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Abstract

Today, data mining has become a very important technology that is direct- 

ly/indirectly impacting all aspects of life. Data in this world is growing at an 

unprecedented rate and today's decision making has become highly complex 

and data-centric than ever before. There is a lot of data being collected and 

warehoused from various domains like web, e-commerce, sensor networks, 

satellites, etc. And the speed of collection of data has also significantly in

creased to a magnitude of GigaBytes/hour. Traditional data mining algorithms 

are neither capable of handling such large volumes of data nor can process the 

data with respect to their velocity.

To deal with such large data, researchers have proposed innovative algorithms. 

Large volumes of data are handled by data mining algorithms specifically de

signed for parallel architectures such as shared memory, distributed memory 

or hybrid architectures. And large velocity of data is handled by stream min

ing algorithms. The specific area of study that processes such large amounts 

of data is known as "Big Data Analytics" or "Big Data".

This thesis deals with development of various data indexing techniques to 

handle "volume", "velocity" and variability" of Big data. This thesis presents 

the following solutions to handle large volume of data:-

• Presents a data structure known as Grid-R-tree, which supports efficient 

execution of spatial queries such as neighborhood & nearest neighbor 

queries used by spatial data mining algorithms. Grid-R-tree also enables 

efficient execution of density-based clustering algorithms like DBSCAN 

& OPTICS, as well as the k-nearest neighbor classifiers.

• Presents a dynamic distributed data structure known as DD-RTree, which 

supports effective distribution of incremental datasets over a cluster of 



computing nodes. The distribution is based on R-tree spatial containment 

principles and is shown to preserve spatial locality in the distribution. 

This aids in efficient execution of parallel spatial data mining algorithms 

like DBSCAN, OPTICS, etc.

• Presents a few data distribution strategies (P-based Split, PD-Split and 

CD-Split) for distributing large static datasets over a cluster of computing 

nodes. These methods are specifically designed for attaining performance 

gain in parallel density based and hierarchical clustering algorithms. Ap

propriate recommendations for their usage have also been presented.

To handle large velocity and variability of data, this thesis presents the following:-

• Presents the first anytime set-wise classification algorithm for data streams 

known as AnySC. It uses a proposed data structure known as CProf-forest 

for handling varying inter-arrival rate of objects in the stream. CProf-forest 

supports anytime incremental update and enables anytime classification 

of test entities as well. The utlity of the proposed algorithm has been 

shown with respect to two problems: community detection in twitter and 

website fingerprinting attack.

• Presents AnyClus and Any-MP-Clus, which are frameworks for anytime 

clustering of single-port and multi-port data streams, respectively. They 

use a proposed data structure known as AnyRtree to handle variable inter

arrival rate of data objects. The proposed frameworks handle noise and 

concept drift more effectively than the existing frameworks. The spatial 

locality preservation of AnyRtree aids them to produce micro-clusters of 

higher quality and compactness.

• Presents AnyFI and MPAnyFI, which are the first algorithms for anytime 

frequent itemset mining of single-port and multi-port data streams, re

spectively. They use a proposed data structure known as BFI-Forest to 

handle variable inter-arrival rate of transactions. The proposed frame



works are shown to handle high and variable speed streams and identify 

Frequent Itemsets with high value of recall.

Among the above problems, Grid-R-tree, anytime set-wise classification, any

time FI mining and DD-Rtree, are the first proposed approaches of their kind. 

All the algorithms have been implemented, experimented and benchmarked 

with the existing solutions (if any). The overall work done for this thesis shows 

a significant contribution to research in the area of "Big Data".
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Chapter 1

Introduction

Data Mining has become a pervasive technology that is poised to touch all aspects of 

our lives. This can be mainly attributed to the fact that data in the world is growing at 

an unprecedented rate. Along with this, decision making is becoming more and more 

data-centric and complex than ever before. There is a lot of data being collected and 

warehoused from various domains like web, e-commerce, transactional systems, sen

sor networks, satellites, gene expressions, scientific simulations, etc [6]. And moreover 

the speed of collection of data has also significantly increased to a magnitude of Giga

Bytes/hour. So, the interest of researchers in the field of data mining has increased by 

leaps and bounds. Innovative algorithms are being designed to solve varieties of new 

problems that analyze varieties of data and extract useful knowledge. Data mining has 

applications in almost all disciplines and often requires an interdisciplinary/multidisci

plinary approach to solve a particular problem. This has led to significant increase in the 

scope and strength of data mining tasks.

Tan et. al [6] define data mining as:

• Non-trivial extraction of implicit, previously unknown and potentially useful infor

mation from data.

• Exploration & analysis, by automatic or semi-automatic means, of large quantities 

of data in order to discover meaningful patterns.

Data mining can be broadly classified into four main tasks- Classification, Clustering, 

Association Rule Mining and Anomaly Detection [6]. Fig. 1.1 [1] shows a detailed classifica-
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Figure 1.1: Broad Classification of Data Mining Tasks [1]

tion of data mining tasks. Each of these tasks are described below in brief.

Classification Classification is one of the important supervised learning tasks of data 

mining [6]. Classification algorithms typically use a set of labelled records for training 

a classification model, that allows us to predict the class label of a previously unseen 

record. A few popular classification algorithms include: Decision-tree [7, 8, 9], Artificial 

Neural Networks [10, 11], Rule based Classifier [12, 13], Naive-Bayes Classifier [14, 15], 

Nearest Neighbor Classifier [16], Support Vector Machines [17, 18], Ensemble Classifiers 

[19], etc. The applications of classification task include: Document Classification [20], 

Network Fraud Detection (in cases like credit card transactions or terrorist identification) 

[21, 22], Email Spam Detection [23], Galaxy Categorization [24], Malignant Cells Detection 

[25], etc.

Clustering Clustering [6] is an important unsupervised data mining task that have been 

extensively used and studied in various data mining problems. It is all about finding 

groups of objects such that the objects in a group will be similar (or related) to one another 

and different from (or unrelated to) the objects in other groups [6]. Clustering algorithms 

can be broadly classified into: (1) Representative/partitioning-based clustering [26, 27, 28, 

29], (2) Hierarchical clustering [30, 31, 32, 33] (3) Density-based clustering [34, 35, 36], and 

(4) Subspace Clustering [37, 38, 39]. Various application domains where clustering is used
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include - social networks [40z 41, 42], image segmentation [43], object identification [44], 

information retrieval [45, 46], etc.

Association Rule Mining Association Rule Mining has been introduced in [47] for mar

ket basket analysis. It involves mining of frequent itemsets (or frequent patterns), which 

are subsets of items that appear frequently in a transactional dataset [48, 49]. Frequent 

itemset (or FI) mining algorithms can be broadly classified into two types: Apriori based 

[47, 50, 51] and FP-growth based [52, 53]. Apriori based algorithms use apriori principle, 

where as FP-growth based algorithms use the indexing structure - FP-tree, or similar 

structures. Various applications of frequent itemset mining include - retail chain analysis, 

stock market analysis, software bug analysis, fault and fraud prediction, etc. Frequent 

itemset mining also facilitates other data mining tasks such as classification, clustering 

and outlier detection [54, 55, 51].

Anomaly Detection Anomaly detection is a data mining task that finds data objects or 

patterns in a dataset that do not follow an expected behavior [56]. Various classification 

and clustering algorithms have been used for detecting anomalies [57, 58, 59, 59, 60, 61]. 

Its applications include network intrusion detection [61] transactional fraud detection [62], 

image processing [63], health insurance applications [57], etc.

1.1 Data Deluge!

In recent past, data has been growing exponentially, resulting in a data deluge! This is 

primarily attributed to exponentially increasing utilities of data generating systems such 

as web, e-commerce, internet of things, transactional systems, embedded systems, digital 

cameras, particle accelerators, DNA sequencers etc. The primary source of data is web 

and related systems. According to Statista [2], the number of web users had been growing 

year by year as shown in Fig. 1.2. As a result, the data being generated is increasing at 

an exponential rate. The 2018 Study of DOMO Data Never Sleeps 6.0 [3] states that, every 

minute, there are 3.8M Google searches, Amazon ships 1,111 packages, Uber takes 1389 

rides, users watch 4.3M videos on Youtube, 49.3k users post photos on Instagram, and 

so on. These figures are shown in Fig. 1.3 and are expected to keep increasing year by
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Figure 1.2: Growing number of internet users (Source: [2])

year. Ion Stoica, a director at the University of California, Berkley, made an observation 

that "Data is growing faster than the Moore's law". The 2018 iteration of the IDC's study 

states that data is being generated by more than 40 types of devices, from RFID tags and 

sensors to supercomputers and supercolliders, from PCs and servers to cars and planes 

[4]. IDC also estimates that from 2013 to 2020, the digital universe will grow by a factor 

of 10 - from 4.4 trillion GB to 44 trillion GB (which is equal to 5,200 GB of data for every 

person on earth) (illustrated in Fig. 1.4). Data is increasing more than two times every 

two years. This indicates that data is expected to grow by a factor of 50 in a span of 10 

years (2010 to 2020). By the year 2020, it is expected that, per day data created by a smart 

home will be over 3,000 GB [64], by self-driving cars will be over 2 Peta Bytes [65], by a 

connected factory will be 1,000,000 GB [64], and so on.

Although, there is so much of useful data that is being generated, the latest IDC study 

[4] reveals that only a small fraction (3%) of the world's data is being properly utilized. 

Also, the world's amount of available storage capacity (i.e., unused bytes) across all media 

types is growing slower than the growing digital universe. In 2013, the available storage 

capacity could hold just 33% of the digital universe. By 2020, it will be able to store less 

than 15%. Because of this, large quantities of useful data is getting lost.

By mining or analyzing such large datasets, the decision making becomes more ra

tional and effective, and is capable of changing the face of the society. This is because 

of its vast variety of applications in businesses, healthcare, society, economies, education, 

commerce, IT, etc. However, when data becomes so large, the traditional methods of data
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Figure 1.3: Statistics of growing data by DOMO I Data Never Sleeps 6.0 [3]

mining and analytics described in the previous section become unfit for extracting knowl

edge out of it. This is because they either need too much of time (unreasonable) to process 

or they are incapable of scaling on bigger hardware setups, or both. This problem has at

tracted several business analysts, data scientists, and IT professionals to develop efficient 

and scalable - analytical, computational and storage solutions to mine and analyze such 

ever increasing data. This lead to the advent of the era of "Big Data".

