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ABSTRACT

This thesis deals with the numerical solution of heat transfer problems using meshless 

element free Galerkin (EFG) method and the parallel implementation of the EFG code 

developed. The EFG method utilizes moving least square (MLS) approximants to 

approximate the unknown function of temperature. These MLS approximants are constructed 

by using a weight function, a basis function and a set of non-constants coefficients. The 

essential boundary conditions are enforced using Lagrange multiplier technique. Variational 

method has been utilized to obtain discrete equations. Software has been developed to obtain 

the numerical solution. Four new weight functions namely hyperbolic, exponential, rational 

and cosine have been proposed. Numerical results (temperature values) have been obtained 

using existing (cubicspline, quarticspline, Gaussian and quadratic) and proposed (hyperbolic, 

exponential, rational and cosine) EFG weight functions in one-dimensional (1-D), two- 

dimensional (2-D) and three-dimensional (3-D) domains (four cases in each domain). A 

comparison has been made amongst the results obtained using proposed EFG weight 

functions, existing EFG weight functions and finite element method (FEM). The results 

obtained by EFG method are found in good agreement with those obtained by FEM. The 

effect of scaling parameter (d^) on EFG results has also been discussed in detail and it 

gives acceptable results in the range of l<<Zmax <1.5 for cubicspline, quarticspline, 

Gaussian, exponential and rational weight functions. It is also observed that the EFG results 

obtained by proposed exponential weight functions are the most reliable in this range of 

scaling parameter. A new parallel algorithm has been developed for the EFG method to 

reduce its computational cost. The codes have been written in FORTRAN language using 

MPI (Message Passing Interface) library and executed on a MIMD (Multiple Instruction 

Multiple Data) type supercomputer, PARAM 10000. Three model heat transfer problems 

have been solved (one each in 1-D, 2-D and 3-D domains) to validate the proposed parallel 

algorithm. For 8 processors, the speedup and efficiency are obtained to be 2.22 & 27.78% 

respectively for 1100 nodes in 1-D, 5.44 & 67.95% respectively for 1200 nodes in 2-D and 

4.66 & 58.22% respectively for 1320 nodes in 3-D. It is evident from the analysis that the 

increase in data size (i.e. number of nodes) results in improved speedup and efficiency.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Heat transfer problems can be solved by different numerical techniques. These include finite 

difference method (FDM), finite volume method (FVM), boundary element method (BEM) 

and finite element method (FEM). Among all these techniques, FEM is a well established and 

powerful numerical technique to solve the heat transfer problems. Although FEM is quite 

successful but the discretization of complex three-dimensional geometry and re-meshing of 

the domain changing with time, is very rigorous, time-consuming and burdensome task in 

comparison of assembly and solution of the finite element equations. In spite of its numerous 

advantages and unparalleled success, it is not well suited for certain classes of problems, such 

as crack propagation and moving discontinuities, plate bending, solution of higher order 

partial differential equations, phase transformation, moving phase boundaries, modeling of 

multi-scale phenomena, dynamic impact problems and thermal analysis of turbine blades. To 

avoid these problems, recently a class of new methods has been developed, known as 

meshless method. This class of methods includes smooth particle hydrodynamics (SPH) 

(Monaghan, 1988), diffuse element method (DEM) (Nayroles et al., 1992), element free 

Galerkin (EFG) method (Belytschko et al., 1994), reproducing kernel particle method 

(RKPM) (Liu et al., 1995a), finite point method (FPM) (Onate et al., 2001), partition of unity 

method (PUM) (Melenk and Babuska, 1996), H-p cloud method (Durate and Oden, 1996), 

free mesh method (FMM) (Yagawa and Yamada, 1996), boundary node method (BNM) 

(Mukherjee and Mukherjee, 1997), natural element method (NEM) (Sukumar et al., 1998b), 

local boundary integral equation (LBIE) method (Zhu et al., 1998a), meshless local Petrov- 

Galerkin (MLPG) method (Atluri and Zhu, 1998), the method of finite spheres (De and 

Bathe, 2000), regular hybrid boundary node method (RHBNM) (Zhang et al., 2003), local 



point interpolation method (LPIM) (Liu and Gu, 2001a) and local radial point interpolation 

method (LRPIM) (Liu and Gu, 2001b).

The results obtained by most of these meshless methods are found competitive with those 

obtained by FEM in different areas of engineering and sciences. The only big hurdle with the 

wide implementation of these meshless methods is their high computational cost. To reduce 

their computational cost, few researchers have parallelized free mesh method (FMM), smooth 

particle hydrodynamics (SPH), reproducing kernel particle method (RKPM) and partition of 

unity method (PUM).

Among all the meshless methods developed so far, the EFG method is being successfully 

used to solve various problems in different areas such as fracture mechanics, static and 

dynamic fracture, wave and crack propagation, vibration analysis, viscoelasticity, plates and 

shells, non-destructive testing (NDT), electromagnetic field, contact problems in metal 

forming. The results obtained by this method are more accurate (Lu et al., 1994) as compared 

to FEM. The only big hurdle remains with the wide implementation of this method is its 

computational cost which is quite large in comparison to FEM (Belytschko et al., 1996b,c; 

Dolbow and Belytschko, 1998; Singh et al., 2003a). Even though it has been identified by the 

researchers (Belytschko et al., 1994) that the EFG method can also be applied in the area of 

heat transfer, significant work has not been carried out in this area. Therefore, present 

research work mainly concentrates on the applicability of the meshless EFG method in the 

area of heat transfer. Since the accuracy of results obtained by EFG method is largely 

dependent on weight function, four new weight functions are also proposed and studied in 

this thesis work. In view of the currently felt need for parallel programming version for most 

of meshless methods, a parallel algorithm for the EFG method is developed and the results 

obtained by this parallel code are also presented.



1.2 OBJECTIVE OF THE RESEARCH

The purpose of this research work is to apply the meshless element free Galerkin (EFG) 

method in the area of heat transfer and to develop a parallel algorithm. The objectives of the 

present work are:

• To apply the EFG method in the area of heat transfer.

• To develop new weight functions.

• To find the most appropriate weight function for heat transfer applications.

• To find the range of scaling parameter for heat transfer problems.

• To develop a parallel algorithm to reduce the computational cost.

1.3 SCOPE OF THE RESEARCH

The EFG method has been successfully used in some areas like fracture mechanics, plates 

and shells, wave and crack propagation, electromagnetic field, non-destructive testing (NDT), 

vibration analysis and viscoelasticity, etc. So far, this method has not been applied to solve 

higher order partial differential equation, phase transformation, moving phase boundaries, 

thermal analysis of turbine blades and complex fluid flow problems. Therefore, the present 

work describes the applicability of EFG method in the area of heat transfer and its parallel 

implementation. Moreover, the present analysis not only checks the applicability of EFG 

method in the area of heat transfer and its parallel implementation, but also gives certain 

fruitful results (e.g. the range of scaling parameter and most appropriate weight function for 

heat transfer applications).

1.4 ORGANIZATION OF THE RESEARCH

Chapter 1 introduces to heat transfer problems and the various aspects considered in the 

present work. The objective and scope of the present analysis have also been emphasized 

along with the organization of the work.

Chapter 2 deals with the literature review of the various meshless methods including EFG 

method, which are used in the areas of engineering and sciences. The parallelization of the 

meshless methods has also been discussed in this chapter.



In Chapter 3, the EFG method has been discussed in detail. Initially the introduction of 

the EFG method has been presented. A discussion on moving least square (MLS) 

approximants is given. The technique for efficiently calculating the shape functions and their 

derivatives is presented. Also the description of the weight function and imposition of 

essential (Dirichlet) boundary conditions has been demonstrated.

Chapter 4 gives the discretization, formulation and results for 1-D heat transfer problems. 

Four cases have been discussed in detail. It also gives an emphasis on the effect of weight 

function and scaling parameter on EFG results (temperature values) in one-dimensional heat 

transfer problems.

Chapter 5 presents discretization, formulation and solution of 2-D heat transfer problems. 

Four different cases have been fully analyzed. It also presents the effect of weight function 

and scaling parameter on EFG results (temperature values) in two-dimensional heat transfer 

problems.

The discretization, formulation and solution of 3-D heat transfer problems are given in 

Chapter 6. Four cases have been chosen to check the applicability of the EFG method. 

Moreover, the effect of weight functions and scaling parameter on the EFG results 

(temperature values) has also been discussed.

In Chapter 7, a new parallel algorithm has been proposed for the EFG method. The 

parallel code has been written in FORTRAN language using MPI message passing library 

and executed on a MIMD type ‘PARAM 10000’ supercomputer. The proposed algorithm has 

been validated by solving three model heat transfer problems one each in 1-D, 2-D and 3-D 

domains.

Conclusions are summarized in Chapter 8 and few suggestions for future scope of work 

are also mentioned.



CHAPTER 2

LITERATURE REVIEW

For more than 30 years, finite element method (FEM) has been a well-established and 

popular numerical technique, not only to solve the problems of heat transfer but also to solve 

various problems in the areas of engineering and science. Although FEM is quite successful, 

the discretization of three-dimensional complex geometries and re-meshing of the domain 

changing with time is a very tedious and time-consuming process. Assembly and solution of 

the finite element equations also often lead to numerical errors. Despite its numerous 

advantages, it is not well suited for certain classes of problems, such as crack propagation and 

moving discontinuities, moving phase boundaries, phase transformation, plate bending, large 

deformations, solution of higher order partial differential equations, modeling of multi-scale 

phenomena, thermal analysis of turbine blades and dynamic impact problems. Therefore, it 

has become a necessity to find a method that may be somewhat more expensive from the 

viewpoint of computational time but requires less time in the preparation of data. To avoid 

these problems, recently a class of new methods has been developed, known as meshless 

(meshfree) method.

In meshless (meshfree) methods, interpolants (strictly speaking approximants) are 

constructed solely on the basis of a set of scattered nodes whereas in case of finite element 

method, interpoants are constructed by using a number of small elements known as finite 

elements. There is a small difference between the interpolants used in FEM and meshless 

methods. In case of FEM, the variation of unknown variable is approximated using 

interpolating polynomials and nodal values of the variable on each element, while it is not the 

case with meshless methods. This is the key feature that distinguishes FEM from meshless 

methods.



A number of meshless methods have been developed so far including smooth particle 

hydrodynamics (SPH) (Monaghan, 1988; Monaghan, 1992), diffuse element method (DEM) 

(Nayroles et al., 1992, 1994; Marechal et. al., 1993), element-free Galerkin (EFG) method 

(Belytschko et al., 1994; Lu et al., 1994), reproducing kernel particle method (RK.PM) (Liu et 

al., 1995a,b, 1996; Chen et al., 1997; Jun et al., 1998; Aluru, 1998), finite point method 

(FPM) (Onate et al., 2001), partition of unity method (PUM) (Melenk and Babuska, 1996; 

Babuska and Melenk, 1997), H-p cloud method (Durate and Oden, 1996), free mesh method 

(FMM) (Yagawa and Yamada, 1996; Yagawa and Furukawa, 2000), boundary node method 

(BNM) (Mukherjee and Mukherjee, 1997), natural element method (NEM) (Sukumar, 

1998a,b), local boundary integral equation (LBIE) method (Zhu et al., 1998a,b; Atluri et al., 

2000; Long and Zhang, 2002), meshless local Petrov-Galerkin (MLPG) method (Atluri and 

Zhu, 1998; Cho and Atluri, 2001; Atluiri and Shen, 2002; Xiao and McCarthy, 2003), the 

method of finite spheres (De and Bathe, 2000,2001 a,b), regular hybrid boundary node 

method (RHBNM) (Zhang et al., 2003; Zhang and Yao, 2003), local point interpolation 

method (LPIM) (Liu and Gu, 2001a; Gu and Liu, 2001) and local radial point interpolation 

method (LRPIM) (Liu and Gu, 2001b).

All these meshless methods have a common feature that only nodal data is required to 

describe the interpolation of field variables. Although, in most of meshless methods, Galerkin 

formulation is utilized to develop the discrete equations but the major difference among these 

methods lies in the interpolation (approximation) techniques. Generally, three different 

interpolation (approximation) techniques have been used in meshless methods, kernel 

approximation, moving least square (MLS) approximation and partition of unity.

Lucy (1977) developed the first meshless method that is known as smooth particle 

hydrodynamic (SPH) method (Lucy, 1977; Gingold and Monahgan, 1977). Even though SPH 

is not a Galerkin based meshless method, its particle nature renders it to be a meshless 



method. The applications of SPH have primarily been focused in the area of hydrodynamics 

and in the simulation of astrophysical phenomena.

A parallel but distinctively different path was taken by Nayroles and his co-workers to 

develop diffuse element method (DEM) in which they first used the MLS approximations 

(Lancaster and Salkauskas, 1981) to develop Galerkin equations (Nayroles et al., 1992,1994).

The diffuse element method (DEM) was then further refined and modified by Belytschko 

and his co-workers (Belytschko et al., 1994; Lu et al., 1994) and they called their method, 

element free Galerkin (EFG) method. For example, a higher-order quadrature rule based on a 

background mesh of cells was used for numerical integration and certain terms in the 

derivatives of the interpolants (approximants), which were omitted in the DEM, were 

included in the EFG method. These improvements were found to be necessary for achieving 

good accuracy and convergence. This class of methods are more consistent and stable but 

more expensive from the computational time point of view. The details of the EFG method 

are given in next chapter of this thesis.

Liu et al. (1995a) proposed a meshless reproducing kernel particle method (RKPM) with 

an approximation based on a convolution integral (continuous kernel). They introduced a 

correction function in the continuous kernel (convolution integral) which corrects the 

consistency near the boundaries as well as at nonuniform nodal spacing. Adding this 

correction function in the continuous kernel enhances the accuracy of the solution as 

compared to SPH method. In contrast to SPH, RKPM satisfies consistency because the 

reproducing conditions were used to construct the method, whereas SPH lacks constant 

consistency for nonuniform nodal spacing and on the boundaries. Therefore, RKPM can be 

considered as SPH with a correction function that restores consistency. Another difference 

with SPH is that SPH uses collocation methods to develop the discrete equations whereas 

RKPM as well as most of the other meshless methods use Galerkin method to develop 



discrete equations. Belytschko et al. (1996c) showed that the discrete form of the convolution 

integral yields the approximants which are identical to EFG approximants. In other words, 

there is no distinction between EFG and RKPM since the approximants are identical. The 

difference, if any, originates from algorithm and implementational issues that are adopted in 

two methods. The primary focus of RKPM has been in solving computational fluid 

mechanics problems governed by the compressible Navier-Stokes equations whereas EFG 

method was mostly applied to solve the problems of solid and fracture mechanics.

Onate et al. (2001) applied to elasticity problems, a new and truly meshless method, 

known as finite point method (FPM) which they originally invented in 1995. It is a truly 

meshless method since it does not require the background cells either for the interpolation of 

field variables or for the numerical integration. The approximation around each point is 

obtained by using a MLS approximation scheme in conjunction with point collocation to 

solve fluid and solid mechanics problems.

Melenk and Babuska (1996) recognized that meshless methods based on MLS 

approximations are specific instances of partition of unity method (PUM). The soul of PUM 

lies in the fact that a conforming space is easily constructed by using any system of local 

approximation spaces without any loss in approximation properties. It is well known that the 

creation of conforming finite element spaces is a difficult task, and in the light of this, PUM 

provides greater flexibility in the choice of local nodal basis functions.

H-p cloud method which was developed by Durate and Oden (1996) uses MLS 

approximations as a partition of unity to locally enhance the polynomial order of the 

approximation. In H-p cloud method, the local approximation is constructed by multiplying a 

partition of unity by polynomials or other classes of functions. The simplicity of p-adaptivity 

is particularly attractive and very promising attribute of the H-p cloud method.



Yagawa and Yamada (1996) developed a virtually meshless method, called free-mesh 

method (FMM). Few developments in FMM were made by Yagawa and Furukawa (2000). 

FMM has good features of local meshing and equation construction process at each node. 

The local meshing process avoids the difficulty of global meshing over the entire domain and 

this local process of mesh generation starts node-by-node independently therefore the whole 

process of mesh generation can be parallelized easily. Since FMM has same number of 

equations as FEM, which ensures same accuracy as obtained by FEM.

Boundary node method (BNM) developed by Mukherjee and Mukherjee (1997) combines 

the MLS interpolants with the boundary integral equation (BIE) to solve the boundary value 

problems. The BNM has the capability of dimension reduction due to the presence of 

boundary integral equation and also to deal with complicated boundaries such as moving 

boundaries. In the absence of delta property of MLS approximation, this method could not 

satisfy the essential (Dirichlet) boundary conditions exactly. This method also requires 

background cells for numerical integration.

Natural element method (NEM) (Sukumar, 1998a) utilizes the natural neighbor (n-n) 

coordinates (Sibson, 1980) for the construction of interpolation functions. Natural neighbor 

interpolation (Sukumar et al., 1998b) relies on concepts such as Voronoi diagrams and 

Delaunay tessellations in computational geometry to construct the interpolation functions. 

Despite its fairly simple and appealing structure, sound theoretical basis for construction, and 

desirable smoothness properties, n-n interpolation has received little attention in the area of 

multivariate data interpolation, in comparison with other schemes such as moving least 

square (MLS) approximants (Lancaster and Salkauskas, 1981), radial basis functions 

(Sukumar, 1998a) and Shepard’s interpolant (Krongauz, 1996a).

Zhu et al. (1998a,b) developed a meshless local boundary integral equation (LBIE)

method which involves only local boundary integration centered at a node. They called their



method as a truly meshless method since it does not require the background cells either for 

the interpolation of field variables or for the integration of the weak formulation. It utilizes a 

local unsymmetric weak form (LUWF) and shape functions from MLS approximation 

scheme.

Atluri and Zhu (1998) also presented a truly meshless local Petrov Galerkin (MLPG) 

method which is based on a local symmetric weak form (LSWF) in conjunction with the 

MLS approximations. All integrals in this method are carried out over a regularly shaped 

domains using Gauss quadrature, thereby eliminating the need for background cells. Both 

MLPG and LBIE methods are truly meshless methods. Only difference between them is that 

MLPG method utilizes a local symmetric weak form (LSWF) whereas LBIE method uses a 

local unsymmetric weak form (LUWF) for obtaining the discrete equations. Moreover, in 

LBIE method, few singular integrals appear in the local boundary integral equation therefore 

a special attention has to be paid during integration of the weak form.

Few more developments in these meshless methods using MLPG approach were done by 

De and Bathe (2000) to obtain a powerful solution technique. They proposed a new truly 

meshless method known as the method of finite spheres. This method can be viewed as a 

special case of the general formulation of MLPG method. The method of finite spheres (De 

and Bathe, 2001 a,b) uses rational (non-polynomial) approximation functions and integration 

domains are spheres, spherical shells and general sectors. Therefore, in this method, the 

concept of MLPG method has been used with a specific choice of geometric sub-domains, 

test and trial functions, numerical integration techniques and a procedure for imposing the 

essential boundary conditions.

The regular hybrid boundary node method (RHBNM) (Zhang et al., 2003; Zhang and 

Yao, 2003) was developed in 2001. In contrast to BNM, it does not require background cells 

for the numerical integration. Therefore it also comes in the category of truly meshless



methods. This method does not involve any singular integrals in the solution therefore very 

high accuracy can be achieved with a small number of boundary nodes.

A new meshless local point interpolation method (LPIM) (Liu and Gu, 2001a; Gu and 

Liu, 2001) utilizes the polynomial basis functions which are having delta property. A local 

weak form is developed using weighted residual method based on the idea of MLPG method. 

This method is a truly meshless method and its computational cost is much lower because of 

the simple approximation functions. Liu and Gu (2001b) replaced the polynomial basis 

functions by radial basis functions and called their method a local radial point interpolation 

method (LRPIM).

It is widely reported in the literature that the results obtained by most of these meshless 

methods are quite competitive with those obtained by FEM in different areas of engineering 

and sciences. The only big hurdle with the wide implementation of these meshless methods is 

their high computational cost. To overcome this situation, few researchers have parallelized 

some of these mesh less methods.

Shirazaki and Yagawa (1999) parallelized the FMM method and applied it to solve large 

scale viscous incompressible flow problems. They achieved the parallel efficiencies 68.39% 

and 93.82% using 32 processors and 50.08% and 59.75% using 64 processors for 645370 and 

904340 node models, respectively. They found out that parallel efficiency increases with the 

increase in data size. Yagawa and Furukawa (2000) put a further improvement in parallel 

FMM and solved the large scale heat conduction, fluid and fracture problems on MIMD-type 

parallel computer (HITACHI SR2201). For the heat conduction problems, they obtained the 

parallel efficiency nearly 90% using 64 processors and found that parallel efficiency does not 

decrease with the increase in the number of processors. They obtained the efficiencies of 

68.39% and 93.82% for 645370 and 904340 node models, respectively using 32 processors in 

fluid flow problems.



Medina and Chen (2000) parallelized the SPH to solve the problems of damage in 

composite structures. Goozee and Jacobs (2003) used distributed and shared memory 

parallelism to further improve the parallel SPH code.

GUnther et al. (2000) developed a parallel RKPM code to solve viscous compressible 

Navier Stokes equations. The code was written to handle the boundary conditions in parallel 

and implemented on a distributed memory IBM SP supercomputer.

Griebel and Schweitzer (2002) presented a parallel code for PUM. This code is based on 

data decomposition approach which utilizes a key-based tree implementation and a weighted 

space filling curve ordering scheme for load balancing. They applied this code to solve the 

elliptic partial differential equation.

So far, among all these meshless methods, the EFG method has been successfully used to 

solve a large variety of problems in different areas of engineering and sciences. The EFG 

method, developed by Belytschko et al. (1994) was first used to solve elasticity problems. 

They used Lagrange multiplier method to enforce essential boundary conditions. This method 

was further refined by Lu et al. (1994) to solve partial differential equations. They used 

modified variational principle to enforce essential boundary conditions. In this technique, 

Lagrange multipliers were replaced by their physical meaning.

Lu et al. (1995) used the orthogonal basis functions in MLS approximation to apply the 

EFG method for wave propagation and dynamic fracture problems. The weak form of the 

kinematic (essential) boundary conditions was used to enforce the essential boundary 

conditions. Through this analysis, it was concluded that the weak form of the essential 

boundary condition is identical to the method of Lagrange multipliers if the same shape 

functions are used for Lagrange multipliers, test and trial functions.

Belytschko and Tabbara (1996) used the EFG method to solve the problems on dynamic

crack propagation. The essential boundary conditions were imposed by collocation method



and the discrete equations were obtained by Hamilton’s principle. They tested and applied 

this method to solve elasto-dynamic non-linear crack growth problems.

Belytschko et al. (2000) further used this method to study the mixed mode dynamic crack 

propagation in concrete. The essential boundary conditions were imposed by explicit time 

integration scheme and coupling with finite elements. The discrete equations were obtained 

using variational method. Fracture process zone (FPZ) model was used to replicate the salient 

features of dynamic crack growth with arbitrary path.

In 1996, Krysl and Belytschko used the EFG method for the analysis of thin (Kirchhoff) 

plates (Krysl and Belytschko, 1996a) and thin shells (Krysl and Belytschko, 1996b) using C1 

continuous interpolation functions. They used Lagrange multiplier technique to enforce the 

essential boundary conditions.

Fleming et al. (1997) proposed two ways to enrich the EFG formulation. The first one is 

enriched trial function formulation and other one is enriched basis function formulation. In 

these formulations, modified variational principle technique (Lu et al., 1994) was used to 

impose the essential boundary conditions. They applied these EFG formulations to solve 

crack tip field problems.

In 1997, Sukumar and his co-workers applied the EFG method to solve fracture 

mechanics problems (Sukumar et al., 1997). Enriched basis functions were used in EFG 

formulation and the essential boundary conditions were imposed by coupling EFG method 

with finite elements (Beytschko et al., 1996a) along with the essential boundaries.

Cingoski et al. (1998) applied the EFG method for electromagnetic field computations. 

They obtained the results for 1-D model and compared with those obtained by exact method.

The EFG method was used by Bouillard and Suleau (1998) to acoustic wave propagation 

addressed by Helmholtz equation. They analyzed the effect of dispersion and pollution 



phenomena on EFG solution. The essential (Dirichlet) boundary conditions were imposed by

Lagrange multiplier method. Variational method was used to obtain the discrete equations.

Iura and Kanaizuka (2000) applied the EFG method to analyze a flexible translational 

joint. The original shape functions were modified to impose the essential boundary conditions 

by the same way as that of FEM. The discrete equations were obtained using Hamilton's 

principle.

Du (2000) used the EFG method for the simulation of stationary two-dimensional shallow 

water flows in rivers. The essential boundary conditions were imposed by two methods, 

direct method and penalty method. The direct method does not satisfy the delta property. 

Even then for this particular application, it was found that the direct imposition of essential of 

boundary conditions give better results in comparison to penalty method.

Xuan et al. (2001) used this method in eddy current non-destructive testing (NDT) 

applications. The essential (Dirichlet) boundary conditions were imposed by Lagrange 

multiplier method.

Rao and Rahman (2000) put a significant contribution to the EFG method. They proposed 

a new full transformation method to implement the essential boundary conditions exactly and 

a new weight function based on students’s t-distribution. They applied the EFG method to 

analyze the five different cases of linear-elastic cracked structures subject to single and mixed 

mode loading conditions. In 2001, they used the EFG method for reliability analysis of linear- 

elastic structures with spatially varying random material properties (Rahman and Rao, 2001). 

A random field representing material properties was discretized into a set of random variables 

with statistical properties. They used full transformation method to impose the essential 

boundary conditions. In 2002, they used this method in probabilistic fracture mechanics (Rao 

and Rahman, 2002; Rahman and Rao, 2002) and in 2003, they further used this method for 



calculating stress intensity factors (SIFs) for a stationary crack in two-dimensional 

functionally graded materials of arbitrary geometry (Rao and Rahman, 2003).

Li and Belytschko (2001) applied the EFG method for contact problems in metal forming 

analysis. The numerical results show that the EFG method is very effective in solving the 

problems with extremely large deformations and large material distortions such as upsetting, 

rolling and extrusion processes.

Ventura et al. (2002) proposed a new vector level set method for modeling of propagating 

cracks in EFG method. They found that this vector level set method is also applicable to other 

meshless methods such finite cloud method and RKPM.

In 2002, Liu and his co-workers applied the EFG method for the buckling analysis of 

isotropic and symmetrically laminated composite plates using classical lamination theory 

(Liu et al., 2002b). The essential boundary conditions were imposed by Lagrange multiplier 

and orthogonal transformation techniques. They concluded that the EFG method performs 

much better than FEM results in terms of CPU time to obtain the results of same accuracy,

Xiao and Dhanasekar coupled the EFG method with FE method using collocation 

approach to implement the essential (Dirichlet) boundary conditions exactly (Xiao and 

Dhanasekar, 2002). They applied this method to evaluate the displacements of a beam in pure 

bending and to evaluate the stress intensity factors of a single edge cracked specimen under 

tension.

Liu et al. (2002a) used the EFG method for static and free vibration analysis of spatial 

thin shell structures. For static load analysis, the essential boundary conditions were enforced 

using penalty and Lagrange multiplier methods while for frequency analysis, the essential 

boundary conditions were imposed through a weak form using orthogonal transformation 

technique.



Ren et al. (2002) applied the EFG method to simulate the superelastic behaviour of shape 

memory alloys (SMA). The incremental displacement-based EFG formulation for large 

deformation is developed by employing the continuum tangent stiffness tensor in the weak 

form of the equilibrium equations. An effective approach of imposing the essential boundary 

conditions was developed by eliminating the unknown constrained nodal variables from the 

discrete equations.

Karim and his-coworkers analyzed the transient response of a saturated porous elastic soil 

layer under wave-induced loading using two dimensional numerical procedure based on EFG 

method (Karim et al., 2002). The essential and periodic boundary conditions were 

implemented using Lagrange multiplier method. Crank-Nicolson technique was used for time 

domain approximation. A one-dimensional example was solved for temporal periodic 

conditions and a two-dimensional example for both temporal and spatial periodic conditions.

Li et al. (2003) applied the EFG method for the free surface seepage analysis of uniform 

earth dam. Steady and transient seepage were analyzed in uniform earth dam.

In 2003, Liew and his co-workers presented the numerical simulation of the pseudoelastic 

behavior of a shape memory alloy (SMA) beam using the element free Galerkin method 

(Liew et al., 2003). They proposed a new method to impose the essential boundary 

conditions. In this method, the unknown nodal variables of constrained nodes were replaced 

by known displacements and other nodal variables of the unconstrained nodes, and 

rearranged the discrete equations to explicitly provide the prescribed displacements in a 

vector of nodal variables.

Kamitani and his co-workers (Kamitani et al., 2003) developed a numerical code for 

calculating the shielding current density in the high temperature superconductor (HTS) plate 

using EFG method. The essential boundary conditions were directly incorporated in the 

weak form of the formulation.



Haitian and Yan (2003) combined the EFG method with precise algorithm in time domain 

to solve viscoelasticity problems. The essential boundary conditions were imposed by 

coupling FE-EFG technique with precise algorithm. By this technique, they analyzed two 1-D 

viscoelastic problems.

In 2003, Chen and his co-workers (Chen et al., 2003) applied the EFG method to obtain 

the natural frequencies of composite laminates of complicated shapes in free vibration 

analysis. The essential boundary conditions were imposed by Lagrange multiplier method 

and orthogonal transformation technique was employed to implement the essential boundary 

conditions in the eigenvalue equation.

Xiong et al. (2004) applied the EFG method for the analysis of plane strain rolling in 

slightly compressible rigid-plastic materials. In their work, special emphasis was placed on 

the construction of shape functions and their derivatives and the treatment of frictional effects 

along the contact interface between the work piece and the roil. Two alternative numerical 

techniques were put forwards to treat the velocity discontinuity near the corner of the roll 

entry. The effectiveness of the proposed approach was discussed by comparing theoretical 

predictions with experimental data found in the literature.

Lee and Yoon (2004) proposed an enhanced EFG method with enhancement functions to 

improve the solution accuracy for linear elastic fracture problem. The enhancement functions 

were added to the conventional EFG approximation for the implicit description of near-tip 

field. The discontinuity of crack surface was efficiently modeled by introducing a 

discontinuity function. Essential boundary conditions were enforced with the penalty method 

and a coupling with finite element. Crack growth was modeled implicitly without node 

operation so that the initial node arrangement was not modified until the end of analysis. The 

robustness of the enhanced EFG method was shown by examining the stress intensity factor 

and errors for various crack problems.



Although, the meshless EFG method has been successfully used to solve various types of 

problems in different areas and the results obtained by this method are more accurate (Lu et 

aL, 1994: Beytschko et al., 1996a; Bouillard and Suleau, 1998; Dolbow and Belytschko, 

1998) as compared to FEM, lack of wide implementation of this method is due to 

computational cost which is quite large in comparison to FEM (Belytschko et al., 1996b,c; 

Dolbow and Belytschko, 1998; Singh et al., 2003a). Even though it has been identified by the 

researchers (Belytschko et al., 1994) that the EFG method can also be applied in the area of 

heat transfer, much of the work has not been carried out. Therefore, in the present work, the 

EFG method was applied in the area of heat transfer. Since the accuracy of results obtained 

by EFG method is largely dependent on weight function, new weight functions is also 

proposed and studied in this thesis work. In view of the currently felt need for parallel 

programming version for many meshless numerical methods, a parallel algorithm for the 

EFG method is developed. The results obtained by this parallel code are also presented.



CHAPTER 3

THE ELEMENT FREE GALERKIN METHOD

3.1 INTRODUCTION

In principle, meshless element free Galerkin (EFG) method is almost identical to finite 

element method. The main difference lies in the character of approximants (i.e. interpolants 

in FEM). The EFG method utilizes moving least square (MLS) approximants, which are 

constructed in terms of nodes only. Therefore, there is no need of element and element 

connectivity data like FEM. In EFG method, an unknown function T(x) is approximated by 

TA(x), where T(x) is the actual function and Th(x) is its approximation. The MLS 

approximation consists of three components: a basis function usually a polynomial, a weight 

function associated with each node and a set of coefficients that depends on node position 

(Karim et al., 2002). The weight function is non-zero over a small sub-domain around the 

node. This non-zero domain is called compact support or domain of influence.

MLS approximants contains one attractive property that their continuity is related to the 

continuity of the weight function therefore, a low order polynomial basis (linear basis) can be 

used to generate highly continuous approximations by choosing an appropriate weight 

function (Dolbow and Belytschko, 1998).

3.2 MOVING LEAST SQUARE (MLS) APPROXIMANTS

In the present work, the moving least square (MLS) approximation scheme has been used to 

develop mesh-free shape functions. The unknown function T(x) is approximated by moving 

least square (MLS) (Lancaster and Salkaukas, 1981) approximants Th(x) over the 

computational domain (Belytschko et al., 1994; Singh et al., 2002). The local approximation 

is given as:

^) = Zp/x)a/x)sPr«aM (3.1)



where 

p(x) is a vector of complete basis functions (usually polynomial) is given as: 

P7(x) = [l, x, y, z, xy, yz, zx, ... xk , yk , zk ] (3.2)

and a(x) is a vector of unknown coefficients

»r(x) = Mx). OjW. —«„(*)] (3.3)

where xr = [x y z], k' is degree of the polynomial and m is the number of terms in the 

basis.

Some complete polynomial basis functions and corresponding coefficient vectors are given as

1-D: Linear basis

pr(x) = [l,x], 

ar(x) = [a,(x), a2W] 

Quadratic basis

(m = 2, linear) (3-4)

(3.5)

pr(x) = [l, x, x2],

a T (x) = [a, (x), a2 (x), a, (x)]

(m = 3, quadratic) (3-6)

(3.7)

2-D: Linear basis

pr(x) = [l,x,y]

ar(x) = [a1(x), a2(x), a3(x)]

Quadratic basis

(m =3, linear) (3.8)

(3.9)

Pr(x) = [l,x,y,^,x2>y2], (m = 6, quadratic) (3.10)

3-D:

ar(x) = [a1(x), a2(x), a3(x),a4(x), a5(x),

Linear basis

a6(x)] (3.H)

pr(x) = [l x y z]

ar(x) = [al(x), a2(x), a3(x),a4(x)J

{m =4, linear) (3.12)

(3.13)



Quadratic basis

pT (x) = [\ixtyiz,xy,yz,zx,x2 ,y2 ,z2] (m = 10, quadratic) (3.14)

ar(x) = [a,(x), a2(x), a,(x),a,(x),as(x), a6(x), a,(x),a8(x),a,(x), al0(x)] (3.15)

The unknown coefficients a(x) in Eq. (3.1) are the functions of x and coefficients a(x) at 

any given point x are determined by minimizing the weighted least square sum J (i.e. 

weighted least square sum of difference between local approximation at that point and nodal 

parameter Tt).

J = ^w(x-x,)[pr(x)a(x)-7;]2 (3.16)
/=!

where T, is the nodal parameter at x =x7 but these are not nodal values of 

Th(x = X/)because Th(x) is an approximant not an interpolant; m^x-xJ is a non zero 

weight function of node / at x and n is the number of nodes in the domain of influence of x 

for which w(x-xz) * 0. The stationary value of J in Eq. (3.16) with respect to a(x) leads 

the following set of linear equations:

A(x)a(x)=B(x)T (3.17)

or 

a(x) = A',(x)B(x)T 

where A and B are given as:

Inl-D

AW = ^w^x~ xi) p(x/ )Pr (x/) = “ xi)
»=i

1

B(x; = [w(x-x1)p(x1),

(3.18)

(3.19)

(3.20)

In 2-D



A = £iv(x-x/)p(x/)p7(x/) 
/=i

B(x) = {w(x - x,)p(x,), w(x - X, )p(x,),.........................,M'(x - x„)p(x Jj

' 1 35 1 *: y}
= w(x-x,) X, x,2 x.y, + w(x - x2) *2 X- x2y2 +......

y> ^i>’i / x2y2 y}
(3.21)

1 K

+ w(x-xj x„ x* x„y„

J- x,y, y;,

w(x-Xj) Xi , m>(x-x2) (3.22)

In 3-D

A(x) = f M’(x-x,)p(x/)pr(x/) 
/ = l

B(x) = {w(x - x,) p(x,), w(x - X, ) p(x.),...........................>v(x - x„)p(x„)}

’1 X, y, 1 x2 y2 z.
2 2

X, x, x,y, x.z. X2 X2 X2^2 *2-2
= «’(X-X|) v 2 + w(x - x2) V 2y' xiyt yt y.-. y* x2y2 y2 y.z.

/i xizi yiz> J z2 x2z2 y2z2 z:
(3.23)

1 x„ y„
2

x„ x„ x„yn x zn n n/ n n
tl^X-X,) v 2X/i x„y„ y„ v z

zn xz yz z' _ n n n s n n i

(3.24)

By substituting Eq. (3.18) in Eq. (3.1). the MLS approximant is obtained as:

r‘(x) = fd>;(x)rz =®r(x)T 
/=1

(3.25)



where

<I>'(x) = K(x), O2(x). 0,(x), ... O„(x)} (3.26)

Tr =[rp T}, Ty ... rj (3.27)

The mesh free shape function (x) is defined as:

0z(x) = E^(x)(a-'(x)B(x))/Z = p’ AB, (3.28)
7=0

The linear consistency requirements for the shape function ^(x) (Belytschko et al., 1996b) 

are given as:

£<W = I (3.29a)
/=l

j>z(x).rz=x (3.29b)
/=!

X^Jx)^ = y (3.29c)
/=!

£oz(x)zz=z (3.29d)
/=1

The derivative of the shape function is calculated as:

O'JxJ^prA-'BJ^p^A-'B^p^A-'X.B, +prA’'Bz, (3.30)

where

Bz,(x) = ^(x-xz)p(xz) (3.31)

and A-’.x is computed as:

A"',x =-A",AxA”1 (3.32)

where 

n T , X
A, =Z— (x-xz)p(xz)p (xz) (3.33)

/=i ax.



3.3 EFFICIENT SHAPE FUNCTION CALCULATION

To compute the mesh free shape functions Oy, it is necessary to calculate A-1. In 1-D 

problems, this operation of inverting the matrix is not very difficult but in 2-D and 3-D 

problems, this exercise becomes very much expensive from computational time point of 

view. To overcome this situation, Dolbow and Belytschko (1998) proposed a computationally 

inexpensive alternative approach. This approach (Liu et al., 2002a) involves the LU 

decomposition of the A matrix. The shape function is given as:

O^x) = pr(x)A"'(x)B/(x) = 7r(x)B/(x) (3.34)

where 

y7(x) = pr(x)A-’(x). (3.35)

This leads to the relationship

A(x)y(x) = p(x) (3.36)

The vector /(x) is to be calculated using LU decomposition of the matrix A followed by 

back substitution.

The partial derivatives of y(x) can be recursively calculated as:

A(x)yJ(x)=pI(x)-A,(x)/(x) (3.37)

A(x)/, (x) = p( (x) - A(x)/(x) (3.38)

A(x)/,(x) = p .(x)- A. (x)/(x) (3.39)

A(x)yIt(x)=p„(x)- A^(x)/(x)-2A3(x)/,(x) (3.40)

A(x)/W(x)=pj?(x)- Al).(x)/(x)-2AJ.(x)/J,(x) (3.41)

A(x)r „(x)=p „(x)- A.. (x)y(x)-2A . (x)y2(x) (3.42)

A(x)y,,/x)=p v(x)- Aw.(x)r(x)-A/x)y/x)-A/x)y,(x) (3.43)

A(x)/J,(x)= p „(x)- Ar_ (x)/(x)- Af (x)^ (x)— A^ W/Jx) (3.44)



A(x)y„(x)=p:,(x)- A.,(x)/(x)-A_. (x)y^ (x)-A, (x)y. (x) (3.45)

The derivatives of shape function are given as:

WB/W + /' (x)B; ,(x) (3.46)

a>,.>.(x) = /rJ(x)B,(x)+rr(x)B,/x) (3.47)

$,.:(x) = /' -•(x)B,(x) + /' (x)B, .(x) (3.48)

$;.„(x) = /r^(x)B,(x)+2/,x(x)B,j(x) + yr(x)B,ix(x) (3.49)

,(x) = (x)B,(x)+2/rJ.(x)BZ1 (x) + / (x)B, B.(x) (3.50)

O,.. (x) = /„ (x)B; (x)+ 2yT. (x)B,: (x) + yr(x)B, „ (x) (3.51)

°/.x? (x) = y'x (x)B, r (x)+ y1 \ (x)B,(x)+ yr (x)B, X).(x) + y^ (x)B,, (x) (3.52)

^l.,..W=rTA^,aW+ (x)B/(x)+yr(x)B,^(x) + /r.-(x)B/j.(x) (3.53)

rr--(x)B,^ (x)+ y1^ (x)B,(x)+yr(x)B,It(x) + y'\(x)B;.(x) (3.54)

3.4 WEIGHT FUNCTION DESCRIPTION

The choice of weight function w(x-x,) affects the resulting approximation T^x,) in EFG 

and other meshless methods. The weight function is non-zero over a small neighborhood of a 

node xz, called the support or domain of influence of node I. The smoothness and 

continuity of the shape function depends on the smoothness and continuity of the weight 

function w(x-xz). If weight function is C1 continuous then shape function will also have 

C continuity. Therefore, the selection of appropriate weight function is essential in EFG and 

other meshless methods.

The weight function must satisfy the following requirements (Li et al., 2003; Singh and 

Prakash, 2003):



(i) It should have a compact support to preserve the local character of MLS 

approximation.

(ii) It must be positive, continuous and differentiable in the domain of influence.

(iii) It should be zero outside the domain of influence.

(iv) It should decrease in magnitude as the distance from x to xz increases.

(v) It should have a relatively larger value for a node, which is closer to the evaluation 

point than those of far nodes.

(vi) The nodes in the domain of influence should not be collinear (except 1-D) and the 

number of nodes must be larger than the number of terms in the basis (n > m).

The different weight functions used in present analysis are written as a function of 

normalized radius r as:

The cubicspline (C.S.) weight function (Belytschko et al., 1996c)

7
— 4r2 +4r3 
3

3
(3.55a)

0 r > 1

The quarticspline (Q.S.) weight function (Belytschko et al., 1996c)

w(x-x;) = w(r) =
l-6r2+8r3-3r4
0

0<r<l 
►

r > 1 ✓
(3.55b)

Gaussian weight function (Belytschko et al., 1996c)

w(x-xz) = w(r)
e-(25r)2

0
0<r <1 ►

r > 1
(3.55c)

The quadratic weight function (Krysl and Belytschko, 2001)

w(x-x;) = w(r) = < 0<r <1 >
r > 1

(3.55d)



The hyperbolic weight function (Singh et al., 2002)

)p(x-x/) = M-(r) = «
sech(r + 3) 
0

0<r <1
r > 1

*
(3.55e)

The exponential weight function

[100r 0<r <1
w(x —Xy) = w(r) = <

0
►

F >1
(3.55f)

The rational weight function (Singh et al., 2003b)

1 0 < r < 1
w(x- xz) = w(r) = • r2 +0.1 (3.55g)

0 r > 1

The cosine weight function

(cos — 0<r <1
w(x-x,) = w(r) = < I 2 J f (3.55h)

0 r > 1

where (r) = " X X/ II
dm,

||x- xj| is the distance from a sampling point x to a node xz and dml is the domain of 

influence of node / .

In 3-D

JX-XJI
K) —- -----  (3.56a)

“mx!

llX-Xyll
(3.56b)

“myl

Vz) = —-- ----- (3.56c)
“mzl

and

dmxl ~^max^xl (3.57a)



d^d^c,, (3.57b)

d^, = dm„ c., (5.57c)

dm^ = scaling parameter which defines size of the domain of influence and cx/, cv/ & c.t at 

node / are the distances to the nearest neighbors, d^ , dmvt and d^ are chosen such that 

the matrix is non-singular at every point in the domain.

The weight function at any given point is obtained as:

m’(x - x,) = w(rx) w(ry) w(r:) = w. (5.58)

where w(rx), w(rv)and w(r.) can be calculated by replacing r by rx, r and r, in the 

expression of w(r).

The derivatives of the weight functions are calculated as:

dw
wx=—(3.59a) 

dx

dw
w = —(3.59b) 

dy

dw,
w.=—(3.59c) 

dz

3.5 ENFORCEMENT OF ESSENTIAL BOUNDARY CONDITIONS

The EFG shape functions do not satisfy the Kronecker delta property: 0z(xz) *5/; which 

means that the EFG approximants are not equal to the true function at nodes unless the 

weight function is singular i.e. the nodal parameters Tt are not the nodal values of Th(x{). 

In other word, the approximation at the /th node depends not only on the nodal parameter but 

also on the number of nodes with in the domain of influence of node I. The lacking of 

Kronecker delta property in EFG shape functions O, poses some difficulty in the imposition 

of essential boundary conditions as compared to finite element method. For that different 

numerical techniques have been proposed to enforce the essential boundary conditions in



EFG method such as Lagrange multiplier method (Belytschko et al.. 1994; Bouiilard and 

Suleau, 1998; Karim et aL, 2002), modified variational principle approach (Lu et al., 1994; 

Fleming et aL, 1997), coupling with finite element method (Beytschko et aL, 1996a; 

Krongauz and Belytschko, 1996b; Sukumar et aL, 1997), penalty approach (Gavete et aL, 

2000; Du, 2000; Liu et aL, 2002b) and full transformation technique (Rao and Rahman, 2000; 

Rahman and Rao, 2001), etc.

Lu et aL, (1994) proposed modified variational principle approach, in this approach 

Lagrange multipliers were replaced by their physical meaning. Although this leads to banded 

set of equations, the results are not as accurate when compared with those by Lagrange 

multipliers approach. Another approach coupling with finite elements) proposed by Krongauz 

and Belytschko (1996b) is to necklace the EFG domain with FEM domain and apply the 

boundary conditions to the finite elements nodes. This coupling technique dramatically 

simplifies the enforcement of essential boundary conditions but compromises the salient 

features of EFG method and makes the numerical integration an even more burdensome task. 

Penalty approach (Liu et aL, 2002a) is easy to enforce the essential boundary conditions and 

give the discrete equations in simple form similar of the FEM. This approach not only 

preserves symmetry and positive definite property of the matrix but also have the bandedness 

property of matrix. However the improper selection of penalty parameter can lead to wrong 

results. Rao and Rahman (2000) presented an efficient full transformation technique to 

enforce the essential boundary conditions. This approach removes some of the shortcomings 

of Lagrange multiplier method but it is not easy to implement. Although. Lagrange multiplier 

method (Belytschko et aL, 1994) does not have positive definite and bandedness properties of 

the system matrix still it has been used in the present work due to its accuracy.

In 2-D, Lagrange multiplier 2 is expressed as:

^(x)=y/(5)2/, xef (3.60a)



3X(x) = Nt(s)6An xeT (3.60b)

where Nt(s) is a Lagrange interpolant and 5 is the length along the essential boundary 

conditions.

In 3-D, Lagrange multiplier 2 is expressed as:

A(x) = Nf(a)A,, xgS (3.61a)

3 Z(x) = Nl(a)6 xeS (3.61b)

where is a Lagrange interpolant and a is the area for the essential boundary 

conditions.



CHAPTER 4

1-D HEAT TRANSFER ANALYSIS

4.1 INTRODUCTION

This chapter describes the application of EFG method in one-dimensional (1-D) heat transfer 

problems. Four different cases have been chosen to check the applicability of this method in 

1-D heat transfer problems. The steady-state and transient analysis of different model 

problems have been carried out. The effect of scaling parameter on EFG results has also been 

discussed in detail.

> CASE-I

4.2 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for one-dimensional heat transfer with thermal 

properties independent of temperature is given as:

. d2T a (an .
*—+2 = P« (4.1a)ox \dt J

The essential boundary conditions are:

atx = 0, T = Tl (4.1b)

at x = L, T = Tr

The weighted integral form of Eq. (4.1a) is given as:

L

0

’ ' d2T A dT\. n
w<k—r + P-pc—rdx = U dx2 * dt\

(4.1c)

(4.2)

The weak form of Eq. (4.2) will be

L

0

aw ar 

dx dx

L 
pcwt dx + 

o

, , dTwdx + wk —
ax Jo (4.3)

L

0

L

= 0

The functional I(T) is obtained as:
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L /.
dx + jpcrrdx- ^QTdx 

0 0
(4.4)

Using Lagrange multiplier technique to enforce essential boundary conditions, the functional

f (T) is obtained as

Using Variational method, Eq. (4.5) reduces to

5/’(r) = '[L —8 —
J dx dx 0

5Tdx +
(4.6)

x8r|is0 +6X(r-7-t)|i_->/8r|i.; +8X'(r-rs)|j

Since 87,8X and 8X'are arbitrary in preceding equation, the following relations are obtained 

by using Eq. (3.25) and Eq. (4.6)

[k]{t}+[c]{t}+[g]{x}+[g']{;/; = :r; (4.7a)

[g']{t} = {7,} (4.7b)

lG'r]{T} = {rJ (4.7c)

where

L
(4.8a) 

0

L
C,J = fpc<D,r<I>J.dx (4.8b)

0 

/. 
f, = (4.8c)

0

(4.8d)

(4.8e)
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Using Crank-Nicolson technique for time approximation, the Eq. (4.7) can be written as:

K+C G
G' 0
G" 0

G' Tv 
0 X 
0 . x'_

T,.
T„

where

R,. =([c]-(l -a)A/[K]){TU + (i-a)A/{fU

K‘ =aA/[K]

4.3 NUMERICAL RESULTS AND DISCUSSION

(4.9)

(4.10a)

(4.10b)

The different parameters used for steady-state and transient analysis of one-dimensional 

model shown in Fig. 4.1 are tabulated in Table 4.1. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using linear 

bar element for same sets of nodes. The EFG results have been compared with those obtained 

by finite element and analytical (Holman, 1989) methods. A comparative study is carried out 

to evaluate the performance of different weight functions.

4.3.1 Steady-state analysis

The results (temperature values) presented in Table 4.2 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.t/inax =1.01 & dmax =1.51) and it 

shows a comparison of temperature values obtained using 11 nodes with those obtained by 

FEM and analytical methods at the location (x = 0.2m). Table 4.3 shows a comparison of 

temperature values obtained by EFG method using different weight functions for two values 

of scaling parameter with those obtained by FEM and analytical methods at the same location 

i.e. (x = 0.2m) for 21 nodes. A comparison of temperature values obtained using different 

EFG weight functions with FEM and analytical methods for 11 and 21 nodes, is presented in 

Table 4.4 and Table 4.5 respectively at the location (x = 0.4 m). Similar type of comparisons 
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of temperature values are shown in Table 4.6 for 11 nodes at the location (x = 0.6m), in 

Table 4.7 for 21 nodes at the location (x = 0.6m), in Table 4.8 for 11 nodes at the 

location (x = 0.8 m) and in Table 4.9 for 21 nodes at the location (x = 0.8m). From the results 

presented in Table 4.2 to Table 4.9, it is observed that EFG results obtained using different 

weight functions are similar for dmn = 1.01. However for dmKl = 1.51, only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results. It 

is also observed that the EFG results obtained using different weight functions are in good 

agreement with those obtained by FEM and analytical methods. Moreover with the increase 

in number of nodes EFG results starts converging.

