
Application of Parallel Computing in Finite
Element Analysis of Two-Dimensional Small

and Large Deformations

THESIS

Submitted in partial fulfilment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

Rajendra Narayan Khapre

Under the Supervision of

Dr. Pramod Kumar Gupta

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

2006

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE

PILANI (RAJASTHAN)

CERTIFICATE

This is to certify that the thesis entitled “Application of Parallel Computing in Finite

Element Analysis of Two-Dimensional Small and Large Deformations” submitted by

Rajendra Narayan Khapre ID. No. 1999PH02409 for award of Ph. D. Degree of the

Institute, embodies the original work done by him under my supervision.

Signature in full of the Supervisor

Name in capital block letters PRAMODKUMAR GUPTA

Date: 27/ri/oG Designation: Assistant Professor of Civil Engineering

ACKNOWLEDGEMENTS

I wish to express deepest gratitude and heartfelt indebtedness to my thesis supervisor Dr.

Pramod Kumar Gupta. Assistant Professor, Civil Engineering Group for his valuable and

continuous guidance, encouragement, suggestions, and moral support throughout the

period of this research work. It has been a privilege for me to work under his valuable

guidance.

Gratitude is also accorded to BITS. Pilani for providing all the necessary facilities to

complete the research work. My sincere thanks to Prof. S. Venkateswaran, Vice-

Chancellor of the Institute for allowing me to pursue my research work successfully. My

special thanks to Prof. L. K. Maheshwari - Pro. Vice-Chancellor and Director (Pilani),

Prof. K. E. Raman - Deputy Director (Administration), Prof. V. S. Rao - Deputy Director

(Off-Campus Programmes), Prof. A. K. Sarkar - Dean Faculty Division I and Instruction

Division, Prof. H. S. Moondra - Chief, Maintenance Unit, for providing the necessary

infrastructure and other facilities.

Sincere thanks to Prof. J. P. Misra - Unit chief (Information Processing Centre) for

providing excellent computing facilities for the present research work. I am also thankful

to Dr. M. Ishwara Bhat, Librarian, BITS for providing library facility.

I also express my gratitude for the kind and affectionate enquiries about the work and the

encouragement given by Prof. Ravi Prakash - Dean (Research and Consultancy Division)

and Dr. S. D. Pohekar of the same Division.

Much appreciation is expressed to Dr. Manoj Kumar, Dr. K. S. Raju, Prof. (Dr.) Rajiv

Gupta, Prof. (Dr) S. P. Gupta and Dr. D. K. Maharaj who were the members of Doctoral

Advisory Committee (DAC) for their kind suggestions, moral support, and assistance

from time to time.

I am also thankful to Center for Development of Advanced Computing, Pune (C-DAC)

for their support given to this research work through research project Computer

Simulation of Large Deformations Process.

Special thanks and appreciation is extended to Dr. A. P. Singh, Dr. Anshuman, Dr. Rahul

Ralegaonkar. Dr. Arun C., Dr. A Vasan, Mr. Manish Kcwalramani and other members of

Civil Engineering Group for their valuable time and support extended to me in hour of

need.

I am thankful to Mr. Vikas Singh, Administrator, PARAM 10000 for his continuous

support throughout the research work. I am also thankful to Mr. Balbir Nanglia, Mr.

Ashish Chauhan and Mr. Soji George for providing excellent networking facilities and

hardware support.

Sincere thanks to Mr. Amit Gaikwad, Research Scholar (IIT, Delhi) for providing

research literature throughout the study. I am also thankful to Mr. Pravin S. Talan for his

support and constant encouragement. I would like to express gratitude to my close friends

Mr. Shrikant Charde and Mr. Anup Deshpande who supported and encouraged all the

way for the research work. I also thank my co-researchers Mr. K Venugopal, Mr. K. C.

Sati and other research scholars at BITS, Pilani for their constant cooperation and

encouragement in completing my research work. I also thank Mr. Parul Jain and Mr.

Avinash Sinhal, ex BITS students for their contribution in this work.

I express my thanks to non-teaching staff of Civil Engineering Group and Information

Processing Center for their cooperation. I would like to thank one and all who have

helped me in myriad ways throughout the course of this work.

Finally a very special expression of appreciation is extended to my father Mr. Narayan S

Khapre, mother Mrs. Indu N. Khapre and beloved sisters Mrs. Rajani Bhiwapurkar and

Mrs. Ragini Dharmik. Without their encouragement, patience, and understanding, this

endeavor would not have been possible.

M 4a-*
Rajendra N. Khapre

ABSTRACT

The thesis presents an implementation of parallel computing technique in linear and non

linear finite clement codes, For proper implementation of parallel computing technique in

finite element codes, computational time expenditure in different steps of finite element

solution procedure is presented. It was found that major portion of computational time in

computational finite element analysis is consumed in getting solution of generated system

of linear equations. Hence, to reduce this computational time, parallel solvers are

developed and employed.

Three parallel solvers using Gauss-Seidel Method, Gauss Elimination Method and Matrix

Inversion Method are developed in C programming language. Using these developed

solvers, several data sets taken from finite element problems, were analyzed on

supercomputer PARAM 10000. It was observed that the variation of Total time measured

in terms of Real time was not consistent and hence a timer was developed to measure

computational time in terms of User time for a particular code segment. With the help of

computational time results (measured in terms of Real time and User time), comparison

between these developed solvers is carried out. Based on the comparison of performance

shown of these solvers, it was found that Matrix Inversion Method parallel solver is better

as compared to other the solvers.

Thereafter Matrix Inversion Method parallel solver is developed using FORTRAN77

programming language. After comparing the performance of solvers developed in C and

FORTRAN77 languages, it was found that solver developed in C language is faster than

the solver developed in FORTRAN77 language. Blocking and Non-blocking

communication mechanisms were used in this solver and it was found that both these

mechanisms are equally effective. After this, the solver was modified to speedy solution

of system of linear equations especially generated in finite element analysis. After

comparing the modified solver with original solver, it was found that modified solver is

considerably faster than the original solver and hence it was adopted in finite element

analysis.

iii

Incorporating the Modified Matrix Inversion Method parallel solver, a code for linear

elastic finite element analysis is developed. The code has three noded constant strain

triangular elements to discretize the problem domain. It is capable of solving

axisymmetric, plane strain and plane stress problems on supercomputer PARAM 10000.

With the help of this code, analysis of anchorage zone in prestressed post-tensioned

concrete beam was carried out. This analysis was carried out into two parts. In the first

part, stress variation in anchorage zone was studied for concentric prestressing loading

condition. The effect of Poisson's ratio and load area ratio on stress variation is studied

and compared with the available literature. It was found that stress variation obtained

from present investigation match well with referred literature. In the second part, effect of

eccentricity of prestressing force on anchorage zone stresses is studied. The effect of

eccentricity on bursting tensile force is also studied and it was found that bursting tensile

force reduces with increase in eccentricity of prestressing force. In both the parts, it was

found that spalling zone exists near free comers of the beam. An expression for

computing magnitude of bursting tensile force has also been developed with

incorporating the parameter Poisson’s ratio. The analysis was carried out on

supercomputer PARAM 10000 using its multiple processors to save the computational

time involved in the analysis.

Second finite element code (FEMLD) was developed based on the flow formulation of

the finite element analysis. It is having two types of elements namely three noded

constant strain triangular element and four noded rectangular elements to discretize the

problem domain. This code was developed to analyze axisymmetric as well as plane

strain large deformation problems on supercomputer PARAM 10000. One problem from

each category was analyzed and its results were presented in detail by studying contours

of various strain-rates, stresses, and nodal velocities. In order to validate the developed

code, similar problems were also analyzed using commercial softwares FORGE2 and

ANSYS. After comparing various results obtained from developed code with the results

obtained from commercial software, it was found that the results match fairly well. The

performance of developed code on supercomputer PARAM 10000 was also measured and

it was found that the developed code performed well. Capability of the developed solver

for its implementation in three-dimensional problems was also tested by solving bigger

data sizes. It was found that the developed code performed better for bigger size

problems, which proves its suitability in solving three-dimensional problems also.

iv

The developed eode FEMLD was further improved to simulate compression process of

various shapes between two Hat rigid dies. Using this modified code, four problems

namely axial compression of solid metallic cylinder, axial compression of hollow metallic

tube, lateral compression of rectangular metallic tube and lateral compression of round

tube between concentrated loads, were simulated. These four problems were also

analyzed using commercial software FORGE2 to validate the developed code. These

problems were analyzed using multiple processors of supercomputer PARAM 10000, so

various components of computational time were measured. After computing the

performance of the developed code, it was found that the developed code performed well.

In order to propose an economical alternative to supercomputer, two Clusters were

developed on Windows NT operating system using Local Area Network. The first Cluster

consisted of eight PC’s having similar configurations connected through Switch whereas

second Cluster consisted of eight PC’s having different configurations connected through

HUB. On these Clusters, four earlier developed solvers were redeveloped and tested.

After comparing their performance on Windows NT Cluster having eight PC’s with

different configurations, it was found that the Matrix Inversion Method parallel solver

gave maximum Speedup whereas Modified Matrix Inversion Method parallel solver

required minimum computational time. When these results were compared with the

results obtained using supercomputer PARAM 10000, it was found that developed solvers

performed better on supercomputer PARAM 10000 as compared to the developed

Cluster. Finite element codes for linear and non-linear finite element analysis were

developed on these Clusters and tested by solving one problem from each category. It was

found that computational time reduces with increase in number of computers, but the

observed reduction is very less as compared to the reduction observed in case of

supercomputer PARAM 10000.

KEYWORDS

Parallel Computing, Finite Element Analysis, Parallel Solver, Anchorage Zone, Large

Deformation, Cluster Computing.

TABLE OF CONTENTS

Acknowledgements i

Abstract iii

Table of Contents vi

List of Tables xii

List of Figures xvi

List of Notations xxiv

1 INTRODUCTION

1.1 GENERAL 1

1.2 NEED FOR PARALLEL COMPUTING IN FINITE 1

ELEMENT ANALYSIS

1.3 NEED FOR CLUSTER COMPUTING 2

1.4 OBJECTIVES 2

1.5 SCOPE OF PRESENT WORK 3

1.6 REPORT ORGANIZATION 3

2 LITERATURE REVIEW

2.1 INTRODUCTION 6

2.2 INTRODUCTION TO PARALLEL COMPUTING 6

2.3 PARAM 10000 ARCHITECTURE OVERVIEW 7

2.3.1 Nodes 8

2.3.1.1 Compute Nodes 8

2.3.1.2 File Server Node 8

2.3.2 Interconnection Networks 9

2.3.2.1 PARAMNet 9

2.3.2.2 Fast Ethernet 9

2.4 FINITE ELEMENT METHOD 10

2.5 PARALLEL SOLVERS 10

2.6 FINITE ELEMENT ANALYSIS ON PARAM 10000 13

vi

2.7 PRES TRUSSED CONCRETE 14

2.8 ENERGY ABSORBING DEVICES 16

2.9 EEM IN LARGE DEFORMATIONS 19

2.10 LARGE DEFORMATIONS AND PARALLEL 20

COMPUTING

2.11 CLUS TER COMPUTING TECHNIQUE 21

2.12 SUMMARY 22

3 DEVELOPMENT OF PARALLEL SOLVERS

FOR SOLVING SYSTEM OF LINEAR

EQUATIONS

3.1 INTRODUCTION 23

3.2 COMPONENTS OF COMPUTATIONAL TIME 23

3.3 NECESSITY OF PARALLEL COMPUTING 26

3.4 DEVELOPMENT OF PARALLEL SOLVERS 24

3.4.1 Gauss-Seidel Method 28

3.4.1.1 Parallel Implementation 30

3.4.1.2 Computational Time Results 33

3.4.1.3 Solver Perfonuance 33

3.4.2 Gauss Elimination Method 40

3.4.2.1 Parallel Implementation 42

3.4.2.2 Computational Time Results 43
3.4.2.3 Solver Performance 45

3.4.3 Matrix Inversion Method 51

3.4.3.1 Parallel Implementation 52

3.4.3.2 Computational Time Results 55

3.4.3.3 Solver Performance 55

3.5 EFFECT OF USER ACTIVITIES ON 61

COMPUTATIONAL TIME

3.6 COMPARISON OF PARALLEL SOLVERS 63

3.7 COMPARISON OF C AND FORTRAN77 66

3.8 COMMUNICATION MECHANISMS 70

vii

3.9 MODIFIFD MATRIX INVERSION SOLVER 72

3.9.1 Parallel Implementation 72

3.9.2 Computational l ime Results 74

3.9.3 Solver Performance 79

3.10 SUMMARY 81

4 ANALYSIS OF ANCHORAGE ZONE

4.1 INTRODUCTION 83

4.2 PRESTRESSED POST-TENSIONED CONCRETE

BEAM

83

4.3 REVIEW OF FINITE ELEMENT PROCEDURE 84

4.3.1 Basic Equations of Structural Mechanics 85

4.3.2 Classification of Two-Dimensional Problems 87

4.3.2.1 Plane Stress Problem 87

4.3.2.2 Plane Strain Problem 88

4.3.2.3 Axisymmetric Problem 88

4.3.3 Element Stiffness Matrix 89

4.3.4 Constant Strain Triangle (CST) Element 90

4.3.5 Elemental Stress and Strain Computations 91

4.3.6 Solution Procedure 91

4.4 METHODOLOGY 91

4.5 CASE STUDIES 92

4.5.1 Case I: Concentric Prestressing 92

4.5.1.1 Transverse Tensile Stress Variation 94

4.5.1.2 Longitudinal Stress Variation 100

4.5.1.3 Shear Stress Variation 103

4.5.2 Case II: Eccentric Prestressing 103

4.5.2.1 Transverse Tensile Stress Variation 103

4.5.2.2 Stress Contours 107

4.5.3 BURSTING TENSILE FORCE 107

4.6 COMPUTATIONAL TIME RESULTS 113

4.7 SUMMARY 114

viii

5 FINITE ELEMENT FORMULATION FOR

LARGE DEFORMATIONS AND CODE

DEVELOPMENT

5.1 INTRODUCTION 115

5.2 FINITE ELEMENT FORMULATION 115

5.2.1 Basis of Finite Element Formulation 116

5.2.2 Treatmen1 of a Rigid Region 117

5.2.3 Finite Element Procedure 118

5.2.3.1 Governing Equations 118

5.2.3.2 Newton-Raphson Method 121

5.2.3.3 Direct Iteration Method 121

5.2.3.4 Convergence Criteria 122
5.2.3.5 Solution Procedure 122

5.2.4 Elements and Shape Functions 123

5.2.4.1 Triangular Element 124

5.2.4.2 Rectangular Element 126

5.2.5 Element Strain-Rate Matrix 127

5.2.5.1 Triangular Element 130

5.2.5.2 Rectangular Element 131

5.2.6 Matrices of Effective Strain-Rate and Volume Strain-

Rate

132

5.2.7 Elemental Stiflhess Equation 133

5.2.8 Boundary Conditions 136

5.2.9 Time Increment and Geometry Updating 141

5.2.10 Stress-Strain Computations 141
5.3 CASE STUDIES 142

5.3.1 Axisymmetric Problem 143

5.3.1.1 Iterations 143
5.3.1.2 Performance On PARAM 10000 147
5.3.1.3 Results 147

FINTIE ELEMENT ANALYSIS

5.4

5.5

5.3.2

5 3 J .4

5 3.2.1

5 3.2.2

5.3.2.3

5.3.2.4

Comparison with Commercial Software*

Plane Strain Problem

Iterations

Performance on PARAM 10000

Results

Comparison with Commercial Softwares

PERFORMANCE OF FEMLD

SUMMARY

156

156

157

157

163

167

170

174

6 COMPUTER SIMULATION OF METALLIC

TUBES AS ENERGY ABSORBING ELEMENTS

6.1 INTRODUCTION 176

6.2 CONTACT PROBLEM 176

6.2.1 Case I: Initiate New Contact Nodes 177

6.2.2 Case II: Terminate Old Contact Nodes 179

6.3 CASE STUDIES 179

6.3.1 Axisymmetric Compression of Solid Cylinder 179

6.3.2 Lateral Compression of Rectangular Tubes 186

6.3.3 Axial Compression of Round Tube 193

6.3.4 Lateral Compression of Round Tube Subjected to

Concentrated Load

199

6.4 SUMMARY 204

7 APPLICATION OF CLUSTER COMPUTING IN

7.1 INTRODUCTION 206
7.2 NEED FOR CLUSTER 207

7.2.1 Cluster Setup 207

7.2.2 Compiler 208

7.3 CASE STUDY 208

7.4 MIXED PC CLUSTER 211

7.5 PERFORMANCE OF PARAELEE SOLVERS ON 213

CLUSTER

7.5.1 Gauss-Seidel Method 213

7.5.2 Gauss Elimination Method 217

7.5.3 Matrix Inversion Method 221

7.5.4 Modified Matrix Inversion Method 225

7.6 COMPARISON OF PARALLEL SOLVERS 230

7.7 FINITE ELEMENT ANALYSIS ON WINDOWS NT 232

CLUSTER

7.7.1 Linear Elastic Finite Element Analysis 232

7.7.2 Non-Linear Plastic Finite Element Analysis 236

7.8 SUMMARY 237

8 CONCLUDING REMARKS AND FUTURE

SCOPE

8.1 SUMMARY AND CONCLUSIONS 239

8.2 FURTHER SCOPE OF WORK 242

REFERENCES 244

LIST OF PUBLICATIONS 251

List of Tables

Table. No. Title Page No.

3.1 Computational time variation and performance of GSM solver for

data set of size 870 x 870

34

3.2 Computational time variation and performance of GSM solver for

data set of size 882 x 882

35

3.3 Computational time variation and performance of GSM solver for

data set of size 1352 x 1352

35

3.4 Computational time variation and performance of GSM solver for

data set of size 2312 x 2312

36

3.5 Computational time variation and performance of GSM solver for

data set of size 3362 x 3362

37

3.6 Computational time variation and performance of GSM solver for

data set of size 4232 x 4232

37

3.7 Number of iteration for various data sizes carried out by GSM solver 40

3.8 Computational time variation and performance of GEM solver for

data set of size 870 x 870

46

3.9 Computational time variation and performance of GEM solver for

data set of size 882 x 882

47

3.10 Computational time variation and performance of GEM solver for

data set of size 1352 x 1352

47

3.11 Computational time variation and performance of GEM solver for

data set of size 2312 x 2312

48

3.12 Computational time variation and performance of GEM solver for

data set of size 3362 x 3362

49

3.13 Computational time variation and performance of GEM solver for

data set of size 4232 x 4232

49

3.14 Computational time variation and performance of MIM solver for

data set of size 870 x 870

56

3.15 Computational time variation and performance of MIM solver for

data set of size 882 x 882

57

3.16 Computational time variation and performance of MIM solver for

data set of size 1352 x 1352

57

3.17 Computational time variation and performance of MIM solver for

data set of size 2312 x 2312

58

3.18 Computational time variation and performance of MIM solver for

data set of size 3362 x 3362

59

3.19 Computational time variation and performance of MIM solver for

data set of size 4232 x 4232

59

3.20 Computational time variation and performance of C and

FORTRAN77 codes for data set of size 870 x 870

67

3.21 Computational time variation and performance of C and

FORTRAN77 codes for data set of size 1226 x 1226

68

3.22 Computational time variation and performance of C and

FORTRAN77 codes for data set of size 1722 x 1722

69

3.23 Comparison of two communication mechanisms 71

3.24 Comparison of C and FORTRAN77 for two communication

mechanisms

71

3.25 Comparison of Modified and Original solver based on time results

and Speedup for data size 1226 x 1226

75

3.26 Computational time variation and performance of MMIM solver for

data set of size 870 x 870

76

3.27 Computational time variation and performance of MMIM solver for

data set of size 882 x 882

76

3.28 Computational time variation and performance of MMIM solver for

data set of size 1352 x 1352

77

3.29 Computational time variation and performance of MMIM solver for

data set of size 2312 x 2312

78

3.30 Computational time variation and performance of MMIM solver for

data set of size 3362 x 3362

78

3.31 Computational time variation and performance of MMIM solver for

data set of size 4232 x 4232

79

xiii

4.1 Tabic showing magnitude of bursting tensile force for different

values of k and v

110

4.2 Computational time variation for problem having size of global

stiffness matrix 870 x 870

111

4.3 Performance of parallelized FEM code problem having size of

global stiffness matrix 870 x 870

111

4.4 Computational time variation for problem having size of global

stiffness matrix 1226 x 1226

111

4.5 Performance of parallelized FEM code problem having size of

global stiffness matrix 1226 x 1226

112

4.6 Computational time variation for problem having size of global

stiffness matrix 1722 x 1722

112

4.7 Performance of parallelized FEM code problem having size of

global stiffness matrix 1722 x 1722

112

4.8 Computational time variation for problem having size of global

stiffness matrix 5002 x 5002

113

4.9 Performance of parallelized FEM code problem having size of

global stiffness matrix 5002 x 5002

113

5.1 Comparison of X-coordinates (mm) obtained by present

investigation (FEMLD4) and FORGE2 at different stages of

compression

153

5.2 Comparison of X-coordinates (mm) obtained by present

investigation (FEMLD4) and FORGE2 at different stages of

compression

166

5.3 Computational time variation (RT) for problem of size 882 x 882 171

5.4 Computational time variation (RT) for problem of size 1352 x 1352 171

5.5 Computational time variation (RT) for problem of size 2312 x 2312 171
5.6 Computational time variation (RT) for problem of size 3362 x 3362 172
5.7 Computational time variation (RT) for problem of size 4432 x 4432 172

6.1 Table showing X-coordinatc of point P for different values of

friction factors

180

6.2 Tube specifications 185

6.3 Details of simulation study on supercomputer PARAM 10000 190

7.1 Computational time variation and performance of MIM solver for

data set of different sizes on Windows NT Cluster

209

7.2 Computational time variation and performance of MIM solver for

data set of different sizes on PARAM 10000

201

7.3 Percentage contribution of Communication time towards Total time

for different data set on Windows NT cluster and PARAM 10000.
212

7.4 Computational time variation and performance of GSM solver for

data set of different sizes on Windows NT Cluster
215-216

7.5 Number of iteration for various data sizes carried out by GSM solver 218

7.6 Computational time variation and performance of GEM solver for

data set of different sizes on Windows NT Cluster
219-220

7.7 Computational time variation and performance of MIM solver for

data set of different sizes on Windows NT Cluster

223-224

7.8 Computational time variation and performance of MMIM solver for

data set of different sizes on Windows NT Cluster

228-229

7.9 Total time obtained by four parallel solvers with different 231

7.10 Computational time and performance of parallelized FEM code on

Windows NT cluster for problems with different global stiffness

matrix of sizes

233

7.11 Computational time and performance of FEMLD on Windows NT

cluster for problems with different global stiffness matrix of sizes

235

XV

List of Figures

Fig. No. Title Page No.

2.1 Major hardware components of the PARAM 10000 system 7

3.1 Computation time expenditure by different processes involved in 27

FEA
3.2 Uneven data distribution (column wise) among the processors 30

3.3 Parallel algorithm for Gauss-Seidel Method 31

3.4 Fig. 3.4 Variation in computational time components for GSM 32

solver for data set of size 1226 x 1226

3.5 Speedup achieved by GSM solver for data set of size 1226 x 1226 34

3.6 Variation in Speedup for GSM solver for various data sets 38

3.7 Uneven data distribution (row wise) among the processors 41

3.8 Parallel algorithm for Gauss Elimination Method 42

3.9 Variation in computational time components for GEM solver for 44

data set of size 1226 x 1226

3.10 Speedup achieved by GEM solver for data set of size 1226 x 1226 46

3.11 Variation in Speedup for GEM solver for various data sets 50

3.12 Parallel algorithm for Matrix Inversion Method 53

3.13 Variation in computational time components for MIM solver for 54

data set of size 1226 x 1226

3.14 Speedup achieved by MIM solver for data set of size 1226 x 1226 56

3.15 Variation in Speedup for MIM solver for various data sets 60

3.16 Typical variation in Total time and Communication time with 62

number of users

3.17 Performance comparison of three solvers for different data sizes 64

when four processors are used

3.18 Performance comparison of three solvers for different data sizes 65

when eight processors are used

3.19 Stiffness matrix and Identity matrix 73

3.20 Parallel algorithm for Modified Matrix Inversion Method 73

3.21 Variation in Speedup for MMIM solver for various data sets 80

*1-1 Anchorage zone in prestressed post-tensioned concrete beam 84

xvi

4.2 Two-dimensional state of stress under equilibrium conditions 84

4.3 Forces acting on two-dimensional element on the boundary 85

4.4 Plane stress example: thin plate subjected to external loading 87

4.5 Plane strain example: cross section of dam subjected to external 88

water pressure

4.6 Axisymmetric example: circular column subjected to pressure 89

4.7 Constant strain triangular element 90

4.8 Idealized prestressed concrete beam 92

4.9 Discretized prestressed concrete beam with 1136 elements and 613 93

nodes

4.10 Distribution of ot along axis of loading for v = 0.0 93

4.11 Comparison of transverse tensile stress distribution along the axis of 95

loading for k = 0.1

4.12 Comparison of transverse tensile stress distribution along the axis of 95

loading for k = 0.5

4.13 Comparison of transverse tensile stress distribution along the axis of 96

loading for p = 0.2

4.14 Comparison of transverse tensile stress distribution along the axis of 96

loading for p = 0.5

4.15 Position of zero transverse stress Qt(Zero) along the axis of loading 98

4.16 Position of maximum ct(max) along the axis of loading 98

4.17 Magnitude of maximum transverse tensile stress CTnmaX) along the 99

axis of loading

4.18 Transverse stress distribution on loaded face (v = 0.15) 99

4.19 Distribution of longitudinal stress cx along axis of loading for 101

different values of k and v = 0.15

4.20 Distribution of longitudinal stress ox along the top/bottom surface 101

for different values of k

4.21 Distribution of shear stress along the loaded face for different values 102

of k

4.22 Discretized prestressed concrete beam with 4800 elements and 2501 102

nodes

n\ i i

at step No. 15 (30% compression) obtained by FEMLD4

4.23 Variation in transverse tensile stress along the axis of loading for

different values of eccentricity and k = 0.1

104

4.24 Variation in transverse tensile stress along the loaded face for

different values of eccentricity and k = 0.1

104

4.25 Comparison of Oumax) along loaded face and axis of loading for

different values of eccentricity

105

4.26 Contours of longitudinal stress at e = 0.8 and k = 0.1 105

4.27 Contours of transverse tensile stress for different values of

eccentricity
106

4.28 Variation of Fbst with v different values of k 108

4.29 Variation of Fbst with eccentricity for k = 0.1 and v = 0.15 108

4.30 Comparison of variation in bursting tensile force for different values

of k

110

5.1 Newton-Raphson method and direct iteration method for solution of

non-linear equations

120

5.2 Coordinate systems for triangular and rectangular elements 125

5.3 An element in contact with die 139

5.4 Axisymmetric compression of solid cylinder 144

5.5 Variation in number of iterations with number of steps obtained

from codes FEMLD3 and FEMLD4

144

5.6 Variation in components of computational time obtained from codes

FEMDL3 and FEMLD4

145

5.7 Variation in Speedup obtained from codes FEMLD3 and FEMLD4 146

5.8 Deformed shaped obtained by FEMLD3 148, 149

5.9 Deformed shapes obtained by FEMLD4 148, 149

5.10 Undeformed and deformed shapes obtained by SPID 149
5.11 Variation in forming load with number of steps 150
5.12 Contours of nodal velocity (inch/s) and their direction at step No. 15

(30% compression) obtained by FEMLD4
150

5.13 Contours of (a) £r (b) £, (c) £0 and (d) y^ at step No. 15 (30%

compression) obtained by FEMLD4

152

5.14 Contours of (a) ar (Ksi) (b) a, (Ksi) (c) a(f (Ksi) and (d) (Ksi) 152

x\ iii

5.15 Contours of (a) /. (b) cy (Ksi) and (c) £ at step No. 15(30% 153

compression) obtained by FEMLD4

5.16 Contours showing (a) effective strain (b) effective stress MPa (c) 154

effective strain rate (d) nodal velocity (mm/s) distribution obtained

by present investigation (FEMLD4)

5.17 Contours showing (a) effective strain (b) effective stress MPa (c) 154

effective strain rate (d) nodal velocity (mm/s) distribution obtained

by FORGE2 (A and O represent maximum and minimum

respectively)

5.18 Load compression relationship 155

5.19 Compression of solid square bar 155

5.20 Variation in number of iterations with number of steps obtained 158

from codes FEMLD3 and FEMLD4

5.21 Variation in components of computational time obtained from codes 159

FEMDL3 and FEMLD4

5.22 Variation in Speedup obtained from codes FEMLD3 and FEMLD4 160

5.23 Deformed shaped obtained by FEMLD3 161,162

5.24 Deformed shapes obtained by FEMLD4 161,162

5.25 Undeformed and deformed shapes obtained by SPID 162

5.26 Variation in forming load with number of steps 164

5.27 Contours of nodal velocity (inch/s) and their direction at step No. 15 164

(30% compression) obtained by FEMLD4

5.28 Contours of (a) £x (b) £y and (c) yxy at step No. 15 (30% 165

compression) obtained by FEMLD4

5.29 Contours of (a) gx (Ksi) (b) ay (Ksi) (c) <t. (Ksi) and (d) rxy 165

(Ksi) at step No. 15 (30% compression) obtained by FEMLD4

5-30 Contours of (a) £ (b) o7 (Ksi) and (c) £ at step No. 15 (30% 166

compression) obtained by FEMLD4

5.31 Contours showing (a) effective strain (b) effective stress (MPa) (c) 168

effective strain rate (d) nodal velocity (mm/s) distribution obtained

by present investigation (FEMLD4)

xix

5.32 Contours showing (a) effective strain (b) effective stress (MPa) (c)

effective strain rate (d) nodal velocity (mm/s) distribution obtained

by FORGE2 (A and O represent maximum and minimum

respectively)

168

5.33 Load compression relationship 169

5.34 Deformed shapes of axisymmetric problem with different mesh

sizes obtained by FEMLD4
169

5.35 Variation in User time per iteration with data size for various

number of processors (1 to 8 shows No. of processors)

172

5.36 Variation in User time Speedup for different data sizes 173
5.37 Variation in percentage Communication time with number of

processors for different data sizes.

173

6.1 Initiating new contact nodes: Typical deformed mesh at (a) (i)th

iteration, (b) intermediate (i+l)Ih iteration and (c) final (i+l)th

iteration

178

6.2 Terminating old contact nodes: Typical deformed mesh at (a) (0th

iteration, (b) intermediate (i+l)th iteration and (c) final (i+l)th

iteration

178

6.3 Discretized finite element mesh for solid cylinder 180

6.4 Deformed shapes of solid cylinder after 83.33% compression with

friction factor between die-cylinder interface equal to (a) 0.1 (b) 0.2

(c) 0.3 (d) 0.4 and (e) 0.5

181

6.5 Variation in radiuses of circles with compression for various values

of friction factor between die-cylinder interface

182

6.6 Curve showing H/Ho ratio with friction factor at which folding

process begins

182

6.7 Force deformation relationship for axial compression of solid

cylinder for various friction factors

184

6.8 Variation in the components of computational time per iteration with

number of processors for axisymmetric compression of solid

cylinder

184

6.9 Variation in speedup with number of processors for axisymmetric

compression of solid cylinder

185

6.10 Discretized finite element mesh for AS26263 185

6.11 Deformed mesh at various stages of compression obtained by 187

present investigation.

6.12 Deformed mesh at various stages of compression obtained by 187

commercial software FORGE2

6.13 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 188

equivalent strain at 10.3 mm compression for specimen AS26263

obtained by present investigation

6.14 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 188

equivalent strain at 8.10 mm compression for specimen AS26263

obtained by FORGE2

6.15 Load compression and energy compression relationship for the 190

rectangular tubes

6.16 Computational time variation for specimen AS26263 191

6.17 Variation in speedup with number of processors for six specimens 191, 192

under consideration

6.18 Discretized finite element mesh for aluminum round tube AAC503 192

6.19 Deformed mesh at various stages of compression obtained by 195

developed code

6.20 Deformed mesh at various stages of compression obtained by 195

commercial software FORGE2

6.21 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 196

equivalent strain at 34.14 mm compression obtained by present

investigation.

6.22 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 196

equivalent strain at 29.31 mm compression obtained by FOREG2.

6.23 Load compression relationship and energy compression relationship 197

for the circular tube A AC 503 under axial compression

6.24 Variation in components of computational time and Speedup with 198

number of processors for specimen tube AAC503

6.25 Discretized finite element mesh showing quarter portion of copper 200

tube subjected to concentrated force.

6.26 Deformed mesh al various stages of compression obtained by 200

developed code

6.27 Deformed mesh at various stages of compression obtained by 200

commercial software FORGE2

6.28 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 201

equivalent strain al 12.74 mm compression obtained by present

investigation.

6.29 Contours of (a) velocity (mm/s) (b) effective strain rate and (c) 201

equivalent strain at 12.84 mm compression obtained by FOREG2.

6.30 Load compression and energy compression relationship for the 202

circular copper tube subjected to concentrated force

6.31 Variation in components of computational time and Speedup with 203

number of processors for copper tube

7.1 Windows NT cluster of computers having similar configuration 207

7.2 Windows NT cluster of computers with different configurations 212

7.3 Variation in computational time components and Speedup (R) for 214

GSM solver for data set of size 1226 x 1226

7.4 Variation in Speedup (R) for GSM solver for various data sets on 216

Windows NT Cluster

7.5 Variation in computational time components and Speedup (R) for 218

GEM solver for data set of size 1226 x 1226

7.6 Variation in Speedup (R) for GEM solver for various data sets on 220

Windows NT Cluster

7.7 Variation in computational time components and Speedup (R) for 222

MIM solver for data set of size 1226 x 1226

7.8 Variation in Speedup for MIM solver for various data sets on 224

Windows NT Cluster

7.9 Computational time variation with number of computers for MMIM 227

for data set of size 1226 x 1226

7.10 Variation in Speedup for MMIM solver for various data sets on 229

Windows NT Cluster

7.11 Comparison of four parallel solvers when five computers were 231

employed

xxii

7.12

7.13

Variation in Speedup (R) for FEM code for problems with stiffness 234

matrices of increasing size

Variation in Speedup (R) for FEMLD for problems with stiffness 234

matrices of increasing size

xxiii

List of Notations

[j] Matrix representing global stiffness matrix

M Matrix representing inverse of matrix [j]

B strain-rate matrix, strain displacement matrix

{b} Vector representing known vector

BW band width

Cal Calculation Time

Comm Communication Time

CPU CPU time

C&S Communication and Synchronization time

D effective strain-rate coefficient matrix

E Youngs Modulus

E(£tJ) work function

F77 FORTRAN77

Fbst bursting tensile force

Ft surface tractions

[/] Identity matrix

J Jacobian matrix

K stiffness matrix

K penalty constant

AZ moment

P number of processors

Pk magnitude of prestressing force

{Q} nodal load vectors

R real

RT Real time

S Speedup

Sys System Time

T coordinate transform matrix.

Total Total Time

U user

UD tool velocity

I JI' User Time

r volume

X X component of body force

*X} Vector representing unknown vector

y<0) initial guess solution vector

Y Y component of body force

a depth of anchor plate

{d} nodal displacement vector

d depth of beam (2b)

d size of global stiffness matrix

e eccentricity of prestressing force

f residual nodal point force vector.

fs frictional stress

i iteration number

k load area ratio

k shear yield stress

/ unit vector in the opposite direction of relative sliding,

m constant shear friction factor

n unit normal to the interface surface

n data size

p number of processors

t User time per iteration (in seconds),

tcaic calculations time

tcomm communication time

tp Parallel time

Iparr parallel computational time

Sequential time

u component of displacement taken parallel to the .v axis

Uq small positive number compared to us.

us sliding velocity of a material relative to the die velocity

v velocity vector

v component of displacement taken parallel to the v axis

v0 assumed velocity

vj adjusted velocity of the node P

y'‘ Y-coordinate of the node P at (i),h increment

y^t Y-coordinate of rigid die at (i+1),h increment

yo depth of beam

y depth of anchor plate

Av velocity correction term

A/ time increment

a deceleration coefficient

p ratio of loaded depth and actual depth of beam

{e} strain vector

£ effective strain

£ effective strain-rate

£q limiting strain-rate

volumetric strain-rate

2 Lagrange multiplier

v Poisson’s ratio

{g} stress vector

a effective stress

a0 effective stress corresponding to e0

cr, transverse tensile stress

cr/(max) maximum transverse tensile stress

at^ro) zero transverse tensile stress

&x longitudinal stress

average longitudinal stress

vy transverse stress

rn. shear stress

Note: All the components of computational time arc measured in seconds.

CHAPTER 1

INTRODUCTION

1.1 GENERAL

In past few years, advancement in the field of computer technology resulted in faster and

inexpensive computing. Now it is possible to analyze time taking problems within no

time on conventional computers. But still in few fields where the computations arc so

excessive that the conventional computer sometimes takes days to complete the assigned

task. With the help of parallel computing technique, now it is possible to solve such

problems within reduced time frame on multiple processor computers or supercomputers.

Parallel computing technique has shown a great success in the areas of computational

atmospheric sciences, computational chemistry, computational fluid dynamics,

evolutionary computing, computational structural mechanics, bioinformatics activities,

seismic data processing, and many more. In this technique, the total computational job is

distributed among several processors. Every processor operates simultaneously that

results in saving in computational time without interfering the accuracy of the required

results.

1.2 NEED FOR PARALLEL COMPUTING IN FINITE ELEMENT ANALYSIS

In past few decades, Finite Element Method (FEM) has grownup and emerged as one of

the most efficient method for structural analysis. This method is very systematic to

implement in form of computer code and therefore several commercial softwares are now

available based on this approximate approach. Most of these softwares are written for a

Personal Computer (PC) having single processor. In the finite element method, finer mesh

generally gives relatively more accurate and detailed solution but as the mesh becomes

finer, the problem size increases. This results in tremendous increase in number of

computations, correspondingly computational time also increases. For non-linear finite

element analysis, the scenario is even worse as it involves iterative solution procedure.

There are few research papers available that show the implementation of parallel

computing technique for analyzing such problems using finite element method on

supercomputers. These papers discuss various approaches used for implementation of

parallel computing technique on different types of supercomputers. These papers also

discuss different techniques of reduction in computational time in Finite Element

Analysis (FEA) by incorporating parallelism.

13 NEED FOR CLUSTER COMPUTING

Supercomputers are expensive as compared to the conventional computers. Therefore

Cluster computing could be used as economical alternative to supercomputers. Cluster

computing may be defined as group computing. Here, a group of conventional computers

is formed, which is called as a Cluster. The computational task is distributed among these

computers using parallel computing technique. This Cluster acts as a supercomputer and

hence the distributed-computations save computational time. Very few research papers

are available that show finite element analysis using Cluster.

1.4 OBJECTIVES

The main objective of the present study is to implement parallel computing technique in

finite element applications. Although the area of parallel computing is old but its

application in finite element analysis is not much reported, especially for non-linear finite

element analysis. There are number of commercial softwares available that allow us to

carry out structural analysis using finite element method but almost all these softwares

operate on conventional computers. Therefore it is required to develop finite element

analysis codes on supercomputers to obtain the solution of structural analysis problems in

relatively lesser time. Cluster computing is also one of the emerging areas of

computational analysis. Cluster can easily replace supercomputer because of its

simplified implementation and lower cost. For effective implementation of parallel

computing technique in finite element analysis, present research work is subdivided into

following tasks.

1. Study of parallel computing technique.

2. Development of parallel solver to solve system of linear equations using parallel

computing technique.

3- Implementation of the developed parallel solver in linear elastic finite element

computer code to produce parallelized finite element software for linear elastic finite

element analysis on platform of supercomputer PARAM 10000.

4. Development of a generalized finite element computer code to simulate non-linear

plastic large deformation process on supercomputer PARAM 10000.

5. Development of a finite element code on supercomputer PARAM 10000 for

simulation of compression process of metallic tubes of different cross sections

between two flat rigid dies.

6. Development of Windows NT Cluster and implementation of parallelized linear

elastic and non-linear plastic finite element computer codes on this developed Cluster.

1.5 SCOPE OF PRESENT WORK

Present work covers implementation of parallel computing technique for analyzing linear

elastic as well as non-linear plastic problems on supercomputer PARAM 10000 and

Windows NT Cluster in development of finite element computer codes. The emphasis is

mainly given to non-linear finite element analysis categorized under the area of metal

forming. The outcomes of the present research work are the two computer programs those

are capable of analyzing elastic and plastic deformation in structural mechanics. With the

use of these two programs one can analyze elastic and plastic two-dimensional

axisymmetric and plane strain problems on supercomputer PARAM 10000 as well as

Windows NT Cluster. The specialty of these programs is that they are developed using

parallel computing technique, therefore one can analyze problems within reduced time

frame.

1.6 REPORT ORGANIZATION

In the first chapter, introduction of work is presented. In the second chapter of this report,

a brief discussion on referred literature is presented. It mainly includes the basics of

parallel computing technique and hardware details of the supercomputer PARAM 10000.

It also describes various parallel solvers developed by several researchers for solving

system of linear equations. Further this chapter discusses anchorage zone in prestressed

post tensioned concrete beam and presents extracts of few research papers presenting

analysis of anchorage zone in prestressed post-tensioned concrete beam. Details of some

commercial softwares and their limitations, which are also used in finite element analysis

of tubular cross sections as energy absorption purpose, are also described. It also covers

survey of available literature on use of metallic tubes as energy absorbing devices and

their analytical, experimental and computational studies carried out by previous

researchers.

3

In the third chapter, development of parallel solvers for solving system of linear equations

is covered. Three parallel algorithms are developed using Gauss Seidel Method, Gauss

Elimination Method and Matrix Inversion Method. Three solvers are developed on

supercomputer PARAM 10000 based on these algorithms and their comparison is also

presented. Based on the comparison, suitability of Matrix Inversion Method parallel

solver was highlighted. Hence how it is further modified and redeveloped to analyze

system of linear equations especially for finite element analysis is discussed.

Chapter four presents parallel implementation of finite element analysis code

development for analysis of small deformation problems. It includes implementation of

Matrix Inversion Method parallel solver for linear elastic finite element analysis. Initially,

the basic formulation of linear elastic finite element analysis is presented in brief. Based

on this formulation, parallelized code for two-dimensional plane stress, plane strain and

axisymmetric linear elastic finite element analysis is developed and presented. A case

study problem of anchorage zone in prestressed post-tensioned concrete beam is analyzed

using the developed software. A study of effects of parameters like Poisson’s ratio and

eccentricity of prestressing forces on anchorage zone stresses is presented. An expression

to compute the magnitude of bursting tensile force in anchorage zone is developed and

compared with the expression available in literature and Indian Standard Code IS: 1343-

1980.

Fifth chapter present the formulation adopted for the code development along with the

two case study problems. Flow formulation in finite element analysis to solve metal

forming problems is explained in the fifth chapter. Based on this formulation, a

generalized computer program FEMLD is developed using parallel computing technique.

Two case study problems are presented in detail based on the output obtained from the

developed software. The same case study problems are analyzed using commercial

softwares FORGE2 and ANSYS. To validate the results of developed software, various

results in form of contours of velocity, strain-rate components, stress components,
effective strain-rate, effective stress and effective strain are plotted and compared with the

corresponding results obtained from commercial softwares. The performance of the

developed code is also tested on supercomputer PARAM 10000 and described.

4

hi chapter six. simulation of metallic tubes as energy absorbing element on

supercomputer PARAM 10000 is presented. To analyze such problems using finite

element method, code FEMLD4 is modified to deal with contact problems. Mainly two

contact conditions are incorporated in code FEMLD4 by simulating two flat die surfaces.