1.2 Big Data

Big Data or Big Data Analytics refers to solutions to the problems of mining or analyzing 

very large sized datasets, which are almost impossible to store or process using traditional 

techniques and hardware. The term "Big Data" was coined by Roger Magoulas [66] from

5



1.2 Big Data
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Figure 1.4: IDC prediction of Data Growth (Source: IDC Study 2018: EMC [4]}

O'Reilly media. The term explains different characteristics of the digital age data, which 

are typically 7Vs as illustrated in Fig. 1.5 [5].

Big datasets typically manifest in two forms: Large Static Data and Dynamic Streaming 

Data. Large Static datasets have large volumes and are collected over a period of time. 

They are like snapshot data and don't evolve with time. They are used for a specific 

study or knowledge extraction. For example, astronomical data, gene expression data, 

etc. are static datasets that have huge volumes (typically tera bytes) and are analyzed 

on a whole for a specific purpose. Dynamic stream datasets are those datasets whose 

data objects are being continuously generated at a fast and variable rate, ordered by time. 

These streams have data patterns that evolve with time. These patterns are to be captured 

within the constraints of limited time and storage. Also, the outdated patterns/data that 

are previously captured are to be continuously discarded as new data keeps arriving. 

Data from transactional systems, sensor networks, smart digital systems, network traffic, 

stock markets, etc. are a few examples of streaming data. We shall now describe how 

each of these types of data are handled by a Big Data Scientist!

1.2.1 Handling Large Static Data

To process large volumes of data, traditional mining algorithms and hardware become 

inadequate. They will either take very large amount of time to process and analyze or the 

traditional hardware becomes insufficient to even load data into memory, without which 

it is difficult to analyze the data. So, data scientists have come up with High Performance
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The speed at which 
data is generated

Figure 1.5: The 7V's of Big Data (Source: [5]}

Computing technologies which can process and analyze such large datasets. They use ad

vanced hardware architectures such as distributed memory, shared memory, hybrid of these 

two, distributed shared memory and accelerator based parallel architecture. Distributed mem

ory architecture typically consists of a cluster of computing nodes communicating with 

each other over a high band width network. HPC frameworks such as Hadoop [67, 68], 

NIMBLE [69], Spark [70], MPI [71], etc. work over distributed memory. Shared memory 

architectures comprise of a single workstation that has multiple processors (or processor 

cores) executing multiple threads in parallel, while sharing a global memory. Technolo

gies such as Posix Threads, OpenMP [72], Intel-TBB [73], etc. support shared memory. 

Computational Scientists often use hybrid of distributed memory and shared memory 

architectures, giving rise to hybrid architecture. This comprises of a cluster of computing 

nodes in which each node supports multi-threading. Typically MPI + OpenMP or MPI + 

Pthreads combinations are used over such architectures. Distributed shared memory (or 

Partitioned Global Address Space Model) is again realized with a cluster of computing 

nodes but this time with a software layer that mimics the behaviour of shared memory. 

Technologies such as UPC (C) [74], CAF (Fortran) [75], Titanium (Java) [76], Global Ar

rays (Library) [77], XI0 [78], etc. are used over distributed shared memory architectures.

7
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Accelerator based parallel architectures are those that execute a large number of light 

weight threads in parallel while sharing a global memory. They are typically realized by 

GP-GPUs, FPGAs, Intel Xeon Phi co-processor [79], etc. Technologies such as CUDA [80], 

OpenCL [81], Open ACC [82] work over GP-GPUs; OpenCL works over FPGAs, and both 

OpenCL and OpenMP [72] work over Intel Xeon Phi co-processor.

Data scientists have come up with various data mining algorithms and libraries that 

leverage one or more of the above architectures to process and analyze large datasets. 

Few of them include - parallel classification algorithms [83, 84, 85], parallel clustering 

algorithms [86, 87, 88, 36, 89], parallel frequent itemset mining algorithms [90, 91, 92], 

etc. The performance of these algorithms scale with increase in hardware resources and 

thus enable data scientists to process large datasets. Apart from these there are openly 

available ready to use libraries that support parallel data mining algorithms. They include 

Apache Mahout [93] for Hadoop, MLlib [94] for Spark, etc.

1.2.2 Handling Streaming Data

The scenario of a data stream is different from that of large static data. Streams are 

typically characterized by continuously arriving data objects at a fast and variable rate. 

In streams we do not store data, rather detect patterns in the arriving data and store 

them. The patterns keep evolving, and these evolving patterns are captured by the stream 

mining algorithms within the constraints of limited time to process each object and limited 

memory to store incoming data. Moreover, the outdated patterns are also discarded 

time to time. This is typically achieved by using various mathematical models such as 

exponential decay [95], landmark window [96], sliding window [97], tilted-time window 

[98], etc.

Stream mining has got vast variety of applications. A few of them include - retail 

chain analysis, stock market analysis, web log analysis, network traffic analysis, mining 

data feeds from sensor networks, etc. Various stream mining algorithms that have been 

proposed in literature include - stream classification algorithms [99, 100, 101], stream 

clustering algorithms [102, 103, 95, 104], stream frequent itemset mining algorithms [98, 

96, 97,105], stream anomaly detection algorithms [106,107,108] etc. All these algorithms
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Time

Figure 1.6: Characteristic of an anytime algorithm

usually handle single port stream on a single workstation. For handling multiple streams, 

a few multi-port mining algorithms have also been proposed. Few of them include - 

[109,110, 111, 112,113,114,115]. These algorithms typically leverage distributed memory 

frameworks for their efficient execution.

1.2.2.1 Anytime Stream Mining

A class of stream mining algorithms that handle varying inter-arrival rate of data streams 

is known as anytime stream mining algorithms. The stream mining algorithms proposed 

in literature (described earlier) are budget algorithms, i.e. they are designed for a fixed 

maximum stream speed (known as budget). When the stream speed is higher than the 

budget, they would have to either process sampled data or buffer unlimited data and 

eventually fail [104]. And when the stream speed is lower, they sit idle after processing the 

current data object, until the next one arrives. An ideal algorithm, however, should be able 

to process any stream speed. Higher speeds should be handled using deferred insertions 

and spare time available while processing lower speed streams should be utilized for 

refining the information received. Anytime algorithms are such algorithms that handle 

variable and high stream speeds and produce a mining result for any given processing 

time allowance for the incoming objects. They produce a quick approximate result and 

improve its accuracy with increase in time allowance as shown in Figure 1.6. A few 

such algorithms proposed in literature include - anytime classification [100,116], anytime 

clustering [104,117,118], and anytime anomaly detection [119].
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1.3 Research Gap and Motivation

Amidst many algorithms and techniques available in literature to process big data, there 

are quite a few gaps that are identified in terms of availability of specific data indexing 

mechanisms for mining large static and dynamic stream datasets. We present the identi

fied gaps as follows:

• Efficient data indexing structures tailor-made for data mining algorithms. Data mining 

algorithms such as DBSCAN, OPTICS, KNN Classifier, etc, rely heavily on usage 

of region (neighborhood) and nearest neighbor queries. They essentially use data 

indexing structures such as R-tree (and its variants) or kd-tree for indexing data in 

them such that the above queries are efficiently executed. However, these data struc

tures have certain drawbacks that limits their performance. R-tree and its variants 

have the problem of downward propagation of overlap in its internal nodes, kd- 

tree's binary nature leads to large height especially while indexing large datasets. 

Moreover, these data structures are borrowed from database systems and do not 

capture any specific querying requirements or patterns of any specific data mining 

algorithms.

• Efficient data indexing structures and algorithms for anytime mining of data streams. Data 

streams are characterized by arriving data objects at fast and variable rate. Typical 

stream mining algorithms can not handle streams that have variable or very high 

inter-arrival rates. Anytime algorithms handle the above streams without any stalls. 

However, no anytime stream mining algorithm exists for many mining tasks such 

as set-wise classification and frequent itemset mining. Also, the available anytime 

mining algorithms are very basic and have drawbacks. There is a lot of scope for 

designing better and efficient algorithms for anytime mining of variable speed data 

streams.

• Efficient data distribution strategies for executing parallel spatial clustering algorithms over 

distributed memory architectures. When parallel spatial clustering algorithms are exe

cuted over a cluster of computing nodes, the first step is to distribute data over the 

computing nodes. This distribution is usually done so as to achieve load balanc

ing and preserve spatial locality. This improves the performance of the algorithms, 
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as these algorithms require spatial locality for execution of various spatial queries 

(neighborhood and nearest neighbor queries). To achieve this, researchers typically 

use random or kd-partitioning to distribute data over the nodes. However again, 

these are not specifically made for parallel spatial clustering algorithms, nor do they 

are designed to optimize the performance of any specific class of parallel cluster

ing algorithms. There is a lot of scope for designing efficient partitioning strategies 

both for large static data as well as dynamic incremental data, which can capture 

specific spatial patterns of parallel density based and hierarchical clustering algo

rithms, maximize spatial locality preservation and achieve their efficient execution.

1.4 Thesis Contributions

A summary of the main contributions of the thesis are listed below.

• We developed a new data indexing structure known as Grid-R-tree which is a simple, 

yet effective adaptation of R-tree using the concept of Grid. It is a two-level R-tree in 

which the first level R-tree (known as global-R-tree) is for indexing "non-empty" cells 

resultant of virtual gridding of the search space, and the second level comprises of 

multiple R-trees (cell-R-trees) one each for every cell to index points lying in it. Grid- 

R-tree supports efficient execution of region and nearest neighbor queries. It addresses 

the drawbacks of the conventional data structures such as R-tree, kd-tree, etc. and is 

experimentally found to handle the above queries more efficiently. Grid-R-tree sup

ports a novel query called cell-wise e-neighborhood query (CellWiseNBH), which per

forms locality aware execution of neighborhood queries observed in density-based 

clustering algorithms (DBSCAN and OPTICS), and thus makes them efficient. The 

experimental analysis also demonstrates that using Grid-R-tree for k-NN classifier 

and DBSCAN clustering algorithm improves their efficiency.

• New anytime mining algorithms for data streams

- We proposed an Anytime Frequent Itemset mining algorithm for data streams, 

AnyFI. To the best of our knowledge, this is first such attempt. It uses novel 

data structure known as Buffered Frequent Itemset Forest (BFI-forest), which aids 
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AnyFI to handle variable inter-arrival rate of incoming transactions in a stream. 

Its design also enables a user to obtain immediate mining results with best pos

sible accuracy for the available time allowance and improve its quality with 

increase in time allowance. We also propose MPAnyFI for anytime Fl min

ing of multi-port data streams over commodity clusters. It uses AnyFI at each 

computing node and stores the aggregate FIs in a tilted-time windoiv framework. 

The experimental analysis shows that AnyFI can handle greater speed streams 

upto 60,000 transactions per second (tps), and produce mining results with re

call close to 100%. The comparative analysis shows that AnyFI handles higher 

stream speeds and mines for FIs efficiently, when compared to the existing 

algorithms. The experiments conducted over MPAnyFI also show its efficiency.

