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ABSTRACT

The thesis presents an implementation of parallel computing technique in linear and non

linear finite clement codes, For proper implementation of parallel computing technique in 

finite element codes, computational time expenditure in different steps of finite element 

solution procedure is presented. It was found that major portion of computational time in 

computational finite element analysis is consumed in getting solution of generated system 

of linear equations. Hence, to reduce this computational time, parallel solvers are 

developed and employed.

Three parallel solvers using Gauss-Seidel Method, Gauss Elimination Method and Matrix 

Inversion Method are developed in C programming language. Using these developed 

solvers, several data sets taken from finite element problems, were analyzed on 

supercomputer PARAM 10000. It was observed that the variation of Total time measured 

in terms of Real time was not consistent and hence a timer was developed to measure 

computational time in terms of User time for a particular code segment. With the help of 

computational time results (measured in terms of Real time and User time), comparison 

between these developed solvers is carried out. Based on the comparison of performance 

shown of these solvers, it was found that Matrix Inversion Method parallel solver is better 

as compared to other the solvers.

Thereafter Matrix Inversion Method parallel solver is developed using FORTRAN77 

programming language. After comparing the performance of solvers developed in C and 

FORTRAN77 languages, it was found that solver developed in C language is faster than 

the solver developed in FORTRAN77 language. Blocking and Non-blocking 

communication mechanisms were used in this solver and it was found that both these 

mechanisms are equally effective. After this, the solver was modified to speedy solution 

of system of linear equations especially generated in finite element analysis. After 

comparing the modified solver with original solver, it was found that modified solver is 

considerably faster than the original solver and hence it was adopted in finite element 

analysis.
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Incorporating the Modified Matrix Inversion Method parallel solver, a code for linear 

elastic finite element analysis is developed. The code has three noded constant strain 

triangular elements to discretize the problem domain. It is capable of solving 

axisymmetric, plane strain and plane stress problems on supercomputer PARAM 10000. 

With the help of this code, analysis of anchorage zone in prestressed post-tensioned 

concrete beam was carried out. This analysis was carried out into two parts. In the first 

part, stress variation in anchorage zone was studied for concentric prestressing loading 

condition. The effect of Poisson's ratio and load area ratio on stress variation is studied 

and compared with the available literature. It was found that stress variation obtained 

from present investigation match well with referred literature. In the second part, effect of 

eccentricity of prestressing force on anchorage zone stresses is studied. The effect of 

eccentricity on bursting tensile force is also studied and it was found that bursting tensile 

force reduces with increase in eccentricity of prestressing force. In both the parts, it was 

found that spalling zone exists near free comers of the beam. An expression for 

computing magnitude of bursting tensile force has also been developed with 

incorporating the parameter Poisson’s ratio. The analysis was carried out on 

supercomputer PARAM 10000 using its multiple processors to save the computational 

time involved in the analysis.

Second finite element code (FEMLD) was developed based on the flow formulation of 

the finite element analysis. It is having two types of elements namely three noded 

constant strain triangular element and four noded rectangular elements to discretize the 

problem domain. This code was developed to analyze axisymmetric as well as plane 

strain large deformation problems on supercomputer PARAM 10000. One problem from 

each category was analyzed and its results were presented in detail by studying contours 

of various strain-rates, stresses, and nodal velocities. In order to validate the developed 

code, similar problems were also analyzed using commercial softwares FORGE2 and 

ANSYS. After comparing various results obtained from developed code with the results 

obtained from commercial software, it was found that the results match fairly well. The 

performance of developed code on supercomputer PARAM 10000 was also measured and 

it was found that the developed code performed well. Capability of the developed solver 

for its implementation in three-dimensional problems was also tested by solving bigger 

data sizes. It was found that the developed code performed better for bigger size 

problems, which proves its suitability in solving three-dimensional problems also.
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The developed eode FEMLD was further improved to simulate compression process of 

various shapes between two Hat rigid dies. Using this modified code, four problems 

namely axial compression of solid metallic cylinder, axial compression of hollow metallic 

tube, lateral compression of rectangular metallic tube and lateral compression of round 

tube between concentrated loads, were simulated. These four problems were also 

analyzed using commercial software FORGE2 to validate the developed code. These 

problems were analyzed using multiple processors of supercomputer PARAM 10000, so 

various components of computational time were measured. After computing the 

performance of the developed code, it was found that the developed code performed well.

In order to propose an economical alternative to supercomputer, two Clusters were 

developed on Windows NT operating system using Local Area Network. The first Cluster 

consisted of eight PC’s having similar configurations connected through Switch whereas 

second Cluster consisted of eight PC’s having different configurations connected through 

HUB. On these Clusters, four earlier developed solvers were redeveloped and tested. 

After comparing their performance on Windows NT Cluster having eight PC’s with 

different configurations, it was found that the Matrix Inversion Method parallel solver 

gave maximum Speedup whereas Modified Matrix Inversion Method parallel solver 

required minimum computational time. When these results were compared with the 

results obtained using supercomputer PARAM 10000, it was found that developed solvers 

performed better on supercomputer PARAM 10000 as compared to the developed 

Cluster. Finite element codes for linear and non-linear finite element analysis were 

developed on these Clusters and tested by solving one problem from each category. It was 

found that computational time reduces with increase in number of computers, but the 

observed reduction is very less as compared to the reduction observed in case of 

supercomputer PARAM 10000.

KEYWORDS

Parallel Computing, Finite Element Analysis, Parallel Solver, Anchorage Zone, Large 

Deformation, Cluster Computing.
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CHAPTER 1

INTRODUCTION



1.1 GENERAL

In past few years, advancement in the field of computer technology resulted in faster and 

inexpensive computing. Now it is possible to analyze time taking problems within no 

time on conventional computers. But still in few fields where the computations arc so 

excessive that the conventional computer sometimes takes days to complete the assigned 

task. With the help of parallel computing technique, now it is possible to solve such 

problems within reduced time frame on multiple processor computers or supercomputers. 

Parallel computing technique has shown a great success in the areas of computational 

atmospheric sciences, computational chemistry, computational fluid dynamics, 

evolutionary computing, computational structural mechanics, bioinformatics activities, 

seismic data processing, and many more. In this technique, the total computational job is 

distributed among several processors. Every processor operates simultaneously that 

results in saving in computational time without interfering the accuracy of the required 

results.

1.2 NEED FOR PARALLEL COMPUTING IN FINITE ELEMENT ANALYSIS

In past few decades, Finite Element Method (FEM) has grownup and emerged as one of 

the most efficient method for structural analysis. This method is very systematic to 

implement in form of computer code and therefore several commercial softwares are now 

available based on this approximate approach. Most of these softwares are written for a 

Personal Computer (PC) having single processor. In the finite element method, finer mesh 

generally gives relatively more accurate and detailed solution but as the mesh becomes 

finer, the problem size increases. This results in tremendous increase in number of 

computations, correspondingly computational time also increases. For non-linear finite 

element analysis, the scenario is even worse as it involves iterative solution procedure. 

There are few research papers available that show the implementation of parallel 

computing technique for analyzing such problems using finite element method on 

supercomputers. These papers discuss various approaches used for implementation of 

parallel computing technique on different types of supercomputers. These papers also 

discuss different techniques of reduction in computational time in Finite Element 

Analysis (FEA) by incorporating parallelism.



13 NEED FOR CLUSTER COMPUTING

Supercomputers are expensive as compared to the conventional computers. Therefore 

Cluster computing could be used as economical alternative to supercomputers. Cluster 

computing may be defined as group computing. Here, a group of conventional computers 

is formed, which is called as a Cluster. The computational task is distributed among these 

computers using parallel computing technique. This Cluster acts as a supercomputer and 

hence the distributed-computations save computational time. Very few research papers 

are available that show finite element analysis using Cluster.

1.4 OBJECTIVES

The main objective of the present study is to implement parallel computing technique in 

finite element applications. Although the area of parallel computing is old but its 

application in finite element analysis is not much reported, especially for non-linear finite 

element analysis. There are number of commercial softwares available that allow us to 

carry out structural analysis using finite element method but almost all these softwares 

operate on conventional computers. Therefore it is required to develop finite element 

analysis codes on supercomputers to obtain the solution of structural analysis problems in 

relatively lesser time. Cluster computing is also one of the emerging areas of 

computational analysis. Cluster can easily replace supercomputer because of its 

simplified implementation and lower cost. For effective implementation of parallel 

computing technique in finite element analysis, present research work is subdivided into 

following tasks.

1. Study of parallel computing technique.

2. Development of parallel solver to solve system of linear equations using parallel 

computing technique.

3- Implementation of the developed parallel solver in linear elastic finite element 

computer code to produce parallelized finite element software for linear elastic finite 

element analysis on platform of supercomputer PARAM 10000.

4. Development of a generalized finite element computer code to simulate non-linear 

plastic large deformation process on supercomputer PARAM 10000.



5. Development of a finite element code on supercomputer PARAM 10000 for 

simulation of compression process of metallic tubes of different cross sections 

between two flat rigid dies.

6. Development of Windows NT Cluster and implementation of parallelized linear 

elastic and non-linear plastic finite element computer codes on this developed Cluster.

1.5 SCOPE OF PRESENT WORK

Present work covers implementation of parallel computing technique for analyzing linear 

elastic as well as non-linear plastic problems on supercomputer PARAM 10000 and 

Windows NT Cluster in development of finite element computer codes. The emphasis is 

mainly given to non-linear finite element analysis categorized under the area of metal 

forming. The outcomes of the present research work are the two computer programs those 

are capable of analyzing elastic and plastic deformation in structural mechanics. With the 

use of these two programs one can analyze elastic and plastic two-dimensional 

axisymmetric and plane strain problems on supercomputer PARAM 10000 as well as 

Windows NT Cluster. The specialty of these programs is that they are developed using 

parallel computing technique, therefore one can analyze problems within reduced time 

frame.

1.6 REPORT ORGANIZATION

In the first chapter, introduction of work is presented. In the second chapter of this report, 

a brief discussion on referred literature is presented. It mainly includes the basics of 

parallel computing technique and hardware details of the supercomputer PARAM 10000. 

It also describes various parallel solvers developed by several researchers for solving 

system of linear equations. Further this chapter discusses anchorage zone in prestressed 

post tensioned concrete beam and presents extracts of few research papers presenting 

analysis of anchorage zone in prestressed post-tensioned concrete beam. Details of some 

commercial softwares and their limitations, which are also used in finite element analysis 

of tubular cross sections as energy absorption purpose, are also described. It also covers 

survey of available literature on use of metallic tubes as energy absorbing devices and 

their analytical, experimental and computational studies carried out by previous 

researchers.

3



In the third chapter, development of parallel solvers for solving system of linear equations 

is covered. Three parallel algorithms are developed using Gauss Seidel Method, Gauss 

Elimination Method and Matrix Inversion Method. Three solvers are developed on 

supercomputer PARAM 10000 based on these algorithms and their comparison is also 

presented. Based on the comparison, suitability of Matrix Inversion Method parallel 

solver was highlighted. Hence how it is further modified and redeveloped to analyze 

system of linear equations especially for finite element analysis is discussed.

Chapter four presents parallel implementation of finite element analysis code 

development for analysis of small deformation problems. It includes implementation of 

Matrix Inversion Method parallel solver for linear elastic finite element analysis. Initially, 

the basic formulation of linear elastic finite element analysis is presented in brief. Based 

on this formulation, parallelized code for two-dimensional plane stress, plane strain and 

axisymmetric linear elastic finite element analysis is developed and presented. A case 

study problem of anchorage zone in prestressed post-tensioned concrete beam is analyzed 

using the developed software. A study of effects of parameters like Poisson’s ratio and 

eccentricity of prestressing forces on anchorage zone stresses is presented. An expression 

to compute the magnitude of bursting tensile force in anchorage zone is developed and 

compared with the expression available in literature and Indian Standard Code IS: 1343- 

1980.

Fifth chapter present the formulation adopted for the code development along with the 

two case study problems. Flow formulation in finite element analysis to solve metal 

forming problems is explained in the fifth chapter. Based on this formulation, a 

generalized computer program FEMLD is developed using parallel computing technique. 

Two case study problems are presented in detail based on the output obtained from the 

developed software. The same case study problems are analyzed using commercial 

softwares FORGE2 and ANSYS. To validate the results of developed software, various 

results in form of contours of velocity, strain-rate components, stress components, 
effective strain-rate, effective stress and effective strain are plotted and compared with the 

corresponding results obtained from commercial softwares. The performance of the 

developed code is also tested on supercomputer PARAM 10000 and described.

4



hi chapter six. simulation of metallic tubes as energy absorbing element on 

supercomputer PARAM 10000 is presented. To analyze such problems using finite 

element method, code FEMLD4 is modified to deal with contact problems. Mainly two 

contact conditions are incorporated in code FEMLD4 by simulating two flat die surfaces. 

With the help of this modified code, four problems categorized under axisymmetric 

problems and plane strain problems are analyzed. These problems are axisymmetric 

compression of solid cylinder, lateral compression of rectangular metallic tubes, fold 

formation in axisymmetric compression of hollow round metallic tubes and lateral 

compression of round tube between two concentrated loads. The obtained results of these 

four problems are described in detail and also compared with the corresponding results 

obtained by using commercial software FOREGE2. Reduction in computational time with 

increasing number of processors of supercomputer PARAM 10000 was obtained. The 

performance of modified FEMLD code was also reported.

In the seventh chapter. Cluster computing technique is described. Two Windows NT 

Clusters are developed and presented in this chapter. The parallel solvers developed on 

the platform of supercomputer PARAM 10000 (described in chapter 3) are redeveloped 

and implemented on these developed Windows NT Clusters. The performance of these 

parallel solvers on Windows NT Cluster is measured and described in detail in this 

chapter. Based on the computational time results and the performance of the parallel 

solvers, comparison of parallel solvers are carried out and discussed in detail. Two 

computer codes for analysis of small and large deformation problems, which were 

developed earlier for supercomputer PARAM 10000, were redeveloped on these Clusters. 

One sample problem in each category was analyzed and variation in computational time 

components was obtained.

In the last chapter, summery of the present research work is presented. The advantages, 

limitations and the future scope of the present work are also described in this chapter.



In the third chapter, development of parallel solvers for solving system of linear equations 

is covered. Three parallel algorithms arc developed using Gauss Seidel Method, Gauss 

Elimination Method and Matrix Inversion Method. Three solvers are developed on 

supercomputer PARAM 10000 based on these algorithms and their comparison is also 

presented. Based on the comparison, suitability of Matrix Inversion Method parallel 

solver was highlighted. Hence how it is further modified and redeveloped to analyze 

system of linear equations especially for finite element analysis is discussed.

Chapter four presents parallel implementation of finite element analysis code 

development for analysis of small deformation problems. It includes implementation of 

Matrix Inversion Method parallel solver for linear elastic finite element analysis. Initially, 

the basic formulation of linear elastic finite element analysis is presented in brief. Based 

on this formulation, parallelized code for two-dimensional plane stress, plane strain and 

axisymmetric linear elastic finite element analysis is developed and presented. A case 

study problem of anchorage zone in prestressed post-tensioned concrete beam is analyzed 

using the developed software. A study of effects of parameters like Poisson’s ratio and 

eccentricity of prestressing forces on anchorage zone stresses is presented. An expression 

to compute the magnitude of bursting tensile force in anchorage zone is developed and 

compared with the expression available in literature and Indian Standard Code IS: 1343- 

1980.

Fifth chapter present the formulation adopted for the code development along with the 

two case study problems. Flow formulation in finite element analysis to solve metal 

forming problems is explained in the fifth chapter. Based on this formulation, a 

generalized computer program FEMLD is developed using parallel computing technique. 

Two case study problems are presented in detail based on the output obtained from the 

developed software. The same case study problems are analyzed using commercial 

softwares FORGE2 and ANSYS. To validate the results of developed software, various 

results in form of contours of velocity, strain-rate components, stress components, 

effective strain-rate, effective stress and effective strain are plotted and compared with the 

corresponding results obtained from commercial softwares. The performance of the 

developed code is also tested on supercomputer PARAM 10000 and described.
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CHAPTER 2

LITERATURE REVIEW



2.1 INTRODUCTION

This chapter covers review of the literature referred in the attempted study. Since present 

work deals with the application of parallel computing techniques in linear as well as non

linear finite element analysis, so literature review presented in different sections 

highlights the different studies covered. In the first part, introduction to parallel 

computing technique is covered. The present work is carried out on supercomputer 

PARAM 10000, hence its hardware is also discussed in detail. It is followed by the 

review of few research papers covering the development of parallel solvers for finite 

element analysis. Further, review of research papers showing analysis of anchorage zone 

in prestressed post-tensioned concrete beam is also presented since it is considered as a 

case study problem in linear elastic finite element application. For non-linear finite 

element application, few problems related to analysis of metallic tubes as energy 

absorbing devices are considered, hence related literature is also discussed in this chapter.

2.2 INTRODUCTION TO PARALLEL COMPUTING

Solving many scientific problems requires high speed computing, which is difficult to 

achieve by single processor computer. Hence parallel computing is introduced to achieve 

high speed in solving various scientific problems [1, 2]. Parallel computing mainly 

require computer having multiple processors called supercomputer. The processors are 

organized in different patterns namely mesh networks, binary tree networks, hypertree 

networks, pyramid networks, butterfly networks, hypercube networks, cube-connected 

cycles networks, shuffle-exchange networks and de Bruijn networks. Parallel computer 

architectures are classified as per Flynn’s taxonomy scheme, which is based on duel 

concepts of instruction stream and data stream. The four classes of parallel computers 

based on multiplicity of data and instruction streams are as follows

• Single Instruction stream, Single Data stream (SISD)

• Single Instruction stream, Multiple Data stream (SIMD)

• Multiple Instruction stream, Single Data stream (MISD)

• Multiple Instruction stream, Multiple Data stream (MIMD)
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rhe computer programs executable on multiple processors computer arc based on Parallel 

Random Access Machine (PRAM) algorithms. PRAM consists of a control unit, global 

memory and a set of processors with its own memory. PRAM has following models.

• EREW (Exclusive Read Exclusive Write)

• CREW (Concurrent Read Exclusive Write)

• CRCW (Concurrent Read Concurrent Write)

With the help of Message Passing Interface (MPI) [3. 4] and programming languages like 

C [5], C++ [6], FORTRAN [7] and recently introduced Java, parallel programs are 

written. MPI provides wide range of inbuilt functions that enable user efficient data 

transfer among the processors. MPI also provides standard timer functions that are used in 

measurement of computational time for particular code segments. The performance of the 

parallel codes is measured by computing Speedup, Efficiency and MFLOPS.

2.3 PARAM 10000 ARCHITECTURE OVERVIEW

PARAM 10000 has a MIMD distributed memory machine architecture, developed by 

Center for Development of Advanced Computing (C-DAC) (see Fig. 2.1). The hardware 

configuration of supercomputer PARAM 10000 consists of following major components 

[8]-

PARAMNet

Compute Nodes

Fast Ethernet

File Server Node

Units for ensuring uninterrupted power supplyCooling system h

Fig. 2.1 Major hardware components of the PARAM 10000 system
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2.3.1 Nodes

Supercomputer PARAM 10000 has altogether four nodes out of which three nodes are 

categorized as compute nodes and the fourth one is categorized as a file server node. The 

roles and the configurations of these two categories of nodes are given below.

2.3.1.1 Compute Nodes

These nodes are mainly used for computation. Each of these nodes has the following 

configuration:

• Two UltraSparc II 64-bit RISC CPUs of 400 MHz each, with 2 MB external cache 

per CPU

• 512 MB main memory expandable to 2 GB

• Two Ultra SCSI HDD of 9.1 GB each

• One internal 32x CD-ROM drive

• One 1.44 MB floppy disk drive

• One PGx 32 graphics card

• Two 360 W hot swap power supplies

• One PARAMNet CCP2 Card

• One 10/100 Fast Ethernet Card

• Solaris 2.6 (upgradable to Solaris 7) with Server License (unlimited user license)

2.3.1.2 File Server Node

This node is used as the main storage server for all the programs and data of the users of 

the system. That is, it acts as a host to the compute nodes for the I/O requirements of the 

users. The file server node has the following configuration:

• Two UltraSparc II 64-bit RISC CPUs of 400 MHz each, with 2 MB external cache 

per CPU

• 1 GB main memory expandable to 2 GB

• Four Ultra SCSI HDD of 9.1 GB each



• One internal 32x CD-ROM drive

• One 1.44 MB floppy disk drive

• One PGx 32 graphics card

• One internal 4 mm 12/24 GB Tape Drive

• Two 360 W hot swap power supplies

• One PARAMNet CCP2 card

• One 10/100 Fast Eathemet card

• One 21 ” Color Monitor

• Solaris 2.6 (upgradable to Solaris 7) with Server License (unlimited user license)

2.3.2 Interconnection Networks

PARAM 10000 has the two interconnection networks namely PARAMNnet and Fast 

Ethernet.

2.3.2.1 PARAMNet

C-DAC’s PARAMNet is conceived as a high-speed switched network for Cluster 

computing. PARAMNet is based on the technology of packet communication and 

switching with PARAM 10000. The flexibility of PARAM architecture enables user to 

unbundle the communication network to form a geographically distributed high-speed 

LAN. PARAMNet LAN is centered around C-DAC’s PARAMNet Switch. This is an 8- 

port bi-directional switch with 4 links and aggregate throughput of 400 Mbps. This 

network is based on wormhole packet switch from INMOS and can be used as general 

purpose network, as well as high speed, low latency network using light weight protocols.

2.3.2.2 Fast Ethernet

Ethernet provides well-established solution for a high-speed reliable communication 

network to interconnect powerful nodes/workstations for building PARAM 10000. This 

100 Mbps full duplex network is mainly used as an administrative network. All the 

standard services such as NFS, NIS+, etc. are served over this network. This is a standby 

network.
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2.4 FINITE ELEMENT METHOD

Finite element method is one of the efficient tools for numeric solution of several 

engineering problems. In the past few decades this method has developed enough and 

now various complex problems can be easily analyzed using finite element method [9- 

11]. In finite element method, problem domain is discretized into simple geometric 

shapes called as elements. To achieve detailed and more accurate solution of the desired 

problem, more numbers of elements are normally preferred. It is quite natural that as the 

number of elements increases the problem size also increases. Hence this method is 

generally implemented in form of computer codes and they are widely used for solving 

complex problems. Literature [12] shows that some problems are so large that their 

solution on conventional computer becomes very time consuming. According to 

literature, major portion of the time in computational finite element analysis is consumed 

in the process of solving system of linear equations generated in finite element solution 

procedure. Hence parallel solvers are developed and employed in finite element codes.

2.5 PARALLEL SOLVERS

The main aim of using parallel solver is to trim down the computational time in the finite 

element analysis. The computational time in any computer code can be measured using 

timers [13]. Wadleigh and Crawford [14] discussed the computational time measurement 

using timers. Authors also discussed different types of timers. Depending on their 

properties, like accuracy, overheads, resets, etc., the suitability of these timers was also 

presented. Authors also discussed the different components of computational time (Real 

time, User time, CPU time, and System time). Authors also gave few examples 

explaining the factors those affect these components of computational time.

There are various methods available to solve system of linear equations [15, 16] but very 

few of them are used in development of parallel solvers. Thiagarajan and Aravamuthan 

[17] had discussed the implementation of High-performance FORTRAN on 32-node 

Pentium II 350 MHz Linux Clusters. Authors used two different parallelization strategies 

on preconditioned conjugate gradient solver for linear elastic finite element analysis. 

Authors discussed various components of computational time like CPU time. Real time, 

Communication and Synchronization time (C&S). Authors showed that, variation of Real 

10



time with increasing number of processors is not smooth. Authors found that initially 

Real time starts reducing with increase in number of processors, but after certain number 

of processors, the Real time starts increasing. The number of processors at which the 

measured Real time is minimum was called as optimal number of processors. Authors 

concluded that this optimal number of processors depends on the problem size. After 

comparing CPU and C&S time, authors concluded that there is even balanced in the time 

spent in CPU and C&S time at optimal number of processors. Authors also discussed the 

performance of developed code by measuring the Speedup based on CPU time and Real 

time. Authors found that the CPU time Speedup constantly increases and shows linear 

variation that keeps up with ideal Speedup, whereas the Real time Speedup increases 

curvilinearly. Authors also measured performance of their code by calculating the 

MFLOPS based on CPU time. Authors found that MFLOPS increases with increase in 

number of processors.

Khan and Topping [18] presented a modified parallel Jacobi-conditioned conjugate 

gradient method for solution of linear elastic finite element system of equations. Authors 

discussed and implemented element-by-element and diagonally conditioned approaches 

on distributed memory MIMD architectures. Authors analyzed two finite element 

domains discretized using constant strain triangular elements (CST) resulted in 934 and 

1294 degrees of freedom. Authors solved these problems over a pipeline of 14 transputers 

by changing the number of processors from 3 to 14 and the obtained time variation was 

presented. Authors also presented results of various components of computational time 

like parallel computational time (tParr), average time spent by each processor for 

performing calculation (tcai), average time spent by each processor for performing 

communication (tcomm) and the ratio of tcai I tcomm- Authors found that tcaic reduces with 

increase in number of processors and tcomm increases with increase in number of 

processors. Authors also found that ratio tcaic / tcomm reduces with increase in number of 

processors. Authors also measured the Speedup and Efficiency of the code and found that 

Speedup increases and Efficiency decreases with the increase in number of processors. 

Authors also plotted a curve between ratio tcaic / tcomm and Efficiency and found that the 

ratio tcaic I tcomm increases with increase in Efficiency.

Mahinthakumar and Saicd [19] presented a hybrid MPI-OpenMP model of an implicit 

finite clement application using FORTRAN as programming language. Authors also
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compared this model with pure MPI, OpenMP model on four parallel architectures. 

Authors found that execution time reduces with increase in number of processors for all 

four parallel architectures. Authors also measured MFLOPS for all four cases and found 

that MFLOPS increases with increase in number of processors for pure MPI model as 

well as hybrid MPI-OpenMP model.

Danielson and Namburu [20] presented non-linear dynamic finite element analysis on 

three supercomputers namely CRAY T3E, IBM SP, and SGI ORIGIN 2000. Authors 

used FORTRAN90-MPI combination for code development. Authors used non-blocking 

communication mechanism for data transfer among the processors. Authors carried out 

their analysis on few to hundreds of processors and found that CPU time reduces with 

increase in number of processors for all three supercomputers. Authors achieved good 

Speedup (close to Ideal Speedup) for all three supercomputers.

Sziveri and Topping [21 ] presented finite element analysis of transient dynamic problems 

using MPI on MIMD computer architectures. Authors adopted C programming language 

and non-blocking communication mechanism to carry out their analysis on different 

machines running on SUN’s Solaris operating system with the 10 Mbps connection 

network. Authors discussed how the user activities affect the computational time. In this 

article, authors presented the results based on Real time. To minimize the effect of user 

activities, authors carried out their analysis when there were fewer user activities. In spite 

of taking all the possible measures, authors got the discrepancy in the computational time 

results. Therefore repeatedly measurements were taken and the extreme results were 

omitted. The averages of sensible computational time results were taken for the further 

course of action. Authors further discussed that disturbance created by users could be 

prevented by booting the machine into a different state. In such machine state, the general 

system activities could be restricted as well as network and user processes also totally 

excluded.

King and Sonnad [22] presented a element-by-element approach along with 

preconditioned conjugate gradient solver for solving system of equations arising in finite 

element analysis. Authors used loosely coupled array of processors (LCAP) parallel 

computer. Authors found 90% efficiency for 20 processors. Authors also found that as the 

number of processors increases, the efficiency of the solver decreases. Authors also 
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discussed the advantage of clcmcnt-by-elemenl approach over the direct solution 

algorithm on sequential computer.

Chu et al. [23] presented parallel matrix inversion on hypercube multiprocessors. Authors 

employed Gauss-Jordan inversion technique with column exchanges. Authors found that 

the computational time reduces with increase in the number of processors. Authors used 

double precision FORTRAN77 language for programming and analyzed few data sets on 

8x8 sub cube grid consist of 64 Intel iPSC/860 machines having 40 MHz speed. Authors 

also compared sequential Gauss elimination technique with sequential Gauss-Jordan 

technique.

2.6 FINITE ELEMENT ANALYSIS ON PARAM 10000

In the area of finite element analysis, very little work has been carried out using 

supercomputer PARAM 10000. Most of the work includes static linear elastic finite 

element analysis only.

Kant and his associates [24-26] presented finite element analysis of composite materials 

using supercomputer PARAM 10000. Authors used parallel Cholesky solver to determine 

the solution of linear equations using Master-Slave approach. Ramesh and Shah [27] 

developed a parallel solver using a Preconditioned Conjugate Gradient technique for 

finite element analysis. Authors also used Master-Slave approach. Kant et al. [28] 

developed a parallel solver using Conjugate Gradient technique and the results obtained 

were compared with the results obtained by parallel Cholesky solver. Authors found that 

the Cholesky solver is faster than Conjugate Gradient solver in context of computational 

time. According to Kant et al. [28], Conjugate Gradient method, which is an iterative 

technique, was found to be more useful for the large size problems. Shall and Ramesh 

[29] presented fracture analysis software FRACT2D to determine the Stress Intensity 

Factor (SIF) of the cracked structures developed using finite element method on parallel 

supercomputer PARAM having MIMD architecture that uses transputers T805 as a 

processor. Authors used Cholesky method for analysis of linear equations generated in 

finite element analysis. Authors found that computational time reduces with increase in 

number of transputers employed for the analysis.
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Rao [30] presented MPI based non-linear implicit transient dynamic analysis on 

supercomputer PARAM 10000. Combination of three formulations for domain 

decomposition in finite element method and linear preconditioned conjugate gradient 

technique was adopted to solve large-scale problems in structural mechanics. Rao et al. 

[31] developed Software for PArallel Non-linear Dynamic ANalysis (SPANDAN) on 

supercomputer PARAM 10000 using MPI. Authors used parallel overlapped domain 

decomposition approach in their code and compared with conventional non-overlapped 

domain decomposition approach and found that their algorithm is superior.

Most of the parallel solvers mentioned above were developed for direct method of 

solution of system of linear equations and using FORTRAN77 as programming language.

2.7 PRESTRESSED CONCRETE

In prestressed concrete members, stresses are induced during the construction in such a 

way that they can resist stresses caused by externally applied loads. Prestressed concrete 

structural members are widely used to achieve high strength at lower self-weight. 

Prestressed concrete is most suitable for long span structural elements like beams and 

girders, where larger bending moment results in greater depth of beam or girder [32, 33]. 

Broadly there are two methods of prestressing namely Pre-tensioning and Post

tensioning. In Pre-tensioning, the prestressing tendons are tensioned before the concrete is 

placed while in Post-tensioning hardened concrete is stressed by applying external forces.

In the post-tensioned concrete beams, a duct is formed inside the beam and prestressing 

cable is kept inside this duct. Once the concrete gets harden, prestressing cable is stressed 

and anchored at the end of beam that induces internal stresses in the concrete beam. The 

stress distribution inside the post-tensioned concrete beam is very complex, especially 

near the end of beam where prestressing cable is anchored. This zone is called as 

Anchorage Zone [32].

In the past, few researchers attempted to analyze stress distribution in anchorage zone in 

post tensioned concrete beam using different techniques, which include analytical 

techniques [34-37], experimental methods [38-41] and numerical methods [42, 43].
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Guyon [34] analyzed the anchorage zone using elasticity equations assuming the beam as 

end-loaded-semi-infinite strip as two-dimensional problem. The length of anchorage zone 

was considered equal to the depth of the beam. Som and Ghosh [35] made a similar 

attempt by treating it as a two-dimensional plane stress boundary value problem. Authors 

used the Airy’s function for their analysis and the stress function was expressed in the 

form of Fourier series. The obtained results were quite similar to the findings of the 

Guyon [34]. Iyengar and his other associates [36, 37] analyzed the problem of anchorage 

zone using the equations of elasticity considering problem as two-dimensional and three- 

dimensional. Authors carried out the analysis for concentric as well as eccentric 

prestressing forces and compared the results with the available literature.

Some researchers also carried out experimental investigation of the anchorage zone. 

Christodoulides [38, 39] conducted actual tests on the concrete block along with two- 

dimensional and three-dimensional experimental studies using photoelastic bench. 

Zielinski and Rowe [40] presented results of surface strains measured on the concrete end 

block subjected to concentric prestressing forces. On the basis of their results, authors 

gave an expression to calculate the magnitude of the bursting tensile force (Fbst) for 

different values of k (ratio of loaded area and cross-sectional area of the beam). The 

modified version of this expression, by introducing factor of safety, was adopted in the 

Indian Standard Code IS: 1343-1980 [41]. The effect of Poisson’s ratio (v) and 

eccentricity (e) of prestressing forces (Pk) over Fbst was not included in the given 

expression.

Yettram and Robbins [42] investigated anchorage zone stresses considering it as a three- 

dimensional problem. Authors used finite element analysis to determine the anchorage 

zone stresses. Their investigation did not prove the occurrence of spalling zone. Recently, 

Byung-Wan Jo et al. [43] investigated the anchorage zone stresses by considering effects 

of various parameters namely cable inclination, position of anchor plate, and the 

modeling methods. Authors also carried out their analysis using finite element method 

considering the problem as two-dimensional as well as three-dimensional and found that 

the three-dimensional analysis gives slightly smaller values of stresses as compared to 

their two-dimensional analysis. Authors suggested to adopt the results of two-dimensional 

analysis to ensure the safety in the design.
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2.8 ENERGY ABSORBING DEVICES

Energy absorbers have an important role to play in the improvement of aircraft 

crashworthiness. In crashes of light fixed wing and rotary wing aircraft and transport 

aircraft impact, the loads are usually low enough to be survivable by the occupants if 

some measures are taken to provide improved protection through the use of energy 

absorbing devices. Areas in which these devices may be applied include the landing gear, 

the bottom of the fuselage, the seats and the mountings for massive structures such as 

helicopter transmissions [44, 45].

The important characteristics of energy absorber are the specific energy absorption 

capacity per unit weight of device or system, the efficiency of the stroke, the stroke to 

length ratio, the reliability, the repeatability, the ability to sustain rebound loads, and the 

cost. In specific application it is desirable to optimize the design in the sense that some 

desired combination of low cost, low weight, small size and high performance is 

achieved. The understanding of the characteristics of a particular energy absorbing device 

is required to accomplish this. Energy absorbing devices are classified into three general 

categories according to their primary mechanism used for the absorption of energy. These 

are material deformation, extrusion and friction. These classifications made on the basis 

of the primary energy absorbing mechanism. In many devices, there are more than one 

energy absorbing mechanism operative but, in general, one is dominant.

Deforming tubes are deformable elements, which lend themselves to a wide variety of 

uses as energy absorber. The tubes can be flattened, made to turn inside out, made to 

expand, made to contract, made to change in cross-sectional shape, made to fold or spilt 

and curl up. The mechanism of energy absorption is plastic deformation of tubes, 

therefore to understand their deformation process both geometric and material 

nonlinearities should be considered. Experimental and computational study of 

deformation of metallic tubes was carried out in detail especially by Gupta and his 

associates in last few years [47-58] and by other researchers [59-62].

An investigation into the energy absorbing characteristics of the metallic circular, square 

and rectangular cross-section hollow tubes of aluminium and mild steel was carried out 

by Gupta [46]. Gupta carried out experiments to study the large deformation process of 
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several tube specimens oriented and loaded in axial as well as lateral directions. The 

deformation process was also analyzed using commercial software FORGE2 to study 

their collapse mechanisms. Various results obtained from computational study were 

compared with the corresponding results obtained from experimental study.

Study of collapse of rectangular and square metallic tubes between flat platen was carried 

out by Gupta et al. [47-49]. Authors used aluminum as well as mild steel tubes to study 

their energy absorbing capacity. Compression process of several tubular cross sections 

was analyzed experimentally as well as computationally. Experimental results obtained 

were compared with their computational counterparts obtained using commercial 

software FORGE2. A finite element model was presented and collapse mechanism of 

these tubes was studied. Effects of parameters like friction factor, wall thickness and 

shape of tube on collapse mechanism was also studied.

A detailed study on lateral compression of aluminium and mild steel round tubes between 

two rigid flat platens was presented by Gupta et al. [50-52]. Experiments were carried out 

on several tubular specimens with different diameter to thickness ratios and deformation 

histories along with load-compression curves were presented. A finite element model for 

computational study was proposed and used in computational study carried out using 

commercial software FORGE2. Experimental and computational results were compared 

and discussed. Deformation mechanism of round tubes and effects of process parameters 

on deformation mechanism was also presented and discussed.

A study on fold formation in axisymmetric deformation of round tubes was presented by 

Gupta et al. [53-55]. Experimental and computational study was carried out on aluminium 

and mild steel tubular specimens with different diameter to thickness ratios. The process 

of fold formation was studied and described with the help of computational model 

analyzed using commercial software FORGE2. Various results like history of 

deformation, load-compression curves, energy absorbing capacity and other were 

presented in details. Effects of process parameters on process of fold formation were also 

presented. Recently Gupta and Nagesh [56] presented experimental and numerical studies 

ol collapse of thin aluminum tubes having circular cross section under axial compression. 