With the help of this modified code, four problems categorized under axisymmetric

problems and plane strain problems are analyzed. These problems are axisymmetric

compression of solid cylinder, lateral compression of rectangular metallic tubes, fold

formation in axisymmetric compression of hollow round metallic tubes and lateral

compression of round tube between two concentrated loads. The obtained results of these

four problems are described in detail and also compared with the corresponding results

obtained by using commercial software FOREGE2. Reduction in computational time with

increasing number of processors of supercomputer PARAM 10000 was obtained. The

performance of modified FEMLD code was also reported.

In the seventh chapter. Cluster computing technique is described. Two Windows NT

Clusters are developed and presented in this chapter. The parallel solvers developed on

the platform of supercomputer PARAM 10000 (described in chapter 3) are redeveloped

and implemented on these developed Windows NT Clusters. The performance of these

parallel solvers on Windows NT Cluster is measured and described in detail in this

chapter. Based on the computational time results and the performance of the parallel

solvers, comparison of parallel solvers are carried out and discussed in detail. Two

computer codes for analysis of small and large deformation problems, which were

developed earlier for supercomputer PARAM 10000, were redeveloped on these Clusters.

One sample problem in each category was analyzed and variation in computational time

components was obtained.

In the last chapter, summery of the present research work is presented. The advantages,

limitations and the future scope of the present work are also described in this chapter.

In the third chapter, development of parallel solvers for solving system of linear equations

is covered. Three parallel algorithms arc developed using Gauss Seidel Method, Gauss

Elimination Method and Matrix Inversion Method. Three solvers are developed on

supercomputer PARAM 10000 based on these algorithms and their comparison is also

presented. Based on the comparison, suitability of Matrix Inversion Method parallel

solver was highlighted. Hence how it is further modified and redeveloped to analyze

system of linear equations especially for finite element analysis is discussed.

Chapter four presents parallel implementation of finite element analysis code

development for analysis of small deformation problems. It includes implementation of

Matrix Inversion Method parallel solver for linear elastic finite element analysis. Initially,

the basic formulation of linear elastic finite element analysis is presented in brief. Based

on this formulation, parallelized code for two-dimensional plane stress, plane strain and

axisymmetric linear elastic finite element analysis is developed and presented. A case

study problem of anchorage zone in prestressed post-tensioned concrete beam is analyzed

using the developed software. A study of effects of parameters like Poisson’s ratio and

eccentricity of prestressing forces on anchorage zone stresses is presented. An expression

to compute the magnitude of bursting tensile force in anchorage zone is developed and

compared with the expression available in literature and Indian Standard Code IS: 1343-

1980.

Fifth chapter present the formulation adopted for the code development along with the

two case study problems. Flow formulation in finite element analysis to solve metal

forming problems is explained in the fifth chapter. Based on this formulation, a

generalized computer program FEMLD is developed using parallel computing technique.

Two case study problems are presented in detail based on the output obtained from the

developed software. The same case study problems are analyzed using commercial

softwares FORGE2 and ANSYS. To validate the results of developed software, various

results in form of contours of velocity, strain-rate components, stress components,

effective strain-rate, effective stress and effective strain are plotted and compared with the

corresponding results obtained from commercial softwares. The performance of the

developed code is also tested on supercomputer PARAM 10000 and described.

4

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

This chapter covers review of the literature referred in the attempted study. Since present

work deals with the application of parallel computing techniques in linear as well as non

linear finite element analysis, so literature review presented in different sections

highlights the different studies covered. In the first part, introduction to parallel

computing technique is covered. The present work is carried out on supercomputer

PARAM 10000, hence its hardware is also discussed in detail. It is followed by the

review of few research papers covering the development of parallel solvers for finite

element analysis. Further, review of research papers showing analysis of anchorage zone

in prestressed post-tensioned concrete beam is also presented since it is considered as a

case study problem in linear elastic finite element application. For non-linear finite

element application, few problems related to analysis of metallic tubes as energy

absorbing devices are considered, hence related literature is also discussed in this chapter.

2.2 INTRODUCTION TO PARALLEL COMPUTING

Solving many scientific problems requires high speed computing, which is difficult to

achieve by single processor computer. Hence parallel computing is introduced to achieve

high speed in solving various scientific problems [1, 2]. Parallel computing mainly

require computer having multiple processors called supercomputer. The processors are

organized in different patterns namely mesh networks, binary tree networks, hypertree

networks, pyramid networks, butterfly networks, hypercube networks, cube-connected

cycles networks, shuffle-exchange networks and de Bruijn networks. Parallel computer

architectures are classified as per Flynn’s taxonomy scheme, which is based on duel

concepts of instruction stream and data stream. The four classes of parallel computers

based on multiplicity of data and instruction streams are as follows

• Single Instruction stream, Single Data stream (SISD)

• Single Instruction stream, Multiple Data stream (SIMD)

• Multiple Instruction stream, Single Data stream (MISD)

• Multiple Instruction stream, Multiple Data stream (MIMD)

6

rhe computer programs executable on multiple processors computer arc based on Parallel

Random Access Machine (PRAM) algorithms. PRAM consists of a control unit, global

memory and a set of processors with its own memory. PRAM has following models.

• EREW (Exclusive Read Exclusive Write)

• CREW (Concurrent Read Exclusive Write)

• CRCW (Concurrent Read Concurrent Write)

With the help of Message Passing Interface (MPI) [3. 4] and programming languages like

C [5], C++ [6], FORTRAN [7] and recently introduced Java, parallel programs are

written. MPI provides wide range of inbuilt functions that enable user efficient data

transfer among the processors. MPI also provides standard timer functions that are used in

measurement of computational time for particular code segments. The performance of the

parallel codes is measured by computing Speedup, Efficiency and MFLOPS.

2.3 PARAM 10000 ARCHITECTURE OVERVIEW

PARAM 10000 has a MIMD distributed memory machine architecture, developed by

Center for Development of Advanced Computing (C-DAC) (see Fig. 2.1). The hardware

configuration of supercomputer PARAM 10000 consists of following major components

[8]-

PARAMNet

Compute Nodes

Fast Ethernet

File Server Node

Units for ensuring uninterrupted power supplyCooling system h

Fig. 2.1 Major hardware components of the PARAM 10000 system

7

2.3.1 Nodes

Supercomputer PARAM 10000 has altogether four nodes out of which three nodes are

categorized as compute nodes and the fourth one is categorized as a file server node. The

roles and the configurations of these two categories of nodes are given below.

2.3.1.1 Compute Nodes

These nodes are mainly used for computation. Each of these nodes has the following

configuration:

• Two UltraSparc II 64-bit RISC CPUs of 400 MHz each, with 2 MB external cache

per CPU

• 512 MB main memory expandable to 2 GB

• Two Ultra SCSI HDD of 9.1 GB each

• One internal 32x CD-ROM drive

• One 1.44 MB floppy disk drive

• One PGx 32 graphics card

• Two 360 W hot swap power supplies

• One PARAMNet CCP2 Card

• One 10/100 Fast Ethernet Card

• Solaris 2.6 (upgradable to Solaris 7) with Server License (unlimited user license)

2.3.1.2 File Server Node

This node is used as the main storage server for all the programs and data of the users of

the system. That is, it acts as a host to the compute nodes for the I/O requirements of the

users. The file server node has the following configuration:

• Two UltraSparc II 64-bit RISC CPUs of 400 MHz each, with 2 MB external cache

per CPU

• 1 GB main memory expandable to 2 GB

• Four Ultra SCSI HDD of 9.1 GB each

• One internal 32x CD-ROM drive

• One 1.44 MB floppy disk drive

• One PGx 32 graphics card

• One internal 4 mm 12/24 GB Tape Drive

• Two 360 W hot swap power supplies

• One PARAMNet CCP2 card

• One 10/100 Fast Eathemet card

• One 21 ” Color Monitor

• Solaris 2.6 (upgradable to Solaris 7) with Server License (unlimited user license)

2.3.2 Interconnection Networks

PARAM 10000 has the two interconnection networks namely PARAMNnet and Fast

Ethernet.

2.3.2.1 PARAMNet

C-DAC’s PARAMNet is conceived as a high-speed switched network for Cluster

computing. PARAMNet is based on the technology of packet communication and

switching with PARAM 10000. The flexibility of PARAM architecture enables user to

unbundle the communication network to form a geographically distributed high-speed

LAN. PARAMNet LAN is centered around C-DAC’s PARAMNet Switch. This is an 8-

port bi-directional switch with 4 links and aggregate throughput of 400 Mbps. This

network is based on wormhole packet switch from INMOS and can be used as general

purpose network, as well as high speed, low latency network using light weight protocols.

2.3.2.2 Fast Ethernet

Ethernet provides well-established solution for a high-speed reliable communication

network to interconnect powerful nodes/workstations for building PARAM 10000. This

100 Mbps full duplex network is mainly used as an administrative network. All the

standard services such as NFS, NIS+, etc. are served over this network. This is a standby

network.

9

2.4 FINITE ELEMENT METHOD

Finite element method is one of the efficient tools for numeric solution of several

engineering problems. In the past few decades this method has developed enough and

now various complex problems can be easily analyzed using finite element method [9-

11]. In finite element method, problem domain is discretized into simple geometric

shapes called as elements. To achieve detailed and more accurate solution of the desired

problem, more numbers of elements are normally preferred. It is quite natural that as the

number of elements increases the problem size also increases. Hence this method is

generally implemented in form of computer codes and they are widely used for solving

complex problems. Literature [12] shows that some problems are so large that their

solution on conventional computer becomes very time consuming. According to

literature, major portion of the time in computational finite element analysis is consumed

in the process of solving system of linear equations generated in finite element solution

procedure. Hence parallel solvers are developed and employed in finite element codes.

2.5 PARALLEL SOLVERS

The main aim of using parallel solver is to trim down the computational time in the finite

element analysis. The computational time in any computer code can be measured using

timers [13]. Wadleigh and Crawford [14] discussed the computational time measurement

using timers. Authors also discussed different types of timers. Depending on their

properties, like accuracy, overheads, resets, etc., the suitability of these timers was also

presented. Authors also discussed the different components of computational time (Real

time, User time, CPU time, and System time). Authors also gave few examples

explaining the factors those affect these components of computational time.

There are various methods available to solve system of linear equations [15, 16] but very

few of them are used in development of parallel solvers. Thiagarajan and Aravamuthan

[17] had discussed the implementation of High-performance FORTRAN on 32-node

Pentium II 350 MHz Linux Clusters. Authors used two different parallelization strategies

on preconditioned conjugate gradient solver for linear elastic finite element analysis.

Authors discussed various components of computational time like CPU time. Real time,

Communication and Synchronization time (C&S). Authors showed that, variation of Real

10

time with increasing number of processors is not smooth. Authors found that initially

Real time starts reducing with increase in number of processors, but after certain number

of processors, the Real time starts increasing. The number of processors at which the

measured Real time is minimum was called as optimal number of processors. Authors

concluded that this optimal number of processors depends on the problem size. After

comparing CPU and C&S time, authors concluded that there is even balanced in the time

spent in CPU and C&S time at optimal number of processors. Authors also discussed the

performance of developed code by measuring the Speedup based on CPU time and Real

time. Authors found that the CPU time Speedup constantly increases and shows linear

variation that keeps up with ideal Speedup, whereas the Real time Speedup increases

curvilinearly. Authors also measured performance of their code by calculating the

MFLOPS based on CPU time. Authors found that MFLOPS increases with increase in

number of processors.

Khan and Topping [18] presented a modified parallel Jacobi-conditioned conjugate

gradient method for solution of linear elastic finite element system of equations. Authors

discussed and implemented element-by-element and diagonally conditioned approaches

on distributed memory MIMD architectures. Authors analyzed two finite element

domains discretized using constant strain triangular elements (CST) resulted in 934 and

1294 degrees of freedom. Authors solved these problems over a pipeline of 14 transputers

by changing the number of processors from 3 to 14 and the obtained time variation was

presented. Authors also presented results of various components of computational time

like parallel computational time (tParr), average time spent by each processor for

performing calculation (tcai), average time spent by each processor for performing

communication (tcomm) and the ratio of tcai I tcomm- Authors found that tcaic reduces with

increase in number of processors and tcomm increases with increase in number of

processors. Authors also found that ratio tcaic / tcomm reduces with increase in number of

processors. Authors also measured the Speedup and Efficiency of the code and found that

Speedup increases and Efficiency decreases with the increase in number of processors.

Authors also plotted a curve between ratio tcaic / tcomm and Efficiency and found that the

ratio tcaic I tcomm increases with increase in Efficiency.

Mahinthakumar and Saicd [19] presented a hybrid MPI-OpenMP model of an implicit

finite clement application using FORTRAN as programming language. Authors also

11

compared this model with pure MPI, OpenMP model on four parallel architectures.

Authors found that execution time reduces with increase in number of processors for all

four parallel architectures. Authors also measured MFLOPS for all four cases and found

that MFLOPS increases with increase in number of processors for pure MPI model as

well as hybrid MPI-OpenMP model.

Danielson and Namburu [20] presented non-linear dynamic finite element analysis on

three supercomputers namely CRAY T3E, IBM SP, and SGI ORIGIN 2000. Authors

used FORTRAN90-MPI combination for code development. Authors used non-blocking

communication mechanism for data transfer among the processors. Authors carried out

their analysis on few to hundreds of processors and found that CPU time reduces with

increase in number of processors for all three supercomputers. Authors achieved good

Speedup (close to Ideal Speedup) for all three supercomputers.

Sziveri and Topping [21] presented finite element analysis of transient dynamic problems

using MPI on MIMD computer architectures. Authors adopted C programming language

and non-blocking communication mechanism to carry out their analysis on different

machines running on SUN’s Solaris operating system with the 10 Mbps connection

network. Authors discussed how the user activities affect the computational time. In this

article, authors presented the results based on Real time. To minimize the effect of user

activities, authors carried out their analysis when there were fewer user activities. In spite

of taking all the possible measures, authors got the discrepancy in the computational time

results. Therefore repeatedly measurements were taken and the extreme results were

omitted. The averages of sensible computational time results were taken for the further

course of action. Authors further discussed that disturbance created by users could be

prevented by booting the machine into a different state. In such machine state, the general

system activities could be restricted as well as network and user processes also totally

excluded.

King and Sonnad [22] presented a element-by-element approach along with

preconditioned conjugate gradient solver for solving system of equations arising in finite

element analysis. Authors used loosely coupled array of processors (LCAP) parallel

computer. Authors found 90% efficiency for 20 processors. Authors also found that as the

number of processors increases, the efficiency of the solver decreases. Authors also

12

discussed the advantage of clcmcnt-by-elemenl approach over the direct solution

algorithm on sequential computer.

Chu et al. [23] presented parallel matrix inversion on hypercube multiprocessors. Authors

employed Gauss-Jordan inversion technique with column exchanges. Authors found that

the computational time reduces with increase in the number of processors. Authors used

double precision FORTRAN77 language for programming and analyzed few data sets on

8x8 sub cube grid consist of 64 Intel iPSC/860 machines having 40 MHz speed. Authors

also compared sequential Gauss elimination technique with sequential Gauss-Jordan

technique.

2.6 FINITE ELEMENT ANALYSIS ON PARAM 10000

In the area of finite element analysis, very little work has been carried out using

supercomputer PARAM 10000. Most of the work includes static linear elastic finite

element analysis only.

Kant and his associates [24-26] presented finite element analysis of composite materials

using supercomputer PARAM 10000. Authors used parallel Cholesky solver to determine

the solution of linear equations using Master-Slave approach. Ramesh and Shah [27]

developed a parallel solver using a Preconditioned Conjugate Gradient technique for

finite element analysis. Authors also used Master-Slave approach. Kant et al. [28]

developed a parallel solver using Conjugate Gradient technique and the results obtained

were compared with the results obtained by parallel Cholesky solver. Authors found that

the Cholesky solver is faster than Conjugate Gradient solver in context of computational

time. According to Kant et al. [28], Conjugate Gradient method, which is an iterative

technique, was found to be more useful for the large size problems. Shall and Ramesh

[29] presented fracture analysis software FRACT2D to determine the Stress Intensity

Factor (SIF) of the cracked structures developed using finite element method on parallel

supercomputer PARAM having MIMD architecture that uses transputers T805 as a

processor. Authors used Cholesky method for analysis of linear equations generated in

finite element analysis. Authors found that computational time reduces with increase in

number of transputers employed for the analysis.

13

Rao [30] presented MPI based non-linear implicit transient dynamic analysis on

supercomputer PARAM 10000. Combination of three formulations for domain

decomposition in finite element method and linear preconditioned conjugate gradient

technique was adopted to solve large-scale problems in structural mechanics. Rao et al.

[31] developed Software for PArallel Non-linear Dynamic ANalysis (SPANDAN) on

supercomputer PARAM 10000 using MPI. Authors used parallel overlapped domain

decomposition approach in their code and compared with conventional non-overlapped

domain decomposition approach and found that their algorithm is superior.

Most of the parallel solvers mentioned above were developed for direct method of

solution of system of linear equations and using FORTRAN77 as programming language.

2.7 PRESTRESSED CONCRETE

In prestressed concrete members, stresses are induced during the construction in such a

way that they can resist stresses caused by externally applied loads. Prestressed concrete

structural members are widely used to achieve high strength at lower self-weight.

Prestressed concrete is most suitable for long span structural elements like beams and

girders, where larger bending moment results in greater depth of beam or girder [32, 33].

Broadly there are two methods of prestressing namely Pre-tensioning and Post

tensioning. In Pre-tensioning, the prestressing tendons are tensioned before the concrete is

placed while in Post-tensioning hardened concrete is stressed by applying external forces.

In the post-tensioned concrete beams, a duct is formed inside the beam and prestressing

cable is kept inside this duct. Once the concrete gets harden, prestressing cable is stressed

and anchored at the end of beam that induces internal stresses in the concrete beam. The

stress distribution inside the post-tensioned concrete beam is very complex, especially

near the end of beam where prestressing cable is anchored. This zone is called as

Anchorage Zone [32].

In the past, few researchers attempted to analyze stress distribution in anchorage zone in

post tensioned concrete beam using different techniques, which include analytical

techniques [34-37], experimental methods [38-41] and numerical methods [42, 43].

14

Guyon [34] analyzed the anchorage zone using elasticity equations assuming the beam as

end-loaded-semi-infinite strip as two-dimensional problem. The length of anchorage zone

was considered equal to the depth of the beam. Som and Ghosh [35] made a similar

attempt by treating it as a two-dimensional plane stress boundary value problem. Authors

used the Airy’s function for their analysis and the stress function was expressed in the

form of Fourier series. The obtained results were quite similar to the findings of the

Guyon [34]. Iyengar and his other associates [36, 37] analyzed the problem of anchorage

zone using the equations of elasticity considering problem as two-dimensional and three-

dimensional. Authors carried out the analysis for concentric as well as eccentric

prestressing forces and compared the results with the available literature.

Some researchers also carried out experimental investigation of the anchorage zone.

Christodoulides [38, 39] conducted actual tests on the concrete block along with two-

dimensional and three-dimensional experimental studies using photoelastic bench.

Zielinski and Rowe [40] presented results of surface strains measured on the concrete end

block subjected to concentric prestressing forces. On the basis of their results, authors

gave an expression to calculate the magnitude of the bursting tensile force (Fbst) for

different values of k (ratio of loaded area and cross-sectional area of the beam). The

modified version of this expression, by introducing factor of safety, was adopted in the

Indian Standard Code IS: 1343-1980 [41]. The effect of Poisson’s ratio (v) and

eccentricity (e) of prestressing forces (Pk) over Fbst was not included in the given

expression.

Yettram and Robbins [42] investigated anchorage zone stresses considering it as a three-

dimensional problem. Authors used finite element analysis to determine the anchorage

zone stresses. Their investigation did not prove the occurrence of spalling zone. Recently,

Byung-Wan Jo et al. [43] investigated the anchorage zone stresses by considering effects

of various parameters namely cable inclination, position of anchor plate, and the

modeling methods. Authors also carried out their analysis using finite element method

considering the problem as two-dimensional as well as three-dimensional and found that

the three-dimensional analysis gives slightly smaller values of stresses as compared to

their two-dimensional analysis. Authors suggested to adopt the results of two-dimensional

analysis to ensure the safety in the design.

15

2.8 ENERGY ABSORBING DEVICES

Energy absorbers have an important role to play in the improvement of aircraft

crashworthiness. In crashes of light fixed wing and rotary wing aircraft and transport

aircraft impact, the loads are usually low enough to be survivable by the occupants if

some measures are taken to provide improved protection through the use of energy

absorbing devices. Areas in which these devices may be applied include the landing gear,

the bottom of the fuselage, the seats and the mountings for massive structures such as

helicopter transmissions [44, 45].

The important characteristics of energy absorber are the specific energy absorption

capacity per unit weight of device or system, the efficiency of the stroke, the stroke to

length ratio, the reliability, the repeatability, the ability to sustain rebound loads, and the

cost. In specific application it is desirable to optimize the design in the sense that some

desired combination of low cost, low weight, small size and high performance is

achieved. The understanding of the characteristics of a particular energy absorbing device

is required to accomplish this. Energy absorbing devices are classified into three general

categories according to their primary mechanism used for the absorption of energy. These

are material deformation, extrusion and friction. These classifications made on the basis

of the primary energy absorbing mechanism. In many devices, there are more than one

energy absorbing mechanism operative but, in general, one is dominant.

Deforming tubes are deformable elements, which lend themselves to a wide variety of

uses as energy absorber. The tubes can be flattened, made to turn inside out, made to

expand, made to contract, made to change in cross-sectional shape, made to fold or spilt

and curl up. The mechanism of energy absorption is plastic deformation of tubes,

therefore to understand their deformation process both geometric and material

nonlinearities should be considered. Experimental and computational study of

deformation of metallic tubes was carried out in detail especially by Gupta and his

associates in last few years [47-58] and by other researchers [59-62].

An investigation into the energy absorbing characteristics of the metallic circular, square

and rectangular cross-section hollow tubes of aluminium and mild steel was carried out

by Gupta [46]. Gupta carried out experiments to study the large deformation process of

16

several tube specimens oriented and loaded in axial as well as lateral directions. The

deformation process was also analyzed using commercial software FORGE2 to study

their collapse mechanisms. Various results obtained from computational study were

compared with the corresponding results obtained from experimental study.

Study of collapse of rectangular and square metallic tubes between flat platen was carried

out by Gupta et al. [47-49]. Authors used aluminum as well as mild steel tubes to study

their energy absorbing capacity. Compression process of several tubular cross sections

was analyzed experimentally as well as computationally. Experimental results obtained

were compared with their computational counterparts obtained using commercial

software FORGE2. A finite element model was presented and collapse mechanism of

these tubes was studied. Effects of parameters like friction factor, wall thickness and

shape of tube on collapse mechanism was also studied.

A detailed study on lateral compression of aluminium and mild steel round tubes between

two rigid flat platens was presented by Gupta et al. [50-52]. Experiments were carried out

on several tubular specimens with different diameter to thickness ratios and deformation

histories along with load-compression curves were presented. A finite element model for

computational study was proposed and used in computational study carried out using

commercial software FORGE2. Experimental and computational results were compared

and discussed. Deformation mechanism of round tubes and effects of process parameters

on deformation mechanism was also presented and discussed.

A study on fold formation in axisymmetric deformation of round tubes was presented by

Gupta et al. [53-55]. Experimental and computational study was carried out on aluminium

and mild steel tubular specimens with different diameter to thickness ratios. The process

of fold formation was studied and described with the help of computational model

analyzed using commercial software FORGE2. Various results like history of

deformation, load-compression curves, energy absorbing capacity and other were

presented in details. Effects of process parameters on process of fold formation were also

presented. Recently Gupta and Nagesh [56] presented experimental and numerical studies

ol collapse of thin aluminum tubes having circular cross section under axial compression.

Author used commercial software ANSYS for their study. Authors carried out parametric

17

study for analyzing collapse mechanism by changing various geometrical properties and

material properties.

Sckhon et al. [57, 58] presented a study on external inversion of round tubes over a

circular die. Three aluminium specimens were studied experimentally as well as

computationally. Process of tube inversion was presented in details with the help of

deformed shapes and contours of nodal velocity, strain-rate and strain at various stages of

deformation. Load-compression curves and energy-compression curves were also

presented and discussed in details. The effect of friction between die and tube interface on

energy absorbing capacity was also discussed and presented.

Sun and Yang [59] presented a finite element code for simulation of inversion of thin

tubes subjected to axial loading. Authors considered material as rigid plastic and flow

formulation was adopted for the code development. Authors also carried out experiments

on two specimens to obtain the deformed shapes and load-compression relationship. The

experimental load-compression relationship was compared with the corresponding load

compression relationship obtained from the code.

Reid [60] presented deformation mechanism of different circular and square metal tubes

used as energy absorbers. Progressive buckling, tube inversion and splitting phenomena

in axial compression of circular tubes are also discussed in this literature.

Guillow et al. [61] presented axial compression of thin walled aluminium tubes. Authors

carried out experiments on 70 tubular specimens with different diameter to thickness

ratios. Authors studied collapse modes for all specimens and found that axisymmetric and

nonsymmetric modes lie on a single curve. The authors also discussed the effect of

density of polyurethane foam filling in aluminium tubes on crushing force.

Hosseinipour and Daneshi [62] presented analysis of axial compression of thin walled

steel grooved tubes in context of energy absorption and mean crushing load. Authors

performed experiments and obtained load displacement curves. Authors also presented

theoretical formulations for predicting the energy absorbing capacity and the mean

crushing load. Authors found good agreement between theoretical results and

experimental findings.

18

2.9 FEM IN LARGE DEFORMATIONS

Large deformations occur at many places and have wide area of applications. It mainly

covers metal forming, crashworthiness analysis, industrial manufacturing, impact

analysis, etc. There are several mathematical methods available to analyze such

processes. They include the slab method, the slip-line field method, the viscoplasticity

method, upper bound and lower bound technique, Hill’s general method, and the most

recent method is the finite element method [63]. All these methods are approximate

methods of analysis and still research is going on to develop a more accurate method to

analyze such a complex phenomena.

Analysis of large deformation process is a complex task. It is mainly because the strains

developed are large in magnitude and the corresponding stresses are in the plastic region

and both are dependent upon many process parameters. Finite element method is quite

effective to carry out general structural analysis as well as the large deformation analysis.

This method can be easily implemented on computers, which is one of the major

advantage of this method. In the application of FEM to large deformation process, there

are two formulations available, namely flow formulation and solid formulation. Flow

formulation in FEM is widely used in analyzing the large deformation processes. The

solution procedure is stepwise. The entire deformation is divided into sub-steps of certain

step size. In each step, the geometry of the problem domain changes. Therefore such type

of analysis becomes very complex. Numerous calculations are involved in obtaining the

solutions of each sub-step. Therefore, the entire solution process also becomes very time

consuming.

Lee and Kobayashi [64] presented matrix method for analysis of rigid plastic large

deformation problems. Using this method Authors also solved two problems of simple

compression of cylinders as well as bore expanding and flange drawing categorized under

axisymmetric problem and plane strain problem respectively. Lee and Kobayashi [65]

presented detailed studies of the deformation of a solid cylinder. The cylinder was axially

compressed till 33% reduction in height was achieved. Authors used finite element

method for their analysis. Various obtained results having load displacement curves and

contours of strains and stresses were presented. Authors also presented compression of

cylindrical specimen between fiat parallel dies categorized under plane strain conditions.

19

Kobayashi [66] presented experimental study on compression of steel solid cylinders and

rings. The relationship between friction at the interface, deformation characteristics and

fracture of specimen was discussed. The deformation histories of the cylinder and ring

specimens were also presented.

Petersen et al. [67] presented friction in bulk metal forming by comparing general friction

model and constant friction law. Authors carried out experimental study of upsetting of a

semi-tapered specimen and ring compression test to validate their numerical

investigation. Axisymmetric large deformation behavior of aluminium and low carbon

steel short cylinder of various diameters and heights was experimentally carried out by

Gupta and Shah [68]. Authors studied histories of deformation of cylindrical surface and

found that the profile of a deforming specimen can be approximated by an arc of a circle.

The finite element formulation given by Kobayashi et al. [63-65] could be used for

analyzing two-dimensional as well as three-dimensional large deformation problems. It

also allows us to carry out the thermo-viscoplastic analysis. Authors also developed a

computer program Simple Plastic Incremental Deformation (SPID) for analyzing the two-

dimensional plane strain and axisymmetric problems. SPID was written in FORTRAN77

language and capable of handling a finite element model with maximum 100 nodes. This

program is executable on any conventional computer.

There are some other softwares existing that can be used for carrying out analysis of large

deformation process. FORM2D is also one of the software capable of analyzing the large

deformation problems. This software is developed by Singh [69] and is based on the

formulation given by Kobayashi et al. [63]. In addition to these, some commercial

software are also available, namely FORGE2 [70], ANSYS [71] and others. These

commercial softwares operate on different Operating Systems (OS) compatible on

conventional computer.

2.10 LARGE DEFORMATIONS AND PARALLEL COMPUTING

Very little work has been done in the area of application of parallel computing technique

to analyze large deformation process. Kim and Im [72] and Cheon et al. [73] presented

modified block Jacobi preconditioning technique for analyzing three-dimensional metal

20

forming problems. Authors also used domain decomposition approach in their solver.

Authors carried out their analysis on supercomputer CRAY T3E 900. Authors compared

their computational time results with the results obtained from conventional conjugate

gradient method and Jacobi preconditioned conjugate gradient method. Authors found

that the modified block Jacobi preconditioning technique is more efficient than the other

two techniques. Authors also achieved reduced number of Newton-Raphson iterations

during solution convergence when modified block Jacobi preconditioning technique was

used as compared to the other two methods. Authors also presented a numerical

application by analyzing a problem of simple upsetting of cube type work piece of

aluminum AL6061-T4 where material behavior was expressed by expression

cr =35.16f008 MPa. The work piece was compressed with speed of 1.0 mm/s and the

friction factor was considered as 0.1. In their finite element computer code, the material

behavior was considered as rigid-viscoplastic and finite element formulation presented by

Kobayashi et al. [52] was used.

2.11 CLUSTER COMPUTING TECHNIQUE

In past few years Clusters have been emerged as affordable platform for high

performance computing. Advantages of Clusters over the expensive supercomputers are

discussed in details by Sterling [74]. Author discussed the hardware configuration of a

Cluster node, which includes processor, memory, secondary storage and external

interface. Author also discussed Cluster network hardware in form on Local Area

Network (LAN) and System Area Network (SAN). Application programming

environment and software components are also discussed in details. Application of Linux

Cluster for direct numerical simulation of fluid turbulence code was presented by Chun et

al. [75]. Authors used Cluster of 64 PC’s of 2.8 GHz processors and using this setup 40%

reduction in CPU time was achieved by doubling the number of processors.

Cheon et al. [76] developed a PC Cluster (1.6 GHz and 1.0GHz) using LAN (100 Mbps)

each having Linux 2.1 operating system. Authors carried out the same analysis (discussed

above) on this Cluster. Authors used parallel LDU factorization as well as domain

decomposition approach during the analysis. Authors found that the computational time

reduces with the increase in number of PC’s employed for the analysis as well as with the

21

increase in the number of sub-domains used to decompose the whole problem domain.

Authors presented same numerical application as presented in literature [72, 73]

2.12 SUMMARY

In area of structural analysis using finite element method, use of parallel computing

technique is recent and literature shows that parallel solver is needed for effective

implementation of parallel computing technique. From literature it is also observed that

there is not much work reported related to application of parallel computing technique in

FEA. Some research papers are available that show application of parallel computing

technique in linear elastic finite element analysis. Few research papers are also available

that show non-linear and/or dynamic analysis on multiple processor computers. In case of

non-linear finite element analysis, particularly in large deformation problems, use of

parallel computing is scarce. Hence emphasis should be given in development of

generalized finite element code for analyzing large deformation problems on

supercomputers. In order to accomplish this, it is required to develop an efficient parallel

solver that can be used in linear as well as non-linear structural analysis using FEM on

supercomputer. Cluster computing is also one of the emerging areas in the field of

computer sciences. Significant work is needed in this area so that Cluster can become an

efficient and inexpensive alternative to the supercomputers.

CHAPTER 3

DEVELOPMENT OF PARALLEL SOLVERS
FOR SOLVING SYSTEM OF LINEAR

EQUATIONS

3.1 INTRODUCTION

This chapter mainly deals with the development of parallel solver for finite element

analysis to achieve reduction in computational time during the analysis. The chapter starts

with the definitions of the different components of the computational time along with the

developed timer used to measure these. Certain terms, which indicate the performance of

parallel codes, are also summarized in brief. The chapter further discusses three

techniques namely Gauss-Seidel method, Gauss Elimination method, and Matrix

Inversion method used for development of parallel solvers. It also highlights the variation

in computational time and performance of these methods on supercomputer PARAM

10000. A brief study on two communication mechanisms namely Blocking and Non-
Blocking is also presented and discussed. The chapter also presents the comparison of C

and FORTRAN77 programming languages based on their performance for application in

parallel solver development. At the end of the chapter, a modified efficient parallel solver

is introduced and presented.

3.2 COMPONENTS OF COMPUTATIONAL TIME

The main aim of using parallel computing technique is to save computational time.

Therefore it is essential to study different components of computational time. There are

different components of computational time [13, 14], which are used in the present

investigation. The definitions and the possible factors that affect these components are

discussed in the following text.

Real time (RT): Real time can be defined as the wall clock elapsed time for a particular

process. This time differs on multi-user systems where several programs may be running

concurrently. Therefore if one executes some program for some number of data for

several times, then every time the Real time will be different.

User Time (UT): User time is the time spend by the program in executing itself (can be

measured only in UNIX operating system). This time will not change with other system

activities or user activities. Negligible change may be observed for program running

when processor is heavily loaded or the program is dealing with huge data.

23

Total Time (Total): It is the time that is necessary to execute overall process on machine

with multiple processors. In other words, it is time measured from the invocation of

command till its termination. For parallel processes, it is sum of Communication time and

the Calculation time. This component can be measured in terms of Real time (RT) as well

as User time (UT).

Communication Time (Comm): Communication time may be defined as the time

required to transfer the data from one processor to the other processor or processors. The

processor mapping mainly affects the Communication time. This time component also

depends on the data transfer rate between the processors and the machine type. This

component can be measured in terms of Real time as well as User time.

Calculation Time (Cal): Calculation time may be defined as the time required for the

processor in performing the calculation exclusively. In other word it may be defined as

the difference of Total time and Communication time. This time component is purely

dependent on the data size to be handled by processors. This component can be measured

in terms of Real time as well as User time.

System Time (Sys): System time may be defined as the time used by the system in doing

work on behalf of the user (can be measured only in UNIX operating system). In other

words, when user gives command for any execution process, some amount of time is

spent by the operating system in supporting that execution process which is called as

System time.

CPU Time (CPU): It is the summation of User time and System time (can be measured

only in UNIX operating system). It is not necessary that CPU time is equal to Real time,

since little time is also consumed by processor in doing other works in the system or

assigned by different users connected to it.

The timers those are available in standard library return only Real time. To measure User

time, it is required to develop timer that returns the User time. Following example in C

language presents a subroutine of a timer and shows that how it is used to measure the

time involved in certain code segment. With the help of this timer, one can also measure

different components of time during the execution process.

24

Example.

“mclude<time.h^
#include<sys/timcs.h>
double zero = 0.0, tO, tl;
double timer(double t);
main()
/ <
tO = timer(zero);

< code segment being timed >
tl = timer(tO);
printf(“ The User Time = %f\n”, (tl - tO));

}
double timer(double t)

double time_user, time sys, time_cpu;
static double recipcpu, recip_sys;
struct tms buffer;
static long base_sec_cpu = 0, base_sec_sys = 0;
(void) times(&buffer);
if (base_sec_cpu == 0)

recip cpu =1.0/ (double) CLK_TCK;
base_sec_cpu = buffer.tms_utime + buffer.tms_stime;
}

if (base_sec_sys == 0)
{
recip_sys =1.0/ (double) CLK_TCK;
base_sec_sys = buffer.tms_stime;
}

time_sys = ((double)(buffer.tms_stime - base_sec_sys)) ♦ recip_sys -1;
timecpu = ((double)(buffer.tms_utime + buffer.tms stime - base sec cpu)) * recip cpu -1;
time_user = time cpu - time_sys;
retum(time_user);

The above discussed subroutine will return only the User time. It basically measures the

CPU time (time_cpu) and the System time (time_sys), then the User time (time_user) is

calculated by subtracting the System time from CPU time. This is done only to

demonstrate that the other time components like System time or CPU time can also be

measured by using the same subroutine, which could be done by changing few lines of it.

The wall clock elapsed time (Real time) can be measured in similar way by using the

readymade subroutines MPI_Wtime available in standard library of MPI. There are some

other subroutines, like clock and time available in standard C ++ library, which can also

be used for the same purpose, but these standard subroutines will give only the wall clock

elapsed time or Real time.

I'hcrc are few terms that arc used for measuring the performance of the parallel programs

[1,2]. The definitions of these are as follows

Speedup (S): Speedup may be defined as the ratio between the time needed for the most

efficient sequential algorithm to perform a computation (/J and the time needed to

perform the same computation on a machine incorporating parallelism (t).

1 p

Speedup can be categorized under three categories namely Linear Speedup, Ideal

Speedup and Superlinear Speedup.

Efficiency (77): Efficiency can be defined as the percentage ratio of time needed for

sequential algorithm to the product of number of processors P and time needed for P

number of processors for parallel algorithm.

n = -^—xlOO

MFLOPS’. It is the number of floating points operations per second. This has been

evaluated by calculating the number of floating point operations performed and dividing

it by time required to carry out these operations.

All these components involve a term time, which can be Real time or User time.

3.3 NECESSITY OF PARALLEL COMPUTING

To employ the parallel computing technique efficiently in finite element codes, it is very

much essential to study the time elapsed in different processes in a typical FEA. Typical

computer aided FEA can be divided into five distinct processes.

1. Reading input files.

26

2. Memory allocations for various variables involved in analysis.

3. Generation of stiffness equation.

4. Solution of stiffness equation.

5. Post processing calculations involving computations of strains, stresses and

others.

A generalized finite element code was written and the computational time elapsed in the

above mentioned processes was measured by solving a typical problem. Figure 3.1 shows

a time distribution obtained in various processes involved in FEA. It was found that major

portion of the computational time gets consumed in the process of solving stiffness

equation. The third process consumes nearly 1% of Total time, whereas the forth process

lakes almost 99% of the Total lime. The remaining processes have insignificant

contributions toward the overall computational time. It clearly expresses the need of

parallel solver to get quicker solution of stiffness equation.

Fig. 3.1 Computation time expenditure by different processes involved in FEA

3.4 DEVELOPMENT OF PARALLEL SOLVERS

From Fig. 3.1 it is clear and advisable to use parallel computing technique in solving the

stillness equation. Generally the stiffness equation is expressed as a system of linear

equations pl]{A'} = {#}. Matrix [/l] is nothing but the global stiffness matrix, whereas

27

vectors {X} and {B} represent global displacement matrix and global force matrix

respectively. There arc several methods available to solve such system of linear

equations. These methods are categorized under two categories namely Direct methods

and Iterative methods. In Direct methods, the number of computations are always known

and fixed, whereas in Iterative methods, the number of computations are unknown and

one can always find the results with desired accuracy. Methods those are employed for

getting the solution of system of linear equations and development of parallel solvers are

described in following sections. To test the performance of the developed solver, several

data sets taken from linear elastic finite element analysis problem (discussed in chapter 4)

and non-linear finite element analysis problems (discussed in chapter 5) were analyzed.

The global stiffness matrices of these problem are of size 870 x 870, 882 x 882, 1226 x

1226, 1352 x 1352, 2312 x 2312, 3362 x 3362, and 4232 x 4232.

3.4.1 Gauss-Seidel Method

Gauss-Seidel Method (GSM) is an Iterative method so the solution of system of linear
equations can be found of the desired accuracy. In this method, the iterations are carried

out until the desired accuracy is achieved. It is quite natural that as the desired accuracy

increases, the number of iterations also increases correspondingly. Let us consider a

system of linear equations

a, ,xt + al2x2 + a13x3 + • • • + au,x„ = 6,

^2IX1 ^22 X2 + ^23X3 + ”* + &2llXn — b2
^xl+a32x2+a}3xJ+-- + a,„x„ =b3 (3.1)

°„ixi + Mi + a„3x3 + - + = b„

Initially some guess values of solution vector (A'(0)) are assumed. After dividing every

equation by its diagonal element, equation 3.1 can be rewritten as

x,‘" = A _ 6/12
•I 1

_ £11 v(°) _
X A

____"in (0)

"11 "n "11 "1!

X?' = A_ _ 6/21 v(1> _ £21 v(0> _ ____"2n (0)

"22 "22 "22 a22

A'£ = A_ _ "3I r"’
A 1

_ £21 _. ____"in 10) (3.2)
"33 "33 "33 "33

b„ "nl „.(>) "”2 (1) "n.n-1 (0)
A„ - A1 " x2 Xn-I

a nn ann nn "nn

Here xf*,---^0 represent the solution of system of linear equations after first iteration.

These values will be used for the next iteration. The solution for (i+l),h iteration can be

found by expression

xA’ =A. an „0)
A2

"11

"13 (1) _
A3

"11

"in r(0
•*n

"11

xr1’ = A.
"22 a22

"23 „(/) _
A3

"22

"2n («)

"22

A*0 II

2 I 0 1

J5

1

J5

1 1

.('*D _
n

A__
"nn nn $ I

O
§

* 1

ft
a 3 =

1

_ "n,n-l (/)
An-1

"nn

(33)

The generalized iteration formula can be written as

X('^ =BX{,} +C (3.4)

The iterations are carried out until the desired accuracy is achieved. The accuracy is

checked by comparing two vectors X{,) and A'(,+l). The numbers of computations carried

out in entire process can be approximately estimated by the following expression

Number of computations = (3/72)/ (3.5)

29

3.4.1.1 Parallel Implementation

In the development of parallel solver using Gauss-Seidel Method on supercomputer,

column wise data distribution was carried out. Initially all processors were given ranks

starting from zero. Then the data was uniformly distributed to all processors. If uniform

data distribution was not possible, few processors with lower ranks were overloaded with

few columns. A typical uneven data distribution is shown in Fig. 3.2, where the number

of equations and the number of processors are twenty and eight respectively. It can be

observed that four processors with lowermost ranks are overloaded by one additional

equation. Therefore they have to perform more computations as compared to the rest of

the processors. Because of this overloading of data on lower rank processors, the Total
time may get affected to a little extent. The reason for this is the remaining processors

shall remain idle for small duration when the overloaded processors handles the

additional data supplied to them.

Fig. 3.2 Uneven data distribution (column wise) among the processors

Each processor operated columns of its share and evaluated sum that was necessary to

compute the numerical value of each unknown. Then each processor sent this sum to the

master processor and master processor added them to get the new value unknown vector

{A'}'. After this master processor broadcasted new value of unknown vector {jf}' to all

the processors which were used for further calculation. This process continued till current

iteration got completed. After every iteration, all processors checked the accuracy of the

obtained solution by comparing the old values with the new values of the unknown vector

{A'|. If all values of unknown vector {A'} have achieved the desired accuracy, then the

30

master processor printed the results and the program got terminated. The parallel

algorithm is presented in Fig. 3.3.