The effect of scaling parameter (dmax)on EFG results obtained using different weight 

functions is presented in Table 4.10 for 11 nodes and Table 4.11 for 21 nodes respectively at 

the location (x = 0.4 m). Similar effect of scaling parameter on EFG results is shown in Table 

4.12 for 11 nodes and Table 4.13 for 21 nodes at the location (x = 0.8m). Fig. 4.2 shows the 

effect of scaling parameter on EFG results obtained using 11 and 21 nodes at the location 

(x = 0.2 m). Similar effect of scaling parameter on EFG results is observed in Fig. 4.3 at the 

location (x = 0.6m). From tables and figures, it is clear that only cubicspline, quarticspline, 

Gaussian, exponential and rational weight functions give acceptable results in the range 

1 < ^max < 2.0 whereas the results obtained using quadratic, hyperbolic and cosine weight 

functions are varying in abrupt manner with scaling parameter. Therefore EFG results 

obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in the 

range 1.0 < dmaK <2.0. It is also observed that there is minimum variation in EFG results 

with scaling parameter for exponential weight function.
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t-th
■■------> x
*1

Fig. 4.1 One-dimensional model

Table 4.1 Data for the 1-D model shown in Fig. 4.1
Parameters Value of the parameter
Length (L)
Thermal conductivity (k)
Density of the material (p)
Specific heat (c)
Rate of internal heat generation (Q)
Surrounding fluid temperature ()
Initial temperature (T,n,)
Time step size (A/)
Temperature at x = 0
Temperature at x = L

1 m
400 W/m-K 
10000 kg/m3 
400 kJ/kg-K 
8000 W/m3
20 °C
0°C
100 sec
100 °C
0°C
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Table 4.2 Comparison of EFG results obtained using 11 nodes with FEM and analytical results at the 
location (x = 0.2 m) of the 1 -D model shown in Fig. 4.1

Weight 
function

EFG
FEM Analytical

^=101 =1.51

T (°C) % error T (°C) % error T (°C) % error TCC)
C. S. 81.6000 0.0000 81.6001 0.0001

81.6000 0.0000 81.6000

Q. S. 81.6000 0.0000 81.6001 0.0001

Gaussian 81.6000 0.0000 81.6041 0.0050

Quadratic 81.6000 0.0000 82.3222 0.8850

Hyperbolic 81.6000 0.0000 90.5004 10.9073
Exponential 81.6000 0.0000 81.5890 -0.0135

Rational 81.6000 0.0000 81.5605 -0.0484

Cosine 81.6000 0.0000 81.9930 0.4816

Table 4.3 Comparison of EFG results obtained using 21 nodes with FEM and analytical results at the 
location (x = 0.2 m) of the 1-D model shown in Fig. 4.1

Weight 
function

EFG
FEM Analytical

^=101 ^=1-51

rec) % error rco % error rco % error TCC)
C. S. 81.6000 0.0000 81.6000 0.0000

81.6000 0.0000 81.6000

Q. S. 81.6000 0.0000 81.6000 0.0000

Gaussian 81.6000 0.0000 81.6010 0.0012

Quadratic 81.6000 0.0000 81.4294 -0.2091

Hyperbolic 81.6000 0.0000 85.1920 4.4020

Exponential 81.6000 0.0000 81.5971 -0.0035
Rational 81.6000 0.0000 81.5957 -0.0053
Cosine 81.6000 0.0000 81.0791 -0.6384
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Table 4.4 Comparison of EFG results obtained using 11 nodes with FEM and analytical results at the 
location (x = 0.4 m) of the 1-D model shown in Fig. 4.1

1
Weight 
function

EFG
FEM Analytical

=1.01 =1.51

rro % error r(°c) % error 7'(°C) % error rco
C. S. 62.4000 0.0000 62.4001 0.0002

62.4000 0.0000 62.4000

Q. S. 62.4000 0.0000 62.4001 0.0002

Gaussian 62.4000 0.0000 62.4040 0.0064

Quadratic 62.4000 0.0000 62.3026 -0.1561
Hyperbolic 62.4000 0.0000 65.3112 4.6654
Exponential 62.4000 0.0000 62.3902 -0.0157

Rational 62.4000 0.0000 62.3884 -0.0186
Cosine 62.4000 0.0000 62.5539 0.2466

Table 4.5 Comparison of EFG results obtained using 21 nodes with FEM and analytical results at the 
location (x = 0.4 m) of the 1-D model shown in Fig. 4.1

Weight 
function

EFG
FEM Analytical

d^ =1.01 dm =1-51

K’C) % error rec) % error T(°C) % error rco
C. S. 62.4000 0.0000 62.4000 0.0000

62.4000 0.0000 62.4000

Q. S. 62.4000 0.0000 62.4000 0.0000

Gaussian 62.4000 0.0000 62.4010 0.0016

Quadratic 62.4000 0.0000 62.3120 -0.1410

Hyperbolic 62.4000 0.0000 63.1198 1.1535

Exponential 62.4000 0.0000 62.3975 -0.0040

Rational 62.4000 0.0000 62.3970 -0.0048

Cosine 62.4000 0.0000 61.5816 -1.3115
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Table 4.6 Comparison of EFG results obtained using 11 nodes with FEM and analytical results at the 
location (x = 0.6 m) of the 1-D model shown in Fig. 4.1

Weight 
function

EFG
FEM Analytical

=101 =1.51

rro % error T (°C) % error T (°C) % error TfC)
C. S. 42.4000 0.0000 42.4001 0.0002

42.4000 0.0000 42.4000

Q. S. 42.4000 0.0000 42.4001 0.0002
Gaussian 42.4000 0.0000 42.4040 0.0094
Quadratic 42.4000 0.0000 42.7607 0.8507

Hyperbolic 42.4000 0.0000 37.1552 -12.3698
Exponential 42.4000 0.0000 42.3908 -0.0217

Rational 42.4000 0.0000 42.3914 -0.0203
Cosine 42.4000 0.0000 42.5603 0.3781

Table 4.7 Comparison of EFG results obtained using 21 nodes with FEM and analytical results at the 
location (x = 0.6 m) of the 1-D model shown in Fig. 4.1

Weight 
function

1 EFG
FEM Analytical

d^ =1-01 ^„=1-51

% error T (°C) % error TfC) % error T (°C)
C. S. 42.4000 0.0000 42.4000 0.0000

42.4000 0.0000 42.4000

Q. S. 42.4000 0.0000 42.4000 0.000
Gaussian 42.4000 0.0000 42.4010 0.0024
Quadratic 42.4000 0.0000 42.3813 -0.0441

Hyperbolic 42.4000 0.0000 41.8186 -1.3712
Exponential 42.4000 0.0000 42.3978 -0.0052

Rational 42.4000 0.0000 42.3982 -0.0042
Cosine 42.4000 0.0000 41.5825 -1.9281
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Table 4.8 Comparison of EFG results obtained using 11 nodes with FEM and analytical results at the 
location (x = 0.8 m) of the I -D model shown in Fig. 4.1

Weight 
function

. — _
EFG

FEM
—

Analytical
^max = 1.01 = 1.51

rec. % error T (°C) % error T (°C) % error 7VC)
C. S. 21.6000 0.0000 21.6001 0.0005
Q. S. 21.6000 0.0000 21.6001 0.0005

Gaussian 21.6000 0.0000 21.6040 0.0185
Quadratic 21.6000 0.0000 22.0367 2.0218

21.6000 0.0000 21.6000
Hyperbolic 21.6000 0.0000 9.9703 -53.8412
Exponential 21.6000 0.0000 21.5921 -0.0366

Rational 21.6000 0.0000 21.6224 0.1037
Cosine , 21.6000 0.0000 21.9888 1.8000

Table 4.9 Comparison of EFG results obtained using 21 nodes with FEM and analytical results at the 
location (x = 0.8 m) of the 1-D model shown in Fig. 4.1

Weight 
function

EFG
FEM Analytical

d^ =1.01 d^ =1-51

T(°C) % error TCC) % error FCC) % error rec)
C. S. 21.6000 0.0000 21.6000 0.0000

21.6000 0.0000

Q. S. 21.6000 0.0000 21.6000 0.0000

Gaussian 21.6000 0.0000 21.6010 0.0046

Quadratic 21.6000 0.0000 21.5453 -0.2532
21.6000

Hyperbolic 21.6000 0.0000 17.3587 -19.6356

Exponential 21.6000 0.0000 21.5982 -0.0083

Rational 21.6000 0.0000 21.5996 -0.0018

Cosine 21.6000 0.0000 21.0807 -2.4042
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Table 4.10 Effect of scaling parameter on EFG results obtained using I I nodes at the location 
(x = 0.4 m) of the 1-D model shown in I ig. 4.1

Scaling
Parameter

Temperature (° C)

C. S. QS Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.21 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.41 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.61 62.4055 62.4100 62.4075 22.4216 65.9703 62.3913 62.3935 0.3163
1.81 62.4257 62.4404 62.4186 234.9653 61.5955 62.3945 62.4035 111.1831
2.01 62.4441 62.4694 62.4343 158.8394 -326.9098 62.3944 62.3788 95.7380
2.21 62.4705 62.5721 62.4633 196.4522 -131.7198 62.3962 62.3855 129.3561
2.41 62.5376 62.6328 62.5541 213.9497 85.3274 62.3976 62.3941 151.1536
2.61 62.5642 61.0790 62.8141 235.2454 -20.1869 62.4031 62.4816 204.0527
2.81 61.4922 54.0303 63.4037 290.5388 -57.4471 62.4115 62.4416 239.3163
3.01 49.0687 45.2470 64.2749 353.2578 -114.4655 62.1297 61.1012 281.4844

Table 4.11 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = 0.4 m) of the 1-D model shown in Fig. 4.1

Scaling Temperature (°C)
Parameter C. S. QS Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.21 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.41 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000 62.4000
1.61 62.4014 62.4025 62.4019 54.9645 64.1165 62.3978 62.3984 54.0570
1.81 62.4064 62.4101 62.4046 257.9605 69.2547 62.3986 62.4009 104.4035
2.01 62.4108 62.4143 62.4084 96.7492 21.3547 62.3978 62.3927 129.6589
2.21 62.4141 62.4221 62.4138 94.9982 190.4654 62.3980 • 62.3998 134.1992
2.41 62.4257 62.4959 62.4281 95.1441 364.7052 62.3982 62.4125 104.3666
2.61 62.4915 62.7785 62.4831 3.0291 -9.9129 62.3991 62.4608 -51.8707
2.81 62.7822 63.3720 62.6472 -68.2054 -178.6431 62.4016 62.4986 -63.2660
3.01 63.0621 65.3978 62.9915 -69.2963 -76.7663 61.9495 60.3640 -25.7713
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Table 4.12 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(x = 0.8 m) of the 1 -D model shown in Fig. 4.1

Scaling 
Parameter

Temperature (° C)

C. S. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.21 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.41 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.61 21.6055 21.6099 21.6072 -0.5770 5.2842 21.5959 21.6223 -14.4645
1.81 21.6247 21.6328 21.6119 -127.4838 -12.1280 21.6061 21.6008 -35.2355
2.01 21.6170 21.5222 21.5802 -50.7077 -222.2715 21.6159 21.5291 -25.2990
2.21 21.4613 20.8773 21.4089 59.6425 -138.9054 21.6233 21.4028 -37.3191
2.41 20.8545 18.8683 20.8916 55.8988 -86.3957 21.6236 21.1811 -39.4913
2.61 18.9719 12.9638 19.6621 61.9579 25.3318 21.5157 21.8063 -74.9529
2.81 12.7695 3.3939 16.9444 -108.6863 35.7859 21.5078 21.7894 -139.602
3.01 -9.4972 -31.0873 11.3089 -199.2055 67.5297 21.4016 21.2338 -220.514

Table 4.13 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = 0.8 m) of the 1 -D model shown in Fig. 4.1

Scaling 
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
1.01 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.21 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.41 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000 21.6000
1.61 21.6014 21.6025 21.6019 35.1594 13.6184 21.5987 21.5998 36.2229
1.81 21.6064 21.6099 21.6048 201.8041 -11.4111 21.5998 21.6009 61.6561
2.01 21.6102 21.6052 21.6098 69.6704 -194.2075 21.6003 21.5993 169.5690
2.21 21.6023 21.5048 21.6183 100.1086 -142.6333 21.6008 21.6023 279.6172
2.41 21.5200 20.9352 21.6183 110.0123 -198.6662 21.6011 21.6024 197.7131

2.61 21.0434 18.2316 21.6199 -84.2119 146.8000 21.6033 21.8429 42.3328
2.81 18.5550 9.0833 21.4010 81.1018 343.4000 21.6063 22.0550 111.3497
3.01 4.5641 -5.0492 20.4346 128.7914 590.0000 21.4602 21.6411 130.6299
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4.3.2 Transient analysis

The transient analysis of 1-D model shown in Fig. 4.1 has been carried out using different 

EFG weight functions. Table 4.14 and Fig. 4.4 show the convergence analysis using different 

time steps at two different locations. The solution with 1000 sec time step continues to 

oscillate with decreasing amplitude until it converges at 15000 sec. This time step (1000 sec) 

is nearly 20% of the total time required to achieve steady state condition in first two time 

steps (i.e. 100 sec and 500 sec). For time steps up to 500 sec, the EFG results are well 

converged and this time step is approximately 10% of the total time required for achieving 

steady state. In the present analysis, time step of 100 sec has been taken which is nearly 2% 

of the total time required to achieve steady state condition.

Table 4.15 and Table 4.16 show the comparison of EFG results (temperature values) 

obtained using 11 nodes with FEM results at the location (x = 0.2 m) for d^ =1.01 and 

^max =1-51 respectively. Similar comparison of temperature values obtained using 21 nodes 

is presented in Table 4.17 and Table 4.18 for i/max =1.01 and d^ =1.51 respectively at the 

same location i.e. (x = 0.2m). Table 4.19 and Table 4.20 shows the comparison of 

temperature values obtained using 11 nodes with FEM results at the different location 

(x = 0.6m) for d^ =1.01 and d^ =1.51 respectively. Similar comparison of temperature 

values obtained using 21 nodes with FEM results is also presented in Table 4.21 and Table 

4.22 for d^ =1.01 and d^ =1.51 respectively at the location i.e. (x = 0.6 m). Fig 4.5 

shows the comparison of temperature values obtained using 11 nodes with FEM for 

<iax =1.01 and d^ =1.51 at the location (x = 0.4 m). Similar comparison of temperature 

values obtained using 21 nodes with FEM is shown in Fig. 4.6 at the same location 

i.e. (x = 0.4 m). Fig 4.7 shows the comparison of temperature values obtained using 11 nodes 

with FEM for J =1.01 and d =1.51 at the location(x = 0.8m). Similar comparison of 

temperature values obtained using 21 nodes with FEM is shown in Fig. 4.8 at the same 
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location i.e.(x = 0.8 m). From the results presented in tables and figures, it is clear that the 

EFG results obtained using different weight functions are similar for =1.01 but for

=1 -51 only cubicspline (C.S.), quarticspline (Q.S), Gaussian, exponential and rational 

weight functions give acceptable results. It has also been observed that the EFG results are in 

good agreement with those obtained by FEM.

Table 4.14 Convergence analysis of EFG results obtained using different time step at the 
location (x = 0.4 m) of the 1 -D model shown in Fig. 4.1

Time (sec) 
xlO2

Time Step Size
100 sec 500 sec 1000 sec

0 0.0000 0.0000 0.0000
10 37.3692 29.5071 18.0546
20 53.2527 50.9520 48.1850
30 59.0122 58.4164 58.5522
40 61.1463 61.0381 59.9812
50 61.9324 61.9507 62.4932
60 62.2181 62.2593 61.7792

Fig. 4.4 Convergence analysis of EFG results obtained using different time step at the 
location (x = 0.2 m) of the 1 -D model shown in Fig. 4.1
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Tabic 4.15 Comparison of EFG results obtained using 11 nodes with FEM al the location ( v = 0.2 m) 
of the 1 -D model shown in Fig. 4.1 for d^ =1.01

Time 
(sec) 
xIO2

Temperature (° C)

=101
FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 53.3887 53.3887 53.3887 53.3887 53.3887 53.3887 53.3887 53.3887 58.3264
12 67.8810 67.8810 67.8810 67.8810 67.8810 67.8810 67.8810 67.8810 69.7341
16 74.1548 74.1548 74.1548 74.1548 74.1548 74.1548 74.1548 74.1548 75.1533
24 77.4525 77.4525 77.4525 77.4525 77.4525 77.4525 77.4525 77.4525 78.0601
30 79.2523 79.2523 79.2523 79.2523 79.2523 79.2523 79.2523 79.2523 79.6531
36 80.2456 80.2456 80.2456 80.2456 80.2456 80.2456 80.2456 80.2456 80.5289
42 80.7982 80.7982 80.7982 80.7982 80.7982 80.7982 80.7982 80.7982 81.0108
48 81.1089 81.1089 81.1089 81.1089 81.1089 81.1089 81.1089 81.1089 81.2758
54 81.2861 81.2861 81.2861 81.2861 81.2861 81.2861 81.2861 81.2861 81.4217

60 81.3893 81.3893 81.3893 81.3893 81.3893 81.3893 81.3893 81.3893 81.5019

Table 4.16 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.2 m) 
of the 1-D model shown in Fig. 4.1 for d^ =1.51

Time 
(sec) 
xIO2

i Temperature (° C)

• ^max
1

= 1.51
FEM

I c.s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 • 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 53.3871 53.3857 53.2599 27.6949 84.5846 53.3796 52.6504 37.3217 58.3264
12 67.8806 67.8803 67.8419 51.4845 87.4115 67.7830 67.3114 61.4446 69.7341
16 74.1547 74.1545 74.1356 61.6015 885517 74.0811 73.7709 71.1078 75.1533
24 77.4524 77.4524 77.4421 66.7551 89.5186 77.3945 77.1692 75.8761 78.0601
30 79.2523 79.2523 79.2475 69.7629 89.9"07 79.1997 79.0180 78.4583 79.6531
36 80.2456 80.2457 80.2446 71.6954 90.2334 80.1946 80.0376 79.9095 80.5289
42 80.7983 80.7984 80.7999 73.0316 90.3821 80.7481 80.6075 80.7390 81.0108
48 81.1090 81.1091 81.1124 74.0150 90.4632 81.0596 80.9316 81.2181 81.2758
54 81.2862 81.2863 81.2910 74.7802 90.5049 81.2377 81.1203 81.4977 81.421"
60 81.3895 81.3896 81.3952 75.4047 90.5242 81.3419 81.2334 81.6629 81.5019
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Table 4.17 Comparison of EFG results obtained using 21 nodes with FEM at the location (.r = 0.2 m) 
of the 1-D model shown in Fig. 4.1 for dmax = 1.01

Time 
(sec) 
xlO2

Temperature (°C)

x =1.01
FEM

c.s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 55.6972 55.6972 55.6972 55.6972 55.6972 55.6972 55.6972 55.6972 56.5998
12 68.9420 68.9420 68.9420 68.9420 68.9420 68.9420 68.9420 68.9420 69.5324
16 74.6310 74.6310 74.6310 74.6310 74.6310 74.6310 74.6310 74.6310 75.2534
24 77.6537 77.6537 77.6537 77.6537 77.6537 77.6537 77.6537 77.6537 78.1741
30 79.3204 79.3204 79.3204 79.3204 79.3204 79.3204 79.3204 79.3204 79.7327
36 80.2464 80.2464 80.2464 80.2464 80.2464 80.2464 80.2464 80.2464 80.5777
42 80.7635 80.7635 80.7635 80.7635 80.7635 80.7635 80.7635 80.7635 81.0389
48 81.0543 81.0543 81.0543 81.0543 81.0543 81.0543 81.0543 81.0543 81.2917
54 81.2199 81.2199 81.2199 81.2199 81.2199 81.2199 81.2199 81.2199 81.4305

60 81.3160 81.3160 81.3160 81.3160 81.3160 81.3160 81.3160 81.3160 81.5067

Table 4.18 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.2 m) 
of the 1-D model shown in Fig. 4.1 for dmax = 1.51

Time 
(sec) 
xlO2

Temperature (° C)
J wma),=1.51

FEM
c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 55.6970 55.6969 55.6873 64.9893 64.3463 55.7171 55.6947 59.9144 56.5998
12 68.9414 68.9410 68.9123 74.8300 74.9890 69.0726 69.2735 71.7314 69.5324

16 74.6305 74.6300 74.6002 78.9527 79.6253 74.7585 74.9787 76.7576 75.2534

24 77.6532 77.6529 77.6271 80.9240 82.1437 77.7548 77.9460 79.2396 78.1741

30 79.3200 79.3197 79.2988 81.8185 83.5679 79.3944 79.5478 80.4718 79.7327

36 80.2462 80.2459 80.2292 82.1558 84.3756 80.2979 80.4163 81.0508 80.5777

42 80.7633 80.7631 80.7498 82.2164 84.8306 80.7974 80.8865 81.2907 81.0389

48 81.0542 81.0540 81.0434 82.1513 85.0837 81.0750 81.1403 81.3604 81.2917
54 81.2198 81.2197 81.2111 82.0387 85.2215 81.2307 81.2769 81.3500 81.4305

60 81.3159 81.3158 81.3089 81.9177 85.2938 81.3193 81.3503 81.3066 81.5067
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Table 4.19 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.6m) 
of the 1-D model shown in Fig. 4.1 for dmax =1.01

Time 
(sec) 
xlO2

Temperature (° C)

=1.01 FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 7.6401 7.6401 7.6401 7.6401 7.6401 7.6401 7.6401 7.6401 9.5396
12 22.2129 22.2129 22.2129 22.2129 22.2129 22.2129 22.2129 22.2129 23.6177
16 31.0674 31.0674 31.0674 31.0674 31.0674 31.0674 31.0674 31.0674 32.0047
24 36.0265 36.0265 36.0265 36.0265 36.0265 36.0265 36.0265 36.0265 36.6754
30 38.7741 38.7741 38.7741 38.7741 38.7741 38.7741 38.7741 38.7741 39.2501
36 40.2990 40.2990 40.2990 40.2990 40.2990 40.2990 40.2990 40.2990 40.6670
42 41.1505 41.1505 41.1505 41.1505 41.1505 41.1505 41.1505 41.1505 41.4466
48 41.6306 41.6306 41.6306 41.6306 41.6306 41.6306 41.6306 41.6306 41.8755

54 41.9055 41.9055 41.9055 41.9055 41.9055 41.9055 41.9055 41.9055 42.1114

60 42.0663 42.0663 42.0663 42.0663 42.0663 42.0663 42.0663 42.0663 42.2412

Table 4.20 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.1 for dm^ = 1.51

Time 
(sec) 
xlO2

Temperature (° C)
J 
wma?.=1.51 FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 7.6399 7.6398 7.6199 -5.6255 16.9914 7.5375 7.0829 0.3676 9.5396
12 22.2116 22.2105 22.1335 4.0141 23.3921 22.4759 22.7860 15.5795 23.6177
16 31.0663 31.0654 31.0012 12.6787 28.3122 31.3104 31.7381 26.5753 32.0047
24 36.0257 36.0250 35.9801 18.8643 31.5155 36.1955 36.5630 33.2317 36.6754
30 38.7736 38.7732 38.7443 23.0664 33.5559 38.8759 39.1570 37.0972 39.2501

36 40.2988 40.2985 40.2817 25.9456 34.8484 40.3487 40.5515 39.3220 40.6670
42 41.1504 41.1503 41.1422 27.9882 35.6673 41.1621 41.3009 40.6043 41.4466

48 41.6307 41.6307 41.6286 29.5075 36.1878 41.6157 41.7035 41.3475 41.8755

54 41.9056 41.9057 41.9077 30.6961 36.5203 41.8726 41.9204 41.7821 42.1114

60 42.0664 42.0665 42.0713 31.6705 36.7342 42.0218 42.0381 42.0394 42.2412
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Table 4.21 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.6m) 
of the 1 -D model shown in Fig. 4.1 for d^ =1-01

Time 
(sec) 
xlO2

Temperature (° C)

=101 FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 7.9090 7.9090 7.9090 7.9090 7.9090 7.9090 7.9090 7.9090 9.3695
12 22.3785 22.3785 22.3785 22.3785 22.3785 22.3785 22.3785 22.3785 23.3749
16 31.2744 31.2744 31.2744 31.2744 31.2744 31.2744 31.2744 31.2744 31.8273
24 36.2567 36.2567 36.2567 36.2567 36.2567 36.2567 36.2567 36.2567 36.5559
30 39.0114 39.0114 39.0114 39.0114 39.0114 39.0114 39.0114 39.0114 39.1724
36 40.5312 40.5312 40.5312 40.5312 40.5312 40.5312 40.5312 40.5312 40.6177
42 41.3693 41.3693 41.3693 41.3693 41.3693 41.3693 41.3693 41.3693 41.4159
48 41.8315 41.8315 41.8315 41.8315 41.8315 41.8315 41.8315 41.8315 41.8566
54 42.0865 42.0865 42.0865 42.0865 42.0865 42.0865 42.0865 42.0865 42.0999
60 42.2271 42.2271 42.2271 42.2271 42.2271 42.2271 42.2271 42.2271 42.2343

Table 4.22 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.1 for = 1.51

Time
(sec) 
xlO2

Temperature (° C)

^tna = 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 7.9090 7.9090 7.9067 5.4256 6.2731 7.8824 7.8111 15.1033 9.3695
12 22.3784 22.3783 22.3696 18.6320 20.0247 22.4002 22.4013 27.5930 [23.3749
16 31.2743 31.2742 31.2667 27.9285 29.0035 31.3031 31.3291 35.0084 131.8273
24 36.2566 36.2566 36.2515 33.6046 34.3112 36.2794 36.3038 38.9452 36.5559

30 39.0114 39.0113 39.0082 36.9862 37.4074 39.0272 39.0448 40.9210 39.1724

36 40.5312 40.5311 40.5294 39.0029 39.2115 40.5415 40.5537 41.8439 40.6177

42 41.3693 41.3693 41.3685 40.2186 40.2641 41.3755 41.3845 42.2181 41.4159

48 41.8315 41.8315 41.8314 40.9632 40.8796 41.8347 41.841S 42.3174 41.8566

54 42.0865 42.0865 42.0868 41.4284 41.2407 42.0875 42.0934 42.2879 42.0999

60 42.2272 42.2272 42.2278 41.7256 41.4535 42.2267 42.2316 42.2055 42.2343
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> CASE-II

4.4 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for one-dimensional heat transfer i 

with thermal properties independent of temperature is given as:

, &T a+e=pc
dx

dT\ 
dt J

The boundary conditions are:

at x = 0 t = tl

at x = L} +L2 or (L) - k — = h(T -T*)

The compatibility requirement at the interface is given as:

dx X

The weighted integral form of Eq. (4.1 la) is given as:

L

o

d2T A dT A
dx2 * dt

The weak form of Eq. (4.12) will be

dwdT 
dx dx

dx + dwdT 
dx dx

A
dx- Jp) c, wTdx- 

0
i A L
Jp, c, wtdx + 12!^^+ $Q2wdx +

0 Lf

composite slabs

(4.11a)

(4.11b)

(4.11c)

(4.1 Id)

(4.12)

(4.13)

dx
= 0

The functional I(T) is obtained as:

Lr • V '?• hT2 । \p2c2TTdx- faTdx-^Q2Tdx + ^-- -hTwT\xaL
L| 0 Aj XbI,

(4.14)
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Using Lagrange multiplier technique to enforce essential boundary conditions, the functional

I*(T) is obtained as:

L, 
dx + ct TTdx+

0
L M f rp
\P1c2TTdx- fatTdx- jQ2Tdx + —

Lj 0

(4.15)

x^L

Using Variational method, Eq. (4.15) changes to

—5— dx + 
dx dx

r . dT _ dT k^ —o— 
/ 2 dx dx

A
dx + Jp, ct T6Tdx + 

o
L A /,
\f>2c2t8Tdx- jQ,8Tdx- (Q,8Tdx + - hTx5T\^

L, 0 /,
(4.16)

Since 5T and 8X are arbitrary in preceding equation, the following relations are obtained by 

using Eq. (3.25) and Eq. (4.16)

[k]{t}+[c]{t}+[g]{x} = {f} (4.17a)

[Gr]{T} = {r£} (4.17b)

where 

\ /.
KU = J[*I <V<I’./J^+ Jk W <418a>

0 A

L
cu = Jz>lc,<I>,rOJ.a!r+ Jp2 c2 <t>,T^j.dx (4.18b)

0

A Vfl = Jq ^!^x+ Je2 ^dx+hTS^ (4.18c)
0 Lt

(4-18d)

Using Crank-Nicolson technique for time approximation, the Eq. (4.17) can be written as:
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K* + C
Gr

GTT"
0 J, X

Ra

T,.
(4.19)

where

R N = ([C]- (1 - a) A/ [k] ){T}W_, + a Ar{ f }„ + (1 - a)A/{ f L_,

K’ =aAz[k]

(4.20a)

(4.20b)

4.5 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of one-dimensional 

composite model shown in Fig. 4.9 are tabulated in Table 4.23. The EFG results are obtained 

using different weight functions for two sets of nodes and the FEM results are obtained using 

linear bar element for same sets of nodes. A comparison is made among the results obtained 

using different EFG weight functions.

4.5.1 Steady-state analysis

The results presented in Table 4.24 are obtained by EFG method using different weight 

functions for two values of scaling parameter (i.e. dmm = 1.01 & dmax = 1.51) and it shows a 

comparison of temperature values obtained using 11 nodes with those obtained by FEM at the 

location (x = 0.4 m). Table 4.25 shows a comparison of temperature values obtained by EFG 

method using different weight functions for two values of scaling parameter with those 

obtained by FEM at the same location i.e.(x = 0.4m) for 21 nodes. A comparison of 

temperature values obtained using different EFG weight functions with FEM for 11 and 21 

nodes, is presented in Table 4.26 and Table 4.27 respectively at the location (x = 0.6 m). 

Similar type of comparisons of temperature values are shown in Table 4.28 for 11 nodes at 

the location (x = 0.8 m), in Table 4.29 for 21 nodes at the location (x = 0.8 m), in Table 4.30 

for 11 nodes at the location(x = Im) and in Table 4.31 for 21 nodes at the location(x = 1 m). 

From the results presented in Table 4.24 to Table 4.31, it is observed that EFG results 
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obtained using different weight functions are similar for dmM =1.01. However for 

only cubicspline, quarticspline, Gaussian, exponential and rational weight 

functions give acceptable results. It is also observed that EFG results obtained using different 

weight functions are in good agreement with those obtained by FEM. Moreover with increase 

in number of nodes, the EFG results start converging.

The effect of scaling parameter (</mflX)on EFG results obtained using different weight 

functions is presented in Table 4.32 for 11 nodes and Table 4.33 for 21 nodes respectively at 

the location (x = 0.8 m). Similar effect of scaling parameter on EFG results is shown in Table 

4.34 for 11 nodes and Table 4.35 for 21 nodes at the location (x = lm). Fig. 4.10 shows the 

effect of scaling parameter on EFG results obtained using 11 and 21 nodes at the 

location (x = 0.2 m). Similar effect of scaling parameter on EFG results is observed in Fig. 

4.11 at the location (x = 0.6 m). From tables and figures, it is clear that only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results in 

the range 1.0 < t/max < 2.4 whereas the results obtained using quadratic, hyperbolic and cosine 

weight functions are varying in abrupt manner with scaling parameter. Therefore EFG results 

obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in the 

range 1.0 < dmax < 2.4. It is also observed that there is minimum variation in EFG results with 

scaling parameter for exponential weight function.
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T = T{

Fig. 4.9 One-dimensional model

Table 4.23 Data for the 1-D model shown in Fig. 4.9
Parameters Value of the parameter

Length (Z,)
Length (Z2)
Thermal conductivity of material 1 (^)
Thermal conductivity of material 2 (A^)
Density of the material 1 (pj)
Density of the material 2 (p2)
Specific heat of material 1 (Cj) 
Specific heat of material 2 (c2) 
Rate of internal heat generation (Q) 
Surrounding fluid temperature ( T*) 
Initial temperature (Tlnl) 
Time step size ( △/)
Temperature at end x = 0 (TL)

0.5 m
0.5 m
400 W/m-K
100 W/m-K
10000 kg/m3
8000 kg/n?
400 kJ/kg-K
300 kJ/kg-K
0 W/m3
20 °C
100 °C
100 sec
100 °C____________________________
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Table 4.24 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(x = 0.4 m) of the 1 -D model shown in Fig. 4.9

Weight 
function

EFG

FEM
Teo

=1-01 dm„ =1.51

reo
% diff 

with FEM
T (°C)

% diff
with FEM

C. S. 92.3810 -0.5468 92.3810 -0.5468

92.8889

Q. S. 92.3810 -0.5468 92.3811 -0.5467

Gaussian 92.3810 -0.5468 92.3830 -0.5446
Quadratic 92.3810 -0.5468 58.3964 -37.1331

Hyperbolic 92.3810 -0.5468 91.3675 -1.6379
Exponential 92.3810 -0.5468 92.3714 -0.5571

Rational 92.3810 -0.5468 92.3424 -0.5883

Cosine 92.3810 -0.5468 96.6060 4.0017

Table 4.25 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.4 m) of the 1 -D model shown in Fig. 4.9

Weight 
function

EFG

FEM
T(°C)

^=1-01 ^inax — 1 1

TCO
% diff 

with FEM
T(“C)

% diff 
with FEM

C. S. 92.6437 -0.2640 92.6437 -0.2640

92.8889

Q. S. 92.6437 -0.2640 92.6437 -0.2640
Gaussian 92.6437 -0.2640 92.6450 -0.2640
Quadratic 92.6437 -0.2640 87.7250 -5.5592

Hyperbolic 92.6437 -0.2640 93.4782 0.6344
Exponential 92.6437 -0.2640 92.6393 -0.2687

Rational 92.6437 -0.2640 92.6402 -0.2677
Cosine 92.6437 -0.2640 102.8820 10.7581
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Table 4.26 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(x = 0.6 m) of the 1-D model shown in Fig. 4.9

Weight 
function

EFG
FEM

dm„ =1-01 <..=1-51

T (°C)
% diff

with FEM
T (°C)

% diff
with FEM

T (°C)

C. S. 82.8571 -1.3606 82.8573 -1.3604

84.0000

Q. S. 82.8571 -1.3606 82.8574 -1.3604
Gaussian 82.8571 -1.3606 82.8628 -1.3538
Quadratic 82.8571 -1.3606 131.8180 56.9262

Hyperbolic 82.8571 -1.3606 82.2172 -2.1224
Exponential 82.8571 -1.3606 82.8362 -1.3855

Rational 82.8571 -1.3606 82.8080 -1.4191
Cosine 82.8571 -1.3606 85.8611 2.2156

Table 4.27 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.6 m) of the 1-D model shown in Fig. 4.9

Weight 
function

EFG
FEM=1.01 ^max 1-51

rco
% diff

with FEM
T^C)

% diff 
with FEM rec)

C. S. 83.4483 -0.6568 83.4483 -0.6568

84.0000

Q. S. 83.4483 -0.6568 83.4484 -0.6568
Gaussian 83.4483 -0.6568 83.4513 -0.6532
Quadratic 83.4483 -0.6568 91.3608 8.7629

Hyperbolic 83.4483 -0.6568 84.1876 0.2233
Exponential 83.4483 -0.6568 83.4385 -0.6685

Rational 83.4483 -0.6568 83.4398 -0.6669
Cosine 83.4483 -0.6568 99.7836 18.7900
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(x = 0.8 m) of the 1-D model shown in Fig. 4.9
Table 4.28 Comparison of EFG results obtained using 11 nodes with FEM results at the location

Weight 
function

EFG
FEM

</»«.= 101 ^rnax 1.51

T (°C)
% diff 

with FEM
T (°C)

% diff 
with FEM

T (°C)

C. S. 67.6190 -3.0938 67.6193 -3.0934

69.7778

Q. S. 67.6190 -3.0938 67.6195 -3.0931

Gaussian 67.6190 -3.0938 67.6328 -3.0740
Quadratic 67.6190 -3.0938 44.8242 -35.7615

Hyperbolic 67.6190 -3.0938 69.2876 -0.7025
Exponential 67.6190 -3.0938 67.5792 -3.1509

Rational 67.6190 -3.0938 67.5855 -3.1418

Cosine 67.6190 -3.0938 66.7390 -4.3550

Table 4.29 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.8 m) of the 1-D model shown in Fig. 4.9

Weight 
function

EFG
FEM

^^=1.01 ^mnx 1 • 5 1

T (°C)
% diff

with FEM
r(°c)

% diff
with FEM

T (°C)

C. S. 68.7356 -1.4936 68.7357 -1.4935

69.7778

Q. S. 68.7356 -1.4936 68.7358 -1.4933
Gaussian 68.7356 -1.4936 68.7414 -1.4853
Quadratic 68.7356 -1.4936 87.6381 25.5960

Hyperbolic 68.7356 -1.4936 68.9638 -1.1666
Exponential 68.7356 -1.4936 68.7173 -1.5198

Rational 68.7356 -1.4936 68.7183 -1.5184
Cosine 68.7356 -1.4936 84.4254 20.9918
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(x = 1 m)of the 1-D model shown in Fig. 4.9
Table 4.30 Comparison of EFG results obtained using 11 nodes with FEM results at the location

Weight 

function

EFG
FEM

‘C. =1-01

7 (°C)
% diff

with FEM
T (°C)

% diff

with FEM
T(°C)

C. S. 56.1905 1.1428 56.1908 1.1433

55.5556

Q.S. 56.1905 1.1428 56.1911 1.1439

Gaussian 56.1905 1.1428 56.2079 1.1741

Quadratic 56.1905 1.1428 68.0085 22.4152

Hyperbolic 56.1905 1.1428 57.1774 2.9192

Exponential 56.1905 1.1428 56.1040 0.9871

Rational 56.1905 1.1428 56.0800 0.9439

Cosine 56.1905 1.1428 61.1209 10.0175

Table 4.31 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = Im) of the 1-D model shown in Fig. 4.9

Weight 

function

EFG
FEM

^.«=1.01 ^ninx ESI

T (°C)
% diff 

with FEM
T (°C)

% diff 

with FEM
T (-C)

c. s. 55.8621 0.5517 55.8622 0.5519

55.5556

Q. S. 55.8621 0.5517 55.8624 0.5522

Gaussian 55.8621 0.5517 55.8706 0.5670

Quadratic 55.8621 0.5517 60.5147 8.9264

Hyperbolic 55.8621 0.5517 56.2420 1.2355
Exponential 55.8621 0.5517 55.8201 0.4761

Rational 55.8621 0.5517 55.8086 0.4554
Cosine 55.8621 0.5517 61.9574 1 1.5232



Table 4.32 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(x = 0.8 m) of the 1 -D model shown in Fig. 4.9

Scaling 
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190

1.21 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190
1.41 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190 67.6190

1.61 67.6426 67.6674 67.6472 101.3645 70.3955 67.5824 67.6062 124.1289

1.81 67.8071 68.0826 67.7096 204.8154 82.6078 67.5944 67.6616 159.8405

2.01 68.1777 68.9506 67.8424 129.3796 100.5336 67.6135 67.7329 88.5109
2.21 68.7815 70.0870 68.0665 110.1179 95.8187 67.6404 67.8312 84.9284
2.41 69.6760 71.5764 68.3843 106.4776 64.9861 67.6743 67.9527 85.3516
2.61 71.0981 74.0683 68.7519 22.7000 55.7435 67.6037 67.9363 -248.5062

2.81 73.8205 77.6991 69.2324 -1325.40 19.4382 67.6176 68.1840 -481.8810

3.01 80.9423 79.9077 69.8670 466.5000 126.3568 67.6353 68.5026 298.7535

Table 4.33 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = 0.8 m) of the 1-D model shown in Fig. 4.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356
1.21 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356
1.41 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356 68.7356
1.61 68.7455 68.7543 68.7465 54.9546 69.0610 68.7193 68.7227 49.5543
1.81 68.7879 68.8362 68.7622 510.2401 72.9895 68.7243 68.7313 69.0347
2.01 68.8444 68.9699 68.7825 66.2578 54.3091 68.7296 68.7381 23.0901
2.21 68.9334 69.2410 68.8054 65.1579 35.8072 68.7350 68.7485 -28.6265
2.41 69.1296 69.8539 68.8390 67.2968 253.4473 68.7401 68.7622 30.3862
2.61 69.6337 71.3570 68.8762 -224.1299 38.2441 68.7522 68.6924 14.8047
2.81 70.9508 73.3940 68.9685 46.9192 -76.5491 68.7562 68.6531 49.9786
3.01 75.5215 73.5534 69.1565 33.0628 -66.9493 68.7578 68.6061 6.9884
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Table 4.34 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(x = 1 m)of the 1-D model shown in Fig. 4.9

Scaling 
Parameter

Temperature (° C)
C. S. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905
1.21 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905
1.41 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905 56.1905
1.61 56.2191 56.2446 56.2244 69.7143 57.4322 56.1043 56.1101 78.7127
1.81 56.3418 56.4739 56.2855 91.3621 60.0905 56.1118 56.1771 78.2962
2.01 56.5003 56.7389 56.3942 78.1890 66.7970 56.1267 56.2503 62.8495
2.21 56.6983 57.0453 56.5577 78.4848 65.0892 56.1486 56.3376 65.1943
2.41 56.9747 57.4771 56.7778 79.7363 55.1690 56.1760 56.4360 66.9468
2.61 57.4083 58.1996 57.0925 35.4011 48.5391 56.2117 56.7803 -108.4905
2.81 58.2008 59.3245 57.4516 -499.4653 25.7560 56.2634 56.9725 ■155.3312
3.01 60.0115 60.3310 57.8818 260.0808 120.2633 56.3202 57.1890 155.9815

Table 4.35 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = Im) of the 1-D model shown in Fig. 4.9

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621
1.21 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621
1.41 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621 55.8621
1.61 55.8760 55.8884 55.8786 61.8934 56.1992 55.8203 55.8232 63.2532
1.81 55.9358 56.0004 55.9083 -326.6920 56.0960 55.8240 55.8556 58.2360
2.01 56.0132 56.1303 55.9611 56.4249 52.6438 55.8312 55.8911 91.2827
2.21 56.1101 56.2812 56.0405 62.4137 49.3719 55.8418 55.9336 173.3159
2.41 56.2464 56.4991 56.1476 59.0345 126.6772 55.8551 55.9818 107.4870
2.61 56.4656 56.8806 56.3013 -71.7237 60.3824 55.8725 56.1450 -37.5618
2.81 56.8780 57.4626 56.4793 16.6236 68.4764 55.8975 56.2359 -18.2257
3.01 57.8374 57.9494 56.6946 122.9053 46.7861 55.9251 56.3441 62.2759
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Fig. 4.10 Effect of scaling parameter on EFG results at the location (x = 0.2 m) of the 1-D model 
shown in Fig. 4.9
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4.5 .2 Transient analysis

The transient analysis of 1-D composite model is carried out using different EFG weight 

functions. Table 4.36 and Table 4.37 show the comparison of temperature values obtained 

using 11 nodes with FEM results at the location (x = 0.2 m) for d^ =1.01 and d^ =1.51 

respectively. Similar comparison of temperature values obtained using 21 nodes with FEM 

results is presented in Table 4.38 and Table 4.39 for d^ =1.01 and d^ =1.51 respectively 

at the same location i.e. (x = 0.2 m). For this case (i.e. CASE-II) of 1-D transient analysis, 

time step of 100 sec has been taken which is nearly 1 % of the total time required to achieve 

steady state condition. Table 4.40 and Table 4.41 shows the comparison of temperature 

values obtained using 11 nodes with FEM results at the different location (x = 0.6m) for 

=1.01 and d^ =1.51 respectively. Similar comparison of temperature values obtained 

using 21 nodes with FEM results is also presented in Table 4.42 and Table 4.43 for 

</n«K=1.01 ^max=l-51 respectively at the location (x = 0.6 m). Fig 4.12 shows the

comparison of temperature values obtained using 11 nodes with FEM for dnw =1.01 and 

d^ =1.51 at the location (x = 0.8 m). Similar comparison of temperature values obtained 

using 21 nodes with FEM is shown in Fig. 4.13 at the same location i.e.(x = 0.8 m). Fig 4.14 

shows the comparison of temperature values obtained using 11 nodes with FEM for 

and d^ =1.51 at the location (x = 1 m). Similar comparison of temperature 

values obtained using 21 nodes with FEM is shown in Fig. 4.15 at the same location 

i.e. (x = 1 m). From the results presented in tables and figures, it is clear that the EFG results 

obtained using different weight functions are similar for dmax =1.01 but for d^ =1.51 only 

cubicspline (C.S.), quarticspline (Q.S), Gaussian, exponential and rational weight functions 

give acceptable results. It has also been observed that the EFG results are in good agreement 

with those obtained by FEM.
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Table 4.36 Comparison of EFG results obtained using 11 nodes with FEM at the location (* = 0.2 m) 
of the 1-D model shown in Fig. 4.9 for d^ = 1.01

Time 
(sec) 
xlO2

Temperature (° C)
<,=101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 99.8928 99.8928 99.8928 99.8928 99.8928 99.8928 99.8928 99.8928 99.9101
20 99.0701 99.0701 99.0701 99.0701 99.0701 99.0701 99.0701 99.0701 99.1898

30 98.1799 98.1799 98.1799 98.1799 98.1799 98.1799 98.1799 98.1799 98.3729
40 97.5117 97.5117 97.5117 97.5117 97.5117 97.5117 97.5117 97.5117 97.7451
50 97.0557 97.0557 97.0557 97.0557 97.0557 97.0557 97.0557 97.0557 97.3089
60 96.7542 96.7542 96.7542 96.7542 96.7542 96.7542 96.7542 96.7542 97.0159
70 96.5570 96.5570 96.5570 96.5570 96.5570 96.5570 96.5570 96.5570 96.8215
80 96.4286 96.4286 96.4286 96.4286 96.4286 96.4286 96.4286 96.4286 96.6930
90 96.3452 96.3452 96.3452 96.3452 96.3452 96.3452 96.3452 96.3452 96.6082
100 96.2910 96.2910 96.2910 96.2910 96.2910 96.2910 96.2910 96.2910 96.5524

Table 4.37 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.2 m) 
of the 1-D model shown in Fig. 4.9 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)
^=1-51 FEM

C. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 99.8927 99.8926 99.8898 100.3458 99.7459 99.9126 99.9468 99.9017 99.9101
20 99.0701 99.0701 99.0704 100.8600 99.1759 99.0761 99.0954 99.4084 99.1898
30 98.1799 98.1800 98.1820 101.4282 98.7149 98.1758 98.1784 98.5354 98.3729
40 97.5118 97.5118 97.5143 102.1348 98.3895 97.5041 97.4991 97.7209 97.7451
50 97.0558 97.0558 97.0582 102.9531 98.1687 97.0474 97.0396 97.0793 97.3089
60 96.7542 96.7542 96.7564 103.8363 98.0211 96.7461 96.7377 96.6054 97.0159
70 96.5570 96.5571 96.5591 104.7437 97.9229 96.5496 96.5412 96.2646 96.8215
80 96.4287 96.4287 96.4306 105.6459 97.8577 96.4218 96.4138 96.0218 96.6930
90 96.3452 96.3453 96.3470 106.5233 97.8144 96.3388 96.3313 95.8491 96.6082
100 96.2910 96.2911 96.2927 107.3641 97.7857 96.2850 96.2779 95.7258 96.5524
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Table 438 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.2 m) 
of the 1-D model shown in Fig. 4.9 for d^ = 1.01

Time 
(sec) 
xlO2

Temperature (° C)

d„. =1.01
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000$
10 99.8862 99.8862 99.8862 99.8862 99.8862 99.8862 99.8862 99.8862 9.8936
20 99.1268 99.1268 99.1268 99.1268 99.1268 99.1268 99.1268 99.1268 99.1787
30 98.2819 98.2819 98.2819 98.2819 98.2819 98.2819 98.2819 98.2819 98.3712
40 97.6366 97.6366 97.6366 97.6366 97.6366 97.6366 97.6366 97.6366 97.7479
50 97.1907 97.1907 97.1907 97.1907 97.1907 97.1907 97.1907 97.1907 97.3131
60 96.8928 96.8928 96.8928 96.8928 96.8928 96.8928 96.8928 96.8928 97.0202
70 96.6963 96.6963 96.6963 96.6963 96.6963 96.6963 96.6963 96.6963 96.8252
80 96.5672 96.5672 96.5672 96.5672 96.5672 96.5672 96.5672 96.5672 96.6960

90 96.4825 96.4825 96.4825 96.4825 96.4825 96.4825 96.4825 96.4825 96.6106
100 96.4271 96.4271 96.4271 96.4271 96.4271 96.4271 96.4271 96.4271 96.5542

Table 4.39 Comparison of EFG results obtained using 21 nodes with FEM at the location (a: = 0,2 m) 
of the 1-D model shown in Fig. 4.9 for = 1.51

Time 
(sec) 
xlO2

Temperature (° C)

dm =1-51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000$
10 99.8862 99.8862 99.8856 99.4071 99.9638 99.8908 99.8984 100.7783 9.8936
20 99.1268 99.1268 99.1268 97.3256 99.3871 99.1287 99.1344 101.3990 99.1787
30 98.2819 98.2819 98.2826 95.2884 98.7143 98.2808 98.2826 101.5806 98.3712
40 97.6366 97.6366 97.6375 93.6883 98.1880 97.6341 97.6340 101.6440 97.7479
50 97.1907 97.1908 97.1916 92.5052 97.8175 97.1877 97.1870 101.6901 97.3131
60 96.8929 96.8929 96.8937 91.6433 97.5661 96.8898 96.8889 101.7388 97.0202
70 96.6963 96.6963 96.6971 91.0149 97.3977 96.6933 96.6924 101.7901 96.8252
80 96.5672 96.5672 96.5680 90.5535 97.2855 96.5643 96.5635 101.8406 96.6960
90 96.4825 96.4826 96.4833 90.2118 97.2108 96.4798 96.4791 101.8878 96.6106
100 96.4271 96.4271 96.4278 89.9563 97.1611 96.4245 96.4239 101.9305 96.5542
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Table 4.40 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.9 for d^ =1.01

Time 
(sec) 
xIO2

Temperature (° C)
,=1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 97.0086 97.0086 97.0086 97.0086 97.0086 97.0086 97.0086 97.0086 97.5036
20 92.3814 92.3814 92.3814 92.3814 92.3814 92.3814 92.3814 92.3814 93.2377
30 89.1171 89.1171 89.1171 89.1171 89.1171 89.1171 89.1171 89.1171 90.1629
40 86.9402 86.9402 86.9402 86.9402 86.9402 86.9402 86.9402 86.9402 88.0797
50 85.5129 85.5129 85.5129 85.5129 85.5129 85.5129 85.5129 85.5129 86.6929
60 84.5828 84.5828 84.5828 84.5828 84.5828 84.5828 84.5828 84.5828 85.7755
70 83.9780 83.9780 83.9780 83.9780 83.9780 83.9780 83.9780 83.9780 85.1702
80 83.5851 83.5851 83.5851 83.5851 83.5851 83.5851 83.5851 83.5851 84.7711
90 83.3300 83.3300 83.3300 83.3300 83.3300 83.3300 83.3300 83.3300 84.5081
100 83.1643 83.1643 83.1643 83.1643 83.1643 83.1643 83.1643 83.1643 84.3348

Table 4.41 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.9 for d^ =1.51

Time 
(sec) 
xIO2

Temperature (° C)

ma;,=1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 97.0088 97.0090 97.0240 99.5907 97.1258 97.0167 97.1030 98.6668 97.5036
20 92.3817 92.3819 92.3978 99.8760 91.9765 92.3662 92.4075 96.3769 93.2377
30 89.1173 89.1175 89.1317 100.5139 88.6294 89.0912 89.0990 93.7819 90.1629
40 86.9405 86.9407 86.9529 101.5511 86.4478 86.9105 86.8990 91.6349 88.0797
50 85.5131 85.5133 85.5238 102.8885 85.0133 85.4828 85.4612 90.0205 86.6929
60 84.5830 84.5831 84.5923 104.4092 84.0664 84.5537 84.5271 88.8516 85.7755
70 83.9782 83.9783 83.9864 106.0173 83.4403 83.9505 83.9217 88.0177 85.1702
80 83.5853 83.5854 83.5928 107.6440 83.0260 83.5590 83.5295 87.4249 84.7711
90 83.3301 83.3303 83.3370 109.2435 82.7519 83.3052 83.2755 87.0028 84.5081
100 83.1644 83.1645 83.1709 110.7873 82.5704 83.1405 83.1110 86.7007 84.3348
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Table 4.42 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.9 for dnxa* = 1.01

Time 
(sec) 
xlO2

Temperature (° C)

= 101 FEM

c. s. Q.s Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 97.2413 97.2413 97.2413 97.2413 97.2413 97.2413 97.2413 97.2413 97.4361

20 92.8313 92.8313 92.8313 92.8313 92.8313 92.8313 92.8313 92.8313 93.2243
30 89.6697 89.6697 89.6697 89.6697 89.6697 89.6697 89.6697 89.6697 90.1708
40 87.5413 87.5413 87.5413 87.5413 87.5413 87.5413 87.5413 87.5413 88.0953
50 86.1332 86.1332 86.1332 86.1332 86.1332 86.1332 86.1332 86.1332 86.7097
60 85.2075 85.2075 85.2075 85.2075 85.2075 85.2075 85.2075 85.2075 85.7908
70 84.6005 84.6005 84.6005 84.6005 84.6005 84.6005 84.6005 84.6005 85.1830

80 84.2028 84.2028 84.2028 84.2028 84.2028 84.2028 84.2028 84.2028 84.7814

90 83.9424 83.9424 83.9424 83.9424 83.9424 83.9424 83.9424 83.9424 84.5161

100 83.7718 83.7718 83.7718 83.7718 83.7718 83.7718 83.7718 83.7718 84.3408

Table 4.43 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.6 m) 
of the 1-D model shown in Fig. 4.9 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)

=1.51 FEM

C. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 97.2413 97.2414 97.2446 100.6190 97.5745 97.2460 97.2734 101.9326 97.4361
20 92.8314 92.8314 92.8357 98.0153 93.4077 92.8271 92.8438 101.4027 93.2243
30 89.6698 89.6699 89.6744 95.7094 90.3871 89.6607 89.6720 100.5492 90.1708
40 87.5414 87.5414 87.5459 94.0842 88.3205 87.5295 87.5363 99.9377 88.0953
50 86.1332 86.1333 86.1376 93.0130 86.9332 86.1204 86.1240 99.5737 86.7097
60 85.2076 85.2077 85.2117 92.3281 86.0091 85.1946 85.1963 99.3846 85.7908
70 84.6006 84.6007 84.6045 91.8990 85.3953 84.5879 84.5884 99.3063 85.1830
80 84.2029 84.2030 84.2066 91.6355 84.9882 84.1906 84.1905 99.2936 84.7814
90 83.9425 83.9425 83.9460 91.4775 84.7182 83.9306 83.9301 99.3174 84.5161
100 83.7719 83.7720 83.7753 91.3860 84.5391 83.7604 83.7598 99.3595 84.3408
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Fig. 4.12 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.8 m) 
of the 1-D model shown in Fig. 4.9
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> CASE-III

4.6 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for one-dimensional heat transfer in thin fins with

thermal properties independent of temperature is given as:

, d2T }K---  
dx

ST 
St

The boundary conditions are

at the base of the fin, = 0, T = Tt

dTat the tip of the fin, x = L, — = 0 
dx

The weighted integral form of Eq. (4.21a) is given as:

(P dT Ik^-h T + M + Q-pc—>dx = Q
dx2 [aj 5/J

(4.21 a)

(4.21b)

(4.21c)

(4.22)

(r-rj+ezzp/

The weak form of Eq. (4.22) will be

dwdT 
dx dx (4.23)

The functional I(T) is obtained as:

+ h
L

dx + JpcTT dx- 
o

L L
\MTdx-^QTdx

0 o
(4.24)

Using Lagrange multiplier technique to enforce essential boundary conditions, the functional

l\T) is obtained as:

l i Lc
dx+jpcTTdx-fMTdx-^Tdx + XfT-T^) 

0 0 0
(4.25)

Using Variational method, Eq. (4.25) changes to

76



L
dx+ Jpcrsr dx - 

0
df(T) =

. dT ~dT , k— 8 — + h 
dx dx

L L
(M5Tdx-fe6Tdx + kST + SMT-TL)

0 o

(4.26)

Since ST and 8X are arbitrary in preceding equation, the following relations are obtained by

using Eq. (3.25) and Eq. (4.26)

M{T}+[c]{r}+[G]{x}={f} 

[Gr]{T}={Tt}

where

L

Cjj = JpcOy Qj.dx 
o

L L

(I), dx+ <t>z dx 
o o

Gik -

(4.27a)

(4.27b)

(4.28a)

(4.28b)

(4.28c)

(4.28d)

Using Crank-Nicolson technique for time approximation, the Eq. (4.27) can be written as:

K*+C|

o JL1GT Tl
(4.29)

where

R„ = ([C]- (1 - a) Ar [K]) {T}+ a Ar{ f }w + (1 - a)A/{ f

K‘=aAr[K]

(4.30a)

(4.30b)
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4.7 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of one-dimensional 

model shown in Fig. 4.16 are tabulated in Table 4.44. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using linear 

bar element for same sets of nodes. A comparative analysis is carried out to evaluate the 

performance of different weight functions.

4.7.1 Steady-state analysis

The results presented in Table 4.45 are obtained using different EFG weight functions for two 

values of scaling parameter (i.e. dmM = 1.01 & t/max = 1.51) and it shows a comparison of 

temperature values obtained using 11 nodes with those obtained by FEM at the location 

(x = 0.02 m). Table 4.46 shows a comparison of temperature values obtained by EFG method 

using different weight functions for two values of scaling parameter with those obtained by 

FEM at the same location i.e. (x = 0.02 m) for 21 nodes. A comparison of temperature values 

obtained using different EFG weight functions with FEM for 11 and 21 nodes, is presented in 

Table 4.47 and Table 4.48 respectively at the location (x = 0.04m). Similar type of 

comparisons of temperature values are shown in Table 4.49 for 11 nodes at the 

location (x = 0.06 m), in Table 4.50 for 21 nodes at the location (x = 0.06 m), in Table 4.51 

for 11 nodes at the location (x = 0.08 m) and in Table 4.52 for 21 nodes at the 

location (x = 0.08 m). From the results presented in Table 4.45 to Table 4.52, it is observed 

that EFG results obtained using different weight functions are similar for dmM =1.01. 

However for d^ =1.51, only cubicspline, quarticspline, Gaussian, exponential and rational 

weight functions give acceptable results. It is also observed that EFG results obtained using 

different weight functions are in good agreement with those obtained by finite element 

method. Moreover with increase in number of nodes EFG results starts converging.
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The effect of scaling parameter (dm„)on EFG results obtained using different weight 

functions is presented in Table 4.53 for 11 nodes and Table 4.54 for 21 nodes respectively at 

the location (x = 0.02m). Similar effect of scaling parameter on EFG results is shown in 

Table 4.55 for 11 nodes and Table 4.56 for 21 nodes at the location (x = 0.06 m). Fig. 4.17 

shows the effect of scaling parameter on EFG results obtained using 11 and 21 nodes at the 

location (x = 0.04 m). Similar effect of scaling parameter on EFG results is observed in Fig. 