- We propose AnySC, which is an Anytime Set-wise Classification algorithm for data 

streams. To the best of our knowledge, this is the first such approach. It uses a 

proposed data structure known as CProf-forest, for set-wise classification of vari

able speed data streams. AnySC incrementally updates the CProf-forest using 

the objects arriving in the stream within any given time allowance dictated by 

the stream speed. AnySC leverages the hierarchical structure of CProf-trees 

to classify the test entities within any given processing time allowance. The 

experimental results show that AnySC can: (i) handle variable stream speeds 

and produce accurate classification results; (ii) handle very high speed streams 

with reasonable performance, unlike the baseline approaches that fail to exe

cute when speed exceeds its budget; (Hi) give very high classification accuracy 

when stream speed is low, since it makes use of greater time available to refine 

the results to the greatest possible degree.

- We propose a framework known as AnyClus which performs online anytime 

maintenance of micro-clusters for handling data streams that have variable 

inter-arrival rate of data objects. It uses a proposed variant of R-tree known 

as AnyRTree, that stores summary statistics of the arriving objects in the form 

of micro-clusters at hierarchical granularities. The design of AnyRtree enables 

AnyClus to effectively handle noise and capture concept drift. The experimen- 
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tai analysis establish that AnyRTree maintains micro-clusters more compactly 

and with greater quality when compared to the existing methods. We also ex

tend AnyClus into a parallel framework known as Any-MP-Clus for anytime 

clustering of multi-port data streams over distributed memory architectures (a 

cluster of computing nodes). The experiments performed over Any-MP-Clus 

establish that it can handle multi-port data streams of billions scale efficiently 

and produce clustering of high quality.

• Data Distribution Strategies

- We proposed three distribution strategies for distribution of large static data 

across computing nodes of a cluster for execution of parallel clustering algo

rithms. They include - PD-Split, Pbased-Split, and CD-Split. Each of the distribu

tion strategies preserve spatial locality and ensure perfect or near perfect load 

balancing. We experimentally demonstrate the applicability of the proposed 

methods for various classes of parallel clustering algorithms and benchmark 

them against the known KD-Split and random partitioning schemes, in terms 

of parallel data mining algorithms such as DBSCAN, SLINK and SNN.

- We proposed DD-Rtree, a novel dynamic distributed data structure, based on 

R-tree [18]. It is useful for distribution of dynamic and incrementally gener

ated data across computing nodes of a cluster for executing parallel spatial 

data mining algorithms efficiently. The distribution preserves spatial locality 

and ensures proper load balancing. DD-Rtree structure consists of R-trees 

at two levels. The first level R-tree is the index — R — tree (IR-TREE), which 

serves as the index during construction/insertion. The second level comprises 

of multiple R-trees for each compute node (MR — TREE), which indexes data 

belonging to that. DD-Rtree was experimentally found to outperform best 

known existing methods in terms of locality in distribution, communication 

cost, construction & querying time, and performance of parallel data mining 

algorithms.

All algorithms, including those used for bench-marking, have been implemented in 
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C/C++. All parallel programs were implemented using MPI and OpenMP. The codes 

and datasets used for various problems shall be made publicly available on github after 

all of them get published.

This thesis deals with 3 Vs of Big Data - Volume, Velocity, and & Variability. Grid- 

R-tree and data distribution strategies deal with the volume, whereas anytime stream 

mining algorithms deal with velocity and variability.

1.5 Thesis Organization

This thesis has been divided into three parts. Part I on page 16 presents the proposed 

data indexing structure - Grid-R-tree. This part has two chapters - Chapter 2 on page 19 

presents the Grid-R-tree structure and demonstrates the efficiency in execution of neigh

borhood and nearest neighbor queries supported by it; Chapter 3 on page 50 presents the 

usefulness of Grid-R-tree in spatial data mining algorithms. Part II on page 57 presents 

three algorithms proposed for anytime mining of data streams. It is divided into three 

chapters - Chapter 5 on page 103 presents AnySC, which is the first anytime set-wise 

classification algorithm for data streams; Chapter 6 on page 126 presents AnyClus and 

Any-MP-Clus, which are anytime micro-cluster maintenance frameworks for single port 

and multi-port data streams respectively; Chapter 4 on page 60 presents AnyFI and MP- 

Any-FI which are frameworks for anytime Frequent Itemset Mining of single-port and 

multi-port data streams respectively. Part III on page 153 presents data distribution strate

gies used for distributing data during execution of parallel data mining algorithms. This 

part comprises of two chapters - Chapter 8 on page 185 presents a dynamic distributed 

data structure known as DD-Rtree, which is useful in distributing dynamic incremental 

data into computing nodes of a cluster while preserving spatial locality in its distribution. 

Chapter 7 on page 158 presents a few data distribution strategies for large static datasets 

while maintaining spatial locality and adopting to specific requirements of parallel spatial 

data mining algorithms. Chapter 9 concludes the thesis and throws an insight on future 

directions.
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Part I

Data Indexing Structures for Efficient 

Spatial Queries in Data Mining
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Multi-dimensional indexing structures are extensively used in different data mining algo

rithms such as density based clustering algorithms (DBSCAN [34] & OPTICS [35, 120]), 

hierarchical clustering algorithms (S-LINK [30], C-LINK [6], Average LINK [6]), k-nearest 

neighbors (k-NN) classifiers [121], etc. For example, R-tree [122] and its variants (like 

R ’ tree, R* tree, Hilbert-R-tree, etc. [123]), k-d-tree [124], quad-tree [125], Grid file [126], etc. 

are used for efficient execution of region queries (point, window & neighborhood queries) and 

nearest neighbor queries. These indexing structures were originally designed to index spa

tial data in database applications. Queries supported by these structures are extensively 

used in data mining algorithms mentioned above.

These above mentioned data structures are not specifically designed for use in data 

mining algorithms, i.e.they do not capture any specific access patterns of data mining al

gorithms. Moreover, these data structures have certain drawbacks associated with them. 

In R-tree and its variants, the query performance suffers with increase in size and dimen

sionality of the dataset [123] because, overlap amongst their nodes leads to a very large 

search space. This problem afflicts most variants of R-trees except R+-tree [123]. But, 

R+-Tree is not commonly used because it exhibits higher fan-out and allows duplication 

of data points in the leaf nodes of the tree, leading to higher memory requirement, and 

thus rendering it inefficient for indexing large data sets. Moreover, R-tree and its variants 

do not perform good as the size and dimensionality of data increases. This is because the 

overlap between MBRs of its nodes increases with increase in data size and dimensionality 

[123].

Query performance suffers also in k-d-tree and quad-tree. The smaller branching 

factor in case of k-d-tree results in increased height while indexing large datasets, thus 

becoming inefficient for neighborhood queries. Quad-tree, on the other hand, is space 

inefficient for high dimensional data because of presence of a large number of nil pointers 

[126]. Further, quad-tree is not height balanced and thus does not provide asymptotic 

guarantees.

Grid file [126] is a hash-based structure that is developed specifically for multi-key 

accesses. It is commonly used in data indexing and space partitioning. It consists of a 

grid file directory (typically a d-dimensional array) to index cells resultant of gridding, and 

one bucket (a linked list) per cell for indexing data points. Although, the usage of array 
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for the grid file directory guarantees 0(1) asymptotic complexity for query retrieval, it 

leads to inefficient space utilization while indexing datasets of high dimensionality. This 

is because, as the number of dimensions grow, the distribution of points in the space 

becomes sparse, leading to large number of null pointers. In such cases, linked lists are 

usually employed to store the grid directory, which saves space but increases look up 

time to Similar problem is observed when the data distribution is skewed. The 

other limitation of grid file is the chaining of points in buckets, which also results in 

linear access time. Thus, grid files are efficient only when the number of dimensions are 

not large and data distribution is uniform [127].

Density-based clustering algorithms like DBSCAN [34] and OPTICS [35] exhibit a phe

nomena where the neighborhood queries of points lying within the locality of a given 

point are executed closely rather than randomly. None of the existing data structures 

exploit this locality to improve their query performance. When R-tree and its variants, 

k-d-tree or quad-tree are used for such neighborhood queries, the same search subspace 

is searched repeatedly, (i.e., the same path in the tree is traversed repeatedly) for neigh

borhood computations of all points lying in one region. Thus, it will be beneficial if a 

single traversal can compute the neighborhoods for all the points lying in that region.

A data structure called GR-tree [128] has been reported in literature which was de

signed using R-tree and Grid coordinate division. GR-tree is also two level tree in which 

first level is an R-tree with leaves as intermediate MBRs. The second level is a coordinate 

tree which is constructed based on grid coordinate division for each of the leaf level MBR 

of the first level tree. A coordinate tree represents gridding in the form of a tree, where 

each leaf represents a cell that stores a circular linked list of points. But, in this GR-tree, 

the leaves of the first level R-tree are overlapping, which results in searching multiple 

coordinate trees to locate a data point. This deteriorates the efficiency of a neighborhood 

query, especially for datasets of high dimensionality and large sizes. Other disadvantage 

of GR-tree is that the points indexed in each cell are stored in a circular linked list which 

yields a linear search time. Also, the authors of GR-tree do not validate their results 

for datasets of large size and high dimensionality. Moreover, GR-tree does not explicitly 

capture any specific pattern of any of the data mining algorithms.

From the above discussion, we can clearly observe that none of the above described 

17



data structures were designed specifically for use in data mining and do not capture any 

typical requirements of data mining tasks. So, there is a need for efficient data structures 

for "indexing and mining" large, high-dimensional datasets, and at the same time capture 

the querying requirements of data mining algorithms. This part has two chapters. In 

the first chapter (Chapter 2 on the following page), we present a proposed data struc

ture known as Grid-R-tree, which addresses the above limitations and facilitates efficient 

execution of neighborhood and nearest neighbor queries, specifically for spatial data min

ing algorithms. The second chapter Chapter 3 on page 50 presents the applicability of 

Grid-R-tree to spatial data mining algorithms.
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Chapter 2

Grid-R-tree: A data structure for 

efficient neighborhood and nearest 

neighbor queries

In this chapter, we present a proposed multi-dimensional indexing structure known 

as Grid-R-tree, which is a two-level generalization of R-tree using the concept of grid. The 

aim of this data structure is to facilitate efficient execution of neighborhood and nearest 

neighbor queries used in spatial data mining algorithms and also to facilitate efficient 

execution of clustering algorithms.

2.1 Grid-R-tree

Following the discussion on R-tree presented in Appendix A on page 206, we now present 

our proposed data structure - Grid-R-tree. Grid-R-tree is adaptation of R-tree using Grid. 