Author used commercial software ANSYS for their study. Authors carried out parametric 
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study for analyzing collapse mechanism by changing various geometrical properties and 

material properties.

Sckhon et al. [57, 58] presented a study on external inversion of round tubes over a 

circular die. Three aluminium specimens were studied experimentally as well as 

computationally. Process of tube inversion was presented in details with the help of 

deformed shapes and contours of nodal velocity, strain-rate and strain at various stages of 

deformation. Load-compression curves and energy-compression curves were also 

presented and discussed in details. The effect of friction between die and tube interface on 

energy absorbing capacity was also discussed and presented.

Sun and Yang [59] presented a finite element code for simulation of inversion of thin 

tubes subjected to axial loading. Authors considered material as rigid plastic and flow 

formulation was adopted for the code development. Authors also carried out experiments 

on two specimens to obtain the deformed shapes and load-compression relationship. The 

experimental load-compression relationship was compared with the corresponding load 

compression relationship obtained from the code.

Reid [60] presented deformation mechanism of different circular and square metal tubes 

used as energy absorbers. Progressive buckling, tube inversion and splitting phenomena 

in axial compression of circular tubes are also discussed in this literature.

Guillow et al. [61] presented axial compression of thin walled aluminium tubes. Authors 

carried out experiments on 70 tubular specimens with different diameter to thickness 

ratios. Authors studied collapse modes for all specimens and found that axisymmetric and 

nonsymmetric modes lie on a single curve. The authors also discussed the effect of 

density of polyurethane foam filling in aluminium tubes on crushing force.

Hosseinipour and Daneshi [62] presented analysis of axial compression of thin walled 

steel grooved tubes in context of energy absorption and mean crushing load. Authors 

performed experiments and obtained load displacement curves. Authors also presented 

theoretical formulations for predicting the energy absorbing capacity and the mean 

crushing load. Authors found good agreement between theoretical results and 

experimental findings.
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2.9 FEM IN LARGE DEFORMATIONS

Large deformations occur at many places and have wide area of applications. It mainly 

covers metal forming, crashworthiness analysis, industrial manufacturing, impact 

analysis, etc. There are several mathematical methods available to analyze such 

processes. They include the slab method, the slip-line field method, the viscoplasticity 

method, upper bound and lower bound technique, Hill’s general method, and the most 

recent method is the finite element method [63]. All these methods are approximate 

methods of analysis and still research is going on to develop a more accurate method to 

analyze such a complex phenomena.

Analysis of large deformation process is a complex task. It is mainly because the strains 

developed are large in magnitude and the corresponding stresses are in the plastic region 

and both are dependent upon many process parameters. Finite element method is quite 

effective to carry out general structural analysis as well as the large deformation analysis. 

This method can be easily implemented on computers, which is one of the major 

advantage of this method. In the application of FEM to large deformation process, there 

are two formulations available, namely flow formulation and solid formulation. Flow 

formulation in FEM is widely used in analyzing the large deformation processes. The 

solution procedure is stepwise. The entire deformation is divided into sub-steps of certain 

step size. In each step, the geometry of the problem domain changes. Therefore such type 

of analysis becomes very complex. Numerous calculations are involved in obtaining the 

solutions of each sub-step. Therefore, the entire solution process also becomes very time 

consuming.

Lee and Kobayashi [64] presented matrix method for analysis of rigid plastic large 

deformation problems. Using this method Authors also solved two problems of simple 

compression of cylinders as well as bore expanding and flange drawing categorized under 

axisymmetric problem and plane strain problem respectively. Lee and Kobayashi [65] 

presented detailed studies of the deformation of a solid cylinder. The cylinder was axially 

compressed till 33% reduction in height was achieved. Authors used finite element 

method for their analysis. Various obtained results having load displacement curves and 

contours of strains and stresses were presented. Authors also presented compression of 

cylindrical specimen between fiat parallel dies categorized under plane strain conditions.
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Kobayashi [66] presented experimental study on compression of steel solid cylinders and 

rings. The relationship between friction at the interface, deformation characteristics and 

fracture of specimen was discussed. The deformation histories of the cylinder and ring 

specimens were also presented.

Petersen et al. [67] presented friction in bulk metal forming by comparing general friction 

model and constant friction law. Authors carried out experimental study of upsetting of a 

semi-tapered specimen and ring compression test to validate their numerical 

investigation. Axisymmetric large deformation behavior of aluminium and low carbon 

steel short cylinder of various diameters and heights was experimentally carried out by 

Gupta and Shah [68]. Authors studied histories of deformation of cylindrical surface and 

found that the profile of a deforming specimen can be approximated by an arc of a circle.

The finite element formulation given by Kobayashi et al. [63-65] could be used for 

analyzing two-dimensional as well as three-dimensional large deformation problems. It 

also allows us to carry out the thermo-viscoplastic analysis. Authors also developed a 

computer program Simple Plastic Incremental Deformation (SPID) for analyzing the two- 

dimensional plane strain and axisymmetric problems. SPID was written in FORTRAN77 

language and capable of handling a finite element model with maximum 100 nodes. This 

program is executable on any conventional computer.

There are some other softwares existing that can be used for carrying out analysis of large 

deformation process. FORM2D is also one of the software capable of analyzing the large 

deformation problems. This software is developed by Singh [69] and is based on the 

formulation given by Kobayashi et al. [63]. In addition to these, some commercial 

software are also available, namely FORGE2 [70], ANSYS [71] and others. These 

commercial softwares operate on different Operating Systems (OS) compatible on 

conventional computer.

2.10 LARGE DEFORMATIONS AND PARALLEL COMPUTING

Very little work has been done in the area of application of parallel computing technique 

to analyze large deformation process. Kim and Im [72] and Cheon et al. [73] presented 

modified block Jacobi preconditioning technique for analyzing three-dimensional metal
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forming problems. Authors also used domain decomposition approach in their solver. 

Authors carried out their analysis on supercomputer CRAY T3E 900. Authors compared 

their computational time results with the results obtained from conventional conjugate 

gradient method and Jacobi preconditioned conjugate gradient method. Authors found 

that the modified block Jacobi preconditioning technique is more efficient than the other 

two techniques. Authors also achieved reduced number of Newton-Raphson iterations 

during solution convergence when modified block Jacobi preconditioning technique was 

used as compared to the other two methods. Authors also presented a numerical 

application by analyzing a problem of simple upsetting of cube type work piece of 

aluminum AL6061-T4 where material behavior was expressed by expression 

cr =35.16f008 MPa. The work piece was compressed with speed of 1.0 mm/s and the 

friction factor was considered as 0.1. In their finite element computer code, the material 

behavior was considered as rigid-viscoplastic and finite element formulation presented by 

Kobayashi et al. [52] was used.

2.11 CLUSTER COMPUTING TECHNIQUE

In past few years Clusters have been emerged as affordable platform for high 

performance computing. Advantages of Clusters over the expensive supercomputers are 

discussed in details by Sterling [74]. Author discussed the hardware configuration of a 

Cluster node, which includes processor, memory, secondary storage and external 

interface. Author also discussed Cluster network hardware in form on Local Area 

Network (LAN) and System Area Network (SAN). Application programming 

environment and software components are also discussed in details. Application of Linux 

Cluster for direct numerical simulation of fluid turbulence code was presented by Chun et 

al. [75]. Authors used Cluster of 64 PC’s of 2.8 GHz processors and using this setup 40% 

reduction in CPU time was achieved by doubling the number of processors.

Cheon et al. [76] developed a PC Cluster (1.6 GHz and 1.0GHz) using LAN (100 Mbps) 

each having Linux 2.1 operating system. Authors carried out the same analysis (discussed 

above) on this Cluster. Authors used parallel LDU factorization as well as domain 

decomposition approach during the analysis. Authors found that the computational time 

reduces with the increase in number of PC’s employed for the analysis as well as with the 
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increase in the number of sub-domains used to decompose the whole problem domain. 

Authors presented same numerical application as presented in literature [72, 73]

2.12 SUMMARY

In area of structural analysis using finite element method, use of parallel computing 

technique is recent and literature shows that parallel solver is needed for effective 

implementation of parallel computing technique. From literature it is also observed that 

there is not much work reported related to application of parallel computing technique in 

FEA. Some research papers are available that show application of parallel computing 

technique in linear elastic finite element analysis. Few research papers are also available 

that show non-linear and/or dynamic analysis on multiple processor computers. In case of 

non-linear finite element analysis, particularly in large deformation problems, use of 

parallel computing is scarce. Hence emphasis should be given in development of 

generalized finite element code for analyzing large deformation problems on 

supercomputers. In order to accomplish this, it is required to develop an efficient parallel 

solver that can be used in linear as well as non-linear structural analysis using FEM on 

supercomputer. Cluster computing is also one of the emerging areas in the field of 

computer sciences. Significant work is needed in this area so that Cluster can become an 

efficient and inexpensive alternative to the supercomputers.



CHAPTER 3

DEVELOPMENT OF PARALLEL SOLVERS 
FOR SOLVING SYSTEM OF LINEAR 

EQUATIONS



3.1 INTRODUCTION

This chapter mainly deals with the development of parallel solver for finite element 

analysis to achieve reduction in computational time during the analysis. The chapter starts 

with the definitions of the different components of the computational time along with the 

developed timer used to measure these. Certain terms, which indicate the performance of 

parallel codes, are also summarized in brief. The chapter further discusses three 

techniques namely Gauss-Seidel method, Gauss Elimination method, and Matrix 

Inversion method used for development of parallel solvers. It also highlights the variation 

in computational time and performance of these methods on supercomputer PARAM 

10000. A brief study on two communication mechanisms namely Blocking and Non- 
Blocking is also presented and discussed. The chapter also presents the comparison of C 

and FORTRAN77 programming languages based on their performance for application in 

parallel solver development. At the end of the chapter, a modified efficient parallel solver 

is introduced and presented.

3.2 COMPONENTS OF COMPUTATIONAL TIME

The main aim of using parallel computing technique is to save computational time. 

Therefore it is essential to study different components of computational time. There are 

different components of computational time [13, 14], which are used in the present 

investigation. The definitions and the possible factors that affect these components are 

discussed in the following text.

Real time (RT): Real time can be defined as the wall clock elapsed time for a particular 

process. This time differs on multi-user systems where several programs may be running 

concurrently. Therefore if one executes some program for some number of data for 

several times, then every time the Real time will be different.

User Time (UT): User time is the time spend by the program in executing itself (can be 

measured only in UNIX operating system). This time will not change with other system 

activities or user activities. Negligible change may be observed for program running 

when processor is heavily loaded or the program is dealing with huge data.
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Total Time (Total): It is the time that is necessary to execute overall process on machine 

with multiple processors. In other words, it is time measured from the invocation of 

command till its termination. For parallel processes, it is sum of Communication time and 

the Calculation time. This component can be measured in terms of Real time (RT) as well 

as User time (UT).

Communication Time (Comm): Communication time may be defined as the time 

required to transfer the data from one processor to the other processor or processors. The 

processor mapping mainly affects the Communication time. This time component also 

depends on the data transfer rate between the processors and the machine type. This 

component can be measured in terms of Real time as well as User time.

Calculation Time (Cal): Calculation time may be defined as the time required for the 

processor in performing the calculation exclusively. In other word it may be defined as 

the difference of Total time and Communication time. This time component is purely 

dependent on the data size to be handled by processors. This component can be measured 

in terms of Real time as well as User time.

System Time (Sys): System time may be defined as the time used by the system in doing 

work on behalf of the user (can be measured only in UNIX operating system). In other 

words, when user gives command for any execution process, some amount of time is 

spent by the operating system in supporting that execution process which is called as 

System time.

CPU Time (CPU): It is the summation of User time and System time (can be measured 

only in UNIX operating system). It is not necessary that CPU time is equal to Real time, 

since little time is also consumed by processor in doing other works in the system or 

assigned by different users connected to it.

The timers those are available in standard library return only Real time. To measure User 

time, it is required to develop timer that returns the User time. Following example in C 

language presents a subroutine of a timer and shows that how it is used to measure the 

time involved in certain code segment. With the help of this timer, one can also measure 

different components of time during the execution process.
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Example.

“mclude<time.h^
#include<sys/timcs.h>
double zero = 0.0, tO, tl;
double timer(double t);
main()
/ < 
tO = timer(zero);

< code segment being timed >
tl = timer(tO);
printf(“ The User Time = %f\n”, (tl - tO));

}
double timer(double t)

double time_user, time sys, time_cpu;
static double recipcpu, recip_sys;
struct tms buffer;
static long base_sec_cpu = 0, base_sec_sys = 0;
(void) times(&buffer);
if ( base_sec_cpu == 0)

recip cpu =1.0/ (double) CLK_TCK;
base_sec_cpu = buffer.tms_utime + buffer.tms_stime;
}

if ( base_sec_sys == 0)
{
recip_sys =1.0/ (double) CLK_TCK;
base_sec_sys = buffer.tms_stime;
}

time_sys = ((double)(buffer.tms_stime - base_sec_sys)) ♦ recip_sys -1;
timecpu = ((double)(buffer.tms_utime + buffer.tms stime - base sec cpu)) * recip cpu -1; 
time_user = time cpu - time_sys;
retum(time_user);

The above discussed subroutine will return only the User time. It basically measures the 

CPU time (time_cpu) and the System time (time_sys), then the User time (time_user) is 

calculated by subtracting the System time from CPU time. This is done only to 

demonstrate that the other time components like System time or CPU time can also be 

measured by using the same subroutine, which could be done by changing few lines of it. 

The wall clock elapsed time (Real time) can be measured in similar way by using the 

readymade subroutines MPI_Wtime available in standard library of MPI. There are some 

other subroutines, like clock and time available in standard C ++ library, which can also 

be used for the same purpose, but these standard subroutines will give only the wall clock 

elapsed time or Real time.



I'hcrc are few terms that arc used for measuring the performance of the parallel programs 

[1,2]. The definitions of these are as follows

Speedup (S): Speedup may be defined as the ratio between the time needed for the most 

efficient sequential algorithm to perform a computation (/J and the time needed to 

perform the same computation on a machine incorporating parallelism (t ).

1 p

Speedup can be categorized under three categories namely Linear Speedup, Ideal 

Speedup and Superlinear Speedup.

Efficiency (77): Efficiency can be defined as the percentage ratio of time needed for 

sequential algorithm to the product of number of processors P and time needed for P 

number of processors for parallel algorithm.

n = -^—xlOO

MFLOPS’. It is the number of floating points operations per second. This has been 

evaluated by calculating the number of floating point operations performed and dividing 

it by time required to carry out these operations.

All these components involve a term time, which can be Real time or User time.

3.3 NECESSITY OF PARALLEL COMPUTING

To employ the parallel computing technique efficiently in finite element codes, it is very 

much essential to study the time elapsed in different processes in a typical FEA. Typical 

computer aided FEA can be divided into five distinct processes.

1. Reading input files.
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2. Memory allocations for various variables involved in analysis.

3. Generation of stiffness equation.

4. Solution of stiffness equation.

5. Post processing calculations involving computations of strains, stresses and 

others.

A generalized finite element code was written and the computational time elapsed in the 

above mentioned processes was measured by solving a typical problem. Figure 3.1 shows 

a time distribution obtained in various processes involved in FEA. It was found that major 

portion of the computational time gets consumed in the process of solving stiffness 

equation. The third process consumes nearly 1% of Total time, whereas the forth process 

lakes almost 99% of the Total lime. The remaining processes have insignificant 

contributions toward the overall computational time. It clearly expresses the need of 

parallel solver to get quicker solution of stiffness equation.

Fig. 3.1 Computation time expenditure by different processes involved in FEA

3.4 DEVELOPMENT OF PARALLEL SOLVERS

From Fig. 3.1 it is clear and advisable to use parallel computing technique in solving the 

stillness equation. Generally the stiffness equation is expressed as a system of linear 

equations pl]{A'} = {#}. Matrix [/l] is nothing but the global stiffness matrix, whereas
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vectors {X} and {B} represent global displacement matrix and global force matrix 

respectively. There arc several methods available to solve such system of linear 

equations. These methods are categorized under two categories namely Direct methods 

and Iterative methods. In Direct methods, the number of computations are always known 

and fixed, whereas in Iterative methods, the number of computations are unknown and 

one can always find the results with desired accuracy. Methods those are employed for 

getting the solution of system of linear equations and development of parallel solvers are 

described in following sections. To test the performance of the developed solver, several 

data sets taken from linear elastic finite element analysis problem (discussed in chapter 4) 

and non-linear finite element analysis problems (discussed in chapter 5) were analyzed. 

The global stiffness matrices of these problem are of size 870 x 870, 882 x 882, 1226 x 

1226, 1352 x 1352, 2312 x 2312, 3362 x 3362, and 4232 x 4232.

3.4.1 Gauss-Seidel Method

Gauss-Seidel Method (GSM) is an Iterative method so the solution of system of linear 
equations can be found of the desired accuracy. In this method, the iterations are carried 

out until the desired accuracy is achieved. It is quite natural that as the desired accuracy 

increases, the number of iterations also increases correspondingly. Let us consider a 

system of linear equations

a, ,xt + al2x2 + a13x3 + • • • + au,x„ = 6,

^2IX1 ^22 X2 + ^23X3 + ”* + &2llXn — b2
^xl+a32x2+a}3xJ+-- + a,„x„ =b3 (3.1)

°„ixi + Mi + a„3x3 + - + = b„

Initially some guess values of solution vector (A'(0)) are assumed. After dividing every 

equation by its diagonal element, equation 3.1 can be rewritten as
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Here xf*,---^0 represent the solution of system of linear equations after first iteration. 

These values will be used for the next iteration. The solution for (i+l ),h iteration can be 

found by expression
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The generalized iteration formula can be written as

X('^ =BX{,} +C (3.4)

The iterations are carried out until the desired accuracy is achieved. The accuracy is 

checked by comparing two vectors X{,) and A'(,+l). The numbers of computations carried 

out in entire process can be approximately estimated by the following expression

Number of computations = (3/72)/ (3.5)

29



3.4.1.1 Parallel Implementation

In the development of parallel solver using Gauss-Seidel Method on supercomputer, 

column wise data distribution was carried out. Initially all processors were given ranks 

starting from zero. Then the data was uniformly distributed to all processors. If uniform 

data distribution was not possible, few processors with lower ranks were overloaded with 

few columns. A typical uneven data distribution is shown in Fig. 3.2, where the number 

of equations and the number of processors are twenty and eight respectively. It can be 

observed that four processors with lowermost ranks are overloaded by one additional 

equation. Therefore they have to perform more computations as compared to the rest of 

the processors. Because of this overloading of data on lower rank processors, the Total 
time may get affected to a little extent. The reason for this is the remaining processors 

shall remain idle for small duration when the overloaded processors handles the 

additional data supplied to them.

Fig. 3.2 Uneven data distribution (column wise) among the processors

Each processor operated columns of its share and evaluated sum that was necessary to 

compute the numerical value of each unknown. Then each processor sent this sum to the 

master processor and master processor added them to get the new value unknown vector 

{A'}'. After this master processor broadcasted new value of unknown vector {jf}' to all 

the processors which were used for further calculation. This process continued till current 

iteration got completed. After every iteration, all processors checked the accuracy of the 

obtained solution by comparing the old values with the new values of the unknown vector 

{A'|. If all values of unknown vector {A'} have achieved the desired accuracy, then the 
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master processor printed the results and the program got terminated. The parallel 

algorithm is presented in Fig. 3.3.

Global P {Number of Processors}
n {Number of Equations}
My Rank {Rank of the Processor} 
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor} 
end {Flag indicating ending row number for each processor} 
ij,k {Control Variables}
itr {Maximum No. of Iterations}

for all Pi where 0 < i < P do
Set start
Set end

end for
for i = 0 to itr-1

for j = 0 to /7-1
for k = start to end

sum = sum - [A] j t / [A] jj x [X] k
end for
for all Pi where 1 < i < P do

Send sum to Master
end for
if My Rank == Master

Broadcast sum
[X]j = sum 
end if

endfor
if MyRank == Master

Calculate [X] j 
Check accuracy of [X],

else
if

desired accuracy achieved
then

Terminate process
end if

end if
endfor

Fig. 3.3 Parallel algorithm for Gauss-Seidel Method
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(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

?ig. 3.4 Variation in computational time components for GSM solver for data set of size
1226 x 1226



3.4.1.2 Computational Time Results

Figure 3.4 shows variation in different components of computational time obtained for 

data set of size 1226 x 1226. Figure 3.4(a) shows that Total time (RT) increases with 

increasing number of processors. It can also be observed that Communication time (RT) 

is marginally smaller than the Total time. This indicates that the increase in 
Communication time is only responsible for increase in Total time with increase in 

number of processors. It can also be observed that the Calculation time (RT) reduces with 

increase in number of processors. From Fig. 3.4(b), it can be observed that 

Communication time (UT) is slightly less than the Total time for all number of processor 

(UT). Both the time components increase with the increase in number of processors. 

Reduction in Calculation time (UT) can be seen from this figure. Great difference 

between Total time (RT) and Total time (UT) as well as Communication time (RT) and 

Communication time (UT) can be observed from Fig. 3.4(a) and Fig. 3.4(b) both. 

Considerable amount of time is wasted in establishing Real time communication between 

the processors. The major part of data communication was performed by MPI_SEND 
subroutine. This communication was carried out in sequential way therefore large amount 

of time is consumed in this process.

Figure 3.5 shows variation in the Speedup measured in terms of Real time as well as User 

time with number of processors. It can be observed that the obtained Speedup is not 

encouraging. It is observed that Speedup reduces with increase in processors. Sudden 

reduction in Real time Speedup can be observed whereas gradual reduction in User time 

Speedup can be seen in Fig. 3.5.

3.4.1.3 Solver Performance

From Tables 3.1(a) to 3.6(a), it can be observed that the Total time increases with the 

increase in number of processors for all data sets. The variation in Total time (RT) is very 

abrupt and increasing with number of processors. One can find that the contribution of 

Communication time towards the Total time is very significant. The variation in 

Communication time is also abrupt and continuously increasing with number of 

processors. It can be observed that the variation in Calculation time (RT) is abrupt
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(a) Computational time variation

Table 3.1 Computational time variation and performance of GSM solver for data set of 
size 870 x 870

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 917.13 151.42 0.00 0.00 917.13 151.42
2 3636.32 211.26 3290.44 135.01 345.88 76.25

! 3 1372.61 241.06 1254.86 185.77 117.75 55.29
i 4 1668.10 278.55 1573.40 238.69 94.70 39.86
i 5 2433.74 359.31 2356.21 327.60 77.53 31.71

6 2805.05 384.87 2742.56 356.08 62.49 28.79
7 4121.00 484.16 4061.42 456.19 59.58 27.97
8 4786.46 537.93 4690.07 510.79 96.39 27.14

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 2.68 16.24
2 0.11 0.73 5.44 36.47 0.68 11.64
3 0.07 0.58 2.47 19.20 1.79 10.20
4 0.06 0.50 1.43 12.43 1.47 8.83
5 0.08 0.32 1.66 6.39 1.01 6.84
6 0.04 0.25 0.59 4.15 0.88 6.39
7 0.03 0.24 0.49 3.36 0.60 5.08
8 0.06 0.22 0.77 2.78 0.51 4.57
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Tabic 3.2 Computational time variation and performance of GSM solver for data set of 
size 882 x 882

(a) Computational time variation

No. of 
i processors

Total Comm Cal
Real User Real User Real User

1 1543.85 590.24 0.00 0.00 1543.85 590.24
i 2 14199.89 809.27 8274.49 497.25 5925.40 312.02
• 3 20844.14 1024.52 19312.89 796.84 1531.25 227.68
! 4 27034.03 1186.78 23874.15 1004.16 3159.88 182.62
: 5 18631.41 1848.62 18308.66 1720.70 322.75 127.92

6 43383.03 2371.09 39410.62 2257.79 3972.41 113.30
; 7 44825.91 2507.37 44525.85 2403.06 300.06 104.31

8 24910.76 2657.27 24604.34 2547.59 306.42 109.68

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.67 17.44
2 0.11 0.73 5.44 36.47 0.72 12.72
3 0.07 0.58 2.47 19.20 0.49 10.05
4 0.06 0.50 1.43 12.43 0.38 8.67
5 0.08 0.32 1.66 6.39 0.55 5.57
6 0.04 0.25 0.59 4.15 0.24 4.34
7 0.03 0.24 0.49 3.36 0.23 4.11
8 0.06 0.22 0.77 2.78 0.41 3.87

Table 3.3 Computational time variation and performance of GSM solver for data set of 
size 1352 x 1352

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 2137.52 2096.68 0.00 0.00 2079.51 2054.72
2 5851.95 2091.95 4699.57 1040.07 1152.38 1051.88

i 3 8773.02 2542.75 7592.37 1791.86 1180.65 750.89
: 4 9695.634 2554.486 8085.04 1856.22 1610.59 698.27

5 10720.47 2685.823 10297.43 2036.45 1 423.03 649.37
6 13899.23 2714.16 12355.89 2378.21 1543.34 335.95
7 18486.69 2887.77 17262.76 2452.52 1223.93 435.25
8 20302.83 2960.82 19126.73 2507.44 1176.10 453.38
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(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.63 4.72
2 0.37 1.00 18.26 50.11 1.69 4.73
J 0.24 0.82 8.12 27.49 1.13 3.89
4 0.22 0.82 5.51 20.52 1.02 3.87
5 0.20 0.78 3.99 15.61 0.92 3.68
6 0.15 0.77 2.56 12.87 0.71 3.64
7 0.12 0.73 1.65 10.37 0.53 3.42
8 0.11 0.71 1.32 8.85 0.49 3.34

Table 3.4 Computational time variation and performance of GSM solver for data set of 
size 2312 x 2312

(a) Computational time variation

No. of 
, processors

Total Comm Cal
Real User Real User Real User

1 10594.34 10398.68 0.00 0.00 10594.34 10398.68
1 2 20674.31 8408.07 14929.01 3101.45 5745.30 5306.62
! 3 24075.27 9084.48 20292.17 5063.53 3783.10 4020.95
I 4 27706.09 9097.57 24739.52 6392.13 2966.57 2705.44
i 5 41956.26 11239.07 35752.82 9197.85 6203.44 2041.22
! 6 61758.57 12787.51 51080.07 10881.29 10678.50 1906.22
i 7 70063.76 13818.01 64693.65 11881.42 5370.11 1936.59

8 78307.23 14848.51 71567.31 12881.55 6739.92 Fl 966.96

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 17.50 17.83
2 0.51 1.24 25.62 61.84 8.97 22.05
3 0.44 1.14 14.67 38.16 7.70 20.41
4 0.38 1.14 9.56 28.58 6.69 20.38
5 0.25 0.93 5.05 18.50 4.42 16.49
6 0.17 0.81 2.86 13.55 3.00 F 14.50
7 0.15 0.75 2.16 10.75 2.65 13.42
8 0.14 0.70 1.69 8.75 2.37 12.48
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fable 3.5 Computational time variation and performance of GSM solver for data set of 
size 3362 x 3362

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 22683.61 22444.38 0.00 0.00 22683.61 22444.38
2 29930.18 16299.98 17278.04 3713.16 12652.14 12586.82
3 33455.98 17639.91 24361.94 5560.41 9094.04 12079.50
4 65716.35 15449.73 58399.71 8403.15 7316.64 7046.58
5 85234.62 17216.30 77902.00 11472.83 7332.62 5743.47
6 69838.11 18031.75 64209.11 12554.55 5629.00 5477.20
7 73974.97 19033.29 68851.43 14132.50 5123.55 4900.79
8 169263.09 21901.75 161449.97 17133.09 7813.12 4768.66

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 15.08 15.24
2 0.76 1.38 37.89 68.85 11.43 20.98
3 0.68 1.27 22.60 42.41 10.22 19.39
4 0.35 1.45 8.63 36.32 5.20 22.14
5 0.27 1.30 5.32 26.07 4.01 19.87
6 0.32 1.24 5.41 20.75 4.90 18.97
7 0.31 1.18 4.38 16.85 4.62 17.97
8 0.13 1.02 1.68 12.81 2.02 15.62

Table 3.6 Computational time variation and performance of GSM solver for data set of 
size 4232 x 4232

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 38397.66 38178.03 0.00 0.00 38397.66 38178.03
2 53737.73 29647.70 28136.16 6383.55 25601.57 23264.15
3 57460.65 28692.96 39038.58 10919.19 18422.06 17773.77
4 64550.05 26564.48 50012.16 13134.65 14537.89 13429.83
5 88564.14 30487.54 75100.08 18464.43 13464.06 12023.11
6 176748.32 32763.93 165223.59 22032.00 11524.73 10731.93
7 195356.06 31491.16 182366.97 22141.19 12989.09 9349.97
8 194341.54 36157.57 179727.38 26873.62 14614.16 9283.95
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(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 11.84 11.91
2 0.71 1.29 35.73 64.39 8.46 15.34
3 0.67 1.33 22.27 44.35 7.91 15.85
4 0.59 1.44 14.87 35.93 7.05 17.12
5 0.43 1.25 8.67 25.05 5.13 14.92
6 0.22 1.17 3.62 19.42 2.57 13.88
7 0.20 1.21 2.81 17.32 2.33 14.44
8 0.20 1.06 2.47 13.20 2.34 12.58
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(b) Variation in User time Speedup

Fig. 3.6 Variation in Speedup for GSM solver for various data sets
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whereas variation in Calculation time (UT) is smooth and reducing with increase in 

number of processors. Reduction in Calculation time and increase in Communication time 

highlights the requirement of significant enhancement of the communication speed 

between the processors. It is immaterial to mention that this Total time increases with 

increase in size of data set that makes performance of GSM inadequate.

Reduction in Speedup, Efficiency and MFLOPS with increasing number of processors 

can also be seen in Tables 3.1(b) to 3.6(b). This is mainly because of increase in Total 

time (RT and UT) with increase in number of processors. Figure 3.6 (a) and (b) shows 

variation in the Real time Speedup and the User time Speedup respectively for various 

data sets under consideration. It can be seen from Fig. 3.6 (a) that variation in the Real 
time Speedup is abrupt and constantly reducing with increase in number of processors for 

all data sets. One can also observe that for smaller data set the performance of GSM 

sob er is very poor as compared to its performance for higher data sets. In short, the 

performance of GSM solver improves with increase in data size. For biggest data size 

also, its performance is unacceptable, because Speedup remains less than one. Variation 
in User time Speedup for various data sets is shown in Fig. 3.6 (b). It can be observed that 
the User time Speedup also reduces with increasing number of processors for data sets of 

size 870 x 870, 882 x 882, 1226 x 1226 and 1352 x 1352. For higher data sets of size 

2312 x 2312, 3362 x 3362, and 4232 x 4232 the User time Speedup increase initially. 

After reaching to a peak value, this User time Speedup starts reducing. It can be observed 

that this peak value of User time Speedup is higher for highest data set. It can be 

concluded that the User time Speedup would improve with further increase in data size.

Gauss-Seidel Method is an Iterative method therefore required computational time is 

directly dependent on number of iterations carried out for getting the solution of desired 

accuracy. Table 3.7 shows number of iterations carried out in finding the solution of 

various data sets under consideration. It can be observed that solution of few data sets 

namely 870 x 870, 1226 x 1226 and 1352 x 1352, were found. Number of iteration 

required to achieve 90% accuracy in solution was less than 1.5 times of size of individual 

data set. For data set of size 1352 x 1352, the number of iterations are even less than the 

actual data size itself. For rest of the data sets, solutions with 90% accuracy are not found 

even after carrying out iterations three times (for data set of size 3362 x 3362 and 4232 x
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4232) and five time (for data set of size 882 x 882 and 2312 x 2312) of size of data sets. 

Therefore, one can conclude that there is no direct relationship between number of 
iteration and size of data. Number of iterations purely depends on the type of data to be 

handled and the initial guess.

Table 3.7 Number of iteration for various data sizes carried out by GSM solver

Data size No. of iterations Status
870 x 870 1083 Solution found
882 x 882 4411 Incomplete

1226 x 1226 1790 Solution found
1352x 1352 1803 Solution found
2312 x2312 11560 Incomplete
3362 x 3362 10087 Incomplete
4232 x 4232 12697 Incomplete

3.4.2 Gauss Elimination Method

Gauss Elimination Method (GEM) falls under the category of Direct method of solving 

system of linear equations. It reduces the original matrix of system of linear equations to 

an equivalent upper triangular matrix, which can be solved by method of back 

substitution. Let us consider a system of linear equations

^11^1 + &12X2 + &13X3 + ’'' + ainXn — ^1

a2lXl 4" ^22X2 + ^23*3 + * *' &2nXn — ^2

^31'^1 + ^32^2 + &33X3 ^3nXn — ^3

+ an2X2 + an3X3 + ’ ’ * + Vn = bn

Equation 3.6 can be rewritten in the form of augmented matrix

an ^13 by
^21 a22 £7,. • •’ a2n bi
*31 a32 a33 * •• a3n b.

“.A b„

(3.6)

(3.7)
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To eliminate x, term from second equation, first equation was multiplied by factor 

- Uyjau and then added to the second equation. Similar procedure is followed on rest of 

the elements in the lower triangle of given matrix. Equation 3.7 will become

"h *12 *13 • •• *l» b>

0 * 22 *'23 b\

0 0 *'33 • " *’3n b\

0 0 0 • b'„

(3-8)

The values of unknown vector {X} can be found out by method of back substitution. The 

number of computations carried out in Gauss Elimination Method can be roughly 

estimated by expression

Number of computations = n2 (3.9)

Fig. 3.7 Uneven data distribution (row wise) among the processors
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3.4.2.1 Parallel implementation

For parallel implementation of GEM on supercomputer, row wise data distribution was 

carried out. Initially the range of data to be handled by each processor was decided. If 

data distribution was not even, then the remaining data was distributed to the processors 

with lower ranks. Figure 3.7 shows a typical uneven data distribution among the 

processors. Here the number of equations and the number of processors are twenty and 

eight respectively. It can be observed that the four processors with lowermost ranks will 

be overloaded by one additional equation. Therefore those four processors have to 
perform more computations as compared to the rest of the processors.

Global P {Number of Processors}
n {Number of Equations}
MyRank {Rank of the Processor} 
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor} 
end {Flag indicating ending row number for each processor}
i {Variable indicating current row}

for all Pi where 0 < i < P do
Set start 
Set end

end for
for i = 0 to n-1

Set diagonal element of [A], = 1.0 
[B] i = [B] ,/[A] ii 
for all Pi where 0 < i < P do

Find the Rank of current row 
If MyRank = Rank

Broadcast current row
Broadcast [B] ।

end if
end for
for j = i to end

Change non-diagonal element of [A], = 0.0 
Change elements of matrix [B] j

end for
end for
for i = end to start

Compute [x] j
end for

Fig. 3.8 Parallel algorithm for Gauss Elimination Method
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The operations were started from first row and stopped at last row. Initially the diagonal 
element of current row was converted to unity, then the elements of lower triangle were 
converted to zero by every processor simultaneously. When the complete matrix reduced 

to upper triangular matrix, then the unknowns were evaluated by method of back 

substitution. This process is data dependent and the entire unknowns cannot be evaluated 

simultaneously. Therefore the processor with highest rank started this process. It 

evaluated all the unknowns of its share; thereafter broadcasted them to all the processors, 

which were utilized by the other processors to evaluate the unknowns of their share. 

Figure 3.8 shows the parallel algorithm for this method.

3.4.2.2 Computational Time Results

Figure 3.9 shows variation in different components of computational time obtained for 

data set of size 1226 x 1226. Figure 3.9(a) shows variation in different components of 

computational time measured in term of Real time. It can be observed that the Total time 

remains nearly same when one to four processors were employed to obtain the solution. 
Sudden increase in the Total time can be observed between the four and five processors. 

Thereafter the marginal increase in Total time can be seen. Communication time curve 

shows gradual increase in Communication time with increase in number of processors. 

Calculation time variation follows the similar pattern that of Total time. Calculation time 

curve lies just below the Total time curve for all processors. It can be observed that the 

subroutines MPI_SEND and MPI_BCAST are equally used for the data communication. 

In the last stage of this method, the unknowns are calculated by method of back 

substitution. At this point of time, only one processor remains active, while other 

processors remain idle because at this juncture they have insufficient data to evaluate 

unknowns of their share.

Figure 3.9(b) shows the variation in different components of computational time 

measured in terms of User time. It can be observed that Total time reduces with increase 

in number of processors. Drastic reduction can be observed from one processors to four 

processors. After four processors, the reduction in Total time is slow and insignificant. 

