the spectrum of elgnificance $1 a$ observed the educational objective of -Interdisciplinary approach' (percentago-teacherresponse of $2.03 \%$ ). followed by the educational objective of information proceseing ablilty, having minimum percentage-teacher-reaponse of $1.02 \%$.
III. Ragulte \& Analysis eq also Emazoino Obsorvations for part $C$ of overtionnaize II on determining the nature of Examinationa

Part $c$ of the ouestionnaire II almed at atucying the nature of examination as perceived by teachers so as to achiev the educational objectives atated in the lst question of part $A$ Towards this. part $C$ had in all quastions.

The first quastion attempted to study teachers' opinion about the eype of examinations (open book/closed book, etc.) as incorporated by them in terms of quizses, tests and comprehonsives. The options to be responded were: whether the examinations under consideration am denigned by teachera were "all or moatly open book" or "all partly open and partly closed book' or 'all or montly closed book'. The queation was to be answered soparately for gulszes, tests and comprehensivea Pigure 2.2 give remite for this question.


FIG.2•2 ERCKNTAGE OE FEACHERS WHO GIVE MOSTLY OPRN巴OOK, MOSTLY CLOSED SCOK OR NIXED (PARTLY


Coning to the ind question, for each of the examinations of quizsen, tests and comprehensives, it aimed at exploring whether, in practice, teachers printed choice of questions/ marka or not. Teacher percentages describing teacher responses to above options in respect of the three types of examinations under consideration are given in 1 ligure 2.3.

Against above, the ard question in part $C$ aimed to know teacher's opinion as far giving choice of questions in quizzes, testa and comprehensives is concerned. The options to be responded were: whether the examination 'should include choice' or 'should not include choice', or 'may or may not include choice'. Percentages of teachers responding to these options are given in figure 2.4.

Finally, the th and, thus the last question in part $C$ sought teacher's response in terms of the type of questions (1.0. objective, ahort-answer, long answer. etc.) that they include in the examinations. Towards thin, the teachers were requested to indicate in percentages aa to how they normally weigh these type of questions in the design of the examination paper under consideration. For the purpose of the analysis. then, with reference to each of the above mentioned evaluation components (1.e. quizzes, tests and comprehensives), average percentage welghtages based on the teacher responses were found out for each of the type of question (iss. objective, short answer, long answer, etc.). These evaluation-componsnt-wise average-percentage welghtagen for the different types of questions are given in figure 2.5.


FIG.2.3 PEREENTAGE OF TEACHERS WHO PRMRTTTEO CHOICE OF OUESTIONS IN EXAMMATBTONE.


FIG. 2.4 TEACHER'S OPINION (IN TERMS OF PERCENTAGE) ASOUT GIVING CHOICE OF QUESTIONS IN EXAMINATIONS.


FIG. 2-5AVERAGE PERCENTAGE WEIGAT GIVEN BY TEACHERS TO DIFFERENT TYPES OF QUESTIONS : OBJECTIVE, SHORT ANSNER ETC. IN EKAMINATIONS.

Below are ilated eome of the observations as emerging Erom the critical bevdy of Elgures 150 m 2.2 to 2.5 .

1. As tar as the nature of examinations (1.e. cldsed book, open book, etc.) is concerned, the pattern of reaponses given to difEerent optlone ('all or mostly open book'. 'all partly open and partly closed book' and 'all or mostly closed book) is same for 311 the components of evaluation (1.e. quizess. tests and comprehansives).

Thus, as one can aee from ILgura 2.2. 1t 1s all or montly closod book type examinations th t constitute between 66-72\% of the total sample sise btudied for each of the ovaluation components of aulszes. tests and comprahonsives. Agalnst this. for sach of the evaluation components under conalderation. - all or mostly open book" type exuminations are observed to account for only $19-22 \%$ of the sample size under study. And. as result, all partly opan and partly closed book type examinations are found to constitute only $6-12 \%$ of the totwl aanple sime for ach of the above stated examinations.

Thus, it emarges that each of the evaluation components of quizmes. teats and comprehensives. as designed by the teacher amaple atudied, are promominantly all or montly closed book' type in nature.
2. Teacher remponses in terms of the practice of giving choice of questions/marka in oxaminatione are oiven In figure 2.3. As the E1gure indicates. whether it is a quiz. test or comprehensive, the percentage of teache "not giving chotce of queationa/marks" If invariably higher than that for teachers 'giving choice of questio marke'. Howevar, al one moves fran çulzzen to tests to comprohensivos. the percentage of teschers 'not giving cholce" decreases from $90 \%$ to $78 \%$ to $57 \%$, respectively
and. thus, the percentage of teachars "giving choice" increases from $10 \%$ to $22 \%$ to $43 \%$ reapectively.

Thus, it can be concluded that while, on the whole. there is a tendency to 'not to give cholce'. the same 10 on decrease as one moves from quizees to tests to comprohensives.
3. FLgure 2.4 presente teachermpercentage-wleo analysis of the teacher-responses vis-a-vis their opinions about "giving choice in examinations'. Thus. al can be seen from flgure 2.4. in case of quiseen and teste. a majority purcontage of teachera (1.e. $69 x$ and $60 \%$. reapectively). are of the opinion that the oxaminationa should not include cholce. For somprehonsives, the corresponding percentage comes down to 34 . Against thi the parcentage of teachers opining that 'axaminations should include cholce" is observed to increase from $10 \%$ to $12 \%$ to $28 x$ as one movas $f x o m$ quizzes to teats to comprehensiven. Tinally, the percentage of teachers. who are Lound to be in the twilight aone. is also noter to incraase srom $21 \%$ to $28 \%$ to $38 \%$ as ono proceeda fror quisees to testa to comprehenalves.

Thus, In aumary, consiatent with the observations as amarging from the analynis of teacher practices visman the quostion of giving cholcen in examinatione, it umbrges that, on the whole. there is an increaning roadiness on tho part of temehexs to think of "giving of choice in oxaminations as one moves fxom quiswes tc teats to comprehensives.
4. Practicea as adapted by teachare in terms of inciusion of different types of questions in quiszes. tants and comprehensives are prasantech in figure 2.5. At the ilgure indicatea, quizref mainiy consiot of objective (welghtage 35\%) and short answer (welghtage 59\%) type
questlons. Agalnat this, tests mainiy consint of ahort anewer (welghtage 54\%) and long answer (welghtage 39\%) type questlons. A similar distribution of questions Is also obswrved in case of comprohansives, consisting mainly of short arawor (welghtage 43x) and long anmwer (welghtage $48 \%$ ) type queatlons.

Thus. In regard to the type of qucatione. examinations of tests and comprohensives demonstrate areat structural simllarlty between each other. Surther. wightage given to objective type guestiona is obeerved to vary from $35 x$ to $5 \%$ to $6 \%$ as one proceeds from quizee to test to comprehensives. And, againat this. the welghtage given co long anmwer problem solving type questions is Eound to increase from $2 \%$ to $22 \%$ to $30 \%$ as one moves k 5 m quizzes to tests to comprahansives. Finally, while. in quizzes. the welghtage given to probler aolving type questions is observed to be as low as $31 \%$, the corresponding weightages. In case of teats and comprehonsives, afe found to be of the order of $55 \%$ and $57 \%$, sexrectively.

Th1: then completes the analyain of the teacher rebponses to the duostionnalre II, and thus. in tumn. brings to dowe the study of the objectives of oducation ala of of the objectives, techniques and nature of examinations as undertaken in this chapter. As Indicated ariler, the naxt aection briasly conclude the contants of this chapter.

## Conclusion

This chapter has basically concerned itself with the them of studying the teachers" perception of the objective a education as also the objectives. techniques and nature of examination a under an internal system of continuous evaluation at a tertiary level. Towards this two questionnaires ware prepared. The Ouestlonnalre I dealt with the subject matter of the objectives of education. while tho ouestionnalye II was concerned with the subject of objectives, techniques and nature of examinations. The questionnaires were responded to by teachers from the entirespectrum of disciplines of engineering science and humanities. In all 51 teachers responded to the Ouestlonnalre I. While the Questionnaire II was responded by In al 2 72 teachers.

Below are listed som of the main observations of the above atuciy:

1. In the perception of teachers, the qualities of sense of reaponaibility, confidence, self-reliance and common sense have emerged se the ones with highest priority in the context of what the process of life needs most.
2. Against this. towards the qualities that the education should try to achieve, amongst other things, the tesche have given highest priority to the qualities of problem solving (ability). judgement, leadership, selimreliance. etc.
3. In the perception of the teachers. qualities lite problem solving, decision-making. selis-rolinnce, etc. have received highest degree in tarns of the ability of the education to achieve thea qualities.
4. As regards to the qualities which, in the perception of the teachers. the education has been able to achiove the highest degree, amongst other things, has been given to the qualitien of analysia. knowledge. leadership, otc.
5. Interestingly, whlle the quality of knowledge has been considered to be of only 'average' importance as far as the requiremente of life are concerned, when enquired as to how far the education has been able to achieve thls quality under consideration, the teachers have reaponded Indicating 'h1ghent' degree of achlevement.
6. Whlle common sense has been given the highest priority as Lar as the requirements of the life are concerned, this quality has received least pilority in term of the teachere perception vis-a-vis what the aducation should aim at.
7. It is interesting to note that the teacher responaes to the question as to "what qualities the ilfe needs most' show very poor correlations with the teacher responses to the quastions as to 'what education should achieve'. 'what education can achleve' and what education has achieved'. Against this, the reaponses to question as to'what education should achleve' show high to moderate correlations with responaes to questions as to "what education can achie and 'what education hat achieved', reapectively. similarly, the teacher responses to question as to 'what education can achieve' ghow a high correlation with the teacher responses to the question as to what the education has achleved'.

Thus, while there is an internal conaistency between the reaponses to quastions as to "what eaucation shoul achieve'. "what eaucation can achleve" and "what
oducation has achieved'. the teachera" perceptions of the qualities thot the education should pursue. can puraue and has pursued are quite in isolation from their own plcture of what qualitles the life requires.
8. Coming to the objectivas of axaminations, as far as the evaluation components of quimees. teste and comprohonuiver are concerned. it is obeerved that they are normally deslgned around the cognitive domain of the educatlonal objectives
9. It 18 also noted that the majority of the teacier a ample Btudied think that the higher order skills like leadershlp, co-operation, sense of reaponaibllity. decimion-raking. etc. can be absessed through the classeroom evaluation. Towarda this, the evaluation componants of homenprojects. home-aeslgnments and project-work are obperved to be the most popular with the teachers.
10. Furthes. it enorges that majority of teachers from the saruple stuciel incorporate one or other avaluation componnt in adiltion to those of quizzes, tests and comprehensives. In this context, the evaluation componant of project-work is observed to be most popular with the teachera, followed by the evaluation components of home-assignments and labwork and seminat.
11. It 1a obaerved that the educational objectives of ability to make practical suçgentions. abslity to evaluate alternatives and problem solving ability emerge ab the most significant educational objectives in terms of the restgn of the varioum evaluation cornonents as under (10). apart from those of quizere. teata ane comprohonsives.
12. As regards to the nature of examinations. 1t 1s observed that, it $1 s^{\prime}$ all or mostly closed book' type examinationsthat constitute between 66-72\% of the total sample aize etudied in the above contezt for the examinations of quizzee. tents and comprehonsives. As regards to the practice of giving cholce of questions/marka, the majority of teachers do not give chnice. Finaliye while quisiea consist mainis of objective and short answer type queations, the tests and comprohensiven include mainly the short answer and long answer type questions.

The above thed is a comprehensive atatement of the toachers" perception of the objectiven of education as also the objectivas, tachniques and nature of examinations as under the internal system of continuous evaluation at the tertiary level. It is against the frameoforeference inveatigated through this chapter that the teachers design varlous examinations. Chapter 3 studies the theme of reliability analysin for the examinatione so cesigned.

## CHAPTER 3

## RELIABILITY ANALYSIS - AN ROV APPROACH

### 3.1 Introduction

The inportance of subjecting examinations to "test analyeis" can not be over emphasized. It ie particularly vital in the case of an internal evaluation system since (1) 1t (test analysis) sarves to establlah the much-needed credibility of the syatem and (11) it can provide valuable feedback to teacher: for luproving upon the effectiveness of examinatlons which must be subjected to a rigorous scrutiny. Test analysis is used precisely for this purpose.

Is more apecific terros, the tast analysia refers to various atatlsticel methode which can be used to analyse the resulte of an examination. This chapter presents test analysim. viz., dotalled statistical analyais of various oxaminations adminimtered in a sample of courses at BITS. The chosen sample consiste of 19 courses from various programmes and disclplines, taught at various levels acrose the institute. The statistlcal paramaters which have been calculated ares reliabllity, coefficlents of correlations between various examinations in a courae and course reliablilty. Another important characteristic of an examination ig its validity which will be discussed in the next chapter.

A briet description of tha aforecited parameters is given in section 3.2 of the present chapter. whereab rellabllity has been discussed in som detall in section 3.3. This le Sollowed by section 3.4 which dsecribes the coafflelent of rellabllity for
a complete course. The review of the literature is given in section 3.5. Section 3.6 contains the objactive of the present atuey. The chosen sample of the BITs coursee is deacribed in section 3.7 along with the method ueed for the collection of the data. The resulte, the aralyale of reaulta and the emerging observations drem are presented in section 3.8. 3.9 and 3.10. respectively.

### 3.2 Statistical paramoters Used in the Tost Analyein

### 3.2.1 Confficlent of Rollablilty

The confgicient of reliabllity, denoted by $R$, measures the 'rellability' of an examation. Rellabllity of an examination refers to the consiatency in difforent sete of marke scored if the same examination is given more thas once without any intervening or additional instruction. The maxlmum value of $R$ is unity wich indicates that sets of marks scored in repeats of an examination are $100 \%$ consiatent, $1 . e$. the examination if $100 \%$ rellable. The other extrem R=0 would indicate a complete lack of consistency in different sets. As reliability is a very important characteristic of an examination 1t w111 be taken up for discussion in some detall in the section that EOLlowa.

### 3.2.2 Coefficient of Correlation

The coefficient of correlation indicates, what extent Variables (testa in this cate) are ralated. to what extent variablea in one teat go with variables in the other. Thle atatistical paramater 1 s well gtudied in the $12 t e r a t u r e$
(As can be seen in Guilford, 1978). The present study involves the use of product-moment method for the calculation of the coefilicient of correlation. The method uses the relation given In the following equation (Cu1lford, 1978)

$$
r_{X Y}=\frac{x y}{\sigma_{x} \sigma y}
$$

.....3.1
where
$r_{X Y}=$ Cosficient of correlation between tests $X$ and $Y$.
$x$. Deviation of any $X$ score from the mean in test $X$.
$y$ - Deviation of the correaponding $Y$ score from the mean in test $Y$.
$x y=$ sum of all the producta of deviations, each $x$ deviation multiplied by ita corresponding y deviation.
$\left.\begin{array}{l}\sigma_{x} \\ \sigma_{y}\end{array}\right\}=$ standard deviations of the distributione of $X$ and

### 3.3 Reliablitty of an Examination

### 3.3.1 Examination as a Measuring Instrumant

No maasuring iastrument is totally free from errora. Som error or the other is always in any tipe of measurement. whether it is a physical or an educational measurement. The maasurament error can be ranom or in the form of aystematic bias. The present atudy however is concerned with the random eггогп.

The random errors in measurement are never completely eliminated but efforts should be made to reduce tham an much as posaible. If the random errors in messuremant aro sufficient amall, the meanurement is ald to be reliable, Rellabillty refera
to the extent to which measurements are repeatable. When the meauroment 10 appreciably influenced by random errors, the reaults are not exactly repeateble because of the very nature of random ercore which, belng randon, will be difforent in different sets of meadurements. sonerally, phyalcal lnatrumenta like a thermometer are quite reliable. However, it is not alway so in the came of educational meamfoments because of their qualltative natura. For example. if an achievemant tent administered on several diflerent occasions gave the same results. the test could be sald to be rallable. However, the achlevemant which was to be tested might itself not be stable as the tine changes. Hence, educational moasuremente tend to bo leas rellable than phyrical meazurementa.
sxarainations are instrumants for meauring the abliity and performance of atudenta. It is inevitable that several kinds of errore will be inherent in various kinds of examinations. It $1 s$ not possible to design a syotem which is totally free from errore but it ia certalniy essential to understand and eatimate the magnitude of errors in the examinations and. it, possible. establiah "Limita of credibility" for axamination reaulta. Discrepancles in meaburements may lead to a faulty asesement of $t$ atudent's porformance. Hence it is neceseary to understand the different sourcee of errora in oxaminations.

The maln posetble mources of errore that are rolevant to the internal system of evaluation can be clasalfied as follows

### 3.3.2 Errose in Examinations

(I) Subjectivity in Marking: The student's script is a major source of error. Different examinera may assign different marks to the same script. An examiner with a human mind can not be wholely free from abbectivity in marking. In addition to the contents of the answer, the exandner may be influenced by the quality of hand-writing, and the neat and tidy look of the answer book and the atyle of expression, etc. These factors may obviounly influence the marks given to the students inapite of the usual claim that the marke are awarded only on the contents of the answer. Further, when examinare are marking a large number of anewer books they would not usually mark all of them In one sittiny. Hence, the varying moods and emotional and mental staten of the examinera can also be one set of factora Ior variation in the markn awarded. Another factor which ia obviously crucially important in an internal evaluation syatem is the examiner's personal relationship with the students and his overali opinion of the individual studenta. For instance. two stucents who have made different impressions on the examinex who has taught them in the cissa are Iikely to get different marka even if the content of their anewers is identical.

## (II) Content Error Due to Blased Sampling of puestions:

each examination paper representa a hort sample erom a large number of toples which have been taught and which form the basis for the examination. The sample may be unfair because it can not assess the entire zange of the test syllabus. There 1s clearly atrong poasibility of the ample being blased because
of several reasons such as the examiners interest in particular aspecte of the subject. his personal attitude towards choosing elther too complex or too simple toplcs. etc. Heywood (1977) studles this kind of error in terme of'sultabllity of the instrument or scale. Questions which are too difficult or too easy do not help the examiner to discriminate the atudents" performance in aroup properly. Indeed. In actual cases, then, the discrimination may be caused by the subjectivity of the examiner of by random variations.

In an internal aseesmmant system these errora may be Lntroduced through several waye. Slace the examinar is also the teacher, during the clasa-room instruction students oteen know that he himelf is going to aet the question paper. Thus. he (the student) may invariably attempt to guess the possible questions in the examination from the zeature of the axaminer and his omphasis on certain topics during teaching. The examiner on the other hand knows that the students are trying to gueas and, therefore, depending on his own mental attitude, he may either deliberately encourage the students in guessing wrong questione or heip them in guesaing the right ones or aven try to adopt a totilly different attitude of neutrality or indifferen Quite otten. since the student knows the examiner, he may anawer the questions according to the examiner's inclinations and expectation and not according to what the atudent really thinks should be the answer. Any such circumatances would contribute to the variation in marking which would naturaliy not reflect the tuaent" true ability and achievement in the abbject.

## (III) Error in the structure of a ouestion

Heywood (1977) calla this type of error as 'reader aculty'. If the question is ambiguous. there may be distraction In answering it properly because the atudenta may bring their own meaning to the question.
(IV) Cholce of Quentione

Occesionally, the students may be given a cholce of of questions questions from a certain number, in the question paper lifowever. this practice is not very conton in 日ITs). It is debatable whether such a choice would contribute to the error in the examinetion reaults or not, but it is obvious that this certainly would lead to the variation in test acores. Various studies (for example, Heymood 1977) have proved that the student's cholce of a particular question from questione often leadsto inconsiaten and incomparable assessmont by the examiner. depending on whether such a cholce includea the examiner' ${ }^{\text {a }}$ avourite queation or not.
(v) Error in the Teat Eorm

The objectives of the questions in an examination should represent the objectives of the course atudy. Unlams the examinati meamures what it intends to measure. it is of no use. This la called validity of the examination which will be discussed in the fourth chapter.
(VI) Error Due to the Health or Mental Condition of the Sturient

A student'a general health and mental atate can also be a bource of error in the examination reault. If an examination 18 given on day when the atuadent is not feeling woll or is emotionally upset. his performance is likely to be worse than

Lt would have been uncer normal conditions.
The errors described above contribute in varying degreen to the marke awarded to the students. It $1 s$ assumed that from the point of view of the overall population these are diatributad at random. The effect of auch errorn can be oatimated by calculating the rollability of the examination which 1s the main objective of the work presented in the chapter. The quantitative meanure of rellability $1 s$ given by the coefflcient of reliability subas described innsection, 3.3.4 and methods for the calculetion of this coefilcient are incorporated in sub-etion.3.3.5.

### 3.3.3 Sake-quard to Reduce the Erzorit

sub-
Thls nsection discuasen different sateguarde that can bo 1mplempnted against the various categorles of error: 11 sted subabove. Towarda this. the $n$ section extenalvely draw from the practicen followad in this contaxt at BITS.
(I) Subiectivity in Marking

Studentr in the examination systom at BITS characterized by the internal evaluation are shown their answermbooks (inclusive of the comprehensive examination answer-books)after they hava been corrected by the axaminer. This ie in a refreshing and walcome contrast to external examinations where atudenta nover get an opportunity to see their anawer books after they havo been checked. Hence, at $B \mathrm{Hig}_{\mathrm{a}}$, in case students have any confusion or doubts, they can always have interaction with the examinezs and atisty themaglven with regard to the award of marks. Such thexibility avold ambjectivity in marking to a graat extent. besides providing the necesaary Eeedback to both the oxaminer and the candidate.

## (II) Content Ergor Dun to Blased Enplimg of questions

A polnted out earlier. unlike the traditional examination system, the evaluation at BITS is internal and continuous, and. since the evaluation is continuous, any 'blased sanpling of questions' La reduced to coneiderable degree. Since the studente are assessed from time to tim, the question papers set also constitute an authentic sample of the content taught. Further. the practice of asking more gueations in a teat paper can aleo help the examination to be less prone to this type of error.
(III) Brzor in the structure of the oveations

Errot of this type le more possible under the multiwection based temching of a courae. Thia error can be cone1derably reduced by the type of the practice Iollowed at aITs, whereby the queations are usually discupsed arongst the tean of instructora for the course, ao as to arrive at coneensus on the content as also the atructure of the queations through the necesuary raderations and the revisions at the varlous stages of the question formulation.
(IV) Cholce of muestions

As stated aarlisr, this practica can be a cause for errors In the tucient assossment as studied by Heywood (1977): and. thorefore. may normally be discouraged. Intereatingly, this practice is not vary common at BITS.

## (V) Error in the ront Forms

Chis axlmos malnly due to the diacrepancy between the objectiven of the courae topice and those of the course examinatic

One method to reduce this kind of the error can be in terms of the practice, as Lollound at BITs, of isauing of course handout: at the beginning of each semeater. The course handout 1s isaued for each course of the semeater, and is prepared by the instructor-18-charge of the course, who consistent with the theme of the internal evaluation, ls also the examiner for the course. The handout, in specific terms, amongst other details, includes the objective of the course with reference to its description $2 n$ the Institute' myllabus and also has the total examination machanism. The handout 18 distributed to each of the studentsatending the course, thus bringing in a kind of a clarity between the examinor and the examinee in terms of the consistency betwoen the topic and oxamination objoctives.
(vi) geror Due to the Condition of Health or Mantal state of the studont

In a syotem of examination characterized by only one single test/examination (normally year ending or annual). as is the situation in many of the external systems of axamination, error in the assessment of the student that can creep in tue to his/ her improper health can indeed be of griavious order. indeed One very powerful way to avold such ${ }_{n}$ situation is to have continuous studont evaluation for any course attended by him. ofcourne, even then there can genuine situations, in the above context, with reapect to some of the tamts for the course. In auch case, then, the error can be reduced by opting for a practice, as followed at siTs, of "makemp" examination. A stucients is allowed to appear in make-up examinations, if
due to some 'valld' reason he is not able to appear in the examination.

### 3.3.4 Conficiont of Relfabillty

"The Rellabillty for any eet of meamurement is logically deflned as the proportion of their variance that is true varlance". (Gull\&ord 1978).

Inorder to obtaln a mathematical expreasion for the coefficlent of rellabllity one can flrst write the actual score $X_{1}$ obtalned by the studant ans

$$
x_{i}=\varepsilon_{i}+e_{i}
$$

Where $t_{1}$ is thatrue acore of the $i^{\text {th }}$ atudent and $e_{i}$ is the orror in his scoze. In a perfect system of moasuremint © $i_{1}$ would be sero and $x_{1}-t_{i}, 1.0$. the true score would be the one actually obtalsed by the student. True score ls the ldeal score free from errors and can be obtained only if one has a perfectly rellable measurement.

In the above model, it is. further assumed that $e_{1}$ aro diatributed randomly over the whole population consisting of w atudents.

Thus, one, then, has the following in terms of the relation betwaon the variances for the observed score, the true score and the error:

$$
\begin{aligned}
& \text { Let } v_{0} \triangleq \text { vartance of the obeerved acore } \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\bar{x}_{i}\right)^{2} \\
& \text { Where } \bar{x}_{i} \text { = mean of } x_{i}=E\left(x_{i}\right) \text { : }
\end{aligned}
$$

Let $v_{t} \stackrel{A}{\circ}$ variance of the true score $=\frac{1}{1} \sum_{i=1}^{n}\left(t_{1}-\bar{t}_{1}\right)^{2} \quad 3.4$
Where $t\left(t_{1}\right)=E_{1}$ '
and $v_{0} \Delta \frac{2}{N} \sum_{1=1}^{N}\left(\theta_{i}-\theta_{1}\right)^{2}$. variance of the error
where $\varepsilon\left(e_{i}\right)=\bar{e}_{i}$

One, Further, has:

$$
\Sigma\left(e_{1}\right)=0
$$

and that $E\left(t_{1} 0_{1}\right)=0$.
Then.

$$
\begin{aligned}
& v_{0}=\frac{1}{N} \sum_{1}^{N}\left(x_{1}-\bar{x}_{1}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{N} \sum_{i=1}^{N}\left\{\left(t_{i}-\bar{t}_{i}\right)+e_{i}\right\}^{2} \\
& =\frac{1}{N} \sum_{i=2}^{N}\left\{\left(t_{1}-t_{1}\right)^{2}+2 e_{1}\left(t_{1}-t_{1}\right)+e_{1}^{2}\right\} \\
& =\frac{N}{*} \sum_{i=1}^{N}\left(t_{4}-t_{1}\right)^{2} \\
& \bullet \frac{2}{N} \sum_{i=1}^{N} e_{1}\left(t_{2}-t_{1}\right) \\
& +\frac{2}{\mathbb{N}} \sum_{i=1}^{N} e_{1}^{2}
\end{aligned}
$$



$$
\begin{align*}
& =E\left(e_{1} t_{1}\right)=E\left(e_{1} E_{1}\right) \\
& =0 \quad E \quad E\left(e_{1}\right)=0
\end{align*}
$$

And, $v_{e}=\frac{1}{N} \sum_{i=1}^{N}\left(e_{i} \bar{e}_{i}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(e_{i}^{2}-2 e_{i} \bar{e}_{i}+\bar{e}_{i}^{2}\right)^{2}=\frac{1}{N} \sum_{i=1}^{N} e_{i}^{2}$
Therefore, aubitituting 3.9 and 3.10 in 3.8 , we geti

$$
v_{0}=v_{t}+v_{e}
$$

The coefficient of rellability, $R$, defined as the ratio of true varlance to observed variance, 18, thus, given by

$$
R=\frac{v_{t}}{v_{0}}=1-\frac{v_{e}}{v_{0}}
$$

3.3.5 Mathods for Calculating the Coofflcient of Rellablilty

Various methods are avallable in the literature for calculating the coefficient of reliability. All mothoda have some advantages and disadvantages in terms of their own 'rellability' and convenience of application. The cholce of a method would, thus, depend upon the convenience in apecific situation: on factors such as the nature of examination, the number of students and questions, the avallabllity of data in a suitable formo etc. In this subosection ia given a brief review of some of the important methode for calculating coefficient of reliability. Further detaila in thia regard can be obtained from many excellent books and monographe auch as the Vonograph on teat and Item inalysis for University. (1977) by Ratarajan. Some of the mathods for calculating the com efflcient of rellabllity are as followa:

> I Test-retest
> ir parallel form
> III Split-half
> IV Kuder-Richardson
> V Analyals of Varlance

## (I) Tent-retest

The test-retest method involvea giving the test twice to the ame group of metudents with an intervening time interval. Correlation between the marks obtained on the two different occasions gives the test-retest rellabllity coefficient. This mothod has the advantage of convenience and simplicity when it is easy to give a test twice to the same group of students. However, the time gap required between the two testa is a major drawback of this method. If the time gap is short, the atudents' performance in the second test would be influenced by their experience in the kirat test. If the time gap is large, their performance in the second test would differ from that in the firat teat due to possible changes in their intellectual level. their further readinge, atc.

## (II) Parallel Form

It is a modification of the test-reteat method, in which the need for time gap is removed. In this method instead of adminlatering the ame test twlee, two equivalent or parallel tests are given to the same population. Equivalent or parallel teata refer to the testa which have the same objectives as well as contents. The two forme of the teata are given one after the other. Theoretically parallel form seems to be a good method, but in practice it is quite difficult to make two tosta which are exactly parallel.

## (1II) Spllt-half method

In this method, the rellability of a test is estimited by determining the internal consistency of the teat. Unlike
the two above mentionod mothods, the aplit-half haa the advantage that it requires single test administration and is guite rigorous

In split-half method, the test is administered to aroup of beudenta in a usual manner. The performance of the studente Ia analysed by dividing the test into two equal halven. There is no unique way of bringing about auch aplitting. but the usual methoc to aplit a teat into two equal halves is the so called ode-aven methode In this method all oddenumbered items are kept in one group and the even numbered iteme in the other group. An 1ruplicit asauption 1s that the two halvas are similar or parallel. Thia providen the acores for each otudent which, when correlated, provide a measure of intermal consiatenc of the test. The roliability of the full test can then be calculated by using Rulon' ${ }^{\text {a }}$ formula (Eblin 2966) as given below:

$$
R=1-\frac{\sigma_{d}^{2}}{\sigma_{0}^{2}}
$$

Where $\sigma_{d}^{2}$ 1s the variance of the disference between the two halves scorea and $\sigma_{a}^{2}$ is the varlance of the, sum of the two halves acores.

In the aplit-hali method reliabllity also can be calculated by using Spearman-Brown formula or a simplified formula prom pounded by Stanley (Ebel.1979). However. Fulon's formula given in equation 3.131 known to be quite accurate and conm vonient for numbical purposes.

## (IV) Kucier-Richardion Method

Like the oplit-hali method. Kuder-Richardson (K.R.) formulae provide a measure of the internal consiatency of a
test by aingle teat administration. However, in K.R. method one need not split a test into two halves. Rellability of the test can be calculated by two alternative K.R.formulee referred as K.R. 20 and K.R. 21 (Ebel,2979) as given belows
(1) KR -20

$$
R=\frac{K}{K-1}\left[2-\left[\frac{\sum_{i=1}^{K} p_{1} q_{1}}{\sigma^{2}}\right]\right.
$$

Where K = number of lteas,
$p_{1}=$ Proportion of reaponses to $1^{\text {th }}$ item which is correct, $a$
$q_{1}=$ proportion of reaponsea to the $i^{\text {th }}$ Ltem which is not correct.
so $\left(p_{1}+q_{1}\right)$ always equals to one.
Further, $\sigma^{2 \Delta}$ variance of scores on the test. K.R- 20 ia applicable only to the testa where itema are scored by giving one point if answered correctly and zero if not answered correctly. Computation by KR-20 ia numerically somewhat inconvenient because one needsto know proportion of correct responses for each ltem. A less accurate but aimpler formula to get rellability is KR 21.
(11) KR-21

$$
R=\frac{K}{K-1}\left(1-\frac{M\left(1-\frac{K}{K}\right.}{\sigma^{2}}\right)
$$

Where $M$ Mean of test scores

$$
\mathrm{K} \text { - Number of items in a test, and }
$$

$\sigma^{2}$ = Variance of acores in test.
K.R-2 21 givas the lower bound estimate of the rellability.

The basic disadvantage in the $K R$ and splitonali formulae is that they assume that all the items in a test are homogeneous ie. all the items in the teat are assumed to measure the abe quality or characteristic and are of equal difficulty thus putting strict quality requirements on the setting of the test paper.

## (v) Analysis of Variance Approach to follabil1ty

Analysis of Varlance(AOV) provides a convenient method to estimate the coefficient of reliability. A formula for the com efficient of reliability using the Analysis of Variance was given by Hoyt (1935). In this section a brief derivation of the formula for coefficient of reliability by foU approach will be described.

The broad steps in the AOV approach are as follows

1. The observed score of a student can be described through a model represented by following equations:
and

$$
\begin{align*}
& x_{1 j}=t_{1 j}+e_{1 j} \\
& t_{i j}=\mu+\alpha_{i}+\beta_{j}
\end{align*}
$$

under the assumptions that:
(i) error components. $e_{i j}{ }^{s}$. occur independently and at random with zero mean and common variance, and
(ii) that they (i.e. $e_{i j}{ }^{5}$ ) are uncorrelated with $\mathrm{e}_{1 j}{ }^{5}$ and with errors in other measurements.
Where.
(a) $x_{i 1}=$ Marks obtained by the $i^{\text {th }}$ student in the $1^{\text {th }}$ item.
(3) $U$ Factor common to all measures (ie. scores).
(c) $\alpha_{1}=$ Factor in the total measure signifying the contribution of the $1^{\text {th }}$ sturient.
(a) $\beta_{j}=$ Factor in the total measure signifying the contribution of the $j^{\text {th }}$ Item, and
(e) $e_{1 j}$ - Unexplained factor or the error in the measure for the $1^{\text {th }}$ student due to the $1^{\text {th }}$ item.
2. Then, following the same treatment as in the case of section 3.3 .4 it can be shown that

$$
v_{0}=v_{t}+v_{e}
$$

Where $V_{0}$ is the total variance,
$V_{t}$ is the true variance,
and $V_{e}$ is the error variance.
Then, the coefficient of reliability, $R_{\text {, }} l_{b}$ given by

$$
R=\frac{v_{t}}{v_{0}}=\frac{v_{0}-v_{e}}{v_{0}}=1=\frac{v_{e}}{v_{0}}
$$

It is important to note that in this model each score contains the examinee effect as well as the item effect. The present approach is thus "twomway' analysis of variance.
3. Prom a given date $X_{i j}{ }^{\circ} V_{0}$ and $V_{a}$ can be estimated as follows (Guilford, 1978)

$$
v_{0}=\frac{S E}{N=1} \quad(N-\text { Number of examinees }) 3.19
$$

and

$$
v_{e}=\frac{\text { RSS }}{(N-1)(n=1)}(n-\text { Number of items }) \quad 3.20
$$

where
Br e represents the sum of squares for the examinees and RES represents the remainder sum of squares. Substituting $\wedge$ for $V_{0}$ and $V_{\text {e }}$ from equations 3.19 and 3.20 , respectively, in equatton-3.is yields the following expression for the coefficient of xeliablifty

$$
8=1=\frac{R S S}{(n-1) S E}
$$

The sums of squares gs and Res can be obtained an follows.

$$
S E=n \sum_{i=1}^{N}\left[\frac{1}{n} \sum_{j=1}^{n} x_{1 j}-\bar{x}\right]^{2}
$$

where $\overline{\mathrm{x}}$. the overall mean is defined by

$$
\bar{x}=\frac{1}{n N} \sum_{i=1}^{N} \sum_{j=1}^{n} x_{1 j}
$$

Expanding the square in equation 3.22 and using equation 3.23 gives the following equation.

$$
\begin{align*}
& S E=\frac{1}{n} \sum_{i=1}^{N}\left[\left(\sum_{j=1}^{n} x_{1, j}\right)^{2}-\frac{2}{N}\left\{\sum_{j=1}^{n} x_{1 j} \sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j 1}\right\}\right. \\
& \left.*\left\{\frac{1}{N_{2}^{2}} \sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j}\right\}^{2}\right] \\
& =\frac{1}{n} \sum_{i=1}^{N}\left\{\sum_{j=1}^{n} x_{11}\right\}^{2}-\frac{2}{n N}\left\{\sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j}\right\}^{2} \\
& +\frac{N}{n N^{2}}\left\{\sum_{1=1}^{N} \sum_{1 m i}^{n} x_{11}\right\}^{2} \\
& =\frac{1}{n} \sum_{i=1}^{N}\left\{\sum_{j=1}^{n} x_{1 j}\right\}^{2}-\frac{1}{n N}\left\{\sum_{i=1}^{N} \sum_{j=1}^{n} x_{j j}\right\}^{2}
\end{align*}
$$

In a similar manner, the following equations can be obtained for S.I.. the sum of squares for the items and es, the total sum of squares.

$$
\begin{aligned}
& s \Sigma=N \sum_{j=2}^{n}\left[\left(\frac{1}{N} \sum_{i=1}^{N} x_{11}\right)-\bar{x}\right]^{2} \\
& =\frac{1}{i n} \sum_{j=1}^{1}\left\{\sum_{i=1}^{N} x_{i j}\right\}^{2}-\frac{1}{n N}\left\{\sum_{i=1}^{N} \sum_{j=1}^{n} x_{1 j}\right\}^{2} \quad 3.25
\end{aligned}
$$

$$
\begin{aligned}
\text { TSS } & =\sum_{i=1}^{N} \sum_{j=1}^{n}\left[x_{i j}-\bar{x}\right]^{2} \\
& =\sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j}^{2}-\frac{1}{n N}\left\{\sum_{i=1}^{N} \sum_{j=1}^{n} x_{i j j}\right\}^{2}
\end{aligned}
$$

The remainder sum of squarea Rss is obtained by uning equations 3.24, 3.25 and 3.26 as follows:

$$
R S S=T S E-S E-B I \quad 3.27
$$

5. Tinus $6 E$ and RIS are calculated by using the above formalae to get whleh-gtwee the coefflcient of reliablility in accordance with equation 3.21.

Equation 3.18 gives the coefficiont of rellability obtained Erom the andyala of variance approach and is a generalised version of K.R.-20 formula (equation 3.14) which is only applicable to the objective type tests. Anslyais of variance approach is most general and applicable to oven essay-type testa (Haxper and Misra, 1976). In general, the question papern In the BITS examinations are nelther purely essay-type nor completely objective type. In such cases the use of equation 3.21 should then be the most justificd.

### 3.3.6 Formula for Calculating Rellability of Examinationa permittaing cholce of questions

The above formulae are not applicabl to an examination in which a choice of questions is allowed. for such a case the formula given by Harper \& Miera (1976) can be used. This formula is a modification of the K.R.-20 (equation 3.14) formula and is as follows:

$$
R=1-\frac{\operatorname{nN} \sum_{i j} x_{i j}^{2}-N \sum_{i}\left(\sum_{j} x_{i j}\right)^{2}}{(n-1)\left[n \sum_{1}\left(\sum_{j} x_{i j}\right)^{2}-\left(\sum_{i j} x_{i j}\right)^{2}\right]}
$$

Where
18 - mumber of rowe, 1.e. the total number of examinees
$n=$ number of columne. 1.e. the total number of quoetions to be answered by each examince.
$x_{i j}$. tho marksin $j^{\text {th }}$ question obtained by the $1^{\text {th }}$ student.

### 3.4 Cocfilcient of Fioliablidty for a Conplete Course

The methods for calculating $R$ as given above apply to an examination in wich aach question is regarded as an iter. The study also alma to flnd out the rellabllity of the complete course, which at BITg generally consists of suveral examinations apread over a bemester. To calculate the value of rellablilty for the complete course, one can assume a model in which each exmination is treated as an item and thus use equation 3.18 based on the analysis of variance approach. In viow of the general nature of the applicability of equation 3.18, this should give a reasonable estimate of reliability for the complete course. This model effectively ansumes that all the examinations for the course, though earried out at different times in a cometer and for different parts of the ayllabus, are the components of , so to say, "aingle" examination. The value of rellability thus emarging then gives the conelatency of this "aingle" oxamination, or, what can more appropriately be termed as. of the "complete" course. For the ake of brevity, in this chapter this value of Rellability is referred to as the"course rellability ( $R_{c}$ ).

### 3.5 Reviev of the interature

The studlea on reliability can be put under three headinges
(I) Examlner reliabllity, also called reader rellability
(II) Content rellability
(III) Total iollabllity
(I) Examiner rellability

One of the major criticiam againat examination is that the studenta may be wrongly classified due to error in marking. Scores anelgned nevor give the true or reel asecemment of the
 George (1964) and Farper etal (1967).

In support of above obervation, several other researches can be quoted. Duita a large number of studiea have observed that there may be differences in marking the same set of scripts by different axaminers or by the same examiner on different occasions (Mukerjee (1961). Taylor. Tluanga ana Mista (1966) and Harper and Fiara (1976)).

Further, Taylor (1962 $f^{b}$ in his atudy Examination of Examineras A atuey of the Rellability of examination marking" observed variation in marking for equivalent set of seripts. Towards the experiment conducted in this context. ho had ensured that the equivalent aets of seripts were distributed to the examiners so that the variation in marking might be attributed to the examiners and not to the seripti. In another study raylor (1963 () studied variation in the pass percentage of equivalent set of acripta.

All the above mantioned studies, though they do not go to the extent of finding examiner rellability, are concerned wi the theme of error in marking and hence have been discussed under 'examiner rellabllity'. However, the reacarches which hav been done to study the examiner rellability are as discussed below:

Taylor, Tluanga and Misra (1966) studied the examiner rellabllity of English I paper of B.A. part one examination of Gauhati University. They found a correlation of 0.77.

Harper (1966a, 1967) observed the examiner reliability of 0.83 in case of a hlstory paper of class $X$ of a secondary education board.

An intereating and comprehensive atudy on varlation in marking was conducted by Marper and Misra (1976). They took a project in which 10 answer books were marked by 90 experienced examinars. This study in called 'Ninety Marking Ten'. The interesting observation is that one of the answer booka which was considered the best by one experienced examiner and was given 39 (diatinction) marks out of 50 , was considered worat by another examiner who assigned it only 11 marks. In another case though. 77 out of 90 examiners agreed that pareicular answer book was the best out of the 10, the marks awarded to it ranged from 17 to 35 out of 50 ; thus indicating low level of atandardization in marking. In a thlrd case the only answer book to be considered for alatinction by one examiner was falled by 7. The marks awarded to $1 t$ ranged from 22 percent to 76 percent.

Harper and Miser (1976) in another study. got examined for a second time the same set of 4000 answer books by the same examiners. Thls atudy is known as 'Pour Thousand Remarked'. The examination selected wat Class X. These 4000 answer book consisted of 1000 each from the subjecte of a history, Hinds, blology and mathematics. Half of the anawer books were marked a eecond time by the same examiner - the other half of them were marked the second time by a different examiner. The differences between the two marking of each 4000 anawar books ranged from 0 to 20 marks out of 50. It is interesting to note that the geometry paper examiner differed from his own first marking by 20 points. The important conclusion observed by the study was that the marks of oxaminers marking their own anawer books were more consisten than of those examining other examiner's answarbooke.

## (II) Content RellabIlity

Minga (1968a) stualed the content reliability of some of the matriculation examinations at Gauhati. He observed the Rollowing results:

Subiect
English I
English II
English IIx
Mistory
mathematica
Geography

Coofficient of rollability
0.76
0.63
0.63
0.60
0.50
0.49

In an another atudy Misra (196Bb) studied the content reliability of English paper of promuniveraity examinationa
of Gaunati University. He obtained the reliability coefilcient 010.80 by analysis of variance and split-half method.