Global P {Number of Processors}
n {Number of Equations}
My Rank {Rank of the Processor}
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor}
end {Flag indicating ending row number for each processor}
ij,k {Control Variables}
itr {Maximum No. of Iterations}

for all Pi where 0 < i < P do
Set start
Set end

end for
for i = 0 to itr-1

for j = 0 to /7-1
for k = start to end

sum = sum - [A] j t / [A] jj x [X] k
end for
for all Pi where 1 < i < P do

Send sum to Master
end for
if My Rank == Master

Broadcast sum
[X]j = sum
end if

endfor
if MyRank == Master

Calculate [X] j
Check accuracy of [X],

else
if

desired accuracy achieved
then

Terminate process
end if

end if
endfor

Fig. 3.3 Parallel algorithm for Gauss-Seidel Method

31

im
e

(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

?ig. 3.4 Variation in computational time components for GSM solver for data set of size
1226 x 1226

3.4.1.2 Computational Time Results

Figure 3.4 shows variation in different components of computational time obtained for

data set of size 1226 x 1226. Figure 3.4(a) shows that Total time (RT) increases with

increasing number of processors. It can also be observed that Communication time (RT)

is marginally smaller than the Total time. This indicates that the increase in
Communication time is only responsible for increase in Total time with increase in

number of processors. It can also be observed that the Calculation time (RT) reduces with

increase in number of processors. From Fig. 3.4(b), it can be observed that

Communication time (UT) is slightly less than the Total time for all number of processor

(UT). Both the time components increase with the increase in number of processors.

Reduction in Calculation time (UT) can be seen from this figure. Great difference

between Total time (RT) and Total time (UT) as well as Communication time (RT) and

Communication time (UT) can be observed from Fig. 3.4(a) and Fig. 3.4(b) both.

Considerable amount of time is wasted in establishing Real time communication between

the processors. The major part of data communication was performed by MPI_SEND
subroutine. This communication was carried out in sequential way therefore large amount

of time is consumed in this process.

Figure 3.5 shows variation in the Speedup measured in terms of Real time as well as User

time with number of processors. It can be observed that the obtained Speedup is not

encouraging. It is observed that Speedup reduces with increase in processors. Sudden

reduction in Real time Speedup can be observed whereas gradual reduction in User time

Speedup can be seen in Fig. 3.5.

3.4.1.3 Solver Performance

From Tables 3.1(a) to 3.6(a), it can be observed that the Total time increases with the

increase in number of processors for all data sets. The variation in Total time (RT) is very

abrupt and increasing with number of processors. One can find that the contribution of

Communication time towards the Total time is very significant. The variation in

Communication time is also abrupt and continuously increasing with number of

processors. It can be observed that the variation in Calculation time (RT) is abrupt

? J

(a) Computational time variation

Table 3.1 Computational time variation and performance of GSM solver for data set of
size 870 x 870

No. of
processors

Total Comm Cal
Real User Real User Real User

1 917.13 151.42 0.00 0.00 917.13 151.42
2 3636.32 211.26 3290.44 135.01 345.88 76.25

! 3 1372.61 241.06 1254.86 185.77 117.75 55.29
i 4 1668.10 278.55 1573.40 238.69 94.70 39.86
i 5 2433.74 359.31 2356.21 327.60 77.53 31.71

6 2805.05 384.87 2742.56 356.08 62.49 28.79
7 4121.00 484.16 4061.42 456.19 59.58 27.97
8 4786.46 537.93 4690.07 510.79 96.39 27.14

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 2.68 16.24
2 0.11 0.73 5.44 36.47 0.68 11.64
3 0.07 0.58 2.47 19.20 1.79 10.20
4 0.06 0.50 1.43 12.43 1.47 8.83
5 0.08 0.32 1.66 6.39 1.01 6.84
6 0.04 0.25 0.59 4.15 0.88 6.39
7 0.03 0.24 0.49 3.36 0.60 5.08
8 0.06 0.22 0.77 2.78 0.51 4.57

34

Tabic 3.2 Computational time variation and performance of GSM solver for data set of
size 882 x 882

(a) Computational time variation

No. of
i processors

Total Comm Cal
Real User Real User Real User

1 1543.85 590.24 0.00 0.00 1543.85 590.24
i 2 14199.89 809.27 8274.49 497.25 5925.40 312.02
• 3 20844.14 1024.52 19312.89 796.84 1531.25 227.68
! 4 27034.03 1186.78 23874.15 1004.16 3159.88 182.62
: 5 18631.41 1848.62 18308.66 1720.70 322.75 127.92

6 43383.03 2371.09 39410.62 2257.79 3972.41 113.30
; 7 44825.91 2507.37 44525.85 2403.06 300.06 104.31

8 24910.76 2657.27 24604.34 2547.59 306.42 109.68

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.67 17.44
2 0.11 0.73 5.44 36.47 0.72 12.72
3 0.07 0.58 2.47 19.20 0.49 10.05
4 0.06 0.50 1.43 12.43 0.38 8.67
5 0.08 0.32 1.66 6.39 0.55 5.57
6 0.04 0.25 0.59 4.15 0.24 4.34
7 0.03 0.24 0.49 3.36 0.23 4.11
8 0.06 0.22 0.77 2.78 0.41 3.87

Table 3.3 Computational time variation and performance of GSM solver for data set of
size 1352 x 1352

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 2137.52 2096.68 0.00 0.00 2079.51 2054.72
2 5851.95 2091.95 4699.57 1040.07 1152.38 1051.88

i 3 8773.02 2542.75 7592.37 1791.86 1180.65 750.89
: 4 9695.634 2554.486 8085.04 1856.22 1610.59 698.27

5 10720.47 2685.823 10297.43 2036.45 1 423.03 649.37
6 13899.23 2714.16 12355.89 2378.21 1543.34 335.95
7 18486.69 2887.77 17262.76 2452.52 1223.93 435.25
8 20302.83 2960.82 19126.73 2507.44 1176.10 453.38

35

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.63 4.72
2 0.37 1.00 18.26 50.11 1.69 4.73
J 0.24 0.82 8.12 27.49 1.13 3.89
4 0.22 0.82 5.51 20.52 1.02 3.87
5 0.20 0.78 3.99 15.61 0.92 3.68
6 0.15 0.77 2.56 12.87 0.71 3.64
7 0.12 0.73 1.65 10.37 0.53 3.42
8 0.11 0.71 1.32 8.85 0.49 3.34

Table 3.4 Computational time variation and performance of GSM solver for data set of
size 2312 x 2312

(a) Computational time variation

No. of
, processors

Total Comm Cal
Real User Real User Real User

1 10594.34 10398.68 0.00 0.00 10594.34 10398.68
1 2 20674.31 8408.07 14929.01 3101.45 5745.30 5306.62
! 3 24075.27 9084.48 20292.17 5063.53 3783.10 4020.95
I 4 27706.09 9097.57 24739.52 6392.13 2966.57 2705.44
i 5 41956.26 11239.07 35752.82 9197.85 6203.44 2041.22
! 6 61758.57 12787.51 51080.07 10881.29 10678.50 1906.22
i 7 70063.76 13818.01 64693.65 11881.42 5370.11 1936.59

8 78307.23 14848.51 71567.31 12881.55 6739.92 Fl 966.96

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 17.50 17.83
2 0.51 1.24 25.62 61.84 8.97 22.05
3 0.44 1.14 14.67 38.16 7.70 20.41
4 0.38 1.14 9.56 28.58 6.69 20.38
5 0.25 0.93 5.05 18.50 4.42 16.49
6 0.17 0.81 2.86 13.55 3.00 F 14.50
7 0.15 0.75 2.16 10.75 2.65 13.42
8 0.14 0.70 1.69 8.75 2.37 12.48

36

fable 3.5 Computational time variation and performance of GSM solver for data set of
size 3362 x 3362

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 22683.61 22444.38 0.00 0.00 22683.61 22444.38
2 29930.18 16299.98 17278.04 3713.16 12652.14 12586.82
3 33455.98 17639.91 24361.94 5560.41 9094.04 12079.50
4 65716.35 15449.73 58399.71 8403.15 7316.64 7046.58
5 85234.62 17216.30 77902.00 11472.83 7332.62 5743.47
6 69838.11 18031.75 64209.11 12554.55 5629.00 5477.20
7 73974.97 19033.29 68851.43 14132.50 5123.55 4900.79
8 169263.09 21901.75 161449.97 17133.09 7813.12 4768.66

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 15.08 15.24
2 0.76 1.38 37.89 68.85 11.43 20.98
3 0.68 1.27 22.60 42.41 10.22 19.39
4 0.35 1.45 8.63 36.32 5.20 22.14
5 0.27 1.30 5.32 26.07 4.01 19.87
6 0.32 1.24 5.41 20.75 4.90 18.97
7 0.31 1.18 4.38 16.85 4.62 17.97
8 0.13 1.02 1.68 12.81 2.02 15.62

Table 3.6 Computational time variation and performance of GSM solver for data set of
size 4232 x 4232

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 38397.66 38178.03 0.00 0.00 38397.66 38178.03
2 53737.73 29647.70 28136.16 6383.55 25601.57 23264.15
3 57460.65 28692.96 39038.58 10919.19 18422.06 17773.77
4 64550.05 26564.48 50012.16 13134.65 14537.89 13429.83
5 88564.14 30487.54 75100.08 18464.43 13464.06 12023.11
6 176748.32 32763.93 165223.59 22032.00 11524.73 10731.93
7 195356.06 31491.16 182366.97 22141.19 12989.09 9349.97
8 194341.54 36157.57 179727.38 26873.62 14614.16 9283.95

37

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 11.84 11.91
2 0.71 1.29 35.73 64.39 8.46 15.34
3 0.67 1.33 22.27 44.35 7.91 15.85
4 0.59 1.44 14.87 35.93 7.05 17.12
5 0.43 1.25 8.67 25.05 5.13 14.92
6 0.22 1.17 3.62 19.42 2.57 13.88
7 0.20 1.21 2.81 17.32 2.33 14.44
8 0.20 1.06 2.47 13.20 2.34 12.58

Sp
ee

du
p

Sp
ee

du
p

(b) Variation in User time Speedup

Fig. 3.6 Variation in Speedup for GSM solver for various data sets

38

whereas variation in Calculation time (UT) is smooth and reducing with increase in

number of processors. Reduction in Calculation time and increase in Communication time

highlights the requirement of significant enhancement of the communication speed

between the processors. It is immaterial to mention that this Total time increases with

increase in size of data set that makes performance of GSM inadequate.

Reduction in Speedup, Efficiency and MFLOPS with increasing number of processors

can also be seen in Tables 3.1(b) to 3.6(b). This is mainly because of increase in Total

time (RT and UT) with increase in number of processors. Figure 3.6 (a) and (b) shows

variation in the Real time Speedup and the User time Speedup respectively for various

data sets under consideration. It can be seen from Fig. 3.6 (a) that variation in the Real
time Speedup is abrupt and constantly reducing with increase in number of processors for

all data sets. One can also observe that for smaller data set the performance of GSM

sob er is very poor as compared to its performance for higher data sets. In short, the

performance of GSM solver improves with increase in data size. For biggest data size

also, its performance is unacceptable, because Speedup remains less than one. Variation
in User time Speedup for various data sets is shown in Fig. 3.6 (b). It can be observed that
the User time Speedup also reduces with increasing number of processors for data sets of

size 870 x 870, 882 x 882, 1226 x 1226 and 1352 x 1352. For higher data sets of size

2312 x 2312, 3362 x 3362, and 4232 x 4232 the User time Speedup increase initially.

After reaching to a peak value, this User time Speedup starts reducing. It can be observed

that this peak value of User time Speedup is higher for highest data set. It can be

concluded that the User time Speedup would improve with further increase in data size.

Gauss-Seidel Method is an Iterative method therefore required computational time is

directly dependent on number of iterations carried out for getting the solution of desired

accuracy. Table 3.7 shows number of iterations carried out in finding the solution of

various data sets under consideration. It can be observed that solution of few data sets

namely 870 x 870, 1226 x 1226 and 1352 x 1352, were found. Number of iteration

required to achieve 90% accuracy in solution was less than 1.5 times of size of individual

data set. For data set of size 1352 x 1352, the number of iterations are even less than the

actual data size itself. For rest of the data sets, solutions with 90% accuracy are not found

even after carrying out iterations three times (for data set of size 3362 x 3362 and 4232 x

39

4232) and five time (for data set of size 882 x 882 and 2312 x 2312) of size of data sets.

Therefore, one can conclude that there is no direct relationship between number of
iteration and size of data. Number of iterations purely depends on the type of data to be

handled and the initial guess.

Table 3.7 Number of iteration for various data sizes carried out by GSM solver

Data size No. of iterations Status
870 x 870 1083 Solution found
882 x 882 4411 Incomplete

1226 x 1226 1790 Solution found
1352x 1352 1803 Solution found
2312 x2312 11560 Incomplete
3362 x 3362 10087 Incomplete
4232 x 4232 12697 Incomplete

3.4.2 Gauss Elimination Method

Gauss Elimination Method (GEM) falls under the category of Direct method of solving

system of linear equations. It reduces the original matrix of system of linear equations to

an equivalent upper triangular matrix, which can be solved by method of back

substitution. Let us consider a system of linear equations

^11^1 + &12X2 + &13X3 + ’'' + ainXn — ^1

a2lXl 4" ^22X2 + ^23*3 + * *' &2nXn — ^2

^31'^1 + ^32^2 + &33X3 ^3nXn — ^3

+ an2X2 + an3X3 + ’ ’ * + Vn = bn

Equation 3.6 can be rewritten in the form of augmented matrix

an ^13 by
^21 a22 £7,. • •’ a2n bi
*31 a32 a33 * •• a3n b.

“.A b„

(3.6)

(3.7)

40

To eliminate x, term from second equation, first equation was multiplied by factor

- Uyjau and then added to the second equation. Similar procedure is followed on rest of

the elements in the lower triangle of given matrix. Equation 3.7 will become

"h *12 *13 • •• *l» b>

0 * 22 *'23 b\

0 0 *'33 • " *’3n b\

0 0 0 • b'„

(3-8)

The values of unknown vector {X} can be found out by method of back substitution. The

number of computations carried out in Gauss Elimination Method can be roughly

estimated by expression

Number of computations = n2 (3.9)

Fig. 3.7 Uneven data distribution (row wise) among the processors

41

3.4.2.1 Parallel implementation

For parallel implementation of GEM on supercomputer, row wise data distribution was

carried out. Initially the range of data to be handled by each processor was decided. If

data distribution was not even, then the remaining data was distributed to the processors

with lower ranks. Figure 3.7 shows a typical uneven data distribution among the

processors. Here the number of equations and the number of processors are twenty and

eight respectively. It can be observed that the four processors with lowermost ranks will

be overloaded by one additional equation. Therefore those four processors have to
perform more computations as compared to the rest of the processors.

Global P {Number of Processors}
n {Number of Equations}
MyRank {Rank of the Processor}
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor}
end {Flag indicating ending row number for each processor}
i {Variable indicating current row}

for all Pi where 0 < i < P do
Set start
Set end

end for
for i = 0 to n-1

Set diagonal element of [A], = 1.0
[B] i = [B] ,/[A] ii
for all Pi where 0 < i < P do

Find the Rank of current row
If MyRank = Rank

Broadcast current row
Broadcast [B] ।

end if
end for
for j = i to end

Change non-diagonal element of [A], = 0.0
Change elements of matrix [B] j

end for
end for
for i = end to start

Compute [x] j
end for

Fig. 3.8 Parallel algorithm for Gauss Elimination Method

42

The operations were started from first row and stopped at last row. Initially the diagonal
element of current row was converted to unity, then the elements of lower triangle were
converted to zero by every processor simultaneously. When the complete matrix reduced

to upper triangular matrix, then the unknowns were evaluated by method of back

substitution. This process is data dependent and the entire unknowns cannot be evaluated

simultaneously. Therefore the processor with highest rank started this process. It

evaluated all the unknowns of its share; thereafter broadcasted them to all the processors,

which were utilized by the other processors to evaluate the unknowns of their share.

Figure 3.8 shows the parallel algorithm for this method.

3.4.2.2 Computational Time Results

Figure 3.9 shows variation in different components of computational time obtained for

data set of size 1226 x 1226. Figure 3.9(a) shows variation in different components of

computational time measured in term of Real time. It can be observed that the Total time

remains nearly same when one to four processors were employed to obtain the solution.
Sudden increase in the Total time can be observed between the four and five processors.

Thereafter the marginal increase in Total time can be seen. Communication time curve

shows gradual increase in Communication time with increase in number of processors.

Calculation time variation follows the similar pattern that of Total time. Calculation time

curve lies just below the Total time curve for all processors. It can be observed that the

subroutines MPI_SEND and MPI_BCAST are equally used for the data communication.

In the last stage of this method, the unknowns are calculated by method of back

substitution. At this point of time, only one processor remains active, while other

processors remain idle because at this juncture they have insufficient data to evaluate

unknowns of their share.

Figure 3.9(b) shows the variation in different components of computational time

measured in terms of User time. It can be observed that Total time reduces with increase

in number of processors. Drastic reduction can be observed from one processors to four

processors. After four processors, the reduction in Total time is slow and insignificant.

Communication time (UT) is negligible at every number of processors. Therefore

Calculation time and Total time are almost equal.

43

Ti
m

e
Ti

m
e

(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

Fig. 3.9 Variation in computational time components for GEM solver for data set of size

1226 x 1226

44

Figure 3.10 shows variation in the Speedup calculated using Real time as well as User

time. It can be seen that as number of processors increases the Real time Speedup
reduces. Sudden reduction in Real time Speedup can be observed between four and five

number of processors whereas User time Speedup increases with increase in number of

processors up to four processors. There is sudden drop in User time Speedup between

four and five processors. Maximum Speedup of approximately 12 can be seen at eight

number of processors which is greater than Ideal Speedup.

3.4.2.3 Solver Performance

From Tables 3.8(a) to 3.13(a), it can be observed that the variation in Total time (RT) is

very abrupt. It remains almost constant from one processor to four processors for all the

data sets under consideration. There after it suddenly increases. After four processors,

Total time (RT) starts increasing with increase in number of processors. It can be

observed that Total time measured in term of User time reduces with increase in number

of processors. The variation in Communication time is quite similar to the variation in
Total time. Communication time measured in term of Real time as well as User time

increases with increase in number of processors. It can be observed that Calculation time

reduces with increase in number of processors. Overall performance of GEM is good and

can be improved further by adopting higher communication speed.

Figure 3.11(a) shows variation in the Real time Speedup achieved by GEM for different

data sets. It can be observed that Real time Speedup is almost constant from one to four

number of processors for all the data sets under consideration. After four number of

processors, the Real time Speedup variation is abrupt and its values is less than one.

Variation in User time Speedup achieved by GEM for all data sets under consideration is

shown in Fig. 3.11(b). It can be observed that the User time Speedup increases linearly

from one to four number of processors. Thereafter, the increase is User time Speedup is

abrupt. It can also be observed that for higher data size, User time Speedup is high as

compared to the User time Speedup of low size data sets. It can be concluded that the

performance of GEM increases with increase in data size. Maximum User time Speedup

obtained is 35.63 at eight number of processor for the highest data set tmder

consideration.

45

1 2 3 4 5 6
No. of processors

7 8

Fig. 3.10 Speedup achieved by GEM solver for data set of size 1226 x 1226

(a) Computational time variation

Table 3.8 Computational time variation and performance of GEM solver for data set of
size 870 x 870

No. of
processors

Total Comm Cal
Real User Real User Real User

1 60.15 59.28 0.02 0.00 60.13 59.28
2 63.96 16.55 1.37 0.33 62.59 16.22
J 64.73 9.46 2.15 0.28 62.58 9.18
4 65.78 6.55 2.54 0.37 63.24 6.18
5 69.79 6.8 4.79 1.09 65.00 5.71
6 71.15 6.03 4.96 0.74 66.19 5.29
7 117.05 11.42 23.45 2.73 93.60 8.69
8 105 7.04 27.02 1.90 77.98 5.14

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.48 5.56
2 0.94 3.58 47.02 179.09 5.15 19.92
3 0.93 6.27 30.97 208.88 5.09 34.84
4 0.91 9.05 22.86 226.26 5.01 50.33
5 0.86 8.72 17.24 174.35 4.72 48.47
6 0.85 9.83 14.09 163.85 4.63 54.67
7 0.51 5.19 7.34 74.16 2.82 28.86
8 0.57 8.42 7.16 105.26 3.14 46.82

46

(a) Computational time variation

Table 3.9 Computational time variation and performance of GEM solver for data set of
size 882 x 882

No. of
processors

Total Comm Cal
Real User Real User Real User

: 1 219.34 216.86 0.00 0.00 219.34 216.86
, 2 116.88 110.17 1.11 0.03 115.77 110.14
' 3 84.12 75.30 1.96 0.04 82.16 75.26
1 4 66.71 57.27 2.09 0.12 64.62 57.15
i 5 97.55 47.77 11.68 0.21 85.87 47.56
i 6 99.29 40.86 8.46 0.25 90.83 40.61
1 7 86.49 35.44 7.29 0.32 79.20 35.12
1 8 82.51 31.55 10.49 0.44 72.02 31.11

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.46 5.55
2 1.88 1.97 93.83 98.42 5.13 19.27
3 2.61 2.88 86.92 96.00 5.06 35.33
4 3.29 3.79 82.20 94.67 4.95 49.92
5 2.25 4.54 44.97 90.79 4.67 50.21
6 2.21 5.31 36.82 88.46 4.61 54.34
7 2.54 6.12 36.23 87.42 4.59 66.95
8 2.66 6.87 33.23 85.92 4.49 64.44

Table 3.10 Computational time variation and performance of GEM solver for data set of
size 1352 x 1352

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 240.52 233.96 0.00 0.00 240.52 233.96
2 276.84 63.61 4.09 0.50 272.75 63.11
3 260.12 33.47 7.76 0.83 252.36 32.64
4 259.93 22.22 7.43 0.99 252.50 21.23
5 833.06 53.7 405.19 6.83 427.87 46.87
6 659.54 24.56 107.33 3.32 552.21 21.24
7 536.04 23.99 112.46 4.53 423.58 19.46
8 469.2 17.24 143.79 3.27 325.41 13.97

47

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.14 5.29
2 0.87 3.68 43.44 183.90 4.47 19.44
3 0.92 6.99 30.82 233.00 4.75 36.95
4 0.93 10.53 23.13 263.23 4.76 55.65
5 0.29 4.36 5.77 87.14 1.48 23.03
6 0.36 9.53 6.08 158.77 1.87 50.35
7 0.45 9.75 6.41 139.32 2.31 51.55
8 0.51 13.57 6.41 169.63 2.64 71.73

Table 3.11 Computational time variation and performance of GEM solver for data set of
size 2312 x 2312

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 1685.81 1178.95 0.00 0.00 1685.81 1178.95
2 1172.75 301.04 16.70 0.07 1156.05 300.97
3 1177.77 144.06 21.72 0.09 1156.05 143.97
4 1214.47 93.82 33.28 0.13 1181.19 93.69
5 2390.98 171.94 154.59 0.08 2236.39 171.86
6 2098.02 115.74 187.16 0.11 1910.85 115.63
7 1816.85 92.86 113.33 0.17 1703.53 92.69
8 1566.45 65.26 171.18 0.17 1395.27 65.09

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 3.67 5.24
2 1.44 3.92 71.87 195.81 5.27 20.54
3 1.43 8.18 47.71 272.79 5.25 42.91
4 1.39 12.57 34.70 314.15 5.09 65.89
5 0.71 6.86 14.10 137.14 2.59 35.95
6 0.80 10.19 13.39 169.77 2.95 53.41
7 0.93 12.70 13.26 181.37 3.40 66.57
8 1.08 18.07 13.45 225.82 3.95 94.73

48

(a) Computational time variation

Table 3.12 Computational time variation and performance of GEM solver for data set of
size 3362 x 3362

No. of
processors

Total Comm Cal
Real User Real User Real User

1 3629.89 3528.92 0.00 0.00 3629.89 3528.92
2 3554.37 923.32 33.73 0.11 3520.64 923.21
3 3570.68 436.01 40.11 0.10 3530.57 435.91
4 3594.91 265.91 64.16 0.15 3530.75 265.76
5 4049.39 275.57 138.46 0.19 3910.92 275.38
6 3766.95 201.24 113.29 0.23 3653.66 201.01
7 3687.99 200.03 93.71 0.20 3594.28 199.83
8 3651.06 107.10 81.13 0.21 3569.93 106.89

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.24 5.39
2 1.02 3.82 51.06 191.10 5.35 20.58
3 1.02 8.09 33.89 269.79 5.32 43.59
4 1.01 13.27 25.24 331.78 5.29 71.48
5 0.90 12.81 17.93 256.12 4.69 68.97
6 0.96 17.54 16.06 292.26 5.05 94.44
7 0.98 17.64 14.06 252.03 5.15 95.02
8 0.99 32.95 12.43 411.87 5.21 177.46

Table 3.13 Computational time variation and performance of GEM solver for data set of
size 4232 x 4232

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 7057.91 7006.88 0.00 0.00 7057.91 7006.88
8028.15 1813.39 40.43 0.15 7987.72 1813.24

JI 7210.35 858.16 59.59 0.15 7150.76 858.01
4 8368.35 507.39 168.98 0.24 8199.37 507.15
5 7236.71 365.61 73.82 0.20 7162.89 365.41
6 35742.16 407.48 1282.34 0.30 34459.82 407.18
7 8329.01 362.33 250.67 17.16 8078.34 345.17
8 7297.62 196.68 135.13 22.32 7162.49 174.36

40

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.37 5.41
2 0.88 3.86 43.96 193.20 4.72 20.90
3 0.98 8.17 32.63 272.17 5.26 44.17
4 0.84 13.81 21.09 345.24 4.53 74.71
5 0.98 19.16 19.51 383.30 5.24 103.68
6 0.20 17.20 3.29 286.59 1.06 93.03
7 0.85 19.34 12.11 276.26 4.55 104.62
8 0.97 35.63 12.09 445.32 5.19 192.73

(b) Variation in User time Speedup

Fig. 3.11 Variation in Speedup for GEM solver for various data sets

50

3.4.3 Matrix Inversion Method

Matrix Inversion Method (MIM) is one of the common method for obtaining the solution

of the system of linear equations [/!]{%}= {/?}. In this method inverse of the matrix [j] is

calculated. Then the solution is computed using expression {%} = [j]’'{b}. To compute

[j]’1 let us consider an expression

(310)

where [/] is a unit matrix same of order same as matrix [j]. Matrix [^] is operated and

converted to unit matrix. All the necessary operation carried out on matrix [?1], are also

carried out on matrix [/]. Finally, matrix [j] gets converted to a unit matrix whereas

matrix [/] takes form of [/4]"1. Let us consider a system of linear equations

#11*1 + #12*2 "^*13*3 *ln*n —

#21*1 + *22*2 + *23*3 *" a2nXn = ^2

*31*1 + #32*2 +^33*3 +’-- + ^3n*,> = ^3 (3.11)

^1*1 + *n2*2 + an3X3 + * • * + annX» = bn

Equation 3.11 can be rewritten in the augmented matrix form

’*11
*12 *13 * ” a\n • 1 0 0 • • 0“

*21 *22 *23 a2n • 0 1 0 •• • 0
*31 *32 *33 * ” *3n • 0 0 1 «• • 0 (3.12)

_*„1 *„2 *„3 * 0 0 0 •• • 1

where left hand side represents the matrix [/4] and right hand side represents unit matrix

[/]. After row operations Eq. 3.12 takes final form as

51

1 0 0 ••• o • "l2 "13 • •• "in

0 0 0 ••• 0 ' a2i aU "23 • • "2n

0 0 0 ••• 0 ' an "33 • •• "3n

0 0 0 ••• ■ ' "„2 "n3 • • "nn

(3.13)

where right hand side represents the inverse of matrix [^]. The values of unknown vector

{X} can be found out by expression

V '"11 "12 "13 *
*• "In’ 6/

X2 "2I "22 "23 ’ •• "2n ^2

X3 > = "31 "32 "33 ” "3n <

X„. "nl "n2 "3n • ” ^nn_

(3.14)

The number of computations carried out in Matrix Inversion Method can be expressed as

Number of computations = 4h2 + 2w3 (3.15)

3.4.3.1 Parallel Implementation

Initially all processors were given their ranks. Then the range of data to be handled by

each processor was decided. Row wise data distribution was carried out as described in

Gauss Elimination Method. After proper data distribution among the processors, an

Identity matrix [/] of size [?t] was created by all processors. In the process of matrix

inversion, column wise operations were carried out. Every non-diagonal element of

matrix [i4] was converted to zero and every diagonal element of matrix [j] was made

unity.

Whatever operations were carried out on matrix [j], same operations were also carried

out on matrix [/] simultaneously. Each processor operated only those rows, which were

designated to it to spend less computational time. After finding the inverse of matrix [XL

the unknown vector {x} was calculated by multiplying [j]-1 with {5}. At this juncture,

52

each processor was having elements of vector {%} those belong to its share. Then each

processor broadcasted these elements of vector {%} to the all other processors so that

every processor should have complete vector {x}. Figure 3.12 shows the parallel

algorithm for Matrix Inversion Method.

Global P {Number of Processors}
n {Number of Equations}
MyRank {Rank of the Processor}
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor}
end {Flag indicating ending row number for each processor}
i {Variable indicating current row}
[I] {Matrix indicating inverse of matrix [A]}

for all Pi where 0 < i < P do
Set start
Set end

for i = 0 to fl-1
Set diagonal element of [A] । = 1.0
Change elements of matrix [I],
for all Pi where 0 < i < P do

Find the Rank of current row
If MyRank = Rank

Broadcast current row
endif

endfor
for j = start to end

if [A] ij 0.0
Change non-diagonal element of [A] , j = 0.0
Change elements of matrix [I] । ,

endif
endfor

endfor
for i = start to end

Compute {x} j
endfor
for all Pi where 0 < i < P do

Broadcast {x} j to All Processor
endfor

Fig. 3.12 Parallel algorithm for Matrix Inversion Method

im
e

1 2 3 4 5 6 7 8
No. of processors

(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

Fig. 3.13 Variation in computational time components for MIM solver for data set of size

1226 x 1226

54

3.4.3.2 Computational Time Results

Figure 3.13 shows variation in different components of computational time obtained for

data set of size 1226 x 1226. Figure 3.13(a) shows the variation in different components

of computational time measured in terms of Real time. One can see that as the number of

processor increases the Total time reduces considerably. The Calculation time also

reduces with increase in number of processors. Communication time increases with

increase in number of processors. This increase is very slow and insignificant.

Figure 3.13(b) shows variation in different components of computational time measured

in terms of User time. It can be observed that Total time as well as Calculation time
reduces with increase in number of processors. Sudden reduction can be seen from one to

four processors but thereafter the reduction is slow. The Communication time (UT) is

insignificant for Matrix Inversion Method. One can observe that the Total time and

Calculation time is nearly same at every number of processors. It can also be observed

that Total time measured in term of Real time as well as User time is nearly same at every

number of processors

Figure 3.14 shows the variation in Speedup measured in terms of Real time as well as

User time. It can be observed that maximum Real time Speedup of 5 (approximately) is

achieved at seven number of processors and maximum User time Speedup of 7.2 is

achieved at eight number of processors. The User time Speedup is very close to Ideal

Speedup at every number of processors.

3.4.3.3 Solver Performance

From Tables 3.14 to 3.19, it can be observed that Matrix Inversion Method gives

excellent performance for all data sets under consideration. Total time (RT and UT)

reduces considerably with increase in number of processors. The contribution of

Communication time is ven7 less as compared to the Calculation time toward the Total

time.

55

9 - _____ Real

(a) Computational time variation

Table 3.14 Computational time variation and performance of MIM solver for data set of
size 870 x 870

No. of
processors

Total Comm Cal
Real User Real User Real User

1 203.82 202.29 0.00 0.00 203.82 202.29
2 107.45 103.42 0.75 0.07 106.70 103.35
3 75.41 69.75 1.68 0.05 73.73 69.70
4 63.91 53.53 2.74 0.06 61.17 53.47
5 93.16 45.29 14.68 0.19 78.48 45.10
6 92.16 39.87 12.11 1.49 80.05 38.38
7 78.83 34.15 9.55 0.31 69.28 33.84
8 84.69 30.3 14.96 0.44 69.73 29.86

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.48 6.53
2 1.90 1.96 94.84 97.80 12.29 12.76
3 2.70 2.90 90.09 96.67 17.50 18.93
4 3.19 3.78 79.73 94.48 20.65 24.66
5 2.19 4.47 43.76 89.33 14.17 29.15
6 2.21 5.07 36.86 84.56 14.32 33.11
7 2.59 5.92 36.94 84.62 16.75 38.65
8 2.41 6.68 30.08 83.45 15.59 43.57

(a) Computational time variation

Table 3.15 Computational time variation and performance of MIM solver for data set of
size 882 x 882

No. of
processors

Total Comm Cal
Real User Real User Real User

1 219.34 216.86 0.00 0.00 219.34 216.86
2 116.88 110.17 1.11 0.03 115.77 110.14
3 84.12 75.30 1.96 0.04 82.16 75.26
4 66.71 57.27 2.09 0.12 64.62 57.15
5 97.55 47.77 11.68 0.21 85.87 47.56
6 99.29 40.86 8.46 0.25 90.83 40.61
7 86.49 35.44 7.29 0.32 79.20 35.12
8 82.51 31.55 10.49 0.44 72.02 31.11

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.27 6.34
2 1.88 1.97 93.83 98.42 11.77 12.48
3 2.61 2.88 86.92 96.00 16.35 18.27
4 3.29 3.79 82.20 94.67 20.62 24.02
5 2.25 4.54 44.97 90.79 14.10 28.79
6 2.21 5.31 36.82 88.46 13.85 33.66
7 2.54 6.12 36.23 87.42 15.90 38.81
8 2.66 6.87 33.23 85.92 16.67 43.59

Table 3.16 Computational time variation and performance of MIM solver for data set of
size 1352 x 1352

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 790.48 787.98 0.00 0.00 790.48 787.98
2 409.22 399.79 1.72 0.02 407.50 399.77nJ 284.11 269.44 3.94 0.06 280.17 269.38
4 220.19 205.41 4.16 0.14 216.03 205.27
5 201.09 167.43 14.04 0.35 187.05 167.08
6 179.76 140.45 18.66 0.46 161.10 139.99
7 167.04 121.69 19.57 0.80 14T47 120.89
8 171.92 108.82 17.76 2.51 154.16 106.31J

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.26 6.28
2 1.93 1.97 96.58 98.55 12.10 12.38
3 2.78 2.92 92.74 97.48 17.42 18.37
4 3.59 3.84 89.75 95.90 22.48 24.10
5 3.93 4.71 78.62 94.13 24.62 29.56
6 4.40 5.61 73.29 93.51 27.54 35.24
7 4.73 6.48 67.60 92.50 29.63 40.68
8 4.60 7.24 57.47 90.51 28.79 45.49

Table 3.17 Computational time variation and performance of MIM solver for data set of
size 2312 x 2312

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 5524.44 3997.63 0.00 0.00 5524.44 3997.63
2 3114.43 2007.07 42.19 0.03 3072.24 2007.04
3 2164.64 1348.66 53.23 0.21 2111.41 1348.45
4 1634.28 1012.74 59.91 0.44 1574.38 1012.30
5 2126.91 827.82 82.14 0.86 2044.77 826.96
6 1687.16 697.32 73.21 1.29 1613.96 696.03
7 1462.59 602.21 72.71 1.77 1389.88 600.44
8 1289.62 530.21 80.04 2.46 1209.58 527.75

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.48 6.19
2 1.77 1.99 27.06 99.59 7.94 12.33
3 2.55 2.96 25.96 98.80 11.43 18.34
4 3.38 3.95 25.79 98.68 15.14 24.43
5 2.60 4.83 15.85 96.58 11.63 29.88
6 3.27 5.73 16.65 95.55 14.66 35.48
7 3.78 6.64 16.47 94.83 16.91 41.08
8 4.28 7.54 16.34 94.25 19.18 46.66

fable 3.18 Computational time variation and performance of MIM solver for data set of
size 3362 x 3362

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 12245.14 12092.82 0.00 0.00 12245.14 12092.82
2 6131.13 6065.80 13.24 0.12 6117.89 6065.68
3 4130.53 4054.96 29.01 0.29 4101.52 4054.67
4 3176.20 3069.75 69.24 0.93 3106.96 3068.82
5 3968.67 2503.82 115.67 1.70 3853.00 2502.12
6 3418.15 2084.11 138.58 3.17 3279.57 2080.94
7 3016.27 1798.20 196.98 3.44 2819.29 1794.76
8 2156.61 1595.05 90.36 3.89 2066.25 1591.16

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.21 6.29
2 2.00 1.99 99.86 99.68 12.40 12.54
3 2.96 2.98 98.82 99.41 18.41 18.75
4 3.86 3.94 96.38 98.48 23.94 24.77
5 3.09 4.83 61.71 96.59 19.16 30.37
6 3.58 5.80 59.71 96.71 22.25 36.49
7 4.06 6.72 58.00 96.07 25.21 42.29
8 5.68 7.58 70.97 94.77 35.26 47.68

Table 3.19 Computational time variation and performance of MIM solver for data set of
size 4232 x 4232

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 24039.08 23984.18 0.00 0.00 24039.08 23984.18
2 12781.28 12013.02 21.28 0.14 12760.00 12012.88
3 9370.52 8034.54 47.26 0.37 9323.26 8034.17
4 7143.15 6161.49 54.12 1.28 7089.03 6160.21
5 8593.55 5055.69 208.53 . 2.59 8385.02 5053.10
6 4971.59 4180.78 179.68 5.17 4791.91 4175.61
7 4058.18 3602.92 271.61 5.19 3786.57 3597.73
8 5060.32 3229.96 301.42 6.60 4758.90 3223.36

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.31 6.32
2 1.88 2.00 94.04 99.83 11.87 12.62
3 2.57 2.99 85.51 99.50 16.18 18.88
4 3.37 3.89 84.13 97.31 21.23 24.61
5 2.80 4.74 55.95 94.88 17.65 30.00
6 4.84 5.74 80.59 95.61 30.51 36.28
7 5.92 6.66 84.62 95.10 37.37 42.09
8 4.75 7.43 59.38 92.82 29.97 46.95

(a) Variation in Real time Speedup

(b) Variation in User time Speedup

Fig. 3.15 Variation in Speedup for MIM solver for various data sets

Iii Fig. 3.15 (a) variation in Real time Speedup for various data sets under consideration is

shown. It can be observed that this variation is very abrupt whereas User time Speedup
variation for various data sets is smooth and constantly increasing (see Fig. 3.15 (b)). One

important observation can be made that is, as the data size increases the corresponding

User time Speedup for a particular number of processor also increases. This indicates that

solver performance improves with increasing data size. The User time Speedup of 7.5

(approximately) was achieved at eight number of processors, which is very close to the

Ideal Speedup. After observing Tables 3.15 to 3.20, it can be seen that the efficiency of

the solver reduces by small amount with increase in number of processors. A speed of

nearly 50 (approximately) millions of floating point operations per second was achieved

at eight number of processors. In general, this method performed well as compared to the

other two methods discussed earlier.

3.5 EFFECT OF USER ACTIVITIES ON COMPUTATIONAL TIME

From the computational time results presented in the above section, it can be observed
that the variation in components of computational time measured in terms of Real time is
very abrupt. It was also observed that computational time components measured in terms

of Real time during the study were not same for the same code is executed several times

for the same data. This may be because of activities carried out by several users

connected to PARAM 10000. To observe this effect, a small study was carried out. In this

study same data (set of 870 equations) was analyzed by different users at the same time

with the same number of processors by Matrix Inversion Method parallel solver. For all

these users, different components of computational time were measured with increasing

number of users.

Fig. 3.16(a) shows that, as the number of users increases, the average of Total time (RT),

measured by all the users using subroutine MPI_Wtime. also increases. It can also be

observed that the average of Total time (UT), measured by all the users using developed

subroutine (see section 3.1), remains almost constant and does not get affected by

increase in number of users connected. This is quite obvious because the number of

computations carried out by processors do not change with increase in number of users.

But. the average of Total time (RT), measured by all the users, increases with increase in

(a) Typical variation in Total time with number of users

(b) Typical variation in Communication time with number of users

Fig. 3.16 Typical variation in Total time and Communication time with number of users

number of users because of increase in the computational load assigned to each of the

processors.

From Fig. 3.16(b), it can be seen that as the number of users increases, the average of

Communication time (RT), measured by all the users using subroutine MPI_Wtime, also

increases. Whereas the average of Communication time (UT), measured by all the users
using developed subroutine, remains almost constant. Very little variation (in

milliseconds) may be observed, which is very small as compared to overall process that

consumes several seconds and hence can be neglected.

3.6 COMPARISON OF PARALLEL SOLVERS

Three parallel solvers discussed in previous sections performed in different manner and

the comparison of these solvers in context of their performance should be scrutinized to

select the best parallel solver for its implementation in finite element analysis. The main

parameters for comparing parallel solvers are computational time and Speedup. In Gauss
Seidel Method, Total time (RT and UT) increases with increase in number of processors.
Real time Communication is mainly responsible for such increase in Total time. Since

this method is Iterative so the number of iterations fully dependent on data type and initial

guess. Therefore this method cannot be used for faster processing.

The numerical procedure of Gauss Elimination Method and Matrix Inversion Method is

quite identical. In GEM, only lower triangle elements of matrix are converted into zero

whereas in MIM except diagonal elements, all are converted into zero. This shows that

GEM requires lesser computations as compared to the MIM. This is also reflected when

Total time (UT) is observed for both the method for all data sets under consideration (see

Tables 3.8 to 3.19). The only problem with GEM is that the sequential process of

calculation of unknowns. In this process, only one processor remains active and rest all

processors remain idle. Because of such sequential procedure. Total time (RT) increases
with increase in number of processors. One can also observe that the Communication

time (RT) is more for GEM as compared to MIM. One of the major drawbacks of GEM

and MIM is that both fail to give solution, if any of the diagonal elements turns into zero.

4

o>2 (D

--------- GSM

---------GEM

..........MIM

(a) Performance comparison of three solvers based on Real time Speedup

(b) Performance comparison of three solvers based on User time Speedup

Fig. 3.17 Performance comparison of three solvers for different data sizes when four
processors are used

6

--------- GSM

--------- GEM

..........MIM

1000 2000 3000 4000
Data size

5000

(a) Performance comparison of three solvers based on Real time Speedup

GSM

--GEM

MIM

CL

Id 20 (D CL
00

10 -

1000 2000 3000 4000 5000
Data size

(b) Performance comparison of three solvers based on User time Speedup

Fig. 3.18 Performance comparison of three solvers for different data sizes when eight
processors are used

Figure 3.17 and 3.18 show performance of three methods for different data sets when four
and eight processors are used. Figure 3.17 (a) and 3.18 (a) show the performance of all
these solvers based on Real time whereas Figure 3.17 (b) and 3.18 (b) show the

performance based on User time. From Fig. 3.17 (a) and 3.18 (a) it can be observed that

the performance of these solvers is uneven. User activities are mainly responsible for such

uneven variation. It can be observed that Real time Speedup of MIM is highest for all

data sets. It is followed by Real time Speedup of GEM. Similar variation can also be

observed for all number of processors for all data sets under consideration. For User time

Speedup, it is found that GEM shows highest Speedup (see Fig. 3.17 (b) and 3.18 (b)). It

can also be observed for GEM that User time Speedup improves with increase in data

size. It is followed by User time Speedup achieved by MIM. This Speedup remains
constant irrespective of data size.

3.7 COMPARISON OF C AND FORTRAN77

For programming in MPI on parallel computers, C and FORTRAN77 (F77) are very

commonly used as programming languages on supercomputer PARAM 10000. Therefore
it is essential to study the performance of both the languages. From section 3.5 it is very

clear that Matrix Inversion Method parallel solver is the most efficient solver among all

the developed solvers. Therefore this solver is also developed in FORTRAN77 language.