Communication time (UT) is negligible at every number of processors. Therefore 

Calculation time and Total time are almost equal.
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(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

Fig. 3.9 Variation in computational time components for GEM solver for data set of size

1226 x 1226
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Figure 3.10 shows variation in the Speedup calculated using Real time as well as User 

time. It can be seen that as number of processors increases the Real time Speedup 
reduces. Sudden reduction in Real time Speedup can be observed between four and five 

number of processors whereas User time Speedup increases with increase in number of 

processors up to four processors. There is sudden drop in User time Speedup between 

four and five processors. Maximum Speedup of approximately 12 can be seen at eight 

number of processors which is greater than Ideal Speedup.

3.4.2.3 Solver Performance

From Tables 3.8(a) to 3.13(a), it can be observed that the variation in Total time (RT) is 

very abrupt. It remains almost constant from one processor to four processors for all the 

data sets under consideration. There after it suddenly increases. After four processors, 

Total time (RT) starts increasing with increase in number of processors. It can be 

observed that Total time measured in term of User time reduces with increase in number 

of processors. The variation in Communication time is quite similar to the variation in 
Total time. Communication time measured in term of Real time as well as User time 

increases with increase in number of processors. It can be observed that Calculation time 

reduces with increase in number of processors. Overall performance of GEM is good and 

can be improved further by adopting higher communication speed.

Figure 3.11(a) shows variation in the Real time Speedup achieved by GEM for different 

data sets. It can be observed that Real time Speedup is almost constant from one to four 

number of processors for all the data sets under consideration. After four number of 

processors, the Real time Speedup variation is abrupt and its values is less than one. 

Variation in User time Speedup achieved by GEM for all data sets under consideration is 

shown in Fig. 3.11(b). It can be observed that the User time Speedup increases linearly 

from one to four number of processors. Thereafter, the increase is User time Speedup is 

abrupt. It can also be observed that for higher data size, User time Speedup is high as 

compared to the User time Speedup of low size data sets. It can be concluded that the 

performance of GEM increases with increase in data size. Maximum User time Speedup 

obtained is 35.63 at eight number of processor for the highest data set tmder 

consideration.
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Fig. 3.10 Speedup achieved by GEM solver for data set of size 1226 x 1226

(a) Computational time variation

Table 3.8 Computational time variation and performance of GEM solver for data set of 
size 870 x 870

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 60.15 59.28 0.02 0.00 60.13 59.28
2 63.96 16.55 1.37 0.33 62.59 16.22
J 64.73 9.46 2.15 0.28 62.58 9.18
4 65.78 6.55 2.54 0.37 63.24 6.18
5 69.79 6.8 4.79 1.09 65.00 5.71
6 71.15 6.03 4.96 0.74 66.19 5.29
7 117.05 11.42 23.45 2.73 93.60 8.69
8 105 7.04 27.02 1.90 77.98 5.14

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.48 5.56
2 0.94 3.58 47.02 179.09 5.15 19.92
3 0.93 6.27 30.97 208.88 5.09 34.84
4 0.91 9.05 22.86 226.26 5.01 50.33
5 0.86 8.72 17.24 174.35 4.72 48.47
6 0.85 9.83 14.09 163.85 4.63 54.67
7 0.51 5.19 7.34 74.16 2.82 28.86
8 0.57 8.42 7.16 105.26 3.14 46.82
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(a) Computational time variation

Table 3.9 Computational time variation and performance of GEM solver for data set of 
size 882 x 882

No. of 
processors

Total Comm Cal
Real User Real User Real User

: 1 219.34 216.86 0.00 0.00 219.34 216.86
, 2 116.88 110.17 1.11 0.03 115.77 110.14
' 3 84.12 75.30 1.96 0.04 82.16 75.26
1 4 66.71 57.27 2.09 0.12 64.62 57.15
i 5 97.55 47.77 11.68 0.21 85.87 47.56
i 6 99.29 40.86 8.46 0.25 90.83 40.61
1 7 86.49 35.44 7.29 0.32 79.20 35.12
1 8 82.51 31.55 10.49 0.44 72.02 31.11

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.46 5.55
2 1.88 1.97 93.83 98.42 5.13 19.27
3 2.61 2.88 86.92 96.00 5.06 35.33
4 3.29 3.79 82.20 94.67 4.95 49.92
5 2.25 4.54 44.97 90.79 4.67 50.21
6 2.21 5.31 36.82 88.46 4.61 54.34
7 2.54 6.12 36.23 87.42 4.59 66.95
8 2.66 6.87 33.23 85.92 4.49 64.44

Table 3.10 Computational time variation and performance of GEM solver for data set of 
size 1352 x 1352

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 240.52 233.96 0.00 0.00 240.52 233.96
2 276.84 63.61 4.09 0.50 272.75 63.11
3 260.12 33.47 7.76 0.83 252.36 32.64
4 259.93 22.22 7.43 0.99 252.50 21.23
5 833.06 53.7 405.19 6.83 427.87 46.87
6 659.54 24.56 107.33 3.32 552.21 21.24
7 536.04 23.99 112.46 4.53 423.58 19.46
8 469.2 17.24 143.79 3.27 325.41 13.97
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(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.14 5.29
2 0.87 3.68 43.44 183.90 4.47 19.44
3 0.92 6.99 30.82 233.00 4.75 36.95
4 0.93 10.53 23.13 263.23 4.76 55.65
5 0.29 4.36 5.77 87.14 1.48 23.03
6 0.36 9.53 6.08 158.77 1.87 50.35
7 0.45 9.75 6.41 139.32 2.31 51.55
8 0.51 13.57 6.41 169.63 2.64 71.73

Table 3.11 Computational time variation and performance of GEM solver for data set of 
size 2312 x 2312

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 1685.81 1178.95 0.00 0.00 1685.81 1178.95
2 1172.75 301.04 16.70 0.07 1156.05 300.97
3 1177.77 144.06 21.72 0.09 1156.05 143.97
4 1214.47 93.82 33.28 0.13 1181.19 93.69
5 2390.98 171.94 154.59 0.08 2236.39 171.86
6 2098.02 115.74 187.16 0.11 1910.85 115.63
7 1816.85 92.86 113.33 0.17 1703.53 92.69
8 1566.45 65.26 171.18 0.17 1395.27 65.09

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 3.67 5.24
2 1.44 3.92 71.87 195.81 5.27 20.54
3 1.43 8.18 47.71 272.79 5.25 42.91
4 1.39 12.57 34.70 314.15 5.09 65.89
5 0.71 6.86 14.10 137.14 2.59 35.95
6 0.80 10.19 13.39 169.77 2.95 53.41
7 0.93 12.70 13.26 181.37 3.40 66.57
8 1.08 18.07 13.45 225.82 3.95 94.73
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(a) Computational time variation

Table 3.12 Computational time variation and performance of GEM solver for data set of 
size 3362 x 3362

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 3629.89 3528.92 0.00 0.00 3629.89 3528.92
2 3554.37 923.32 33.73 0.11 3520.64 923.21
3 3570.68 436.01 40.11 0.10 3530.57 435.91
4 3594.91 265.91 64.16 0.15 3530.75 265.76
5 4049.39 275.57 138.46 0.19 3910.92 275.38
6 3766.95 201.24 113.29 0.23 3653.66 201.01
7 3687.99 200.03 93.71 0.20 3594.28 199.83
8 3651.06 107.10 81.13 0.21 3569.93 106.89

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.24 5.39
2 1.02 3.82 51.06 191.10 5.35 20.58
3 1.02 8.09 33.89 269.79 5.32 43.59
4 1.01 13.27 25.24 331.78 5.29 71.48
5 0.90 12.81 17.93 256.12 4.69 68.97
6 0.96 17.54 16.06 292.26 5.05 94.44
7 0.98 17.64 14.06 252.03 5.15 95.02
8 0.99 32.95 12.43 411.87 5.21 177.46

Table 3.13 Computational time variation and performance of GEM solver for data set of 
size 4232 x 4232

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 7057.91 7006.88 0.00 0.00 7057.91 7006.88
8028.15 1813.39 40.43 0.15 7987.72 1813.24

JI 7210.35 858.16 59.59 0.15 7150.76 858.01
4 8368.35 507.39 168.98 0.24 8199.37 507.15
5 7236.71 365.61 73.82 0.20 7162.89 365.41
6 35742.16 407.48 1282.34 0.30 34459.82 407.18
7 8329.01 362.33 250.67 17.16 8078.34 345.17
8 7297.62 196.68 135.13 22.32 7162.49 174.36
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(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 5.37 5.41
2 0.88 3.86 43.96 193.20 4.72 20.90
3 0.98 8.17 32.63 272.17 5.26 44.17
4 0.84 13.81 21.09 345.24 4.53 74.71
5 0.98 19.16 19.51 383.30 5.24 103.68
6 0.20 17.20 3.29 286.59 1.06 93.03
7 0.85 19.34 12.11 276.26 4.55 104.62
8 0.97 35.63 12.09 445.32 5.19 192.73

(b) Variation in User time Speedup

Fig. 3.11 Variation in Speedup for GEM solver for various data sets
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3.4.3 Matrix Inversion Method

Matrix Inversion Method (MIM) is one of the common method for obtaining the solution 

of the system of linear equations [/!]{%}= {/?}. In this method inverse of the matrix [j] is 

calculated. Then the solution is computed using expression {%} = [j]’'{b}. To compute 

[j]’1 let us consider an expression

(310)

where [/] is a unit matrix same of order same as matrix [j]. Matrix [^] is operated and 

converted to unit matrix. All the necessary operation carried out on matrix [?1], are also 

carried out on matrix [/]. Finally, matrix [j] gets converted to a unit matrix whereas 

matrix [/] takes form of [/4]"1. Let us consider a system of linear equations

#11*1 + #12*2 "^*13*3 *ln*n —

#21*1 + *22*2 + *23*3 *" a2nXn = ^2

*31*1 + #32*2 +^33*3 +’-- + ^3n*,> = ^3 (3.11)

^1*1 + *n2*2 + an3X3 + * • * + annX» = bn

Equation 3.11 can be rewritten in the augmented matrix form

’*11
*12 *13 * ” a\n • 1 0 0 • • 0“

*21 *22 *23 a2n • 0 1 0 •• • 0
*31 *32 *33 * ” *3n • 0 0 1 «• • 0 (3.12)

_*„1 *„2 *„3 * 0 0 0 •• • 1

where left hand side represents the matrix [/4] and right hand side represents unit matrix 

[/]. After row operations Eq. 3.12 takes final form as
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1 0 0 ••• o • "l2 "13 • •• "in

0 0 0 ••• 0 ' a2i aU "23 • • "2n

0 0 0 ••• 0 ' an "33 • •• "3n

0 0 0 ••• ■ ' "„2 "n3 • • "nn

(3.13)

where right hand side represents the inverse of matrix [^]. The values of unknown vector 

{X} can be found out by expression

V '"11 "12 "13 *
*• "In’ 6/

X2 "2I "22 "23 ’ •• "2n ^2

X3 > = "31 "32 "33 ” "3n <

X„. "nl "n2 "3n • ” ^nn_

(3.14)

The number of computations carried out in Matrix Inversion Method can be expressed as

Number of computations = 4h2 + 2w3 (3.15)

3.4.3.1 Parallel Implementation

Initially all processors were given their ranks. Then the range of data to be handled by 

each processor was decided. Row wise data distribution was carried out as described in 

Gauss Elimination Method. After proper data distribution among the processors, an 

Identity matrix [/] of size [?t] was created by all processors. In the process of matrix 

inversion, column wise operations were carried out. Every non-diagonal element of 

matrix [i4] was converted to zero and every diagonal element of matrix [j] was made 

unity.

Whatever operations were carried out on matrix [j], same operations were also carried 

out on matrix [/] simultaneously. Each processor operated only those rows, which were 

designated to it to spend less computational time. After finding the inverse of matrix [XL 

the unknown vector {x} was calculated by multiplying [j]-1 with {5}. At this juncture, 
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each processor was having elements of vector {%} those belong to its share. Then each 

processor broadcasted these elements of vector {%} to the all other processors so that 

every processor should have complete vector {x}. Figure 3.12 shows the parallel 

algorithm for Matrix Inversion Method.

Global P {Number of Processors}
n {Number of Equations}
MyRank {Rank of the Processor} 
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor} 
end {Flag indicating ending row number for each processor} 
i {Variable indicating current row}
[I] {Matrix indicating inverse of matrix [A]}

for all Pi where 0 < i < P do
Set start
Set end

for i = 0 to fl-1
Set diagonal element of [A] । = 1.0 
Change elements of matrix [I], 
for all Pi where 0 < i < P do

Find the Rank of current row 
If MyRank = Rank 

Broadcast current row 
endif 

endfor 
for j = start to end

if [A] ij 0.0
Change non-diagonal element of [A] , j = 0.0 
Change elements of matrix [I] । , 

endif
endfor

endfor
for i = start to end

Compute {x} j
endfor
for all Pi where 0 < i < P do

Broadcast {x} j to All Processor 
endfor

Fig. 3.12 Parallel algorithm for Matrix Inversion Method



im
e

1 2 3 4 5 6 7 8
No. of processors

(a) Variation in computational time components measured in terms of Real time

(b) Variation in computational time components measured in terms of User time

Fig. 3.13 Variation in computational time components for MIM solver for data set of size

1226 x 1226
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3.4.3.2 Computational Time Results

Figure 3.13 shows variation in different components of computational time obtained for 

data set of size 1226 x 1226. Figure 3.13(a) shows the variation in different components 

of computational time measured in terms of Real time. One can see that as the number of 

processor increases the Total time reduces considerably. The Calculation time also 

reduces with increase in number of processors. Communication time increases with 

increase in number of processors. This increase is very slow and insignificant.

Figure 3.13(b) shows variation in different components of computational time measured 

in terms of User time. It can be observed that Total time as well as Calculation time 
reduces with increase in number of processors. Sudden reduction can be seen from one to 

four processors but thereafter the reduction is slow. The Communication time (UT) is 

insignificant for Matrix Inversion Method. One can observe that the Total time and 

Calculation time is nearly same at every number of processors. It can also be observed 

that Total time measured in term of Real time as well as User time is nearly same at every 

number of processors

Figure 3.14 shows the variation in Speedup measured in terms of Real time as well as 

User time. It can be observed that maximum Real time Speedup of 5 (approximately) is 

achieved at seven number of processors and maximum User time Speedup of 7.2 is 

achieved at eight number of processors. The User time Speedup is very close to Ideal 

Speedup at every number of processors.

3.4.3.3 Solver Performance

From Tables 3.14 to 3.19, it can be observed that Matrix Inversion Method gives 

excellent performance for all data sets under consideration. Total time (RT and UT) 

reduces considerably with increase in number of processors. The contribution of 

Communication time is ven7 less as compared to the Calculation time toward the Total 

time.
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(a) Computational time variation

Table 3.14 Computational time variation and performance of MIM solver for data set of 
size 870 x 870

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 203.82 202.29 0.00 0.00 203.82 202.29
2 107.45 103.42 0.75 0.07 106.70 103.35
3 75.41 69.75 1.68 0.05 73.73 69.70
4 63.91 53.53 2.74 0.06 61.17 53.47
5 93.16 45.29 14.68 0.19 78.48 45.10
6 92.16 39.87 12.11 1.49 80.05 38.38
7 78.83 34.15 9.55 0.31 69.28 33.84
8 84.69 30.3 14.96 0.44 69.73 29.86

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.48 6.53
2 1.90 1.96 94.84 97.80 12.29 12.76
3 2.70 2.90 90.09 96.67 17.50 18.93
4 3.19 3.78 79.73 94.48 20.65 24.66
5 2.19 4.47 43.76 89.33 14.17 29.15
6 2.21 5.07 36.86 84.56 14.32 33.11
7 2.59 5.92 36.94 84.62 16.75 38.65
8 2.41 6.68 30.08 83.45 15.59 43.57



(a) Computational time variation

Table 3.15 Computational time variation and performance of MIM solver for data set of 
size 882 x 882

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 219.34 216.86 0.00 0.00 219.34 216.86
2 116.88 110.17 1.11 0.03 115.77 110.14
3 84.12 75.30 1.96 0.04 82.16 75.26
4 66.71 57.27 2.09 0.12 64.62 57.15
5 97.55 47.77 11.68 0.21 85.87 47.56
6 99.29 40.86 8.46 0.25 90.83 40.61
7 86.49 35.44 7.29 0.32 79.20 35.12
8 82.51 31.55 10.49 0.44 72.02 31.11

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.27 6.34
2 1.88 1.97 93.83 98.42 11.77 12.48
3 2.61 2.88 86.92 96.00 16.35 18.27
4 3.29 3.79 82.20 94.67 20.62 24.02
5 2.25 4.54 44.97 90.79 14.10 28.79
6 2.21 5.31 36.82 88.46 13.85 33.66
7 2.54 6.12 36.23 87.42 15.90 38.81
8 2.66 6.87 33.23 85.92 16.67 43.59

Table 3.16 Computational time variation and performance of MIM solver for data set of 
size 1352 x 1352

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 790.48 787.98 0.00 0.00 790.48 787.98
2 409.22 399.79 1.72 0.02 407.50 399.77nJ 284.11 269.44 3.94 0.06 280.17 269.38
4 220.19 205.41 4.16 0.14 216.03 205.27
5 201.09 167.43 14.04 0.35 187.05 167.08
6 179.76 140.45 18.66 0.46 161.10 139.99
7 167.04 121.69 19.57 0.80 14T47 120.89
8 171.92 108.82 17.76 2.51 154.16 106.31J



(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.26 6.28
2 1.93 1.97 96.58 98.55 12.10 12.38
3 2.78 2.92 92.74 97.48 17.42 18.37
4 3.59 3.84 89.75 95.90 22.48 24.10
5 3.93 4.71 78.62 94.13 24.62 29.56
6 4.40 5.61 73.29 93.51 27.54 35.24
7 4.73 6.48 67.60 92.50 29.63 40.68
8 4.60 7.24 57.47 90.51 28.79 45.49

Table 3.17 Computational time variation and performance of MIM solver for data set of 
size 2312 x 2312

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 5524.44 3997.63 0.00 0.00 5524.44 3997.63
2 3114.43 2007.07 42.19 0.03 3072.24 2007.04
3 2164.64 1348.66 53.23 0.21 2111.41 1348.45
4 1634.28 1012.74 59.91 0.44 1574.38 1012.30
5 2126.91 827.82 82.14 0.86 2044.77 826.96
6 1687.16 697.32 73.21 1.29 1613.96 696.03
7 1462.59 602.21 72.71 1.77 1389.88 600.44
8 1289.62 530.21 80.04 2.46 1209.58 527.75

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.48 6.19
2 1.77 1.99 27.06 99.59 7.94 12.33
3 2.55 2.96 25.96 98.80 11.43 18.34
4 3.38 3.95 25.79 98.68 15.14 24.43
5 2.60 4.83 15.85 96.58 11.63 29.88
6 3.27 5.73 16.65 95.55 14.66 35.48
7 3.78 6.64 16.47 94.83 16.91 41.08
8 4.28 7.54 16.34 94.25 19.18 46.66



fable 3.18 Computational time variation and performance of MIM solver for data set of 
size 3362 x 3362

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 12245.14 12092.82 0.00 0.00 12245.14 12092.82
2 6131.13 6065.80 13.24 0.12 6117.89 6065.68
3 4130.53 4054.96 29.01 0.29 4101.52 4054.67
4 3176.20 3069.75 69.24 0.93 3106.96 3068.82
5 3968.67 2503.82 115.67 1.70 3853.00 2502.12
6 3418.15 2084.11 138.58 3.17 3279.57 2080.94
7 3016.27 1798.20 196.98 3.44 2819.29 1794.76
8 2156.61 1595.05 90.36 3.89 2066.25 1591.16

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.21 6.29
2 2.00 1.99 99.86 99.68 12.40 12.54
3 2.96 2.98 98.82 99.41 18.41 18.75
4 3.86 3.94 96.38 98.48 23.94 24.77
5 3.09 4.83 61.71 96.59 19.16 30.37
6 3.58 5.80 59.71 96.71 22.25 36.49
7 4.06 6.72 58.00 96.07 25.21 42.29
8 5.68 7.58 70.97 94.77 35.26 47.68

Table 3.19 Computational time variation and performance of MIM solver for data set of 
size 4232 x 4232

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 24039.08 23984.18 0.00 0.00 24039.08 23984.18
2 12781.28 12013.02 21.28 0.14 12760.00 12012.88
3 9370.52 8034.54 47.26 0.37 9323.26 8034.17
4 7143.15 6161.49 54.12 1.28 7089.03 6160.21
5 8593.55 5055.69 208.53 . 2.59 8385.02 5053.10
6 4971.59 4180.78 179.68 5.17 4791.91 4175.61
7 4058.18 3602.92 271.61 5.19 3786.57 3597.73
8 5060.32 3229.96 301.42 6.60 4758.90 3223.36



(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.31 6.32
2 1.88 2.00 94.04 99.83 11.87 12.62
3 2.57 2.99 85.51 99.50 16.18 18.88
4 3.37 3.89 84.13 97.31 21.23 24.61
5 2.80 4.74 55.95 94.88 17.65 30.00
6 4.84 5.74 80.59 95.61 30.51 36.28
7 5.92 6.66 84.62 95.10 37.37 42.09
8 4.75 7.43 59.38 92.82 29.97 46.95

(a) Variation in Real time Speedup

(b) Variation in User time Speedup

Fig. 3.15 Variation in Speedup for MIM solver for various data sets



Iii Fig. 3.15 (a) variation in Real time Speedup for various data sets under consideration is 

shown. It can be observed that this variation is very abrupt whereas User time Speedup 
variation for various data sets is smooth and constantly increasing (see Fig. 3.15 (b)). One 

important observation can be made that is, as the data size increases the corresponding 

User time Speedup for a particular number of processor also increases. This indicates that 

solver performance improves with increasing data size. The User time Speedup of 7.5 

(approximately) was achieved at eight number of processors, which is very close to the 

Ideal Speedup. After observing Tables 3.15 to 3.20, it can be seen that the efficiency of 

the solver reduces by small amount with increase in number of processors. A speed of 

nearly 50 (approximately) millions of floating point operations per second was achieved 

at eight number of processors. In general, this method performed well as compared to the 

other two methods discussed earlier.

3.5 EFFECT OF USER ACTIVITIES ON COMPUTATIONAL TIME

From the computational time results presented in the above section, it can be observed 
that the variation in components of computational time measured in terms of Real time is 
very abrupt. It was also observed that computational time components measured in terms 

of Real time during the study were not same for the same code is executed several times 

for the same data. This may be because of activities carried out by several users 

connected to PARAM 10000. To observe this effect, a small study was carried out. In this 

study same data (set of 870 equations) was analyzed by different users at the same time 

with the same number of processors by Matrix Inversion Method parallel solver. For all 

these users, different components of computational time were measured with increasing 

number of users.

Fig. 3.16(a) shows that, as the number of users increases, the average of Total time (RT), 

measured by all the users using subroutine MPI_Wtime. also increases. It can also be 

observed that the average of Total time (UT), measured by all the users using developed 

subroutine (see section 3.1), remains almost constant and does not get affected by 

increase in number of users connected. This is quite obvious because the number of 

computations carried out by processors do not change with increase in number of users. 

But. the average of Total time (RT), measured by all the users, increases with increase in



(a) Typical variation in Total time with number of users

(b) Typical variation in Communication time with number of users

Fig. 3.16 Typical variation in Total time and Communication time with number of users



number of users because of increase in the computational load assigned to each of the 

processors.

From Fig. 3.16(b), it can be seen that as the number of users increases, the average of 

Communication time (RT), measured by all the users using subroutine MPI_Wtime, also 

increases. Whereas the average of Communication time (UT), measured by all the users 
using developed subroutine, remains almost constant. Very little variation (in 

milliseconds) may be observed, which is very small as compared to overall process that 

consumes several seconds and hence can be neglected.

3.6 COMPARISON OF PARALLEL SOLVERS

Three parallel solvers discussed in previous sections performed in different manner and 

the comparison of these solvers in context of their performance should be scrutinized to 

select the best parallel solver for its implementation in finite element analysis. The main 

parameters for comparing parallel solvers are computational time and Speedup. In Gauss 
Seidel Method, Total time (RT and UT) increases with increase in number of processors. 
Real time Communication is mainly responsible for such increase in Total time. Since 

this method is Iterative so the number of iterations fully dependent on data type and initial 

guess. Therefore this method cannot be used for faster processing.

The numerical procedure of Gauss Elimination Method and Matrix Inversion Method is 

quite identical. In GEM, only lower triangle elements of matrix are converted into zero 

whereas in MIM except diagonal elements, all are converted into zero. This shows that 

GEM requires lesser computations as compared to the MIM. This is also reflected when 

Total time (UT) is observed for both the method for all data sets under consideration (see 

Tables 3.8 to 3.19). The only problem with GEM is that the sequential process of 

calculation of unknowns. In this process, only one processor remains active and rest all 

processors remain idle. Because of such sequential procedure. Total time (RT) increases 
with increase in number of processors. One can also observe that the Communication 

time (RT) is more for GEM as compared to MIM. One of the major drawbacks of GEM 

and MIM is that both fail to give solution, if any of the diagonal elements turns into zero.
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Fig. 3.17 Performance comparison of three solvers for different data sizes when four 
processors are used
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Fig. 3.18 Performance comparison of three solvers for different data sizes when eight 
processors are used



Figure 3.17 and 3.18 show performance of three methods for different data sets when four 
and eight processors are used. Figure 3.17 (a) and 3.18 (a) show the performance of all 
these solvers based on Real time whereas Figure 3.17 (b) and 3.18 (b) show the 

performance based on User time. From Fig. 3.17 (a) and 3.18 (a) it can be observed that 

the performance of these solvers is uneven. User activities are mainly responsible for such 

uneven variation. It can be observed that Real time Speedup of MIM is highest for all 

data sets. It is followed by Real time Speedup of GEM. Similar variation can also be 

observed for all number of processors for all data sets under consideration. For User time 

Speedup, it is found that GEM shows highest Speedup (see Fig. 3.17 (b) and 3.18 (b)). It 

can also be observed for GEM that User time Speedup improves with increase in data 

size. It is followed by User time Speedup achieved by MIM. This Speedup remains 
constant irrespective of data size.

3.7 COMPARISON OF C AND FORTRAN77

For programming in MPI on parallel computers, C and FORTRAN77 (F77) are very 

commonly used as programming languages on supercomputer PARAM 10000. Therefore 
it is essential to study the performance of both the languages. From section 3.5 it is very 

clear that Matrix Inversion Method parallel solver is the most efficient solver among all 

the developed solvers. Therefore this solver is also developed in FORTRAN77 language. 

Three data sets containing 870, 1226 and 1722 linear equations taken from linear elastic 

finite element analysis (see Chapter 4) were solved with the help of this solver and the 

computational time variation is obtained. The same data sets were also analyzed using 

same solver developed in C language and the results are compared. According to section 

3.4, users activities affect Real time; therefore User time is also measured and considered 

as a main parameter for comparison. Table 3.20 to 3.22 shows the computational time 

results obtained by both the solvers for the data sets under consideration. It contains the 

Total time (RT and UT) obtained by parallel solvers developed using C and 

FORTRAN77 programming languages.

From Tables 3.20 to 3.22, it can be observed that the Total time (RT and UT) reduces 

with increase in number of processors. Such variation is observed for both the solvers 

developed using C and FORTRAN77 languages. One can observe that. Total time (RT)



(a) Computational time variation

Table 3.20 Computational time variation and performance of C and FORTRAN77 codes 

for data set of size 870 x 870

1 No. of 
processors

Total (RT) Total (UT)
C F-77 F-77 / C C F-77 F-77 / C

1 203.74 312.77 1.54 202.57 311.38 1.54
2 111.30 171.70 1.54 105.58 165.84 1.57
3 83.57 118.78 1.42 71.81 111.25 1.55
4 62.93 92.24 1.47 54.12 83.77 1.55
5 93.07 139.08 1.49 44.28 69.40 1.57
6 86.18 132.45 1.54 38.38 60.30 1.57
7 76.36 113.70 1.49 33.34 51.38 1.54
8 73.99 101.30 1.37 29.32 45.68 1.56

0?) Performance of C code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.48 6.52
2 1.83 1.92 91.53 95.93 11.86 12.50
3 2.44 2.82 81.26 94.03 15.80 18.38
4 3.24 3.74 80.94 93.57 20.98 24.39
5 2.19 4.57 43.78 91.50 14.18 29.81
6 2.36 5.28 39.40 87.97 15.32 34.39
7 2.67 6.08 38.11 86.80 17.29 39.59
8 2.75 6.91 34.42 86.36 17.84 45.02

(c) Performance of FORTRAN77 code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.22 4.24
2 1.82 1.88 91.08 93.88 7.69 7.96
3 2.63 2.80 87.77 93.30 11.11 11.87
4 3.39 3.72 84.77 92.93 14.31 15.76
5 2.25 4.49 44.98 89.73 9.49 19.02
6 2.36 5.16 39.36 86.06 9.97 21.89
7 2.75 6.06 39.30 86.58 11.61 25.69
8 3.09 6.82 38.60 85.21 13.03 28.90



(a) Computational time variation

Table 3.21 Computational time variation and performance of C and FORTRAN77 codes 
for data set of size 1226 x 1226

No. of i processors
Total (RT) Total (UT)

C F-77 F-77 / C C F-77 F-77 / C
' 1 593.21 793.84 1.34 589.80 789.03 1.34
i 2 535.73 406.31 0.76 297.37 401.38 1.35
! 3 500.38 524.83 1.05 202.97 270.47 1.33
i 4 336.48 219.44 0.65 154.38 205.21 1.33
! 5 287.62 290.34 1.01 126.57 168.10 1.33
! 6 265.88 178.08 0.67 108.55 137.72 1.27

7 233.18 243.42 1.04 92.19 123.10 1.34
8 217.44 155.59 0.72 81.41 107.03 1.31

(b) Performance of C code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.38 6.41
2 1.11 1.98 55.36 99.17 7.06 12.72
3 1.19 2.91 39.52 96.86 7.56 18.64
4 1.76 3.82 44.07 95.51 11.24 24.50
5 2.06 4.66 41.25 93.20 13.15 29.89
6 2.23 5.43 37.19 90.56 14.23 34.85
7 2.54 6.40 36.34 91.40 16.22 41.03
8 2.73 7.24 34.10 90.56 17.40 46.46

(c) Performance of FORTRAN77 code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 4.76 4.79
2 1.95 1.97 97.69 98.29 9.31 9.42
3 1.51 2.92 50.42 97.24 7.21 13.99
4 3.62 3.84 90.44 96.12 17.24 18.43
5 2.73 4.69 54.68 93.88 13.03 22.50
6 4.46 5.73 74.30 95.49 21.24 27.47
7 3.26 6.41 46.59 91.57 15.54 30.73
8 5.10 7.37 63.78 92.15 24.31 35.34



(a) Computational time variation

Table 3.22 Computational time variation and performance of C and FORTRAN77 codes 
for data set of size 1722 x 1722

No. of 
processors

Total (RT) Total (UT)
C F-77 F-77 / C C F-77 F-77 / C

1 1668.21 2652.37 1.59 1660.28 2460.32 1.48
2 827.53 1463.42 1.77 813.31 1451.27 1.78
3 566.68 965.51 1.70 547.75 855.86 1.56
4 434.30 708.08 1.63 414.77 647.16 1.56
5 384.58 866.44 2.25 342.44 530.40 1.55
6 344.83 806.95 2.34 286.45 445.00 1.55
7 306.18 453.79 1.48 247.44 378.54 1.53
8 307.26 422.55 1.38 219.90 338.11 1.54

(b) Performance of C code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 6.13 6.16
2 2.02 2.04 100.79 102.07 12.36 12.57
3 2.94 3.03 98.13 101.04 18.04 18.67
4 3.84 4.00 96.03 100.07 23.54 24.65
5 4.34 4.85 86.76 96.97 26.59 29.86
6 4.84 5.80 80.63 96.60 29.65 35.69
7 5.45 6.71 77.83 95.85 33.39 41.32
8 5.43 7.55 67.87 94.38 33.28 46.50

(c) Performance of FORTRAN77 code

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 3.85 4.16
2 1.81 1.70 90.62 84.76 6.99 7.05
3 2.75 2.87 91.57 95.82 10.59 11.95
4 3.75 3.80 93.65 95.04 14.44 15.80
5 3.06 4.64 61.22 92.77 11.80 19.28
6 3.29 5.53 54.78 92.15 12.67 22.98
7 5.84 6.50 83.50 92.85 22.53 27.01
8 6.28 7.28 78.46 90.96 24.20 30.24



for C code is significantly less at all number of processors for all the data sets under 
consideration as compared to FORTRAN77 code. Similar behavior can also be observed 
when Total time measured in term of User time is considered. The range of ratio of 

computational time measured by FORTRAN77 code and C code was observed to be from 

1.27 to 1.78 which clearly indicates that C code is faster than the FORTRAN77 code. 

This comparison is made on the basis of User time due to its independency with the users 

activities.

It can be observed that the performance of both the solvers is quite well. Both the solvers 

achieved a User time Speedup of 7.5 (approximately) for all data sets under consideration 

at eight number of processors. The reduction in User time efficiency is very slow with the 
increase in number of processors for both the solvers. Millions of floating point 

operations per second measured for both the solvers increases with the increase in number 

of processors. One can observe that MFLOPS measured by C code is on higher side as 

compared to the MFLOPS measured by FORTRAN77 code at every number of 

processors.

3.8 COMMUNICATION MECHANISMS

In the parallel computing technique, the Communication time plays an important role. 

The communication between the processors can be established by calling few readymade 

subroutines available in MPI library. These subroutines are based on two communication 

mechanisms i.e. Blocking Communication and Non-blocking Communication [3]. 
Blocking communication mechanism is used in all the parallel codes explained earlier. To 

study these mechanisms and their effect on communication time, both the communication 

mechanisms are incorporated in the Matrix Inversion Method parallel solver. The 

parallelization strategy for both the communication mechanisms was kept same. To 

incorporate both communication mechanisms, few subroutines MPI_SEND and 

MPI_RECV were changed to MPI_ISEND and MPI_IRECV. Solution of set of linear 
equation of size 870 was obtained by both the codes written in C language. The 

Communication time was measured in term of Real time and User time.

Table 3.23 shows values of Communication time (RT and UT) for data sets under 

consideration. It can be observed that as the number of processors increases, the



Communication time also increases correspondingly. It can also be observed from this 

table that both communication mechanisms have similar performance. The effect of 
communication mechanisms on Communication time is not significant. In the presented 

algorithm of matrix inversion process, the major part of communication was carried out 

by subroutine called MPI_BCAST. This may be one of the reasons of finding the same 

communication pattern by both the communication mechanisms. The study highlights 

that any of the communication mechanism can be adopted for data communication for the 

Matrix Inversion Method parallel solver.

Table 3.23 Comparison of two communication mechanisms

No. of 
processors

Communication (RT) Communication (UT)
Blocking Non-Blocking Blocking Non-Blocking

1 0.00 0.00 0.00 0.00
2 0.74 1.49 0.01 0.01
3 1.68 2.75 0.05 0.04
4 1.86 3.17 0.17 0.14
5 4.68 3.80 0.20 0.18
6 7.04 4.53 0.33 0.27
7 7.56 4.65 0.40 0.37
8 8.11 6.11 0.37 0.38

Table 3.24 Comparison of C and FORTRAN77 for two communication mechanisms

No. of 
processors

Communication (RT) in C Communication (RT) in FORTRAN77
Blocking Non-Blocking Blocking Non-Blocking

1 0.00 0.00 0.00 0.00
2 2.04 2.04 0.10 0.64
3 30.14 30.14 0.38 0.84
4 8.33 8.33 0.60 0.83
5 15.25 15.25 2.61 3.03
6 14.22 14.22 3.50 7.97
7 12.85 12.85 4.68 5.25
8 13.43 6.16 7.99 4.46

Both the communication mechanisms were also incorporated in FORTRAN77 code. A 

data set of size 1226 was once again analyzed using solvers developed in C and 

FORTRAN77 languages with both the communication mechanisms. Table 3.24 shows the 

Communication time (RT) obtained by both the codes. It can be observed that very little 

variation exists in Communication time obtained using both the mechanisms for both the 



languages. The Communication time is lower for FORTRAN77 solver as compared to the 
Communication time measured for C solver.

3.9 MODIFIED MATRIX INVERSION SOLVER

Now it is clear that the Matrix Inversion Method is the most suitable method among all 

the methods discussed. Therefore Matrix Inversion Method parallel solver was once again 

developed using C language with blocking type of communication. Modifications were 

incorporated in such a way in the previously developed Matrix Inversion Method parallel 
solver, so that it can give the inversion of the matrix generated exclusively in finite 

element analysis in less time. It was observed that, stiffness matrix developed in finite 
element analysis contains large number of zero elements. All the elements in lower and 

upper triangles were zero. In addition to this few elements in the bandwidth of the global 

stiffness matrix were also zero (see Fig. 3.19). One can observe that, major part of 

stiffness matrix is identical to an Identity matrix. Therefore, operations in this region can 

be skipped to save huge amount of computations.