Harper et al(1967) inveatigated the content reliability of various subjects for clase $X$ examination of a secondary board education. For mathematica paper they observed high reliabllitiee ranging from 0.68 to 0.90 . Whereas Gayen et al (1961) and Mera (1968a) Sound rather low rellab1lity i.e.. 0.63 and 0.50 as compared to Harper et al. It ahould be mentioned here that Harper et.al. atudied rellabllity for geometry only whereas Gayen et.al and miste did it for arithmetic, algebra and geometry, al together.

## (III) gotal Rellabllity

The term total rellability has been colned by Harper (1976). This is the correlation between the merks given by two parallel examiners on two parallel esaay teats. Misra(1976) mantions somo of the studies which though not conducted under the heading "total rellability". would be valld to be put under thla category.
S.S.C.E. board Maharaahtra (1960) correlated Secondary School Certificate Examination (SSCE) marks with class x Einal examination for various subjects. Reliability coefilicient ranged from 0.33 to 0.80 for different rubjects. Gayen et.al, (1962) conducted a similar study by correlating school test examination marks with secondary board axamination marks. Harpar (1966 proved tatistically that the total reliability of an esaay test 18 equal to the product of
examiner and content rellabilities. Based on Harper's approach. Mlara (1968b) founc the total rallability to be 0.64 for an English examination of premuniversity examinatione of Gauhati Univeralty.

In adiltion to the above it is worth mentioning some more studies which are in the direction of lmproving examinations. They will be discuesed under following headings:

1. Guestion Formulation
2. Marking

## 1. Question Formulation

A major problem of the examination system 1 s that of designing $n^{a}$ good question paper. Most of the researches which have applied thamselven to this aspect suggeat that the queations ohould be made very apecific and related to as directiy an posaible to the learning outcomes being messured. Gayon et al (1961). H211 (1967b) and Misra (1968b) found that the questions anked in the examinations are not cleax. All of them suggest that the questions should be precise. so that pupils do not bring their own meaning to the questions. More ambiguous the question, more inefficlent it would be in detecting the true absilty of the student.

Gryen et al (1961) also pointed out that the choice of crastiona in an oxamination leads to unrealiable measure of the atudent's ability. Tulte number of other researches in India have also explored this problem. Haxper (1962) and Taylor (1962c, 1963b), H111 (1963, 1964a \& 1964b, 1965 and 1967a 1967b). Harper (1963b) and raylor (1962c and 1963b) suggest that cholce of questions, generally, should not be allowed.

Lele et al (1962) Lound that students avold diltscult questions. Performance of students is found to be poorer on difElcult ltem than on simple questions. Thue, ho concluded that when choice le glven students" performance depende more on the cholce of questions than actually upon his knowledge of the subject matter.

H112 (1967a) analyeed mathmatics question paper Erom a board and found thet a student who knew enough about four of the ighteen topics in the ayllabus got maximum marka. In another study on the general science paper, much great cholce was allowed that students could salely lgnore the entire phyoics eyllabua.

Instend of long enamy many authora have recommended the Inclusion of complisory. small, hort anmwar type questions in the examinations. Imey hold the view that the amall questions cover wide range of contents (starger (1960). H111 (1967a. 1967b. 1967c) and M1ex (1968b). Som other reeearches and the auggestion made by various commission are also in favour of having objective type quastiong in the examinations. These recommanation are by University daucation commisaion (1950). Madaliar commamion (1952). Harper (1960). Gayen et al(1961. 1962). Harper (1962). Taylor (1962d). Hatper (1963b). Mukherjee (1964). H111 (19643. 1964b. 1965). Harper (1967) and Gayen (1970).

Dave (1972) also pointed out some flaws in the question paper. He suggented following reform:
(1) Abolition of overall optiona
(11) Increasing content coverage
(114) Incressing the proportion of showt answor questions.

However, Mascarenhas (1973) in the article. 'A Model an Duestion paper' gives nalternste view point in the above context which inetead of belng baced finthe reliability analyels unee a survey technique by involving 12 educationists. According to him, a question paper should be objective-based and include questions directly related to the objectives the curriculum is required to have and that the options should be given. Further. he suggesta that the question paper shouid estlmate the item difiliculty and be so structured as to have questions ranging rrom easy to more dieflcult items.
2. Marking

Manalanobls and Chakravarty (1934) In the U.P. Doazd examinations found significant difference in the distribution of mark for different subjects. They augested the acaling of mark of different subjects by standard score mothod. Gayen et al (1961) recommended iter scaling before the marka of dLEEerent subjects are added. Taylor (1962) suggested acaling for equating the marixs awarded by different examiners. Baruan (1975) Elae in his monograph. 'A Hand Book of Scallng', discusten the scaling procedure. Some other important works carried out on gcaling are due to Paylor (1963). paylor and
 H111 (1965) and Taylor. Tluanga anc Misra (1966). M1sra(1976) stateb that, "1t may be observed that despite so many recommendations put forth by various experta on examination for sealing marks. no public examination body in India except the Gauhati University employs any kind of scaling in its examinations".

In this context, it may be worth mantioning the practice of normalisation followed at BITS in terms of ite admission procedure. The marks obtalned by each atudent in a public examination are normalised with reapect to maximum marks awarded In that examination. For example, if atudent aecures $x$ marka in a public examination and maximum marka awarded in that examination is $Y$. then, the normalised percentage of the atudent having $x$ marks will be taken to be $100 x / y$. The atudents from QLEEerent boarda and public examinations are thue treated in the same footing for the purpose of admiabion. Thus. this the Institule normalleation enables to scale the student performances as reported by various boards. so as to take care of vardations in their maxking ayatems.

PLnally, Misra (2969)in his monograph "The effect of Randomiatation and Scaling on the errore in Examination Marks' concludea that the randomisation of scripts and scaling of marks reduce the errors in examination marks approximately by $50 \%$.

The above, then, is briaf review of the ilterature on stuales on reliability, As can be seen, there almost is no work on the examinations within the framework of internal evaluation system based on aemester pattern. Thua, as mentioned arlier. the remaining sections of this chapter study reliability of examinations in internal continuous evaluation symtem.

### 3.6 Dblective of the Present Study

The present chapter alme to study the reliablilty of examinations within the framework of the internal eveluation
system. The mystom at BITS provides a vary convenient data base For this research.

To begin with. in apecific terms, against above objective. this chapter in its remalning sectiona alms to calculate the roliability of various examinations at bIFs through the analysia of variance approach. As many as 83 examinations inclusive of 7 quizses, 52 tests and 24 comprehensive examinations have been etudied in this context.

Then, the sections of this chapter analyse the effect of factors such as the mumber of questiona. muber of studenta, level of the course, discipline of the course. cte. on the rellability of the examination.

This. then, 1s followed by atudying the corrolations between various examinations of couree, the analysis being conducted for an many 18 courses.

Finally, the chapter devotes itself to the study of course rellabllity thzough the analysis of varlance approach.

### 3.7 Sample of Courses Chosen for Tast Analysis and Data Collection procedure

Ae-mentioned-cartley, $A$ ample of 19 courbes at BITS were chosen tor the test analysis. The list of these couraes is given in rable 3.2. As 15 apparent from the table, the select coursea pertain to various disciplines and programes acrose the Instituto, vize, selence, engineeringe management and the types and numbers analysed for
 mentioned in table 3.2. The total number of examinations in

## Courmes Solected for Analysin

## a．Core Courses

S．N0．	Courae No．	Course T1ele	Semester Academic Year	Disclplines	Level
1	BCI A111	Concepts in Salonce	1／1977－78	Sclence	I Yr．
2	PHY A112	Physice I	II／1977－78	Science	$\boldsymbol{I} \mathrm{Y}$ ．
3	PHY A211	Modern Physics	II／1977－78	Sclence	II Yr．
4	MATH RA322	Probab111ty and statiatics	II／1977－78	Sclence	III Yr．
5	HUM A312	Impact of Science and Technology	1／1977－78	Mumanitiea	IIIYr．
6	HUM A312	Impact of Science and Technology	1／1878－79	Humanitles	IIIY「。
7	HUM A312	Conterporary India	II／1977－78	Humandeles	IITYE．

## b．Profesalonal Courses

8	PHY A432	Solid state Phyales	工／1978－79	Science	IV Yr．
9	810 A512	Blophysics	工／1978－79	Science	V X\％．
10	MATH A561	Combinatorial Mathematica	工／1978－79	Science	$\checkmark \mathrm{YE}$ 。
11	ENGO A421	Control systems Engg．	1／1978－79	Engineering	IV Yr．
12	ENGO RAS12	Systeme Modalling	II／1977－78	Engineering	$V$ Yr．
13	CE A421	Soll Mochanics and Foundation Engineering	1／1970－79	Englneering	V Xr．
14	CE RAS32	Water \＆Wamte Water Treatment	I／1978－79	Enginaering	$V$ Yr。
15	ERE RAS92	Introduction to Merom prowessors	1／1978－79	Engineering	V Xr．
16	ECON A521	Developmental planning in India	工／1978－79	Humanitied	V Yr．
17	ENOG A411	3ystems Analysis	I／1977－78	Management	IV Yr．
18	ENGO A 11	Systems Analysis	I／1978－79	Management	IV Y̌．
19	MOTS A542	Production Management	1I／1977－78	Management	$\checkmark \mathrm{Yr}$ 。

## TABLE 3.2

## Type and Mumber of Examinations Analysed in Each Course

a. Core Courses

S.LVO.	Courne 10.	No. Of Ouizzes	No. Ot Teste	NO. Of Comprehensives
1	SCI A111	-	3	1
2	PHY A112	-	3	1
3	PHY A211	-	-	1
4	MnTH RA321	-	3	2 (Past A \& 日)
5	HUM A312	-	3	2 (Part $A$ \& $\mathrm{BH}^{\text {) }}$
6	HUM A312	2	3	2 (Part A \& B)
7	HUM A.312	1	3	1*

b. Profasaional coursen

8	PHY A 32	2	3	1
9	日10 A511	-	3	1
10	MTHH AS61	-	3	1
11	\#NGO A421	2(1ab. Outs)	3	1*
12	ENOO RAS12	-	2	1
13	CE A 21	-	3	-
14	C) RAS32	1 (1ab.Cuta)	3	1*
15	EEE RA592	-	3	1
16	ECON AS21	-	3	2 (Part A \& B)
17	ENGO A411	-	2	2 (Part A \& B)
18	SNOC A 111	-	$\begin{aligned} & 4\left(\begin{array}{lll} A & E & B \end{array}\right) \\ & \left(\begin{array}{lll} A & C & B \end{array}\right) \end{aligned}$	2 (Part A \& B)
19	M6T3 A541	-	2	1

[^0]As indicated earlier, the total number of examination in these 19 courses which have been analysed consists of 7 quisees. 52 tests and 24 comprohensive examinations.

A ilttle clarification as regards to the number of comprehensivo examinatione studied would be holpeul at this atage. Indeed, $10 r 19$ couraes, there ought to be 19 comprohensive examinations however, For one course, namsly, - CE M21 Soll Mechanics \& Foundation Engineering - data on the comprehonsive examination could not be procured. purther. for $d x$ coursed. comprehensive oxamination had two parte each, the parts in every sense being fundamentally different In character and atructure. Therefore. these have been treated as 12 examinations: thus. making the total of $(13-1+12)=24$ comprehensive examinations. The course numbers. courbe title and the mementers of their offeringa for these six couraen are: MUM A311 - Impact of setence and Technology - I Semestar, 1977-781 HUM A311 - Impact of science and pechnology - I semaster. 1978-79, MATH RA321 Probablilty o stativtice - II semester, 1977-78, ENGG Af11 Systems Analycis - I Semester, 1977-78: ENOG A411- Systems Analys2: I Semanter, 1978-79, and sCON A521-Developmental Planning in India - I Semester 1979-79.

The data collected conajsted of marks obtained by each student in oach quostion of each examination. Th1s data was collected with the help of teachers. immediately after the ovaluation of answar booke in aach axamination was completed. The teachers gave
the marked anawer books to the reaearcher before returning them to the students. Thus, the marks for each of the questions from each of the identified tests as obtained by each of the otudents were noted down from time to time.

Further, Table 3.2a and 3.2b, also, give the year and semaster of the courses (for which the data has been analysed). as well se the level and discipline of the courses. Pable 3.3 gives the number of students appearing in each examination. The number of studenta taking ean examination in a course sometimes differed from teat to test because of the reasons of absence, withdrawls and cancellation of registration. In the calculation of various statistical parameters for an examination, the data has been included only in the case of those students who actually appeared in that examination.

TABLE 3.3
Ho. of Studente Appearing in Each Examlnation
In the solected Courseo
a. Nore Courses

S.130.	Course No.	Quiz 1	Quiz 2	Test 1	Teat 2	Teat 3	Comprehen aive
1	SCI A111	-	-	343	290	325	395
2	PHY A112	-	-	272	237	301	374
3	PHY A211	-	-	-	-	-	360
4	MAEH RA321	-	-	202	143	192	231
5	HUM A312	-	-	42	59	74	94
6	HUM A311	36	43	63	47	56	70
7	HบM A312	78	-	52	57	71	84

D. Profeselonal Couresa

8	PHY A 432	14	12	14	12	15	15
9	BIO A512	-	-	16	13	15	19
10	MATH A561	$\cdots$	$\cdots$	16	17	12	17
11	ENGG A421	56 (1ab.)	-	131	80	122	136
12	ENGO RAS 12	-	-	-	122	59	281
13	CE A421	$\cdots$	-	12	21	26	-
14	CE RA532	12(1ab.)	-	14	13	12	14
15	EEE RA592	-	-	50	34	47	48
16	ECON A521.	-	$\cdots$	25	18	18	24 Part   25 part
17	ENGG Af12	-	$\cdots$	-	53	37	74
18	ENGG A411	$\cdots$	-	55	-	21	70
19	METS A541	-	$\bullet$	30	20	-	26

### 3.8 Reqults

This section, consistent with the objectives atated in section 3.6. presente the reaults on the coersiciant of collability for the 19 selected couraes. The titlos of these 19 coursea are same as those listed in Table 3.1. These results are given in part a'm of tables from 3.4 to 3.22.

Then this section proceeds to give tha reaults on the confficiente of correlations between varioun axamdnations for the coursea lieted in Table 3.1. except for the courac CE A421 - Soll Mochanice \& Toundetion ringineering. stoae results are given in part b's of rablea 3.4 to 3.22.

FLadiy, this saction given in its Table 3.23 results on course rellability for the couraes Ilsted in Table 3.1. excopting two coursee, namely. MALH RA321 - Probabllity e etatlatics and C5 A121 - Soll Machanica foundation Engineering.

It may be montioned that the courees CI A121-so11 Mechanlcs G Foundation Englneering and MATM RA321 - Probability \& statistics were. as indicated above, excluded from calculations For the reasons of the data not being available in the proper form.

Coming to othor details. it may be mentioned that all above calculations were carsided out on $2 B M 113 n$ computer at BITS using Fortran programmes and the same have been ilsted In appendix 5 (iso it).

## 1. Courge - SCI A111 - Concepts in cience

maminations*	No. of quastions	Percentage welght	$\begin{aligned} & \text { Rollabllity } \\ & \text { coefflclent } \end{aligned}$
Test 1	17	15	0.62
Test 2	14	15	0.58
Teet 3	19	15	0.61
Comprehensive	32	35	0.67

\$。 Correlation coefflcients betwem pairs of oxaminations

	Quiz 2	Tast 1	Test 2	Test 3	Droject report	Compsehensive
Ousz 1	0.24	0.37	0.43	0.42	0.03	0.41
Gu1婁 2		0.36	0.34	0.33	0.07	0.39
rent 1			0.54	0.52	0.01	0.60
Tast 2				0.52	0.08	0.63
reat 3					0.08	0.60
Project report						0.12
Comprahensive						

- In addition. 2 quimzed of 5 marice ach and project raport of 10 maring werw also givon.


## TABLS 3.5

2. Courge - PHY iN112 - PhrEICs I

Examinations*	BO. OE questions	Percentage weight	Rellab111ty coestictent
Test 1	12	18	0.60
rest 2	10	18	0.59
Test 3	8	16	0.65
Comprehensive	7	35	0.70

b. Correlations coefficients between paire of examinations

	Test 2	Test 2	Teat 3	Compre.
Ou12 3	0.47	0.46	0.37	0.52
Test 1		0.52	0.38	0.47
Test 2			0.47	0.51
Test 3				0.56
Comprehensive				

3. Course - PHY A211 - Modern Physics
a. inollability of examinations

Sxaminations	Wo. of   questions	Percentage   welght	Rellability   coesficient
Comprehensive	15	30	0.91

b. Correlation coefilcients between pairs of oxaminations

	Test 1	Tast 2	Test 3	Lab work	Compre.
Leb quiz	0.43	0.49	0.48	0.46	0.50
Test 1		0.52	0.47	0.23	0.58
Test 2			0.58	0.33	0.60
Test 3				0.48	0.60
Lab work					0.32
Comprehen					

* In addition, three tests of 15 marks each, a guiz of 10 marks and the lab work of 15 marke were diso given.

TABLE 3.7
4. Course Math RA321 - Probability \& statiatics

Examinctions*	No. of questiona	Actual welght	Rel1ability Coofficients
Test 1	6	30	0.59
Test 2	6	30	0.56
Teat 3	6	30	0.73
Comprehensive A	16	25	0.73
Comprehensive	14	50	0.82

b. Corcelation Cocfticients setween paise of Examinetions


* In addition, Eive quizzes of 7 marks oach were also held.


## 5. Coures - HUM A311 - Impact of Science f Technolo Y (I Sumater 1977-78)

- Rellabllity of examinations

Examinationa*	No. Of questiona	Percentage welght	Re11ab111ty coefflcient
Test 1	19	20	0.70
Teet 2	11	20	0.48
Test 3	4	20	0.45
Comprehensive ** part A	13	15	0.61
Comprehensive** part 5	3 out of 4**	15	0.61

b. Correlation coefficients between pairs of examinations

	cuiz 2	Test 1	Test 2	Test 3	Compre.
-u1z 1	0.18	0.25	0.27	0.48	0.37
Guiz 2		0.10	0.16	0. 33	0.42
Test 1			0.23	0.37	0.57
Test 2				C. 39	0.35
Test 3					0.50
Compreh					

* In adaition, 2 quizzes of 5 marka each were also held. - Comprehensive examination part B permitted cholce of questions.
* *the queation paper of the comprehensive examination contained the parte $A$ and $B$. These parta were quite different in nature hence their relibbility coefficients were calculated separately.

6. Courge - HUH A311 - Impact of Eicience f Technology
(1 Semsstar 1978-79)

Examinations	NO. of questione	Percentage weight	Rellabllity coefficlent
Oulz 1	6	5	0.75
Gulz 2	8	5	0.44
Test 1	12	20	0.47
Test 2	8	20	0.59.
Test 3	5	20	0.42
Comprehensive* Part A	16	18	0.77
Comprehensive* Part 8	2	12	0.48

b. Correlation coefficiente botween paire of examinations

		Cutz 2	Test 1	Tast 2	test 3	Compre.
Quiz		0.22	0.47	0.45	0.40	0.06
culz			0.54	0.54	0.37	0.47
Teat				0.60	0.53	0.28
rest					0.59	0.37
rest						0.17
Comprehensive						

*he question papar of the comprehensive examination contsined two parts $A$ and $B$. These parts were quite different in nature hence their reliability coefifelenta were calculated beparately.
7. Cousse - ifum RA312 - Contemporasy India

Examinations*	No. of quastions	Percentage weight	R11ab111ty coesficient
Suls	12	5	0.77
rest 1	2	15	0.42
rest 2	3	15	0.09
lost 3	3	15	0.39
Comprehens Ive	4 out of 5**	40	0.56

becorrelation coefficiente between palrs of examinations

	Tent 1	Test 2	Test 3	Hone Assignment	Compre.
Quiz	0.36	0.42	0.29	0.32	0.37
Test 1		0.37	0.37	0.38	0.40
Test 2			0.42	0.34	0.33
rest 3				0.51	0.70
Home aselgnment					0.64
comprehens ives					

- In adaition, home assignment of 10 maki was also given. * Examination pezmitted choice of queations.
a. Reliebility of examinations

Examinations*	NO. of questions	Porcentage wolght	paliabil1ty cofflcient
Qu18 1	9	5	0.40
Quis 2	7	5	0.73
rest 1	4	15	0.24
reat 2	4	15	0.74
Test 3	3	15	0.29
Comprahensive	11	30	0.40

D. Correlation coefficients botween paira of axamination


* In addictore quir 3 of 5 marks and home asaignmant of 10 marka ware also given.


## TABL 3.12

9. Course - 3IO AS11 - BLophysics
a. Reliability of examinations

Sxaminations *	No. of   questions	Porcentage   woight	Roliablilty   coefilcient
Sest 1	3	15	0.39
Test 2	3	15	0.22
Test 3	3	15	0.27
Comprehensive	19	45	0.83

b. Correlation coefticiente between pairs of examinetions

	Quiz 2	Test 1	Test 2	Teat 3	Compre.
OuIz 1	0.33	0.48	0.50	0.58	0.72
0u12 2		0.32	0.60	0.12	0.56
Test 1			0.32	0.56	0.51
Test 2				0.50	0.69
Test 3					0.68
Comprehensive					

- In adition, quiz 1 and quiz 2 of 5 marks eech were also hold.

10. COUrse - MaTH AS61 - Combinatorial Mathemntics

fxaminations*	NO. Of questions	porcentage weight	follablilty coefficient
Test 1	6	15	c. 48
rest 2	4	15	0.10
Test 3	5	15	0.66
Comprehonalve	7	30	0.67

b. Correlation coefficients between paire of examinations

	Test 2	rest 3	Seminar	Compre.
Test 1	0.76	0.74	0.73	0.45
Test 2		0.65	0.42	0.33
Test 3		0.69	0.76	
seminar			0.58	
compreinencive				

*In addition. seminar of 25 markis wan also held.

Examinetions*	WO. of questions	percentage weight	Rollablilty coetficiont
Lab quiz	10	10	0.47
rest 1	3	15	0.52
Test 2	5	15	0.41
Test 3	4	25	0.48
Comprehen: Ivo	5 out of 6**	35	0.68

b. Correlation coefilciente between pairs of examinations
Test 1 Test 2 Jest 3 Lab report Comprehensive

Lab quiz	0.29	0.27	0.36	0.45
rest 1	0.29	0.38	0.44	0.37
Tent 2		0.53	0.49	0.37
Test 3		0.55	0.61	
Lab				
report				

- In adation. lab reart of 10 mariks was also given. **xamination permitted cioice of questiona.


## TABLE 3.15

12. COUKBe - ENOC RAS12 - Systems MOCielling

Examinations*	NO. OE questions	Percentage woight	Rellabillty coefflciont
rest 2	2	18	0.18
rest 3	4	18	0.52
Comprehensive	6	36	0.63

b. Correlation coufilicients between pairs of examinations

		Test 1	Teat 2	Test 3	Compre.
Cuis		0.33	0.34	0.10	0.11
Test			0.44	0.34	0.59
Tent				0.38	0.45
Test					0.46
Comprehensive					

- In addition, test 1 of 16 marke and a quiz of 10 marks were also held.


## TAILE 3.16

13. Courge - CE A421-So11 machanice a poundation ringinearing
a. Reliability of examinations

Fixaminations*	$\begin{aligned} & \text { Wo. of } \\ & \text { questions } \end{aligned}$	Percentage weight	aellandlty coofflcient
Test 1	4	20	0.26
Tost 2	5	20	0.26
Teet 3	3	20	0.42

* In addition, a quiz of 5 mark and the comprohensive of 35 marko were also held.

Wote se Correletion coefficient between various examinations in this couree could not be calculated due to inadequate data.

Examinations	NO. OL questions	Percentage woight	Rellablilty coofflcient
Lab quiz	8	20	0.92
Teat 1	16	15	0.38
'reat 2	8	15	0.14
rest 3	7	15	0.38
Compreheneive	5 Out of 7*	35	0.35

b. Correlation coefticients between pairs of examinations

Test 1	Test 2	Test 3	Compre.	
Lab quis	0.16	0.91	0.68	0.81
Test 1		0.17	-0.11	0.05
Test 2		0.77	0.89	
Test 3		0.87		
Comprehensive				

*Examination parmitted choice of questions.
a. Reliability of examinetions
b. Correlation coefficiente between palra of examinations

	Teat 2	Test 3	Comprehensive
Test 1	0.44	0.43	0.34
Test 2	0.57	0.52	
rest 3		0.59	
Comprehansive			

16. Course - ECON 1521- Evolopmental Planning in India

Examinations*	NO. of questiona	percentage woight	Rollablifty coefflcient
Test 1	10	10	0.70
Test 2	15	17	0.79
test 3	10	28	0.47
Comprehensive Part A*	14	14	0.66
$\begin{gathered} \text { Comprehensive } \\ \text { Pert g** } \end{gathered}$	4	21	0.57

b. Correlation coefficients between paire of examinations

	Cuiz 2	Test 1	Test 2	Test 3	Comprehensive
Ouis 1	0.01	0.39	0.51	0.53	0.31
Guis 2		-0.10	-0.14	0.10	0.54
Tast 1		0.61	0.63	0.55	
Test 2			0.68	0.47	
Test 3			0.59		
Comprea					
hensive					

* In addition, quis 1 and quiz 2 of 10 marks each were also hola. - The question paper of the comprenensive examination contained two parts - A $\quad$. Thene perts ware quite different in nature hence their rellablilty coefilcients were calculated meparately.

TABLE 3.20
17. COUKSO - EMGG A411 - SYSTEMS ANALYSIS
(I Semester 1978-79)
a. Reliabllity of Examinations

b. Correletion Coefficiente Between Palrs of Examinations

	Test 2	Test 3	Quis	Coxprehensive
Test 1	0.53	0.58	0.49	0.55
Test 2		0.49	0.56	0.57
Test 3		0.52	0.62	
Gul:				0.59

- In addition. Test 2 of 27.5 marks and a quis of 7.5 marka were also held.

TABLE 3.21

$$
\text { 18. Course } \begin{aligned}
- & \text { ENCC A411-Systems Analyais } \\
& (I \text { Semester. 1977-78) }
\end{aligned}
$$

Examinations*	No. of quenetom	Percentage woight	Rel1ab111ty coofiticlent
Test 2 Part A	14	6	0.73
Test 3 Part A	12	6	0.66
Comprehenslve part A	27	12.5	0.67
Comprehens1v Part E	3	25	0.44

b. Correlation Coefficient Between Pairs of Examinationa

	Tectis	Tastos	Cula	Project Raport	Comprehenalve Part B	Comorehensive Part $A$
Test 1	0.62	0.52	0.37	0.42	0.62	0.65
Test 2		0.65	0.43	0.66	0.65	0.70
Test 3			0.43	0.53	0.66	0.65
Quis				0.39	0.49	0.39
projact Report					0.52	0.60
Compre-   hensive   Part B						0.69
Compre-   hensive   part A						

- In addition, teat 1 or 15 marke, test 2 and 3 part $B$ of 9 marks each, a quiz of 5 marik and a project report of 12.5 marke were also givon,

TABLE 3.22
19. COurse - M3TE A541 - Production Management II

Examinatione	$\begin{aligned} & \text { No. of } \\ & \text { questions } \end{aligned}$	$\begin{aligned} & \text { Percentage } \\ & \text { weight } \end{aligned}$	Reliability coefficient
Test 1	12	15	0.67
Test 2	8	15	0.69
Comprehensive	26	30	0.39

b. Correlation coefficienta between pairs of examinations

	$\begin{gathered} \text { Test } \\ 2 \end{gathered}$	$\begin{gathered} \text { Report } \\ 1 \end{gathered}$	Report	${ }_{3}^{\text {Roport }}$	seport $4$	$\operatorname{mognt.~}_{1}$	Amgnt.	Comp
reat 1	0.42	0.47	0.47	0.28	0.18	0.39	0.29	0.41
pest 2		-0.09	0.57	0.11	0.50	0.42	0.36	0.25
Report 1			0.10	0.22	0.21	0.28	0.05	0.17
Report 2				0.17	0.49	0.36	0.28	-0.01
Report 3					0.56	0.18	0.17	0.28
seport 4						0.43	0.60	0.45
healgnment 1							0.69	0.10
Aseign mont 2								-0.04
Comprehenstue								

*In adcition, 4 reporta of 5. 2.7 . 10 marka reapectively and 2 asslynments of 5 marks each were also held.

## TABLE 3.23

Course Reliabllity of the selected courses

$\begin{aligned} & \text { si. } \\ & \text { No. } \end{aligned}$	Courae   Number	Course Title	No. Of neudenta	No. of examinationa	Courae   rolia-   bllity
1.	SCI A111	Doxcepte in selence	396	7	0.75
2.	p4Y A112	Physicm T	363	5	0.78
3.	PHY A2IL	Modorn Phyaica	363	6	0.82
4.	HUM A. 311	Impact of sci. 8 Tech. (I Sem. 1971-70)	95	6	0.73
5.	HUM A321	Inpact or Sel. is Tech. (I Sem. 1978-79)	61	6	0.66
6.	HUM A312	Conterporary Indila	83	6	0.75
7.	PHY Ab32	solid state Physics	15	8	0.85
8.	810 2511	Blophysice	19	6	0.73
9.	MATH A561	Combinatorial Mathematics	17	5	0.87
10.	EMGC A421	Control Sywtems ringineoring	136	6	0.75
11.	EWGC	Syatorm Modelling	176	5	0.76
12.	CE RA532	Water o veate Nater Troatmont	15	5	0.82
13.	EEE KA592	Introduetion to Whenoprocesmors	49	4	0.78
14.	ECON AS21	Davelopmental planning in India	25	6	0.73
15.	ENGC A 411	Systams Analysis   (I Sem 1977-76)	76	7	0.88
16.	ENCO A 412	Syctem Amalysis   (I Sem 1978-79)	71	5	0.76
17.	MOTS A541	Production Managoment	26	9	0.78

### 3.9 Analrsis of Reoulte

In this section the coefflcients of rellabllity would be analysed first. Noxt, the study would analye the coefflcients of correlations between varlous examinations of a course. Finally, the analysis would be don for the results on course rellabllity.

### 3.9.1 Analygle of Rosults on the Rellabllity of Examinatione:

rraditionally. any effort in the direction of the tewt analysis. Invarlably, attempts to answar questiona like, how the test-reliability is related to the items incorporated in the testopaper, how does the test reliabllity for the couraes Erom, say, sciences compare with the same for the courses Erom the disciplines of the humanities, how rellable are the objective type tebts an compared to the eseay type tests and son.

It is againat this backdrop, that thia submaection, to begin wth, proposer to analyae the reaulta on the rellability of examinations presented in the previous aection in texme of parameters auch as:
(1) Number of questions.
(i1) Duxation of examination,
(111) Number of atudents.
(Lv) Level of the course.
(v) Core coursee versua professtonal courses.
(vi) Discipline of the course.
(vi1) Type of examination (ahort answer, long answer. atc.). and
(vili) Choice given in an examination.
Towaras the above, baacd on the type of quastiona in examination and based on the examination duration. the set of
examinations under conaideration can be classisied into three main categories - quizzes, tosta and comprehensives. Tnus. while on the one hand this chapter analyses the data base and the emerging results as avallable from the 03 examinations at the macro-level taking the examination all together, on the other hand $1 t$ also analyaea the results at the microleval takling each of the above stated categorles separately.

Furthar. in order to axamine how the reliability of an examination is affacted by the aforementioned elght parameters, the examinationa under the above mentioned categories have been considered in two groups according to thelr coefflciente of rellabllity. For the quizaes the groups chosen ase:
(a) those with the coefilcient of rellability leas than 0.4. and
(b) those with the coasflcient of reliabilityequal to or more than 0.4 .
thus. making the threshold value for the coefflelent of rellability for quizzes to ba 0.4 . For the tasts, the correaponding threahold value of reliability is taken to bo 0.5 and for the comprehensives, the ame is 0.6 . For all the examinations taken together, this value emargee to be 0.5. The choice of these damarcating values of the consilcients of reliability for different categoriesmas
dictated by the observed clustering of the reliability valuas of examination on appropriate graphs plotting the coefficienta of rellabllity agalnst the appropriately selected parameter:. one of them being the number of questions in an examination (for 11luntration see Eigurea 3.3a, 3.3b, 3.21a and 3.21b).

It $1 s$ againet above Eramework that bolow is presented the analyaia of the rellabllity of exeminations for aach of the arlier listed parameters.
(1) Reliabllity Obnervations According to the Number of quentions

Here the analyais of reaults has been done in following manner:

1. Macro-level Analyais: For this, all the examinations, irrespective of their categories, have been analyaed together an a met.
2. Micro-level Analysis: Here, individual categorias of examinations auch as quiszes, tests and the comprehonsive examinations have been analysed Beparately.

The total number of examinations that has been studied 1e 83. Thase consiat of 7 quizzas, 52 tests and 24 comprehanaivas.

## Macro-Laval Analyais

(a) Analysis for all the examinations taken together

To atudy the relationahdp Datween the reliability coofilcionts and the number of quegtions in an examination. to begin with, the entire spectzum of the 83 examinations wail claseisted in terms of the number of questions in the oxamination. Thus, cepending on the number, repretenting
there the total number of questions in an examination, $\mathrm{n}^{\text {emerged }}$ one or more than one reliablilty coeflicient(s). From here was. then, calculated an average rellability coefflciont For each number representing the number of questiona in an examination. This information is given in the graph (3.1) showing the variation of the average reliablilty coeffleients against the total number of questions in an examination. Earlier this sub-section
$n$ seetion-3.9-2 has mentioned about the threshold rellability coefficients as obtalned at the micro-level for varlous categories of quimmen, teste and comprehonsives as also at the macro level for all the examinationa taken together. As indicated earlier, theae thresholda were obtained while considering the clustern in the graph ahowing parameters like the the reliablilty coefficient: an the function of than number of questions in an examination. Underetandably, this database had also aftorded the researcher an opportunity to analyee how the examinations wore placed in terms of the numier of questions. thet 28. to say, what porcentage of total examinations had number of questions in an examination, say. equal to or more than certaln number say $x_{1}$ or what percontage had number of queationa, bay, lema than $x_{2}$ or, bay, how many examinetions had number of questions betwoen $x_{1}$ and $x_{2}$ and so on. When the data baee thus was atudied in this context, cluaters emarged classifying axaminations in different groups in terms of the number of questions in an examination or,in other words. threshold values of number of quentions in an examination also energed for difterent


FiG. 3.1 VARTATION OF AVERAGE RELIABILITY WITH
 TONS \& QUIZZES, TESTS AND COMPRERENSMES \%


 Wit M ( < O S.


PIG. 3.3 PERGENTAGE OF EXAMINATIONE (QUIZZ置S.TEST ANO COMPRE 4074 (30.5.

> (For illustration seefigures $3.3 a$ and $3.3 b$ )
> categorien. These threshold values can be seen from the table given below. It should be noted that in case of tests,two threshold values have emerged as far as the number of questlons in an examination is concerned.
> Table $3.23 a$.
> Threnold values for the fumber of Ouestions and Coefilciente of Rollability for varlou categorles of Examinationa


Pigures 3.2 and 3.3 give how the examinationa are placed in terms of their relationahip with the threshold values vis-amvis the rellablilty coefflcients a also the number of question in an examinationg for example. Ifgure 3.2 tells what percentage of examinations having total number of questions por araminations between $n_{n}$ ave reliability leas than 0.5 and so on.

Macro-level Analyals
(b) Analysid for Oulzzes

For the purpose of the analyais, the quiszes, based on the threahold value for the number of queations in an examination, $\begin{gathered}\text { gre } \\ \text { grouped into following categories: }\end{gathered}$
(1) Outages whase the numbar of questions is 7 or Leow than 7. and

=16. 3.3a DEMARCATION OF THRESHOLD VALUES FOR THE NUMBER OF QUESTIONS AS ALSO THE RELIABILITY LEVELS POR THE TESTS.


FIG. 3.3 bDEmARCATION OF threshold values, for the number of, questions as also the reliability level for the comprehensives.
(11) Dulzzea where the number of question 18 more than 7.

In terme of percentage, the distribution of quizzes. as per the above categories, is given in figure 3.f. It can be seen from figure 3.4, that $29 \%$ of the quizzes had elther 7 or less than 7 questions per quiz, whereas the rest $71 \%$ of quiszee had more than 7 questions per quis.

Plgurea 3.5 and 3.6 give the percentage diatribution of quizzes based on categories that anerge with reference to the confraints in terme of threshold values of the reliability coefficient as also the number of questions per examination. both the constraints taken together. From figure 3.5. it is observed that no quizees, where number of questions is equal to or less than 7. show a rellability of less than 0.4. whereas, from the quizree having questions per quiz more than 7. $20 \%$ of the quizzen have rellability coefilcienta less than 0.4.

On the other hand, Elgure 3.6 shows the percentage distribution of quizees based on the categorization in terms of requiremente that (1) the number of questions per quiz be (a) equal to or leas than 7 or (b) more than 7 and that (i1) the reliability coefficient equal to or more than 0.4, both requirements taken together.

## (c) Analysis for Tests

On the basis of the threshold valuea for the number of questions in an examination, testa have been grouped into following categoriea:


FIG. 34 DISTRIBUTION OF QUIZZES ACCORDING TO NUMBER OF QUESTIONS.


FIG. 3.5 PERCENTAGE OF QUIZZES WITH R<0.4.


FIG. 3.6 PERCENTAGE OF QUIZZES WITH $R \geqslant 0.4$.
(1) Teste where the number of questions is equal to or leas than 7
(11) Tasts having questions between 8 and 13
(111) Teate having questions more than 13.

Dlatribution of tests as per the aforementloned categories in givan in figure 3.7. As can be seen trom Ligure 3.7. 58\%, 29\% and $13 x$ of the teste had number of questions equal to or 1 ess than 7 , between 8 and 13 and more than 13, reapectively.

Figures 3.8 and 3.9 show the percentage dibtribution of teste hased on the various categories that emerge with reference to the congtraints in terms of threshold values of (1) the reliablifty coefficient as also (i1) the mumber of questions in a test, both typesof constrainta taken together.

Thus. as can be seen from figure 3.B, from the testa having questions per test equal to or less than 7, as many as $57 \%$ of teste have reliability less than 0.5 , whereas. from the teats with number of questions betweon 8 to 13 , on $y$ y 33 and, of teats have rellability less than $0.5 n$ finally, from the teate having number of queations more than 13, the percentage of testa having rellability less than 0.5 ia at low as 0\%. Further, as can be seen from Elgure 3.9. Erom the tests where pex examination number of questions is equal to or less than 7. only $33 \%$ of tests have rellabillty ergual to or more than 0.5. whereas. Exom the teats having number of guestions between e to 13. $67 \%$ (testa) have rellabillty equal to or more than 0.5. and. finally, from the tests having number of questione


FIG. $3 \cdot 7$ DISTRIBUTION OF TESTS ACCORDING TO NUMBER OF QUESTIONS.


FIG. 3.8 PERCENTAGE OF TESTS WITH $R<0.5$.


FIG. 3.9 PERCENTAGE OF TESTS WITH $R \geqslant 0.5$.
more than 13. $100 \%$ of the tests have rellabllity equal to or more than 0.5.
(d) Anclynis for Comprehensive Sxaminations

For the purpose of the analyals, the comprehensive eraninations, based on the threshold value for the number of questions, were grouped into following categories:
(1) Comprehensives having a number of questions equal to or less than 7, and
(11) Comprehensives having a number of queations more than 7.

The percentage distribution of comprehensives according to the above categorizition is shown in Pigure 3.10. the Eigure. show, that, an exactly equal parcentaged of comprehensivea (1.e. $50 \%$ onet) had a number of questions 1033 than or equal to 7 and more than 7. Feapertinvelyo

Figures 3.11 and 3.12 give the percentage distribution of comprohenaive based on categoxiea that emerged with reference to the constrainta in terms of threcholo values of the rellability coefficient as also the number of questions par examination, both tho constraints taken together. From the figure 3.11. It ia obsorved that, from the comprehonaives naving number of questions equal to or less than 7, as many as $50 \%$ have reliatility less than 0.6 . while. from the comprehenaives having numbex of question more than 7 , only 0\% have reliability less than 0.6 .

Againot this. Erom the Elgure 3.12. It can be aen that. for the comprohensives having leos than or equal to 7 questione,


FIG. 3.10 DISTRIEUTION OF COMPREHENSIVES ACCORDING TO NUMBER OF QUESTIONS:


Fig. 3 Il Percentage of compreHENSIVES WITH R < 0.6 .


FIG. 3.12 PERCENTAGE OF COMPREHENSIVES WITH $R \geqslant 0.6$.

50\% have rellabllity equal to or more than 0.6. whereaa. Erom the comprehenalves having more than 7 questions, as many as $92 \%$ have rallablilty equal to or more than 0.6 .
(e) Sumary of observations:
(1) At a macro-level, taking all the examination together, Lt has been found that most of the examination where number of questions is more than 7 show a atisfactory rellability ( 0.5 . see Eigure 3.1 to 3.3 ).
(2) The percentage of examinations showlag a rellability of lesa than 0.5 decreases as the number of questionsincreases (see Elgure 3.2). As a natural corollary to this. from E1gure 3.3, it emerges that the percentage of examinations having reliablilty equal to or more than 0.5 increases as tha number of questions increages.
(3) At a macro-level, various categories of examinations. 1.e.. quizzes, tests and comprohensives, have been considered. The sample of quizaea consists of 7 quizzes. as against the 52 teata and 24 comprehenaivos atudied in the above context. As can be seen through tables 3.4 to 3.22 , out of the seven quizzes atudied, 6 have number of questions per quis ranging botween 8 to 12. and. thus. invariably above the threshold ont of the remaining two, one has the number of questions equal to 7 and value of 7 for the number of queations. Furtherof the remaining quiz. also, has its number of questions. though lower than the thremola value, more or less equal to 1 t. the same being 6. Thus, Exom these detalls it peemo-te emergesthat, on an average, there is a tendency (on the part of teachers) to give falcly
good number of questions in the quizses. Indeed, this observation is also corroborated from figure 3.19. from where one can se that the average of the number of questions per quiz lies between the averages for the same for teats and quizzes.

Further, from figures 3.5 and 3.6. one can see that, whatever may be the number of questione-per-quiz-w1ae categorization of the quizses. for $80 \%$ or above quizzes the rellability is equal to or more than 0.4 . Thus, the set of quizses studied has, on the whole. demonstrated a satisetetory rellabllity level.

When the above two observations in terms (1) a tendency to give good number of questions in the quis and (1i) the matisfactory rellability level as demonatrated by the quizzes, are put together, it then, seemb=temerger, as in the case of the analysis for the all, examinatione taken together. that higher the number of questions in an examination, greater is the probability of its having a higher reliability.

In the context of the above observation, one may be tempted to further critically study figures 3.5 and 3.6 to Bee how the percentage of quizmes for $R<0.4$ or $R \geqslant 0.4$ varica with increasing number of questions in a quis. But, then, it turns out that the sample size at hand to puraue any such further analyais io inceed very amall. in the sense that in an already amall sized bample of 7 quiazes. only one quiz hat number of questions lesp than the thrashold value of 7 and, yet, there, too, the number of questions, as already indicated,

1s as high an 6. Thus, it can be seen that the data at hand 1s just not adaquate to draw any further detalled observations.
(4) Ooming to the analysis for tests. Irom ilgure 3.B, it can be seen that the percentage of teats having low rellabllity (1.e.. less than 0.5 ) decreases as the number of questions increasee. Vice-versa. from iigure 3.9. it clearly merges that the percentage of tests having reliability equal to or more than 0.5 increases as the number of questions per teet increasef.
(5) It 18 also clear that, like the tests, the percentage of comprehensiver showing a reliability of leas than 0.6 decreases as the number of questions increases (E1gure 3.11). Againat this. from figure 3.12. it can be sean that the percentage of comprehensives with rellablilty equal to or greater than 0.6 Increases as the number of queations in comprehensives increases.
(6) Thus, in mumary, at the macro-level in terms of "all the cxaminations taken together' an alao at the micro-level In terms of the "teste' and 'comprehensives', it clearly emerges that the percentage of examinations with reliability equal to or more than attisfactory incroases as the number of cuestion per axamination increasea, thus implying that higher the number of queations. higher the rellability. As for the quiszes, though they (quizzes) could not be analymed explicitely in terms of the relationship between the increase In the number of questiona per quis and the corresponding
increase in the degree of reliability, they have. also. demonstrated clearly that higher the number of question per examination, greater the possibility of the examination having the satisfactory reliability.