Three data sets containing 870, 1226 and 1722 linear equations taken from linear elastic

finite element analysis (see Chapter 4) were solved with the help of this solver and the

computational time variation is obtained. The same data sets were also analyzed using

same solver developed in C language and the results are compared. According to section

3.4, users activities affect Real time; therefore User time is also measured and considered

as a main parameter for comparison. Table 3.20 to 3.22 shows the computational time

results obtained by both the solvers for the data sets under consideration. It contains the

Total time (RT and UT) obtained by parallel solvers developed using C and

FORTRAN77 programming languages.

From Tables 3.20 to 3.22, it can be observed that the Total time (RT and UT) reduces

with increase in number of processors. Such variation is observed for both the solvers

developed using C and FORTRAN77 languages. One can observe that. Total time (RT)

(a) Computational time variation

Table 3.20 Computational time variation and performance of C and FORTRAN77 codes

for data set of size 870 x 870

1 No. of
processors

Total (RT) Total (UT)
C F-77 F-77 / C C F-77 F-77 / C

1 203.74 312.77 1.54 202.57 311.38 1.54
2 111.30 171.70 1.54 105.58 165.84 1.57
3 83.57 118.78 1.42 71.81 111.25 1.55
4 62.93 92.24 1.47 54.12 83.77 1.55
5 93.07 139.08 1.49 44.28 69.40 1.57
6 86.18 132.45 1.54 38.38 60.30 1.57
7 76.36 113.70 1.49 33.34 51.38 1.54
8 73.99 101.30 1.37 29.32 45.68 1.56

0?) Performance of C code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.48 6.52
2 1.83 1.92 91.53 95.93 11.86 12.50
3 2.44 2.82 81.26 94.03 15.80 18.38
4 3.24 3.74 80.94 93.57 20.98 24.39
5 2.19 4.57 43.78 91.50 14.18 29.81
6 2.36 5.28 39.40 87.97 15.32 34.39
7 2.67 6.08 38.11 86.80 17.29 39.59
8 2.75 6.91 34.42 86.36 17.84 45.02

(c) Performance of FORTRAN77 code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.22 4.24
2 1.82 1.88 91.08 93.88 7.69 7.96
3 2.63 2.80 87.77 93.30 11.11 11.87
4 3.39 3.72 84.77 92.93 14.31 15.76
5 2.25 4.49 44.98 89.73 9.49 19.02
6 2.36 5.16 39.36 86.06 9.97 21.89
7 2.75 6.06 39.30 86.58 11.61 25.69
8 3.09 6.82 38.60 85.21 13.03 28.90

(a) Computational time variation

Table 3.21 Computational time variation and performance of C and FORTRAN77 codes
for data set of size 1226 x 1226

No. of i processors
Total (RT) Total (UT)

C F-77 F-77 / C C F-77 F-77 / C
' 1 593.21 793.84 1.34 589.80 789.03 1.34
i 2 535.73 406.31 0.76 297.37 401.38 1.35
! 3 500.38 524.83 1.05 202.97 270.47 1.33
i 4 336.48 219.44 0.65 154.38 205.21 1.33
! 5 287.62 290.34 1.01 126.57 168.10 1.33
! 6 265.88 178.08 0.67 108.55 137.72 1.27

7 233.18 243.42 1.04 92.19 123.10 1.34
8 217.44 155.59 0.72 81.41 107.03 1.31

(b) Performance of C code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.38 6.41
2 1.11 1.98 55.36 99.17 7.06 12.72
3 1.19 2.91 39.52 96.86 7.56 18.64
4 1.76 3.82 44.07 95.51 11.24 24.50
5 2.06 4.66 41.25 93.20 13.15 29.89
6 2.23 5.43 37.19 90.56 14.23 34.85
7 2.54 6.40 36.34 91.40 16.22 41.03
8 2.73 7.24 34.10 90.56 17.40 46.46

(c) Performance of FORTRAN77 code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.76 4.79
2 1.95 1.97 97.69 98.29 9.31 9.42
3 1.51 2.92 50.42 97.24 7.21 13.99
4 3.62 3.84 90.44 96.12 17.24 18.43
5 2.73 4.69 54.68 93.88 13.03 22.50
6 4.46 5.73 74.30 95.49 21.24 27.47
7 3.26 6.41 46.59 91.57 15.54 30.73
8 5.10 7.37 63.78 92.15 24.31 35.34

(a) Computational time variation

Table 3.22 Computational time variation and performance of C and FORTRAN77 codes
for data set of size 1722 x 1722

No. of
processors

Total (RT) Total (UT)
C F-77 F-77 / C C F-77 F-77 / C

1 1668.21 2652.37 1.59 1660.28 2460.32 1.48
2 827.53 1463.42 1.77 813.31 1451.27 1.78
3 566.68 965.51 1.70 547.75 855.86 1.56
4 434.30 708.08 1.63 414.77 647.16 1.56
5 384.58 866.44 2.25 342.44 530.40 1.55
6 344.83 806.95 2.34 286.45 445.00 1.55
7 306.18 453.79 1.48 247.44 378.54 1.53
8 307.26 422.55 1.38 219.90 338.11 1.54

(b) Performance of C code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.13 6.16
2 2.02 2.04 100.79 102.07 12.36 12.57
3 2.94 3.03 98.13 101.04 18.04 18.67
4 3.84 4.00 96.03 100.07 23.54 24.65
5 4.34 4.85 86.76 96.97 26.59 29.86
6 4.84 5.80 80.63 96.60 29.65 35.69
7 5.45 6.71 77.83 95.85 33.39 41.32
8 5.43 7.55 67.87 94.38 33.28 46.50

(c) Performance of FORTRAN77 code

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 3.85 4.16
2 1.81 1.70 90.62 84.76 6.99 7.05
3 2.75 2.87 91.57 95.82 10.59 11.95
4 3.75 3.80 93.65 95.04 14.44 15.80
5 3.06 4.64 61.22 92.77 11.80 19.28
6 3.29 5.53 54.78 92.15 12.67 22.98
7 5.84 6.50 83.50 92.85 22.53 27.01
8 6.28 7.28 78.46 90.96 24.20 30.24

for C code is significantly less at all number of processors for all the data sets under
consideration as compared to FORTRAN77 code. Similar behavior can also be observed
when Total time measured in term of User time is considered. The range of ratio of

computational time measured by FORTRAN77 code and C code was observed to be from

1.27 to 1.78 which clearly indicates that C code is faster than the FORTRAN77 code.

This comparison is made on the basis of User time due to its independency with the users

activities.

It can be observed that the performance of both the solvers is quite well. Both the solvers

achieved a User time Speedup of 7.5 (approximately) for all data sets under consideration

at eight number of processors. The reduction in User time efficiency is very slow with the
increase in number of processors for both the solvers. Millions of floating point

operations per second measured for both the solvers increases with the increase in number

of processors. One can observe that MFLOPS measured by C code is on higher side as

compared to the MFLOPS measured by FORTRAN77 code at every number of

processors.

3.8 COMMUNICATION MECHANISMS

In the parallel computing technique, the Communication time plays an important role.

The communication between the processors can be established by calling few readymade

subroutines available in MPI library. These subroutines are based on two communication

mechanisms i.e. Blocking Communication and Non-blocking Communication [3].
Blocking communication mechanism is used in all the parallel codes explained earlier. To

study these mechanisms and their effect on communication time, both the communication

mechanisms are incorporated in the Matrix Inversion Method parallel solver. The

parallelization strategy for both the communication mechanisms was kept same. To

incorporate both communication mechanisms, few subroutines MPI_SEND and

MPI_RECV were changed to MPI_ISEND and MPI_IRECV. Solution of set of linear
equation of size 870 was obtained by both the codes written in C language. The

Communication time was measured in term of Real time and User time.

Table 3.23 shows values of Communication time (RT and UT) for data sets under

consideration. It can be observed that as the number of processors increases, the

Communication time also increases correspondingly. It can also be observed from this

table that both communication mechanisms have similar performance. The effect of
communication mechanisms on Communication time is not significant. In the presented

algorithm of matrix inversion process, the major part of communication was carried out

by subroutine called MPI_BCAST. This may be one of the reasons of finding the same

communication pattern by both the communication mechanisms. The study highlights

that any of the communication mechanism can be adopted for data communication for the

Matrix Inversion Method parallel solver.

Table 3.23 Comparison of two communication mechanisms

No. of
processors

Communication (RT) Communication (UT)
Blocking Non-Blocking Blocking Non-Blocking

1 0.00 0.00 0.00 0.00
2 0.74 1.49 0.01 0.01
3 1.68 2.75 0.05 0.04
4 1.86 3.17 0.17 0.14
5 4.68 3.80 0.20 0.18
6 7.04 4.53 0.33 0.27
7 7.56 4.65 0.40 0.37
8 8.11 6.11 0.37 0.38

Table 3.24 Comparison of C and FORTRAN77 for two communication mechanisms

No. of
processors

Communication (RT) in C Communication (RT) in FORTRAN77
Blocking Non-Blocking Blocking Non-Blocking

1 0.00 0.00 0.00 0.00
2 2.04 2.04 0.10 0.64
3 30.14 30.14 0.38 0.84
4 8.33 8.33 0.60 0.83
5 15.25 15.25 2.61 3.03
6 14.22 14.22 3.50 7.97
7 12.85 12.85 4.68 5.25
8 13.43 6.16 7.99 4.46

Both the communication mechanisms were also incorporated in FORTRAN77 code. A

data set of size 1226 was once again analyzed using solvers developed in C and

FORTRAN77 languages with both the communication mechanisms. Table 3.24 shows the

Communication time (RT) obtained by both the codes. It can be observed that very little

variation exists in Communication time obtained using both the mechanisms for both the

languages. The Communication time is lower for FORTRAN77 solver as compared to the
Communication time measured for C solver.

3.9 MODIFIED MATRIX INVERSION SOLVER

Now it is clear that the Matrix Inversion Method is the most suitable method among all

the methods discussed. Therefore Matrix Inversion Method parallel solver was once again

developed using C language with blocking type of communication. Modifications were

incorporated in such a way in the previously developed Matrix Inversion Method parallel
solver, so that it can give the inversion of the matrix generated exclusively in finite

element analysis in less time. It was observed that, stiffness matrix developed in finite
element analysis contains large number of zero elements. All the elements in lower and

upper triangles were zero. In addition to this few elements in the bandwidth of the global

stiffness matrix were also zero (see Fig. 3.19). One can observe that, major part of

stiffness matrix is identical to an Identity matrix. Therefore, operations in this region can

be skipped to save huge amount of computations.

In Matrix Inversion Method, it was observed that the bandwidth does not affect the

number of computations if the computations at the elements having zero values are

skipped. For the discretized finite element domain containing large number of elements, it

is very difficult to control the bandwidth. It was also observed that, for problems of large

bandwidth, the number of elements having zero value inside the bandwidth were more as

compared to elements having non-zero value. Therefore by using Matrix Inversion

Method, significant number of computations can be saved. This shows the suitability of

the Matrix Inversion Method for solving stiffness equation in finite element analysis.

3.9.1 Parallel Implementation

Initially all processors were given their ranks (starting from zero to seven). After that the

range of data to be handled by each processor was decided. If data distribution was not

even, then the additional data was distributed to the processors with lower ranks. After

proper data distribution among the processors, an Identity matrix [/] of size [j] was

created by all processors. In the process of matrix inversion, column wise operations were

BW

Fig. 3.19 Stiffness matrix and Identity matrix

Global P {Number of Processors}
n {Number of Equations}
My Rank {Rank of the Processor}
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor}
end {Flag indicating ending row number for each processor}
i {Variable indicating current row}
[I] {Matrix indicating inverse of matrix [A]}

for all Pi where 0 < i < P do
Set start
Set end

for i = 0 to n-\ step 1
if diagonal of [A] । = 1.0

continue
else

Set diagonal element of [A], = 1.0
Change elements of matrix [I],

endif
for all Pi where 0 < i < P do

Find the Rank of current row
If My Rank = Rank

Broadcast current row
endif

endfor
for j = start to end step I

if [A] jj 0.0
Change non-diagonal element of [A] ,j = 0.0
Change elements of matrix [I] > j

endif
endfor

endfor
for i = start to end step 1

Compute {x} ।
endfor
for all Pi where 0 < i < P do

Broadcast {x}, to All Processor
endfor

Fig. 3.20 Parallel algorithm for Modified Matrix Inversion Method

carried out. Every non-diagonal element of matrix [/l] was converted to zero and every

diagonal element of matrix [/l] was made unity. While doing this, the operations were

skipped at locations where non-diagonal elements have zero value and diagonal element

have unit value. This helped in reducing the number of computations.

Whatever operations were carried out on matrix [j], same operations were also carried

out on matrix [/] simultaneously. Each processor operated only those rows, which were

designated to it to achieve less computational time. After finding the inverse of matrix

[/l], the unknown vector {%} was calculated by multiplying [j]'1 with {5}. At this

juncture, each processor was having elements of vector {X} those belong to its share.

Then each processor broadcasted these elements of vector {X} to the all other processors

so that every processor should have complete vector {jf}. Figure 3.20 shows the parallel

algorithm for Modified Matrix Inversion Method.

3.9.2 Computational Time Results

Based on the above-discussed algorithm, a parallel solver is developed. Data of size 1226

x 1226 generated from finite element analysis is solved by this developed solver.

Computational time results were generated and compared with the results of the original

solver developed earlier in the Table 3.25. One can observe from Table 3.25(a) that Total

time (RT and UT) reduces drastically when modified solver was used. One can also

observe that for single processor nearly 67% of User time as well as Real time can be

saved by using the modified solver. As the number of processors increases the percentage

saving in both time components reduces. The percentage saving in Total time (RT and

UT) reduces up to 29% and 43% respectively when eight processors were employed.

Sudden reduction in Total time (RT) can be observed from one processor to four

processors. It can also be observed that after four processors, reduction in Total time (RT)

is gradual but insignificant. It can also be observed that variation of reduction in

percentage saving in User time with increase in number of processor is continuous,

whereas in case of Real time the variation is abrupt (sudden fall of percentage saving at

four processors). The user activities are mainly responsible for such variations.

Tabic 3.25 Comparison of Modified and Original solver based on time results and

Speedup for data size 1226 x 1226

(a) Comparison based on time results

No. of
processors

Modified Solver Original Solver % Saving

Total (RT) Total (UT) Total (RT) Total (UT) Total (RT) Total
(UT)

1 189.86 188.51 578.16 575.42 67.16 67.24
2 173.76 109.30 299.72 294.14 42.03 62.84
3 136.06 90.94 208.52 200.37 34.75 54.61
4 128.05 76.19 163.36 153.00 21.61 50.20
5 110.73 65.25 155.09 127.17 28.60 48.69
6 105.03 56.98 141.84 108.41 25.95 47.44
7 92.35 50.65 125.84 92.24 26.61 45.09
8 94.88 47.11 134.43 82.95 29.42 43.21

(b) Comparison based Speedup

No. of
processors

Modified Solver Original Solver
Real User Real User

1 1.00 1.00 1.00 1.00
2 1.09 1.72 1.93 1.96
3 1.40 2.07 2.77 2.87
4 1.48 2.47 3.54 3.76
5 1.71 2.89 3.73 4.52
6 1.81 3.31 4.08 5.31
7 2.06 3.72 4.59 6.24
8 2.00 4.00 4.30 6.94

From Table 3.25 (b), it can be observed that the modified solver recorded less Speedup as

compared to the original solver. Maximum User time Speedup of 4.0 can be observed at

eight number of processors for modified solver, whereas maximum User time Speedup of

6.94 can be observed at eight number of processors for original solver. One important

observation can be made that at eight number of processors. User time saving is nearly
43%, which is very significant even if Speedup is less.

Tabic 3.26 Computational time variation and performance of MMIM solver for data set of
size 870 x 870

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 74.43 65.43 0.00 0.00 74.43 65.43
2 72.63 37.82 1.27 0.27 71.36 37.55
3 57.65 31.97 2.21 0.42 55.44 31.55
4 53.64 26.71 2.50 0.47 51.14 26.24
5 74.25 24.63 8.01 1.60 66.24 23.03
6 91.93 24.65 17.11 3.04 74.82 21.61
7 89.60 22.04 12.32 0.80 77.28 21.24
8 82.86 20.25 16.30 2.19 66.56 18.06

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 17.74 20.17
2 1.02 1.73 51.24 86.50 18.17 34.90
3 1.29 2.05 43.04 68.22 22.90 41.29
4 1.39 2.45 34.69 61.24 24.61 49.42
5 1.00 2.66 20.05 53.13 17.78 53.59
6 0.81 2.65 13.49 44.24 14.36 53.55
7 0.83 2.97 11.87 42.41 14.73 59.89
8 0.90 3.23 11.23 40.39 15.93 65.19

Table 3.27 Computational time variation and performance of MMIM solver for data set of
size 882 x 882

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 137.81 119.31 0.00 0.00 137.81 119.31
2 90.31 74.64 1.25 0.26 89.06 74.38
3 71.77 50.89 2.06 0.38 69.71 50.51
4 60.20 37.06 3.08 0.44 57.12 36.62
5 74.76 30.39 9.38 0.89 65.38 29.50
6 92.44 25.33 17.23 | 2.11 75.21 23.22
7 93.41 20.10 12.96 0.83 80.45 19.27
8 85.42 17.33 12.19 0.89 73.23 16.44

(b) Performance

Table 3.28 Computational time variation and performance of MMIM solver for data set of
size 1352 x 1352

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 9.98 11.53
2 1.53 1.60 76.30 79.92 15.23 18.43
3 1.92 2.34 64.01 78.15 19.16 27.03
4 2.29 3.22 57.23 80.48 22.85 37.11
5 1.84 3.93 36.87 78.52 18.40 45.26
6 1.49 4.71 24.85 78.50 14.88 54.30
7 1.48 5.94 21.08 84.80 14.72 68.43
8 1.61 6.88 20.17 86.06 16.10 79.36

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 485.53 427.38 0.00 0.00 485.53 427.38
2 325.57 277.72 2.72 0.54 322.85 277.18
3 315.42 199.85 11.84 1.04 303.58 198.81
4 202.45 142.68 5.92 0.97 196.52 141.71
5 280.53 114.40 29.68 2.24 250.84 112.16
6 278.77 92.14 37.50 2.68 241.27 89.46
7 282.56 75.55 43.06 2.22 239.50 73.33
8 257.83 62.29 39.15 3.23 218.68 59.06

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.19 11.58
2 1.49 1.54 74.57 76.94 15.20 17.82
3 1.54 2.14 51.31 71.28 15.69 24.77
4 2.40 3.00 59.96 74.88 24.45 34.69
5 1.73 3.74 34.62 74.72 17.65 43.27
6 1.74 4.64 29.03 77.31 17.76 53.72
7 1.72 5.66 24.55 80.81 17.52 65.52
8 1.88 6.86 23.54 85.76 19.20 79.47

(a) Computational time variation

Table 3.29 Computational time variation and performance of MMIM solver for data set of
size 2312 x 2312

No. of
processors

Total Comm Cal
Real User Real User Real User

1 2099.93 2091.61 0.00 0.00 2099.93 2091.61
2 1447.35 1422.24 7.65 1.46 1439.70 1420.78
3 1122.43 980.66 16.13 3.90 1106.30 976.76
4 941.80 733.01 21.57 4.23 920.23 728.78
5 736.37 576.02 42.51 4.02 693.86 572.00
6 1105.94 482.83 82.78 6.55 1023.16 476.28
7 1000.86 404.33 94.01 6.31 906.85 398.02
8 947.08 341.62 86.42 9.87 860.66 331.75

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 11.78 11.83
2 1.45 1.47 72.54 73.53 17.09 17.39
3 1.87 2.13 62.36 71.10 22.04 25.23
4 2.23 2.85 55.74 71.34 26.27 33.75
5 2.85 3.63 57.03 72.62 33.59 42.95
6 1.90 4.33 31.65 72.20 22.37 51.24
7 2.10 5.17 29.97 73.90 24.72 61.18
8 2.22 6.12 27.72 76.53 26.12 72.41

Table 3.30 Computational time variation and performance of MMIM solver for data set of
size 3362 x 3362

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 7608.38 6450.98 0.00 0.00 7608.38 6450.98
2 6499.82 4741.81 69.59 3.57 6430.23 4738.24
J 3412.81 3113.75 61.64 17.36 3351.17 3096.39
4 2659.27 2313.98 65.92 21.91 2593.35 2292.07
5 2290.78 1830.45 103.87 6.10 2186.91 1824.35
6 1936.09 1496.80 81.48 11.57 1854.61 1485.23
7 1734.28 1253.43 90.09 12.81 1644.19 1240.62
8 1659.43 1063.37 97.60 16.50 1561.83 1046.87

70

(b) Performance

Table 3.31 Computational time variation and performance of MMIM solver for data set of
size 4232 x 4232

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.00 11.79
2 1.17 1.36 58.53 68.02 11.70 16.04
3 2.23 2.07 74.31 69.06 22.28 24.42
4 2.86 2.79 71.53 69.70 28.60 32.86
5 3.32 3.52 66.43 70.49 33.20 41.55
6 3.93 4.31 65.50 71.83 39.28 50.81
7 4.39 5.15 62.67 73.52 43.85 60.67
8 4.58 6.07 57.31 75.83 45.83 71.51

(a) Computational time variation

No. of
processors

Total Comm Cal
Real User Real User Real User

1 14695.15 12883.19 0.00 0.00 14695.15 12883.19
2 9716.18 8750.64 34.96 8.71 9681.22 8741.93
3 8676.87 6282.33 89.55 19.88 8587.33 6262.45
4 6042.83 4796.81 63.98 13.27 5978.85 4783.54
5 5839.82 3807.58 185.27 16.33 5654.54 3791.25
6 5624.08 3149.25 181.61 19.28 5442.47 3129.97
7 5182.14 2669.59 253.45 32.05 4928.69 2637.54
8 4197.98 2246.67 197.73 30.96 4000.24 2215.71

(b) Performance

No. of
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.32 11.77
2 1.51 1.47 75.62 73.61 15.61 17.33
3 1.69 2.05 56.45 68.36 17.48 24.14
4 2.43 2.69 60.80 67.14 25.10 31.62
5 2.52 3.38 50.33 67.67 25.97 39.83
6 2.61 4.09 43.55 68.18 26.97 r 48.16
7 2.84 4.83 40.51 68.94 29.27 56.81
8 3.50 5.73 43.76 71.68 36.13 67.50

70

Sp
ee

du
p

(a) Variation in User time Speedup

(b) Variation in User time Speedup

Fig. 3.21 Variation in Speedup for MMIM solver for various data sets

3.9.3 Solver Performance

To study the performance of the modified solver, several data sets taken from linear and

non-linear finite element analysis problems were analyzed (see Chapter 4 and Chapter 5).

Tables 3.26 to 3.31 show the different components of computational time measured in
terms of Real time as well as User time. One can observe from these tables that Total time

(RT and UT) reduces with increase in number of processors. Modified solver take
significantly less time at every number of processors as compared to the original matrix

inversion parallel solver (see Table 3.26 to 3.31). Figure 3.21 (a) shows Real time

Speedup with number of processors for different data sets of various sizes. It can be

observed that maximum Real time Speedup of 5 (approximately) was obtained. User time
Speedup variation with number of processors for different data sets is shown in Fig. 3.21

(b). It can be observed that User time Speedup remains close to Ideal Speedup all nearly

all data sets of various sizes.

3.10 SUMMARY

In this chapter, implementation of parallelization techniques in finite element analysis is

presented. Initially the chapter discusses various components of computational time and

the techniques to measure them by implementing timers in the computer codes. It also

highlights the necessity of parallel computing technique in finite element analysis. It

shows that the process of solving linear equations generated in finite element analysis

requires major part of computational time. Hence parallel solver is necessary to reduce

the computational time in finite element analysis.

The chapter also presents three different parallel solvers developed using three

mathematical techniques namely Gauss-Seidel Method, Gauss Elimination Method and

Matrix Inversion Method, ported on a platform of supercomputer PARAM 10000. It has

been found that Matrix Inversion Method is the most suitable method. The effect of users
activities on computational time is also presented and it was found that user activities

significantly affect the computational time components measured in terms of Real time

whereas components of computational time measured in terms of User time

insignificantly affected by user activities.

Q 1

The comparison of C and FORTRAN77 languages in parallel solvers is also presented in

this chapter. It was found that code written in FORTRAN77 language is slower than the
similar code developed in C language. Two communication mechanisms namely

Blocking and Non-Blocking arc also compared and it was found that both communication

mechanisms are equally effective for establishing the communication between the
processors.

At the end in this chapter, Modified Matrix Inversion Method parallel solver is presented

for analyzing linear equations generated in finite element analysis exclusively.
Comparison of Modified Matrix Inversion Method parallel solver with the original Matrix

Inversion Method parallel solver is discussed. It was found that the modified solver is

significantly faster than the original solver. The suitability of the Matrix Inversion

Method for finite element analysis is also discussed in this chapter.

CHAPTER 4

ANALYSIS OF ANCHORAGE ZONE

4.1 INTRODUCTION

This chapter presents a detailed finite element analysis of anchorage zone in prestressed

post-tensioned concrete beam. Initially basics of two-dimensional linear elastic finite

element analysis are discussed in brief. Using constant strain triangular elements and

parallel solver discussed in section 3.7, a finite element computer code is developed on

the platform of a supercomputer PARAM 10000. This code is employed for the analysis
of anchorage zone stresses. The analysis of anchorage zone is carried out in two parts. In

the beginning, stress distribution in anchorage zone is studied when concentric

prestressing forces are applied. Distribution of transverse stresses, longitudinal stresses

and shear stresses are obtained for different values of Poisson’s ratio (0.0-0.3) and ratio of
loaded area and cross-section area of the beam (0.1-0.6). Effect of Poisson’s ratio on
transverse tensile stress and bursting tensile force is studied. Effect of eccentricity of

prestressing forces on transverse tensile stress and bursting tensile force is also studied.

An expression to compute magnitude of bursting tensile force is developed and also

compared with the existing results in the literature. Since the analysis was carried out on

supercomputer PARAM 10000, so variation different components of computational time
is also obtained, presented and discussed. The performance of the developed code is also

studied by computing Speedup and Efficiency obtained on supercomputer PARAM

10000.

4.2 PRESTRESSED POST-TENSIONED CONCRETE BEAM

The anchorage zone is defined as the end portion of prestressed post-tensioned concrete

beam starting from the loaded face to the section at a distance of d (depth of the beam)

measured along the axis of the beam. This zone can be subdivided into three zones

namely local zone, bursting zone and spalling zone (See Fig. 4.1). Local zone is the zone

that is located just ahead of the loaded plate along the axis of loading. In this zone the

concrete is subjected to large compressive stresses. The local zone is instantaneously

followed by the bursting zone. In this zone the concrete is subjected to higher tensile

stresses, which may cause busting of concrete mainly along the axis of loading in this

region. Generally, special reinforcement is provided in this zone to resist the bursting

tensile force caused by these tensile stresses. Spalling zone is found near the free corners

of the beam where also tensile stresses are developed but of lower magnitudes as
QI

compared to the stresses developed in the bursting zone. Magnitude of highest tensile

stress in the spalling zone is usually smaller than the permissible tensile stress in the
concrete; therefore no reinforcement is specially needed to resist these stresses.

Anchorage
Zone

Fig. 4.1 Anchorage zone in prestressed post-tensioned concrete beam

4.3 REVIEW OF FINITE ELEMENT PROCEDURE

It is already seen that [32, 33] the stress variation in the anchorage zone is very complex,

so to study this stress development, finite element method is used here. Following text

covers the basics of linear elastic finite element analysis.

Fig. 4.2 Two-dimensional state of stress under equilibrium conditions
Rd

Fig. 4.3 Forces acting on two-dimensional element on the boundary

4.3.1 Basic Equations of Structural Mechanics

Consider a deformable body in the state of equilibrium subjected to external forces and

internal forces developed due to small deformations (see Fig. 4.2). It is assumed that the

stresses are acting in their positive directions (as shown in the Fig. 4.2) It is also assumed

that the stress variation is uniform throughout the body. Let X and Y denote body force

components per unit volume of body along x and y directions. Solving forces in x and

y directions we get

Ox dy
+ X = Q

(4.1)

dy dy
+ r = o

Taking moment about z axis and = 0, we get

Txy = TyX (4.2)

Equations 4.1 and 4.2 are equilibrium equations for two-dimensional stress distributions.

These equations must be satisfied at all the points throughout the volume of the body. At

the boundary, stress components must be in equilibrium with the external forces. From

Fig. 4.3, solving forces in x and y directions we get

X = lax + mt„

where / = cos«, and m = sin a

Equation 4.3 represents the force boundary conditions in two-dimensional body in
equilibrium condition.

The displacements at any given point in a deformable body can be described by its

components u and v taken parallel to the cartesian coordinate axes x and y. The strains

in the deformed body can be represented as partial derivatives of the displacement

components w and v as follows

Equation 4.4 can be expressed in a matrix form as

(4.5)

It is assumed that the material obeys Hook’s law so stress components can be expressed

as linear functions of strain components. For a linear elastic, isotropic and homogeneous

material, the stress-strain relationship is given as

(l + v)(l-2v)

where E is Youngs Modulus and v is the Poisson’s Ratio.

Expression 4.6 can be rewritten in a reduced form as

H=[d]W (4.7)

where [d] is called as the material constitutive matrix.

4.3.2 Classification of Two-Dimensional Problems

Structural analysis using finite element analysis can be carried out by idealizing three-
dimensional problems as two-dimensional problems based on their different geometric

and stress conditions. These two-dimensional problems are classified as follows;

4.3.2.1 Plane Stress Problem

In plane stress problem, one of the dimensions is very small as compared to the other two

dimensions normal to it. Figure 4.4 shows the example of plane stress condition where a
thin plate is subjected to external loading. The thickness of plate is very small as

compared to the other two dimensions. In such cases, stress components a., and

are zero that means there is no stress variation across the thickness of the plate. Here crx,

crr and rxy are functions of x and y only. In plane stress problems, expression 4.6 can

be expressed as

(4.8)

Fig. 4.4 Plane stress example: thin plate subjected to external loading

S7

43.2.2 Plane Strain Problem

Plane strain problem includes a long deformable body whose geometry and loading is

almost constant in longitudinal direction. Figure 4.5 shows an example of plane strain

problem where a cross section of dam is subjected to external water pressure. It is
assumed that rigid body movement in z direction does not cause strain in z direction.

Therefore strain components s., yX2 and y are zero that indicates displacement u and

v are the functions of x and y only and independent of z. In plane strain problems,

expression 4.6 can be expressed as

(4.9)

Fig. 4.5 Plane strain example: cross section of dam subjected to external water pressure

4.3.23 Axisymmetric Problem

When a solid is subjected to axially symmetric loadings, the deformation process could be
idealized as axisymmetric. Solid circular column subjected to external pressure is an

example of axisymmetric problem as shown in Fig. 4.6. In axisymmetric stress condition,

an additional stress component crg along the circumferential direction is included. The

strain displacement relationship is expressed as

du
dr

dv
dz

dv du — + —
dr dz

(4-10)u
0 r

The stress-strain relationship in axisymmetric problems can be expressed as

(1 - v) v v 0 £r
(J. E v (1 - v) v 0 £:

°O “(l+v)(l-2v) v v (1 - v) 0 £0
T n 0 0 0 (1 - 2v)/2_

(4.H)

Fig. 4.6 Axisymmetric example: circular column subjected to pressure

4.3.3 Element Stiffness Matrix

By applying principle of virtual displacement, the equilibrium equations can be rewritten

in the reduced form as

[k]{d}={Q} (4.12)

where {d} and {Q} are nodal displacement and nodal load vectors. Matrix [k] is called as

stiffness matrix of element and can be written in following form

ffJlBHDlBjrfr
(4.13)

where [b] is called as the strain displacement matrix that depends on type of element and

degree of displacement at nodes.

QO

4.3.4 Constant Strain Triangle (CST) Element

As the name indicates, it is a triangular element in which the strain distribution is uniform

throughout the element. It is one of the basic element used in finite element analysis (see
Fig. 4.7). The strain displacement matrix for CST can be derived as

%2 0 %3 0
o y2 o r3
r3 %2 y} x,

(4.14)

where

=4i(y2-y3). ^=rA(yl-y3)> x^-x.-x,
lJl PI

= r7|(x2"’ ^2 = ~x3)» =~^i ~
PI PI

and

| J | = (x, -x3)(y2 -y3)-(x2 -x3)(y, -y3)

(4.15)

(4.16)

where I J | is the Jacobian matrix that is twice of the area of the triangle.

Fig. 4.7 Constant strain triangular element

4.3.5 Elemental Stress and Strain Computations

Stresses can be computed by using Eq. 4.7. Elemental strains can be computed by
multiplying strain displacement matrix of a particular element by nodal displacement.
Mathematically it can be written as

{«} = [B]{d} (4.17)

4.3.6 Solution Procedure

Structural analysis using finite element method can be carried out using following six
steps.

1. Discretization of the problem domain.
2. Derivation of stiffness matrix for element used for problem discretization.
3. Assembling all local stiffness matrices into global stiffness matrix and generation of

global nodal load vector by assembling local nodal load vectors.
4. Putting of boundary conditions in global equation.
5. Solving global equation to get the values of unknowns.
6. Computation of strains and stresses

4.4 METHODOLOGY

In the present study, the problem of anchorage zone in prestressed post-tensioned
concrete beam is idealized as two-dimensional plane stress problem. A rectangular beam
of unit thickness is considered. Length of beam is taken as twice of its depth. Finite
element method is used to analyze this problem. The analysis of beam is carried out
considering two cases: Case I - concentric prestressing and Case II - eccentric
prestressing. Large number of constant strain triangular elements were used for the
problem discretization so that proper stress variation can be achieved (These stresses are
normalized by dividing them by average longitudinal stress (Pqavg))). This resulted in
large computational time when single processor was used. Therefore a finite element
computer code is developed incorporating parallel solver discussed in section 3.7. Figure
4.8 (a) and 4.8 (b) show Case I and Case II problems respcctivelv.

91

(a) concentric prestressing forces

(b) eccentric prestressing forces

Fig. 4.8 Idealized prestressed concrete beam

4.5 CASE STUDIES

The case studies include two types of prestressing conditions. In the first case study

concentric prestressing force is considered while in second eccentric prestressing force is

considered. The values of ratio of loaded area and cross-sectional area of the beam (k)

and Poisson’s ratio (v) are changed and their effect on bursting tensile force is studied. In

the second case, effect of eccentricity on spalling zone stresses is studied.

4.5.1 Case I: Concentric Prestressing

Figure 4.8(a) shows the idealized prestressed concrete beam subjected to concentric

prestressing forces. The beam is discretized three times using 1600. 1136 and 784
constant strain triangular elements with 861, 613 and 435 nodes resulting in 1722, 1226

and 870 unknown displacements respectively. Figure 4.9 shows the discretized beam with

1136 elements and 613 nodes. The grade of concrete is taken as M45. To get correct

results, the mesh is kept finer along the axis of loading and along the loaded face. The

9^

Fig. 4.10 Distribution of at along axis of loading for v = 0.0

93

analysis of beam is carried out for different values of k and v. The value of k is varied

between 0.1 to 0.6. As the value of v for M45 grade concrete is in the range of 0.0 to 0.3,

so the value of v is considered in the same range during the analysis. The problem is then

analyzed by changing values of v and k with the help of developed finite element

computer code on the platform of PARAM 10000.

4.5.1.1 Transverse Tensile Stress Variation

Figure 4.10 shows the distribution of transverse tensile stress (at) for the different values

of k for v = 0.0. One can observe that as the value of k increases the magnitude of

maximum transverse tensile stress reduces. The position of maximum transverse tensile
stress shifts along the axis of beam away from the loaded face as the value of k increases.

Here it is clear that the position of the zero transverse tensile stress at(zero) shifts along the

axis of beam and away from the loaded face as the values of k increase.

Figure 4.11 shows the comparison of distribution of transverse tensile stress (at) for value
of k = 0.1. It can be observed that the magnitude of maximum transverse tensile stress

(ot(max)) calculated by Guyon [34] is on extremely higher side. The stress distribution

obtained by present investigation fairly matches with the distribution obtained by Iyengar

(two-dimensional as well as three-dimensional) [36, 37].

For the higher values of k = 0.5 (see Fig. 4.12), the stress distribution obtained by present
investigation matches well with the stress distribution obtained by Iyengar (two-

dimensional) [36], whereas the stress distribution in three-dimensional analysis given by

Iyengar [37] does not match with the stress distribution obtained by present investigation.

The magnitude of maximum transverse tensile stress obtained by Iyengar (three-
dimensional) [37] is nearly half of the maximum transverse tensile stress obtained by

present investigation for the same value of v = 0.15 and k = 0.5.

Figure 4.13 shows the distribution of transverse tensile stress (ot) for various values of p

= 0.2 (where p is the ratio of loaded depth and actual depth of beam, in present

investigation k = p). The graph shows that for value of p = 0.2, the stress distribution

obtained from present investigation match well with the stress distribution given by

94

0.8

Fig. 4.11 Comparison of transverse tensile stress distribution along the axis of loading for
k = 0.1

Fig. 4.12 Comparison of transverse tensile stress distribution along the axis of loading for

k = 0.5

95

Fig. 4.13 Comparison of transverse tensile stress distribution along the axis of loading for

P = 0.2

x(
av

g)

Fig. 4.14 Comparison of transverse tensile stress distribution along the axis of loading for

p = 0.5

96

Iyengar (two-dimensional) [36]. The stress distribution given by Yettram and Robbins
[42] and Iyengar (three-dimensional) [37] do not match with the stress distribution
obtained from present investigation. The magnitude of maximum transverse tensile stress

given by Yettram and Robbins [42] is nearly 1.5 times and given by Iyengar (three-
dimensional) [37] is nearly 2.5 time of the magnitude of maximum transverse tensile

stress obtained by present investigation. One can also observe that the location of
maximum transverse tensile stress given by Yettram and Robbins [42] and Iyengar (three-
dimensional) [37] is closer to the loaded face as compared the location of maximum

transverse tensile stress given by Iyengar (two-dimensional) [36] and by present
investigation.

For value of P = 0.5, the stress distribution obtained by present investigation match well

with the distribution given by Iyengar (two-dimensional) [36], Yettram and Robbins [42]

and Iyengar (three-dimensional) [37] (see Fig. 4.14).

Figure 4.15 shows the position of zero transverse stress CTt(zcro) for different values of k.
The results of Iyengar (two-dimensional) show that the position of the zero transverse

stress CTt(zcro) is nearest to the loaded surface for all possible values of k. The present

analysis shows that the location of zero transverse stress at(zcro) falls slightly ahead than

the Iyengar’s (two-dimensional) analysis, whereas three-dimensional investigations by

Yettram and Robbins as well as Iyengar (three-dimensional) indicate the location of zero

transverse stress Qt(zero) further ahead as compared to the two-dimensional analysis.

Experimental investigation by Zielinski and Rowe [40] shows that there is very little

variation in position of zero transverse stress.

Figure 4.16 shows the variation of maximum transverse tensile stress Ot(max) for different

values of k. The results show that the location of maximum transverse tensile stress Gt(max)

obtained by present investigation match well with the three-dimensional analysis of

Yettram and Robbins. Among all the results the location of maximum transverse tensile

stress CTt(max) presented by Iyengar’s (two-dimensional) is nearest and Iyengar (three-

dimensional) is farthest from the loaded face. The experimental results of Zielinski and

Rowe show very little variation in position of maximum transverse tensile stress crt(max)-

O'

0.3 b

0.2 b -
c
o
w
o
0.

0.1 b -

0 b 4-

0

—Yettram & Robbins
। । ■ । । । । ■■ ■ ।

0.1 0.2 0.3. 0.4 0.5 0.6 0.7

k

Fig. 4.15 Position of zero transverse stress o((zcro) along the axis of loading

0.5 b

c

0.25 b -
o CL

—A—Author (v = 0.15)

—x— Zielinski & Rowe

Yettram & Robbins
0b 4-

0 0.2 0.4 o,6

Fig. 4.16 Position of maximum Ot(maX) along the axis of loading

98

Fig. 4.17 Magnitude of maximum transverse tensile stress crt(inaX) along the axis of loading

-3 -2.5
—i--------------- 1----------------1 "i 0
-2 -1.5 -1 -0.5 0

Txy °x(avg)

0.5 1

Fig. 4.18 Transverse stress distribution on loaded face (v = 0.15)

Figure 4.17 shows the variation in magnitude of maximum transverse tensile stress Qt(max)

for different values of k. This figure shows that the magnitude of maximum transverse
tensile stress by present investigation is slightly less than magnitude of maximum

transverse tensile stress of Iyengar’s (two-dimensional) analysis. On the other hand three-
dimensional investigations by Iyengar, Yettram and Robbins give lower values of

magnitude of maximum transverse tensile stress Qt(max)- Experimental investigations by
Zielinski and Rowe shows that the variation in the magnitude of maximum transverse

stress <Ji(max) is linear. The numerical values of maximum transverse tensile stress are also

lowest among all the investigations.

Figure 4.18 shows the distribution of transverse stress along the loaded face for different

values of k and v = 0.00. One can observe that the nature of transverse stress is

compressive along the axis of loading. The nature of stress changes from compression to

tension as we move towards top/bottom surface of beam from center of beam. Finally

transverse stress reaches to zero at the top/bottom comer. This indicates existence of
spalling zone in prestressed post-tensioned concrete beams. One can observe that area
under tension reduces with the increase k. One can also observe that the magnitude of
maximum transverse tensile stress along loaded face also decreases with increase in k.

4.5.1.2 Longitudinal Stress Variation

Figure 4.19 shows the variation in the longitudinal stress (ox) along the axis of loading for

different values of k and v = 0.15. The results indicate that for smaller values of k the

longitudinal stress (nx) is very high near the loaded end. This stress then slowly reduces

and finally becomes almost constant after the anchorage zone, which satisfies the Saint

Venant’s principle.

Figure 4.20 shows the variation in the longitudinal stress (ox) along the top/bottom

surface of the beam for different values of k. It can be observed that the stress variation
obtained from present investigation match well with the variation presented by Iyengar

(two-dimensional). Figure 4.20 also indicates that the variation obtained by Iyengar

(three-dimensional) do not match with variation obtained by two-dimensional analysis

carried out by Iyengar [36]. One can also observe that, in Iyengar's three-dimensional

100

X / b

Fig. 4.19 Distribution of longitudinal stress ax along axis of loading for different values

of k and v = 0.15

x(
av

g)

Fig. 4.20 Distribution of longitudinal stress ax along the top/bottom surface for different

values of k

1 Hl

—•- k = 0.1 1 i

-2.5 -2 -1.5 -1 -0.5 0 0.5

^xy ^x(avg)

Fig. 4.21 Distribution of shear stress along the loaded face for different values of k

<000SH'SISISSSSSHSSS
I000000000000000^«00000000000000000000000000000S12^S'SSSSSS13 100
1000
1000000000000000»000000000000000000000000000001SSISSSSSSSSSSS
IK300000000000000£»000
I000^5£S£JSSS£JSS
5SgSSSSSS5SSgS5g5§S§^^

!gg§ggSSS§§§§SS§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§§^§§§§§§§§§§§
gs*ssss*sgggssg^gggggsg^^^^
SSS55ESSE000 §EggSSSES^&^>>:S^^^

ssssgssssSSSSg§S§§§§§§§§§§§S§§§§§§S§§§§§§§§S§Sg!S§SS§§§§S§§
gggggSSgSSSgSgggggg^
«£££§§§S§S00000Ss0CI000000000000000000000000000000000000000 sssegsssslsssss^gggss^

sgsssssgS3SSSgS^ggSS^§S§SS§S§§S§§S§§§§«§SS§§S§§§§§SS§§§§
000M0000000000000O000000000000000000000000000000000000000 000M00000000000S30S000MI0000000000000000000000000000000000
mSmS£«S£§M00Ss0SS00000000000000000000000000®000000000000
SSS§§SS§SS§§§M!Ss!sSMS™00&M0000000001®M000li3UM00iM00S!IMMI
00§M§§M§S§000M0S000000000000000igi2lS§M00000®g00li800000000
000£S0£W£<(£!i^i£<(f(00000iSl0000ii!lj£!ni!l0000000000000000000000000000000000 0000000§0§0§000S«0S00000000M000000^SS01®®S00001iM 00000000000
000000000000000S3KS00000000000000000*®^^^®®®^^^I^^^^ 1^0000000000
000000000000000^00000000000000000000^»g^000^00^0000000
000000000000000000000000000000 |S00^lS^!^l^^^S^lS^^^000000000000

Fig. 4.22 Discretized prestressed concrete beam with 4800 elements and 2501 nodes

102

analysis ratio of longitudinal stress to average stress is nearly 0.5 at the distance of d from
loaded face that does not satisfies Saint Venant’s principle.