In Matrix Inversion Method, it was observed that the bandwidth does not affect the 

number of computations if the computations at the elements having zero values are 

skipped. For the discretized finite element domain containing large number of elements, it 

is very difficult to control the bandwidth. It was also observed that, for problems of large 

bandwidth, the number of elements having zero value inside the bandwidth were more as 

compared to elements having non-zero value. Therefore by using Matrix Inversion 

Method, significant number of computations can be saved. This shows the suitability of 

the Matrix Inversion Method for solving stiffness equation in finite element analysis.

3.9.1 Parallel Implementation

Initially all processors were given their ranks (starting from zero to seven). After that the 

range of data to be handled by each processor was decided. If data distribution was not 

even, then the additional data was distributed to the processors with lower ranks. After 

proper data distribution among the processors, an Identity matrix [/] of size [j] was 

created by all processors. In the process of matrix inversion, column wise operations were
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Fig. 3.19 Stiffness matrix and Identity matrix

Global P {Number of Processors}
n {Number of Equations}
My Rank {Rank of the Processor} 
Rank {Rank of processor holding current row}
start {Flag indicating starting row number for each processor} 
end {Flag indicating ending row number for each processor} 
i {Variable indicating current row}
[I] {Matrix indicating inverse of matrix [A]}

for all Pi where 0 < i < P do
Set start 
Set end 

for i = 0 to n-\ step 1 
if diagonal of [A] । = 1.0 

continue 
else

Set diagonal element of [A], = 1.0 
Change elements of matrix [I], 

endif 
for all Pi where 0 < i < P do 

Find the Rank of current row 
If My Rank = Rank 

Broadcast current row 
endif 

endfor 
for j = start to end step I

if [A] jj 0.0
Change non-diagonal element of [A] ,j = 0.0 
Change elements of matrix [I] > j 

endif
endfor

endfor
for i = start to end step 1

Compute {x} । 
endfor
for all Pi where 0 < i < P do

Broadcast {x}, to All Processor 
endfor

Fig. 3.20 Parallel algorithm for Modified Matrix Inversion Method



carried out. Every non-diagonal element of matrix [/l] was converted to zero and every 

diagonal element of matrix [/l] was made unity. While doing this, the operations were 

skipped at locations where non-diagonal elements have zero value and diagonal element 

have unit value. This helped in reducing the number of computations.

Whatever operations were carried out on matrix [j], same operations were also carried 

out on matrix [/] simultaneously. Each processor operated only those rows, which were 

designated to it to achieve less computational time. After finding the inverse of matrix 

[/l], the unknown vector {%} was calculated by multiplying [j]'1 with {5}. At this 

juncture, each processor was having elements of vector {X} those belong to its share. 

Then each processor broadcasted these elements of vector {X} to the all other processors 

so that every processor should have complete vector {jf}. Figure 3.20 shows the parallel 

algorithm for Modified Matrix Inversion Method.

3.9.2 Computational Time Results

Based on the above-discussed algorithm, a parallel solver is developed. Data of size 1226 

x 1226 generated from finite element analysis is solved by this developed solver. 

Computational time results were generated and compared with the results of the original 

solver developed earlier in the Table 3.25. One can observe from Table 3.25(a) that Total 

time (RT and UT) reduces drastically when modified solver was used. One can also 

observe that for single processor nearly 67% of User time as well as Real time can be 

saved by using the modified solver. As the number of processors increases the percentage 

saving in both time components reduces. The percentage saving in Total time (RT and 

UT) reduces up to 29% and 43% respectively when eight processors were employed.

Sudden reduction in Total time (RT) can be observed from one processor to four 

processors. It can also be observed that after four processors, reduction in Total time (RT) 

is gradual but insignificant. It can also be observed that variation of reduction in 

percentage saving in User time with increase in number of processor is continuous, 

whereas in case of Real time the variation is abrupt (sudden fall of percentage saving at 

four processors). The user activities are mainly responsible for such variations.



Tabic 3.25 Comparison of Modified and Original solver based on time results and 

Speedup for data size 1226 x 1226

(a) Comparison based on time results

No. of 
processors

Modified Solver Original Solver % Saving

Total (RT) Total (UT) Total (RT) Total (UT) Total (RT) Total 
(UT)

1 189.86 188.51 578.16 575.42 67.16 67.24
2 173.76 109.30 299.72 294.14 42.03 62.84
3 136.06 90.94 208.52 200.37 34.75 54.61
4 128.05 76.19 163.36 153.00 21.61 50.20
5 110.73 65.25 155.09 127.17 28.60 48.69
6 105.03 56.98 141.84 108.41 25.95 47.44
7 92.35 50.65 125.84 92.24 26.61 45.09
8 94.88 47.11 134.43 82.95 29.42 43.21

(b) Comparison based Speedup

No. of 
processors

Modified Solver Original Solver
Real User Real User

1 1.00 1.00 1.00 1.00
2 1.09 1.72 1.93 1.96
3 1.40 2.07 2.77 2.87
4 1.48 2.47 3.54 3.76
5 1.71 2.89 3.73 4.52
6 1.81 3.31 4.08 5.31
7 2.06 3.72 4.59 6.24
8 2.00 4.00 4.30 6.94

From Table 3.25 (b), it can be observed that the modified solver recorded less Speedup as 

compared to the original solver. Maximum User time Speedup of 4.0 can be observed at 

eight number of processors for modified solver, whereas maximum User time Speedup of 

6.94 can be observed at eight number of processors for original solver. One important 

observation can be made that at eight number of processors. User time saving is nearly 
43%, which is very significant even if Speedup is less.



Tabic 3.26 Computational time variation and performance of MMIM solver for data set of 
size 870 x 870

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 74.43 65.43 0.00 0.00 74.43 65.43
2 72.63 37.82 1.27 0.27 71.36 37.55
3 57.65 31.97 2.21 0.42 55.44 31.55
4 53.64 26.71 2.50 0.47 51.14 26.24
5 74.25 24.63 8.01 1.60 66.24 23.03
6 91.93 24.65 17.11 3.04 74.82 21.61
7 89.60 22.04 12.32 0.80 77.28 21.24
8 82.86 20.25 16.30 2.19 66.56 18.06

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 17.74 20.17
2 1.02 1.73 51.24 86.50 18.17 34.90
3 1.29 2.05 43.04 68.22 22.90 41.29
4 1.39 2.45 34.69 61.24 24.61 49.42
5 1.00 2.66 20.05 53.13 17.78 53.59
6 0.81 2.65 13.49 44.24 14.36 53.55
7 0.83 2.97 11.87 42.41 14.73 59.89
8 0.90 3.23 11.23 40.39 15.93 65.19

Table 3.27 Computational time variation and performance of MMIM solver for data set of 
size 882 x 882

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 137.81 119.31 0.00 0.00 137.81 119.31
2 90.31 74.64 1.25 0.26 89.06 74.38
3 71.77 50.89 2.06 0.38 69.71 50.51
4 60.20 37.06 3.08 0.44 57.12 36.62
5 74.76 30.39 9.38 0.89 65.38 29.50
6 92.44 25.33 17.23 | 2.11 75.21 23.22
7 93.41 20.10 12.96 0.83 80.45 19.27
8 85.42 17.33 12.19 0.89 73.23 16.44



(b) Performance

Table 3.28 Computational time variation and performance of MMIM solver for data set of 
size 1352 x 1352

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 9.98 11.53
2 1.53 1.60 76.30 79.92 15.23 18.43
3 1.92 2.34 64.01 78.15 19.16 27.03
4 2.29 3.22 57.23 80.48 22.85 37.11
5 1.84 3.93 36.87 78.52 18.40 45.26
6 1.49 4.71 24.85 78.50 14.88 54.30
7 1.48 5.94 21.08 84.80 14.72 68.43
8 1.61 6.88 20.17 86.06 16.10 79.36

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 485.53 427.38 0.00 0.00 485.53 427.38
2 325.57 277.72 2.72 0.54 322.85 277.18
3 315.42 199.85 11.84 1.04 303.58 198.81
4 202.45 142.68 5.92 0.97 196.52 141.71
5 280.53 114.40 29.68 2.24 250.84 112.16
6 278.77 92.14 37.50 2.68 241.27 89.46
7 282.56 75.55 43.06 2.22 239.50 73.33
8 257.83 62.29 39.15 3.23 218.68 59.06

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.19 11.58
2 1.49 1.54 74.57 76.94 15.20 17.82
3 1.54 2.14 51.31 71.28 15.69 24.77
4 2.40 3.00 59.96 74.88 24.45 34.69
5 1.73 3.74 34.62 74.72 17.65 43.27
6 1.74 4.64 29.03 77.31 17.76 53.72
7 1.72 5.66 24.55 80.81 17.52 65.52
8 1.88 6.86 23.54 85.76 19.20 79.47



(a) Computational time variation

Table 3.29 Computational time variation and performance of MMIM solver for data set of 
size 2312 x 2312

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 2099.93 2091.61 0.00 0.00 2099.93 2091.61
2 1447.35 1422.24 7.65 1.46 1439.70 1420.78
3 1122.43 980.66 16.13 3.90 1106.30 976.76
4 941.80 733.01 21.57 4.23 920.23 728.78
5 736.37 576.02 42.51 4.02 693.86 572.00
6 1105.94 482.83 82.78 6.55 1023.16 476.28
7 1000.86 404.33 94.01 6.31 906.85 398.02
8 947.08 341.62 86.42 9.87 860.66 331.75

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 11.78 11.83
2 1.45 1.47 72.54 73.53 17.09 17.39
3 1.87 2.13 62.36 71.10 22.04 25.23
4 2.23 2.85 55.74 71.34 26.27 33.75
5 2.85 3.63 57.03 72.62 33.59 42.95
6 1.90 4.33 31.65 72.20 22.37 51.24
7 2.10 5.17 29.97 73.90 24.72 61.18
8 2.22 6.12 27.72 76.53 26.12 72.41

Table 3.30 Computational time variation and performance of MMIM solver for data set of 
size 3362 x 3362

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 7608.38 6450.98 0.00 0.00 7608.38 6450.98
2 6499.82 4741.81 69.59 3.57 6430.23 4738.24
J 3412.81 3113.75 61.64 17.36 3351.17 3096.39
4 2659.27 2313.98 65.92 21.91 2593.35 2292.07
5 2290.78 1830.45 103.87 6.10 2186.91 1824.35
6 1936.09 1496.80 81.48 11.57 1854.61 1485.23
7 1734.28 1253.43 90.09 12.81 1644.19 1240.62
8 1659.43 1063.37 97.60 16.50 1561.83 1046.87
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(b) Performance

Table 3.31 Computational time variation and performance of MMIM solver for data set of 
size 4232 x 4232

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.00 11.79
2 1.17 1.36 58.53 68.02 11.70 16.04
3 2.23 2.07 74.31 69.06 22.28 24.42
4 2.86 2.79 71.53 69.70 28.60 32.86
5 3.32 3.52 66.43 70.49 33.20 41.55
6 3.93 4.31 65.50 71.83 39.28 50.81
7 4.39 5.15 62.67 73.52 43.85 60.67
8 4.58 6.07 57.31 75.83 45.83 71.51

(a) Computational time variation

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 14695.15 12883.19 0.00 0.00 14695.15 12883.19
2 9716.18 8750.64 34.96 8.71 9681.22 8741.93
3 8676.87 6282.33 89.55 19.88 8587.33 6262.45
4 6042.83 4796.81 63.98 13.27 5978.85 4783.54
5 5839.82 3807.58 185.27 16.33 5654.54 3791.25
6 5624.08 3149.25 181.61 19.28 5442.47 3129.97
7 5182.14 2669.59 253.45 32.05 4928.69 2637.54
8 4197.98 2246.67 197.73 30.96 4000.24 2215.71

(b) Performance

No. of 
processors

Speedup Efficiency MFLOPS
Real User Real User Real User

1 1.00 1.00 100.00 100.00 10.32 11.77
2 1.51 1.47 75.62 73.61 15.61 17.33
3 1.69 2.05 56.45 68.36 17.48 24.14
4 2.43 2.69 60.80 67.14 25.10 31.62
5 2.52 3.38 50.33 67.67 25.97 39.83
6 2.61 4.09 43.55 68.18 26.97 r 48.16
7 2.84 4.83 40.51 68.94 29.27 56.81
8 3.50 5.73 43.76 71.68 36.13 67.50
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Fig. 3.21 Variation in Speedup for MMIM solver for various data sets



3.9.3 Solver Performance

To study the performance of the modified solver, several data sets taken from linear and 

non-linear finite element analysis problems were analyzed (see Chapter 4 and Chapter 5). 

Tables 3.26 to 3.31 show the different components of computational time measured in 
terms of Real time as well as User time. One can observe from these tables that Total time 

(RT and UT) reduces with increase in number of processors. Modified solver take 
significantly less time at every number of processors as compared to the original matrix 

inversion parallel solver (see Table 3.26 to 3.31). Figure 3.21 (a) shows Real time 

Speedup with number of processors for different data sets of various sizes. It can be 

observed that maximum Real time Speedup of 5 (approximately) was obtained. User time 
Speedup variation with number of processors for different data sets is shown in Fig. 3.21 

(b). It can be observed that User time Speedup remains close to Ideal Speedup all nearly 

all data sets of various sizes.

3.10 SUMMARY

In this chapter, implementation of parallelization techniques in finite element analysis is 

presented. Initially the chapter discusses various components of computational time and 

the techniques to measure them by implementing timers in the computer codes. It also 

highlights the necessity of parallel computing technique in finite element analysis. It 

shows that the process of solving linear equations generated in finite element analysis 

requires major part of computational time. Hence parallel solver is necessary to reduce 

the computational time in finite element analysis.

The chapter also presents three different parallel solvers developed using three 

mathematical techniques namely Gauss-Seidel Method, Gauss Elimination Method and 

Matrix Inversion Method, ported on a platform of supercomputer PARAM 10000. It has 

been found that Matrix Inversion Method is the most suitable method. The effect of users 
activities on computational time is also presented and it was found that user activities 

significantly affect the computational time components measured in terms of Real time 

whereas components of computational time measured in terms of User time 

insignificantly affected by user activities.
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The comparison of C and FORTRAN77 languages in parallel solvers is also presented in 

this chapter. It was found that code written in FORTRAN77 language is slower than the 
similar code developed in C language. Two communication mechanisms namely 

Blocking and Non-Blocking arc also compared and it was found that both communication 

mechanisms are equally effective for establishing the communication between the 
processors.

At the end in this chapter, Modified Matrix Inversion Method parallel solver is presented 

for analyzing linear equations generated in finite element analysis exclusively. 
Comparison of Modified Matrix Inversion Method parallel solver with the original Matrix 

Inversion Method parallel solver is discussed. It was found that the modified solver is 

significantly faster than the original solver. The suitability of the Matrix Inversion 

Method for finite element analysis is also discussed in this chapter.



CHAPTER 4

ANALYSIS OF ANCHORAGE ZONE



4.1 INTRODUCTION

This chapter presents a detailed finite element analysis of anchorage zone in prestressed 

post-tensioned concrete beam. Initially basics of two-dimensional linear elastic finite 

element analysis are discussed in brief. Using constant strain triangular elements and 

parallel solver discussed in section 3.7, a finite element computer code is developed on 

the platform of a supercomputer PARAM 10000. This code is employed for the analysis 
of anchorage zone stresses. The analysis of anchorage zone is carried out in two parts. In 

the beginning, stress distribution in anchorage zone is studied when concentric 

prestressing forces are applied. Distribution of transverse stresses, longitudinal stresses 

and shear stresses are obtained for different values of Poisson’s ratio (0.0-0.3) and ratio of 
loaded area and cross-section area of the beam (0.1-0.6). Effect of Poisson’s ratio on 
transverse tensile stress and bursting tensile force is studied. Effect of eccentricity of 

prestressing forces on transverse tensile stress and bursting tensile force is also studied. 

An expression to compute magnitude of bursting tensile force is developed and also 

compared with the existing results in the literature. Since the analysis was carried out on 

supercomputer PARAM 10000, so variation different components of computational time 
is also obtained, presented and discussed. The performance of the developed code is also 

studied by computing Speedup and Efficiency obtained on supercomputer PARAM 

10000.

4.2 PRESTRESSED POST-TENSIONED CONCRETE BEAM

The anchorage zone is defined as the end portion of prestressed post-tensioned concrete 

beam starting from the loaded face to the section at a distance of d (depth of the beam) 

measured along the axis of the beam. This zone can be subdivided into three zones 

namely local zone, bursting zone and spalling zone (See Fig. 4.1). Local zone is the zone 

that is located just ahead of the loaded plate along the axis of loading. In this zone the 

concrete is subjected to large compressive stresses. The local zone is instantaneously 

followed by the bursting zone. In this zone the concrete is subjected to higher tensile 

stresses, which may cause busting of concrete mainly along the axis of loading in this 

region. Generally, special reinforcement is provided in this zone to resist the bursting 

tensile force caused by these tensile stresses. Spalling zone is found near the free corners 

of the beam where also tensile stresses are developed but of lower magnitudes as
QI



compared to the stresses developed in the bursting zone. Magnitude of highest tensile 

stress in the spalling zone is usually smaller than the permissible tensile stress in the 
concrete; therefore no reinforcement is specially needed to resist these stresses.

Anchorage 
Zone

Fig. 4.1 Anchorage zone in prestressed post-tensioned concrete beam

4.3 REVIEW OF FINITE ELEMENT PROCEDURE

It is already seen that [32, 33] the stress variation in the anchorage zone is very complex, 

so to study this stress development, finite element method is used here. Following text 

covers the basics of linear elastic finite element analysis.

Fig. 4.2 Two-dimensional state of stress under equilibrium conditions
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Fig. 4.3 Forces acting on two-dimensional element on the boundary

4.3.1 Basic Equations of Structural Mechanics

Consider a deformable body in the state of equilibrium subjected to external forces and 

internal forces developed due to small deformations (see Fig. 4.2). It is assumed that the 

stresses are acting in their positive directions (as shown in the Fig. 4.2) It is also assumed 

that the stress variation is uniform throughout the body. Let X and Y denote body force 

components per unit volume of body along x and y directions. Solving forces in x and 

y directions we get

Ox dy
+ X = Q

(4.1)

dy dy
+ r = o

Taking moment about z axis and = 0, we get

Txy = TyX (4.2)

Equations 4.1 and 4.2 are equilibrium equations for two-dimensional stress distributions. 

These equations must be satisfied at all the points throughout the volume of the body. At 

the boundary, stress components must be in equilibrium with the external forces. From 

Fig. 4.3, solving forces in x and y directions we get



X = lax + mt„

where / = cos«, and m = sin a

Equation 4.3 represents the force boundary conditions in two-dimensional body in 
equilibrium condition.

The displacements at any given point in a deformable body can be described by its 

components u and v taken parallel to the cartesian coordinate axes x and y. The strains 

in the deformed body can be represented as partial derivatives of the displacement 

components w and v as follows

Equation 4.4 can be expressed in a matrix form as

(4.5)

It is assumed that the material obeys Hook’s law so stress components can be expressed 

as linear functions of strain components. For a linear elastic, isotropic and homogeneous 

material, the stress-strain relationship is given as

(l + v)(l-2v)

where E is Youngs Modulus and v is the Poisson’s Ratio.



Expression 4.6 can be rewritten in a reduced form as

H=[d]W (4.7)

where [d] is called as the material constitutive matrix.

4.3.2 Classification of Two-Dimensional Problems

Structural analysis using finite element analysis can be carried out by idealizing three- 
dimensional problems as two-dimensional problems based on their different geometric 

and stress conditions. These two-dimensional problems are classified as follows;

4.3.2.1 Plane Stress Problem

In plane stress problem, one of the dimensions is very small as compared to the other two 

dimensions normal to it. Figure 4.4 shows the example of plane stress condition where a 
thin plate is subjected to external loading. The thickness of plate is very small as 

compared to the other two dimensions. In such cases, stress components a., and 

are zero that means there is no stress variation across the thickness of the plate. Here crx, 

crr and rxy are functions of x and y only. In plane stress problems, expression 4.6 can 

be expressed as

(4.8)

Fig. 4.4 Plane stress example: thin plate subjected to external loading
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43.2.2 Plane Strain Problem

Plane strain problem includes a long deformable body whose geometry and loading is 

almost constant in longitudinal direction. Figure 4.5 shows an example of plane strain 

problem where a cross section of dam is subjected to external water pressure. It is 
assumed that rigid body movement in z direction does not cause strain in z direction. 

Therefore strain components s., yX2 and y are zero that indicates displacement u and 

v are the functions of x and y only and independent of z. In plane strain problems, 

expression 4.6 can be expressed as

(4.9)

Fig. 4.5 Plane strain example: cross section of dam subjected to external water pressure

4.3.23 Axisymmetric Problem

When a solid is subjected to axially symmetric loadings, the deformation process could be 
idealized as axisymmetric. Solid circular column subjected to external pressure is an 

example of axisymmetric problem as shown in Fig. 4.6. In axisymmetric stress condition, 

an additional stress component crg along the circumferential direction is included. The 

strain displacement relationship is expressed as



du 
dr

dv
dz

dv du — + — 
dr dz

(4-10)u
0 r

The stress-strain relationship in axisymmetric problems can be expressed as

(1 - v) v v 0 £r
(J. E v (1 - v) v 0 £:

°O “(l+v)(l-2v) v v (1 - v) 0 £0
T n 0 0 0 (1 - 2v)/2_

(4.H)

Fig. 4.6 Axisymmetric example: circular column subjected to pressure

4.3.3 Element Stiffness Matrix

By applying principle of virtual displacement, the equilibrium equations can be rewritten 

in the reduced form as

[k]{d}={Q} (4.12)

where {d} and {Q} are nodal displacement and nodal load vectors. Matrix [k] is called as 

stiffness matrix of element and can be written in following form

ffJlBHDlBjrfr
(4.13)

where [b] is called as the strain displacement matrix that depends on type of element and 

degree of displacement at nodes.
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4.3.4 Constant Strain Triangle (CST) Element

As the name indicates, it is a triangular element in which the strain distribution is uniform 

throughout the element. It is one of the basic element used in finite element analysis (see 
Fig. 4.7). The strain displacement matrix for CST can be derived as

%2 0 %3 0
o y2 o r3 
r3 %2 y} x,

(4.14)

where

=4i(y2-y3). ^=rA(yl-y3)> x^-x.-x, 
lJl PI

= r7|(x2"’ ^2 = ~x3)» =~^i ~
PI PI

and

| J | = (x, -x3)(y2 -y3)-(x2 -x3)(y, -y3)

(4.15)

(4.16)

where I J | is the Jacobian matrix that is twice of the area of the triangle.

Fig. 4.7 Constant strain triangular element



4.3.5 Elemental Stress and Strain Computations

Stresses can be computed by using Eq. 4.7. Elemental strains can be computed by 
multiplying strain displacement matrix of a particular element by nodal displacement. 
Mathematically it can be written as

{«} = [B]{d} (4.17)

4.3.6 Solution Procedure

Structural analysis using finite element method can be carried out using following six 
steps.

1. Discretization of the problem domain.
2. Derivation of stiffness matrix for element used for problem discretization.
3. Assembling all local stiffness matrices into global stiffness matrix and generation of 

global nodal load vector by assembling local nodal load vectors.
4. Putting of boundary conditions in global equation.
5. Solving global equation to get the values of unknowns.
6. Computation of strains and stresses

4.4 METHODOLOGY

In the present study, the problem of anchorage zone in prestressed post-tensioned 
concrete beam is idealized as two-dimensional plane stress problem. A rectangular beam 
of unit thickness is considered. Length of beam is taken as twice of its depth. Finite 
element method is used to analyze this problem. The analysis of beam is carried out 
considering two cases: Case I - concentric prestressing and Case II - eccentric 
prestressing. Large number of constant strain triangular elements were used for the 
problem discretization so that proper stress variation can be achieved (These stresses are 
normalized by dividing them by average longitudinal stress (Pqavg))). This resulted in 
large computational time when single processor was used. Therefore a finite element 
computer code is developed incorporating parallel solver discussed in section 3.7. Figure 
4.8 (a) and 4.8 (b) show Case I and Case II problems respcctivelv.
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(a) concentric prestressing forces

(b) eccentric prestressing forces

Fig. 4.8 Idealized prestressed concrete beam

4.5 CASE STUDIES

The case studies include two types of prestressing conditions. In the first case study 

concentric prestressing force is considered while in second eccentric prestressing force is 

considered. The values of ratio of loaded area and cross-sectional area of the beam (k)

and Poisson’s ratio (v) are changed and their effect on bursting tensile force is studied. In 

the second case, effect of eccentricity on spalling zone stresses is studied.

4.5.1 Case I: Concentric Prestressing

Figure 4.8(a) shows the idealized prestressed concrete beam subjected to concentric 

prestressing forces. The beam is discretized three times using 1600. 1136 and 784 
constant strain triangular elements with 861, 613 and 435 nodes resulting in 1722, 1226 

and 870 unknown displacements respectively. Figure 4.9 shows the discretized beam with 

1136 elements and 613 nodes. The grade of concrete is taken as M45. To get correct 

results, the mesh is kept finer along the axis of loading and along the loaded face. The
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Fig. 4.10 Distribution of at along axis of loading for v = 0.0
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analysis of beam is carried out for different values of k and v. The value of k is varied 

between 0.1 to 0.6. As the value of v for M45 grade concrete is in the range of 0.0 to 0.3, 

so the value of v is considered in the same range during the analysis. The problem is then 

analyzed by changing values of v and k with the help of developed finite element 

computer code on the platform of PARAM 10000.

4.5.1.1 Transverse Tensile Stress Variation

Figure 4.10 shows the distribution of transverse tensile stress (at) for the different values 

of k for v = 0.0. One can observe that as the value of k increases the magnitude of 

maximum transverse tensile stress reduces. The position of maximum transverse tensile 
stress shifts along the axis of beam away from the loaded face as the value of k increases. 

Here it is clear that the position of the zero transverse tensile stress at(zero) shifts along the 

axis of beam and away from the loaded face as the values of k increase.

Figure 4.11 shows the comparison of distribution of transverse tensile stress (at) for value 
of k = 0.1. It can be observed that the magnitude of maximum transverse tensile stress 

(ot(max)) calculated by Guyon [34] is on extremely higher side. The stress distribution 

obtained by present investigation fairly matches with the distribution obtained by Iyengar 

(two-dimensional as well as three-dimensional) [36, 37].

For the higher values of k = 0.5 (see Fig. 4.12), the stress distribution obtained by present 
investigation matches well with the stress distribution obtained by Iyengar (two- 

dimensional) [36], whereas the stress distribution in three-dimensional analysis given by 

Iyengar [37] does not match with the stress distribution obtained by present investigation. 

The magnitude of maximum transverse tensile stress obtained by Iyengar (three- 
dimensional) [37] is nearly half of the maximum transverse tensile stress obtained by 

present investigation for the same value of v = 0.15 and k = 0.5.

Figure 4.13 shows the distribution of transverse tensile stress (ot) for various values of p 

= 0.2 (where p is the ratio of loaded depth and actual depth of beam, in present 

investigation k = p). The graph shows that for value of p = 0.2, the stress distribution 

obtained from present investigation match well with the stress distribution given by
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0.8

Fig. 4.11 Comparison of transverse tensile stress distribution along the axis of loading for 
k = 0.1

Fig. 4.12 Comparison of transverse tensile stress distribution along the axis of loading for 

k = 0.5
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Fig. 4.13 Comparison of transverse tensile stress distribution along the axis of loading for

P = 0.2

x(
av

g)

Fig. 4.14 Comparison of transverse tensile stress distribution along the axis of loading for

p = 0.5
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Iyengar (two-dimensional) [36]. The stress distribution given by Yettram and Robbins 
[42] and Iyengar (three-dimensional) [37] do not match with the stress distribution 
obtained from present investigation. The magnitude of maximum transverse tensile stress 

given by Yettram and Robbins [42] is nearly 1.5 times and given by Iyengar (three- 
dimensional) [37] is nearly 2.5 time of the magnitude of maximum transverse tensile 

stress obtained by present investigation. One can also observe that the location of 
maximum transverse tensile stress given by Yettram and Robbins [42] and Iyengar (three- 
dimensional) [37] is closer to the loaded face as compared the location of maximum 

transverse tensile stress given by Iyengar (two-dimensional) [36] and by present 
investigation.

For value of P = 0.5, the stress distribution obtained by present investigation match well 

with the distribution given by Iyengar (two-dimensional) [36], Yettram and Robbins [42] 

and Iyengar (three-dimensional) [37] (see Fig. 4.14).

Figure 4.15 shows the position of zero transverse stress CTt(zcro) for different values of k. 
The results of Iyengar (two-dimensional) show that the position of the zero transverse 

stress CTt(zcro) is nearest to the loaded surface for all possible values of k. The present 

analysis shows that the location of zero transverse stress at(zcro) falls slightly ahead than 

the Iyengar’s (two-dimensional) analysis, whereas three-dimensional investigations by 

Yettram and Robbins as well as Iyengar (three-dimensional) indicate the location of zero 

transverse stress Qt(zero) further ahead as compared to the two-dimensional analysis. 

Experimental investigation by Zielinski and Rowe [40] shows that there is very little 

variation in position of zero transverse stress.

Figure 4.16 shows the variation of maximum transverse tensile stress Ot(max) for different 

values of k. The results show that the location of maximum transverse tensile stress Gt(max) 

obtained by present investigation match well with the three-dimensional analysis of 

Yettram and Robbins. Among all the results the location of maximum transverse tensile 

stress CTt(max) presented by Iyengar’s (two-dimensional) is nearest and Iyengar (three- 

dimensional) is farthest from the loaded face. The experimental results of Zielinski and 

Rowe show very little variation in position of maximum transverse tensile stress crt(max)-
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Fig. 4.16 Position of maximum Ot(maX) along the axis of loading
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Fig. 4.17 Magnitude of maximum transverse tensile stress crt(inaX) along the axis of loading
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Fig. 4.18 Transverse stress distribution on loaded face (v = 0.15)



Figure 4.17 shows the variation in magnitude of maximum transverse tensile stress Qt(max) 

for different values of k. This figure shows that the magnitude of maximum transverse 
tensile stress by present investigation is slightly less than magnitude of maximum 

transverse tensile stress of Iyengar’s (two-dimensional) analysis. On the other hand three- 
dimensional investigations by Iyengar, Yettram and Robbins give lower values of 

magnitude of maximum transverse tensile stress Qt(max)- Experimental investigations by 
Zielinski and Rowe shows that the variation in the magnitude of maximum transverse 

stress <Ji(max) is linear. The numerical values of maximum transverse tensile stress are also 

lowest among all the investigations.

Figure 4.18 shows the distribution of transverse stress along the loaded face for different 

values of k and v = 0.00. One can observe that the nature of transverse stress is 

compressive along the axis of loading. The nature of stress changes from compression to 

tension as we move towards top/bottom surface of beam from center of beam. Finally 

transverse stress reaches to zero at the top/bottom comer. This indicates existence of 
spalling zone in prestressed post-tensioned concrete beams. One can observe that area 
under tension reduces with the increase k. One can also observe that the magnitude of 
maximum transverse tensile stress along loaded face also decreases with increase in k.

4.5.1.2 Longitudinal Stress Variation

Figure 4.19 shows the variation in the longitudinal stress (ox) along the axis of loading for 

different values of k and v = 0.15. The results indicate that for smaller values of k the 

longitudinal stress (nx) is very high near the loaded end. This stress then slowly reduces 

and finally becomes almost constant after the anchorage zone, which satisfies the Saint 

Venant’s principle.

Figure 4.20 shows the variation in the longitudinal stress (ox) along the top/bottom 

surface of the beam for different values of k. It can be observed that the stress variation 
obtained from present investigation match well with the variation presented by Iyengar 

(two-dimensional). Figure 4.20 also indicates that the variation obtained by Iyengar 

(three-dimensional) do not match with variation obtained by two-dimensional analysis 

carried out by Iyengar [36]. One can also observe that, in Iyengar's three-dimensional
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Fig. 4.19 Distribution of longitudinal stress ax along axis of loading for different values 

of k and v = 0.15
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Fig. 4.20 Distribution of longitudinal stress ax along the top/bottom surface for different 

values of k
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Fig. 4.21 Distribution of shear stress along the loaded face for different values of k
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Fig. 4.22 Discretized prestressed concrete beam with 4800 elements and 2501 nodes 
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analysis ratio of longitudinal stress to average stress is nearly 0.5 at the distance of d from 
loaded face that does not satisfies Saint Venant’s principle.

4.5.1.3 Shear Stress Variation

Figure 4.21 shows the variation in shear stress along the loaded face for different values 
of k. One can observe that shear stress is zero at the center of loaded face. Then 
magnitude of shear stress increases and reaches to peak value. After that it starts reducing 

and its nature reverses. After reaching to the peak value, finally it becomes zero near the 
top/bottom comer of beam. It can also be observed that the magnitude of maximum shear 

stress reduces with increase in value of k. The point of contraflexture moves away from 
center of loaded face toward the top/bottom of beam as the value of k increases. Such 

type of variation confirms the existence of spalling zone.

4.5.2 Case II: Eccentric Prestressing

Figure 4.8(b) shows the idealized prestressed concrete beam subjected to eccentric 
prestressing forces. As the stress variation in eccentrically loaded prestressed concrete 
beam is very complex, the beam is discretized using 4800 constant strain triangular 
elements with 2501 nodes resulting in 5002 unknown displacements (see Fig. 4.22). The 

numerical value of Poisson’s ratio is considered as 0.15. The problem is then analyzed 

with changing values of eccentricity keeping value of k = 0.1 with the help of finite 

element computer code developed on the platform of PARAM 10000.

4.5.2.1 Transverse Tensile Stress Variation

Figure 4.23 shows the variation in ot along the axis of loading for different values of 

eccentricity for k = 0.1 and v = 0.15. It can be observed from this figure that as the 

eccentricity of prestressing force increases the magnitude of ot (ma.x) inside the anchorage 

zone also increases. One can observe that the location of maximum transverse tensile 

stress moves towards the loading face as the eccentricity of forces increases.
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Fig. 4.23 Variation in transverse tensile stress along the axis of loading for different 

values of eccentricity and k = 0.1

Fig. 4.24 Variation in transverse tensile stress along the loaded face for different values of

eccentricity and k = 0.1
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Fig. 4.25 Comparison of Gt (max) along loaded face and axis of loading for different values 

of eccentricity

Fig. 4.26 Contours of longitudinal stress at e = 0.8 and k = 0.1
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For e = 0.8

Fig. 4.27 Contours of transverse tensile stress for different values of eccentricity
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In Fig. 4.24, the variation of oy along the loaded face for different values of eccentricity is 

shown. It can be observed that as the value of eccentricity increases the magnitude of 

cFt(max) also increases. On the other hand, the magnitude of maximum transverse 

compressive stress (oC(max)) reduces with the increase in value of eccentricity. One can 

observe that considerable portion along the loaded face is subjected tensile stress, which 

indicates the region of spalling zone.

One very important observation can be made that the magnitude of ot(max) along loaded 

face is very much higher than the magnitude of o^max) along the axis of loading for 

eccentric prestressing forces (See Fig. 4.25). For example, at e = 0.8 the magnitude of 

^t(max) along loaded face is 2.57 which is almost three times if the magnitude of Qt(max) 

along the axis of loading (at(max) = 0.88). It can also be observed that, at(max) along loaded 

face increases rapidly with the increase in the value of e.

4.5.2.2 Stress Contours

Figure 4.26 shows that higher longitudinal stress concentration exists in the section just 
next to the area subjected to prestressing force (local zone). These stresses slowly spread 
in the whole beam cross-section as we move away from the loaded face and at the end of 

anchorage zone, it gets converted into uniform distribution.

Figure 4.27 shows the stress contours of transverse tensile stress for different values of 
eccentricity. It can be observed from this figure that the anchorage zone area under 

tensile stress is wider for lower eccentricity values, while for higher eccentricity values; 

the spalling zone area subjected to tensile stress is wider.

4.5.3 BURSTING TENSILE FORCE

The Bursting tensile force (Fbst) can be found by calculating the total area under the 
transverse tensile stress curves (See Fig. 4.10 and 4.23). For this purpose, commercial 

software AutoCAD is used. Transverse tensile stress distribution curves were plotted for 

different values of eccentricity, k and v. The area under these curves is measured by using
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Fig. 4.28 Variation of Fbst with v different values of k
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area command in AutoCAD and the variation of bursting tensile force is plotted in Fig. 
4.28 and 4.29.

It can be seen from Fig. 4.28 that bursting tensile force is higher for lower values of k. It 

can also be observed that bursting tensile force also varies with the Poisson’s ratio v. This 

variation is insignificant for higher values of k. For lower values of k, significant 
variation can be seen. It can be seen from Fig. 4.29 that Fbst decreases with the increase in 

value of eccentricity. The magnitude of maximum Fbst can be observed at concentric 

loading conditions (e = 0.0). It can be seen from Fig. 4.23 that the area under the 

transverse tensile stress curve reduces with increase in value of e, which ultimately 
results in reduction in bursting tensile force. Hence to insure the safety of the prestressed 
concrete beam, the effect of eccentricity can be ignored while computing the magnitude 

of bursting tensile force.