We first propose its design and structure, followed by its construction and complexity 

analysis.

• Poonam Goyal, Jagat Sesh Challa, Dhruv Kumar, Navneet Goyal, Sundar Balasubramaniam. Grid-R- 
tree: A data structure for efficient neighborhood and nearest neighbor queries in data mining. Submitted for 
review in Journal of Data Science and Analytics (JDSA), Springer.
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2.1 Grid-R-tree

Figure 2.1: Structure of Grid-R-tree

2.1.1 Grid-R-tree: Design & Structure

The structure of Grid-R-tree has been illustrated in Figure 2.1. Grid-R-tree comprises of 

R-trees at two levels. First, for a given d-dimensional dataset, a d-dimensional uniform 

virtual grid is first superimposed over the entire search space of the dataset, creating cells 

which are hyper-cubes (Figure 2.3 on page 22). The "non-empty” cells resultant of this 

gridding are stored in the first level R-tree, referred to as global-R-tree (see Figure 2.1). 

Then a separate R-tree, referred to as cell-R-tree, is constructed for every cell to index data 

points belonging to that cell. The global-R-tree together with cell-R-trees constitute the 

Grid-R-tree data structure.

Each node (both internal and external) of the global-R-tree store between Gm and GM 

entries (where Gm < GM/2), except the root which can have less than Gm entries. The 

entries in the internal nodes store d - dimensional minimum bounding rectangles (referred 

to as Gmbrs). A Gmbr stores a bounding rectangle that contains all the regions indexed 

by its children. External nodes consist of d-dimensional cells.

Similarly, each node (both internal and external) of a cell-R-tree store between Rm and 

RM entries (where Rm < RM/2), except the root which can have less than Rm entries. 

The entries in the internal nodes store minimum bounding rectangles (Rmbrs) and entries 

in the external nodes store pointers to data points.
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(a) (b)

Figure 2.2: Illustrating MBRs formed over a two dimensional synthetic dataset using (a) R-tree 
(b) Grid-R-tree

Benefits of Grid-R-tree design. The design of Grid-R-tree into two levels reduces the 

overall overlap amongst the tree nodes and subsequently leads to reduction of search 

space. Figure 2.2 shows the MBRs of R-tree and Grid-R-tree when constructed over a 

small synthetic 2-dimensional dataset comprising of 27 data points. The fanout values 

for all kinds of trees were chosen to be 2 and 4. All the trees are of two levels. It is 

very clear from the figure that the MBRs formed by Grid-R-tree (formed by dividing the 

search space into 4 disjoint cells and then constructing separate R-tree for each cell) exhibit 

lesser overlap than those formed by R-tree. This reduction in overlap reduces the search 

space (number of nodes traversed) and computational cost of region and nearest neighbor 

queries (see Section 2.3.2 on page 38 for experimental results). Note that the quantum of 

reduction in cost depends on the size of the cells.

2.1.2 Virtual Gridding

Figure 2.3 on the following page shows a virtual grid constructed over the search space 

of the dataset. We call it virtual because we are not storing any grid index in physical 

memory. Initially, we compute the data ranging across each dimension at the time of 

reading the dataset and store that information. Then, we do uniform gridding, i.e. we 

divide the range (computed above) equally in each dimension, using the length of the 

cell c (cell size). The cell size c is a very important parameter to be chosen. We follow 

a heuristic presented in [129, 130], where c is estimated using the average density of the 

cell, i.e.:
A/

c = U — x t where V = fl (A' — B/)
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2.1 Grid-R-tree

Figure 2.3: Virtual Grid in 2D

where V is the d-dimensional volume of the data ranging of the entire dataset, Ai and B, 

correspond to maximum and minimum possible values, respectively, of any data point 

in the dataset across itb dimension, and N is the data size, r is a given threshold on 

the number of points per cell. If the distribution of data points is uniform, the above 

formula would result in exactly r points in each cell and it would result in optimal load 

distribution and query performance. However, for skewed datasets, this would result in 

certain cells having more number of points than the others, resulting in deterioration of 

query performance. To overcome this problem, we apply adaptive gridding over the space 

as explained below:

2.1.2.1 Adaptive Gridding

We perform adaptive gridding on the dense cells. Cells with number of points more 

than t, are treated as dense. For every dense cell, we divide the cell size by two in each 

dimension, resulting in division of the cell into 2(/ cells. The non-empty cells that result 

from this gridding over each dense cell, will be stored in a separate Grid-R-tree referred to 

as the cell-Grid-R-tree. This cell-Grid-R-tree is local to a cell. If any of the divided cells are 

found to be dense again, the same procedure is applied recursively until no cell is dense. 

And, finally cell-R-trees are constructed over all the non-dense cells. In practice, not more 

than two levels of division was required for the data sets used in experimentation. Thus, 

adaptive gridding handles datasets with variable densities without degrading the query 

performance. Empirically, we observed that the value of t in the range of 2000 to 3000 
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would result in optimal performance of region and nearest neighbor queries in most of 

the cases (see Section 2.3 on page 36 for experimental results). The results clearly show 

that the queries using Grid-R-tree with adaptive gridding referred to as dense optimized 

(DO), perform better than their respective non-optimized versions over skewed datasets.

2.1.3 Grid-R-tree: Construction & Insertion

Grid-R-tree is constructed for a given dataset (or a data list) DL, in three steps as described 

by the pseudo code presented in Algorithm 2.1 on the following page. In the first step, 

the data ranging across all dimensions is computed and stored in MINGRIDSIZE and 

MAXGRIDSIZE arrays (lines 4-5 of Algorithm 2.1 on the next page). In the second step, 

the global-R-tree is constructed over DL (lines 6-14 of Algorithm 2.1 on the following 

page). Here, for every point p in DL, we first calculate the coordinate boundaries of the 

cell to which p would belong to (see Algorithm 2.2 on the next page). We then check if a 

cell with these boundaries exists in the global-R-tree constructed until now in a top-down 

recursive search similar to that of search in an R-tree (using Algorithm 2.3 on page 25). If 

the cell exists in the global-R-tree we simply insert p into its PointsList. Else, we create a 

new cell with the coordinate boundaries calculated above, insert p to its PointsList, and 

then insert the new cell into the global-R-tree and the cells list CL. Insertion of a cell into 

global-R-tree (see Algorithm 2.4 on page 25) is also a top-down recursive function similar 

to that of R-tree insertion. In the third step, after all the points are inserted into their 

respective cells in global-R-tree, we construct cell-R-trees (which are conventional R-trees) 

separately for each cell over the data points indexed in their respective PointsLists (lines 

15-16 of Algorithm 2.1 on the following page).

The average time complexity of construction of global-R-tree is the complexity of in

serting all T cells in it, which is 0(TlogCM/ T). If the data size is N, the average number 

of points in a cell will be N/T, assuming uniform gridding. Then the average case time 

complexity of construction of all T cell-R-trees is

0 (^log^ (7)) = O (wi°8R„, (7))

Thus, the total average time complexity of constructing a Grid-R-tree is the sum of com

plexities of global-R-tree construction and cell-R-trees construction, which is:

0 ^TioSc,mT +
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Algorithm 2.1: Construction of Grid-R-tree
i procedure Construct-Grid-R-tree ()

Input : List of data points DL
Output: Grid-R-tree G constructed

/ / Stepl
2 Initialize an empty Grid-R-tree C;
3 Initialize an empty cells list CL;
4 int MINGRIDSlZEtL, MAXGRIDSIZE d ;
5 Find range of values across all d dimensions for all data points and store in MINGRIDSIZE and 

MAXGRIDSIZE arrays;

6
7
8
9
10
11
12
13
14
15
16

// Step2
foreach Data point p in DL do

Region r = Determine-Cell(/»);
if (cell C=CHECK-lF-CELL-ExisTS(G.y/()M-R-fnv,r,U + NULL then 

| Insert p into C.pointsList;
else

Initialize a new cell C2 with boundaries as r;
Insert p into C2.pointsList;
Add-Cell-To-GlobalRTree(C2, G.global-R-tree);
Add-Cell-To-CellsList(C2, CL);

end
end

// Step3
17 foreach cell C3 in CL do
18 | C3.cell-R-tree = CoNSTRUcr-R-TREE(C3.pointsLisl);
19 end

Algorithm 2.2: Determining the Cell to which p belongs to
i procedure Determine-CellO

Input : Data point p, MINGRIDSIZE array, cell size c
Output: Region r containing boundaries of the cell to which p would belongs to 

2 int temp; region r;
3 foreach dimension i do

. ( /> i -MINGRIDSIZE i4 tern p = ['---------- -—----J;
5 r.bottomLeft[i] = MINGRlDSIZE[i] 4- temp x c;
6 r.topRighf[i] = MlNGRlDSlZE[i\ + (temp - 1) x c;
7 end
8 return r;

This complexity is of similar order as that of R-tree. The functions G-Split-Node(), G- 

Pick-Child(), etc. used in Algorithm 2.4 on the next page are similar to the corresponding 

functions for R-tree (see Appendix A on page 206).

Grid-R-tree also supports dynamic incremental insertion of a random point into it. 

To insert a given point p into an existing Grid-R-tree we can follow the same top-down 

recursive approach explained in construction. We first determine the coordinates of the 

cell to which p belongs to. If a cell with these coordinates exists in global-R-tree, we simply 

add p into its PointsList and corresponding cell-R-tree. Else, we create a new cell, insert p 

into it, and insert the new cell into global-R-tree and CL. The average time complexity of 

inserting a point into Grid-R-tree equals the sum of average case complexities of inserting
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Algorithm 2.3: Checking if cell exists in global-R-tree
1 procedure Check-1f-Cell-Exists()

Input : node node of G.global-R-tree. region r of the cell 
Output: returns the cell if it exists, returns NULL otherwise 
if node.type == EXTERNAL then

3 । if node indexes a cell C with region r then return C ;
4 | else return NULL ;
5 else if node.type == INTERNAL then
6 1 ' foreach entrv e of node do
7 if e contains region r then cell C2 = Check-If-Cell-Exists(i'.i7i/7(/);
8 | end
9 1 end
10 1 return C2

Algorithm 2.4: Adding a Cell to Global-R-tree
i procedure /\dd-Cell-To-Global-R-treeO

Input : cell C, node node of global-R-tree/sub-tree
Output: C inserted into global-R-tree

2 if node.type == EXTERNAL then
3 Insert C into node as a new entry;
4 if node overflows then
5 I G-Si’LiT-NoDE(»odf); // splits the node into two and inserts both the nodes into global-R-tree and

| does necessary adjustments
6 end
7
8
9
10
II

G-UrDATE-MBRs-BoTTOM-Ui’(nodi’);
else if node.type == INTERNAL then

| bestChild = G-PicK-CniLD(node); // returns most appropriate child to insert
| ADD-CELL-To-GLOBAL-R-TREE(l>t’sfC/n7</); //recursive call 

end

a cell into the global-R-tree and inserting a point into cell-R-tree, which is

,n A _ .
OgRoi p J

This is of the same order as that of insertion in R-tree which is 0(log,n N).