4.5.1.3 Shear Stress Variation

Figure 4.21 shows the variation in shear stress along the loaded face for different values
of k. One can observe that shear stress is zero at the center of loaded face. Then
magnitude of shear stress increases and reaches to peak value. After that it starts reducing

and its nature reverses. After reaching to the peak value, finally it becomes zero near the
top/bottom comer of beam. It can also be observed that the magnitude of maximum shear

stress reduces with increase in value of k. The point of contraflexture moves away from
center of loaded face toward the top/bottom of beam as the value of k increases. Such

type of variation confirms the existence of spalling zone.

4.5.2 Case II: Eccentric Prestressing

Figure 4.8(b) shows the idealized prestressed concrete beam subjected to eccentric
prestressing forces. As the stress variation in eccentrically loaded prestressed concrete
beam is very complex, the beam is discretized using 4800 constant strain triangular
elements with 2501 nodes resulting in 5002 unknown displacements (see Fig. 4.22). The

numerical value of Poisson’s ratio is considered as 0.15. The problem is then analyzed

with changing values of eccentricity keeping value of k = 0.1 with the help of finite

element computer code developed on the platform of PARAM 10000.

4.5.2.1 Transverse Tensile Stress Variation

Figure 4.23 shows the variation in ot along the axis of loading for different values of

eccentricity for k = 0.1 and v = 0.15. It can be observed from this figure that as the

eccentricity of prestressing force increases the magnitude of ot (ma.x) inside the anchorage

zone also increases. One can observe that the location of maximum transverse tensile

stress moves towards the loading face as the eccentricity of forces increases.

103

Fig. 4.23 Variation in transverse tensile stress along the axis of loading for different

values of eccentricity and k = 0.1

Fig. 4.24 Variation in transverse tensile stress along the loaded face for different values of

eccentricity and k = 0.1

104

Fig. 4.25 Comparison of Gt (max) along loaded face and axis of loading for different values

of eccentricity

Fig. 4.26 Contours of longitudinal stress at e = 0.8 and k = 0.1

105

For e = 0.8

Fig. 4.27 Contours of transverse tensile stress for different values of eccentricity

106

In Fig. 4.24, the variation of oy along the loaded face for different values of eccentricity is

shown. It can be observed that as the value of eccentricity increases the magnitude of

cFt(max) also increases. On the other hand, the magnitude of maximum transverse

compressive stress (oC(max)) reduces with the increase in value of eccentricity. One can

observe that considerable portion along the loaded face is subjected tensile stress, which

indicates the region of spalling zone.

One very important observation can be made that the magnitude of ot(max) along loaded

face is very much higher than the magnitude of o^max) along the axis of loading for

eccentric prestressing forces (See Fig. 4.25). For example, at e = 0.8 the magnitude of

^t(max) along loaded face is 2.57 which is almost three times if the magnitude of Qt(max)

along the axis of loading (at(max) = 0.88). It can also be observed that, at(max) along loaded

face increases rapidly with the increase in the value of e.

4.5.2.2 Stress Contours

Figure 4.26 shows that higher longitudinal stress concentration exists in the section just
next to the area subjected to prestressing force (local zone). These stresses slowly spread
in the whole beam cross-section as we move away from the loaded face and at the end of

anchorage zone, it gets converted into uniform distribution.

Figure 4.27 shows the stress contours of transverse tensile stress for different values of
eccentricity. It can be observed from this figure that the anchorage zone area under

tensile stress is wider for lower eccentricity values, while for higher eccentricity values;

the spalling zone area subjected to tensile stress is wider.

4.5.3 BURSTING TENSILE FORCE

The Bursting tensile force (Fbst) can be found by calculating the total area under the
transverse tensile stress curves (See Fig. 4.10 and 4.23). For this purpose, commercial

software AutoCAD is used. Transverse tensile stress distribution curves were plotted for

different values of eccentricity, k and v. The area under these curves is measured by using

107

0.3 i

0.2
L-—-

k = 0.1

k = 0.2

--------- -

CL
—

________- " ~___________________ k = 0.3__________________________________

_---------- ---------"" k - 0.4
lC --------------- --------------------------------- k = 0,5_________________________________

0.1 -' k = 0.6

o 4
0

i
0.05 0.1 0.15 0.2 0.25 0.3

Fig. 4.28 Variation of Fbst with v different values of k

Fig. 4.29 Variation of Fbst with eccentricity for k = 0.1 and v = 0.15

108

area command in AutoCAD and the variation of bursting tensile force is plotted in Fig.
4.28 and 4.29.

It can be seen from Fig. 4.28 that bursting tensile force is higher for lower values of k. It

can also be observed that bursting tensile force also varies with the Poisson’s ratio v. This

variation is insignificant for higher values of k. For lower values of k, significant
variation can be seen. It can be seen from Fig. 4.29 that Fbst decreases with the increase in

value of eccentricity. The magnitude of maximum Fbst can be observed at concentric

loading conditions (e = 0.0). It can be seen from Fig. 4.23 that the area under the

transverse tensile stress curve reduces with increase in value of e, which ultimately
results in reduction in bursting tensile force. Hence to insure the safety of the prestressed
concrete beam, the effect of eccentricity can be ignored while computing the magnitude

of bursting tensile force.

Multiple regression analysis was carried out to obtain the correlation between Fbst and v

ignoring the effect of e (see table 4.1). The following two expressions were obtained

Fbst = Pk (0.239 - 0.267 k + 0.075 v) (4.18)

and

Fbst = Pk (0.229 - 0.238 k + 0.152 v - 0.22 k v) (4.19)

The R2 values obtained for equation 4.18 and 4.19 were 0.98 and 0.988 respectively. It

can be noted that these equations also include the effect of Poisson’s ratio in calculation

of Fbst which is ignored in the equation given in Indian Standard Code IS: 1343-1980 (Eq.
4.20).

F. v-^ = 0.32-0.3^ (4 20)
rk y„

where,

^• = k
J’.,

109

Table 4.1 Table showing magnitude of bursting tensile force for different values of k and
v

?'\v 0.10 0.20 0.30 0.40 0.50 0.60

0.00 0.20 0.17 0.15 0.13 0.11 0.09
0.08 0.23 0.20 0.17 0.14 0.12 0.09
0.15 0.23 0.20 0.17 0.14 0.12 0.09
0.30 0.24 0.21 0.18 0.15 0.12 0.10

Fig. 4.30 Comparison of variation in bursting tensile force for different values of k

It can be seen that Eq. 4.19 is more accurate as compared to the Eq. 4.18. Hence Eq. 4.19
is followed to compare the results with the available literature. The comparison of

variation in Fbst for different values of k for a constant value of v = 0.15 is shown in Fig

4.30. The magnitude of Fbst obtained by present investigation will always be lower than

the magnitude of Fbst obtained using the equation given in the Indian Standard Code IS:

1343-1980 for all values of k. It is clear from this figure that the magnitude of Fbst

obtained by Iyengar (two-dimensional) is slightly higher and Iyengar (three-dimensional)
is slightly lower than the magnitude of Fbst obtained by present investigation. Among all
the investigations, the magnitude of FbSt obtained by Yettram and Robbins is the lowest
and shows curvilinear variation.

110

Table 4.2 Computational time variation for problem having size of global stiffness matrix

870 x 870

No. of
processors

Total Comm Cal
Real User Real User Real User

1 88.83 62.56 0.00 0.00 88.83 62.56
2 78.08 35.26 0.82 0.19 77.26 35.07
3 65.76 29.50 5.20 0.52 60.57 28.98
4 53.18 23.87 2.23 0.44 50.96 23.43
5 70.02 20.74 4.30 0.67 65.72 20.07
6 73.72 19.41 4.08 1.09 69.64 18.32
7 66.12 17.18 4.96 0.71 61.16 16.47
8 39.57 15.21 3.21 0.82 36.36 14.39

Table 4.3 Performance of parallelized FEM code problem having size of global stiffness

matrix 870 x 870

No. of
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.14 1.77 56.88 88.71
3 1.35 2.12 45.02 70.69
4 1.67 2.62 41.76 65.52
5 1.27 3.02 25.37 60.33
6 1.20 3.22 20.08 53.72
7 1.34 3.64 19.19 52.02
8 2.24 4.11 28.06 51.41

Table 4.4 Computational time variation for problem having size of global stiffness matrix

1226 x 1226

No. of
processors

Total Comm Cal
Real User Real User Real User

1 205.07 181.61 0.00 0.00 205.07 181.61
2 165.21 103.64 1.53 0.58 163.68 103.06
3 127.76 85.31 3.54 0.77 124.23 84.54
4 120.22 70.03 3.97 0.94 116.25 69.09
5 130.43 61.13 14.20 1.98 116.23 59.15
6 139.55 55.47 10.86 1.89 128.69 53.58
7 121.91 48.00 8.78 1.40 113.13 46.60
8 135.81 43.36 4.75 1.78 131.07 41.58

111

fable 4.5 Performance of parallelized FEM code problem having size of global stiffness

matrix 1226 x 1226

No. of
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.24 1.75 62.06 87.62
3 1.61 2.13 53.50 70.96
4 1.71 2.59 42.65 64.83
5 1.57 2.97 31.44 59.42
6 1.47 3.27 24.49 54.57
7 1.68 3.78 24.03 54.05
8 1.51 4.19 18.87 52.36

Table 4.6 Computational time variation for problem having size of global stiffness matrix

1722 x 1722

No. of
processors

Total Comm Cal
Real User Real User Real User

1 845.08 841.90 0.00 0.00 845.08 841.90
2 630.55 623.85 3.31 0.97 627.25 622.88
3 472.25 459.60 10.28 1.67 461.97 457.93
4 374.47 363.43 8.38 2.28 366.09 361.15
5 320.40 301.00 10.54 2.10 309.85 298.90
6 283.94 259.53 11.76 3.64 272.18 255.89
7 252.17 225.90 14.39 2.49 237.79 223.41
8 467.54 203.46 28.65 4.06 438.89 199.40

Table 4.7 Performance of parallelized FEM code problem having size of global stiffness

matrix 1722 x 1722

No. of
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.34 1.35 67.01 67.48
3 1.79 1.83 59.65 61.06
4 2.26 2.32 56.42 57.91
5 2.64 2.80 52.75 55.94
6 2.98 3.24 49.61 54.07
7 3.35 3.73 47.87 53.24
8 1.81 4.14 22.59 51.72

112

Table 4.8 Computational time variation for problem having size of global stiffness matrix

5002 x 5002

No. of
processors

Total Comm Cal
Real User Real User Real User

1 22850.71 20821.39 0.00 0.00 22850.71 20821.39
2 15399.26 15305.83 89.59 32.75 15309.67 15273.08
3 11467.03 11316.55 138.44 45.12 1 1328.59 11271.43
4 9027.31 8884.88 151.80 48.76 8875.50 8836.12
5 7538.28 7328.22 133.22 28.35 7405.06 7299.87

Table 4.9 Performance of parallelized FEM code problem having size of global stiffness

matrix 5002 x 5002

No. of
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.48 1.36 74.19 68.02
3 1.99 1.84 66.42 61.33
4 2.53 2.34 63.28 58.59
5 3.03 2.84 60.63 56.83

4.6 COMPUTATIONAL TIME RESULTS

In the present investigation several analyses were carried out. Due to the numerous
calculations in each analysis of the each analysis, the computational time consumption
was very high. To save the computational time, the present analysis is carried out on

supercomputer PARAM 10000. Present study is carried out on four different types of

finite element meshes. These four meshes resulted in global stiffness matrices of size
5002, 1722, 1226 and 870. Table 4.2 to 4.9 shows the computational time variation for

these problems for different number of processors.

It can be observed that Total time (measured in terms of Real time as well as User time)

reduces with increase in number of processors for all four different types of problems

having different mesh sizes. One can observe that reduction in Total time measured in

term of Real time is abrupt whereas smooth variation can be observed for Total time

113

measured in terms of User time. It can also be observed that the contribution of
Communication time (measured in terms of Real time as well as User time) is very
insignificant as compared to the Total time. Maximum User time Speedup of nearly 4.00
and 50% reduction in User time can be seen at eight number of processors for all finite
element meshes under consideration.

4.7 SUMMARY

An application of parallel computing technique for linear elastic finite element analysis is
presented though this chapter. A problem of anchorage zone in prestressed post-tensioned
concrete beam is analyzed on supercomputer PARAM 10000. Transverse tensile stress

distribution is obtained for different values of k and v for concentric prestressing forces.

This distribution is compared with the literature and found that obtained results match

well with the literature. Longitudinal stress distribution and shear stress distribution is
also obtained and discussed. Effect of eccentricity on transverse tensile stress is studied

and it was found that magnitude of maximum transverse tensile stress in anchorage zone
reduces with increase in eccentricity. Bursting tensile force variation is studied for
concentric and eccentric prestressing forces and it was found that highest magnitude of
bursting tensile force shall be obtained for concentric case only. Considering various

parameters, an equation for computation of bursting tensile force is developed. This

equation includes effect of load area ratio and Poisson’s ratio together. The results

obtained from developed equation are compared with the literature and it was found that

predicted results match well with the literature. Computational time results are also
obtained for four different types of meshes used in present investigation. Reduction in

computational time is achieved by employing multiple number of processor in present

investigation. The performance of parallelized finite element code is also measured by

calculating Speedup and Efficiency. Maximum User time Speedup of 4.00 with 50%

Efficiency was achieved at eight number of processors for all mesh sizes under

consideration.

114

CHAPTER 5

FINITE ELEMENT FORMULATION FOR
LARGE DEFORMATIONS AND CODE

DEVELOPMENT

5.1 INTRODUCTION

In this chapter a non-linear parallel finite element code is developed using Modified
Matrix Inversion Method parallel solver on the platform of supercomputer PARAM
10000. The code is capable to carryout analysis of large deformation problems those
could be idealized as two-dimenstional axisymmetric problem and plane strain problem.
Flow formulation used in development of finite element code is described in detail. Two
types of elements namely three noded triangular element and four noded rectangular

element are used for discretizing the problem domain. Two case study problems, one
from each category i.e. axisymmetric and plane strain, are presented and their results are
compared with the commercial finite element softwares ANSYS and FORGE2.
Computational time results of both these case studies are analyzed and discussed. The
developed software is also tested for bigger data size by analyzing one of the case study

problem discretized using different mesh sizes to ascertain its applicability in three-

dimenstional finite element analysis. Based on the variation in computational time results,

performance of the developed software is evaluated and presented.

5.2 FINITE ELEMENT FORMULATION

Structural analysis mainly includes two types of problems, which may be categorized as

small deformation (strain) and large deformation (strain) problems. In metal forming

deformations in plastic stage are very high as compared to their elastic counterparts, so

fall under the category of large deformation problems. Various methods of analysis are
available for the analysis of large deformation processes. The finite element method is

one of the recent and quite efficient technique to analyze such problems. In finite element
method two formulations are available, namely flow formulation and solid formulation
[63]. In flow formulation, elasticity of the material is neglected during the analysis as
plastic strains are on very higher side as compared to the elastic strain. The material

behavior is considered as rigid-plastic or rigid-viscoplastic during the analysis. Whereas,
in solid formulation, the elasticity of the material is also considered in the analysis so the
material is considered as elasto-plastic or elasto-viscoplastic.

In present study, the flow formulation described in literature [63] is used for the finite

element solution of the larger deformation processes. This chapter highlights the flow

115

formulation in brief and also describes the finite element procedure to solve two-
dimensional plane strain and axisymmetric problems. There are four approaches generally
used for the derivation of the basic equations in the finite element analysis. These are the
direct approach, the variational method, the method of weighted residuals, and the energy
balance approach. Here, the variational method is used.

5.2.1 Basis of Finite Element Formulation

Variational approach requires that among admissible velocities u, that satisfy the

conditions of compatibility and incompressibility, as well as the velocity boundary
conditions, the actual solution give the following functional (function of functions) a
stationary value

k = ja edV -
v SF

and

fa)dv- fa.ds
v Sr

for rigid plastic materials

(5.1)

for rigid viscoplastic materials

where a is the effective stress, £ is the effective strain-rate, Ft represents surface

tractions, and £(£,.,) is the work function. The solution of the original boundary value

problem is then obtained from the solution of the dual variational problem, where the first

order variation of the functional vanishes, namely,

8k = - ^F^dS = 0 ^2)
v sF

where a=a(e) and a = d:(£i£) for rigid plastic and rigid viscoplastic materials,

respectively. The incompressibility constraint on admissible velocity fields in Eq. 5.2 may

be removed by introducing a Lagrange multiplier 2 [67, 77] and modifying the

functional by adding the term U£vdV, where cv = eH, is the volumetric strain-rate. Then,

116

5k = + jt/W/ - jr>,d.s = o (5 3)
v v v Sf.

Another way of removing the constraint is to use the penalized form of the

incompressibility as

5k = ^aSedy + K je^dy - jF^dS = 0 (5 4)
v v Sf

where K is a penalty constant, is a very large positive constant.

In Eq. 5.3 and 5.4, <5^ and SA, are arbitrary variations and <5sand Sev are the variations

in strain-rate derived from 8ui. Equation 5.3 or 5.4 is the basic equation for the finite

element formulation.

5.2.2 Treatment of a Rigid Region

The rigid zones are characterized by a very small value of effective strain-rate in
comparison with effective strain-rate in the deforming body. If these portions are included

within the control volume V, the value of the first term of the basic equation 5.3 or 5.4

cannot be uniquely determined because the undefined value of the effective stress when

the effective strain-rate approaches zero. This is done by assuming that the stress strain

rate relationship approximated by

3
2 (To

with <Tq = <j(e ,£0) for e <e0

where e0 takes an assigned limiting value, say 10'3 [78]. This presumed stress strain-rate

relationship is equivalent to the assumption of a Newtonian fluid like material behavior

for nearly rigid regions. For these regions, the first term of the basic equation, faSEdV,
V

is then replaced by

117

fl EScdV j c
for

\£0)
(5.5)

Thus, the finite element discretization process is based on Eq. 5.3 or 5.4 with Eq. 5.5 for
the regions are considered to be nearly rigid.

5.2.3 Finite Element Procedure

The procedure to the solution of problem formulated in finite element form is as follows.
Discretization of a problem domain is the first step of finite element solution, which
includes: (1) describing the element, (2) setting up the element equations and (3)
assembling the element equations. Numerical analysis techniques are then applied for
obtaining the solution of the global equations. The basis of the element equations and the

assembling into global equations is described in Eq. 5.3 or 5.4

5.2.3.1 Governing Equations

The solution satisfying Eq. 5.2 is obtained from the admissible velocity fields that are
constructed by introducing the shape functions in such a way that a continuous velocity

field over each element can be defined uniquely in terms of velocities of the associated

nodal points. In the deformation process, the workpiece is divided into elements without

gaps or overlaps between elements. In order to ensure continuity of the velocities over the

whole workpiece, the shape functions are defined such that the velocities along any
shared element side are expressed in terms of velocity values at the same shared set of

nodes (compatibility requirements). Then a continuous velocity field over the whole

workpiece can be uniquely defined in terms of velocity values at nodal points specified
globally.

The nodal point velocities are defined in a vector form as

yT = {V|.V2> ’'j,.}

118

where the superscript T denotes transposition and N = (total number of nodes) x (degree

of freedom per node).

An admissibility requirement for the velocity field is that the velocity boundary

conditions prescribed in surface (essential boundary conditions) must be satisfied. This

condition can be imposed at nodes on Su by assigning known values to the corresponding

values to the corresponding variables. It is to be noted that the incompressibility condition
is not required for defining a velocity field in the formulation Eq. 5.3 or 5.4

Equations 5.2 and 5.3 or 5.4 are now expressed in terms of nodal velocities v and their

variation <5v. From arbitrariness of 3vt a set of algebraic equations (stiffness equation) are

obtained as

(5.6)

where (J) indicates the quantity at the element. The capital letter suffix I signifies that

it refers to the node number.

Equation 5.6 is obtained by evaluating the term (dn/dvj) at the elemental level and

assembling them into the global equation under appropriate constraints.

In large deformation problems, the stiffness equation is nonlinear and the solution is

obtained iteratively using Newton-Raphson method. The method consists of linearization

and application of convergence criteria to obtained the final solution. Linearization is

achieved by Taylor expansion near an assumed solution point v = v0 (initial guess),

namely

dn
dvj

d2n
dv.dv.J Jv.v0

(5.7)= 0

119

where Avy is the first order correction of the velocity v0. Equation 5.7 can be written in

the form

K Av = f (5.8)

where K is called the stiffness matrix and f is the residual of the nodal point force vector.

Nodal velocity

(a) Schematic representation of Newton-Raphson method

(b) Schematic representation of direct iteration method

Fig. 5.1 Newton-Raphson method and direct iteration method for solution of non-linear

equations

120

5.2.3 .2 Newton-Raphson Method

Once the solution of Eq. 5.8 for the velocity correction term Av is obtained, the assumed

velocity v0 is updated according to v0 + #Av, where a is a constant between 0 and 1

called the deceleration coefficient. Iterations are continued until the velocity correction
term becomes negligibly small. In the Newton-Raphson iterations [79], the initial guess
velocity should be close to the actual solution for the convergence. When a deformation
process is relatively simple, the initial guess velocity can be provided. However, if the
process is complex and obtaining a good initial guess solution is difficult then the use of
direct iteration method may be appropriate. Figure 5.1 (a) shows schematic representation

of Newton-Raphson method.

5.2.33 Direct Iteration Method

Another technique for solving a nonlinear equation is the direct iteration method [80, 81].
In the direct iteration method, it is assumed that the constitutive equation is linear during

each iteration and cis is assumed to be constant during each iteration. The nonlinear
friction term is also approximated by a linear relationship between the frictional stress

and the relative sliding velocity. Then the stiffness equation resulting from Sts = 0

becomes linear. Figure 5.1 0?) shows schematic representation of direct iteration method.

The computational process of the direct method is as follows:

1. Assign an assumed strain-rate 8 for each element. If a previous solution or iteration

is not available, assign a constant average strain-rate to each element. If a previous

solution or iteration is available, then use the strain-rate obtained previously for each

element.
2. Assign an assumed sliding velocity to each element side that is in contact with a die.

If a pervious solution or iteration is not available, assign a constant average sliding
velocity to all relevant element sides. If it is available, use a sliding velocity that is

obtained from previous solution or iteration.

3. Calculate ole at each integration point of the element, where o is evaluated for e

assigned in step 1.

121

4. Calculate the viscous friction coefficient for each die contact side from the linear
relationship between frictional stress and the relative sliding velocity.

5. Evaluate the stiffness matrix and obtain a velocity solution.
6. Calculate the strain-rate for each element by using the velocity solution of step 5.

7. Calculate the sliding velocity for each die contact element side.
8. Check whether solution converges, using convergence criteria.
9. If the solution does not converge, go to step 3.

It can be seen that for steps I and 2, the direct iteration method does not require any
initial guess velocity. For large deformation problems, the direct iteration method
converges fast towards the solution during the earlier stages of iteration. However, as the
solution point is approached, the convergence becomes very slow. It seem that the best
computational efficiency can be obtained by using (1) the direct iteration method for

generating the initial guess and for case where the Newton-Raphson method does not

converge, and (2) the Newton-Raphson for all other cases [63].

5.2.3 .4 Convergence Criteria

Two convergence criteria are used in the developed code. One measures the error norm of

the velocities, ||Av||/||v||, where the Euclidean vector is defined as ||v|| = (vrv),/2, and

requires such an error norm to decrease from iteration to iteration. The other criterion

requires the norm of residual equations, ||5^/5v||, to decrease.

In general terms, the first criterion is most useful in the early stages of iteration, when
velocity field is still far from the solution. The second test is most useful when slightly ill

conditioned systems reach the final stages of iterations. The final solution is considered to
be achieved when the error norm reaches a specified small value, say 5 x 10‘5.

5.23.5 Solution Procedure

The finite element procedures outlined above are implemented in following manner.

1. Generate an assumed solution velocity.
| on

2. Evaluate the element stiffness matrix for the velocity correction term Av in Eq. 5.8.
3. Impose velocity conditions to the elemental stiffness matrix and repeat step 2 over all

elements defined in the workpiece.

4. Assemble elemental stiffness matrix to form a global stiffness equation.
5. Obtain the velocity correction terms by solving the global stiffness equation.
6. Update the assumed solution velocity by adding the correctional term to the assumed

velocity. Repeat steps 2 through 6 until the velocity solution converges.
7. When the converged velocity solution is obtained, update the geometry of workpiece

using the velocity of nodes during a time increment. Steps 2 through 7 are repeated
until the desired degree of deformation is achieved.

5.2.4 Elements and Shape Functions

In the developed code, two types of elements namely three noded triangular element and

four noded rectangular element, are used to discretize the problem domain. The geometry

of an element is uniquely defined by a finite number of nodal points or nodes. The nodes
are located on the boundary of the elements and the shape functions define an admissible
velocity field locally in terms of velocities of associated nodes. Thus, elements are
characterized by the shape and order of shape functions.

In the finite element method, interpolation of a scalar function f(x,y) defined over an

element is introduced in a form

f(x,y) = '^qa{x,y)- fa (5.9)

where fa is a function value associated with alh node, and qa(x,y) is the shape

function. Generally, it is a polynomial function of x and y defined over the element in
such a way that

(5.10)

123

where (xp,yp) is the coordinates of /7th node and 6uP is the Kronecker delta. Owing the

property of the shape function given by Eq. 5.10, fa in Eq. 5.9 has the value of the

function f at (xp,yp) and the fa are independent of each other.

5.2.4.1 Triangular Element

In the three noded triangular element, it is convenient to define shape functions in the area

coordinate system , Z2, L3. The area coordinates for a triangle, as shown in the Fig.

5.2 (a), are defined by the following linear relations

x = ZjXj + L2x2 + L3x3

y = L,yt + L2y2 + L,y, (5.ii)

Z| + L2 + L3 =1

where (xa ,yp) are the coordinates of a comer of the triangle. It can be readily shown that

an alternative definition of the coordinate of point P can be given by the ratio of the
shaded triangle to that of the total triangle as

_ areaP23 _ areaP13 , r areaP12L, =---------- , , and L, - --------—
area 123 area 123 area 123

Solving Eq. 5.11 forZj, L2, and L3 gives

+blx + ciy)/2&, L2 = (a2 +b2x + c2y)/2A, L3 =(a3 +b3x + c3y)/2&

where A = area of (123)

and

a\ =x2y3-x3y2 °2 = ^i a, =x\y2 ~x2yt

by = ^2 -^3 h2 -y2-yi bi =yt-y2 (5.12)

c, = x3 -x2 c3 = Xj - X, C 3 — A , — X ।

124

(a) Area coordinate system of the triangular element

(c) Shape functions for rectangular element(b) Natural coordinate system for

rectangular element

(d) Cartesian coordinate system for rectangular element

Fig. 5.2 Coordinate systems for triangular and rectangular elements

125

5.2.4.2 Rectangular Element

The shape functions of rectangular elements are defined in a parametric form over a

domain -1 < £ < 1, -1 < 77 < 1 in a natural coordinate system (^,77). The element defined

in the natural coordinate system is called as parent element. The simplest of the
rectangular elements is the used four-node linear element shown in Fig. 5.2(b). The shape

function, qa, which are bilinear in £ and 77, are defined as

<7a(^) = X(l+^)(l + 7a7) (5.13)

where (£a ,qa) are the natural coordinates of a node at one of its comers. The value of the

shape functions, given by Eq. 5.13 are shown schematically in Fig. 5.2(c). Admissible

velocity fields can be defined uniquely over the rectangular element by the nodal velocity

components as

“ (5.14)
"z(^'7) = Z9«(^>,7)"JO)

a

where is the velocity at the ath node and summation is over all four nodes.

Coordinate transformation from the natural coordinate (£, t|) to the global coordinate

(x,y) is defined by

" (5-15)

a

where (xa,ya) are the global coordinates of the «th node. Since the coordinate

transformation (Eq. 5.15) uses the same shape function (Eq. 5.14). the linear element is

isoparametric and takes quadrilateral shape in the cartesian map. as shown in the Fig.

5.2(d).

126

5.2.5 Element Strain-Rate Matrix

The strain-rate components in cartesian coordinate system are defined by

(5.16)

The admissible velocity for all type of elements can be express by

(5.17)

substituting Eq. 5.17 into Eq. 5.16 we have

1
" 2

(«) , <“)
---------W, -I------------W.
dXj dxt

(5.18)

It is seen from Eq. 5.18 that strain-rate components can be evaluated if dqa!dxi is

known.

For the cartesian coordinate system, we denote the coordinate x, by (x^z) for three-

dimensional deformation, by for axisymmetric deformation and by (x,j/) for

two-dimensional deformation.

Let Xa, Ya and Za be defined as

X V 7 -
“ dx ’ ° dy ’ a dz

Then the strain-rate components given by Eq. 5.18 are expressed by

(5.19)

127

=&/’• (5.20)

It is convenient to arrange the strain-rate components in a vector form. For two-
dimensional elements the strain-rate components can be written as

for plane strain problems

and (5.21)

for axisymmetric problems

Substituting Eq. 5.20 into Eq. 5.21 the strain-rate vectors are represented in a unified form
as

*1

^2

^3

(a)

(a)

(5.22)

^X^ + Y^

128

In Eq. 5.22, c2, s4 arc cy, c,, /Iy and £r, bz, £n, /for plane strain and

axisymmetric problem respectively. Velocity components and w2 correspond to ux

and uy respectively, for two-dimensional deformation and Pa is zero for plane strain

problem. For the axisymmetric case, and w2 represents ur and u, respectively and Pa

becomes qa / r.

Equation 5.22 can be written in the matrix form as

e = B v (5.23)

where B is called the strain-rate matrix and written as

0 %2 0 %3 0 %4 0
o y; o y2 o r3 o y4
Pt 0 P2 0 P3 0 P4 0
Y, X, Y2 X2 Y, X2 Yt Xt

(5-24)

The number of columns of the matrix B is determined by the number of degrees of
freedom allowed to the element.

The evaluation of the strain-rate matrix requires the differentiation of shape functions

with respect to the global coordinate. Since the shape functions are expressed in the
natural coordinate system, it is necessary to express the global derivatives in terms of the

derivatives with respect to the natural coordinate. Consider a coordinate transformation
where shape functions are defined in the natural coordinate system, then the derivatives of

the shape functions with respect to the natural coordinate system can be expressed as

dqjd? dqjdx
* dqa /dr] ► = J’ dqa /dy ► (5.25)

ldQjdz,

where J is the Jacobian matrix of the coordinate transformation, given by

129

J =
ux/d^
dxldq
ox! dQ

dy!d$
dyl dq
dy/dC

dz/d^
dzl dr]
dz/d^

(5.26)

Then the derivatives in Eq. 5.19 can be obtained as

X dqjdx dqjd^
y. - =. dqa/dy dqa /dq
z,. dqa /dz Sqa/d^

(5.27)

where J'1 is the inverse of J

It may be mentioned that in plane strain deformation, the strain-rate is not necessary,

since it is always zero. However, it is convenient to include f3, in Eq. 5.23 so that the

strain-rate matrix B of the plane strain deformation has the same form as that of the
axisymmetric deformation as shown in Eq. 5.24.

5.2.5.1 Triangular Element

From the Fig. 5.2 (a), the shape functions qa for a linear triangular element are given by

Qi ~ Qi ~ Ly (5.28)

The strain-rate matrix of the triangular element can be derived by applying Eq. 5.27 to the

shape functions given in Eq. 5.28. Since the area coordinates are not independent of each

other, we can eliminate Z3 from the expression of qa by using L3 = 1 - L. - Lz. Equation

5.27 can be written for triangular element as

Sqa Sy dy dq«
dx 1 dL, dL dL.hi

dx dx Sqo
. dy. I dL, dL, dL2

(5.29)

130

where | J | is the determinant of the Jacobian matrix and expressed by

dx dy dx dy
dL^ dL2 dL2 dL{ (5.30)

The strain-rate matrix of a linear triangular element, shown in Fig. 5.2 (a) can be obtained

in a closed form by substituting qx = Lx, q2= L2, q3 - L2 and is written as

follows

_ । |(y2-y3)J -^2 — । _ [(y।- y3) ’ ^3— ^2

PI PI
(5.31)

= rv7(x2-x3)» ^2 = " x3)» ^3=”^i“^2

PI PI

where

| J| =(X| -x3)(y2 -y3)-(x2 -x3)(y, -y3) (5.32)

Note that I J | is twice of the area of the triangle.

5.2.5.2 Rectangular Element

For the rectangular element and Ya in Eq. 5.22 can be written as

KI
(5.33)

d^ J dq

where | J | is the determinant of Jacobian matrix of Eq. 5.15 and is expressed by

dx dy dx dy
dq dq d^

(5.34)

131

For a quadrilateral element with the number of nodes shown in Fig. 5.2(c) Xa, Ta and | J |

can be expressed in the closed form as

+ y24 -y34^-y237
%21 = i - yl3 + y34£ + yl47
x3 8] J | -y24+yi2<-y)47

l+y>3 -y12^+y237.

and

X
y,
Y,
Y,.

(5.35)

-x24 +x34f + x237'
1 +xl3 -x34^-xl47

8|j| + x24-xl2£ + xl47
-xI3+x12£-x237

and j J [is expressed as

| J | = 1/8[(x|3 ' y24 - x24 • yj3)+ (x34 • y(2 — xi2 y34)£ + (x23 -yI4 — x14 *y23)7] (5.36)

where xv =xt- x, and = y, - yt

5.2.6 Matrices of Effective Strain-Rate and Volume Strain-Rate

In the finite element formulation for the analysis of large deformation process, the

effective strain-rate e and the volumetric strain-rate ev are frequently used. Therefore, it

is necessary to express the effective strain-rate and volumetric strain-rate in terms of the

strain-rate matrix.

The effective strain-rate is defined in terms of strain-rate components as

(537)

or, in the matrix form

132

(i')2 = £TDe (5.38)

The diagonal matrix D has 2/3 and 1/3 as its components; corresponding to normal strain
rate and engineering shear strain-rate, respectively. Substitution of Eq. 5.23 into Eq. 5.38

gives

(s)2 = vTBTDBv = vTPv (5.39)

where P = BT D B

The matrix D in Eq. 5.38 takes different forms depending upon the expression of the
effective strain-rate, in terms of strain-rate components. The expression of the effective

strain-rate also depends on the yield criteria.

The volumetric strain-rate £v is given by

£v—£x+£y+£z (5.40)

and expressed by

£v =CT N = CJVJ (5.41)

with C, = By + B2J + B3l where Bu is an element of the strain-rate matrix B.

5.2.7 Elemental Stiffness Equation

It can easily be seen from the way in which the element was introduced that the global
integrals over the whole workpiece stem from the assembly of integrals over the local
domain of disjoint finite elements. Therefore, it is convenient to evaluate the stiffness
matrix given by Eq. 5.7 at the element level, and to assemble into a global stiffness

matrix.

In the penalty function method, (Eq. 5.4) denote the first, second and third term

(including signs) of Eq. 5.4 with S/tp, 8nSi respectively. In large deformation

process, the boundary conditions along the die-workpiece interface are mixed. Therefore,

along the interface Sc the treatment of traction depends on the friction representation.

Using the discrete representation of the quantities involved in 8n that are developed in
sections 5.2.4 and 5.2.5, we can express the integral of 8n in terms of nodal-point
velocities. Eq. 5.7 becomes

dn _ dnD d7Tp
Ovj dv{ dvf dvJ

where,

—i = [KC^C^V (5.42)
V

Sp

It should be noted that the term (~dnSF / dvt) is the applied nodal point force and that

dnD /dv} + dttp I dv, is the reaction nodal point force.

The second derivatives of n are expressed as

5 f(T n rrr 1 O* Ip, p, Trr f kzz—i /—I JT/T---- = J— PudV + fl --r -PIKvKvlllPl.udV + XKCjC^V (5.43)
ov^j Js de e) e '

Evaluating stiffness matrices at the elemental level from Eq. 5.42 and Eq. 5.43

assembling them for the whole workpiece, we obtain a set of simultaneous linear

equations (Eq. 5.8).

134

When effective strain-rate £ approaches zero or becomes less than a preassigned value

, we have

8nb =
V V 0

where a01 eQ = constant. The derivatives of can be expresses by

^puVjdv
v *0

dvjdvj

(5.44)

(5.45)

The penalty constant K and the limiting strain-rate £0 are introduced rather arbitrarily for

computational convenience. However, proper choices of these two constants are
important in successful simulation of large deformation processes. According to literature
[63] a large value of K is preferred to keep the volumetric strain-rate close to zero.
However, too large value of K may cause difficulties in convergence, while too small
values of K results in unacceptable large volumetric strain. Numerical tests show that an

appropriate K value can be estimated by restricting volumetric strain-rate is 0.0001-0.001

times the average effective strain-rate.

The limiting strain-rate, £0 under which the material is considered to be rigid, has been

introduced to improve the numerical behavior of the rigid-plastic formulation [78]. Too
large value of limiting strain-rate result in a solution with a rigid zone of unacceptably
large strain-rate. On the other hand, if we choose too small value of limiting strain-rate,
then the convergence of the Newton-Raphson method deteriorates considerably.
Numerical tests show that an optimal result can be obtained by choosing the limiting
strain-rate 1/100 of the average effective strain-rate [63].

135

5 .2.8 Boundary Conditions

Since the boundary condition along the die-workpiece interface is mixed, it is

convenient to write the boundary surface 5* in three distinct parts.

5 = ^+5,..+^.

The traction boundary condition on S^- is either zero traction or ordinarily at most a

uniform hydrostatic pressure. However the boundary conditions along the other interface
are mixed. Generally, neither velocity nor force can be prescribed completely along this
interface, because the direction of the frictional stress is opposite to the direction of the
relative velocity is not known a priori. Situations exist in which the direction of

deformation in the deforming zone relative to the undeformed portion is known. This

class of problem can be solved if the magnitude of the frictional stress fs is given

according to the well known Coulomb law, fs = /^, or the friction law of constant factor

m , expressed by fs = mk (where k = Y IV3) here, p is the die pressure and k is the

shear yield stress.

It is difficult to handle the boundary conditions in a straightforward manner in problems

in which the direction of the relative velocity between the compressing die and deforming

material interfaces is unknown. In order to deal with these situations, a velocity
dependent frictional stress is used as an approximation to the conditions to constant

frictional stress. At the interface Sc the velocity boundary conditions are given in the

direction normal to the interface by the die velocity, and the traction boundary condition

is expressed by

fs
2

= mkl = mk<—tan”' (5.46)

where fs is the frictional stress, Z is the unit vector in the opposite direction of relative

sliding, ux is the sliding velocity of a material relative to the die velocity, and is a

136

small positive number compared to us. The approximate expression (Eq. 5.46) for a

constant frictional stress has been used for the smooth transition of the frictional stress in
the range near neutral point [82].

Imposition of the traction boundary conditions on Sh is straightforward. Recalling the

boundary integral with respect to a node velocity component, the traction boundary

conditions is imposed in the form of nodal point forces. It should be mentioned that the
same nodal point force could be obtained with different traction distribution.

The velocity boundary conditions on Su are essential boundary conditions. In the finite

element discretization, the velocity boundary condition is enforced only at nodes on Su,

and the velocity along the element side is determined automatically in terms of velocities

of the nodes and clement shape functions. For the node at which the velocity is defined,

the velocity correction Avw is zero. Consequently, the corresponding stiffness equation

should be removed. The simplest way to implement this procedure is to replace the
corresponding rows and columns by zeros and to set the diagonal terms to 1 as shown
below

X .. o • • V Av, '
* *

J\

k2I k22 • .. 0 •
.. 0 ••

• K2„

<

Av2

► = <

fl

0 0 .. 1 .. 0 0
• • .. o •• • •

K„t • . o •• nn J ,Av„ ^fn „

On the surface Sc, the traction is prescribed in the tangential direction and the velocity is

prescribed in the normal direction to the interface. When the interface direction is inclined
with respect to the global coordinate axis, the coordinate transformation of the stiffness
matrix upon the inclined direction is necessary in order to impose mixed boundary
conditions.

137

Consider a velocity vector v in the global coordinate system and the corresponding vector
v’ in the inclined boundary coordinates. Then the vector is transformed from the global
to the local coordinate system by

v'=Tv (5.47)

where T is the coordinate transform matrix.

Similarly, the nodal point force vector f is transformed to f according to

f = Tf (5.48)

in the two-dimensional coordinate system, the transformation matrix of node I is written

as

cos# sin#
T =

1 [-sin# cos#

where # is measured from the x-axis in the global coordinate system to the x’ axis of the

local coordinate system in counterclockwise direction. The stiffness equation (Eq. 5.8) is

transformed to

TKT^v^f (5.49)

The velocity boundary condition at the tool-workpiece interface is given by

un =Ujn

where UD is the tool velocity and n is the unit normal to the interface surface

In the direction of the relative sliding between the die and the workpiece, the frictional

stress fs is prescribed as the traction boundary condition. The frictional stress is usually

represented according to the Coulomb law or as a constant frictional stress. The friction

138

represented by a constant friction factor m is approximated by Eq. 5.46 in order to deal
with neutral-point problems in large deformation process.

The equation (Eq. 5.46) expresses that the magnitude of the frictional stress is dependent
on the magnitude of the relative sliding and that their directions are opposite to each
other. Then, the relationship can be written as

fx = -mk (5.50)

The approximation of the frictional stress by the arctangent function of the relative sliding
velocity eliminates the sudden change of direction of the frictional stress mk at the

neutral point. The literature [63] shows that the frictional stress approaches mk

asymptotically as the relative sliding velocity ux increases. However, the frictional stress

fx approximated by Eq. 5.50 deviates considerably from the value of mk as us

approaches zero. It may be noted that the value of w0 was introduced arbitrarily for

performing numerical calculations and that the choice of w0 could have a significant

influence on the reliability of the solution. It is seen from the literature [63] that the ratio

us I uQ should be equal to or larger than 10 in order to attain the friction value within 9%

of the one originally intended. On the other hand, if we choose the ratio too large, then the

sudden change of the frictional stress near the neutral point can cause difficulties in

numerical calculations. Since the order of magnitude of us is 0.1 with the unit die

velocity, a recommended value of w0 is 10'3 to IO"4 [82].

Fig. 5.3 An element in contact with die

139

For the discretization, consider a die and an element that is in contact with the die, as
shown in Fig. 5.3. The boundary condition normal to the contact surface is enforced at the

contact nodes. Also, the relative sliding velocity at the nodes v, can be evaluated. It

should be noted that the element-side cannot be made to conform the die surface.

However, it may be assumed that the relative sliding velocity ux can be approximated in

terms of nodal-point values vra by using a shape function of the element as

(5.51)
a

where the subscript a denotes the value at ath node.