Multiple regression analysis was carried out to obtain the correlation between Fbst and v 

ignoring the effect of e (see table 4.1). The following two expressions were obtained

Fbst = Pk (0.239 - 0.267 k + 0.075 v) (4.18)

and

Fbst = Pk (0.229 - 0.238 k + 0.152 v - 0.22 k v) (4.19)

The R2 values obtained for equation 4.18 and 4.19 were 0.98 and 0.988 respectively. It 

can be noted that these equations also include the effect of Poisson’s ratio in calculation 

of Fbst which is ignored in the equation given in Indian Standard Code IS: 1343-1980 (Eq. 
4.20).

F. v-^ = 0.32-0.3^ (4 20)
rk y„

where,

^• = k
J’.,
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Table 4.1 Table showing magnitude of bursting tensile force for different values of k and 
v

?'\v 0.10 0.20 0.30 0.40 0.50 0.60

0.00 0.20 0.17 0.15 0.13 0.11 0.09
0.08 0.23 0.20 0.17 0.14 0.12 0.09
0.15 0.23 0.20 0.17 0.14 0.12 0.09
0.30 0.24 0.21 0.18 0.15 0.12 0.10

Fig. 4.30 Comparison of variation in bursting tensile force for different values of k

It can be seen that Eq. 4.19 is more accurate as compared to the Eq. 4.18. Hence Eq. 4.19 
is followed to compare the results with the available literature. The comparison of 

variation in Fbst for different values of k for a constant value of v = 0.15 is shown in Fig 

4.30. The magnitude of Fbst obtained by present investigation will always be lower than 

the magnitude of Fbst obtained using the equation given in the Indian Standard Code IS: 

1343-1980 for all values of k. It is clear from this figure that the magnitude of Fbst 

obtained by Iyengar (two-dimensional) is slightly higher and Iyengar (three-dimensional) 
is slightly lower than the magnitude of Fbst obtained by present investigation. Among all 
the investigations, the magnitude of FbSt obtained by Yettram and Robbins is the lowest 
and shows curvilinear variation.
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Table 4.2 Computational time variation for problem having size of global stiffness matrix

870 x 870

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 88.83 62.56 0.00 0.00 88.83 62.56
2 78.08 35.26 0.82 0.19 77.26 35.07
3 65.76 29.50 5.20 0.52 60.57 28.98
4 53.18 23.87 2.23 0.44 50.96 23.43
5 70.02 20.74 4.30 0.67 65.72 20.07
6 73.72 19.41 4.08 1.09 69.64 18.32
7 66.12 17.18 4.96 0.71 61.16 16.47
8 39.57 15.21 3.21 0.82 36.36 14.39

Table 4.3 Performance of parallelized FEM code problem having size of global stiffness 

matrix 870 x 870

No. of 
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.14 1.77 56.88 88.71
3 1.35 2.12 45.02 70.69
4 1.67 2.62 41.76 65.52
5 1.27 3.02 25.37 60.33
6 1.20 3.22 20.08 53.72
7 1.34 3.64 19.19 52.02
8 2.24 4.11 28.06 51.41

Table 4.4 Computational time variation for problem having size of global stiffness matrix

1226 x 1226

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 205.07 181.61 0.00 0.00 205.07 181.61
2 165.21 103.64 1.53 0.58 163.68 103.06
3 127.76 85.31 3.54 0.77 124.23 84.54
4 120.22 70.03 3.97 0.94 116.25 69.09
5 130.43 61.13 14.20 1.98 116.23 59.15
6 139.55 55.47 10.86 1.89 128.69 53.58
7 121.91 48.00 8.78 1.40 113.13 46.60
8 135.81 43.36 4.75 1.78 131.07 41.58
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fable 4.5 Performance of parallelized FEM code problem having size of global stiffness 

matrix 1226 x 1226

No. of 
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.24 1.75 62.06 87.62
3 1.61 2.13 53.50 70.96
4 1.71 2.59 42.65 64.83
5 1.57 2.97 31.44 59.42
6 1.47 3.27 24.49 54.57
7 1.68 3.78 24.03 54.05
8 1.51 4.19 18.87 52.36

Table 4.6 Computational time variation for problem having size of global stiffness matrix

1722 x 1722

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 845.08 841.90 0.00 0.00 845.08 841.90
2 630.55 623.85 3.31 0.97 627.25 622.88
3 472.25 459.60 10.28 1.67 461.97 457.93
4 374.47 363.43 8.38 2.28 366.09 361.15
5 320.40 301.00 10.54 2.10 309.85 298.90
6 283.94 259.53 11.76 3.64 272.18 255.89
7 252.17 225.90 14.39 2.49 237.79 223.41
8 467.54 203.46 28.65 4.06 438.89 199.40

Table 4.7 Performance of parallelized FEM code problem having size of global stiffness 

matrix 1722 x 1722

No. of 
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.34 1.35 67.01 67.48
3 1.79 1.83 59.65 61.06
4 2.26 2.32 56.42 57.91
5 2.64 2.80 52.75 55.94
6 2.98 3.24 49.61 54.07
7 3.35 3.73 47.87 53.24
8 1.81 4.14 22.59 51.72
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Table 4.8 Computational time variation for problem having size of global stiffness matrix

5002 x 5002

No. of 
processors

Total Comm Cal
Real User Real User Real User

1 22850.71 20821.39 0.00 0.00 22850.71 20821.39
2 15399.26 15305.83 89.59 32.75 15309.67 15273.08
3 11467.03 11316.55 138.44 45.12 1 1328.59 11271.43
4 9027.31 8884.88 151.80 48.76 8875.50 8836.12
5 7538.28 7328.22 133.22 28.35 7405.06 7299.87

Table 4.9 Performance of parallelized FEM code problem having size of global stiffness 

matrix 5002 x 5002

No. of 
processors

Speedup Efficiency
Real User Real User

1 1.00 1.00 100.00 100.00
2 1.48 1.36 74.19 68.02
3 1.99 1.84 66.42 61.33
4 2.53 2.34 63.28 58.59
5 3.03 2.84 60.63 56.83

4.6 COMPUTATIONAL TIME RESULTS

In the present investigation several analyses were carried out. Due to the numerous 
calculations in each analysis of the each analysis, the computational time consumption 
was very high. To save the computational time, the present analysis is carried out on 

supercomputer PARAM 10000. Present study is carried out on four different types of 

finite element meshes. These four meshes resulted in global stiffness matrices of size 
5002, 1722, 1226 and 870. Table 4.2 to 4.9 shows the computational time variation for 

these problems for different number of processors.

It can be observed that Total time (measured in terms of Real time as well as User time) 

reduces with increase in number of processors for all four different types of problems 

having different mesh sizes. One can observe that reduction in Total time measured in 

term of Real time is abrupt whereas smooth variation can be observed for Total time 
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measured in terms of User time. It can also be observed that the contribution of 
Communication time (measured in terms of Real time as well as User time) is very 
insignificant as compared to the Total time. Maximum User time Speedup of nearly 4.00 
and 50% reduction in User time can be seen at eight number of processors for all finite 
element meshes under consideration.

4.7 SUMMARY

An application of parallel computing technique for linear elastic finite element analysis is 
presented though this chapter. A problem of anchorage zone in prestressed post-tensioned 
concrete beam is analyzed on supercomputer PARAM 10000. Transverse tensile stress 

distribution is obtained for different values of k and v for concentric prestressing forces. 

This distribution is compared with the literature and found that obtained results match 

well with the literature. Longitudinal stress distribution and shear stress distribution is 
also obtained and discussed. Effect of eccentricity on transverse tensile stress is studied 

and it was found that magnitude of maximum transverse tensile stress in anchorage zone 
reduces with increase in eccentricity. Bursting tensile force variation is studied for 
concentric and eccentric prestressing forces and it was found that highest magnitude of 
bursting tensile force shall be obtained for concentric case only. Considering various 

parameters, an equation for computation of bursting tensile force is developed. This 

equation includes effect of load area ratio and Poisson’s ratio together. The results 

obtained from developed equation are compared with the literature and it was found that 

predicted results match well with the literature. Computational time results are also 
obtained for four different types of meshes used in present investigation. Reduction in 

computational time is achieved by employing multiple number of processor in present 

investigation. The performance of parallelized finite element code is also measured by 

calculating Speedup and Efficiency. Maximum User time Speedup of 4.00 with 50% 

Efficiency was achieved at eight number of processors for all mesh sizes under 

consideration.
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CHAPTER 5

FINITE ELEMENT FORMULATION FOR 
LARGE DEFORMATIONS AND CODE 

DEVELOPMENT



5.1 INTRODUCTION

In this chapter a non-linear parallel finite element code is developed using Modified 
Matrix Inversion Method parallel solver on the platform of supercomputer PARAM 
10000. The code is capable to carryout analysis of large deformation problems those 
could be idealized as two-dimenstional axisymmetric problem and plane strain problem. 
Flow formulation used in development of finite element code is described in detail. Two 
types of elements namely three noded triangular element and four noded rectangular 

element are used for discretizing the problem domain. Two case study problems, one 
from each category i.e. axisymmetric and plane strain, are presented and their results are 
compared with the commercial finite element softwares ANSYS and FORGE2. 
Computational time results of both these case studies are analyzed and discussed. The 
developed software is also tested for bigger data size by analyzing one of the case study 

problem discretized using different mesh sizes to ascertain its applicability in three- 

dimenstional finite element analysis. Based on the variation in computational time results, 

performance of the developed software is evaluated and presented.

5.2 FINITE ELEMENT FORMULATION

Structural analysis mainly includes two types of problems, which may be categorized as 

small deformation (strain) and large deformation (strain) problems. In metal forming 

deformations in plastic stage are very high as compared to their elastic counterparts, so 

fall under the category of large deformation problems. Various methods of analysis are 
available for the analysis of large deformation processes. The finite element method is 

one of the recent and quite efficient technique to analyze such problems. In finite element 
method two formulations are available, namely flow formulation and solid formulation 
[63]. In flow formulation, elasticity of the material is neglected during the analysis as 
plastic strains are on very higher side as compared to the elastic strain. The material 

behavior is considered as rigid-plastic or rigid-viscoplastic during the analysis. Whereas, 
in solid formulation, the elasticity of the material is also considered in the analysis so the 
material is considered as elasto-plastic or elasto-viscoplastic.

In present study, the flow formulation described in literature [63] is used for the finite 

element solution of the larger deformation processes. This chapter highlights the flow 
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formulation in brief and also describes the finite element procedure to solve two- 
dimensional plane strain and axisymmetric problems. There are four approaches generally 
used for the derivation of the basic equations in the finite element analysis. These are the 
direct approach, the variational method, the method of weighted residuals, and the energy 
balance approach. Here, the variational method is used.

5.2.1 Basis of Finite Element Formulation

Variational approach requires that among admissible velocities u, that satisfy the 

conditions of compatibility and incompressibility, as well as the velocity boundary 
conditions, the actual solution give the following functional (function of functions) a 
stationary value

k = ja edV - 
v SF

and

fa)dv- fa.ds 
v Sr

for rigid plastic materials

(5.1)

for rigid viscoplastic materials

where a is the effective stress, £ is the effective strain-rate, Ft represents surface 

tractions, and £(£,., ) is the work function. The solution of the original boundary value 

problem is then obtained from the solution of the dual variational problem, where the first 

order variation of the functional vanishes, namely,

8k = - ^F^dS = 0 ^2)
v sF

where a=a(e) and a = d:(£i£) for rigid plastic and rigid viscoplastic materials, 

respectively. The incompressibility constraint on admissible velocity fields in Eq. 5.2 may 

be removed by introducing a Lagrange multiplier 2 [67, 77] and modifying the 

functional by adding the term U£vdV, where cv = eH, is the volumetric strain-rate. Then,
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5k = + jt/W/ - jr>,d.s = o (5 3)
v v v Sf.

Another way of removing the constraint is to use the penalized form of the 

incompressibility as

5k = ^aSedy + K je^dy - jF^dS = 0 (5 4)
v v Sf

where K is a penalty constant, is a very large positive constant.

In Eq. 5.3 and 5.4, <5^ and SA, are arbitrary variations and <5sand Sev are the variations 

in strain-rate derived from 8ui. Equation 5.3 or 5.4 is the basic equation for the finite 

element formulation.

5.2.2 Treatment of a Rigid Region

The rigid zones are characterized by a very small value of effective strain-rate in 
comparison with effective strain-rate in the deforming body. If these portions are included 

within the control volume V, the value of the first term of the basic equation 5.3 or 5.4 

cannot be uniquely determined because the undefined value of the effective stress when 

the effective strain-rate approaches zero. This is done by assuming that the stress strain

rate relationship approximated by

3
2 (To

with <Tq = <j(e ,£0) for e <e0

where e0 takes an assigned limiting value, say 10'3 [78]. This presumed stress strain-rate 

relationship is equivalent to the assumption of a Newtonian fluid like material behavior 

for nearly rigid regions. For these regions, the first term of the basic equation, faSEdV, 
V 

is then replaced by
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fl EScdV j c
for

\£0 )
(5.5)

Thus, the finite element discretization process is based on Eq. 5.3 or 5.4 with Eq. 5.5 for 
the regions are considered to be nearly rigid.

5.2.3 Finite Element Procedure

The procedure to the solution of problem formulated in finite element form is as follows. 
Discretization of a problem domain is the first step of finite element solution, which 
includes: (1) describing the element, (2) setting up the element equations and (3) 
assembling the element equations. Numerical analysis techniques are then applied for 
obtaining the solution of the global equations. The basis of the element equations and the 

assembling into global equations is described in Eq. 5.3 or 5.4

5.2.3.1 Governing Equations

The solution satisfying Eq. 5.2 is obtained from the admissible velocity fields that are 
constructed by introducing the shape functions in such a way that a continuous velocity 

field over each element can be defined uniquely in terms of velocities of the associated 

nodal points. In the deformation process, the workpiece is divided into elements without 

gaps or overlaps between elements. In order to ensure continuity of the velocities over the 

whole workpiece, the shape functions are defined such that the velocities along any 
shared element side are expressed in terms of velocity values at the same shared set of 

nodes (compatibility requirements). Then a continuous velocity field over the whole 

workpiece can be uniquely defined in terms of velocity values at nodal points specified 
globally.

The nodal point velocities are defined in a vector form as

yT = {V|.V2> ’'j,.} 
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where the superscript T denotes transposition and N = (total number of nodes) x (degree 

of freedom per node).

An admissibility requirement for the velocity field is that the velocity boundary 

conditions prescribed in surface (essential boundary conditions) must be satisfied. This 

condition can be imposed at nodes on Su by assigning known values to the corresponding 

values to the corresponding variables. It is to be noted that the incompressibility condition 
is not required for defining a velocity field in the formulation Eq. 5.3 or 5.4

Equations 5.2 and 5.3 or 5.4 are now expressed in terms of nodal velocities v and their 

variation <5v. From arbitrariness of 3vt a set of algebraic equations (stiffness equation) are 

obtained as

(5.6)

where (J) indicates the quantity at the element. The capital letter suffix I signifies that 

it refers to the node number.

Equation 5.6 is obtained by evaluating the term (dn/dvj) at the elemental level and 

assembling them into the global equation under appropriate constraints.

In large deformation problems, the stiffness equation is nonlinear and the solution is 

obtained iteratively using Newton-Raphson method. The method consists of linearization 

and application of convergence criteria to obtained the final solution. Linearization is 

achieved by Taylor expansion near an assumed solution point v = v0 (initial guess),

namely 

dn
dvj

d2n 
dv.dv.J Jv.v0

(5.7)= 0
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where Avy is the first order correction of the velocity v0. Equation 5.7 can be written in 

the form

K Av = f (5.8)

where K is called the stiffness matrix and f is the residual of the nodal point force vector.

Nodal velocity

(a) Schematic representation of Newton-Raphson method

(b) Schematic representation of direct iteration method

Fig. 5.1 Newton-Raphson method and direct iteration method for solution of non-linear 

equations
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5.2.3 .2 Newton-Raphson Method

Once the solution of Eq. 5.8 for the velocity correction term Av is obtained, the assumed 

velocity v0 is updated according to v0 + #Av, where a is a constant between 0 and 1 

called the deceleration coefficient. Iterations are continued until the velocity correction 
term becomes negligibly small. In the Newton-Raphson iterations [79], the initial guess 
velocity should be close to the actual solution for the convergence. When a deformation 
process is relatively simple, the initial guess velocity can be provided. However, if the 
process is complex and obtaining a good initial guess solution is difficult then the use of 
direct iteration method may be appropriate. Figure 5.1 (a) shows schematic representation 

of Newton-Raphson method.

5.2.33 Direct Iteration Method

Another technique for solving a nonlinear equation is the direct iteration method [80, 81]. 
In the direct iteration method, it is assumed that the constitutive equation is linear during 

each iteration and cis is assumed to be constant during each iteration. The nonlinear 
friction term is also approximated by a linear relationship between the frictional stress 

and the relative sliding velocity. Then the stiffness equation resulting from Sts = 0 

becomes linear. Figure 5.1 0?) shows schematic representation of direct iteration method.

The computational process of the direct method is as follows:

1. Assign an assumed strain-rate 8 for each element. If a previous solution or iteration 

is not available, assign a constant average strain-rate to each element. If a previous 

solution or iteration is available, then use the strain-rate obtained previously for each 

element.
2. Assign an assumed sliding velocity to each element side that is in contact with a die. 

If a pervious solution or iteration is not available, assign a constant average sliding 
velocity to all relevant element sides. If it is available, use a sliding velocity that is 

obtained from previous solution or iteration.

3. Calculate ole at each integration point of the element, where o is evaluated for e 

assigned in step 1.
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4. Calculate the viscous friction coefficient for each die contact side from the linear 
relationship between frictional stress and the relative sliding velocity.

5. Evaluate the stiffness matrix and obtain a velocity solution.
6. Calculate the strain-rate for each element by using the velocity solution of step 5.

7. Calculate the sliding velocity for each die contact element side.
8. Check whether solution converges, using convergence criteria.
9. If the solution does not converge, go to step 3.

It can be seen that for steps I and 2, the direct iteration method does not require any 
initial guess velocity. For large deformation problems, the direct iteration method 
converges fast towards the solution during the earlier stages of iteration. However, as the 
solution point is approached, the convergence becomes very slow. It seem that the best 
computational efficiency can be obtained by using (1) the direct iteration method for 

generating the initial guess and for case where the Newton-Raphson method does not 

converge, and (2) the Newton-Raphson for all other cases [63].

5.2.3 .4 Convergence Criteria

Two convergence criteria are used in the developed code. One measures the error norm of 

the velocities, ||Av||/||v||, where the Euclidean vector is defined as ||v|| = (vrv),/2, and 

requires such an error norm to decrease from iteration to iteration. The other criterion 

requires the norm of residual equations, ||5^/5v||, to decrease.

In general terms, the first criterion is most useful in the early stages of iteration, when 
velocity field is still far from the solution. The second test is most useful when slightly ill 

conditioned systems reach the final stages of iterations. The final solution is considered to 
be achieved when the error norm reaches a specified small value, say 5 x 10‘5.

5.23.5 Solution Procedure

The finite element procedures outlined above are implemented in following manner.

1. Generate an assumed solution velocity.
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2. Evaluate the element stiffness matrix for the velocity correction term Av in Eq. 5.8.
3. Impose velocity conditions to the elemental stiffness matrix and repeat step 2 over all 

elements defined in the workpiece.

4. Assemble elemental stiffness matrix to form a global stiffness equation.
5. Obtain the velocity correction terms by solving the global stiffness equation.
6. Update the assumed solution velocity by adding the correctional term to the assumed 

velocity. Repeat steps 2 through 6 until the velocity solution converges.
7. When the converged velocity solution is obtained, update the geometry of workpiece 

using the velocity of nodes during a time increment. Steps 2 through 7 are repeated 
until the desired degree of deformation is achieved.

5.2.4 Elements and Shape Functions

In the developed code, two types of elements namely three noded triangular element and 

four noded rectangular element, are used to discretize the problem domain. The geometry 

of an element is uniquely defined by a finite number of nodal points or nodes. The nodes 
are located on the boundary of the elements and the shape functions define an admissible 
velocity field locally in terms of velocities of associated nodes. Thus, elements are 
characterized by the shape and order of shape functions.

In the finite element method, interpolation of a scalar function f(x,y) defined over an 

element is introduced in a form

f(x,y) = '^qa{x,y)- fa (5.9)

where fa is a function value associated with alh node, and qa(x,y) is the shape 

function. Generally, it is a polynomial function of x and y defined over the element in 
such a way that

(5.10) 
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where (xp,yp) is the coordinates of /7th node and 6uP is the Kronecker delta. Owing the 

property of the shape function given by Eq. 5.10, fa in Eq. 5.9 has the value of the 

function f at (xp,yp) and the fa are independent of each other.

5.2.4.1 Triangular Element

In the three noded triangular element, it is convenient to define shape functions in the area 

coordinate system , Z2, L3. The area coordinates for a triangle, as shown in the Fig. 

5.2 (a), are defined by the following linear relations

x = ZjXj + L2x2 + L3x3

y = L,yt + L2y2 + L,y, (5.ii)

Z| + L2 + L3 =1

where (xa ,yp ) are the coordinates of a comer of the triangle. It can be readily shown that 

an alternative definition of the coordinate of point P can be given by the ratio of the 
shaded triangle to that of the total triangle as

_ areaP23 _ areaP13 , r areaP12L, =---------- , , and L, - --------—
area 123 area 123 area 123

Solving Eq. 5.11 forZj, L2, and L3 gives

+blx + ciy)/2&, L2 = (a2 +b2x + c2y)/2A, L3 =(a3 +b3x + c3y)/2&

where A = area of (123)

and

a\ =x2y3-x3y2 °2 = ^i a, =x\y2 ~x2yt

by = ^2 -^3 h2 -y2-yi bi =yt-y2 (5.12)

c, = x3 -x2 c3 = Xj - X, C 3 — A , — X ।
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(a) Area coordinate system of the triangular element

(c) Shape functions for rectangular element(b) Natural coordinate system for 

rectangular element

(d) Cartesian coordinate system for rectangular element

Fig. 5.2 Coordinate systems for triangular and rectangular elements
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5.2.4.2 Rectangular Element

The shape functions of rectangular elements are defined in a parametric form over a 

domain -1 < £ < 1, -1 < 77 < 1 in a natural coordinate system (^,77). The element defined 

in the natural coordinate system is called as parent element. The simplest of the 
rectangular elements is the used four-node linear element shown in Fig. 5.2(b). The shape 

function, qa, which are bilinear in £ and 77, are defined as

<7a(^) = X(l+^)(l + 7a7) (5.13)

where (£a ,qa) are the natural coordinates of a node at one of its comers. The value of the 

shape functions, given by Eq. 5.13 are shown schematically in Fig. 5.2(c). Admissible 

velocity fields can be defined uniquely over the rectangular element by the nodal velocity 

components as

“ (5.14)
"z(^'7) = Z9«(^>,7)"JO)

a

where is the velocity at the ath node and summation is over all four nodes.

Coordinate transformation from the natural coordinate (£, t|) to the global coordinate 

(x,y) is defined by

" (5-15)

a

where (xa,ya) are the global coordinates of the «th node. Since the coordinate 

transformation (Eq. 5.15) uses the same shape function (Eq. 5.14). the linear element is 

isoparametric and takes quadrilateral shape in the cartesian map. as shown in the Fig. 

5.2(d).
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5.2.5 Element Strain-Rate Matrix

The strain-rate components in cartesian coordinate system are defined by

(5.16)

The admissible velocity for all type of elements can be express by

(5.17)

substituting Eq. 5.17 into Eq. 5.16 we have

1
" 2

(«) , <“)
---------W, -I------------W.
dXj dxt

(5.18)

It is seen from Eq. 5.18 that strain-rate components can be evaluated if dqa!dxi is 

known.

For the cartesian coordinate system, we denote the coordinate x, by (x^z) for three- 

dimensional deformation, by for axisymmetric deformation and by (x,j/) for

two-dimensional deformation.

Let Xa, Ya and Za be defined as

X V 7 -
“ dx ’ ° dy ’ a dz

Then the strain-rate components given by Eq. 5.18 are expressed by

(5.19)
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=&/’• (5.20)

It is convenient to arrange the strain-rate components in a vector form. For two-
dimensional elements the strain-rate components can be written as

for plane strain problems

and (5.21)

for axisymmetric problems

Substituting Eq. 5.20 into Eq. 5.21 the strain-rate vectors are represented in a unified form 
as

*1

^2

^3

(a)

(a)

(5.22)

^X^ + Y^
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In Eq. 5.22, c2, s4 arc cy, c,, /Iy and £r, bz, £n, /for plane strain and 

axisymmetric problem respectively. Velocity components and w2 correspond to ux 

and uy respectively, for two-dimensional deformation and Pa is zero for plane strain 

problem. For the axisymmetric case, and w2 represents ur and u, respectively and Pa 

becomes qa / r.

Equation 5.22 can be written in the matrix form as

e = B v (5.23)

where B is called the strain-rate matrix and written as

0 %2 0 %3 0 %4 0
o y; o y2 o r3 o y4
Pt 0 P2 0 P3 0 P4 0
Y, X, Y2 X2 Y, X2 Yt Xt

(5-24)

The number of columns of the matrix B is determined by the number of degrees of 
freedom allowed to the element.

The evaluation of the strain-rate matrix requires the differentiation of shape functions 

with respect to the global coordinate. Since the shape functions are expressed in the 
natural coordinate system, it is necessary to express the global derivatives in terms of the 

derivatives with respect to the natural coordinate. Consider a coordinate transformation 
where shape functions are defined in the natural coordinate system, then the derivatives of 

the shape functions with respect to the natural coordinate system can be expressed as

dqjd? dqjdx
* dqa /dr] ► = J’ dqa /dy ► (5.25)

ldQjdz,

where J is the Jacobian matrix of the coordinate transformation, given by
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J =
ux/d^
dxldq 
ox! dQ

dy!d$ 
dyl dq 
dy/dC

dz/d^ 
dzl dr] 
dz/d^

(5.26)

Then the derivatives in Eq. 5.19 can be obtained as

X dqjdx dqjd^
y. - =. dqa/dy dqa /dq
z,. dqa /dz Sqa/d^

(5.27)

where J'1 is the inverse of J

It may be mentioned that in plane strain deformation, the strain-rate is not necessary, 

since it is always zero. However, it is convenient to include f3, in Eq. 5.23 so that the 

strain-rate matrix B of the plane strain deformation has the same form as that of the 
axisymmetric deformation as shown in Eq. 5.24.

5.2.5.1 Triangular Element

From the Fig. 5.2 (a), the shape functions qa for a linear triangular element are given by

Qi ~ Qi ~ Ly (5.28)

The strain-rate matrix of the triangular element can be derived by applying Eq. 5.27 to the 

shape functions given in Eq. 5.28. Since the area coordinates are not independent of each 

other, we can eliminate Z3 from the expression of qa by using L3 = 1 - L. - Lz. Equation 

5.27 can be written for triangular element as

Sqa Sy dy dq«
dx 1 dL, dL dL.hi

dx dx Sqo
. dy. I dL, dL, dL2

(5.29)
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where | J | is the determinant of the Jacobian matrix and expressed by

dx dy dx dy 
dL^ dL2 dL2 dL{ (5.30)

The strain-rate matrix of a linear triangular element, shown in Fig. 5.2 (a) can be obtained 

in a closed form by substituting qx = Lx, q2= L2, q3 - L2 and is written as 

follows

_ । |(y2-y3)J -^2 — । _ [ (y।- y3) ’ ^3— ^2

PI PI
(5.31)

= rv7(x2-x3)» ^2 = " x3)» ^3=”^i“^2

PI PI

where

| J| =(X| -x3)(y2 -y3)-(x2 -x3)(y, -y3) (5.32)

Note that I J | is twice of the area of the triangle.

5.2.5.2 Rectangular Element

For the rectangular element and Ya in Eq. 5.22 can be written as

KI
(5.33)

d^ J dq

where | J | is the determinant of Jacobian matrix of Eq. 5.15 and is expressed by

dx dy dx dy 
dq dq d^

(5.34)
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For a quadrilateral element with the number of nodes shown in Fig. 5.2(c) Xa, Ta and | J |

can be expressed in the closed form as

+ y24 -y34^-y237
%21 = i - yl3 + y34£ + yl47 
x3 8] J | -y24+yi2<-y)47 

l+y>3 -y12^+y237.

and

X 
y, 
Y, 
Y,.

(5.35)

-x24 +x34f + x237'
1 +xl3 -x34^-xl47

8|j| + x24-xl2£ + xl47
-xI3+x12£-x237 

and j J [ is expressed as

| J | = 1/8[(x|3 ' y24 - x24 • yj3)+ (x34 • y(2 — xi2 y34 )£ + (x23 -yI4 — x14 *y23)7] (5.36)

where xv =xt- x, and = y, - yt

5.2.6 Matrices of Effective Strain-Rate and Volume Strain-Rate

In the finite element formulation for the analysis of large deformation process, the 

effective strain-rate e and the volumetric strain-rate ev are frequently used. Therefore, it 

is necessary to express the effective strain-rate and volumetric strain-rate in terms of the 

strain-rate matrix.

The effective strain-rate is defined in terms of strain-rate components as

(537)

or, in the matrix form
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(i')2 = £TDe (5.38)

The diagonal matrix D has 2/3 and 1/3 as its components; corresponding to normal strain
rate and engineering shear strain-rate, respectively. Substitution of Eq. 5.23 into Eq. 5.38 

gives 

(s)2 = vTBTDBv = vTPv (5.39)

where P = BT D B

The matrix D in Eq. 5.38 takes different forms depending upon the expression of the 
effective strain-rate, in terms of strain-rate components. The expression of the effective 

strain-rate also depends on the yield criteria.

The volumetric strain-rate £v is given by

£v—£x+£y+£z (5.40)

and expressed by

£v =CT N = CJVJ (5.41)

with C, = By + B2J + B3l where Bu is an element of the strain-rate matrix B.

5.2.7 Elemental Stiffness Equation

It can easily be seen from the way in which the element was introduced that the global 
integrals over the whole workpiece stem from the assembly of integrals over the local 
domain of disjoint finite elements. Therefore, it is convenient to evaluate the stiffness 
matrix given by Eq. 5.7 at the element level, and to assemble into a global stiffness 

matrix.



In the penalty function method, (Eq. 5.4) denote the first, second and third term 

(including signs) of Eq. 5.4 with S/tp, 8nSi respectively. In large deformation 

process, the boundary conditions along the die-workpiece interface are mixed. Therefore, 

along the interface Sc the treatment of traction depends on the friction representation.

Using the discrete representation of the quantities involved in 8n that are developed in 
sections 5.2.4 and 5.2.5, we can express the integral of 8n in terms of nodal-point 
velocities. Eq. 5.7 becomes

dn _ dnD d7Tp
Ovj dv{ dvf dvJ

where,

—i = [KC^C^V (5.42)
V

Sp

It should be noted that the term (~dnSF / dvt) is the applied nodal point force and that 

dnD /dv} + dttp I dv, is the reaction nodal point force.

The second derivatives of n are expressed as

5 f(T n rrr 1 O* Ip, p, Trr f kzz—i /—I JT/T---- = J— PudV + fl --r -PIKvKvlllPl.udV + XKCjC^V (5.43)
ov^j Js de e ) e '

Evaluating stiffness matrices at the elemental level from Eq. 5.42 and Eq. 5.43 

assembling them for the whole workpiece, we obtain a set of simultaneous linear 

equations (Eq. 5.8).
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When effective strain-rate £ approaches zero or becomes less than a preassigned value

, we have

8nb = 
V V 0

where a01 eQ = constant. The derivatives of can be expresses by

^puVjdv
v *0

dvjdvj

(5.44)

(5.45)

The penalty constant K and the limiting strain-rate £0 are introduced rather arbitrarily for 

computational convenience. However, proper choices of these two constants are 
important in successful simulation of large deformation processes. According to literature 
[63] a large value of K is preferred to keep the volumetric strain-rate close to zero. 
However, too large value of K may cause difficulties in convergence, while too small 
values of K results in unacceptable large volumetric strain. Numerical tests show that an 

appropriate K value can be estimated by restricting volumetric strain-rate is 0.0001-0.001 

times the average effective strain-rate.

The limiting strain-rate, £0 under which the material is considered to be rigid, has been 

introduced to improve the numerical behavior of the rigid-plastic formulation [78]. Too 
large value of limiting strain-rate result in a solution with a rigid zone of unacceptably 
large strain-rate. On the other hand, if we choose too small value of limiting strain-rate, 
then the convergence of the Newton-Raphson method deteriorates considerably. 
Numerical tests show that an optimal result can be obtained by choosing the limiting 
strain-rate 1/100 of the average effective strain-rate [63].
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5 .2.8 Boundary Conditions

Since the boundary condition along the die-workpiece interface is mixed, it is 

convenient to write the boundary surface 5* in three distinct parts.

5 = ^+5,..+^.

The traction boundary condition on S^- is either zero traction or ordinarily at most a 

uniform hydrostatic pressure. However the boundary conditions along the other interface 
are mixed. Generally, neither velocity nor force can be prescribed completely along this 
interface, because the direction of the frictional stress is opposite to the direction of the 
relative velocity is not known a priori. Situations exist in which the direction of 

deformation in the deforming zone relative to the undeformed portion is known. This 

class of problem can be solved if the magnitude of the frictional stress fs is given 

according to the well known Coulomb law, fs = /^, or the friction law of constant factor 

m , expressed by fs = mk (where k = Y IV3 ) here, p is the die pressure and k is the 

shear yield stress.

It is difficult to handle the boundary conditions in a straightforward manner in problems 

in which the direction of the relative velocity between the compressing die and deforming 

material interfaces is unknown. In order to deal with these situations, a velocity 
dependent frictional stress is used as an approximation to the conditions to constant 

frictional stress. At the interface Sc the velocity boundary conditions are given in the 

direction normal to the interface by the die velocity, and the traction boundary condition 

is expressed by 

fs
2

= mkl = mk<—tan”' (5.46)

where fs is the frictional stress, Z is the unit vector in the opposite direction of relative 

sliding, ux is the sliding velocity of a material relative to the die velocity, and is a 
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small positive number compared to us. The approximate expression (Eq. 5.46) for a 

constant frictional stress has been used for the smooth transition of the frictional stress in 
the range near neutral point [82].

Imposition of the traction boundary conditions on Sh is straightforward. Recalling the 

boundary integral with respect to a node velocity component, the traction boundary 

conditions is imposed in the form of nodal point forces. It should be mentioned that the 
same nodal point force could be obtained with different traction distribution.

The velocity boundary conditions on Su are essential boundary conditions. In the finite 

element discretization, the velocity boundary condition is enforced only at nodes on Su, 

and the velocity along the element side is determined automatically in terms of velocities 

of the nodes and clement shape functions. For the node at which the velocity is defined, 

the velocity correction Avw is zero. Consequently, the corresponding stiffness equation 

should be removed. The simplest way to implement this procedure is to replace the 
corresponding rows and columns by zeros and to set the diagonal terms to 1 as shown 
below

X .. o • • V Av, '
* * 

J\

k2I k22 • .. 0 •
.. 0 ••

• K2„

<

Av2

► = <

fl

0 0 .. 1 .. 0 0
• • .. o •• • •

K„t • . o •• nn J ,Av„ ^fn „

On the surface Sc, the traction is prescribed in the tangential direction and the velocity is 

prescribed in the normal direction to the interface. When the interface direction is inclined 
with respect to the global coordinate axis, the coordinate transformation of the stiffness 
matrix upon the inclined direction is necessary in order to impose mixed boundary 
conditions.
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Consider a velocity vector v in the global coordinate system and the corresponding vector 
v’ in the inclined boundary coordinates. Then the vector is transformed from the global 
to the local coordinate system by

v'=Tv (5.47)

where T is the coordinate transform matrix.

Similarly, the nodal point force vector f is transformed to f according to

f = Tf (5.48)

in the two-dimensional coordinate system, the transformation matrix of node I is written 

as

cos# sin#
T =

1 [-sin# cos#

where # is measured from the x-axis in the global coordinate system to the x’ axis of the 

local coordinate system in counterclockwise direction. The stiffness equation (Eq. 5.8) is 

transformed to

TKT^v^f (5.49)

The velocity boundary condition at the tool-workpiece interface is given by

un =Ujn

where UD is the tool velocity and n is the unit normal to the interface surface

In the direction of the relative sliding between the die and the workpiece, the frictional 

stress fs is prescribed as the traction boundary condition. The frictional stress is usually 

represented according to the Coulomb law or as a constant frictional stress. The friction 
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represented by a constant friction factor m is approximated by Eq. 5.46 in order to deal 
with neutral-point problems in large deformation process.