Thus, it can ba concluded that higher the number of questions in an examination, greater is the probability of the examination having the higher reliability.

In addition to the earlier observations it may be noted that the number of questions and thus the range of questions shows an increasing order from the quizzes to comprehensives as ia obvious nom Following table:

Table 3.24
Range of Questions in Various Examination

Examination a	Range of Question
Quizzes	$6-12$
Tests	$2-19$
Comprehensives	$2-32$

## (ii) Rellablilty Observations According to the Luration of Examlnations

(a) The Analyain

The duration of an examination is one of the important factors that goes to describe different categories of examinations such as quirees, tests and comprehensives. The diatribution of examinationa according to duration is shown in Elgure 3.13, from where it can be seen that the total set of axaminations selected for the study consisted of $8 x$ quizzos (having duration of about 10-20 minutes). 63\% tests(having duration of about 1 hour), the rest $29 \%$ being comprehensives (having duration of about $2-3$ hours). The percentagea of quizzes, tents and comprehensives having reliabllity of lesa than 0.5 are given in Eigure 3.14, while Eigure 3.15 gives the percentages for above categories of examinations having rellabillty equal to or more than 0.5. Thus, while, from figure 3.14, one can aee that for reliability less than 0.5. the percentage of quixges ( $57 \%$ ) is higher than that for the teats (18\%), is higher than that for comprehensivea (12\%). Erom the figure 3.15, it clearly emergen that, for reliability equal to or greater than 0.5. the corresponding percentages of quizeas. tests and comprehensives vary from $43 \%$ to $52 \%$ to 88\%, respectivoly.

Ligure 3.16 gives the average rellability plotted againat the duration of examinations. Thus, from the figure 3.16, it can be seen that as the examination time duration varies from 10-20 minutea to 1 hour to $2-3$ hours, the average rellablilty coefticient goes from 0.35 to 0.5 to 0.6 . ronpectively.


FIG. 3.13 DISTAIBUTION OF EXAMINATIONS ACCORDING TO QUIZZES, TESTS AND COMPREHENSIVES
PERCENTAGE OF EXAMINATIONS

FIG. 3.14 PERCENTAGE OF EXAMNATIONS WITH R <O.S.


FIG. 3.15 PERCENTAGE OF EXAMINATIONS WITH R $\geqslant 0.5$.


FIG.3.16 AVERAGE RELIABILITY PLOTTED AGAINST DURATION OF EXAMINATIONS.


FIG. 3.17 PERCENTAGE OF EXAMINATIONS WITH R <0.5.


DURATION OF EXAMINATIONS
FIG. 318 PERCENTAGE OF EXAMMNATIONS WITH ค 0.5.

Por each of the above mentioned categorles of examinations. flgure 3.17 describes what percentage examinations have rellability less than 0.5 . while figure 3.18* gives percentage examinationa under each category when the reliability coefficiante are equal to or more than 0.5. Thus. from the Eigure 3.17. one can see that while 57\% quizzes have the rellability less than 0.5. the corresponding percentages for tests and comprehensives are $48 \%$ and $12 \%$ respectively. Against this. 5 mom figure 3.18. one can see that while $43 \%$ of quizaes have rellabllity equal to or more than 0.5. the correaponding percentages for tests and comprehensives are $52 \%$ and $88 \%$, reapectively.

To get an overall view of the average number of questione in different examinations. a graph has been plotted showing an average number of queations against the duration of examinations (see E1gure 3.29). Thus, as can be seen Erom thia figure, the avarage number of questions in quizzes is 9. in tests 8 and in comprehensives 10.

It was also conaldered amential for the purpose of the time-duration-wise analysis to know what percentage of examinations Erom different categorios contained a small number of quastions and what percentage contalned large number of questions. Hence. on the basis of the number of questions all the examinations were divided into two groupe.
(1) Examinatlons having a number of questlons equal to or less than 7 ,
(1i) Examinations having a number of question more than 7.

* Figure 3.17 is same an figure 3.14 and ilgure 3.18 is same as ELgure 3.25. This repeqtition has taken place because of the one to one correspondence between the practice followad at the Institute in terms of the traditional nomenclature for the examinations and the time durationwise claselfication for the same.


FO. 3.19 AVERAGE NUMBER OF QUESTIONS PLOTTEO AGAINST DURATION OF EXAMINATIONS.


OURATION OF ERAMANATIONS

PHG.3.20FERCENTAGE OF EXAMMATIONG WITH AVERAGE NUMEEM OF QUESTIONS $\leqslant 7$.


OURATION OF EKAMINATIONS

FiG. 321 PERCENTAGE OF EXAMINATIONS WITH AVERAGE NUMBER OF QUESTIONS $>\%$.

E This can be seen from figure 3.20 and 3.21, respectively. (b) Sumary of Observations

1. Figure 3.16 gives the variation in the averages of reliabllity coefficients as the examination duration increasea Irom 10-20 minuten (as in case of quizzes) to 1 hour (as in case of testa) to $2-3$ houra (an in case of comprahensives). The sample blze studied for this purpose consisted of 83 examinations. and. as disurased earlier, in this total sample, only $8 \%$ are quizzes. while the teats and comprehensives are $63 \%$ and $29 \%$, respectively. Thue, the quiz ample aize is indeed very small.

Further, Erom Eigurea 3.20 and 3.21, on an average, one can also observe tendency for quizzes to have falrly good number of questions per quiz. This could be because usually teachers opt to give objective and short anewer type guentiona in quizzes (see $\mathbb{1} 1 g u r e 2.5$ ). A natural outcome of all this da that there may alweys bo oubstantial atructural difeerence between 'quirzes" and 'teats' and "comprehensives' as compared to the sam between the "tente' and "comprohanalves".

It is in terms of the above mentioned observations on quimaes with reference to (1) their mall ample size as also (ii) their atructural differonce from the examinations as coning under the categories of "teste comprehensived" that one can then aee the inadequacy of the databoase on quizzes in terms of the same boing used along with the data-base for tests and comprehensives to study the contents of ifgure 3.16.

Againat the above perapective then, Ilmiting one's attention to the data-base on tests and comprehensives only. one can then obeerve 1 rom figure 3.16 that the average roliablilt Increase from 0.5 to 0.6 as the time duration increases from the order of 1 hour to that of $2-3$ hours.
2. The above observation on rellability visearvis duration of examination is further confimed when one studies ifgure 3.10. from where one can see that the percentages of examinations having rellabllity more than or equal to 0.5 increasea from 43\% to $52 \%$ to $88 \%$ as the examination duration changea from 10-20 minutas to 1 hour to $2-3$ hours. respectively. Figure 3.17 gives an alternate atatemant in the above context, as it shows that percentage of examinations having reliability leas than 0.5 decreases $5 \mathrm{rom} 57 \%$ to $48 \%$ to $12 \%$ as the duration increases Erom $10-20$ minutas to 1 hour to $2-3$ hours. respectively.
3. Thua, the observation amerges that higher the duration of the examination, greater the possiblilty of the reliability being higher.
4. It may be mentioned that. implicitly, thic observation further goes to staengthen the observation in terms of the ralationship between the reliability of an examination and the number of questions in an eramination, as higher the exemination curation, greater would be the probablilty of the number of questions in the examination being higher.

Indeed. accounting for the tendency to give a falriy good number of questions in the quizzes. from Elgure 3.19. one can eandiy see in terms of tests and comprehensives the validity of the above proposition pertaining to the relationship between the time duration of an examination and the number of questions $\ln i t$.
(111) Reliabllitr Observations According to the Number of students

For the purpose of the analysis. different types of examinations 1.e. the evaluation components such as quizaes. tente and comprehensiven have been grouped into difzerent categorles based on the threshold valuea for the atudent number In an examination (for 11luatration see Elgures 3.21a and 3.21b). Thus. for the axaminations coming under the type of "teats and comprehensives'. these values workout to be in all two in number. namely. 100 and 150. For the quizzes, the threahold valus emerging in terms of the number of students in an examination 1a 50.

As a result, for teata and comprehensives, the different groups emerging an per the thraahold values on the student number ares
(1) Examinationa where the number of studente is less than 100.
(i1) examinatione where the students are between 100-150.
(1.1.) 等xaminations whare the number of atudents is more than 150.

For quizwes, the categories are as follown:
(1) Gutzzes where the number of students is leas than 50.
(i1) Dufzzes where the number of students 1s equal to or more than 50.


FIG. 32IaDEMARCATIOM OF THRESHOLD VALUES FOR THE NUMBEA OF STUDENTE A8 ALSO THE RELIABILITY LEVEL FOR THE TESTB.

3.21 b DEMARCATION OF THRESHOLD VALUES FOR THE NUMBER OF STUDENTS AS ALSO THE RELIABILITY LEVEL FOR THE COMPREHENSIVES.

Categorles for tests and comprehensives an alao for the quizzea, according to the throwhold valuea for rellablilty. are same as the ones mentioned in the beginning of this sub-section.

As in the earliar cases, here too the analysis of rellabllity according to the number of atudants would first be carcled out at the macro-level and then the aamo would be puraued at the micro-level.

Macro-level analyals
(a) Analyels for All the Exambations

The average reliablilty of axaminations according to the number of studente is given in Ifgura 3.22. Examinationa involving atucenta leas than 200, between 100 and 150 and more than 150 show average reliability, vime. 0.52, 0.46 and 0.67. rempectively. Pigures 3.23 and 3.24 thow the parcentagee of examination having rellablilty leas than 0.5 and $\mathbb{R} \geqslant 0.5$ according to different categories based on the number of students.

## (b) Analysis for outzzes

Blatribution of cquigres according to the number of studente is ahown in Eigure 3.25 . The percentage of axaminations 1s $29 \%$ and $71 \%$ or the number of studenta less than equal to respectively. to-er more than 50.n The percentage of quizaes having a reliability lees than 0.4 and equal to or more than 0.4 . according to different categories of the number of stucents. 1s given in figures 3.26 and 3.27 . reapeceivaly.




FIG. 3.25 DISTRIBUTION OF QUIZZES ACCORDING TO NUMBER OF STUDENTS .


NUMBER OF STUDENTS
FIG 3.26 PERCENTAGE OF QUIZZES WITH R<0.4.


NUMBER OF STUDENTS
FIG 3.27 PERCENTAGE OF QUIZZES WITH $R \geqslant 0.4$.

## (c) Analyels for Teats

The percentage of tests according to difierent categorkea of the number of students is given in figure 3.28. Majority of the teste (77x) have leas than 100 students. Distribations of tests in the categories of rellability less than 0.5 and rellability equal to or more than 0.5 according to the number of studente are given in ifgures 3.29 and 3.30 . reapectively.
(d) Analyale for Comprehensive examinations

Most of the comprehensive (71\%). llke the testa, have a number of students lase than 100. The diatribution of comprehensives according to the numbar of stucents can be sean Erom Eigure 3.31. Parcentegewwiee distribution of comprahensives according to mumber of stueonts having rallablilty lesa than 0.6 end equal to or more than 0.6 are given in Eigures 3.32 and 3.33 , respectively.

## (e) Summasy of ologervations

To know thether rellabllity is afrected by the number of students. graph is plotted (wee figure 3.22) showing at macromlevel of the analyais the average rellability againat the number of students. As can be seen Erom the E1gure 3.22. if for the examinations with "etudenta less than 200 ' the average reliability is 0.51 , the ame for examinations with 'studenta between $200-150^{\circ}$ in 0.18 and in case of examinations With 'studenta more than 150 ', the average reliability works out to be 0.68 .

Coming to nome further detal16. $77 \%$ of the total ample gtudied in the above context had student number lass thon


FIG. 3.28 DISTAIBUTION OF TESTS ACCORDING TO NUMBER OF STUDENTS.


FIG. 3.29 PERCENTAGE OF TESTS WITH R<0.5.


NUMEER OF STUDENTS
FIG. 3.30 PERCENTAGE OF TESTS WITH R $\geqslant 0.5$.


FIG. 3.31 DISTRIBUTION OF COMPREHENSIVES ACCORDING TO NUMBER OF STUDENTS.


FIG. 3.32 PERCENTAGE OF COMPREHENSIVES WITH R<0.6.


FIG. 3.33 PERCENTAGE OF COMPREHENSIVES WITH R $\geqslant 0.6$.
$100^{\circ}$. whlle examinations 'with student number between 100-150' accounted for only $6 \%$ and those with 'student number more than $150^{\circ}$ were $17 \%$. Thus, the sample size for the examinations with student numer betweon 100-150 is indeed quite amall.

In such case, then, accounting for the random abperation that is possible due to the small sample alze, from figure 3.22 it emerges that higher the number of atudents in an examination, greater may be the possibility of lis rellabllity belng highar.

Plgures 3.23 and 3.24 also in an overall context convey the sara observation as above.

At a micro leval. quizzer, tests and comprehenalvas, when studied soparately. also give a similar observation as above.

For example, from the ilgure 3.27 , on can see that the percentage of quizzes having rellability equal to or more than 0.4 increases from $80 \%$ to $100 \%$ as the number of students or equal to
increases from less than, 50 to mote than 50. Stmllarly. from the figure 3.30, onc can see that the percentage of testa having rollability aqual to or more than 0.5 increases from $42 \%$ to $50 \%$ to $100 \%$ as the number of atudente per examination incraases from lass than 100 to between 100-150 to more than 250. And, Einally, Erom Elgure 3.33 it clearly emerges that the percentage of comprehensivea having rollabslity equal to or more than 0.6 increases from $59 \%$ to $100 \%$ to $200 \%$, as the number of students incraases from less than 100 to between 100-150 to more than 150 .

Thus it seame-te emerges that higher the number of students in the examiation, greater could be the probability of the examination having a satla\&actory reliabllity.

A further crieical analyoi: in the above context reveals interesting observetions. To bogin with, it soem to be that normelly the examinations for courae attended by a large numbor of atudonts are also characterlzed by a large number of questiona. Thls could be because the courgea attended by a large number of students are uaually at the core level and it is at the core level that teachers seam to have tendency to give large number of quastions in an examination (see figure 3.46). Thus, the higher reliability for examinations characterized by larger number of atudente can then be axplained in terms of the observation that they (the examinationa) invariably seem to have higher number of questions. This, in turn, siso then goes to further strongthen the proposition in terms of the relationship between the reliability of an examination and the number of questions in it.
(iv) Rellablificy Obaervations According to the level of Coursea
(a) Analyais for All the Exaninationg Takon togethes

PIgure 3.34 show the variation in the average reliability of exaninations whon plotted against the variou course levela. Thus. for the sample aize of 83 examinations atuciod. it worke out that as one moves from the I level to II to III to IV to $V$ level courmes, the average reliablilty varien from 0.62 to 0.92 to 0.52 to 0.48 to 0.5 , rapectively. Thus. on the whole.


FIG.3.34 AVERAGE RELIABILITY OF EXAMINATIONS PLOTTED AGAINST LEVEL OF COURSES.


FIG. 335 ?ERCENTAGE OF EXAMINATIONS WITH $R<0.5$.


FIG.3.36 PERCENTAGE OF EXAMINATIONS WITH $R \geqslant 0.5$.
the average rellability seams to decrease as one moves from the zoundation or core level courses to the higher or professional level courses.

An alternate statement of the above observation emerges Erom the Elgure 3.36 from where one can gec that from I level to $V$ level, the percentage of examinations having reliabllity equal to or more than 0.5 varles from $100 \%$ (for I level) to $100 \%$ (for II level) to $59 \%$ (for III level) to $46 \%$ (for IV level) to 64\% (for v level).
(b) Analyoly for Ouizzes

Ae can be seen Erom the figure 3.37, the sample of quizzes sturied in the above contoxt consists of $43 \%$ quizaes each zrom the III and IV levels and $14 \%$ quizzes from the $V$ Leval. Indeed, when one tudies ilgures 3.38 and 3.39. nothing particular seems to emarge from the sample of quizmes in tarme of the rolationship between the reliability and the courae level. except for the alraady known observation that. 1rrespective of their course level. on the whole. the sample of the quizzes studiod has demonstrated a gatiafactory rellability level.
(c) Analysis Eor pesta

The sample of testa atudied to analyse the relationship between the rellability and the course level consibted of $12 \%$ teats from I level. $23 \%$ tasts from III level. $29 \%$ tests from the IV level and 36\% teate from the V level. For the sample so diatributed. from Elgura 3.42 one can see that as one moves from I Level to the $V$ lavel, the percentage of


### 3.37 S15＇A830＇ION OF QUizzES ～CPORDNiNG TO LEVEL OF çu．sSES．



FIG． 3.38 PERCENTKGE OF QuIZZES



FIC． 3.39 PR RCENTAGE OF QUIZZES以リ明明 0.4.


FIG. 3.40 DISTAIBUTION OF TESTS ACCOROING TO LEVEL OF COURSES.


FIG. 3.41 PEACENTAGE OF TESTS WI重H $<0.5$.


FIG. 3.42 PERCENTAGE OF TESTS WITH $\$ 30.5$.
tests with reliablilty equal to or more than 0.5 varles from $100 \%$ to $42 \%$ to $40 \%$ to $53 \%$ thus, on an average. deacribing a tendency that for the toets coming from III or IV or $V$ level courses. the probability of their's having a oatisfactory rellablllty may be lower than that for the corresponding testa from say the I level courses.
(d) analyats for Compsehengive axaminations

The comprehensivas solected for study represent all the levels of the courac. The maximum number of comprehensives were Erom the $V$ level. Erom the II leval only one comprehonsive was studiad. The percentage of comprehensives from various levels can be ouen from E1gure 3.44. E1guree 3.14 and 3.45 show the diatribution of comprehentives accorilng to different lovela and different categories of rellability. In more apecific terms. then. it can be aeen from the Eigure 3.45 that. Erom I level to $V$ level, the percentage of comprehenst.ves with reliability aqual to or more than 0.6 varies 5 rom $100 \%$ (for I level) to 100\% (for II level) to 72强for III leval) to $83 \%$ (for IV level) to $50 \%(f 0 r$ V lovel). Figure 3.44 provices a complimentary observation of the above. Thus, on an average, figuree 3.45 and 3.46 describe a tendency that for comprehensives coming from III to $V$ leval courses. the probabllity of their"s (comprenensives having eatisfactory rellablilty may be lower than that for the corresponding comprehenaives from the I and II level courses. In the above analysis it may be mentloned that the data io terma of comprehonelve examinations corresponding to the II level ia only in texta of a aingle comprehensive oxamination. This wat mainly due to the avallability of data. Even though there 10


FIG. 3.44 PERCENTAGE OF COMPREHENSIVES WITH R $<06$


FIG 3.45 PERCENTAEE DF COMVREHENSIVES WITH R $\geqslant 0.6$.
emerging a wide support for the observation that normally comprehensives at II level, particularly due to thelr having a good number of questions, would cumonstrate a sabisfactory rellabillty, it would certainly be halpful in the futuriatic sense to study these detalls for a larger number of examinations so as to further strengthen the proposition under consideration.

## (o) Average Numbor of questions mgainst the Lavel of Courses

In order to know the tendency on giviag questions at different levols, gragh was plotted ghowing the average number of questions given in examinations at different levels of graph coursee (see slgure 3.46). M1s ${ }_{\wedge}$ shows that at the flret and second levele examinations, on an average, included 15 queatione where at at the Ixf, IV $\& V$ lovels the average number of questions given ia 8 . Figures 3.47 and 3.48 show the pexcentage of examinatione having an average number of equal to or less than 7 respectively questions $n^{\text {and }} m o r e$ thin 7 , across the various levels of the coursea from I to V.

## (f) sumary of observations

1. Thua. the macro-level as alao at the micro-level dexcept in the case of quizzes where the sample size is found to be too ma1l) it is observed that, on the whole, the average rellability of an examination aeems to decrase as one noves from say courses at the I and II level to the courses at say the IV anc $V$ level.
2. When the data base in the above context is further purnued so as to underatand the reason behind the type of


FIG. 3.46AVERAGE NUMBER OF QUESTIONS IN EXAMINATIONS PLOTTED AGAINST LEVEL OF COURSES.


FIG. 347 PERCENTAGE OF EXAMINATIONS WITH AVERAGE NUMBER OF QUESTIONS $\leqslant 7$.


FIG. 348 PERCENTAGE OF EXAMINATIONS WITH AVERAGE NUMBER OF QUESTIONS > 7.
the emerging correlation between the rellability of an examination and it course level, it is observed that, on an average, the examinations for the courses at the lower level have more number of guestions than those (mumber of questions) in for the examinations for the courses at the higher level. Thus, the observation emarging in terms of the correlation between the reliability of an examination and its course level also in turn goes to conflrm the consistency of the earller observation on the correlation between the rellabllity of an examination and the number of queations in it.
(v) Rellabillty Observationg According to the cote Coursea and profaselonsi Courben

At the micro-level, observations on rellability of an examination aganst its course level have been discused in-the above Thus here
procectrg-bection. In-the-present-ab-eection the analysia Specifically one can then would be taken up at the mecromievel. 4hus nothto-bubeecten witz consider the rellability accerding to core courses and professional courser. Clascification of the courses in the above categnien is given in table 3.2. Courses upto the III level have been consfiered as 'Dore Courses' and beyond the III ievel as 'Profesrional courses'.
(a) Analyase ior all the Examinationg takn kogether

To know whether core courses are better titan professional courses in terme of the reliability of exaninations, a graph has been piotted ahowing averige reliability of examinations againat the level of coursas (aee figure 3.49). For the core and protessional levels, the percentagel of examinations having


FIG. 349 AVERAGE RELIABILITY OF EXAMINATIONS PLOTTED AGANST LEVEL OF COURSES.


FIG 3.5 Percentage of examinations WITH R < $<0.5$.


FIG. 3.51 PERCENTAGE OF EXAMINATIONS WITH $R \geqslant 0.5$.
rellabllity less tham 0.5 and reliability equal to or more than 0.3 are given in Eigure 3.50 and 3.51 . reopectively.
(b) Anelysis for pulzses

The distribution of quizees according to core and professio courses is given in figure 3.52. Percentages of quizzea Erom various levels having rellabllity less than 0.4 and equal to or more than 0.4 are given in floures 3.53 and 3.54. reppectively

## (c) Analyole for Teate

Plyure 3.55 showdalstribustion of testa according to core and professional courges. Most of tho courses (65\%) were from the profeselonm level. Parcentage of testin from core and profeseionnl courmen having rellability lessthan 0.5 and equal to or more than 0.5 are given in ilgures 3.56 end 3.57 . rempectively.
(d) analyote.fór Comorahenstve ixaminations
rhe percertage of comprehensivas according to core and protessional courses is shown in figurea 3.58. Figures 3.59 and 3.60 indicate the percentages of comprehensives having a relimblity of lezs then 0.6 and equal to or morethan 0.6 . according to different levels.

## (e) Level-wisa Variation in the Number of cuestlons per fixanination

Flguce 3.61 gives graph showing the lovelowlse variation In the average nurdrex of questiona par examination. thus. while in an examination
avarage muber of queationg given in sore courete is 10 , whewe case of
th it is 8 innproiessional couraos. Figures 3.62 and 3.63 g for the core and prosesalonal levels, flye percentages of


FIG. 3.52 DISTRIGUTION OF QUIZZES ACCORDING TO LEVEL OF COURSES.


FIG. 3.53 PEACENTAGE OF QUIZZES WITH $\mathrm{l}<0.4$.


LEVEL THE COURSE
Fic. 3.54 PERCENTAGE OF QUIZZES WITH Pl $\geqslant 0.4$.


FIG.3.5SDISTRIBUTION OF TESTS ACCORDING TO LEVEL OF COURSES.


FIG. 3.56 PERCENTAGE OF TESTS WITH R < O.5.
 LEVEL OF THE COURSE
FIG. 3.57 PERCENTAGE OF TESTS WITH R $\geqslant 0.5$.


FIG. 3.58 DISTAIEUTION OF COMPREHENSIVES according to aevel of courses.



FIG. 3.61 AVERAGE NUMBER OF QUESTIONS IN EXAMMNATIONS PLOTTED AGAINST LEVEL OF COURSES.

examinatlon having questions equal to or leas than 7 and more than 7, respectively.

## (f) Summary of Observations

(1) Taking all the examination together tho average rellabllity of examinations at the core lovel is found to be more compared to that of tha examinations at the protesalonal Level (see Elgure 3.49).
(2) The parcentage of examinations showing good reliability decreases from the core to profesilonal courses. (see figure 3.51). Ouizaes, tests and comprehensives lead to similar observations (bee E1gures 3.54, 3.57, and 3.60).
(3) Thus it clearly emerges that there is a greater probability that the oxanination at coic level would have a better rellability than the examination at. the profesalonal level.
(4) The explainaction for the above statad corcelation betw en the oxanination reilawilty and the courim level (In texims of time coñ or profeasional levals) may. as in the cashiex casce. again bu found in texms of the obatvation enveging from zigures 3.61 to 3.63 that thera is a greater probeiollty that the core level axamination would have a larger number of chestions than tho nimmer of questions in a professional Ievel examination. Thus, in turn, the proposition energing in terin of the carrelation between the ralisbility of the examinatio and 258 coume leval ic nleo furthar conelming the carlier observalicorralation butween the reliabillty amd the number of quostions in an examatation.

## (vi) Rellability Observations According to Courae piscipline

(a) Analyels Lor All the Sxaminations taken together

All the examinations selected for the study heve-been can be grouped as follow on the basis of their disciplines:

Table 3.25
Diatribution of Examinations According to Disciplines of coureas

Total number piscipline   of differert   type of   oxaminations?	Sclence Engineering tumanities managemen			
7 Oulssas	2	2	3	-
52 Tests	18	14	12	8
24 Comprohensives	0	4	7	5

The average rellability of examinations from various Examinations for disciplines is given in figure 3.64. $\wedge$ Courses from science. the humanitias and management indicate almost the same average rellability $(0.56,0.55$ and 0.56 , respectively) where as Examinations from 1t (the average reliablilty) is low in the calle of engineering courser (0.50). The percentages of examinations from varioue discipline having reliability lese than 0.5 and equal to or more than 0.5 are given in Eiguras 3.65 and 3.66 . reapectively.
(b) Analysis for culzzes

Qulzzes studied ware from science, engineering and the humanities. The distribution of quizaes in various disciplines is given in figure 3.67. figures 3.68 and 3.69. for difterent disciplinas, give percentages of quizzes having reliability loss than 0.4 and equal to or more than 0.4 . respectively.


FIG.3.64 AVERAGE RELIABILITY OF EXAMINATIORS PLOTTED AGAINST DISCIPLIME OF COURSES.


FIG. 3.65 PEREETTAGE OF EXANINATIOAS MTH R < O.5.


FIG. 3.66 PERCENTAGE OF EXARINATIONS WITM $8>0.5$.


FIG.3.67 DISTAIGUTION OF QUIZZES ACCORDING TO DISCIPLINE of counses.


FIG.3.68PERCENTAGE OF GUIZZES WITH R < 0.4.


Pig. 3.69PERCENTAGE OF QUIRZES WITM R $\geqslant 0.4$.

## (c) Analycis for Te日ta

The tests melected for the study are from all the disciplines. the diatribution of ceats according to thelx disciplinas is shown in figure 3.70. For difierent disciplines. the percantages of teats having reliability less than 0.5 and equal to or more than 0.5 are given $\ln 11$ gures 3.71 and 3.72 . respectivaly.
(d) Apsivgls Eor Comprehansive Examinations
 figure 3.73 showe theis aletribution aceorilng to disciplines

 more than 0.6 are given 1 fagures 3.74 and 3.7 . respectively.

## (a) Number of cuestions in an examination as a function of the Coucse $215 c 4 p l 1$ ge

Figure 3.76 givas the variation in the averege number of Guestiena ia an sxaminaticn against dizicrent course diaciplines zinging fxom eciences to engineering to humanitias to managemant. As can be seen from figure 3.76. it ge worke out that, for the sample stucled, the maximun value of 12 for the average of the mumber oiz questionsin an examination 13 observed in terms of courbes irom the ranagement diaclpline, and the corresponding avarages for tho number of questione in examinations from the science. enginearing and humantite diactpilnen are 10. 6 and 8 . rempectively. Further. IIgures 3.77 and 3.78. For couraes zrom difierent disciplineo of ficiencms. engineering, humantties and managomeat, give percentages of examinationa having the number of questlons per examation less than or equal to 7 and more than 7. respactively.


FIG. 370 DISTRIBUTION OF TESTS ACCOROING TO DISCIPLINE OF COURSES.


PERCENTAGE OF TESTS
$100-$
$60-$
$60-$
$40-$
$20-$



F16 3.75


FIG. 3.76 AVERAGE NUMBER OF QUESTIONS IN EXAMINATIONS PLOTTED AGAINST DISCIPLINE OF COURSES.

[1G.377 PERCENTAGE OF EXAMINATIONS HITM NUMBER OF QUESTIONS $\leq 7$.
(E) Sunaux of Observations

Within the sample of 83 enaminations studied,
(1) Athe average $^{\text {thellability }}$ for examinations from engineering disciplines lis observod to be lower than the averages of rellability for the examinations from science, the humanities and management disciplines (refer Eigure 3.64).
(2) The averages of rellabllity for the examination for courses from the disciplines of aclence, the humanithes and management are of the same order, the value belng 0.56 (refer Eigure 3.64).
(3) In terma of the sanple of quizzes that has been studied. the percentages of quizzes from engineering and humanities disciplines with reilability oqual to or more than 0.4 are graater than the corresponding percentage for quizses from the acience disciplines (refer ilgure 3.69), thus, implying a greater poseiblitty of a quis from engineering or humanities discipllnes having a better reliability than the quiz from the sclence disciplines.
(4) For the sample of 'teats' studied, pexcentages of teats from management and acience diaciplines having reliability equal to or more than 0.5 are higher than the corresponding percentages for the teets from engineering and humanities disciplines (refer figure 3.72).
(5) Por the sample of "Comprehensives' studied, the percentage of cormprehensives from science disciplines having reliability equal to or more than 0.6 (the same being $100 \%$ is higher than the corresponding percentage for managoment diacipline (60\%). 1s higher than the corresponding percentage for humanities
disciplines (57\%). is higher than the correuponding percentage for engineering disciplines (50\%).
(6) Finally, comparing Eigure 3.64 and 3.76 , one can see that to great extent the variationa in the average values of reliability as also the average values of number of questions in an examination for examinatione from various discipilnes lollow a similar patternf thue, once again, confirming a good correlation between rellability of an examination and the number of questions in 1t.
(v11) Rellaio111ty Observations According to the rype of Questions

For the purpose of the analysis in termo of the types of questions, all the examinations have been clamified into following categories:
(1) ixxaminations with short anawer questions of the deacriptive type.
(11) Exainnations with short anawer questions of the problem solving eype.
(1i1) Examinations with short answer questions of mixed tyive (1.e. containing descriptive as also problem solving questiona).
(iv) Examination with long answer questions of descriptive type,
(v) Examinations with $10 n g$ answer questions of problam solving type. and
(vi) Examinations with long answer questions of mixad type.

As the names suggest, short answar and long answar question would depend upon the length of the anawer requixed. Descriptive question are memory-oriented and require deacriptive answers. where an problammolving quettions are application-oriented. In
the mixed submeategory, exaunnations have combination of differant types of quastions.
(a) Analysis for all the Examinatlons taken together

The average rellabllity of the examinations according to different categorias of questions is given in figure 3.79. Examinations with short anewer descriptive and shortoanswor problem solving type queations show an average rellablilty of 0.63 and 0.64 , respectively. Examinations having long-anewer descriptive, as-welk-at long-anawer problemmaolving and mixad type questiona indicate comparatively lower values of the averages of rellability, the same belng of the order of 0.46 . 0.46 and 0.49. reapectively. for the vasious types of queations. the percentages of examinations having reliablilty less than 0.5 and equal to or more than 0.5 are given in Eigurea 3.80 and 3.81. respectively.
(b) Analyels for Culzzen

As can be seen from 1igures 3.82 and 3.83, quizzes normally seem to have only ahort answer type questions. These questions could be of descriptive type or problem-solving type or mixed type.
(c) Analysis for tages:

As can be seen from figures 3.84 and 3.85 , teets seem to have all the categorios of the typen of questions 11sted earlier. In mpecific terms for tho variou categories of questions these figures give percentagas of testa having rellability less than 0.5 and equal to or more than 0.5 . respectively.


PIC. 374 AVERAGE RELIABIRITY OF EXAMINATIONS PLOTTED AGANST TYPES OF QUESTIONS (SAD-SHORT ANSWER DESCRIPTIVE SAP-SHORT ANEWER PRUQLEM SOLVING; LAD-LONG ANSWE DESCRIPTIVE; LAP - LONG ANSWER PROELEM SOLVING; MBED - COMBINATIONS:.




 WHTH $\mathrm{H} \geq 0.5$.


FIG.3.82PERCENTAGE OF QUIZZES WITH R<0.4 (SAD-SHORT ANSWER DESCRIPTIVE; SAP-SHORT ANSWER PROBLEM SOLVING, MIXED - COMBINATIONS ).


FIG. 3.83 PERCENTAGE OF QUIZZES WITH $R \geqslant 0.4$ (SAD - SHORT ANSWER DESCRIPTIVE; SAP SHORT ANSWER PROBLEM SOLVING; MIXEDCOMBINATIONS).


FIG 3.84PERCENTAGE OF TESTS WITH R<O.5 (SAD-SHORT ANSWER DESCRIPTIVE; SAP - SHORT ANSWER PROBLEM SOLVING, LADLONG ANSWER DESCRIPTIVE; LAP - LONG ANSWER PROBLEM SOLVING; MIXED - COMBINATIONS).


FIG. 3.85 PERCENTAGE OF TESTS WITH R $\geqslant 0.5$ (SAD-SHORT ANSWER DESCRIPTIVE, SAP-SHORT ANSWER PROBLEM SOLVING, LADLONG ANSWER DESCRIPTIVE, LAP-LONG ANSWER PROBLEM SOLVING; MIXED - COMBINATIONS).

## (d) Analysia for Comprehensives

For different categories of questiona. figures 3.86 and 3.87 give percentages of comprehensives having reliability lessfhan 0.6 and equal to or more than 0.6 . respectively.

## (e) Summary of Observations

1. Examinations with short anawer typa questions have demonstrated greater average reliability than the examinations with long answer and mixed type questions (refer figure 3.79).
2. From ilqure 3.81 it can be seen that the percentages of examinatione with short anzwer type question having rellability equal to or more than 0.5 are much higher than the corresponding percentages for the examinations with long answer type questions.
3. From Elguras 3.82 and 3.83 it can be observad that normaliy there 1s a predominance of hort-answer type questions in quizees and in turn quizzed domonstrate matiaikactory reliability level. in case of tests,
4. Fron Elgure 3.85 1t can be aeen that, the percentages of oxaminations with ahort answer type queations having reliability equal to or more than 0.5 are much higher than the correaponding percentages for tests with long answar and mixed type queatioons. In case of comprehensives,
5. $\mathrm{n}^{3}$ Iom 1 gure 3.06 it can be seen that while the percentages of examinations with ahort anawer type questions having rallabilits equal to or more than 0.6 are invarlably high, the corresponding percentage for examinations with long anawer problem nolving type queations ls also high but so is not the case in terms of oxaminations having long answer descriptive type and mixed type questions.


FIG. 3.86 PERCENTAGE OF COMPREHENSIVES WITH R<O.6 (SAD-SHOAT ANSWER DESCRIPTIVE; SAP-SHORT ANSWER PROBLEM SOLVING, LAD-LONG ANSWER DESCRIPTIVE; LAP-LONG ANSWER PROB LEM SOLVING; MIXED - COMBINATIONS).


FIG. 3.87PERCENTAGE OF COMPREHENSIVES WITH R $\geqslant 0.5$ (SAD - SHORY ANSWER DESCRIPTIVE, SAP-SHORT ANSWER PRORLEM SOLVING; LAD - LONG ANSWER DESCRIPTIVE; LAP-LONG ANSWER PRO8 - LEM SOLVING; MIXED - COMBINATIONS ).
6. Thus, in sumary. it emerges that examinations with short answer type questions have greater probability of demonstrating satisfactory reliability. It may be montioned that understandably, this observation is consistont with the earlier arrived at observation on the correlation between the reliability like comprehensives and the number of questione. Eurther. long duration examinations with duration fof the order of $2-3$ hours may also demonstrate a satisfactory rellabllity even for long answer problem solving type quentiona. Finally, even for tests and comprehensives, examinations with long amswer descriptive type questions or raixed type questions seem to demonstrate a low rellabillty.

## (viil) Rellability observations According to the Cinolce of questiona in the Examinations

When the sampla of examintions with cholce of fuestions as analysed, as shown in figure 3.86. Lt emerged that $30 \%$ of it had rellability lesskhan the threshold value of 0.6 . while remaining 50\% had the rellability equal to or more than 0.6 .
 to some other details. it may be mentioned that all these examinations consieted of only comprehensives and they were only 4 in number. Thus the sample avallable to study the effect on rellability, of the cholce of questions, was incead very mall. It is in this context then, that the reaules available may be confidered inadequate for any immediate generalisation in term of the subject mattar uncier diacuasion.


FIG. 3.88 PE R CENTAGE OF COMPREHENSIVES (QUESTION PAPERS WITH CHOICE) WHTH $R<0.6$ AND $R \geqslant 0.6$.

### 3.9.2 Analysis of the Rounten on the Correlationg Between Various axaminations of a Courses

This aub-section is devoted to the analysis of how the various components of evaluation for a given coureme are correlated. In another words. For different componente of evaluation, this sub-section studies as to how well would a student, who has done satiafactorily in one component, pexforman in other componenta.

The correlation coutilelenta have bean studied for in all 18 courses, 7 from core/foundation yeara and 11 Erom the proteasional years. The reaults on the correlation couficiente for these 18 couraes are given through the part 'b" of tables 3.4 to 3.22. The merging analysis of these results is preaented through tablea 3.26 and 3.27 .

In apaciflc terms. for each of 18 couraen. table 3.26 has given following detaile:
2. Liat of all the evaluation components.
2. Total number of the ovaluation compenent paire for which the correlation have been obtained. and
3. The axact numbers of the evalumtion component pairs as coning uncer the varlous correlation levela, namely. slightly negative, lightly positive, low posisive. moderately positive, high positive and very high positive. Further, aach of thene numbers ia also presented as a percentage of the total evaluation component paire studied for the courae under consideration.

Against this, table 3.27 givea the analyais in torns of the 22 evaluation components palrs that could be genarated through the data-base that was avallable with regpect to the above Indicated 18 courses. As can be been trom table 3.27 , these

TABLE-3. 26
Course-wise Analysis of the Numbers of the Evaluation-Component-Palrs as Coming Under Various correlation Levels


TABLE 3.27
Evaluation Component - Category-wise Analysis of the sumber of the Evaluation-Component-pairs as Coming Under Various Correlation Levela

ltegories of raluation smponent-Palrs	Numbers of the Evaluation-Component-Pairs as coming Under Varlous Levels (Mumbers in the Bracket show the Evaluation-Component-Pair Nunber As Percentage of the total gvaluation-Component-Palr Number for tha Corresponding svaluation-Component-Pair						Total Number of Evaluation-Component-Pairs for the Evaluation
	-ve slight	+ve Slight	twe Low	+70 Moderate	+ve High	4ve Very High	Component Palir under conalderation
$0-0$		8(42.1\%)	10(52.64\%)	1(5.26\%)			19 (6.27\%)
$0-P_{0} R_{*}$		$2(66.67 \%)$	1 (33.33\%)				3 (0.99\%)
$0-\mathrm{H}_{\boldsymbol{*}} \mathrm{A}_{\text {。 }}$			2(50\%)	2(50\%)			4(1.32\%)
$0-\mathrm{T}$	2(2.94\%)	6(8.82\%)	35(51.48\%)	25 (36.76\%)		1(11.11\%)	69(22.44\%)
$0-c$		4(16.67\%)	7(29.17\%)	11(45.83x)	2(8.33\%)		24(7.92\%)
L. O. - Lere				2(100\%)			$2(0.66 \%)$
L.Q. -		1(11.11\%)	3(33.33\%)	4(4.4.45\%)			8(2.97\%)
L.O. - C			1(33.34\%)	1(33.33\%)	1(33.33\%)		3 (0.99\%)
$P_{\bullet} R_{*}=P_{*} R_{*}$		2(33.34\%)	2(33.33\%)	2(33.33\%)			6 (1.98\%)
P.R. - Ho $\mathrm{A}_{\text {c }}$		$3(37.5 \%)$	$3(37.5 \%)$	2(25\%)			8 (2.64\%)
P.R. - T	1(7.14\%)	4(28.57\%)	1(7.14\%)	8(57.15\%)			14(4.62\%)
PoRo - C	1(14.29\%)	2(28.57\%)	2(14.29\%)	3 (42.85\%)			7 (2.31x)
LoR.			2(33.33\%)	4(66.67\%)			6 (1.98\%)
L, R - - C			2(50\%)	I (50\%)			$2(0.66 \%)$
H.A. - HoA.				1(100\%)			$2(0.33 \%)$
H.A. - T			7(63.64\%)	$4(36.36 \%)$			11 (3.63\%)
H.A. - C	1 (33.34\%)	2(33.33\%)		1(33.33\%)			3(0.99\%)
T-T	1(2.92\%)	1(2.92\%)	13(25\%)	34(65.38\%)	3 (5.78\%)		$52(17.16 \%)$
T-C		(7.14\%)	10(17.86\%)	$38(67.86 \%)$	(7.14\%)		56 (18.49\%)
T-5			1(33x)	2 (67\%)			$3(0.99 \%)$
c-c				1(100\%)			1(0.33\%)
$c-5$				1(100\%)			1(0.33\%)
A11 the Catego ry of pasce taken together	6 (1.98x)	38(12.54\%)	100(33\%)	148(48.85\%)	10(3.3\%)	1(0.33\%)	$303(100 \%)$

22 evaluation component paire are contributed by different ovaluation components auch as class-room quizzes(0). Laboratory quizzes (L.Q.). Inboratory work reports (L. R.). class-room project reports (P.R.). hom assignments (H.A.). Eeminars (S). Tests (T). and, Elnally, comprehensives (C).

In apecific terms, for each of the 22 evaluation-componento pairs. the table 3.27 gives following detalla:
(1) Total number of evaluatton-component-pairs as coming under the particular evaluation component pair under conslderation, and,
(11) The exact number of evaluationmeomponent-pairs from the total number of the evaluation-componontopalra for a given category ad coming under each of the correlation levels, namely, slightiy negative, slightly poitive. low positive, moderate positive, high positive and vary high positive. Further, each of these numbers is also presented as a percentage of the total number of the evaluation component pairs for the category under consideration.

Thus, it may be dubmitted that tables 3.26 and 3.27 within themselves present a self sufficient and therefore selfexplanatory data-base with reapact to the analysis detaile.

For the purpose of conventence, following abbreviations have boen used in the pregent eection.