4.18 at the location (x = 0.08m). From tables and figures, it is clear that only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results in 

the range 1.0 < dmax < 2.2 whereas the results obtained using quadratic, hyperbolic and 

cosine weight functions are varying in abrupt manner with scaling parameter. Therefore EFG 

results obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in 

the range 1.0 < dmtx < 2.2. It is also observed that there is minimum variation in EFG results 

with scaling parameter for exponential weight function.
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Fig. 4.16 One-dimensional model

Table 4.44 Data for the 1-D model shown in Fig.4.16
Parameters Value of the parameter

Length (Z)
Width (PF)
Thickness (th)
Thermal conductivity (k)
Heat transfer coefficient (h )
Density of the material (p)
Specific heat (c)
Rate of internal heat generation (Q) 
Surrounding fluid temperature (T*)
Initial temperature (Tini)
Time step size (AZ)
Temperature at end, x = 0

0.10 m
1 m
0.001 m
400 W/m-K
10000 kg/m3
200 W/m2-K*
400 kJ/kg-K
0 W/m3
20 °C
100 °C
0.5 sec
100 °C_________________________________
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(x = 0.02 m) of the 1 -D model shown in Fig.4.16
Table 4.45 Comparison of EFG results obtained using 11 nodes with FEM results at the location

Weight 
function

EFG
FEM

=101 rfw=1.51

7 (°C)
% diff

with FEM
IfC)

% diff 
with FEM

T (°C)

C. S. 62.4468 -0.2109 62.4459 -0.2124

62.5788

Q. S. 62.4468 -0.2109 62.4451 -0.2137

Gaussian 62.4468 -0.2109 62.3813 -0.3156
Quadratic 62.4468 -0.2109 45.9778 -26.528

Hyperbolic 62.4468 -0.2109 92.7463 48.2072
Exponential 62.4468 -0.2109 62.5231 -0.0890

Rational 62.4468 -0.2109 62.3545 -0.3584

Cosine 62.4468 -0.2109 53.0298 -15.259

Table 4.46 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.02 m) of the 1 -D model shown in Fig.4.16

Weight 
function

EFG
FEM

=1.01 ^mu ” 1 1

rec)
% diff 

with FEM
7 (°C)

% diff 
with FEM

7 co
C. S. 62.6239 -0.0688 62.6237 -0.0691

62.6670

Q. S. 62.6239 -0.0688 62.6235 -0.0694
Gaussian 62.6239 -0.0688 62.6078 -0.0945
Quadratic 62.6239 -0.0688 69.6172 11.0907

Hyperbolic 62.6239 -0.0688 72.6870 15.9893
Exponential 62.6239 -0.0688 62.6428 -0.0386

Rational 62.6239 -0.0688 62.6043 -0.1001
Cosine 62.6239 -0.0688 66.8994 6.7538
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Table 4.47 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(x = 0.04 m) of the 1 -D model shown in Fig.4.16

Weight 
function

EFG
FEM

da„ =1-01

rec) TfC) T^C)
% diff 

with FEM
rco

C.S. 42.7730 -0.3383 42.7730 -0.3383

42.9182

Q. S. 42.7730 -0.3383 42.7726 -0.3393
Gaussian 42.7730 -0.3383 42.7505 -0.3907
Quadratic 42.7730 -0.3383 55.0129 28.1808

Hyperbolic 42.7730 -0.3383 64.0888 49.3278
Exponential 42.7730 -0.3383 42.7459 -0.4015

Rational 42.7730 -0.3383 42.5774 -0.7941

Cosine 42.7730 -0.3383 47.7639 11.2905

Table 4.48 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.04 m) of the 1-D model shown in Fig.4.16

Weight 
function

EFG
FEM

^=1.01 ' ^IIUX — 1 >51

TfC)
% diff 

with FEM
T("C)

% diff 
with FEM 7 (°C)

C. S. 42.9679 -0.1107 42.9678 -0.1109

43.0155

Q. S. 42.9679 -0.1107 42.9678 -0.1109
Gaussian 42.9679 -0.1107 42.9624 -0.1234
Quadratic 42.9679 -0.1107 47.0072 9.2797

Hyperbolic 42.9679 -0.1107 44.6084 3.7031
Exponential 42.9679 -0.1107 42.9614 -0.1258

Rational 42.9679 -0.1107 42.9181 -0.2264
Cosine 42.9679 -0.1107 48.4573 12.6508
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Table 4.49 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(x = 0.06 m) of the 1 -D model shown in Fig.4.16

Weight 
function

EFG
FEM

=1-01 =1-51

rec)
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 32.6916 -0.3830 32.6916 -0.3830

32.8173

Q. S. 32.6916 -0.3830 32.6916 -0.3830

Gaussian 32.6916 -0.3830 32.6865 -0.3986
Quadratic 32.6916 -0.3830 22.6100 -31.1030

Hyperbolic 32.6916 -0.3830 43.7839 33.4171
Exponential 32.6916 -0.3830 32.6374 -0.5482

Rational 32.6916 -0.3830 32.4923 -0.9903
Cosine 32.6916 -0.3830 29.4027 -10.4050

Table 4.50 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.06 m) of the 1 -D model shown in Fig.4.16

Weight 
function

EFG
FEM

d^ =1-01 max 1.51

T(“C)
% diff 

with FEM
T(°C)

% diff 
with FEM TfC)

C. S. 32.8604 -0.1258 32.8604 -0.1258

32.9018

Q. S. 32.8604 -0.1258 32.8604 -0.1258
Gaussian 32.8604 -0.1258 32.8591 -0.1298

Quadratic 32.8604 -0.1258 31.7899 -3.3795

Hyperbolic 32.8604 -0.1258 32.5448 -1.0850

Exponential 32.8604 -0.1258 32.8469 -0.1669
Rational 32.8604 -0.1258 32.8095 •0.2805

Cosine 32.8604 -0.1258 37.6652 14.4776
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(x = 0.08 m) of the I -D model shown in Fig.4.16
Table 4.51 Comparison of EFG results obtained using 11 nodes with FEM results at the location

Weight 
function

EFG
FEM

d^ =1-01 =1.51

rec)
% diff 

with FEM
TCC)

% diff 
with FEM

T (°C)

C. S. 27.9562 -0.3799 27.9563 -0.3795

28.0628

Q. S. 27.9562 -0.3799 27.9564 -0.3791

Gaussian 27.9562 -0.3799 27.9571 -0.3767

Quadratic 27.9562 -0.3799 32.2615 14.9618
Hyperbolic 27.9562 -0.3799 32.6084 16.198
Exponential 27.9562 -0.3799 27.9011 -0.5762

Rational 27.9562 -0.3799 27.7888 -0.9764

Cosine 27.9562 -0.3799 30.1475 7.4287

Table 4.52 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(x = 0.08 m) of the 1 -D model shown in Fig.4.16

Weight 
function

EFG
FEM

«Lx=ioi <«=1-51

TCC)
% diff 

with FEM
rec)

% diff 
with FEM

T (°C)

C. S. 28.0994 -0.1248 28.0994 -0.1248

28.1345

Q. S. 28.0994 -0.1248 28.0994 -0.1248
Gaussian 28.0994 -0.1248 28.0997 -0.1237
Quadratic 28.0994 -0.1248 25.7999 -8.2980

Hyperbolic 28.0994 -0.1248 27.6251 -1.8106
Exponential 28.0994 -0.1248 28.0852 -0.1752

Rational 28.0994 -0.1248 28.0542 -0.2854
Cosine 28.0994 -0.1248 31.1058 10.5611
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Table 4.53 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(x = 0.02 m) of the 1 -D model shown in Fig.4.16

Scaling
Parameter

Temperature (° C)
C. S. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468
1.21 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468
1.41 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468 62.4468
1.61 62.3634 62.2966 62.3252 76.0607 106.5288 62.4871 62.2976 79.1641
1.81 62.0709 61.9341 62.1672 229.5207 158.8094 62.4003 62.2492 202.9387
2.01 61.9553 62.3073 62.0587 190.5733 300.6412 62.2911 61.7262 162.9482
2.21 62.3501 64.0679 62.2664 199.5825 208.9537 62.1840 61.5746 154.4928
2.41 63.5514 67.5659 63.1878 181.2273 154.3923 62.0833 61.4734 146.9679
2.61 66.2181 74.8053 65.0693 190.2807 -89.1303 61.8962 57.6535 371.8370
2.81 72.9349 90.0113 69.2839 78.8844 -113.6444 61.6539 56.1378 398.8294

3.01 94.1240 108.2795 77.1075 -544.6138 -120.0956 61.6770 57.9088 -863.5372

Table 4.54 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = 0.02 m) of the 1-D model shown in Fig.4.16

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239
1.21 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239
1.41 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239 62.6239
1.61 62.6036 62.5871 62.5937 43.1539 81.4353 62.6349 62.5858 42.0317

1.81 62.5262 62.4715 62.5486 -143.1593 142.9661 62.6161 62.5493 8.9734
2.01 62.4566 62.4298 62.4889 -0.9526 213.6291 62.5972 62.5111 -17.7296

2.21 62.4358 62.6541 62.4301 15.0019 185.8573 62.5770 62.4766 -58.1347

2.41 62.5734 63.5899 62.4297 23.8681 255.7827 62.5577 62.4414 -18.7726

2.61 63.2137 66.6345 62.4759 234.9098 -8.1729 62.5060 62.1188 152.5833
2.81 65.7805 74.7102 63.0407 39.5104 -68.8118 62.4718 61.8579 -5.2968
3.01 77.4440 83.7523 64.6806 -111.2427 -147.3396 62.2769 60.9765 -169.9595
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Table 4.55 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(a: = 0.06 m) of the 1-D model shown in Fig.4.16

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916
1.21 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916
1.41 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916 32.6916
1.61 32.6908 32.6903 32.6815 58.1935 55.6790 32.6267 32.4823 55.7358
1.81 32.6764 32.6676 32.6628 -101.5781 125.5363 32.6040 32.4600 -69.9154
2.01 32.6429 32.6293 32.6291 -85.3389 343.0238 32.5822 32.4468 -42.2040
2.21 32.6060 32.7490 32.5756 -75.6861 180.5734 32.5591 32.4284 -29.3156
2.41 32.6697 33.7501 32.5183 -61.5876 41.0374 32.5367 32.4093 -26.6992
2.61 33.3101 38.2186 32.4528 -45.9238 198.2060 32.4426 32.1598 -187.1563
2.81 36.6129 49.7100 32.6944 -165.9354 269.2409 32.4024 32.2080 -200.0585
3.01 54.0988 58.9406 33.8400 153.9308 453.4171 32.4238 32.5442 304.2495

Table 4.56 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(x = 0.06 m) of the 1 -D model shown in Fig.4.16

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604
1.21 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604
1.41 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604 32.8604
1.61 32.8603 32.8602 32.8579 36.1517 33.7548 32.8442 32.8069 41.6087
1.81 32.8566 32.8540 32.8529 -212.4349 70.7868 32.8385 32.8006 -15.5542
2.01 32.8472 32.8380 32.8433 2.7308 86.2782 32.8330 32.7966 36.3691
2.21 32.8320 32.8118 32.8252 26.1821 -27.8857 32.8270 32.7921 54.8628
2.41 32.8134 32.8005 32.7931 27.7184 -98.4388 32.8211 32.7877 47.7743
2.61 32.8003 33.0449 32.7182 235.1845 131.0141 32.7960 32.6768 261.6194
2.81 32.8967 34.0711 32.6016 218.5305 352.1210 32.7850 32.6496 464.6846
3.01 34.7756 33.7925 32.4315 413.1034 653.8587 32.7252 32.4105 90.1513
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Fig. 4.17 Effect of scaling parameter on EFG results at the location (x = 0.04 m) of the 1-D model 
shown in Fig.4.16
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Fig. 4.18 Effect of scaling parameter on EFG results at the location (* = 0.08 m) of the I -D model 
shown in Fig.4.16
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4.7.2 Transient analysis

The transient analysis of 1-D model of thin fins is carried out using different EFG weight 

functions. Table 4.57 and Table 4.58 show the comparison of temperature values obtained 

using 11 nodes with FEM results at the location (x = 0.02 m) for d^ =1.01 and d^ =1.51 

respectively. Similar comparison of temperature values obtained using 21 nodes with FEM 

results is presented in Table 4.59 and Table 4.60 for d^ =1.01 and d^ =1.51 respectively 

at the same location i.e. (x = 0.02 m). For this case (i.e. CASE-III) of 1-D transient analysis, 

time step of 0.5 sec has been taken which is less than 1.5% of the total time required to 

achieve steady state condition. Table 4.61 and Table 4.62 shows the comparison of 

temperature values obtained using 11 nodes with FEM results at the different location 

(x = 0.06 m) for d^ =1.01 and d^ =1.51 respectively. Similar comparison of temperature 

values obtained using 21 nodes with FEM results is also presented in Table 4.63 and Table 

4.64 for d^ =1.01 and d^ =1.51 respectively at the location i.e. (x = 0.06 m). Fig 4.19 

shows the comparison of temperature values obtained using 11 nodes with FEM for 

^max =1-01 and d^ =1.51 at the location (x = 0.04 m). Similar comparison of temperature 

values obtained using 21 nodes with FEM is shown in Fig. 4.20 at the same location i.e. 

(x = 0.04m). Fig 4.21 shows the comparison of temperature values obtained using 11 nodes 

with FEM for d^ = 1.01 and d^ =1.51 at the location (x = 0.10 m). Similar comparison of 

temperature values obtained using 21 nodes with FEM is shown in Fig. 4.22 at the same 

location i.e. (x = 0.10 m). From the results presented in tables and figures, it is clear that the 

EFG results obtained using different weight functions are similar for d^ =1.01 but for 

d^ =1.51 only cubicspline (C.S.), quarticspline (Q.S), Gaussian, exponential and rational 

weight functions give acceptable results. It has also been observed that the EFG results arc in 

good agreement with those obtained by FEM.
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Table 4.57 Comparison of EFG results obtained using 11 nodes with FEM at the location 
(x = 0.02 m) of the 1 -D model shown in Fig.4.16 for d^ = 1.01

Time 
(sec)

Temperature (° C)
=1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 83.2885 83.2885 83.2885 83.2885 83.2885 83.2885 83.2885 83.2885 83.4765
6 75.6102 75.6102 75.6102 75.6102 75.6102 75.6102 75.6102 75.6102 75.7587
9 71.1084 71.1084 71.1084 71.1084 71.1084 71.1084 71.1084 71.1084 71.2416
12 68.2613 68.2613 68.2613 68.2613 68.2613 68.2613 68.2613 68.2613 68.3875
15 66.3922 66.3922 66.3922 66.3922 66.3922 66.3922 66.3922 66.3922 66.5151
18 65.1395 65.1395 65.1395 65.1395 65.1395 65.1395 65.1395 65.1395 65.2610
21 64.2903 64.2903 64.2903 64.2903 64.2903 64.2903 64.2903 64.2903 64.4111
24 63.7109 63.7109 63.7109 63.7109 63.7109 63.7109 63.7109 63.7109 63.8315
27 63.3142 63.3142 63.3142 63.3142 63.3142 63.3142 63.3142 63.3142 63.4347
30 63.0422 63.0422 63.0422 63.0422 63.0422 63.0422 63.0422 63.0422 63.1625
33 62.8554 62.8554 62.8554 62.8554 62.8554 62.8554 62.8554 62.8554 62.9756
36 62.7272 62.7272 62.7272 62.7272 62.7272 62.7272 62.7272 62.7272 62.8472
39 62.6390 62.6390 62.6390 62.6390 62.6390 62.6390 62.6390 62.6390 62.7589
42 62.5785 62.5785 62.5785 62.5785 62.5785 62.5785 62.5785 62.5785 62.6983
45 62.5369 62.5369 62.5369 62.5369 62.5369 62.5369 62.5369 62.5369 62.6566

Table 4.58 Comparison of EFG results obtained using 11 nodes with FEM at the location 
(x = 0.02 m) of the 1 -D model shown in Fig.4.16 for d^ =1.51

Time 
(sec)

Temperature (° C)
^max 1«51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 83.2881 83.2877 83.2538 77.9154 100.1056 83.2681 83.0725 79.4123 83.4765
6 75.6095 75.6089 75.5587 65.7425 97.7377 75.6409 75.4617 68.7066 75.7587
9 71.1076 71.1068 71.0500 58.6440 96.1294 71.1611 70.9893 62.8050 71.2416
12 68.2604 68.2597 68.1997 54.2780 95.0564 68.3248 68.1562 59.3198 68.3875
15 66.3913 66.3905 66.3289 51.4908 94.3320 66.4612 66.2934 57.1608 66.5151
18 65.1386 65.1378 65.0754 49.6683 93.8381 65.2114 65.0435 55.7798 65.2610
21 64.2894 64.2886 64.2256 48.4589 93.4993 64.3637 64.1954 54.8775 64.4111
24 63.7100 63.7092 63.6459 47.6494 93.2659 63.7852 63.6166 54.2793 63.8315
27 63.3133 63.3125 63.2491 47.1049 93.1050 63.3891 63.2203 53.8787 63.4347
30 63.0413 63.0405 62.9769 46.7377 92.9938 63.1174 62.9485 53.6083 63.1625
33 62.8545 62.8537 62.7901 46.4898 92.9170 62.9309 62.7620 53.4249 62.9756
36 62.7262 62.7254 62.6618 46.3224 92.8639 62.8028 62.6339 53.3001 62.8472
39 62.6381 62.6373 62.5736 46.2094 92.8271 62.7148 62.5460 53.2148 62.7589
42 62.5776 62.5768 62.5131 46.1331 92.8018 62.6543 62.4856 53.1564 62.6983
45 62.5360 62.5352 62.4715 46.0817 92,7842 62.6128 62.4441 53.1164 62.6566
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Table 4.59 Comparison of EFG results obtained using 21 nodes with FEM at the location 
(x = 0.02 m) of the 1-D model shown in Fig.4.16 for d^ =1.01

Time 
(sec)

Temperature (° C)
= 1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 83.5559 83.5559 83.5559 83.5559 83.5559 83.5559 83.5559 83.5559 83.5903
6 75.8189 75.8189 75.8189 75.8189 75.8189 75.8189 75.8189 75.8189 75.8569
9 71.2957 71.2957 71.2957 71.2957 71.2957 71.2957 71.2957 71.2957 71.3340
12 68.4398 68.4398 68.4398 68.4398 68.4398 68.4398 68.4398 68.4398 68.4771
15 66.5673 66.5673 66.5673 66.5673 66.5673 66.5673 66.5673 66.5673 66.6035
18 65.3136 65.3136 65.3136 65.3136 65.3136 65.3136 65.3136 65.3136 65.3491
21 64.4645 64.4645 64.4645 64.4645 64.4645 64.4645 64.4645 64.4645 64.4992
24 63.8855 63.8855 63.8855 63.8855 63.8855 63.8855 63.8855 63.8855 63.9196
27 63.4892 63.4892 63.4892 63.4892 63.4892 63.4892 63.4892 63.4892 63.5229
30 63.2175 63.2175 63.2175 63.2175 63.2175 63.2175 63.2175 63.2175 63.2508
33 63.0310 63.0310 63.0310 63.0310 63.0310 63.0310 63.0310 63.0310 63.0639
36 62.9030 62.9030 62.9030 62.9030 62.9030 62.9030 62.9030 62.9030 62.9355
39 62.8150 62.8150 62.8150 62.8150 62.8150 62.8150 62.8150 62.8150 62.8473
42 62.7546 62.7546 62.7546 62.7546 62.7546 62.7546 62.7546 62.7546 62.7866
45 62.7131 62.7131 62.7131 62.7131 62.7131 62.7131 62.7131 62.7131 62.7449

Table 4.60 Comparison of EFG results obtained using 21 nodes with FEM at the location 
(x = 0.02 m) of the 1-D model shown in Fig.4.16 for d^ = 1.51

Time 
(sec)

Temperature (° C)
^=1-51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
3 83.5558 83.5557 83.5472 86.9377 89.7740 83.5555 83.5149 85.6187 83.5903
6 75.8187 75.8185 75.8055 80.7365 83.5849 75.8307 75.7948 78.6057 75.8569
9 71.2955 71.2953 71.2808 77.0839 79.8905 71.3113 71.2754 74.5211 71.3340
12 68.4396 68.4394 68.4243 74.7464 77.5385 68.4569 68.4204 71.9653 68.4771
15 66.5670 66.5668 66.5515 73.1840 75.9892 66.5850 66.5477 70.3059 66.6035
18 65.3134 65.3132 65.2977 72.1129 74.9483 65.3316 65.2936 69.2055 65.3491
21 64.4642 64.4641 64.4485 71.3682 74.2410 64.4825 64.4440 68.4668 64.4992
24 63.8852 63.8850 63.8694 70.8466 73.7573 63.9036 63.8646 67.9671 63.9196
27 63.4890 63.4888 63.4732 70.4799 73.4252 63.5074 63.4681 67.6276 63.5229
30 63.2173 63.2171 63.2015 70.2220 73.1967 63.2357 63.1962 67.3964 63.2508
33 63.0308 63.0306 63.0150 70.0405 73.0393 63.0492 63.0096 67.2385 63.0639
36 62.9027 62.9025 62.8869 69.9129 72.9308 62.9212 62.8815 67.1307 62.9355
39 62.8148 62.8146 62.7989 69.8234 72.8560 62.8333 62.7935 67.0570 62.8473
42 62.7543 62.7541 62.7385 69.7606 72.8044 62.7729 62.7331 67.0066 62.7866
45 62.7128 62.7126 62.6970 69.7166 72.7687 62.7314 62.6916 66.9722 62.7449
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Table 4.61 Comparison of EFG results obtained using 11 nodes with FEM at the location 
(x = 0.06 m) of the 1-D model shown in Fig.4.16 for d^ =1.01

Time 
(sec)

Temperature (° C)
^ma: = 1.01 FEM

c. s. Q. s Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 79.2402 79.2402 79.2402 79.2402 79.2402 79.2402 79.2402 79.2402 79.2725
6 64.4525 64.4525 64.4525 64.4525 64.4525 64.4525 64.4525 64.4525 64.5393
9 54.3944 54.3944 54.3944 54.3944 54.3944 54.3944 54.3944 54.3944 54.4977
12 47.5575 47.5575 47.5575 47.5575 47.5575 47.5575 47.5575 47.5575 47.6677
15 42.8897 42.8897 42.8897 42.8897 42.8897 42.8897 42.8897 42.8897 43.0037
18 39.6932 39.6932 39.6932 39.6932 39.6932 39.6932 39.6932 39.6932 39.8094
21 37.5003 37.5003 37.5003 37.5003 37.5003 37.5003 37.5003 37.5003 37.6178
24 35.9946 35.9946 35.9946 35.9946 35.9946 35.9946 35.9946 35.9946 36.1127
27 34.9602 34.9602 34.9602 34.9602 34.9602 34.9602 34.9602 34.9602 35.0785
30 34.2495 34.2495 34.2495 34.2495 34.2495 34.2495 34.2495 34.2495 34.3677
33 33.7611 33.7611 33.7611 33.7611 33.7611 33.7611 33.7611 33.7611 33.8790
36 33.4255 33.4255 33.4255 33.4255 33.4255 33.4255 33.4255 33.4255 33.5431
39 33.1948 33.1948 33.1948 33.1948 33.1948 33.1948 33.1948 33.1948 33.3121
42 33.0364 33.0364 33.0364 33.0364 33.0364 33.0364 33.0364 33.0364 33.1533
45 32.9276 32.9276 32.9276 32.9276 32.9276 32.9276 32.9276 32.9276 33.0442

Table 4.62 Comparison of EFG results obtained using 11 nodes with FEM at the location 
(x = 0.06 m) of the 1 -D model shown in Fig.4.16 for dmax =1.51

Time 
(sec)

Temperature (° C)
d ma , =1.51 FEM

c. s. QS Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 79.2403 79.2403 79.2425 77.5948 85.6412 79.2197 79.1935 78.4597 79.2725
6 64.4527 64.4528 64.4568 60.7689 73.0725 64.3971 64.3056 62.6030 64.5393
9 54.3945 54.3945 54.3964 48.8494 64.0859 54.3328 54.2145 51.7919 54.4977
12 47.5576 47.5577 47.5574 40.5646 57.8346 47.4962 47.3655 44.5208 47.6677
15 42.8898 42.8898 42.8881 34.8619 53.5050 42.8296 42.6923 39.6405 43.0037
18 39.6932 39.6932 39.6904 30.9569 50.5089 39.6341 39.4931 36.3574 39.8094
21 37.5003 37.5004 37.4968 28.2904 48.4360 37.4421 37.2991 34.1406 37.6178
24 35.9946 35.9946 35.9906 26.4724 47.0020 35.9371 35.7930 32.6380 36.1127
27 34.9603 34.9603 34.9559 25.2343 46.0100 34.9033 34.7585 31.6160 35.0785
30 34.2495 34.2495 34.2449 24.3916 45.3238 34.1930 34.0479 30.9189 34.3677
33 33.7611 33.7611 33.7563 23.8185 44.8491 33.7050 33.5597 30.4423 33.8790
36 33.4255 33.4255 33.4206 23.4288 44.5208 33.3696 33.2243 30.1158 33.5431
39 33.1949 33.1949 33.1899 23.1641 44.2937 33.1392 32.9938 29.8919 33.3121
42 33.0364 33.0364 33.0314 22.9843 44.1366 32.9809 32.8354 29.7381 33.1533
45 32.9276 32.9276 32.9225 22.8624 44.0280 32.8721 32.7267 29.6324 33.0442
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Table 4.63 Comparison of EFG results obtained using 21 nodes with FEM at the location 
(x = 0.06 m) of the 1 -D model shown in Fig.4.16 for d^ =1.01

Time 
(sec)

Temperature (° C)
^ma).=1.01 FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 79.2862 79.2862 79.2862 79.2862 79.2862 79.2862 79.2862 79.2862 79.2924
6 64.5764 64.5764 64.5764 64.5764 64.5764 64.5764 64.5764 64.5764 64.5944
9 54.5438 54.5438 54.5438 54.5438 54.5438 54.5438 54.5438 54.5438 54.5665
12 47.7179 47.7179 47.7179 47.7179 47.7179 47.7179 47.7179 47.7179 47.7427
15 43.0564 43.0564 43.0564 43.0564 43.0564 43.0564 43.0564 43.0564 43.0825
18 39.8636 39.8636 39.8636 39.8636 39.8636 39.8636 39.8636 39.8636 39.8905
21 37.6730 37.6730 37.6730 37.6730 37.6730 37.6730 37.6730 37.6730 37.7004
24 36.1685 36.1685 36.1685 36.1685 36.1685 36.1685 36.1685 36.1685 36.1962
27 35.1347 35.1347 35.1347 35.1347 35.1347 35.1347 35.1347 35.1347 35.1626
30 34.4240 34.4240 34.4240 34.4240 34.4240 34.4240 34.4240 34.4240 34.4520
33 33.9354 33.9354 33.9354 33.9354 33.9354 33.9354 33.9354 33.9354 33.9636
36 33.5994 33.5994 33.5994 33.5994 33.5994 33.5994 33.5994 33.5994 33.6277
39 33.3684 33.3684 33.3684 33.3684 33.3684 33.3684 33.3684 33.3684 33.3967
42 33.2096 33.2096 33.2096 33.2096 33.2096 33.2096 33.2096 33.2096 33.2379
45 33.1003 33.1003 33.1003 33.1003 33.1003 33.1003 33.1003 33.1003 33.1287

Table 4.64 Comparison of EFG results obtained using 21 nodes with FEM at the location 
(x = 0.06 m) of the 1-D model shown in Fig.4.16 for d^* =1.51

Time 
(sec)

Temperature (° C)
= 1-51 FEM

c. s. Q. S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 79.2862 79.2862 79.2870 79.3878 79.5945 79.2804 79.2716 80.1587 79.2924
6 64.5764 64.5764 64.5776 64.4145 64.8656 64.5627 64.5379 66.6307 64.5944
9 54.5438 54.5439 54.5444 54.0493 54.7317 54.5288 54.4978 57.4180 54.5665
12 47.7180 47.7180 47.7180 46.9671 47.8000 47.7030 47.6694 51.1579 47.7427
15 43.0564 43.0564 43.0561 42.1418 43.0469 43.0417 43.0066 46.8948 43.0825
18 39.8637 39.8637 39.8631 38.8548 39.7800 39.8491 39.8131 43.9850 39.8905
21 37.6730 37.6731 37.6723 36.6145 37.5312 37.6587 37.6221 41.9956 37.7004
24 36.1685 36.1685 36.1676 35.0866 35.9819 36.1544 36.1173 40.6339 36.1962
27 35.1347 35.1347 35.1336 34.0437 34.9140 35.1208 35.0834 39.7011 35.1626
30 34.4240 34.4240 34.4229 33.3315 34.1777 34.4102 34.3728 39.0618 34.4520
33 33.9354 33.9354 33.9342 32.8448 33.6700 33.9218 33.8843 38.6235 33.9636
36 33.5994 33.5994 33.5982 32.5120 33.3199 33.5860 33.5485 38.3229 33.6277
39 33.3684 33.3684 33.3671 32.2844 33.0785 33.3550 33.3176 38.1166 33.3967
42 33.2096 33.2096 33.2083 32.1287 32.9120 33.1962 33.1588 37.9751 33.2379
45 33.1003 33.1003 33.0990 32.0221 32.7972 33.0871 33.0497 37.8780 33.1287
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Fig. 4.19 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.04 m) 
of the 1-D model shown in Fig.4.16
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Fig. 4.20 Comparison of EFG results obtained using 21 nodes with FEM at the location (x = 0.04m) 
of the 1-D model shown in Fig.4.16
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Fig. 4.21 Comparison of EFG results obtained using 11 nodes with FEM at the location (x = 0.10 m) 
of the 1-D model shown in Fig.4.16
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> CASE-IV

4.8 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for one-dimensional heat transfer in the cylindrical 

coordinate system with thermal properties independent of temperature is given as:

, d2T kr dT • dT
kr—r + —— + C = pc — 

dr2 r dr dt
(4.31)

The above equation can be written as:

I 3 G d?} dT----- \ k r— + Q = pc — r dr I dr ) dt (4.32a)

The initial conditions are:

at the time t = 0 T = Tini (4.32b)

The boundary conditions are:

at the radius r = 0 dT\ 2nkr— dr) (4.32c)

at the outer radius r = r0 T(ro) = To (4.32d)

The weighted integral form of Eq. (4.32a) is given as:

0 0 0

I d 
r dr

+ Q-pc— r dr dQ dz = 0 (4.33)

The weak form of Eq. (4.33) will be

dwdT' 
dr dr}

dT , w + pcw— rdr- 
dt w2nkr— dr Jo (4.34)= 0

Introducing boundary conditions in Eq. (4.34), the weak form becomes

dw dT 
dr dr ) w + pcw— rdr - wlnkr— 

dt r dr
(4.35)= 0

The function /(T’)can be written as:
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rn f0
rdr + 2n JpcTT rdr-2n^QT rdr-Q'T\r

0 0
(436)

where Q' = 2nkrr—
Sr fo

Enforcing essential boundary conditions using Lagrange multiplier method, the functional

I*(T) is obtained as:

rdr + 2n^pcTT rdr-2n^QT rdr-Q'T\r 
o o

+ UT-To)\r (4.37)

Using variational principle to obtain the discrete equations:

(dT VdT} kr — o — r 
\dr ) \drj

ro '0
dr+ 2nJpcTSrrdr-2n fosrrdr-

(4.38)
2'8r|r=r +%5r|r=r +sx(r-r0)|r_r

since 87" and 8X are arbitrary in the preceding equation, the following set of equations is

obtained using Eq. (3.25) and Eq. (4.38)

[K]{TMc]{T}+[G]{l}={f}

[Gr]{T} = {7;}

where

r0
K,j = ^2nkrr<t>lr1>Jrdr 

0

Cu = J2npcr0f dr 
0

ro

f, = faiQ^rdr + Q'Q^.
0

(4.39a)

(4.39b)

(4.40a)

(4.40b)

(4.40c)

(4.40d)

Using Crank-Nicolson technique for time approximation, the Eq. (4.39) can be written as:

0 o o
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(4.41)

where

R.v =([C]-O-a)A/[K]){TU, +aA/{f}w +(1-a)A/{f}w., (4.42a)

K’=aA/[K] (4.42b)

4.9 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of one-dimensional 

model shown in Fig. 4.23 are tabulated in Table 4.65. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using linear 

bar element for same sets of nodes. A comparative analysis is carried out to evaluate the 

performance of different weight functions.

4.9.1 Steady-state analysis

The results presented in Table 4.66 are obtained using different EFG weight functions for two 

values of scaling parameter (i.e.6?max = 1.01 & =1.51) and it shows a comparison of

temperature values obtained using 11 nodes with those obtained by FEM at the location 

(r = 0.0 m). Table 4.67 shows a comparison of temperature values obtained by EFG method 

using different weight functions for two values of scaling parameter with those obtained by 

FEM at the same location i.e. (r = 0.0 m) for 21 nodes. A comparison of temperature values 

obtained using different EFG weight functions with FEM for 11 and 21 nodes, is presented in 

Table 4.68 and Table 4.69 respectively at the location (r = 0.2m). Similar type of 

comparisons of EFG results are shown in Table 4.70 for 11 nodes at the location (r = 0.4 m), 

in Table 4.71 for 21 nodes at the location (r = 0.0m), in Table 4.72 for 11 nodes at the 

location (r = 0.6m) and in Table 4.73 for 21 nodes at the location (r = 0.6m). From the 

results presented in Table 4.66 to Table 4.73, it is observed that EFG results obtained using 
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different weight functions are similar for Jmax =1.01 but for dmM =1.51, only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results. It 

is also observed that EFG results obtained using different weight functions are in good 

agreement with those obtained by finite element method. Moreover with increase in number 

of nodes EFG results starts converging.

The effect of scaling parameter (^mBX)on EFG results obtained using different weight 

functions is presented in Table 4.74 for 11 nodes and Table 4.75 for 21 nodes respectively at 

the location (r = 0.2 m). Similar effect of scaling parameter on EFG results is shown in Table 

4.76 for 11 nodes and Table 4.77 for 21 nodes at the location (r = 0.6m). Fig. 4.24 shows the 

effect of scaling parameter on EFG results obtained using 11 and 21 nodes at the location 

{r = 0.0 m). Similar effect of scaling parameter on EFG results is observed in Fig. 4.25 at the 

location (r = 0.4m). From tables and figures, it is clear that only cubicspline, quarticspline, 

Gaussian, exponential and rational weight functions give acceptable results in the range 

1.0 c dmax <2.2 whereas the results obtained using quadratic, hyperbolic and cosine weight 

functions are varying in abrupt manner with scaling parameter. Therefore EFG results 

obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in the 

range 1.0 < dmaK <2.2. It is also observed that there is minimum variation in EFG results 

with scaling parameter for exponential weight function.
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Fig. 4.23 One-dimensional model

Table 4.65 Data for the 1-D model shown in Fig. 4.23
Parameters Value of the parameter

Radius (ro) 1 m
Thermal conductivity (&) 400 W/m-K
Specific heat of the material (c) 400 kJ/kg-K
Density of the material (p) 10000 kg/m’
Rate of internal heat generation (Q) 100000 W/m’
Heat transfer coefficient (h) 200 W/m2-K
Initial temperature (TIIU) 0 °C
Time step size (△/) 100 sec
Temperature?^ at radiusro 100 °C _________________________
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Table 4.66 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(r = 0) of the 1-D model shown in Fig. 4.23

Weight 
function

EFG
FEM

<. = 1-51

T (°C)
% diff 

with FEM
T (°C)

% diff 
with FEM

rco

C. S. 163.8333 0.5455 163.8320 0.5447

162.9444

Q. S. 163.8333 0.5455 163.8310 0.5441

Gaussian 163.8333 0.5455 163.7698 0.5065
Quadratic 163.8333 0.5455 199.1402 22.2136

Hyperbolic 163.8333 0.5455 168.6575 3.5062
Exponential 163.8333 0.5455 164.1684 0.7512

Rational 163.8333 0.5455 164.5708 0.9981

Cosine 163.8333 0.5455 179.7497 10.3135

Table 4.67 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(r = 0) of the 1 -D model shown in Fig. 4.23

Weight 
function

EFG
FEM

4-.-i.oi da„ =1.51

TfC)
% diff 

with FEM
rec)

% diff 
with FEM

rec)

C. S. 162.8874 0.1588 162.8871 0.1586

162.6291

Q. S. 162.8874 0.1588 162.8867 0.1584
Gaussian 162.8874 0.1588 162.8680 0.1469
Quadratic 162.8874 0.1588 173.2440 6.5271

Hyperbolic 162.8874 0.1588 166.0883 2.1270
Exponential 162.8874 0.1588 162.9907 0.2223

Rational 162.8874 0.1588 163.1194 0.3015
Cosine 162.8874 0.1588 151.6105 -6.7753
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Table 4.68 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(r = 0.2 m) of the 1 -D model shown in Fig. 4.23

Weight 
function

EFG
FEM<U = 101

rec) % diff 
with FEM

reo % diff
with FEM

rco
C. S. 160.5000 0.2081 160.4999 0.2080

160.1667

Q. S. 160.5000 0.2081 160.4999 0.2080
Gaussian 160.5000 0.2081 160.5032 0.2101
Quadratic 160.5000 0.2081 8.7300 -94.5494

Hyperbolic 160.5000 0.2081 158.9631 -0.7515
Exponential 160.5000 0.2081 160.5645 0.2484

Rational 160.5000 0.2081 160.7044 0.3357
Cosine 160.5000 0.2081 128.6542 -19.6748

Table 4.69 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(r = 0.2 m) of the 1-D model shown in Fig. 4.23

Weight 
function

EFG
FEM^=1.01 dma =1.51

TCC)
% diff 

with FEM T(°C)
% diff 

with FEM TfC)

C. S. 160.1255 0.0523 160.1255 0.0523

160.0418

Q. S. 160.1255 0.0523 160.1255 0.0523
Gaussian 160.1255 0.0523 160.1264 0.0529
Quadratic 160.1255 0.0523 189.8748 18.6408

Hyperbolic 160.1255 0.0523 163.0978 1.9095
Exponential 160.1255 0.0523 160.1431 0.0633

Rational 160.1255 0.0523 160.1841 0.0889
Cosine 160.1255 0.0523 128.9945 -19.3995
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(r = 0.4 m) of the 1 -D model shown in Fig. 4.23
Table 4.70 Comparison of EFG results obtained using 11 nodes with FEM results at the location

Weight 
function

EFG
FEM

<U=1.51

rec)
% diff 

with FEM
T (°C)

% diff 
with FEM

r(0C)

C. S. 152.7857 0.1248 152.7859 0.1250

152.5952

Q. S. 152.7857 0.1248 152.7861 0.1251

Gaussian 152.7857 0.1248 152.8032 0.1363
Quadratic 152.7857 0.1248 350.8918 129.9490

Hyperbolic 152.7857 0.1248 145.6080 -4.5789
Exponential 152.7857 0.1248 152.7780 0.1198

Rational 152.7857 0.1248 152.8293 0.1534

Cosine 152.7857 0.1248 184.4544 20.8782

Table 4.71 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(r = 0.4 m) of the 1 -D model shown in Fig. 4.23

Weight 
function

EFG
FEM

rf.„=1.01 ^max — 1 »5 1

TfC)
% diff 

with FEM
TfC) % diff 

with FEM
TfC)

C. S. 152.5715 0.0313 152.5716 0.0313

152.5238

Q. S. 152.5715 0.0313 152.5717 0.0314
Gaussian 152.5715 0.0313 152.5758 0.0341
Quadratic 152.5715 0.0313 155.3930 1.8811

Hyperbolic 152.5715 0.0313 155.1000 1.6890
Exponential 152.5715 0.0313 152.5709 0.0309

Rational 152.5715 0.0313 152.5873 0.0416
Cosine 152.5715 0.0313 117.8554 -22.7298
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Table 4.72 Comparison of EFG results obtained using 11 nodes with FEM results at the location 
(r = 0.6 m) of the 1 -D model shown in Fig. 4.23

Weight 
function

EFG
FEM

=1.01 =1-51

f(’C)
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 140.1594 0.0759 140.1598 0.0762

140.0531

Q. S. 140.1594 0.0759 140.1602 0.0765
Gaussian 140.1594 0.0759 140.1850 0.0942
Quadratic 140.1594 0.0759 -37.7341 -126.9430

Hyperbolic 140.1594 0.0759 125.5967 -10.3221
Exponential 140.1594 0.0759 140.1090 0.0399

Rational 140.1594 0.0759 140.1037 • 0.0361
Cosine 140.1594 0.0759 117.3296 -16.2249

Table 4.73 Comparison of EFG results obtained using 21 nodes with FEM results at the location 
(r = 0.6 m) of the 1 -D model shown in Fig. 4.23

Weight 
function

EFG
FEM<4«=ioi rfBK=1.51

7" (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM rco

C. S. 140.0399 0.0190 140.0400 0.0191

140.0133

Q. S. 140.0399 0.0190 140.0401 0.0191
Gaussian 140.0399 0.0190 140.0462 0.0235
Quadratic 140.0399 0.0190 108.6036 -22.4334

Hyperbolic 140.0399 0.0190 140.6870 0.4812
Exponential 140.0399 0.0190 140.0285 0.0109

Rational 140.0399 0.0190 140.0305 0.0123
Cosine 140.0399 0.0190 110.8593 -20.8223
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Table 4.74 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(r = 0.2 m) of the 1-D model shown in Fig. 4.23

Scaling 
Parameter

Temperature (°C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000
1.21 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000
1.41 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000 160.5000
1.61 160.4987 160.4977 160.5065 352.8279 151.2192 160.5754 160.7041 336.0699
1.81 160.5075 160.5127 160.5198 -3252.400 56.7672 160.5969 160.7085 -640.8388
2.01 160.5343 160.5478 160.5512 -442.7000 -2947.000 160.6168 160.7246 184.9188
2.21 160.5754 160.5942 160.6367 -635.0000 -134.0000 160.6346 160.7612 284.8694
2.41 160.6469 160.3278 160.8773 -100.000 1269.400 160.6505 160.8320 284.000
2.61 160.5868 156.4562 161.6613 3000.00 233.600 160.7667 161.5721 43847.0
2.81 158.3879 142.3742 163.3204 5406800 394.800 160.8079 161.9589 81581.0
3.01 133.7563 136.0585 166.4946 121400.0 1339.30 160.8563 162.4865 80113.0

Table 4.75 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(r = 0.2 m) of the 1 -D model shown in Fig. 4.23

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255
1.21 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255
1.41 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255 160.1255
1.61 160.1251 160.1248 160.1272 99.8940 164.4519 160.1463 160.1836 118.3164
1.81 160.1269 160.1283 160.1306 -140730 144.6884 160.1525 160.1850 -1.9631
2.01 160.1346 160.1432 160.1404 90.0000 100.0000 160.1582 160.1920 2372.000
2.21 160.1519 160.1914 160.1743 410.0000 190.0000 160.1631 160.2094 20128.00
2.41 160.2039 160.3757 160.2830 530.0000 -18146.00 160.1676 160.2441 4921.00
2.61 160.3876 160.9840 160.6435 80720.00 435.000 160.1940 160.4763 7443.00
2.81 161.0939 162.9138 161.4950 8690.000 3223.00 160.2040 160.6441 19591.00
3.01 162.7838 169.5597 163.4248 11171.00 18188.00 160.2169 160.8873 4485.00
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Table 4.76 Effect of scaling parameter on EFG results obtained using 11 nodes at the location 
(r = 0.6 m) of the 1-D model shown in Fig. 4.23

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594
1.21 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594
1.41 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594 140.1594
1.61 140.1949 140.2239 140.2069 375.2426 110.7276 140.1189 140.1233 555.1746
1.81 140.3237 140.4139 140.2730 4642.200 -16.5432 140.1417 140.1607 1131.000
2.01 140.4246 140.4602 140.3557 1814.000 -4087.000 140.1644 140.1963 491.3000
2.21 140.4351 140.0590 140.4438 1727.100 -1938.000 140.1845 140.2269 664.5000
2.41 140.1276 137.8341 140.4986 2480.000 -635.3000 140.2011 140.2398 1004.70
2.61 138.3431 127.3199 140.6516 3480.000 912.9000 140.2424 141.1326 -2175.50
2.81 129.0979 92.0817 140.1152 -66036.00 2135.700 140.2760 141.9245 -4056.20
3.01 74.2878 36.7714 137.2586 14010.00 7456.900 140.3159 143.1784 2083.10

Table 4.77 Effect of scaling parameter on EFG results obtained using 21 nodes at the location 
(r = 0.6ni)of the 1-D model shown in Fig. 4.23

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399
1.21 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399
1.41 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399 140.0399
1.61 140.0486 140.0557 140.0516 215.6581 138.6077 140.0312 140.0345 170.8622
1.81 140.0803 140.1030 140.0681 -228660 81.4392 140.0373 140.0435 -14.1092
2.01 140.1068 140.1297 140.0914 50.0000 -1800.000 140.0432 140.0565 1117.100
2.21 140.1279 140.1591 140.1335 20.0000 480.0000 140.0482 140.0782 9649.000
2.41 140.1676 140.1645 140.2420 260.000 36513.00 140.0522 140.1155 2316.000
2.61 140.2318 139.1689 140.6036 56860.00 137.000 140.0641 140.2967 14006.00
2.81 139.7963 134.4519 141.3918 20840.00 -1750.00 140.0728 140.4620 51770.00
3.01 130.3065 134.3763 143.0060 288640.0 7934.00 140.0836 140.6934 8216.000
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Fig. 4.24 Effect of scaling parameter on EFG results at the location (r = 0) of the 1-D model shown in
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4.9.2 Transient analysis

The transient analysis of 1-D model as shown in Fig. 4.23 is carried out using different EFG 

weight functions. Table 4.78 and Table 4.79 show the comparison of temperature values 

obtained using 11 nodes with FEM results at the location (r = 0.2 m) for dmM =1.01 and 

^m«x =1«51 respectively. Similar comparison of temperature values obtained using 21 nodes 

with FEM results is presented in Table 4.80 and Table 4.81 for dmM =1.01 and =1.51 

respectively at the same location i.e. (r = 0.2m). For this case (i.e. CASE-IV) of 1-D 

transient analysis, time step of 100 sec has been taken which is nearly 1% of the total time 

required to achieve steady state condition. Table 4.82 and Table 4.83 shows the comparison 

of temperature values obtained using 11 nodes with FEM results at the different location 

(r = 0.6m) for d^ =1.01 and dmax =1.51 respectively. Similar comparison of temperature 

values obtained using 21 nodes with FEM results is also presented in Table 4.84 and Table 

4.85 for dmM =1.01 and dmM =1.51 respectively at the same location i.e. (r = 0.6m). Fig. 

4.26 shows the comparison of temperature values obtained using 11 nodes with FEM for 

and ^max=^5l at the location (r = 0.0). Similar comparison of temperature 

values obtained using 21 nodes with FEM is shown in Fig. 4.27 at the same location i.e. 

(r = 0.0). Fig. 4.28 shows the comparison of temperature values obtained using 11 nodes 

with FEM for dm6X =1.01 and Jmax =1.51 at the location (r = 0.4). Similar comparison of 

temperature values obtained using 21 nodes with FEM is shown in Fig. 4.29 at the same 

location i.e. (r = 0.4). From the results presented in tables and figures, it is clear that the EFG 

results obtained using different weight functions are similar for d =1.01. However for 

^m.x =1-51 only cubicspline (C.S.), quarticspline (Q.S), Gaussian, exponential and rational 

weight functions give acceptable results. It has also been observed that the EFG results are in 

good agreement with those obtained by FEM.
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Table 4.78 Comparison of EFG results obtained using 11 nodes with FEM at the location (r = 0.2 m) 
of the 1-D model shown in Fig. 4.23 for dmax =1.01

Time 
(sec) 
xIO2

Temperature (° C)

FEM
c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 123.8373 123.8373 123.8373 123.8373 123.8373 123.8373 123.8373 123.8373 123.5747
20 139.7990 139.7990 139.7990 139.7990 139.7990 139.7990 139.7990 139.7990 139.4319
30 148.8850 148.8850 148.8850 148.8850 148.8850 148.8850 148.8850 148.8850 148.4956
40 153.9870 153.9870 153.9870 153.9870 153.9870 153.9870 153.9870 153.9870 153.6009
50 156.8488 156.8488 156.8488 156.8488 156.8488 156.8488 156.8488 156.8488 156.4732
60 158.4538 158.4538 158.4538 158.4538 158.4538 158.4538 158.4538 158.4538 158.0889
70 159.3539 159.3539 159.3539 159.3539 159.3539 159.3539 159.3539 159.3539 158.9979
80 159.8586 159.8586 159.8586 159.8586 159.8586 159.8586 159.8586 159.8586 159.5092
90 160.1415 160.1415 160.1415 160.1415 160.1415 160.1415 160.1415 160.1415 159.7968
100 160.3000 160.3000 160.3000 160.3000 160.3000 160.3000 160.3000 160.3000 159.9586

Table 4.79 Comparison of EFG results obtained using 11 nodes with FEM at the location 
(r = 0.2 m) of the 1 -D model shown in Fig. 4.23 for dmM =1.51

Time 
(sec) 
xIO2

Temperature (° C)
j x = 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 123.8371 123.8369 123.8283 117.8209 119.6616 123.9030 124.0052 119.9538 123.5747
20 139.7988 139.7986 139.7908 126.5869 135.3410 139.8857 140.0329 131.4836 139.4319
30 148.8848 148.8846 148.8800 129.0806 144.9057 148.9701 149.1231 137.1097 148.4956
40 153.9869 153.9867 153.9847 127.9222 150.6064 154.0676 154.2188 139.2998 153.6009
50 156.8487 156.8486 156.8484 124.7810 153.996,1 156.9251 157.0730 139.6644 156.4732
60 158.4538 158.4537 158.4547 120.6267 156.0110 158.5267 158.6717 139.1215 158.0889
70 159.3539 159.3538 159.3556 116.0099 157.2087 159.4243 159.5671 138.1759 158.9979
80 159.8585 159.8585 159.8609 111.2395 157.9205 159.9273 160.0688 137.0976 159.5092
90 160.1414 160.1414 160.1441 106.4864 158.3436 160.2090 160.3498 136.0257 159.7968
100 160.3000 160.2999 160.3028 101.8431 158.5951 160.3668 160.5072 135.0269 159.9586
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Table 4.80 Comparison of EFG results obtained using 21 nodes with FEM at the location (r = 0.2 m) 
of the 1-D model shown in Fig. 4.23 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)
^ma K =1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 123.7129 123.7129 123.7129 123.7129 123.7129 123.7129 123.7129 123.7129 123.6459
20 139.5594 139.5594 139.5594 139.5594 139.5594 139.5594 139.5594 139.5594 139.4676
30 148.5855 148.5855 148.5855 148.5855 148.5855 148.5855 148.5855 148.5855 148.4890
40 153.6537 153.6537 153.6537 153.6537 153.6537 153.6537 153.6537 153.6537 153.5582
50 156.4961 156.4961 156.4961 156.4961 156.4961 156.4961 156.4961 156.4961 156.4033
60 158.0902 158.0902 158.0902 158.0902 158.0902 158.0902 158.0902 158.0902 158.0000
70 158.9841 158.9841 158.9841 158.9841 158.9841 158.9841 158.9841 158.9841 158.8960
80 159.4854 159.4854 159.4854 159.4854 159.4854 159.4854 159.4854 159.4854 159.3988

90 159.7666 159.7666 159.7666 159.7666 159.7666 159.7666 159.7666 159.7666 159.6810

100 159.9242 159.9242 159.9242 159.9242 159.9242 159.9242 159.9242 159.9242 159.8393

Table 4.81 Comparison of EFG results obtained using 21 nodes with FEM at the location 
(r = 0.2 m) of the 1 -D model shown in Fig. 4.23 for d^ =1.51

Time 
xlO^

Temperature (° C)
, =1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 123.7129 123.7128 123.7107 126.2568 123.8557 123.7291 123.7546 120.5509 123.6459
20 139.5593 139.5593 139.5571 145.6142 140.3308 139.5825 139.6234 132.7120 139.4676
30 148.5855 148.5854 148.5840 157.7728 149.9843 148.6086 148.6530 138.5975 148.4890
40 153.6536 153.6536 153.6529 165.5620 155.5493 153.6756 153.7202 140.9409 153.5582

50 156.4961 156.4961 156.4959 170.7595 158.7526 156.5169 156.5609 141.4095 156.4033

60 158.0902 158.0902 158.0903 174.3916 160.5963 158.1099 158.1531 140.9332 158.0000
70 158.9841 158.9841 158.9845 177.0505 161.6574 159.0031 159.0457 140.0214 158.8960
80 159.4854 159.4854 159.4860 179.0816 162.2680 159.5040 159.5460 138.9483 159.3988
90 159.7666 159.7666 159.7672 180.6898 162.6194 159.7848 159.8264 137.8571 159.6810
100 159.9242 159.9242 159.9250 181.9995 162.8216 159.9422 159.9836 136.8192 159.8393
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Table 4.82 Comparison of EFG results obtained using 11 nodes with FEM at the location (r = 0.6 m) 
of the 1-D model shown in Fig. 4.23 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)
^ma , =1-01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 118.9037 118.9037 118.9037 118.9037 118.9037 118.9037 118.9037 118.9037 118.7962
20 128.3069 128.3069 128.3069 128.3069 128.3069 128.3069 128.3069 128.3069 128.1709
30 133.5148 133.5148 133.5148 133.5148 133.5148 133.5148 133.5148 133.5148 133.3724
40 136.4334 136.4334 136.4334 136.4334 136.4334 136.4334 136.4334 136.4334 136.2952
50 138.0705 138.0705 138.0705 138.0705 138.0705 138.0705 138.0705 138.0705 137.9391
60 138.9887 138.9887 138.9887 138.9887 138.9887 138.9887 138.9887 138.9887 138.8639
70 139.5036 139.5036 139.5036 139.5036 139.5036 139.5036 139.5036 139.5036 139.3842
80 139.7924 139.7924 139.7924 139.7924 139.7924 139.7924 139.7924 139.7924 139.6768
90 139.9543 139.9543 139.9543 139.9543 139.9543 139.9543 139.9543 139.9543 139.8414
100 140.0450 140.0450 140.0450 140.0450 140.0450 140.0450 140.0450 140.0450 139.9340

Table 4.83 Comparison of EFG results obtained using 11 nodes with FEM at the location (r = 0.6 m) 
of the 1-D model shown in Fig. 4.23 for d^ =1.51

Time Temperature PQ____________
(sec) 
xlO2

x =1.51 FEM
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 118.9038 118.9039 118.9122 111.2679 108.6144 118.9159 118.9728 115.1485 118.7962
20 128.3071 128.3072 128.3216 112.7249 115.5040 128.2987 128.3405 121.8409 128.1709
30 133.5151 133.5153 133.5332 110.1808 119.6001 133.4933 133.5223 124.7282 133.3724
40 136.4337 136.4340 136.4543 105.6587 122.0336 136.4023 136.4209 125.6360 136.2952
50 138.0708 138.0711 138.0931 100.1748 123.4794 138.0327 138.0436 125.5317 137.9391
60 138.9890 138.9894 139.0124 94.2868 124.3386 138.9465 138.9520 124.9457 138.8639
70 139.5040 139.5043 139.5281 88.3039 124.8492 139.4586 139.4604 124.1655 139.3842
80 139.7928 139.7931 139.8172 82.3960 125.1526 139.7455 139.7450 123.3424 139.6768
90 139.9547 139.9550 139.9794 76.6536 125.3330 139.9062 139.9042 122.5524 139.8414
100 140.0454 140.0457 140.0703 71.1221 125.4401 139.9963 139.9932 121.8300 139.9340
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Table 4.84 Comparison of EFG results obtained using 21 nodes with FEM at the location (r = 0.6 m) 
of the 1-D model shown in Fig. 4.23 for dnw* = 1.01

Time 
(sec) 
xlO2

Temperature (° C)
K =1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 118.7895 118.7895 118.7895 118.7895 118.7895 118.7895 118.7895 118.7895 118.7655
20 128.1943 128.1943 128.1943 128.1943 128.1943 128.1943 128.1943 128.1943 128.1624
30 133.4002 133.4002 133.4002 133.4002 133.4002 133.4002 133.4002 133.4002 133.3661
40 136.3165 136.3165 136.3165 136.3165 136.3165 136.3165 136.3165 136.3165 136.2832
50 137.9519 137.9519 137.9519 137.9519 137.9519 137.9519 137.9519 137.9519 137.9200
60 138.8691 138.8691 138.8691 138.8691 138.8691 138.8691 138.8691 138.8691 138.8386
70 139.3835 139.3835 139.3835 139.3835 139.3835 139.3835 139.3835 139.3835 139.3541
80 139.6720 139.6720 139.6720 139.6720 139.6720 139.6720 139.6720 139.6720 139.6433

90 139.8339 139.8339 139.8339 139.8339 139.8339 139.8339 139.8339 139.8339 139.8057

100 139.9247 139.9247 139.9247 139.9247 139.9247 139.9247 139.9247 139.9247 139.8968

Table 4.85 Comparison of EFG results obtained using 21 nodes with FEM at the location (r = 0.6 m) 
of the 1-D model shown in Fig. 4.23 for </max = 1.51

Time 
(sec) 
xlO2

Temperature (° C)
dmn ma = 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000
10 118.7895 118.7895 118.7912 115.1042 118.0609 118.7936 118.8110 115.4067 118.7655
20 128.1944 128.1944 128.1978 120.9178 127.7391 128.1929 128.2057 121.5751 128.1624
30 133.4002 133.4003 133.4046 122.9883 133.2395 133.3957 133.4057 123.9158 133.3661
40 136.3166 136.3166 136.3216 123.1811 136.4018 136.3096 136.3174 124.3159 136.2832
50 137.9520 137.9520 137.9575 122.4471 138.2216 137.9433 137.9491 123.7468 137.9200
60 138.8692 138.8693 138.8750 121.3009 139.2690 138.8593 138.8637 122.7357 138.8386
70 139.3836 139.3837 139.3896 120.0180 139.8717 139.3730 139.3763 121.5656 139.3541
80 139.6721 139.6722 139.6782 118.7410 140.2185 139,6611 139.6636 120.3843 139.6433
90 139.8340 139.8341 139.8401 117.5395 140.4180 139.8226 139.8247 119.2646 139.8057
100 139.9248 139.9248 139.9310 116.4432 140.5328 139.9132 139.9150 118.2387 139.8968
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Fig. 4.27 Comparison of EFG results obtained using 21 nodes with FEM nt the location (r »0)of the 
1-D model shown in Fig. 4.23
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Fig. 4.29 Comparison of EFG results obtained using 21 nodes with FEM at the location (r = 0.4 m) 
of the l-D model shown in Fig. 4.23
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4.10 CONCLUSION

The MATLAB codes have been developed to obtain the numerical solution for the different 

cases presented in this chapter using different EFG weight functions. The results obtained by 

EFG method are compared with those obtained by FEM (in Case-I analytical method also) at 

few typical locations. From the numerical analysis carried out in this chapter, it is clear that 

the EFG method can be successfully used to obtain the numerical solution of 1-D heat 

transfer problems. A comparative numerical analysis has been carried out to evaluate the 

performance of different weight functions. It is found that the EFG results obtained using 

cubicspline, quarticspline, Gaussian, exponential and rational weight functions are in good 

agreement with those obtained by FEM. From the analysis carried out in this chapter, it is 

also observed that only cubicspline, quarticsplinc, Gaussian, exponential and rational weight 

functions give acceptable results in the range 1.0 < <2.0. Out of all weight functions

used, the results obtained using exponential weight function are most reliable as compared to 

other weight functions used because only exponential weight function has minimum variation 

in the results with the increase in the value of scaling parameter.
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CHAPTER 5

2-D HEAT TRANSFER ANALYSIS

5.1 INTRODUCTION

This chapter describes the application of EFG method in two-dimensional (2-D) heat transfer 

problems. Four different cases have been chosen to check the applicability of this method in 

2-D heat transfer problems. The steady-state and transient analysis of different model 

problems have been carried out. The effect of scaling parameter on EFG results has also been 

discussed in detail.