The equation (Eq. 5.46) expresses that the magnitude of the frictional stress is dependent 
on the magnitude of the relative sliding and that their directions are opposite to each 
other. Then, the relationship can be written as

fx = -mk (5.50)

The approximation of the frictional stress by the arctangent function of the relative sliding 
velocity eliminates the sudden change of direction of the frictional stress mk at the 

neutral point. The literature [63] shows that the frictional stress approaches mk 

asymptotically as the relative sliding velocity ux increases. However, the frictional stress 

fx approximated by Eq. 5.50 deviates considerably from the value of mk as us 

approaches zero. It may be noted that the value of w0 was introduced arbitrarily for 

performing numerical calculations and that the choice of w0 could have a significant 

influence on the reliability of the solution. It is seen from the literature [63] that the ratio 

us I uQ should be equal to or larger than 10 in order to attain the friction value within 9% 

of the one originally intended. On the other hand, if we choose the ratio too large, then the 

sudden change of the frictional stress near the neutral point can cause difficulties in 

numerical calculations. Since the order of magnitude of us is 0.1 with the unit die 

velocity, a recommended value of w0 is 10'3 to IO"4 [82].

Fig. 5.3 An element in contact with die
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For the discretization, consider a die and an element that is in contact with the die, as 
shown in Fig. 5.3. The boundary condition normal to the contact surface is enforced at the 

contact nodes. Also, the relative sliding velocity at the nodes v, can be evaluated. It 

should be noted that the element-side cannot be made to conform the die surface. 

However, it may be assumed that the relative sliding velocity ux can be approximated in 

terms of nodal-point values vra by using a shape function of the element as

(5.51) 
a

where the subscript a denotes the value at ath node.

In deriving the stiffness equation, 8n, include the term 8nSc, and the final form of the 

stiffness equation should contain the terms

‘an"' [?/)% /uokS (5.52)
a sc

and

d^sc
(5.53)

The finite element method approximation of the boundary conditions introduces errors to 
the solution of the boundary value problem. Note that the surface integration in Eq. 5.52 
and 5.53 is carried out over the element surface rather than the actual die surface. When 
linear elements are used with a curved die, the interface area represented by element is 
always smaller than the actual interface area, and the effect of friction in the analysis is 
always smaller than the actual. For deformation processes that are sensitive to friction, 
this type of error could be quite serious.

Also, the velocity boundary condition imposed by the finite element model can be 

considerably different from that of the actual problem. In expressing the sliding velocity 
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by Eq. 5.51 it was assumed that the mismatch angle between the element side and the 
tangent direction of the die at contact node is small. When this angle of mismatch is large, 
the deformation mode is not modeled correctly. The errors resulting from the boundary 
conditions imposed by the finite element method can be minimized by increasing the 
number of elements at the boundary.

5.2.9 Time Increment and Geometry Updating

When the solution of velocity is obtained, then the deformed geometry of the workpiece, 
in the case of two-dimensions can be obtained by updating the coordinates of the nodes.

*i ('0 + AO = X, (t„ y + 

y^o+^^yi^oy+^^t 
(5.54)

where are the coordinates of I,h node, r0 is the time at current configuration, and 

is the time increment. The strain is updated in a similar manner from the strain-rate 
solution. In general the time increment Ar can be determined by considering several 

factors, such as the time (Ar^) necessary for a next free node to contact the die surface, a 

desired maximum strain increment (Ar^,,), and a maximum allowable time increment 

(Ara). The actual time increment is determined by taking the minimal of

(&ts(rain) and (Ara). The time necessary for a next free node to contact the die can be 

determined by calculating these time increments for all free nodes and choosing the 
minimal time increment. The time increment required to limit the maximum strain 

increment cab be readily obtained from strain-rate solutions. The maximum allowable 
time increment is given rather arbitrarily. However, consideration of the error in the 
volume constancy is a factor for determining its magnitude.

5.2.10 Stress-Strain Computations

After computing the solution of every step, the strain-rate components are calculated as

f. = B v (5.55)
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where B is the strain-rate matrix, and the v is the solution velocity vector.

The effective strain-rate is computed using following expression

f = (cTDc)''2 (5.56)

where D is effective strain-rate coefficient matrix and is defined as

0 0 O’
0 | 0 0

D = ,
0 0 f 0
0 0 0 f

The effective stress is calculated as

ff=a(e,e) (5-57)

and the stress components are expressed as

ff = ~(e-s„)+3Ksa (5.58)
3 £ Q

5.3 CASE STUDIES

Based on the finite element formulation discussed above, two computer codes are 

developed; one uses three noded triangular element (FEMLD3) whereas other four noded 
rectangular element (FEMLD4). With the help of these codes, one can analyze two- 
dimensional plane strain and axisymmetric problems. These codes were parallelized by 
incorporating the Modified Matrix Inversion Method parallel solver (MMIM) discussed 
in section 3.7. A typical problem in each category is analyzed using both the codes on 

supercomputer PARAM 10000. The following text describes the obtained results of the 

both case studies.
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5.3.1 Axisymmetric Problem

A problem of simple compression of solid cylinder having dimensions, 1 inch radius and 
1 inch height was considered (see Fig. 5.4). The cylinder was compressed with a velocity 
of 1 inch/s till 30% reduction in height was achieved. The reduction was occurred in 15 
steps. The bottom surface was considered as frictionless and for top surface, friction 
factor of magnitude 0.5 was considered. The error norm was considered as 0.001 and 
limiting strain-rate value was considered as 0.01 to define the rigid portion of cylinder. 

The material behavior was expressed by the equation a = ks m, where the values of k and 
m were taken as 10 Ksi and 0.1 respectively. The cylinder was discretized using 800 three 
noded triangular elements with 441 nodes and 400 four noded rectangular elements with 

441 nodes, resulting in global stiffness matrix of size 882 x 882 in both the cases. The 

problem was analyzed by increasing the number of processors from one to eight using 

codes FEMLD3 and FEMLD4. Each processor required approximately 14 MB of 

memory for every execution for both the codes on supercomputer PARAM 10000.

Deflected profiles of the specimen at different stages of deformation process were 
recorded. Variation of contours of nodal velocity, different components of stress tensor 
and strain tensor were also recorded. Load required for the compression during the 

compression process was also studied. To compare the results obtained using developed 
codes, the same problem was analyzed using the computer code (SPID) given in book by 

Kobayashi et al. [63] where the problem was discretized using 16 four nodded rectangular 

element with 25 nodes. The rest of the problem details were same.

5.3.1.1 Iterations

The solution procedure is iterative therefore, 59 iterations were carried out by FEMLD3 
and 84 iterations were carried out by FEMLD4, to analyze the problem in 15 steps. Figure 
5.5 shows the graph between number of iterations and the step numbers for FEMLD3 and 

FEMLD4.
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Fig. 5.4 Axisymmetric compression of solid cylinder
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( a) Variation in number of iterations for code FEMLD3
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(b) Variation in number of iterations for code FEMLD4

Fig. 5.5 Variation in number of iterations with number of steps obtained from codes

FEMLD3 and FEMLD4
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(a) Variation in components of computational time for code FEMLD3

(b) Variation in components of computational time for code FEMLD4

Fig. 5.6 Variation in components of computational time obtained from codes FEMDL3 
and FEMLD4
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(a) Variation in Speedup for code FEMLD3

(b) Variation in Speedup for code FEMLD4

Fig. 5.7 Variation in Speedup obtained from codes FEMLD3 and FEMLD4
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It can be seen from Fig. 5.5 that, the number of iterations required to achieve the solution 
velocities are more in the first step. The initial guess velocities are automatically 
generated in the first step. These velocities are not nearer to the solution velocities. 
Therefore, more number of iterations is required in the first step.

5.3.1.2 Performance On PARAM 10000

Figure 5.6 shows the variation in components of computational time with the number of 

processors achieved by both the codes. It can be seen from these graphs that the Total 
time measured in terms of Real time as well as User time reduces by considerable amount 
by increasing the number of processors, whereas the Communication time measured in 
terms of Real time increases with increase in number of processors.

Figure 5.7 (a) and (b) shows the Speedup achieved using FEMLD3 and FEMLD4 codes 

respectively. The maximum Real time Speedup and User time Speedup achieved by 
FEMLD3 is 2.92 and 11.76 respectively, whereas the maximum Real time Speedup and 
User time Speedup achieved by FEMLD4 is 3.04 and 8.64 respectively. The User time 
Speedup is higher than the Ideal Speedup for both the codes at seven and eight number of 
processors. From this figure it can be observed that the performance of FEMLD3 is better 
than FEMLD4.

5.3.1.3 Results

Figure 5.8 and 5.9 shows deformation at selected number of steps. It can be seen from 
these figures that, the deformed shape obtained by both the codes at various stage of 

deformation are nearly same.

Figure 5.10 shows the undeformed-deformed shapes obtained by SPID. It can be seen 
from this figure that, the deformed shapes obtained by FEMLD3 and FEMLD4 at step 
No. 15 are identical to the deformed shape obtained by SPID.
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(e) Step No. 12 (24% compression) (e) Step No. 12 (24% compression)

(f) Step No. 15 (30% compression) (f) Step No. 15 (30% compression)

Fig. 5.9 Deformed shapes obtained by 
FEMLD4

Fig. 5.8 Deformed shaped obtained by 
FEMLD3

(b) Deformed shape at step No. 15 (30% 
compression)

Fig. 5.10 Undeformed and deformed shapes obtained by SPID



Fig. 5.11 Variation in forming load with number of steps

(a) Contour of nodal velocity

(b) Nodal velocity directions

Fig. 5.12 Contours of nodal velocity (inch/s) and their direction at step No. 15 (30% 

compression) obtained by FEMLD4
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When the forces obtained by both the codes at various nodes arc compared, it was found 
that the magnitude of force and their directions arc almost same at every step and has 
good agreement with the forces obtained by SPID. Figure 5.11 shows the variation in 
forming load, which is calculated by adding forces in y-direction at nodes of which the 
nodal velocities are specified.

Figure 5.12 (a) shows the contours of velocity at step 15. It also shows the location of 
maximum velocity as well as minimum velocity points. Figure 5.12 (b) shows the 

velocity directions at step 15. This denotes the direction of metal flow during the 
deformation process.

Figure 5.13 shows the contours of strain-rate components sr, e., e0 and at step 15. 

After comparing the strain-rate results at different location, large variation in their 

magnitude was found near the top right comer of the sample (point A as per Fig. 5.4). The 

strain-rate components obtained by both the codes are found nearly same at any location 
under consideration. It was found that the volumetric strain of the sample is near to zero 
in both the cases. But in case of triangular elements, the volumetric strain-rate is greater 
than the volumetric strain-rate of rectangular elements.

Figure 5.14 shows the contours of stress components Gr, a., a09 and at step 15. 

From these contours, high stress concentration can be observed at the top right corner of 
the specimen (point A as per Fig. 5.4). When the stress results obtained by both the codes 

arc compared, it was found that the results of FEMLD3 do not match with the results 
obtained by FEMLD4 and SPID. The main reason for this is the increased volumetric 
strain-rate in triangular element as compared to the rectangular element. This increase in 
volumetric strain-rate results in improper stress computation. Therefore the results of 

stress components, namely ar, a,, a0 and computed by FEMLD3 do not aggress 

with the results of stress components obtained by FEMLD4 and SPID.
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(c) (d)
Fig. 5.14 Contours of (a) ar (Ksi) (b) cr. (Ksi) (c) (Ksi) and (d) (Ksi) at step No. 

15 (30% compression) obtained by FEMLD4

Fig. 5.13 Contours of (a) £r (b) £z (c) e0 and (d) at step No. 15 (30% compression) 
obtained by FEMLD4

Mln
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(c)

Fig. 5.15 Contours of (a) e (b) cr (Ksi) and (c) e at step No. 15 (30% compression) 
obtained by FEMLD4

Table 5.1 Comparison of X-coordinates (mm) obtained by present investigation 
(FEMLD4) and FORGE2 at different stages of compression

Compression Point FORGE2 Authors SPID

10% A 25.84 25.94 25.94
B 26.78 27.20 27.23

20% A 26.73 26.67 26.71
B 28.80 29.16 29.22

30% A 28.00 27.56 27.73
B 30.90 31.33 31.45

Figure 5.15 shows the contours of effective strain-rate (s), effective stress (cr) and total 

effective strain (s) at step 15. It was found that the above-mentioned results obtained by 
FEMLD3 and FEMLD4 has excellent agreement with the results obtained by SPID.
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Fig. 5.16 Contours showing (a) 
effective strain (b) effective stress 
(MPa) (c) effective strain rate (d) 
nodal velocity (mm/s) distribution

(a)

-1 :2.750

(d)

Fig. 5.17 Contours showing (a) effective strain (b) 
effective stress (MPa) (c) effective strain rate (d) 
nodal velocity (mm/s) distribution obtained by 

FORGE2 (A and O represent maximum and
obtained by present investigation minimum respectively)
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Fig. 5.18 Load compression relationship

Moving die
---------- 1 inch —

1 inch

Stationary die

Fig. 5.19 Compression of solid square bar
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5.3.1.4 Comparison with Commercial Softwares

The same problem was also analyzed using commercial software FORGE2 and ANSYS. 
To compare the results obtained by present investigation and FORGE2, two points A and 
B are considered (shown in Fig. 5.4). Table 5.1 shows the comparison of X-coordinates of 
points A and B at different stages of compression. It can be seen from this table that at 
every stage of deformation, X-coordinates of point A and B obtained by present 
investigation and FORGE2 are nearly same.

Figures 5.16 and 5.17 show the variation of total effective strain (s), effective stress 

(a), effective strain-rate ( e ) and nodal velocity obtained by present investigation and 
FORGE2 respectively at 30% compression (step 15). After comparing both the figures 
one can conclude that the variations obtained using FORGE2 and present investigation 
match well. The location of minimum/maximum values of effective strain, effective 

stress, effective strain-rate and nodal velocity is also almost at the same points.

Figure 5.18 shows the load compression curve. It can be seen from this figure that the 
forming load obtained by developed software matches fairly well with the forming load 
obtained by commercial software FORGE2 and ANSYS.

5.3.2 Plane Strain Problem

A problem of simple compression of solid square bar of dimension 1 inch with unit 
thickness was taken for study (see Fig. 5.19). The bar was compressed with a velocity of 
1 inch/s till 30% reduction in height was achieved. The reduction was occurred in 15 

steps. The bottom surface was considered as frictionless while for top surface, friction 
factor of magnitude 0.5 was considered. The velocity error norm was taken equal to 0.001 
and limiting strain-rate value was considered as 0.01 to define the rigid portion of square 

bar. The material behavior was expressed by the equation a = ks m, where the values of k 

and m were taken as 10 Ksi and 0.1 respectively. The specimen was discretized using 800 
three noded triangular elements with 44Inodes and 400 four noded rectangular elements 

with 441 nodes, resulting in global stiffness matrix of size 882 x 882 in both the cases. 

The problem was analyzed by increasing the number of processors from one to eight
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using FEMLD3 and FEMLD4. Each processor required approximately 14 MB of memory 
for every execution for both the codes.

Deflected profiles of the specimen at different stages of deformation process were 
recorded. Variation of contours of nodal velocity, different components of stress tensor 
and strain tensor were also recorded. Load required for the compression during the 
compression process was also studied. To compare the results obtained using developed 
codes, the same problem was analyzed using the computer code (SPID) given in book by 

Kobayashi et al. [63] where the problem was discretized using 16 four nodded rectangular 
element with 25 nodes. The rest of the problem details were same.

5.3.2.1 Iterations

The solution procedure is iterative therefore, 128 iterations were carried out in FEMLD3 
and 111 iterations were carried out in FEMLD4, to analyze the problem in 15 steps. 
Figure 5.20 shows the graph between number of iterations and the step numbers for 
FEMLD3 and FEMLD4.

5.3.2.2 Performance on PARAM 10000

The above analysis was carried out on supercomputer PARAM 10000 by changing the 
number of processors from one to eight. Figure 5.21 shows the variation in components of 

computational time with the number of processors achieved by both the codes. It can be 
seen from these graphs that the Total time measured in terms of Real time as well as User 
time reduces by considerable amount by increasing the number of processors, whereas the 

Communication time measured in terms of Real time increases with increase in number 
of processors. Figure 5.22 (a) and (b) shows the Speedup achieved by FEMLD3 and 
FEMLD4 respectively. The maximum Real time Speedup and User time Speedup 
achieved by FEMLD3 is 3.01 and 8.47 respectively, whereas the maximum Real time 
Speedup and User time Speedup achieved by FEMLD4 is 3.15 and 7.13 respectively. 
From this figure it can be observed that the performance of FEMLD3 is better than 
FEMLD4.
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(a) Variation in number of iterations for code FEMLD3

(b) Variation in number of iterations for code FEMLD4

Fig. 5.20 Variation in number of iterations with number of steps obtained from codes
FEMLD3 and FEMLD4
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No. of processors

(a) Variation in components of computational time for code FEMLD3

(b) Variation in components of computational time for code FEMLD4

Fig. 5.21 Variation in components of computational time obtained from codes FEMDL3 
and FEMLD4
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(a) Variation in Speedup for code FEMLD3

(b) Variation in Speedup for code FEMLD4

Fig. 5.22 Variation in Speedup obtained from codes FEMLD3 and FEMLD4

160



€

€

(a) Undeformed(a) Undeformed

(b) Step No. 3 (6% compression) (b) Step No. 3 (6% compression)

(c) Step No. 6(12% compression) (c) Step No. 6 (12% compression)

(d) Step No. 9(18% compression) (d) Step No. 9(18% compression)
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(e) Step No. 12 (24% compression) (e) Step No. 12 (24% compression)

(f) Step No. 15 (30% compression)

Fig. 5.23 Deformed shaped obtained by 
FEMLD3

(f) Step No. 15 (30% compression)

Fig. 5.24 Deformed shapes obtained by 
FEMLD4

(a) Undeformed shape

Fig. 5.25 Undeformed and deformed shapes obtained by SPID

(b) Deformed shape at step No. 15 (30% 
compression)
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53.2.3 Results

Figure 5.23 and 5.24 shows deformation at selected number of steps. It can be seen from 
these figures that, the deformed shape obtained by both the codes at various stage of 
deformation are nearly same.

Figure 5.25 shows the undeformed-deformed shapes obtained by SPID. It can be seen 
from this figure that, the deformed shapes obtained by FEMLD3 and FEMLD4 at step 

No. 15 is identical to the deformed shape obtained by SPID.

When the compressive force obtained using both the codes at various nodes are 
compared, it was found that the magnitude of compressive force and their directions are 
almost same at every step and has excellent agreement with the forces obtained by SPID. 
Figure 5.26 shows the variation in forming load computed by adding forces in y-direction 

at nodes on which the nodal velocities were specified.

Figure 5.27 (a) shows the contours of velocity at step 15. It also shows the location of 
maximum as well as minimum velocity points. Figure 5.27 (b) shows the velocity 
directions at step 15. This roughly depicts the direction of metal flow during the 
deformation process.

Figure 5.28 shows the contours of strain-rate components £x, £v, and at step 15. 

After comparing the strain-rate results at different location, large variation in their 
magnitude was found near the top comers of the sample (point A and A* as per Fig. 5.19). 

The strain-rate component in z-direction (£,) is zero for plane strain problems. The 

strain-rate components obtained by both the codes are found nearly same at any location 
under consideration. It was found that the volumetric strain of the sample is very much 
near to zero in both the cases. But in case of triangular elements, the volumetric strain
rate is greater than the volumetric strain-rate of rectangular elements.
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Fig. 5.26 Variation in forming load with number of steps

(a) Contour of nodal velocity

(b) Nodal velocity directions

Fig. 5.27 Contours of nodal velocity (inch/s) and their direction at step No. 15 (30% 
compression) obtained by FEMLD4
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Fig. 5.28 Contours of (a) £x (b) ey and (c) at step No. 15 (30% compression) 

obtained by FEMLD4

Fig. 5.29 Contours of (a) a x (Ksi) (b) a y (Ksi) (c) a. (Ksi) and (d) rv? (Ksi) at step No.

15 (30% compression) obtained by FEMLD4
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(c)

Fig. 5.30 Contours of (a) e (b) a (Ksi) and (c) £ at step No. 15 (30% compression) 
obtained by FEMLD4

Table 5.2 Comparison of X-coordinates (mm) obtained by present investigation 
(FEMLD4) and FORGE2 at different stages of compression

Compression Point FORGE2 Authors SIPD

10% A 25.36 25.75 25.78
B 26.98 27.40 _ 27.44

20% A 26.24 26.16 26.25
B 29.38 29.75 29.88

30% A 27.27 26.56 26.82
B 31.82 32.23 32.65
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Figure 5.29 shows the contours of stress components ay, a. and rxy at step 15. 

From these contours, high stress concentration can be observed at the top comers of the 
specimen (point A and A* as per Fig. 5.19). When the stress results obtained by both the 
codes were compared, it was found that the result of FEMLD3 does not matches with the 
result obtained by FEMLD4 and SPID. The main reason for this is the increased 
volumetric strain-rate in triangular element as compared to the rectangular element. This 
increase in volumetric strain-rate results in improper stress computation. Therefore the 

results of stress components, namely ax, cy, <jx and rxy, computed by FEMLD3 do not 

match with the results of stress components obtained by FEMLD4 and SPID.

Figure 5.30 shows the contours of effective strain-rate (s), effective stress (a ) and total 
effective strain (f) at step 15 (30% compression). It was also found that the above- 
mentioned results obtained by FEMLD3 and FEMLD4 have excellent agreement with the 

results obtained using SPID.

S.3 .2.4 Comparison with Commercial Softwares

The problem was also analyzed by FORGE2 and Table 5.2 shows the comparison of X- 
coordinate of points A and B (as per Fig. 5.19) at different stages of compression. It can 
be seen from this table that at every stage of compression, X-coordinates of points A and 

B obtained by present investigation and FORGE2 are nearly same.

Figures 5.31 and 5.32 show the variation of total effective strain (s ), effective stress 

(a), effective strain-rate (s) and nodal velocity obtained by present investigation and 
FORGE2 respectively at 30% compression (step 15). After comparing both the figures 
one can conclude that the variations obtained using FORGE2 and present investigation 
match well. The location of minimum/maximum values of effective strain, effective 
stress, effective strain-rate and nodal velocity is also almost at the same points.

Figure 5.33 shows the load compression curve during the deformation process. It can be 
seen from this figure that the forming load obtained by developed software matches quite 

well with the forming load obtained by commercial softwares FORGE2 and ANSYS.
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Fig. 5.31 Contours showing (a) 
effective strain (b) effective stress 
(MPa) (c) effective strain rate (d) nodal 
velocity (mm/s) distribution obtained by 

present investigation (FEMLD4)

(c)

(d)

Fig. 5.32 Contours showing (a) effective strain (b) 
effective stress (MPa) (c) effective strain rate (d) 
nodal velocity (mm/s) distribution obtained by 

FORGE2 (A and 0 represent maximum and 

minimum respectively)

•9:25.00
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Fig. 5.33 Load compression relationship

Size 1352 x 1352 Size 2312x2312

Size 3362 x 3362 Size 4232 x 4232

Fig. 5.34 Deformed shapes of axisymmetric problem with different mesh sizes obtained 
by FEMLD4
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5.4 PERFORMANCE OF FEMLD

The main aim of using parallel computing technique in large deformation problems is to 
achieve more accurate results by adopting finer mesh and also to save computational time 
during the analysis. Therefore the developed software was tested for huge size large 
deformation problems. The axisymmetric problem (discussed in section 5.3.1) was once 
again analyzed by adopting different mesh sizes. The problem was discretized using 
rectangular elements in such a way that the global stiffness matrices of sizes 882 x 882, 

1352 x 1352, 2312 x 2312, 3362 x 3362, and 4232 x 4232. The other problem details like 

number of steps, deformation, material law, and others were same as described earlier 
(section 5.3.1). These problems were analyzed by using different number of processors. 
Figure 5.34 shows the deformed shape of axisymmetric problem under consideration with 
different mesh sizes at the last step.

Table 5.3 to 5.7 shows the computational time measured in terms of Real time with 
number of processors for different mesh sizes. One can observe that computational time 
reduces considerably when higher number of processors were employed for the 
computation. Abrupt variation in Total time measured in terms of Real time can be 
observed which is mainly due to the users activities occurred during the execution 
processes. Similar behavior can also be observed for Communication time measured in 
terms of Real time. Figure 5.35 shows the variation in Total time per iteration measured 
in terms of User time (which do not get affected by user activities) with different data 

sizes for one to eight number of processors. It can be seen from this figure that as the data 
size increases, User time per iteration also increases. One can also observe that for higher 
data sizes the saving in computational time is on higher side as compared to the small 
data sizes. After multiple linear regression analysis, it was found that the curves shown in 
Fig. 5.35 could be expressed in the form of an equation

/ = 2.67xl0“7

where, t is the User time per iteration (in seconds), d is the size of global stiffness 

matrix and p is the number of processors involved during the analysis. With the help of 

^(-0.6586/0 ^(2.9598+0.0481 p) (5.
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this expression, one can roughly estimate the Total time measured in terms of User time 
per iteration for any data size and any number of processors.

Table 5.3 Computational time variation (RT) for problem of size 882 x 882

No. of processors Total time Comm Cal Speedup
1 9463.71 0.00 9463.71 1.00
2 6270.69 83.98 6186.71 1.51
3 4806.65 157.18 4649.47 1.97
4 3929.77 184.11 3745.66 2.41
5 3588.98 419.81 3169.17 2.64
6 3235.34 305.46 2929.88 2.93
7 3124.00 368.87 2755.13 3.03
8 3112.25 377.01 2735.24 3.04

Table 5.4 Computational time variation (RT) for problem of size 1352 x 1352

No. of processors Total Comm Cal Speedup
1 14607.72 0.00 14607.72 1.00
2 13288.26 243.53 13044.73 1.10
3 10759.79 322.58 10437.21 1.36
4 9578.46 237.65 9340.81 1.53
5 5226.60 522.19 4704.41 2.79
6 4636.89 286.09 4350.80 3.15
7 4225.23 380.99 3844.24 3.46
8 4136.61 395.24 3741.37 3.53

Table 5.5 Computational time variation (RT) for problem of size 2312 x 2312

No. of processors Total Comm Cal Speedup
1 92881.80 0.00 92881.80 1.00
2 61952.31 368.35 61583.96 1.50
3 85759.33 22095.40 63663.93 1.08
4 37474.09 948.99 36525.10 2.48
5 66298.74 8543.91 57754.83 1.40
6 45200.84 2638.59 42562.25 2.05
7 23730.11 1441.97 22288.13 3.91
8 21781.41 1628.93 20152.48 4.26
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Table 5.6 Computational time variation (RI') for problem of size 3362 x 3362

No. of processors Total Comm Cal Speedup
1 228302.28 0.00 228302.28 1.00
2 157580.71 611.56 156969.15 1.45
3 117520.37 1184.18 116336.19 1.94
4 93380.70 1307.67 92073.03 2.44
5 81737.60 3859.53 77878.07 2.79
6 70164.69 2451.50 67713.19 3.25
7 93517.85 9096.67 84421.18 2.44
8 55338.32 2827.07 52511.25 4.13

Table 5.7 Computational time variation (RT) for problem of size 4432 x 4432

No. of processors Total Comm Cal Speedup
1 440082.40 0.00 440082.40 1.00
2 613710.00 5046.31 608663.69 0.72
3 513941.76 4847.03 509094.73 0.86
4 481525.04 7030.57 474494.47 0.91
5 451882.24 8695.81 443186.43 0.97
6 137742.00 11495.03 126246.97 3.19
7 410271.44 33544.78 376726.66 1.07
8 159397.28 10485.13 148912.15 2.76

U
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r t
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e

Fig. 5.35 Variation in User time per iteration with data size for various number of 
processors (1 to 8 shows No. of processors)
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Fig. 5.36 Variation in User time Speedup for different data sizes

Fig. 5.37 Variation in percentage Communication time with number of processors for 
different data sizes
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Figure 5.36 shows the variation in User time Speedup for different data sizes. It can be 

observed that, for smaller data sizes 882 x 882 and 1352 x 1352, the Speedup is even 
higher than the Ideal Speedup. This figure also shows that as the data size increases the 
Speedup reduces. This may be because of higher contribution of Communication time 
toward the Total time during the execution process. Figure 5.37 shows the variation of 
percentage Communication time with increase in number of processors. It can be seen 
that the percentage contribution of Communication time towards the Total time increases 
as the number of processors increases. It can also be seen that this contribution is also 
higher for higher data sizes. The variation in percentage Communication time is abrupt. 
This is mainly because of uneven user activities during the execution process (See Table 
5.3 to 5.7).

5.5 SUMMARY

In general, various results obtained using codes FEMLD3, FEMLD4 and SPID were 
identical. It was observed that stress components obtained by FEMLD3 do not match with 
the corresponding results obtained from SPID. It was observed that when triangular 
elements are used the volumetric strain-rate is not very much closer to zero as compared 
to the rectangular elements. This makes triangular element a weaker element. The only 
advantage of using triangular element is that, it requires lesser computation in generating 
local stiffness matrix as compared to the rectangular element. The results obtained by 
FEMLD4 are also compared with the commercial softwares FORGE2 and ANSYS ported 
on computers with single processors. It was found that various results obtained by 
FEMLD4 match well with corresponding results obtained from commercial softwares.

It can be observed that the load compression curve obtained by commercial software 
ANSYS is only up to displacement of 4 mm (Fig. 5.18) and 1.5 mm (Fig. 5.33) for 
axisymmetric and plane strain problems respectively. It is mainly due to error occurred 
during the analysis carried out using ANSYS. As the deformation progresses, the few 
elements distort and after certain stage, these element do not satisfy the distortion 
parameters predefined in the ANSYS software. Therefore the complete solution of the 
problem could not found. Whereas, remeshing facility is available in FORGE2 code. 

Therefore during the compression process whenever any element gets distorted and does 
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not satisfy the distortion parameters, automatic remeshing is carried out for the entire 
problem domain. It was observed that, remeshing was carried out three times in 
axisymmetric problem and seven times in plane strain problem discussed in section 5.3.1 
and 5.3.2 respectively.

As far as performance of FEMLD3 and FEMLD4 is concerned, they showed good 
performance on supercomputer PARAM 10000. The Total time measured in terms of 
Real time reduces considerably after using higher number of processors of supercomputer 
PARAM 10000. The developed software is also tested by analyzing huge size problems. 
It was found that software performed well for higher data sizes also.
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CHAPTER 6

COMPUTER SIMULATION OF METALLIC 
TUBES AS ENERGY ABSORBING ELEMENTS



6.1 INTRODUCTION

Metal forming process is a phenomenon of plastic deformation of metal piece (billet) 
between rigid tools (dies). Metallic parts of complex shape can be made by pressing billet 
between dies of desired shape. As the deformation progresses, metal flows between dies 
and attains final shape after appropriate degree of deformation. Hence emphasis should be 
given to simulate die surfaces in code development to solve the metal forming problems. 
In the previous chapter, compression of cylinder was carried out by prescribing 
downward nodal velocities on the boundary nodes. Due to this, it was observed that the 
mesh distorted severely (see Fig. 5.34) near point A (as per Fig. 5.4). Moreover, 

specifically for discretized mesh having global stiffness matrix of size 3362 x 3362 and 

4232 x 4232, some part of the mesh around the point A moved in the upward direction, 
which cannot occur actually. Therefore to rectify this error, two flat die surfaces are 
simulated in this chapter to achieve proper deformed shapes of billet throughout the 
deformation process. This would not only predict correct deformed shapes during 
simulation but also allow user to simulate deformation of billet of any geometric shape 
between two rigid flat dies.

6.2 CONTACT PROBLEM

In the whole deformation process, some part of deforming body always remains in 
contact with rigid dies. At a typical stage of deformation process, some new part of 
deforming body comes in contact with the die and/or some part of deforming body that 
was already in contact with the die may loose the contact from the rigid die. This depends 
on the boundaries of deforming body and the rigid dies. At this instance, frictional forces 
present between the deforming body and the rigid die interfaces also varies. Collectively 
frictional force and die shape control the deformation of the deforming body. In order to 
simulate the flat die, contact problem is subdivided into two cases namely Case I: Initiate 
new contact nodes, and Case II: Terminate old contact nodes.
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6.2.1 Case I: Initiate New Contact Nodes

For the computer simulation of flat die, a flat die with user-defined velocity is created 
instead of specifying nodal velocities in the beginning. Thereafter Y-coordinates of all the 
boundary nodes are compared with the Y-coordinate of flat die. At this juncture, if Y- 
coordinate of any node along the boundary matches with the Y-coordinate of the die then 
velocity of die was transferred to that node. This initiated the deformation process.

In the compression process after every increment of deformation, Y-coordinates of all the 
nodes are compared with the present Y-coordinate of the rigid die. At this juncture, if Y- 
coordinate of any node crosses the boundary of flat die then its velocity is adjusted. 
Figure 6.1(a) shows a typical finite element mesh at (i)th increment. It can be seen that 
node P is not in contact with upper die at (i) increment but it crosses the boundary of 
upper die in the next increment (see Fig. 6.1(b)). Hence its velocity in Y-direction is 
adjusted so that its Y-coordinate remains same as Y-coordinate of moving upper die after 
(i+l)111 increment. The expression for the modified velocity component will be as follows,

where is the adjusted velocity of the node P, is the Y-coordinate of rigid die at 

(i+l)th increment, yf is the Y-coordinate of the node P at (i)th increment and Ar is the 

time increment.

After this nodal velocity adjustment, the iterations are once again carried out till the 
correct shape is achieved (see Fig. 6.1(c)). During this procedure, velocity components of 
other nodes are automatically adjusted to meet the convergence criteria. Once the solution 
of that particular increment is obtained, the velocity conditions of new nodes those 
recently came in contact with the die are changed. The Y-component of velocity of such 
nodes is changed and made equal to the die velocity so that these nodes travel along with 
die in further iterations.
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(b)

Fig. 6.1 Initiating new contact nodes: Typical deformed mesh at (a) (i)lh iteration, (b) 
intermediate (i+l)lh iteration and (c) final (i+1 )* iteration

(c)

(a)

(b) (c)
Fig. 6.2 Terminating old contact nodes: Typical deformed mesh at (a) (i)th iteration, (b) 

intermediate (i+l),h iteration and (c) final (i+l),h iteration
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6.2.2 Case II: Terminate Old Contact Nodes

During the deformation process, velocity in Y-direction of the contact nodes and the 
compressing die were having same magnitude (see node P in Fig. 6.2(a)) till the direction 
of force (in Y-direction) and the velocity in Y-direction of the contact nodes were same. 
As soon as this condition for any contact node was not satisfied it was assumed that the 
node has been detached from the die (see node P in Fig. 6.2(b)). So at this juncture to 
incorporate this, such nodes were removed from contact with die by changing their 
boundary conditions (see node P in Fig. 6.2(c)). This condition was checked for all 
contact nodes after each increment to achieve true deformed shape after every increment.

Both the cases of contact conditions are incorporated in the developed parallelized 
computer code FEMLD. With the help of these modifications one can simulate 
deformation process of different materials with several shapes between the boundary of 

two flat dies. This is an ideal condition of simple compression within a two rigid flat 
moving dies of compression machine.

6.3 CASE STUDIES

After incorporating various contact conditions in the developed code, four case study 

problems are simulated using this code. Among these four, two are axisymmetric 
deformation problems and remaining two are plane strain deformation problems.

6.3.1 Axisymmetric Compression of Solid Cylinder

As mentioned in the literature [68], Gupta and Shah experimentally carried out axial 
compression of round solid cylinders made up of aluminium and low carbon steel. 
Several specimens with different geometric properties were compressed and their 
deformation processes were examined. From these specimens, a typical specimen of 
aluminium having 30 mm outer diameter (D) and 60 mm initial height (Ho) is taken for 
the present investigation. This specimen was compressed between flat rigid dies till 
83.33% reduction in height was achieved (final height 10 mm). This specimen was 

compressed in 80 increments. Magnitude of frication factor ranging from 0.1 to 0.5 was 
taken for the study. The material behavior of the deforming cylinder was expressed by 

179



expression a = kcm, where numerical values of k and m were taken as 69.94 MPa and 
0.1 respectively. Error norms (velocity error norm and force error norm) were considered 
as 0.001 and limiting strain-rate value was considered as 0.01 to define the rigid portion. 
The deforming cylinder was discretized using 450 four noded rectangular elements with 

496 nodes, resulting in global stiffness matrix of size 992 x 992. Figure 6.3 shows the 
finite element model used for the present investigation.