TABLE 3.28
List of Aborgviattons uned in the present aection

Ful1 Nams
Abbreviation
OuIn
Teats
Comprehensive
Projeot report
Hone Asalgmment
Lab. Dula
Lab. hork
Semlnar
a
4
c
P.R.
H.A.
L.O.
L.H.

8

## Sumpary of Observathons:

Below are linted some of the major observations that are emerging from tablea 3.26 and 3.27.
2. From table 3.27 1t can be sean that from the ample stucied man mas $98.02 \%$ evaluatlon-component-paire have positive correlations, thus convincingly implying that the evaluation Byaters on the whole is positively correlated having only 1.98\% cases of neqatively corswlated evaluation-component-pairs.
2. Elghty one point eighty five pexcent of the sample ot the ovaluation-component-palr: studied have correlotions within the levels poaitive low and ponitive moderate. Anongle all the levels. the poaitive moderate leval has the maximun number of evaluationmcomponontmpaizs, this percentage being 48.85.
3. The sample of 303 evaluationacomponent-palrs studied has inatances of paire cowaring the entire apacturm of the coorelation lavela from slightly negative to very high positive. The concerned percentages in the ordar of cominance are ae Collow:

Positive moderate - $18.85 \%$ positive low $33 \%$ silghty positive 12.5\% positive Migh 3.3\% negative slight 1.9a\%; and positive vary high $0.33 \%$.
4. Coming to the varlous avaluation comonont categoriet. it is noted that ample alzon for the categories namely, O-T, Toc. T-T (1.e. Within different teste), $0-\mathrm{Co}$ (0-Q(1.e. within difforant quizzon), P, R. $-T$ and $H_{*} \lambda_{*}-T$ ware 68, 56, 52, 24. 19. 14 and 11, reapectively. for all other evaluation component
categories the sample sisea were leas than 9. Assuming the emple sizes equal to or more than 11 as effective ones. following observations merges
(1) The percentages of tests and comprohensives as also of different tests that are correlated in a moderately poiltive manner are as high as $67.06 \%$ and $65.38 \%$, respectively. Thus. one teal to anothe It can be ald that tests and comprehensiven as also toote=6rom
a course are found to be
within geem-to-te wall correlated.
(1i) The percentage of evaluation-component-pairs from the category of quizmen and tenta an coming under the moderately positive corcelation leval is as low as 36.76\%. Indeed. aa much as $63.24 \%$ of the total ample size for $0 \rightarrow T$ comaz under the categorles from silghtly negative to low poostive thus implying that quizses and teste are not an well correlated as are TmC and 5 m .
(111) Consiatent with the above observation, it also emergea that $0-C$ are also not at well correlated as are $T-T$ and $T-C$.

One quiz to another within a course is found
(iv) -futratemithin-themselve日-eem to be very poorly correlated because as many as $94.74 \%$ of the evaluation-componentpalra correaponding to $0-0$ are found to lie within the levela slight positive to lew positive.
(v) Compared to quizses, project report seems to show batter correlations with tests in the sense that as many as 57.15\% of evaluation component paire from the category of P。Ro-T are founc to come under the moderately poaltiva level. Fomever. in term of theircorselation with comgrehensive axaminations. the P.R.-O seem to compare better.
(vi) Pinally, coming to the category of H. A.-T, it seems to emerge that they are not so well correlated, because as many as $63.64 \%$ of the total evaluation component pairs under thiskategory art found to be under the postitive low level.
5. Coming to table 3.26, it eeesp-to ernerges that, taking positive moderate level as a reference point, the evaluation cormonent palra srom the profensionel year cournet seenter show better correlations than the evaluation component palze for the core level courses.
6. Warther, instances of very high positive as well as correlations alightly negativenare vielsle only in case of the professional level courses, thus hmplying examination components at the profesalonal level, seen-to-be more prone to aemonstrate extrome cases of correlation levels.
7. Within the pntire spoctrum of the 18 course studied i.e. gystems Analysis offered in I semester, 1978-79, only one course $n$ domonstrated all the correlations within the positive moderate level, while all other courses necessarily had correlations corresponding to levela lower then positive moderate. The data base with reapect to this course was collected on two accasions, the analy应in for the one occasion i.e. during its offering in I semester 1979-78 boing mentioned above. On the second occasion aieo for this cource. as many as $85.72 \%$ of the evaluation component pairs come uncier the category of positively moderate level; the romaining $16.28 \%$ having corresponded to the low positive levely thus aignifying a conalstency in terins of the results of the analysis. In a suturistic context it would be worthwhila to
explore the factors leading to such a satisfactory correlations between the various evaluation components of this course so that the Lmprovements can then be brought elsewhere bamed on the lezsons emerging.
8. Other courses for which evaluation components have demonstrated fairly good correlation are Physict I. Wodarn Physica and Introduction to Microproceasors. All these three course have correlations only between positive low and positive moderate levels, the percentages of the evaluation componenta pairs under positive moderate level being equal to or more than $80 \%$.
9. Thus, on the whole it can be said that, while, the evaluation component-paira are positively correlated, the buik of them seem to lie within positive moderate and positive low levels. Purther, teats and comprehensives seem to show best correlation. It will be worthwhile to pursue how the leval of correlation between testa and comprehensiven can be further increased and how this effort can be onlarged to include the lerger variety of evaluation componente beyond the categoriea of teata and comprehensives.

### 3.9.3 Analyais of Recults on Course Reliabllitr

Thls aub-section gives an analysis of the courae rellabllity of 17 coursee selected for the study. Table 3.23 gives the list of these courses and their course rellabillty denoted by RC.
coefilcientéA It is very interesting to note that the course reliability coefficienta are quite high. Almost all the com efficienta are greater than 0.7, except in one case, where also the course reliability is ha high as 0.66 . Consistent with the earliar observations vig-a-via the correlation between the examination rellablitty and the number of questions in an of course reliability
examination. In this casenalso it is noted that an average number of avaluation componenta for the courees studied is 6, which is reatonably high. This in turn then provides an explanation for the high course rellability obsexved for the courses under consideration.

The practice of conducting higher number of evaluation components for assessing the atudent is the core of the continuous evaluation ayotem. Thus. this syatem can then also be viewed to have the advantage of a good courae reliablilty.

Apart from the parameter of a large nuxber of ovaluation components, there can also be another factoriz in the above contoxt. contributing to the high course roliablifty. Por example, as one is aware, in a continuous evaluation syatem, a course evaluation consista of several evaluation components and each of the avaluation componenta conaists of saveral questions. The course rellability is determined on the basis of the marke obtained by atudente in thase diszerent avaluation components.

Thus, each evaluation component represents a componite examination which samoles over a falrly wide are of the subject matter. This then should be reducing the randomness In the ovaluation, thus consequentiy increasing the coursereliakillty.

### 3.10 Conciusion.

Thle chapter has basically dealt with the problom of the teat analyaia for the oxaminations under the internal syatem of concinuous evaluation at the tertiary lovel. rowards this, the chapter has in cotall analysed 19 selected coursea from the semester-wise offerings at BITS, Pilani. For the purpose of the totality, these courses nave been dram from the entire spectrum of diselplines and levele of the syater of higher education. In apecific terms. for the axaminations an coraizug uncier the so selectod courses, the chapter has doalt with different analytical aspectis, namely, the relfabiaty of examinations, inter-cosrolations batwesn various examinations and the curse reliabilit

Thus, the chapter has stuciled coefficients of rellability for in ail 83 examinations, conalsting of 7 quizzes, 52 testa and 24 comprohensivea. Thase rellability cooftlelonts for the aifferent evaluation componente have been in datall analyaed againat various parameters such (i) the number of quentions in an oxamination, (ii) number of atudents attending the examination (ii1) Guration of the axamination, (iv) level of the course, (v) disclpline of the course, (vi) type of examination (s.e. ,etc. long-anmer, shortmanmwerin). (vi1) eategory of the course in terme of the core course or the profesnional course and, (vili). finaliy, the apect of the choice in an examisation. Further

Eor various evaluation components auch as quizzes, tests, viva, seminur, project-reports, homa-assignments, lab-quiz, lab-work, comprehensivas, etc, an reflected through the above atated course the chapter has also studied tho thame of intercorralations between the various examiations of a course. Thus, the chapter ham anelysed in all 303 evaluation-component-pairs for their intercorrelations, 127 correaponding to the coursea from the core level and 176 corresponding to the courses from the professional level. And, as regards to the theme of the course-reliability. consistent with the constraint of the avalisbility of the proper data, the same has been'studied for in 21217 coursea from the total list of 29. aelected for the overall investigation aa undertaken in this chapter.

Below are briefly listed some of the mein observations as they have onerged from the above study:

1. Reliability in affected by the number of guestions given In an axamination. In mpecific terms, larger the number of questions in an examination, higher $1 \varepsilon$ the reliability.
2. The number of students is also a factor which iniluences reilability. Broedy apeaking. larger the number of atucents (in an examination), batter $1=$ the reliability. At this stage. 1t may ba menthoned thet. normally. cxaminations for courses attended by a large number of atudents are observed to bu characterized by large number of questions.
3. Longer the duration of an examination. graater the possiblilty of its reliability being higher. Interestingly the longer duration examizations are also, normally. chasacterdzed by the largar number of quebtions.
4. Hommally, the avarage rellability of an examination decreases as one moves from may courses at the I anc II

Year levels to the courses at the IV and $V$ year levcla. In this case, also it may be noted that. on an average. the examinations for the courses at the lower level have nore number of questions than that (1.e. number of questions) $\mathcal{L}$ (he examinations for the couraes at the hlgher level.
for the courses
Humanities
5. On the whole. examinations $\wedge^{\text {Erom }}$ the sctonce $n^{\text {and Managenent }}$ diaciplines have demonstratad better roliablilty aa compared to the examinations from courses humandtee-and engineering disciplines. In this context, it may be mentioned that, normally, the examinations from the diaciplinos of science and management have been observed to contain more number of questions than the humanities and enginearing examinations, in that order.
6. It emorges that the examinations with short answer type questions have a greater possiblility of demonstrating satisfactory rallability.
7. On an average, the reliablility of examinatione in core couraes is observed to be batter than that for examinations Irom professional courses. In this case, too, it is noted that, nomally, examinations in core couraes have larger number of queations than the examination from proseseional courses.
8. There are only four examinations, that too comprehensives, In which choice in questions was provided. Out of these four, fox two the rellablilty is lase than the threshold value of O.6. while for the remaining two the reliability is equal to or greater than 0.6 . As the sample 120 is too mall (1.e. 4 examinations only). It is difficult to make any generallzation at to the effect of cholce on the rellabllity. Howovar, ono can infor from the data that teachers on the whole, do not encourage cholce in an examination.
9. Out of the 303 evaluationmcomponent-pairs studied for thair intercorrelationa. $98.02 \%$ evaluation-component-paira demonatrated poaitive correlations. Nurther, $48.85 \%$ paire
showed positive moderate correlation, while $33 \%$ demonstzated positive low correlations thus implyiny that as many an $01.85 \%$ of the evaluation-component-pairs had correlations lying between the levels of positive low and positive moderate.
10. It 18 observed that tepts and comprehensives as also one test to another within a course are well correlated.
11. Quis to another quis within a course showed a poor correlatlon. Further, quizses slso demonstrated poor correlations with tests and comprehensives for a course.
12. All the courses selected for the study demonstrated high course reliability.
summing up, it can be ald that the high rellability ia obtained elther in the case of course. comproheneive. test or quis. etc. provided the componente of the evaluation instrument are aufilciently large and the oituation in which evaluation in done enaures the conslatency in performance due to mutually roinforcing components which le typlcal of any internal continuous evaluation system. Thls, offourse, has bean reflected in variety of waye while stucying the reliability in terms of varlous parametera discuseed abovo.

Pinally, the above analysis of reliability providea a methodology. as well ad direction in which some future stualas can be undartaken so as to develop a data base for periodical monitoring of an avaluation system and giving feed-back to the teachera in a typical continuous internal evaluation ayatem. In a futuristic manner, for the courses, where rellabilitiet and intarcorfelations have demonstrated extreme values, It is suggeated that Eurthor inpapth atudien can be taken up.
Above then is comprehensive statement of the conclusions as emerging from the test analysis study am undertaken through this chapter. With this then the theais awitches over to another important ampect of the examination study. namely. "valldty'. pursued through the next chapter.

### 4.1 Introcuction

In Chapter 3, examinations have been alalyeed in terms of thoir reliability. Another inportant paramoter for agsessing the quality of an examination ls lte validity. Litorature defines various kinds of validity studies that can be conducted on an examination. This chapter atudiea the examinations in terme of "criterionmrelated validity".

In general, most of the examlnationa have more or leas Emilar educational objectiven. With this assumption, the question arises, how far the performance in one examination relatea to or predicts the performance of some other concurrant or future axamination. The correlation between such examinations of mimilar objectives is a measure of criterion-related validity. In this chapter an attempt hat been made to study the eriterion-related vasldity of the examinations by analyaing the correlationa botween the periomance of atudents in various examinations.

A brief description of the validity dotinltions and typer of vallaity is given in aection 4.2. Section 4.3 gives a reviow of studiea on vallaity. The objective, asaumption
the
 technique for, the proposed validity stuofy has been discussed in section 4.5. Section 4.6 gives the sample and data collection procedure. Pinally, the resulte, analysia of resulte and the concluyions have been presented in sectlons 4.7. 4.8 and 4.9, reapectively.

### 4.2 Valldity Definitions

### 4.2.1 groad Dolinition

Pexhapa the commoneat definition given for the term valldity is that it refors to the axtant to which a tent measures what it is supposed to measure (Anastasi (1976). Ebel (2979). Dick Hagerty (1975). Oronlund (1976). popham (1975)), i.e., an examisation which is supposed to measure the dectsion making ability of stucienta, would not be valid unlesa it really meaauras the decisionamakiag absility.

Rellabillty refers to the conslatency of masurement irreapactive of whatever is being meanured. In case of validity, o the basic question $10^{\circ}$ what is being measured. Validity alwaye refera to some particular objective. in examination may be valid for deciaionmaking ability but may not be of much use for assessing say, memory of atudents. Thus, the validity of an examination is analysed with reference to the declared purpose of the examination.
4.2.2 Byoes of Valldity and thelr Defloielong
Ananclcan Paychological Absochation (1974) han
Ldentlifad three basic typea of validity
(1) Content validity
(1i) Griterion-related validity
(111) Construct validsty
(1) Contont ValidityVarlous researchers have given deldnitions for the abovecategories of validity. Some of the dolinitlons for contentvallaity are as follows:
"Content validity involven asuanelaliy the aystomaticexamination of the teat contant to determin whether itcovere repreaentative sample of the behaviour domainto be memsured". (Anastasi, 1976)The extent to which the iteme in a teet do. infact, Eamplean scat in texmed the content valldity of the teat". (Dick a:Sagarty. 2971)"..... (clameroom teste) aro supposed to ample reprosentativalyand adequately the content of the course of inatruction*.(thbel. 1979)The extent to which a test measures zepresontative sampleof the abject-matter content and the behavioural changesunder conslderetion" (Gronlund, 1976)

Thus. it can be said that the efforte to defiae content validity by varlou rosearchore are pame. The procedure for establiohing content vallalty can be sumarised as sollow (Gronlund 1976).

While planning the courae work, ono dociden the subject matex, various topica to be covered in it and, finally, the objectivea in teras of behavioural changee which are to be achieved through the contente of the course. Later. in the procese of education, outcomes of the learning are evaluated. This la generally achievod by giving examinatione to the Etudents. The question of content valldity of examinam tion arises at this attage. To know whether the examination has content validity, the content and objectives of the oxamination paper are matched with the content and objectives of the course work. The extent to which these two match, the exanination would be said to have content validity. The thesia has etulied the contert validity of practice achool evaluation at bxis which would be diecussed in detail in chapter 6.

## (111) Cetcesfon-ilolated Valsdity

Gronlund (1976) Cafine: ariterion-related validity an "tho extent to which teet pertormanco is felated to some other valuad maasure of pertormance". Lindzay and Aronson (2968) oxplain. whenovar thore is an identifiable criterion varkable for mhich a tost purports to meaure, the tent may
be used to estimate an individual's presont atanding on that variable or to predict him future standing". And Pophan (1978) writes, "when we employ a eriterion-related valldation approach we attempt to correlate performance on a measure (the one we are hoping to validate) with an independent extornal criterion".

There are, of course, aeveral other researchera who have defined criterion-related vallolty but thay all bring the same meaning to it.
criterion-related validity is of importance whonever the examination marks are to be used to predict future performance or to eatimate the prezent performance. Hence, it has boen further classified as
a. predictive validity
b. Concurrent validity

The prodictive validity refers to the extent to which examination scores predict some future parformance, whoreas the concurrent validity relates the performance in one examination to the performance in a contemporary oxamination . Both predictive and concurront validity are represented by coefficient of vallaity. The coefficient of valluity is nothing but the correlation between scores obtained in two appropriately Ldentleiod
examinations. Valldity coofficient is interpreted in the sam way as coeftiont of correlation. It may be remarked that in the interpretation of the vallaity the nagative coefficlent of correlationsif any, are ignored. (Grosiund. 1976). The present chajter atudies axaminations in terms of criterion-related validity.

### 4.3 Reviow of Literature on Validity Studios

Most of the etudies on validity of examinatione are confined to predictive validity. A briek sumary of these gtudies is given belows

### 4.3.1 Studles on Valldity outalce. Ingla

Wiseman (1956) in a sample of 217 students studied the criterlon-related valialty of ontry tont focea including an essayy test uelng the following criteria

1. Total school certiflcate rusult
2. School certiflcate Engliah language
3. School certizhcate English literature
4. Toachers overall estimate
5. Teachers ostimato of written finglish

Correlation were calculated betwaen different seta;
and it wan found that the addeion of esway teste increased the confficlent, winereas the value of coefflelent was lowered when assay teat scores wore oxcluded from entry test acores.

Pidgeon anc Yates (1969) in atudy of 473 ttudenta who had completed thelr aecondery achool courne found that the eoaay type axamination in Engliah had lesa prodictive validity for muccess in secondary cohools than the results obtained by objective typa examinations in Engliah.

Hudmon (1960) explord predictive validity of oxaminationa for prodicting aminence in scientific research. ife concluded that the division or degree was not valkd criterion for predicting malnence in sclantific reseatch.

Coffman et. al. (1966) studied the validity of asay type teat for prodicting writing ability. They velected $X I$ and XII standard studenta from 24 Avarican secondary schools. fech atudent was aubjoctad to alx objective type, two membobjective typo and five caay type examinations. Sach student wae supponed to write on \&ive different topics. scores obtained by studanta in essay tost were considered as eriterion scone for predicting writing ability. Validity coezficient of easay type examination ranged Erom 0.33 to 0.35 .
coftman et. al. alao obaerved that validity of oxaminations was lowered if choter wan givan. In such cases atudent': marking deponded more on tho type of topic aelected by etudent than how well he had writeen.
sracht and Hopkine (2968) Loupd that copA correlated very well with performance in oseay and objective teate but
objective testscorrelated better than essay toata. Inis observation 18 aupported by several other studes canaucted abroad at well in in Inale.

Holloway et. al. (1967) studied the valldity of csacy and vive voce examination. They found that the esmay mexklng was influenced more by style and presentatlon than by Lactual content. They alao observed that pereonality was an ingortant Eactor to get fuccese in viva poee.

### 4.3.2 gtudias on Validity in India

These ace sureral studies on tho villdity of examination studles have been conducted te college an well an univeralty 1evels. come of tho whilknown tudian are given below.
raylor (2962) observea Sollowing cosrelatione batwean virious groupe te the college level:

$$
\text { TABLUS } 4.2
$$

Cosrelation ceotelclents between varioue oxaminations

Examinations	Coesfickent of correlation
Physics theory With physiea practical	0.14
Chamistry theory wheh chendetry praetical	0.14
Phytice theory with chomintry theory	0.30

Taylor concluded that the marke wore not valid measures at 11. His conclualons are based on the assumption that if marke are the valid measures of achievenent then there should be good correlation between the performance in various subjecte.

Patel (1962) reported moderat correlation (0.62) between the performance in practice reaching and 3. Ed practical examination. He also otudied the correlation betweon the performance in part I and part II examination. The correlation wan founc to be 0.63. Like reylor's study, Patel's study was also subjected to the assumption that the same abllity 1s being tested by various examinations.

Kamat and Dashnakh (1961) observed following correlations between varlous examinations for a group of studente

TAELE 4.2
Correlation coetsicients between veclous oxaminatione

	S.sc	$\begin{aligned} & \text { Intar } \\ & \text { Arte } \end{aligned}$	Inter selence	S.A.	B.SC.
S.8.c		0.60	0.61	0.49	0.21
Inters Arta				0.63	
Inter science					0.42

```
Misra, G.3. (1964) reported Lollowing correlations :
```


## TABLE 4.3

Correlation coefflciont: between verioua examlnation

	H.8.	Inter mediate	I.A.	I.SC.	I. SC. Ag.
Intermediate	0.71				
I.A.	0.73				
I.sec	0.84				
I.SC. Ag.	0.72				
Graduate	0.83	0.87			
B. $\lambda_{\text {。 }}$	0.69		0.69		
9.sc.	0.85			0.87	
3.act Ag.	0.75				0.76

As can be seen from the above table in various enaminations $\wedge$
 came out quite good; hance he concluded that the resulte of high echool and intermeliate examinationa are good predictor for prealcting performance at univeraity level.

Lale et. a1 (1963) reported 0.77 coetilcient between
 Baroda.

Faylor, Sluanga and Misra (1966) corrolated the satriculation and P.U. examinations and tho value of correlation was found to be 0.72.

Harper (1963) correlated the marike obtained in an objective examination of knowledge in English pootry with an easay examination in the winglioh poetry in meveral Intermodiate colleges in U.P. The validity coesilcient ranged from - 0.25 to 0.02 . He concluded that the dfference In validity coefflcients may be eithor due to inherent differences between the bastitutions or may be due to low reliability of caeay exaninatlons.

Harper ( 1963 b ) in some other etudy of same nature studied whother objective teat or maay teat would be better predictor for performance in an essay examination. He felected that 72 interasedate atudente and arrived at a concluvion/the objectivo rype tests wore better predictors than assay tests for predicting performancos in the same langth of emay teats.

Msca (1976) has discusaed that using examinationmarka Lor predicting porformance in real iffe is more important than prodicting performance in aome other examinations. With this objective he etudied the validity of teacher's training progranm for predicting performance in real 1ife. He selected 116 teachers of Boy's Intermediate College of Ailahabad and investigated how far theix teaching had improved by undargoing a teachor training courac. fie concluded that tile training of the teachers had not improved teacher' e teaching efticloncy significantiy.

These are thon soma of the major atudles on validity o1. examinatione conducted in inala. A detsiled review of
these atudioe in India as well as abroad ia given by Harper \& Mera (1976). Ae one goee through the above detalle. What emerges cleamly io that. normally, the studies have only been on predictive validity. It 18 also found that most of the otudies are at the college levol. studies at univeralty lovel are fow in number and almost nil for engineering oducation. Also one does not find any study on valldity of examinations for the internal system of continuoun evaluation characterlaed by the semester pattarn.

### 4.4 Oblective. Aspumptions and tha statament of the present ecudy

It is against the above frama work that this thesio propose to apply itself to the etudy of the validity of examinations for the internal aystem of continuoue evaluation charactorised by the semanter pattern. More apmelifically. if chapter 6 discusea. the contont and wterrton relatet validity Vis-a-via tho practice school ayistem of oducation, this chapter Ls devoted to atudy the aubject materer of the criterion-relatod vilidity for the campus based examinatione in the above context. The ystem at arts provices very convenient and roalletic case study for this reaearch. AB indicated in chapter (1). this system has following main featurea:

1. Integratsd broad-based education,
2. Pelevance to soclal and national noeds,
3. Stromily ompha*iaes the overall developmont of the atudont'e permonality,
4. Semester patterns of course offering,
5. Evaluation is totally internal and reletive,
6. Continuous With Eaaback to the atudenta,
7. Inal performance msasured in letter gredes in each courae. each memester,
8. Total porformance measuzod in terme of CBPA,
9. No EaLl grade, and
10. All answer papers, inclusive of comprehensive, shawn to studen As has been mationed in section 4.2. the criterionrelated validity in of inportance whonever the examination marks are to be uaed to predict future pertormance or to ectimate proment performance. Tho technicue for oetimating the criterionmrelated validity would be discunsed in the naxt section. $H$ however, $1 t$ should be polnted out that the two axaminatione to be correlated. whether it it for predictive or for concurrent validity, should be of elmilar nature as also of mimilar objmetiven.

Cortain assumptiona, which havo been made to pursus the present atudy. are follows

1. The objective of the validity atudy is taken to be to see how vell a studont would do as a professtonal in nis 112e.
2. In order to be able to atudy the cxiterionmriated vallaity of any examination vis-amvia the objective etated in (1). it is lapoortant to have point of view on the type of elucation that is needed to tialn a citimen for tonorrow.
in this systems ago, studentw must be incraasingly trained to participato as contributore in intordisciplinary and analytical problem solving efforts, demanding brum them multifaceted underetanding of issuee of technology and sclences. Thus, the knowlecige of the basics of analyticel maybe subjoct like Hathematics and Phyaley is considered to be contral to the studant training in any diacipline for preparing him to participate maaningfully in any profesionbased social action. It is againet this framowork that, for the purpose of the validity atuly, thim chapter assumes. amongat other exwainations like Higher Seeondery. the performancesin aubjecte itke concepts in acience or the Modern Physics as appropxiate canildates as predictort for the criterlonmralated validity analysie.
under consideration,
3. Further, for the purpoen of the valldity analysisa conalstent with the above Examawork the eriteria chomen are:
(1) modern Phyales and the Concepts in scionco courson
(11) Poxformances in aeveral alscigilne courses thateh-siven given repromented by the crade polnt Average (GpAs) for the A1actplimes, and
(111) Student' overall performance which is repremented by his lateat cumulative Grade Point ivarage (coph).

Understandably, the cholce of these performances as criteric is based on the point of view that thoy (1.0. perhave Earmancet), mergedfrom tha cetalls of the educational sytom,
such as at Birs, which is essentially based on the theme of the intordisciplinary and broad-based pattern of profensional education.
4. Pinally, it is assumed that the same ability ia being measured by various exarainations. In fact, thif has been satablished in chapter 2, where it has been found that examination, in goneral, tost Lower onder of knowledge, comprehension andapplication

In addition to the criterion-rolated validity, this chapter also studion the theme of the concurrent validity. Need for such a study arisos as rasult of questionslikem fhow far the performance in one disclpiine courses relater to the OPA of some other discipline coursos' The correlation thus obtalned between the two concurrent masures would for the former performance measure give the concurrent villdity mentioned that the adjective "concurrent" is taken to mean oxamination or assesments certainly within tho Institute year and normally close to ach other in terms of timedifference.

An important objectiva of the present study. in addition to studying the valldity of examinations, in also to explore the beat prealctor and the best eriterion under certain given situations.

## 4.5 procodure of getimating Criterlonorolated Yalidity

### 4.5.1 prodictive Validity

giret of all the examination, on the bawis which the future performance can be prodicted, 1s selected.

The chosen examination is called 'predictor'. Next, some other examination which matches in educational objectives with the requiremenk of the future performance unde consideration
 examination. Correlation between the marks in 'predictor' and 'criterion' examinations gives the measure of predictive validity* of the "predictor" examination.

### 4.5.2 Concurrant Vallaley

Concurrent validity is nothing but the correlation between two contemporary examinations acores.

Both predictive and concurrent valldity are lipreaented by coafliclent of corcelations. Hence. validity is nothing but a coefficient of correlation with a dofinite coanotation, an explalned above, attached to 1t.

The interpretation of the coeificient of validity in the sections to follow would be done on the bamis of following scale (Gullford, 1973):

TABEE 4.4<br>Interprotation of copflicient of correlation

Range of coefflcient of correlation

Interpretation
Slight, almost negilgible relationo ship
Low corralation derintto but amall relationship
Noderate coxrelations abotantial relatlonandp
High correlation marked relationanip
Vexy high cormalation; very dependable relationship.

[^1]
### 4.6 Sample and Data Collection

To study the criterion related validity of the examinations under consideration following samples have been selected:

1. Firat ample conelata of 310 student: who ware admitted to BIFS in the year 1976. Presently. most of these students are in the second semaster of their ififth academic year. Performance of each atudent as per following detaila was traced out:
(1) Percentage (normaliaed) marks obtained in Higher Secondary examination.
(12) Grade in course pHY A211 - Hodern Phyaica.
(111) Grade point averages (GPAa) in Blology. Chemiatry Mathmatics. Physics. Core sclence and Core Engineering courses, and, for any other disciplina outside sciences, the GPA in own discipline couraes, and. Finally,
(iv) Lateat cGpm.
2. In the other sample of 316 students, who ware admitted to 日ITs in the year 1977, following information 1 : conesderad:
(1) Parcentage (normalised) marks obtained in Higher spcondary (H.S.) examination,
(11) Grade in course sCI A111-Concopts in science.
(111) Grade point averages (GPAs) in HLology, Cnomistry, Mathematice and Phymics courses, and, Einally,
(1v) Latest CGPA. semester of their fourth academic year.

For both the batches of students, higher seconcery performance of ernch student in torm of normalised percentege was collected from Atmiasion's Offlce of this Institute. Rest of the information was obtained from the computer contre of the Instltute which keops record of the performance of studonts who are studying in arTs.

Thus, the data on the selected sample conslets of sollowing:

TABLE 4.5

Samples eelected for the predletive validity atudy

Sample	No. OL students	Kxamlna-   tions	Pereormance in courues	Performance in diacipline courses	Latest parsormance
1976   Batch	310 N	Normalised Pertormance in Highar socondary exarination	Grade in   8HY 1211   Modera   Physics	OPA in BIO. CHEM. MATH, PHY. SCX. ENGO. CE. CHIS, EEE, E ME Course	Latest COPA
1977   Betch	316	Normalised parformance in Hilgher Secondary examination	Grade 1 n SCx All1 concepte in Science	GPA in BRO. CHEM MATH. and PHY courzes	Latent: COPA

For the purpone of convenience, varkous aboreviation used in thim chapter are mentioned in the table 4.6 given on the nert page:

## sA3LE <br> 4.6

Abbreviations used in the proaent chapter

Full Name

H1gher Secondary
Modern Phyrics
Concepte in Science
Orade Point Average
Cumulative Grade Point Average
BLology
Chemistry
phyaics
Mathematics
sclence
Englneering
Civil Engineering
Computer selence
Electrical \& Electronics Sngineering
isochanical Engineering

Abbreviation
H. 5.

Mod Phy
conc. ScI
6PA
CGPA
310
CHEM
PHY
HA껴ํ
SCI
ENOC
CE
C3
E82
MS

### 4.7 Renults for the Critorlonerelated vallalty sendy

This chaptor, in aection 4.7 .1 ,gives the resulte
for psedletive valldity atudy, while, section 4.7.2, presente the reaulta in term of the eoncurrent validity study.

Needless to say, these reaulta have extensively made use of the computer. The correlation programme, used hese along with the other programes used elsewhere in this thesis. is given in Appendix I.
4.7.1 The resulta of the predictive validity study are given through table: 4.7 to 4.21. Each table is aeli explanatory in terms of the information baec.

TABLE 4.7
Correlation Coefficienta between the Performances in Predictor and Criterion Exeminations for All the studonte:


## PABL 4.8

Correlation Coofficients between the Perforaances in Predictor and criterion Examinations for ibiology Students s


Correlation Doefiliaients between the performances in predictor and Criterion Emaminations for Chemisty Studonte:

table 4.10

Correiation Doyfifciants between the Performances in Predictor and Criterion Examinatione ser iathematics Studentes

sample	crite			GPA					COPA
	redictor	Hodern   physics	in	BIC	वसEN	Maxin	एसY	ECI	
```1976 gletch 7 studont=```	Highe= secondary	-0.33		0.27	-0.42	-0.56	-0.47	-0.74	-0. 11
	Modera zaysics			0.38	0.83	0.82	0.98	0.71	0.94
	Higher secondary		-0.23	0.10	-0.17	0.28	0.22		0.14
	Concepts in Science			0.05	0.42	0	0.15		0.20

Corralation Coefficiants between the Performances in Predictor and Criterion Examinations for Phyaics Studente:

Correlation Coefficiente between the Pertormances in Predictor and Criterion Examinations for civil magineering students:

TABLE 4.13

Correlation coefflcients between the performances in predictor ane e Griterion Sxaminations for Chenical sugineerimg Studeate:

Correlation Comficients between the performancea in predictor and critorion Examinations for Computar seience Students:

Correlation Coafficients between the Performances In Predictor and Criterion Examinaelons for exe studontsi

Sample	criterion Nod phy		$\begin{aligned} & \text { Conc. } \\ & \text { scr. } \end{aligned}$	GPA							CGPA	
			Bro	Crish	P6xti	PHY	SCX	ENGG	EEE			
976	Higher	0.12			0	-0.05	0.14	0.04	-0.09	0.05	0.06	0.06
	Modera			0.26	0.47	0.58	0.77	0.32	0.45	0.57	0.70	
students	2hysics											
	Higher		0.16	-0.13	0.17	0.29					0.19	
1977	Secondary											
73 Students	Concept: 18 science			0.21	0.32	0.11	0.38				0.42	

```
TABEE 4.16
```

Correlation confficient between the performances in predictor and criterion Sxamiations for Hachanical tigineering Studants:

Correlation Coefficiente between the Performances in Predictor and Criterion fxaminations for Instrumentetion Studente:

Sample	Criterion Pradictor	Modexn Physice	Concepts in Science	GPA					cosA				
				810	CHEm	MATH	PHY	SCI					
$\begin{array}{llllllllllllllllllll}1976 & \text { Higher } \\ \text { Secondary } & 0.14 & 0.01 & -0.18 & 0.47 & 0.52 & 0.14 & 0.46\end{array}$													
batch	Modern			0	-0.14	0.77	0.63	0.39	0.63				
studante	ghysies												
1977 Secondery													
$\begin{aligned} & 6 \\ & \text { Students } \end{aligned}$	Concepte in Science			-0.26	-0.51	-0.28	-0.73		-0. 04				

```
FABLE 4.18
```

Correlation Coefflcients between the ferformances in Predictor and criterion Examinatlons Eor Eharmacy Studantss

Correlation conficiants between the Performances in Predictor and Iriterion Examinations for kanagemant students:


```
TABLE 4.20
```

Correlation coefficients between the performances in predictor and Criterion Examinationa for sconomics Studeatas

sanyle	to	Concepto in science	GPA				CGPA
	yredictor		810	CH5	MATH	PHY	
1977	H1gher	0.34	0.49	0	-0.52	-0.59	-0.19
	Secondary						
satch							
13	Concept: in		0.04	0.61	-0.01	0.18	0.51
Studants	Sclence						

TARE 4.21

Correlation Cowficients between the Performances in Prodictor and criterion Examinations for English students:

4.7.2 Results for Concurgent Validity Study

As mentioned earlicr, this section reporte tho Fgivits on the concurrent vilidity study which, connistant with the comstrelrit of the availability of the adeguate data, haf bern carried out on the 1575 swaily enly. The rosults are prumeated in tablo 4.22 which le ealfo explanatory.