2.1.4 Deletion in Grid-R-tree

Deletion of a point p from Grid-R-tree is performed in a manner similar to insertion. First 

the cell to which the point p belongs to is identified. Then the point p is removed from 

that cell's cell-R-tree. If the cell becomes empty, it has to be removed from global-R-tree. 

If removal of the cell from global-R-tree or removal of point from cell-R-tree causes node 

underflow, it has to be handled in a manner similar as that of R-tree (Appendix A on 

page 206).
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2.2 Queries over Grid-R-tree

In this section, we discuss various queries such as point query, window query, neighborhood 

query and nearest neighbor query supported by Grid-R-tree. The details of these queries 

are discussed in Appendix A on page 206.

2.2.1 Point Query

Point query checks the existence of a given data point p in a dataset. The algorithm 

executing Point query over Grid-R-tree is illustrated in Algorithm 2.5 on the next page. 

The algorithm first checks the existence of the cell, to which the data point would belong, 

in the global-R-tree. If the cell exists, then the query becomes a point query over its 

cell-R-tree, which is illustrated in Algo Algorithm A.6 on page 209. The average time 

complexity of point query over Grid-R-tree is the sum of the complexities of the query 

over global-R-tree and point query over cell-R-tree, which is 0 (logG,„ T 4- logR)J/ y).

2.2.2 Cell Window Query

The cell-window query or cell query is a query which executes over the global-R-tree of 

Grid-R-tree. This query is illustrated in Figure 2.4 for d=2, where it returns all the cells 

that are overlapping with a given region or a window r (cells highlighted in grey). Cell

window query is used by window and neighborhood queries. The algorithm executes in 

a top-down recursive fashion similar to that of a point query (see Algorithm 2.6 on the 

following page). It simply accumulates all the overlapping cells (present in leaves of the
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Algorithm 2.5: Point Query over Grid-R-tree
i procedure Point-Query-Grid-R-tree () 

Input : Data point p, Grid-R-tree G 
Output: TRUE if p exists in G, FALSE otherwise

2 region r = Determine-Cell (G, r);
3 cell C = Check-If-Cell-Exists (G, r);
4 if C # NULL then return R-Point-Qlery (p, C.cell-R-tree);
5 return FALSE;

Algorithm 2.6: Cell Window Query
i procedure Cell-Window-Query ()

I Input : root node of G.global-R-tree, region r, cells list CL
i Output: cells list CL containing cells in G overlapping with r

2 1 if node.type == EXTERNAL then Add all cells indexed at node, that overlap with r, to CL ;
3 I else if node.lype == INTERNAL then
4 I I foreach entry e of node do
5 | if e overlaps with r then Cell-Window-Query (e.child, r, CL);
6 ; end
7 | end

global-R-tree) it encounters in its traversal to a temporary cells list CL and returns it. The 

average time complexity this query is 0(logC/f) T).

2.2.3 Window Query

Window query is a query which returns all the data points that lie in a d-dimensional win

dow or a region r, from the entire data space. Figure A.4 on page 210 illustrates the win

dow query for d=2. Algorithm 2.7 on the following page illustrates this for Grid-R-tree. 

This algorithm first calls the cell-window query which returns all the cells overlapping 

with the window r. Then, for each cell returned, window query is called over its cell-R- 

tree, which returns points belonging to that cell lying in r. The results of window queries 

from all these cell-R-trees are merged into a data list and returned. The average time com

plexity of this query is the sum of the complexities of cell-window query over global-R- 

tree and all the window queries over cell-R-trees, which is: 0(logC//; T + T'logR;iJ (N/T)) 

where, T' is the average number of cells returned by cell-window query.

2.2.4 Neighborhood Queries

Neighborhood query (or e-neighborhood query) is a query that returns all the data points 

that are lying withing a distance of e from a given point p. Figure A.5 on page 210 illus

trates this query for d=2. e-neighborhood queries are extensively used in density based 

clustering algorithms. Algorithm A.7 on page 210 explains how e-neighborhood query is
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2.2 Queries over Grid-R-tree

Algorithm 2.7: Window Query over Grid-R-tree
i procedure Window-Query-Grid-R-tree () 

Input : root node of G.global-R-tree, region r 
Output: list of data points lying in region r

2 Initialize empty data points lists plist and Ijist;
3 Initialize an empty cells list CL I;
4 Cell-Window-Qlery (node, r, CL1);
5 foreach cell C in CL 1 do
6 I R-Window-Query (C.cell-R-tree.root, r, t_lift);
7 Append tji>t to plitt;
8 1 end
9 | return plist;

Figure 2.5: Illustrating Proposition 1 & Re
sult 1 for [£] = 1

executed over an R-tree. Before explaining how e-neighborhood query is executed over 

Grid-R-tree, we first present a few propositions and results.

Proposition 1. In Grid-R-tree, to find the points lying in e-neighborhood of p, it is suf

ficient to check only those points that lie in the cells that are geometrically overlapping 

with the window r, which is the e-extended region of p.

Justification. For two dimensions, we prove this claim geometrically. To compute e- neigh

borhood of p, it is sufficient to examine only those points that lie in cells 7, 8, 9, 12, 13, 

14, 17, 18 and 19 in Figure 2.5. The e-neighborhood of p is fully contained in e-extended 

region (r) of p. So, all the points that lie in the e - neighborhood of p must be contained in 

the cells overlapping with r. So, any point that lies outside these cells will not contribute 

to e-neighborhood of p. □

Result 1. The maximum number of cells to be considered for e-neighborhood query of 

any point p over Grid-R-tree is ((2 x where c is the cell size and d is the 
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2.2 Queries over Grid-R-tree

dimensionality of the dataset.

Proof. We prove this for two dimensions for simplicity. The proof is by induction on [t].

Base Case: When = 1, i.e., when 0 < e < c, the maximum number of cells to be 

searched =(2 x 1 + I)2 = 9 as shown in Figure 2.5 on page 28. For finding e-neighborhood 

of any point p e cell 13, it is sufficient to search a maximum of 9 cells shaded in the figure. 

Similar illustration is given in Figure 2.6 on page 28 when f =2.

Induction Hypothesis: Assume this result to be true for = 1, i.e. the maximum 

number of cells to be searched for this case is (2/ -I-1)2.

Inductive Step: We have to prove this result for m = '+ 1, i.e. the maximum number of 

cells to be searched for the case / = / + 1 is (2(/ + 1) + I)2 = (2/ + 3)2. We need to find 

the number of additional cells to be added to that of the case for [= I, in order to get 

the maximum number. Since for = I, e will lie between (/ — l)c < e < Ic and for 

[£] = / 4-1, e will lie between Ic < e < (/ + l)c, it is sufficient to add one more level of 

cells to our search region that appears shaded in Figure 2.7 on page 31. Now the size of 

the side of this new square becomes 2(7 4-1)4-1 = 2/ + 3 and the maximum number of 

cells to be searched then becomes (2/ + 3)2. □

This result gives an upper bound of the number of cells to be searched while per

forming an e-neighborhood query over Grid-R-tree. Grid-R-tree supports two kinds of 

such queries: point-zvise e-neighborhood query and cell-zoise e-neighborhood query. They are 

explained as follows:

Point-Wise e-Neighborhood Query (PointWiseNBH) This query is the conventional 

neighborhood query which executes a window query for e-extended region of p and 

selects those points that lie within e-distance from p (see Algorithm 2.8 on the next page). 

The e-extended region of p is constructed by extending the coordinates of p across all 

dimensions by e, in both positive and negative directions. Figure 2.6 on page 28 shows 

this region for d=2. The average time complexity of point-wise e-neighborhood query 

over Grid-R-tree is same as that of a window query, which is O(logG„( T 4- T' logR„; y).
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2.2 Queries over Grid-R-tree

Algorithm 2.8: Point-Wise NBH Query over Grid-R-tree 
i procedure Point-Wise-NBH ()

Input : Data point p. Epsilon c, root node of G.global-R-tree 
Output: Points lying in t'-neighborhood of p

2 Construct an e-extended region r of p;
3 Initialize an empty list pList;
4 data list tjist = Window-Query-Grid-R-tree (node, r);
5 Insert all points of tjist that lie within c distance from p into plist;
6 return pList;

Cell-Wise e-Neighborhood Query (CellWiseNBH) This query computes e-neighborhoods 

of all the points in a given cell C in one go. This is an optimized way of computing e- 

neighborhood queries for all the points lying in C against their computations for each 

point separately. In density-based clustering algorithms such as DBSCAN and OPTICS, 

the neighborhood computation of any given point p is followed by neighborhood com

putations of the points lying in the e-neighborhood of p. CellWiseNBH optimizes these 

computations by reducing multiple traversals in the same search space. Before presenting 

its details, we first state the following proposition:

Proposition 2. To find e-neighborhoods of all points lying in cell C, it is sufficient to check 

only those points that lie in the cells that are geometrically overlapping with the window 

r, constructed by extending the coordinates of C by e on both sides across all dimensions 

(e-extended region of C).