In deriving the stiffness equation, 8n, include the term 8nSc, and the final form of the

stiffness equation should contain the terms

‘an"' [?/)% /uokS (5.52)
a sc

and

d^sc
(5.53)

The finite element method approximation of the boundary conditions introduces errors to
the solution of the boundary value problem. Note that the surface integration in Eq. 5.52
and 5.53 is carried out over the element surface rather than the actual die surface. When
linear elements are used with a curved die, the interface area represented by element is
always smaller than the actual interface area, and the effect of friction in the analysis is
always smaller than the actual. For deformation processes that are sensitive to friction,
this type of error could be quite serious.

Also, the velocity boundary condition imposed by the finite element model can be

considerably different from that of the actual problem. In expressing the sliding velocity

140

by Eq. 5.51 it was assumed that the mismatch angle between the element side and the
tangent direction of the die at contact node is small. When this angle of mismatch is large,
the deformation mode is not modeled correctly. The errors resulting from the boundary
conditions imposed by the finite element method can be minimized by increasing the
number of elements at the boundary.

5.2.9 Time Increment and Geometry Updating

When the solution of velocity is obtained, then the deformed geometry of the workpiece,
in the case of two-dimensions can be obtained by updating the coordinates of the nodes.

*i ('0 + AO = X, (t„ y +

y^o+^^yi^oy+^^t
(5.54)

where are the coordinates of I,h node, r0 is the time at current configuration, and

is the time increment. The strain is updated in a similar manner from the strain-rate
solution. In general the time increment Ar can be determined by considering several

factors, such as the time (Ar^) necessary for a next free node to contact the die surface, a

desired maximum strain increment (Ar^,,), and a maximum allowable time increment

(Ara). The actual time increment is determined by taking the minimal of

(&ts(rain) and (Ara). The time necessary for a next free node to contact the die can be

determined by calculating these time increments for all free nodes and choosing the
minimal time increment. The time increment required to limit the maximum strain

increment cab be readily obtained from strain-rate solutions. The maximum allowable
time increment is given rather arbitrarily. However, consideration of the error in the
volume constancy is a factor for determining its magnitude.

5.2.10 Stress-Strain Computations

After computing the solution of every step, the strain-rate components are calculated as

f. = B v (5.55)

141

where B is the strain-rate matrix, and the v is the solution velocity vector.

The effective strain-rate is computed using following expression

f = (cTDc)''2 (5.56)

where D is effective strain-rate coefficient matrix and is defined as

0 0 O’
0 | 0 0

D = ,
0 0 f 0
0 0 0 f

The effective stress is calculated as

ff=a(e,e) (5-57)

and the stress components are expressed as

ff = ~(e-s„)+3Ksa (5.58)
3 £ Q

5.3 CASE STUDIES

Based on the finite element formulation discussed above, two computer codes are

developed; one uses three noded triangular element (FEMLD3) whereas other four noded
rectangular element (FEMLD4). With the help of these codes, one can analyze two-
dimensional plane strain and axisymmetric problems. These codes were parallelized by
incorporating the Modified Matrix Inversion Method parallel solver (MMIM) discussed
in section 3.7. A typical problem in each category is analyzed using both the codes on

supercomputer PARAM 10000. The following text describes the obtained results of the

both case studies.

142

5.3.1 Axisymmetric Problem

A problem of simple compression of solid cylinder having dimensions, 1 inch radius and
1 inch height was considered (see Fig. 5.4). The cylinder was compressed with a velocity
of 1 inch/s till 30% reduction in height was achieved. The reduction was occurred in 15
steps. The bottom surface was considered as frictionless and for top surface, friction
factor of magnitude 0.5 was considered. The error norm was considered as 0.001 and
limiting strain-rate value was considered as 0.01 to define the rigid portion of cylinder.

The material behavior was expressed by the equation a = ks m, where the values of k and
m were taken as 10 Ksi and 0.1 respectively. The cylinder was discretized using 800 three
noded triangular elements with 441 nodes and 400 four noded rectangular elements with

441 nodes, resulting in global stiffness matrix of size 882 x 882 in both the cases. The

problem was analyzed by increasing the number of processors from one to eight using

codes FEMLD3 and FEMLD4. Each processor required approximately 14 MB of

memory for every execution for both the codes on supercomputer PARAM 10000.

Deflected profiles of the specimen at different stages of deformation process were
recorded. Variation of contours of nodal velocity, different components of stress tensor
and strain tensor were also recorded. Load required for the compression during the

compression process was also studied. To compare the results obtained using developed
codes, the same problem was analyzed using the computer code (SPID) given in book by

Kobayashi et al. [63] where the problem was discretized using 16 four nodded rectangular

element with 25 nodes. The rest of the problem details were same.

5.3.1.1 Iterations

The solution procedure is iterative therefore, 59 iterations were carried out by FEMLD3
and 84 iterations were carried out by FEMLD4, to analyze the problem in 15 steps. Figure
5.5 shows the graph between number of iterations and the step numbers for FEMLD3 and

FEMLD4.

143

M Moving die
_------------------ 1 Inch~.

I inch

B

' Stationary die

------ Axis of rotation

Fig. 5.4 Axisymmetric compression of solid cylinder

N
o.

 o
f i

te
ra

tio
ns

N

o.
 o

f i
te

ra
tio

ns

18 □ Newton Raphson Method

□ Direct Iteration Method

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Step No.

(a) Variation in number of iterations for code FEMLD3

50 -1
45 -
40 -
35 -
30 -
25 -
20 -
15 -
10 -
5 -
0 -

□ Newton Raphson Method

□ Direct Iteration Method

1 2 3 4 5

n , n . □ , □ . □ ..a., . n , n
6 7 8 9 10 11 12 13 14 15

Step No.

(b) Variation in number of iterations for code FEMLD4

Fig. 5.5 Variation in number of iterations with number of steps obtained from codes

FEMLD3 and FEMLD4

144

(a) Variation in components of computational time for code FEMLD3

(b) Variation in components of computational time for code FEMLD4

Fig. 5.6 Variation in components of computational time obtained from codes FEMDL3
and FEMLD4

145

dnpssdS
dnpesds

(a) Variation in Speedup for code FEMLD3

(b) Variation in Speedup for code FEMLD4

Fig. 5.7 Variation in Speedup obtained from codes FEMLD3 and FEMLD4

146

It can be seen from Fig. 5.5 that, the number of iterations required to achieve the solution
velocities are more in the first step. The initial guess velocities are automatically
generated in the first step. These velocities are not nearer to the solution velocities.
Therefore, more number of iterations is required in the first step.

5.3.1.2 Performance On PARAM 10000

Figure 5.6 shows the variation in components of computational time with the number of

processors achieved by both the codes. It can be seen from these graphs that the Total
time measured in terms of Real time as well as User time reduces by considerable amount
by increasing the number of processors, whereas the Communication time measured in
terms of Real time increases with increase in number of processors.

Figure 5.7 (a) and (b) shows the Speedup achieved using FEMLD3 and FEMLD4 codes

respectively. The maximum Real time Speedup and User time Speedup achieved by
FEMLD3 is 2.92 and 11.76 respectively, whereas the maximum Real time Speedup and
User time Speedup achieved by FEMLD4 is 3.04 and 8.64 respectively. The User time
Speedup is higher than the Ideal Speedup for both the codes at seven and eight number of
processors. From this figure it can be observed that the performance of FEMLD3 is better
than FEMLD4.

5.3.1.3 Results

Figure 5.8 and 5.9 shows deformation at selected number of steps. It can be seen from
these figures that, the deformed shape obtained by both the codes at various stage of

deformation are nearly same.

Figure 5.10 shows the undeformed-deformed shapes obtained by SPID. It can be seen
from this figure that, the deformed shapes obtained by FEMLD3 and FEMLD4 at step
No. 15 are identical to the deformed shape obtained by SPID.

147

000*00000*0000000000
^000*000000000000000
0*0*0*0*0*0*0*01*0*0*
*01*0*0*0*0*0*0*0*0*0
0*0*0*0*0*0*0*0*0*0*
*0*0*0*0*0*0*000*0*0
0*0*0*0*0*0*0*0*0*0*
*0*0*0*0*0*0*0*0*000
0000000000O000000000
0000*000000000000000
000000000000000*0000
0000*00000*000000000
00000000000000000000
0000*00000*000000000

(a) Undeformed (a) Undeformed

0000O000O00000000000
000O0O0000000000000B
000000000000000000SS*
00*0*0*0000000*0*®3g
0001*000000000*0*0353
*00000*0*0*0*030353*
0*0*0*0*0*0*035353*3
00*000*0*0*0*******€ §§§§§§§^§§§§111111'

§§g§§S§gS8SS|g||§S||
gs§s§sgsxs§§xii
fl00*0*0**********g**
*00000*0*0*0********
0000000*0*0*0*******
00000000*0*0*0*0****
00000000000*0*0*0*0*
00000000*0000000*0*0

(b) Step No. 3 (6% compression) (b) Step No. 3 (6% compression)

0*0*0*0*0*0*0*0*0*0M *0*0*0*0*000*0*0000^
0*0*01! “
000O0S
0*0*0?
*0*0*S
0*0*0?
*0*0*U
000*0?
00*0*li
000001
000001
000001
000001
000001 00000 00000
000000000000I000*^*§,*| 000000000000000000*01

(c) Step No. 6 (12% compression) (c) Step No. 6 (12% compression)

(d) Step No. 9(18% compression) (d) Step No. 9 (18% compression)

148

(e) Step No. 12 (24% compression) (e) Step No. 12 (24% compression)

(f) Step No. 15 (30% compression) (f) Step No. 15 (30% compression)

Fig. 5.9 Deformed shapes obtained by
FEMLD4

Fig. 5.8 Deformed shaped obtained by
FEMLD3

(b) Deformed shape at step No. 15 (30%
compression)

Fig. 5.10 Undeformed and deformed shapes obtained by SPID

Fig. 5.11 Variation in forming load with number of steps

(a) Contour of nodal velocity

(b) Nodal velocity directions

Fig. 5.12 Contours of nodal velocity (inch/s) and their direction at step No. 15 (30%

compression) obtained by FEMLD4

150

When the forces obtained by both the codes at various nodes arc compared, it was found
that the magnitude of force and their directions arc almost same at every step and has
good agreement with the forces obtained by SPID. Figure 5.11 shows the variation in
forming load, which is calculated by adding forces in y-direction at nodes of which the
nodal velocities are specified.

Figure 5.12 (a) shows the contours of velocity at step 15. It also shows the location of
maximum velocity as well as minimum velocity points. Figure 5.12 (b) shows the

velocity directions at step 15. This denotes the direction of metal flow during the
deformation process.

Figure 5.13 shows the contours of strain-rate components sr, e., e0 and at step 15.

After comparing the strain-rate results at different location, large variation in their

magnitude was found near the top right comer of the sample (point A as per Fig. 5.4). The

strain-rate components obtained by both the codes are found nearly same at any location
under consideration. It was found that the volumetric strain of the sample is near to zero
in both the cases. But in case of triangular elements, the volumetric strain-rate is greater
than the volumetric strain-rate of rectangular elements.

Figure 5.14 shows the contours of stress components Gr, a., a09 and at step 15.

From these contours, high stress concentration can be observed at the top right corner of
the specimen (point A as per Fig. 5.4). When the stress results obtained by both the codes

arc compared, it was found that the results of FEMLD3 do not match with the results
obtained by FEMLD4 and SPID. The main reason for this is the increased volumetric
strain-rate in triangular element as compared to the rectangular element. This increase in
volumetric strain-rate results in improper stress computation. Therefore the results of

stress components, namely ar, a,, a0 and computed by FEMLD3 do not aggress

with the results of stress components obtained by FEMLD4 and SPID.

151

Mo*

(c) (d)

(c) (d)
Fig. 5.14 Contours of (a) ar (Ksi) (b) cr. (Ksi) (c) (Ksi) and (d) (Ksi) at step No.

15 (30% compression) obtained by FEMLD4

Fig. 5.13 Contours of (a) £r (b) £z (c) e0 and (d) at step No. 15 (30% compression)
obtained by FEMLD4

Mln

152

(c)

Fig. 5.15 Contours of (a) e (b) cr (Ksi) and (c) e at step No. 15 (30% compression)
obtained by FEMLD4

Table 5.1 Comparison of X-coordinates (mm) obtained by present investigation
(FEMLD4) and FORGE2 at different stages of compression

Compression Point FORGE2 Authors SPID

10% A 25.84 25.94 25.94
B 26.78 27.20 27.23

20% A 26.73 26.67 26.71
B 28.80 29.16 29.22

30% A 28.00 27.56 27.73
B 30.90 31.33 31.45

Figure 5.15 shows the contours of effective strain-rate (s), effective stress (cr) and total

effective strain (s) at step 15. It was found that the above-mentioned results obtained by
FEMLD3 and FEMLD4 has excellent agreement with the results obtained by SPID.

153

- 9 :0.8000

- 8:0.7200

- 7 : 0.6300

- 6:0.5400

- 5 :0.4500

-4 :0.3600

- 3 : 0.2700

-2:0.1800

-1 : 9.000OE-O2

Fig. 5.16 Contours showing (a)
effective strain (b) effective stress
(MPa) (c) effective strain rate (d)
nodal velocity (mm/s) distribution

(a)

-1 :2.750

(d)

Fig. 5.17 Contours showing (a) effective strain (b)
effective stress (MPa) (c) effective strain rate (d)
nodal velocity (mm/s) distribution obtained by

FORGE2 (A and O represent maximum and
obtained by present investigation minimum respectively)

154

250

Fig. 5.18 Load compression relationship

Moving die
---------- 1 inch —

1 inch

Stationary die

Fig. 5.19 Compression of solid square bar

155

5.3.1.4 Comparison with Commercial Softwares

The same problem was also analyzed using commercial software FORGE2 and ANSYS.
To compare the results obtained by present investigation and FORGE2, two points A and
B are considered (shown in Fig. 5.4). Table 5.1 shows the comparison of X-coordinates of
points A and B at different stages of compression. It can be seen from this table that at
every stage of deformation, X-coordinates of point A and B obtained by present
investigation and FORGE2 are nearly same.

Figures 5.16 and 5.17 show the variation of total effective strain (s), effective stress

(a), effective strain-rate (e) and nodal velocity obtained by present investigation and
FORGE2 respectively at 30% compression (step 15). After comparing both the figures
one can conclude that the variations obtained using FORGE2 and present investigation
match well. The location of minimum/maximum values of effective strain, effective

stress, effective strain-rate and nodal velocity is also almost at the same points.

Figure 5.18 shows the load compression curve. It can be seen from this figure that the
forming load obtained by developed software matches fairly well with the forming load
obtained by commercial software FORGE2 and ANSYS.

5.3.2 Plane Strain Problem

A problem of simple compression of solid square bar of dimension 1 inch with unit
thickness was taken for study (see Fig. 5.19). The bar was compressed with a velocity of
1 inch/s till 30% reduction in height was achieved. The reduction was occurred in 15

steps. The bottom surface was considered as frictionless while for top surface, friction
factor of magnitude 0.5 was considered. The velocity error norm was taken equal to 0.001
and limiting strain-rate value was considered as 0.01 to define the rigid portion of square

bar. The material behavior was expressed by the equation a = ks m, where the values of k

and m were taken as 10 Ksi and 0.1 respectively. The specimen was discretized using 800
three noded triangular elements with 44Inodes and 400 four noded rectangular elements

with 441 nodes, resulting in global stiffness matrix of size 882 x 882 in both the cases.

The problem was analyzed by increasing the number of processors from one to eight

I5o

using FEMLD3 and FEMLD4. Each processor required approximately 14 MB of memory
for every execution for both the codes.

Deflected profiles of the specimen at different stages of deformation process were
recorded. Variation of contours of nodal velocity, different components of stress tensor
and strain tensor were also recorded. Load required for the compression during the
compression process was also studied. To compare the results obtained using developed
codes, the same problem was analyzed using the computer code (SPID) given in book by

Kobayashi et al. [63] where the problem was discretized using 16 four nodded rectangular
element with 25 nodes. The rest of the problem details were same.

5.3.2.1 Iterations

The solution procedure is iterative therefore, 128 iterations were carried out in FEMLD3
and 111 iterations were carried out in FEMLD4, to analyze the problem in 15 steps.
Figure 5.20 shows the graph between number of iterations and the step numbers for
FEMLD3 and FEMLD4.

5.3.2.2 Performance on PARAM 10000

The above analysis was carried out on supercomputer PARAM 10000 by changing the
number of processors from one to eight. Figure 5.21 shows the variation in components of

computational time with the number of processors achieved by both the codes. It can be
seen from these graphs that the Total time measured in terms of Real time as well as User
time reduces by considerable amount by increasing the number of processors, whereas the

Communication time measured in terms of Real time increases with increase in number
of processors. Figure 5.22 (a) and (b) shows the Speedup achieved by FEMLD3 and
FEMLD4 respectively. The maximum Real time Speedup and User time Speedup
achieved by FEMLD3 is 3.01 and 8.47 respectively, whereas the maximum Real time
Speedup and User time Speedup achieved by FEMLD4 is 3.15 and 7.13 respectively.
From this figure it can be observed that the performance of FEMLD3 is better than
FEMLD4.

157

(a) Variation in number of iterations for code FEMLD3

(b) Variation in number of iterations for code FEMLD4

Fig. 5.20 Variation in number of iterations with number of steps obtained from codes
FEMLD3 and FEMLD4

15S

No. of processors

(a) Variation in components of computational time for code FEMLD3

(b) Variation in components of computational time for code FEMLD4

Fig. 5.21 Variation in components of computational time obtained from codes FEMDL3
and FEMLD4

159

(a) Variation in Speedup for code FEMLD3

(b) Variation in Speedup for code FEMLD4

Fig. 5.22 Variation in Speedup obtained from codes FEMLD3 and FEMLD4

160

€

€

(a) Undeformed(a) Undeformed

(b) Step No. 3 (6% compression) (b) Step No. 3 (6% compression)

(c) Step No. 6(12% compression) (c) Step No. 6 (12% compression)

(d) Step No. 9(18% compression) (d) Step No. 9(18% compression)

lol

(e) Step No. 12 (24% compression) (e) Step No. 12 (24% compression)

(f) Step No. 15 (30% compression)

Fig. 5.23 Deformed shaped obtained by
FEMLD3

(f) Step No. 15 (30% compression)

Fig. 5.24 Deformed shapes obtained by
FEMLD4

(a) Undeformed shape

Fig. 5.25 Undeformed and deformed shapes obtained by SPID

(b) Deformed shape at step No. 15 (30%
compression)

162

53.2.3 Results

Figure 5.23 and 5.24 shows deformation at selected number of steps. It can be seen from
these figures that, the deformed shape obtained by both the codes at various stage of
deformation are nearly same.

Figure 5.25 shows the undeformed-deformed shapes obtained by SPID. It can be seen
from this figure that, the deformed shapes obtained by FEMLD3 and FEMLD4 at step

No. 15 is identical to the deformed shape obtained by SPID.

When the compressive force obtained using both the codes at various nodes are
compared, it was found that the magnitude of compressive force and their directions are
almost same at every step and has excellent agreement with the forces obtained by SPID.
Figure 5.26 shows the variation in forming load computed by adding forces in y-direction

at nodes on which the nodal velocities were specified.

Figure 5.27 (a) shows the contours of velocity at step 15. It also shows the location of
maximum as well as minimum velocity points. Figure 5.27 (b) shows the velocity
directions at step 15. This roughly depicts the direction of metal flow during the
deformation process.

Figure 5.28 shows the contours of strain-rate components £x, £v, and at step 15.

After comparing the strain-rate results at different location, large variation in their
magnitude was found near the top comers of the sample (point A and A* as per Fig. 5.19).

The strain-rate component in z-direction (£,) is zero for plane strain problems. The

strain-rate components obtained by both the codes are found nearly same at any location
under consideration. It was found that the volumetric strain of the sample is very much
near to zero in both the cases. But in case of triangular elements, the volumetric strain
rate is greater than the volumetric strain-rate of rectangular elements.

163

17 -i
Lo

ad
 (I

b/
in

ch
)

Fig. 5.26 Variation in forming load with number of steps

(a) Contour of nodal velocity

(b) Nodal velocity directions

Fig. 5.27 Contours of nodal velocity (inch/s) and their direction at step No. 15 (30%
compression) obtained by FEMLD4

164

Fig. 5.28 Contours of (a) £x (b) ey and (c) at step No. 15 (30% compression)

obtained by FEMLD4

Fig. 5.29 Contours of (a) a x (Ksi) (b) a y (Ksi) (c) a. (Ksi) and (d) rv? (Ksi) at step No.

15 (30% compression) obtained by FEMLD4

165

(c)

Fig. 5.30 Contours of (a) e (b) a (Ksi) and (c) £ at step No. 15 (30% compression)
obtained by FEMLD4

Table 5.2 Comparison of X-coordinates (mm) obtained by present investigation
(FEMLD4) and FORGE2 at different stages of compression

Compression Point FORGE2 Authors SIPD

10% A 25.36 25.75 25.78
B 26.98 27.40 _ 27.44

20% A 26.24 26.16 26.25
B 29.38 29.75 29.88

30% A 27.27 26.56 26.82
B 31.82 32.23 32.65

160

Figure 5.29 shows the contours of stress components ay, a. and rxy at step 15.

From these contours, high stress concentration can be observed at the top comers of the
specimen (point A and A* as per Fig. 5.19). When the stress results obtained by both the
codes were compared, it was found that the result of FEMLD3 does not matches with the
result obtained by FEMLD4 and SPID. The main reason for this is the increased
volumetric strain-rate in triangular element as compared to the rectangular element. This
increase in volumetric strain-rate results in improper stress computation. Therefore the

results of stress components, namely ax, cy, <jx and rxy, computed by FEMLD3 do not

match with the results of stress components obtained by FEMLD4 and SPID.

Figure 5.30 shows the contours of effective strain-rate (s), effective stress (a) and total
effective strain (f) at step 15 (30% compression). It was also found that the above-
mentioned results obtained by FEMLD3 and FEMLD4 have excellent agreement with the

results obtained using SPID.

S.3 .2.4 Comparison with Commercial Softwares

The problem was also analyzed by FORGE2 and Table 5.2 shows the comparison of X-
coordinate of points A and B (as per Fig. 5.19) at different stages of compression. It can
be seen from this table that at every stage of compression, X-coordinates of points A and

B obtained by present investigation and FORGE2 are nearly same.

Figures 5.31 and 5.32 show the variation of total effective strain (s), effective stress

(a), effective strain-rate (s) and nodal velocity obtained by present investigation and
FORGE2 respectively at 30% compression (step 15). After comparing both the figures
one can conclude that the variations obtained using FORGE2 and present investigation
match well. The location of minimum/maximum values of effective strain, effective
stress, effective strain-rate and nodal velocity is also almost at the same points.

Figure 5.33 shows the load compression curve during the deformation process. It can be
seen from this figure that the forming load obtained by developed software matches quite

well with the forming load obtained by commercial softwares FORGE2 and ANSYS.

167

- 9 : 0.9000

- 8 :0.8000

- 7:0.7000

• 6:0.6000

-5:0.5000

• 4 : 0.4000

• 3:0.3000

- 2:0.2000

-1 :0.1000

(a)
- 9:78.00

(b)
-8:4.000

-7:3.500

-6:3.000

-5:2300

-4: ZOOO

•3:1.500

•2:1.000

-I:03000

-9:4.500

Fig. 5.31 Contours showing (a)
effective strain (b) effective stress
(MPa) (c) effective strain rate (d) nodal
velocity (mm/s) distribution obtained by

present investigation (FEMLD4)

(c)

(d)

Fig. 5.32 Contours showing (a) effective strain (b)
effective stress (MPa) (c) effective strain rate (d)
nodal velocity (mm/s) distribution obtained by

FORGE2 (A and 0 represent maximum and

minimum respectively)

•9:25.00

168

Fig. 5.33 Load compression relationship

Size 1352 x 1352 Size 2312x2312

Size 3362 x 3362 Size 4232 x 4232

Fig. 5.34 Deformed shapes of axisymmetric problem with different mesh sizes obtained
by FEMLD4

169

5.4 PERFORMANCE OF FEMLD

The main aim of using parallel computing technique in large deformation problems is to
achieve more accurate results by adopting finer mesh and also to save computational time
during the analysis. Therefore the developed software was tested for huge size large
deformation problems. The axisymmetric problem (discussed in section 5.3.1) was once
again analyzed by adopting different mesh sizes. The problem was discretized using
rectangular elements in such a way that the global stiffness matrices of sizes 882 x 882,

1352 x 1352, 2312 x 2312, 3362 x 3362, and 4232 x 4232. The other problem details like

number of steps, deformation, material law, and others were same as described earlier
(section 5.3.1). These problems were analyzed by using different number of processors.
Figure 5.34 shows the deformed shape of axisymmetric problem under consideration with
different mesh sizes at the last step.

Table 5.3 to 5.7 shows the computational time measured in terms of Real time with
number of processors for different mesh sizes. One can observe that computational time
reduces considerably when higher number of processors were employed for the
computation. Abrupt variation in Total time measured in terms of Real time can be
observed which is mainly due to the users activities occurred during the execution
processes. Similar behavior can also be observed for Communication time measured in
terms of Real time. Figure 5.35 shows the variation in Total time per iteration measured
in terms of User time (which do not get affected by user activities) with different data

sizes for one to eight number of processors. It can be seen from this figure that as the data
size increases, User time per iteration also increases. One can also observe that for higher
data sizes the saving in computational time is on higher side as compared to the small
data sizes. After multiple linear regression analysis, it was found that the curves shown in
Fig. 5.35 could be expressed in the form of an equation

/ = 2.67xl0“7

where, t is the User time per iteration (in seconds), d is the size of global stiffness

matrix and p is the number of processors involved during the analysis. With the help of

^(-0.6586/0 ^(2.9598+0.0481 p) (5.

170

this expression, one can roughly estimate the Total time measured in terms of User time
per iteration for any data size and any number of processors.

Table 5.3 Computational time variation (RT) for problem of size 882 x 882

No. of processors Total time Comm Cal Speedup
1 9463.71 0.00 9463.71 1.00
2 6270.69 83.98 6186.71 1.51
3 4806.65 157.18 4649.47 1.97
4 3929.77 184.11 3745.66 2.41
5 3588.98 419.81 3169.17 2.64
6 3235.34 305.46 2929.88 2.93
7 3124.00 368.87 2755.13 3.03
8 3112.25 377.01 2735.24 3.04

Table 5.4 Computational time variation (RT) for problem of size 1352 x 1352

No. of processors Total Comm Cal Speedup
1 14607.72 0.00 14607.72 1.00
2 13288.26 243.53 13044.73 1.10
3 10759.79 322.58 10437.21 1.36
4 9578.46 237.65 9340.81 1.53
5 5226.60 522.19 4704.41 2.79
6 4636.89 286.09 4350.80 3.15
7 4225.23 380.99 3844.24 3.46
8 4136.61 395.24 3741.37 3.53

Table 5.5 Computational time variation (RT) for problem of size 2312 x 2312

No. of processors Total Comm Cal Speedup
1 92881.80 0.00 92881.80 1.00
2 61952.31 368.35 61583.96 1.50
3 85759.33 22095.40 63663.93 1.08
4 37474.09 948.99 36525.10 2.48
5 66298.74 8543.91 57754.83 1.40
6 45200.84 2638.59 42562.25 2.05
7 23730.11 1441.97 22288.13 3.91
8 21781.41 1628.93 20152.48 4.26

171

Table 5.6 Computational time variation (RI') for problem of size 3362 x 3362

No. of processors Total Comm Cal Speedup
1 228302.28 0.00 228302.28 1.00
2 157580.71 611.56 156969.15 1.45
3 117520.37 1184.18 116336.19 1.94
4 93380.70 1307.67 92073.03 2.44
5 81737.60 3859.53 77878.07 2.79
6 70164.69 2451.50 67713.19 3.25
7 93517.85 9096.67 84421.18 2.44
8 55338.32 2827.07 52511.25 4.13

Table 5.7 Computational time variation (RT) for problem of size 4432 x 4432

No. of processors Total Comm Cal Speedup
1 440082.40 0.00 440082.40 1.00
2 613710.00 5046.31 608663.69 0.72
3 513941.76 4847.03 509094.73 0.86
4 481525.04 7030.57 474494.47 0.91
5 451882.24 8695.81 443186.43 0.97
6 137742.00 11495.03 126246.97 3.19
7 410271.44 33544.78 376726.66 1.07
8 159397.28 10485.13 148912.15 2.76

U
se

r t
im

e

Fig. 5.35 Variation in User time per iteration with data size for various number of
processors (1 to 8 shows No. of processors)

172

C
om

m
, ti

m
e

(%
)

Sp
ee

du
p

Fig. 5.36 Variation in User time Speedup for different data sizes

Fig. 5.37 Variation in percentage Communication time with number of processors for
different data sizes

173

Figure 5.36 shows the variation in User time Speedup for different data sizes. It can be

observed that, for smaller data sizes 882 x 882 and 1352 x 1352, the Speedup is even
higher than the Ideal Speedup. This figure also shows that as the data size increases the
Speedup reduces. This may be because of higher contribution of Communication time
toward the Total time during the execution process. Figure 5.37 shows the variation of
percentage Communication time with increase in number of processors. It can be seen
that the percentage contribution of Communication time towards the Total time increases
as the number of processors increases. It can also be seen that this contribution is also
higher for higher data sizes. The variation in percentage Communication time is abrupt.
This is mainly because of uneven user activities during the execution process (See Table
5.3 to 5.7).

5.5 SUMMARY

In general, various results obtained using codes FEMLD3, FEMLD4 and SPID were
identical. It was observed that stress components obtained by FEMLD3 do not match with
the corresponding results obtained from SPID. It was observed that when triangular
elements are used the volumetric strain-rate is not very much closer to zero as compared
to the rectangular elements. This makes triangular element a weaker element. The only
advantage of using triangular element is that, it requires lesser computation in generating
local stiffness matrix as compared to the rectangular element. The results obtained by
FEMLD4 are also compared with the commercial softwares FORGE2 and ANSYS ported
on computers with single processors. It was found that various results obtained by
FEMLD4 match well with corresponding results obtained from commercial softwares.

It can be observed that the load compression curve obtained by commercial software
ANSYS is only up to displacement of 4 mm (Fig. 5.18) and 1.5 mm (Fig. 5.33) for
axisymmetric and plane strain problems respectively. It is mainly due to error occurred
during the analysis carried out using ANSYS. As the deformation progresses, the few
elements distort and after certain stage, these element do not satisfy the distortion
parameters predefined in the ANSYS software. Therefore the complete solution of the
problem could not found. Whereas, remeshing facility is available in FORGE2 code.

Therefore during the compression process whenever any element gets distorted and does

174

not satisfy the distortion parameters, automatic remeshing is carried out for the entire
problem domain. It was observed that, remeshing was carried out three times in
axisymmetric problem and seven times in plane strain problem discussed in section 5.3.1
and 5.3.2 respectively.

As far as performance of FEMLD3 and FEMLD4 is concerned, they showed good
performance on supercomputer PARAM 10000. The Total time measured in terms of
Real time reduces considerably after using higher number of processors of supercomputer
PARAM 10000. The developed software is also tested by analyzing huge size problems.
It was found that software performed well for higher data sizes also.

175

CHAPTER 6

COMPUTER SIMULATION OF METALLIC
TUBES AS ENERGY ABSORBING ELEMENTS

6.1 INTRODUCTION

Metal forming process is a phenomenon of plastic deformation of metal piece (billet)
between rigid tools (dies). Metallic parts of complex shape can be made by pressing billet
between dies of desired shape. As the deformation progresses, metal flows between dies
and attains final shape after appropriate degree of deformation. Hence emphasis should be
given to simulate die surfaces in code development to solve the metal forming problems.
In the previous chapter, compression of cylinder was carried out by prescribing
downward nodal velocities on the boundary nodes. Due to this, it was observed that the
mesh distorted severely (see Fig. 5.34) near point A (as per Fig. 5.4). Moreover,

specifically for discretized mesh having global stiffness matrix of size 3362 x 3362 and

4232 x 4232, some part of the mesh around the point A moved in the upward direction,
which cannot occur actually. Therefore to rectify this error, two flat die surfaces are
simulated in this chapter to achieve proper deformed shapes of billet throughout the
deformation process. This would not only predict correct deformed shapes during
simulation but also allow user to simulate deformation of billet of any geometric shape
between two rigid flat dies.

6.2 CONTACT PROBLEM

In the whole deformation process, some part of deforming body always remains in
contact with rigid dies. At a typical stage of deformation process, some new part of
deforming body comes in contact with the die and/or some part of deforming body that
was already in contact with the die may loose the contact from the rigid die. This depends
on the boundaries of deforming body and the rigid dies. At this instance, frictional forces
present between the deforming body and the rigid die interfaces also varies. Collectively
frictional force and die shape control the deformation of the deforming body. In order to
simulate the flat die, contact problem is subdivided into two cases namely Case I: Initiate
new contact nodes, and Case II: Terminate old contact nodes.

176

6.2.1 Case I: Initiate New Contact Nodes

For the computer simulation of flat die, a flat die with user-defined velocity is created
instead of specifying nodal velocities in the beginning. Thereafter Y-coordinates of all the
boundary nodes are compared with the Y-coordinate of flat die. At this juncture, if Y-
coordinate of any node along the boundary matches with the Y-coordinate of the die then
velocity of die was transferred to that node. This initiated the deformation process.

In the compression process after every increment of deformation, Y-coordinates of all the
nodes are compared with the present Y-coordinate of the rigid die. At this juncture, if Y-
coordinate of any node crosses the boundary of flat die then its velocity is adjusted.
Figure 6.1(a) shows a typical finite element mesh at (i)th increment. It can be seen that
node P is not in contact with upper die at (i) increment but it crosses the boundary of
upper die in the next increment (see Fig. 6.1(b)). Hence its velocity in Y-direction is
adjusted so that its Y-coordinate remains same as Y-coordinate of moving upper die after
(i+l)111 increment. The expression for the modified velocity component will be as follows,

where is the adjusted velocity of the node P, is the Y-coordinate of rigid die at

(i+l)th increment, yf is the Y-coordinate of the node P at (i)th increment and Ar is the

time increment.

After this nodal velocity adjustment, the iterations are once again carried out till the
correct shape is achieved (see Fig. 6.1(c)). During this procedure, velocity components of
other nodes are automatically adjusted to meet the convergence criteria. Once the solution
of that particular increment is obtained, the velocity conditions of new nodes those
recently came in contact with the die are changed. The Y-component of velocity of such
nodes is changed and made equal to the die velocity so that these nodes travel along with
die in further iterations.

177

(b)

Fig. 6.1 Initiating new contact nodes: Typical deformed mesh at (a) (i)lh iteration, (b)
intermediate (i+l)lh iteration and (c) final (i+1)* iteration

(c)

(a)

(b) (c)
Fig. 6.2 Terminating old contact nodes: Typical deformed mesh at (a) (i)th iteration, (b)

intermediate (i+l),h iteration and (c) final (i+l),h iteration

178

6.2.2 Case II: Terminate Old Contact Nodes

During the deformation process, velocity in Y-direction of the contact nodes and the
compressing die were having same magnitude (see node P in Fig. 6.2(a)) till the direction
of force (in Y-direction) and the velocity in Y-direction of the contact nodes were same.
As soon as this condition for any contact node was not satisfied it was assumed that the
node has been detached from the die (see node P in Fig. 6.2(b)). So at this juncture to
incorporate this, such nodes were removed from contact with die by changing their
boundary conditions (see node P in Fig. 6.2(c)). This condition was checked for all
contact nodes after each increment to achieve true deformed shape after every increment.

Both the cases of contact conditions are incorporated in the developed parallelized
computer code FEMLD. With the help of these modifications one can simulate
deformation process of different materials with several shapes between the boundary of

two flat dies. This is an ideal condition of simple compression within a two rigid flat
moving dies of compression machine.

6.3 CASE STUDIES

After incorporating various contact conditions in the developed code, four case study

problems are simulated using this code. Among these four, two are axisymmetric
deformation problems and remaining two are plane strain deformation problems.

6.3.1 Axisymmetric Compression of Solid Cylinder

As mentioned in the literature [68], Gupta and Shah experimentally carried out axial
compression of round solid cylinders made up of aluminium and low carbon steel.
Several specimens with different geometric properties were compressed and their
deformation processes were examined. From these specimens, a typical specimen of
aluminium having 30 mm outer diameter (D) and 60 mm initial height (Ho) is taken for
the present investigation. This specimen was compressed between flat rigid dies till
83.33% reduction in height was achieved (final height 10 mm). This specimen was

compressed in 80 increments. Magnitude of frication factor ranging from 0.1 to 0.5 was
taken for the study. The material behavior of the deforming cylinder was expressed by

179

expression a = kcm, where numerical values of k and m were taken as 69.94 MPa and
0.1 respectively. Error norms (velocity error norm and force error norm) were considered
as 0.001 and limiting strain-rate value was considered as 0.01 to define the rigid portion.
The deforming cylinder was discretized using 450 four noded rectangular elements with

496 nodes, resulting in global stiffness matrix of size 992 x 992. Figure 6.3 shows the
finite element model used for the present investigation.

In the compression process of the round cylinder, metal flows as the deformation
progresses and the vertical face AB (see Fig. 6.3) attains curvilinear shape due to friction
between the die and the cylinder interface. An arc of a circle with radius R can be
approximately fitted to this deformed profile.

| Axis of symmetry

Fig. 6.3 Discretized finite element mesh for solid cylinder

Table 6.1 Table showing X-coordinate of point P for different values of friction factors

Friction factor X-coordinate (mm)
0.1 30.55
0.2 30.43
0.3 30.20
0.4 28.37
0.5 28.19

180

(a)

(b)

R9.6378

(c)

(d)

(e)
Fig. 6.4 Deformed shapes of solid cylinder after 83.33% compression with friction factor

between die-cylinder interface equal to (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 and (e) 0.5

181

Fig. 6.5 Variation in radiuses of circles with compression for various values of friction
factor between die-cylinder interface

Fig. 6.6 Curve showing H/Ho ratio with friction factor at which folding process begins

182

Figure 6.4 shows deformed shapes of solid cylinder obtained by considering various
friction factor values. It can be seen from the deformed profiles that as the friction factor
increases the radius of the circle reduces. X-coordinates of point P at 83.33%
compression for different friction factor values are shown in Table 6.1 (where P is a point
on vertical face AB that shows the final radius of the cylinder along loaded face after
83.33% compression). Figure 6.5 shows variation in these radii of circles with the
progress of compression for various values of friction factors. Significant variation in the
radii of circles can be observed in the initial stages of compression for all the values of
friction factors. On the other hand, in the later stages of deformation, especially after the
beginning of process of folding, insignificant variation in these radii can be seen. The
process of folding begins when the upper portion of the vertical surface AB (near point
A) comes in contact with the upper die. Figure 6.6 shows variation in H/Ho ratio with
friction factors at which folding process begins (where H is the height of the specimen at
which folding process begins). It can be observed from this figure that, for higher friction
factor values, folding process begins early (higher HZHq ratio) as compared to the lower
friction factor values. The H/Ho ratio increases with increase in the friction factor values.
Load compression relationship for this compression process is shown in the Fig. 6.7. It
can be seen that variation in the magnitude of load with different friction factors is
insignificant in the early stages of deformation while marginal variation can be seen in the
last stage of deformation. The deformations at which folding process begins are also

illustrated in this figure by different markers (♦,*,•, A, ■ represents 0.1, 0.2, 0.3, 0.4,

0.5 respectively).

As present investigation includes parametric study, several executions on finite element
mesh shown in Fig. 6.3 are involved; hence supercomputer PARAM 10000 is employed
to save computational time. Figure 6.8 shows the variation in components of
computational time per iteration with number of processors of supercomputer PARAM
10000. It can be seen that Total time measured in terms of Real time as well as User time
reduces with increase in number of processors. Calculation time also reduces with
increase in number of processors. Increase in Communication time with increase in
number of processors can also be seen in this figure. Variation in Speedup with number of
processors is shown in Fig. 6.9. It can be observed from this figure that Real time

Speedup as well as User time Speedup increases with increase in number of processors.

183

Fig. 6.7 Force deformation relationship for axial compression of solid cylinder for various
friction factors

Fig. 6.8 Variation in the components of computational time per iteration with number of
processors for axisymmetric compression of solid cylinder

184

Fig. 6.9 Variation in speedup with number of processors for axisymmetric compression of
solid cylinder

Table 6.2 Tube specifications

Tube No. Tube Dimensions (mm) Thickness (mm) Material properties
Width Height Top Bottom Vertical Kot m a

AS26261 24.08 24.08 0.72 1.12 0.94 105.5 0.02853 4.17
AS26262 25.44 25.44 1.74 2.2 2.18 108.5 4.16 0.02853
AS26263 25.36 25.36 2.34 2.34 2.2 108.5 4.11 0.02953
AS26264 26.82 26.82 3.52 3.75 3.63 108.5 4.16 0.02853
AS26265 26.93 26.96 4.37 4.63 4.44 108.5 4.16 0.02853
AS26266 27.12 27.12 5.42 5.50 5.38 108.5 4.16 0.02853

Moving platen

I Stationary platen

Fig. 6.10 Discretized finite element mesh for AS26263

185

Real time Speedup follows linear Speedup pattern and User time Speedup follows
superlinear Speedup pattern that is even greater than Ideal Speedup. Maximum Real time
Speedup and User time Speedup of 3.29 and 9.01 are obtained at seven and eight number
of processors respectively. In general significant saving in computational time and good
performance of the parallel code is obtained on supercomputer PARAM 10000.

6.3.2 Lateral Compression of Rectangular Tubes

Experimental study on lateral compression of square and rectangular metallic tube was
carried out by Gupta et al. [47-49] in past. These tubes were compressed between two flat
rigid dies with stationary bottom die and moving top die with the downward speed of 10
mm/min. They also carried out computational study to simulate the experimental process
of flattening of rectangular tubes using commercial software FORGE2. They developed a
finite element model to study the collapse mechanism of these metallic tubes. Here, to test
the functioning of the developed code on supercomputer PARAM 10000, simulation of
lateral compression of few rectangular tubes are carried out. Finite element model
presented by Gupta et al. [49] is used for the present investigation. Table 6.2 shows the
geometric and material properties of the six mild steel tubes used for study. Figure 6.10
shows the discretized mesh of the specimen tube AS26263 using the developed code.
Mesh consists of 891 nodes with 758 rectangular elements resulting in global stiffness

matrix of size 1782 x 1782. This tube is compressed till tube final height of 15.06 mm is

achieved in 200 increments. Figure 6.11 shows the deformed shapes at various stages of

deformation obtained by present investigation.

To validate the results obtained from present investigation, specimen tube AS26263 is
also analyzed using the commercial software FORGE2. Figure 6.12 shows the deformed
shapes obtained using FORGE2 at various stages of compression. It can be seen from Fig.
6.11 and 6.12 that the deformed shapes obtained by present investigation and using
commercial software FORGE2 match fairly well at various stages of deformation.

186

(a) 2.11 mm comp.

(b) 4.43 mm comp. (b) 4.44 mm comp.

(c) 6.54 mm comp.

(d) 8.08 mm comp.
Fig. 6.11 Deformed mesh at various stages
of compression obtained by present

investigation.

(d) 8.10 mm comp.
Fig. 6.12 Deformed mesh at various stages
of compression obtained by commercial

software FORGE2

187

Fig. 6.13 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 10.3 mm compression for
specimen AS26263 obtained by present
investigation

Fig. 6.14 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 8.10 mm compression for
specimen AS26263 obtained by FORGE2

188

Figure 6.13 (a), (b) and (c) shows the contours of velocity, effective strain-rate and
effective strain respectively after 10.3 mm compression for specimen AS26263 obtained
by present investigation. Figure 6.14 (a), (b) and (c) shows the contours of velocity,
effective strain-rate and effective strain respectively after 8.10 mm compression of the
same specimen obtained using FORGE2. It can be seen in Fig. 6.13 and 6.14 that the
comparison of distribution of contours obtained using developed code and FORGE2 are
presented at different stages of compression (compression values are different). This is
because the deformed profiles are almost identical at these stages of compression. After
comparison it was found that the contours of various entities obtained by present
investigation match fairly well with the contours of same entities obtained by FORGE2.