```
TABLE 4,22
```

Correlation coefflcients between the Pertormances in variou concurrent Examinations for Clvil. Chamical, Electrical \& Electronics and Mechanical zagineering studonte:

4.8 Analysin of Rengles on CFiferionoRolated Vallaity Study 4.8.1 Ansumotions

The anslysis proceeds with the Eollowing assumptions:
(1) 1976 input of 310 etudents and 2977 input of 316 studente are taken to be reprosentative samples. Thus the samples are taken to be easly substitutable for aach other in term of arriving at general conclusione.
(11) Validity analysis is conducted for a pectrum of belonging to groups disciplinem neerefoting of
disciplines
(a) Sciencea : BIO, ChEM. PHY and MATHS ;
disciplines
(b) Engineoring ${ }^{3}$ CE, CHBM EEE and ME ; disciplines
(c) Applled science and technique oxiented $n^{\circ} \mathrm{CS}$. INSTR, PH disciplines
and (d) social Scionce and Humanities Mots, zconwand awa
(111) por the purpose of the analysis. following apectrum of criterla it comaldered: BIO OPA, CHEM GPA, MATH OPA, PHY CPA, SCI GPA ${ }^{+}$and COPA.

4.8.2 Analydinfor the 1976 日atch for the chatse of the gent prodictor

This section gives the analyais for the 1976 batch for the cholee of the loest predictor amongat performancel In the higher mecondary examination and the examination

[^2]for the modern physics course. The compariaon of the performances in terme of the bove mentioned predictors for the representative samples of the atudent at the Institute as generated through the bateh of 1976 input is shown in 2lgurea 4.1 and 4.2. If the shaded portions of the bars presented in flgures 4.2 and 4.2 describe the above etated comparison in terms of the percentage Erequency of the ovent for a given predictor, when viewed againat the entire spectrum of criteria from GPAS in blology, chemintry mathematics, phyiles science to CGPA, giving correlationa betwoen levels molerate to vary hlgh, the dotted bars prosent the comparison in terms of the frequency of the event for the predictor under consideration, once again when viowed against the total apectrum of the above atated criteria, giving correlation ranging from low to negative.

As regarde to Eigure 4.3, for the entire ample of 310 students from the 1976 bateh, it gives parcantage corralation frequencies corresponding to each of the levela from negative to very high for both the predictors, when viewed againet ach of tho criteria under considaration.

To begin with, apart from inventigating the valldity of a given pradictor, the study appliea itaelf to the question as to which is the best predictor for the amples under otudy. for the entire spectrum of the proposed criteria. Towards this, various mubsamplen as avallable from 1976 batch are considered firat.

The analyais as emerging from the resulte, recorded through in 4 igures 4.1 to 4.3, then, is as lollowe:

Percentage frequency of $H . S$. performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY,SCI to CGPAPercentage frequency of $H . S$. performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY SCJ to CGPAPercentage frequency of MOD PHY performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA
\%6? Fercentage frequency of MOD PHY performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIC, CHEM, MATH, PHY, SCI to CGPA

OISCIFLNES
FIG. 4.1 COMPARISON BETWEEN THE PERFORMANCES IN HIGHER SECONDARY AND MODERN PHYSICS AS
PAEDICTOR FOR VARIOUS GROUPS OF DISCIPLINES FROM 1976 BATCH.

Percentage frequency of $H . S$. performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO. CHEM, MATH, PHY, SCI to CGPA negetive for the entire spectrum of criteria from GPA in EIO, CHEM, MATH, PHY SCT to CGPApercentage frequency of $M O D$ PHY performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO. CHEM, MATH, PHY, SCI to CGPA
 Percentage frequency of MOD PHY performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in SIC, CHEM, Minh, PHY, SCI to CGPA

FIG. 4.2 COMPARISON BETWEEN THE DERFORMANCES IN HIGHER SECONDARY AND MODERN PHYSICS AS PREDICTOR FOR VARIOUS DISCIPLINES FROM 1976 BATCH.

FIG. 4.3 COMPARISON OF PERFORMANCES IN HIGHER-SECONDARY AND MODERN PHYSICS EXAMINATIONS AS PREDICTORS, WHEN VIEWED AGAINST ENTIRE SPECTRUM OF THE CRITERIA UNDER CONSIDEF,ATION, FOR 1976 BATCH.

1. From flgure 4.1 it cleazly emerges that, for the entire univeree of the student number as ample space, Modern Physics performance as a predictor, when viewed against the wide ranging spectrum of the above 11sted criteria, in ach cast invariably gives a correlation spread betwaen the levale from noderate to high to very high.

Againat the abovo obaervation, the higher secondary porformance as a predictor, in the above situation., invariabl reports seam-to-gA* correlations aproad only between levels from low toslight to no correlation to negative correlation.

Thus, the Modern phywles performance fecidedly emerges as better predictor than the hlgher eecondary performance, for any of the above liated six criteria.
2. In further support of (1). it can aleo be seen fron Eigurea 4.1. to 4.2 that, for the entire apectrum of the above ilsted eriterla, the percentage frequency of the event Modern Phymics as the pradictor alving eorrelations between very high to wocrete for each of the dimiplines or the groups of the disclplines (as mentloned under assumptions) Is Invariably more (it in more for 16 samplee out of the total of 17 samples) and if not thon atleaut fairly close (if Erequancy for Modern Phyaics as predictor 1550%, the name for Higher Secondary is 56% to the correaponding erequency of the ovent relating to the higher secondary performance the predictor.
similarly, from the above flgures, it aleo followe that the percentage frequency of the ovent modern Physics performance as predictor giving correlations between Low to negative for the antire egectrum of dieciplinem or thelr groups is invariably lese and 1 it not then atleast fairly clowe to the correeponding percentage frequency of the event relating to the iifgher secondary performance as the predictor.
3. On cxitical analyois of the flgure 4.1. it can be seen that while. for the acience category, the percentage Erequency of the Modern Dhyalca performance as a predictor giving correlations between vary high to moderate (ie of the order of 75%, the corresponding percentage Irequencies Lor the categorie of Enginearing, Applied science * Technique oriented diaciplinee and soclad Eciences are of the order of $44 \%, 50 \%$ and 33% reapectively.

Thus, it emerges that, while Modern Physics performance is a beteer predictor than the Higher secondary performance, within the varlou groups of disclpilnes the Modern Physics performance is more suitable as a predtctor students from the for science group of atudent than for the Applied sclence and fechnique orientad disciplines than for tingineering groupn of students, than $\mathbf{L o r}$ Management groupnin that order.
4. Irom Ligure 4.2(a) it can be Eurther seen that, amongat the icience group. Modern Phyeled is more sultable as a predictar lor the alselpilnos of Mathamatice and Phyolce than for the dimeiplinge of MLology and Gemistey.

81milarly, from $4.2(b)$. 1t can be aeen that, anonget the zingineering group. Modern Physice is more suitable as predictor for the discipline of Eaf than for the diectpline of Civil Engineering than for the diacipline of Chemical Engineering, than for the discipline of Mechanical Engineering, in thet order.

From figure 4.2 (c). it can be seen that amongat the Applied Science G Technique orlonted disciplines, the Modern Phyoles performsnce 1 g more sultable as a predictor for the diaclpline of computer acience than for the diacipline of Instrumantation, than for Phermacy. in that order.
5. Pinaliy, coming to Eigure 4.3. it can be aoon Eqat 1t further comprehenelvely sumarisee the obearyation atated under the point (1) of this eection. The figure 4.3. consiatent with the observatione from figure f.i, clacly show that for entire sample of the 1976 batch, the performance In Modern Physles course as predictor, for ach of the criterta undor consideration, invariably gives parcentago Erequency of cosrelations ranging from levela moderate to very high,much hsjher than that for the Highor secondary porfomance as proalctory thus implying that Mocarn Physice 1s a uperiox predictor to Higher secondary examination. In quantitative terms, if the percentage irequancies in the above context for the Nodern phyaica as the predictor vary Eram 31% to 92%, the same forthe Hlgher secondary vary from 0\% to 23\%

With this, now, one can proceed with the analysis 20r tho 1977 batch for the choice of the beat predictor.

4.8.3 Analyais for the 1977 Batch for the Choice of the 3at irodictor

This section gives the analyais for the 1977 batch in terms of the choice of the best predictor amonget performancee in the Highor seconeary oxamination and the examination for the Concepts in science course. As already roported under assumption (11) of section 4.8.1, this ample, under the category of Soclal Sciences Humanition, in addition to the discipline of Management, also includes the dieciplines of Economica and English, and thua covera a little broader the Universe apectrum of samplee than in the caes of sample from the 1976 batch. However, as regards to the apectrum of the critoria, the analybis of 1977 batch covers only 5 criterla, namely, BIO OPA. CHEM GPA, MATH GPA, PHY GPA and CGPA; thue oxcluding the SCI OPA unilke in the case of the analysio for the 1976 batch.

It 1 then, witinin the above frame work, that below is premented the vallaity analyais for 1977 batch under consideration.

1. Comparision of the performances in the Higher secondary examination and the concepts in sefence course examination for the reprasentative ample of the atudents at the institute am reflected through the 1977 batch is given in figures 4.4 to 4.6. While the shaded portions of the bars presented deacribe the above atated comparison in terms of the percentage Erequem ney for glven event for a prealctor, when viewed againat the ontire spectrum of criteria from BIO GPA, CHEM GPA, MATH GPA, PHY GPA to CGPA, giving correlations between lovela moderate to vary high, the dotted bara present the comparison in terms of the percentage frequency of the event for the predictor under consideration, once again when viewed against the total apectrum of the above stated criteria, giving correlationa ranging krom low to negutive.

It is through critical analyaie of the above etated figure 4.4, it amerges that, for the entire universe of the student number as the sample space, Higher Secondary an a predictos, when viewed againat the antire apectrum of the above mentioned criterla, has the percentage Erequency for the event corresponding to the correlation being between moderate to very high only 20%, while the percentage frequency for the correlations being between levels low to negative is as high aa 80\%.
\therefore Second predictor under consideration for 1977 batch is the performance in Concepts in Science courso. Prom EIgure 4.4 (a). it clearly emerges that, for the entire

Percentage frequency of H. S performance as predictor giving correlations between very high to moderate for the ertire spectrum of criteria from GPA 1n 日IO, CHEM, MATH, PHY, SCI to CGPAPercentage frequency of $H . S$. performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM. MATM, PHY,SCI to CGPA

Percentage freguency of CONC. SCI performance as predictor giving correiations between very high to moderate for the entire spectrum of criteria Erom GPA in BIO, CHEM, MATH, PHY, SCI to CGPA
Percertage irequency of CONC. SCI performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MAT: PHY, SCI to CGPA

FIG. 4.4 COMPARISON BETWEEN THE PERFORMANCES IN HIGHER SECONDARY AND CONCEPTS IN SCIENCE AS PREDICTOR FOR VARIOUS GROUPS OF DISCIPLINES FROM 1977 BATCH.

Percentage frequency of $\mathrm{H} . \mathrm{S}$. performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA
Percentage frequency of $\mathrm{H} . \mathrm{S}$. performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPAPercentage frequency of CONC. SCI performance as predictor giving correlations between very high to moderate for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA percentage frequency of CONC. SCI performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA

FIG. 4.5^{*} COMPARISON BETWEEN THE PERFORMANCES IN HIGHER SECONDARY AND CONCEPTS IN SCIENCE AS PREDICTOR FOR VARIOUS DISCIPLINES FROM 1977 BATCH.

Percentage frequency of $H . S$. performance as predictor giving correlations between very high to moderate for the entire spectrum of criteric from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA
Percentage frequency of $\mathrm{H} . \mathrm{S}$. performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY,SCI to CGPA

Percentage frequency of CONC. SCI performance as predictor giving correlations between very high to moderate for the entire spectram of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA

Percentage frequency of CONC. SCI performance as predictor giving correlations between low to negative for the entire spectrum of criteria from GPA in BIO, CHEM, MATH, PHY, SCI to CGPA

a
b

EIG. 4.6 COMPARISON BETWEEN THE PERFORMANCES IN HIGHER SECONDARY AND CONCEPTS IN SCLENCE
sample of the 1977 stucients. whlle the percentage froquency of the evant concepte in science af predictor. Whon viewed against the range of criteria, giving correlation betwen moderate to vary high is only 20%, the percentage frequency for the same predictor under similar conditlon of the criteria giving correlations batween low to negative is as high as 80\%. Hence the performance in concepts in science. too. like the Migher secondary performance turn out to be poor predictor.
2. A micro level Investigation through Eiguree 4.4(b) to 4.4(0). and through 4.5 to 4.6. further serangthens the Gbove broad macro lovei phearvatian in the oence zinen checked for 18 difforent zamploe, zigrt from the zangle constituting chu antixe univazse of the atulante. that can bo generated from the 1977 batch, for as many as 13 samples. the percontagu frequency for the avent uncepts in science as predictor, when viewed agroan the spectzum of criteria. giving correlationa butween modexate to very high ia Invariably equal to ox leat than 20% anc. tor as many as 5 samples out of theme 13. the gans 1a a low an 0\%. And. as
 out of 18 that concepti in science as predictor has percentage frequency betwaer 40% to 60 . indicatlmg carxelations belng moderate to vary high.

Againgt thio. the : Aloher sucondaxy performance only once hat its corroaponding percentage Erequency as
high as 60\%, for the other remaining 17 samples, the same being invariably equal to or lower than 20%.

Thus, concepta in science, though a poor pradictor by itealf. may be conaidered to be a slightly better predictor than the Higher Secondary performance.
3. On a further caitical analyais of the Elqure 4.t. is It emerges that the concepts in science seeme-to-be a good predlctor only for the social sciences and the fumanitica disciplines.
4. Mus. putting together the observations for the sub- subprevious ${ }_{\wedge}$ ection and this section and assuming a temporal invariance in the charmeter of the two batches of 1976 and 1977, one can conclude that on the whole. whatever may. normally, be the criterion, the performance in Modern Physice 1s far better predictor than the performance in Concepts In Science as also the Higher Secondary performance: and, 12 Eoreed to discriminato fuxther. then that the performance In Concepts in sciunce, though by itedif a poor prealctor. is a elightly batter pradictor than the performance in Higher secondary. In such case then, ons can also concluda that normaliy, the performance in tho institute - based examination 15 a better predictor than the performance in the Higher secondary oxaminationa.

Indeed, the observation regarcing concepts in seience belng poor predictor warranta further quexry and can be
pursued in the futuriotic context. One posaible reason for thls could be the lack of content correlation baticon what has been taught in the course with what was to follow In the later yearm.

It is against the above frame of reference that the remaining part of the cpapter restrlets ita attention to the further perusal of Modern Physics as the predictor in terme of the investigation on what can be considered to be the best criterion for it.

4.8.4 The Anglyaie of the Nodern Phyaics as the precictor los the choice of the best criterion

Thls section atudion tine question : what ean be considered to be the vest criterion if Modern Physies were to be the predictor 3 Understandably, the otudy, for thie purpose, explolta the data-bse avallable from the 1976 batch.

Ta the analysia, amples from the individual science disciplines would be discussed ilrat. followed by the sampias from ingineoring disciplines and those from applied Sclenca fochnique oriented Alseiplines, in that ordor. Finally the stucty will analys the antire 1976 batch taken together.

1. Sclonce Dlaciplimo-ylse Aralyole

science - discipline - wise
Thencorralation level: between the predictor as
repramented by the performance in the Nodern Physice course and each of the criterla taken separately from the spectrum of criterla ranging from BIO GPA to MATH OPA to PHY GYA to cGPA are given in figure 4.7 .

FIG. 4.7 SCIENCE DISCIPLINE - WISE CORRELATION LEVELS FOR EACH OF CRITERION AGAINST MODERN PHYSICS AS THE PREDICTOR.

The observationg emerging from Elgure 4.7 are reported in table 4.8

TABLE 4.23

Science Meciplinewise Comparizon of the various criteria as per the Correlation Levela againat Nodern Physics as a predictor:
Dlecipline: Correlation Level Criterion

810	High	BIO GPA, PHY GPA and CEPA
	Moderate	CHEM GPA
	slight	MATH GPA
	Negative	SCI GPA
CHEN	H1gh	PHY GPA and CGPA
	Moderate	CHEM OPA and Mhth GPA
	Low	BIO GPA
	slight	SCI GPA
MATH	Very High	PHY GPA and CGPA
	H1gh	CHEM GPA, MATH GPA and SCI GPA
	Low	BIO GPA
PHY	High	MATH GPA, PHY GPA and CGPA
	Moderate	CHEM OPA and SCI GPA
	slight	BIO OPA

From the above table it clearly amerges that, for any disclpline from sclences PHY GPA/CGPA ao eriterion, when compared to the reat of the criterta under consideration. semmerto gives very high to high correlation for Modern Physice as the prodictor. Thereform. it can be concluded that PHY GPA and CGPA are bettex criteria than the others.
2. Enginocring Discinlinowise Analysis
engineering-discipline-wise
The, correlation levels between the pradictor
as represented by the performance in the Modern Phyaics course and each of the criteria, taken soparately from the spactrum of criteria ranging from BIO GPA to CHEM GPA to WATH GPA to PHY GPA to SCI GPA to CGPA, are given in £1guse 4.8.

The obervation amerging from figure 4.0 are reported in table 1.24.

TABL 4.24.
Engineering Diacipiinewine Compariaon of the Various Criteria as per the Correlation Levels against Modern phyelcs as a Predictor:

Diaciplines	Correlation Level	Criterion
Cs	Moderato	BIO GPA, MATH GPA, PIY GPA \% CGPA
	Low	CHEM OPA
	sllght	SCI GRA
CHE	Moderate	BIO OPA, SCI GPA and CCPA
	Low	PHY GRA
	812ght	CHEM GPA and MATH GPA
Est	Very kigh	PHY GPA
	Modarate	CHEM GPA, MATH GBA and COPA
	Low	8IO GPA and scl cra
HE	Moderate	PHY GPA
	Low	MATH OPA and COPA
	Slight	CHEM OPA and SCI GPA
	Segativo	EIO OPA

FIG. 4.8 ENGINEERING DISCIPLINE - WISE CORRELATION LEVELS FOR EACH OF THE CRITERION AGAINST MODERN PHYSICS AS THE PREDICTOR.

Prom table 4.24. it clearly emarges that, for any discipline from Engineering, either PHY GPA or CGPA give good corrclations with Modern Physics as the pradictor. Hence, it can be concluded that PHY GPA and CGPA are better criteria than the othera.
3. Applied Salence and Technique Oriented Digelolineulee Analys 1 s

Applied science \& Technique oriented-discipline-wise Thencorrelation levels betwaen the predictor
as represented by the performance in Modern Physice course and eack of the criterla, taken separately, from the spectrun of criteria ranging Erom GPA in Blo to MATH to PHY to CGPA, are given in 21 gure 4.9.

The observationa emerging from figure 4.9 are reported in table 4.25.

FIG. 4.9 APPLIED SCIENCE \& TECHNIQUE ORIENTED DISCIPLINE-WISE CORRELATION LEVELS FOR EACH OF THE CRITERION AGAINST MODERN PHYSICS AS THE PREDICTOR.

Applied Science \& Technique Oriented Disciplinewise Cormarison of various criterla as per the Correlation Levels Againat Modern Physics as Predictor.

Ditelplines	Correlation Level	Criterion
C3	Very High	PHY GRA
	Moderate	CHEM GPA, MATH GPA, SCI GPA and COPA
	Low	BIO GPA
	High	MATH GPA
INSTR	Moderate	PHY GPA and CGPA
	Low	SCI GPA
	011	BIO GPA
	Negative	CHEM GPA
PHA	HLgh	COPA
	Yoderate	PHY GPA
	Low	810 GPA, CHEM GPA
	0121	s01 OPA
	Negative	MATH GPA

From table 4.25 , it clearly energea that in 2 out of 3 disciplines amongat Applied Science and Technicue OLLented disclpilnas. it is alther GPA PHY or the GGPA which have been tound as the beet criterla. Therefore, It can be concluded that pHy GpA and CGPA are better criteria than the others.

4. Analysin for tho Ealonge Gronp of Dinciolinos. Enaineering Group of Dingipling and Applied Ectence \& Technique Oriented Group of Disciplines:

For various groups of disciplines, the correlationa between the Vodern Thysics as the predictor against each Of the criteria, namaly, BIO OPA, CHEH GPA, MATH GPA, PFY GPA, More specifically SCI OPA and CGPA, are shown in Eigure 4.10. A Ewther, the Eigure hhows the percentage frequencies of the correlations being between levels molerate to very high for the above indicated group of disciplinev. as against a single disclplinewise analysis as presented iarller. The groups of diaciplines covered are science group. Engineering group and Applied Science Technique orlented group.

The oloservations emerging from figure 1.10 are reported in table 4.2G.

fig. 4.10 discipline - group-wise comparison of the various criteria as per the percentage frequencies of the correlations between moderate to very high against mudern PHYSICS AS A PREDICTOR.