> CASE-I

5.2 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for two-dimensional heat transfer in isotropic materials 

with thermal properties independent of temperature is given as:

The weighted integral form of Eq. (5.1a) is given as:

The initial conditions are

at t = 0 , T = 4i inQ (5.1b)

The boundary conditions are

at edge Tj, T = Te (5.1c)

at edge T2, (5.1d)

at edge r3,
OX

(5.1e)

at edge r4, (5.1f)
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,d2T,d2T „ dT nk—-+k—- + Q-pc-z->dQ = O dx2 dy2 * dt (5.2)

The weak form of Eq. (5.2) is obtained as:

ql

dT r r •— k — dCl- |pcw7WQ + 
n n

f . dT (_ . . dT .wk—cos(«,x) + wk—cos(w,y) 
dy

Using natural boundary conditions, the functional I(T) is obtained as:

fyT2dr+ rir2^- f/iT„rdr- fhrjrdr

r, r. n G

(53)

(5.4)

dT = 0

Using Lagrange multiplier technique to enforce essential boundary conditions, the functional

P(T) is obtained as:

fMr-rjdr 

r.

(5.5)

Using Variational method, Eq. (5.5) reduces to

8r(T) = j dCl+jpct8TdQ-^Q5TdQ +

jhTT6Tdr+ jhTT5Tdr- jhT„3Tdr- [hT„dTdr +

r, G r3 r<
j[5X(r-re)+%8T}ff’

G

(5.6)

Since ST and 81 are arbitrary in preceding equation, the following relations are obtained

using Eq. (3.25) and Eq. (5.7)

[K]{T}+[c]{r}+[G]{X}={f} (5.7a)
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[Gr]{T}={q) (5.7b)

where

ctJ = jpco/o^n
Q

d&+ J/? <blr<bJcrr+ 
r, r«

fi = je<M^+ ^T^dT-t yiT^dT 
n G G

^{Nkdr

jTeNKdT 
r,

(5.8a)

(5.8b)

(5.8c)

(5.8d)

(5.8e)

Using Crank-Nicolson technique for time approximation, the Eq. (5.7) can be written as:

K’+Cj 
“g? 'I

■Rw 

. fl

where

R « = ([C]- (1 - a) A/ [K]) {t}w_| + a to {f }w + (1 - a) Af {f

K*=aA/[K]

5.3 NUMERICAL RESULTS AND DISCUSSION

(5.9)

(5.10a)

(5.10b)

The different parameters used for steady-state and transient analysis of two-dimensional 

model shown in Fig. 5.1 are tabulated in Table 5.1. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using 4 

node quadrilateral elements (PLANE 55, ANSYS 6.0) for same sets of nodes. Analytical 

results have also been obtained using an infinite series (Carslaw and Jaeger, 1959). A 

comparative study is carried out to evaluate the performance of different EFG weight 

functions.
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5.3.1 Steady-state analysis

The EFG results (i.e. temperature values) presented in Table 5.2 are obtained using different 

weight functions for two values of scaling parameter (i.e.dmax =1.01 & dmax =1.51) at the 

location (x = 0.5m, y = lm) and it shows a comparison of temperature values with those 

obtained by FEM and analytical methods for 25 nodes. Table 5.3 shows a comparison of 

temperature values obtained by EFG method using different weight functions for two values 

of scaling parameter with those obtained by FEM and analytical methods at the same location 

i.e. (x = 0.5m, y = lm) for 81 nodes. A comparison of temperature values obtained using 

different EFG weight functions with FEM and analytical methods for 25 and 81 nodes, is 

shown in Table 5.4 and Table 5.5 respectively at the location (x = 0.5 m, y = 0.5 m). Similar 

type of comparisons of temperature values are shown in Table 5.6 for 25 nodes nt the 

location (x = 1 m, y = lm), in Table 5.7 for 81 nodes at the location(x = lm, y = lm), in Table 

5.8 for 25 nodes at the location (x = 1 m, y = 0.5 m) and in Table 5.9 for 81 nodes at the 

location (x = 1 m, y = 0.5 m). From the results presented in Table 5.2 to Table 5.9, it is 

observed that EFG results obtained using different weight functions are almost similar for 

=1.01. However for d^ =1.51, only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It is also observed that EFG results 

obtained using different weight functions are in good agreement with those obtained by FEM 

and analytical methods. Moreover with the increase in number of nodes EFG results starts 

converging.

The effect of scaling parameter (^max)on EFG results obtained using different weight 

functions is presented in Table 5.10 for 25 nodes and Table 5.11 for 81 nodes respectively at 

the location (x = 0.5m, y = 0.5m). Similar effect of scaling parameter on EFG results is 

shown in Table 5.12 for 25 nodes and Table 5.13 for 81 nodes at the location 
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(x = Im, y = 0.5m). Fig. 5.2 shows the effect of scaling parameter on EFG results obtained 

using 25 and 81 nodes at the location (x = 0.5 m, y = Im). Similar effect of scaling parameter 

on EFG results is observed in Fig. 5.3 at the location (x = lm, ^ = lm). From tables and 

figures, it is clear that only cubicspline, quarticspline, Gaussian, exponential and rational 

weight functions give acceptable results in the range 1.0 < Jmox < 2.0 whereas the results 

obtained using quadratic, hyperbolic and cosine weight functions are varying in abrupt 

manner with scaling parameter. Therefore EFG results obtained using quadratic, hyperbolic 

and cosine weight functions are not acceptable in the range 1.0< dmax <2.0. It is also 

observed that there is minimum variation in EFG results with scaling parameter for 

exponential weight function.
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Table 5.1 Data for the 2-D model shown in Fig. 5.1
Parameters Value of the parameter
Length (L) 1 m
Width (JF) 1 m
Thermal conductivity (k) 400 W/m-K
Density of the material (p) 10000 kg/m3
Specific heat (c) 400 kJ/kg-K
Rate of internal heat generation (Q) 0 W/m’
Heat transfer coefficient (h ) 200 W/m’-K
Surrounding fluid temperature (7^) 20 °C
Initial temperature (Tinl) 50 °C
Time step size (A/) 100 sec
Temperature at surface, x - 0 orT] 100 °C ____________________
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Table 5.2 Comparison of EFG results obtained using 25 nodes with FEM and analytical results at the 
location (x = 0.5 m, y = 1 m) of the 2-D model shown in Fig. 5.1

Weight 
function

EFG
FEM Analytical

<.=101 < =1-51
T (°C) % error T (°C) % error T (°C) % error TCO

C. S. 72.0643 -0.0007 71.9548 -0.1526

72.1942 0.1796 72.0648

Q. S. 72.0528 -0.0166 71.9897 -0.1042

Gaussian 72.1758 0.1540 71.9215 -0.1988

Quadratic 72.0433 -0.0298 74.7610 3.7413
Hyperbolic 72.0543 -0.0146 70.0848 -2.7475
Exponential 72.0508 -0.0194 72.0255 -0.0545

Rational 72.0444 -0.0283 72.0151 -0.0690

Cosine 72.0435 -0.0296 75.0249 4.1075

location (x = 0.5 m, y = 1 m) of the 2-D model shown in Fig. 5.1
Table 5.3 Comparison of EFG results obtained using 81 nodes with FEM and analytical results at the

Weight 
function

EFG
FEM Analytical

<.=1-01 ^max —1.51

rec) % error T^C) % error TCC) % error rec)
C. S. 72.0659 0.0015 72.0116 -0.0738

72.0970 0.0447 72.0648

Q. S. 72.0623 -0.0035 72.0028 -0.0860
Gaussian 72.0900 0.0350 72.0079 -0.0790
Quadratic 72.0583 -0.0090 72.9914 1.2858

Hyperbolic 72.0472 -0.0244 71.6825 -0.5305
Exponential 72.0616 -0.0044 72.0510 -0.0192

Rational 72.0588 -0.0083 72.0249 -0.0554
Cosine 72.0584 -0.0089 73.6979 2.2662
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Table 5.6 Comparison of EFG results obtained using 25 nodes with FEM and analytical results at the 
location (x = Im, y = Im) of the 2-D model shown in Fig. 5.1

Weight 
function

EFG
FEM Analytical

=101 ^max 1-51

T (°C) % error T^C) % error TCC) % error T(°C)
C. S. 59.1080 -0.0458 59.1362 0.0019

59.5131 0.6392 59.1351

Q. S. 59.1192 -0.0269 59.1447 0.0162
Gaussian 59.0510 -0.1422 59.0558 -0.1341
Quadratic 59.1325 -0.0044 60.2170 1.8295
Hyperbolic 59.1752 0.0678 58.2413 -1.5114
Exponential 59.1218 -0.0225 59.1304 -0.0080

Rational 59.1310 -0.0069 59.0988 -0.0614

Cosine 59.1323 -0.0047 60.3617 2.0742

Table 5.7 Comparison of EFG results obtained using 81 nodes with FEM and analytical results at the 
location (x = Im, y = Im) of the 2-D model shown in Fig. 5.1

Weight 
function

EFG
FEM Analytical

d^ =1.01 ^max ~ 1 -51

TfC) % error TfC) % error rrc) % error T^C)
C. S. 59.1259 -0.0156 59.1346 -0.0008

59.2525 0.1985 59.1351

Q. S. 59.1300 -0.0086 59.1350 -0.0002
Gaussian 59.1028 -0.0546 59.0959 -0.0663
Quadratic 59.1348 -0.0005 59.3683 0.3943

Hyperbolic 59.1484 0.0225 59.1356 0.0008
Exponential 59.1310 -0.0069 59.1334 -0.0029

Rational 59.1342 -0.0015 59.1098 -0.0428
Cosine 59.1347 -0.0007 59.6103 0.8036

129



Table 5.10 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(x = 0.5 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1

Scaling
Parameter

Temperature (°C)
C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 80.5157 80.5263 80.4587 80.5392 80.5883 80.5288 80.5376 80.5390
1.21 80.5367 80.5139 80.4075 80.6987 80.7751 80.4639 80.5164 80.6416
1.41 80.4636 80.4543 80.4112 82.0047 79.9297 80.5454 80.6303 81.4301
1.61 80.4292 80.4145 80.4192 77.0261 77.9906 80.5576 80.6504 80.4439
1.81 80.4315 80.4705 80.3954 78.4479 72.3297 80.5697 80.5919 76.1947
2.01 80.4873 80.6341 80.3292 80.1034 86.4314 80.5537 80.6221 79.5585
2.21 80.6666 81.0481 80.1655 77.0585 63.0170 80.5528 80.6507 75.0947
2.41 81.0782 81.9046 79.7934 77.7466 46.2038 80.5795 80.6793 84.6521
2.61 81.9293 83.5618 79.0712 46.1396 49.1487 80.5909 80.7082 43.0280
2.81 83.6319 86.5485 77.7109 83.3270 -9.8936 80.5885 80.8484 76.6830
3.01 86.8907 91.3258 75.3694 -80.9019 78.8697 80.6303 81.1256 58.4485

Table 5.11 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(x = 0.5 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 80.4165 80.4185 80.4041 80.4207 80.4271 80.4189 80.4204 80.4206
1.21 80.4209 80.4137 80.3888 80.4370 80.4537 80.4000 80.4103 80.4287
1.41 80.3995 80.3967 80.3887 80.8832 80.4114 80.4214 80.4334 80.6725
1.61 80.3905 80.3866 80.3897 80.2008 80.4477 80.4233 80.4334 80.1874
1.81 80.3884 80.3901 80.3854 80.8653 80.0677 80.4289 80.4394 80.3360
2.01 80.3897 80.4036 80.3751 83.8084 112.9042 80.4240 80.4420 82.2226

2.21 80.4055 80.4783 80.3485 77.1066 80.9886 80.4196 80.4492 80.4467

2.41 80.4756 80.7445 80.2748 81.7076 74.4751 80.4294 80.4524 81.2068

2.61 80.7221 81.5416 80.1044 76.4458 75.8857 80.4320 80.4505 72.4678

2.81 81.5339 83.3744 79.6983 80.3373 113.0560 80.4301 80.4684 79.9340

3.01 83.9883 84.9101 78.8260 73.3900 95.5460 80.4347 80.3339 74.2754
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Table 5.12 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(* = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1

Scaling 
Parameter

Temperature (° C)
C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 66.2404 66.2395 66.2429 66.2383 66.2358 66.2394 66.2386 66.2384
1.21 66.2359 66.2498 66.2689 66.3360 66.3823 66.2689 66.2904 66.3165
1.41 66.2783 66.2892 66.2869 67.2049 66.0613 66.2518 66.3187 66.9079
1.61 66.3064 66.3159 66.3005 64.9684 65.7874 66.2649 66.3439 66.1503
1.81 66.3262 66.3404 66.2655 65.8258 65.5136 66.3048 66.3906 65.5898
2.01 66.3523 66.4021 66.0972 66.1206 55.5320 66.3442 66.4613 66.3873
2.21 66.4290 66.5789 65.6793 64.9235 37.0261 66.4013 66.5526 63.7341
2.41 66.6037 66.9223 64.8466 69.2933 9.5380 66.4325 66.6811 75.6949
2.61 66.9574 67.5326 63.3189 18.9042 -5.7137 66.4696 66.6326 26.0591
2.81 67.6014 68.4733 60.7350 66.8601 -48.8286 66.5614 66.6309 61.2361
3.01 68.7675 69.7453 56.4658 84.1884 102.3911 66.6787 67.6563 75.5777

Table 5.13 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(x = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1

Scaling
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
1.01 66.1846 66.1845 66.1850 66.1844 66.1834 66.1845 66.1844 66.1844
1.21 66.1838 66.1866 66.1904 66.1999 66.2120 66.1904 66.1961 66.1986
1.41 66.1928 66.1955 66.1951 66.3820 66.3134 66.1878 66.2044 66.3146
1.61 66.2007 66.2052 66.2022 66.2624 66.2643 66.1911 66.2103 66.3155
1.81 66.2085 66.2127 66.2096 66.0790 65.7203 66.2022 66.2281 66.3015
2.01 66.2159 66.2199 66.2006 63.9896 66.3409 66.2128 66.2551 65.8594
2.21 66.2247 66.2381 66.1379 68.2255 68.0830 66.2239 66.2827 66.4784
2.41 66.2434 66.2898 65.9426 66.4435 58.0575 66.2332 66.3083 69.4903
2.61 66.2946 66.4209 65.4744 73.2930 56.4908 66.2422 66.3150 78.1173

2.81 66.4334 66.6279 64.4853 65.6535 66.2402 66.2555 66.3094 66.6333

3.01 66.8270 66.5873 62.5656 50.8536 28.3875 66.2828 66.5715 58.5267
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Fig. 5.2 Effect of scaling parameter on EFG results at the location (x = 0.5 m, y = 1 m) of the 
2-D model shown in Fig. 5.1
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5.3.2 Transient analysis

The transient analysis of 2-D model is carried out using different EFG weight functions. 

Table 5.14 and Fig. 5.4 show the convergence study using different time steps at two 

different locations. The solution with 1000 sec time step continues to oscillate with 

decreasing amplitude until it converges at 20000 sec. This time step (1000 sec) is nearly 10% 

of the total time required to achieve steady state condition in first two time steps (i.e. 100 sec 

and 500 sec). For time steps up to 500 sec, the EFG results are well converged and this time 

step is nearly 5% of the total time required to achieve steady state. For this (i.e. CASE-I) of 

2-D transient analysis, time step of 100 sec has been taken which is nearly 1% of the total 

time required to achieve steady state condition.

Table 5.15 and Table 5.16 show the comparison of EFG results (i.e. temperature values) 

obtained using 25 nodes with FEM results at the location (x = 0.5 m, y = 0.5 m) for

=1.01 and d^ =1.51 respectively. Similar comparison of temperature values obtained 

using 81 nodes is presented in Table 5.17 and Table 5.18 for d^ =1.01 and dnwx =1.51 

respectively at the same location i.e. (x = 0.5m, y = 0.5 m). Tabic 5.19 and Tabic 5.20 show 

the comparison of EFG results (i.e. temperature values) obtained using 25 nodes with FEM 

results at the location (x = lm, y = 0.5m) for d^ =1.01 and d^ =1.51 respectively. 

Similar comparison of temperature values obtained using 81 nodes is also presented in Table 

5.21 and Table 5.22 for d^ =1.01 and d^ =1.51 respectively at the same location i.e. 

(x = Im, y = 0.5m). Fig 5.5 shows the comparison of EFG results (i.e. temperature values) 

obtained using 25 nodes with FEM results for d^ =1.01 and d^ =1.51 at the 

location(x = 0.5m, y = Im). Similar comparison of temperature values obtained using 81 

nodes is shown in Fig. 5.6 at the same location i.e. (x = 0.5m, y = Im) . Fig 5.7 shows the 

comparison of EFG results (i.e. temperature values) obtained using 25 nodes with FEM 

results for d^ =1.01 and d^ =1.51 at the location(x = Im, y = lm). Similar comparison 

of temperature values obtained using 81 nodes is shown in Fig. 5.8 at the same location i.e. 

(x = lm, y = lm). From the results presented in tables and figures, it is clear that the EFG
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results obtained using different weight functions are almost similar for d^ =1.01 but for 

only cubicspline, quarticspline, Gaussian, exponential and rational weight

functions give acceptable results. It has also been observed that the EFG results are in good 

agreement with those obtained by finite element method.

Table 5.14 Convergence analysis of EFG results obtained using different time step at the 
location (x = 1 m, y = 1 m) of the 2-D model shown in Fig. 5.1

Time (sec) 
xlO2

Time Step Size
100 sec 500 sec 1000 sec

0 50.0000 50.0000 50.0000
10 42.9842 43.3114 39.6466
20 46.8562 46.0226 44.9475
30 50.6176 50.0909 46.6710
40 53.2997 52.9778 53.0454
50 55.1450 54.9470 53.1493
60 56.4072 56.2880 56.5524
70 57.2695 57.2014 56.1211
80 57.8583 57.8231 58.1794
90 58.2604 58.2457 57.5057
100 58.5349 58.5325 58.9080

Time (sec)
Fig. 5.4 Convergence analysis of EFG results obtained using different time step at the 

location(x = 0.5m, y = Im) of the 2-D model shown in Fig. 5.1
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Table 5.15 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.5 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)
^=1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.000055
5 53.8028 53.8061 53.7895 53.8104 53.8381 53.8068 53.8096 53.8102 .8689
10 61.0458 61.0520 61.0151 61.0599 61.0968 61.0535 61.0588 61.0597 61.5713
15 65.1682 65.1755 65.1313 65.1847 65.2251 65.1773 65.1835 65.1846 65.5277
20 68.0464 68.0543 68.0062 68.0641 68.1061 68.0561 68.0629 68.0639 68.3777
25 70.2832 70.2915 70.2406 70.3018 70.3449 70.2935 70.3005 70.3016 70.5609
30 72.0920 72.1006 72.0475 72.1113 72.1552 72.1026 72.1099 72.1111 72.3024
35 73.5741 73.5830 73.5278 73.5939 73.6386 73.5851 73.5926 73.5937 73.7219
40 74.7937 74.8028 74.7459 74.8140 74.8592 74.8049 74.8126 74.8138 74.8910
45 75.7985 75.8078 75.7495 75.8193 75.8651 75.8100 75.8179 75.8191 75.8588
50 76.6268 76.6363 76.5766 76.6480 76.6942 76.6385 76.6465 76.6478 76.6616

Table 5.16 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.5 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^max 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 53.2594 53.0879 53.2634 55.1730 46.8329 53.6314 53.0611 54.0173 55.8689
10 60.5244 60.3788 60.4855 60.8192 56.4818 60.9974 60.8535 61.9973 61.5713
15 64.8063 64.7144 64.7724 66.0241 61.1947 65.1468 65.0816 66.6373 65.5277
20 67.7607 67.6929 67.7302 69.0355 64.3318 68.0372 68.0064 69.6744 68.3777
25 70.0326 69.9754 70.0029 71.4152 66.7314 70.2830 70.2777 71.9873 70.5609
30 71.8612 71.8096 71.8312 73.3157 68.6668 72.0990 72.1146 73.8435 72.3024
35 73.3581 73.3104 73.3278 74.8720 70.2491 73.5870 73.6195 75.3608 73.7219
40 74.5910 74.5464 74.5603 76.1509 71.5481 74.8113 74.8572 76.6082 74.8910
45 75.6085 75.5667 75.5776 77.2037 72.6157 75.8200 75.8763 77.6356 75.8588
50 76.4489 76.4097 76.4179 78.0707 73.4932 76.6513 76.7157 78.4823 76.6616

137



Table 5.17 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.5 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)

d^ =1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 54.1991 54.1994 54.1972 54.1998 54.2012 54.1995 54.1997 54.1997 55.2724
10 61.0047 61.0056 60.9992 61.0066 61.0097 61.0058 61.0065 61.0066 61.2584
15 65.1343 65.1355 65.1270 65.1368 65.1409 65.1357 65.1366 65.1367 65.2887
20 68.0111 68.0124 68.0029 68.0138 68.0184 68.0126 68.0136 68.0138 68.1486
25 70.2305 70.2319 70.2218 70.2335 70.2383 70.2322 70.2333 70.2335 70.3379
30 72.0184 72.0199 72.0091 72.0215 72.0266 72.0202 72.0213 72.0215 72.0890
35 73.4824 73.4839 73.4727 73.4856 73.4909 73.4842 73.4854 73.4856 73.5193
40 74.6882 74.6898 74.6781 74.6916 74.6970 74.6901 74.6914 74.6916 74.6985
45 75.6835 75.6851 75.6731 75.6870 75.6925 75.6855 75.6868 75.6870 75.6745
50 76.5056 76.5073 76.4950 76.5092 76.5149 76.5077 76.5090 76.5092 76.4839

Table 5.18 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.5 m, .y = 0.5 m) of the 2-D model shown in Fig. 5.1 for = 1.51

Time 
(sec) 
xlO2

Temperature (° C)

d^ =1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 54.1001 54.0722 54.0928 55.4786 53.9481 54.1778 54.2382 57.2905 55.2724
10 60.8719 60.8370 60.8648 59.7098 60.7064 60.9843 60.8730 60.8839 61.2584
15 65.0377 65.0136 65.0313 64.9799 64.9868 65.1251 65.1111 66.5022 65.2887
20 67.9359 67.9175 67.9304 67.3847 67.9121 68.0051 67.9836 68.7340 68.1486
25 70.1651 70.1495 70.1598 69.8879 70.1404 70.2270 70.2150 71.3641 70.3379
30 71.9580 71.9440 71.9526 71.5524 71.9607 72.0168 72.0098 72.9540 72.0890
35 73.4253 73.4125 73.4198 73.0995 73.4360 73.4823 73.4793 74.5544 73.5193
40 74.6341 74.6222 74.6285 74.2761 74.6596 74.6893 74.6900 75.7012 74.6985
45 75.6322 75.6211 75.6265 75.2982 75.6638 75.6856 75.6888 76.7451 75.6745
50 76.4571 76.4467 76.4514 76.1152 76.4958 76.5086 76.5139 77.5517 76.4839
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Table 5.19 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for =1.01

Time 
(sec) 
xIO2

Temperature (° C)

^=101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 46.2661 46.2654 46.2711 46.2647 46.2676 46.2652 46.2648 46.2647 47.4387
10 46.0098 46.0073 46.0244 46.0045 46.0000 46.0068 46.0049 46.0045 48.0320
15 48.5008 48.4977 48.5180 48.4942 48.4872 48.4971 48.4947 48.4942 49.9815
20 51.3334 51.3303 51.3502 51.3268 51.3194 51.3297 51.3273 51.3269 52.2732
25 53.8757 53.8728 53.8912 53.8694 53.8623 53.8722 53.8699 53.8695 54.4579
30 56.0265 56.0238 56.0406 56.0207 56.0140 56.0233 56.0211 56.0208 56.3855
35 57.8144 57.8119 57.8271 57.8090 57.8028 57.8114 57.8094 57.8091 58.0313
40 59.2923 59.2900 59.3037 59.2873 59.2816 59.2896 59.2878 59.2874 59.4164
45 60.5118 60.5097 60.5220 60.5072 60.5019 60.5093 60.5076 60.5073 60.5743
50 61.5175 61.5156 61.5267 61.5133 61.5083 61.5152 61.5137 61.5133 61.5392

Table 5.20 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for dnuK =1.51

Time 
(sec) 
xIO2

Temperature (° C)

=1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 46.5673 46.6026 46.5646 48.4141 44.2703 46.2835 46.2985 47.5584 47.4387
10 46.4899 46.5854 46.5347 46.0007 44.3846 45.9791 45.8755 46.8778 48.0320
15 48.8006 48.8646 48.8348 48.9793 47.2067 48.4841 48.4466 49.4477 49.9815
20 51.5090 51.5484 51.5317 51.8682 50.2567 51.3287 51.3380 52.3104 52.2732
25 53.9817 54.0068 53.9970 54.4966 52.9154 53.8784 53.9145 54.8770 54.4579
30 56.0931 56.1101 56.1037 56.7027 55.1383 56.0339 56.0861 57.0465 56.3855
35 57.8575 57.8697 57.8651 58.5341 56.9741 57.8250 57.8874 58.8491 58.0313
40 59.3212 59.3305 59.3267 60.0456 58.4854 59.3052 59.3745 60.3388 59.4164
45 60.5322 60.5398 60.5362 61.2916 59.7283 60.5263 60.6004 61.5678 60.5743
50 61.5333 61.5399 61.5363 62.3181 60.7502 61.5333 61.6104 62.5811 61.5392
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Table 5.21 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)
<.=101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 46.4328 46.4326 46.4340 46.4324 46.4318 46.4326 46.4325 46.4324 46.9714
10 46.4842 46.4837 46.4872 46.4831 46.4813 46.4836 46.4832 46.4831 47.4712
15 48.7729 48.7723 48.7768 48.7716 48.7693 48.7722 48.7717 48.7716 49.4933
20 51.4576 51.4569 51.4614 51.4562 51.4538 51.4568 51.4563 51.4562 51.8949
25 53.9144 53.9138 53.9180 53.9132 53.9108 53.9137 53.9133 53.9132 54.1658
30 56.0154 56.0149 56.0187 56.0142 56.0120 56.0148 56.0143 56.0143 56.1523
35 57.7725 57.7721 57.7755 57.7715 57.7694 . 57.7720 57.7716 57.7715 57.8378
40 59.2308 59.2304 59.2334 59.2298 59.2279 59.2303 59.2299 59.2299 59.2502
45 60.4377 60.4373 60.4401 60.4368 60.4350 60.4372 60.4369 60.4368 60.4276
50 61.4355 61.4352 61.4377 61.4348 61.4330 61.4351 61.4348 61.4348 61.4067

Table 5.22 Comparison of EFG results obtained using XI nodes with FEM at the location 
(x = 1 m, y = 0.5 m) of the 2-D model shown in Fig. 5.1 for dnw =1.51

Time 
(sec) 
xlO2

Temperature (° C)
^na .=1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000 50.0000
5 46.4677 46.4733 46.4718 47.1788 46.3958 46.4314 46.4157 48.0032 46.9714
10 46.6115 46.6344 46.6236 46.1453 46.4853 46.4773 46.4494 46.2151 47.4712
15 48.8603 48.8771 48.8699 48.9207 48.7067 48.7688 48.7588 49.4651 49.4933
20 51.5095 51.5202 51.5161 51.3874 51.5001 51.4564 51.4541 51.6696 51.8949
25 53.9452 53.9522 53.9499 53.9902 53.9620 53.9152 53.9226 54.4049 54.1658
30 56.0339 56.0390 56.0375 56.0321 56.0985 56.0175 56.0291 56.3630 56.1523
35 57.7838 57.7876 57.7866 57.8363 57.8601 57.7755 57.7903 58.2096 57.8378
40 59.2377 59.2408 59.2400 59.2794 59.3328 59.2343 59.2512 59.6240 59.2502
45 60.4419 60.4446 60.4439 60.5026 60.5429 60.4417 60.4598 60.8611 60.4276
50 61.4383 61.4407 61.4400 61.4975 61.5470 61.4398 61.4589 61.8460 61.4067
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> CASE-II

5.4 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for two-dimensional heat transfer in thin fins with 

thermal properties independent of temperature is given as:

dd^T ^-1-- r-)+ Q ~ Pc^~= 0 (5.11a)
dy1 ) UJ dt k '

The Initial conditions are

atr=O, T = Tini in Q (5.1lb)

The boundary conditions are

dy

at edge T,, T = TC (5.11c)

at edge T2, k- = h(T-TJ (5.1 Id)

at edge T3, -k^ = h(T-TJ 
dx

(5. He)

at edge f4, -k^-=h(T-TJ (5.111)

The weighted integral form of Eq. (5.1 la) is given as:

,d2T . d2T ,
*—r+k—r-h 

dx2 dy2 A,
T + M + Q-pc—= 0 

dt
(5.12)

The weak form of Eq. (5.12) will be obtained as:

T w dQ- jpcwT dQ + 
n

dT &rif k — cos(n, .v) + w k cos(77, y} dV = 0
dx

(5.13)

Using natural boundary conditions, the functional I(T) is obtained as:
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G

d£l + ^pctTdtt-^(M + Q)Td& + 
n n

fh , r f r-r2^- IhTTdT- IhTTdT- \hTTdr
J 2 j J J00

G G g g

(5.14)

Using Lagrange multiplier technique to enforce essential boundary conditions, the functional

V(T) is obtained as:

^T2dr+ ^2^+ ^r2dr- fardr-^Tdr- ^hTjdr+ (5.15)

GZ G G G g g
IxCT-rjdr

Using Variational method, Eq. (5.15) can be written as:

j(W + Q)8TdQ+ jhTr6TdT + $hTr8TdT + j/tr^Pr/T- L?;,MW (5.16) 
n r, r, r, i,
pir.STyr- pi7;87yr+ |[8X(r-7;,)+x87’]rfr 

G G G

Since 8T and 8X are arbitrary in preceding equation, the following relations are obtained 

using Eq. (3.25) and Eq. (5.16)

[K]{T)+[C]{r}+[G]{x)= {f} (5.17a)

[Gr]{T)={q} (5.17b)

where

°]ro 
k o

<blT<bJd&+ Jao/ ^jdT+
G

j/td>/<I>JaT'+ J/iO/QjdT
G G

(5.18a)

dQ+ j/z 
n 4
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C,J = IpcO/Ojdn (5.18b)
n

f, = [(M + Q)<t>,d£l + jA7'_<I>,£Zr+ p;7;<b,</r + |AT„O,i/r (5.18c)
n r. r, r4

GIK = (5.l8d)
r,

^ = J^a dr (5.18e)
r,

Using Crank-Nicolson technique for time approximation, the Eq. (5.17) can be written as:

*+Ci (5.19)
g7 oJLk J L q _

where

Rlv=([c]-(l-a)A/[K]){T}A,.l+aA/{f}w+(l-a)A/{fUl (5.20a)

K’=aA/[K] (5.20b)

5.5 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of two-dimensional fin 

model shown in Fig. 5.9 are tabulated in Table 5.23. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using 4 

node quadrilateral elements (PLANE 55, ANSYS 6.0) for same sets of nodes. A comparative 

study is carried out to evaluate the performance of different EFG weight functions.

5.5.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 5.24 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.dmax =1.01 & dmax =1.51) at the 

location (x = 0.025 m, y = 0 m) and it shows a comparison of temperature values obtained by 

EFG method using different weight functions with FEM for 25 nodes. Table 5.25 shows a 
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comparison of temperature values obtained by EFG method using different functions for two 

values of scaling parameter with FEM at the same location i.e. (x = 0.025 m, y = 0 m) for 81 

nodes. A comparison of temperature values obtained using different EFG weight functions 

with FEM for 25 and 81 nodes, is shown in Table 5.26 and Table 5.27 respectively at the 

location (.x = 0.05 m, y = 0m). Similar type of comparisons of temperature values are shown 

in Table 5.28 for 25 nodes at the location (x = 0.075m, ^ = 0m), in Table 5.29 for 81 nodes 

at the location (x = 0.075m, y = 0m), in Table 5.30 for 25 nodes at the 

location (x = 0.1m, y = 0m) and in Table 5.31 for 81 nodes at the 

location (x = 0.1 m, ^ = 0m). From the results presented in Table 5.24 to Table 5.31, it is 

observed that EFG results obtained using different weight functions are almost similar for

= 101. However for dmM =1.51, only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It is also observed that EFG results 

obtained using different weight functions are in good agreement with those obtained by FEM. 

Moreover with the increase in number of nodes EFG results starts converging.

The effect of scaling parameter (^max)on EFG results obtained using different weight 

functions is presented in Table 5.32 for 25 nodes and Table 5.33 for 81 nodes respectively at 

the location (x = 0.025 m, y = 0 m). The similar effect of scaling parameter on EFG results is 

shown in Table 5.34 for 25 nodes and Table 5.35 for 81 nodes at the location 

(x = 0.075 m, ^ = 0.0m). Fig. 5.10 shows the effect of scaling parameter on EFG results 

obtained using 25 and 81 nodes at the location (x = 0.05 m, y = 0m). The similar effect of 

scaling parameter on EFG results is observed in Fig. 5.11 at the location (x = 0.1 m, y = 0 m). 

From tables and figures, it is clear that only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results in the range 1.0 < dmaK < 2.2 whereas the 

results obtained using quadratic, hyperbolic and cosine weight functions are varying in abrupt 
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manner with scaling parameter. Therefore EFG results obtained using quadratic, hyperbolic 

and cosine weight functions arc not acceptable in the range 1.0 < <2.2. It is also

observed that there is minimum variation in EFG results with scaling parameter for 

exponential weight function.

Table 5.23 Data for the 2-D model shown in Fig. 5.9
Parameters Value of the parameter
Length (L)
Width (f?)
Thickness (th)
Thermal conductivity (k)
Density of the material (p)
Specific heat (c)
Rate of internal heat generation (Q) 
Heat transfer coefficient ( h) 
Surrounding fluid temperature () 
Initial temperature (T/n,)
Time step size (^t)
Temperature at surface,x = 0orT|

0.1 m
0.5 m
0.005 m
400 W/m-K 
10000 kg/m3
400 kJ/kg-K 
0 W/m3
200 W/m2-K
20 °C
100 °C
1 sec
100 °C
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Table 5.24 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(x = 0.025 m, y = 0m) of the 2-D model shown in Fig. 5.9

Weight 
function

EFG
FEM

=101 d„^ =1.51

T (°C)
% diff

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 78.9253 -0.0100 78.2290 -0.8922

78.9332

Q.S. 78.9219 -0.0143 77.9781 -1.2100
Gaussian 78.9339 0.0009 78.1674 -0.9702
Quadratic 78.9173 -0.0201 78.6725 -0.3303

Hyperbolic 78.9033 -0.0379 80.6879 2.22302
Exponential 78.9208 -0.0157 78.8023 -0.1658

Rational 78.9176 -0.0198 78.5387 -0.4998
Cosine 78.9173 -0.0201 76.8266 -2.6688

Table 5.25 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Weight 
function

EFG
FEM

^=101 dm.K =1.51

T (°C)
% diff 

with FEM T (°C)
% diff 

with FEM T (°C)

C. S. 79.0316 0.0020 78.9000 -0.1645

79.0300

Q. S. 79.0317 0.0022 78.8690 -0.2037
Gaussian 79.0310 0.0013 78.8944 -0.1716
Quadratic 79.0317 0.0022 77.7539 -1.6147

Hyperbolic 79.0311 0.0014 77.3418 -2.1362
Exponential 79.0317 0.0022 79.0067 -0.0295

Rational 79.0317 0.0022 78.9291 -0.1277
Cosine 79.0317 0.0022 78.2422 -0.9968
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(x = 0.05 m, y = 0 m) of the 2-D model shown in Fig. 5.9
Table 5.26 Comparison of EFG results obtained using 25 nodes with FEM results at the location

Weight 
function

EFG
FEM

= 1.51

T (°C)
% diff

with FEM
TfC)

% diff
with FEM

T (°C)

C. S. 65.4678 0.0003 65.1003 -0.5610

65.4676

Q.S. 65.4665 -0.0017 65.0158 -0.6901
Gaussian 65.4704 0.0043 65.0533 -0.6328
Quadratic 65.4646 -0.0046 62.6604 -4.2879
Hyperbolic 65.4539 -0.0209 51.0138 -22.0778
Exponential 65.4661 -0.0023 65.3739 -0.1431

Rational 65.4648 -0.0043 64.9276 -0.8248
Cosine 65.4646 -0.0046 64.4427 -1.5655

Table 5.27 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(x = 0.05 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Weight 
function

EFG
FEM

=1.01 ^max 1.51

rec)
% diff 

with FEM
TfC)

% diff
with FEM

T (°C)

C. S. 65.6157 0.0040 65.5305 -0.1259

65.6131

Q. S. 65.6159 0.0043 65.5061 -0.1631
Gaussian 65.6146 0.0023 65.5273 -0.1308
Quadratic 65.6161 0.0046 64.7220 -1.3581

Hyperbolic 65.6171 0.0061 64.7906 -1.2536
Exponential 65.6160 0.0044 65.5957 -0.0265

Rational 65.6161 0.0046 65.5360 -0.1175
Cosine 65.6161 0.0046 65.1452 -0.7131
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Table 5.28 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(x = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Weight 
function

EFG
FEM

=1.01 d^ =1.51

T (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 57.8746 0.0147 57.5384 -0.5663

57.8661

Q. S. 57.8752 0.0157 57.3988 -0.8075
Gaussian 57.8712 0.0088 57.4837 -0.6608
Quadratic 57.8760 0.0171 56.4201 -2.4989

Hyperbolic 57.8796 0.0233 53.0406 -8.3391
Exponential 57.8753 0.0159 57.7956 -0.1218

Rational 57.8759 0.0169 57.3988 -0.8075
Cosine 57.8760 0.0171 55.5802 -3.9503

Table 5.29 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(x = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Weight 
function

EFG
FEM

^max 1*51

rco
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 58.0365 0.0057 57.9781 -0.0949

58.0332

Q. S. 58.0367 0.0060 57.9624 -0.1220
Gaussian 58.0351 0.0033 57.9770 -0.0968
Quadratic 58.0370 0.0065 57.4874 -0.9405

Hyperbolic 58.0376 0.0076 57.5142 -0.8943
Exponential 58.0368 0.0062 58.0192 -0.0241

Rational 58.0369 0.0064 57.9694 -0.1099
Cosine 58.0370 0.0065 57.7993 -0.4031
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(x = 0.1 m, y = 0 m) of the 2-D model shown in Fig. 5.9
Table 5.30 Comparison of EFG results obtained using 25 nodes with FEM results at the location

Weight 
function

EFG
FEM

rfn„=101 ^=151

T (°C)
% diff 

with FEM
T (°C)

% diff 
with FEM

T (°C)

C. S. 55.1611 0.0218 55.2817 0.2404

55.1491

Q. S. 55.1624 0.0241 55.2864 0.2490
Gaussian 55.1556 0.0118 55.2547 0.1915
Quadratic 55.1643 0.0276 53.7781 -2.4860

Hyperbolic 55.1735 0.0442 50.7471 -7.9820
Exponential 55.1627 0.0247 55.1501 0.0018

Rational 55.1640 0.0270 54.9228 -0.4103
Cosine 55.1642 0.0274 54.6856 -0.8404

(x = 0.1 m, y = 0 m) of the 2-D model shown in Fig. 5.9
Table 5.31 Comparison of EFG results obtained using 81 nodes with FEM results al the location

Weight 
function

EFG
FEM

rfra<x =1.51

T^O
% diff 

with FEM
rec)

% diff 
with FEM

T (°C)

C. S. 55.3251 0.0063 55.3679 0.0837

55.3216

Q. S. 55.3253 0.0067 55.3751 0.0967
Gaussian 55.3236 0.0036 55.3720 0.0911
Quadratic 55.3255 0.0071 54.9866 -0.6055

Hyperbolic 55.3260 0.0079 54.9078 -0.7480
Exponential 55.3253 0.0067 55.3227 0.0020

Rational 55.3255 0.0071 55.3112 -0.0188

Cosine 55.3255 0.0071 55.1836 -0.2494
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Table 5.32 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 78.9253 78.9219 78.9339 78.9173 78.9033 78.9208 78.9176 78.9173
1.21 78.9458 78.7933 78.5050 78.6012 79.2879 78.5410 78.4830 78.5456
1.41 78.4441 78.3065 78.3016 74.3942 89.8743 78.8364 78.5891 74.6343
1.61 77.9953 77.6535 77.9865 77.4406 73.2692 78.7639 78.5147 82.4519
1.81 77.4911 77.0788 77.1818 71.0002 65.4923 78.6177 77.3549 71.9522
2.01 76.8503 76.2601 75.7782 73.6565 -97.0165 78.1779 76.5716 73.9996
2.21 76.1158 75.3736 73.7862 54.6754 61.0360 77.9004 75.9728 62.1502
2.41 75.2633 74.2509 71.4025 81.5800 103.2780 77.7040 74.8151 52.8964
2.61 74.1258 72.7110 69.5912 11.3831 70.7815 77.4478 74.0315 -59.8030
2.81 72.5850 70.7921 69.4777 72.3416 14.4284 76.9627 71.6726 58.7438
3.01 70.8114 68.7511 74.1502 118.2802 74.0396 76.9264 73.4991 -57.5047

Table 5.33 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 79.0316 79.0317 79.0310 79.0317 79.0311 79.0317 79.0317 79.0317
I.2I 79.0378 79.0033 78.9385 78.9707 78.8983 78.9508 78.9427 78.9628
1.41 78.9341 78.9120 78.9083 80.2224 76.8851 79.0139 78.9484 79.7083
1.61 78.8711 78.8431 78.8795 76.7918 77.9148 78.9986 78.9089 75.6180
1.81 78.8294 78.8079 78.8328 80.9034 110.7047 78.9471 79.0005 79.4189
2.01 78.7901 78.7537 78.7850 78.1114 121.8266 78.8941 78.8991 77.9872
2.21 78.7299 78.6476 78.6811 75.5662 125.5869 78.7876 78.5628. 74.3729
2.41 78.6422 78.5493 78.3339 75.1932 341.3382 78.7636 78.2353 107.0409
2.61 78.5178 78.4129 77.2444 189.6853 396.7575 78.7117 78.1005 99.0273
2.81 78.5161 78.5490 73.8098 75.5172 53.0444 78.5863 78.2738 71.3211
3.01 78.5948 78.6267 64.4641 74.9076 148.0824 78.5494 78.6318 78.3582
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Table 5.34 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(x = 0.075 m, y = 0.0 m) of the 2-D model shown in Fig. 5.9

Scaling 
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 57.8746 57.8752 57.8712 57.8760 57.8796 57.8753 57.8759 57.8760
1.21 57.8889 57.8185 57.6887 57.6012 57.2401 57.7056 57.6119 57.6058
1.41 57.6493 57.5742 57.5781 56.4102 54.6994 57.8225 57.4733 56.2455
1.61 57.4062 57.2068 57.3359 53.4502 52.0929 57.7691 57.2295 57.0393
1.81 57.0901 56.8010 56.6598 58.9142 59.0655 57.5950 56.9348 57.6480
2.01 56.6639 56.2500 55.3539 57.3769 181.0480 57.4303 56.8183 58.5884
2.21 56.1767 55.6995 53.1823 62.6744 368.5014 57.3079 57.0419 58.0965
2.41 55.5990 54.9900 50.1893 -54.4344 420.9001 57.1865 57.9848 -84.8511
2.61 54.9406 54.2434 46.7893 334.4398 464.7938 57.0977 58.5314 380.4588
2.81 54.0734 53.3547 44.4117 77.6047 291.1382 57.0111 60.3150 61.4879
3.01 53.2122 52.8916 46.2044 133.9311 112.5215 56.7765 56.2352 -24.0250

Table 5.35 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(x = 0.075 m, y = 0.0 m) of the 2-D model shown in Fig. 5.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 58.0365 58.0367 58.0351 58.0370 58.0376 58.0368 58.0369 58.0370
1.21 58.0398 58.0252 57.9987 57.9927 57.9982 58.0041 57.9910 57.9908
1.41 57.9948 57.9834 57.9845 58.4387 57.6270 58.0245 57.9779 58.4096
1.61 57.9628 57.9474 57.9685 56.8013 57.3960 58.0134 57.9619 56.5798
1.81 57.9374 57.9240 57.9342 57.7705 64.8813 57.9851 57.9181 57.6485
2.01 57.9101 57.8881 57.8577 57.5227 121.4559 57.9439 57.9120 57.9942
2.21 57.8746 57.8369 57.6812 59.6280 86.6050 57.9046 57.8965 60.4621
2.41 57.8277 57.7833 57.3167 52.1799 -7.6435 57.8817 57.6801 69.7560
2.61 57.7717 57.7114 56.6642 149.8567 7.9674 57.8580 57.6700 101.5847
2.81 57.7532 57.6707 55.4230 52.5576 79.3609 57.7824 57.1237 52.9092
3.01 57.7581 57.4344 52.7549 56.9843 -436.7320 57.7212 56.5333 55.9333
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Fig. 5.10 Effect of scaling parameter on EFG results at the location (x = 0.05 m, y = 0 m) of the 2-D 
model shown in Fig. 5.9
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Fig. 5.11 Effect of scaling parameter on EFG results at the location (x = 0.1 m, y = 0 m) of the 2-D 
model shown in Fig. 5.9

157



5.5.2 Transient analysis

The transient analysis of 2-D model, shown in Fig. 5.9, is carried out using different EFG 

weight functions. Table 5.36 and Table 5.37 show the comparison of EFG results (i.e. 

temperature values) obtained using 25 nodes with FEM results at the location 

(x = 0.025 m, y = 0m) for d^ =101 and d^ =1.51 respectively. Similar comparison of 

temperature values obtained using 81 nodes is presented in Table 5.38 and Table 5.39 for 

=1.01 and d^ =1.51 respectively at the same location i.e. (x = 0.025 m, ^ = 0m). For 

this case (i.e. CASE-II) of 2-D transient analysis, time step of 1 sec has been taken which is 

nearly 1% of the total time required to achieve steady state condition. Table 5.40 and Table 

5.41 show the comparison of EFG results (i.e. temperature values) obtained using 25 nodes 

with FEM results at the location (x = 0.075 m, y = 0 m) for d^ =1.01 and d^ =1.51 

respectively. Similar comparison of temperature values obtained using 81 nodes is also 

presented in Table 5.42 and Table 5.43 for d^ =1.01 and d^ =1.51 respectively at the 

same location i.e. (x = 0.075 m, y = 0 m). Fig 5.12 shows the comparison of EFG results (i.e. 

temperature values) obtained using 25 nodes with FEM results for d^ =1.01 and 

^max =1-51 at the location (x = 0.05 m, y = 0 m). Similar comparison of temperature values 

obtained using 81 nodes is shown in Fig. 5.13 at the same location i.e. (x = 0.05 m, y = 0m). 

Fig 5.14 shows the comparison of EFG results (i.e. temperature values) obtained using 25 

nodes with FEM results for d^ =1.01 and d^ =1.51 at the location (x = 0.1 m, y = 0 m). 

Similar comparison of temperature values obtained using 81 nodes is shown in Fig. 5.15 at 

the same location i.e. (x = 0.1m, y = 0m). From the results presented in tables and figures, it 

is clear that the EFG results obtained using different weight functions are almost similar for 

^max =1-01 but for d^ =1.51 only cubicspline, quarticspline, Gaussian, exponential and 

rational weight functions give acceptable results. It is also observed that the EFG results are 

in good agreement with those obtained by FEM.
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Table 5.36 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ =1.01

Time 
(sec)

Temperature (° C)

x =101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000 100.000
10 90.4700 90.4658 90.4858 90.4606 90.4481 90.4645 90.4609 90.4606 90.4927
20 86.1218 86.1172 86.1381 86.1112 86.0969 86.1157 86.1116 86.1112 86.1427
30 83.4600 83.4557 83.4738 83.4500 83.4353 83.4543 83.4503 83.4500 83.4758
40 81.7853 81.7814 81.7965 81.7762 81.7616 81.7801 81.7765 81.7761 81.7969
50 80.7285 80.7249 80.7380 80.7200 80.7057 80.7238 80.7203 80.7200 80.7376
60 80.0617 80.0583 80.0703 80.0536 80.0395 80.0572 80.0539 80.0536 80.0696
70 79.6412 79.6378 79.6494 79.6332 79.6193 79.6367 79.6335 79.6332 79.6487
80 79.3761 79.3728 79.3842 79.3682 79.3543 79.3717 79.3685 79.3682 79.3837
90 79.2091 79.2058 79.2172 79.2012 79.1873 79.2047 79.2015 79.2012 79.2168
100 79.1039 79.1006 79.1121 79.0960 79.0821 79.0995 79.0963 79.0960 79.1118

Table 5.37 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ =1.51

Time 
(sec)

Temperature (° C)

^max 1*51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 89.9657 89.7626 89.9320 89.5162 90.3862 90.3597 89.9835 88.0928 90.4927
20 85.5286 85.3005 85.4812 85.4522 86.5907 86.0046 85.6638 83.8406 86.1427
30 82.8340 82.5981 82.7798 82.9580 84.3403 83.3406 83.0265 81.2605 83.4758
40 81.1396 80.8994 81.0816 81.3808 82.9539 81.6648 81.3674 79.6310 81.7969
50 80.0687 79.8256 80.0088 80.3823 82.0963 80.6073 80.3208 78.5987 80.7376
60 79.3915 79.1462 79.3306 79.7510 81.5647 79.9399 79.6609 77.9454 80.0696

70 78.9633 78.7164 78.9020 79.3522 81.2345 79.5190 79.2450 77.5324 79.6487
80 78.6927 78.4446 78.6312 79.1006 81.0291 79.2536 78.9831 77.2716 79.3837
90 78.5217 78.2727 78.4601 78.9420 80.9011 79.0864 78.8182 77.1070 79.2168
100 78.4137 78.1642 78.3521 78.8421 80.8212 78.9811 78.7144 77.0032 79.1118
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Table 5.38 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.025 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ = 1.01

Time 
(sec)

Temperature (° C)

d^ =1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 90.6136 90.6136 90.6133 90.6136 90.6126 90.6136 90.6136 90.6136 90.6130
20 86.2451 86.2451 86.2453 86.2450 86.2440 86.2450 86.2450 86.2450 86.2452

30 83.5811 83.5810 83.5813 83.5809 83.5799 83.5810 83.5809 83.5809 83.5810
40 81.9057 81.9057 81.9057 81.9057 81.9047 81.9057 81.9057 81.9057 81.9051
50 80.8474 80.8475 80.8471 80.8475 80.8467 80.8475 80.8475 80.8475 80.8462
60 80.1786 80.1786 80.1781 80.1787 80.1779 80.1786 80.1787 80.1787 80.1769
70 79.7559 79.7559 79.7553 79.7560 79.7553 79.7560 79.7560 79.7560 79.7540

80 79.4888 79.4889 79.4882 79.4890 79.4883 79.4889 79.4890 79.4890 79.4869

90 79.3202 79.3203 79.3196 79.3203 79.3197 79.3203 79.3203 79.3203 79.3183

100 79.2137 79.2138 79.2131 79.2139 79.2132 79.2138 79.2139 79.2139 79.2118

Table 5.39 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.025 m, y = 0m)of the 2-D model shown in Fig. 5.9 for d^ = 1.51

Time 
(sec)

Temperature (° C)

^max 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 90.5333 90.5141 90.5303 89.7130 89.5714 90.5946 90.5364 90.1219 90.6130
20 86.1433 86.1193 86.1391 85.1994 84.9452 86.2229 86.1538 85.6527 86.2452
30 83.4693 83.4429 83.4647 82.4491 82.1316 83.5575 83.4842 82.9184 83.5810
40 81.7879 81.7600 81.7830 80.7198 80.3646 81.8816 81.8062 81.1973 81.9051
50 80.7255 80.6966 80.7203 79.6275 79.2496 80.8230 80.7465 80.1096 80.8462
60 80.0538 80.0242 80.0485 78.9372 78.5458 80.1539 80.0768 79.4219 80.1769
70 79.6290 79.5990 79.6236 78.5010 78.1014 79.7311 79.6537 78.9872 79.7540
80 79.3605 79.3302 79.3551 78.2254 77.8210 79.4640 79.3864 78.7126 79.4869
90 79.1909 79.1603 79.1854 78.0515 77.6441 79.2953 79.2177 78.5391 79.3183
100 79.0837 79.0530 79.0782 77.9416 77.5324 79.1888 79.1112 78.4295 79.2118
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Table 5.40 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ = 1.01

Time 
(sec)

Temperature (° C)

'4.. =101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 85.0782 85.0768 85.0891 85.0756 85.0733 85.0765 85.0758 85.0756 85.1042
20 75.0613 75.0589 75.0761 75.0564 75.0503 75.0584 75.0567 75.0564 75.0837
30 68.7198 68.7181 68.7289 68.7162 68.7114 68.7177 68.7164 68.7162 68.7290
40 64.7157 64.7150 64.7185 64.7142 64.7122 64.7147 64.7142 64.7142 64.7141
50 62.1880 62.1880 62.1867 62.1881 62.1887 62.1880 62.1880 62.1880 62.1805
60 60.5930 60.5934 60.5895 60.5940 60.5962 60.5935 60.5939 60.5940 60.5829
70 59.5870 59.5877 59.5827 59.5885 59.5917 59.5878 59.5884 59.5885 59.5764
80 58.9529 58.9537 58.9485 58.9546 58.9582 58.9538 58.9545 58.9546 58.9425
90 58.5535 58.5542 58.5491 58.5552 58.5589 58.5543 58.5550 58.5551 58.5434
100 58.3019 58.3026 58.2977 58.3035 58.3073 58.3027 58.3034 58.3035 58.2923

Table 5.41 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(jc = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for dinaK =1.51

Time 
(sec)

Temperature (° C)

d^ =1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 85.0798 85.0466 85.0857 83.5122 85.4979 85.0400 84.8231 83.0880 85.1042
20 74.9739 74.9075 74.9607 73.5710 73.4823 75.0028 74.6890 72.9758 75.0837
30 68.5613 68.4728 68.5311 67.2702 65.8008 68.6540 68.2874 66.5916 68.7290
40 64.5066 64.4033 64.4657 63.2755 61.0051 64.6461 64.2474 62.5443 64.7141
50 61.9423 61.8287 61.8955 60.7469 58.0161 62.1161 61.6985 59.9801 62.1805
60 60.3205 60.1996 60.2707 59.1486 56.1516 60.5194 60.0913 58.3576 60.5829
70 59.2951 59.1690 59.2437 58.1395 54.9872 59.5123 59.0786 57.3321 59.5764
80 58.6469 58.5172 58.5948 57.5030 54.2595 58.8775 58.4408 56.6846 58.9425
90 58.2374 58.1052 58.1850 57.1018 53.8042 58.4774 58.0393 56.2761 58.5434
100 57.9788 57.8449 57.9262 56.8490 53.5192 58.2255 57.7867 56.0185 58.2923
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Table 5.42 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ =1.01

Time 
(sec)

Temperature (° C)

dm =1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 85.2227 85.2228 85.2224 85.2229 85.2231 85.2228 85.2228 85.2229 85.2220
20 75.2492 75.2491 75.2495 75.2491 75.2490 75.2491 75.2491 75.2491 75.2499
30 68.9153 68.9152 68.9158 68.9151 68.9148 68.9152 68.9151 68.9151 68.9160
40 64.9111 64.9111 64.9109 64.9111 64.9110 64.9111 64.9111 64.9111 64.9102
50 62.3799 62.3800 62.3791 62.3801 62.3804 62.3800 62.3801 62.3801 62.3777
60 60.7800 60.7802 60.7787 60.7804 60.7809 60.7802 60.7803 60.7804 60.7768
70 59.7689 59.7692 59.7675 59.7694 59.7701 59.7692 59.7694 59.7694 59.7653
80 59.1302 59.1304 59.1286 59.1307 59.1314 59.1305 59.1307 59.1307 59.1264
90 58.7268 58.7270 58.7252 58.7273 58.7280 58.7271 58.7273 58.7273 58.7230
100 58.4721 58.4724 58.4705 58.4726 58.4733 58.4724 58.4726 58.4726 58.4684

Table 5.43 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.075 m, y = 0 m) of the 2-D model shown in Fig. 5.9 for d^ = 1.51

Time Temperature (° C)
(sec) =1-51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 85.2384 85.2389 85.2393 84.9086 85.1217 85.2201 85.2152 85.0579 85.2220
20 75.2540 75.2523 75.2555 74.8719 74.9598 75.2386 75.2058 75.1003 75.2499
30 68.9024 68.8966 68.9034 68.4789 68.5279 68.9014 68.8592 68.7417 68.9160
40 64.8847 64.8758 64.8850 64.4345 64.4675 64.8957 64.8495 64.7169 64.9102
50 62.3442 62.3332 62.3439 61.8770 61.9036 62.3638 62.3155 62.1712 62.3777
60 60.7377 60.7252 60.7370 60.2601 60.2845 60.7634 60.7141 60.5615 60.7768
70 59.7219 59.7084 59.7210 59.2382 59.2622 59.7521 59.7022 59.5438 59.7653
80 59.0797 59.0655 59.0787 58.5925 58.6170 59.1131 59.0631 58.9008 59.1264
90 58.6739 58.6592 58.6728 58.1848 58.2098 58.7096 58.6596 58.4946 58.7230
100 58.4175 58.4025 58.4164 57.9274 57.9529 58.4549 58.4048 58.2381 58.4684
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Fig. 5.12 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.05 m, y = Om) of the 2-D model shown in Fig. 5.9
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Fig. 5.13 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x — 0.05 m, y — 0 m) of the 2-D model shown in Fig. 5.9
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Fig. 5.14 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(x = 0.1 m, y = 0 m) of the 2-D model shown in Fig. 5.9
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Fig. 5.15 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(x = 0.1 m, y = 0 m) of the 2-D model shown in Fig. 5.9
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> CASE-III

5.6 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for two-dimensional heat transfer in composite slabs with
thermal properties independent of temperature is given as:

d2 
dx

t ]
2 Sy2 J + Q = pc T (5.21a)

with boundary and initial conditions:

at / == 0 T = T2 * Int on Q (5.21b)

at the edge of slab 1 x = 0 or T, 7 (5.21c)

at the edge of slab 1 y = W2 or r2 k ^- = h(T-TJ 
dy * (5.2 Id)

at the edge of slab 2 x = or r3 k^ = h(T-T.) 
dx (5.2 le)

at the edge of slab 2 y = 0 or T4 k (5.21f)

at the edge of slab 2 x = Li + L2 or f5 (5.21g)

at the edge of slab 2y~W2 or r6 k^h(T-rj (5.2 lh)

at the edge of slab 1 y = W2 or r7 -k^=h(T~T^ 
dy (5.21i)

Compatibility requirement at the interface of two slabs is given as:

— k
\ dx, 

slab 1 slab 2

(5.21j)

The weighted integral form of Eq. (5.21a) is

n
k
'd2T d2^ 
^dx2 + dy2, + Q-pct (5.22)

The weak of the Eq. (5.22) with natural boundary conditions is obtained as:

pA(T-7;)dr+ jwh(r-rjdr+
n n n T, r,
fw/i(r-T.)dr+ JwA(r-rio)ar+ p/i(r-r„)dr=o

r, r, r6 r7

(5.23)

The functional 7(T)can be written as:
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(5.24)

Enforcing essential boundary conditions using Lagrange multiplier the functional I'(T) is 

obtained as:

r(r)= j-[r2 jrQdn+ [pcfrdQ+ [^-dr+ j—dr+ 
a a n r, r,

rAT2 chT2 chT2 rhT2 c rP-dr+ p-^r+ F—dr+ P7L7WT+ \hTTdr+
J 2 J 2 J 2 J 2 J J*r« G r6 r7 r, r,

fa„7xr+ fardr+ ftrmTdr+ fa far-Tjdr
r4 r, r6 r7 r,

Using variational principle to obtain the discrete equations:

8/ \n= |4r.x 57,4-7, 87JdQ- ^QbTda + 
n n 

pcr8rcfQ+ fa^Tdr+ 
n r,

^rs7ar+ jAr8rdr+ j/7r87’^r+ |/7r87’dr+ p7r8r</r+ 
r> r4 r, r6 r7

pira,87’dr+ p7T00 8Tdr+ Jat; 8?^+ fa05Tdr+
G G r4 r, r6

(5.25)

(5.26)

jA7;87,dr+ |(r-z;)8x<zr+ jxsrdr
G r, q

Since ST and <£l are arbitrary in preceding equation, the following relations are obtained by 

using Eq. (3.25) and Eq. (5.26)
[K]{TMc]{t}+[G]{l}={f} 

[Gr]{T} = {q}

where

(5.27a)

(5.27b)

0 
k

dV+Xh#1; <Pjdr+ Xh®1! &jdT +
(5.28a)
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(5.28b)

(5.28c)

(5.28d)

(5.28e)

cu = ^pc^^dQ 
Q

f. = fo0, 1/27 0, dr + f/?7\0, dr+ |at0, dr+
J t I/ 1 co / I oo / I oo /

n G G G
[at.0, dv+ ^hr^, dr+ fa#, dr 

G G G

^1K ~

G

Qk = JX NK^ 

r,

Using backward difference method for time approximation, the Eq. (5.27) can be written as: 

[K‘+C | gJJT^I JR J
"T—.. T..... g r = i (5-29)g ; o [q

where

Rx =([c]-(l-a)Ar[K]){rUi + aA«{f}„ +(l-a)Az{f}N., (5.30a)

K’=aA/[K] (5.30b)

5.7 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of two-dimensional 

composite slab model shown in Fig. 5.16 are tabulated in Table 5.44. The EFG results 

(temperature values) are obtained using different weight functions for two sets of nodes and 

FEM results are obtained using 4 node quadrilateral elements (PLANE 55, ANSYS 6.0) for 

same sets of nodes. A comparative study is carried out to evaluate the performance of 

different EFG weight functions.