The load compression relationship for all six tubes under consideration obtained by
present investigation is shown in Fig. 6.15 (a). It can be seen that the deforming load
initially increases with the increase in compression. After reaching its peak value, the
force starts decreasing till the end of compression process. It can be observed that the
variation of load displacement curves for all tube specimens is identical. It can also be
seen that as the wall thickness of the tube increases the load carrying capacity of the tube
also increases. The load compression curves are drawn up to the displacement at which
the top portion and the bottom portion of the tubes nearly touch each other. It can be
observed that top and bottom portion of thickest tube specimen AS26266 touches each
other before load reaches its peak value. Figure 6.15 (b) shows the variation in absorbed
energy with compression. It can be seen from this figure that as the wall thickness of
rectangular tube specimen increases the absorbed energy also increases.

Above discussed compression process of six tubes was simulated on supercomputer
PARAM 10000 by increasing number of processors. Table 6.3 shows the details of the
simulation study carried out on supercomputer PARAM 10000. Table shows deformation,
size of stiffness matrix and number of iterations required to obtain the complete solutions
for all six tubes under consideration.

189

En
er

gy
 (J

U
le

s/
m

m
)

Lo
ad

 (k
N

/m
m

)

0 2 4 6 8 10 12
Compression (mm)

14 16

(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.15 Load compression and energy compression relationship for the rectangular
tubes

Table 6.3 Details of simulation study on supercomputer PARAM 10000

Tube No. Deformation (mm) Matrix size Iterations
AS26261 11.05 1980 496
AS26262 9.8 2010 421
AS26263 10.3 1782 420
AS26264 10.5 1946 418
AS26265 12.2 1896 417
AS26266 15.0 1930 507

190

Sp
ee

du
p

(R
)

Ti
m

e

Fig. 6.16 Computational time variation for specimen AS26263

(a) Variation in Real time Speedup

191

16 -I --------- AS26261
---------AS26262

1 2 3 4 5 6 7 8

No. of processors

(b) Variation in User time Speedup

Fig. 6.17 Variation in speedup with number of processors for six specimens under
consideration

Axis of symmetry

Fig. 6.18 Discretized finite element mesh for aluminum round tube AAC503

192

Figure 6.16 shows a typical variation in computational time per iteration obtained for tube
specimen AS26263. It can be observed that Total time measured in terms of Real time as
well as User time reduces with the increase in number of processors of supercomputer
PARAM 10000. Calculation time also decreases with the increase in number of
processors of supercomputer PARAM 10000. Increase in Communication time with
increase in number of processor can also be observed in this figure. Similar type of
variation was also observed for all the simulations for other tube specimens on
supercomputer PARAM 10000.

Variation in Real time Speedup and User time Speedup is shown in Fig. 6.17 (a) and (b)
respectively. It can be observed that Real time Speedup as well as User time Speedup
increases with increase in number of processors. For every specimen, peak Real time
Speedup was obtained at seven number of processors. In case of User time Speedup, it
continuously increases with increase in number of processors employed for the
simulation. Hence maximum User time Speedup was obtained at eight number of
processors in each case. The highest Real time Speedup obtained was 4.07 at seven
numbers of processors for specimen AS26263. On the other hand highest User time
Speedup obtained was 13.54 at eight numbers of processors for specimen AS26265 that is
even greater than the Ideal Speedup.

6.3.3 Axial Compression of Round Tube

A study on fold formation in axisymmetric axial compression of round metallic tube was
carried out experimentally as well as computationally by Gupta et al. [53-55]. An attempt
has been made to simulate the same compression process using the developed code. Finite
element model used by Gupta et al. [53] is used in the present investigation. Aluminium
round tube specimen AAC503 having average diameter and thickness of 47.66 mm and
3.44 mm respectively is modeled using the developed code. The height of circular tube is
considered as twice the outer diameter of the tube as taken by Gupta et al. [53]. Figure
6.18 shows the discretized finite element mesh for the specimen tube AAC503. Mesh
consists of 880 nodes with 763 rectangular elements resulting in global stiffness matrix of

size 1760 x 1760. The material property of the deforming tube is expressed by expression

a = £(1 + ae)sm, where numerical values of k. a and m were taken as 239.9 MPa, 1.19

193

and 0.0034 respectively. The friction factor between the deforming material and rigid die
interface is considered as 0.45. This tube is compressed between rigid dies with stationary
bottom platen and moving top platen with the downward velocity of 10 mm/min.
Compression is carried out till 66.8% reduction in height is achieved (final height of
specimen is 68.28 mm) in 116 increments.

Figure 6.19 shows the deformed shapes at various stages of deformation. Figure 6.19 (a)
shows the deformed shape when full loaded face AB is in contact with upper die. Figure
6.19 (b) shows the deformed shape when some portion of vertical face BC comes in
contact with upper die. In Fig. 6.19 (c), deformed shape is shown when fold is fully
formed.

Similar simulation is also carried out using commercial software FORGE2. Figure 6.20
shows the deformed shapes obtained using FORGE2 at various stages of deformation
depicted in Fig. 6.19. It can be observed that deformed shapes at various stages of
deformation obtained from developed code match fairly well with the deformed shapes
obtained by FORGE2.

The contours of velocity, effective strain-rate and equivalent strain at 34.14 mm and
29.31 mm compression obtained by developed code and FORGE2 are shown in Fig. 6.21
and 6.22 respectively. It can be observed that contours obtained by developed code match
well with the corresponding contours obtained by FORGE2 that validates the developed

code.

The load compression relationship is shown in the Fig. 6.23 (a). It can be observed that
the load initially increases with the increase in displacement. After reaching the peak
value, load starts decreasing with the increase in compression. Sudden increase in the
load can be seen at 30.6 mm compression. This is because some portion of the vertical
face BC comes in contact with the moving die, that resulted in the decrease in lever arm
for the applied load. Further increase in the compression resulted in the continuous
reduction in the load. The relationship between absorbed energy and compression is
shown in the Fig. 6.23 (b). It can be seen that the absorbed energy continuously increases
with increase in the compression.

194

I

(a) 16.48 mm compression

(b) 30.61 mm compression (b) 23.54 mm compression

(c) 34.14 mm compression
Fig. 6.19 Deformed mesh at various stages of
compression obtained by developed code

(c) 29.31 mm compression
Fig. 6.20 Deformed mesh at various stages of
compression obtained by commercial
software FORGE2

195

(c)
Fig. 6.21 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 34.14 mm compression obtained

by present investigation.

(c)
Fig. 6.22 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 29.31 mm compression obtained

by FOREG2.

196

60

(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.23 Load compression relationship and energy compression relationship for the
circular tube AAC503 under axial compression

197

(a) Variation in components of computational time

Fig. 6.24 Variation in components of computational time and Speedup with number of
processors for specimen tube AAC503

198

After comparing the obtained technical results of the compression process using the
developed code, the described problem is solved on supercomputer PARAM 10000 using
multiple processors from one to eight to obtain the variation of computational time. To
obtain complete solution of attempted problem, 1387 iterations were required. Figure 6.24
(a) shows the variation in components of computational time per iteration with number of
processors. It can be observed that significant amount of Total time was saved by
employing multiple processors. It was also found that Total time measured in terms of
Real time is minimum at seven processors. Variation in Real time Speedup and User time
Speedup is shown in Fig. 6.24 (b). From this figure it can be observed that maximum
Real time Speedup of 4.35 and User time Speedup of 5.95 was achieved at seven and
eight number of processors respectively. This signifies that developed code is capable of
saving computational time considerably.

6.3.4 Lateral Compression of Round Tube Subjected to Concentrated Load

In this case study, analysis of lateral compression of round tube between two concentrated
loads is presented. A copper tube having outer diameter 28.5 mm and thickness 1.5 mm is
taken for the investigation. The quarter portion of the tube is modeled and shown in the
Fig. 6.25. Mesh consists of 540 nodes with 445 rectangular elements resulting in global

stiffness matrix of size 1080 x 1080. The material property of the deforming tube is

expressed by expression a = A(1 + ac)£m, where numerical values of k, a and m were

taken as 360 MPa, 0.23 and 0.013 respectively. This tube is compressed between two
concentrated loads applied at the top and bottom of the tube (see Fig. 6.25) at rate of 1.0
mm/s till the top surface touches the bottom surface of the tube. Whole compression is
carried out in 91 increments. Figure 6.26 shows the deformed shapes of the copper tube at

various stages of deformation.

The same tube is also modeled and analyzed using commercial software FORGE2. Figure
6.27 shows the deformed shapes at various stages of deformation. It can be observed from
Fig. 6.26 and 6.27 that deformed shapes obtained using developed code and FORGE2
match fairly well. Contours of velocity, effective strain-rate and equivalent strain
obtained using developed code at 12.74 mm compression and using FORGE2 at 12.84

mm compression are shown in Fig. 6.28 and 6.29 respectively.

199

Fig. 6.25 Discretized finite element mesh showing quarter portion of copper tube
subjected to concentrated force.

(a) 3.22 mm compression (a) 3.18 mm compression

(b) 6.44 mm compression (b) 6.43 mm compression

(c) 9.52 mm compression (c) 9.53 mm compression

(d) 12.84 mm compression
Fig. 6.27 Deformed mesh at various stages
of compression obtained by commercial

software FORGE2

(d) 12.74 mm compression
Fig. 6.26 Deformed mesh at various stages
of compression obtained by developed

code

200

(c)
Fig. 6.28 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 12.74 mm compression obtained

Fig. 6.29 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent
strain at 12.84 mm compression obtained
by FOREG2.by present investigation.

It can be seen that contours of velocity obtained by present investigation match well with
contours obtained by FORGE2. It can also be observed that the contours of effective
strain-rate and equivalent strain do not match well. This may be due to the development
of plastic hinges at different locations. Load compression and energy compression
relationship for copper tube is illustrated in the Fig. 6.30 (a) and (b) respectively. It can be
observed that load reduces with the increase in compression. The absorbed energy
continuously increases with increase in compression.

To carry out the complete analysis on supercomputer PARAM 10000,187 iterations were
required. Figure 6.31 (a) shows the computational time variation per iteration with
number of processors. It can be observed that reduction in Total time measured in terms

of Real time is quite low. This is because of smaller problem size (1080 x 1080).
Moreover there is significant difference in Total time measured in terms of Real time and
User time, which may be because of large system activities during the analysis. The poor
performance can also be seen in Fig. 6.31 (b). Maximum Real time Speedup of 1.43 and

maximum User time Speedup of 5.09 was achieved at eight number of processors.

201

(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.30 Load compression and energy compression relationship for the circular copper
tube subjected to concentrated force

202

300 n

(a) Variation in components of computational time

(b) Variation in Speedup

Fig. 6.31 Variation in components of computational time and Speedup with number of
processors for copper tube

203

6.4 SUMMARY

This chapter initially discusses the drawbacks of the parallelized finite element code
FEMLD discussed in chapter 5. Further the chapter discusses the process of simulation of
flat die surfaces and its implementation in the developed metal forming code. With the
help of modified code, four case study problems are simulated and compared with the
findings of FORGE2. The first case study problem was the analysis of axial compression
of solid cylinder. Solid cylinder specimen is compressed between flat rigid dies taking
different friction factors between deforming cylinder and rigid die surfaces. The
compression process was analyzed, studied and discussed. The computational time
variation with increasing number of processors of supercomputer PARAM 10000 was
obtained and discussed.

In the second case study problem, analysis of flattening of rectangular metallic tube
between flat dies is presented. Compression processes of six mild steel tubes with varying
geometric properties are simulated with the help of developed code. To validate the
results obtained from developed code, sample tube specimen AS26263 was also analyzed
using commercial software FORGE2. Various results obtained from present investigation
are compared with the corresponding results obtained from FORGE2. After comparison,
it was found that the results of present investigation match fairly well with the results of
commercial software FORGE2. The analysis was carried out on supercomputer PARAM
10000 and it was found that computational time could be saved by using multiple number

of processors.

A problem of fold formation in axial compression of circular tube was considered as third
case study problem. Axial compression of aluminium tube was simulated using developed
software as well as commercial software FORGE2. Various results obtained by both the
computer codes are compared and it was found that the results obtained by developed
software match well with the results of FORGE2. The performance of the developed code
was also measured and it was found the developed code is capable of saving significant
amount of computational time by employing multiple number of processors.

In the last case study problem lateral compression of copper round tube between two

concentrated loads was carried out. The tube was compressed laterally till the top and

204

bottom surface of the tube touched each other. This simulation was carried out using
developed software as well as using F0RGE2. Various results obtained were compared
and it was found that results match fairly well. Insignificant saving in computational time
was achieved by using multiple number of processors of supercomputer PARAM 10000
due to small size problem.

205

CHAPTER 7

APPLICATION OF CLUSTER COMPUTING IN
FINTIE ELEMENT ANALYSIS

7 A INTRODUCTION

This chapter presents an alternative to supercomputers by presenting two Windows NT
Clusters consisting of eight conventional computers having similar and different
configurations. The chapter starts with highlighting the need of Cluster and followed by
description of compilers used for development of parallel programs on Windows NT
platform. Chapter then covers a case study in which three different data sets of system of
linear equations were analyzed using developed Windows NT Cluster (consisting of eight
conventional computers having similar configuration) as well as supercomputer PARAM
10000. Comparison of both computing systems is presented through the obtained
computational time results.

Another Windows NT Cluster is also developed that consists of conventional computer of
different configurations. On this developed Cluster, four parallel solvers of Gauss-Seidel
Method, Gauss Elimination Method, Matrix Inversion Method and Modified Matrix
Inversion Method are developed. Using these parallel solvers, five distinct data sets were
analyzed by increasing number of computers from one to eight and different components
of computational time are measured. Based on the obtained variations in these
components of computational time, comparison between these parallel solvers is carried
out. It was found that Modified Matrix Inversion Method parallel solver performed better
as compared to other parallel solvers. Therefore this parallel solver is incorporated in two
finite element codes, which are capable of solving linear and non-linear two-dimensional
problems. A problem of anchorage zone in prestressed post-tensioned concrete beam is
considered for linear elastic finite element analysis on the other hand a problem of simple
compression of solid cylinder is considered for non-linear finite element analysis. These
problems were discretized using different mesh sizes and analyzed by increasing number
of computer from one to eight. Computational time variation is obtained and presented. It
was found that Total time in finite element analysis could be effectively reduced on
Windows NT Cluster by employing multiple computers.

206

7.2 NEED FOR CLUSTER

It is seen that supercomputers could be used effectively to solve complex problems. The
computing power of the supercomputers is extremely high as compared to the
conventional computers. Supercomputers mainly use multiple processors along with
parallel computing technique. But the supercomputers are very costly as compared to a
conventional computer. Therefore it is tried to develop an inexpensive alternative of the
supercomputers by connecting conventional computers with local area network (LAN).
This group of conventional computers is called as Cluster.

7.2.1 Cluster Setup

In the present study, a Cluster consisting eight IBM Personal Computer 300GL is formed.
Each computer has single Intel P II processor operating at 400 MHz at 512 KB Cache.
Each computer has 128 MB RAM with 4.2 GB HDD. All computers have TCP/IP socket
connections. These computers are connected to each other by Local Area Network (LAN)
through a Switch of 100 MBPS capacity. Figure 7.1 illustrates described Cluster. All
computers are equipped with Windows NT 4.0 Workstation operating system.

Fig. 7.1 Windows NT cluster of computers having similar configuration

207

7.2.2 Compilers

MPICH for Microsoft Windows compiler [4] developed by Argonne National Laboratory
is installed on every computer of the Cluster. Each computer is then configured to execute
parallelized computer codes on Cluster. In addition to this, Microsoft Visual C++ 6.0
compiler is also installed to create executable files.

7.3 CASE STUDY

To test the functioning of developed Cluster, few standard benchmark programs [8] are
developed in Visual C++ environment and executed on the developed Cluster to ensure
the parallel operation of the Cluster. Matrix Inversion Method parallel solver (presented
in section 3.3.3) was written for the developed Cluster. Three data sets of size 840 x 840,

1226 x 1226 and 1722 xl722 are analyzed on developed Cluster. These data sets are
analyzed by changing number of computers from one to eight and the different
components of computational time are measured. Table 7.1 shows the computational time
results obtained for these data sets under consideration. These components of
computational time are measured in terms of Real time only as User time cannot be
measured in Windows NT operating system.

It can be observed from Table 7.1 that the Total time and Calculation time reduces while
Communication time increases with increase in number of computers. In general, it can
be seen that computational time variation is nearly identical for all data sets. It can also be
observed from Table 7.1 that Speedup increases with increase in number of computers as
well as with increase in data size. Maximum Speedup of 3.74 can be seen at eight

computers for data size of 1722 x 1722. Qualitative variation of MFLOPS is similar to the
variation of Speedup. Maximum MFLOPS of 33.61 was obtained at eight computers for

data size of 1722 x 1722. Decrease in Efficiency with increase in number of computers
can be observed.

208

Table 7.1 Computational time variation and performance of MIM solver for data set of
different sizes on Windows NT cluster

(a) Results for data set of size 840 x 840

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 120.00 0.00 120.00 1.00 100.00 9.90
2 78.68 6.49 72.19 1.53 76.25 15.10
3 66.97 13.15 53.82 1.79 59.73 17.74
4 58.77 15.81 42.97 2.04 51.04 20.22
5 64.62 24.22 40.40 1.86 37.14 18.39
6 60.53 24.93 35.60 1.98 33.04 19.63
7 60.54 27.32 33.23 1.98 28.31 19.63
8 58.37 23.91 34.46 2.06 25.70 20.36

(b) Results for data set of size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 363.02 0.00 363.02 1.00 100.00 10.17
2 214.81 12.60 202.21 1.69 84.50 17.19
3 204.10 28.38 175.72 1.78 59.29 18.09
4 175.70 33.89 141.81 2.07 51.65 21.01
5 156.21 49.75 106.46 2.32 46.48 23.63
6 145.19 51.60 93.59 2.50 41.67 25.43
7 143.32 56.86 86.45 2.53 36.19 25.76
8 .. 140.56 52.88 87.67 2.58 32.28 26.26

(c) Results for data set of size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1138.00 0.00 1138.00 1.00 100.00 8.98
2 577.82 23.72 554.10 1.97 98.47 17.69
3 533.50 53.73 479.77 2.13 71.10 19.16
4 411.99 63.29 348.70 2.76 69.06 24.82
5 444.11 93.61 350.51 2.56 51.25 23.02
6 398.56 100.53 298.03 2.86 47.59 25.65
7 359.14 111.99 247.15 3.17 45.27 28.47
8 304.20 100.73 203.48 3.74 46.76 33.61

209

Table 7.2 Computational time variation and performance of MIM solver for data set of
different sizes on PARAM 10000

(a) Results for data set of size 840 x 840

No. of
processors Total Comm Cal Speedup Efficiency MFLOPS

1 186.31 0.00 186.31 1.00 100.00 6.38
2 99.87 0.67 99.20 1.87 93.27 11.90
3 72.09 1.54 70.55 2.58 86.15 16.48
4 56.46 1.71 54.75 3.30 82.49 21.04
5 55.34 5.23 50.11 3.37 67.33 21.47
6 56.03 6.59 49.44 3.33 55.42 21.21
7 49.29 6.30 42.98 3.78 54.00 24.11
8 56.35 2.26 54.09 3.31 41.33 21.09

(b) Results for data set of size 1226 x 1226

No. of
processors Total Comm Cal Speedup Efficiency MFLOPS

1 578.16 0.00 578.16 1.00 100.00 6.38
2 299.72 1.50 298.22 1.93 96.45 12.32
3 208.53 3.61 204.92 2.77 92.42 17.70
4 163.36 4.18 159.18 3.54 88.48 22.60
5 155.09 12.96 142.13 3.73 74.56 23.80
6 141.85 15.61 126.23 4.08 67.93 26.02
7 125.84 14.62 111.22 4.59 65.63 29.33
8 134.44 16.15 118.29 4.30 53.76 27.46

(c) Results for data set of size 1722 x 1722

No. of
processors Total Comm Cal Speedup Efficiency MFLOPS

1 1625.43 0.00 1625.43 1.00 100.00 6.29
2 851.31 3.05 848.26 1.91 95.47 12.01
3 571.71 9.23 562.47 2.84 94.77 17.88
4 446.75 7.75 439.00 3.64 90.96 22.89
5 405.12 18.19 386.93 4.01 80.24 25.24
6 356.91 29.88 327.03 4.55 75.90 28.65
7 321.85 28.47 293.38 5.05 72.15 31.77
8 457.26 50.36 406.90 3.55 44.43 22.36

210

The same data sets were also analyzed on supercomputer PARAM 10000 and
components of computational time were also measured. Table 7.2 shows the variation in
computational time components for three data sets for different number of processors of
supercomputer PARAM 10000. It can be seen that Total time and Calculation time
reduces whereas Communication time increases with increase in number of processors.
The Speedup as well as MFLOPS increases with increase in number of processors.
Maximum Speedup and MFLOPS obtained are 5.05 and 31.77 respectively for data of
size 1722 x 1722 at seven number of processors.

From Tables 7.1 and 7.2 it can be observed that a single processor of supercomputer
PARAM 10000 requires more time than a conventional personal computer (see Total time
of single processor of PARAM 10000 and Total time of single computer of Cluster for all
three data sets). The difference in Total time required by both computing systems at every
number of processors/computers is marginal. It can be observed that reduction in Total
time is very rapid in supercomputer PARAM 10000 as compared to the Cluster. This
difference can also be seen in Speedup. This is mainly because of higher contribution of
Communication time in Total time for Cluster.

Table 7.3 shows percentage contribution of Communication time in Total time for
PARAM 10000 and Cluster for all data sets under consideration. It is very clear that
contribution of Communication time is very high in Cluster as compared to
supercomputer PARAM 10000. This contribution reduces with increase in data size. This
signifies that performance of solver improves with increase in size of data on Cluster.

7.4 MIXED PC CLUSTER

In the above section it is seen that with the help of LAN connected computers, parallel
programs can be executed. Most of the times LAN connected computers may not have
similar configurations. Therefore a Cluster consisting of eight computers with different
configurations is created. Eight computers of IBM Personal Computer 300GL with
different processor speed are used. This Cluster contains four computers each having
single Intel P II processor at 300 MHz, three computers each having single Intel P II
processor at 400 MHz, and one computer with single processors of Intel P II at 500 MHz.

211

Table 7.3 Percentage contribution of Communication time towards Total time for
different data set on Windows NT cluster and PARAM 10000.

No. of
processors/
computers

Windows NT cluster PARAM 10000
840 1226 1722 840 1226 1722

1 0.00 0.00 0.00 0.00 0.00 0.00
2 8.25 5.86 4.10 0.67 0.50 0.36
3 19.64 13.91 10.07 2.13 1.73 1.62
4 26.90 19.29 15.36 3.03 2.56 1.73
5 37.48 31.85 21.08 9.45 8.36 4.49
6 41.18 35.54 25.22 11.75 11.01 8.37
7 45.12 39.68 31.18 12.79 11.62 8.85
8 40.97 37.63 33.11 4.01 12.01 11.01

(300 MHz) (300 MHz)(300 MHz)(300 MHz)

Fig. 7.2 Windows NT cluster of computers with different configurations

212

The RAM size of these computers is also different. All computers with 300 MHz
processors have RAM of size 64 MB and remaining all computers has RAM of size 128
MB. These computers are then connected through a HUB of 10 MBPS capacity.
Windows NT 4.0 workstation operating system was installed on all computers. The
developed Cluster is illustrated in Fig. 7.2. MPICH for Microsoft Windows compiler [4]
was also installed on every computer of the Cluster. Each computer was then properly
configured to execute parallel programs on this developed Cluster.

7.5 PERFORMANCE OF PARALLEL SOLVERS ON CLUSTER

Based on the algorithms discussed in Chapter 3, parallel solvers are developed on
Windows NT platform and implemented on developed Cluster discussed above. All four
parallel solvers (GSM, GEM, MIM, and MMIM) are used to analyze five different data
sets of increasing size (870 x 870, 1226 x 1226, 1352 x 1352, 1722 x 1722 and 2312 x

2312) taken from linear elastic and non-linear plastic finite element analysis problems
discussed in Chapter 4 and Chapter 5. Because of RAM limitations (RAM size ranging
from 64 MB to 128 MB) solution to data sets having size more that 2500 x 2500
(approximately) was not possible. The computers used in developed Cluster were having
different processor speeds which are 300 MHz, 400 MHz and 500 MHz, therefore to
maintain the consistency in computational time results, at least one computer with 300
MHz speed is involved in each execution process. Computational time components (in
terms of Real time) were measured for all data sets, which were analyzed by four
different parallel solvers with increasing number of computers from one to eight.

7.5.1 Gauss-Seidel Method x

Figures 7.3 (a) and (b) show typical variation of computational time and Speedup with

increasing number of computers for GSM parallel solver for data set of size 1226 x 1226.
It can be seen from Fig. 7.3 (a) that Total time increases with increase in number of
computers. Communication time variation is exactly similar to the Total time variation.
Communication time is marginally lesser than the Total time at every number of
computers. Reduction in Calculation time can also be seen with increase in number of
computers. Similar type of variation can also be seen in Fig. 3.4 (a) in which a data set

213

Sp
ee

du
p

(R
)

Ti
m

e

(a) Variation in computational time components

------Speedup (R)

4 5 6 7 8

No. of computers

(b) Variation in Speedup (R)

Fig. 7.3 Variation in computational time components and Speedup (R) for GSM solver
for data set of size 1226 x 1226

214

(a) Results for data set of size 870 x 870

Table 7.4 Computational time variation and performance of GSM solver for data set of
different sizes on Windows NT cluster

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 107.36 0.00 107.36 1.00 100.00 22.91
2 1752.82 1693.54 59.28 0.06 3.06 1.40
3 2177.19 2128.98 48.21 0.05 1.64 1.13
4 2875.72 2834.79 40.93 0.04 0.93 0.86
5 3623.41 3590.52 32.89 0.03 0.59 0.68
6 4517.57 4482.18 35.40 0.02 0.40 0.54
7 5302.78 5272.56 30.22 0.02 0.29 0.46
8 6998.00 6969.79 28.21 0.02 0.19 0.35

(b) Results for data set of size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 332.88 0.00 332.88 1.00 100.00 24.25
2 4106.79 3916.92 189.88 0.08 4.05 1.97
3 5118.39 4988.18 130.22 0.07 2.17 1.58
4 6684.69 6569.92 114.78 0.05 1.24 1.21
5 8435.47 8339.23 96.24 0.04 0.79 0.96
6 10484.10 10401.58 82.52 0.03 0.53 0.77
7 11976.12 11897.44 78.68 0.03 0.40 0.67
8 15938.31 15866.78 71.54 0.02 0.26 0.51

(c) Results for data set of size 1352 x 1352

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 416.25 0.00 416.25 1.00 100.00 23.75
2 4544.45 4324.90 219.55 0.09 4.58 2.18
3 5661.36 5490.90 170.46 0.07 2.45 1.75
4 7356.33 7227.09 129.24 0.06 1.41 1.34
5 9394.76 9277.95 116.80 0.04 0.89 1.05
6 11136.05 11032.19 103.86 0.04 0.62 0.89
7 13714.61 13619.31 95.29 0.03 0.43 0.72
8 17959.20 17870.79 88.42 0.02 0.29 0.55

215

(d) Results for data set of size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 808.37 0.00 808.37 1.00 100.00 24.63
2 7030.85 6572.49 458.36 0.11 5.75 2.83
3 9063.42 8727.19 336.24 0.09 2.97 2.20
4 11682.02 11410.10 271.92 0.07 1.73 1.70
5 14914.73 14697.55 217.18 0.05 1.08 1.33
6 18465.68 18268.22 197.46 0.04 0.73 1.08
7 18909.75 18730.78 178.97 0.04 0.61 1.05
8 31936.24 31773.62 162.62 0.03 0.32 0.62

(e) Results for data set of size 2312 x 2312

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1963.93 0.00 1963.93 1.00 100.00 25.12
2 12872.67 11787.66 1085.01 0.15 7.63 3.83
3 16707.09 15775.99 931.10 0.12 3.92 2.95
4 21489.25 20881.68 607.57 0.09 2.28 2.30
5 27480.97 26938.27 542.70 0.07 1.43 1.79
6 33974.00 33495.68 478.32 0.06 0.96 1.45
7 39928.97 39516.89 412.08 0.05 0.70 1.24
8 52352.14 51972.14 380.00 0.04 0.47 0.94

Fig. 7.4 Variation in Speedup (R) for GSM solver for various data sets on Windows NT
cluster

216

1226 x 1226 was analyzed using GSM solver on supercomputer PARAM 10000. From
Fig. 7.3 (b) it can be observed that Speedup reduces drastically from one to two number
of computers. With further increase in number of computers, Speedup continuously
decreases but with reduced rate. Continuous reduction in Speedup was also observed
when PARAM 10000 was used (see Fig. 3.5).

When other data sets of increasing sizes were analyzed, it was found that Total time
increases with increase in number of computers employed for performing the analysis
(see Table 7.4). Figure 7.4 shows the variation in Speedup with number of computers for
all data sets under consideration. It can be seen that as data size increases, the
corresponding performance of GSM parallel solver also improves. This improvement is
insignificant as compared to the improvement observed in case of PARAM 10000 (see
Fig. 3.6). Table 7.5 shows the number of iterations carried out in analyzing various data
sets. It can be seen that number of iterations required to solve a particular data sets are
independent of data size (see Table 3.8 in Chapter 3).

7.5.2 Gauss Elimination Method

Variation of different components of computational and Speedup with increasing number
of computers for data set of size 1226 x 1226 obtained using GEM parallel solver is
shown in Fig. 7.5. It can be seen from Fig. 7.5 (a) that Total time increases with increase
in number of computers. The increase is gradual from one to five number of computers.
After five number of computers sudden increase in Total time can be seen till eight
number of computers. The variation of Communication time is exactly similar to
variation of Total time with significantly lesser magnitude. It can also be observed from
this figure that Calculation time decreases with increase in number of computers. This
reduction in Calculation time is very less with increasing number of computers. The
Computational time variation obtained on Windows NT Clusters is quite similar to the
variation obtained on supercomputer PARAM 10000 (see Fig. 3.9(a)). In case of
Windows NT Cluster, Calculation time continuously decreases with increase in number
of computers whereas in case of PARAM 10000, it increases with increase in number of
processors. This is mainly because of higher contribution of Communication time for
Windows NT Cluster as compared to PARAM 10000. Figure 7.5 (b) shows variation in

217

Table 7.5 Number of iteration for various data sizes carried out by GSM solver

Data size No. of iterations Status
870 x 870 1083 Solution found

1226 x 1226 1790 Solution found
1352 x 1352 1803 Solution found
1722x 1722 2238 Solution found
2312x2312 3076 Incomplete

Sp
ee

du
p

(R
)

Tj
m

e

(b) Variation in Speedup (R)

Fiu. 7-5 Variation in computational time components and Speedup (R) for GEM solver

for data set of size 1226 x 1226

218

(a) Results for data set of size 870 x 870

Table 7.6 Computational time variation and performance of GEM solver for data set of
different sizes on Windows NT cluster

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 46.26 0.00 46.26 1.00 100.00 7.13
2 54.81 6.84 47.97 0.84 42.20 6.01
3 62.19 13.38 48.82 0.74 24.79 5.30
4 70.70 20.79 49.92 0.65 16.36 4.66
5 69.72 28.22 41.50 0.66 13.27 4.73
6 104.90 63.08 41.82 0.44 7.35 3.14
7 122.40 80.16 42.24 0.38 5.40 2.69
8 143.92 92.26 51.66 0.32 4.02 2.29

(b) Results for data set of size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 127.37 0.00 127.37 1.00 100.00 7.24
2 148.12 13.51 134.61 0.86 42.99 6.23
3 158.10 27.89 130.21 0.81 26.85 5.83
4 172.48 41.36 131.11 0.74 18.46 5.35
5 171.55 54.78 116.78 0.74 14.85 5.38
6 244.35 131.52 112.83 0.52 8.69 3.77
7 286.74 172.46 114.28 0.44 6.35 3.22
8 323.94 197.93 126.02 0.39 4.91 2.85

(c) Results for data set of size 1352 x 1352

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 139.89 0.00 139.89 1.00 100.00 8.84
2 190.38 17.68 172.70 0.73 36.74 6.50
3 204.82 29.99 174.82 0.68 22.77 6.04
4 224.99 48.72 176.27 0.62 15.54 5.50
5 215.16 64.86 150.30 0.65 13.00 5.75
6 308.46 156.03 152.42 0.45 7.56 4.01
7 361.36 207.11 154.25 0.39 5.53 3.42
8 387.66 225.90 161.77 0.36 4.51 3.19

219

(d) Results for data set of size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 373.78 0.00 373.78 1.00 100.00 6.83
2 389.12 25.92 363.19 0.96 48.03 6.57
3 418.79 52.00 366.79 0.89 29.75 6.10
4 453.74 85.15 368.58 0.82 20.59 5.63
5 419.79 105.89 313.90 0.89 17.81 6.09
6 557.72 241.68 316.04 0.67 11.17 4.58
7 633.85 325.26 308.59 0.59 8.42 4.03
8 694.11 368.74 325.37 0.54 6.73 3.68

(e) Results for data set of size 2312 x 2312

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 953.15 0.00 953.15 1.00 100.00 6.49
2 1002.25 34.10 968.15 0.95 47.55 6.17
3 1053.65 76.38 977.26 0.90 30.15 5.87
4 1100.31 118.99 981.32 0.87 21.66 5.62
5 999.55 144.67 854.87 0.95 19.07 6.18
6 1220.82 392.49 828.32 0.78 13.01 5.06
7 1318.34 478.78 839.56 0.72 10.33 4.69
8 1361.61 532.44 829.17 0.70 8.75 4.54

--------- 2312

0 4-
1

-i-------------------- 1---------------------r i i i -------------------->

2 3 4 5 6 7 8
No. of computers

Fig. 7.6 Variation in Speedup (R) for GEM solver for various data sets on Windows NT
cluster

220

Speedup with increasing number of computers. It can be seen that Speedup decreases
with increase in number of computers. When this variation was compared with Speedup
obtained on supercomputer PARAM 10000 (see Fig. 3.10), it was observed that both
variations are nearly identical.

Table 7.6 shows the computational time variation and performance of GEM parallel
solver for increasing size of data sets under consideration. It can be observed that
variation in computational time components is very much identical for all data sets. In all
the cases Total time increases with increase in number of computers. Figure 7.6 shows the
variation in Speedup with increasing number of computers for all data sets under
consideration. It can be seen from this figure that the performance of the GEM parallel
solver improves with increase in data size. Still the performance of GEM parallel solver is
poor as the Speedup remains below 1.0 even after employing higher number of
computers. After comparing the performance of GEM parallel solver on Cluster and
supercomputer PARAM 10000 (see Fig. 3.10 and Fig. 7.5(b)), it was found that this
solver performed fairly well on supercomputer PARAM 10000.

7.5.3 Matrix Inversion Method

Computational time variation obtained by MIM parallel solver for data set of size 1226 x
1226 is shown in Fig. 7.7 (a). It can be seen from this figure that Total time reduces with
increase in number of computers. Continuous reduction in Total time can be seen for one
to five number of computers. After that, for further increase in number of computers,
Total time increases slightly and remains almost constant. Continuous reduction in
Calculation time with increase in number of computers can also be seen in this figure. It
can also be observed that Communication time increases with increase in number of
computers. This increase is gradual up to five number of computers. Sudden increase in
Communication time can be seen at six number of computers. Similar type of variation in
components of computational time was also observed when supercomputer PARAM
10000 was used (see Fig. 3.13(a)). But in case of PARAM 10000, contribution of
Communication time in Total time was very less as compared to Windows NT Cluster.
Moreover in case of PARAM 10000, continuous reduction in Total time was observed,
whereas in case of Windows NT Cluster increase in Total time was observed when more

221

(b) Variation in Speedup (R)

Fig. 7.7 Variation in computational time components and Speedup (R) for MIM solver for

data set of size 1226 x 1226

Table 7.7 Computational time variation and performance of MIM solver for data set of
different sizes on Windows NT cluster

(a) Results for data set of size 870 x 870

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 162.16 0.00 162.16 1.00 100.00 8.14
2 97.05 5.92 91.14 1.67 83.54 13.60
3 80.92 13.64 67.29 2.00 66.79 16.31
4 84.75 21.68 63.07 1.91 47.83 15.58
5 85.45 29.07 56.38 1.90 37.95 15.45
6 151.58 74.50 77.08 1.07 17.83 8.71
7 169.02 82.85 86.17 0.96 13.71 7.81
8 168.64 87.22 81.42 0.96 12.02 7.83

(b) Results for data set of size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 444.95 0.00 444.95 1.00 100.00 8.30
2 252.46 12.02 240.43 1.76 88.12 14.62
3 200.68 26.92 173.76 2.22 73.91 18.40
4 196.78 43.54 153.24 2.26 56.53 18.76
5 197.52 58.46 139.06 2.25 45.05 18.69
6 323.19 184.78 138.41 1.38 22.95 11.42
7 337.01 144.11 192.89 1.32 18.86 10.95
8 335.21 150.56 184.65 1.33 16.59 11.01

(c) Results for data set of size 1352 x 1352

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 566.55 0.00 566.55 1.00 100.00 8.74
2 320.15 14.02 306.13 1.77 88.48 15.46
3 257.18 31.81 225.37 2.20 73.43 19.25
4 234.73 52.04 182.69 2.41 60.34 21.09
5 227.67 70.06 157.61 2.49 49.77 21.74
6 370.41 208.64 161.77 1.53 25.49 13.36
7 402.45 168.27 234.18 1.41 20.11 12.30
8 393.11 173.36 219.75 1.44 18.01 12.59

223

(d) Results for data set of size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1258.91 0.00 1258.91 1.00 100.00 8.12
2 694.45 21.99 672.46 1.81 90.64 14.72
3 522.33 52.05 470.28 2.41 80.34 19.57
4 477.41 84.15 393.25 2.64 65.92 21.42
5 448.47 117.73 330.74 2.81 56.14 22.80
6 648.04 315.66 332.38 1.94 32.38 15.78
7 685.84 255.71 430.13 1.84 26.22 14.91
8 690.67 270.22 420.45 1.82 22.78 14.80

(e) Results for data set of size 2312 x 2312

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 3155.25 0.00 3155.25 1.00 100.00 7.84
2 1742.91 44.05 1698.86 1.81 90.52 14.19
3 1269.99 31.42 1238.57 2.48 82.82 19.48
4 1084.88 82.61 1002.26 2.91 72.71 22.80
5 999.99 159.87 840.12 3.16 63.11 24.74
6 1186.51 289.77 896.74 2.66 44.32 20.85
7 1295.10 394.97 900.13 2.44 34.80 19.10
8 1285.33 412.37 872.96 2.45 30.69 19.25

Fig. 7.8 Variation in Speedup for MIM solver for various data sets on Windows NT
cluster

224

than five number of computers were used. This is because of higher contribution of
Communication time in Total time on Windows NT Cluster. Figure 7.7 (b) shows
variation in Speedup with increase in number of computers for data set of size 1226 x
1226. It can be seen that Speedup increases gradually from one to three number of
computers. After three number of computers, Speedup remains almost constant till five
number of computers. Sudden decrease in Speedup can be observed from five to six
number of computers. Thereafter Speedup remains almost constant and more than 1.0.
The performance of MIM parallel solver is better on supercomputer PARAM 10000 as
compared to its performance on Windows NT Cluster (see Fig. 3.14). The Speedup
remains very close to Ideal Speedup in case of PARAM 10000 whereas in case of
Windows NT Cluster maximum Speedup of only 2.5 (approximately) was obtained at
five number of computers.

Table 7.7 shows the computational time variation and performance of MIM parallel
solver for five data sets on Windows NT Cluster. It can be observed that Total time
reduces with increase in number of computers employed for the analysis for all data sets
under consideration. Figure 7.8 shows the variation in Speedup obtained on Windows NT
Cluster for increasing data sets. It can be observed that the performance of MIM parallel
solver improved significantly with increase in data size. Maximum Speedup was observed
at five number of computers for all data sets under consideration. Highest Speedup of

3.16 was obtained for data set of size 2312 x 2312 at five number of computers. After
observing the performance of same solver on supercomputer PARAM 10000 (see Fig.
3.15 (a)) it was found that the solver performed better on PARAM 10000 as compared to

Cluster.

7.5.4 Modified Matrix Inversion Method

Modified Matrix Inversion Method parallel solver (MMIM) is developed especially to
handle the system of linear equations developed in finite element analysis. It ignores the
computations at those locations where any element in the matrix has zero value (see
section 3.7). This solver takes minimum computational time on supercomputer PARAM
10000 as compared to the other parallel solvers (discussed in Chapter 3). Data size of

1226 x 1226 is analyzed using this parallel solver (MMIM) on Windows NT Cluster.

225

Figure 7.9 (a) shows obtained computational time variation. It can be observed that Total
time reduces by negligible amount when two and three computers are used. Total time
increases when four and five number of computers were employed for the analysis. Total
time suddenly increases by considerable amount when six computers were used. Further,
Total time remains nearly constant for seven and eight number of computers. This is
mainly because of higher contribution of Communication time. Communication time
increases significantly with increase in number of computers but Calculation time reduces
with increase in number of computers. It can be observed that Communication time and
Calculation time curves cross each other after five number of computers and at the same
instance Total time suddenly increases. This signifies that Communication time is higher
than Calculation time that resulted in increased Total time. When this solver was tested
for same data set on supercomputer PARAM 10000 it was observed that Total time
continuously decreases with increase in number of processors (see Table 3.26 (a)). Figure
7.9 (b) shows the variation in Speedup with number of computers for data set of size 1226

x 1226. It can be seen that Speedup remains greater than 1.0 for number of computer
from one to five. Speedup decreases and remains less than 1.0 for six to eight number of
computers. The Speedup is not adequate as maximum Speedup is just 1.23 at three
number of computers whereas in case of PARAM 10000 maximum Speedup obtained
was 2.06 at seven number of processors (Table 3.26 (b)).

Various data sets of increasing sizes were analyzed using MMIM parallel solver and
computational time was measured (see Table 7.8). It can be seen in the tables that initially
Total time reduces and at a certain number of computers, the Total time starts increasing
with further increase in number of computers. It can also be observed that
Communication time increases with increase in number of computers. Figure 7.10 shows
variation in Speedup with increase in number of computers for various data sets under
consideration. It can be observed that Speedup increases initially and reaches to its peak
value at five number of computers for airiest all data sets. Speedup starts decreasing with
further increase in number of computers and in few cases its magnitude reaches below 1.0
also. When similar data sets were analyzed on supercomputer PARAM 10000, it was
observed that Speedup increases continuously with increase in number of processors (see
Fig. 3.21 (a)).