```
TABLE 4.26.
```

Dlscipline - Group-wise Counatirge of ehe Gricerlong an
per the percentage frecuancy of corfintione betuon Ivvis
Madarite to Very High aqsinct tho Nodarn Pry les pertornange
as the Frecilctor

Discipline Group	Percentage frequoncy of correlations between levela moliarata to very high against the predictor vodern Physice	Criterion

Thus, as observad in sulfaceions (1) to (3) of this section. DHY GPA and CapA are invasiably emerging ab the good cxiteria against modern lhysics an the predictor for all the diactpline groups dascribed above.

An interesting alde conclusion also seems to amerge from the above analyais. While it is observed that Nodern Physics and RHY GPAVCGPA, as per the correlation level-wian analyais seem to make the beat predictor-criteria pairs for any sargle. it may be worthwhile to answer a question as to Eor which sample the above stated combinam t10n(S) are more suitable. Table 4.27. trier to presents the analysia for the same.

TABLE 4.27.

Dlacipline - Groupewise gample placed in the order of their porcentage frecuency howing correlations between goderate to very high for anch of the criterlen-predictor palse in terme of PHY GPA-Modern Phyaica and CopA-Modern Rhyolce

Diacipline Group	Percentage Frequency of correlation levels ranging Erom moderate to very high for	
	HOD DHYPHY GPA pair	$\begin{aligned} & \text { MOD PHX - } \\ & \text { CoPA } \\ & \text { palr } \end{aligned}$
Science Group	100\%	100\%
Applied science and Technique oxlented group	100\%	100\%
Enginearing Group	50x	75\%

Thus, while, as observed through the ubsections (1) to (4) of this aection, PHY GPA and CGPA are emerging as the bast eriteria agajnst the Hodern Physics as predictor for each of the discipline or the groups of the disciplines, table 4.27. show that the above prealctor criteria paira. while belng the best choices possible for each of the disciplines of the groups of disciplines. are more suitable For the science and the Applied Science \& Technique orlentect
of disciplines
groupa than for the 玉ngineering grougn tombat-orier. And, further analysing theme two palre with respect to the Engineering groupe it enarges that for this aample the Nodern Physics - Coph makes a littlo better palr than the Modern Phyelea - PHY GPA palr.

4.8.5 Analyais of the Regults on the Concurrent

Vallalty Study

To study the concurrent validity, correlations betwern two contemporary oxaminations or performances have been consiciered. Different concurrent sets selected for the ftudy are - correlations between ENOC courses and student's own discipline couraes (CE, CHE, EEE and ME) or sNGC couraes and CGPA. Corralations amerging between varloue concurrent measures can be seen from table 4.22. For the reason of the avallablilty of the appropriate data-base. the concurrent validity study has been peraued in terms of the 1976 batch only.
looking at table 4.22, mote of the correlations botwaen two concurrent examinatione, except for the sample of Mr students are \mathbb{H} ound to be consistent in the sense that they vary only between moderate to very high levels.

Indeed, the details pertaining to the sample of HE studenta are rather inconsistent. Table 4.16 also in som sense provides a prelude for auch inconsiatency in the sence that even with Modern Physics as predictor against any of the criteria, except pHY GPA, for thia aangle of etudents, the predictive valldity rangea only between levela negative to low the same for phy ORA as criterih being as high an moderate only. Another poasible indication to expect auch an inconsiatent porformance from this particular batch of Mm atudents, seame to emerge from Eigure 4.2 (b). Where even for Modarn Physics as pradictor, when viewed against the entire apectrum of the criteria, for this aemule of Me atudent, the percentage Erequency ot correlations being betwen lavels moderate to very high Is only 17%. No doubt for a given aection of small number of students. in such a manner, to give inconsistent indices of itw performance pattern is a rathor peculiar thing and must be a rosult of a corplex combination of variou: Eactors conttibuted by the courbe contents. the teacher thus
and the student; ${ }_{n}$ requiring an invegtigation clearly talling outside the scope of the present work. Thus. in other words. In a futurintic context, it may be mentioned that instead
of generalising anything on immediate basis in terma of these observationa, it will be helpful to flrat, further. in a detalled and atructured manner inveatigate the toat rellability, the content validity as also the content correlation epecifically for the varloue courses studied by only this group of atudente.

This then completen the analysis of the validity resulea initiated in this chapter.

4.9 Conclusion:

In summary, thle chapter hae basically doalt with the validity problen, with a apecific reference to the criterionmrelated validity within the frame work of internal continuous evaluation aystom at the tertiary level. Fox thla analyais, the examinations at BITs have been aelectad as the data base.

To pursue the eriterionmrelated vallaity study. following asaumptions wore made:

1. The objective of the valldity study is taken to be to see how well a atucent would do in his profeasional life.
2. Apart from examinations like Higher Seconciary, performances in courses from Physics and Mathematics diaciplines are considered to be central to the preparation of the student for the above objective. Thus, performances in courses like wodern Physics and Concepts in science are taken to beoc candidates for belng predictors.
3. The choice of the various criteria is made from different assesaments as rezlected through GPA BIO. OPA CHEM, GPA MATH, GPA PHY, GPA SCI and CGPA.
4. All the campus based examinations are assumad to have similar structure and objectivea.
5. The study has aelected 1976 input of 310 students and 1977 input of 316 atudents as the data-base. Por the varlous purposed of the analysis a temporal invariance is sasumed in the general character of these samples.

As indicated above, this chapter exploits the data base as obtained from the 1976 and 1977 inputs. The observationa emerging from the validity study ae conducted in this chapter for the above representative atudent eample are an followas

It La interesting to note that PHY GPA and COPA are emerging as the oost criteria against the Modern physics as predictor for ach of the diaciplinea or the groups of diaciplines considered for the tudy. Further the above criteria-pradictor paira are more sultable for the Sclence and Applied Science \& Technlque orianted groupa than for Engineexing group. in that criez. And Eurthar analyaing these two palra with reapect to the ingineering group. Madarn Physica - CGPA amergen as slightiy better pair than the Hodern fhysics on PHY GPA pair.

While studying the concurrent validity dt has been found that for all the anmplen except in the case of the sample for Me students, the correlations between the courses performances pertaining to the GPA in ENGG (predictor) and GPA in their own disciplines (criterion) show correlation levala between moderate to high. Thus, in general. the performances within the institute based courses semm to be consistent, thus giving good concurrent validity.

The above thon is the total yrame of reference under which valloiley analyels has been studied for examinations under internal continuous ovaluation mystem aa available through the Eield atudy at BITS.

Som sugyestionstor futuriatic stuaiy emerge out of thia investigation. To be apecitic, tho cases where correlationg butwean exaninationm are poor need to be
explored further in a detailed and structured manner so as to study tin test reliability, content validity as also the content correlation in order to understand why the correlations are poor.

This than sumnarises the observations of this chapter. Like the internal system of continuoue evaluation and integrated approach to education, another major innovation at aITs 1s in texms of its offorta to link the aducation with the enviromment through ite practice school system of education. In the chaptera to follow this thesis would investigate some aspects of the rellability and validity for the practice school syatem of examination.

CHAPTER 5

OH THE PRACTICE SCHOOE SYSTEH OF EXUCATLOF - A CHSE OF

MULTRPLE OBJECTIV: EXAMINATYONS

5.2 Introduction

So far the thesis has discuasad the reliabllity and validity aspecta of the campus basad clastmroom coursea. As indicated carlier, this chapter initiates the study of the examinations administered under the pxactice School (pS) Syatem of education which essentially Links the system of the univeraity education with the reai-114 probien solving involvemants of the professional world. Towarda this, beause of 1ta (BITS) accoptance as early aa 1970 of the pg ayatem of education as an integral part of the student tralning for a degree across any branch of the Engineering. Sciences and Humanitiea disciplinea. uncieratandabig, as in case of the previoun chapterm, this chapter also, extensivelyt draw upon tho vant data bue avallable in thi: context at BITS, P1iani.

The PS course is totally different from the conventlonal clas-room type courses. It requires the involvemant of atudents in roalminfe projecte and is held not in aniversity campu: but in profesalonal aurroundingw like an industrial organimation, research laboratories, banki, tte. Some detail: of the PS education aro given in action 5.2 of this chapter.

The PS education, in viaw of its close linkage with the professional world, makes certain now demands on the university population - both teachers and studenta - quite often in addition to those demanded by the class-room education. In this aystem both teachera and students become part of a tam, being learnors, educatora, managers all at one and the same time. Students, on their part, have to accept certain consumar obligations whereas teachers have to appreciate and accept an role. Tins theme has been elaborated in section 5.3.

As discussed in section 5.4 , the usual techniques of examination will not be applicable to the PS course. In contrast to the clasa-room evaluetion, the $P S$ eveluation 1a multiple objective type. she pS evaluation method and its multiple objective nature is diacuased in aection 5.f.

5.2 practice achool Egucation

The PS education hes been described in a series of axticles by Mandke (1975. 1976. 197!) and 日ITS builetin (2980-81). and alao by Mitra (1974. 1975). A comprehensive monograph by sandxe (1980) gives the philosophy, history and operational details of PS alongwith a crltical analywis of its impact on the university aystem. In this section have been included only arief lescription of the ps aystem and its educational implications. for datails the alorefnentioned referencee may be conaulted.

As emphasized by miandke in aeries of articles mentioned above, DS servee an 1 mportant need of the university education sycten. To appreciate this fact one can conelder the alms of higher .. education as 1denkified in the Carnegie Comandsion report (1973) quoted belows

1. The proviaion of opportunities for the intellectual. aesthetic, etrical and skilled development of individual studenta and the provision of campus environment which can conatructively assiat studente in theix more general development and growth.
2. The advancement of human capability in society at large.
3. The enlargement of ecucational juatice for the postsecondary age group.
4. The transmisaton and advancement of learning and wisdom.
5. The cxitical evaluation of society through individual thought and permuasion for the ake of moclety's selfrenewal.

In a nutsheil. the aim of highar education is to make better and more capable human balnga who can eerve the diverse aocial needs. however. It in obvious that due to large variety of spocisic need which keep chamging from time to time it is not possible for the convantional
clabs-room type education system to train a student for all uch social needs. This is what is reforred to by Jevone (1972) as m-- The clear imposaibllity of providing custommbullt training for the infinite varlety of job contenta that exiat at present. let alone those that w111 come to exlat over the noxt thirty to forty years".

What is actually needed therefore is to train the students in the techniques of probler solving. It certainly requires knowledge which, as we saw in chapter 2, is one of the Lmportant objectives of eductetion and which, to a falr extent. can be achleved in the class-ronm. However, the usefulness of knowledge inparted in the class-room can be quite limited as obeervec many years ago by Whitehaad (1.933):
"In my work at universities I have been much struck by the paralyeis of thought induced in pupile by the almlaes accumulation of precise knowledge. inext and unutilised. In a sense, knowledge shrinks as wisdon growe, for detalle are awallowed up in principles. The details of knowledge which are important will be picked up adhoc in each avocation of 11fe, but the habit of the active utilisation of woll underatood principles ts the final pousession of whadom."

The unelesp accumulation of inert knowlodge does aot make a student usotul for soclety. mased upon this,

Beyley (1972) auggesta."zince knowledge is important as it is used. tabiks would have to be set for the student requiring activity beyone sheer retention."

Bayley (1972) further writes, "roachers have long bemoaned the absence of "aynthesis' or intellectual "Integration In higher education, meaning that students do not see the interrelationships between bodles of knowledge. The solution has customarily been intendisciplinary courses and seminars In which subjecta have been fuxtaposed for the student. That such attempts have falied is not surprising. Synthesis occurs in human mind, it occurs when an inaividucl discovers that acadomic delineations of subject mater break down in practice. Interdiaciplinary cournes fall because they are constructed externally to the student, interdisaiplinary offerings become simply other courses produced for consumption"

The point that one wishon to make here is that although the clas-500m education can provide knowledge zet something elae la needed to make this knowledge ueeful in solving real-11fe problame. Resi-life prolblema are interdiecipilnary in nature. As Eayley (2972) pointa out In the worda quoted above, the solution would not ile in tarms of merciy offoring intordisciplinary coursed at the univeraitiss. The etudenta have to trained in the techniques of aynthesizing knowledge.

It is the lack of appreciation of these facte which has reaulted in the universities imparting merely what

Whitehead calls 'incrt knowledge' to the students. This has made the universitien develop into directions which, as put by Mandke (1980), do not contribute to social growth. The irrelavance of unlveralty education to social needs has resulted in what is described by Mandike (2975) as "the crisis of higher education'. In the worde of Mandke, "----the (Indian) universities have not been able to integrate their activities with those of pational lifem--nigher education drinks from the well of society and hence they (universities) must turn their faces to the enviromment-w---. The meed of the hour is to evolve our own model which will help us in demystilying higher education by making it the sumation of the people' e experience so that it can properly belong to the society. one way to met this requirement is to adopt the Practice school system of education".

The practice school can be described as a controlled slmulation of the protessional life during the educational yeara". It provides plattorm for the interaction of the university with envixomment which eventually makes an impact on both the univeraity and, thenvironmant. In real terms. a part of students educational programme is carried out at a PS station which may be in an industry, a bank. a research laboratory or even a village. students work on projects which are identikied at the $p g$ station and aro naturally of direct interest to the "host'. There are two ps coursea 8 sm I and PS II in the entire 5 ayear period with referance to the 11 year input. Consiatent with the
recomondations of AICTE, the duration is now changed to 4 year for the $10+2$ ingut. However, duration and the locations for the PS Courses in terms of time and structure, respectively, remain unchanged. PS-I 1s for one sumer where as PS-II 1s for about six months which is silghtly longer than one sernater. students work on projects in teams with one of them identilled am leader for each team.

Studente' performances in both the courses, PSum and PSoII are evaluated in terms of letter gradea like moat other courses at the Institute. The grades are awarded by the Institute faculty who supervise the student work at the PS atation. It ia the physical presence of the feculty at the ps atation and the fact that it is the Institute faculty and not the host organisation's atafi that take the sesponaibility of organising and ruming the PS station and evaluating the students' performance which constitutes a vital feature of the Practice School. A measure of the success of the Practice school aystem of education is lit acceptance by the studente is evident from the fact that although it is not compulaory almost all the studenta of BYTS invarlably choose the Practice School option (aee Mandke (2980) for \$ull statistica). Thus, In any given acederic year, out of the total of the atudent and $\begin{gathered}\text { aculty } \\ \text { strength of around } 2000 \text { and }\end{gathered}$ 200. respectivoly, as many as 800 students and 60 Laculty mambera are participating in the PS education at about 30 round-the-year PSoII otations and 45 sumner-based PSmI atation

Ituated at in all around 25 different towns/cielea of the country. The real serength of the acceptance by the host organisations of this programe 18 indicated by the fact that alncest all students particularly at PSeII station receive some financizl contribution from the host organdeations In terms of out-of:pocket allowance or subsidised food and accommodation (see Kandite, 1980 for detalls).

As is apparent from what has been said above, practice school has made a major impact on EITS and its succese has brought new obligations and roaponsibllitias to both teachers and students of the Institute. This aspect is discused in greater dotail in the section that follow. 5.3 Chanaling iole of faculty and Studente - Consumex obligations

The role of the faculty and studente in a conventional -ducation aystem is very woll defined and has been accepted by tradition. A teacher has to taach and evaluate wheras a studont has to learn what is taught to him and reproduce the sam as Eaithfully as can in the examination. In the practice School ayatem nelther of these deacriptions of the rolea is valld as has been amply shown by Nandke(1980). This aection takea into account the changing role of both the teachers and students in the practice school syatom of education.

According to Furat (1958) "every teacher and -very college should formulate and use a defensible theory of learaing " This will necessarily require search for a set of ppecific aims and objectives of education. According to (feywood (2977). Whe darivation of objectives not only involves us (teachers) in an underatanding of our philosophical poaltion but in the formulation of a defenalble theory of learning".

The importance of identification of the teacher's permonal philomophy has also been emphasised by Sherin and Long (1972) who write "If we want clyde (name of an imaginaxy student) to learn what we must teach him. we musts

- be able to rationally commanicate to $h 1 m$ our reamons for certaln instructional goals and objectives:
- Conslder Clyde'a goale and objective as we search for our optimum instructional system:
- be able to convince Clyde that it is inportant to learn certain behaviourg, attitudes and skills which will become hia "Professional Characteristics" as he interacts with soelety in the practice of his profession;
- be able to understand the value of the subject wo offer for the fulellment of clyde's purposas, ouy purpoees and the purposes of sociaty".

A mort rigorous and comproheneive discusalon of aims and objectives in relation to the $p s$ education and the corremponding 'defensible theory of learning' is found In Mandke' aeries of articies quoted in the beginning of
the preceeding section. The firnt tepfor the teachers is to formulate, what Heywood (1977) and Sherrin and Long (1972) call, their 'personal philosophy' in the context of the PS oducation. This is important for the teachers in order to identify and play successfully thin role in this novel educational innovation which, ingpite of its initial success. is yot to be bleseed by tradition.

The role of faculty in PS is indeed drastically different from that in the traditional class-room education where the taachers teach and avaluate atudents" performance In the subject of thelr apecialisation. In PS, a Eaculty member does not teach his subject of apscialiaation but 18. along with the 8 tudents a member of the taam involved In the execution of a real-life project. As described by frandke (1980), "osen, the ps theory of higher education and research Is based on the central theme of the teacher-student participation in the environment".

It is important to recall that the real iffe problams are uaually interdisciplinary. The stuconta in the tean would also be from different branches. A teacher can not an expert or speciallst in all disciplines. He 1 is therefore amomber of an interdiaciplinary team working on a problem of which the answer ia not known elther to the teacher or for that matter to anybody else. Indeed, there 10 no guarantes that the answer oven oxista.

And compare this with the classoroom situation whore the teacher is an expert in his subject which he expounds to his studente. Here indeed, the correct answer to any problem is known to the teacher. In fact. Mandke (1980) himself is provoised to ask "em-a what is the exact role of a teacher when students are working on a development type activity (like can be the case at ps) ? what teachlag techniquea should be adopted when discuseing probing of which the teacier himself does not know anowers ? can a language teacher evaluat an engineering atudent working on, ay, some teasibility study "

The answers to the above questiona come atheast partly from the following. Although accepted by tradition, there is really no need for the teacher to mexve the role of a living library packed with complete informstion about what he ds expected to teach. If the job of the teacher were simply to transmit the existing information to the atudents, it could be achieved much more efficiently by some well written books, video tapes. etc. In such a bituation, only a fow teachers of excellence would suffice to cater to the whole world. Since the alm of education afterall 18 to produce personnel for solving real-1ife problems, the role of the teachera should be to train the student in the art and ecience of teckling and responding to real-itfo problems.

It should be emphasised that it does not undermine the inportance of apecialisation of teachers in particular disciplines. A Physics teacher must be a specialist of Physles but he should be able to commanicate his problemsolving expertise and mathodology to tackle a real-life problem which may involve knowledge of, say, biosciences or chemistry or chemical engineering or even of finance.

This also emphasises the 1 mportance of developing a suitable personsl philosophy by the teachers. A bioscleanc teachar, who is the member of an interdibelplinary toam in PS. should not feel embarkassed because his knowledge of thermorynamics is less than, that of a student-mamber of the team who for exemple, may be a student of chemical engineering. the teacher would accept and reapect this difference and guide the atudent in how to use his knowledge of thermodynamics to respond to a particular problem.

In addition, the teacher has to inculcate the proper attituces in his stucients. He has to combine the academic rigour with profestional ethics and discipine and transfer this to the students and inspire them to face real-ilfe challenges. He also has to plon suitably the deployment of the atudent manpower. He is not an expert in all subjecte but would know the expertise of others. In other worde, the teacher has also to play the role of a
manager.

To sumarise : the changing role of teachera can best be explained by making the following quotation from Mancke (2983). "(triese 1ssues) relate to the new profesilonal challenges that the ps syatem of aducation puts before the teachera------the teacher acts as the most important link between thoory and practice----the faculty has the task of evolving teaching anc evaluation techniques which are 'performance' based in the sense they facilltate, against the concept of the delivery achedule, the periodic assessment of the problemosolving taske at hand as well as of the multimobjective contrifution towaras the ame by the individual members of the student team. Thie 'project'orianted approach to the teacining and learning proceseat is certainly a major departure from the uaval university class-room norms".

Ooviously, the methods of evaluation in this context are axtremely important. A biosciences teacher in the above exampla could not and would not attenct to avaluste the expertise of atuitate in for instance heat transfer or thermodynamics. that his would evaluate 13 the personality traits ant skilla ricquired for soiving reial-life probleme? what he would then try to evaluate ls, way, how the studente have reaponded to problem aolving aituations? In view of ith aignificance, the pse evaluation will be taken up again for further discussion in the noxt mection.

The present thesis now considers the role and obligation of students in the PS system of acucation. In this syster the students are not merely learners. They make an impact on the system by contributing to the host organisation in terms of asoisting them as interns in their work and to the university by giving it an opportunity to bring the real iife enviromment in to the class-room. The atudents, like the teachers, are an essential part of the real life problem molving network and thue have a role to play in this network. This also puts thom under certain obligations which, in the words of fleywood (1977) may be called the "consumer obligations".

Heywood dezines the "consumer obligation" for the student as follows:

- Just as the teachar has obligations in reapect of studenta which require him to develop defensible theoriea of knowing and learning, so the etudent has obligetione to acquire skilis of learning and recognise impediments in their attainment".

Heywood (1977) Eurther observen, "e-m-1t (higher ducation) is very much at the mercy of the consuner (and) a majox outcome of such processea (1k,constiete-between the obllatateaft-18 that studenta may raject perfecty laudable activities if they do not seem to meet the needs of their suture life as perceivad by them at that time".

The experience of the $p g$ so far clearly shown that it has been accepted by the atudent community. An indication of the studente' attitude was reflected the Lact that in order to go to PS they were evan prepared to stay in roadmside tents (mandke, 1980) in the absence of any other arrangement for thelr atay Consiatent with the atatement of Heywood (1977) quoted above. this thow that this programe certainly meeta the needs of thedr future iffe as jerceived by them at the moment. secording to Randie (1980) the student community hes accepted PS for another, parhaps more profound, reason which 18 that they "experienced the axcitement and atibsaction that comes when one iscansforms knowledge into performance, when one blenda abjects inarnt. into sechniques of action'. mecording to Mandke (2983), fgeln the studont plays the role of a learner and an unierstury or some kince of juntor manager in PS. The acceptance of such a role has atrongly contributed to the growth of ps. The meudents have indeed acted as 'catalysts and predictors of this educational innovation'.

Tine role which the etudenis play in the PR is obviously very difterant from their role in the conventlonal class-room education where they simply have to be passive 1earners. Indeed. P. \&. given them an opportunity. in addition to learning a subject, to develop what Heywood refers to aa the "akilis of learning". A direct involvanant in a real11ke project brings out certain permonality traits which have
no chance to surface in the conventional classmoom Bltuation. These tralts are the qualities such as leadership of a team, adherence to professional diacipline. planning and sticking to a time schedule, etc.

Once a project is taken up by a team of students, It has to be tackled within a certain time schedule. Obviously, the solution would not be known to any-body beforehand including the teacher himalif. The problem may not be fully categorised in terms of any one particular discipline and would, in general. call for a multidisciplinary approach. In an attempt to solve the problems associated with the project, the atudenta may have to interact with the personnel of the hoat organisation and therefore learn and manage to establish appropriate human-relationihips a factor of great educational importance. Thus, in the ps yytem a student has to play the role of not marely a passive learner but of a junior manager.

All this requiree the so called "conaumer obllgations" on the part of a student. Firat of all a atudent has to accapt his aforefnentionad role. He mist adhere to the discipline and rules and regulations of the host organisations even if formally he 18 not an omployee of that organiation. further, motisor important obligation on the part of studenta would be to matally accopt the tact that the role of his teacher in ps is different from that in campus-based class-roon

The teacher in the $P S$. In general. would not be the "expert' who hae with him the soluthone to all problems assoclated with the project. Indeed as observed earlier. the solution of theec problems in certain cases may not - ver exist.

This completes observations on the changing role of atudents and saculty under the ps aystem of aducation. A natural philosophy to the above 18 the observation that uncleratandably, then, the student ovaluation at ps ia maltiobjactive in character. Next section is devorad to this character of the $P S$ examination syatem.
S. 4 Practice school svaluation and its multiple oblectire Notuร®

Since the teaching and Learning in PS is quite difiarant trom the convontional class-roon education, the techniques of ovaluation st p 3 have also to bo ditierent. The class-room examinations, as has heen sean in chapter 2. mostly tamt knowladge and ability to recali. The ps examination techntcues axa notrornance based in the senge that they facilitate the prolodie amsesmment of the problemsolving taske at hand an well as of the multioobjective contribution towarde the same by the individual mombare of the student tame (randke 1980).

By 1tem vexy nature, the ps evaluation, unlike the clasemroon evaluttion. eanot bo based upon the fingle

Abstract

objective of testin7 knowledge. The Eact that the PS takes the education of a student outside the clasponoom requires that tho examination reform be siso taken outside the claseroroon.

It is interesting to see the pg evaluation in the context of tho syaten of internal continuous evaluatioz. Accoraing to Mandke (1980) tho culture of the Internal ayetem of continuous evaluation watches well with the Laduttrial practices of sarlodic aseamment of the tasks at hand as we11 as the gerformance of manpower. It it theretore natural that the same be acopted to suit the ovaluation of the studente' pertormance te tho ps.

Keaping in view the demande of a roal-lige problem solving effort, the PS evaluation methods must test the studarts' jerformance in terme of peraonsilty tradts like
 in mont, dacision-making ability. akilie ${ }_{n}$ deta hansilng. ability Eor written and oral prementethon initiative abiliey for tear work, Leaderghip cuality, ability for moeting deacisnes etce. (Mandke. 2980).

Thus we see that in contraet to tho unobjective nature of tho clamanoom evaluation, the evaluation at PS 1s multi-objective. An evaluation system which attempto to achiave the obsectiver has bean developed by the ps Alvishon at BITs. mis byotem is baind on the use of auch
components as seminars, quizze日, viva, group discussions, diroct observation of the studente, etc. This evaluation scheme le quoted here in matrix form in appendix A glance at this will clearly show the atucents' character1stics which the scheme attempts to asseas and the various instruments of evaluation used for asessing these character1stics.

An 1 mportant point to note, as emphasised by Iyer and Krishnamurthy (1976). 1a that the PS evaluation 1s posible only in an internal continuous evaluation aystem, which also matches with the Industry' own system of assessment (Mandke, 29B0). As such, the ps should be considered as a part of the Institute's broad-based interdisciplinary integrated educational system. The reliability and validity of claseroom courses in an internal continuous veluation syotem have been discussed in the previoue chapter. It is only natural, then, that, against the above mentioned framework, the next chapter then, be devotec to the rellabllity and, valldity analysis for the PS examinations. As indicated earlier the vallaity analysis in the noxt chapter cantres around the theme of the content valialty.

CHAPTER 6

Bome Appects of Reliability and validity Studies

for the Practice school Examinationy

6.1 Introduction

A brief description of the Practice School (Ps) aystem of education, along with the statemant of some of the salient features of Lts examination system, is presented in the previous chapter. This chapter, therefor*, concerns itmelt with certain reliabllity and validity studies pertaining to the pS examinations.

More apocitically, aections through 6.2 to 6.5 discuss cortain reliability analysis techniques for ps evaluation. A one is aware. ps evaluation consists of components auch as quis. viva, seminar, group-discuasion, project-report, observation, etc. Thus, section 6.2 coals with the problem of the stury of reliability of ps evaluation components of quiz and viva, while aection 6.3 is concerned with the problem of the study of the examiner reliablilty with seference to the PS evaluation compononta of meminar. groupmilacuseion, project-report anc observation. As regards to section 6.4. Lt pursues the thome of the course reliability with reference to the ps coursa. while aection 6.5 deals with inter-correlationa batween the varlous above mentionad and any othir componente of tha PS evaluation achems. Againat this. gection 6.6 ts devoted to the ftudy of content validity of the ps avaluation. Fiaally, section 6. 5 concludes the chapter.

It may be mentionad thet while aections 6.2. 6.3 and 6.5 uso marik obtalned by students at Nagda ps-II station during
the aession I semester 1977-78 wis the dats-base for the purpose of the illustration of the emerging techniques. section 6.4 uses the catambae as avallable through Nagie pSoII sessions of I scmestar 1976-77 and I semester of 1977-78.

One reason for the choice of the above two bessions is obvioualy in terms of the avallability of the adequate database for the purpose of different investigations to be puraued. through the sections to follow. However, as regarde to the choice of hagal pseII atstion in particular. it may be mantioned that it is becauad of the fact that. In terme of the ducational Infrateructural dotilia, the metrix of the studentoteacher interaction at Nagda atation 10 intonitively cloaer to the known class-room world within the campus-based univernity oducation.

6.2 On tio Rellability of PS Evaluation cosponents of Yiva and Dut

A critical look at the ps evaluation scheme described In section 5.4 should tell that $1 t$ (the $p s$ avaluation achemo) 14 a peculiar mix of the traditional ovoluation componente adopted in the campus-baced univeralty aystam and the ongoing permonnel_appraial practices ab operative in the Incuatrial/profecsional actupe. More spectifically, the use of guizsee as maan to evaluate the student pexformance 18 an integral part of the evaluation symtom, particulariy, in case of univarsities baged on the sameeter pattarn of education with contimuous evaluation, while the practice of using viva, d.e.. an oral interaction botwoen the student/junior manager and the teacher/aentor manager as a mothod to asses the
progreas/performance is coumon to both the academic as also the industrial/profesaional communitien. against this, the evaluation/assesment components like groupmaiscussions, seminars, project reports, observation, daymbyeday technical raporting of the work progress, atc. are uniqualy closer to the personnel assessment patterns to be normally found in the modern and progressive induatrial/professional environmenta of the twentieth cantury.

Coming to certain operational details pertaining to the PS evaluation scheme, it may be mentioned that, consiatent with the requirement of the internal system of education, the ps evaluation certainly is the rasponsibility of the Institute'a faculty maniag the station. However, an the profersional experts from the host-organisation along with the Institute saculty, play the sole of the consultants to the students working as interns on the given PSmII assignment, the PS evaluation scherne, to the extent Feasible, seek the particlpation of the profeasional experte in the implemantation of the varioum evaluation componente.

For example, durlng the Nagde PS-II sessions, for which the field data is collectal for som of the illustrations in this chapter, the professional axperta heavily participated in the componente of group-discussion and seminari. Thua. for these componenta, the experts ranked the atudents on the 0-10 acala and this information was used by the yaculty as one facet of the total datamase before them to arrive at the final asmeasment of studenta for thooe componente.

Similarly, the project reports ware also, particularly. at the manuscript stagea, invartably shown to the rempective professionel experts and their viewn were sought in the ame context and these views did form one important base of information in terms of the final amessment of the project reporta. further, the avaluation for the 'observation' component also made use of the periodic leedback fxom the professional experts on the atudent progress and professional behaviour. Finally, in case of the coraponent on the (technical) aiary alao the faculty sought a feedback from the experta as and when needed. The only ps evaluation componente, where the involvenent of the professionsl experte was to lts minimum, were, thu, quiz and viva.

It is against the above srame of reference that firatly, in view of their etrong identification with the student evaluation practices traditionally followad in the university aybtem and, aecondiy, in viow of their being conducted in the industrial/profesaional onvizonment almost entlrely by the univeralty faculty alone, this asection studies the theme of the reliabllity of evaluation components of quis and viva when implenented as under the guidelines of the PS evaluation achembe.
an Indicated earlier, the datamase selected for the above indicated study consiats of the marks obtained by the group of 30 stulenta at Maga PS-II session during the I semester of 1977-70. This atudent group consiated of the Einal yoar atudent from difforent disciplinea of chenical engineering,
civil engineering, slectrical \& Electroalcs Engineering. Machanical Engineering, and Managament. The tom of instzuctora who supervised their PSin education had four teachers dram Erom different disciplines of chamical angineering, eloctrical and electronics engineering and managoment and one of them was the instructor-1nacharge of the team.

Euring tho Nagda Pe-II sassion under considaration in all 4 quiszes and 4 viva wore conducted. Thus, to atudy the reliability of the quiz componont, each of four quizzes can be considered as separate item and then, under the analysis of varinace approach. the rellabllity of the quiz component can bo obtalned through the equation 3.18.

Eimalar method as above can also be adopted to obtaln the rellabllity of the viva component for the data-baee uncier consideration. The reaulta so obtadned for the component: of the quin and viva are reported in tablo 6.1.

Table 6.1
Rollability of Practice School Evaluation Componente of viva and gule

Examination	Mumber of Exaninations conducted	number 02 stuciente	Coefrlelent of Rellability
Viva	4	30	0.73
Qu1s	4	30	0.43

Indeed. the saraple usod for the results reported in the above table is too mall for any ganezalization, but. if one vas to atill conclude then it seema to emerge that for the batch atudied the reliablity of the quia componant. which le
unique to traditional student assesament technizuse followad In the univeraity system, was lowar than that for the viva component, which, while being preaent in the university evaluation syster, also has an acceptability in the professional world. However, for any well founded generalization. It would be necessary, in a futuriatic eontext, to puraue this investigation, along the methociology preacnted above, for a lerger nunber of PSOII. Courses conducted at different stations as also for a larger ample sise in terms of student number and eiselpline.

6.3 On the Examinor Reliability For the Componants of practice school Evaluation

One of the basfor criticisms of examinations relates to variation in marking. Marke awarded by one oxaminer to the same script may differ srom the mexks awarded by tho other exarainer. Wilis varlation in marking may bring in error in messurment. The consistency in the markin awarded by differont examinera in tho sien exmaination ia meaaured in texms of the oxaminer rellability. Guilickaen (1950) definas it as the correlation botween the marks of two oxaminars and observea that it gives the measure of examiner rellabllity.

A large number of stuóio in India a well as abroad have been done on this aubject (see saction 3.5). However. generally, such atudies have been done on the conventlonal class-roun tests. Thus, the deta base available from the Nagde PS-II Btation in terms of the marks of the I aemeater 1977-78 batch, where each of the components of PS ovaluation, namely, seminar, groupaiscussion, project report ance obearvation has
been evaluated at a time by a number of examiners their numbers varying between 204, providea an interesting case for an investigation with reference to the problem of the examiner rellability in an onviroment outaide the traditional classroom culture.

An regards to the method, it is aubitited that for any^{2} of the PS evaluation components under consideration, student evaluation by a given oxaminer can be treatad an one maparate item. That is to say, a meminar component examined individually by three different examiners can be treated as an examination or test with 3 items. In such case, the nociol relating the observed acore with the true acore can be same as the one represented through equation 3.28 , with α_{1} representing the error in evaluation due to the factora concerning the examinee and the β_{j} representing the arror in evaluation due to the inconaistency in marking by the examiners. Indeed, all other aasumptiona concerning the model an repreasented through equation 3.18 can also be taken to be valid in case of the cotalle pertaining to the present inveatigation. Thus, the examiner rellability can, then, be calculated through the analysis of vartance approsch using equation 3.18.

It 13 against the above Erame of relorence that the table 6.2 presente the reaulta on the examiner reliability for the PS evaluation componenta of seminar, groupmaiscussion, project report and observation, when implemented for the I sementer 1977-78 bateh of Nagda PS-II mtudents.

Table 6.2
Exanfore Rallablilty for Dlfierent Pructice Eshool Evaluathn Components as ymplemented for I semester 1977-78 batch of Nagda pS-II stuciante

Examination	Number of atudents	Number of Examiner:	Coetsiciont of falisbllity
Seminar II	30	3	0.79
Seminar III	30	3	0.50
Group Discumeion	II 30	3	0.84
Group Discusaion III	30	3	0.70
Projact report	30	4	0.68
Observation	30	2	0

From the resulte above reported. it clearly emergas that the $P S$ evaluation components of seminar, groupmdiseuseion and project report, studied in terms of the data base as avallable EOr the I semeater 1977-78 batch of Nagea PSiII studente. demonstrato a farly satistactory level for the examiner reliability, More epacifically, as can be seen from table 6.2. the exaniner rellabllity in case of the two group-discucsions atualed is invariably on the higher sice, the roliability coufficients being of the order of 0.84 and 0.70 . Against this. the oxamines reliability for the two meminar components is Gound to be of the orcier of 0.79 and 0.50 . Thus. evon though, on an average, the group-discuseion component acoms to have demonstrated botter examinor rellability than that for the seminar component, the examiner reliabllity for the leter, 1.e. the seminar component, is alno falrly eatiafactory, tha lowes value for it buing as high as 0.50.

Pinally, the project report component has also demonstrated a falrly satisfactory examiner rellablilty, its value having emerged an high as 0.68, which is only slightly higher than the average value of 0.645 for the examiner rellabillty for the sominar component. The reasona for auch a satisfactory level of the examiner reliability in case of the $\mathbb{P s}$ evaluation component under aiscussion could be seen in terma the reduction in the error (due to the examiner zubjectivity) that seems to bo feasible particularly in view of (1) Hwety, the structured nature of these examination componenta aa reflocted through the PS evaluation matrix of Appendix C and, (il) sesondily, the participetion, in an involved maner, of the professional experts in the PB avaluation process.

However, in terma of the datambase as avallable for the I semazter, 1977-78 batch of the Nagöa PSmII stucionts, the observation component of evaluation demonatratea 'zero' examiner rellability, thereby indicating in-consiatency in the evaluation.

It is true that, an in the cases of the seminar, groupdiscusaion and project report componenta, the above atudied observation component also has atructurad format as reflected through the pS valuation matrix of Appendix C and, as ceacribed in section 6.2, the Eaculty. 1.0. the oxaminers, while arriving at their stucent evaluation in terms of the observation component, also had adopted the practice of seeking the view of the profesaional experts. Ande still, the examiner rellablilty for tho observation componant meudied hal come out to be zaro. This. then, only goes to thow thet when it comes
to the 'observation' component, in spite of all the checks and balances provided. Einally, the aseesament seems to be heavily weigh in terme of the perapective through which a given oxaminer is viewing the stucient; thus resulting in possibility of a higher order of inconsistency in the evaluation. One way to reduce this inconsistency can be in terms of the examiner's training in the context of the various possible range of interpretations of human behavioural aituations, so as to ensure a greater from-within debate in the mind of an examiner before arriving at his asaesament of the student.

Thus, in sumary, from the analysis of the resulte of the data base avallable zor the I semester, 1977-78 for the Nagda PS-II atation, it emerges that, in reapect to the batch under consideration, the PS evaluation components of seminar, groupaiscussiona and project report demonstrate a falrly aatiafactory level of the examiner roliability. Further, the avarage examiner rellability for the group-discusaion component is higher than that for the seminar component. As regards to the project report, lita oxaminer rellablifty la aeen to be lesser than that for both the group-discussion components utucied and only slightly higher than the average examiner rellabillty value for the sominar component. Finaliy, the observation component is noted to have very poor examiner rellabllity.

Indeed, the above sample aize in too amall for any generalisations. Towards this, further inveatigateny work along the methodology developed in this aection, would be necesmary in terms of a larger sample alze which would need to
be collected in a planned manner.

6.4 Course Reliability for a Practice School Course

Another interesting investigation that can be pursued With regard to the $P S$ evaluation scheme concerns the question of consistency between its various components of evaluation, namely, quiz, viva, group-ĉ1scussion, seminar. project report, observation and diary. This indeed is nothing but the study of the ps course reliability. Towards this. along the similar ines as in the case of course reliability for a cempus-based course described in section 3.4, a given evaluation scheme for a PS course can be considered to be a semester long examination, with each of the above ilsted seven evaluation components signifying a separate item. 'mus, theng-the-oboeswelacore-ot -tulent-Can-bo-dewerfbod-through-z-moclez: then
The observed score of a student can be described through a model represented by following equations:
and

$$
\begin{array}{ll}
x_{19}-t_{11}+t_{i j} & 6.1 \\
t_{i 1}-\mu+\alpha_{1}+\beta_{1} & 6.2
\end{array}
$$

under the assumptions that:
(1) error components. $e_{1 j} \xi^{5}$. occur indopendontiy and at random with zero mean and common variance, and
(ii) that they (1.0. $e_{1 j}{ }^{3}$) are uncorrelated within t_{11} and with errors in other measurements.
where,
(a) $x_{11} \triangleq$ Marks obtained by the $i^{t h}$ student in the $j^{\text {th }}$
evaluation component.
(b) $\mu \Delta$ factor common to all measures (1.e. scores).
(c) α, Δ
(d) $\mathrm{B}_{3} \triangle$ and (e) $e_{1 j} \Delta$

Factor in the total measure signtfying the contribution of the $1^{\text {th }}$ atudent.

Factor in the total meawure signifying the cortribution of the $j^{\text {th }}$ evaluation component. Unexplained tactor or the error in the masure for the $1^{\text {th }}$ stucient due to the $1^{\text {th }}$ evaluation component.

Consistent with the treatment stated in section 3.4 , the PS course reliability can, then, be obtained through the analysis of variance approach using equation 3.18.

The PS course rellability resulta emerging through the application of the above mentioned to the data-base avallable In terms of the marks obtained by the two batches of PSoII students at the Nagda PS-II station Curing the sessions I semeater 1976-77 and the I semester, 1977-78 are reported below in table 6.3. The I semester 1977-78 batch has been in detail described earlier in aection 6.2. Ab regards to the I semester 1976-77 batch, it may be mentioned that it consiated of single Fothe faculty which belonged |mechanical englneering discipline and sevan students pertaining to chemical. electrical and electronlcs engineering and managemant disciplines.

Table 6.3

Coefflclent of Course Seliablilty EOF tho practica Schogi-II evaluation

$\begin{gathered} \text { 8.No. Semestar } \\ \text { a Year } \end{gathered}$	Totsl student No. an also thalx diactplinc-wise composition	Total No. of items	PS=II Course Rallability
1. I ふemeater 1976-77	8	7	0.75
2. I Semeater 1977-78	30	7	0.73

As can be seon from the above table, the coefficient of rellablilty for ps evaluation scheme seems to be quite high. One of the reasons for getting high reliability may be the highly structured nature of the ps evaluation scheme an also the existance of a large number of evaluation components.

6.5 Inter-Correlatlons between the Practice school Evaluation Components

As indicated in section 6.1 , this section studies the inter-correlations between the various ps evaluation components of quiz, viva, group-discussion, project report, seminar. observation and diary. The methodology for obtaining the correlation coefficients between the different PS evaluation-component-pairs is same as the one described in section 3.2 .2 of Chapter 3.

Tables 6.4 and 6.5 give the results on the correlation coofilickents as obtained from the marks of the two batches of the PGII atudente at the Nagda PS-II atation Guring the sessions I semester, 1976-77 and I semester. 1977-78, respectively.

$$
\text { Table } 6.4
$$

Intercorrelation Between Difforent Components of

Components	Dusz	Viva	Seminar	$\begin{aligned} & \text { Group } \\ & \text { Dlscusaion } \end{aligned}$	Project report	Observation	DLaxy
Ouis		0.43	0.68	0.70	0.45	0	0
viva			0.85	0.86	0.26	0.60	0
saminar				0.92	0.26	0.29	0
Group niscusbion					0.53	0.57	0
Project roport			,			0.61	0
Observation							0
Diary							

Table 6.5
Intercorrclation betwoen Different omponents of PS-II Evaluation at Nagca - I Semester. 1977-78

Componente	Quiz	Viva	Seminar	Group Discuselon	Project Report	Observat10n	Diary
Cuiz		0.24	0.50	0.32	0.57	0.06	0.14
Viva			0.18	0.22	0.19	0.14	0.10
Seminar				0.78	0.36	0.32	0.25
Group Discussion					0.26	0.54	0.27
project Report						0.15	0.38
Observation							0
DLary							

The analysis of the resulte reported in above tables is presented below in table 6.6

TABLE 6.6

Ev3luation Component-Category-wlse Analypla of the
Numbers of the Evaluation-Component-Pairs an coming
Under Various Correlation Lavels

Below are listed some of the observations emerging from the table 6.6.
(1) There 1 s no instance of negative correlation.
(11) Little over 50\% of the correlations between various pairs of PS evaluation components lle within the levela moderate to low.
(1ii) About 35.7% of the correlations are within levels very high to moderate, while the remaining 64.3% are less than moderate.
(iv) The percentage-wise distribution of the correlation coefficients as coming uncer the various levels of Very High, High, Moderate, Low, slight and zero correlation ds as followa:

Table 6.7
percentago-wise Distribution of the correlation Coefflcients comlng under Various Levels of Coefflcient corralation
Correlation Zero Sorrelation
Level

Percentage of
PS Evaluation Component
19.05\% $16.67 \% ~ 28.57 \% ~ 26.19 \% ~ 7.14 \% ~ 2.38 \%$ Pairs
(v) The seminar-group discussion pair has demonatrated the best correlations, while, on the whole, the diary component of PS evaluation shows indeed very poor correlation with all the other evaluation components.
(vi) On the whole, the pairs $0-5, ~ Q-P R$ and GD-Ob show moderate correlations, while the pairs $\mathrm{m}-\mathrm{PR}$ and $\mathrm{S}-\mathrm{OD}$ have low correlations.

The above then are some of the observations that emerge from the analysis of the inter-correlationa between the various Ps evaluation components as studied for the Nagda PSoII sassions
of I semster, 1976-77 anci I semester, 1977-78. Indeed, this sample size is small for any long term generalisations in tarms of the above observations. Towards this, it would be necessaxy. In a futuriatic context, to study along the methodology indicated above a larger sample on PS evaluation collected in planned manner.
6.6 On the Content Vallaity of the Practice School Evaluation

The significance or the need for the validity analysia for an examination, along with the description of the types of validity. has been in detall discusaed through section 4.2 of Chapter 4. Further. Chapter 4 has also investigated the predictive validity and the concurrent validity in torms of a series of traditionally administered expminations drawn from difeerent levels of education as reflectad through the Higher secondary atage as also through the atages coxresponding to the different levels of the academic years at the Institute. This section, thus. pursues the theme of the 'content' validity with reference to the PS evaluation.

6.6.1 Content Valldation Mathoralorx

Below in briefly otated the methodology for establishing the content validity of an examination.

One is aware that an examination 1s always conducted against a syllabus or a toplc. as the case may be. Thus, the first step in the contert validation of an examination is in terms of defining a apecification matrix deecribing various educational objectives almed at through the different topics of the aubetopics of the syllabuk againat which the examination ham been conductod. Understandably, this tank of identifying
the content vs. educational-objective-based specification matrix Is invariably pursued through the experte for the subject area from which the examination ayllabus is drawn.

The naxt step, then, is to work out with the help of the examining faculty another specification matrix describing for each of the implemented ltams of the examination, the educational objectives for which the Ltem has been designed. This matrix may be termed ay the item-vs-ecucational-objectivebased epecification matrix.

The content validity for the axamination undex consideration is then defined as the correlation between the two above described apecification matrices. In specific terms, higher the matching between the educational objactives as reflectad through the two matrices. higher the content validity of the examination 1mplemented (Anastas1, 1976).

From the above it follows as natural corellary that, 1 I. at the time of the setting the question paper itself the oxaminer has the content-vsmeducational-objective-based apecification matrix before him and, as a result, if he so designs the test items or quastions in the examination as to cover the entire range of the educational objectives stated in the above indicated matrix, then the content validity of the examination in automatically ensured.

The above corollary describes a atuation where an examiner ls aetting a queation paper for a given topic. If one considers cabs, where students are being evaluated for a
course, an amonded version of the above corollary amergea.
For the purpose of the specificity, let the student evaluation in the course be on a continuous basis, thus implying presence of a series of tests or examinations at a periodic interval. ultimately resulting in a final stucient assessment. As can be appreciated, these tests or examinations can be in terms of various evaluation components like quiz, viva, tests. comprehonsive, project rejort, home assignment, seminar, etr. Further, at the beginning of the course, let the evaluation-component-vs-educational-objective-based specification matrix be designed. matching with the content-vemaducationa objectivebaged specification matrix Lor the course.

The content validity for the evaluation scheme for the course 1a then automaticaliy onsured if each of the examinations for the course $1 s$ so designed and auministered as to ensure its complete falthfulness to the details of the above stated evaluation-component-vs-educational-objective-based specification matr1x.

It is against the above frame of reference that the next section discusses the content validation of the ps ovaluation scheme as described through section 5.4 of Chapter 5.
6.6.2 Content Valldation Analysis for the Practice
one way to study the content validity of the ps evaluation along the methodology described above could be in terme of a critical analysis of the hietorical background of the avaluation of the jovaluation echeme. An excellent comprohensive account of this historical background is given by Mandke (1980) in his Case study on the ps Syatem of Education as evolved and

1mplemented by BrTs, PLiand. The contenta of this section heavily draw from this case study.

As brought out by Mandke (1980), the PS examination system at BITS has evolved as a process, the atarting point for which. indeed, is the Forward Plan of 1970 which for the first time defined in clear terms the educational objectives of the cooperative Education as proposed to be implemented by BiTS. Thus during the period 2970-72, then, there had been innumerable rounds of discussions between the PS Director from MIT (USA) and his MIT colleagues (1.e.. the experts in PS education). the PS Coordinator at BITS, the proposed PS faculty for the first PSOI station at HCP (Khetri) and the Elisst PSoII station at HINDALCO(Renukoot), the profeesional experte from HINDALCO and HCP and other aenior officers of the Instltute. In fact. during the sumer of 1971. six faculty members, who were later to form the team of faculty to man the first PS-I and PSmI stations, apent the aummer of 1971 at HIMDALCO to workout the entire range of the educational and operational dotalls of the $P S$ programme.

It węs as result of all the above mentioned deliberation involving people from University worla as also from profession. along with the experts in PS education, that the basis got formulated for relating the contents of PS education as reflacted through the structure and types of ps assignments with the objectives of the PS ayatem of education. This basis, in the words of Mandke (1980). can be stated an Collows:

* A process of education, the practice method substitute the naxrative approach followed within the four wals of a
classroom and the two covers of the textbook by experiencebased cognitive process of learning anci teaching, operative in the very way of life, thus making education student centred anó enviromment as well as circumstance oriented. In view of this the attempt in the practice school is not merely to further atuciont's knowledge in given codified orthodoxy (as this facet of education is well achleved in the claaarooms). but to train him in the art of effectively contributing to real-ilfe problen-solving efforts of production, of design, and ultimately of social action. Therefore, basically practice method alma at cultivating amonget atuêents appoprlate attituces and analytical skills towarda deciaion making and team apirit, responsibility of leadershlp, 1mportance of time schedule and regularity, akills of written and oral presentations, organisotional ability, atc, ao neceasary to respond to open-ended professional situations, more often than not characterized by Insusficient data, uncertalnties of events and unfamiliarity with the enviconment. Seen from this angle. it follow that though Practice school parsues project method of education, the attempt here is not to rediscover the past, but to use the contemporary day to day ouvelopmental ectivities of direct interest to the professional world as a vahicle to prepare studenta to participate in intordisciplingry. goal and mission oriented, and time-bound problem solving tasks."

Viewed in a broader perspective, the above extract, in a sense. can then be considered to constitute kind of essay type analague of the theme of the content-vs-aducationalobjectivembeed apecikication matrix as devaloped in section 6.6 .1 .

It may be mentioned that, the above dellberations also resulted in evolving the broad guldelines for the ps syetem of examinations. There guidelineb are stated in clausa 22.2 of the academic regulations (1977) of the Institute quoted in Appendix H.

Inceed, it is in terms of the educational objectives of the $p s$ syetem of education as reflected throuch the clause 22.2 of the academic regulations, that the ifirgt typlcal pgoi evaluation scherne was evolved and implamented in the summer 1973 along with the IIrst typical PSmII evaluation schame that was evolved and implemented over years 2 rom $1973-1975$ ^ It may be noted that at this stage of the evolution the pS evaluation schome (particularly with raference to PSol) the saheme had different formats for tho engineering. science and humanities atremm. Descriptiondof some of these typlcal formats are given In appendices D to E. It may be mentioned that based on the leedback avallable from the mumnar \hat{n} 1973r, the psol evaluation scheme was further modified in the aumer of 1974 and-the-oame-ta-gtron-tn-Appenatx - ht this atage it is important to recall that the laculty teamo who had evolved and implemented these ss evaluation schemes were the same as those Who had participated in formulating the basia for Pg educational contents as also its oxamination objectives as roflected through the clause 22.2 of the Academic Regulations of 1977.

Next, around August, 1975, an extenalve feedback was organimed from atucients in terms of PSmevaluation. Thif feedback was sought through personal discussions as also through the
intensely deliberated moetings. During one such crucial meeting, to begin with therewas a augestion to give nore weightage to low level skills from the cognitiva domain comprising of educational objectives like knowledge. memory, etc. However, as the delibazations proceeded, there turned out to be an unanimous support and accpptance, of the polnt of view that the ps evaluation give greater weightage to the higher level skils from the cognitive domain like the ability to evaluate, decision-making. etc. Further, there also was a deflalte acceptance of the theme that the PS evsluation should assess the atudent professional personality traits in terms of qualities such as aenso of reaponsibility, incustry, solf-expraasion, etcy thus further confirming the purport of the bisis for the ps evaluation scheme evolved well before the starting of the ps courses.

As a natural consequence of the above, atudy team was appointed to evolve anifom PS evaluation matrix acrose the different disciplinea. All the members of this team wexe equipped with past experience in PS avaluation. Applying its mind particularly to the task of designing the psoll evaluation acheme, based on their experience sa also based on the atucient Ieadback, this atudy team, within the frame of resezence of the ps avaluation guldelines, prepared its ixst working paper in October, 1975, describing a PS-II evaluetion schome alongwith a rating sheet formut for the ame. The working paper was then distributed across the Institute inviting suggeations. Taking this as a basis. tho study team prepared a secondarazt which In November, 1975 was discussed in meeting in wich as many as 75 faculty members participated. As a result of this a thind
draft emerged which in a maration meeting held in becember. 1975 was further discussed to arrive at a final evaluation schams as stated in appendices C and G. In terms of the detaila of the section 6.6.1. this 25 ovaluation acheme given in Appandix C indeed, constitutes the evaluation-coraponent-vs-educational-objective-based specifisation matrix for tho PSoII course. Around June. 1976. Institute's Ps Division constituted a PS Instruction Cell with, anongat other things. the responsiblilty to plan and monitor the implementation of $p \&$ evaluation componenta As a part of this reaponsibility of 1ts, the ps Instruction cell then particularly with reference to the PSOII course. developed Its own grogress ang nonltoring reports, pmriodically seeking Erom the PS-If faculty the information on the conducting of the PS-II evaluation components, as to ensure their (evaluation componente')matchisg with the contents of the evaluation-component. vs-aducational-abjectivo-based spocification matrix of the Appendix C. In this context, the ps Instruction Cell also prepared detailed implemontational guidelines for the PSOII evaluation scheme.

Further, simultaneousiy, the PS Inatruction cell also constitutad its own atudy toam to vigorounly interact with the PSm i students and faculty, so an to arrive at undiorm evaluathon-component-ve-educational-objective-based specification matrix for the PSoI couxse consistent with the educational objective. puraued by the PS system of education. It was in the academic Year 1977-75 that this matrix amerged in its inal form.ant tho game-is roportet-Ar-oppometin-E. Purtiar, as in the case of the PGoII evaluation, the PS Instruction Coll also preparad

- detailod smplementational guldel ine for the pSol evaluation scheme. abpre matrix in a checketisi form and the above the ps Division publlcation citled Guicelines for PSm Operation and Evaluat1on" \{1979).

It may be noted at this stage that, aide by side to the tagk of finalizing the evaluation-componentwromedueational-objective-based apecification matrix, the ps Inptruction coll also inktiated efforta in the direction of consolidating the experience gainad over years. to as to evolve a PSoI progreme and monitoring mechanim (as reflected through the Prom regiater) with a viow to ensur the matching of the PSoI ovaluation components implemented with the contents of the apecizication matrix of Appendix E.

Pinally, by the year 1977-78, the PS Instruction Coll also regularlsed the process of teeking foedback from PS studente in terms of administering of the aurvey type questionnalres as also through personal interaction, so as to further atrengthen the monitorlng process. Table 6.8 gives the analysin for the PSoII leadback queationnalres admlnistered during the two PS-II sessions of the academle year 1977-78.

Thus, as can boen from table 6.8. studant response for both the batches to the query at to "what was studenta" overall impreasion bout the (Ps) evaluation don by practice Faculty' wat overwhelmingly satimfactory. Spacifically. if. from the I semester $1977-78$ batch, as many as 76.3% of the pseII mtudenta demonstrated aatiafaction with the overall ps-II ovaluation. for the II Eumater 1977-78 bateh, the

Renulte on Goudback on Evaluation from Students who attondod Practica Eshool

In I and II Sementer of the Acadende Year. 1977-70

S.NO.	- Queztion	Semester/ Academic Year	\%ercontage of Responses			
2	Ia the evaluation Scheme too rigid?	$\begin{aligned} & \text { I San. 1977-78 } \\ & \text { II Serm. } 1977-78 \end{aligned}$	$\begin{aligned} & 28.9 \\ & 47.2 \end{aligned}$	$\begin{aligned} & 53.9 \\ & 50.0 \end{aligned}$	17.	
	What is your impression about the evaluation cone by the PS faculty?		very much satisflad	satisfied	$\begin{gathered} \text { Not } \\ \text { Satistiod } \end{gathered}$	Not responaded
2.	culzzez/Tests	$\begin{aligned} & \text { I Sem. 1977-78 } \\ & \text { II Sem. 1977-78 } \end{aligned}$	$\begin{aligned} & 34.2 \\ & 41.7 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 30.6 \end{aligned}$	$\begin{array}{r} 14.5 \\ 5.6 \end{array}$	$\begin{array}{r} 5.2 \\ 22.1 \end{array}$
3.	Semanar*	$\begin{array}{r} \text { I Sem. 1977-78 } \\ \text { II Sem. } 1977-78 \end{array}$	$\begin{aligned} & 28.9 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 51.3 \\ & 38.9 \end{aligned}$	$\begin{array}{r} 15.6 \\ 5.6 \end{array}$	$\begin{array}{r} 4.0 \\ 22.2 \end{array}$
4.	Group Discussions	$\begin{array}{r} \text { I Sem. 1977-78 } \\ \text { II Sem. } 1977-78 \end{array}$	$\begin{aligned} & 27.6 \\ & 25.0 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 21.2 \\ & 13.9 \end{aligned}$	$\begin{array}{r} 5.1 \\ 27.8 \end{array}$
5.	Viva/oral Examination	$\begin{aligned} & \text { I Sem. 1977-78 } \\ & \text { II Sem. 1977-78 } \end{aligned}$	$\begin{aligned} & 27.6 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 47.4 \\ & 33.3 \end{aligned}$	$\begin{array}{r} 14.5 \\ 8.3 \end{array}$	$\begin{aligned} & 10.5 \\ & 27.8 \end{aligned}$
6.	Heport Writing	$\begin{aligned} & \text { I Sem.1977-78 } \\ & \text { II Sen.1977-78 } \end{aligned}$	$\begin{aligned} & 32.9 \\ & 30.6 \end{aligned}$	$\begin{array}{r} 46.1 \\ 30.6 \end{array}$	$\begin{aligned} & 15.8 \\ & 11.1 \end{aligned}$	$\begin{array}{r} 5.2 \\ 27.7 \end{array}$
7.	DLary	I Sem. 1977-78	27.6 19.5	42.1	$\begin{aligned} & 23.7 \\ & 11.2 \end{aligned}$	$\begin{array}{r} 6.6 \\ 27.7 \end{array}$
8.	Observation	$\begin{array}{r} \text { I Sem.1977-78 } \\ \text { II Sea.1977-78 } \end{array}$	$\begin{aligned} & 32.9 \\ & 27.6 \end{aligned}$	$\begin{aligned} & 35.5 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 26.3 \\ & 16.7 \end{aligned}$	$\begin{array}{r} 5.3 \\ 2 \leftarrow .9 \end{array}$
$9 .$	What is your overall inpression about the evaluation done by Practice Raculty?	$\begin{aligned} & \text { I Sem. 1977-78 } \\ & \text { II Sem. } 1977-78 \end{aligned}$	$\begin{aligned} & 27.6 \\ & 30.6 \end{aligned}$	$\begin{aligned} & 48.7 \\ & 33.3 \end{aligned}$	$\begin{aligned} & 19.7 \\ & 16.7 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 19.4 \end{aligned}$

corresponding percentage, though smaller, was also as high as 63.9%. further, when enquired about their impreasiona relating to each of the PSmI evaluation components from quizzes to observation, then also majority of students from both the batches expressed satistaction. In specific terms, if the above percentages for the I semester 1977-78 batch varied between 68.4% - 80.3%, the corresponding percentages for the II semester 1977-70 batch were between 58.3\%-72.3\%. Finally, over 50\% of the students from both the batches responded negatively when anquired if the PS-II evaluation scheme wa too rigid.

Above then is a comprehensive description of the manner in which the design as also the implementational mechaniam of the PS evaluation acheme as conducted at BIsS have evolved. The main observations that emerge when the above detalls are abstracted are aumarised belows

1. Practice school aducation system has evolved as a process. To start with, overall objectives were clearly stated, teachers from the univoralty, experte from profossional world and PS education experts participated in the whole plamaing process and Einally arrived at a content-vs-educational-objective based apecification matrix.
2. This was followed by finalisation of evaluation component-ve-objective based apecification matrix by the same group. It may be pointed out that some of the members of the expert group themselven actively particppated in the implementation of the ps evsluation schems.
3. There oxlats a formalised Instruction cell within the Ps division with well structured methods to continuously get feedback, monitor and control the implementation of the PS ovaluation schem at differant PS station.
4. Instruction cell also collects feeaback about the PS Programe from the students on a regular basis. sample survey of the leedback clearly showed that a good majority of the students are convinced about the credibility of PS evaluation scheme.
5. The very fact that professional experts were involved, while finalising the evaluation acheme as woll as 1mplementation of the scheme, not only ensured that all the fmportant professiond personality trafts have been culy incorporated in the evaluation scheme but also ennured these are evaluated in a profeasional manner.

Indeed the whole process at the same time ensured predictive validity as woll as is evidenced by the great demand for PS transcript by the employers as well as seucients. The PS transcript gives detalls about the project assignments undertaken, grades obtained as well as a Rating sheet which gives the faculty's rating on certaln professional personallty traita based on PS evaluation - which is preaented in Appendix 4.6.

Suming up, the very procesa of planning, scheduling, implementing and monitorlng of ps evaluation weheme. within the Eramework of evaluation-component-vs-educationalobjective based specification matrix, was such that it not only had all the prerequisites to ensure the content validity of PS evaluation schome, but it also helped eatablishing credicility amongst students, acquired resgatability anong proỉessionala, and, finally, achieved accoptance for leself from the academie commulty. It is against the above frame of reference that one can then aee the content validation of the PS evaluation scheme described through this section.

6.7 Canchuotons

Thie chapter hes dealt with som aspects of the rellability and validity of PS evaluation by studying the data-bame for

I semester 1976-77 and I semester 1977-78 as available from the Nagda PE-II atation. The main concluaions of the study are as follows

1. Practice school evaluation is a pecullar combination of the traditional evaluation components adapted in the campus-based university system as well as on-going personnel appraisal practices in the industrial/professional set-ups.

Rellabilltiea for Ouiz and Viva components of PS evaluation have been studied. It may be noted that ouiz as an evaluation component is predominant in the univaraities, viva as evalustion component is common to both univeraity syatem and professional world.
The rellainllity of puiz componant was lower than the Viva component of ps evaluation - may be because of profeasional rigour that is brought in viva component.
2. One of the major cxlticiam against treditional oxamination system relates to varlation in marking by different exeminers - an index of which is given by Inter-Examiner Reliability coofilcient. The same problem also exiats in the professional world outside the classroom situetion. It is in this background, examiner rellability is analysed for som of the PSOII evaluation componente viz.. Seminar, Group-discussions, Project report and observation.

For saminar, greup discuesion and project Roport the remute are falrly natisfisctory. Cne reason could be the posalble raduction $2 n$ error fdue to examiner subjectivity). due to well laid out structure of the components. The other reason could be the effective participation of profeasional experts in the PS ovaluation procoss.

However, the component 'Obsexvation' showed 'zero" oxaminer reliabllity thereby indicating possible inconsiatency in the evaluation. A insplte of highly structured evaluation acheme Observation demonstrated poor examiner reliability. This may be because the assessment seems to heavily weigh in term of the perapective through which a given examiner is viewing the student, thus resulting in a possibility of a higher degree of inconsistency in the evaluation.
3. The coafficlent of course rellabllity for ps evaluation scheme i: found to be quite high. The main reasons for gotting auch high reliability are: (1) PS evaluation scheme 1s very well atructured based on fivaluation component-ve-objective specification matrix. (2) the number of evaluation components are aufflciently large. (3) Effective participation of the professional experte In the implementation of the evaluation scheme.
4. All intar-correlations between varioua axaminations of PS evaluation are poaitive. About 50% of the correlations be within the levels low to moderate. A fairly good percentage (35.7\%) of the correlations are within the leval moderate to very high. More speciflcally, the seminar groupmaiscussion pair demonstrated the beat correlation while, on the whole, the diary showed very poor correlation with all the other components of evaluation.
5. To ensure content validity of PS avaluation scheme, a detailed apecification matrix hae been evolved defining varlous sub-aspects of oach of the wide ranging educational objectivea along with weights. Understandably, this has made the Implemantation of the evaluation ayatem a phyaical reality.

It is against the above frame work, that one can confidently assert that the content validity of the PS evaluation is quite high.
6. It may be mentioned here that the sample selected for the study was mall and hence it would be difiloult to generallse the Eindings. Howevar. the study clearly has shown the directions in which such resedrch atudies can be undertaken as wollastocussed attontion on some of the important aspects of PS evaluation. It would be worthwhlle to puxaue this thought process in a futuristic manner based on a larger data.

Above then are the broad conclusions as they unnege from the rellablilty as also validity based studiee vis-a-via the PS evaluation. As has been already indicated. the PS evaluation is essentially multiple objective in character. alming at student asseasment in texms of higher order educational objectives. It 19 in this context that one can then pursue the themes whether the multiple objective evaluation that has been leasible under PS can be brought into the traditional clase roon based learning effort. The next chapter devotes itaelf to the purusal of this thams.

CHAPTER - 7

On Multiple Obiective Examitation in clan-roon Based reaching at the Torthary Loval

7.1 Introduction

In this thesis the examinations have been discussed for the class-room based couraes as also for the Practice School(PS) course. In the process, it is observed that the examinations in the traditional context as implemented through the classeroam based system of university education are predominantly measuring lover orcier objectives, while, under ps, the examinations are characterized by the multiple objective assesamant of the student performance. As discussed in Chapter 5 . thi: is posaiblo in case of the practice method of aducation mainiy because of the face that in PS the teaching and learning as also the student assessment tasks are wholly conducted in the proferalonal world.

The inveatigation to which this chapter devotes itself pertains to the query as towether the traditional class-room based examinations be made multiple objective in nature. Towarda this, section 7.2 of this chapter develops the theme of "transfer of learning". while section 7.3 soes to exploxe a model building exercise in the above context based on the experience gained through the aducational innovation of M.E.(Collaborative) programmas recontly evolved by BITS in direct collaboration with the profeasional world.

Pinally. section 7.3 attempts to visuallza the issues that should be emerging if the educational structure, as abstracted through the theme of the M.E. (Collaborative) programmes, were to be brought into the campus-based teaching setivity as conducted in the traditional university sot-up.

7.2 2ranser of Lasarning

An fuportant reference to multiplembojective examinations In traditional class-room courses is due to Heywood (1977), who has studied this question in termo of the concept of "transfer of learning". It is in this context that the present section devalopa the theme of "transfer of learning".

Within the frame of reference of the demands of the contemporary world, the need for education to alm at eraining etudents to face the unknown can never be over emphasized. As Iightly observed by Whitehead (1933) the theme of what can be called as "1nert knowledgo" has long served its purpose. It's place has now been taken by the requirement that atudenta increasingly learn the skills for using'knowledge' to solve real life problema. This has been referred to as ttransear of leazning' by Saupe(1961) who writen. "It (transter of learning) refers to the oxtent to which knowlecige and ability learmed in one altuation wlil be used in new and difflcult situations". According to Heywood (1977) "the proviston of learning experiences which place a otudent in the tranafer aituation is thue an important part of engineering education". This ntatement ofcourse Is not exclusive to engineering education and is applicable to other diaciplines at wall.

Saupe (1961) has indicated several factors which help in the transfer of learning. Critical thinking is particularly important for transfer of learning. Following are the main abilities which. according to saupe (1961) are useful for cevelopment of critical thinking and thereby transfer of leaming.

1. Ability to recognize the existence of a problem,
2. Abllity to define the problem,
3. Ability to select information pertinent to the problem.
4. Abllity to recogndze asaumptions bearing on the problem,
5. Ability to make relevant hypotheses,
6. Abllity to draw conclusions validly from assumptiona. hypothesis and pertinent information,
7. Ability to judge the validity of procesa leading to the conclusion,
8. Ability to evaluate a conciusion in terms of its assesamant.

As one closely analysea the above listed elght abilities considered so necesaary to ensure the transfar of learning, it clearly emergea that these abilitiea therr seem to cover a wide spectrum of profesaional tralts like professional judgement, common sense, proiolem aolving ability, initiative, deciaionmaking ability, art of guestimation, leadership, intellectual ability, akilla for data handling, etcg thus 1mplying thesalyy that the educational objectives of the "tranifer of learning" and the need for "multiple objective assessment' of the student performance are indeed two sides of the same coln. Hore, in this context, the term "multiple objective" ia taken to man a set of the objectives deacribing total professional parsonallty of the
student. Therefore, these objectives, over and above the higher order objectives from the cognitive domain, also include certain qualities oven from the affective comaln.

Coming to the cholce of teaching and learning technicues towards achieving educational objectives as stated under 'transfer of learning', it will not be far from reality to say that the cholce of the project method of learning is perhaps inherent in the very definition of the concept of "transfer of learning".

It is against the above irame of reference that one can then look at the P model of higher education (as evolved at BITS) as one viable approach to introduce the transfer of learning and, hence, multiple objective assessment at the tertiary level. As explained in chapter 3 , this model of the university system based on the PS theme provides a atuient, after he has gone through the expositary method of clase-room education, with an opportunity to involve himselif in a project-method based learning experience which essentially places him in a transfer situation as represented by the professionsl environment.

The question under invastigation in this chapter, however. intends to seek further integration of the learning experiences as perceived through the traditional classeroom educetion with those as percelved through the theme of tranafex of learning. In explicit terms then, the question posed 25, is it is possible to introduce the rigour of tranaser of learning into teaching of a course pursued under the class-ryom baed traditional educational culture? and, if so, then how. Conaldering the fact thet multiple-objective examination is the valid evaluation method for transfor of learning
the guestion atated above then can be lnglified as "how the class-room bamed examinetions can be mado multipleobjectivo in nature".

A case stuof of multinle objective oxaraining in a class-room bamed course in engineering science is reported by Heywood (1977). In thim case study, the examination atructure developed had the following objectives:
(1) Knowledge and underatanding
(11) Comprehension
(111) Froblem finding
(1v) Application of princlplea to practice analyaia
(v) Practical abllity to concuct an Inveatigationppractical ablilty to plan, inqiement and evaluate the solution to an engineering problam.

Theae objactivea are multiminentional in nature and, as shown by hoywood (1977). can be achleved in clasa-roon evalustion by making a projectwork an integral part of the normally narrative mathod based alassoommethod of teaching. However. What is most crucial in such an innovation ia to have sultable real-life projects with which the teaching in clans-room courses can bo properiy linkod. Thla saptot has bon paxticularly © mphasiaed by IIvingetone (1971) in the context of some mamagemont couraea at Harvard bualnesb School. According to Livingetone (1971) these courses, although project orlenter, Lalled bocause they covid not ensure the total gamut of the real-ilce problammolviag scenario atarting from the stage of the problem icentification to the stage of the problem completion.

Thue, what aeems to emprge io the sact, that, while, by integrating with it the projectmethod-based teachin tachnieve.
the conventiona classoroomblated learning experience can be made auttable candiate for 1 mparting the wacationsl objectives, characterised by the multiple-objectivo assessment. as percelvad through the them of tranales of learminga for fraliable and valld outcome, It sems absolutely essontial that the contents and culture of the project-method-based taching acenazlo chosen for integration should Ialthiully elmulate the streses and atralna pecuhar to the syndsome of the real-life prozessional axperience.

Indeed, the need for so strengthening the clams-room based teaching and, hence, assessment techniçues has always been argued by the educationists. In words of Helise (1973), this would help atudent to duvelop the ability to organise, integrate and relate knowledge. to adopt study halolts that will enhance learning throughout his ilfetime and to take reaponaibility for hie own oducation. Further, this would also aasist the studont In coordinating his outalde reading with his course material. and teat his ability to extemporise on problems and propositiont. Ans, further, as pointed out by Heywood (1977). the incorporation of the multiple-objective assesament in the conventional classroom based approzch to teaching would "provide an overall acsosmment of all saceta of a stuciont ${ }^{\prime \prime}$ learning" so that he can ovaluate problem and propositions not previousiy met.

Intereating 2 , a need of the above gort has been intensely experienced at Brrs in term of the implemontation of ita recent educstional innovation of the M. Fo (Collaborative) pregrammes. from moxe ppecificallyon the year 1979 onwards. as natural corollary to Its ancoptance of the pe model of univeraity aducation, the

Institute has initiated these full time Master of zngineering (Collaborative) programmes at lte off-campue based educational centree in direct collaboration with profeselonal organisations, which for the purpose of educationsi details pertaining to the programe requirements play the role of live laboratories.

These programmes are of two year duration, the first year conatsting of afght courses, offered lour per semsstar, and the second yoar consisting of inturnship courses. While, the couraes Erom the firat year carry the elements of the ayndrome of tha campus-based clasmrooms, the internahip courses, consistent with their very nomenclature, are ontirely constitutad of experience based approach to teaching and learning procestas evident in the profeesional world. Thus. it is during the first year of teaching that one comea across a altuetion whare the tradstional classo room based teaching methodology and the leaming axperience as under the tranafer situation can comaxiaty thus, in turn, creating the need for multiplomobjective approach to stuciont assesarame.

Indeed. the scenarto emerging here doos not have one-toone corregpondence with that of the claas-room based taaching exparience as present in the conventlonsi campus-based univeratty model of higher education, but nevertheless. for the purpose of the analysia. it can certainiy be taken to bo good approximation to the very conditiona inharent in the educational innovation of integrating the theme of transfer of Learning Into the campus-baned class-room approach to teaching and learning as present in the nonmps basod, 1 . A. the traditional univerithy model of higher education.

It is againat the above fram of referance that the next section of this chapter then, abstracting the laplementational detaila pertaining to the M. S. (Collaborative) programes. presente a model of an examination mysten involving multipiamobjective assessment for a classmroon based approach to teaching characterised by the theme of tranefer of leaming.

7.3 The Madol

Ae indicated carlier, this section presents model of a multiple-objective examination aybtem for class-room based course offerings characterized by the thame ofttranafer of learning". rowards this, as cape-study, the section heavily draws upon the operational details portaining to a typleal M.E.(Collaborative) programe in the interdisclplinary and functional discipline of Project Engineering Implemonted by Bitw at its offocampus educational centre at Calcutta.

An $\operatorname{axplained}$ in the previous aection, the M. $\mathrm{m}_{\text {. }}$ (Collaborative) programa in the diacipline of "Project Engineering" is of two years duration and it is entirely implemented at the Institute': off-campus aducational centre at calcutta in collaboration with a well-known leading Indian enginoering consultancy firm, namely. Devalopment Consultants Pvt. Led. (DCPL). The fixte yoar of the pregrams consists of olght courses. four each gemeater, winle the secongfear consists entirely of only internahlp coursen. The olght sixnt year courgea axe, namely, system zinglneering. Overview of Engineering. Leaign Muthoda a Deciaions. Project fraluation formalation, social gngineering, Project Managoment. Plant Layout intranexuctural inginaexing; and Recent Advances In Tachnologien Design techniquen. For further detalls in tarme
of the ayllabu for the courses as also for other adidional information on this particular or any other $\mathrm{N}_{\mathrm{A}} \mathrm{E}$. (Collaborative) programee of the Institute, one may refer to the Institute's sullet1n. 1980-81.

For the purpose of the aubject matter under stucy in this aection, one may choose to further explore the edueational organisation of the alght courses in the I year of the M.E. (Collaborative) programm uncer conelderation. As can be seen from the syllabus for the above listed elght courses for the discipline of project Engineering (BITS Bulletin 1980-81) the contente of these courses have asentlally ererged as an abstraction of the principles, theoriae and techniques corremponding to the entire range of the functional activities that go to define the univerwe of a project engineer. These functional activities are: (1) Market atudy, (11) Techno-Sconomic Feasibility study, (ii1) Financial \& Investment Analysia, (iv) Basic mesign Engineering, (v) Project Approvala - Administrative, Financial 84 3tatutory, (vi) site Development, (vii) Eetailed Deaign Engineering. (viil) Project Scheduling \& Cost Monitoring; Procuremen Inspection \& Expediting, Manufactuxing, Construction and Erection, (ix) Commastoning, and (x) production. Thus, the I year of the programme. essentially, aeem to aim at proviaing a student with an analytical understanaing as also an overall exposure of the entize range of the intercisciplinary and zunctional activition that go to defin the area of project engineering.

It ia in terms of the above stated educational objectives that one must then purau the analysis of the teaching and aswesment/evaluation techniquea that can be adopted in conduceing
of the I year courses of the programive. In this context. for the purpoae of conventence, one may concentrate on aay. the I semeater couraea of the I year.

As incicated In the Institute's Bulletin of 1980-81 the four I semeater couraes trom the I year of the K_{E}. E. (Collaborative) programe in Project Engineering are, namely, Systemo Engineering (Syet Engg.). Overview of Engimexing (OR). Design Methode \& Decisione (DMD), and project svaluation of fommiation (pES). In terme of thelr educational contente, broadly poaking, while the courae "Systena \&nginecring" (Syst. Engg.)introducea stucents to the advanced technique for analysing the large and complex wyetems problens, the course 'Ovarview of Engineeringi(0s). anongst other things, exposes studente to the functional areas of market and techno-economic seasibility studies.

Against this, the course "Design Methoda \& Decisione" (DmD) introduces the student tothe aystem design aituations in terms of the functional activitiee of basic and detailed denign enginearing. whereas the couree "project rvaluation \& formulstion" (pge) requiree the student to directly plunge. as a member of, say, an ongineering consultancy team, in tank partaining to prepsration of detalled project report (DPR) consistent with the apriori announced customer specifications.

Thus. In totallty, it soem to emerge that the I sumester education fxom the I year of the pregrame under consideration anonget other thinge. exsentially introduces the tudent to the ontire gamut of the tapke pertalning to the preparation of Datalled Project foport (DPR), With partleular reference to the

Eunctional axeas of Market Stuciy, Feasibility study, site Developmant, Bainlc Design Engineering and Eotailed Lesign Enginearing**

Indeed. It 18 to meet the demands of the type of the educational objectivea aa btated above that the teaching methodology adopted in the x year of the M. E. (Collaborative) programmen requires that, while the stucients are being introduced to the knowledge an also various theorien and analytical techniquea from the area of the aubject matter under stuay, they must also be simultaneousiy exposed, consistent with the rigour of the professional culture, to tha correaponding functional activitiet the un total of which goes to dafine the disclpline for which thay (students) are bolng trainad. Sean in an abstraction. it is this proposition that can be considered to be central to the choice of teaching and studont amsessment techniques (for the I year coursee of the M. Bo (collaborative) programane), representing a peculiar mix of the traditionel tesching and asseasment practices as followed in campus-based class-rooms and the learaing experiencem accompanied by multiphle-objective astasimbnt, as providad through the theme of transfer of laarning. In what

[^3]follow, thla section essentlally discumees the dotalls of these teachiag and, particularly, the student assesament techniquea, taking the I semseter courses of the I par of the M.E. (Collaborative progranue in Project Engineering as a case ntudy.

Table 7.1 prosents unitwwibe and weekly-hoursorise stucientworkload distribution for the I semestor coursea of the I year of the M.E.(Collaborative) programe in 'groject Engineering'. As can be seen from table 7.1, this first semester under consideram tion in all consiets of 16 unite, and, in terma of hours, the weekly-stucient-work-load ia 53 hours, thus implying a work day of about 9 hours per day. These 53 hours are almost equally divided over the four coures of the I semester in the sense that, If the course 'Syntems Engineering' covers 14 houra (1.0.26.5\%) of the total woeklymetucentowork-load, aach of the remaining throe coursan, narnely, 'Overvicw of Engineering'. 'Deaign Mathoas \& Deciaion'. and 'Project Evaluation \& Fomulation' account tor 13 houra (1.e. $24 \cdot 5 \%$) of the total weekly-atucent-work-ioad. Againet this, when viewed from the point of the learningsituation, the pescentage distribution of the weekly-stucent-work-load turne out to be auch that while the formal contact hours through lecturee cover 9.1% of the total weekly load, the sell study eiforts to prepare onewelf for attending lectures account for as mach an 29.3% of the total weekly-student-work-load. and, while the formal contact in terms of apcial lecturas, seminars, groupmaincuasions, gapolectures, preparstion for site visite, etc, covere 5.7% of the weekly load, the self-atuay efforts in texms of preparation for participation in auch type of
gABLE 7.1
Mait-vise and Weekiymhouramilee Student-FiorkeLoad Distribution for the I sementer Coureen of tho I rear of the io E. (collaborativo) Programm in "Project Engineering".

group-involvement based learning experiances account for 11.3\% of the total weekly-atudent-work-load.

And, as a result then, the weekly profescional work hours as reflected through professional involvement and other similar types of activities signifying the learning situations providing for transfer of learning, are found to cover an much as 45.3\% of the total weekly-student-work-load.

Thus, when one analyses the contents of table 7.1. three main categorles of the types of learning experiences as available through the I year coursea of M (w. (Collaborative) programma emerge. These thrae categories ara. namely. (1) the traditional clasz-room based learning axperience characterized by narrative approach to teaching as reklected through the lecture method. (1i) the group involvement based learning experiences, as reslected through seminars, group-discussions, home project/ meignments, case studien, comon to both the university ayetom as also the modorn personnel training practicet of the profeselonal world. and (111) tranefer of learning based experiences as roflected through the gtudent involvement in the ongoing Eunctional activities of the profession or through the atudent participation in a project orientad activity conaistent with the entlre syndrame of the professional culture. rable 7.2 describer various techniques of teaching a also the evaluation componenta adoptod for each of these three categories in term of the educational organiatation as evolved for the M. B. (Collaborative) programmes.

It ie againat the above fram of reterence that table 7.2 gives typieal evaluation-component-wise dittribution of mark

TABLE 7.2
Deseription of trpigal ovaluation-componenta as eleo teaching techniguea adapted in alfieront learning experiences as avallable thromg I year courses of M.E. (Collaborative) Programanas

Type of Learning experience: as avallable through the I year courmes of the Na_{E} E. (Coll.) Progranmea	Teaching Techalques Adapted	Evaluation Compoments Adapted
1. Traditional clase-room based learning experience characterised br narrative agproach to teaching	1. Lecture method	1. Teats 2. Comprehensive Examination
2. 350 up involvenent based learning experiences common to both. the university system as also the modem personnel training practices of the profesalonal world. Here the evaluation objectives puraued ane: (1) Improving of the knowledge of mpdern analytlcal techniquea. (11) widening of horizon and. (ili) improving of Intercommalcation shill:	1. Seminat 2. Group Diacusaions 3. (Home)Projecta/Nssignmenta 4. Case studies	1. Seminar 2. Group Discuseloas 3. Assesament of written reports *. Viva
3.tearning experiences as provided through the tranafer of learning	Project method bateed as reklected throughz a) work oriented profesizonal involvement in terma of various functional activities b) Site vistas c)preparation of detailed project reports towarde atated profem saianal tasks. d) ttome projects on applications of modern techniquas of analymin to real-life profeational situations.	1. Assesment of profeasional involvement and alte visit components an done by the profeseional expert (a) under whom the student is attonding these compononta. 2. Technical defence before a group consiating of taculty and professional experts. 3. Asacsament of project reports by a team consisting of profesaional expert(s) and faculty. 4. Semtnar

for the four I semester courses of the I year of the $\mathrm{N}_{\mathrm{E}} \mathrm{E}$. (Collaborative) programe in Project singineering. An analysis of the contents of table 7.2 giving the course-wise dimeribution of ovaluation weightagea as correaponding to the different categories of learning experiences is then given in table 7.3. It is from this analyais one can see that, as the "profensional involvement" based weekly-Btudent-work-load increases from 3 hours for the course systema ingineering to 6 hours for the course OE and DMD to 9 hours for the course PEF, the evaluation welghtage as aselgned to the learning component uncer these courses corresponelng to the traditional class-room based learning experience an reflected through the lecture mathod of teachingcecreases from 75\% for systems Engineering to 45\% LOF OE and DND to 35% for PEP. Agalnst this, am one can see from table 7.4. for the above stated weekly professional involvement schodule. the valuation woightage as assigned to the learning component under the theme of transfer of learning, as provided through the direct atudent involvement in the on-going functional activitiea or in the project-orionted tabk of real-1ife nature, increases from 25\% for coursen Systemm Enginearing and or to 30% for the coursem zMD to 65% for the course PEF.

It is in the context of the above details that one can now further explore the teaching orgenisation for the I year courses of the $M_{0} E_{0}$ (Collaborative) programmes an evolved by BrTs.
indeod, consiatont with the educational organisation, each of the I year coursen of the Mos. (Collaborative) programme in "Project Engipeering" are taught by a team consiating of Institute Laculty comident at the inatitute oft-campus educational centre where the MoL. (Collaborative) programme is belng conducted, and

TABLE 7.3

A Typleal EvaluationmComponent Wolghtage Olatribution for the I Semester Courses of the I year of the M.E.(Coll.) Programe in Project Engineering

- On topica alning at the etheational objectives of (1) inproving of knowledge of mpdern analytical technicues. (il) widening of horizon and (ili) improving of intercommunication akills.

TABLE 7.4

Course-vine ilatritustion o! Evaluation Wolghtagos aiven to Different types of learning axpesicecun an avallohle during the I semester Couraps of the I vear of the Ro Bo (collalozetiva) Proararmo in Profect Engipaering

tion. For each team one of the Institute Faculty member from that tear acts as an in-charge for that courwe. 211 these course-tean-membera together go to form a core team for the M. . $_{\text {. }}$ (Collaborative) programe. One of the Institute faculty mambers from this core team for the programme playe the role of the M. E. (Collaborative) Convenor for the programme under conelceration.

Eatire reaponsiblilty for organizing, teaching and ovaluation oparations pertalning to a couxse rosts with the corramponding course team. Nore apecifically, the tazk of delivering the "Iecture component" of the teaching effort for any given course is entirely fulifiled by the course tean membera for that course. As regards to the group-involvemont based teaching effort in tams of activitiea like soninars. group-discussions, capomtudies, apecial lectures, otc., the ame 2: also implemnted by the course team members assisted by other membern of the programe-coremtoan, but, wherever necestaxy, they also seok involvemant of other professional experts in terms of the teaching as almo the studont amaesemant tasks.

However, whon $i t$ comes to the teaching component Correaponding to the thome of "transfer of learning". hewe the profesalonal experts from the collaborating organiaation can be een to play pivotal role. More specifically ae explained In table 7.2. for the I semester couraes of the I year of the M. Fo (Collaborative) programo in project fingineering as much as 45.3% of the weekly student load corresponds to the professional work basend involvement in terms of cetvitien such as:
(a) Protesesonal involvenont in variotw functional desis of the collaborating organiaation.
(b) Site Visies.
(a) Preparation of getalled project report towarde a stated profeusional goal.
(a) home projocte based on applications of modern analytical techniques of analysis to real-life professional situations, etc.

The above activitiea are puraued by the student outsice formal contact hours in terms of lectures, seminars. groupo diacussions. and case studies.

In an operational temm, thua. In each of the samesters of the firge year of the M.E. (Collaborative) programe, each atwient attends varlous functional desks of the collaborating organisation am per the apriorl announced sequonco and schedule of profesaional involvement. For each functionil deak, the student reports to the apriorl desigrated professional expert who is in-charge of the concerned functional dook. A almiler operational pattorn is also followed in case of the activity of "site visite".

One word about the educational technique adapted when a stucient attende the spectrum of the functional desks. Dy definltion the stucient involvement at any given functional demk is in temme of the on-going prokestonal taak purmued by the collaborating organisation at that desk. Thus, the professional expert, while taking the ragponaiblisty of axpoaing the stuciont to the details of the functional task under conelderation, can also leok upon hlm an manpower input.

Coring to tha student involvemont in a "transter of learning" bseed activity like the preparation of a detalled
project seport towatda a atated professional goal. it may bo montioned thet this kiad of Learning opportunity $\mathbf{i s}$ given to the student, basicajly, unisx tho course project Evalvation and Formalation. Thus, in this courso. the clase may be divided into. say. two groups and each group may be given an englneering consultzay project su syoulcied by the professional experta from the contabating organdzatlon. 踶odiast to buy. these conauleancy projects are dram from tha onegoing profassional activitien puraued by the collabornting organisation. The task before each group then 1s to prepure 1 te own detalled project report for the consultansy projlem posed bofoxe it end. then to technically detend the game betore a esam of exanlners wid draw fmom the professional experts involved in ppocifying the project ar also the mamiona of the courgemtoam and the programmecorsmtann. Yinally, it may be manthoned that, during the I semester of the I year of the H.E. (ODIaboretive) programm in projaet Engineoring, it is the coure wystems raginecring" in which neudents are fiven home project(s) in texm of trudying application of syetem techniques to real-1ife profeselonal situntions ay 1contifisd through tha on-going functional activitims of the collaborxting organization thus. si indiamted in tabla 7.2. the learning effort ac rewlected through thaac hons projasta alao comes undor tha then of eranmfer oi lsarndag. As ragult. tuo couribeteam, analiked by the sthar rumbers of tho progitune-coreteam. also semit piateladpation of mppropilate profensional exparte towardi guiding and examining etuciente in texne of thefs involvemant in such the home projecte.

The above then is a brief description of the organisation of the teaching effort for the I year courses of the M. E. (Collaboratlve) programmes as evolved by arts, Pilani. It is based on these detalls that one can how describe the model for the evaluation aystem as is emerging for the above mantioned firat yoar courses.

Table 7.2 haf 11 sted various evaluation components that are adapted for the typen of the teaching efforts described above. Thus, the lecture method based teaching component of any given I year M. E_{0} (Collaborative) course is. normally. ovaluated through tests and comgrahonsivea. Uncierstandably. these teata and comprehensive examinatione are heavily blawed towarde the lower oxder akllis from the cognitive comaln, with greator eryphasis on "knowledge". As a reault., theas tests and couprohensives aze designed, admLnistered and asseased by the correaponding couyraemteam members in a similar mannor an that prevalent in the campus baeed elaseroom of the eraditional univeralty myetem.

Against this, as describad arliex, the group involvement based teaching component of any given course is ampessed through the evaluation components of sominar, groupmitecusaions, written roports and viva, and in this asaesmment the professional oxperts $2 n o m$ the collaborating organiatation also participate along with the couree taan wa woll at the programmecoremtean members,bringing the ovaluation corponents in terma of their structure and objectivas closer to the practices followod in the modern professional set-ups. Thus. the ovaluation certainly
then ain at higher order objectives, wherever feasible going even beyond the cognitive domaln. As a result, the design of these valuation compononte follows same structure as the one premented through the ovaluationmeomonant-vemeducational-objective-based apecification matrix for PSuI course presented in Appendix C.

Finally, ae indicated in table 7.2 and explained subsequently. the "transfer of learning" orlented profesalonal-work-based teaching component of any given I yaar course has in ita implementation contral role played by the appropriately identified proteselonal expert of the collaborating organisation in terms of the task of atudont teachlig and evaluation. Indeed, as discussed aarlier, it is auch an involvoment on the part of the professional experts that goee a long way towarde making it feasible to integrate right from the atart of the studont ducational proceses under the M.E. (OoLlsborative) programm with the on-going prociuction procosaed of the participating organiationg. And. this in turn then goen to enaure almost total equivalonce betwen the student aasasment practice: followed for the teachlng componant under consideration and those prevalent in the profemalonal world. Thus, underbtandably, tho ovaluation components for this teaching component contred around the thame of "trannfer of learning" are multipleobjective in nature.
A. has been described earlier, the courae "or" hat the protensional-wori-mased tesching component fuplemented through the atudent profosefonal involvemant in functional area* of
(1) Market Stucy and (1i) Peasibility study, while the course "DRD" has its prefessional-work-based teaching component implemented through the student professional involvement in functional areas of (1i1) Introduction to Site Development, (iv) sasic Dosign Engineering and (v) Detailed Design Engineering. Tables 7.5 through 7.9 describe the evaluation components for the above mentioned five functional desks, giving for each evaluation component the entire apectrum of objectives assessed along with their weightages.
similarly, the atte-visit type professional-work-based teaching component is also ovaluated consirtent with the personnel asseasment practicen existing in the profesaional world. Pinally, as regards to the tamks such as preparation of the detailed project reports or work in texms of home projecta etc., as coming under the them of professional-work-based teaching component, it may bentioned that these (1.e. tamks) are also evaluated through evaluation components like written project reports, viva etc, which are essentially multipleobjective in nature. The design of these evaluation components, undorstandably, followa the amme atructure as the one presented through the evaluation-component-va-aducational-objective-based apecification matrix for the PSill course given in Appendix C.

Thus, with reference to the I semaster courses of the I year of the M.E.(Collaborative)programe in Project Engineering, the profesaional-involvement-based evaluation componente as presented through tablez 7.5 to 7.9, and the evaluation components of viva, seminar, group-discussions and project-report as describod in the ovaluation-component-ve-aducational-objective

TABLE 7.5

$$
\begin{aligned}
& \text { A Sulgel Evaluation Echme for the Profesalonel Involveivent in the Iungthonal }
\end{aligned}
$$

Iram the I was of the MoE. (Collaborative) Programos in Prolect Engimeerfn7
As Evolved by BITS at its offocampus Educational Centre at calcutte in
Collaboration with DCPL

1. Name of the studemt \qquad 2.10120. \qquad 3. Semester \qquad
2. Name Deaignation of the Professional Expert Erom the Collaboratimg Organiation under whon the Functiomal Rctivity in Inplemanted \qquad。

Signature of the Professional Expert