5.7.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 5.45 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.dmax =1.01 &dmax =1.51) at the 

location (x = 0.2 m, y = 0.4 m) and it shows a comparison of temperature values obtained by 

EFG method using different weight functions with FEM for 65 nodes. Table 5.46 shows a 
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comparison of temperature values obtained by EFG method using different functions for two 

values of scaling parameter with FEM at the same location i.e. (x = 0.2 m, y = 0.4 m) for 225 

nodes. A comparison of temperature values obtained using different EFG weight functions 

with FEM for 65 and 81 nodes, is shown in Table 5.47 and Table 5.48 respectively at the 

location (x = 0.2 m, y = 0 m). Similar type of comparisons of temperature values are shown 

in Table 5.49 for 65 nodes at the location (x = 0.4m, y = 0.4m), in Table 5.50 for 225 nodes 

at the location (x = 0.4m, y = 0.4m), in Table 5.51 for 65 nodes at the 

location (x = 0.4m, y = 0 m) and in Table 5.52 for 225 nodes at the 

location(x = 0.4m, y = 0m). From the results presented in Table 5.45 to Table 5.52, it is 

observed that EFG results obtained using cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions are acceptable for dmn =1.01. However for dmax =1.51, only 

exponential and rational weight functions give acceptable results. It is also observed that the 

EFG results obtained using different weight functions are in good agreement with those 

obtained by FEM. Moreover with the increase in number of nodes EFG results starts 

converging.

The effect of scaling parameter (rfmax)on EFG results obtained using different weight 

functions is presented in Table 5.53 for 65 nodes and Table 5.54 for 225 nodes respectively at 

the location (x = 0.4m, y = 0m). Similar effect of scaling parameter on EFG results is 

shown in Table 5.55 for 25 nodes and Table 5.56 for 225 nodes at the location 

(x = 0.2 m, y = 0 m). Fig. 5.17 shows the effect of scaling parameter on EFG results obtained 

using 65 and 225 nodes at the location (x = 0.2m, y- 0.4m). Similar effect of scaling 

parameter on EFG results is observed in Fig. 5.18 at the location (x = 0.4m, >» = 0.4m). 

From tables and figures, it is clear that only cubicspline, exponential and rational weight 

functions give acceptable results in the range 1.0 < dmax <1.5 whereas the results obtained 
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using quarticspline, Gaussian, quadratic, hyperbolic and cosine weight functions acceptable 

in the range 1.0<dmax <1.5. It is also observed that there is minimum variation in EFG 

results with scaling parameter for exponential weight function. Therefore exponential weight 

function gives most reliable results for this case.
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Table 5.44 Data for the 2-D model shown in Fig, 5.16
Parameters Value of the parameter
Length (£,) 
Width (FP,) 
Length (L2) 
Width (W2) 
Thermal conductivity of slab 1 (A^) 
Thermal conductivity of slab 2 () 
Specific heat of slab 1 (c,) 
Specific heat of slab 2 (c2) 
Density of slab 1 (Pi) 
Density of slab 2 (p2) 
Rate of internal heat generation (Q) 
Heat transfer coefficient (h) 
initial temperature (T(nl)
Surrounding fluid temperature (7^) 
Time step size (Az)
Temperature (7^ ) at surface, x = 0 or Tj 
Convection at all other edges

0.2 m
0.2 m
0.2 m
0.4 m
400 W/m-K
100 W/m-K
400 kJ/kg-K
300 kJ/kg-K
10000 kg/m3
8000 kg/m3
0 W/m3
200 W/m2-K
0°C
20 °C
100 sec
100 °C 

ST on T, where n' = x,yandf = 2,3...7
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Table 5.45 Comparison of EFG results obtained using 65 nodes with FEM results at the location 
(x = 0.2 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEM

=1.01 d^ =1.51

rec)
% diff 

with FEM
r(°c)

% diff
with FEM

7 (°C)

C.S. 79.9504 1.77102 89.7237 14.2117

78.5591

Q. S. 80.6513 2.6632 95.1367 21.1021
Gaussian 79.6047 1.3310 86.7078 10.3727
Quadratic 79.7142 1.4704 76.4645 -2.6663

Hyperbolic 95.7775 21.9178 113.0261 43.8740
Exponential 79.3664 1.0276 81.1409 3.2864

Rational 80.7683 2.8121 85.1812 8.4295
Cosine 79.0537 0.6296 92.1504 17.3007

(x = 0.2 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16
Table 5.46 Comparison of EFG results obtained using 225 nodes with FEM results at the location

Weight 
function

EFG
FEM

dm„ =1.01 = 1.51

T (°C)
% diff

with FEM TfC)
% diff 

with FEM
7 (°C)

C. S. 79.4096 1.0569 86.8840 10.5688

78.5791

Q. S. 79.7782 1.5260 91.0416 15.8598
Gaussian 79.2562 0.8617 83.5254 6.2947
Quadratic 80.4302 2.3557 79.2643 0.8720

Hyperbolic 88.8976 13.1313 -40.3535 -151.3540
Exponential 79.0656 0.6191 80.1558 2.0065

Rational 79.8701 1.6429 82.8744 5.4662

Cosine 79.7061 1.4342 266.1567 238.7118
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Table 5.47 Comparison of EFG results obtained using 65 nodes with FEM results at the location 
(x = 0.2 m, y — 0 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEM

d^ =1.01 ^=1-51

T(°C)
% diff

with FEM
T (°C)

% diff
with FEM

I (°C)

C. S. 40.6239 0.9159 36.5568 -9.1874

40.2552

Q. S. 40.7086 1.1263 38.6135 -4.0782
Gaussian 39.9705 -0.7072 36.3247 -9.7640
Quadratic 29.7008 -26.2187 96.0034 138.4870

Hyperbolic 14.3799 -64.2782 190.8448 374.0873
Exponential 40.1289 -0.3137 40.1184 -0.3398

Rational 40.0453 -0.5214 41.7291 3.6614
Cosine 27.7201 -31.1391 85.8364 113.2306

Table 5.48 Comparison of EFG results obtained using 225 nodes with FEM results at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEMrf„.x=101 ^max 1«51

r(°c)
% diff 

with FEM
T(°C)

% diff 
with FEM

r(°c)

C. S. 40.0219 0.5010 38.0388 -4.4789

39.8224

Q. S. 40.0614 0.6002 40.3879 1.4201
Gaussian 39.7039 -0.2976 37.4706 -5.9057
Quadratic 43.3486 8.8548 31.3763 -21.2094

Hyperbolic 29.6207 -25.6180 53.5133 34.3799
Exponential 39.8103 -0.0304 39.8200 -0.0060

Rational 39.8681 0.1148 39.9443 0.3061
Cosine 48.8383 22.6403 52.1856 31.0458
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Table 5.49 Comparison of EFG results obtained using 65 nodes with FEM results at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEM

rf«.=101

TfC)
% diff 

with FEM
T (°C)

% diff 
with FEM

TCC)

C. S. 50.1622 0.6394 50.7805 1.8799

49.8435

Q. S. 50.2721 0.8599 50.5418 1.4010
Gaussian 49.5347 -0.6195 45.0758 -9.5653
Quadratic 47.8174 -4.0649 42.1558 -15.4237

Hyperbolic 47.0348 -5.6350 46.1453 -7.4196
Exponential 49.6950 -0.2979 49.6804 -0.3272

Rational 49.7987 -0.0899 50.0376 0.3894
Cosine 45.7981 -8.1162 22.0185 -55.8247

Table 5.50 Comparison of EFG results obtained using 225 nodes with FEM results at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16

EFG FEM
<«=ioi ^max 1'51

T(°C) % diff 
with FEM

TfC) % diff 
with FEM

49.6254

C. S. 49.8180 0.3881 49.9874 0.7295
Q. S. 49.8477 0.4480 49.7870 0.3256

Gaussian 49.4995 -0.2537 46.4959 -6.3063
Quadratic 51.9808 4.7464 46.1086 -7.0867

Hyperbolic 46.7986 -5.6963 59.4386 19.7745
Exponential 49.5934 -0.0645 49.5837 -0.0840

Rational 49.6582 0.0660 49.7144 0.1793
Cosine 52.0317 4.8489 -54.0874 -208.9910
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Table 5.51 Comparison of EFG results obtained using 65 nodes with FEM results at the location 
(x = 0.4 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEM

dm„ =1-01 d^ =1.51

T (°C)
% diff 

with FEM rec)
% diff 

with FEM
T (“Q

C. S. 39.4342 0.2830 37.9358 -3.5275

39.3229

Q. S. 39.5041 0.4608 38.1421 -3.0028
Gaussian 38.8999 -1.0757 34.5210 -12.2115
Quadratic 46.6551 18.6461 170.0518 332.4498

Hyperbolic 26.2517 -33.2407 -1.0483 -102.6660
Exponential 39.2293 -0.2380 39.2552 -0.1722

Rational 39.4090 0.21896 39.8008 1.2153
Cosine 47.2096 20.0562 59.0975 50.2877

Table 5.52 Comparison of EFG results obtained using 225 nodes with FEM results at the location 
(x = 0.4 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Weight 
function

EFG
FEM‘U=i-oi ^=1-51

ITO
% diff 

with FEM
T(°C)

% diff 
with FEM T(’C)

C. S. 38.9808 0.3584 38.7545 -0.2242

38.8416

Q. S. 39.0137 0.4431 39.1299 0.7422
Gaussian 38.7094 -0.3404 36.6317 -5.6895
Quadratic 40.9643 5.4650 49.7855 28.1757

Hyperbolic 37.7532 -2.8021 56.3286 45.0213
Exponential 38.8337 -0.0203 38.8528 0.0288

Rational 38.9199 0.2016 39.0392 0.5087
Cosine 43.8072 12.7842 49.1057 26.4255
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Table 5.53 Effect of scaling parameter on EFG results obtained using 65 nodes at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Scaling
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 40.6239 40.7086 39.9705 29.7008 14.3799 40.1289 40.0453 27.7201
1.11 40.6847 40.5745 39.8064 59.6787 33.2217 40.1262 40.1277 55.2568
1.21 40.5760 40.2024 39.4956 83.7116 41.4072 40.1309 40.0482 83.4669
1.31 40.1318 39.5110 38.9326 87.9533 44.0757 40.1149 39.9541 86.4258
1.41 38.9748 38.6236 37.8917 96.2095 40.1618 40.1260 40.1158 100.3115
1.51 36.5568 38.6135 36.3247 96.0034 190.8448 40.1184 41.7291 85.8364
1.61 31.7109 41.2929 33.2342 32.4889 150.6641 40.1113 41.1733 15.9954
1.71 21.1038 42.8771 27.4618 -49.8207 100.7315 40.0923 40.5871 -82.4493
1.81 -1.9012 35.8486 18.0151 -39.9418 100.3692 40.0634 40.8275 -79.5731

Table 5.54 Effect of scaling parameter on EFG results obtained using 225 nodes at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 40.0219 40.0614 39.7039 43.3486 29.6207 39.8103 39.8681 48.8383
1.11 40.0624 40.0409 39.5802 37.9975 38.6908 39.8108 39.9116 33.2767
1.21 40.0608 39.9187 39.3703 61.1176 41.9356 39.8158 39.9193 57.8945
1.31 39.9337 39.5754 39.0290 61.2245 42.7508 39.8129 39.9292 55.1249
1.41 39.4281 39.2296 38.4311 52.6959 42.3442 39.8228 39.9241 61.0530
1.51 38.0388 40.3879 37.4706 31.3763 53.5133 39.8200 39.9443 52.1856
1.61 34.6491 43.2466 35.7257 24.1185 57.0369 39.8153 39.9946 44.9348
1.71 25.5969 45.5680 32.4140 -20.4640 41.8201 39.8150 39.9318 51.9478
1.81 0.5785 46.3589 26.4984 -31.3753 38.6162 39.8096 39.9116 0.2937
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Table 5.55 Effect of scaling parameter on EFG results obtained using 65 nodes at the location 
(x = 0.4 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Scaling
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 39.4342 39.5041 38.8999 46.6551 26.2517 39.2293 39.4090 47.2096
1.11 39.5068 39.5020 38.6616 31.6056 37.2412 39.2191 39.4925 36.6919
1.21 39.5313 39.4237 38.2463 11.3560 42.0765 39.2467 39.5395 0.7732
1.31 39.4386 39.1662 37.5605 2.0021 42.5737 39.2516 39.5747 -6.5217
1.41 39.0337 38.6437 36.3833 20.2117 45.7407 39.2597 39.6419 -13.1051
1.51 37.9358 38.1421 34.5210 170.0518 -1.0483 39.2552 39.8008 59.0975
1.61 35.2978 38.3516 31.4316 137.9602 17.9737 39.2412 39.9918 174.0952
1.71 28.8263 38.7454 26.1492 36.7537 28.6484 39.2271 40.1090 275.6187
1.81 13.5925 36.8590 17.5839 -56.3368 25.4852 39.2271 40.4127 151.4979

Table 5.56 Effect of scaling parameter on EFG results obtained using 225 nodes at the location 
(x = 0.4 m, y = 0 m) of the 2-D model shown in Fig. 5.16

Scaling 
Parameter

Temperature (° C)

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
1.01 38.9808 39.0137 38.7094 40.9643 37.7532 38.8337 38.9199 43.8072
1.11 39.0163 39.0194 38.5927 40.1892 39.6008 38.8319 38.9644 37.0622
1.21 39.0431 39.0235 38.3905 26.8943 40.4982 38.8434 38.9862 48.1982
1.31 39.0546 39.0017 38.0669 24.7255 41.2575 38.8448 39.0009 30.6172
1.41 39.0040 38.9681 37.5143 37.5437 41.9914 38.8535 39.0211 26.1682
1.51 38.7545 39.1299 36.6317 49.7855 56.3286 38.8528 39.0392 49.1057
1.61 37.8951 39.4956 35.2326 23.9546 51.2763 38.8505 39.0845 38.9393

1.71 34.9781 40.0229 32.8875 -28.7164 40.5204 38.8543 39.1492 -16.8248

1.81 25.3948 39.9934 28.9751 6.5386 41.9597 38.8565 39.2070 -15.5878
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Fig. 5.17 Effect of scaling parameter on EFG results at the location (x = 0.2 m, y = 0.4 m) of the 
2-D model shown in Fig. 5.16
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5.7.2 Transient analysis

The transient analysis of 2-D model, shown in Fig. 5.16, is carried out using different EFG 

weight functions. Table 5.57 and Table 5.58 show the comparison of EFG results (i.e. 

temperature values) obtained using 65 nodes with FEM results at the location 

(x = 0.2m, y = 0m) for dnm =1.01 and = 1.51 respectively. Similar comparison of

temperature values obtained using 225 nodes is presented in Table 5.59 and Table 5.60 for 

=101 =1.51 respectively at the same location i.e. (x = 0.2m, y = 0m). For

this case (i.e. CASE-III) of 2-D transient analysis, time step of 100 sec has been taken which 

is nearly 3% of the total time required to achieve steady state condition. Table 5.61 and Table 

5.62 show the comparison of EFG results (i.e. temperature values) obtained using 65 nodes 

with FEM results at the location (x = 0.4 m, y = 0.4 m) for =1.01 and dnvt* =1.51 

respectively. Similar comparison of temperature values obtained using 225 nodes is also 

presented in Table 5.63 and Table 5.64 for d^ =1.01 and d^ =1.51 respectively at the 

same location i.e. (x = 0.4m, y = 0.4m). Fig 5.19 shows the comparison of EFG results (i.e. 

temperature values) obtained using 65 nodes with FEM results for d^ =1.01 and 

d^ =1-51 at the location (x = 0.4 m, y = 0.2 m). Similar comparison of temperature values 

obtained using 225 nodes is shown in. Fig. 5.20 at the same location i.e. 

(x = 0.4m, y = 0.2m). Fig 5.21 shows the comparison of EFG results (i.e. temperature 

values) obtained using 65 nodes with FEM results for d^ =1.01 and d^ =1.51 at the 

location (x = 0.4 m, y = 0 m). Similar comparison of temperature values obtained using 225 

nodes is shown in Fig. 5.22 at the same location i.e. (x = 0.4m, y = 0m). From the results 

presented in tables and figures, it is clear that EFG results obtained using cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions are acceptable for 

=1-01. However for d^ =1.51 only exponential and rational weight functions give 

acceptable results. It has also been observed that the EFG results are in good agreement with 

those obtained by FEM.
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Table 5.57 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16 for d^ = 1.01

Time 
(sec) 
xlO2

Temperature (° C)

<4»«=i-oi FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 10.7865 10.8215 10.7815 -2.4247 1.0716 10.3237 10.1798 -5.4426 10.5622
6 19.6682 19.7224 19.3703 5.2386 0.3408 19.0806 18.9732 2.2806 19.3525
9 26.9194 26.9937 26.4495 13.5292 4.1779 26.3260 26.2842 10.8794 26.5179
12 31.9899 32.0749 31.4281 19.5230 7.6220 31.4163 31.3994 17.1124 31.5519
15 35.2890 35.3783 34.6793 23.4341 10.0605 34.7361 34.7183 21.1833 34.8467
18 37.3605 37.4507 36.7265 25.8829 11.6630 36.8243 36.7955 23.7343 36.9281
21 38.6380 38.7277 37.9921 27.3870 12.6841 38.1143 38.0726 25.3025 38.2194
24 39.4187 39.5074 38.7672 28.3023 13.3254 38.9039 38.8509 26.2576 39.0130
27 39.8935 39.9812 39.2397 28.8566 13.7255 39.3850 39.3231 26.8366 39.4983
30 40.1815 40.2684 39.5270 29.1916 13.9742 39.6775 39.6088 27.1867 39.7944

Table 5.58 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)
^=1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 5.3130 8.4701 13.6071 71.0879 149.7724 10.3344 11.2739 59.8015 10.5622
6 13.6293 16.5048 19.7625 91.0725 172.3374 19.1143 20.5884 76.9729 19.3525
9 21.4546 24.0143 25.2543 94.7349 179.3384 26.3626 28.0550 81.6653 26.5179
12 27.0443 29.4013 29.2413 95.6118 183.6405 31.4429 33.1886 83.5676 31.5519
15 30.6922 32.9267 31.8910 95.8618 186.3603 34.7514 36.4878 84.5281 34.8467
18 32.9798 35.1415 33.5805 95.9443 188.0630 36.8308 38.5408 85.0637 36.9281
21 34.3870 36.5056 34.6360 95.9755 189.1224 38.1147 39.7983 85.3752 38.2194
24 35.2443 37.3374 35.2886 95.9889 189.7792 38.9003 40.5624 85.5597 39.0130
27 35.7640 37.8421 35.6900 95.9954 190.1859 39.3789 41.0249 85.6701 39.4983
30 36.0783 38.1476 35.9362 95.9988 190.4375 39.6697 41.3043 85.7363 39.7944
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Table 5.59 Comparison of EFG results obtained using 225 nodes with FEM at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)

=1.01 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 10.4866 10.5007 10.4995 14.4063 4.9593 10.3662 10.3783 21.4032 10.4110
6 19.1443 19.1753 19.0175 23.1739 10.7083 18.9376 18.9881 30.6208 18.9830
9 26.2790 26.3193 26.0638 30.0818 16.9042 26.0394 26.1194 36.9760 26.0618
12 31.3104 31.3542 31.0454 34.9362 21.4793 31.0636 31.1537 41.3331 31.0713
15 34.6075 34.6520 34.3157 38.1184 24.5244 34.3636 34.4528 44.1739 34.3658
18 36.6911 36.7351 36.3853 40.1303 26.4657 36.4532 36.5372 45.9678 36.4549
21 37.9837 38.0268 37.6708 41.3789 27.6784 37.7521 37.8301 47.0809 37.7552
24 38.7781 38.8204 38.4618 42.1465 28.4284 38.5519 38.6245 47.7653 38.5570
27 39.2640 39.3055 38.9462 42.6160 28.8898 39.0420 39.1103 48.1841 39.0489
30 39.5604 39.6013 39.2420 42.9024 29.1730 39.3415 39.4066 48.4397 39.3499

Table 5.60 Comparison of EFG results obtained using 225 nodes with FEM at the location 
(x = 0.2 m, y = 0 m) of the 2-D model shown in Fig. 5.16 for </max =1.51

Time 
(sec) 
xlO2

Temperature (° C)

4™ =1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 7.7462 10.9097 11.3543 -3.4747 15.3900 10.3717 10.4438 21.6234 10.4110
6 16.2828 19.6196 18.8448 4.0845 27.4878 • 18.9519 19.0903 30.4622 18.9830
9 23.6898 26.7418 25.1319 12.9155 36.2533 26.0591 26.2493 37.6483 26.0618
12 28.9474 31.7489 29.6078 19.5808 42.4027 31.0834 31.2866 42.8919 31.0713
15 32.3941 35.0243 32.5604 24.0340 46.4831 34.3816 34.5771 46.3899 34.3658
18 34.5703 37.0915 34.4363 26.8641 49.1060 36.4691 36.6503 48.6180 36.4549
21 35.9189 38.3726 35.6057 28.6211 50.7641 37.7662 37.9331 50.0042 37.7552
24 36.7467 39.1592 36.3277 29.6995 51.8031 38.5646 38.7196 50.8564 38.5570
27 37.2524 39.6398 36.7712 30.3575 52.4510 39.0537 39.1995 51.3772 39.0489
30 37.5605 39.9328 37.0429 30.7579 52.8540 39.3526 39.4917 51.6943 39.3499
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Table 5.61 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16 for =1.01

Time 
(sec) 
xlO2

Temperature (° C)

=1.01 FEM

C. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 15.1465 15.2048 15.1089 11.6186 37.9456 14.5669 14.5890 9.7432 15.0467
6 29.2601 29.3556 28.9595 26.3080 38.2419 28.6309 28.7937 23.9586 28.8943
9 38.2332 38.3425 37.7857 35.6443 41.5936 37.6545 37.8508 33.3323 37.7862
12 43.2704 43.3845 42.7407 40.8297 43.8156 42.7252 42.9096 38.6089 42.8359
15 46.1087 46.2239 45.5332 43.7280 45.1099 45.5863 45.7524 41.5793 45.7019
18 47.7479 47.8628 47.1473 45.3923 45.8674 47.2422 47.3920 43.2918 47.3654
21 48.7135 48.8276 48.0995 46.3682 46.3200 48.2199 48.3569 44.2984 48.3496
24 49.2895 49.4025 48.6683 46.9478 46.5947 48.8044 48.9317 44.8972 48.9391
27 49.6353 49.7475 49.0105 47.2945 46.7631 49.1561 49.2762 45.2558 49.2948
30 49.8437 49.9553 49.2172 47.5026 46.8668 49.3686 49.4836 45.4713 49.5101

Table 5.62 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16 for dnwK =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^max 1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 15.2078 15.1137 16.6223 -7.9844 -30.5130 14.6404 15.0084 25.9592 15.0467
6 29.4554 29.0364 28.0261 11.0799 9.0351 28.6991 29.4016 16.7255 28.8943
9 38.5784 38.1309 35.2540 22.5828 26.3658 37.6880 38.3322 4.6559 37.7862
12 43.7257 43.3244 39.3451 29.9876 34.6620 42.7359 43.2871 4.8838 42.8359
15 46.6361 46.2848 41.6712 34.6935 39.2264 45.5854 46.0718 11.3579 45.7019
18 48.3190 48.0053 43.0272 37.6183 41.9144 47.2354 47.6797 15.4889 47.3654
21 49.3096 49.0214 43.8338 39.4097 43.5425 48.2100 48.6262 18.0503 48.3496
24 49.8992 49.6275 44.3197 40.4980 44.5400 48.7926 49.1898 19.6165 48.9391
27 50.2523 49.9910 44.6145 41.1562 45.1541 49.1433 49.5274 20.5675 49.2948
30 50.4645 50.2097 44.7940 41.5535 45.5330 49.3551 49.7303 21.1428 49.5101

184



Table 5.63 Comparison of EFG results obtained using 225 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)

d™ =101 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 14.9896 15.0035 14.9912 17.3642 13.2268 14.7772 14.8064 17.1327 14.8907
6 28.9491 28.9756 28.8120 31.2783 26.8085 28.6698 28.7594 31.2681 28.7244
9 37.8634 37.8948 37.6439 40.1217 35.2792 37.5830 37.6889 40.1438 37.6040
12 42.8837 42.9166 42.6185 45.0995 40.0650 42.6125 42.7146 45.1321 42.6292
15 45.7214 45.7544 45.4311 47.9138 42.7912 45.4606 45.5550 47.9523 45.4797
18 47.3663 47.3988 47.0623 49.5459 44.3839 47.1149 47.2020 49.5884 47.1370
21 48.3395 48.3714 48.0282 50.5119 45.3330 48.0956 48.1767 50.5572 48.1203
24 48.9226 48.9540 48.6075 51.0910 45.9055 48.6845 48.7609 51.1381 48.7112
27 49.2745 49.3055 48.9575 51.4406 46.2532 49.0406 49.1135 51.4890 49.0688
30 49.4878 49.5183 49.1698 51.6525 46.4652 49.2568 49.3272 51.7017 49.2862

Table 5.64 Comparison of EFG results obtained using 225 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m) of the 2-D model shown in Fig. 5.16 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)
„=1.51 FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 15.0045 14.9585 15.5115 11.5018 6.9750 14.7738 14.8902 120.642- 14.8907
6 29.0358 28.8984 27.8449 24.8043 27.5273 28.6702 28.9079 115.222 28.7244
9 37.9879 37.8103 35.7667 33.8025 40.8259 37.5812 37.8268 -95.479 37.6040
12 43.0296 42.8367 40.2481 38.9443 48.3559 42.6078 42.8290 -80.318 42.6292
15 45.8797 45.6810 42.7905 41.8724 52.7249 45.4542 45.6514 -70.328 45.4797
18 47.5312 47.3306 44.2695 43.5756 55.3288 47.1075 47.2859 -64.041 47.1370
21 48.5077 48.3065 45.1478 44.5840 56.9078 48.0876 48.2520 -60.159 48.1203
24 49.0923 48.8910 45.6761 45.1876 57.8748 48.6760 48.8302 -57.783 48.7112
27 49.4447 49.2436 45.9962 45.5512 58.4704 49.0318 49.1787 -56.333 49.0688
30 49.6580 49.4571 46.1910 45.7709 58.8383 49.2477 49.3895 -55.452 49.2862
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Fig. 5.19 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.4 m, y = 0.2 m) of the 2-D model shown in Fig. 5.16
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Fig. 5.20 Comparison of EFG results obtained using 225 nodes with FEM at the location 
(x = 0.4 m, y — 0.2 m) of the 2-D model shown in Fig. 5.16
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Fig. 5.21 Comparison of EFG results obtained using 65 nodes with FEM at the location 
(x = 0.4 m, y = 0 m) of the 2-D model shown in Fig. 5.16
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> CASE-IV

5.8 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for two-dimensional heat transfer in the cylindrical 

coordinate system with thermal properties independent of temperature is given as:

, d2T k dT , d2T dT 
kr—— + kz—r+Q = Pc— dr2 r dr dz dt

The above equation can be written as:

1 d(, dT\ d ----- kr r— + — 
r dry dr J dz

, dT} A dT 
k; — + Q = pc~^ dz J dt

The initial conditions are:

at the time t = 0 T = Tlni on Q

The essential boundary conditions are: 

at z = 0 T = Tb

The natural boundary conditions are:

atr = ro q„ = -hr(T - T„)

at r = 0 qn = 0

atz = £ Q„=-hr(T-TJ

The weighted integral form of Eq. (5.32a) is given as:

Fl A ST"!
I w - — r~Z~ +aJ "ST +2~pc— rdrdd dz = 0

J J J r dry dr J dzy dz J dt 
0 0 0 L -J

Using divergence theorem to obtain the weak form of Eq. (5.33)

_ f[7. dwdT . ST"] r
2" k'^^ + k‘T~T\~^w + pcw^: rdrdz-1n wq„dT = 0JI dr dr dz dz ) dt JnL J r

(5.31)

(5.32a)

(5.32b)

(5.32c)

(5.32d)

(5.32e)

(5.32f)

(533)

(5.34)

, r, dT . dT where q=r k.—nr + k, —n 
dr dz
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Introducing natural boundary conditions in Eq. (5.34), the weak form becomes

n

kr dwdT
dr dr : dz dz

dwdT\ „ dT , ,-uw+pcw— rdrdz + * dt
(5.35)

The functional 1(F) can be written as:

/(7) = 27t I- kr 
n 2 _

'dry2 
^dz)

2nj 
n

rdrdz + 2n JpcTTrdrdz- 
n

hrT2-------dT + 2n
(5.36)

r, r.
j hrTT^dT - 2n J hrTT^dT 

r, G2

Enforcing essential boundary conditions using Lagrange multiplier method, the functional

l\T) is obtained as:

/'(T) = 2n - kr — +

2n [^^-dT + 2n 
J 2

arY' 
dz J

rdrdz + 2n JpcTTrdrdz-2n^QTrdrdz +

r4

n (5.37)
j\(T-7;)Jr 
r.

2

n

Using variational principle to obtain the discrete equations:

8/*(7’) = 2tc I 
n

(dTWfdT} 
— o --

I Sr J {dr J
dT^ 
dz J

rdrdz + ^pcTdTrdrdz- 
n

2n^QdTrdrdz+ 2n ^hrTrdTdT+2n ^hrTrdTdT-2n IhrT^TdT 
n r3 r, r3

(5.38)

r<

since dT and 81 are arbitrary in the preceding equation, the following set of equations is 

obtained using Eq. (3.25) and Eq. (5.38)

(5.39a)

[Gr]{T}={q} (5.39b)

where
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Ku =2k I
Q

Tr 
kr 0
[o ks

i
yir^ <PjdT + 2n J 
5 E,

(5.40a)

Cu = 2n Jpc rdrdz 
n

(5.40b)

rdrdz + 2n \hrTm<3>ldY' +2n XhrT^^ (5.40c)
n

Q^dT (5.40d)

J 6
G

(5.40e)

Using backward difference technique for time approximation, the Eq. (5.39) can be written

as:

~K*+C|
Gr । 0 JI31

PM 

q .

where

Rw = ([c]- (1 - a) Az [K] ){T}W„, + a Az {f }„ + (1 - a) Az {f

K' =aAz[K]

(5.41)

(5.42a)

(5.42b)

5.9 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of two-dimensional 

model shown in Fig. 5.23 are tabulated in Table 5.65. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using 

ANSYS 6.0 for same sets of nodes. A comparative analysis is carried out to evaluate the 

performance of different EFG weight functions.
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5.9.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 5.66 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.t/max =1.01 & dmaK =1.51) at the 

location (r = 0.5 m &z = Im) and it shows a comparison of temperature values obtained by 

EFG method using different weight functions with FEM for 25 nodes. Table 5.67 shows a 

comparison of temperature values obtained by EFG method using different functions for two 

values of scaling parameter with FEM at the same location i.e. (r = 0.5m & z = Im) for 81 

nodes. A comparison of temperature values obtained using different EFG weight functions 

with FEM for 25 and 81 nodes, is shown in Table 5.68 and Table 5.69 respectively at the

location(r = 0.5m &z = 0.75m). Similar type of comparisons of temperature values are

shown in Table 5.70 for 25 nodes at the location (r = 0.5 m & z = 0.5 m), in Table 5.71 for 

81 nodes at the location (r = 0.5 m & z = 0.5 m), in Table 5.72 for 25 nodes at the 

location (r = 0.5 m & z = 0.25 m) and in Table 5.73 for 81 nodes at the

location(r = 0.5m & z = 0.25m). From the results presented in Table 5.66 to Tabic 5.73, it

is observed that EFG results obtained using different weight functions are almost similar for 

^max = 1-01. However for tZmax =1.51, only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It is also observed that EFG results 

obtained using different weight functions are in good agreement with those obtained by FEM. 

Moreover with the increase in number of nodes EFG results starts converging.

The effect of scaling parameter (^max)on EFG results obtained using different weight 

functions is presented in Table 5.74 for 25 nodes and Table 5.75 for 81 nodes respectively 

at the location (r = 0.5 m &z = Im). Similar effect of scaling parameter on EFG results is 

shown in Table 5.76 for 25 nodes and Table 5.77 for 81 nodes at the location 

(r = 0.5 m &z = 0.5 m). Fig. 5.24 shows the effect of scaling parameter on EFG results 
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obtained using 25 and 81 nodes at the location (r = 0.5m & z = 0.75m). Similar effect of 

scaling parameter on EFG results is observed in Fig. 5.25 at the location 

(r = 0.5m & z = 0.25m). From tables and figures, it is clear that only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results in 

the range 1.0 < dmex <1.8 whereas the results obtained using quadratic, hyperbolic and 

cosine weight functions are varying in abrupt manner with scaling parameter. Therefore 

EFG results obtained using quadratic, hyperbolic and cosine weight functions are not 

acceptable in the range 1.0 < dmax < 1.8. It is also observed that there is minimum variation 

in EFG results with scaling parameter for exponential weight function.

194



Fig. 5.23 Two-dimensional model
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Table 5.65 Data for 2-D model shown in Fig 5.23
Parameters Value of the parameter

Radius (r)
Length (Z)
Thermal conductivity (k)
Specific heat (c)
Density of material (p)
Rate of internal heat generation (Q)
Heat transfer coefficient (h )
Initial temperature (Tlnl)
Time step size ( △/)
Surrounding fluid temperature (7^ )
Temperature Tb at z = 0

0.5 m
1 m
400 W/m-K
400 kJ/kg-K 
10000kg/m’ 
10000 W/m3 
200 W/m2-K 
100 °C 
100 sec
20 °C
100 °C
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Table 5.66 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(r = 0.5 m &z = 1 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

^=1.01 ^=1-51

T(°C)
% diff 

with FEM
r(°c)

% diff 
with FEM

r (°c)

C. S. 51.9724 -0.5861 52.0755 -0.3889

52.2788

Q. S. 51.9781 -0.5752 52.1028 -0.3367
Gaussian 51.9458 -0.6370 52.0378 -0.4610
Quadratic 51.9886 -0.5551 52.9217 1.2297

Hyperbolic 52.0311 -0.4738 51.4061 -1.6693
Exponential 51.9810 -0.5696 51.9876 -0.5570

Rational 51.9875 -0.5572 51.9734 -0.5842
Cosine 51.9885 -0.5553 53.1896 1.7422

Table 5.67 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(r = 0.5 m &z = Im) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

^max 1-51

T (°C)
% diff 

with FEM T^C)
% diff

with FEM
T (°C)

C. S. 52.0586 -0.1481 52.0833 -0.1007

52.1358

Q. S. 52.0602 -0.1450 52.0869 -0.0938
Gaussian 52.0497 -0.1651 52.0641 -0.1375
Quadratic 52.0630 -0.1396 52.2684 0.2543

Hyperbolic 52.0683 -0.1295 51.9931 -0.2737
Exponential 52.0610 -0.1435 52.0618 -0.1419

Rational 52.0627 -0.1402 52.0416 -0.1807
Cosine 52.0630 -0.1396 52.4961 0.6912

197



Table 5.68 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(r = 0.5 m & z = 0.75 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

d^ =1-01 ‘U=l-51

T (°C)
% diff 

with FEM
T (°C)

% diff 
with FEM

T (°C)

C. S. 57.2216 -0.2616 56.9963 -0.6543

57.3717

Q. S. 57.2206 -0.2634 56.8957 -0.8297
Gaussian 57.2159 -0.2716 57.0134 -0.6245
Quadratic 57.2187 -0.2667 54.7609 -4.5507

Hyperbolic 57.1697 -0.3521 57.4664 0.1651
Exponential 57.2210 -0.2627 57.1739 -0.3448

Rational 57.2195 -0.2653 56.9861 -0.6721
Cosine 57.2190 -0.2662 54.4003 -5.1792

Table 5.69 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(r = 0.5 m & z = 0.75 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM<4™. =ioi dm„ =1.51

T (°C)
% diff 

with FEM T(°C)
% diff 

with FEM rec)

C. S. 57.3156 -0.0457 57.2779 -0.1114

57.3418

Q. S. 57.3160 -0.0450 57.2681 -0.1285
Gaussian 57.3134 -0.0495 57.2739 -0.1184
Quadratic 57.3168 -0.0436 57.9015 0.9761

Hyperbolic 57.3181 -0.0413 57.2833 -0.1020
Exponential 51.3163 -10.508 57.3074 -0.0600

Rational 57.3168 -0.0436 57.2796 -0.1085
Cosine 57.3168 -0.0436 58.3452 1.7499
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Table 5.70 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(r = 0.5 m & z = 0.5 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

<U = ioi <.« =151

T (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM T (°C)

C.S. 1 65.4849 -0.2349 65.3907 -0.3784

65.6391

Q. S. 65.4953 -0.2191 65.4240 -0.3277
Gaussian 65.4684 -0.2601 65.3341 -0.4647
Quadratic 65.5127 -0.1926 68.0051 3.6046

Hyperbolic 65.6079 -0.0475 64.7891 -1.2950
Exponential 65.4990 -0.2134 65.4852 -0.2345

Rational 65.5106 -0.1958 65.5052 -0.2040
Cosine 65.5125 -0.1929 68.3967 4.2011

Table 5.71 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(r = 0.5m &z = 0.5m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

=1.51

TfC)
% diff

with FEM TfC)
% diff

with FEM
7" (°C)

C. S. 65.5568 -0.0392 65.5011 -0.1241

65.5825

Q. S. 65.5565 -0.0396 65.4899 -0.1412
Gaussian 65.5601 -0.0342 65.4950 -0.1334
Quadratic 65.5569 -0.0390 66.5047 1.4062

Hyperbolic 65.5608 -0.0331 65.2554 -0.4988
Exponential 65.5568 -0.0392 65.5452 -0.0569

Rational 65.5569 -0.0390 65.5156 -0.1020
Cosine 65.5570 -0.0389 67.0829 2.2878
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Table 5.72 Comparison of EFG results obtained using 25 nodes with FEM results at the location 
(r = 0.5 m &z = 0.25 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

=1.01 ^=1.51

TCC)
% diff 

with FEM
T(°C)

% diff 
with FEM T^C)

C. S. 77.6008 -0.4289 76.6960 -1.5899

77.9351

Q. S. 77.5378 -0.5098 76.3730 -2.0044
Gaussian 77.9315 -0.0046 76.7610 -1.5065
Quadratic 77.4662 -0.6017 73.2077 -6.0658

Hyperbolic 77.1910 -0.9548 76.1959 -2.2316
Exponential 77.5254 -0.5257 77.3028 -0.8113

Rational 77.4757 -0.5895 76.6005 -1.7125
Cosine 77.4677 -0.5997 72.8537 -6.5200

Table 5.73 Comparison of EFG results obtained using 81 nodes with FEM results at the location 
(r = 0.5m &z = 0.25 m) of 2-D model shown in Fig 5.23

Weight 
function

EFG
FEM

=1.01 =1.51

T (°C)
% diff 

with FEM
noc)

% diff 
with FEM

78.0486

C. S. 78.0171 -0.0404 77.9763 -0.0926
Q. S. 78.0175 -0.0398 77.9951 -0.0685

Gaussian 78.0388 -0.0126 77.9542 -0.1210
Quadratic 78.0207 -0.0357 79.3513 1.6691

Hyperbolic 78.0535 0.0063 77.7723 -0.3540
Exponential 78.0182 -0.0390 78.0108 -0.0484

Rational 78.0203 -0.0363 78.0236 -0.0320
Cosine 78.0207 -0.0357 79.9654 2.4559
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Table 5.74 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(r = 0.5 m & z = 1 m) of 2-D model shown in Fig 5.23

Scaling 
Parameter

Temperature (° C)

C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 51.9724 51.9781 51.9458 51.9886 52.0311 51.9810 51.9875 51.9885
1.21 51.9813 52.0062 52.0439 52.0568 51.9870 52.0433 52.0295 52.0461
1.41 52.0525 52.0666 52.0513 53.0275 51.6315 51.9886 51.9682 52.8641
1.61 52.0985 52.1388 52.0143 51.8687 51.3681 51.9868 51.9786 52.3269
1.81 52.1542 52.2264 51.9293 51.3742 47.9994 51.9778 51.8954 52.4155
2.01 52.2478 52.3760 51.7990 49.5650 58.6151 52.0019 52.0840 51.0818
2.21 52.3937 52.5915 51.6035 48.1764 54.9746 52.0192 52.0796 46.7262
2.41 52.6361 52.9602 51.3104 47.8151 53.8061 52.0190 52.0592 44.5070
2.61 53.0334 53.5400 50.9136 41.5072 58.9456 52.0251 52.0901 45.1478
2.81 53.6470 54.3384 50.3435 44.0963 30.6739 52.0530 52.0271 40.9436
3.01 54.5642 55.2914 49.6702 56.6924 66.8051 52.1450 52.5032 58.1813

Table 5.75 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(r = 0.5 m & z = 1 m) of 2-D model shown in Fig 5.23

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 52.0586 52.0602 52.0497 52.0630 52.0683 52.0610 52.0627 52.0630
1.21 52.0614 52.0678 52.0821 52.0531 52.0018 52.0775 52.0675 52.0580
1.41 52.0789 52.0811 52.0769 52.3297 51.9761 52.0626 52.0439 52.2604
1.61 52.0862 52.0898 52.0443 52.0735 52.0255 52.0608 52.0389 52.1799
1.81 52.0891 52.0933 51.9723 52.3024 51.7262 52.0580 52.0012 52.1115
2.01 52.0953 52.1095 51.8563 53.0548 57.2243 52.0637 52.0455 51.9960
2.21 52.1116 52.1458 51.6750 50.9800 52.9895 52.0668 52.0435 52.5714
2.41 52.1498 52.2214 51.3827 43.9217 57.9337 52.0624 52.0268 45.5785
2.61 52.2320 52.3583 50.9327 53.3454 58.8348 52.0606 52.0198 50.4178
2.81 52.3896 52.5306 50.2148 55.0448 67.5001 52.0630 51.9848 51.8628
3.01 52.6858 52.5274 49.1693 49.5605 37.0879 52.0869 52.1632 -17.9625
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Table 5.76 Effect of scaling parameter on EFG results obtained using 25 nodes at the location 
(r = 0.5m & z = 0.5m)of2-D model shown in Fig 5.23

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 65.4849 65.4953 65.4684 65.5127 65.6079 65.4990 65.5106 65.5125
1.21 65.5112 65.4694 65.3351 65.6983 65.7218 65.4011 65.4549 65.6328
1.41 65.3991 65.3986 65.3250 67.5991 65.3914 65.4917 65.4899 67.5109
1.61 65.4195 65.5345 65.3539 66.0335 64.7328 65.4789 65.5305 66.9814
1.81 65.6173 65.9214 65.4258 67.9842 56.6171 65.3823 65.6971 68.9462
2.01 66.0056 66.5172 65.6147 62.8794 90.5172 65.2628 65.6508 65.5032
2.21 66.5389 67.2197 65.9749 53.7560 79.6929 65.0879 65.4661 56.4788
2.41 67.2740 68.2528 66.5815 33.3267 58.0434 65.0494 64.8532 26.6914
2.61 68.3200 69.8062 67.6762 28.0725 58.0623 64.9913 65.1100 28.5397
2.81 69.9463 72.2070 69.2782 30.1317 -9.8611 64.6808 63.4438 29.5945
3.01 72.4066 75.4949 71.9136 46.4411 94.6125 64.5374 64.8542 56.2453

Table 5.77 Effect of scaling parameter on EFG results obtained using 81 nodes at the location 
(r = 0.5m & z = 0.5m)of2-D model shown in Fig 5.23

Scaling 
Parameter

Temperature (° C)
C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 65.5568 65.5565 65.5601 65.5569 65.5608 65.5568 65.5569 65.5570
1.21 65.5594 65.5449 65.5191 65.5595 65.5681 65.5229 65.5203 65.5456
1.41 65.5156 65.5065 65.5027 66.2806 65.3240 65.5490 65.5202 66.2391
1.61 65.4902 65.4872 65.4877 65.8175 65.1989 65.5411 65.5131 66.2070
1.81 65.4915 65.5366 65.4673 64.5122 64.1298 65.5143 65.4635 65.0520
2.01 65.5459 65.6907 65.4580 62.6984 104.2801 65.4744 65.4009 63.5118
2.21 65.6872 65.9803 65.4794 64.7419 66.7819 65.4347 65.2973 63.0350
2.41 65.9687 66.4999 65.5671 65.1123 54.0624 65.4173 65.0859 66.5635
2.61 66.4928 67.4201 65.8533 48.0361 52.1084 65.3919 64.9714 49.2464
2.81 67.4874 68.9329 66.3941 64.9417 33.2469 . 65.3397 64.5082 65.1021
3.01 69.3397 70.2641 67.5454 82.9377 114.9206 65.3083 65.0588 71.7502
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5.9.2 Transient analysis

The transient analysis of 2-D model, shown in Fig. 5.23, is carried out using different EFG 

weight functions. Table 5.78 and Table 5.79 show the comparison of EFG results (i.e. 

temperature values) obtained using 25 nodes with FEM results at the location 

(r = 0.5m & z = Im) for d^ =1.01 and =1.51 respectively. Similar comparison of 

temperature values obtained using 81 nodes is presented in Table 5.80 and Table 5.81 for 

= 1-01 311(1 ^max = 1-51 respectively at the same location i.e. (r = 0.5m &z = 1 m). For 

this case (i.e. CASE-IV) of 2-D transient analysis, time step of 100 sec has been taken which 

is nearly 1.5% of the total time required to achieve steady state condition. Table 5.82 and 

Table 5.83 show the comparison of EFG results (i.e. temperature values) obtained using 25 

nodes with FEM results at the location (r = 0.5m &z = 0.5m) for d^ =1.01 and 

^max =1-51 respectively. Similar comparison of temperature values obtained using 81 nodes 

is also presented in Table 5.84 and Table 5.85 for d^ =1.01 and d^ =1.51 respectively at 

the same location i.e. (r = 0.5m &z = 0.5m). Fig 5.26 shows the comparison of EFG results 

(i.e. temperature values) obtained using 25 nodes with FEM results for iZmnx =1.01 and 

^^=1.51 at the location(r = 0.5m & z = 0.75m). Similar comparison of temperature 

values obtained using 81 nodes is shown in Fig. 5.27 at the same location i.e. 