Justification. Figure 2.8 on the next page shows the e-extended region r for cell 13. Con

sider the corner point p of cell 13. p's e -neighborhood is contained within the cells 

overlapping with r. This is true for all boundaries and corner points of the cell. Therefore 

we can find e-neighborhoods for all the points lying in this cell by examining only these 

highlighted cells. □

In CellWiseNbh query (see Algorithm 2.9 on the following page), first a list of cells 

containing ail the cells overlapping with the e-extended region of a given cell C is com

puted using the cell-window query and stored in an auxiliary Grid-R-tree. Then a win

dow query is executed for every point p of the cell over this auxiliary Grid-R-tree. Those 

points that lie within the e-distance from p are stored as e-neighborhood of p. Since, 

this is repeated for every point in the cell, it saves multiple top-down traversals over the 

global-R-tree (multiple scans of same search space) for executing neighborhood queries 

for all points G C, thereby improving the overall query performance.
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2.2 Queries over Grid-R-tree

Algorithm 2.9: Cell-Wise NBH Query over Grid-R-tree
i procedure Cell-Wise-NBH ()

| Input : Cell C, Epsilon f, root node of G.global-R-tree
। Output: t-neighborhoods of all points of C computed

2 Construct an e-extended region r for cell C;
3 I Initialize an empty cells list CL1; CELL-WiNDOW-QcERY(G.x/(»M-R-trrt’.HW, r, CL 1);
4 ; Grid-R-tree aux-G = Construct-Aux-Grid-R-tree (CL 1);
5 | foreach point p indexed by C do
6 • I Construct an e-extended region r2 for p;
" I tjist = Window-Qlery-Grid-R-tree (aux-G, r2);
a Insert all points of tjist that lie within c distance from p into p.nei^hborslist;
9 * end

The average complexity of the executing cell-wise e-neighborhood query over Grid-R- 

tree is the sum of the complexities of cell-window query, construction of auxiliary Grid- 

R-tree, search in auxiliary Grid-R-tree, and search in cell-R-trees:

o (logo,,, T + T' l0gCA,„ T'+" logcz„, T'+^T logR„, y )

where, the average number of cells returned by cell-window query is Tf, and GAm repre

sents min-entries of auxiliary Grid-R-tree. The complexities for construction of auxiliary 

Grid-R-tree and search in auxiliary Grid-R-tree are very small when compared to that 

of cell-window query and search in cell-R-trees. So the first and last term in the above 

complexity dominate the middle two terms, making it equal to the complexity of Point- 

WiseNBH query.

The CellWiseNBH query can be used to make density-based clustering algorithms 

such as DBSCAN & OPTICS efficient. The implementation of DBSCAN using the Cell

WiseNBH query is presented in Section 3.1 on page 50.

21+1

21+3

Figure 2.7: Illustrating Inductive Step of
Result 1 on page 28
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2.2 Queries over Grid-R-tree

Algorithm 2.10: Construct Auxiliary Grid-R-tree 
i procedure Construct-Alx-Grid-R-tree ()

Input : Cells List CL
Output: Auxiliary Grid-R-tree mtx-G

2 Initalize an empty Grid-R-tree tmx-G;
3 foreach cell C in CL do
4 j Add-Cell-To-Grid-R-Tree («».v-C, C);
5 end
6 return attx-G;

Algorithm 2.11: k-NN Query over Grid-R-tree

2
3
4

6
7
8
9
10
11
12
13
14
15
16

procedure KNN-Grid-R-tree ()
Input : Data point q, Grid-R-tree R, k
Output: k nearest neighbors of q
Initialize Empty Priority Queue PQ; int i = 1;
/\dd root node of the global-R-tree into PQ along with its minDistance from p as key;
while PQ not empty do

| element ele = Remove-Min (PQ);
if ele is an internal node of global-R-tree or cell-R-tree then

| Add all its entries to PQ with their respective minDist (from q) as keys;
else if ele is an external node of the global-R-tree then

| Add the root nodes of cell-R-trees indexed at it, with their minDistances from q as keys; 
else if ele is an external node of a cell-R-tree then

| Add all its entries to PQ with their respective euclideanDist (from q) as keys;
else if ele is a data point then

report ele as i11' nearest neighbor; i++;
if i > k then return;

| end
end

2.2.5 Nearest Neighbor Query

k-nearest neighbor (k-NN) query is a query that returns the k closest data points to a given 

query point p [121]. k-NN query for k=6 is illustrated in Figure A.6 on page 210, where all 

the points within the circle form the k nearest neighbors of p. The best known algorithm 

for nearest neighbor search over R-tree is the BF-kNN [131] explained in Appendix A on 

page 206. It uses a min-priority queue (PQ) that stores nodes of an Grid-R-tree as well as 

data points indexed in it. The key for insertion into priority queue is the euclidean distance 

for data points and minDist for nodes (or MBRs of nodes). BF-kNN is a greedy algorithm 

with minimum distance as the greedy choice.

k-NN query algorithm for Grid-R-tree is similar to the BF-kNN algorithm except that 

the elements we store in the priority queue (PQ) are of three kinds:- global-R-tree node, 

cell-R-tree node and data point, in place of only the latter two in case of R-tree. minDist(p,Z) 

(Z is the MBR of cell-R-tree or global-R-tree) for both global-R-tree nodes and cell-R-tree 

nodes are computed in the same way as that for R-tree nodes. Algorithm 2.11 presents 

the pseudo code. The algorithm first adds the root node of a global-R-tree G into PQ.
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2.2 Queries over Grid-R-tree

Then in a loop it executes the following steps until k nearest neighbors are found. A 

Remove-Min() operation is performed over PQ. If the min-object is an internal node 

of global-R-tree, we add all its indexed entries into PQ; else if it is an external node of 

global-R-tree, we add the root nodes of the cell-R-trees indexed in the cells stored at the 

present node. In both cases the entries are added with their respective minDist from q as 

key values. If the min-object is an internal node of a cell-R-tree, we add all its indexed 

entries into PQ with their respective minDist from q as key values; else if it is an external 

node of a cell-R-tree, we simply add all its indexed entries into PQ with their respective 

euclideanDist from q as the key. If the min object is a data point, it is marked as the ith 

nearest neighbor. This step is repeated until / > k, with i initially set to 1.

Since, the overall flow of the algorithm for R-tree and Grid-R-tree is the same, the 

average case time complexity of BF-kNN algorithm over Grid-R-tree would be equal to 

that for an R-tree, which is O(k\ogk) [131]. However, the worst case complexity is O(N), 

wherein all the nodes in the R-tree are added to the priority queue.

Please note that the pseudo codes presented above for both region and nearest neigh

bor queries are for Grid-R-tree without adaptive grid optimization. The queries over 

adaptive grid optimized Grid-R-tree would require a minor modifications to the above 

pseudo codes, and hence are not explicitly presented.

2.2.6 Theoretical Analysis

In this section, we give theoretical evidence that Grid-R-tree exhibits lesser overlap when 

compared to R-tree, resulting in a smaller search space and consequently in better query 

performance. A comparative analysis of R-tree and R+-tree has been presented in [132]. 

They compare the overlap exhibited amongst the tree nodes and number of nodes searched 

for a neighborhood query, for both kind of trees. We use this analysis to compare the 

overlap and number of nodes searched for Grid-R-tree and R-tree. The analysis origi

nally presented assumes line segments stored in the leaf nodes. This can be very easily 

extended for storing d-dimensional data points. Also, the analysis assumes that all the 

nodes of trees store number of entries equal to the maximum fanout value. So, the anal

ysis states that, the total number of nodes, N_n, that are searched for any neighborhood 
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2.2 Queries over Grid-R-tree

query over R-tree is:

N-n = h + 1 + Q • (1 - pTTf) C2-1)

where h is the height of the R-tree and is given by h = logy Ov represents the overlap 

which is measured by the number of objects overlapping with the queried object and is 

given by:
O, = r^(N + 1) (2.2)

where C is the capacity of the page, N is the total number of data objects present in the 

tree, f represents the fanout and a represents the size of each data object. When N is 

large, (1 — yvn) ~ 1. So, ignoring this term, Equation (2.1) reduces to:

N_n =// + ! + • (yTi) (23)

We use this result to prove the following claims for Grid-R-tree. In the analysis presented 

below, we chose the values of min-entries and max-entries for all the trees appropriately 

for number of elements indexed in them.

Theorem 1. The overlap in Grid-R-tree is less than that of R-tree, resulting in a smaller 

search space for neighborhood queries.

Proof. We compare the overlap and number of nodes searched in R-tree vs Grid-R-tree.

R-tree: We rewrite Equation (2.2) and Equation (2.3) here with the corresponding 

parameters for R-tree substituted:

O„R = ^-(N + l) (2.4)
I + (Tp

N_nR=h + 1 + (Ol,R ~'1) ■ (2.5)
\ L / \/R-M

The page size, C, shall remain same throughout this analysis.

Grid-R-tree: In case of Grid-R-tree (G), we query on one global-R-tree and multiple 

cell-R-trees. Thus we consider the number of nodes visited and overlap separately for 

global-R-tree and cell-R-trees. Let Nc be the number of cells indexed in global-R-tree of 

G. Then, the average number of points in a single cell-R-tree will be Thus, we rewrite 

Equation (2.2) and Equation (2.3) for global-R-tree and cell-R-tree as Equation (2.6) & 

Equation (2.7) on the next page and Equation (2.8) on the following page & Equation (2.9) 

on the next page respectively:
OI,C = T^-(NC + 1) (2.6)

I +ac
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N_„c = hc +1 + (
\ C / UG-V

Njtc = hc + 1+ ( —) • (7~~\ 1

(2.7)

(2.8)

(2.9)

Dividing Equation (2.4) on page 34 by Equation (2.6) on page 34, we get:

So, we get

o^ =
OvG ^(Nc + l)

OvR _ N + 1 _ _n_
Ovg Ng +1 Ng

where r =0(1)

. n _ n Ng°vG - ■ v (2.10)

Similarly, by dividing equation Equation (2.4) on page 34 with equation Equation (2.8),

we get:
OyR
Ovc Ng

OvR 
Ng

(2.11)

So, the total number of nodes to be accessed for a neighborhood query over G will be the 

sum total of number of nodes to be accessed for one scan of global-R-tree and number of 

nodes to be accessed for searching in Ng' cell-R-trees, where Ng' is the average number 

of cells returned by the query over global-R-tree of G. Thus,

N_hgr = N_hg + Ng' • N_hg (2.12)

Substituting the values of N_hg and N_nc in Equation (2.12), we get:

N_hGr = hG + ^ + ) (7~^C i ) + 6’c +1 + f ~ S- ~( /C i ) ) Ng

Now, = 0(1) for / = fG, fc or fR. So, we get:

N_hgr = he + 1 + (he + 1) • Ng' 4- (OyG + Ovq.Ng' — (N'c +1))

Substituting the values of Ovg and Ovc from Equation (2.10) and Equation (2.11) respec

tively, we get:

N_hgr = he +1 + (he +1) • Ng' + (ovR • (- (N^ +1)^ (2.13)
c \ \ w Ng / /

Now we compare the number of nodes searched in case of R-tree (Equation (2.5) on 

page 34) with that of Grid-R-tree (Equation (2.13)). The ratio of second terms in these two 

equations is:
__________OvR - 1__________ % 1
(o-r- (^ + ^) -(n^ + d) & +
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This ratio is large, since Nc/ « Nc < N, in practice. This indicated that the overlap in 

R-tree is higher than that in Grid-R-tree and thus making the number of nodes searched 

in R-tree on the higher side. Similarly, the ratio of first terms in these two equations is:

h + 1_ h
Ag + 1 + (/ic T 1) • Ng* Iiq + he • Nq'