In the compression process of the round cylinder, metal flows as the deformation 
progresses and the vertical face AB (see Fig. 6.3) attains curvilinear shape due to friction 
between the die and the cylinder interface. An arc of a circle with radius R can be 
approximately fitted to this deformed profile.

| Axis of symmetry

Fig. 6.3 Discretized finite element mesh for solid cylinder

Table 6.1 Table showing X-coordinate of point P for different values of friction factors

Friction factor X-coordinate (mm)
0.1 30.55
0.2 30.43
0.3 30.20
0.4 28.37
0.5 28.19
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(a)

(b)

R9.6378

(c)

(d)

(e)
Fig. 6.4 Deformed shapes of solid cylinder after 83.33% compression with friction factor 

between die-cylinder interface equal to (a) 0.1 (b) 0.2 (c) 0.3 (d) 0.4 and (e) 0.5
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Fig. 6.5 Variation in radiuses of circles with compression for various values of friction 
factor between die-cylinder interface

Fig. 6.6 Curve showing H/Ho ratio with friction factor at which folding process begins
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Figure 6.4 shows deformed shapes of solid cylinder obtained by considering various 
friction factor values. It can be seen from the deformed profiles that as the friction factor 
increases the radius of the circle reduces. X-coordinates of point P at 83.33% 
compression for different friction factor values are shown in Table 6.1 (where P is a point 
on vertical face AB that shows the final radius of the cylinder along loaded face after 
83.33% compression). Figure 6.5 shows variation in these radii of circles with the 
progress of compression for various values of friction factors. Significant variation in the 
radii of circles can be observed in the initial stages of compression for all the values of 
friction factors. On the other hand, in the later stages of deformation, especially after the 
beginning of process of folding, insignificant variation in these radii can be seen. The 
process of folding begins when the upper portion of the vertical surface AB (near point 
A) comes in contact with the upper die. Figure 6.6 shows variation in H/Ho ratio with 
friction factors at which folding process begins (where H is the height of the specimen at 
which folding process begins). It can be observed from this figure that, for higher friction 
factor values, folding process begins early (higher HZHq ratio) as compared to the lower 
friction factor values. The H/Ho ratio increases with increase in the friction factor values. 
Load compression relationship for this compression process is shown in the Fig. 6.7. It 
can be seen that variation in the magnitude of load with different friction factors is 
insignificant in the early stages of deformation while marginal variation can be seen in the 
last stage of deformation. The deformations at which folding process begins are also 

illustrated in this figure by different markers (♦,*,•, A, ■ represents 0.1, 0.2, 0.3, 0.4, 

0.5 respectively).

As present investigation includes parametric study, several executions on finite element 
mesh shown in Fig. 6.3 are involved; hence supercomputer PARAM 10000 is employed 
to save computational time. Figure 6.8 shows the variation in components of 
computational time per iteration with number of processors of supercomputer PARAM 
10000. It can be seen that Total time measured in terms of Real time as well as User time 
reduces with increase in number of processors. Calculation time also reduces with 
increase in number of processors. Increase in Communication time with increase in 
number of processors can also be seen in this figure. Variation in Speedup with number of 
processors is shown in Fig. 6.9. It can be observed from this figure that Real time 

Speedup as well as User time Speedup increases with increase in number of processors.

183



Fig. 6.7 Force deformation relationship for axial compression of solid cylinder for various 
friction factors

Fig. 6.8 Variation in the components of computational time per iteration with number of 
processors for axisymmetric compression of solid cylinder

184



Fig. 6.9 Variation in speedup with number of processors for axisymmetric compression of 
solid cylinder

Table 6.2 Tube specifications

Tube No. Tube Dimensions (mm) Thickness (mm) Material properties
Width Height Top Bottom Vertical Kot m a

AS26261 24.08 24.08 0.72 1.12 0.94 105.5 0.02853 4.17
AS26262 25.44 25.44 1.74 2.2 2.18 108.5 4.16 0.02853
AS26263 25.36 25.36 2.34 2.34 2.2 108.5 4.11 0.02953
AS26264 26.82 26.82 3.52 3.75 3.63 108.5 4.16 0.02853
AS26265 26.93 26.96 4.37 4.63 4.44 108.5 4.16 0.02853
AS26266 27.12 27.12 5.42 5.50 5.38 108.5 4.16 0.02853

Moving platen

I Stationary platen

Fig. 6.10 Discretized finite element mesh for AS26263
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Real time Speedup follows linear Speedup pattern and User time Speedup follows 
superlinear Speedup pattern that is even greater than Ideal Speedup. Maximum Real time 
Speedup and User time Speedup of 3.29 and 9.01 are obtained at seven and eight number 
of processors respectively. In general significant saving in computational time and good 
performance of the parallel code is obtained on supercomputer PARAM 10000.

6.3.2 Lateral Compression of Rectangular Tubes

Experimental study on lateral compression of square and rectangular metallic tube was 
carried out by Gupta et al. [47-49] in past. These tubes were compressed between two flat 
rigid dies with stationary bottom die and moving top die with the downward speed of 10 
mm/min. They also carried out computational study to simulate the experimental process 
of flattening of rectangular tubes using commercial software FORGE2. They developed a 
finite element model to study the collapse mechanism of these metallic tubes. Here, to test 
the functioning of the developed code on supercomputer PARAM 10000, simulation of 
lateral compression of few rectangular tubes are carried out. Finite element model 
presented by Gupta et al. [49] is used for the present investigation. Table 6.2 shows the 
geometric and material properties of the six mild steel tubes used for study. Figure 6.10 
shows the discretized mesh of the specimen tube AS26263 using the developed code. 
Mesh consists of 891 nodes with 758 rectangular elements resulting in global stiffness 

matrix of size 1782 x 1782. This tube is compressed till tube final height of 15.06 mm is 

achieved in 200 increments. Figure 6.11 shows the deformed shapes at various stages of 

deformation obtained by present investigation.

To validate the results obtained from present investigation, specimen tube AS26263 is 
also analyzed using the commercial software FORGE2. Figure 6.12 shows the deformed 
shapes obtained using FORGE2 at various stages of compression. It can be seen from Fig. 
6.11 and 6.12 that the deformed shapes obtained by present investigation and using 
commercial software FORGE2 match fairly well at various stages of deformation.
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(a) 2.11 mm comp.

(b) 4.43 mm comp. (b) 4.44 mm comp.

(c) 6.54 mm comp.

(d) 8.08 mm comp.
Fig. 6.11 Deformed mesh at various stages 
of compression obtained by present 

investigation.

(d) 8.10 mm comp.
Fig. 6.12 Deformed mesh at various stages 
of compression obtained by commercial 

software FORGE2
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Fig. 6.13 Contours of (a) velocity (mm/s) 
(b) effective strain rate and (c) equivalent 
strain at 10.3 mm compression for 
specimen AS26263 obtained by present 
investigation

Fig. 6.14 Contours of (a) velocity (mm/s) 
(b) effective strain rate and (c) equivalent 
strain at 8.10 mm compression for 
specimen AS26263 obtained by FORGE2
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Figure 6.13 (a), (b) and (c) shows the contours of velocity, effective strain-rate and 
effective strain respectively after 10.3 mm compression for specimen AS26263 obtained 
by present investigation. Figure 6.14 (a), (b) and (c) shows the contours of velocity, 
effective strain-rate and effective strain respectively after 8.10 mm compression of the 
same specimen obtained using FORGE2. It can be seen in Fig. 6.13 and 6.14 that the 
comparison of distribution of contours obtained using developed code and FORGE2 are 
presented at different stages of compression (compression values are different). This is 
because the deformed profiles are almost identical at these stages of compression. After 
comparison it was found that the contours of various entities obtained by present 
investigation match fairly well with the contours of same entities obtained by FORGE2.

The load compression relationship for all six tubes under consideration obtained by 
present investigation is shown in Fig. 6.15 (a). It can be seen that the deforming load 
initially increases with the increase in compression. After reaching its peak value, the 
force starts decreasing till the end of compression process. It can be observed that the 
variation of load displacement curves for all tube specimens is identical. It can also be 
seen that as the wall thickness of the tube increases the load carrying capacity of the tube 
also increases. The load compression curves are drawn up to the displacement at which 
the top portion and the bottom portion of the tubes nearly touch each other. It can be 
observed that top and bottom portion of thickest tube specimen AS26266 touches each 
other before load reaches its peak value. Figure 6.15 (b) shows the variation in absorbed 
energy with compression. It can be seen from this figure that as the wall thickness of 
rectangular tube specimen increases the absorbed energy also increases.

Above discussed compression process of six tubes was simulated on supercomputer 
PARAM 10000 by increasing number of processors. Table 6.3 shows the details of the 
simulation study carried out on supercomputer PARAM 10000. Table shows deformation, 
size of stiffness matrix and number of iterations required to obtain the complete solutions 
for all six tubes under consideration.
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(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.15 Load compression and energy compression relationship for the rectangular 
tubes

Table 6.3 Details of simulation study on supercomputer PARAM 10000

Tube No. Deformation (mm) Matrix size Iterations
AS26261 11.05 1980 496
AS26262 9.8 2010 421
AS26263 10.3 1782 420
AS26264 10.5 1946 418
AS26265 12.2 1896 417
AS26266 15.0 1930 507
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Fig. 6.16 Computational time variation for specimen AS26263

(a) Variation in Real time Speedup
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16 -I --------- AS26261
---------AS26262

1 2 3 4 5 6 7 8

No. of processors

(b) Variation in User time Speedup

Fig. 6.17 Variation in speedup with number of processors for six specimens under 
consideration

Axis of symmetry

Fig. 6.18 Discretized finite element mesh for aluminum round tube AAC503
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Figure 6.16 shows a typical variation in computational time per iteration obtained for tube 
specimen AS26263. It can be observed that Total time measured in terms of Real time as 
well as User time reduces with the increase in number of processors of supercomputer 
PARAM 10000. Calculation time also decreases with the increase in number of 
processors of supercomputer PARAM 10000. Increase in Communication time with 
increase in number of processor can also be observed in this figure. Similar type of 
variation was also observed for all the simulations for other tube specimens on 
supercomputer PARAM 10000.

Variation in Real time Speedup and User time Speedup is shown in Fig. 6.17 (a) and (b) 
respectively. It can be observed that Real time Speedup as well as User time Speedup 
increases with increase in number of processors. For every specimen, peak Real time 
Speedup was obtained at seven number of processors. In case of User time Speedup, it 
continuously increases with increase in number of processors employed for the 
simulation. Hence maximum User time Speedup was obtained at eight number of 
processors in each case. The highest Real time Speedup obtained was 4.07 at seven 
numbers of processors for specimen AS26263. On the other hand highest User time 
Speedup obtained was 13.54 at eight numbers of processors for specimen AS26265 that is 
even greater than the Ideal Speedup.

6.3.3 Axial Compression of Round Tube

A study on fold formation in axisymmetric axial compression of round metallic tube was 
carried out experimentally as well as computationally by Gupta et al. [53-55]. An attempt 
has been made to simulate the same compression process using the developed code. Finite 
element model used by Gupta et al. [53] is used in the present investigation. Aluminium 
round tube specimen AAC503 having average diameter and thickness of 47.66 mm and 
3.44 mm respectively is modeled using the developed code. The height of circular tube is 
considered as twice the outer diameter of the tube as taken by Gupta et al. [53]. Figure 
6.18 shows the discretized finite element mesh for the specimen tube AAC503. Mesh 
consists of 880 nodes with 763 rectangular elements resulting in global stiffness matrix of 

size 1760 x 1760. The material property of the deforming tube is expressed by expression 

a = £(1 + ae)sm, where numerical values of k. a and m were taken as 239.9 MPa, 1.19
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and 0.0034 respectively. The friction factor between the deforming material and rigid die 
interface is considered as 0.45. This tube is compressed between rigid dies with stationary 
bottom platen and moving top platen with the downward velocity of 10 mm/min. 
Compression is carried out till 66.8% reduction in height is achieved (final height of 
specimen is 68.28 mm) in 116 increments.

Figure 6.19 shows the deformed shapes at various stages of deformation. Figure 6.19 (a) 
shows the deformed shape when full loaded face AB is in contact with upper die. Figure 
6.19 (b) shows the deformed shape when some portion of vertical face BC comes in 
contact with upper die. In Fig. 6.19 (c), deformed shape is shown when fold is fully 
formed.

Similar simulation is also carried out using commercial software FORGE2. Figure 6.20 
shows the deformed shapes obtained using FORGE2 at various stages of deformation 
depicted in Fig. 6.19. It can be observed that deformed shapes at various stages of 
deformation obtained from developed code match fairly well with the deformed shapes 
obtained by FORGE2.

The contours of velocity, effective strain-rate and equivalent strain at 34.14 mm and 
29.31 mm compression obtained by developed code and FORGE2 are shown in Fig. 6.21 
and 6.22 respectively. It can be observed that contours obtained by developed code match 
well with the corresponding contours obtained by FORGE2 that validates the developed 

code.

The load compression relationship is shown in the Fig. 6.23 (a). It can be observed that 
the load initially increases with the increase in displacement. After reaching the peak 
value, load starts decreasing with the increase in compression. Sudden increase in the 
load can be seen at 30.6 mm compression. This is because some portion of the vertical 
face BC comes in contact with the moving die, that resulted in the decrease in lever arm 
for the applied load. Further increase in the compression resulted in the continuous 
reduction in the load. The relationship between absorbed energy and compression is 
shown in the Fig. 6.23 (b). It can be seen that the absorbed energy continuously increases 
with increase in the compression.
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(a) 16.48 mm compression

(b) 30.61 mm compression (b) 23.54 mm compression

(c) 34.14 mm compression
Fig. 6.19 Deformed mesh at various stages of 
compression obtained by developed code

(c) 29.31 mm compression
Fig. 6.20 Deformed mesh at various stages of 
compression obtained by commercial
software FORGE2
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(c)
Fig. 6.21 Contours of (a) velocity (mm/s) 
(b) effective strain rate and (c) equivalent 
strain at 34.14 mm compression obtained 

by present investigation.

(c)
Fig. 6.22 Contours of (a) velocity (mm/s)
(b) effective strain rate and (c) equivalent 
strain at 29.31 mm compression obtained 

by FOREG2.
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(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.23 Load compression relationship and energy compression relationship for the 
circular tube AAC503 under axial compression
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(a) Variation in components of computational time

Fig. 6.24 Variation in components of computational time and Speedup with number of 
processors for specimen tube AAC503
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After comparing the obtained technical results of the compression process using the 
developed code, the described problem is solved on supercomputer PARAM 10000 using 
multiple processors from one to eight to obtain the variation of computational time. To 
obtain complete solution of attempted problem, 1387 iterations were required. Figure 6.24 
(a) shows the variation in components of computational time per iteration with number of 
processors. It can be observed that significant amount of Total time was saved by 
employing multiple processors. It was also found that Total time measured in terms of 
Real time is minimum at seven processors. Variation in Real time Speedup and User time 
Speedup is shown in Fig. 6.24 (b). From this figure it can be observed that maximum 
Real time Speedup of 4.35 and User time Speedup of 5.95 was achieved at seven and 
eight number of processors respectively. This signifies that developed code is capable of 
saving computational time considerably.

6.3.4 Lateral Compression of Round Tube Subjected to Concentrated Load

In this case study, analysis of lateral compression of round tube between two concentrated 
loads is presented. A copper tube having outer diameter 28.5 mm and thickness 1.5 mm is 
taken for the investigation. The quarter portion of the tube is modeled and shown in the 
Fig. 6.25. Mesh consists of 540 nodes with 445 rectangular elements resulting in global 

stiffness matrix of size 1080 x 1080. The material property of the deforming tube is 

expressed by expression a = A(1 + ac)£m, where numerical values of k, a and m were 

taken as 360 MPa, 0.23 and 0.013 respectively. This tube is compressed between two 
concentrated loads applied at the top and bottom of the tube (see Fig. 6.25) at rate of 1.0 
mm/s till the top surface touches the bottom surface of the tube. Whole compression is 
carried out in 91 increments. Figure 6.26 shows the deformed shapes of the copper tube at 

various stages of deformation.

The same tube is also modeled and analyzed using commercial software FORGE2. Figure 
6.27 shows the deformed shapes at various stages of deformation. It can be observed from 
Fig. 6.26 and 6.27 that deformed shapes obtained using developed code and FORGE2 
match fairly well. Contours of velocity, effective strain-rate and equivalent strain 
obtained using developed code at 12.74 mm compression and using FORGE2 at 12.84 

mm compression are shown in Fig. 6.28 and 6.29 respectively.
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Fig. 6.25 Discretized finite element mesh showing quarter portion of copper tube 
subjected to concentrated force.

(a) 3.22 mm compression (a) 3.18 mm compression

(b) 6.44 mm compression (b) 6.43 mm compression

(c) 9.52 mm compression (c) 9.53 mm compression

(d) 12.84 mm compression
Fig. 6.27 Deformed mesh at various stages 
of compression obtained by commercial 

software FORGE2

(d) 12.74 mm compression 
Fig. 6.26 Deformed mesh at various stages
of compression obtained by developed

code
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(c)
Fig. 6.28 Contours of (a) velocity (mm/s) 
(b) effective strain rate and (c) equivalent 
strain at 12.74 mm compression obtained 

Fig. 6.29 Contours of (a) velocity (mm/s) 
(b) effective strain rate and (c) equivalent 
strain at 12.84 mm compression obtained 
by FOREG2.by present investigation.

It can be seen that contours of velocity obtained by present investigation match well with 
contours obtained by FORGE2. It can also be observed that the contours of effective 
strain-rate and equivalent strain do not match well. This may be due to the development 
of plastic hinges at different locations. Load compression and energy compression 
relationship for copper tube is illustrated in the Fig. 6.30 (a) and (b) respectively. It can be 
observed that load reduces with the increase in compression. The absorbed energy 
continuously increases with increase in compression.

To carry out the complete analysis on supercomputer PARAM 10000,187 iterations were 
required. Figure 6.31 (a) shows the computational time variation per iteration with 
number of processors. It can be observed that reduction in Total time measured in terms 

of Real time is quite low. This is because of smaller problem size (1080 x 1080). 
Moreover there is significant difference in Total time measured in terms of Real time and 
User time, which may be because of large system activities during the analysis. The poor 
performance can also be seen in Fig. 6.31 (b). Maximum Real time Speedup of 1.43 and 

maximum User time Speedup of 5.09 was achieved at eight number of processors.
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(a) Load compression relationship

(b) Energy compression relationship

Fig. 6.30 Load compression and energy compression relationship for the circular copper 
tube subjected to concentrated force
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(a) Variation in components of computational time

(b) Variation in Speedup

Fig. 6.31 Variation in components of computational time and Speedup with number of 
processors for copper tube
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6.4 SUMMARY

This chapter initially discusses the drawbacks of the parallelized finite element code 
FEMLD discussed in chapter 5. Further the chapter discusses the process of simulation of 
flat die surfaces and its implementation in the developed metal forming code. With the 
help of modified code, four case study problems are simulated and compared with the 
findings of FORGE2. The first case study problem was the analysis of axial compression 
of solid cylinder. Solid cylinder specimen is compressed between flat rigid dies taking 
different friction factors between deforming cylinder and rigid die surfaces. The 
compression process was analyzed, studied and discussed. The computational time 
variation with increasing number of processors of supercomputer PARAM 10000 was 
obtained and discussed.

In the second case study problem, analysis of flattening of rectangular metallic tube 
between flat dies is presented. Compression processes of six mild steel tubes with varying 
geometric properties are simulated with the help of developed code. To validate the 
results obtained from developed code, sample tube specimen AS26263 was also analyzed 
using commercial software FORGE2. Various results obtained from present investigation 
are compared with the corresponding results obtained from FORGE2. After comparison, 
it was found that the results of present investigation match fairly well with the results of 
commercial software FORGE2. The analysis was carried out on supercomputer PARAM 
10000 and it was found that computational time could be saved by using multiple number 

of processors.

A problem of fold formation in axial compression of circular tube was considered as third 
case study problem. Axial compression of aluminium tube was simulated using developed 
software as well as commercial software FORGE2. Various results obtained by both the 
computer codes are compared and it was found that the results obtained by developed 
software match well with the results of FORGE2. The performance of the developed code 
was also measured and it was found the developed code is capable of saving significant 
amount of computational time by employing multiple number of processors.

In the last case study problem lateral compression of copper round tube between two 

concentrated loads was carried out. The tube was compressed laterally till the top and
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bottom surface of the tube touched each other. This simulation was carried out using 
developed software as well as using F0RGE2. Various results obtained were compared 
and it was found that results match fairly well. Insignificant saving in computational time 
was achieved by using multiple number of processors of supercomputer PARAM 10000 
due to small size problem.
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CHAPTER 7

APPLICATION OF CLUSTER COMPUTING IN 
FINTIE ELEMENT ANALYSIS



7 A INTRODUCTION

This chapter presents an alternative to supercomputers by presenting two Windows NT 
Clusters consisting of eight conventional computers having similar and different 
configurations. The chapter starts with highlighting the need of Cluster and followed by 
description of compilers used for development of parallel programs on Windows NT 
platform. Chapter then covers a case study in which three different data sets of system of 
linear equations were analyzed using developed Windows NT Cluster (consisting of eight 
conventional computers having similar configuration) as well as supercomputer PARAM 
10000. Comparison of both computing systems is presented through the obtained 
computational time results.

Another Windows NT Cluster is also developed that consists of conventional computer of 
different configurations. On this developed Cluster, four parallel solvers of Gauss-Seidel 
Method, Gauss Elimination Method, Matrix Inversion Method and Modified Matrix 
Inversion Method are developed. Using these parallel solvers, five distinct data sets were 
analyzed by increasing number of computers from one to eight and different components 
of computational time are measured. Based on the obtained variations in these 
components of computational time, comparison between these parallel solvers is carried 
out. It was found that Modified Matrix Inversion Method parallel solver performed better 
as compared to other parallel solvers. Therefore this parallel solver is incorporated in two 
finite element codes, which are capable of solving linear and non-linear two-dimensional 
problems. A problem of anchorage zone in prestressed post-tensioned concrete beam is 
considered for linear elastic finite element analysis on the other hand a problem of simple 
compression of solid cylinder is considered for non-linear finite element analysis. These 
problems were discretized using different mesh sizes and analyzed by increasing number 
of computer from one to eight. Computational time variation is obtained and presented. It 
was found that Total time in finite element analysis could be effectively reduced on 
Windows NT Cluster by employing multiple computers.
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7.2 NEED FOR CLUSTER

It is seen that supercomputers could be used effectively to solve complex problems. The 
computing power of the supercomputers is extremely high as compared to the 
conventional computers. Supercomputers mainly use multiple processors along with 
parallel computing technique. But the supercomputers are very costly as compared to a 
conventional computer. Therefore it is tried to develop an inexpensive alternative of the 
supercomputers by connecting conventional computers with local area network (LAN). 
This group of conventional computers is called as Cluster.

7.2.1 Cluster Setup

In the present study, a Cluster consisting eight IBM Personal Computer 300GL is formed. 
Each computer has single Intel P II processor operating at 400 MHz at 512 KB Cache. 
Each computer has 128 MB RAM with 4.2 GB HDD. All computers have TCP/IP socket 
connections. These computers are connected to each other by Local Area Network (LAN) 
through a Switch of 100 MBPS capacity. Figure 7.1 illustrates described Cluster. All 
computers are equipped with Windows NT 4.0 Workstation operating system.

Fig. 7.1 Windows NT cluster of computers having similar configuration
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7.2.2 Compilers

MPICH for Microsoft Windows compiler [4] developed by Argonne National Laboratory 
is installed on every computer of the Cluster. Each computer is then configured to execute 
parallelized computer codes on Cluster. In addition to this, Microsoft Visual C++ 6.0 
compiler is also installed to create executable files.

7.3 CASE STUDY

To test the functioning of developed Cluster, few standard benchmark programs [8] are 
developed in Visual C++ environment and executed on the developed Cluster to ensure 
the parallel operation of the Cluster. Matrix Inversion Method parallel solver (presented 
in section 3.3.3) was written for the developed Cluster. Three data sets of size 840 x 840, 

1226 x 1226 and 1722 xl722 are analyzed on developed Cluster. These data sets are 
analyzed by changing number of computers from one to eight and the different 
components of computational time are measured. Table 7.1 shows the computational time 
results obtained for these data sets under consideration. These components of 
computational time are measured in terms of Real time only as User time cannot be 
measured in Windows NT operating system.

It can be observed from Table 7.1 that the Total time and Calculation time reduces while 
Communication time increases with increase in number of computers. In general, it can 
be seen that computational time variation is nearly identical for all data sets. It can also be 
observed from Table 7.1 that Speedup increases with increase in number of computers as 
well as with increase in data size. Maximum Speedup of 3.74 can be seen at eight 

computers for data size of 1722 x 1722. Qualitative variation of MFLOPS is similar to the 
variation of Speedup. Maximum MFLOPS of 33.61 was obtained at eight computers for 

data size of 1722 x 1722. Decrease in Efficiency with increase in number of computers 
can be observed.
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Table 7.1 Computational time variation and performance of MIM solver for data set of 
different sizes on Windows NT cluster

(a) Results for data set of size 840 x 840

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 120.00 0.00 120.00 1.00 100.00 9.90
2 78.68 6.49 72.19 1.53 76.25 15.10
3 66.97 13.15 53.82 1.79 59.73 17.74
4 58.77 15.81 42.97 2.04 51.04 20.22
5 64.62 24.22 40.40 1.86 37.14 18.39
6 60.53 24.93 35.60 1.98 33.04 19.63
7 60.54 27.32 33.23 1.98 28.31 19.63
8 58.37 23.91 34.46 2.06 25.70 20.36

(b) Results for data set of size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 363.02 0.00 363.02 1.00 100.00 10.17
2 214.81 12.60 202.21 1.69 84.50 17.19
3 204.10 28.38 175.72 1.78 59.29 18.09
4 175.70 33.89 141.81 2.07 51.65 21.01
5 156.21 49.75 106.46 2.32 46.48 23.63
6 145.19 51.60 93.59 2.50 41.67 25.43
7 143.32 56.86 86.45 2.53 36.19 25.76
8 .. 140.56 52.88 87.67 2.58 32.28 26.26

(c) Results for data set of size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1138.00 0.00 1138.00 1.00 100.00 8.98
2 577.82 23.72 554.10 1.97 98.47 17.69
3 533.50 53.73 479.77 2.13 71.10 19.16
4 411.99 63.29 348.70 2.76 69.06 24.82
5 444.11 93.61 350.51 2.56 51.25 23.02
6 398.56 100.53 298.03 2.86 47.59 25.65
7 359.14 111.99 247.15 3.17 45.27 28.47
8 304.20 100.73 203.48 3.74 46.76 33.61
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Table 7.2 Computational time variation and performance of MIM solver for data set of 
different sizes on PARAM 10000

(a) Results for data set of size 840 x 840

No. of 
processors Total Comm Cal Speedup Efficiency MFLOPS

1 186.31 0.00 186.31 1.00 100.00 6.38
2 99.87 0.67 99.20 1.87 93.27 11.90
3 72.09 1.54 70.55 2.58 86.15 16.48
4 56.46 1.71 54.75 3.30 82.49 21.04
5 55.34 5.23 50.11 3.37 67.33 21.47
6 56.03 6.59 49.44 3.33 55.42 21.21
7 49.29 6.30 42.98 3.78 54.00 24.11
8 56.35 2.26 54.09 3.31 41.33 21.09

(b) Results for data set of size 1226 x 1226

No. of 
processors Total Comm Cal Speedup Efficiency MFLOPS

1 578.16 0.00 578.16 1.00 100.00 6.38
2 299.72 1.50 298.22 1.93 96.45 12.32
3 208.53 3.61 204.92 2.77 92.42 17.70
4 163.36 4.18 159.18 3.54 88.48 22.60
5 155.09 12.96 142.13 3.73 74.56 23.80
6 141.85 15.61 126.23 4.08 67.93 26.02
7 125.84 14.62 111.22 4.59 65.63 29.33
8 134.44 16.15 118.29 4.30 53.76 27.46

(c) Results for data set of size 1722 x 1722

No. of 
processors Total Comm Cal Speedup Efficiency MFLOPS

1 1625.43 0.00 1625.43 1.00 100.00 6.29
2 851.31 3.05 848.26 1.91 95.47 12.01
3 571.71 9.23 562.47 2.84 94.77 17.88
4 446.75 7.75 439.00 3.64 90.96 22.89
5 405.12 18.19 386.93 4.01 80.24 25.24
6 356.91 29.88 327.03 4.55 75.90 28.65
7 321.85 28.47 293.38 5.05 72.15 31.77
8 457.26 50.36 406.90 3.55 44.43 22.36
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The same data sets were also analyzed on supercomputer PARAM 10000 and 
components of computational time were also measured. Table 7.2 shows the variation in 
computational time components for three data sets for different number of processors of 
supercomputer PARAM 10000. It can be seen that Total time and Calculation time 
reduces whereas Communication time increases with increase in number of processors. 
The Speedup as well as MFLOPS increases with increase in number of processors. 
Maximum Speedup and MFLOPS obtained are 5.05 and 31.77 respectively for data of 
size 1722 x 1722 at seven number of processors.

From Tables 7.1 and 7.2 it can be observed that a single processor of supercomputer 
PARAM 10000 requires more time than a conventional personal computer (see Total time 
of single processor of PARAM 10000 and Total time of single computer of Cluster for all 
three data sets). The difference in Total time required by both computing systems at every 
number of processors/computers is marginal. It can be observed that reduction in Total 
time is very rapid in supercomputer PARAM 10000 as compared to the Cluster. This 
difference can also be seen in Speedup. This is mainly because of higher contribution of 
Communication time in Total time for Cluster.

Table 7.3 shows percentage contribution of Communication time in Total time for 
PARAM 10000 and Cluster for all data sets under consideration. It is very clear that 
contribution of Communication time is very high in Cluster as compared to 
supercomputer PARAM 10000. This contribution reduces with increase in data size. This 
signifies that performance of solver improves with increase in size of data on Cluster.

7.4 MIXED PC CLUSTER

In the above section it is seen that with the help of LAN connected computers, parallel 
programs can be executed. Most of the times LAN connected computers may not have 
similar configurations. Therefore a Cluster consisting of eight computers with different 
configurations is created. Eight computers of IBM Personal Computer 300GL with 
different processor speed are used. This Cluster contains four computers each having 
single Intel P II processor at 300 MHz, three computers each having single Intel P II 
processor at 400 MHz, and one computer with single processors of Intel P II at 500 MHz.
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Table 7.3 Percentage contribution of Communication time towards Total time for 
different data set on Windows NT cluster and PARAM 10000.

No. of 
processors/ 
computers

Windows NT cluster PARAM 10000
840 1226 1722 840 1226 1722

1 0.00 0.00 0.00 0.00 0.00 0.00
2 8.25 5.86 4.10 0.67 0.50 0.36
3 19.64 13.91 10.07 2.13 1.73 1.62
4 26.90 19.29 15.36 3.03 2.56 1.73
5 37.48 31.85 21.08 9.45 8.36 4.49
6 41.18 35.54 25.22 11.75 11.01 8.37
7 45.12 39.68 31.18 12.79 11.62 8.85
8 40.97 37.63 33.11 4.01 12.01 11.01

(300 MHz) (300 MHz)(300 MHz)(300 MHz)

Fig. 7.2 Windows NT cluster of computers with different configurations
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The RAM size of these computers is also different. All computers with 300 MHz 
processors have RAM of size 64 MB and remaining all computers has RAM of size 128 
MB. These computers are then connected through a HUB of 10 MBPS capacity. 
Windows NT 4.0 workstation operating system was installed on all computers. The 
developed Cluster is illustrated in Fig. 7.2. MPICH for Microsoft Windows compiler [4] 
was also installed on every computer of the Cluster. Each computer was then properly 
configured to execute parallel programs on this developed Cluster.

7.5 PERFORMANCE OF PARALLEL SOLVERS ON CLUSTER

Based on the algorithms discussed in Chapter 3, parallel solvers are developed on 
Windows NT platform and implemented on developed Cluster discussed above. All four 
parallel solvers (GSM, GEM, MIM, and MMIM) are used to analyze five different data 
sets of increasing size (870 x 870, 1226 x 1226, 1352 x 1352, 1722 x 1722 and 2312 x 

2312) taken from linear elastic and non-linear plastic finite element analysis problems 
discussed in Chapter 4 and Chapter 5. Because of RAM limitations (RAM size ranging 
from 64 MB to 128 MB) solution to data sets having size more that 2500 x 2500 
(approximately) was not possible. The computers used in developed Cluster were having 
different processor speeds which are 300 MHz, 400 MHz and 500 MHz, therefore to 
maintain the consistency in computational time results, at least one computer with 300 
MHz speed is involved in each execution process. Computational time components (in 
terms of Real time) were measured for all data sets, which were analyzed by four 
different parallel solvers with increasing number of computers from one to eight.

7.5.1 Gauss-Seidel Method x

Figures 7.3 (a) and (b) show typical variation of computational time and Speedup with 

increasing number of computers for GSM parallel solver for data set of size 1226 x 1226. 
It can be seen from Fig. 7.3 (a) that Total time increases with increase in number of 
computers. Communication time variation is exactly similar to the Total time variation. 
Communication time is marginally lesser than the Total time at every number of 
computers. Reduction in Calculation time can also be seen with increase in number of 
computers. Similar type of variation can also be seen in Fig. 3.4 (a) in which a data set
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Fig. 7.3 Variation in computational time components and Speedup (R) for GSM solver 
for data set of size 1226 x 1226
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(a) Results for data set of size 870 x 870

Table 7.4 Computational time variation and performance of GSM solver for data set of 
different sizes on Windows NT cluster

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 107.36 0.00 107.36 1.00 100.00 22.91
2 1752.82 1693.54 59.28 0.06 3.06 1.40
3 2177.19 2128.98 48.21 0.05 1.64 1.13
4 2875.72 2834.79 40.93 0.04 0.93 0.86
5 3623.41 3590.52 32.89 0.03 0.59 0.68
6 4517.57 4482.18 35.40 0.02 0.40 0.54
7 5302.78 5272.56 30.22 0.02 0.29 0.46
8 6998.00 6969.79 28.21 0.02 0.19 0.35

(b) Results for data set of size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 332.88 0.00 332.88 1.00 100.00 24.25
2 4106.79 3916.92 189.88 0.08 4.05 1.97
3 5118.39 4988.18 130.22 0.07 2.17 1.58
4 6684.69 6569.92 114.78 0.05 1.24 1.21
5 8435.47 8339.23 96.24 0.04 0.79 0.96
6 10484.10 10401.58 82.52 0.03 0.53 0.77
7 11976.12 11897.44 78.68 0.03 0.40 0.67
8 15938.31 15866.78 71.54 0.02 0.26 0.51

(c) Results for data set of size 1352 x 1352

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 416.25 0.00 416.25 1.00 100.00 23.75
2 4544.45 4324.90 219.55 0.09 4.58 2.18
3 5661.36 5490.90 170.46 0.07 2.45 1.75
4 7356.33 7227.09 129.24 0.06 1.41 1.34
5 9394.76 9277.95 116.80 0.04 0.89 1.05
6 11136.05 11032.19 103.86 0.04 0.62 0.89
7 13714.61 13619.31 95.29 0.03 0.43 0.72
8 17959.20 17870.79 88.42 0.02 0.29 0.55
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(d) Results for data set of size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 808.37 0.00 808.37 1.00 100.00 24.63
2 7030.85 6572.49 458.36 0.11 5.75 2.83
3 9063.42 8727.19 336.24 0.09 2.97 2.20
4 11682.02 11410.10 271.92 0.07 1.73 1.70
5 14914.73 14697.55 217.18 0.05 1.08 1.33
6 18465.68 18268.22 197.46 0.04 0.73 1.08
7 18909.75 18730.78 178.97 0.04 0.61 1.05
8 31936.24 31773.62 162.62 0.03 0.32 0.62

(e) Results for data set of size 2312 x 2312

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1963.93 0.00 1963.93 1.00 100.00 25.12
2 12872.67 11787.66 1085.01 0.15 7.63 3.83
3 16707.09 15775.99 931.10 0.12 3.92 2.95
4 21489.25 20881.68 607.57 0.09 2.28 2.30
5 27480.97 26938.27 542.70 0.07 1.43 1.79
6 33974.00 33495.68 478.32 0.06 0.96 1.45
7 39928.97 39516.89 412.08 0.05 0.70 1.24
8 52352.14 51972.14 380.00 0.04 0.47 0.94

Fig. 7.4 Variation in Speedup (R) for GSM solver for various data sets on Windows NT 
cluster
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1226 x 1226 was analyzed using GSM solver on supercomputer PARAM 10000. From 
Fig. 7.3 (b) it can be observed that Speedup reduces drastically from one to two number 
of computers. With further increase in number of computers, Speedup continuously 
decreases but with reduced rate. Continuous reduction in Speedup was also observed 
when PARAM 10000 was used (see Fig. 3.5).

When other data sets of increasing sizes were analyzed, it was found that Total time 
increases with increase in number of computers employed for performing the analysis 
(see Table 7.4). Figure 7.4 shows the variation in Speedup with number of computers for 
all data sets under consideration. It can be seen that as data size increases, the 
corresponding performance of GSM parallel solver also improves. This improvement is 
insignificant as compared to the improvement observed in case of PARAM 10000 (see 
Fig. 3.6). Table 7.5 shows the number of iterations carried out in analyzing various data 
sets. It can be seen that number of iterations required to solve a particular data sets are 
independent of data size (see Table 3.8 in Chapter 3).