(r = 0.5m&z = 0.75m). Fig 5.28 shows the comparison of EFG results (i.e. temperature 

values) obtained using 25 nodes with FEM results for J =1.01 and d „ = 1.51 at the 

location(r = 0.5m & z = 0.25 m). Similar comparison of temperature values obtained using 

81 nodes is shown in Fig. 5.29 at the same location i.e. (r = 0.5m & z = 0.25m). From the 

results presented in tables and figures, it is clear that EFG results obtained using different 

weight functions are almost similar for d^ =1.01 but for d^ =1.51 only cubicspline 

(C.S.), quarticspline (Q.S), Gaussian, exponential and rational weight functions give 

acceptable results. It has also been observed that the EFG results are in good agreement with 

those obtained by finite element method.
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Table 5.78 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5m & z = lm)of 2-D model shown in Fig 5.23 for d^ = 1.01

Time Temperature (° C)

(sec) d^ =1.01 max * •
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 80.1885 80.1939 80.1689 80.2053 80.2546 80.1969 80.2043 80.2053 81.4703
12 72.2689 72.2742 72.2479 72.2849 72.3321 72.2771 72.2838 72.2849 73.1683
18 66.6961 66.7013 66.6742 66.7119 66.7571 66.7043 66.7108 66.7118 67.5336
24 62.6700 62.6753 62.6474 62.6859 62.7299 62.6783 62.6848 62.6858 63.4646
30 59.7478 59.7532 59.7245 59.7638 59.8070 59.7562 59.7627 59.7637 60.4925
36 57.6244 57.6298 57.6004 57.6404 57.6832 57.6328 57.6394 57.6404 58.3137
42 56.0810 56.0864 56.0564 56.0970 56.1396 56.0894 56.0960 56.0970 56.7141
48 54.9590 54.9645 54.9340 54.9751 55.0175 54.9675 54.9741 54.9751 55.5389
54 54.1434 54.1490 54.1181 54.1596 54.2019 54.1520 54.1585 54.1596 54.6752
60 53.5506 53.5562 53.5250 53.5667 53.6091 53.5591 53.5657 53.5667 54.0404

Table 5.79 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5m & z = lm) of 2-D model shown in Fig 5.23 for d^ = 1.51

Time 
(sec) 
xlO2

Temperature (° C)

^max 1*51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 80.1004 80.0932 80.0151 81.4098 80.2943 80.2345 80.3062 81.3583 81.4703
12 72.2913 72.3045 72.2267 73.4457 72.1270 72.2977 72.3149 73.5103 73.1683
18 66.7773 66.8016 66.7233 67.7968 66.3606 66.7174 66.7109 67.9452 67.5336
24 62.7839 62.8140 62.7364 63.7137 62.2131 62.6874 62.6692 63.9147 63.4646
30 59.8785 59.9116 59.8352 60.7539 59.2215 59.7629 59.7390 60.9858 60.4925
36 57.7620 57.7963 57.7214 58.6067 57.0609 57.6383 57.6121 58.8563 58.3137
42 56.2198 56.2542 56.1808 57.0486 55.4991 56.0943 56.0679 57.3081 56.7141
48 55.0959 55.1298 55.0578 55.9177 54.3694 54.9723 54.9465 56.1828 55.5389
54 54.2767 54.3099 54.2392 55.0969 53.5519 54.1568 54.1323 55.3649 54.6752
60 53.6798 53.7121 53.6425 54.5010 52.9601 53.5641 53.5410 54.7704 54.0404
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Table 5.80 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = Im)of 2-D model shown in Fig 5.23 for d^ =1.01

Time Temperature (° C)

(sec) dm =1.01
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 80.3046 80.3063 80.2948 80.3094 80.3168 80.3072 80.3090 80.3094 80.6358
12 72.3546 72.3563 72.3455 72.3593 72.3658 72.3571 72.3589 72.3592 72.7572
18 66.7964 66.7980 66.7876 66.8010 66.8070 66.7989 66.8007 66.8010 67.2486
24 62.7860 62.7876 62.7773 62.7906 62.7963 62.7885 62.7903 62.7906 63.2383
30 59.8733 59.8749 59.8646 59.8778 59.8833 59.8758 59.8776 59.8778 60.2980
36 57.7533 57.7549 57.7445 57.7578 57.7632 57.7558 57.7575 57.7578 58.1379
42 56.2090 56.2106 56.2002 56.2134 56.2188 56.2114 56.2132 56.2134 56.5498
48 55.0837 55.0853 55.0749 55.0881 55.0934 55.0861 55.0879 55.0881 55.3821
54 54.2636 54.2652 54.2548 54.2680 54.2733 54.2660 54.2677 54.2680 54.5233
60 53.6658 53.6674 53.6570 53.6702 53.6755 53.6683 53.6700 53.6702 53.8917

Table 5.81 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = 1 m) of 2-D model shown in Fig 5.23 for dnwx = 1.51

Time Temperature (° C)
(sec) 
xlO2

d^ =1.51
FEM

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 80.2914 80.2971 80.2467 80.6297 80.3205 80.3248 80.3537 80.7626 80.6358
12 72.3588 72.3631 72.3213 72.6163 72.3328 72.3677 72.3724 72.7802 72.7572
18 66.8141 66.8188 66.7827 67.0361 66.7584 66.8055 66.7995 67.2202 67.2486
24 62.8127 62.8177 62.7856 63.0150 62.7399 62.7924 62.7798 63.2118 63.2383
30 59.9050 59.9104 59.8809 60.0950 59.8223 59.8780 59.8609 60.3002 60.2980
36 57.7872 57.7927 57.7650 57.9699 57.6992 57.7569 57.7371 58.1808 58.1379
42 56.2435 56.2489 56.2224 56.4222 56.1529 56.2121 56.1907 56.6371 56.5498
48 55.1177 55.1230 55.0974 55.2948 55.0263 55.0866 55.0644 55.5125 55.3821
54 54.2967 54.3018 54.2768 54.4734 54.2053 54.2664 54.2440 54.6932 54.5233
60 53.6978 53.7027 53.6782 53.8750 53.6069 53.6686 53.6463 54.0964 53.8917
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Table 5.82 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5m & z = 0.5m)of 2-D model shown in Fig 5.23 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)

^,=1.01
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 88.2679 88.2779 88.2594 88.2954 88.3924 88.2814 88.2941 88.2956 88.8114
12 82.1211 82.1300 82.1146 82.1451 82.2403 82.1329 82.1432 82.1449 82.6370
18 77.5981 77.6071 77.5904 77.6225 77.7172 77.6102 77.6205 77.6223 78.1497
24 74.2941 74.3034 74.2847 74.3194 74.4138 74.3067 74.3173 74.3191 74.8391
30 71.8893 71.8988 71.8783 71.9152 72.0096 71.9022 71.9131 71.9150 72.4022
36 70.1406 70.1503 70.1283 70.1670 70.2614 70.1538 70.1649 70.1668 70.6104
42 68.8693 68.8792 68.8559 68.8961 68.9905 68.8827 68.8940 68.8959 69.2933
48 67.9451 67.9551 67.9310 67.9722 68.0667 67.9587 67.9701 67.9720 68.3252
54 67.2733 67.2834 67.2586 67.3006 67.3952 67.2871 67.2985 67.3004 67.6136
60 66.7849 66.7951 66.7698 66.8124 66.9071 66.7988 66.8102 66.8122 67.0906

Table 5.83 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5 m & z = 0.5 m) of 2-D model shown in Fig 5.23 for ^mnx =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^=1.51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 88.4304 88.5239 88.3803 91.0585 89.0811 88.3446 88.5807 91.0770 88.8114
12 82.2608 82.3486 82.2165 84.9811 82.5313 82.1691 82.3330 85.1361 82.6370
18 77.7074 77.7870 77.6625 80.3811 77.6152 77.6298 77.7425 80.6325 78.1497
24 74.3717 74.4433 74.3255 76.9994 74.0464 74.3152 74.3944 77.3098 74.8391
30 71.9370 72.0015 71.8893 74.5361 71.4749 71.9033 71.9606 74.8809 72.4022
36 70.1619 70.2202 70.1127 72.7464 69.6220 70.1498 70.1928 73.1113 70.6104
42 68.8680 68.9212 68.8174 71.4471 68.2850 68.8753 68.9091 71.8238 69.2933
48 67.9250 67.9740 67.8733 70.5039 67.3192 67.9490 67.9769 70.8875 68.3252
54 67.2377 67.2834 67.1850 69.8193 66.6208 67.2759 67.3000 70.2069 67.6136
60 66.7368 66.7798 66.6833 69.3223 66.1154 66.7866 66.8084 69.7123 67.0906
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Table 5.84 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = 0.5 m) of 2-D model shown in Fig 5.23 for d^ =1.01

Time Temperature (° C)

(sec) rf™, =1.01
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 88.4023 88.4013 88.4100 88.4007 88.4009 88.4012 88.4009 88.4008 88.3986
12 82.1955 82.1947 82.2026 82.1946 82.1963 82.1948 82.1949 82.1947 82.4152
18 77.6796 77.6790 77.6856 77.6792 77.6816 77.6792 77.6794 77.6793 77.9892
24 74.3887 74.3883 74.3939 74.3886 74.3914 74.3885 74.3887 74.3886 74.7149
30 71.9921 71.9917 71.9967 71.9921 71.9952 71.9920 71.9922 71.9921 72.3011
36 70.2465 70.2461 70.2506 70.2465 70.2498 70.2464 70.2466 70.2466 70.5243
42 68.9747 68.9744 68.9786 68.9748 68.9782 68.9747, 68.9749 68.9749 69.2171
48 68.0480 68.0477 68.0517 68.0481 68.0516 68.0480 68.0482 68.0481 68.2557
54 67.3726 67.3723 67.3761 67.3727 67.3763 67.3726 67.3728 67.3728 67.5485
60 66.8803 66.8801 66.8838 66.8805 66.8841 66.8803 66.8805 66.8805 67.0284

Table 5.85 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = 0.5 m) of 2-D model shown in Fig 5.23 for dnw =1.51

Time Temperature [#C)
(sec)

FEM
xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
6 88.4201 88.4352 88.4155 89.3608 88.3866 88.4144 88.4610 89.7030 88.3986
12 82.1974 82.2055 82.1920 83.1347 82.1214 82.2023 82.2326 83.5312 82.4152
18 77.6726 77.6759 77.6677 78.6098 77.5433 77.6807 77.6927 79.0541 77.9892
24 74.3748 74.3747 74.3703 75.3178 74.2051 74.3855 74.3839 75.7981 74.7149
30 71.9716 71.9692 71.9673 72.9218 71.7740 71.9858 71.9746 73.4277 72.3011
36 70.2200 70.2157 70.2156 71.1775 70.0037 70.2383 70.2204 71.7017 70.5243
42 68.9429 68.9371 68.9383 69.9074 68.7144 68.9653 68.9429 70.4448 69.2171
48 68.0115 68.0046 68.0067 68.9826 67.7753 68.0377 68.0125 69.5297 68.2557
54 67.3323 67.3244 67.3272 68.3092 67.0913 67.3618 67.3347 68.8635 67.5485
60 66.8368 66.8282 66.8315 67.8188 66.5930 66.8693 66.8410 68.3785 67.0284
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Fig. 5.26 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5 m & z = 0.75 m) of 2-D model shown in Fig 5.23
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Fig. 5.27 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = 0.75 m) of 2-D model shown in Fig 5.23
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Fig. 5.28 Comparison of EFG results obtained using 25 nodes with FEM at the location 
(r = 0.5 m & z = 0.25 m) of 2-D model shown in Fig 5.23
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Fig. 5.29 Comparison of EFG results obtained using 81 nodes with FEM at the location 
(r = 0.5 m & z = 0.25 m) of 2-D model shown in Fig 5.23
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5.10 CONCLUSION

2-D MATLAB codes have been developed to obtain the numerical solution for the different 

cases presented in this chapter using different EFG weight functions. The results obtained by 

EFG method have been compared with those obtained by FEM (in Case-1, analytical method 

also) at few typical locations. From the numerical analysis carried out in this chapter, it is 

clear that the EFG method can be successfully used to obtain the numerical solution of 2-D 

heat transfer problems. A comparative numerical analysis has been carried out to evaluate the 

performance of different weight functions. It is found that the EFG results obtained using 

cubicspline, quarticspline, Gaussian, exponential and rational weight functions are in good 

agreement with those obtained by FEM. From the analysis carried out in this chapter, it is 

also observed that only cubicspline, quarticspline, Gaussian, exponential and rational weight 

functions give acceptable results in the range 1.0 < d^ <1.5. Out of all the weight functions 

used, the results obtained using exponential weight function are most reliable as compared to 

other weight functions used because only exponential weight function has minimum variation 

in the results (temperature values) with the change in the value of scaling parameter.
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CHAPTER 6

3-D HEAT TRANSFER ANALYSIS

6.1 INTRODUCTION

This chapter describes the application of EFG method in three-dimensional (3-D) heat 

transfer problems. Four different cases have been chosen to check the applicability of this 

method in 3-D heat transfer problems. The steady-state and transient analysis of different 

model problems have been carried out. The effect of scaling parameter on EFG results has 

also been discussed in detail.

> CASE-I

6.2 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for three-dimensional heat transfer in isotropic materials 

with thermal properties independent of temperature is given as:

, d2T . o2r , , a2r ,
ki2 2+ kyx2+k:x2+Q = PCT dx > dy dz

(6.1a)

With initial and boundary conditions are:

at the time t = 0 T = Tlnl on V (6.1b)

at surface x = 0 ), T = TS| (6-lc)

at surface x=L (S2\ kx^ = -h(T-T^ (6. Id)

at surface y = 0 (53), ky = h(T-TJ (6. Ie)

at surface y = W (S4), ky^ = -h(T-T^ (6.10

at surface z = Q (S5), kt^ = h(T-T*} (6.1g)

at surface z-H (S6), ki^=~k{T (6.1h)
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The weighted integral form of Eq. (6.1a) is obtained as:

The weak form of the Eq. (6.2) will be

(6.2)

awoT 
dx dx

dw dT , --------+ k
dy dy

dw dT 
dz dz

dV - jwQdV + jwpctdV - 
V V

&T*f wk—cos(h,x) + wk—cos(H,y) + w&—cos(w,z) dS
J dx dy dz _

(6.3)

s

Introducing natural boundary conditions in weak form, the Eq. (6.3) changes to

+ + iw<2dt/ + fwPctdV+ ^hfr-T^dSt
J dx dx y dy dy dz dz J J J J v/J v v s2
{wh(T-TjdS + ^wh(T-Tx)dS + jwh(T-TjdS + ^wh(T-T„)dS = 0

S3 54 $5 ^6

(6.4)

The functional I(T) can be written as:

(6.5)

Enforcing essential boundary conditions, the functional I’(T) is obtained as:

p^-dS* j^-dS+ p^~dS+ f~d$+ f-dS- j/tTT^dS

s2 S3 4< 4S S2

|A7T.<ZS- pi/XtS- jhTT^dS- jhTT,dS+ ix(T-TSi)dS
s3 S4 Ss S6 51

(6.6)

Using Variational method, Eq. (6.6) changes to
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W(T)= [ t —8 —+ A —8 —+1, —8 — dV + [pcTS/yr- [QSTdF 
'',i dxdxydydy && J Jt/ _ ' j . y i/

^hT6TdS + ^hT5TdS + ^hT5TdS + ^hTSTdS+ ^hTSTdS- ^hT^TdS- (6.7)
X2 X3 .S’4 .S’5 s6 s2
ptT^rds- fhrmsrds- jhr^Tds- pj^sr^ + j\srt/s + Jsx(r-7S. )dS 

S 54 ,V5 S6 51 51

Since 5Tand 8X are arbitrary in preceding equation, the following relations are obtained

using Eqs. (3.25) and (6.7) 

[K]{T}+[c]ff}+[G]{x} = {f} 

[Gr]{T} = {q} 

where

(6.8a)

(6.8b)

(6.9a)

(6.9b)

ft = fa$/d7+ |AT<a0/dS’+ ^0^5+ ^0^5+ ^hT^dS+ biT^dS (6.9c) 

" si s4 s5 s6

(6.9d) 
si

(6.9e)

Using Crank-Nicolson technique for time approximation, the Eq. (6.8) can be written as:

(6.10)

where
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Rv = ac]-(l-a)A/[K]){Th., +a4i{f}„ + (l-a)A/{f}w_1 (6.11a)

K -aA/[K] (6.11b)

6.3 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of three-dimensional 

model shown in Fig. 6.1 are tabulated in Table 6.1. The EFG results are obtained using 

different weight functions for two sets of nodes and the FEM results are obtained using 8 

node brick element (SOLID 70, ANSYS 6.0) for same sets of nodes. Analytical solution has 

also obtained using an infinite series (Carslaw and Jaeger, 1959). A comparative study is 

carried out to evaluate the performance of different EFG weight functions.

6.3.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 6.2 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.rfmax =1.01 =1.51) at the

location (x = 0.5 m, y = 1 m & z = 1 m) and it shows a comparison of temperature values 

obtained by EFG method using different weight functions with FEM and analytical methods 

for 27 nodes. Table 6.3 shows a comparison of temperature values obtained by EFG method 

using different functions for two values of scaling parameter with FEM and analytical 

methods at the same location i.e. (x = 0.5 m, y = 1 m & z = 1 m) for 125 nodes. A comparison 

of temperature values obtained using different EFG weight functions with FEM and 

analytical methods for 27 and 125 nodes, is shown in Table 6.4 and Table 6.5 respectively at 

the location (x = 0.5m, y = Im & z = 0.5m). Similar type of comparisons of temperature 

values are shown in Table 6.6 for 27 nodes at the location (x = 1 m, y = 1 m 8z z = 1 m), in 

Table 6.7 for 125 nodes at the location (x = 1 m, y = 1 m & z = 1 m), in Table 6.8 for 27 

nodes at the location (x = Im, y = Im & z = 0.5m) and in Table 6.9 for 125 nodes at the 

location (x = Im, y = Im & z = 0.5m). From the results presented in Table 6.2 to Table 6.9 
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it is observed that EFG results obtained using different weight functions are almost similar 

for df^sl.Ol. However for dma3l =1.51, only cubicspline, quarticspline, Gaussian, 

exponential and rational weight functions give acceptable results. It is also observed that EFG 

results obtained using different weight functions are in good agreement with those obtained 

by FEM and analytical methods. Moreover with the increase in number of nodes EFG results 

starts converging.

The effect of scaling parameter (6/max)on EFG results obtained using different weight 

functions is presented in Table 6.10 for 27 nodes and in Table 6.11 for 125 nodes respectively 

at the location (x = 0.5 m, y = lm & z = 0.5m). Similar effect of scaling parameter on EFG 

results is shown in Table 6.12 for 27 nodes and in Table 6.13 for 125 nodes at the location 

(x = lm, y = lm & z = 0.5 m). Fig. 6.2 shows the effect of scaling parameter on EFG results 

obtained using 27 and 125 nodes at the location (x = 0.5 m, y = 1 m & z = 1 m). Similar effect 

of scaling parameter on EFG results is observed in Fig. 6.3 at the location 

(x = lm, y = lm & z = lm). From tables and figures, it is clear that only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results in 

the range 1.0 < dmtx < 1.6 whereas the results obtained using quadratic, hyperbolic and cosine 

weight functions are varying in abrupt manner with scaling parameter. Therefore EFG results 

obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in the 

range 1.0 < dmtx < 1.6. It is also observed that there is minimum variation in EFG results with 

scaling parameter for exponential weight function.
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Fig. 6.1 Three-dimensional model

Table 6.1 Data for the 3-D model shown in Fig. 6.1
Parameters Value of the parameter

Length (Z)
Width (FT)
Height (H)
Thermal conductivity (k)
Density of the material ( p)
Specific heat(c)
Rate of internal heat generation (Q ) 
Heat transfer coefficient (h) 
Surrounding fluid temperature (T„ ) 
Initial temperature
Time step size (A/)
Temperature at surface, x = 0 or 
Convection at all other surfaces

1 m
1 m
1 m
400 W/m-K 
10000 kg/m3
400 kJ/kg-K 
0 W/m3
200 W/m2-K
20 °C
100 °C
100 sec
100 °C 

dT~kd^=h(T-T„)viheren' = x,y,z & i = 2,3,4,5,6

220



Table 6.2 Comparison of EFG results obtained using 27 nodes with FEM and analytical results at the 
location (x = 0.5 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

<x =101 d^ =1.51

T (°C) % error T (°C) % error TCC) % error T (°C)
C. S. 57.4355 0.3230 54.4565 5.4929

59.4238 -3.1276 57.6216

Q. S. 57.3447 0.4805 53.3230 7.4600
Gaussian 57.9915 -0.6419 54.2764 5.8086
Quadratic 57.3395 0.4896 36.0593 37.4205

Hyperbolic 57.0785 0.9425 54.4567 5.4926
Exponential 57.3646 0.4460 56.8520 1.3356

Rational 57.3310 0.5043 55.0520 4.4594
Cosine 57.3299 0.5062 41.9399 27.2150

Table 6.3 Comparison of EFG results obtained using 125 nodes with FEM and analytical results at the 
location (x = 0.5 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

^=1.01 4™. =1.51
T (°C) % error rco % error TfC) % error T (°C)

C. S. 57.6348 -0.0229 57.4094 0.3683

58.2697 -1.1248 57.6216

Q. S. 57.6424 -0.0361 57.4484 0.3006
Gaussian 57.6647 -0.0748 57.2657 0.6177
Quadratic 57.6562 -0.0600 62.0657 -7.7126

Hyperbolic 57.7670 -0.2523 57.0288 1.0288
Exponential 57.6450 -0.0406 57.6103 0.0196

Rational 57.6541 -0.0564 57.4712 0.2610
Cosine 57.6559 -0.0595 59.9490 -4.0391
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Table 6.4 Comparison of EFG results obtained using 27 nodes with FEM and analytical results at the 
location (x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

<U=101 =1.51

rec) % error TfC) % error TfC) % error r(°c)
C. S. 62.8557 -1.1711 60.9171 1.9492

63.9721 -2.9681 62.1281

Q. S. 62.8172 -1.1092 60.3020 2.9392

Gaussian 62.8790 -1.2086 61.0070 1.8045
Quadratic 62.6622 -0.8597 66.1792 -6.5206

Hyperbolic 62.3820 -0.4087 57.1049 8.0852
Exponential 62.7668 -1.0280 62.4927 -0.5869

Rational 62.6854 -0.8970 61.7196 0.6575
Cosine 62.6715 -0.8746 60.7759 2.1765

Table 6.5 Comparison of EFG results obtained using 125 nodes with FEM and analytical results at the 
location (x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

^=1.51
7" (°C) % error T(°C) % error T(°C) % error rec)

C. S. 62.3105 -0.2936 62.0145 -0.1828

62.6783 -0.8856 62.1281

Q. S. 62.3178 -0.3053 61.9700 0.2545
Gaussian 62.2895 -0.2598 61.9605 0.2698
Quadratic 62.3225 -0.3129 67.0820 -7.9737

Hyperbolic 62.3559 -0.3667 64.1584 -3.2679
Exponential 62.3180 -0.3057 62.3056 -0.2857

Rational 62.3228 -0.3134 62.2613 -0.2144
Cosine 62.3231 -0.3139 62.8464 -1.1562
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Table 6.6 Comparison of EFG results obtained using 27 nodes with FEM and analytical results at the 
location (x = 1 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

<„=101 =1.51

T (°C) % error T (°C) % error T(°C) % error T (°C)
C. S. 44.8227 -0.1267 45.2945 -1.1806

47.4016 -5.8875 44.7660

Q. S. 44.9460 -0.4021 45.4757 -1.5854
Gaussian 44.3704 0.8837 44.8850 0.2658
Quadratic 45.0544 -0.6442 58.9115 -31.5988

Hyperbolic 45.6527 -1.9807 50.1505 -12.0281
Exponential 44.9587 0.4305 45.1037 -0.7544

Rational 45.0454 -0.6241 45.2674 -1.1200
Cosine 45.0577 -0.6516 53.0279 18.4557

Table 6.7 Comparison of EFG results obtained using 125 nodes with FEM and analytical results at the 
location (x = 1 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

da„ =1.01 d^ =1.51

TfC) % error TCC) % error T(»C) % error rec)
C. S. 44.7419 0.0538 44.7855 -0.0436

45.5761 -1.8096 44.7660

Q. S. 44.7709 -0.0109 44.7962 -0.0675
Gaussian 44.5800 0.4155 44.6303 0.3031
Quadratic 44.8039 -0.0847 46.5444 -3.9727

Hyperbolic 44.9115 -0.3250 44.6675 0.2200
Exponential 44.7771 -0.0248 44.7996 -0.0751

Rational 44.7999 -0.0757 44.7569 0.0203
Cosine 44.8004 -0.0768 45.5955 -1.8530
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Table 6.8 Comparison of EFG results obtained using 27 nodes with FEM and analytical results at the 
location (x = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analytical

d^ =1.01 =1.51

T (°C) % error TCO % error T (°C) % error 7 (°C)
C. S. 48.1029 -0.4188 48.8215 -1.9189

49.8064 -3.9750 47.9023

Q. S. 48.1092 -0.4319 49.0645 -2.4262
Gaussian 48.0950 -0.4023 48.8792 -2.0394

Quadratic 48.1754 -0.5701 43.7350 8.6996

Hyperbolic 48.3454 -0.9250 40.7083 15.0181
Exponential 48.1288 -0.4728 48.2751 -0.7783

Rational 48.1617 -0.5415 48.7267 -1.7210
Cosine 48.1690 -0.5568 48.8323 -1.9415

Table 6.9 Comparison of EFG results obtained using 125 nodes with FEM and analytical results at the 
location (x = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Weight 
function

EFG
FEM Analyticaldn^ =1-01 ^„=1.51

TfC) % error TfC) % error TfC) % error rco
C. S. 47.9464 -0.0921 48.0561 -0.3211

48.4485 -1.1402 47.9023

Q. S. 47.9529 -0.1056 48.0805 -0.3720
Gaussian 47.9108 -0.0177 48.0116 -0.2282
Quadratic 47.9604 -0.1213 50.0474 -4.4781

Hyperbolic 47.9756 -0.1530 48.7558 -1.7818
Exponential 47.9547 -0.1094 47.9824 -0.1672

Rational 47.9599 -0.1202 48.0487 -0.3056
Cosine 47.9604 -0.1213 48.1845 -0.5891
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Table 6.10 Effect of scaling parameter on EFG results obtained using 27 nodes at the location 
(x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Scaling
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.8557 62.8172 62.8790 62.7000 62.3821 62.7668 62.6854 62.7000
1.11 63.0606 62.9534 61.8703 65.1000 62.8174 61.7233 61.5964 64.0000
1.21 62.7877 62.3632 61.6882 62.3000 62.9734 61.7040 61.6468 62.0000
1.31 61.9817 61.6103 61.5661 62.7000 63.1503 61.7096 61.7003 62.3000
1.41 61.4567 61.1222 61.2106 61.5000 57.5485 62.5506 61.9595 59.5000
1.51 60.9171 60.3020 61.0070 66.2000 57.1049 62.4927 61.7196 60.8000
1.61 60.3491 59.5550 60.8280 86.5000 56.9386 62.4248 61.4870 65.2000
1.71 59.8345 59.0872 60.4927 259.9000 24.8117 62.1475 59.6866 111.900
1.81 59.2545 58.5105 60.3060 148.3000 21.1614 61.9992 59.0567 249.000
1.91 58.6573 57.8220 60.1925 -371.500 17.8449 61.8341 58.3806 3048.80
2.01 58.0736 57.1112 59.9617 -847.000 3.6402 61.1738 57.1889 62.800
2.11 57.4804 56.3738 59.9551 -381.600 -5.1947 60.9569 56.4539 190.000
2.21 56.8166 55.4546 60.0659 -947.200 -14.9839 60.7303 55.6674 -142.000
2.31 56.0262 54.2199 60.3212 -1942.900 -25.7859 60.4946 54.8227 -283.200
2.41 55.0484 52.5535 60.7534 -3616.000 -37.6593 60.2503 53.9119 -291.600

Table 6.11 Effect of scaling parameter on EFG results obtained using 125 nodes at the location 
(x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Scaling
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.3105 62.3178 62.2895 62.3225 62.3559 62.3180 62.3228 62.3231
1.11 62.3833 62.3761 62.0582 63.1507 62.3448 62.0971 62.1426 62.7725
1.21 62.3324 62.2454 62.0325 62.3219 62.3741 62.1036 62.1605 62.2961
1.31 62.1650 62.1032 62.0246 62.3209 62.4128 62.1140 62.1779 62.2954
1.41 62.0793 62.0433 61.9776 62.3803 64.6399 62.3085 62.2885 62.0935
1.51 62.0145 61.9700 61.9605 67.0820 64.1584 62.3056 62.2613 62.8464
1.61 61.9768 61.9614 61.9437 63.7777 63.7709 62.3015 62.2359 69.8380
1.71 61.9758 62.0079 61.8845 61.7092 63.5426 62.2775 62.3487 62.3757
1.81 61.9822 62.0207 61.8335 56.1193 68.6358 62.2713 62.3414 55.4572
1.91 61.9955 61.9974 61.7638 51.5102 66.1741 62.2659 62.3351 49.9689
2.01 62.0003 61.9157 61.6415 60.2051 75.8115 62.1271 62.1973 56.3566
2.11 61.9661 61.7127 61.4835 69.6853 21.6286 61.9796 61.9310 53.8888
2.21 61.8508 61.2924 61.3140 94.7015 31.4805 61.9685 61.9762 81.6243
2.31 61.6177 60.5465 61.1143 104.5584 39.3649 61.9603 62.0243 135.4578

__ 241 61.1817 59.2303 60.8049 95.5498 113.5150 61.9601 61.4197 240.0242
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Table 6.12 Effect of scaling parameter on EFG results obtained using 27 nodes at the location 
(x = 1 m, j/ = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 48.1029 48.1092 48.0950 48.2000 48.3454 48.1288 48.1617 48.2000
1.11 48.0223 48.0624 48.4135 47.5000 48.0458 48.5022 48.6005 47.8000
1.21 48.1188 48.2777 48.4833 48.5000 47.8824 48.5165 48.5912 48.6000
1.31 48.4170 48.5567 48.5469 48.2000 47.6862 48.5210 48.5810 48.4000
1.41 48.6146 48.7476 48.7199 49.6000 43.4566 48.2407 48.6161 50.3000
1.51 48.8215 49.0645 48.8792 43.7000 40.7083 48.2751 48.7267 48.8000
1.61 49.0485 49.3719 49.0785 18.7000 37.0448 48.3147 48.8325 42.0000
1.71 49.2706 49.6061 49.4206 -64.3000 32.6357 48.4511 49.5856 29.9000
1.81 49.5298 49.9002 49.7667 -65.3000 25.4716 48.5291 49.8086 -105.800
1.91 49.8109 50.2562 50.1590 159.000 17.1063 48.6145 50.0301 -2279.60
2.01 50.1081 50.6484 50.6992 137.100 72.5605 48.9585 51.2120 100.000
2.11 50.4383 51.1055 51.2008 348.600 75.8769 49.0841 51.5758 444.100
2.21 50.8390 51.7109 51.6965 746.500 79.5545 49.2157 51.9612 -112.000
2.31 51.3389 52.5252 52.1357 1425.50 83.6198 49.3528 52.3708 -473.000
2.41 51.9654 53.5927 52.4469 2532.20 88.0998 49.4950 52.8073 -423.000

Table 6.13 Effect of scaling parameter on EFG results obtained using 125 nodes at the location 
(* = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1

Scaling
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 47.9464 47.9529 47.9108 47.9604 47.9756 47.9547 47.9599 47.9604
1.11 47.9354 47.9427 47.9877 47.7856 48.0272 48.0134 48.0299 47.8843
1.21 47.9532 47.9798 48.0046 48.0374 48.0376 48.0150 48.0300 48.0432
1.31 48.0016 48.0225 48.0133 48.0370 48.0528 48.0157 48.0300 48.0368
1.41 48.0301 48.0479 48.0228 48.2573 49.0190 47.9755 48.0355 48.1706
1.51 48.0561 48.0805 48.0116 50.0474 48.7558 47.9824 48.0487 48.1845
1.61 48.0791 48.1021 47.9811 47.7298 48.6028 47.9900 48.0600 51.3305
1.71 48.0967 48.1149 47.9100 47.4786 49.6180 48.0337 48.1061 46.7611
1.81 48.1161 48.1364 47.7983 45.2386 49.6661 48.0439 48.1071 45.2096
1.91 48.1345 48.1505 47.6253 44.5143 48.9379 48.0534 48.1044 42.9541
2.01 48.1496 48.1465 47.3764 47.7315 30.2545 48.0965 48.2493 41.5753
2.11 48.1625 48.1212 47.0470 52.2472 36.5362 48.1550 48.3807 49.9608
2.21 48.1692 48.0538 46.5996 41.8277 51.1653 48.1714 48.3932 46.7199
2.31 48.1480 47.8827 46.0340 45.3600 67.2515 48.1873 48.4050 30.9884
2.41 48.0720 47.5306 45.3821 24.2564 171.5653 48.2119 48.6796 36.1823
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6.3.2 Transient analysis

The transient analysis of 3-D model is carried out using different EFG weight functions. 

Table 6.14 and Fig. 6.4 show the convergence study using different time steps at two 

different locations. The solution with 1000 sec time step continues to oscillate with 

decreasing amplitude until it converges at 20000 sec. This time step (1000 sec) is nearly 10% 

of the total time required to achieve steady state condition in first two time steps (i.e. 100 sec 

and 500 sec). For time steps up to 500 sec, the EFG results are well converged and this time 

step is nearly 5% of the total time required for achieving steady state. For this case (i.e. 

CASE-I) of 3-D transient analysis, the time step of 100 sec has been taken which is nearly 

1% of the total time required to achieve steady state condition.

Table 6.15 and Table 6.16 show the comparison of EFG results (i.e. temperature values) 

obtained using 27 nodes with FEM results at the location (x = 0.5m, y = lm & z = 0.5m) 

for ^=1.01 and d^ =1.51 respectively. Similar comparison of temperature values 

obtained using 125 nodes is presented in Table 6.17 and Table 6.18 for dmaK =1.01 and

= 1.51 respectively at the same location i.e. (x = 0.5 m, y = 1 m & z = 0.5 m). Table 6.19 

and Table 6.20 show the comparison of EFG results (i.e. temperature values) obtained using 

27 nodes with FEM results at the location (x = 1 m, y = 1 m & z = 0.5 m) for d^ =1.01 and 

^max =1-51 respectively. Similar comparison of temperature values obtained using 125 nodes 

is also presented in Table 6.21 and Table 6.22 for d^ =1.01 and d^ =1.51 respectively at 

the same location i.e. (x = lm, y = lm & z = 0.5m). Fig 6.5 shows the comparison of EFG 

results (i.e. temperature values) obtained using 27 nodes with FEM results for d^ =1.01 

and at the location (x = 0.5 m, y = 0.5 m & z = lm). Similar comparison of

temperature values obtained using 125 nodes is shown in Fig. 6.6 at the same location i.e. 

(x = 0.5m, y = 0.5m & z = lm). Fig 6.7 shows the comparison of EFG results (i.e. 

temperature values) obtained using 27 nodes with FEM results for d^ =1.01 and 

^max =1-51 at the location (x = lm, y = lm & z = lm). Similar comparison of temperature 

values obtained using 125 nodes is shown in Fig. 6.8 at the same location i.e.
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(x = 1 m, y = 1 m & z = 1 m). From the results presented in tables and figures, it is clear that 

EFG results obtained using different weight functions are almost similar for d^ =1.01 . 

However for =1.51 only cubicspline, quarticspline, Gaussian, exponential and rational 

weight functions give acceptable results. It has also been observed that the EFG results are in 

good agreement with those obtained by FEM.

Table 6.14 Convergence study of EFG results obtained using different time step at the 
location (x = 1 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1

Time (sec) 
xlO2

Time Step Size
100 sec 500 sec 1000 sec

0 100.0000 100.0000 100.0000
10 68.0961 70.1553 58.4668
20 58.4484 59.1564 63.6492
30 52.8170 53.0930 48.8266
40 49.5006 49.6273 51.9693
50 47.5462 47.6207 45.5044
60 46.3945 46.4505 47.8038
70 45.7158 45.7651 44.5739
80 45.3159 45.3625 46.1859
90 45.0802 45.1256 44.4201
100 44.9412 44.9861 45.4973

Fig. 6.4 Convergence analysis of EFG results obtained using different time step at the 
location (x = 0.5 m, y = 1 m & z = 1 m) of the 3-D model shown in Fig. 6.1
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Table 6.15 Comparison of EFG results obtained using 27 nodes with FEM at the location 
(x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for d^ =1.01

Time Temperature (° C)

(sec) ^.=1-01
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 85.4179 85.3653 85.4936 85.1820 84.8450 85.3062 85.2076 85.1918 86.5292
20 75.9030 75.8582 75.9457 75.6887 75.3782 75.8033 75.7132 75.6984 77.7232
30 70.3809 70.3398 70.4091 70.1777 69.8812 70.2872 70.2016 70.1872 72.3004
40 67.1954 67.1560 67.2180 66.9977 66.7087 67.1045 67.0212 67.0071 69.0124
50 65.3584 65.3197 65.3792 65.1632 64.8784 65.2688 65.1865 65.1726 67.0249
60 64.2990 64.2606 64.3196 64.1050 63.8223 64.2099 64.1282 64.1143 65.8230
70 63.6880 63.6497 63.7091 63.4945 63.2130 63.5992 63.5177 63.5038 65.0953
80 63.3357 63.2974 63.3573 63.1423 62.8615 63.2469 63.1655 63.1516 64.6542
90 63.1325 63.0941 63.1546 62.9392 62.6587 63.0437 62.9623 62.9485 64.3865
100 63.0153 62.9769 63.0378 62.8220 62.5417 62.9265 62.8451 62.8313 64.2240

Table 6.16 Comparison of EFG results obtained using 27 nodes with FEM at the location 
(x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for d^ =1.51

Time Temperature (° C)
(sec) 
xlO2

rfra=1.51
FEM

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 85.1576 85.2016 85.3984 90.1614 69.8081 85.3415 85.6758 88.6472 86.5292
20 75.1726 75.0024 75.3640 79.9706 64.3097 75.6905 75.4778 76.9069 77.7232
30 69.2684 68.9455 69.4231 74.1088 61.1920 70.0974 69.6084 70.0999 72.3004
40 65.8084 65.3829 65.9393 70.7386 59.4235 66.8741 66.2428 66.1654 69.0124
50 63.7818 63.2887 63.8975 68.8008 58.4202 65.0170 64.3131 63.8911 67.0249
60 62.5949 62.0577 62.7010 67.6866 57.8511 63.9471 63.2066 62.5765 65.8230
70 61.8998 61.3340 61.9997 67.0459 57.5282 63.3306 62.5722 61.8167 65.0953
80 61.4926 60.9087 61.5888 66.6775 57.3451 62.9754 62.2085 61.3775 64.6542
90 61.2542 60.6586 61.3479 66.4657 57.2411 62.7708 61.9999 61.1236 64.3865
100 61.1145 60.5117 61.2068 66.3439 57.1822 62.6529 61.8803 60.9769 64.2240

231



Table 6.17 Comparison of EFG results obtained using 125 nodes with FEM at the location 
(x = 0.5 m, = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for d^ =1.01

Time Temperature (® C)

(sec) ^=101
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
10 83.8643 83.8655 83.8802 83.8625 83.8826 83.8640 83.8634 83.8631 84.3225
20 75.0401 75.0443 75.0371 75.0452 75.0717 75.0437 75.0458 75.0459 75.7728
30 69.8139 69.8198 69.8013 69.8226 69.8526 69.8195 69.8230 69.8233 70.5826
40 66.7325 66.7391 66.7151 66.7430 66.7748 66.7391 66.7433 66.7436 67.4466
50 64.9164 64.9235 64.8968 64.9278 64.9605 64.9236 64.9281 64.9284 65.5544
60 63.8462 63.8534 63.8256 63.8580 63.8911 63.8536 63.8583 63.8586 64.4130
70 63.2155 63.2228 63.1945 63.2275 63.2608 63.2230 63.2277 63.2281 63.7246
80 62.8438 62.8512 62.8227 62.8559 62.8893 62.8514 62.8561 62.8565 63.3094
90 62.6248 62.6322 62.6036 62.6369 62.6703 62.6324 62.6371 62.6375 63.0589
100 62.4957 62.5031 62.4746 62.5078 62.5412 62.5033 62.5080 62.5084 62.9079

Table 6.18 Comparison of EFG results obtained using 125 nodes with FEM at the location 
(x = 0.5 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^=1.51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 "100.0000 100.000
10 83.8049 83.8200 83.7721 85.7313 83.0276 83.9316 84.1813 84.3545 84.3225
20 74.9508 74.9551 74.9113 78.8453 75.2960 75.0750 75.1832 75.6344 75.7728
30 69.6779 69.6694 69.6335 74.0971 70.6888 69.8304 69.8627 70.3870 70.5826
40 66.5532 66.5341 66.5055 71.2199 67.9847 66.7390 66.7320 67.2887 67.4466
50 64.7024 64.6755 64.6525 69.5171 66.4000 64.9176 64.8907 65.4631 65.5544
60 63.6064 63.5737 63.5550 68.5143 65.4716 63.8445 63.8077 64.3878 64.4130
70 62.9573 62.9206 62.9049 67.9243 64.9277 63.2122 63.1708 63.7543 63.7246
80 62.5729 62.5335 62.5199 67.5774 64.6091 62.8398 62.7962 63.3812 63.3094
90 62.3452 62.3041 62.2918 67.3733 64.4224 62.6203 62.5759 63.1614 63.0589
100 62.2104 62.1680 62.1568 67.2533 64.3131 62.4910 62.4463 63.0320 62.9079
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Table 6.19 Comparison of EFG results obtained using 27 nodes with FEM at the location 
(x = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for d^ = 1.01

Time Temperature (° C)

(sec) =1-01
FEM

xIO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.0000 100.0000 100.0000 100.0000 100.000
10 75.6655 75.6579 75.7181 75.7085 75.8553 75.6733 75.6950 75.7016 77.9517
20 63.9410 63.9411 63.9563 64.0000 64.1571 63.9587 63.9863 63.9933 66.3217
30 57.2350 57.2391 57.2330 57.3026 57.4663 57.2579 57.2888 57.2960 59.7070
40 53.3692 53.3750 53.3604 53.4405 53.6076 53.3943 53.4267 53.4340 55.7982
50 51.1399 51.1463 51.1290 51.2126 51.3814 51.1659 51.1989 51.2062 53.4471
60 49.8543 49.8609 49.8432 49.9275 50.0970 49.8806 49.9137 49.9211 52.0219
70 49.1129 49.1195 49.1023 49.1861 49.3560 49.1392 49.1724 49.1797 51.1553
80 48.6853 48.6919 48.6754 48.7584 48.9284 48.7116 48.7447 48.7521 50.6277
90 48.4388 48.4453 48.4294 48.5117 48.6818 48.4649 48.4980 48.5054 50.3064
100 48.2966 48.3030 48.2877 48.3694 48.5395 48.3227 48.3557 48.3630 50.1108

Table 6.20 Comparison of EFG results obtained using 27 nodes with FEM at the location 
(x = lm, y = lm & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for =1.51

Time 
(sec) 
xIO2

Temperature (° C)

d^ =1.51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 76.1152 76.3647 76.1892 75.3856 81.8405 75.9648 76.9659 77.6551 77.9517
20 64.7156 65.0177 64.7887 61.9266 64.0419 64.1796 64.8939 65.4704 66.3217
30 58.1273 58.4389 58.1994 54.1952 53.9455 57.4373 57.9961 58.4494 59.7070
40 54.2717 54.5749 54.3411 49.7496 48.2177 53.5538 54.0415 54.3912 55.7982
50 52.0136 52.3036 52.0801 47.1933 44.9683 51.3164 51.7740 52.0455 53.4471
60 50.6911 50.9685 50.7551 45.7235 43.1250 50.0273 50.4739 50.6896 52.0219
70 49.9165 50.1837 49.9785 44.8784 42.0793 49.2846 49.7285 49.9058 51.1553
80 49.4628 49.7224 49.5234 44.3924 41.4860 48.8567 49.3011 49.4528 50.6277
90 49.1971 49.4512 49.2567 44.1130 41.1495 48.6102 49.0560 49.1909 50.3064
100 49.0415 49.2918 49.1004 43.9524 40.9586 48.4682 48.9155 49.0396 50.1108
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Table 6.21 Comparison of EFG results obtained using 125 nodes with FEM at the location 
(x = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for d^ =1.01

Time Temperature i °C)
(sec) 
xlO2

=1.01
FEM

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 74.2550 74.2587 74.2429 74.2634 74.2768 74.2599 74.2632 74.2635 75.0824
20 63.4071 63.4124 63.3822 63.4188 63.4338 63.4139 63.4184 63.4189 64.3651
30 57.0551 57.0613 57.0232 57.0686 57.0845 57.0630 57.0681 57.0686 58.0344
40 53.3141 53.3207 53.2791 53.3283 53.3445 53.3225 53.3278 53.3284 54.2284
50 51.1096 51.1164 51.0735 51.1241 51.1401 51.1182 51.1235 51.1242 51.9343
60 49.8105 49.8173 49.7741 49.8250 49.8409 49.8191 49.8244 49.8250 50.5509
70 49.0450 49.0516 49.0085 49.0593 49.0750 49.0534 49.0588 49.0594 49.7165
80 48.5938 48.6004 48.5575 48.6081 48.6237 48.6022 48.6075 48.6081 49.2133
90 48.3279 48.3345 48.2918 48.3421 48.3576 48.3363 48.3416 48.3422 48.9098
100 48.1712 48.1778 48.1352 48.1854 48.2008 48.1796 48.1848 48.1854 48.7267

Table 6.22 Comparison of EFG results obtained using 125 nodes with FEM at the location 
(x = 1 m, y = 1 m & z = 0.5 m) of the 3-D model shown in Fig. 6.1 for =1.51

Time 
(sec) 
xlO2

Temperature (° C)

FEMc. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
10 74.1818 74.1759 74.0934 74.3691 73.8844 74.3282 74.5527 74.4305 75.0824
20 63.4874 63.5101 63.4207 64.7533 63.4631 63.4605 63.5939 63.6377 64.3651
30 57.1920 57.2236 57.1355 58.7554 57.3728 57.0988 57.1891 57.2880 58.0344
40 53.4664 53.5000 53.4155 55.1768 53.8041 53.3532 53.4243 53.5470 54.2284
50 51.2602 51.2930 51.2124 53.0651 51.7132 51.1466 51.2103 51.3432 51.9343
60 49.9537 49.9847 49.9074 51.8222 50.4883 49.8466 49.9082 50.0451 50.5509
70 49.1799 49.2093 49.1345 51.0912 49.7708 49.0807 49.1423 49.2805 49.7165
80 48.7217 48.7496 48.6767 50.6613 49.3504 48.6294 48.6919 48.8301 49.2133
90 48.4503 48.4771 48.4055 50.4084 49.1041 48.3636 48.4270 48.5648 48.9098
100 48.2896 48.3156 48.2449 50.2597 48.9599 48.2070 48.2712 48.4085 48.7267
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Fig. 6.5 Comparison of EFG results obtained using 27 nodes with FEM at the location 
(x = 0.5 m, y = 0.5 m & z = 1 m) of the 3-D model shown in Fig. 6.1
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> CASE-II

6.4 DISCRETIZATION OF THE GOVERNING EQUATION

The general form of energy equation for three-dimensional heat transfer in composite model

with thermal properties independent of temperature is given as:

a2
dx2

d2T 
dy2 + (6.12a)

The initial conditions are:

at the time / = 0 T = Tlnl on V (6.12b)

The essential boundary conditions are:

at the surface of material 1 y = W or S|F T = TW (6.12c)

at the surface of material 2 y = W or S2F T = TV (6.12d)

The natural boundary conditions are:

at the surface of material 2, x = 0 or S2L k^ = KT-K) (6.12e)

at the surface of material 1, x = ——— or 
2

-k^ = h(.T-^ (6.12f)

(6.12g)*$1R k^=h(T-TJat the surface of material 1, x = | ——— + | or

at the surface of material 2 x-L3 or 5^ -k^ = h(T-TJ (6.12h)

at the surface of material 2, z = 0 or S2B k^ = h(T-T.) (6.12i)

at the surface of material 1, z = —~—- or 5^ -k^ = h(T-T.) (6.12j)

((H -H} A atat the surface of material 1, z= or SIT k^- = h(T-TJ (6.12k)
\ J oz

at the surface of material 2 z-H3 or -k^htT-TJ (6.121)
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at the surface of material 1 y = 0 or loo

at the surface of material 2 y = 0 or S,n_* 2oo kf = KT~K)

Compatibility requirements at the interface of two materials are given as:

dTy

'*"(-2 +A»J mnt2

The weighted integral form of Eq. (6.12a) is obtained as:

Jw 
v

k\
d2T | d2T [ d2^ 

k dx2 dy2 dz2
dV^

The weak form of the Eq. (6.13) will be

dw dT dw dT dw dT --------- 1------------------ 1----------------  
dx dx dy dy dz dz

dV-\wQdV + ^wpcTdV- 
v i

( , dT dT Q'rJp A^C°S(n,X) + wk^C0S(n'^ + wk~-ms^,z)

(6.12m)

(6.12n)

(6.12p)

(6.12q)

(6.12r)

(6.12s)

(6.13)

(6.14)
dS=0

Introducing natural boundary conditions in weak form, the Eq. (6.14) changes to
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(dwdT dwdT dwdT 
--------+----------+----------

dx dy dy dz dz
dv+ I 2

(dwdT dwdT 
-----------4----------------

. dx dx dy dy
Sm-StY

dV -

twpic,fdV + ^wp2c2tdV + jwh(T-T^)dS +
K, A'2l

f>vA(7--T„)dS + ^wh(T-TjdS + ^wh(T-T„)dS + $wh(T-T.)dS + 
S|L S1R S2R S2B

(6.15)

LvAfT- - TjdS + |m-A(7’-T.)JS+ - T„)dS + -TjdS +
51B 5IT 52T ^IBS

|>vh(r-r„)rfs = o
52BS

The functional Z(T)can be written as:

r r c r chT^ thT*]MTtdV+ ^p2c2TtdV- yQ^dV-yQ2dV + J—^4- -dS+

fAr2>Wx M IM
I------dS+ I------ «□ + I------ ao + I-------du + I-----du + I------ du+ (o.lo)J 2 J 2 J 2 J 2 J 2 J 2 V

^r $zr ^b ‘Sb *St

py-<ZS'+ J*rr.<iS- ^hTT^dS- ^hTT^dS- jhTT,dS-
^BS ^2BS S2L 5IL 5|R ^JR

jhrr„dS~ IhTT^dS- jhTT„dS- j/iF^dS- fhTT^dS- f/iTT^dS
S2B S1B S1T S2T SIBS S2BS

Enforce essential boundary conditions, the functional I* (T) is obtained as:
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Jp, c, TTdV+ jp2 c2 TtdV - jTQdP- ^Q2d7 + j—dS+ J—dS+
1 I \L 2 St 2

cW’ rhT2 fhT2 (hT2 thT2 e hT2 --- dS+ ----- dS+ ----- dS+ —dS+ —dS+ ----- dS+
J 2 J 2 J 2 J 2 J 2 J 2 

^B % (6.17)

f — dS+ j — dS- ^hTT^dS- \hTT„dS- jhTT„dS- ^hTT^dS-
8flS ^BS $2L 5IL SIR S2R

\hTT„dS- ^hTT„dS- jhTT„dS- jhTT^dS- \hTTJS- jhTT„dS+
SjB ^it $2T ^bs Sjbs

jx(r-rSiF)ds+ jkxr-r^ds
5IF $2F

Using variational method, Eq. (6.17) can be written as:

8Z’(D= f*i
Ft

^-■i-—8—+—8—dV + [p1c1T37W'+
8x 8x dv dv & az J 1 1

F,

BT.dT dT-dT dT-dT 
----- ---------- 1--------0------- 1--------0------ 
dx dx dy dy dz dz

dV+ ^cjbTdV- dTdV-

(Q2STdP+ fj>r8TdS+ jhT8TdS+ jhr8TdS+ fhr8TdS+ 
^ZL ^R %

fhT8TdS+ jhT8TdS+ jhT8TdS+ $hT8TdS+ fhT8TdS+ (6.18)
®IT $BS

[hT8TdS- ^hTJ&TdS- ^hTJ8TdS- fafirdS- $hT„8Td$-
^BS 52L S1L 51R 52R

^dTdS- ^hTJTdS- ^hTJTdS- ^hT^TdS- ^hT^TdS-
52B 51B $1T 52T 51BS

f/iT„87aS+ |x87ys+ |8X(T-TS|F)dS+ jx'87as+ j8V(T-7;jF)dy
52BS SIF S,F 52F S2F

Since 5r,81and 6X' are arbitrary in preceding equation, the following relations are obtained

using Eqs. (3.25) and (6.18)

[K]{T}+[c]{t}+[g]{x}+[G']{1'}={r} 

[Gr](T}={q}

[G'r]{T}={q'}

(6.19a)

(6.19b)

(6.19c)
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where

0

0

0

0

0 ' 
0
*1.

° r 
0
^2.

dV + ^h^^jdS +

S2L

dV + jh^^dS + 
SIL

\h^^jdS+ jhtf <PjdS + fh^0jdS+ (h<P[^JdS + 
SIR ^R 62B A'1B

^jdS + jh^^jdS+ jh^<PjdS+ $jdS
^1T S2T $1BS 52BS

ctJ=fp,c, ^dv+ jP1C2 0; ^dv

ft = fa QtW+ fa ®tdv+ fw.0,dy+ frr^ds+ 

S2L SIL
^hT.<P,dS+ jhT^dS+ $hTji>,dS+ fhT.^dS + 

SIR S2R S2B S1B

jhT^tdS+ ^hT^,dS+ ^d>,dS+ friT^dS
S1T S2T $IBS S2BS

Gik -
S1F

G'IK = \^NKdS 
s2F

Qk ~
SIF

S2F

(6.20a)

(6.20b)

(6.20c)

(6.20d)

(6.20e)

(6.20f)

(6.20g)

Using Crank-Nicolson technique for time approximation, the Eq, (6.19) can be written as:
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K*+Cj G i G*
GT I 0 I 0

G't 0 

X 
q 
q'0

where

R, = ([cH f U,

K’=aAr[K]

(6.21)

(6.22a)

(6.22b)

6.5 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for steady-state and transient analysis of three-dimensional 

composite model shown in Fig. 6.9 are tabulated in Table 6.23. The EFG results are obtained 

using different weight functions for two sets of nodes and the FEM results are obtained using 

8 node brick element (SOLID 70, ANSYS 6.0) for same sets of nodes. A comparative study 

is carried out to evaluate the performance of different EFG weight functions.

6.5.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 6.24 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.<7max = 1.01 & dmax = 1.51) at the 

location (x = 0.2m, y = 0m & z = 0.2m) and it shows a comparison of temperature values 

obtained by EFG method using different weight functions with FEM for 96 nodes. Table 6.25 

shows a comparison of temperature values obtained by EFG method using different functions 

for two values of scaling parameter with FEM at the same location i.e. 

(x = 0.2m, 7 = 0m & z = 0.2m) for 144 nodes. A comparison of temperature values 

obtained using different EFG weight functions with FEM for 96 and 144 nodes, is shown in 

Table 6.26 and Table 6.27 respectively at the location (x = 0.4 m, y = 0 m & z = 0.3 m). 

Similar type of comparisons of temperature values are shown in Table 6.28 for 96 nodes at 

the location (x = 0.5 m, y = 0 m & z = 0.1m), in Table 6.29 for 144 nodes at the location 
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(x = 0.5 m, y = 0m & z = 0.1m), in Table 6.30 for 96 nodes at the location 

(x = 0.6 m, y = 0 m & z = 0.3 m) and in Table 6.31 for 144 nodes at the location 

(x = 0.6 m, y = 0 m & z = 0.3 m). From the results presented in Table 6.24 to Table 6.31, it is 

observed that EFG results obtained using different weight functions are almost similar for 

Jmax However for dmm =1.51, only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It is also observed that EFG results 

obtained using different weight functions are in good agreement with those obtained by FEM. 

Moreover with the increase in number of nodes EFG results starts converging.

The effect of scaling parameter (dmax)on EFG results obtained using different weight 

functions is presented in Table 6.32 for 96 nodes and Table 6.33 for 144 nodes respectively at 

the location (x = 0.2 m, y = 0 m & z = 0.2 m). Similar effect of scaling parameter on EFG 

results is shown in Table 6.34 for 96 nodes and Table 6.35 for 144 nodes at the location 

(x = 0.5 m, y = 0 m & z = 0.1m). Fig. 6.10 shows the effect of scaling parameter on EFG 

results obtained using 96 and 144 nodes at the location (x = 0.4 m, y = 0 m &, z = 0.3 m). 