```
octmcangum Edvcational contre at caleutta in Collaboration wien}\mathrm{ Bchi
```

2. Ritane of the aturient \qquad 2. 10 No. \qquad 3. Semester \qquad
3. Nane Designation of the profussional Expert from the Collaborating organisation Under Mhom the tunctional activity is Iuplemented \qquad -

TARLE 7.7

A Syplcal Evaluation schan for the profesalonal Involvement in the Functional Area of - Introduction to Slte Developmant" undor the I Semester Courae mesion Mathods a Dectstomon Iroun the I Year of tha M.E. (Collaberetiv) Programe in Proiect Enginearing" ag Evolvod br BITS at its offecampus raucational Gatre at calcutta in collaboration uith DCPL

1. Hasia of the student \qquad 2. 1D No. \qquad 3. Semester \qquad
2. Wam falignation of the Profesaional Expert from the Collaborating organisation Under whom the Punctional Activity is Implemented \qquad -
criterion for
evaluation
[^4]A thoigal Evaluation sofing for the Profespional Involvement in the Rungtional Area of
 the I vanis of the 46 … (Collaborative) prograrne in Prolect Engineering" as Evolved by aITS at ite DEE-congs Educational Contre at Calcutta in Collaboration with DCPL

1. Name of the stucent \qquad 2. ID NO. \qquad 3. Semester \qquad
2. Name pesignation of the Profeasional Expert irom the Collaborating Organisation Undex finom the functional activity is Inplemented: \qquad -

TAFLE 7.9

A Typical Evaluation Bchame gos the professlonal Involvemont in the functional Area of DDetalled cesion Engimeoring rander the I Semeater Courge "Eesion Methods bectsions" tron the I Year of tha HeFo(collaborativis) Programa in "Prolect Engineering" as evolvod by aris at ity oftmanman Bugational Contre at Calcutta in Collaboration vith DcPL

1. hame of the stucent \qquad 2. ID 10. \qquad 3. Semestar \qquad
2. Name f Designation of the professional Expert froa tha Collaborating Organiaation Under whom the Functional activity is Inplemonteds \qquad -

critertion for evaluation Break-up of activity					Drawing skill								
Flor-aheet finalization												20	
Detalled layout												20	
spacification proparation												10	
Dewlgn of supporting systema ike Foundations. piping. etc.												40	
Procuremant												20	
Squalpmant denign												20	
												30	

Abstract

based spacification matrix presented in appendix C. along with the traditional evaluation components of tests and comprehensive examinations, go to describe typleal mocel of a multiplo-objective based examination system for a class-room type teaching effort.

As this stage it would be worth considering the lsaues that would be emerging if the above model were to be implemented In a campua-based classmroom. From the detasla of the model it follows that an evaluation and, therafore, teaching component, as reflected through the 'profesaional involvemant', is central to a multimobjective examination system, if the ame (i.e. the multiplewobjective examination syatem) were to be implemented In a class-roommased teaching offort. In such a case, the guestion that will need to be answered, if the multiple-objective assessment were to be incorporated in a campuambased clasarcom, would be what can then be the analogue of the 'professional involvanant' in a campuebsased environmant? A natural reaponse to this querfy could be in terms of the theme of the aponsored-research-based consultancy that an university can undartake.

If the above acenario were to be zeasible, then certainly the university faculty, constituting the membere of the aponsored research-based-consultency team, can play the role of the inmediate 'reaearch professionale', under whom the atudents of the campus-based course under constderation can attend the projectowork-based loarning oxperience characterised by the theme of "tranafer of learning'. In such case, then, the very demands of the aponsored research activity would make

Abstract

it possible to evaluate a stucent in terms of his multidimensional professional personallty.

However, to bogin with, it ia important to realize that the task of orienting the traditional research base of the university syatem so as to accommofate the comands of the professional culture as demonstrated by the sponsored-research based-consultancy-work is not an easy one. And, the tank of intograting the traditional teaching role of aniveralty with ite research role visualisad in an enviromental context is further difficult.

Seen in a broacer perapective, the task indicated above are the tasks of the educational and resaarch organisation, without which it would indeed be very difilcult to introduce the multiplombjective assessment in a campus bamed classroom. Purusal of these task would go to mean new attltudes to teaching and research and this in the context of the system of higher education can mean a host of things starting from curricula ra-organisation to innovativo approach to the funding of research at the universities.

Indeed above isauem, however interesting, are beyond the scope of this thesis. Thus, what then clearly emergea is the observation that the model of the multiple-objective evaluation ayatem aa developed in this chapter can be introduced in a campusmbased class-room, given certain basic attitudes are accepted by the academic commity, firatly, In terms of txansforming the traditional research base into that of the sponsored -researchmeum-consultancy, and,

Becondly, In terms of integrating the teacing activity with the domends of the above type of a research-cummconsultancy based evolved in an environmontal context.

7.4 Conclusion

Thus, this chapter has basically dealt with the question of evolving of model for the multiple objective evaluation sybtem for a classoroom basad teaching effort. Towards this the chapter has heavily drawn from the educational experience geined by BITS in terms of lts recently introduced M.E. (Collaborative) programes. Finally, the chapter has also discussed the lasues of educational and research organiaation that should be emerging if the above moiel of the multipleobjective education aystem ware to bo incorporated in the campus-based claseroom teaching effort.

CHAPTER 8
 CONCLUSTON

This Thesis has studied some aspects of the internal continuous evaluation syatem at the tertiary level. Towards this, the theals has extonsively drawn from the data-bape as available through the on-going educational operationa at BITS, Pilani. Bolow are oumoarizod some of the main obsorvations or conclusiona amorging from this atudy.

Various facets of the internal evaluation syatem Investigated in this thesie include the study of the teacheme' perception of the objectives of education as also of the objectives, techniques and nature of examinations. This Investigation was carried out with the help of the survey method by administering questionnairaa to tho Institute faculty. Thum, while 51 faculty members drawn from the entire apectrum of engineering, acience and humanities disciplines answored the queationnaire on the objectiven of education, as many as 72 reoponded to the questionnalse on the objectives, techniques and nature of examinations.

From the analysis of the above investigation it menerged that, on the whole, the teacher porcelve the qualities or educational objectivea that the aducation ahould pursue quite in laolation from the qualition that are neoded in ilie. In apeciflc terms the teachar roaponsea to the question 'what quallties life neede mont' ahowed poor correlation with the teacher's reaponsen to tho question what education should achlave'. Further, the teacher roaponses to the question
"what quelitiea life needs most' also showed poor correlation with thaix responses to the questions "what qualities education can achleve" and "what qualleten education has achleved'. Howover, the teacher responsea to the quaitions "what qualities education ahould achleve". "what quallties education can achieve'and 'what qualitlee education hat achleved' showad high to moderate correlations between themelvas.

Coming to the objectivem of examinations, al far as the ovaluation componente of quizzes, tests and comprehinnsives are concerned. It was observad that they are normally deaigned around the lower order akills as represented through the cognitive domain of objectives. Further, the investigation also noted that the majority of the teacher ample studied thought that the higher order akilla 11ke laadership, co-operation, sense of reaponsibility, decislon-making, etc. could be asseseed through classroon based ovaluation. Towarde this, the evaluation componente of home-projects, homa-assignmente and projacto work wore observed to be most popular with teachors.

As regards the techniques of examinations, it emerged that the majority of teachers from the sample studled incorporated one of other evaluation component in addition to those of quizses, teats and comprohensives. Tha mont popular evaluation component in thif context wad observed to to that of the project work, followed by tha evaluation component: of home-aselgnmonte and lab-work and seminaz.

Coming to tho nature of examinations, it was obsorved that it 1s "all or mostly closed-book" type examinations that constitute betwean 66-72\% of the total sarmple sizes studiad in this context for the evaluation componenta of quizzea. tests and comprehensivee, the remaining percentage being accounted for by the 'mostly open-book' type examinations along with the "mixad" type examinations. Further, it also emerged that while quizzes consiat mainly of objective and short-anewer type questions, the tests and comprehensives include mainly short answer and long answer type questlons.

Next, the thesis has concarned itself with the rellablilty analyale for the examinations under the internal continuous evaluation ayaten usiag the AOV approach. Towarde this. the thesis in detail analysed 29 selected courses from the aemestorwice offerings at BITS. Understandably, theme couraes vare drawn from the entire spectrum of ongineering, acience and humanities disciplines and represented all the levels of the system of higher education. Thus. In this context, the theals studied in all 83 examinations, consiating of 7 quinzee. 52 tests and 24 comprohonsives. In apecific terms, the reliability comefilcienta for the abova axmminations were analywed in terma of varlous paramatari auch as the numbor of quentions in an examination, nunber of students in an examination, duration of the examination, level of the course, diaciplipe of the courte, type of the oxaminstion (1.e. 1ong-anwwer, bhort-answex, ete.). category of the coursee in term of core courso or profeeslonal courte and, 2inally, the aspect of choice in an examination.

Thus. it was observed that larger the number of questlons In an examination. greatez the pessibility of its reliability being higher. The examination reliability was also found to get influenced by the number of studenta in an examination in a manner that larger the number, greater the possibility of the reliability baing more. But then, interestinglye it was also oberved that invariably the examinations with larger number of tetudenti were also characterized by larger number of quections. Coring to the examination duration. it was noted that normally the examinations with longer durations demonstrated higher rellability. Purther, such maminations were also found to have largar number of quentions.

As regarde the parameter of the leval of the course. It was observed that, normally the average rellability of an examination decreased as one moved from courses at the I and II year levala to tha coursos at the IV and V year levela. Hare also it waa noted that, on an avorage, the examinationa for the coursea at the lower level had more number of quatione than that for the examinatione for the courses at the higher level. Coming to the diaciplima of the course. for the sample atudiad. the examinations for the courses from selence. humanitiea and management disciplines demonetrated better average rellability as compared to that for the examinations for the courne from the engineering dieciplines. In this context. also. it may be mentioned that, normally, the examinations ixom sclence and management coursan wax found to incorporate more number of questions than that for the examinations from the humanities and englneering disciplines, in that order.

Coming to the parameter of the type of examination. it was observed that examinations with short answer type questions nosmally demonetrated better average rellabllity than that Cor tire examinations with the long anawer type questions. In this concext. too. it was noted thet, on an average, examinations with short answer type questions are also characterised by a larger number of questions. As regarde to the category of the courab. It was noted that the examinetions from the core Level courses demonatrated higher average rellabllity than that for the axaminations for the profasalonal level courses. Hers. tuo. it was obsarved that, momally, the examinations for the core courada are characterized by highar number of greationa tima that for the oxaminations for the profeesional Lavel courses. Pinally, at the sampe ostho numbor of for oxaminationa with choico was too amil, no mpecific ralationship amoryod vlema-vis the reliability and the choice in the oranination oxsopt the obsngvation that the faculty. on the whols. does not seem to encourage the practice of giving thoice in tho oxmadation.
 on the mold. higher the nuraber of quebtions in an examination. greator the possibility of ite reliability being more.

Furtiner, in term of the datambane as avallable from the selactad coucsem. the thosil also atudied 303 ovaluationm componentopairs for their intermcorrelations. Thene evaluation components conalatod of a wide apectrum of typan of oxaminations sum an clagif-room quizsos, Laboratory quismen, Laboratoryowork-
projects, claas-room peoject reports, homemasigments, geminaze, tests, comprehensives. etc.

From the above Investigation, it was obnerved that over 98\% of the evaluation-componentmpaira demonstrated positive correlations. In spocific termm an many a 81.85% of the total evaluation-componant-pairs studied hed correlations betwaon the levele positive moderate to positive low. Thus, the percentage of the evaluation-component-pairs having positive moderate correlations was found to be 48.85%.

Finally, consiatent with the conitraint on the avallablilty of the data, as many an 17 courses out of the 19 selected were studied for the course reliabillty. All these courace except one, dumonstrated course reliabilities over 0.7, the course rollabilify for the remaining course being as high as 0.66 . Thum, on the whole, the coursee wore observed to have eatlafactory rellability coneffictentw.

Another luportant appect that the thaaia has pursued in the context of the study of the internal continuoue evaluation aystem pertains to the valicity of examinations with specific relerence to the eriterion-related validity. for this purpose, tho themis selected the amples as emerging from the 1976 input to BITs of 310 atudentis and 1977 input of 326 ntudonta. In specific terms, using the examination records for the above batches as the database, the theala inventigated the predictivo valldity for the atudent performance in 'higiter aecondary' as also for the stucent performances in the courses of 'Concopts in science' and 'Modern Physics', the various other appropriately
aelected studont perfosmance meanusing indices avallable through the internal continuous ovaluation symtem as at axjs playing the role of criteria.

Thus. asmuning a temporal invariance in the character of the two batchea of 2976 and 1977. It was observed that on the whole, whatever may , normally, be the criterlon, the performance in Nodern Physica howed itaele to be a far better predictor than the performance in concapte in selence and also the Higher secondary performance: and, whon forced to diacriminate surther, the peryormance in Concopte in seience, though by ltself a poor predictor, wan found to be alighty batter predictor then the performance in Higher Secondary.

Further, while on the whole the Modern Phyaics performance was found to be a batter predictor, vithin the groups of disclplines it was noted to be more aultable as predictor far sclence group of atudents than for the students from the Applied science a Technique orlented disciplines, than for Engineering group of studente, than for the Managemant group of atudente. in than ordor. And, within the scionce group, the Modarn Phymica perfozmance as a predictor was obnerved to be more sultable for disciplisas of Mathematice and physics than Ior the diseiplines of Blology and Chamistry.

Agalnst the above, for the engineering group of disciplinas, the Modern Physios performance was found to be more suitable as prodictor. for the alscipline of Electrical c Electronicu Engimeering (EEs), than Lor the diactpline of Clvil Engineering, than for the diactpilne of chamical

Engineerlng, than for the disclpilne of Mechanical Fingineering. In that order. As regards to the group of Applied science 6 Technique oriented disciplines. the Modern Phyaics as precictor
computer Science disciplive, than for the students from was obaervad to be more aultable for the atudents from the n diacipline of Inatrumentation, than for the atudents from Pharmacy discipline, in that order.
parther, grade point average (GPA) in Phyoice course S and CGPA (Cumulative Grade Point Average in each discipline) emorged as the beat criteria against the Modern Physics as predictor for each of the Alscipline or the groups of disciplines scanning the ontire epectrum 5 rom "Sciences" to "Engincering" to 'Applied science technique oriented disciplines'.

Pinally, coming to the study of the concurrent validity, 1t was observed that for all samplas. except in the case of the sarple for mechanical onglnaering atucionts, the corralationa betwoen the performancea pertaining to the OPA In ENGG courses and GPA in their own diaclpline courser as also the corralationa between the pertormances pertalning to the OPA in ENGG couraet and COPA in their individual programmas showad correlathon lovela between moderate to high.

Thus. In aumaryd through the above stated valldity analyaiz the theaie han evolved a detelled methodology for the criterionmelated-validity atuay under the internal continuous evaluation syatan at the tertlary level.

Apart from the rellability and the vallatty analysia for the campus based clacymroom examtnations, the thesis also

Investigated the avalution aystem for the Practice school(ps) aystem of education. As Bits, Pliand has tmplemented this scheme of education leading to the institutionalization of the 1 inkages botween the profeasional world and the academic world, naturally, ita (Inatitute's) correaponeing educational operations provided meaningful data-base for such a study. In specific terms, the evaluation data as avadiable from the two PSoII sesaions at Nagda PS centre for tho I aementer 1976-77 and the I semseter 1977-78 was used in the above context.

Thue. it was obaerved that the ps evaluation, which is multiple-objective in its character, 1 s a peculiar combination of the traditional evaluation compononts as adapted in the campusebased university system and the ongoing peraonnel appraisal practices in the industrial/ profemsional setoups. Furthey, From the analyais of the PS evaluation datamase an available from the ragda PS contre. It was noted that the evaluation component of quis. as implemanted under the PS surroundinge, demonmerated lower rellability than that for the evaluation componant of viva whan imilarly conducted under the PS seteup.

Wurthat, withla the Eramework of the sample atucied. it was observed that the ps evaluation componente of seminar. groupmalscussione and project-report demonstrated efthy atilfactory examingr reliability. However, the PS ovaluation component of 'obnexvation' wal found to have a very poor oxaminer rollab111ty.

Coming to the study of the courso reliability for tha P5. both the PS-II peesions demonstrated high courae reliability. Further, for the samplea studied. all the inter-correlations between various PS evaluation components wore obeerved tobe positive. More specifically, the evaluation-component pair of the seminar and the groupmeisecussion demonatrated the best correlation, while, on the whole, the avaluation component of the "diary" showed very poor correlations with all other componenta of evaluation. Finally, the thesis, also investigated content validity of the ps evaluation, which was observed to be satlafactory.

In the end, as a natural coroliazy to the analysia of the pS evaluation, the thesis studied the question as to how the multiple-objective asseasment characterizad by the higher order skile can be implemented in a classeroom besed E1tuations. Towards this, thesin has devolved a model of the class-room based raltiple-objective evaluation based on the theme of "tfansfer of Learning'.

In apecizic tarms. this model building excercise has heavily drawn from the educational-organisation-besed concopte corremponding to the Master of Engincering (oollaborative) programmar, that Lollow as a natural outcom of the PS based organisation of a university aystem.

The above then, is belez aumary of the concluetono of the varlous investlgatlors a carcied through thle thesle. some Intereating lapues emarge from the btudies conducted under
this thasis which could be further investigated in the futuristic context. For arample, it vill be interesting to determine the educational objectives that a syatem of higher education my be expected to purave conelatent with its sockal comordinaten. simllarly. Ror examinations that showed poor interacorrelations, 1t should be worthwhile to investigate the factors bohind the semm so that the necessary improvements in the contaxt: can be bxought out.

Another aspect that can be pursued in the futuristic context con be the content validation etwien $20 r$ the campus based clasa-room courees. Further, the quastion of the examincr rellability can $n l$ so be meudied for the eampus-based clusboroom couraes. As ragards to the criterion-rolated validity tudies, using the technique prasented in this thesis. the mane can now be carried nut for a large numbar of oxaminatione uncer ditterent courses. Coming to theps evaluation, rellability and the validity studica for the same, ubing the technigues developed in the thesis. can be conducted. for a larger sample so al to be able to meok nocessary generalisations. It goes without saying that auch investigations of tho oxaminations would in the end analysis go long way towardn strengthoning the syatem performance and thus in turn bring out further atrengthening of equcational cetalls.

Further, it would ino be Intereating to study as to what campusmbend education-cum-reaearchoorgentsation can make it poselble to bring in the multiplemobjective assesment

In the campus-based clasa-room situations. Further. it should also be worthwhile to apply the rellability technicques to the examination as coming under the coursea for the M.E. (Collaborative) programes.

Pinally, for the above to be feasible. It will be extremely important to initiate a kind of an educational research cell within each of the univeraities. In gpite of the acceptance of the importance of such kind of studies. unfortunately. much is atill desired in the above context aven in case of the best of tha universities. This, then, Is a case for one to atart such rasearch efforts. as it is through this alone that the much nsoded inprovemente can come In the examinations at the tertiary level, which in turn would atrangthon the design an also tho delivery of the contents of the couraos, and hance programmes, ander the aytem of higher aducation.

REPEREMCSS

CHAPTER - 1

Calcutta University Commisision Report (1917-19) Calcutta Superintendent Government Printlng. Indla. 1919.

Examination Reform - A Plan of Action (The Recommendatlons of the Jonal Workshops). (1976). University Grants Commisston.

Oayer. A.K. (1970). Examination and gvaluation in Higher Education. Paper Eresented at the tenth quinquanalal oonference of InterUnivernity Board of India and Ceylon, Madurai.
 E Ehattacharya, $\%$. (1962). Meamurement of Achievemont in Mathematice. Kharagpur: Indian Instituta of Technology. 1961.

Gayen. AqK. Nanda, P.B., Duar1. Po. Shettacharya. No. Mukhorjee, H.N., \& Mathur, R.K. (1962). Neavurement of Achlevomant in English. Kharagpur, IIT.

Harper, A.E., JF. and Misra, V.S. (2976). Research on Examinations in India. NCERT, NOW Dalhi.

Indian Education Commisalon Report (1881-82).

Indian Univeraity Commasion Raport (1902).

Inter-Univeraity board of India ceyion (1924). Examination in Highex Education. New Delhi, 1972.

Kahlon. A. B. (1977). Studente' Evaluation and Intermal Acaesament, University Nows, 15 (3). Seb. 1. 1977. pp. 56.57.

Kothard Comainsion Report (1964-66) See Report of the Education Commseion (1964-66)

Lale. P.Te, Patele P.Me. Parilh, NoPen F Palkar, S.G. (1962). Bupleical Studio: in Examinatione. Baroda: Examination Reform and Rosearch Unit. M.S. Univeralty Barodis, March, 1962.

Lingamurthy, V. (1970). Examination Reform - Problems of Internal Assesmment. Educational India, 36(7). Jan. 70. pp. 231-234 \& 251.

MLniatry of sducation Report (1956)

MLara, V.S. (2973). Proposal for Examination Reform. Christian sducation, 52(4). Eeceabar 1973: 8w21.

MLtra, C.R. (1973). Educational Innovation in Britain and Comion Interest with India. Publinhed in New frontiers in Ealucation. Delin. Volume III. No.3. December 1973.

Natarajam, V. (1977). Monograph on Internal Assesmment for Universities. A.I.U. Publication.

Radhakilahnan Commission Raport (1952) - See Secondary sducation Commission

Ralne. T.N. (1967). Relationship between External Examinstion and Internal Assecsment. Teacher \&ducation, July. 1967.

Rao. T.S.M. (1970). Exanination Syatom in India. Need for Fresh Approach. Paper protented at the tenth quinquennial Conference of Intermuniversity Beard of India and Ceylon, Madural

Report of the Education commimion (1964-66). Minisery of Education. Government of India, Publimhed by Manager of Publication, Delhi - 1966.
sargent Report (1914). Roport of the Central Adviuory Board of zducation on Post-Nar Educational movolopment in India.

SCERT (2976). Schem of Comprohenaive Intexnal Amsemmant and the Manual of Instzuctiona. Parts I \& II. Publiohed by Dixemtorate of Govormment Examination and SCERT. Tamil Nadm. Secondary Education Comatasion Report (2952) soe also Rachakrimhnan Commiesion

Secondary iducation Comsttee Ansam Report (1965).
Bingh. D.P. (1970). Reform in Examination Syctern paper preaented at the tenth quinquenmial Conference of InterUniversity Board of India and Bayion, Madural.

Slagh. S. (1971). RGamination Reformy Internal Asasmament. Loucatlonal India. 38(3): Sept.. 1971: 79-81.

Singha, fias. (1977). Undorgraduate Examinatlons - Procedure and Problems. 27to Management of Examinationa. AIU. New Delhd.

Taylor, H.J. (1962). The Combination of Intornal sasesament With Examination Resulte. Roport on Examination Reform. UGC

The Report of the University Education Commianion (1948-49). Publiahod by the Manages of Fublication. Covt. of India. Dolhi 1931.

Wood's Education Dompatch reportt (1854).

CHAPTER - 2

Baard. R.他. Kenly, R.G. and Holloway P. J. (1974). Objectiven in Higher Education, Society Lor Raseareh into Wighor sducatlon, London.

Bloom. B.S. (RA.) (1979a). Taxanomy of Mducational Objectives. Volum i: Cognitive iomain, Lonquans Green zondon.

Blocm, B.S. (EA.) (1979b). Tasonomy of Refucational Objective. Volum 21 Afrective Domain, Longmans Oreen London.
gurke, Res. (1969). Some Preliminary Data on the uee of EelfEvaluations and Paer Ratinge in Asasgning Univeraity Courseb Grades. Journal of Educational Receareh.

Carter, G. and Lae L.S. (1974). Univeralty int year slectrical
 finglneering souction.

Cowan. A. (1971). Survey (International) of Dantal Undergmaduate Curricula. Journal of Irish Dental Assoclation.

Dowaitughes, D. Heywood, If Mortinor, E. G., Montagumpollock H_{0}) Oldfield, F_{0}. (1966). A Group study of Staff and stucient Attitudes to the Distant $1 / 1$ nor. A Report to the Leverhulme Foundation on Remestch into Higher education.

Dressel, P.L. (1971). Values, Cognitive and Affective. Journal of Higher Education, 42, (5). 100.

Erikason, B.C. (1968), Planing and Construction of a Univeraity Course in Educational Technology, Instituto of zducation, cotenburg university, sweden.

Preenan, J. and Byrne, P. S. (1973). The Ascesament of postgracusta Training in General practice. Society for research into Highar education, London.

Heywood, J. (2977), Ansesament in Higher Education. John wiley \& Sons, London, Now York, Bylney, Toronto.

Hus1. F.W. (2d.) (1971) Rastructing science education for the Undergraduate ilberal Ares College and univeralty, Conter for the study of Higher rducation, Univeraity of soledi, Ohlo.

Kaymen, C. (1973). Content and Context: Esieays on College sducstion, Mc-Graw hill, bew York. (Includes essaye on the humanitics, social aciencea, art, science and liberal education).

Lea, L.S. (1969). Towarde Clambification of the Objectivas of Undargramute, practice Work in Mochanical Engineering. Themia. Univeralty of Lancanter Library.

Lomg. RoS.e Moleser, Noz. and P.J. Hilton (1970). Research in Mathematics Education. Bducational studies in Mathematies,

Mac Ewan, Mo (1970). New Direction in Agehitecturnl Education, rtan jomenel.

Mo Guire C.H. (1967). An Pvaluntian Focel for Prosessionsi Education, Coliogo of Medicine. University of Ililnois. uncago. M11Ler, G.E. (1962). Toactine arec Learning in Medical school. Hazvarc U.P. Cambricige. Mers.

Perien. G. and Trim. J.L.M. (Ena.) (1971). Appikcations of Lismusstice, univeresty press. Cambridge.

Plumb. J.H. (Bt.) (1964) Crimis in the Humanitien. Polican. London. (riascics. Philosophy, Sociology. History. Ine Arts. EConomiea. Ifteratura)。

Ruseci. G.E.M. and Wialton Hos. (Eds.) (1970). The Training of Peychiatrista: Proceodings of tho Conkorence on post-gratuate Peychiatric hducation. March. 1969.
shoseleld. H.2. (ed.) (1970). Oursiculum Innovations in Azts and scionce. Report ot A canadian University forkohop. The Ualvernity. rozonto.

Tyler. R. W. (1949). Achicvanent Testing and Curriculum conntruction. In E.G. W1111amcon (Et*) Trends in stucent Pereomel Work University of Minnesota Minneapoils.
 (Crechoslovakia; W. Gexmany, France. Usgr, UK and USA). UnEsco. Paris.

Vaughan. J.C. and Rouve s. (2973). Survey of curcicula and Phrtormance in Modern Languages. Cantre Eor Information on Languago Reaching and Roatarch, London.

Wain. G. T. (1972). Mathamatice in Collages of Equeation (U.R.). Iat. J. Mathe Education 1 s Seigneo and Tachnology. 3. 191.
 on the teaching of Occupational Hatheh and gataty. Wio. coponhagea.

Tudkin. M. (Ed.) (1972) Qarexal edueations Panguing Londone (kole of History, Sociology, Engitsh. Math, mapefinantal selence and philonophy in Ceraral Education).

CHNPTER - 3

Baruah Rek. (1975). A kand book of Scaling. Examination Research Unit, Gauhati University

Dave, R.H. (1971). Retorming Written Evanination: Some Meagures. Education Ouaxterly. 23 (2).

Ebel. R.L. (1966). Maaburing Educational Achievement. PrenticeHall of India Prt. Ltd.. Now Dalhi.

Sbal. R.L. (1979). Meapuring mducational Achievement. Inird Edition. Prenticemihall INC, Bnylewood Clisfs. Now Jerney 07632.

Gayen, A.K., Nanda. P.Be. Mathur R.K.. Duari, P., Dubey. S. D. \& Bhattacharya N_{0} (1961). Meamuremant of Achlevamant in Mathematice. IIT. Kharagpur.

Gayen, A.K.. Nanda. P. B., Duarl, P.. Bhattacharya, R.. Mukhorjec, H.N. \& Mathur, Rok. (1962). Moasurement of Achiovement in English, IIT, Kharagpur.

Gayen. A. K. (1970). Exanination and Evaluation in Higher Education Paper presented at the Tenth oulnquennial Conference of Inter-unlvarsity Board of India and Coylon. Maduras.

George. A. (1964). A study on Amesement of standard of Valuation of Comparative Performance of colleges in the PreUniversity Examination. Reralas repartment of statletice. Kerala University.

Oullford. J.P. (1978). Second Raltion. Second Reprint. Tata McGraw Hill Publication

Harper, A. E.e. Jr. (2960). Recent Advancen in Paychometry. Sllver Jubllee Volune of Vldya Bhawan society. Magulipatnam.

Harper. A.E. Jx. (1962). Chance In the Traditional Examination. Journal of Education and Paychology. 20. 100-118

Harper. A.E. Jr. (1963a). Marking Objective Examinations, seacher Education, 8, 10-17.

Harper. A.E. Jr. (1963b). Objective and Traditional Examinationsz Some Research, Education and Psychology Review, Spring 1963. 63-78.

Harper. A. H . Jr. (1966a). Examiner Reliability. A Study of Ninety Experienced Examinera Marking the Same Ten Anawer Books. Unpublished MSs

Haxper. A. E., Jr. (1966b). Eneay Examination Reliabllity. Unpublished MSS.

Hasper. A.E.. Jr. (1967) A Study of Examinations, Indian Educational Review, 2. 26-41.

Harper, A. F., Jr.e Misra, V.S.. \& Cupta, R.L. (1967). Pour Thousand Answar Books Remarked. Unpubliahed Mss.

Herper A. F. Jr. and Miera, V.S. (1976). Research on Examinations in India. NCERT, Hew Delhi.

Heywood. J. (1977). Assesement in Higher Education. John Wiley \& Sons. Iondon, New York, Syaney \& Toronto.

H111. Walker, H. (1963). How to Improve Essay Examinatlon. Taacher Education, 8. 6m9.

Hill. Nalkex. H. (1964a). Examinations for Secondary Education. Education and Paychology Review. Raroda. 4-8.

HL11. Walker. H. (1964b) Examination Improvement and Esamination Reform, Joumnal of Educaeton \& Psychology, 22. 63-70.
4111. Walker. H. (1965), What Rosearch Saye hout Examinations. Toacher Education. 9. 1-10.

Hil2. Walker H. (2967a). The Progresi of Examination Reform (Part II). The prograas of Education. 1-8.

Hill. Walker. H. (2967b). Why Examination system needa to bo changed. Journal of pacation \& Paychology, 25, 20-27.

Hill, Walker, H. (1967c), The Role of the Training College in Examination Reform. Teacher Education, 1, 21-28.

Hoyt, C. (1935). Journal of Education Paychology.
Lele, P.T., Patel, P.Mo, Parlkh, N.P., \& Palkar, S.G.(1962). Qualitative Analysia of Esaay guestions. Research Studiaz in Examinations. Baroda, December, 1962.

Mahalanobla, P.C. and Chakravarty. K.N. (1934). Analysis of Marke in the School Leaving Certiflcate Exaraination in the United Provinces. India. 1919. Sankhya 1. 245-266.

Mascarenhas, M. (1973). A Model Cuastion Paper. Eduational India. 40 (3), Soptember. p. 117-120.

Misra, V.S. (1968a). An Invertigation into Admission Criteria. Gauhati. Examination Research Unit, Gauhati University.

Mlara, V.S. (2968b). A study of Eseay Type Teat Rollability. Gauhati. Examination Research Unit, Gauhati Uaiversity.

Misra V.3. (2969). Study of the effect of Randomisation and scaling. On the zrrors in Examination Marke. Gauhati. Examination Research Unit, Gauhati University.

Misra, V.S. (1976)- Given in Harper \& Misra (1976).
mucaliar Comiasion (1952). The Report of the secondary Education Commismion, New Delhi. Government.
mukerjee, N. (1961). On Examintiona. Journal of Oujarat Research socloty (23).

Mukherfoe, NoM. (1964). External Examinations. Calcuttas kest Bengal Head Mastern' Asaociation. 338-343.

Watarajan, V. (1977) Nonograph on Test Item Analysia, AIU Publication.
S.S.C. Board, Maharashtra (1960). Statiotical Inveatigationa On Problems Pertaining to the Rasults of the S.S.C. Examination, Poona: S.s.C. moard.

Taylor. H.J. (1962) classifying stubente by Examinations. Report on $k x a m i n a t i o n ~ R e f o x m . ~ U G C . ~$

Taylor. Hos. (1962b). An Examingtion of Examinera: A Study of the Re11ab111ty of Examination Marking. Journal of tho Undvarsity of Gauhati.

Tayior. H.J. (1962c) Sholce and Chance in Conventional Examinationse Roport on Examination Reform. woc.

Taylos. Hos. (1962d) Moice and Chance in Conventional Examinations. Report on Examination Reform. UCC. Appenitx XII. (d).

Taylor, H.J. (1962e). A Hand Book of scaling. Geuhati. Examination Research Unit, Gauhati Uaiversity.

Taylor. HoJ. (1963a). Operation Pas maxis Gauhati. Examination Research Unit, Gauhati Univarelty.

Taylar. HeJ. (1963b). The Tuestion paper. General Education 4. 1-9.

Taylor, H. J. c Thuanga. L.N. (2963b). Scaling Tablese Gaunati. Examination fesearch Unit. Gauhati University.

Taylor, HeJe, H uanga, L.N. and Mlswa, V.S. (1966) A Study in Multipla Mariag. Quunati. Examination Research Unita Gauhsti Univerpity.
 (1964). The Influence of Scaling on Examination Rosults. Gauhatis Examination perearch Unit. Gauhati Univaraity.

University sducation Comminsion (1950). Raport of the Untvexisity Education comulseson. Nov Usinit Covernmant of Indis.

CHAPNER - 6

American Baychological Asmociation (2974). Minutea of the Annual Meeting of the Counsul of Repreaentatives.

Anaatas1, A, (2976). Paychological Testing :4acmilian publithing Co.. INC. Naw York, Collier Macmillan, Iondon.

Bracht. G.H. \& Hopkins. K.D. (1968). Objective and Ensay Teats: Do they Meacure difEerent Abilities? Paper Presented at a Joint Sossion of the annual meetinge of the American Educational Research fiseociation and the National Council on Msasurement in Education. Chicago.

Costman, K. (1966). On the Validity of Esaay Tests of Achievement. Journal of Educational Measurement. 3, 251-156.

D1ck. W. and Hagerty. N. (1971). Togica in NeasurementReliabllity and Valldity, McGraw-H111. Now York.

Sbol. R.L. (1979). Masuring Educational Achievement. Prentice Hall, U.S.A.

Groniund. N. S. (1976). Naaurement and Evaluation in reaching (3rd ad.). Mac-millan. Sew York.

Haxpar. A.E.. Jx. (1963). Objective and Traditional ExamLnationa: Some Reaearch. Education and Peychology Review. Spring. 63-78.

Holloway, P.J., Hardwick, J.Lo, Morris. J. and Start, K. B. (1967). The Validity of Eseay and Viva-Voce Examining Tecintques. aritioh Dantal Journal. 123 (8). 227-232. No.3. 141.

Hudgon, L. (1960). Degree Clase and Attainment in scionttic Reasareh. Britioh Journal of Educational pagrhology, 51.67-73.

Kamat. A.R., Deshmukh, A.C. (1961). Predsetion Value of Marike at the preceeding ixamatnation in forecasting Marks at tho Gucceeding Examination. Artha Vijnan.

Lele. P.T., Patel, P.M., Parikh, N.P., \& Palkar, S. G. (1963). Empirical Stuciea in Examinations: Research Monograph-2. Baroda: Examination Reform and Research Unit, M.S. University, вагеda, March, 1963.

Lindzey, G. and ixonson, E. (1975).(Editors). A Hand Book of Social Paychology, Second Edition, Addison-Wealey Publiahing Company, Inc.

Misra, G.S. (1964). Prognostlc Value of High Scbool and Intermediate Masks. Unpublished $\mathrm{K}_{0} E \mathrm{Ed}_{\text {. Dissertation. Allahabad }}$ University.

Patel Y. P. (1952). Statigtical Analysis of Marks obtained at the B.Ed. Examination (1961) of S.V. Vidyapeeth. Studies in riducation.

Plageon, D. and Yates A. (1969). An Introduction to ©ducational Measurement, toutledge and Kegan Paul. London.

Popham, W.J.(1975). Prentice-Hall, Inc., Englewood Cllfes, New Jereey.

Taylor.H. (1962) The Marks of kxaminers. Report on Examination Reñorn. UGG

Taylor, H.J. Tluanga, L.N., \& Misra, V. . . (1966). Examination as Preditor. Gauhat 1: Examination Research Unit, Gauhati Univeralty.

Wiseman, s. (1956). The Use of Easaya in Selection at 11+。 III Rellability and validity. British Journal of Educational Paychology.

CHAPTER - 5

Bayloy D.h. (1972). The Emptinees of Curriculum reform. Journal of Higher Education, 44. (8). 591.

BITs gulletin (1980m81). published by BITs, pliani.

Carnegie Commlssion on Higher Education (1973). The Purposes and Performance in Higher fducation in the United states. Approaching the Year 2000. McGraw-Hill. New York.

Furst. E゙.J. (1958). Constructing Evaluation Instruments, David Mackay, Now York.

Heywood. J. (1977). Asbessment in Higher Education. John wiley 6, Sons. London, New York, Sydney, Toronto.

Iyer T.S.K.V. and Kriahnamurthy V. (1976). Examination ReformInnovationa in Teaching and Learning. Journal of Higher Eúucation, Vol. 2 No.1. University Grants Commission. New Delhi.
 kind of Graduates do we need? Oxford U.P.. London.

Mandke. V.V. (1975). Practice school - Iinking Higher Education with Enviromment. CSIO Comunications. Vol. No.4. Page 62-67.

Mandice. V. V. (1976). Engineering Education in Indias Some Directions and Some Experiments. Paper Presented at IIt, Madras on the Sccasion of the Calebration of 25th Anniversary of IIT Kharagpur (Peb. 1976).

Mandke. V.V. (1978). A Note on the role of a Univeraity in Serarch of Technleqes for the Rural Poor of Third Norld. A Ppper premented at International Seminar on Mechniques for the Rural poor of the Third world' held at contre of seience for Villages at Sevagram, Warcha trom 22 to 25 Jan. 1978.

Mancke. V.V. (1980). BITs practice school - A Cane study in Incustry Univermity Collaboration, BITS, Pllani fublication.

Mitra. C.R. (1974). Some New Directions for Higher Education. swarajya Weakly. Madras, May.

Mitra, C.R. (1975). Education for Selemeliance in India. Presented at the Seminarm Cumbiorkshop on Alternative Technology held at simla in Soptamber, 2973 under the Joint auspice: of C.S.I.R. and the Indian Institute of Advanced Study, Simla.

Sherrin. D.C. and T. N_{A}. Long (1972). The Educator's D1lemnas what Makes Clyde Want to Leam. J. Engng. Ed., 63 (3), 188. Whitehead, A.N. (1933). The Aims of Education. genn, London.

CHAPTER - 6

Academic Regulatlons (1977). BITS Publication
Asastasi, A. (1976). Psychological Testing. Macmillan Publishing Co.. Inc. New Kork, Collter Macmiliatio London.

Guidelines for fism Operation and Evaluetion (1979). BITS Publication.

Gullicksen. H. (1950). Theory of Mantal Tests. Now York. John Whey and Sons.

Mandice. V.V. (1980). EITS practice School - A case Study in Incuatry Untverbity Collaboration. BITG. Lilani publication

CHAPTER - 7

BITS Bulletin (1980-81). BITS Publication.
HeLss. A. (1973). An Inventory of Academic Innovation and Reform, Canegi Commasion on Higher Education. Sarkeley.

Heywood. J. (1977). Assessmont in Higher ffucation. John Wiley \& Sons. London, New York, syeney. Toronto.
Livingstcac. J. S. (1971). The Hyth of the well-wducated Manager. Harvard cuesnens Review, Jam/Pab.
M. E. (Comaborativo) plaming - office Piles on M. M. (Collaborativa)

Progranane, Ps Diviaion, BITS, Dilami.
Saupe, J. (1961). In P. Dresael (Bd.) fvaluation in Higher Education, Houghton MiEsiln, Boston.

Whitahaad, A.N. (1933). The Aim of education. Benn, London.

Appendix A
June' 80
ouentionnalsIfor finding out the objectives of EducationsNase of the teacher \qquad

Courses taken in the recent past

Following ilst contains som of the gualities Which are "desired to be common among most adult situations. They are belleved to be easential for living. fitow would you rete theee qualities? Indicate your opinion an to which of the qualities should be sehleved by univeralty education. What qualities can be achieved by oducation byetem like aiss and tinally which of the qualitio you have been able to achiove in your courne/couraes p

> Sd/
> (ANITA MISRA)
> Reseasch Studant R C DLvision BITS. PIIand

8. No.	Desired qualities	Desirabllity Rating	Qualities that should bo achseved by educatlon.	Qualities that can be achleved	Oualities that you have been able to achieve	$\begin{aligned} & R \\ & E \\ & \text { M } \\ & \text { A } \\ & R \\ & K \\ & B \end{aligned}$
1.	perception					
2.	Analysia					
3.	DLagnosis					
4.	groblen colving					
5.	Judgement					
6.	communication					
7.	understanding					
8.	Sympathy					
9.	colerance					
10.	Sanse of responaibility					
11.	Leaderahiy					
12.	Lactision making					
13.	Coping with fruatration					
14.	Knowledge					
15.	tele reliance					
16.	creativenass					
17.	confidonce in one's own abilltica.					
28.	Sense of humour					
19.	Abllity to max M111					
20.	W2da intorast					

$\$$ NO.	Dealred Qualitie:	DeaLra b111ty keting	Qualitiea that ahoula be achieved by aducation	Oualitias that can be achievad	Oualities that you have been able to achieve	R E M A R \mathbb{R} 6
21.	Independence					
22.	Honesty					
23.	Anbition					
24.	Combon monme					
25.	Logleal thought					
26.	Any other (epecify)					

Appendix B

Qunctonnairelfor finding out tho oblectiver Thehnlques and Hature ó Sxaminationa at 自TS

June '80

Respected sir/Madam.
I am conducting thia survey to find out bout the objectives, techniques and nature of evaluation in the oxaminations at 81 ts for my doctoral work. I shall be grataful if you could please flllup the onclosed queatiom nnalxe and aend it back to me as soon as convenient. In filling up the queationnalre pleave refor to a particular couree which you have taken in recent pact. Please give the nam of the course te the appropriate place on thia page.

WLth regarde.

> Yours alncerely, Sd/(ANTM MISRA)

Pleace return the completed questionnalre including this page to -

MLaE ANITA MIERA
Regearch student
R ce Diviaion
BLTB, P11anl-333031

Thle questionnaife has three partal

Part A	Objectives of evaluation
part B	Technlques of evaluation
Part C	Nature of examinationa