Since he < he < h, and Ng is small, this ratio, is likely to be very small (< 1). This 

poses negative impact on Grid-R-tree by increasing the number of nodes searched. But 

the positive impact of the reduced overlap is much higher than the negative impact of the 

increased height. Thus, the number of objects/nodes searched for a neighborhood query 

in Grid-R-tree is expected to be lesser than that in R-tree. This has been substantiated by 

an experiment which measures the actual number of nodes traversed by the neighborhood 

and nearest neighbor queries over Grid-R-tree as well as R-tree, presented in Table 2.2 on 

page 39. □

2.3 Experimental Results and Analysis

2.3.1 Experimental Setup

All the experiments are conducted on Server that has - Intel Xeon 3.3GHz processor and 

32 GB RAM. All the algorithms are implemented in C and the running time is measured 

using Vampir Trace [133]. The details of the datasets and their respective parameters used 

for experimentation are given in Table 2.1 on the following page, along with their refer

ences. First 13 datasets are real and the remaining are synthetically generated. 3DSRN 

data set contains geographical information (latitude, longitude and altitude) of road net

works in Denmark. MPAGD*, SFONT1M and MPAHALO2.8M datasets are taken from 

Millennium data repository that contains astronomical data of galaxies. SBUS* datasets 

contain GPS traces of buses in Shanghai. KDDBIO dataset consists of 74 features of pro

tein hematology. SHUTTLE data set contains data on the features of space shuttle. SKIN 

data set contains features related to texture of face images. The synthetic random datasets 

(SR1M2D, 3D & 5D) consists of randomly generated points. Synthetic uniform datasets 

(SU1M2D, 3D & 5D) comprises of points that are uniformly distributed over the search 

space. Synthetic normal datasets (SN1M2D, 3D & 5D) consists of data points generated
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Table 2.1: Description of Datasets used for Experimentation

S No. Name of the Dataset Data Size Dimensions Value of Epsilon (c) Cell Size (c) Reference

1. 3DSRN 0.34M 3 0.05 0.05 [134]
2. MPAGD3.2M (Delucia) 3.2M 3 2 2.25 [135]
3. MPAGD5M (Delucia) 5M 3 1.72 6 [135]
4. MPAGD56M (Delucia) 56M 3 0.006 3 [135]
5. MPAGD100M (Delucia) 100M 3 0.006 3 [135]
6. SBUS2.7M 2.7 M 2 0.00625 0.002 [136|
7. SBUS4M 4M 2 0.000419 0.0012 [136]
8. SBUS6M 6M 2 0.000291 0.001 [136]
9. KDDBIO 0.145M 74 0.005 0.005 [137]
10. SFONT1M IM 11 2 6 [135]
11. MPAHALO2.8M 2.8M 9 30 45 [135]
12. SHUTTLE 0.058M 9 4 6 [138]
13. SKIN 0.24M 4 4 6 1139]
14. SR1M2D IM 2 10 30 -
15. SR1M3D IM 3 40 60 -
16. SR1M5D IM 5 120 180 -
17. SU1M2D IM 2 5 5 -
18. SU1M3D IM 3 4 4 -
19. SU1M5D IM 5 2 2 -
20. SN1M2D IM 2 0.1 0.15 -
21. SN1M3D IM 3 0.62 0.9 -
22. SN1M5D IM 5 2.3 3.2 -

using normal distribution. All synthetic datasets contain IM data points with varying 

dimensions aA§ 2, 3 & 5.

The experimental results presented in the following subsections compare the perfor

mance of neighborhood and nearest neighbor queries over Grid-R-tree and R-tree. The 

results of point and window queries are not presented since they follow the same pattern 

as that of neighborhood queries. The following notations have been used in this sec

tion: RTreeNBH represents neighborhood query and RKNN represents k-NN query for 

R-tree. CellWiseNBH, PointWiseNBH and GRKNN represent the Cell-wise neighborhood 

query, point-wise neighborhood query and nearest neighbor query for Grid-R-tree re

spectively (without adaptive grid optimization). CellWiseNBH_DO, PointWiseNBH _DO 

and GRKNN_DO represent the respective queries for adaptive grid optimized Grid-R- 

tree. The value of e and the cell size chosen for experiments are given in Table 2.1 for each 

dataset. In all our experiments, the length of the side of a cell (c) is kept uniform across all 

dimensions. However, one can also choose different lengths across different dimensions. 

The fanout values for all the trees have been appropriately chosen for number of elements 

indexed in them. In the experiments for k-NN queries, we choose k = 4, unless explicitly 

stated. Also, the execution times shown in the subsequent experiments are measured for 

executing queries for all the data points of the given dataset.
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Figure 2.9: Execution time for neighborhood queries for Grid-R-tree and R-tree over various
datasets

S( dl« kl-XBH
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2.3.2 Performance Analysis of Neighborhood and k-NN Queries

In the first experiment, we measure the execution time of neighborhood and nearest neigh

bor queries when executed on various real datasets for both R-tree and Grid-R-tree, and 

the results are presented in Figure 2.9 & Figure 2.10 on the next page. The maximum size 

of a dataset considered in this experiment is 100M and maximum dimensionality is 74. 

We can clearly observe from the graphs that, in all cases, the execution time of queries 

over Grid-R-tree is much lesser than that of R-tree. The maximum speed up achieved is 42 

for CellWiseNBH query, 21 for PointWiseNBH query and 25 for KNN query. This clearly 

indicates that Grid-R-tree outperforms R-tree for all the queries considered. The improve

ment achieved is attributed to reduction in search space when compared to that of R-tree 

(as explained in Section 2.1.1 on page 20). It can also be observed from these figures that 

greater reduction is achieved for the datasets of high dimensionality (MPAHALO2.8M 

with 9 dimensions, SFONT1M with 11 dimensions and KDDBIO for 74 dimensions). This 

is because, R-tree exhibits very large overlap while indexing high dimensional datasets 

and thus leads to increase in search space [123]. Whereas, the overlap exhibited by Grid- 

R-tree is very less in spite of high dimensionality, and thus gives very good query perfor

mance.

In order to support the above results, we measured the average number of nodes 

visited and average per query time in R-tree and Grid-R-tree, while executing both kinds 

of queries for 3DSRN dataset. The results presented in Table 2.2 on the next page clearly
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Figure 2.10: Execution time of nearest neighbor queries for Grid-R-tree and R-tree over vari
ous datasets

Table 2.2: Average number of nodes visited in neighborhood and nearest neighbor queries 
for 3DSRN dataset

Factors RTreeNBH CellWiseNBH PointWiseNBH

Average Time Per NBH Query (in milli seconds) 2.575 1.955 2.046
Average number of internal nodes per NBH Query 9048 6966 7376

R-KNN GR-KNN
Average Time Per k-NN Query (in milli seconds) 0.574 0.156
Average number of internal nodes per k-NN Query 2164 595

show that the avg. number of nodes visited is lesser for Grid-R-tree. This is in sync with 

the theoretical analysis presented in Section 2.2.6 on page 33.

We evaluate the above queries over synthetic datasets to examine the robustness of 

Grid-R-tree for different characteristics of data. The results presented in Table 2.3 on the 

next page clearly show that the performance of Grid-R-tree is very encouraging for syn

thetic datasets also. The reduction in query execution time over Grid-R-tree observed in 

case of synthetic normal and synthetic random datasets is higher because the dense re

gions present in these datasets tend to make R-tree perform poorly. Grid-R-tree performs 

better because of reduced search space, owing to its two-level design.

In the next experiment, we evaluate the performance of Grid-R-tree for varying di

mensionality of the dataset. Two datasets have been chosen and sampled for different 

number of dimensions. SFONT1M dataset (originally 11 dimensions) has been projected 

for 3, 5, 7 & 9 dimensions and MPAHALO2.8M dataset (originally 9 dimensions) has 

been projected for 3, 5 & 7 dimensions. The value of e in all these experiments has been
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Table 2.3: Execution time (in seconds) for various queries on synthetic datasets

Dataset RTree- 
NBH

Cell- 
WiseNBH

Point
WiseNBH

% improve
ment in 

Cell
WiseNBH

% improve
ment in 
Point

WiseNBH
RKNN GRKNN

o/ /o
improve- 
ment in 

KNN

SR1M2D 2254 240 463 89.35"» 79.457. 2995 153 94.89%
SR1M3D 6476 324 637 94.99".. 90.167, 7659 316 95.877..
SRIM5D 37373 847 1750 97.737. 95.31% 52814 1245 97.64%
SU1M2D 362 75 101 79,06".. 71,89".. 543 113 79.137,
SU1M3D 1577 389 432 75,32".. 72.607, 1104 179 83.76"..
SU1M5D 2619 1425 1335 45.57";. 48.99% 1187 327 72.477,
SN1M2D 2451 174 376 92,89";. 84.64% 4142 339 91.8%
SN1M3D 9316 386 904 95.86% 90.29% 11782 667 94.37.
SN1M5D 63770 3084 7082 95,12".. 90.89"/., 53425 5887 88.9",,

chosen such that the average number of points coming in e- neighborhood of any point 

for all the projected datasets remains approximately the same. The results presented in 

Figure 2.11 on the following page clearly show that the performance of neighborhood 

and nearest neighbor queries for Grid-R-tree greatly improves with increase in number of 

dimensions, when compared to that of R-tree. The improvement is higher for datasets of 

high dimensionality because of reasons explained in the first experiment.

The next experiment evaluates the query performance of Grid-R-tree with datasets 

of varying size. Two sets of datasets - Shanghai Bus (SBUS 2.7M, 4M & 6M) and Delu- 

cia5M (MPAGD5M) (Sampled for IM, 2M, 3M, 4M & 5M data points) are used for this 

analysis. In all experiments, the average number of points in the e-neighborhood is main

tained approximately the same for uniformity, similar to the previous experiment. Results 

presented in Figure 2.12 on page 42 clearly indicates that as the size of the data grows, 

the query performance of Grid-R-tree becomes better when compared to that of R-tree. 

Again, this is attributed to the reduction in the search space. The performance of k-NN 

queries is also maintained with increase in data size.

We also study the robustness of Grid-R-tree over datasets with variable/high densities. 

The experiment has been conducted on samples of MPAGD5M (delucia5M) data set (IM 

to 5M). These samples are generated by increasing the number of data points coming 

in e-neighborhood proportionately with growth in data size (unlike random sampling 

in the previous experiment). The results presented in Figure 2.13 on page 42 show that 

improvement in execution time is maintained for both kinds of queries with increase in 

density of the dataset.