Similar effect of scaling parameter on EFG results is observed in Fig. 6.11 at the location 

(x = 0.6m, y = 0m & z = 0.3m). From tables and figures, it is clear that only cubicspline, 

quarticspline, Gaussian, exponential and rational weight functions give acceptable results in 

the range 1.0 < dm^ < 1.6 whereas the results obtained using quadratic, hyperbolic and cosine 

weight functions are varying in abrupt manner with scaling parameter. Therefore EFG results 

obtained using quadratic, hyperbolic and cosine weight functions are not acceptable in the 

range 1.0 < dmax < 1.6. It is also observed that there is minimum variation in EFG results with 

scaling parameter for exponential weight function.
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Table 6.23 Data for the 3-D model shown in Fig 6.9
Parameters Value of the parameter

Length (LJ 0.2 m
Length (L2) 0.4 m
Length (L3) 0.6 m
Depth (W) 0.3 m
Height () 0.2 m
Height (H2) 0.4 m
Height (Zf3) 0.6 m
Thermal conductivity of material 1 (^) 400 W/m-K ’
Thermal conductivity of material 1 (^2) 100 W/m-K
Specific heat of material 1 (q) 400 kJ/kg-K
Specific heat of material 2 (c2) 300 kJ/kg-K
Density of material 1 (p,) 10000 kg/m3
Density of material 2 ( p2) 8000 kg/m5
Rate of internal heat generation (Q) 0 W/m3
Heat transfer coefficient ( h) 200 W/m2-K
Initial temperature (TM ) o°c
Time step size (A/) 100 sec
Surrounding fluid temperature (7^) 20 °C
Temperature (7^f & TSjp) at surfaces 51F & S2F 100 °C
Convection at all other surfaces ~ ^^7=^(7'-7^) where nr = x,y,z
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Table 6.24 Comparison of EFG results obtained using 96 nodes with FEM results at the location 
(x = 0.2 m, y = 0m & z = 0.2 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

^=1.01 ^max 1-51

r (°c)
% diff 

with FEM T(°C)
% diff 

with FEM
rec)

C. S. 69.6814 3.0306 70.0358 2.5375

71.8592

Q. S. 69.8559 2.7878 70.0201 2.5593
Gaussian 68.7470 4.3310 69.8325 2.8204
Quadratic 70.0992 2.4492 66.2145 7.8552

Hyperbolic 71.2336 0.8706 69.5592 3.2007
Exponential 69.9146 2.7061 70.1085 2.4363

Rational 70.2198 2.2814 70.3975 2.0341
Cosine 70.0872 2.4659 68.8278 4.2185

Table 6.25 Comparison of EFG results obtained using 144 nodes with FEM results at the location 
(x = 0.2 m, y = 0 m & z = 0.2 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM^=1.01

% diff 
with FEM TfC)

% diff 
with FEM TCC)

C. S. 69.7622 1.0388 69.8073 0.9748

70.4945

Q. S. 69.8002 0.9849 69.7664 1.0328
Gaussian 69.5263 1.3734 69.7414 1.0683
Quadratic 69.8810 0.8703 77.2801 -9.6257

Hyperbolic 70.4315 0.0894 68.3606 3.0270
Exponential 69.8285 0.9448 69.8714 0.8839

Rational 69.9945 0.7093 69.8784 0.8740
Cosine 69.8725 0.8823 69.2338 1.7884
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Table 6.26 Comparison of EFG results obtained using 96 nodes with FEM results at the location 
(x = 0.4 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

^=101 ^inax 1-51

T (°C)
% diff 

with FEM.
T (°C)

% diff 
with FEM T (°C)

C. S. 69.1685 3.2171 68.9394 3.5377

71.4677

Q. S. 69.3115 3.0170 68.7693 3.7757
Gaussian 68.4647 4.2019 68.7963 3.7379
Quadratic 69.4831 2.7769 69.3593 2.9501

Hyperbolic 69.6856 2.4936 69.1617 3.2266
Exponential 69.3381 2.9798 69.3720 2.9324

Rational 69.3554 2.9556 69.3068 3.0236
Cosine 69.4818 2.7787 68.4756 4.1866

Table 6.27 Comparison of EFG results obtained using 144 nodes with FEM results at the location 
(x = 0.4 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

^„=1.01 d^ =1.51

TfC)
% diff 

with FEM T(’C)
% diff 

with FEM
T (°C)

C. S. 69.6657 1.0893 69.3667 1.5138

70.4329

Q. S. 69.7128 1.0224 69.2297 1.7083
Gaussian 69.4172 1.4421 69.2996 1.6090
Quadratic 69.7429 0.9797 65.8763 6.4694

Hyperbolic 69.6529 1.1074 70.8645 -0.6128
Exponential 69.7091 1.0276 69.6925 1.0512

Rational 69.6673 1.0870 69.6533 1.1069
Cosine 69.7468 0.9741 69.0582 1.9518

249



Table 6.28 Comparison of EFG results obtained using 96 nodes with FEM results at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

d^ =1.01 =1.51

TfC)
% diff 

with FEM
T(°C)

% diff 
with FEM T (°C)

C. S. 65.2701 4.7558 66.0662 3.5941

68.5292

Q. S. 65.2947 4.7199 66.4053 3.0993
Gaussian 65.2220 4.8260 66.0943 3.5531
Quadratic 65.3966 4.5712 69.4435 -1.3342

Hyperbolic 66.6384 2.7591 71.5153 -4.3574
Exponential 65.3127 4.6936 65.5851 4.2961

Rational 65.3881 4.5836 66.6257 2.7776
Cosine 65.3797 4.5959 69.3822 -1.2447

Table 6.29 Comparison of EFG results obtained using 144 nodes with FEM results at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM^=1.01 ^max “ 1 *51

T (°C)
% diff 

with FEM T(°C)
% diff 

with FEM T (°C)

C. S. 65.4975 0.7185 65.8320 0.2115

65.9715

Q. S. 65.4281 0.8237 65.9509 0.0312
Gaussian 65.7886 0.2772 66.0163 -0.0679
Quadratic 65.3323 0.9689 63.0606 4.4124

Hyperbolic 64.9817 1.5003 68.0141 -3.0962
Exponential 65.4118 0.8484 65.4694 0.7611

Rational 65.3726 0.9078 65.9133 0.0882
Cosine 65.3352 0.9645 61.6468 6.5554
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Table 6.30 Comparison of EFG results obtained using 96 nodes with FEM results at the location 
(x = 0.6 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

^=1-01 4»„=1.51

T (°C)
% diff 

with FEM
rec)

% diff 
with FEM

7 (°C)

C. S. 57.2931 6.1191 56.8968 6.7684

61.0274

Q. S. 57.1835 6.2986 56.9359 6.7044
Gaussian 58.0514 4.8765 56.9463 6.6873
Quadratic 57.0867 6.4573 54.1032 11.3461

Hyperbolic 56.8980 6.7665 56.7676 6.9801
Exponential 57.1761 6.3108 57.3276 6.0625

Rational 57.0582 6.5040 57.5125 5.7595
Cosine 57.0825 6.4641 53.5871 12.1917

Table 6.31 Comparison of EFG results obtained using 144 nodes with FEM results at the location 
(x = 0.6 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9

Weight 
function

EFG
FEM

d^ =1-01 4™, =1.51

r<°c)
% diff 

with FEM
7 (°C)

% diff 
with FEM

T (°C)

C. S. 59.3372 2.1921 59.4493 2.0073

60.6671

Q. S. 59.3395 2.1883 59.5585 1.8273
Gaussian 59.3744 2.1308 59.3493 2.1722
Quadratic 59.3283 2.2068 60.5436 0.2036

Hyperbolic 58.9241 2.8731 59.4515 2.0037
Exponential 59.3352 2.1954 59.5671 1.8132

Rational 59.3106 2.2360 60.1109 0.9168
Cosine 59.3328 2.1994 60.5700 0.1601
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Table 6.32 Effect of scaling parameter on EFG results obtained using 96 nodes at the location 
________ (* = 0.2m, y = Om & z = 0.2 m) of the 3-D model shown in Fig 6.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 69.6814 69.8559 68.7470 70.0992 71.2336 69.9146 70.2198 70.0872
1.11 69.8749 69.9921 68.8647 69.7757 71.4085 69.8989 70.2053 69.7568
1.21 69.9938 70.0532 69.0979 71.2776 71.4398 69.9467 70.2717 70.8908
1.31 70.0390 70.0454 69.3489 72.0136 71.4634 69.9885 70.3435 71.5779
1.41 70.0448 70.0531 69.5790 75.1559 68.8323 70.0702 70.3739 73.6472
1.51 70.0358 70.0201 69.8325 66.2145 69.5592 70.1085 70.3975 68.8278
1.61 70.0101 69.9105 70.0832 64.8373 70.3148 70.1450 70.4106 64.3830
1.71 69.9574 69.7506 70.3014 84.8320 51.9305 70.1061 69.6094 84.8667
1.81 69.8489 69.5147 70.5115 90.4010 49.7907 70.1183 69.3933 88.7365
1.91 69.6746 69.2008 70.6956 85.8398 47.0927 70.1250 69.1041 85.9372
2.01 69.4572 68.9415 70.9348 200.0383 -251.0259 70.2386 69.2368 179.9973
2.11 69.2840 69.1168 71.1634 54.9363 -46.0624 70.3317 69.5501 68.3182
2.21 69.2761 70.1341 71.3831 45.7752 -49.8714 70.3384 69.0438 49.4954
2.31 69.5819 72.2938 71.6377 27.6879 -52.0982 70.3370 68.3591 23.7556
2.41 70.4023 75.8669 72.2316 90.3990 60.2864 70.3883 71.1334 _65.7887

Table 6.33 Effect of scaling parameter on EFG results obtained using 144 nodes at the location 
_________(* = 0*2 tn, <y = 0m&z = 0.2 m) of the 3-D model shown in Fig 6.9

Scaling 
Parameter

Temperature (° C)
C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 69.7622 69.8002 69.5263 69.8810 70.4315 69.8285 69.9945 69.8725
1.11 69.8133 69.8402 69.5272 69.2691 71.1781 69.7805 69.9000 69.4062
1.21 69.8488 69.8601 69.5828 70.0406 71.5128 69.7957 69.9321 69.9690
1.31 69.8477 69.8373 69.6441 70.7989 71.8830 69.8116 69.9670 70.4416
1.41 69.8315 69.8210 69.6889 72.6063 68.1916 69.8558 69.9003 69.1976
1.51 69.8073 69.7664 69.7414 77.2801 68.3606 69.8714 69.8784 69.2338
1.61 69.7617 69.6445 69.7833 79.6075 68.6813 69.8846 69.8470 74.8385
1.71 69.6827 69.4703 69.7977 89.9595 98.6489 69.8745 69.4805 93.9422
1.81 69.5572 69.2433 69.7760 95.1976 104.0035 69.8739 69.3316 96.4449
1.91 69.3805 68.9537 69.6921 109.7309 108.5163 69.8681 69.1498 116.5362
2.01 69.1639 68.6529 69.6113 115.7373 -263.4159 70.0389 69.6027 -9.9285
2.11 68.9530 68.5170 69.4219 26.8723 -85.4597 70.1149 69.8908 5.0000
2.21 68.7924 68.6821 69.0756 -36.1904 -102.3341 70.1253 69.5818 -31.000
2.31 68.7127 69.1719 68.5567 -95.9047 -116.5132 70.1299 69.1700 -89.000
2.41 68.7614 70.0248 68.0867 -181.4461 -12.8605 70.1654 70.5231 -25.000
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Table 6.34 Effect of scaling parameter on EFG results obtained using 96 nodes at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 65.2701 65.2947 65.2220 65.3966 66.6384 65.3127 65.3881 65.3797
1.11 65.1918 65.2405 65.5338 63.7792 67.1631 65.6373 65.8368 64.0212
1.21 65.2858 65.4674 65.6081 66.3749 67.3492 65.6630 65.8743 66.1522
1.31 65.6026 65.7462 65.6758 67.2630 67.5354 65.6843 65.9174 66.8925
1.41 65.8024 65.9591 65.8897 66.7333 71.2317 65.4776 66.4089 65.3792
1.51 66.0662 66.4053 66.0943 69.4435 71.5153 65.5851 66.6257 69.3822
1.61 66.4183 66.9129 66.3601 69.4305 71.6664 65.7031 66.8425 69.6526
1.71 66.8159 67.3803 66.8256 71.4900 130.7711 66.2410 68.8733 66.7970
1.81 67.3083 67.9771 67.3176 90.6450 139.1832 66.4477 69.3915 80.6481
1.91 67.8812 68.7169 67.9129 106.4591 145.6547 66.6645 69.9561 97.3552
2.01 68.5268 69.5909 68.7957 309.6332 200.9514 67.2940 71.9022 199.4708
2.11 69.2744 70.6811 69.7938 97.6029 127.2347 67.6313 72.5475 99.1303
2.21 70.1919 72.2049 71.0345 115.5707 118.9625 67.9229 73.3246 104.3752
2.31 71.3712 74.4090 72.6151 110.3517 110.2966 68.2219 74.1727 88.2042
2.41 72.9380 77.5522 74.6972 364.0192 97.9427 68.6005 75.1589 301.0513

Table 6.35 Effect of scaling parameter on EFG results obtained using 144 nodes at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 65.4975 65.4281 65.7886 65.3323 64.9817 65.4118 65.3726 65.3352
1.11 65.3358 65.2977 66.0157 63.2457 65.9025 65.6425 65.6599 63.6647
1.21 65.3573 65.4582 65.9827 64.9190 66.0568 65.6372 65.6537 64.9879
1.31 65.5705 65.6501 65.9315 65.4741 66.2459 65.6339 65.6462 65.3163
1.41 65.6928 65.7440 65.9897 64.1941 67.0919 65.4166 65.8207 62.7500
1.51 65.8320 65.9509 66.0163 63.0606 68.0141 65.4694 65.9133 61.6468
1.61 65.9802 66.1070 66.0686 74.7428 68.7068 65.5277 65.9951 67.2945
1.71 66.0950 66.1346 66.2590 75.9779 81.2125 65.9008 67.1506 79.4287
1.81 66.2018 66.1314 66.4340 81.7540 85.7784 66.0172 67.3286 75.7092
1.91 66.2689 66.0590 66.6520 101.9692 90.6335 66.1367 67.4975 99.3016
2.01 66.2588 65.8512 67.0619 103.8000 -17.6972 66.6484 68.5127 -200270
2.11 66.1487 65.4883 67.5020 -196.100 33.8821 66.8697 68.9848 -150.00
2.21 65.9482 65.0684 68.0334 -360.000 39.0119 67.0414 69.1034 -240.00
2.31 65.6617 64.6482 68.7079 -273.900 44.8138 67.2115 69.1808 -340.00
2.41 65.2763 64.2434 69.6594 -2403.80 -11.4020 67.4767 69.8681 -290.00
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Fig. 6.10 Effect of scaling parameter on EFG results at the location 
(x = 0.4 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9
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6.5.2 Transient analysis

The transient analysis of 3-D model, shown in Fig. 6.9, is carried out using different EFG 

weight functions. Table 6.36 and Table 6.37 show the comparison of EFG results (i.e. 

temperature values) obtained using 96 nodes with FEM results at the location 

(x = 0.4m, y = 0m & z = 0.2m) for ^^=1.01 and d^ =1.51 respectively. Similar 

comparison of temperature values obtained using 144 nodes is presented in Table 6.38 and 

Table 6.39 for d^ =1.01 and ^=1.51 respectively at the same location i.e. 

(x = 0.4 m, y = 0 m & z = 0.2 m). For this case (i.e. CASE-II) of 3-D transient analysis, time 

step of 100 sec has been taken which is nearly 3% of the total time required to achieve steady 

state condition. Table 6.40 and Table 6.41 show the comparison of EFG results (i.e. 

temperature values) obtained using 96 nodes with FEM results at the location 

(x = 0.5 m, y = 0 m & z = 0.1 m) for d^ =1.01 and d^ =1.51 respectively. Similar 

comparison of temperature values obtained using 81 nodes is also presented in Table 6.42 

and Table 6.43 for d^ =1.01 and d^ =1.51 respectively at the same location i.e.

(x = 0.5m, y = 0m & z = 0.1 m). Fig 6.12 shows the comparison of EFG results (i.e.

temperature values) obtained using 96 nodes with FEM results for d^ =1.01 and

^=1-51 at the location (x = 0.6m, y = 0m & z = 0.2m). Similar comparison of

temperature values obtained using 144 nodes is shown in Fig. 6.13 at the same location i.e.

(x = 0.6 m, y = 0 m & z = 0.2 m). Fig 6.14 shows the comparison of EFG results (i.e.

temperature values) obtained using 96 nodes with FEM results for d^ =1.01 and

at the location (x = 0.6m, y = 0m & z = 0.3m). Similar comparison of

temperature values obtained using 144 nodes is shown in Fig. 6.15 at the same location i.e. 

(x = 0.6 m, y = 0m & z = 0.3 m). From the results presented in tables and figures, it is clear 

that the EFG results obtained using different weight functions are almost similar for

However for =1.51 only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It has also been observed that the EFG 

results are in good agreement with those obtained by FEM.
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Table 6.36 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.4 m, y = 0 m & z = 0.2 m) of the 3-D model shown in Fig 6.9 for d^ =1.01

Time Temperature (° C)

(sec) =1.01
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 25.3345 25.5048 24.4405 25.7137 26.5095 25.5403 25.7261 25.7058 37.9128
6 52.4294 52.6056 51.4934 52.8404 53.8647 52.6560 52.9196 52.8300 55.2100
9 62.9407 63.1156 62.0072 63.3553 64.4474 63.1709 63.4602 63.3439 63.6469
12 67.0460 67.2204 66.1132 67.4620 68.5795 67.2777 67.5766 67.4502 67.8024
15 68.6509 68.8253 67.7177 69.0677 70.1954 68.8834 69.1861 69.0559 69.8543
18 69.2785 69.4529 68.3448 69.6958 70.8274 69.5113 69.8155 69.6838 70.8682
21 69.5239 69.6983 68.5898 69.9414 71.0747 69.7569 70.0617 69.9295 71.3693
24 69.6198 69.7943 68.6856 70.0375 71.1714 69.8530 70.1580 70.0255 71.6170
27 69.6573 69.8318 68.7230 70.0751 71.2093 69.8905 70.1956 70.0631 71.7395
30 69.6720 69.8465 68.7376 70.0898 71.2241 69.9052 70.2103 70.0778 71.8000

Table 6.37 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.4 m, ^ = 0m&z = 0.2 m) of the 3-D model shown in Fig 6.9 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)
^=1.51

FEM
c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 25.8472 25.9543 25.6531 34.2501 23.5621 25.7571 26.0760 36.2574 37.9128
6 52.8428 52.8721 52.6407 53.7453 51.5526 52.8619 53.1690 56.1387 55.2100
9 63.3134 63.3141 63.1110 61.3292 62.5171 63.3696 63.6672 63.8565 63.6469
12 67.4053 67.3956 67.2026 64.3003 66.8053 67.4734 67.7663 66.8793 67.8024
15 69.0063 68.9928 68.8034 65.4645 68.4823 69.0779 69.3687 68.0641 69.8543
18 69.6329 69.6180 69.4298 65.9206 69.1381 69.7054 69.9952 68.5284 70.8682
21 69.8781 69.8627 69.6749 66.0993 69.3946 69.9508 70.2402 68.7105 71.3693
24 69.9741 69.9585 69.7708 66.1694 69.4948 70.0468 70.3360 68.7818 71.6170
27 70.0116 69.9960 69.8084 66.1968 69.5340 70.0844 70.3734 68.8098 71.7395
30 70.0263 70.0107 69.8231 66.2075 69.5494 70.0990 70.3881 68.8208 71.8000
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Table 6.38 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.4 m, = 0m & z = 0.2 m) of the 3-D model shown in Fig 6.9 for d^ =1.01

Time 
(sec) 
xlO2

Temperature (° C)

d^ =1-01
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 Tinm 27.7756 27.7462 27.7800 27.7289 27.7804 27.7987 27.7775 31.0311
6 51.1260 51.1522 50.9515 51.2070 51.5229 51.1714 51.2790 51.2011 52.1403
9 61.5773 61.6096 61.3708 61.6785 62.1247 61.6339 61.7744 61.6712 61.9275
12 66.1682 66.2034 65.9469 66.2786 66.7820 66.2298 66.3846 66.2705 66.5053
15 68.1840 68.2206 67.9553 68.2988 68.8280 68.2481 68.4091 68.2905 68.6377
18 69.0692 69.1065 68.8368 69.1861 69.7269 69.1344 69.2982 69.1777 69.6303
21 69.4579 69.4956 69.2237 69.5758 70.1219 69.5237 69.6887 69.5673 70.0923
24 69.6286 69.6664 69.3935 69.7470 70.2954 69.6947 69.8602 69.7385 70.3073
27 69.7035 69.7415 69.4680 69.8222 70.3717 69.7697 69.9355 69.8136 70.4074

30 69.7365 69.7744 69.5008 69.8552 70.4052 69.8027 69.9686 69.8467 70.4539

Table 6.39 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.4 m, y = 0m & z = 0.2 m) of the 3-D model shown in Fig 6.9 for d^ = 1.51

Time Temperature (° C)

(sec) d^ =1.51
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 28.5827 28.7961 28.6839 36.4238 8.6876 27.6985 27.2910 34.0727 31.0311
6 51.1169 51.0966 51.0776 59.7803 42.9939 51.2045 51.1816 53.7799 52.1403
9 61.4391 61.3686 61.3700 69.6179 57.4475 61.6850 61.7254 62.4151 61.9275

12 66.0621 65.9906 65.9884 73.9208 63.6642 66.2814 66.3225 66.2236 66.5053

15 68.1311 68.0687 68.0588 75.8071 66.3394 68.2970 68.3274 67.9048 68.6377

18 69.0571 69.0030 68.9871 76.6342 67.4907 69.1809 69.2019 68.6470 69.6303

21 69.4715 69.4231 69.4032 76.9969 67.9862 69.5686 69.5833 68.9747 70.0923

24 69.6570 69.6120 69.5898 77.1559 68.1995 69.7386 69.7497 69.1194 70.3073

27 69.7400 69.6970 69.6734 77.2257 68.2912 69.8131 69.8223 69.1833 70.4074

30 69.7772 69.7352 69.7109 77.2563 68.3307 69.8458 69.8540 69.2115 70.4539
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Table 6.40 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9 for d^ =1.01

Time Temperature (° C)

(sec) ^=1.01
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 19.0642 19.0501 19.2231 19.0987 19.9184 19.0591 19.0796 19.0836 33.4291
6 47.1405 47.1436 47.2035 47.2172 48.2906 47.1563 47.2060 47.2009 51.0674
9 58.1759 58.1907 58.1778 58.2797 59.4532 58.2062 58.2707 58.263! 59.8836
12 62.4957 62.5161 62.4690 62.6124 63.8268 62.5330 62.6039 62.5956 64.2533
15 64.1852 64.2080 64.1461 64.3076 65.5384 64.2256 64.2991 64.2907 66.4151
18 64.8459 64.8697 64.8015 64.9706 66.2081 64.8875 64.9622 64.9538 67.4840
21 65.1042 65.1285 65.0577 65.2300 66.4701 65.1464 65.2215 65.2131 68.0125
24 65.2052 65.2297 65.1578 65.3314 66.5726 65.2477 65.3229 65.3146 68.2738
27 65.2447 65.2693 65.1969 65.3711 66.6126 65.2873 65.3626 65.3542 68.4029
30 65.2602 65.2848 65.2122 65.3866 66.6283 65.3028 65.3781 65.3697 68.4668

Table 6.41 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9 for d^ = 1.51

Time 
(sec) 
xlO2

Temperature (° C)
^=1.51

FEM
c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 19.1934 19.2793 19.2665 16.7078 20.8456 19.1936 19.7432 17.5522 33.4291
6 47.6355 47.8670 47.6872 48.5714 51.6277 47.3714 48.2265 48.8968 51.0674
9 58.8450 59.1402 58.8838 61.2475 63.7346 58.4556 59.4254 61.3381 59.8836
12 63.2393 63.5607 63.2720 66.2305 68.4725 62.7962 63.8098 66.2279 64.2533
15 64.9597 65.2917 64.9898 68.1844 70.3255 64.4943 65.5246 68.1457 66.4151
18 65.6331 65.9694 65.6620 68.9501 71.0501 65.1585 66.1951 68.8975 67.4840
21 65.8967 66.2346 65.9251 69.2501 71.3334 65.4183 66.4573 69.1922 68.0125
24 65.9998 66.3385 66.0281 69.3677 71.4442 65.5199 66.5599 69.3078 68.2738
27 66.0402 66.3791 66.0684 69.4138 71.4875 65.5596 66.5999 69.3530 68.4029
30 66.0560 66.3950 66.0841 69.4318 71.5044 65.5751 66.6156 69.3708 68.4668
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Table 6.42 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9 for d^ = 1.01

Time Temperature (° C)

(sec) d^ =1.01
FEM

xIO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 23.1684 23.1120 23.4060 23.0260 22.5584 23.0971 23.0466 23.0289 27.8851

6 46.3783 46.3083 46.6795 46.2101 45.7917 46.2914 46.2438 46.2132 47.4500

9 57.0841 57.0132 57.3863 56.9147 56.5293 56.9963 56.9528 56.9177 57.2622

12 61.8022 61.7317 62.1001 61.6343 61.2669 61.7151 61.6738 61.6372 61.9078
15 63.8747 63.8047 64.1696 63.7080 63.3494 63.7882 63.7481 63.7109 64.0790
18 64.7849 64.7151 65.0780 64.6189 64.2645 64.6987 64.6591 64.6218 65.0906
21 65.1845 65.1150 65.4767 65.0190 64.6666 65.0986 65.0592 65.0218 65.5615
24 65.3601 65.2906 65.6517 65.1947 64.8433 65.2743 65.2349 65.1976 65.7807
27 65.4371 65.3677 65.7285 65.2719 64.9209 65.3514 65.3121 65.2748 65.8827

30 65.4710 65.4016 65.7622 65.3058 64.9550 65.3853 65.3460 65.3087 65.9302

Table 6.43 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.5 m, y = 0 m & z = 0.1 m) of the 3-D model shown in Fig 6.9 for d^ =1.51

Time 
(sec) 
xIO2

Temperature (° C)

d^ =1.51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 23.8911 23.9874 24.1099 16.8855 19.3014 22.9096 22.3984 15.0885 27.8851
6 46.4178 46.4121 46.5858 42.2527 46.8328 46.2786 46.4715 40.4511 47.4500
9 57.1181 57.1396 57.2800 53.9115 58.8902 57.0360 57.4204 52.2651 57.2622
12 61.9307 61.9878 62.0983 59.0469 64.0868 61.7701 62.2082 57.5031 61.9078
15 64.0858 64.1689 64.2597 61.3004 66.3239 63.8470 64.2971 59.8171 64.0790
18 65.0505 65.1496 65.2287 62.2887 67.2867 64.7579 65.2083 60.8389 65.0906
21 65.4822 65.5906 65.6632 62.7221 67.7010 65.1574 65.6058 61.2901 65.5615
24 65.6754 65.7889 65.8580 62.9122 67.8794 65.3326 65.7792 61.4893 65.7807

27 65.7619 65.8781 65.9453 62.9955 67.9561 65.4094 65.8548 61.5772 65.8827
30 65.8006 65.9181 65.9845 63.0320 67.9891 65.4431 65.8878 61.6161 65.9302
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Fig. 6.12 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.6 m, ^ = 0m&z = 0.2 m) of the 3-D model shown in Fig 6.9

261



Te
m

pe
ra

tu
re

 (D
eg

re
e 

C
) 

Te
m

pe
ra

tu
re

 (D
eg

re
e 

C
)

Fig. 6.13 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.6 m, = 0m & z = 0.2 m) of the 3-D model shown in Fig 6.9
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Fig. 6.14 Comparison of EFG results obtained using 96 nodes with FEM at the location 
(x = 0.6 m, y = 0m&z = 0.3 m) of the 3-D model shown in Fig 6.9
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Fig. 6.15 Comparison of EFG results obtained using 144 nodes with FEM at the location 
(x = 0.6 m, y = 0 m & z = 0.3 m) of the 3-D model shown in Fig 6.9
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> CASE-III

6.6 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for three-dimensional steady-state heat transfer in 

composite slabs with thermal properties independent of temperature is given as:

, ( d2T d2T d2T
dx2 dy dz2 ;

+ Q = pct (6.23a)

The initial conditions are:

at the time t = 0 T-TV 1 1 Int on V (6.23b)

The essential boundary conditions are:

at the surface of slab 1 x = 0 or S, T = 7^ (6.23c)

The natural boundary conditions are:

at the surface of slab 1 z-H 12 or S2 k^ = h(T-TJ (6.23d)

at the surface of slab 2 x = L/2 or S3, (6.23e)

at the surface of slab 2 z = 0 or S4 k^ = h{T-T,) (6.23f)

at the surface of slab 2 x = L or Ss -k^h(T-TJ (6.23g)

at the surface of slab 2 z = H or S, 0 -k^ = h(T-T„) (6.23h)

at the surface of slab 1 z = H or S2 -k— = h(T-T„) dz
(6.23 i)

at the surface of slab 1 y = W or S8 -k^=h(T-TJ 
dy

(6.23j)

at the surface of slab 2 y = W or S9 -k^- = h(T-TJ (6.23k)

at the surface of slab 1 y = 0 or 510 k^ = h(T-T„) (6.231)
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at the surface of slab 2 y = 0 or 5,, k-5- = h(T-TJ (6.23m)

Compatibility requirement at the interface of two slabs is given as:

fLl2 slab!

(6.23n)
slab 2

The weak of the Eq. (6.23a) with natural boundary conditions is obtained as:

j[t(wxrx + >vyTy + jwpctdV + -T^dS +
r KF .s-2

P h (T - T„) dS + p h (T - T. )dS + p h (T - T„ )dS + p h (T - )dS + 
4, s s £
P h (T - T. )dS +. p A (T - T, )dS +. p h (T - T. )dS + p A (T - T„ )dS + 

Sj «So

Pa(t-t.>zs = o

The functional KT) can be written as:

+ T’ + 7’]^- jrQdP+ $pcTTdV+ p|~^ + pp</S +

s 2
chT2 thT1 f f r i*[-r-0S+ plazas + *^70^+ pr„ras+ [at TdS +
j 2 J 2 y J J J

sia $| Sj Sj s4 Ss

^hT^TdS + ^hTMTdS+ ^hTcaTdS+ ^hTcoTdS+ jhTnTdS+ ^TdS
Si S, St s9 s}0 sn

(6.24)

(6.25)

Enforcing essential boundary conditions using Lagrange multiplier the functional I*(T) is 

obtained as:
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hT2

Using variational principle for obtaining the discrete equations:

hT2 chT——dS + ------dS +
hT' ChT ,„ ChT ,„ dS + I-dS + I------dS +

2 J 2

8/’ (T) = 87\ + Tj bTy + Ts 5TZ - jgST d V + jp c t^T dV +
V V V

[Ar5rrfS+ fAr5ri/5+ §hT8TdS + ^hT8TdS + fhT8TdS + 
Sj Sj Sj Ss
[AT8T<ZS + J/iT8r4ZS'+ jhT8TdS+ jhT8TdS+ jhT8TdS +

Sj St S9 510 Su

^hTa>^TdS+ ^hTao6TdS+ ^hTaibTdS+ ^hTa)bTdS+ ^hTai5TdS +
Sj st S4 s} s6

f/>r.8TdS+ jhT.8TdS+ jAr.8TdS+ j/ira,8T<ZS+ jhT„8TdS + 
st S9 .\lu .S’,,

f(r-rSi)6x<zs+ jksTrfs 
s, s.

(6.26)

(6.27)

Since 3T and 8X are arbitrary in preceding equation, the following relations are obtained by 

using Eq. (3.25) and Eq. (6.27)

[K]{T} + [C]fr} + MM = {f} (6.28a)

[Gr]{T} = {q} (6.28b)

where
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u

^IK

O' 
0 
k

0
0
0

dV +\hd>1, 07 dS + Jh^' dS + 
Si s.

0y dS + jh^ dS dS + J07 dS + Jh®1, dS + (6.29a)
*4 Aj *6 a;

[hQ] <Dj dS + \h&r <PjdS+ \h^ &jdS
'to

(6.29b)

V

s.

S4

Sin 5,

$

Qk ” t

(6.29c)

(6.29d)

(6.29e)

Using backward difference method for time approximation, the Eq. (6.28) can be written as:

'K*+C|
Gr i

.. > = < > 
o JIA J IQ .

where

RN = ([C]- (1" «) M{4-. + a △/ {f k + (1 - a) Af {f

K’ = aAr[K]

6.7 NUMERICAL RESULTS AND DISCUSSION

(6.30)

(6.31a)

(6.31b)

The different parameters used for three-dimensional steady-state and transient analysis of the 

composite slab model shown in Fig. 6.16 are tabulated in Table 6.44. The EFG results 

(temperature values) are obtained using different weight functions for two sets of nodes and 

the FEM results are obtained using 8 node brick elements (SOLID 70, ANSYS 6.0) for same
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sets of nodes. A comparative study is carried out to evaluate the performance of different 

EFG weight functions.

6.7.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 6.45 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e.£/innx =1.01 & dmM =1.51) at the 

location (x = 0.2 m, y = 0.4 m & z = 0.4 m) and it shows a comparison of temperature values 

obtained by EFG method using different weight functions with FEM for 63 nodes. Table 6.46 

shows a comparison of temperature values obtained by EFG method using different functions 

for two values of scaling parameter with FEM at the same location i.e. 

(x = 0.2 m, y = 0.4 m & z = 0.4 m) for 325 nodes. A comparison of temperature values 

obtained using different EFG weight functions with FEM for 63 and 325 nodes, is shown in 

Table 6.47 and Table 6.48 respectively at the location (x = 0.2 m, y = 0.4 m & z = 0 m). 

Similar type of comparisons of temperature values are shown in Table 6.49 for 63 nodes at 

the location (x = 0.4 m, y = 0.4 m & z = 0.4 m), in Table 6.50 for 325 nodes at the location

(x = 0.4 m, y = 0.4 m & z = 0.4 m), in Table 6.51 for 63 nodes at the location

(x = 0.4 m, y = 0.2 m & z = 0.2 m) and in Table 6.52 for 325 nodes at the location

(x = 0.4 m, y = 0.2 m & z = 0.2 m). From the results presented in Table 6.45 to Table 6.52, it

is observed that EFG results obtained using cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions are acceptable for dmax =1.01. However for dmm =1.51, only 

exponential and rational weight functions give acceptable results. It is also observed that EFG 

results obtained using different weight functions are in good agreement with those obtained 

by FEM. Moreover with the increase in number of nodes EFG results starts converging.

The effect of scaling parameter (</max)on EFG results obtained using different weight 

functions is presented in Table 6.53 for 63 nodes and Table 6.54 for 325 nodes respectively at 
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the location (x = 0.2 m, y = 0.4 m & z = 0.4 m). Similar effect of scaling parameter on EFG 

results is shown in Table 6.55 for 63 nodes and Table 6.56 for 325 nodes at the location 

(x = 0.4 m, y = 0.2 m & z = 0.2 m). Fig. 6.17 shows the effect of scaling parameter on EFG 

results obtained using 63 and 325 nodes at the location (x = 0.2 m, y = 0.4 m & z = 0 m). 

Similar effect of scaling parameter on EFG results is observed in Fig. 6.18 at the location 

(x = 0.4 m, y = 0.4m & z = 0m). From tables and figures, it is clear that only cubicspline, 

exponential and rational weight functions give acceptable results in the range 

1 -0 < ^max < 1 whereas the results obtained using quarticspline, Gaussian, quadratic, 

hyperbolic and cosine weight functions acceptable in the range 1.0 < < 1.5. It is also

observed that there is minimum variation in EFG results with scaling parameter for 

exponential weight function. Therefore exponential weight function gives most reliable 

results for this case.

270



Fig. 6.16 Three-dimensional model of composite slabs
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Parameters Value of the parameter
Length (Z,)
Width W)
Height ()
Length (Z2)
Width (W2)
Height (H2)
Thermal conductivity ( ^)
Thermal conductivity (^)
Specific heat of material 1 (q)
Specific heat of material 2 (c2)
Density of material 1 (p,)
Density of material 2 (p2)
Rate of internal heat generation (Q)
Heat transfer coefficient (h)
Initial temperature (Tini)
Time step size (AZ)
Surrounding fluid temperature ( 7^)
Temperature (TSt) at surface, x = 0 or^
Convection at all other surfaces

0.2 m
0.2 m
0.2 m
0.2 m
0.2 m
0.4 m
400 W/m-K
100 W/m-K
400 kJ/kg-K
300 kJ/kg-K 
10000 kg/m3 
8000 kg/m3 
0 W/m3
200 W/m2-K
0°C
100 sec
20 °C
100 °C

where n' = x,y,z and / = 2.3...11
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Table 6.45 Comparison of EFG results obtained using 63 nodes with FEM results at the location 
(x = 0.2 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM

rfm„=1.01 <„=1.51

T(°C)
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 72.0836 0.0333 71.8689 0.3310

72.1076

Q. S. 72.0783 0.0406 71.9337 0.2412
Gaussian 72.0868 0.0288 71.6962 0.5705
Quadratic 72.0736 0.0472 72.1119 -0.0059

Hyperbolic 72.0802 0.0380 85.2667 -18.2493
Exponential 72.0791 0.0395 72.1576 -0.0693

Rational 72.0952 0.0172 72.6504 -0.7528
Cosine 72.0727 0.0484 70.5069 2.2199

Table 6.46 Comparison of EFG results obtained using 325 nodes with FEM results at the location 
(x = 0.2 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM

=1.01 ^max — 1 1

T (°C)
% diff 

with FEM T(°C)
% diff 

with FEM
T (°C)

C. S. 71.7094 -0.0008 71.8714 -0.2268

71.7088

Q. S. 71.7110 -0.0031 71.9562 -0.3450
Gaussian 71.7049 0.0054 71.8008 -0.1283
Quadratic 71.7158 -0.0098 72.0733 -0.5083

Hyperbolic 71.7613 -0.0732 73.5531 -2.5719
Exponential 71.7126 -0.0053 71.7939 -0.1187

Rational 71.7240 -0.0212 72.1966 -0.6803
Cosine 71.7151 -0.0088 70.3502 1.8946
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Table 6.47 Comparison of EFG results obtained using 63 nodes with FEM results at the location 
(x = 0.2 m, y = 0.4 m & z = 0 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM<„=101 ^inax 1.51

7 (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM T (°C)

C. S. 33.7943 3.2070 34.2717 1.8397

34.9140

Q. S. 33.7837 3.2374 34.5623 1.0073
Gaussian 34.1829 2.0940 34.0132 2.5801
Quadratic 33.7828 3.2340 21.9455 37.1441

Hyperbolic 34.1522 2.1819 45.9308 -31.5541
Exponential 33.7754 3.2612 33.9742 2.6918

Rational 33.6915 3.5015 34.2871 1.7956
Cosine 33.7860 3.2308 28.8124 17.4761

Table 6.48 Comparison of EFG results obtained using 325 nodes with FEM results at the location 
(x = 0.2 m, y = 0.4 m & z = 0 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM^mo=l'01 <„=1.51

7" (°C)
% diff 

with FEM TfC)
% diff 

with FEM T (°C)

C. S. 33.1885 1.0952 33.2631 0.8729

33.5560

Q. S. 33.1725 1.1429 33.3597 0.5850
Gaussian 33.2907 0.7906 33.1957 1.0737
Quadratic 33.1463 1.2209 21.5736 35.7087

Hyperbolic 32.9993 1.6590 31.5330 6.0287
Exponential 33.1660 1.1622 33.2315 0.9670

Rational 33.1269 1.2788 33.3182 0.7087
Cosine 33.1485 1.2144 27.4954 18.0612
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Table 6.49 Comparison of EFG results obtained using 63 nodes with FEM results at the location 
(x = 0.4 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM

<« = 101 ^mnx — 1 »5 I

T(°C)
% diff 

with FEM
T^C)

% diff 
with FEM

rco

C. S. 41.4907 3.3601 41.9136 2.3751

42.9333

Q. S. 41.5103 3.3144 42.1021 1.9360
Gaussian 41.5524 3.2164 41.6164 3.0673
Quadratic 41.5444 3.2350 48.0177 -11.8426

Hyperbolic 41.9466 2.2982 48.1197 -12.0801
Exponential 41.5169 3.2991 41.6858 2.9057

Rational 41.5493 3.2236 41.8300 2.5698
Cosine 41.5438 3.2364 44.4286 -3.4828

Table 6.50 Comparison of EFG results obtained using 325 nodes with FEM results at the location 
(x = 0.4 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM

^max —1-01 ^=1.51

r(°c)
% diff 

with FEM T(°C)
% diff 

with FEM
rec)

C. S. 41.1661 1.3241 41.3411 0.9046

41.7185

Q. S. 41.1767 1.2987 41.4295 0.6927
Gaussian 41.1220 1.4298 41.2157 1.2052
Quadratic 41.1891 1.2690 44.1812 -5.9031

Hyperbolic 41.2269 1.1784 40.5565 2.7853
Exponential 41.1792 1.2927 41.2658 1.0851

Rational 41.1881 1.2714 41.3239 0.9459
Cosine 41.1890 1.2692 42.0819 -0.8711
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Table 6.51 Comparison of EFG results obtained using 63 nodes with FEM results at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM

^=1.01 ^=1-51

T(°C)
% diff 

with FEM
T^C)

% diff 
with FEM T^C)

C. S. 45.6609 -0.5357 46.7496 -2.9328

45.4176

Q. S. 45.5928 -0.3858 47.2577 -4.0515
Gaussian 46.0974 -1.4968 46.9958 -3.4749
Quadratic 45.5011 -0.1839 31.5409 30.5536

Hyperbolic 45.2759 0.3120 35.7449 21.2973
Exponential 45.5697 -0.3349 45.8703 -0.9968

Rational 45.4678 -0.1105 47.1471 -3.8080
Cosine 45.5063 -0.1953 42.8579 5.6359

Table 6.52 Comparison of EFG results obtained using 325 nodes with FEM results at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16

Weight 
function

EFG
FEM^=1.01 ^=1-51

T(°C)
% diff 

with FEM T(°C)
% diff 

with FEM reo

C. S. 44.5655 -0.0991 44.8158 -0.6613

44.5214

Q. S. 44.5369 -0.0348 44.9590 -0.9829
Gaussian 44.7340 -0.4775 44.8587 -0.7576
Quadratic 44.4988 0.0508 49.3276 -10.7953

Hyperbolic 44.3328 0.4236 n 44.5155 0.0133
Exponential 44.5289 -0.0169 44.6470 -0.2821

Rational 44.4904 0.0696 44.9660 -0.9986
Cosine 44.5007 0.0465 45.9950 -3.3099
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Table 6.53 Effect of scaling parameter on EFG results obtained using 63 nodes at the location 
(x = 0.2 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Scaling Temperature (° C)
Parameter C. S. Q.s Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 72.0836 72.0783 72.0868 72.0736 72.0802 72.0791 72.0952 72.0727
1.11 72.1172 72.1053 71.8990 69.8348 72.0737 71.8370 71.9423 69.8075
1.21 72.0746 72.0223 71.8423 71.3442 71.9874 71.8574 71.9728 71.3676
1.31 71.9558 71.8747 71.7842 71.5786 71.9040 71.8879 71.9992 71.6976
1.41 71.8669 71.8014 71.7364 67.7612 81.7366 72.0845 72.5598 70.7631
1.51 71.8689 71.9337 71.6962 72.1119 85.2667 72.1576 72.6504 70.5069
1.61 72.0143 72.3138 71.6719 96.1384 88.9310 72.2367 72.7447 77.8140
1.71 72.3025 72.8348 71.6522 71.7472 108.4763 72.7322 74.2718 64.1796
1.81 72.7422 73.5082 71.6525 110.9659 113.5461 72.8836 74.4838 126.4728
1.91 73.3229 74.3232 71.6504 123.8523 117.0967 73.0393 74.7075 194.0194
2.01 73.9988 75.2152 71.5923 -5.9122 132.2401 73.1502 76.2352 56788.00

Table 6.54 Effect of scaling parameter on EFG results obtained using 325 nodes at the location 
(x = 0.2 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16

Scaling
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 71.7094 71.7110 71.7049 71.7158 71.7613 71.7126 71.7240 71.7151
1.11 71.6776 71.6848 71.7729 69.9773 71.9140 71.7590 71.8103 70.1339
1.21 71.6985 71.7467 71.7669 71.2855 71.8871 71.7698 71.8186 71.3350
1.31 71.7770 71.7867 71.7515 71.5160 71.8585 71.7830 71.8252 71.5720
1.41 71.8050 71.8032 71.7839 68.9346 73.7391 71.7413 72.1088 70.8572
1.51 71.8714 71.9562 71.8008 72.0733 73.5531 71.7939 72.1966 70.3502
1.61 72.0005 72.1948 71.8305 73.3707 73.3255 71.8516 72.2842 74.9196
1.71 72.1792 72.4626 71.9029 71.4584 77.1060 72.1751 73.2005 70.7679
1.81 72.4393 72.8570 71.9804 70.6209 76.6513 72.2808 73.3695 73.2730
1.91 72.7785 73.3832 72.0792 70.5563 76.3056 72.3894 73.5480 69.4792
2.01 73.1900 74.0277 72.2096 67.9141 106.2116 72.5839 74.1613 70.0314
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Table 6.55 Effect of scaling parameter on EFG results obtained using 63 nodes at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16

Scaling Temperature (° C)
Parameter C.S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 45.6609 45.5928 46.0974 45.5011 45.2759 45.5697 45.4678 45.5063
1.11 45.4525 45.4289 46.4550 47.0927 46.8207 46.1094 46.5552 47.4404
1.21 45.4993 45.6838 46.4841 47.4255 46.8319 46.1230 46.5967 47.4355
1.31 45.9182 46.2166 46.5322 47.2497 46.8153 46.1327 46.6385 47.2421
1.41 46.3220 46.6832 46.7568 47.3492 38.3795 45.8079 46.9037 47.9454
1.51 46.7496 47.2577 46.9958 31.5409 35.7449 45.8703 47.1471 42.8579
1.61 47.1825 47.7817 47.3247 1.2534 34.0330 45.9430 47.3915 28.1100
1.71 47.5881 48.1667 47.8912 -19.9416 23.8942 46.1652 48.0146 1.3652
1.81 48.0052 48.5354 48.5051 -79.5028 23.9432 46.2745 48.3188 -95.6148
1.91 48.3861 48.8230 49.2343 -47.4759 25.3097 46.3918 48.6173 -170.915
2.01 48.6942 48.9424 50.1957 -3.8032 -35.1840 46.7895 50.3369 46.0000

Table 6.56 Effect of scaling parameter on EFG results obtained using 325 nodes at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16

Scaling 
Parameter

Temperature (° C)
C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 44.5655 44.5369 44.7340 44.4988 44.3328 44.5289 44.4904 44.5007
1.11 44.5216 44.5039 44.7922 46.1682 44.9909 44.6335 44.8169 46.0752
1.21 44.5114 44.5318 44.7932 45.5791 45.0560 44.6389 44.8370 45.5030
1.31 44.5821 44.6742 44.8034 45.4263 45.1218 44.6439 44.8569 45.3566
1.41 44.6987 44.8297 44.8308 45.1070 44.8545 44.6360 44.9268 45.9752
1.51 44.8158 44.9590 44.8587 49.3276 44.5155 44.6470 44.9660 45.9950
1.61 44.9190 45.0667 44.8879 48.9231 44.3904 44.6590 45.0076 49.6449
1.71 45.0111 45.1658 44.9090 43.7173 43.4577 44.7289 45.0892 44.4816
1.81 45.0967 45.2630 44.9116 42.5576 43.5263 44.7475 45.0979 45.0651
1.91 45.1798 45.3652 44.8813 40.3816 43.5696 44.7657 45.1013 43.4233
2.01 45.2713 45.4965 44.7976 34.3778 142.0687 44.7999 45.1803 22.1583
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Fig. 6.17 Effect of scaling parameter on EFG results at the location 
(x = 0.2m, y = 0.4m & z = 0m)ofthe 3-D model shown in Fig. 6.16
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Fig. 6.18 Effect of scaling parameter on EFG results at the location 
(x = 0.4 m, y = 0.4 m & z = Om) of the 3-D model shown in Fig. 6.16
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6.7.2 Transient analysis

The transient analysis of 3-D model, shown in Fig. 6.16, is carried out using different EFG 

weight functions. Table 6.57 and Table 6.58 show the comparison of EFG results (i.e. 

temperature values) obtained using 63 nodes with FEM results at the location 

(x = 0.4m, y = 0.4m & z = Om) for d^ =1.01 and d^ =1.51 respectively. Similar 

comparison of temperature values obtained using 325 nodes is presented in Table 6.59 and 

Table 6.60 for d^ =1.01 and, d^ =1.51 respectively at the same location i.e. 

(x = 0.4m, y = 0.4m & z = 0m). For this case (i.e. CASE-III) of 3-D transient analysis, time 

step of 100 sec has been taken which is nearly 3% of the total time required to achieve steady 

state condition. Table 6.61 and Table 6.62 show the comparison of EFG results (i.e. 

temperature values) obtained using 63 nodes with FEM results at the location 

(x = 0.4m, y = 0.2m & z = 0.2m) for d^ =1.01 and d^^ 1.51 respectively. Similar 

comparison of temperature values obtained using 325 nodes is also presented in Table 6.63 

and Table 6.64 for d^ =1.01 and d^ =1.51 respectively at the same location i.e. 

(x = 0.4m, y = 0.2m & z = 0.2m). Fig 6.19 shows the comparison of EFG results (i.e. 

temperature values) obtained using 63 nodes with FEM results for </max =1.01 and 

at location (x = 0.2m, y = 0.4m & z = 0m). Similar comparison of

temperature values obtained using 325 nodes is shown in Fig. 6.20 at the same location i.e. 

(x = 0.2m, y = 0.4m & z = 0m). Fig 6.21 shows the comparison of EFG results (i.e. 

temperature values) obtained using 63 nodes with FEM results for d^ =1.01 and 

^=1.51 at 1116 location (x = 0.4m, y = 0.4m & z = 0.4m). Similar comparison of 

temperature values obtained using 325 nodes is shown in Fig. 6.22 at the same location i.e. 

(x = 0.4m, y = 0.4 m & z = 0.4 m). From the results presented in tables and figures, it is 

clear that the EFG results obtained using different weight functions are almost similar for 

=1.01. However for d^ =1.51 only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It has also been observed that the EFG 

results are in good agreement with those obtained by finite element method.
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Table 6.57 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m & z = 0 m) of the 3-D model shown in Fig. 6.16 for d^ = 1.01

Time 
(sec) 
xlO2

Temperature (° C)
x =1.01

FEM
c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 11.3581 11.4291 11.0039 11.5158 12.2932 11.4384 11.4940 11.5123 11.9491
6 18.8453 18.9450 18.3384 19.0620 19.8802 18.9584 19.0173 19.0597 20.1656
9 24.6494 24.7432 24.1926 24.8510 25.5574 24.7549 24.7941 24.8499 25.9313
12 28.3681 28.4561 27.9538 28.5557 29.1858 28.4663 28.4916 28.5552 29.5461
15 30.5502 30.6359 30.1542 30.7318 31.3228 30.6453 30.6632 30.7317 31.6764
18 31.7818 31.8671 31.3912 31.9619 32.5343 31.8762 31.8902 31.9619 32.8931
21 32.4645 32.5500 32.0741 32.6447 33.2087 32.5590 32.5711 32.6449 33.5768
24 32.8396 32.9255 32.4478 33.0205 33.5807 32.9345 32.9456 33.0207 33.9578
27 33.0448 33.1311 32.6514 33.2264 33.7850 33.1401 33.1507 33.2266 34.1690
30 33.1568 33.2434 32.7622 33.3389 33.8970 33.2524 33.2627 33.3392 34.2859

Table 6.58 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.4 m, y = 0.4m & z = 0m) of the 3-D model shown in Fig. 6.16 for d^ = 1.51

Time 
(sec) 
xlO2

Temperature (° C)

^max 1 *5 1
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 11.7154 11.8140 11.6636 1.9157 21.2359 11.5296 11.7655 6.7880 11.9491

6 19.0624 19.1428 18.8895 8.1756 28.5235 19.1201 19.4588 13.4197 20.1656
9 24.6898 24.7538 24.4590 15.2547 34.0648 24.9527 25.3789 20.0696 25.9313

12 28.3103 28.3636 28.0511 19.9632 37.6034 28.6774 29.1411 24.4354 29.5461

15 30.4499 30.4968 30.1750 22.7063 39.6548 30.8595 31.3312 26.9736 31.6764

18 31.6662 31.7095 31.3822 24.2262 40.7959 32.0898 32.5581 28.3816 32.8931

21 32.3450 32.3862 32.0556 25.0503 41.4191 32.7711 33.2335 29.1468 33.5768

24 32.7204 32.7604 32.4278 25.4927 41.7564 33.1451 33.6021 29.5588 33.9578

27 32.9270 32.9664 32.6325 25.7291 41.9384 33.3495 33.8024 29.7795 34.1690
30 33.0405 33.0795 32.7448 25.8551 42.0363 33.4611 33.9111 29.8976 34.2859
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Table 6.59 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.4m, y = 0.4m & z = 0m)ofthe 3-D model shown in Fig. 6.16 for d^ =1.01

Time Temperature (° C)

(sec) 
xlO2

=1.01
FEM

C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 11.5417 11.5426 11.5220 11.5425 11.5484 11.5422 11.5413 11.5425 11.6110
6 18.4741 18.4794 18.4242 18.4824 18.4776 18.4793 18.4768 18.4826 18.8028
9 23.8821 23.8870 23.8361 23.8881 23.8604 23.8863 23.8792 23.8887 24.2370
12 27.4206 27.4254 27.3772 27.4257 27.3851 27.4244 27.4142 27.4265 27.7708
15 29.5428 29.5482 29.4978 29.5486 29.5029 29.5470 29.5353 29.5495 29.8935
18 30.7656 30.7716 30.7174 30.7725 30.7253 30.7704 30.7580 30.7735 31.1208
21 31.4566 31.4633 31.4055 31.4647 31.4174 31.4621 31.4493 31.4658 31.8170
24 31.8434 31.8506 31.7899 31.8524 31.8055 31.8495 31.8365 31.8535 32.2082
27 32.0589 32.0664 32.0037 32.0686 32.0219 32.0653 32.0522 32.0696 32.4268
30 32.1787 32.1864 32.1223 32.1887 32.1424 32.1853 32.1721 32.1898 32.5487

Table 6.60 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.4 m, y = 0.4m & z = 0m) of the 3-D model shown in Fig. 6.16 for = 1.51

Time 
(sec) 
xlO2

Temperature (° C)

^max 1-51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 11.6378 11.6676 11.6698 2.5513 11.5387 11.5516 11.5720 6.9245 11.6110
6 18.5529 18.6015 18.5410 9.2093 18.4467 18.5226 18.5954 13.7474 18.8028
9 23.9267 23.9845 23.8870 15.4489 23.8842 23.9509 24.0634 19.7101 24.2370
12 27.4434 27.5034 27.3870 19.5794 27.4216 27.4982 27.6267 23.6356 27.7708
15 29.5548 29.6142 29.4884 22.0347 29.5237 29.6236 29.7548 25.9698 29.8935
18 30.7728 30.8307 30.7003 23.4311 30.7228 30.8472 30.9759 27.2989 31.1208
21 31.4619 31.5184 31.3858 24.2093 31.3937 31.5382 31.6632 28.0407 31.8170
24 31.8480 31.9034 31.7697 24.6387 31.7656 31.9247 32.0464 28.4505 32.2082
27 32.0633 32.1179 31.9837 24.8745 31.9706 32.1398 32.2591 28.6759 32.4268
30 32.1830 32.2371 32.1027 25.0036 32.0835 32.2593 32.3768 28.7994 32.5487
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Table 6.61 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16 for d^ = 1.01

Time 
(sec) 
xlO2

Temperature (° C)

^=1-01
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 10.4371 10.3934 10.8258 10.3612 10.5700 10.3854 10.3632 10.3627 12.1656
6 24.5425 24.4574 25.1347 24.3647 24.3091 24.4365 24.3598 24.3683 25.0233
9 33.9709 33.8824 34.5563 33.7775 33.6119 33.8585 33.7650 33.7819 33.7831
12 39.2877 39.2036 39.8324 39.0996 38.8929 39.1795 39.0808 39.1043 38.9376
15 42.1934 42.1142 42.7023 42.0132 41.7910 42.0903 41.9897 42.0182 41.8353
18 43.7740 43.6986 44.2570 43.6004 43.3730 43.6749 43.5734 43.6055 43.4415
21 44.6337 44.5609 45.0993 44.4650 44.2364 44.5374 44.4357 44.4701 44.3280
24 45.1015 45.0306 45.5560 44.9361 44.7079 45.0072 44.9053 44.9413 44.8169
27 45.3563 45.2864 45.8036 45.1930 44.9655 45.2632 45.1612 45.1982 45.0864
30 45.4950 45.4258 45.9380 45.3330 45.1062 45.4026 45.3006 45.3383 45.2350

Table 6.62 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16 for d^ =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^=1-51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 11.3799 11.6214 11.5655 -18.8831 -20.7714 10.3686 10.5941 -0.2549 12.1656
6 25.4541 25.8328 25.7475 2.0346 6.0072 24.5633 25.4157 17.4998 25.0233
9 34.8822 35.3225 35.1743 15.7827 20.0189 34.0812 35.2114 29.1943 33.7831
12 40.2415 40.7136 40.5192 23.2089 27.3673 39.4473 40.6821 35.5852 38.9376
15 43.1889 43.6778 43.4552 27.1280 31.2629 42.3782 43.6511 38.9871 41.8353
18 44.8012 45.2990 45.0598 29.1989 33.3418 43.9714 45.2561 40.7954 43.4415

21 45.6829 46.1855 45.9367 30.2965 34.4551 44.8373 46.1239 41.7582 44.3280
24 46.1655 46.6706 46.4163 30.8793 35.0522 45.3082 46.5933 42.2713 44.8169

27 46.4297 46.9362 46.6786 31.1890 35.3728 45.5644 46.8473 42.5449 45.0864
30 46.5744 47.0816 46.8222 31.3537 35.5450 45.7038 46.9848 42.6909 45.2350
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Table 6.63 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.4 m, y = 0.2 m & z = 0.2 m) of the 3-D model shown in Fig. 6.16 for d^ =1.01

Time Temperature (° C)

(sec) ^,=1.01
FEM

xIO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 11.2862 11.2709 11.3824 11.2533 11.2007 11.2678 11.2557 11.2538 11.6871
6 24.3485 24.3195 24.5246 24.2848 24.1616 24.3132 24.2869 24.2860 24.4557
9 33.1671 33.1343 33.3628 33.0941 32.9410 33.1269 33.0941 33.0956 33.1296
12 38.2427 38.2099 38.4375 38.1687 38.0047 38.2020 38.1664 38.1703 38.1731
15 41.0669 41.0349 41.2558 40.9941 40.8265 41.0269 40.9900 40.9958 40.9964
18 42.6292 42.5982 42.8123 42.5580 42.3897 42.5901 42.5525 42.5598 42.5644
21 43.4934 43.4631 43.6717 43.4236 43.2554 43.4551 43.4170 43.4254 43.4345
24 43.9716 43.9419 44.1466 43.9029 43.7352 43.9339 43.8957 43.9047 43.9175
27 44.2365 44.2072 44.4091 44.1685 44.0013 44.1992 44.1608 44.1703 44.1858
30 44.3832 44.3541 44.5543 44.3157 44.1489 44.3462 44.3077 44.3175 44.3349

Table 6.64 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.4 m, = 0.2m & z = 0.2 m) of the 3-D model shown in Fig. 6.16 for d^ =1.51

Time Temperature :°c)
(sec) d^ =1.51

FEMxIO2 C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 11.5672 11.6624 11.6176 15.8688 10.1515 11.2722 11.2754 12.1001 11.6871
6 24.6161 24.7477 24.6790 28.9483 23.5893 24.3791 24.5580 25.1141 24.4557
9 33.4162 33.5624 33.4759 37.8892 32.7878 33.2281 33.5056 34.2399 33.1296
12 38.4876 38.6378 38.5424 43.0357 38.0593 38.3175 38.6332 39.5189 38.1731
15 41.3119 41.4620 41.3626 45.8839 40.9728 41.1472 41.4749 42.4459 40.9964
18 42.8753 43.0240 42.9232 47.4453 42.5722 42.7115 43.0411 44.0527 42.5644
21 43.7407 43.8878 43.7867 48.2992 43.4493 43.5761 43.9042 44.9325 43.4345
24 44.2199 44.3657 44.2647 48.7658 43.9304 44.0542 44.3801 45.4138 43.9175
27 44.4855 44.6304 44.5295 49.0207 44.1944 44.3188 44.6426 45.6771 44.1858
30 44.6327 44.7769 44.6762 49.1600 44.3393 44.4653 44.7875 45.8211 44.3349
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Fig. 6.19 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.2 m, y = 0.4 m & z = 0m)of the 3-D model shown in Fig. 6.16
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Fig. 6.20 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.2 m, y = 0.4 m & z = 0m)ofthe 3-D model shown in Fig. 6.16
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Fig. 6.21 Comparison of EFG results obtained using 63 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16
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Fig. 6.22 Comparison of EFG results obtained using 325 nodes with FEM at the location 
(x = 0.4 m, y = 0.4 m & z = 0.4 m) of the 3-D model shown in Fig. 6.16
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> CASE-IV

6.8 DISCRETIZATION OF THE GOVERNING EQUATION

A general form of energy equation for three-dimensional heat transfer in the cylindrical 

coordinate system with thermal properties independent of temperature is given as:

The above equation can be written as:

, d2T k, dT k. d2T , d2T dT
kr —- + —— + -4—r + —t + Q = Pc — dr2 r dr r2 302 ' dz2 dt (6.32)

The initial conditions are:

1 9 (, dT} 9 (k6 dT\ 9 (, dT\ ■ dT----- k r— +---------- --------------------  +0 = pc---  
rSrl dr) d9\r2 90) &{'&)* dt (6.33a)

The essential boundary conditions are:

at the time t = 0 T = Tini on V (6.33b)

The natural boundary conditions are:

at the surface of material 1 r = rt or $ T = T$ (6.33c)

The weighted integral form of Eq. (6.33a) is given as:

at the outer surface of material 2, r = r0 or So qn = -hr(T -TJ (6.33d)

at the left surface of material 1, z = 0 or S1L qn = hr(T -T*) (6.33e)

at the left surface of material 2, z = 0 or S2L qn = hr(T - T*) (6.33f)

at the right surface of material 1, z = Z or 51R qn = 0 (6.33g)

at the right surface of material 2, z = L or S2R qn = 0 (6.33h)

Using divergence theorem to obtain the weak form of Eq. (6.34)

f Fl d ( dT\ d (kQ dT} d (. dT} • dT~[w kr r — +— 2 + 0-pc — rdrdQ dz = 0
J r dr\ dr) db\r a®) oz\ dz) dtr l x -J

(6.34)

290



dw dT k.Q dw dT , dw dT
------------ 4--^--------------+ k..--------  
dr dr r2 30 30--------‘ dz dz

dT-Qxw + pxcxw— rdrdQdz +

dw dT ^2e dw dT & 
dr dr r2 dd 30

dwdT' 
dz dz

dT
”02 W + P2 c2 w~Qt rdrd&dz- (6.35)

jw?„dS = 0 
s

. , ST . k^dT . , dT ,where g =r k, — n,i + -r—nl)j + k, —n,k 
dr r 30 dz

Introducing natural boundary conditions in Eq. (6.35), the weak form becomes

aw ar' 

dz dz j
dw dT k.B dw dT , --------+ -~-------- + k..
dr dr r2 30 30

dT”0i W + Pi ci w— rdrdQdz +

dw dT k20 dw dT --------+ —---------- + k. 
dr dr r2 30 30

dwdT 
dz dz

0T-Q2 w + p, c, w— rdrdQdz + 
dt

(6.36)

[whrlT-TJdS+ jwhr(T-TjdS + jwhr(T-T„)dS = 0
.^IL SjL

The functional Z(T) can be written as:

TT r dr dQdz +

drdQdz- ^Q2 
^2

T rdrd&dz +

f 'r'r j fhrT2 chrT2 p2 c2TTr dr d0dz+ ------ dS + --------dS +
? J 2 J 2

Sjl

(6-37)

f 2 /• /• aJ^y-dS- frrr„dS- jhrTT^dS- jhrTT„dS
so S|L 52L 5o

Enforcing essential boundary conditions using Lagrange multiplier method, the functional

f(T) is obtained as:
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2(dT^
t dr J

arY—• I H 
dr J

k. *ie 
w2

^arY , (ar— + £1J —<96 J

arY , (ar'— +£,J — dQ J 2\ dz,
^28 

r2
(6.38)

rdrdbdz- ^QxTrdrd8dz +

rdrdftdz- ^Q2Trdrd$dz +

i ChrT2 ChrT2pxcxTTrdrdQdz + \p2c2TTrdrdQdz + dS+ I-—- dS +
J J 2 * 2-Si. .S»,

^-dS- ^hrTT^dS- ^hrTT„dS- ^hrTTndS+ ^(T-Ts)dS
So ^IL •'ll. $1

Using variational principle to obtain the discrete equations:

2

Jp, cx TdTrdrdbdz+ Jp2 c2 T5Trdrdddz- JQ, dTrdrdQdz-

(Q28Trdrdedz+ jhrTr8TdS+ fhrTr8TdS+ fhrTr8TdS- 
51l 5o

^hrT„8TdS- $hrT„8TdS- $hrT„8TdS+ Jx5rdS+ [8%(r-Ts,)rfS
S|L ^IL S|

(6.39)

since 57 and 5X are arbitrary in the preceding equation, the following set of equations is 

obtained using Eq. (3.25) and Eq. (6.39)

where

[K]{T} + [c]{r}+[G]{x}={f} (6.40a)

|Gr]!T}=(q} (6.40b)
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kir

0

0

0 

^ie 

r2 
0

r dr d&dz +

r dr dQdz + (6.41 a)

0 

^20 

r2 
0

0

= fpi ci rc^r(^^z+ 1^2 c2 rdrffidz

/,= \Qx&lrdrdddz + \q2^ rdrdQdz + jhrT&dS + 
J vt slL

jhrTn^tdS+ ^hrT^jdS
So

g,k = p/'MS

Si

(6.41b)

(6.41c)

(6.4 Id)

(6.41e)

Using backward difference technique for time approximation, the Eq. (6.40) can be written as

(6.42)

(6.43a)

(6.43b)

where

R „ = ([C]- (1 - a) Ar [K]){T}N_, + a Ar {f }„ + (I - a) Ar {f 

K*=aAr[K]

6.9 NUMERICAL RESULTS AND DISCUSSION

The different parameters used for three-dimensional steady-state and transient analysis of the 

composite cylinder model shown in Fig. 6.23 are tabulated in Table 6.65. The EFG results 

293



(temperature values) are obtained using different weight functions for two sets of nodes and 

the FEM results are obtained using 8 node brick elements (SOLID 70, ANSYS 6.0) for same 

sets of nodes. A comparative study is carried out to evaluate the performance of different 

EFG weight functions.