7.5.2 Gauss Elimination Method

Variation of different components of computational and Speedup with increasing number 
of computers for data set of size 1226 x 1226 obtained using GEM parallel solver is 
shown in Fig. 7.5. It can be seen from Fig. 7.5 (a) that Total time increases with increase 
in number of computers. The increase is gradual from one to five number of computers. 
After five number of computers sudden increase in Total time can be seen till eight 
number of computers. The variation of Communication time is exactly similar to 
variation of Total time with significantly lesser magnitude. It can also be observed from 
this figure that Calculation time decreases with increase in number of computers. This 
reduction in Calculation time is very less with increasing number of computers. The 
Computational time variation obtained on Windows NT Clusters is quite similar to the 
variation obtained on supercomputer PARAM 10000 (see Fig. 3.9(a)). In case of 
Windows NT Cluster, Calculation time continuously decreases with increase in number 
of computers whereas in case of PARAM 10000, it increases with increase in number of 
processors. This is mainly because of higher contribution of Communication time for 
Windows NT Cluster as compared to PARAM 10000. Figure 7.5 (b) shows variation in
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Table 7.5 Number of iteration for various data sizes carried out by GSM solver

Data size No. of iterations Status
870 x 870 1083 Solution found

1226 x 1226 1790 Solution found
1352 x 1352 1803 Solution found
1722x 1722 2238 Solution found
2312x2312 3076 Incomplete
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Fiu. 7-5 Variation in computational time components and Speedup (R) for GEM solver 

for data set of size 1226 x 1226
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(a) Results for data set of size 870 x 870

Table 7.6 Computational time variation and performance of GEM solver for data set of 
different sizes on Windows NT cluster

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 46.26 0.00 46.26 1.00 100.00 7.13
2 54.81 6.84 47.97 0.84 42.20 6.01
3 62.19 13.38 48.82 0.74 24.79 5.30
4 70.70 20.79 49.92 0.65 16.36 4.66
5 69.72 28.22 41.50 0.66 13.27 4.73
6 104.90 63.08 41.82 0.44 7.35 3.14
7 122.40 80.16 42.24 0.38 5.40 2.69
8 143.92 92.26 51.66 0.32 4.02 2.29

(b) Results for data set of size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 127.37 0.00 127.37 1.00 100.00 7.24
2 148.12 13.51 134.61 0.86 42.99 6.23
3 158.10 27.89 130.21 0.81 26.85 5.83
4 172.48 41.36 131.11 0.74 18.46 5.35
5 171.55 54.78 116.78 0.74 14.85 5.38
6 244.35 131.52 112.83 0.52 8.69 3.77
7 286.74 172.46 114.28 0.44 6.35 3.22
8 323.94 197.93 126.02 0.39 4.91 2.85

(c) Results for data set of size 1352 x 1352

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 139.89 0.00 139.89 1.00 100.00 8.84
2 190.38 17.68 172.70 0.73 36.74 6.50
3 204.82 29.99 174.82 0.68 22.77 6.04
4 224.99 48.72 176.27 0.62 15.54 5.50
5 215.16 64.86 150.30 0.65 13.00 5.75
6 308.46 156.03 152.42 0.45 7.56 4.01
7 361.36 207.11 154.25 0.39 5.53 3.42
8 387.66 225.90 161.77 0.36 4.51 3.19
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(d) Results for data set of size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 373.78 0.00 373.78 1.00 100.00 6.83
2 389.12 25.92 363.19 0.96 48.03 6.57
3 418.79 52.00 366.79 0.89 29.75 6.10
4 453.74 85.15 368.58 0.82 20.59 5.63
5 419.79 105.89 313.90 0.89 17.81 6.09
6 557.72 241.68 316.04 0.67 11.17 4.58
7 633.85 325.26 308.59 0.59 8.42 4.03
8 694.11 368.74 325.37 0.54 6.73 3.68

(e) Results for data set of size 2312 x 2312

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 953.15 0.00 953.15 1.00 100.00 6.49
2 1002.25 34.10 968.15 0.95 47.55 6.17
3 1053.65 76.38 977.26 0.90 30.15 5.87
4 1100.31 118.99 981.32 0.87 21.66 5.62
5 999.55 144.67 854.87 0.95 19.07 6.18
6 1220.82 392.49 828.32 0.78 13.01 5.06
7 1318.34 478.78 839.56 0.72 10.33 4.69
8 1361.61 532.44 829.17 0.70 8.75 4.54

--------- 2312

0 4-
1

-i-------------------- 1---------------------r i i i -------------------->

2 3 4 5 6 7 8
No. of computers

Fig. 7.6 Variation in Speedup (R) for GEM solver for various data sets on Windows NT 
cluster
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Speedup with increasing number of computers. It can be seen that Speedup decreases 
with increase in number of computers. When this variation was compared with Speedup 
obtained on supercomputer PARAM 10000 (see Fig. 3.10), it was observed that both 
variations are nearly identical.

Table 7.6 shows the computational time variation and performance of GEM parallel 
solver for increasing size of data sets under consideration. It can be observed that 
variation in computational time components is very much identical for all data sets. In all 
the cases Total time increases with increase in number of computers. Figure 7.6 shows the 
variation in Speedup with increasing number of computers for all data sets under 
consideration. It can be seen from this figure that the performance of the GEM parallel 
solver improves with increase in data size. Still the performance of GEM parallel solver is 
poor as the Speedup remains below 1.0 even after employing higher number of 
computers. After comparing the performance of GEM parallel solver on Cluster and 
supercomputer PARAM 10000 (see Fig. 3.10 and Fig. 7.5(b)), it was found that this 
solver performed fairly well on supercomputer PARAM 10000.

7.5.3 Matrix Inversion Method

Computational time variation obtained by MIM parallel solver for data set of size 1226 x 
1226 is shown in Fig. 7.7 (a). It can be seen from this figure that Total time reduces with 
increase in number of computers. Continuous reduction in Total time can be seen for one 
to five number of computers. After that, for further increase in number of computers, 
Total time increases slightly and remains almost constant. Continuous reduction in 
Calculation time with increase in number of computers can also be seen in this figure. It 
can also be observed that Communication time increases with increase in number of 
computers. This increase is gradual up to five number of computers. Sudden increase in 
Communication time can be seen at six number of computers. Similar type of variation in 
components of computational time was also observed when supercomputer PARAM 
10000 was used (see Fig. 3.13(a)). But in case of PARAM 10000, contribution of 
Communication time in Total time was very less as compared to Windows NT Cluster. 
Moreover in case of PARAM 10000, continuous reduction in Total time was observed, 
whereas in case of Windows NT Cluster increase in Total time was observed when more
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(b) Variation in Speedup (R)

Fig. 7.7 Variation in computational time components and Speedup (R) for MIM solver for 

data set of size 1226 x 1226



Table 7.7 Computational time variation and performance of MIM solver for data set of 
different sizes on Windows NT cluster

(a) Results for data set of size 870 x 870

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 162.16 0.00 162.16 1.00 100.00 8.14
2 97.05 5.92 91.14 1.67 83.54 13.60
3 80.92 13.64 67.29 2.00 66.79 16.31
4 84.75 21.68 63.07 1.91 47.83 15.58
5 85.45 29.07 56.38 1.90 37.95 15.45
6 151.58 74.50 77.08 1.07 17.83 8.71
7 169.02 82.85 86.17 0.96 13.71 7.81
8 168.64 87.22 81.42 0.96 12.02 7.83

(b) Results for data set of size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 444.95 0.00 444.95 1.00 100.00 8.30
2 252.46 12.02 240.43 1.76 88.12 14.62
3 200.68 26.92 173.76 2.22 73.91 18.40
4 196.78 43.54 153.24 2.26 56.53 18.76
5 197.52 58.46 139.06 2.25 45.05 18.69
6 323.19 184.78 138.41 1.38 22.95 11.42
7 337.01 144.11 192.89 1.32 18.86 10.95
8 335.21 150.56 184.65 1.33 16.59 11.01

(c) Results for data set of size 1352 x 1352

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 566.55 0.00 566.55 1.00 100.00 8.74
2 320.15 14.02 306.13 1.77 88.48 15.46
3 257.18 31.81 225.37 2.20 73.43 19.25
4 234.73 52.04 182.69 2.41 60.34 21.09
5 227.67 70.06 157.61 2.49 49.77 21.74
6 370.41 208.64 161.77 1.53 25.49 13.36
7 402.45 168.27 234.18 1.41 20.11 12.30
8 393.11 173.36 219.75 1.44 18.01 12.59
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(d) Results for data set of size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1258.91 0.00 1258.91 1.00 100.00 8.12
2 694.45 21.99 672.46 1.81 90.64 14.72
3 522.33 52.05 470.28 2.41 80.34 19.57
4 477.41 84.15 393.25 2.64 65.92 21.42
5 448.47 117.73 330.74 2.81 56.14 22.80
6 648.04 315.66 332.38 1.94 32.38 15.78
7 685.84 255.71 430.13 1.84 26.22 14.91
8 690.67 270.22 420.45 1.82 22.78 14.80

(e) Results for data set of size 2312 x 2312

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 3155.25 0.00 3155.25 1.00 100.00 7.84
2 1742.91 44.05 1698.86 1.81 90.52 14.19
3 1269.99 31.42 1238.57 2.48 82.82 19.48
4 1084.88 82.61 1002.26 2.91 72.71 22.80
5 999.99 159.87 840.12 3.16 63.11 24.74
6 1186.51 289.77 896.74 2.66 44.32 20.85
7 1295.10 394.97 900.13 2.44 34.80 19.10
8 1285.33 412.37 872.96 2.45 30.69 19.25

Fig. 7.8 Variation in Speedup for MIM solver for various data sets on Windows NT
cluster 

224



than five number of computers were used. This is because of higher contribution of 
Communication time in Total time on Windows NT Cluster. Figure 7.7 (b) shows 
variation in Speedup with increase in number of computers for data set of size 1226 x 
1226. It can be seen that Speedup increases gradually from one to three number of 
computers. After three number of computers, Speedup remains almost constant till five 
number of computers. Sudden decrease in Speedup can be observed from five to six 
number of computers. Thereafter Speedup remains almost constant and more than 1.0. 
The performance of MIM parallel solver is better on supercomputer PARAM 10000 as 
compared to its performance on Windows NT Cluster (see Fig. 3.14). The Speedup 
remains very close to Ideal Speedup in case of PARAM 10000 whereas in case of 
Windows NT Cluster maximum Speedup of only 2.5 (approximately) was obtained at 
five number of computers.

Table 7.7 shows the computational time variation and performance of MIM parallel 
solver for five data sets on Windows NT Cluster. It can be observed that Total time 
reduces with increase in number of computers employed for the analysis for all data sets 
under consideration. Figure 7.8 shows the variation in Speedup obtained on Windows NT 
Cluster for increasing data sets. It can be observed that the performance of MIM parallel 
solver improved significantly with increase in data size. Maximum Speedup was observed 
at five number of computers for all data sets under consideration. Highest Speedup of 

3.16 was obtained for data set of size 2312 x 2312 at five number of computers. After 
observing the performance of same solver on supercomputer PARAM 10000 (see Fig. 
3.15 (a)) it was found that the solver performed better on PARAM 10000 as compared to 

Cluster.

7.5.4 Modified Matrix Inversion Method

Modified Matrix Inversion Method parallel solver (MMIM) is developed especially to 
handle the system of linear equations developed in finite element analysis. It ignores the 
computations at those locations where any element in the matrix has zero value (see 
section 3.7). This solver takes minimum computational time on supercomputer PARAM 
10000 as compared to the other parallel solvers (discussed in Chapter 3). Data size of 

1226 x 1226 is analyzed using this parallel solver (MMIM) on Windows NT Cluster.
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Figure 7.9 (a) shows obtained computational time variation. It can be observed that Total 
time reduces by negligible amount when two and three computers are used. Total time 
increases when four and five number of computers were employed for the analysis. Total 
time suddenly increases by considerable amount when six computers were used. Further, 
Total time remains nearly constant for seven and eight number of computers. This is 
mainly because of higher contribution of Communication time. Communication time 
increases significantly with increase in number of computers but Calculation time reduces 
with increase in number of computers. It can be observed that Communication time and 
Calculation time curves cross each other after five number of computers and at the same 
instance Total time suddenly increases. This signifies that Communication time is higher 
than Calculation time that resulted in increased Total time. When this solver was tested 
for same data set on supercomputer PARAM 10000 it was observed that Total time 
continuously decreases with increase in number of processors (see Table 3.26 (a)). Figure 
7.9 (b) shows the variation in Speedup with number of computers for data set of size 1226 

x 1226. It can be seen that Speedup remains greater than 1.0 for number of computer 
from one to five. Speedup decreases and remains less than 1.0 for six to eight number of 
computers. The Speedup is not adequate as maximum Speedup is just 1.23 at three 
number of computers whereas in case of PARAM 10000 maximum Speedup obtained 
was 2.06 at seven number of processors (Table 3.26 (b)).

Various data sets of increasing sizes were analyzed using MMIM parallel solver and 
computational time was measured (see Table 7.8). It can be seen in the tables that initially 
Total time reduces and at a certain number of computers, the Total time starts increasing 
with further increase in number of computers. It can also be observed that 
Communication time increases with increase in number of computers. Figure 7.10 shows 
variation in Speedup with increase in number of computers for various data sets under 
consideration. It can be observed that Speedup increases initially and reaches to its peak 
value at five number of computers for airiest all data sets. Speedup starts decreasing with 
further increase in number of computers and in few cases its magnitude reaches below 1.0 
also. When similar data sets were analyzed on supercomputer PARAM 10000, it was 
observed that Speedup increases continuously with increase in number of processors (see 
Fig. 3.21 (a)).
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(a) Variation in computational time components

(b) Variation in Speedup (R)

Fig. 7.9 Variation in computational time components and Speedup (R) for MMIM solver 
for data set of size 1226 x 1226
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Table 7.8 Computational time variation and performance of MMIM solver for data set of 
different sizes on Windows NT cluster

(a) Results for data set of size 870 x 870

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 55.97 0.00 55.97 1.00 100.00 23.59
2 54.49 5.85 48.64 1.03 51.36 24.23
3 51.55 13.35 38.20 1.09 36.19 25.61
4 66.27 21.36 44.90 0.84 21.11 19.92
5 67.99 29.12 38.87 0.82 16.46 19.42
6 152.96 76.35 76.60 0.37 6.10 8.63
7 164.61 83.22 81.39 0.34 4.86 8.02
8 194.86 88.09 106.77 0.29 3.59 6.77

(b) Results for data set of size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 154.40 0.00 154.40 1.00 100.00 23.91
2 143.91 11.86 132.05 1.07 53.65 25.65
3 125.15 26.60 98.54 1.23 41.13 29.50
4 146.34 43.02 103.33 1.06 26.38 25.23
5 145.86 58.45 87.40 1.06 21.17 25.31
6 312.20 180.48 131.73 0.49 8.24 11.82
7 317.87 142.65 175.23 0.49 6.94 11.61
8 315.66 147.59 168.06 0.49 6.11 11.69

(c) Results for data set of size 1352 x 1352

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 322.81 0.00 322.81 1.00 100.00 15.33
2 225.84 13.74 212.10 1.43 71.47 21.92
3 192.74 31.68 161.06 1.67 55.83 25.68
4 230.50 52.61 177.89 1.40 35.01 21.47
5 198.57 70.59 127.98 1.63 32.51 24.93
6 372.39 206.26 166.13 0.87 14.45 13.29
7 391.33 165.31 226.02 0.82 11.78 12.65
8 408.02 169.15 238.88 0.79 9.89 12.13
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(d) Results for data set of size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 685.00 0.00 685.00 1.00 100.00 14.93
2 529.34 21.59 507.75 1.29 64.70 19.32
3 445.36 46.16 399.20 1.54 51.27 22.96
4 420.70 84.00 336.70 1.63 40.71 24.30
5 401.02 117.67 283.35 1.71 34.16 25.50
6 618.34 303.23 315.11 1.11 18.46 16.54
7 654.90 249.36 405.54 1.05 14.94 15.61
8 672.94 261.75 411.19 1.02 12.72 15.19

(e) Results for data set of size 2312 x 2312

No. of 
computers Total Comm Cal Speedup Efficiency MFLOPS

1 1660.00 0.00 1660.00 1.00 100.00 14.90
2 1352.59 41.17 1311.42 1.23 61.36 18.29
3 1047.06 43.29 1003.77 1.59 52.85 23.63
4 1155.18 319.50 835.68 1.44 35.93 21.42
5 1080.75 253.12 827.63 1.54 30.72 22.89
6 1083.00 294.37 788.63 1.53 25.55 22.84
7 1170.79 324.11 846.68 1.42 20.25 21.13
8 1286.45 349.49 936.97 1.29 16.13 19.23

Fig. 7.10 Variation in Speedup for MMIM solver for various data sets on Windows NT 
cluster
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7.6 COMPARISON OF PARALLEL SOLVERS

In the previous section, performance of four different parallel solvers is presented. Five 
distinct data sets of increasing sizes were analyzed using these parallel solvers on 
Windows NT Cluster. It was observed that performance of all these solvers is best at five 
number of computers (see Fig. 7.4, 7.6, 7.8 and 7.10). Table 7.9 shows values of Total 
time obtained by four parallel solvers with different data sizes at five number of 
computers. Figure 7.11 shows variation in the Speedup with increasing data size for four 
parallel solvers when five number of computers were employed. It can be observed from 
this figure that Speedup obtained by MIM parallel solver is maximum whereas by GSM 
parallel solver is minimum among all four parallel solvers. It can also be observed that 
GEM and GSM parallel solvers give Speedup less than 1.0 for all data sets under 
consideration.

When Total time required for the analysis was compared then it was found that GEM 
parallel solver takes minimum time for analysis on single computer as compared to the 
other parallel solvers (see Tables 7.4, 7.6, 7.7 and 7.8). It is mainly because it requires 
significantly lesser computations for getting solution as compared to the other methods. 
Moreover no communication is carried out when single computer is employed for the 
analysis. When multiple computers are used it was found that all solvers performed better 
when five computers were used. It was also observed that at five number of computers 
Total time taken by MMIM parallel solver is minimum as compared to the Total time 
taken by other parallel solvers for different data sets under consideration. It can be 
observed that Total time required by GEM parallel solver for all data sets is slightly 
higher than the Total time required by MMIM parallel solver. Furthermore GEM parallel 
solver can be improved by trimming down the Communication time so that it may 
perform even better than MMIM parallel solver.
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Fig. 7.11 Comparison of four parallel solvers when five computers were employed

Table 7.9 Total time obtained by four parallel solvers with different data sizes at five 
number of computers

Data size Paralle solver
GSM GEM MIM MMIM

870 3623.41 69.72 85.45 67.99
1226 8435.47 171.55 197.52 145.86
1352 9394.76 215.16 227.67 198.57
1722 14914.73 419.79 448.47 401.02
2312 27480.97 999.55 999.99 897.66
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7.7 FINITE ELEMENT ANALYSIS ON WINDOWS NT CLUSTER

As discussed in Chapter 3, major portion of computational time required in finite element 
analysis is consumed in the process of finding unknowns by solving system of linear 
equations generated. To reduce this portion of computational time, four parallel solvers 
were developed and implemented on supercomputer PARAM 10000 as well as on 
Windows NT Cluster. It was found that MMIM parallel solver takes lesser time on 
supercomputer PARAM 10000 as well as on Windows NT Cluster as compared to other 
parallel solvers. Therefore this parallel solver is implemented in finite element codes 
(presented in Chapter 4 and Chapter 5), which are capable of solving linear elastic and 
non-linear plastic problems. These finite element codes are once again developed on 
Windows NT platform with MMIM parallel solver. One problem from each type is 
analyzed with these finite element codes on Windows NT Cluster and required 
computational time and its components are measured.

7.7.1 Linear Elastic Finite Element Analysis

As described in Chapter 4, analysis of anchorage zone which develops in prestressed 
post-tensioned concrete beam is idealized as two-dimensional plane stress problem. The 
beam was discretized three times using 1600, 1136 and 784 constant strain triangular 
elements with 861,613 and 435 nodes resulting into global stiffness matrices of size 1722 
x 1722,1226 x 1226 and 870 x 870 respectively. Other details of the problem are same as 
described in section 4.5. These three cases were analyzed on Windows NT Cluster by 
increasing number of computers from one to eight and different components of 
computational time were measured.

From Table 7.10, it can be seen that Total time reduces with increasing number of 
computers from one to four. Further increase in number of computers resulted in increase 
in Total time. It can also be seen that problems having stiffness matrix of size 870 x 870 

and 1226 x 1226, minimum Total time was measured at three number of computers. For 

problem with stiffness matrix of size 1722 x 1722, minimum Total time was obtained at 
five number of computers. This signifies that number of computers at which minimum 
Total time can be obtained increases with increase in size of stiffness matrix. This is also
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(a) Results for problem with global stiffness matrix size 870 x 870

Table 7.10 Computational time and performance of parallelized FEM code on Windows 
NT cluster for problems with different global stiffness matrix of sizes

No. of 
computers Total Comm Cal Speedup Efficiency

1 54.63 0.00 54.63 1.00 100.00
2 52.93 6.19 46.74 1.03 51.60
3 49.40 13.56 35.84 1.11 36.86
4 62.47 21.51 40.97 0.87 21.86
5 64.95 29.62 35.33 0.84 16.82
6 142.36 78.47 63.89 0.38 6.40
7 161.34 84.00 77.33 0.34 4.84
8 162.65 92.62 70.03 0.34 4.20

(b) Results for problem with global stiffness matrix size 1226 x 1226

No. of 
computers Total Comm Cal Speedup Efficiency

1 155.01 0.00 155.01 1.00 100.00
2 143.41 12.09 131.33 1.08 54.04
3 124.82 27.20 97.62 1.24 41.40
4 145.66 43.37 102.29 1.06 26.61
5 139.62 58.49 81.12 1.11 22.21
6 294.41 176.77 117.64 0.53 8.78
7 332.71 144.87 187.84 0.47 6.66
8 321.37 154.96 166.42 0.48 6.03

(c) Results for problem with global stiffness matrix size 1722 x 1722

No. of 
computers Total Comm Cal Speedup Efficiency

1 779.31 0.00 779.31 1.00 100.00
2 641.29 17.94 623.36 1.22 60.76
3 532.25 46.42 485.83 1.46 48.81
4 511.54 69.50 442.04 1.52 38.09
5 464.79 116.36 348.43 1.68 33.53
6 1109.72 303.76 805.96 0.70 11.70
7 714.93 248.11 466.82 1.09 15.57
8 692.69 264.35 428.33 1.13 14.06
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Fig. 7.12 Variation in Speedup (R) for FEM code for problems with stiffness matrices of 
increasing size

Fig. 7.13 Variation in Speedup (R) for FEMLD for problems with stiffness matrices of 
increasing size
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(a) Results for problem with global stiffness matrix size 870 x 870

Table 7.11 Computational time and performance of FEMLD on Windows NT cluster for 
problems with different global stiffness matrix of sizes

No. of 
computers Total Comm Cal Speedup Efficiency

1 8123.16 0.00 8123.16 1.00 100.00
2 5784.60 504.00 5280.60 1.40 70.21
3 5102.99 1151.88 3951.11 1.59 53.06
4 5755.10 1854.21 3900.89 1.41 35.29
5 9927.55 5547.29 4380.26 0.82 16.36
6 11462.10 5100.26 6361.84 0.71 11.81
7 11084.43 5413.59 5670.84 0.73 10.47
8 13423.46 7477.81 5945.65 0.61 7.56

(b) Results for problem with global stiffness matrix size 1352 x 1352

No. of 
computers Total Comm Cal Speedup Efficiency

1 12080.67 0.00 12080.67 1.00 100.00
2 8437.57 507.86 7929.70 1.43 71.59
3 7116.41 1176.63 5939.78 1.70 56.59
4 7094.74 1849.59 5245.15 1.70 42.57
5 12356.92 8356.05 4000.88 0.98 19.55
6 12190.18 5050.82 7139.36 0.99 16.52
7 11694.46 4784.83 6909.63 1.03 14.76
8 12956.97 6404.81 6552.16 0.93 11.65

(c) Results for problem with global stiffness matrix size 2312 x 2312

No. of 
computers Total Comm Cal Speedup Efficiency

1 68038.36 0.00 68038.36 1.00 100.00
2 46005.76 1528.44 44477.33 1.48 73.95
3 36645.07 1642.99 35002.08 1.86 61.89
4 38534.73 3876.66 34658.07 1.77 44.14
5 45719.68 16877.30 28842.39 1.49 29.76
6 42637.61 11743.77 30893.84 1.60 26.60
7 43388.94 13204.22 30184.73 1.57 22.40
8 48598.39 18957.33 29641.06 1.40 17.50
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reflected in Speedup as shown in Fig. 7.12. It can be seen from this figure that overall 
performance of the FEM code improves with increase in matrix size. Obtained Speedup is 
not encouraging as maximum Speedup obtained was 1.68 only at five number of 
computers for problem with stiffness matrix of size 1722 x 1722.

When performance of FEM code on Windows NT Cluster was compared with its 
performance on supercomputer PARAM 10000, it was found that FEM code performed 
slightly better on supercomputer PARAM 10000 as compared to Windows NT Cluster 
(see Tables 4.2 to 4.9). On supercomputer PARAM 10000, Speedup continuously 
increases with increase in number of processors, whereas on Windows NT Cluster, 
Speedup reduces when more than five number of computer were used. Overall 
performance of FEM code on Windows NT Cluster is encouraging and can be further 
improved by improving communication technique.

7.7.2 Non-Linear Plastic Finite Element Analysis

The problem of simple compression of a solid cylinder (discussed in section 5.3.1) is 
solved using the developed code on Windows NT Cluster. This problem was discretized 
three times using meshes of different sizes to obtain stiffness matrices of sizes 882 x 882, 

1352 x 1352 and 2312 x 2312. Other details of the problem are kept same as discussed in 
section 5.3.1. These problems were analyzed on Windows NT Cluster by employing one 
to eight computers and different components of computational time were measured. It 
was observed that 84, 36 and 33 iterations were required to analyze these problems.

From Table 7.11 it can be seen that Total time reduces with increase in number of 
computers. It reaches to its minimum value at three number of computers for problem 
with stiffness matrix of size 882 x 882 and 2312 x 2312 and four number of computers 

for problem with stiffness matrix of size 1226 x 1226. Further increase in number of 
computers resulted in increase in Total time. Figure 7.13 shows the variation in Speedup 
obtained by FEMLD on Windows NT Cluster for problem with stiffness matrix of 
various sizes. Overall it can be seen that Speedup increases with increase in number of 
computers and reaches to its peak value. Then Speedup starts decreasing with further 
increase in number of computers. Maximum Speedup of 1.86 was obtained at three

236



number of computers for problem with stiffness matrix of size 2312 x 2312. It can also be 
seen from this figure that the performance of FEMLD improves with increase in size of 
stiffness matrix. When the performance was compared with supercomputer PARAM 
10000, it was found that performance of FEMLD on Windows NT Cluster is nearly 
similar to its performance on supercomputer PARAM 10000 (see Table 5.3 to 5.5). It was 
also observed that PARAM 10000 gives higher Speedup at higher number of processors 
as compared to Windows NT Cluster.

7.8 SUMMARY

In this chapter, an alternative to supercomputer through Cluster computing technique is 
suggested for structural analysis using finite element method. Two Windows NT Clusters 
are formed in which, one consists of PC’s having similar configurations (400 MHz) 
connected by 100 MBPS switch and other consists of PC’s having different 
configurations (300 MHz, 400 MHz, and 500 MHz) connected by 10 MBPS HUB. Matrix 
Inversion Method parallel solver is developed on Windows NT platform and tested on the 
Cluster of PC’s having similar configurations. Data sets of different sizes are solved on 
this Cluster and various components of computational time are measured. The 
comparison of developed Cluster with supercomputer PARAM 10000 is carried out by 
comparing the performance of MIM parallel solvers on both the computing systems. It 
was found that developed Cluster is effective in reducing the computational time by 
employing more number of computers for the solution. It is also observed that the 
contribution of Communication time in Total time is more in Windows NT Cluster as 
compared to supercomputer PARAM 10000.

Four parallel solvers (discussed in Chapter 3) are developed on Windows NT platform 
and tested for various sizes of data sets on Windows NT Cluster of PC’s having different 
configurations. It was found that MIM parallel solver gave highest Speedup as compared 
to the other solvers. It was also found that MMIM parallel solver takes minimum 
computational time as compared to the other solvers and hence it was chosen for 
implementation in finite element analysis.
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Two parallelized finite element codes capable of analyzing linear elastic problems 
(discussed in Chapter 4) and non-linear plastic problem (discussed in Chapter 5) are 
developed on Windows NT Cluster. One sample problem from each category is analyzed 
by these codes by increasing the number of computers and their performance is measured. 
It was found that, Total time required in finite element analysis is reduced by employing 
more number of computers of developed Windows NT Cluster. It was also found that 
analysis could be carried out in minimum Total time by employing three to five number 
of computers depending on the size of the finite element mesh. It was also observed that 
excessive increase in number of computers resulted in increase in Total time.

It was found that these parallel finite element codes performed better on supercomputer 
PARAM 10000 as compared to Windows NT Cluster. But still Windows NT Cluster can 
be used as an alternative of supercomputer PARAM 10000 as it is less expensive than 
supercomputer PARAM 10000. Moreover, computers that are used in Windows NT 
Cluster can be very easily replaced with better and faster computers, which would be the 
biggest advantage of using Windows NT Cluster.
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CHAPTER 8

CONCLUDING REMARKS AND FUTURE 
SCOPE



8.1 SUMMARY AND CONCLUSIONS

The present work shows an implementation of parallel computing technique in two- 
dimensional linear and non-linear finite element analysis. For parallel processing 
supercomputer PARAM 10000 and Windows NT Cluster has been employed. Based on 
the work carried out and presented in this report, following points can be summarize;

• Various components of computational time and effects of user activities on these 
components were studied. A timer was also developed to measure the User time spent 
for a particular code segment.

• Using C programming language, three parallel solvers were developed using Gauss- 
Seidel Method, Gauss Elimination Method and Matrix Inversion Method for solving 
system of linear equations. After comparing the computational time and their 
performance results, it was found that Matrix Inversion Parallel solver is better as 
comparodto other two parallel solvers.

• Matrix Inversion parallel solver was further developed in FORTRAN77 programming 
language. After comparing its performance with the previously developed solver in C 
language, it was found that parallel solver written in C language is better as compared 
to the parallel solver developed in FORTRAN77 language.

• Comparison of Blocking and Non-blocking communication mechanism was carried 
out by implementing both the communication mechanisms in the Matrix Inversion 
parallel solver and it was found that both the communication mechanisms are equally 
effective for communication.

• Matrix Inversion parallel solver was further modified to solve system of linear 
equations generated especially in finite element analysis. After comparing the 
performance of the original and modified Matrix Inversion parallel solver, it was 
found that the modified parallel solver is much faster in solving system of linear 
equation in finite element analysis as compared to the original solver.

• Software for two-dimensional linear elastic finite element analysis was developed on 
the platform of supercomputer PARAM 10000. Modified Matrix Inversion parallel 
solver was incorporated in this software so that computational time could be saved in 
overall computations.
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• With the help of the developed software, a case study problem of stress analysis in 
anchorage zone was presented. Various Stress distribution in anchorage zone in 
prestressed post tensioned concrete beam subjected to concentric and eccentric 
prestressing forces was obtained and presented. The obtained stress variation was also 
compared with the literature and discussed.

• The analysis was carried out on supercomputer PARAM 10000 and it was found that 
significant amount of computational time could be saved by using multiple number of 
processors for the analysis.

• The effect of Poisson’s ratio and load area ratio on anchorage zone stress was studied 
and an expression to compute bursting tensile force was developed. This expression 
includes the effect of Poisson’s ratio that was ignored in the expression given in 
Indian Standard Code.

• Effect of eccentricity of prestressing forces on magnitude of bursting tensile force was 
studied and it was found that maximum magnitude of bursting tensile force could be 

found at zero eccentricity.
• Existence of spalling zone in prestressed post-tensioned concrete beams was 

confirmed in the present investigation. It was also found that the magnitude of 
transverse tensile stresses developed in spalling zone was higher than the magnitude 
of transverse tensile stresses developed in anchorage zone.

• Adopting flow formulation in finite element analysis and the Modified Matrix 
Inversion parallel solver, a generalized software FEMLD was developed to analyze 
large deformation problems categorized under metal forming problems. This software 
was developed using three noded constant strain triangular elements (FEMLD3) as 
well as four noded rectangular elements (FEMLD4).

• Two sample problems of compression of solid cylinder (axisymmetric condition) and 
compression of prismatic bar (plane strain condition) were analyzed using FEMLD3 
as well as FEMLD4. Distribution of various stress obtained were presented and 
discussed.

• The same case study problems were also analyzed using commercial software 
FORGE2 and it was found that various results obtained from developed code have 
excellent agreement with the corresponding results obtained from FORGE2.

• The same case study problems were also analyzed using commercial software 
ANSYS and obtained load-compression relationship was compared with the load
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compression relationship obtained using developed code. The limitations of the 
commercial software ANSYS in solving large deformation problems were also 
discussed.

• The performance of the FEMLD software was tested for huge data sizes and the 
developed software showed improved performance for large size problems.

• FEMLD was developed for generalized large deformation problem so it has some 
limitations. These limitations were sorted out and rectified by simulating two flat dies. 
Modified FEMLD was developed to simulate compression process of various 
materials with various cross-sections between two rigid moving flat dies.

• To test the modified FEMLD software, four case study problems were analyzed and 
presented. They includes axisymmetric compression of solid cylinder, lateral 
compression of rectangular metallic tubes, fold—formation in axisymmetric 
compression of hollow round metallic tubes and lateral compression of round tube 
between two concentrated loads.

• To verify the results obtained from the developed software, the same four problems 
were also analyzed using commercial software FORGE2. Various results obtained 
using developed code and FORGE2 were compared and it was found that the results 
match well.

• These problems were analyzed using supercomputer PARAM 10000 and reduction in 
computational time was obtained using more number of processors of supercomputer 
PARAM 10000.

• Cluster of eight computers having equal hardware configuration operating on 
Windows NT operating system was formed in order to execute parallel codes. Matrix 
Inversion parallel solver was implemented on this Cluster and tested for different data 
sets of increasing sizes. It was found that computational time reduces with the 
increase in number of computer employed for the analysis.

• The similar data sets were also solved using one to eight number of processors of 
supercomputer PARAM 10000. Computational time results were obtained and 
compared with the corresponding results obtained on Windows NT Cluster. It was 
found that both computing systems are good enough to save computational time. It 
was also found that the contribution of Communication time towards Total time is 
more in Windows NT Cluster as compared to the supercomputer PARAM 10000.
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• A cluster of eight conventional computers with different hardware configuration was 
also developed. Four parallel solvers, namely Gauss-Seidel, Gauss Elimination, 
Matrix Inversion and Modified Matrix Inversion parallel solvers were implemented 
on this Cluster. Several data sets of varying data sizes were analyzed on this Cluster 
using four parallel solvers. It was found that Modified Matrix Inversion parallel solver 
gave best performance among all four parallel solvers.

• Two parallel programs for two-dimensional linear elastic finite element analysis and 
two-dimensional non-linear finite element analysis of large deformation problems 
were developed on this Cluster. Case study problems in both the categories were 
solved by changing number of computers from one to eight and obtained 
computational time variations were presented. It was found that the computational 
time reduces with increase in number of computer.

8.2 FURTHER SCOPE OF WORK

In the developed software for linear and non-linear finite element analysis, only two 
elements have been used namely three noded constant strain triangular elements and four 
noded rectangular elements.ThisJsone of the major limitation of the presented work. 
Higher ordeuelements lik^hell element^could be incorporated in the developed code in 
order to get more accurate resultsTnfinne element analysis. Present work deals with only 
two-dimensional finite element analysis. It could be extended to three-dimenstional 
analysis also. In non-linear finite element analysis, simulation of two flat dies was 
presented. More die shapes could be simulated so that more complex problems like tube 
inversion can also be analyzed. Temperature effect was ignored in the developed code 
that could be incorporated in order to study thermal stress in metal forming problems. The 
problem of crack formation or fracture of material during deformation is quite common in 
metal forming problems so various criteria to identify the fracture could be included in 
the developed code.

The developed parallel solvers were tested on PARAM 10000 machine that includes 
processors of 400 MHz speed. With the recent advancements in the area of computer 
technology, conventional computers with 3 GHz processors are now available. Hence the 
computational time consumption in supercomputer PARAM 10000 is relatively similar to 
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the computational time consumption on conventional computer with latest hardware. 
Hence the presented codes should also be tested on supercomputers with latest hardware. 
Very little work has been carried out in implementation of cluster computing technique in 
finite element analysis. Significant amount of work is possible in this area also.
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