```
Xour name please
%ithe of the course
Nade of the Inntructor
Inchexge
Couxme Numbar
Samastes/Year
UnLte
Approximate number of
atudonte in the whole
couram
```


pact in obiectives of gviluation

g. 1 We have liated below som of the objectivel of evaluation. In your opinion, which of the objectives are baing achieved with respect to the course you have conducted ? please indicate the welghtage asolgned to these objectives.
(For explannatory notes see below)

8.180.	objective	Ou1820	Teets	Comprohenelve	Others*

I mowledge

II Comprehemsion

I11 Application

IV Analysis
v Syntheals

VI Evaluation

Exalannatory notes for ouestion is

-Othera - This inciudes componsnes like home aselgnment. seminar, viva, group discuseion, project report atc.

I Knowledae

Knowledge includes those test altuations which onphesize the rememboring olther by recognition or recall. In the learning situation tho eturiont in expected to etore In hia mind certain information, and behaviour expected later is the rammbering of this information. Knowledee Lncludes eeveral ub-categorise wuch is knowledge of torminology, knowledge of pecific lacts (dates, ovente. porsons. places utc.). knowledge of clasificetion mad categorias. knowledge of methodology (methocs of inquiry. tecinlquea anc procedures). knowledge of principles. thoorles and 80 on.

II
 Comprehension

Comprohension refers to the type of underatanuing so that the individual knows what is being communicated and can make use of the communication or liea without necessarily relating it to the other material or seeing ite Eulleat implications. Categories included in the comprehension are -
(a) Tranalation is it is the ability to change the commanication in his mind in parallel form, o.g. abllity to tramalate mathematical verbal statements into symbolic corm and vice-versa.
(b) Intexpretations- Wheroas eransiation involvaa an objective part for rendoring or commaication, interpretation involveo a reordering, rearrangement ox a now viow of the risterial.
(c) Kxtrapolation :- The ability to make almple axtenalona boyond what is given in the commulcation itsels is called extrapolation. e.9. extension of ome trenda or tendencies beyond the given data.

III Application :-

If testing aituations are to involva application, they munt elther be situations new to stualont or situations contalning new olementa ampared to the situation in which particular obmeract was learnt. If the teat aituations are oimilar in which abstraction waa learnt, then it would
not be called 'application'. It would bimply be 'recall' or 'knowleage'. Ideally in 'application' wo should seek a problem which will teat the oxtent to which individual has learnt to apply the abstraction, e.g. application of technical principles. Ideas and theories which munt be remembered and applied.

IV Analysis

Analysis includea breakdown of commanication into 1te constituent eloments or parts and detection of the relationshipa of the parte and the way they are organized. Soma of the fmportant claseas of the analysis are:-
(a) Analyaio of elomate in communication, e.g. analysis of data.
(b) Analysia of relationshipa o.g. ablilty to understand the conncetions and interactions between elemente and parte of a communication.

V 3ynthesis

Synthesis includes putting together elemente and parts ao as to form whole. In other words it includes planning of some ldea. In aythesie atudont muat draw upon elamente from many mources and put them together into - structure or pattern not clearly seen there before. -.9. production of uniquo commanication/watting.

VI gyaluation

Evaluation involves making fudguments sither qualitativa or quantitative e.g. ability to make comparisons. Q. 2 Apart from the above objectives. do you think some other qualities like leadership. aence of responsibility. decialonmaking. comoperation etc. can be meaaured by class-room evaluation ?

Q. 3 If your answer to the above quastion in yes, what eeciniquas of eveluation would you include in evaluation in order to achieve them ?

2art B - rechnlaues of evaluation

Q. 1 How many quisees and tonts do you conduct in the course in a memester?

Q. 2 Apart from quipres and tests what other instrunente of ovaluation do you incorporate in the evaluation ? Pleast indlcate weightage)

0. 3 Please 1dentify and explain the objective of the evaluation method referred to in 0.2.

2art C - Nature of Iixamination
Q. 1 What type of examination do you give as far as 'open book" and "closed book' axaminations are concerned?

Componerte

A11/mostly closed book

Q. 4 What type of quattions co you include in the question papers 7 Plase incicote walghtage aganst each type of queation..

Objective typ.

Short answer
descriptive
short answer problem solving

Long answar

descriptive
long anewar problem molving

Any other (Please
epectif)

APPENDIX 'C'

 BVALUATION TCHEME TUR PAACTIO COHOOL - 12

Actionh Youl Dradani DLotelise I \qquad Pratlo Comporeat Ahasded \qquad
Braction Courserto.

Dab \qquad

A spoleal pS-X Evaluation Schome as Implemented at moteri in summer. 1973.

Evaluation Schema

Marks

1. Assignmanta given in terms of "Exercises" were evaluated in tho following manner:
(a) Report writing
(1) Exarciser 1 to 4 of tho orientation type spread over total duration of 20 daye. Evaluation on group basie.
(11) Exercisen from 5 to 10. Here 1daal are of inportance. Total duration 15 days. Evaluated on individual basis. 15

(b) Diary, Every student was requised to keap alary
which consisted of day to day obeervations. 05
2. Oral presentation of Group Reporte. The exerclse work tackled in groupa. Each group had a leader who had total reaponsibility of the aselgment. It is the leader who also had the reaponsibility of presenting the 'Exarciae' During the entire sumner tezm one stucont gets about four chancesto present oral raports. 10
3. Participation. Every atudent'a participation in his own group's work as well an in the activitien of other groups was judged. 20
4. Porsonal Characteristice. During the diacussions which could be arrangod for an hour almost dasly avery studont was evaluated for the following characteristics.
(a) Leaderahip
(b) Songe of reponaiblitty
(c) Cooperation
(d) InLeLative
(e) Regularity and prograse of the group 15
5. Ouizted and short Reporte. In two months about 2 quizzes and 7 ahort reporte were written based on vialta to varlou dopartment: of the organiaation. 15

ADPENDEX 8

A Typical PS-I Evaluation Schern as Implemented at Chotri Ourlng surmer 1974.
Evaluation Schama Marks

1. Ouis on "Know your Organisation* 10
2. Quin on Gap Lecturea 10
3. Asedgrmant Evaluation (Excupt for the last assignmant)
(1) Knowledge anc application of scientific fundamentala 12
(i1) Knowladge of technological oparetione 12
(1is) Oral Prementation 10
(a) Seli-expression
(b) Materiel organisation
(c) Blackmboard presentation
(d) participation
(e) plateram manner
(iv) Writeen Preaentation 12
(a) Preaentation schame
(b) Preciseneas(c) Logical development of argument
(d) Eorce of expreasion
(v) Sonse of responsiblitty 03
(vi) Intelative 03
(vii) Co-operation 03
(vis1) Leacozah2p guality 03
(2x) Industry 02
4. Openmended project. L.e. Pinal agignment avaluated for 'Ideas' 10
5. Diary. studont is roquired to keep a diary which incorporates his day to day observations 10

I. WeLghtage

(1) Know your Eactory (Orientation) 5\%
(1i) Gap Lectures 5\% 5\%
(111) projects (to be equaliy welghted) 90%
II. Evaluation Scheme
(a) Know your factosty and gap lectures will be evaluated through quia/viva.
(b) Each project will be evaluatad once/twice during the course of the project and at the end of the project in respect of the following itams with woightages indicated against each.

1. (1) Knowleige and application of engineering
fundamantala
(11) Englnoering judgement and decision making 10
(111) Loadership 04
(iv) oopoparation 04 04

(vi) Inltiative

(vi) Inltiative(vil) Industery04
2. Duis/viva conducted during the course of the project 10
3. Oral presentation* of the progreen feport during the course of the project. 10
4. (1) Written Presentation** 20
(1i) Conclusions and recomrandations 10
(1i1) Einal oral prasentation 10

* Oral Presentation will be juaged in respect of:
(1) Sulf-expreaston. (11) Naterial organlataton. (141) Blackboard organisation. (iv) rechnical quality of annwers. (v) Participation, (vi) Platiorm mannere.
* written presentation will be judged in respect of:
(1) Presentation scheme, (11) Preciaanesa
(111) Logical developmont of argument. (iv) Force of expresision.

Apperam

RATENO SHEET
PRACTICE COURSE
(To be filled in triplicate. One copy to be retalned at practice station and rervining two to be returnad to practice chool Diviaion office along with student grade)

Porsonallty Tralts	Excellent Gaod	Averaga	POOE	V. POos
1. Knowledge and Application of Fundamental princtplee				
2. Intellectual joility				
3. Creativity and Art of				
4. Profeastonal Judgement				
5. Problem Solving Ability				
6. Decisionmaking Abillty				
7. Ability to Comminicate				
8. Inftiative and Self-rellance				
9. Team work				
10.Lsadership				
11.Punctuality and Ab111ty to Maet Deadilnae				
12. Sense of Ramonsibll2ty and Comon sense				

Please check traite which beat deseribe personality

Conkidont Polaed Curteous	$\begin{aligned} & \text { Should bo } \\ & \text { less } \\ & \text { aggresedve } \end{aligned}$	pleasant curtons force	Should be Eriendiler vith graup	Likeablo	Should bo more agoressive

Indicate work for which he 1s best sulted. Cheek only one or Indicate order of choice.
Rosecrch Developsant _ Teaching \qquad Design \qquad Production _ Salew K Marketing EInance SDP sclertist Journalist \qquad othax \qquad
If nocessary, you may olaborate on your reasona for above ratinge and add any further comment you may have. Uae the back of thle aheet. it needed.

Grado Obtained at Practico Courue

Apgenjex H H

Academic Regulations-CLAUSE 22.2

In all practice school courses also the continuous evaluation enunciated in clause 13 of Academle Regulationa Will be Rollowed. Since the educational proceases in the practice echool courses seok aut and focus attention on many latent attributen which do not surface in the normel clasaroom aituation, the process of evaluation in the practice echool courses ahould be designed with care so that information on a continuous basis on the following attributes becomes avallable: Intellectual abllity, team work; leadership; 1nitiative, personality profeasional Judgement, common senses problem solving abilitys sense of ramonalbilitys deciaion making ability, art of guentimations punctualitys ability to meet deadliness ability to communicate through oral and written presentations, etc. Each auch atudent may also be given a statement describing qualitatively the degree to which these attribute: have been dmonatrated by him in the course.
(i) Program for Correlation Coffticien is

```
// JOE T
    ANITE
// FOR
*LIST SCURCE PROGRAN
*IOCS(25C% REAOER,$403 PRINTER)
*ONE WORD INTEGERS
C
r
C-----FROGRMM FOR CORRELATION COEFFICIENTS
C--m-THIS PROGRAM ALSO GIVES F AND T VALUES
C-m-m-CERRELATION NUMBERS PRINTED IN METRIX FORM BETWEEN TESTS
C
C
    REALMQ(20)
    CCNMON XM(400,10),C(10,10),T(10,10),P(10,10),PM(10),SM(10),CM(20)
C
C
C--m--READ DATA
C-----NC = NIJMBER OF STUDENTS
C-----NT = NUNBER OF TESTS
C---ー-PM(J) = MAXIMLM MARKS IN J TH QUESTION
C-\infty-m-XM(I,J) = MARKS SCQRED BY I TH STUDEFIT IN J TH TEST
C
C
    READ(8,20)NC,NT
    WRITE (5,20) NC. NT
    CN=NC
    ACN=10/(CN*(CN-1c))
    TN=NT
    READ(8,21)(PM(J),J=1,(NT)
    WRITE(5,21)(PN(J),J=1,NT)
    CO 1 J=1,NT
    SM(J)=0
    FM(J)=100./PM(J)
    CN(J)=0
    1 CONTINUE
    WRITE (5,23)
    CD 3I=I,NC
    READ(8,5(1) M,(MG(J),J=1,NT)
    WRITE(E,22)I,(MQ(J),J=?,NT)
    DO 2 J=1,NT
    XM(I,J)=MQ(J)
    XN(I,J)=XM(I,J)*PM(J)
    SM(J)=SN(J)+XN(I,J)
    CM(J)=CM(J)+XM(I,J)**2
    2 CONTINUE
    3 CONTTNUE
    GM=0
    OO & J=I,NT
    SN(J)=SN(J)/CN
    GN=CM+SN(J)
    & CONTINUE
    GM=GM/TN
```

```
    WRITF (, 24)
    [C \(5=1, \mathrm{NC}\)
    NRITF (5,22)I, (XN(I,J), J=1, NT)
    CO \(5 \mathrm{~J}=\mathrm{I}\), NT
    \(X M(I, J)=X M(I, J)-S M(J)\)
    5 CONTINUE
    WRITE(5,21) (SN(J), J=2,NT)
    WRITE \((5,30)\) GM
    WRITE (5,21) (CM(J), J=1,NT)
    CC \(6 \quad N=1, N T\)
    [C 6 N \(=i, N T\)
    \(T(M, N)=0\)
    \(6 P(M, N)=0\)
    CC \(7 I=I, N C\)
    CO \(\Rightarrow M=\Sigma, N T\)
    DO \(7 \mathrm{~N}=\mathrm{M}, \mathrm{NT}\)
    \(P(M, N)=X M(I, M) \neq X M(I, N)+P(M, N)\)
    ? CONTINUE
    CC \(8 \quad M=1, N T\)
    DO \& \(\mathrm{N}=\mathrm{M}, \mathrm{NT}\)
    \(A=P(M, N) \neq P(N, N)\)
    \(A=S G R T(A)\)
    \(C(M, N)=P(M, N) / A\)
    \(C(N, M)=C(M, N)\)
    - CONTINUE
C CALCULATION JF \(F\)
    \(V B=0\)
    \(V W=0\)
    CO \(9 \mathrm{M}=\mathrm{I}\), NT
    \(V h=V W+P(M, M)\)
    \(S=S M(M)-G M\)
    \(V B=S * S+V B\)
9 CONTINUE
    \(V W=V W /(T N * C N-T N)\)
    \(V B=C N \div V B /(T N-10)\)
    \(F=V B / V W\)
    WRITE(5,25)F
C CALCULATIDN OF T NUMGER
    DO IV M=?, NT
    DO I! \(N=M, N T\)
    \(A=20 \sim C(N, N) * C(M, N)\)
    1F(A) \(90,71,90\)
90 CONTINUE
    \(A=50 / A\)
    \(A=A \div(\mathrm{CN}-20)\)
    \(A=S Q R T(A)\)
91 CONTINUE
    \(T(M, N)=A * C(M, N)\)
    \(T(N, M)=T(M, N)\)
11. CONTINUE
    WRITE(5.26)
    [D \(12 \mathrm{M}=2\), NT
```

```
        WRITE (5, 2.8)(C (M,N),N=_, NT)
    12 CCNTINUE
        WRITE(5,2"?)
        COI3M=1,NT
        WRTTE(5,28)(T(M,N),N=1,NT)
    13 CCNTINUE
        WRITF(5,29)
    20 FIDRMAT(2I5)
    21 FORM&T(4F1O.2)
    22 FCRNAT(I5,4FJ0.2)
    50 FCRMAT(I5,4FG%2)
    23 FORMAT(15H ORIGINOL MARKS)
    24 FCRMGOT (17H PERCFITAGE MARKS)
    25 FCRNST(11H F NUNBER ,F20.4)
    2. FORN&T( i.HH CORP. COEFFICIENT)
    2? FORM.T(14H T TEST VALUES)
    24 FDRMET(3X///IOE11c2)
    29 FORNAT(.2IH FINAL RESULI IS THREE EY KIGHT)
    30 FORMAT(12H GRAND MEAN ,F2O.2)
        DC4OI=1,NT
        CO4GJ=I,NT
        YZ=(P(I,I)+P(J,J))*ACN
        YZ=SORT(YZ)
        T(I,J)=(SM(I)-SM(J))/YZ
        T(J,I)=T(I,J)
    40 CONTINUE
    CO41I=1,NT
    41 WRITE(5,28)(T(I,J),J=1.,NT)
        COLL EXIT
        END
// XEQ
```

(ii) Analysis of Variance Program for Test Reliability and Course Reliability

```
    // JOB T
    // FOR
*LIST SCURCE FROGRAN
#ONE WCRD INTEGERS
*IDCS(2EOLREADFR,1*O3PRINTER)
C
C
C----ANALYSİS GF VARIANCE FROGRAM FOR TEST RELIMBILITY AND COURSE
C------RELIABILITY
C-----REFEREUCE THREE BY EIGHT
C-----CUTPUT GIVES VARIOUS SUM OF SOLARES GND RELIABILITY
C-----RTT DENCTES RELIABILITY
C-----VE AND VR DENOTC TOTAL AND ERROR VARIANCE
C
C
                            EIMENSIUN R(4CC),C(35),QM(35)
```

c
c
C-----REAC INITIAL CATH
C----NS = NUMBER OF STUDENTS
C———--NQ $=$ NUMBER OF QUESTIONS
C
READ (8,1)NS,NG
WRITE $(5,21) N S, N Q$
SN=NS
$6 N=N G$
$S S=10 /(S N-10)$
$Q Q=10 /(Q N-1.0)$
$S N=10 / S N$
$6 N=1 . / C N$
$S G N=S N * Q N$
$S Q=S S * Q Q$
$x=0$
$x R=0$,
$X \mathcal{L}=0$
$X R R=0$
$X C C=0$
1 FORM 4T(2I5)
DOZ $=2$, NS
$R(I)=0$

2 CONTINUE

$$
\operatorname{co~} 3 \mathrm{~J}=1, \mathrm{NQ}
$$

$$
\Gamma(J)=0
$$

3 CONTINUE

$$
\text { CC } 5 I=1, N S
$$

C
C
C---m-READ DATA ON NARKS
C- ---GN(J) = MARKS SCORED IN J TH QUESTIGM
C
C

```
            READ(c,4) (QM(J),J=1,NO)
            NRITE(5,IT)I,(OM(J),J=I,NO)
            FORMAT(5X,7FG.2)
            OO J=1,NQ
            Y=QM (J)
            R(I)=R(I)+Y
            C(J)=C(J)+Y
            X=X+Y熪
            5 ~ C O I N T I N U E ~
            WRITE(5,52)
            WRITE(5,23)(C(J),J=1,N6)
            NRITE(5,11%)
            DO IEI=1,NS
            WRITE(S,二S)I,R(I)
IS CONTINUE
            DO G I=I,NS
            Y=R(I)
            XRR=XRR+Y*Y
& }XR=XR+
            CO F I=j.,NQ
            Y=C(I)
            XCC=XCC+Y*Y
                            7 XC=XE +Y
                            WRITE(5,9)XR,XC
                            9 FORMAT(2.H ROW SUM AND COLUMM SUM =,2F20.4)
            XRC=XR*XR*SGN
            SCE=XRR*GN-XRC
            SDI =XCC* SIV-XRC
            TSS=X-XRC
            RSS=TSS-SDE-SEI
            VE=SDE*SS
            VR=RSS*SQ
            RTT=1.00-VR/VE
            WRITE(5,9)SCE,SEI,TSS,RSS
            9 FORMAT(..9H SDE SDI TSS RSS ,FFI506)
            WRITE(S,IO)VE,VR,RTT
10 FORMAT(13H VE VR RTT ,亏F200ठ)
11 FORMAT(3GH NUMEER DF STUDENTS ANO GUESTIONS ,2I10)
12 FORMAT (12H COLUMN SUMS)
53 FORM,T(5X,4(\OFIO.3/))
34 FORNAT (9H ROW SUMS)
& FORNAT(I10,F20.4)
17 FORIMAT(I5,4(IOF10031))
    CALL EXIT
    END
// XEG
```

(iii) Analysis of Variance Program for Calculating Reliability of Examinations where choice of question is allowed.

```
// JOQ T
// FOR
*LIST SCURCE PROGRAN
#IDCS(2501PEAEER,I4C3FRINTER)
r
C
C-----ANALYSIS OF VARILNCE FROGRAM FOR CALCULATING
C-----RELIABILITY OF EXEMINATIONS, WHERE CHOICE
C..--*.OOF WUESTIUNS IS &LLOWED
c
    GINENSION R(SOO),C(25),OM(35)
    READ(8,I)NS,NO, NQT
    WRITE゙(5,11)NS,NG,NGT
    SN=NS
    GN=NC
    SS=1.o/(S SH-1.o)
    SG=%C/(GN-1.0)
    SN=10/SN
    GN=?.0/GN
    SQN=SN%QN
    SQ=SS*G6
    X=0
    XR=0
    XC=C
    XRR=0
    XCC=O
1 FORM:T(3I5)
    EC2I=?,NS
    R(I)=0
    2 CONTINUE
    NQ=NOT
    CO 3J=2,NQ
    C(J)=0
    3 continue
    DC SI=1,NS
    REAO(8,4) (GM(J),J=?,NG)
    WRITE(5,17)I,(GN(J),J={,NQ)
    4 FORMAT(Sx,?F50.)
    DO 5 J=1,NQ
    Y=CN(J)
    R(I)=R(I)+Y
    C(J)=C(J)+Y
    X=X+Y*Y
    S CONTINUE
    WRITE(5,12)
    WRITE(S,13)(C(J),J=1,NQ)
    WRITE(5,1.4)
    CO 15I={,NS
    WRITE(5,16)I,R(I)
    15 cONTINUE
    DO6 I =1,NS
```

```
        Y=R(I)
        XRR=XRR+Y*Y
        B }XR=XR+
        LG T I =I,NG
        Y=C(I)
        XCC=XCC+Y*Y
    7 XC= XC +Y
        WRITE(: B)XR,XC
        8 FORM, T(27H ROW SUM AVD COLUMN SUM =,2F2O.4)
        XRC=XR*XR*SGP.
        SCE=XRR*QN-XRC
        SCI=0
        TSS=X-XRC
        RSS=TSS-SDE-SEI
        VE=SDE*SS
        VR=RSS*SQ
        RTT=1.0-VR/VE
        WRITE (5,9)SDE,SDI,TSS,RSS
    9 FORNAT(19H SDE SUI TSS RSS ,4F\50S)
        WRITE(5,10)VE,VR,RTT
    10 FGRMAT(15H VE VR RTT ,3F20.6)
    I! FORMAT(3SH NUNGER OF STUDENTS AND QUESTIONS , IIJU)
    12 FORMAT(12H COLUNN SLMS)
    13 FORMAT(5X,4(1OFIO0.3/))
    i& FRRMFT(9H ROW SUMS)
    15 FORMAT (I10,F20.4)
    17 FORNBT(I5,4(IOFJ.0.3/))
    CALL EXIT
    END
/1 XEG
```

(iv) Program for Analysis of PS -II Evaluation Based on students' Feed-back.

```
    // JOE T
    // FOR
    *LIST SNURCE PROGRAM
    *IOCS(2SOIREAOER,140.3PRINTER)
    c
    C
    C---~-PROGR&M FOR ANALYSIS OF PS II EVILUATION
    C-----EASED OH STUDENTS' FEED SACK
    C
        DIMFHSION JM(36,138),MJ(7,13n), x(%).
        AI=3+
        NG=138
        MQ=7
            FM=300c/360
            001 I=I,NQ
            COLJ=1,NO
            NJ(J,I)=0
            1. CONTINUE
            DOSI={,NI
            REAC(8,2)IS,IN,ID,(JM(I,J),J=I,6&)
            READ(8,3)(JM(I,J),J=6.5,NQ)
            WRITE(S,4)IS,IN,ID,(JM(I,J),J=1,NQ)
            2 FORMAT(212,3211,12,513,27I1)
            3 FORNAT(5X,74II)
            i FORMAT(3I3,31I3,/,I50,5I5,/,3(I12,34I3/))
            5 \text { CONTINUE}
            DOY J=1,NI
            NA=1
            NB=..1
            cosIR=1,2
            COGIN=NA,NB
            I=JM(J,IN )+1
            MJ(I,IN)=MJ(I,IN)+1
            6 CONTINUE
            NA=38
            NB=NQ
    F CONTINUE
        DO9I=1,NQ
        COQJ=1,NQ
        Y=MJ(J,I)
    0 }X(J)=Y*F
        WRITE(5,10)I,(MJ(J,I),J=1,MQ)
        WRITE(5,11)(X(J),J=1,MG)
    1O FORMAT(IE,T110)
    11 FORMAT(F15.2,6F10.2/)
    9 CONTINUE
        CALL EXIT
        END
// XEQ
```


[^0]: - Examinations parmitting choice of quaationis.

[^1]: * Fron here onwarda, for the purpose of the contlmulty of the running text. the term cxiterionmrelated valialty" in terms of the correlation between the predictor-criterion palr may somettme be used interchangeably with the term predicelve validity.

[^2]: *Only for 2977 batch.
 +Cnly for 1976 batch

[^3]: * Itfollow an a natural corollary to this that the II bomester couraet szom tho I year of the progranmo. amonget othar thinge, then basically atm at expoaing the atudent to the entire garnt of the taski pertaining to the theme of implementation of a project (1 .e. Project Management). with particular reference to functional areae of project Engineering not covered in the I aomaster.

[^4]: Signature of the Professional Expert