6.9.1 Steady-state analysis

The results (i.e. temperature values) presented in Table 6.66 are obtained using different EFG 

weight functions for two values of scaling parameter (i.e. dmax =1.01 & dmM =1.51) at the 

location (r = 0.5m, 0 = Om&z = Om) and it shows a comparison of temperature values 

obtained by EFG method using different weight functions with FEM for 72 nodes. Table 6.67 

shows a comparison of temperature values obtained by EFG method using different functions 

for two values of scaling parameter with FEM at the same location i.e. 

(r = 0.5m, 0 = 0m & z = 0m) for 216 nodes. A comparison of temperature values obtained 

using different EFG weight functions with FEM for 72 and 216 nodes, is shown in Table 6.68 

and Table 6.69 respectively at the location(r = 0.5m, 0 = 0m & z = 0.25m). Similar type of 

comparisons of temperature values are shown in Table 6.70 for 72 nodes at the location 

(r = 0.5m, 0 = 0m & z = 0.5m) and in Table 6.71 for 216 nodes at the same location 

i.e.(r = 0.5m, 0 = 0m & z = 0.5m). From the results presented in Table 6.66 to Table 6.71, 

it is observed that EFG results obtained using cubicspline, quarticspline, Gaussian, 

exponential and rational weight functions are acceptable for dmM =1.01. However for 

^m«x = 1*51, only exponential and rational weight functions give acceptable results. It is also 

observed that EFG results obtained using different weight functions are in good agreement 

with those obtained by FEM. Moreover with the increase in number of nodes EFG results 

starts converging.
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The effect of scaling parameter (</msx)on EFG results obtained using different weight 

functions is presented in Table 6.72 for 72 nodes and Table 6.73 for 216 nodes respectively at 

the location (r = 0.5m, 0 = Om & z = 0.25m). Fig. 6.24 shows the effect of scaling 

parameter on EFG results obtained using 72 and 216 nodes at the location 

(r = 0.5m, 0 = 0m & z = 0m). Similar effect of scaling parameter on EFG results is 

observed in Fig. 6.25 at the location (r = 0.5m, 0 = 0m & z = 0.5m). From tables and 

figures, it is clear that only cubicspline, exponential and rational weight functions give 

acceptable results in the range 1.0 < c/max < 1.6 whereas the results obtained using 

quarticspline, Gaussian, quadratic, hyperbolic and cosine weight functions acceptable in the 

range 1.0 < dmax < 1.6. It is also observed that there is minimum variation in EFG results with 

scaling parameter for exponential weight function. Therefore exponential weight function 

gives most reliable results for this case.

Fig. 6.23 Three-dimensional model of composite cylinder
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Table 6.65 Data for the 3-D
Parameters Value of the parameter

Inner radius (rj 0.1 m
Interface radius (fy) 0.3 m
Outer radius (ro) 0.5 m
Thermal conductivity of material 1 = ^Q) 400 W/m-K
Thermal conductivity of material 2 (=1^) 100 W/m-K
Specific heat of material 1 (c,) 400 kJ/kg-K
Specific heat of material 2 (c2) 300 kJ/kg-K
Density of material 1 (p,) l0000kg/mJ
Density of material 2 (p2) 8000 kg/m3
Rate of internal heat generation (Q) 0 W/m3
Heat transfer coefficient (h) 200 W/m2-K
Initial temperature (Tlnl) 0°C
Time step size (A/) 100 sec
Surrounding fluid temperature (T*) 20 °C
Temperature&TR1 at surfaces, z = 0 100 °C
Convection at all other surfaces
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Table 6.66 Comparison of EFG results obtained using 72 nodes with FEM results at the location 
(r = 0.5 m, 0 = 0 m & z = 0 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM

d^ =1.01 ^max 1*51

T (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM

T (°C)

C. S. 64.6076 2.6381 64.9271 2.1566

66.3582

Q. S. 64.6482 2.5769 65.0170 2.0212
Gaussian 64.3586 3.0133 64.7201 2.4686
Quadratic 64.6898 2.5142 67.9554 -2.4069

Hyperbolic 64.5920 2.6616 61.1716 7.8161
Exponential 64.6541 2.5680 64.9847 2.0698

Rational 64.6840 2.5230 65.2280 1.7032
Cosine 64.6890 2.5154 66.8392 -0.7249

Table 6.67 Comparison of EFG results obtained using 216 nodes with FEM results at the location 
(r = 0.5 m, 0 = 0m & z = 0 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM

dnK =1.01 d^ =1.51

T (°C)
% diff 

with FEM r(°c)
% diff 

with FEM
T (°C)

C. S. 64.1964 2.8893 64.8640 1.8794

66.1064

Q. S. 64.2161 2.8595 65.0472 1.6023
Gaussian 64.0709 3.0792 64.8488 1.9024
Quadratic 64.2270 2.8430 66.2092 -0.1555

Hyperbolic 64.4093 2.5672 65.6486 0.6925
Exponential 64.2216 2.8512 64.5704 2.3235

Rational 64.2333 2.8335 65.1671 1.4209
Cosine 64.2296 2.8391 65.9651 0.2137
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Table 6.68 Comparison of EFG results obtained using 72 nodes with FEM results at the location 
(r = 0.5 m, 0 = 0 m & z = 0.25 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM

4™ = ioi ^max 1-51

T (°C)
% diff 

with FEM
T(°C)

% diff
with FEM

T (°C)

C. S. 63.0395 2.5744 64.3467 0.5542

64.7053

Q. S. 63.0817 2.5092 64.8116 -0.1643
Gaussian 62.7736 2.9854 64.5396 0.2561
Quadratic 63.1241 2.4437 64.5934 0.1729

Hyperbolic 63.2552 2.2411 74.7160 -15.4712
Exponential 63.0856 2.5032 63.6005 1.7074

Rational 63.1153 2.4573 65.0589 -0.5465
Cosine 63.1220 2.4469 65.8480 -1.7660

Table 6.69 Comparison of EFG results obtained using 216 nodes with FEM results at the location 
(r = 0.5 m, 0 = 0 m & z = 0.25 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM<U=ioi ^=1.51

T (°C)
% diff 

with FEM
T(°C)

% diff 
with FEM

TfC)

C. S. 62.3237 3.2793 63.0628 2.1323

64.4368

Q. S. 62.3397 3.2545 63.2790 1.7968
Gaussian 62.2207 3.4392 63.0915 2.0878
Quadratic 62.3499 3.2387 64.2886 0.2300

Hyperbolic 62.4193 3.1310 64.2393 0.3065
Exponential 62.3432 3.2491 62.6888 2.7127

Rational 62.3524 3.2348 63.2371 1.8618
Cosine 62.3510 3.2370 63.9816 0.7064

298



Table 6.70 Comparison of EFG results obtained using 72 nodes with FEM results at the location 
(r = 0.5m, 0 = 0m & z = 0.5 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM

<U=IO1 =1.51

TCC)
% diff 

with FEM
TCC)

% diff 
with FEM

rpc)

C. S. 52.5359 7.0118 53.0791 6.0504

56.4974

Q. S. 52.4523 7.1598 53.2978 5.6633
Gaussian 53.0747 6.0582 52.9877 6.2121
Quadratic 52.3677 7.3095 56.5131 -0.0278

Hyperbolic 52.1090 7.7674 47.8728 15.2655
Exponential 52.4452 7.1724 52.7506 6.6318

Rational 52.3858 7.2775 52.9348 6.3058
Cosine 52.3720 7.3019 55.4725 1.8141

Table 6.71 Comparison of EFG results obtained using 216 nodes with FEM results at the location 
(r = 0.5 m, 0 = 0 m & z = 0.5 m) of the 3-D model shown in Fig. 6.23

Weight 
function

EFG
FEM

^=1.51

r (°c)
% diff 

with FEM T(°C)
% diff 

with FEM
TCC)

C. S. 51.5256 6.4788 52.3453 4.9910

55.0951

Q. S. 51.4740 6.5725 52.5348 4.6471
Gaussian 51.8752 5.8443 52.3484 4.9854
Quadratic 51.4266 6.6585 54.0628 1.8737

Hyperbolic 51.1872 7.0930 52.2146 5.2282
Exponential 51.4762 6.5685 51.8169 5.9501

Rational 51.4417 6.6311 52.2955 5.0814
Cosine 51.4306 6.6512 F 53.8403 2.2775

299



Table 6.72 Effect of scaling parameter on EFG results obtained using 72 nodes at the location 
(r = 0.5 m, 0 = 0 m & z = 0.25 m) of the 3-D model shown in Fig. 6.23

Scaling Temperature (° C)
Parameter C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 63.0395 63.0817 62.7736 63.1241 63.2552 63.0856 63.1153 63.1220
1.11 62.9492 62.9950 63.2817 64.4755 65.3543 63.6366 64.2328 64.7820
1.21 63.0632 63.2896 63.5009 64.9378 65.5297 63.6795 64.3015 64.9672
1.31 63.5276 63.8492 63.7392 65.0198 65.6905 63.7131 64.3720 64.9937
1.41 63.9435 64.2994 64.1175 64.2869 73.4630 63.5223 64.7919 65.5072
1.51 64.3467 64.8116 64.5396 64.5934 74.7160 63.6005 65.0589 65.8480
1.61 64.7505 65.3030 65.0692 65.8863 76.0394 63.6880 65.3379 66.8779
1.71 65.1419 65.7135 65.8541 50.5408 84.4933 63.8841 66.3478 58.1389
1.81 65.5362 66.1057 66.7527 49.0768 85.8860 64.0098 66.7944 58.3424
1.91 65.9193 66.4932 67.8460 57.6565 87.0658 64.1475 67.2722 57.9078
2.01 66.2946 66.8738 69.2016 68.6639 73.8054 64.1133 65.9016 95.5692
2.11 66.6539 67.2435 70.7760 76.7908 74.6475 64.2204 66.1593 75.6630
2.21 66.9958 67.6193 72.6211 87.9532 75.3073 64.3305 66.4199 164.4999
2.31 67.3306 68.0144 74.7670 102.4906 75.9635 64.4431 66.6843 168.8044
2.41 67.6641 68.4358 77.2452 120.7314 76.9972 64.5582 66.9540 132.6184

Table 6.73 Effect of scaling parameter on EFG results obtained using 216 nodes at the 
location (r = 0.5 m, 0 = Om&z = 0.25 m) of the 3-D mode! shown in Fig. 6.23

Scaling 
Parameter

Temperature (° C)
C. S. Q.s Gaussian Quadratic Hyperbolic Exponential Rational Cosine

1.01 62.3237 62.3397 62.2207 62.3499 62.4193 62.3432 62.3524 62.3510
1.11 62.2705 62.2909 62.5879 64.2283 63.1636 62.6927 63.0305 64.2209
1.21 62.3303 62.4511 62.7089 63.7723 63.2074 62.7118 63.0580 63.7199
1.31 62.5962 62.8010 62.8244 63.5782 63.2470 62.7251 63.0828 63.5378
1.41 62.8517 63.0668 62.9654 63.8538 64.1517 62.6679 63.1671 63.7723
1.51 63.0628 63.2790 63.0915 64.2886 64.2393 62.6888 63.2371 63.9816
1.61 63.2339 63.4463 63.2184 64.8083 64.3228 62.7116 63.3077 64.4094
1.71 63.3706 63.5682 63.3422 63.8294 64.5150 62.7141 63.3625 63.9417
1.81 63.4752 63.6448 63.4642 64.0705 64.6577 62.7363 63.4320 64.3208
1.91 63.5550 63.6895 63.5811 62.8976 64.8004 62.7608 63.5007 64.6257
2.01 63.6200 63.7155 63.6526 65.2348 56.6898 62.5597 62.6279 64.1800
2.11 63.6671 63.7232 63.7351 65.8732 58.7372 62.5620 62.7108 65.7038
2.21 63.6873 63.6997 63.7891 65.8462 58.0227 62.5576 62.7020 66.4318
2.31 63.6755 63.6351 63.8076 65.3693 57.3013 62.5528 62.6880 66.4340
2.41 63.6319 63.5233 63.8060 64.6086 54.6586 62.5600 62.8313 65.1968
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Fig. 6.24 Effect of scaling parameter on EFG results at the location (r = 0.5m, 0 = 0m & z = 0m) 
of the 3-D model shown in Fig. 6.23
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Fig. 6.25 Effect of scaling parameter on EFG results at the location 
(r — 0.5 m, 0 — Om & z — 0.5 m) of the 3-D model shown in Fig. 6.23

302



6.9.2 Transient analysis

The transient analysis of 3-D cylindrical composite model, shown in Fig. 6.23, is carried out 

using different EFG weight functions. Table 6.74 and Table 6.75 show the comparison of 

EFG results (i.e. temperature values) obtained using 72 nodes with FEM results at the 

location (r = 0.5m, 0 = Om & z = 0.25m) for <^=1.01 and d^ =1.51 respectively. 

Similar comparison of temperature values obtained using 216 nodes is presented in Table 

6.76 and Table 6.77 for d^ =1.01 and d^ =1.51 respectively at the same location i.e. 

(r = 0.5m, 0 = Om & z = 0.25 m). For this case (i.e. CASE-IV) of 3-D transient analysis, 

time step of 100 sec has also been taken which is nearly 3% of the total time required to 

achieve steady state condition. Fig 6.26 shows the comparison of EFG results (i.e. 

temperature values) obtained using 72 nodes with FEM results for d^ =1.01 and 

^max =1-51 at the location (r = 0.2m, 0 = Om & z = 0.5m). Similar comparison of 

temperature values obtained using 216 nodes is shown in Fig. 6.27 at the same location i.e. 

(r = 0.2m, 0 = 0m & z = 0.5m). Fig 6.28 shows the comparison of EFG results (i.e. 

temperature values) obtained using 72 nodes with FEM results for d^-1.01 and 

cfjnax=1.51 at the location (r = 0.2m, 0 = 0m & z = 0m). Similar comparison of 

temperature values obtained using 216 nodes is shown in Fig. 6.29 at the same location i.e. 

(r = 0.2m, 0 = 0m & z = 0m). From the results presented in tables and figures, it is clear 

that the EFG results obtained using different weight functions are almost similar for 

^max = 1-d • However for d^ =1.51 only cubicspline, quarticspline, Gaussian, exponential 

and rational weight functions give acceptable results. It has also been observed that the EFG 

results are in good agreement with those obtained by FEM.
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Table 6.74 Comparison of EFG results obtained using 72 nodes with FEM at the location 
(r = 0.5 m, 0 = 0m & z = 0.25 m) of the 3-D model shown in Fig. 6.23 for =1.01

Time Temperature (° C)

(sec) ^=101
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 89.7666 89.8062 89.5282 89.8376 89.9669 89.8083 89.8246 89.8326 84.1228
6 83.1632 83.2209 82.8256 83.2822 83.5216 83.2272 83.2694 83.2791 75.7436
9 78.7431 78.8022 78.3962 78.8667 79.1242 78.8089 78.8545 78.8641 71.0728
12 75.5417 75.5980 75.2081 75.6592 75.9038 75.6044 75.6477 75.6568 68.4012
15 73.0931 73.1464 72.7743 73.2035 73.4293 73.1523 73.1926 73.2011 66.8560
18 71.1632 71.2140 70.8562 71.2678 71.4760 71.2195 71.2573 71.2655 65.9582
21 69.6192 69.6681 69.3207 69.7193 69.9127 69.6732 69.7093 69.7171 65.4356
24 68.3748 68.4224 68.0827 68.4718 68.6530 68.4273 68.4619 68.4695 65.1311
27 67.3685 67.4150 67.0809 67.4630 67.6344 67.4197 67.4534 67.4608 64.9537
30 66.5531 66.5989 66.2692 66.6458 66.8093 66.6034 66.6364 66.6436 64.8502

Table 6.75 Comparison of EFG results obtained using 72 nodes with FEM at the location 
(r = 0.5m, 6 = 0m & z = 0.25 m) of the 3-D model shown in Fig. 6.23 for dttm = 1.51

Time Temperature (° C)

(sec) ax=1.51
FEMxlO2 C. S. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine

0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 90.0803 90.2906 90.0997 91.9039 93.8663 90.1077 91.1854 92.7101 84.1228
6 83.6932 84.0080 83.7531 85.9461 89.1092 83.6792 85.1117 87.0145 75.7436
9 79.4900 79.8887 79.5795 81.9755 86.1919 79.3484 80.9543 83.0933 71.0728
12 76.4977 76.9612 76.6119 78.9478 84.0288 76.1900 77.8655 80.1041 68.4012
15 74.2272 74.7372 74.3629 76.5100 82.3148 73.7591 75.4498 77.7017 66.8560
18 72.4356 72.9768 72.5891 74.5101 80.9302 71.8336 73.5153 75.7304 65.9582
21 70.9917 71.5521 71.1592 72.8573 79.8043 70.2872 71.9509 74.0992 65.4356
24 69.8151 70.3860 69.9932 71.4864 78.8858 69.0370 70.6801 72.7439 65.1311
27 68.8511 69.4260 69.0370 70.3467 78.1350 68.0232 69.6458 71.6151 64.9537
30 68.0589 68.6333 68.2504 69.3977 77.5207 67.1996 68.8029 70.6733 64.8502
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Table 6.76 Comparison of EFG results obtained using 216 nodes with FEM at the location 
(r = 0.5 m, 6 = 0 m & z = 0.25 m) of the 3-D model shown in Fig. 6.23 for d^ = 1.01

Time Temperature (° C)

(sec) ^=101
FEM

xlO2 c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.0000 100.000
3 88.4019 88.4031 88.3880 88.4017 88.3898 88.4042 88.4041 88.4026 84.0903
6 81.9961 82.0086 81.9125 82.0165 82.0651 82.0110 82.0179 82.0172 75.5218
9 77.7179 77.7348 77.6079 77.7468 77.8207 77.7384 77.7486 77.7477 70.7662
12 74.6072 74.6252 74.4915 74.6377 74.7209 74.6291 74.6398 74.6387 68.0825
15 72.2143 72.2323 72.0983 72.2447 72.3308 72.2364 72.2471 72.2458 66.5480
18 70.3218 70.3395 70.2076 70.3516 70.4376 70.3438 70.3542 70.3527 65.6631
21 68.8046 68.8221 68.6923 68.8338 68.9185 68.8263 68.8365 68.8350 65.1503
24 67.5806 67.5978 67.4697 67.6093 67.6922 67.6020 67.6120 67.6104 64.8523
27 66.5900 66.6069 66.4803 66.6183 66.6994 66.6111 66.6210 66.6194 64.6789
30 65.7871 65.8039 65.6784 65.8151 65.8944 65.8081 65.8178 65.8162 64.5779

Table 6.77 Comparison of EFG results obtained using 216 nodes with FEM at the location 
(r = 0.5 m, 9 = 0m & z = 0.25 m) of the 3-D model shown in Fig. 6.23 for =1.51

Time 
(sec) 
xlO2

Temperature (° C)

^=1.51
FEM

c. s. Q.S Gaussian Quadratic Hyperbolic Exponential Rational Cosine
0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000
3 88.0993 88.0013 88.1114 87.1240 88.7870 88.4079 88.3092 86.4232 84.0903
6 81.7702 81.7511 81.7578 83.8603 84.025 i 82.1869 82.6085 83.4127 75.5218
9 77.7099 77.7837 77.6917 79.9156 80.3148 78.0304 78.6589 79.2043 70.7662
12 74.8358 74.9878 74.8233 77.5672 77.4655 74.9895 75.7416 77.0433 68.0825
15 72.6503 72.8598 72.6489 75.2886 75.0597 72.6321 73.4080 74.7434 66.5480
18 70.9204 71.1699 70.9305 73.5189 73.1121 70.7564 71.5314 73.0616 65.6631
21 69.5225 69.7982 69.5425 71.9887 71.5079 69.2457 70.0048 71.5516 65.1503
24 68.3814 68.6733 68.4090 70.7302 70.1973 68.0224 68.7618 70.3345 64.8523
27 67.4453 67.7459 67.4784 69.6712 69.1229 67.0292 67.7482 69.2957 64.6789
30 66.6754 66.9794 66.7122 68.7891 68.2432 66.2219 66.9210 68.4351 64.5779
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Fig. 6.26 Comparison of EFG results obtained using 72 nodes with FEM at the location 
- q 2 m, 0 = 0 m & z = 0.5 m) of the 3-D model shown in Fig. 6.23
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Fig. 6.27 Comparison of EFG results obtained using 216 nodes with FEM at the location 
(r = 0.2 m, 0 = 0m & z = 0.5 m) of the 3-D model shown in Fig. 6.23
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Fig. 6.28 Comparison of EFG results obtained using 72 nodes with FEM at the location 
(r = 0.2 m, 0 = 0m & z = 0m)ofthe 3-D model shown in Fig. 6.23
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Fig. 6.29 Comparison of EFG results obtained using 216 nodes with FEM at the location 
(r = 0.2 m, 0 = 0 m & z = 0 m) of the 3-D model shown in Fig. 6.23
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6.10 CONCLUSION
3-D MATLAB codes have been developed to obtain the numerical solution for the different 

cases presented in this chapter using different EFG weight functions. The results obtained by 

EFG method are compared with those obtained by FEM (in Case-I analytical method also) at 

few typical locations. From the numerical analysis carried out in this chapter, it is clear that 

the EFG method can be successfully used to obtain the numerical solution of 3-D heat 

transfer problems. A comparative numerical analysis has been carried out to evaluate the 

performance of different weight functions. It is found that the EFG results obtained using 

cubicspline, quarticspline, Gaussian, exponential and rational weight functions are in good 

agreement with those obtained by FEM. From the analysis carried out in this chapter, it is 

also observed that only cubicspline, quarticspline, Gaussian, exponential and rational weight 

functions give acceptable results in the range 1.0 < <1.5. Out of all weight functions

used, the results obtained using exponential weight function are most reliable as compared to 

other weight functions used because only exponential weight function has minimum variation 

in the results (temperature values) with the change in the value of scaling parameter.
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CHAPTER-7

PARALLEL COMPUTING SOLUTION

7.1 INTRODUCTION

Parallel computation is making rapid inroads in various aspects of scientific and engineering 

computation. Now a day, there is continual demand for greater computational speed from a 

computer system that is currently possible. This need of fast computational speed will lead us 

to a new era of computing on Parallel Random Access Machines (PRAM). With the fast- 

paced development of processor technology coupled with recent developments in operating 

system software technology, has made large-scale Multiple-Instruction Multiple-Data 

(MIMD) machines very much affordable. These machines are based on independent 

processors with their own local memory. In contrast to writing algorithms for a single 

processor machine, algorithms for parallel computation involve two critical aspects: efficient 

data distribution among the processors to keep them as active as possible and minimizing the 

Inter-Processor Communication (IPC) time for data sharing. Keeping above points in mind, a 

new algorithm is proposed for the parallelization of the EFG method. The software has been 

programmed in FORTRAN language using MPI message passing library and executed on 

MIMD type supercomputing machine PARAM 10000. Three model heat transfer problems 

have been solved to validate the proposed algorithm. Computational time components (i.e. 

total time and communication time), speedup and efficiency (See Appendix for definition) 

have been estimated for one-dimensional, two-dimensional and three-dimensional problems. 

For 8 processors, the speedup & efficiency are obtained to be 2.22 & 27.78% in 1-D for 1100 

nodes, 5.44 & 67.95% in 2-D for 1200 nodes and 4.66 & 58.22% for 1320 nodes in 3-D 

respectively.
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7.2 PARALLEL CODE DEVELOPMENT

There are two methods for the parallelization of EFG sequential code. The first method 

emphasizes on the parallel implementation of the whole sequential code. The second method 

direct towards the careful analysis of the whole sequential code and then selects the portions 

wisely where implementing parallel programming will result in reduction of computational 

cost both in terms of time and complexity. The main drawback with the first method is the 

increased communication time taken by the processors for mutual transfer of data and also 

increased complexity. Therefore, a careful analysis of the EFG code has been performed and 

it has been found that the time required in solving the system of linear equations (i.e. 

inversion time) increases with the increase in data size (number of nodes) as shown in Table 

7.1 & Fig. 7.1 for 1-D, in Table 7.2 & Fig. 7.2 for 2-D and in Table 7.3 & Fig. 7.3 for 3-D, 

respectively. In other words, the major part of the total computational time is required in 

solving the system of linear equations. Therefore, parallel code has been developed only for 

the solution of the system of linear equations, not for the whole EFG sequential code.
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Table 7.1 Variation of total time & solution (inversion) time with data size (no. of nodes) for 
____________________ 1-D problem (Chapter 4: Case-Ill)_____________________

Data size 
(no. of nodes)

Computational time (sec) — xiool% 
JTotal time, tt Solution time, ts 

(Inversion time)
101 0.8516 0.5411 65.53
201 6.1343 4.0565 66.13
401 50.3770 34.3117 68.11
601 172.0415 117.3784 68.22
700 281.9550 192.7580 68.36
801 408.9820 279.8802 68.42
951 688.0650 470.9902 68.45

Fig. 7.1 Percentage variation of solution (inverse) time with data size (no. of nodes) for 1-D 
problem (Chapter 4: Case-Ill)
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Table 7.2 Variation of total time & solution (inversion) time with data size (no. of nodes) for 
_____________________ 2-D problem (Chapter 5: Case-I)______ _______________

Data size 
(no. of nodes)

Computational time (sec)
—xlOO %

V/ J
Total time, t, Solution time, ts 

(Inverse time)
81 0.6431 0.3641 56.62

121 1.6158 1.1312 70.00

256 11.3075 9.8999 87.55

441 55.9784 52.740 94.21

676 194.5410 188.2192 96.75

961 598.8565 587.2674 98.06

1200 1179.5400 1161.9026 98.50

Fig. 7.2 Percentage variation of solution (inverse) time with data size (no. of nodes) for 2-D 
problem (Chapter 5: Case-I)
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Table 7.3 Variation of total time & solution (inversion) time with data size (no. of nodes) for 
____________________ 3-D problem (Chapter 6: Case-I)______ _______________

Data size 
(no. of nodes)

Computational time (sec) (t
— xlOOTotal time, tt Solution time, ts 

(Inversion time)
%

125 3.3018 1.6487 49.93
216 11.3304 7.5431 66.57
343 38.2157 30.2130 79.06
512 114.5725 98.6108 86.07
729 308.5035 278.6737 90.33
1000 776.9130 723.1276 93.08
1320 1703.9500 1613.8735 94.71

Fig. 7.3 Percentage variation of solution (inverse) time with data size (no. of nodes) for 3-D 
problem (Chapter 6: Case-I)
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7.2.1 Parallel algorithm for the solution of linear equations

Matrix inversion method is one of the common methods adopted for obtaining the solution of 

the system of linear equations [a] {u} = {f}. In this method, first the inverse of matrix [a] is 

calculated then the solution is computed using {u} = [a]"1 {f}. In this chapter, a parallel 

algorithm is proposed based on the matrix inversion technique to reduce the computational 

cost of the EFG method. During implementation of this algorithm on supercomputer 

(PARAM 10000), first row wise data distribution is carried out. After proper data distribution 

among the processors, an identity matrix is generated by each processor of size [a]. In the 

process of matrix inversion, row wise operations are carried out. Every non-diagonal element 

of matrix [a] is converted to zero and every diagonal element of matrix [a] is converted to 

unity. Whatever operations carried out on matrix [a], the same operations are also carried out 

on matrix [l]. Each processor operates on its own row to achieve less computational time. 

After finding the inverse of matrix [a], the unknown [u] is calculated by 

using {u} = [a]"’ {f} . The algorithm is given on the next page:
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Parallel Algorithm

Global Numprocs 
N 
MyRank 
Rank 
[A] 
{F}

W 
i 
start 
end

Number of processors
Number of equations 
Rank of each processor. 
Rank of processor holding current row 
Input matrix.
Input column vector
Inverse matrix of [a]
Variable indicating current row
Starting row number for each processor 
Ending row number for each processor

do i = 0 to Numprocs - 1 
Set start 
Set end 

end do 
do i = 1 to N

Set diagonal elements of [a]z = 1 
Change non-diagonal element of [a], 
Change elements of matrix [l], 

do i =0 to Numprocs - 1
Find the Rank of the current row 
If (MyRank = Rank) then 
Broadcast current row 
endif 

end do 
do j = start to end

Change non-diagonal element of [a] ,= 0
Change elements of matrix [l]4- 

end do 
end do 
do i = start to end 
Compute {u}, 
end do 
do j = 1 to Numprocs -1 
Send {u}, to Master Processor 
end do
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7.2.2 Hardware and software employed

The hardware used for numerical solution is a ‘PARAM 10000 supercomputer’ which has 

been designed and developed by C-DAC, Pune, India. The PARAM 10000 is 6.4 GF, RISC 

based distributed memory multiprocessor system and categorized under ‘multiple instruction 

multiple data (MIMD)’ type computer. It has total four nodes (three compute nodes and one 

server node). Each compute node has two UltraSparc II 64-bit RISC CPUs of 400 MHz, 512 

MB main memory, two Ultra SCSI HDD of 9.1 GB each, one 10/100 Fast Ethernet Card and 

Solaris 2.6 while server node has two UltraSparc II 64-bit RISC CPUs of 400 MHz, 1GB of 

main memory, four Ultra SCSI HDD of 9.1 GB each, one 10/100 Fast Ethernet Card and 

Solaris 2.6. PARAM 10000 has total 8 processors (each node with two processors), Sun 

Sparc Compilers (F90 Compiler Version 2.0, F77 Compiler Version 5.0, C Compiler Version 

5.0, C++ Compiler Version 5.0) and supports both MPI & PVM message passing 

environments.

7.3 NUMERICAL RESULTS AND DISCUSSION

A new parallel algorithm has been proposed for the EFG method. The parallel code has been 

developed in FORTRAN language using MPI message passing library for heat transfer 

problems. The parallel EFG results have been obtained for three model problems in 1-D, 2-D 

and 3-D domain to validate the proposed algorithm. The computational time components i.e. 

(total time and communication time), speedup and efficiency have been executed for the 

different sets of data size on a network of parallel computer (PARAM 10000).

7.3.1 One-dimensional model problem

The parallel EFG results have been obtained for 1-D model shown in Fig. 4.15 (Chapter 4: 

Case-Ill). Table 7.4 shows the variation of total time, communication time, speedup and 

efficiency with the number of processors for 700 nodes. The variation of total time and 

communication time with the number of processors is also shown in Fig. 7.4 for same 
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number of nodes (data size). From Table 7.4 and Fig. 7.4, it is observed that with increase in 

the number of processors from 1 to 8, total time is decreasing. Fig. 7.5 and Fig. 7.6 show the 

variation of efficiency and speedup with the number of processors for 700 nodes. For this 

data size (700 nodes), the speedup and efficiency are obtained to be 2.09 and 26.11% 

respectively using 8 processors.

Table 7.5 shows the variation of total time, communication time, speedup and efficiency 

with the number of processors for 951 nodes. The variation of total time and communication 

time is also presented in Fig. 7.7 for same number of nodes (data size). From Table 7.5 and 

Fig. 7.7, it can be noted that total time is decreasing with the increase in number of processors 

1 to 8. Fig. 7.8 & Fig. 7.9 show the variation of efficiency and speedup respectively with 

number of processors for 951 nodes. For this data size (951 nodes), the speedup and 

efficiency are achieved to be 2.21 and 27.62% respectively using 8 processors.

Table 7.6 shows variation of total time, communication time, speedup and efficiency with 

the number of processors for 1100 nodes. The variation of total time and communication time 

with the number of processors is also given in Fig. 7.10 for the same number of nodes (data 

size). From Table 7.6 and Fig. 7.10, it can be noted that with the increase in the number of 

processors from 1 to 8, total time is decreasing. Fig. 7.11 & Fig. 7.12 show the variation of 

efficiency and speedup respectively with the number of processors for 1100 nodes. For this 

data size (1100 nodes), the speedup and efficiency are achieved to be 2.22 and 27.78% 

respectively using 8 processors.

From the above analysis, it is observed that with the increase in data size (number of 

nodes), the results are improving both in terms of efficiency and speedup. The contribution of 

communication time in total computational time is almost negligible. Moreover it is also clear 

that with the increase in data size (number of nodes), the results are improving with increase 

in number of processors.
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Table 7.4 Variation of total time, communication time, speedup and efficiency with number 
_______________________ of processors for 700 nodes

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 282.1210 0.0000 1.00 100.00
2 190.6980 0.1828 1.48 73.97
3 157.8750 0.2514 1.79 59.57
4 142.5715 0.4078 1.98 49.47
5 137.9845 1.0385 2.04 40.89
6 137.8950 5.8203 2.04 34.10
7 130.7770 2.0245 2.16 30.82
8 135.0520 5.5562 2.09 26.11

Fig. 7.4 Variation of total time and communication time with number of processors for 700 
nodes
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Fig. 7.5 Variation of speedup with number of processors for 700 nodes

Fig. 7.6 Variation of efficiency with number of processors for 700 nodes
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Table 7.5 Variation of total time, communication time, speedup and efficiency with number 
of processors for 951 nodes

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 688.0650 0.0000 1.00 100.00
2 459.4145 0.4334 1.50 74.88
3 384.3750 0.2045 1.79 59.67
4 343.3560 0.7479 2.00 50.09
5 329.7055 1.6426 2.09 41.74
6 320.5130 3.6739 2.15 35.78
7 309.2805 2.6484 2.22 31.78
8 311.3995 4.3623 2.21 27.62

Fig. 7.7 Variation of total time and communication time with number of processors for 951 
nodes
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Fig. 7.8 Variation of speedup with number of processors for 951 nodes

Fig. 7.9 Variation of efficiency with number of processors for 951 nodes
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Table 7.6 Variation of total time, communication time, speedup and efficiency with number
of processors for 1100 noc es

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 1102.0100 0.0000 1.00 100.00
2 734.4910 0.1865 1.50 75.02
3 613.3410 0.2221 1.80 59.89
4 550.7370 0.5473 2.00 50.00
5 530.7570 1.4546 2.08 41.52
6 513.6220 7.3639 2.14 35.76
7 494.0510 3.9161 2.23 31.86
8 495.8540 3.0547 2.22 27.78

Fig. 7.10 Variation of total time and communication time with number of processors for 1100 
nodes
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Fig. 7.11 Variation of speedup with number of processors for 1100 nodes
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Fig. 7.12 Variation of efficiency with number of processors for 1100 nodes
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7.3.2 Two-dimensional model problem

The parallel EFG results have been obtained for 2-D model shown in Fig. 5.1 (Chapter 5: 

Case-I). Table 7.7 shows the variation of computational time components i.e. (total time and 

communication), speedup and efficiency with the number of processors for 676 nodes. The 

variation of total time and communication time with the number of processors is also shown 

in Fig. 7.13 for same number of nodes (data size). From Table 7.7 and Fig. 7.13, it is 

observed that with the increase in the number of processors from 1 to 8, total time is 

decreasing. Fig. 7.14 and Fig. 7.15 show the variation of efficiency and speedup respectively 

with the number of processors for 676 nodes. For this data size (676 nodes), the speedup and 

efficiency are found to be 4.23 and 52.83% respectively using 8 processors.

Table 7.8 shows the variation of computational time components, speedup and efficiency 

with the number of processors for 961 nodes. The variation of computational time 

components with the number of processors is also presented in Fig. 7.16 for same number of 

nodes (data size). From Table 7.8 and Fig. 7.16, it can be noted that with the increase in 

number of processors from 1 to 8, total time decreases. Fig. 7.17 & Fig. 7.18 show the 

variation of efficiency and speedup respectively with the number of processors for 961 nodes. 

For this data size (961 nodes), the speedup and efficiency are achieved to be 4.90 and 61.29% 

respectively using 8 processors.

Table 7.9 shows the variation of total time, communication time, speedup and efficiency 

with the number of processors for 1200 nodes. The variation of total time and communication 

time with the number of processors is also shown in Fig. 7.19 for same data size (number of 

nodes). From Table 7.9 and Fig. 7.19, it can be noted that total time decreases with the 

increase in number of processors. Fig. 7.20 & Fig. 7.21 show the variation of efficiency and 

speedup respectively with the number of processors for 1200 nodes. For this data size (1200 

nodes), the speedup and efficiency are achieved to be 5.44 and 67.95% respectively using 8 

processors.

326



From the above analysis, it is observed that with increase in data size, the results are 

improving both in terms of efficiency and speedup. The contribution of communication time 

to the total time is very less as compared to total computational time. Moreover it is also clear 

that with the increase in data size (number of nodes), the results are improving with increase 

in number of processors.

Table 7.7 Variation of total time, communication time, speedup and efficiency with number 
of processors for 676 nodes

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 212.2315 0.0000 1.00 100.00
2 111.4260 0.0671 1.90 95.23
3 78.0770 0.1053 2.72 90.61
4 60.6514 0.5706 3.50 87.48
5 55.0408 0.8323 3.85 77.12
6 54.5207 6.0414 3.86 64.41
7 46.3948 1.9330 4.57 65.35
8 50.2148 5.5403 4.23 52.83

Fig. 7.13 Variation of total time and communication time with number of processors for 676 
nodes
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Fig. 7.14 Variation of speedup with number of processors for 676 nodes

Fig. 7.15 Variation of efficiency with number of processors for 676 nodes
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Table 7.8 Variation of total time, communication time, speedup and efficiency with number 
of processors for 961 nodes

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 598.8565 0.0000 1.00 100.00
2 310.1355 0.1924 1.93 96.54
3 214.2525 0.2256 2.79 93.13
4 164.6720 0.9013 3.63 90.88
5 141.6955 1.7398 4.21 84.19
6 134.5425 6.8044 4.45 74.15
7 114.9740 3.0855 5.21 74.38
8 122.0950 6.2373 4.90 61.29

Fig. 7.16 Variation of total time and communication time with number of processors for 
961 nodes
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Fig. 7.17 Variation of speedup with number of processors for 961 nodes

Fig. 7.18 Variation of efficiency with number of processors for 961 nodes
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Table 7.9 Variation of total time, communication time, speedup and efficiency with number
of processors for 1200 noc es

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 1179.5400 0.0000 1.00 100.00
2 606.6460 0.2567 1.94 97.22
3 417.6550 0.7822 2.82 94.14
4 320.2650 0.5918 3.68 92.07
5 282.8400 2.6019 4.17 83.41
6 254.3290 4.7861 4.64 77.30
7 222.0310 4.9631 5.31 75.89
8 216.9900 3.8176 5.44 67.95

Fig. 7.19 Variation of total time and communication time with number of processors for 
1200 nodes
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Fig. 7.20 Variation of speedup with number of processors for 1200 nodes

Fig. 7.21 Variation of efficiency with number of processors for 1200 nodes
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7.3.3 Three-dimensional model problem

The parallel EFG results have also been obtained for a 3-D heat transfer problem (Chapter 6: 

Case-I). Table 7.10 shows the variation of total time, communication time, speedup and 

efficiency with the number of processors for 729 nodes. The variation of total time and 

communication time with the number of processors is also shown in Fig. 7.22 for same 

number of nodes (data size). From Table 7.10 and Fig. 7.22, it is observed that total time is 

decreasing with the increase in the number of processors from 1 to 8. Fig. 7.23 and Fig. 7.24 

show the variation of efficiency and speedup respectively with the number of processors for 

729 nodes. For this data size (729 nodes), the speedup and efficiency are found to be 3.53 and 

44.12% respectively using 8 processors.

Table 7.11 shows the variation of total time, communication time, speedup and efficiency 

with the number of processors for 1000 nodes. The variation of total time and communication 

time with the number of processors is also presented in Fig. 7.25 for same number of nodes 

(data size). From Table 7.11 and Fig. 7.25, it can be noted that with the increase in number of 

processors from 1 to 8, total time is decreasing. Fig. 7.26 & Fig. 7.27 show the variation of 

efficiency and speedup respectively with the number of processors for 1000 nodes. For this 

data size (1000 nodes), the speedup and efficiency are achieved to be 4.14 and 51.73% 

respectively using 8 processors.

Table 7.12 shows the variation of total time, communication time, speedup and efficiency 

with the number of processors for 1320 nodes. The variation of computational time 

components (total time and communication time) with the number of processors is also 

shown in Fig. 7.28 for the same number of nodes (data size). From Table 7.12 and Fig. 7.28, 

it can be noted that the total time decreases from processors 1 to 8. Fig. 7.29 & Fig. 7.30 

show the variation of efficiency and speedup respectively with the number of processors for 

1320 nodes. For this data size (1320 nodes), the speedup and efficiency are achieved to be 

4.66 and 58.22% respectively using 8 processors.
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From the above analysis, it is observed that with increase in data size, results are 

improving both in terms of efficiency and speedup. There is very less contribution of 

communication time in total time. Moreover it is also clear that with the increase in data size 

(number of nodes); the results are improving with the increase in number of processors.

Table 7.10 Variation of total time, communication time, speedup and efficiency with number 
of processors for 729 nodes --------------- s । - -------- ------ -------------

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 308.5035 0.0000 1.00 100.00
2 172.4185 0.0660 1.79 89.46
3 129.0555 0.1530 _____ 2.39 79.68
4 104.9417 0.3197 2.94 73.49
5 96.3658 1.2153 ____3.20 64.02
6 93.1113 5.3694 3.31 55.17
7 83.5289 1.8749 3.69 52.76
8 87.4107 5.4367 3.53 44.12

Fig. 7.22 Variation of total time and communication time with number of processors for 729 
nodes
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Fig. 7.23 Variation of speedup with number of processors for 729 nodes

Fig. 7.24 Variation of efficiency with number of processors for 729 nodes
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Table 7.11 Variation of total time, communication time, speedup and efficiency with number 
____________ _________ of processors for 1000 nodes__________ ____________

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 776.9130 0.0000 1.00 100.00
2 423.4670 0.1054 1.83 91.73
3 311.9410 0.3455 2.49 83.02
4 246.4190 0.2158 3.15 78.82
5 222.2260 1.9002 3.50 69.92
6 203.6020 3.5979 3.81 63.60
7 185.4400 3.9821 4.20 59.96
8 187.7355 8.4302 4.14 51.73

Fig. 7.25 Variation of total time and communication time with number of processors for 1000 
nodes
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Fig. 7.26 Variation of speedup with number of processors for 1000 nodes

Fig. 7.27 Variation of efficiency with number of processors for 1000 nodes
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Table 7.12 Variation of total time, communication time, speedup and efficiency with number
of processors for 1320 nod es

Number of 
processors

Total time 
(sec)

Communication 
time (sec)

Speedup Efficiency 
(%)

1 1703.9500 0.0000 1.00 100.00
2 910.0000 0.2638 1.87 93.62
3 664.0010 0.5308 2.57 85.54
4 522.8990 0.9960 3.26 81.47
5 455.8030 2.2122 3.74 74.77
6 409.7670 5.0739 4.16 69.30
7 378.7050 5.7916 4.50 64.28
8 365.8310 5.7127 4.66 58.22

Fig. 7.28 Variation of total time and communication time with number of processors for 1320 
nodes

338



Fig. 7.29 Variation of speedup with number of processors for 1320 nodes

Fig. 7.30 Variation of efficiency with number of processors for 1320 nodes
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7.4 CONCLUSION

In this Chapter, a new parallel algorithm has been proposed for the EFG method. The parallel 

EFG code has been programmed in FORTRAN language using MPI message passing library 

and executed on a supercomputer (PARAM 10000). The validation of parallel EFG code has 

been done by solving three model heat transfer problems one each in 1-D, 2-D and 3-D 

domain. The analysis shows that with increase in data size (i.e. number of nodes), speedup 

and efficiency both improve. Moreover it is also observed that with the increase in data size, 

the total time and communication time are improving with the increase in number of 

processors. The improvement in speedup and efficiency with data size (i.e. number of nodes) 

for 2-D and 3-D problems is faster than that for 1-D problems. Since, the speedup and 

efficiency both are improving with the increase in data size (i.e. number of nodes) therefore, 

by increasing data size further good speedup and efficiency can be achieved easily. From 

parallel EFG results presented in this chapter, it can be noted that the proposed algorithm is 

working well for the EFG method. In the proposed methodology (algorithm), instead of 

collecting data from each processor to the root processor, it can be done in another way such 

that root processor need not to collect the data from each processor.
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CHAPTER-8

CONCLUSION AND FUTURE SCOPE OF WORK

In this thesis, meshless element free Galerkin (EFG) method not only was applied 

successfully in one-dimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D) 

heat transfer problems but also the parallel implementation of the EFG code was done 

successfully.

The MATLAB codes were developed to obtain meshless numerical solution. Four new 

weight functions namely hyperbolic, exponential, rational and cosine were proposed in this 

thesis. The numerical results were obtained using existing (cubicspline, quarticspline, 

Gaussian and quadratic) and proposed EFG weight functions for four cases each in 1-D, 2-D 

and 3-D problems. It was found that the results obtained using different EFG weight 

functions are in good agreement with those obtained by finite element method. For CASE-I 

of 1-D, 2-D and 3-D model problems, analytical results were available and it was noticed that 

the results obtained by EFG method were found to be more accurate as compared to FEM 

results.

The effect of scaling parameter (^max) on EFG results was also discussed in detail. 

Satisfactory results were found in the range of 1 < dmaK < 2.0 for cubicspline, quarticspline, 

Gaussian, exponential and rational weight functions in 1-D heat transfer problems. The 

results obtained using quadratic, hyperbolic and cosine weight functions are not reliable in 1- 

D heat transfer application. These weight functions showed an abrupt behavior in EFG results 

for the given range or higher value of dmwi. The proposed exponential weight function leads 

to minimum variation in EFG results. Hence, it is the most reliable for the given range of
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In 2-D and 3-D heat transfer application, it was observed that the scaling parameter gives 

acceptable results in the range of l<dmax <1.5 for cubicspline, quarticspline, Gaussian, 

exponential and rational weight functions. A random change in the values of EFG results was 

noticed for quadratic, hyperbolic and cosine weight functions in the given range of dmm. 

Similar to 1-D problems, it was also observed that the results obtained using proposed 

exponential weight functions are the most reliable for this range of scaling parameter. Among 

the proposed weight functions, exponential and rational give accurate results for all kind of 

heat transfer problems. The suitable range of is 1 to 1.5 for 1-D, 2-D and 3-D problems. 

The proposed exponential weight function was found to be most reliable whereas quadratic, 

hyperbolic and cosine weight functions are not suitable for heat transfer applications.

A new parallel algorithm was proposed for the EFG method to reduce its computational 

cost. The parallel code was written in FORTRAN language and executed on network of 

parallel computer, PARAM 10000. Three model heat transfer problems was solved (one each 

in 1-D, 2-D and 3-D domains) to validate the proposed parallel algorithm. For 8 processors, 

the speedup and efficiency are achieved to 2.22 & 27.78% respectively for 1100 nodes in 1-D 

domain, 5.44 & 67.95% respectively for 1200 nodes in 2-D domain and 4.66 & 58.22% 

respectively for 1320 nodes in 3-D domain. It was noted that both speedup and efficiency are 

improving with the increase in data size i.e. number of nodes.

In near future, the EFG method can also be extended to solve geometrically complex 

three dimensional heat transfer problems. More efficient techniques can be proposed so that 

the imposing of the essential boundary conditions becomes easier. Moreover, more efficient 

parallel algorithms can be developed to further reduce the computational cost. The EFG 

method can also be applied to obtain the numerical solution of fluid flow problems.
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APPENDIX

1 Computational Time Components

The different components of computational time include real time, system time, user time, 

CPU time, total time and communication time. Among all these components, emphasis has 

been given on total time and communication time.

LI Total Time

The total time (run time) is the time at which parallel computation starts to the moment at 

which last processor finishes its execution. The total time is the time measured by the MPI 

watches built in the program itself.

1.2 Communication Time

The communication time is the time required to transfer the data form one processor to the 

other processor or processors. As number of processors increase communication time also 

increases.

2 Performance Matrices

2.1 Speedup Factor

A measure of relative performance between a multiprocessor system and a single processor 

system is the speedup factor, it is defined as

S eedup - T°tal time using one Processor (single processor system) 
Total time using number of processors (multiprocessor system)

2.2 Efficiency

_ Total time using one processor (single processor system)
Effici y Tota] tfme using number of processors x number of processors
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