226

No. of computers

(a) Variation in computational time components

(b) Variation in Speedup (R)

Fig. 7.9 Variation in computational time components and Speedup (R) for MMIM solver
for data set of size 1226 x 1226

227

Table 7.8 Computational time variation and performance of MMIM solver for data set of
different sizes on Windows NT cluster

(a) Results for data set of size 870 x 870

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 55.97 0.00 55.97 1.00 100.00 23.59
2 54.49 5.85 48.64 1.03 51.36 24.23
3 51.55 13.35 38.20 1.09 36.19 25.61
4 66.27 21.36 44.90 0.84 21.11 19.92
5 67.99 29.12 38.87 0.82 16.46 19.42
6 152.96 76.35 76.60 0.37 6.10 8.63
7 164.61 83.22 81.39 0.34 4.86 8.02
8 194.86 88.09 106.77 0.29 3.59 6.77

(b) Results for data set of size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 154.40 0.00 154.40 1.00 100.00 23.91
2 143.91 11.86 132.05 1.07 53.65 25.65
3 125.15 26.60 98.54 1.23 41.13 29.50
4 146.34 43.02 103.33 1.06 26.38 25.23
5 145.86 58.45 87.40 1.06 21.17 25.31
6 312.20 180.48 131.73 0.49 8.24 11.82
7 317.87 142.65 175.23 0.49 6.94 11.61
8 315.66 147.59 168.06 0.49 6.11 11.69

(c) Results for data set of size 1352 x 1352

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 322.81 0.00 322.81 1.00 100.00 15.33
2 225.84 13.74 212.10 1.43 71.47 21.92
3 192.74 31.68 161.06 1.67 55.83 25.68
4 230.50 52.61 177.89 1.40 35.01 21.47
5 198.57 70.59 127.98 1.63 32.51 24.93
6 372.39 206.26 166.13 0.87 14.45 13.29
7 391.33 165.31 226.02 0.82 11.78 12.65
8 408.02 169.15 238.88 0.79 9.89 12.13

228

(d) Results for data set of size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 685.00 0.00 685.00 1.00 100.00 14.93
2 529.34 21.59 507.75 1.29 64.70 19.32
3 445.36 46.16 399.20 1.54 51.27 22.96
4 420.70 84.00 336.70 1.63 40.71 24.30
5 401.02 117.67 283.35 1.71 34.16 25.50
6 618.34 303.23 315.11 1.11 18.46 16.54
7 654.90 249.36 405.54 1.05 14.94 15.61
8 672.94 261.75 411.19 1.02 12.72 15.19

(e) Results for data set of size 2312 x 2312

No. of
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1660.00 0.00 1660.00 1.00 100.00 14.90
2 1352.59 41.17 1311.42 1.23 61.36 18.29
3 1047.06 43.29 1003.77 1.59 52.85 23.63
4 1155.18 319.50 835.68 1.44 35.93 21.42
5 1080.75 253.12 827.63 1.54 30.72 22.89
6 1083.00 294.37 788.63 1.53 25.55 22.84
7 1170.79 324.11 846.68 1.42 20.25 21.13
8 1286.45 349.49 936.97 1.29 16.13 19.23

Fig. 7.10 Variation in Speedup for MMIM solver for various data sets on Windows NT
cluster

229

7.6 COMPARISON OF PARALLEL SOLVERS

In the previous section, performance of four different parallel solvers is presented. Five
distinct data sets of increasing sizes were analyzed using these parallel solvers on
Windows NT Cluster. It was observed that performance of all these solvers is best at five
number of computers (see Fig. 7.4, 7.6, 7.8 and 7.10). Table 7.9 shows values of Total
time obtained by four parallel solvers with different data sizes at five number of
computers. Figure 7.11 shows variation in the Speedup with increasing data size for four
parallel solvers when five number of computers were employed. It can be observed from
this figure that Speedup obtained by MIM parallel solver is maximum whereas by GSM
parallel solver is minimum among all four parallel solvers. It can also be observed that
GEM and GSM parallel solvers give Speedup less than 1.0 for all data sets under
consideration.

When Total time required for the analysis was compared then it was found that GEM
parallel solver takes minimum time for analysis on single computer as compared to the
other parallel solvers (see Tables 7.4, 7.6, 7.7 and 7.8). It is mainly because it requires
significantly lesser computations for getting solution as compared to the other methods.
Moreover no communication is carried out when single computer is employed for the
analysis. When multiple computers are used it was found that all solvers performed better
when five computers were used. It was also observed that at five number of computers
Total time taken by MMIM parallel solver is minimum as compared to the Total time
taken by other parallel solvers for different data sets under consideration. It can be
observed that Total time required by GEM parallel solver for all data sets is slightly
higher than the Total time required by MMIM parallel solver. Furthermore GEM parallel
solver can be improved by trimming down the Communication time so that it may
perform even better than MMIM parallel solver.

230

— GSM
--GEM
-•MIM
— •MMIM

0
500 1000 1500 2000 2500

Data size

Fig. 7.11 Comparison of four parallel solvers when five computers were employed

Table 7.9 Total time obtained by four parallel solvers with different data sizes at five
number of computers

Data size Paralle solver
GSM GEM MIM MMIM

870 3623.41 69.72 85.45 67.99
1226 8435.47 171.55 197.52 145.86
1352 9394.76 215.16 227.67 198.57
1722 14914.73 419.79 448.47 401.02
2312 27480.97 999.55 999.99 897.66

231

7.7 FINITE ELEMENT ANALYSIS ON WINDOWS NT CLUSTER

As discussed in Chapter 3, major portion of computational time required in finite element
analysis is consumed in the process of finding unknowns by solving system of linear
equations generated. To reduce this portion of computational time, four parallel solvers
were developed and implemented on supercomputer PARAM 10000 as well as on
Windows NT Cluster. It was found that MMIM parallel solver takes lesser time on
supercomputer PARAM 10000 as well as on Windows NT Cluster as compared to other
parallel solvers. Therefore this parallel solver is implemented in finite element codes
(presented in Chapter 4 and Chapter 5), which are capable of solving linear elastic and
non-linear plastic problems. These finite element codes are once again developed on
Windows NT platform with MMIM parallel solver. One problem from each type is
analyzed with these finite element codes on Windows NT Cluster and required
computational time and its components are measured.

7.7.1 Linear Elastic Finite Element Analysis

As described in Chapter 4, analysis of anchorage zone which develops in prestressed
post-tensioned concrete beam is idealized as two-dimensional plane stress problem. The
beam was discretized three times using 1600, 1136 and 784 constant strain triangular
elements with 861,613 and 435 nodes resulting into global stiffness matrices of size 1722
x 1722,1226 x 1226 and 870 x 870 respectively. Other details of the problem are same as
described in section 4.5. These three cases were analyzed on Windows NT Cluster by
increasing number of computers from one to eight and different components of
computational time were measured.

From Table 7.10, it can be seen that Total time reduces with increasing number of
computers from one to four. Further increase in number of computers resulted in increase
in Total time. It can also be seen that problems having stiffness matrix of size 870 x 870

and 1226 x 1226, minimum Total time was measured at three number of computers. For

problem with stiffness matrix of size 1722 x 1722, minimum Total time was obtained at
five number of computers. This signifies that number of computers at which minimum
Total time can be obtained increases with increase in size of stiffness matrix. This is also

232

(a) Results for problem with global stiffness matrix size 870 x 870

Table 7.10 Computational time and performance of parallelized FEM code on Windows
NT cluster for problems with different global stiffness matrix of sizes

No. of
computers Total Comm Cal Speedup Efficiency

1 54.63 0.00 54.63 1.00 100.00
2 52.93 6.19 46.74 1.03 51.60
3 49.40 13.56 35.84 1.11 36.86
4 62.47 21.51 40.97 0.87 21.86
5 64.95 29.62 35.33 0.84 16.82
6 142.36 78.47 63.89 0.38 6.40
7 161.34 84.00 77.33 0.34 4.84
8 162.65 92.62 70.03 0.34 4.20

(b) Results for problem with global stiffness matrix size 1226 x 1226

No. of
computers Total Comm Cal Speedup Efficiency

1 155.01 0.00 155.01 1.00 100.00
2 143.41 12.09 131.33 1.08 54.04
3 124.82 27.20 97.62 1.24 41.40
4 145.66 43.37 102.29 1.06 26.61
5 139.62 58.49 81.12 1.11 22.21
6 294.41 176.77 117.64 0.53 8.78
7 332.71 144.87 187.84 0.47 6.66
8 321.37 154.96 166.42 0.48 6.03

(c) Results for problem with global stiffness matrix size 1722 x 1722

No. of
computers Total Comm Cal Speedup Efficiency

1 779.31 0.00 779.31 1.00 100.00
2 641.29 17.94 623.36 1.22 60.76
3 532.25 46.42 485.83 1.46 48.81
4 511.54 69.50 442.04 1.52 38.09
5 464.79 116.36 348.43 1.68 33.53
6 1109.72 303.76 805.96 0.70 11.70
7 714.93 248.11 466.82 1.09 15.57
8 692.69 264.35 428.33 1.13 14.06

233

Fig. 7.12 Variation in Speedup (R) for FEM code for problems with stiffness matrices of
increasing size

Fig. 7.13 Variation in Speedup (R) for FEMLD for problems with stiffness matrices of
increasing size

234

(a) Results for problem with global stiffness matrix size 870 x 870

Table 7.11 Computational time and performance of FEMLD on Windows NT cluster for
problems with different global stiffness matrix of sizes

No. of
computers Total Comm Cal Speedup Efficiency

1 8123.16 0.00 8123.16 1.00 100.00
2 5784.60 504.00 5280.60 1.40 70.21
3 5102.99 1151.88 3951.11 1.59 53.06
4 5755.10 1854.21 3900.89 1.41 35.29
5 9927.55 5547.29 4380.26 0.82 16.36
6 11462.10 5100.26 6361.84 0.71 11.81
7 11084.43 5413.59 5670.84 0.73 10.47
8 13423.46 7477.81 5945.65 0.61 7.56

(b) Results for problem with global stiffness matrix size 1352 x 1352

No. of
computers Total Comm Cal Speedup Efficiency

1 12080.67 0.00 12080.67 1.00 100.00
2 8437.57 507.86 7929.70 1.43 71.59
3 7116.41 1176.63 5939.78 1.70 56.59
4 7094.74 1849.59 5245.15 1.70 42.57
5 12356.92 8356.05 4000.88 0.98 19.55
6 12190.18 5050.82 7139.36 0.99 16.52
7 11694.46 4784.83 6909.63 1.03 14.76
8 12956.97 6404.81 6552.16 0.93 11.65

(c) Results for problem with global stiffness matrix size 2312 x 2312

No. of
computers Total Comm Cal Speedup Efficiency

1 68038.36 0.00 68038.36 1.00 100.00
2 46005.76 1528.44 44477.33 1.48 73.95
3 36645.07 1642.99 35002.08 1.86 61.89
4 38534.73 3876.66 34658.07 1.77 44.14
5 45719.68 16877.30 28842.39 1.49 29.76
6 42637.61 11743.77 30893.84 1.60 26.60
7 43388.94 13204.22 30184.73 1.57 22.40
8 48598.39 18957.33 29641.06 1.40 17.50

235

reflected in Speedup as shown in Fig. 7.12. It can be seen from this figure that overall
performance of the FEM code improves with increase in matrix size. Obtained Speedup is
not encouraging as maximum Speedup obtained was 1.68 only at five number of
computers for problem with stiffness matrix of size 1722 x 1722.

When performance of FEM code on Windows NT Cluster was compared with its
performance on supercomputer PARAM 10000, it was found that FEM code performed
slightly better on supercomputer PARAM 10000 as compared to Windows NT Cluster
(see Tables 4.2 to 4.9). On supercomputer PARAM 10000, Speedup continuously
increases with increase in number of processors, whereas on Windows NT Cluster,
Speedup reduces when more than five number of computer were used. Overall
performance of FEM code on Windows NT Cluster is encouraging and can be further
improved by improving communication technique.

7.7.2 Non-Linear Plastic Finite Element Analysis

The problem of simple compression of a solid cylinder (discussed in section 5.3.1) is
solved using the developed code on Windows NT Cluster. This problem was discretized
three times using meshes of different sizes to obtain stiffness matrices of sizes 882 x 882,

1352 x 1352 and 2312 x 2312. Other details of the problem are kept same as discussed in
section 5.3.1. These problems were analyzed on Windows NT Cluster by employing one
to eight computers and different components of computational time were measured. It
was observed that 84, 36 and 33 iterations were required to analyze these problems.

From Table 7.11 it can be seen that Total time reduces with increase in number of
computers. It reaches to its minimum value at three number of computers for problem
with stiffness matrix of size 882 x 882 and 2312 x 2312 and four number of computers

for problem with stiffness matrix of size 1226 x 1226. Further increase in number of
computers resulted in increase in Total time. Figure 7.13 shows the variation in Speedup
obtained by FEMLD on Windows NT Cluster for problem with stiffness matrix of
various sizes. Overall it can be seen that Speedup increases with increase in number of
computers and reaches to its peak value. Then Speedup starts decreasing with further
increase in number of computers. Maximum Speedup of 1.86 was obtained at three

236

number of computers for problem with stiffness matrix of size 2312 x 2312. It can also be
seen from this figure that the performance of FEMLD improves with increase in size of
stiffness matrix. When the performance was compared with supercomputer PARAM
10000, it was found that performance of FEMLD on Windows NT Cluster is nearly
similar to its performance on supercomputer PARAM 10000 (see Table 5.3 to 5.5). It was
also observed that PARAM 10000 gives higher Speedup at higher number of processors
as compared to Windows NT Cluster.

7.8 SUMMARY

In this chapter, an alternative to supercomputer through Cluster computing technique is
suggested for structural analysis using finite element method. Two Windows NT Clusters
are formed in which, one consists of PC’s having similar configurations (400 MHz)
connected by 100 MBPS switch and other consists of PC’s having different
configurations (300 MHz, 400 MHz, and 500 MHz) connected by 10 MBPS HUB. Matrix
Inversion Method parallel solver is developed on Windows NT platform and tested on the
Cluster of PC’s having similar configurations. Data sets of different sizes are solved on
this Cluster and various components of computational time are measured. The
comparison of developed Cluster with supercomputer PARAM 10000 is carried out by
comparing the performance of MIM parallel solvers on both the computing systems. It
was found that developed Cluster is effective in reducing the computational time by
employing more number of computers for the solution. It is also observed that the
contribution of Communication time in Total time is more in Windows NT Cluster as
compared to supercomputer PARAM 10000.

Four parallel solvers (discussed in Chapter 3) are developed on Windows NT platform
and tested for various sizes of data sets on Windows NT Cluster of PC’s having different
configurations. It was found that MIM parallel solver gave highest Speedup as compared
to the other solvers. It was also found that MMIM parallel solver takes minimum
computational time as compared to the other solvers and hence it was chosen for
implementation in finite element analysis.

237

Two parallelized finite element codes capable of analyzing linear elastic problems
(discussed in Chapter 4) and non-linear plastic problem (discussed in Chapter 5) are
developed on Windows NT Cluster. One sample problem from each category is analyzed
by these codes by increasing the number of computers and their performance is measured.
It was found that, Total time required in finite element analysis is reduced by employing
more number of computers of developed Windows NT Cluster. It was also found that
analysis could be carried out in minimum Total time by employing three to five number
of computers depending on the size of the finite element mesh. It was also observed that
excessive increase in number of computers resulted in increase in Total time.

It was found that these parallel finite element codes performed better on supercomputer
PARAM 10000 as compared to Windows NT Cluster. But still Windows NT Cluster can
be used as an alternative of supercomputer PARAM 10000 as it is less expensive than
supercomputer PARAM 10000. Moreover, computers that are used in Windows NT
Cluster can be very easily replaced with better and faster computers, which would be the
biggest advantage of using Windows NT Cluster.

238

CHAPTER 8

CONCLUDING REMARKS AND FUTURE
SCOPE

8.1 SUMMARY AND CONCLUSIONS

The present work shows an implementation of parallel computing technique in two-
dimensional linear and non-linear finite element analysis. For parallel processing
supercomputer PARAM 10000 and Windows NT Cluster has been employed. Based on
the work carried out and presented in this report, following points can be summarize;

• Various components of computational time and effects of user activities on these
components were studied. A timer was also developed to measure the User time spent
for a particular code segment.

• Using C programming language, three parallel solvers were developed using Gauss-
Seidel Method, Gauss Elimination Method and Matrix Inversion Method for solving
system of linear equations. After comparing the computational time and their
performance results, it was found that Matrix Inversion Parallel solver is better as
comparodto other two parallel solvers.

• Matrix Inversion parallel solver was further developed in FORTRAN77 programming
language. After comparing its performance with the previously developed solver in C
language, it was found that parallel solver written in C language is better as compared
to the parallel solver developed in FORTRAN77 language.

• Comparison of Blocking and Non-blocking communication mechanism was carried
out by implementing both the communication mechanisms in the Matrix Inversion
parallel solver and it was found that both the communication mechanisms are equally
effective for communication.

• Matrix Inversion parallel solver was further modified to solve system of linear
equations generated especially in finite element analysis. After comparing the
performance of the original and modified Matrix Inversion parallel solver, it was
found that the modified parallel solver is much faster in solving system of linear
equation in finite element analysis as compared to the original solver.

• Software for two-dimensional linear elastic finite element analysis was developed on
the platform of supercomputer PARAM 10000. Modified Matrix Inversion parallel
solver was incorporated in this software so that computational time could be saved in
overall computations.

239

• With the help of the developed software, a case study problem of stress analysis in
anchorage zone was presented. Various Stress distribution in anchorage zone in
prestressed post tensioned concrete beam subjected to concentric and eccentric
prestressing forces was obtained and presented. The obtained stress variation was also
compared with the literature and discussed.

• The analysis was carried out on supercomputer PARAM 10000 and it was found that
significant amount of computational time could be saved by using multiple number of
processors for the analysis.

• The effect of Poisson’s ratio and load area ratio on anchorage zone stress was studied
and an expression to compute bursting tensile force was developed. This expression
includes the effect of Poisson’s ratio that was ignored in the expression given in
Indian Standard Code.

• Effect of eccentricity of prestressing forces on magnitude of bursting tensile force was
studied and it was found that maximum magnitude of bursting tensile force could be

found at zero eccentricity.
• Existence of spalling zone in prestressed post-tensioned concrete beams was

confirmed in the present investigation. It was also found that the magnitude of
transverse tensile stresses developed in spalling zone was higher than the magnitude
of transverse tensile stresses developed in anchorage zone.

• Adopting flow formulation in finite element analysis and the Modified Matrix
Inversion parallel solver, a generalized software FEMLD was developed to analyze
large deformation problems categorized under metal forming problems. This software
was developed using three noded constant strain triangular elements (FEMLD3) as
well as four noded rectangular elements (FEMLD4).

• Two sample problems of compression of solid cylinder (axisymmetric condition) and
compression of prismatic bar (plane strain condition) were analyzed using FEMLD3
as well as FEMLD4. Distribution of various stress obtained were presented and
discussed.

• The same case study problems were also analyzed using commercial software
FORGE2 and it was found that various results obtained from developed code have
excellent agreement with the corresponding results obtained from FORGE2.

• The same case study problems were also analyzed using commercial software
ANSYS and obtained load-compression relationship was compared with the load

240

compression relationship obtained using developed code. The limitations of the
commercial software ANSYS in solving large deformation problems were also
discussed.

• The performance of the FEMLD software was tested for huge data sizes and the
developed software showed improved performance for large size problems.

• FEMLD was developed for generalized large deformation problem so it has some
limitations. These limitations were sorted out and rectified by simulating two flat dies.
Modified FEMLD was developed to simulate compression process of various
materials with various cross-sections between two rigid moving flat dies.

• To test the modified FEMLD software, four case study problems were analyzed and
presented. They includes axisymmetric compression of solid cylinder, lateral
compression of rectangular metallic tubes, fold—formation in axisymmetric
compression of hollow round metallic tubes and lateral compression of round tube
between two concentrated loads.

• To verify the results obtained from the developed software, the same four problems
were also analyzed using commercial software FORGE2. Various results obtained
using developed code and FORGE2 were compared and it was found that the results
match well.

• These problems were analyzed using supercomputer PARAM 10000 and reduction in
computational time was obtained using more number of processors of supercomputer
PARAM 10000.

• Cluster of eight computers having equal hardware configuration operating on
Windows NT operating system was formed in order to execute parallel codes. Matrix
Inversion parallel solver was implemented on this Cluster and tested for different data
sets of increasing sizes. It was found that computational time reduces with the
increase in number of computer employed for the analysis.

• The similar data sets were also solved using one to eight number of processors of
supercomputer PARAM 10000. Computational time results were obtained and
compared with the corresponding results obtained on Windows NT Cluster. It was
found that both computing systems are good enough to save computational time. It
was also found that the contribution of Communication time towards Total time is
more in Windows NT Cluster as compared to the supercomputer PARAM 10000.

241

• A cluster of eight conventional computers with different hardware configuration was
also developed. Four parallel solvers, namely Gauss-Seidel, Gauss Elimination,
Matrix Inversion and Modified Matrix Inversion parallel solvers were implemented
on this Cluster. Several data sets of varying data sizes were analyzed on this Cluster
using four parallel solvers. It was found that Modified Matrix Inversion parallel solver
gave best performance among all four parallel solvers.

• Two parallel programs for two-dimensional linear elastic finite element analysis and
two-dimensional non-linear finite element analysis of large deformation problems
were developed on this Cluster. Case study problems in both the categories were
solved by changing number of computers from one to eight and obtained
computational time variations were presented. It was found that the computational
time reduces with increase in number of computer.

8.2 FURTHER SCOPE OF WORK

In the developed software for linear and non-linear finite element analysis, only two
elements have been used namely three noded constant strain triangular elements and four
noded rectangular elements.ThisJsone of the major limitation of the presented work.
Higher ordeuelements lik^hell element^could be incorporated in the developed code in
order to get more accurate resultsTnfinne element analysis. Present work deals with only
two-dimensional finite element analysis. It could be extended to three-dimenstional
analysis also. In non-linear finite element analysis, simulation of two flat dies was
presented. More die shapes could be simulated so that more complex problems like tube
inversion can also be analyzed. Temperature effect was ignored in the developed code
that could be incorporated in order to study thermal stress in metal forming problems. The
problem of crack formation or fracture of material during deformation is quite common in
metal forming problems so various criteria to identify the fracture could be included in
the developed code.

The developed parallel solvers were tested on PARAM 10000 machine that includes
processors of 400 MHz speed. With the recent advancements in the area of computer
technology, conventional computers with 3 GHz processors are now available. Hence the
computational time consumption in supercomputer PARAM 10000 is relatively similar to

242

the computational time consumption on conventional computer with latest hardware.
Hence the presented codes should also be tested on supercomputers with latest hardware.
Very little work has been carried out in implementation of cluster computing technique in
finite element analysis. Significant amount of work is possible in this area also.

243

REFERENCES

1. M. J. Quinn, “Parallel Computing: Theory and Practice”, second edition, McGraw-
Hill, New York, 1994.

2. A. Grama, A. Gupta, G. Karypis and V. Kumar, “Introduction to Parallel Computing”,
second edition, Pearson Education, Singapore, 2004.

3. M. Snir, S. Otto, S. Hass-Lederman, D. Walker and J. Dongarra, “MPI: The Complete
Reference”, first edition, The MIT Press, Cambridge, 1996.

4. , Dec. 2005.http://www-unix.mcs.anl.gov/mpi/mpich/
5. Y. Kanetkar, “Let Us C”, third edition, BPB Publications, New Delhi, 1999.
6. Y. Kanetkar, “Let Us C++”, second edition, BPB Publications, New Delhi, 1999.
7. S. Lipschutz and A. Poe, “Schaum’s Outline Series: Programming with FORTRAN”,

first edition, McGraw-Hill, Singapore, 1982.
8. , Dec. 2005.http://param.bits-pilani.ac.in
9. C. S. Krishnamoorthy, “Finite Element Analysis: Theory and Programming”, second

edition, Tata McGraw-Hill, 1999.
10. J. N. Reddy, “An Introduction to The Finite Element Method”, third edition,

McGraw-Hill, New York, 1993.
11. T. R. Chandrupatala and A. D. Belagundu, “Introduction to Finite Elements in

Engineering”, second edition, Prentice-Hall of India, New Delhi, 1997.
12. J. Mackerle, “Finite and Boundary Elements and Supercomputing - A bibliography

(1989-1991)”, Finite Elements in Analysis and Design, Vol. 12, No 2, 1992, pp 151-

159.
13. S. Das, “UNIX: Concepts and Applications”, second edition, Tata McGraw-Hill, New

Delhi, 1999.
14. K. R. Wadleigh and I. L. Crawford, “Software Optimization for High-Performance

Computing”, first edition, Prentice Hall PTR, New Jersey, 2000.
15. S. Rajasekaran, “Numerical Methods in Science and Engineering A Practical

Approach”, second edition, Wheeler Publishers, Allahabad, 1992.
16. S. S. Shastry, “Introductory Methods of Numerical Analysis”, Prentice Hall of India,

New Delhi, 1994.

244

17. G. Thiagarajan and V. Aravamuthan, “Parallelization Strategies for Element-By-
Element Preconditioned Conjugate Gradient Solver Using High-Performance
FORTRAN for Unstructured Finite-Element Applications on Linux Clusters”, ASCE
Journal of Computing In Civil Engineering, Vol. 16, No. 1, 2002, pp 1-10.

18. A. I. Khan and B. H. V. Topping, “Parallel Finite Element Analysis Using Jacobi-
Conditioned Conjugate Gradient Algorithm”, Advances in Engineering Software,
Vol. 25, No. 3, 1996, pp 309-319.

19. G. Mahinthakumar and F. Saied, “A Hybrid Mpi-OpenMP Implementation of an
Implicit Finite-Element Code on Parallel Architectures”, International Journal of High
Performance Computing Applications, Vol. 16, No. 4, 2002, pp 371-393.

20. K. Danielson and R. Namburu, “ Nonlinear Dynamic Finite Element Analysis on
Parallel Computers using FORTRAN90 an d MPI”, Advances in Engineering
Software, Vol. 29, No. 3, 1998, pp 179-186.

21. J. Sziveri and B. H. V. Topping, “Transient Dynamic Nonlinear Analysis Using
MIMD Computer Architectures”, Journal of Computing in Civil Engineering, Vol. 14,
No. 2,2000, pp 79-90.

22. R. B. King and V. Sonnad, “Implementation of an Element-by-Element Solution
Algorithm for The Finite Element Method on A Coarse-Grained Parallel Computer”,
Computer Methods in Applied Mechanics and Engineering, Vol. 65, No. 1, 1987, pp
47-59.

23. E. Chu, A. George and D. Quesnel, “Parallel Matrix Inversion on A Subcube-Grid”,
Parallel Computing, Vol. 19, No. 3,1993, pp 243-256.

24. T. Kant, M. S. Shah and K. S. Ramesh, “Composite Materials Analysis of Parallel
Supercomputer”, Proceedings of Second Indian Transputers User’s Group, Hydrabad,

1994, pp 85-94.
25. T. Kant and M. S. Shah, “Finite Element Analysis of Structures of Composite

Materials on Parallel Supercomputer”, Proceeding of High Performance Computing,
New Delhi, 1995, pp 193-195.

26. T. Kant and M. S. Shah, “Finite Element Analysis of Fiber-Reinforced Polymer Shells
Using Higher Order Shear Deformation Theories on Parallel Distributed Memory
Machines”, International Journal of Computer Applications in Technology, Vol. 31,
No. 3, 1998, pp 206-210.

245

27. K. S. Ramesh and M. S. Shah, “Implementation of Parallel Preconditioned Conjugate
Gradient Solver for FEA on PARAM”, Proceedings of Scientific Computing and
Mathematical Modeling, Bangalore, 1993, pp 49-56.

28. T. Kant, M. S. Shah and B. B. Mahanta, “Thermo-Mechanical Analysis of Fiber
Reinforced Composite Plates and Shells on Supercomputers”, Proceedings of
Structural Engineering Convention, UT, Kharagpur, 2003, pp 501-510.

29. M. Shah and K. S. Ramesh, “Fracture Analysis on Parallel Supercomputer”,
Proceedings of Conference of Indian Transputer Users Group, Pune, 19993, pp 204-
207.

30. A. R. M. Rao, “MPI-Based Parallel Finite Element Approaches for Implicit Nonlinear
Dynamic Analysis Employing Sparse PCG Solvers”, Advances in Engineering
Software, Vol. 36, No. 3, 2005, pp 181-198.

31. A. R. M. Rao, T. V. S. R. A. Rao and B. Dattaguru, “A New Parallel Overlapped
Domain Decomposition Method for Nonlinear Dynamic Finite Element Analysis”,
Computers and Structures, Vol. 81, No. 26,2003, pp 2441-2454.

32. N. Krishna Raju, “Prestressed Concrete”, second edition, Tata McGraw-Hill, New
Delhi, 1995.

33. T. Y. Lin and N. H. Bums, “Design of Prestressed Concrete Structures”, second
edition, John Wiley & Sons, New York, 1982.

34. Y. Guyon, “ Contraintes dans les pieces prismatiques soumises a des forces appliques
sur leurs bases, an voisinage de ces bases”, International Association for Bridge and
Structural Engineering, Vol. 2,1951, pp 165-226.

35. P. K. Som and K. Ghosh, “Anchorage Zone Stresses in Prestressed Concrete Beams”,
ASCE, Journal of Structural Division, Vol. 90,1964, pp 49-62.

36. K. T. S. Iyengar, “Two Dimensional Theories of Anchorage Zone Stresses in Post-
Tensioned Prestressed Beams”, Journal of American Concrete Institute, Vol. 59, No.
10,1962, pp 1443-1465.

37. K. T. S. Iyengar and M. K. Prabhakara, “Anchor Zone Stresses in Prestressed
Concrete Beams”, ASCE, Journal of Structural Division, Vol. 97, No. 3, 1971, pp
807-824.

38. S. P. Christodoulides, “Two Dimensional Investigation of End - Anchorages of Post-
Tensioned Concrete Beams”, The Structural Engineer, Vol. 33, No. 4, 1955, pp 120-
133.

246

39. S. P. Christodoulides, “The Distribution of Stresses Around The End-Anchorages of
Prestressed Concrete Beams. Comparison of The Results Obtained Photoelastically,
with Strain-Gauge Measurements and Theoretical Solutions”, International
Association for Bridge and Structural Engineering, Vol. 16, 1956, pp 50-70.

40. J. Zielinski and R. E. Rowe, “An Investigation of The Stress Distribution in The
Anchorage Zones of Post-Tensioned Concrete Members”, Research Report No. 9,
Cement and Concrete Association, London, 1960.

41. IS : 1343 - 1980 : Indian Standard Code of Practice for Prestressed Concrete. 1st Rev.
Bureau of Indian Standards, New Delhi, 1981.

42. A. L. Yettram and K. Robbins, “Anchorage Zone Stressed in Axially Post-Tensioned
Members of Uniform Rectangular Section”, Magazine of Concrete Research, Vol. 21,
No. 67,1969, pp 103-112.

43. Byung-Wan Jo, Yunn-Ju Byun and Ghi-Ho Tae, “Structural Behavior of Cable
Anchorage Zone in Prestressed Concrete Cable-Stayed Bridge”, Canadian Journal of
Civil Engineering, Vol. 29, No.l, 2002, pp 171-180.

44. A. A. Ezra and R. J. Fay, “An Assessment of Energy Absorbing Devices for
Prospective use in Aircraft Impact Situations”, Proceedings of International
Symposium Dynamic Response of Structures, Stanford University, California, 1971,
pp 225-246.

45. W. Johnson and S. R. Reid, “Metallic Energy Dissipating Systems”, ASCE Applied
Mechanics Reviews, Vol. 31, No. 3,1978, pp 277-288.

46. P. K. Gupta, “An Investigation into Large Deformation Behaviour of Metallic Tubes”,
Ph.D. Thesis, Indian Institute of Technology, Delhi, INDIA, 2000.

47. P. K. Gupta, N. K. Gupta and G. S. Sekhon, “A Study of Large Deformation
Behaviour of Square and Rectangular Metallic Tubes Subjected to Lateral
Compression”, Proceedings of International Conference on Advances in Civil
Engineering, ACE2002, Indian Institute of Technology, Kharagpur, INDIA, 2002, pp
1201-1210.

48. P. K. Gupta, N. K. Gupta and G. S. Sekhon, “ Study of Lateral compression of Square
and Rectangular Metallic Tubes”, Proceedings of 8th International Symposium on

Plasticity and Impact mechanics, IMPLAST2003, Indian Institute of Technology,
Delhi, INDIA, 2003, pp 519-527.

/

247

49. N. K. Gupta, G. S. Sekhon and P. K. Gupta, “A Study of Lateral Collapse of Square
and Rectangular Metallic Tubes”, Thin-Walled Structures, Vol. 39, No. 9, 2005, pp
895-922.

50. N. K. Gupta, G. S. Sekhon and P. K. Gupta, “Study of Lateral Compression of Round
Metallic Tubes”, Thin-Walled Structures, Vol. 43, No. 6,2005, pp 895-922.

51. N. K. Gupta, P. K. Gupta and G.S. Sekhon, “Investigation of Lateral Compression of
Metallic Tubes”, Proceedings of 44th Indian Society for Theoretical and Applied
Mechanics Congress, Sivakashi, INDIA, pp 121-128.

52. P. K. Gupta, N. K. Gupta and G. S. Sekhon, “Experimental and Computational
Investigation of Lateral Compression of Round Metallic Tubes”, Proceedings of
International Conference on Mathematical Modeling of Non-Linear Systems, Indian
Institute of Technology, Kharagpur, INDIA, 2000, pp 251-258.

53. N. K. Gupta, G. S. Sekhon and P. K. Gupta, “A Study of Fold Formation in
Axisymmetric Axial Collapse of Round Tubes”, International Journal of Impact
Engineering, Vol. 27, No. 1,2002, pp 87-117.

54. P. K. Gupta, N. K. Gupta and G. S. Sekhon, “A Study of Axial Collapse of Round
Tubes” Proceedings of 11th Indian Society of Mechanical Engineers, Indian Institute
of Technology, Delhi, INDIA, 1999, pp 416-424.

55. G. S. Sekhon, N. K. Gupta and P. K. Gupta, “Study of Axi-symmetric Multiple
Barrelling Mode of Collapse of A Round Tube Subjected to Axial Compression”,
Proceedings of 12th Indian Society of Mechanical Engineers Conference, Crescent
Engineering College, Chennai, INDIA, 2001, pp 208-216.

56. N. K. Gupta and Nagesh, “Experimental and Numerical Studies of The Collapse of
Thin Tubes Under Axial Compression”, Latin American Journal of Solids and
Structures, Vol. 1, 2004, pp 233-260.

57. G. S. Sekhon, N. K. Gupta and P. K. Gupta, “An Analysis of External Inversion of
Round Tubes”, Journal of Material Processing Technology, Vol. 133, No. 3, 2003, pp
243-256.

58. P. K. Gupta, G. S. Sekhon and N. K. Gupta, “Finite Element Simulation of External
Inversion of A Round Tube”, Proceedings of International Conference on Advances
in Civil Engineering, ACE2002, Indian Institute of Technology, Kharagpur, INDIA,
2002, pp 1290-1298.

248

59. Z. Sun and H. Yang, “Development of Finite Element Simulation System for The
Tube Axial Compressive Precision Forming Process”, International Journal of
Machine Tool and Manufacture, Vol. 42, 2002, pp 15-20.

60. S. R. Reid, “Plastic Deformation Mechanisms In Axially Compressed Metal Tubes
Used As Impact Energy Absorbers” International Journal of Mechanical Sciences,
Vol. 35, No. 12, 1993, pp 1035-1052.

61. S. R. Guillow, G. Lu and R. H. Grzebieta, “Quasi-static Axial Compression of Thin-
Walled Circular Aluminium Tubes”, International Journal of Mechanical Sciences,
Vol. 43, No. 9, 2001, pp 2103-2123.

62. S. J. Hosseinipour and G. H. Daneshi, “Energy Absorption and Mean Crushing Load
of Thin-Walled Grooved Tubes Under Axial Compression”, Journal Thin Walled
Structures, Vol. 41,2003, pp 31-46.

63. S. Kobayashi, S. I. Oh, and T. Altan, “Metal forming and The finite-element method,”
first edition, Oxford University Press, New York, 1989.

64. C. H. Lee and S. Kobayashi, “New Solutions to Rigid-Plastic Deformation Problems
Using Matrix Method”, ASME Journal of Engineering for Industry, Vol. 95, No. 2,
1973, pp 865-873.

65. C. H. Lee and S. Kobayashi, “Analyses of Axisymmetric Upsetting and Plane-Strain
Side-Pressing of Solid Cylinders by The Finite Element Method”, ASME Journal of
Engineering for Industry, Vol. 93, No. 2,1971, pp 445-454.

66. S. Kobayashi, “Deformation Characteristics and Ductile Fracture of 1040 Steel In
Simple Upsetting of Solid Cylinders and Rings”, ASME Journal of Engineering for
Industry, Vol. 92, No. 2,1970, pp 391-399.

67. S. B. Petersen, P. A. F. Martins and N. Bay, “Friction in Bulk Metal Forming: A
General Friction Model Vs. The Law of Constant Friction” Journal of Materials
Processing Technology, Vol. 66,1997 pp 186-194.

68. N. K. Gupta and C. B. Shah, “Barreling of A Short Cylinder In Compression”,
International Journal of Mechanical Tool Design Research, Vol. 26, No. 2, 1986, pp
137-146.

69. D. Singh, “Automatic Mesh Generation, Error Estimation and Adaptivity in Finite
Element Analysis of Metal Forming Process”, Ph. D. Thesis, Indian Institute of
Technology, Delhi, India, 1998.

70. , Dec. 2005.http://www.transvalor.com
71. , Dec. 2005.http://www.ansys.com

249

72. S. Y. Kim and Y. T. Im, “Parallel Processing of 3D Rigid Viscoplastic Finite Element
Analysis using Domain Decomposition and Modified Block Jacobi Preconditioned
Technique”, Journal of Materials Processing Technology, Vol. 134, 2003, pp 254-
264.

73. J. S. Cheon, S. Y. Kim and Y. T. Im, “Application of Parallel Processing in Three-
Dimensional Bulk Forming Finite Element Analysis”, Journal of Materials Processing
Technology, Vol. 152, 2004, pp 106-115.

74. T. Sterling, “An Introduction to PC Clusters For Higher Performance Computing”,
The International Journal of High Performance Computing Applications, Vol. 15. No.
2,2001, pp 92-101.

75. Chun-Ho Liu, Chat-Ming Woo and Dennis Y. C. Leung, “Performance Analysis of
Linux PC Cluster Using A Direct Numerical Simulation of Fluid Turbulence Code”,
The International Journal of High Performance Computing Applications, Vol. 19, No.
4, 2005, pp 265-374.

76. J. S. Cheon, S. Y. Kim and Y. T. Im, “Three-Dimensional Bulk Metal Forming
Simulations Under A PC Cluster Environment”, Journal of Materials Processing
Technology, Vol. 140,2003, pp 36-42.

77. K. Washizu, “Variational Methods In Elasticity and Plasticity”, Pergamon Press,
Ozford, 1968.

78. C. C. Chen, S. I. Oh and S. Kobayashi, “Ductile Fracture In Axisymmetric Extrusion
and Drawing, Part 1: Deformation Mechanics of Extrusion and Drawing”, ASME
Journal of Engineering for Industry, Vol. 101, No. 2,1979, pp 23-35.

79. K. J. Bathe and E. L. Wilson, “Numerical Methods in Finite-Element Analysis”,
Prentice-Hall, New Jersey, 1976.

80. S. I. Oh, “Finite Element Analysis of Metal Forming Problems with Arbitrarily
Shaped Dies”, International Journal of Mechanical Sciences, Vol. 24, No. 8, 1982, pp
479-493.

81. J. F. Lyness, D. R. J. Owen and O. C. Zienkiewicz, “Finite Element Analysis of
Steady Flow of Non-Newtonian Fluid Through Parallel Sided Conduits”, Proceedings
of International Symposium on Finite Element Method in Flow Problems, Swansea,
pp 489-501.

82. C. C. Chen and S. Kobayashi, “Rigid-Plastic Finite Element Method Analysis of Ring
Compression”, ASME Journal of Application of Numerical Method to Forming
Process. Vol. 28, 1978, pp 163-172.

250

LIST OF PUBLICATIONS

DETAILS OF PUBLISHED PAPERS

I. P. K. Gupta and R. N. Khapre, “An Efficient Parallel Solver Using Matrix Inversion Method
For Linear and Non-Linear Finite Element Analysis”, Journal of Institution of Engineers,
INDIA, 2005.

1. R. N. Khapre and P. K. Gupta, “Simulation of Lateral Compression of Rectangular Tubes on
Supercomputer PARAM 10000”, National Conference on Advances In Mechanical
Engineering, AIME, 2006.

k P. K. Gupta and R. N. Khapre, “An Application of Cluster Computing for Finite Element
Analysis”, International Conference on Structural Engineering Convention, IISc Bangalore,
2005.

1. P. K. Gupta, R. N. Khapre and A. A. Sinhal, “Analysis of Spalling Zone in Prestressed Post-
Tensioned Concrete Beam using Supercomputer PARAM 10000”, National Conference on
Structural Engineering and Mechanics, BITS, Pilani, 2004.

5. P. K. Gupta, J. P. Mishra, R. N. Khapre, and P. K. Jain, “Comparison of C and FORTRAN 77
Languages Based on Their Performance On PARAM 10000”, National Conference on
Distributed Computing, NITTE, Karkala, 2004.

5. P. K. Gupta and R. N. Khapre, “Finite Element Analysis of Anchorage Zone Using
Supercomputer PARAM 10000”, International Conference on Structural Engineering
Conventions, IIT, Kharagpur, 2003.

'. P. K. Gupta and R. N. Khapre, “Comparative Study of Solution Methods of System of Linear
Equations On Supercomputers”, International Conference on Structural Engineering
Conventions, IIT, Kharagpur, 2003.

!. P. K. Gupta and R. N. Khapre, “Study of Anchorage Zone in Post-Tensioned Concrete Beams
Using Finite Element Method”, National Conference on Advances in Civil Engineering
Perspective of Developing Countries, HBTI, Kanpur, 2003.

251

DETAILS OF ACCEPTED PAPERS

1. R. N. Khapre and P. K. Gupta, “Simulation of Axial Compression of Round Metallic Tube on
Supercomputer PARAM 10000”, 14-National Seminar on Aerospace Structures, NASAS,
VNIT, Nagpur, 2006

DETAILS OF COMMUNICATED PAPERS

1. P. K. Gupta and R. N. Khapre, “Parallel Solvers for Solution of System of Linear Equations”,
International Journal of High Speed Computing, 2005.

2. P. K. Gupta and R. N. Khapre, “Finite Element Analysis of Metal Forming Problems Using
Parallel Computing Technique”, International Journal of Computational Methods in
Engineering Science and Mechanics, 2005.

3. R. N. Khapre and P. K. Gupta, “Finite Element Analysis of Anchorage Zone Using
Supercomputer”, Journal of Institution of Engineers INDIA, 2005.

4. P. K. Gupta and R. N. Khapre, “Application of Cluster Computing In Finite Element
Programming to Study The Large Deformation Problems”, International Journal of
Computational Methods, 2005.

5. R. N. Khapre and P. K. Gupta, “Simulation of Lateral Compression of Round Metallic Tube
Between Two Concentrated Loads on Supercomputer PARAM 10000”, 10th East Asia-Pacific
Conference on Structural Engineering and Construction, Asian Institute of Technology,
Bangkok, 2006.

252

j

BIOGRAPHY

P. K Gupta at present is Assistant Professor in Civil Engineering Group at Birla Institute
of Technology and Science, Pilani (Raj.), INDIA. He has completed his Ph.D. from IIT,
Delhi on large deformation behavior of metallic tubes. He has been actively involved in
teaching, research, and consultancy works during last 8 years. He has published a number
of papers in International, National Journals and Conferences.

Rajendra N. Khapre at present is Research Scholar in Civil Engineering Group at Birla
Institute of Technology and Science, Pilani (Raj.), India. He has completed his masters in
Civil Engineering from BITS, Pilani. He is pursuing Ph.D. from BITS, Pilani on parallel
computing in finite element analysis. He has been actively involved in teaching and
research work during last 4 years. He has published several papers in National Journals
and Conferences.

253