40



2.3 Experimental Results and Analysis

(a) (b)

Figure 2.11: Execution time of (a) & (b) neighborhood queries and (c) nearest neighbor queries 
with varying dimensions on SFONT1M dataset. Execution time of (d) & (e) neighborhood 
queries and (f) nearest neighbor queries with varying dimensions on MPAHALO2.8M dataset

The next experiment studies the effect of varying cell size on neighborhood and near

est neighbor queries on Grid-R-tree over 3DSRN dataset and results are presented in 

Figure 2.14 on page 43. For the case of k-NN queries, there has been no specific pattern 

observed in performance with variation in cell size. However, the query performance for 

Grid-R-tree has always been better than that of R-tree. In case of neighborhood queries, 

it can be seen that a dip is observed in the curves for both kinds of neighborhood queries 

at a particular cell size. The same has been observed for other datasets as well. The ex

planation for this dip is as follows: when the cell size of Grid-R-tree is too small the total 

number of cells obtained from gridding is very high and the average number of points 

per cell is very low. In this case the query time of global-R-tree is higher and dominates 

the query time of cell-R-trees. When the cell size is too large, the total number of cells 

resultant of gridding is very less and the average number of points per cell is very high. 

In this case the query time of cell-R-trees dominates. So, the cell sizes around which the 

dip is observed in the curve is the range of optimum cell sizes where there is a balance
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Figure 2.12: Execution time of neighborhood queries and nearest neighbor queries with in
crease in data sizes on (a) & (b) SBUS datasets; (c) & (d) samples of delucia (MPAGD5M)

(a) (b)

Figure 2.13: Execution times of (a) neighborhood (b) k-NN queries; with increase in density 
of the dataset for Delucia (MPAGD5M) data samples

established between the query time of global-R-tree and cell-R-trees. Any cell size in this 

range is expected to give maximum speed up. However, it is not necessary to conduct 

this experiment every time to measure the optimal cell size. The analysis presented in 

Section 4.2 on Grid-R-tree with adaptive grid optimization, shows that it eliminates the 

need for a separate experiment to determine the optimal cell size. This has been further 

substantiated with experimentation in Section 2.3.3 on the following page.

In the next experiment, we study the effect of varying e and k on the performance of 

neighborhood and nearest neighbor queries respectively, on Grid-R-tree over MPAGD3.2M 

dataset keeping cell size (c) constant (c = 2). The results presented in Figure 2.15 on the 

next page clearly indicate that the performance improvement of neighborhood queries 

for Grid-R-tree is consistent with increase in e. Also increase in e led to increase in 

the execution time of all kinds of queries because, it will bring more points inside the 

e-neighborhood of any point. Similarly, the results also show that the performance im

provement of k-NN query over Grid-R-tree is consistent with increase in value of k. Sim

ilar results were obtained for other datasets as well.
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Figure 2.15: Exec, time of (a) NBH queries 
with variation in e; (b) k-NN queries with 
variation in k; for MPAGD3.2M

Figure 2.14: Execution time of (a) Neigh
borhood (b) k-NN queries with increase in 
cell size (c) for 3DSRN dataset

(b)

Figure 2.16: Execution Time of queries over adaptive grid optimized Grid-R-tree vs original 
Grid-R-tree

2.3.3 Performance of queries over Grid-R-tree with adaptive grid optimization

In this section, we present the performance results of neighborhood and nearest neighbor 

queries over datasets with skewed distribution using adaptive grid optimized Grid-R- 

tree. The experiments were conducted over following datasets- 3DSRN, SFONT1M and 

MPAGD5M, which are skewed in their distribution. The value of t had been chosen to 

be 3000. The results presented in Figure 2.16 clearly show that queries over adaptive 

grid optimized Grid-R-tree perform better than their corresponding queries over non

optimized Grid-R-tree. This is because adaptive grid optimization achieves better load 

distribution and aids in executing the queries more efficiently.

We also conducted an experiment to measure the neighborhood query performance 

of Grid-R-tree with adaptive grid optimization for varying r. The results presented in 

Figure 2.17 on the next page clearly show that the value of t between 2000 and 3000 

gives optimal query performance for neighborhood queries over both the datasets. This
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Figure 2.17: Execution time of neighborhood query over Grid-R-tree with adaptive grid opti
mization with varying t for (a) SBUS2.7M & (b) MPAGD5M datasets
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Figure 2.18: Construction time of Grid-R-tree & R-tree for (a) 3DSRN and (b) MPAGD3.2M 
datasets with increase in cell size (c)

is because, choosing a very small t results in a large number of cells leading to a large 

search time in global-R-tree of Grid-R-tree and global-R-trees of cell-Grid-R-trees. On the 

other hand, choosing a large t leads to very less number of cells, resulting in large search 

time in cell-R-trees. The same behavior has been observed for other datasets as well. The 

value of t in the range - [2000-3000], gives optimal query performance as better load 

distribution between global-R-tree and cell-R-trees is achieved in this range.

2.3.4 Construction and Query Execution Time: Grid-R-tree vs R-tree

A comparative analysis on construction and neighborhood query execution times for 

Grid-R-tree and R-tree has been conducted for datasets: 3DSRN and MPAGD3.2M. The 

results presented in Figure 2.18 clearly show that in Grid-R-tree, an increase in cell size 

leads to reduction in construction time of global-R-tree, but increases the construction 

time of cell-R-trees. The results also indicate that the total construction time of Grid-R- 

tree (global-R-tree + cell-R-trees) is comparable to that of conventional R-tree for most of 

the cell sizes. In certain cases the construction time of Grid-R-tree is even lesser ((a) of 
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Figure 2.18 on page 44). This is attributed to the fact that search time during insertion is 

also reduced in Grid-R-tree. Also, the increase in time of Grid-R-tree construction in case 

of (b) part of Figure 2.18 on page 44 (c=1.5), is much lesser than the reduction in time 

achieved for neighborhood and k-NN queries.

Table 2.4: Construction and querying times for R-tree and Grid-R-tree over MPAGD3.2M 
dataset with c=2.25

Table 2.4 presents the execution time of neighborhood queries for MPAGD3.2M dataset 

along with the construction times for R-tree and Grid-R-tree (global-R-tree + cell-R-trees). 

The cell size c was chosen to be 2.25 units. The results show that the reduction in exe

cution time for CellWiseNBH and PointWiseNBH queries were 638.484 sec. (39.5%) and 

323.894 sec. (20.1%) respectively when compared to the neighborhood queries over R-tree. 

Whereas, the increase in Grid-R-tree construction time was only 4.03 sec. (3.04%). This 

establishes the efficiency of Grid-R-tree over R-tree.

Operation on 
R-tree

Time Operation on Time
(sec.) Grid-R-tree (sec.)

Construction 
R-tree-NBH

130 Construction 134
1613 PointWiseNBH 1289

CellWiseNBH 975

2.3.5 Tradeoff in choice of R-tree vs k-d-tree for analysis

In this section we present a tradeoff analysis conducted between R-tree and k-d-tree. The 

neighborhood query execution time for R-tree and k-d-tree over 3DSRN and MPAGD3.2M 

datasets are presented in Table 2.5 on the following page. The results clearly show that 

the time required to execute neighborhood queries for all the points of the dataset is 

very less for R-tree when compared to that of k-d-tree. This is primarily attributed to 

the fact that the height of the k-d-tree becomes large as the size of the data and the 

number of dimensions grow. This was the reason why k-d-tree was dropped from further 

experimentation. Part I on page 16 also presents the problems of quad-tree and shows 

that k-d-tree is better than quad-tree.
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Table 2.5: Neighborhood query exec, time of R-tree and k-d-tree over 3DSRN & MPAGD3.2M

Dataset Exec. Time for 
R-tree (sec)

Exec. Time for 
k-d-tree (sec)

3DSRN 1119 2708
MPAGD3.2M 1613 17172

2.4 Discussion

In this section, how Grid-R-tree has addressed the drawbacks associated with conven

tional data structures described in preamble of Part I on page 16.

• Grid-R-tree, by its design into two levels, reduces the downward propagation of 

overlap amongst MBRs of its nodes, as the cells are completely free from overlap. 

This solves the problem of overlap in R-tree and its variants and thus giving very 

good query performance as illustrated by experiments in Section 2.3 on page 36. 

Also, reduction in overlap helped in maintaining the query performance with in

crease in size and dimensionality of the dataset, unlike R-tree which had shown de

terioration. Also, note that all these advantages are achieved without any increase 

in construction time of the indexing structure.

• Query performance for Grid-R-tree has also been better than kd-tree and quad-tree 

as illustrated by an experiment in Section 2.3.5 on page 45. Grid-R-tree manifests 

small height and larger fanout due to which deterioiration of query performance as 

in the case of kd-tree doesn't occur here. Also, kd-trees are found to be better than 

quad trees [124, 126] as it completely avoids nil pointers and is height balanced. 

Thus we can claim without hesitation that that Grid-R-tree outperforms both quad

tree and kd-tree.

• Grid-R-tree also addresses the drawbacks of grid file structure. As explained in 

preamble of Part I on page 16, usage of array for the grid file directory guarantees 

(9(1) asymptotic complexity for query retrieval, but leads to inefficient space uti

lization while indexing datasets of high dimensionality. And usage of linked lists 

instead saves space, but leads to 0(n) look-up time. Similar problem is observed 

when the data distribution is skewed. So, in order to maintain both space and query 

efficiency, Grid-R-tree uses R-tree (global-R-tree) to store non-empty cells resulting 

from virtual gridding instead of the grid directory. R-tree guarantees (9(logT) aver
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age case performance, for T number of cells indexed in it, irrespective of sparsity or 

dimensionality of the dataset. Grid-R-tree also uses R-trees (cell-R-trees) for index

ing points in a cell thereby avoiding chaining exhibited by buckets in the grid file. 

Additionally, we have also demonstrated in Section 2.3 on page 36 that Grid-R-tree 

can guarantee efficient query execution for data sets of any kind of distributions in

cluding uniform, skewed, normal distribution, etc. This is in contrast with grid files 

which give optimal query performance only when when the number of dimensions 

are not large and data distribution is uniform [127].

• Grid-R-tree also addresses the drawbacks of the proposed GR-tree structure [128]. 

As explained in preamble of Part I on page 16, in GR-tree, the leaves of the first level 

R-tree are overlapping, which results in searching multiple coordinate trees to locate 

a data point. This deteriorates the efficiency of a neighborhood query, especially for 

datasets of high dimensionality and large sizes. Whereas, the design of Grid-R-tree 

has the leaves of global-R-tree fully disjoint, as a result of which only one cell-R-tree 

will be required to be searched to locate a data point, leading to reduction in search 

space. Other disadvantage of GR-tree is that the points indexed in each cell are 

stored in a circular linked list which yields a linear search time. Whereas, in Grid-R- 

tree, the points in a cell are indexed in cell-R-tree leading to logarithmic search time. 

Moreover, GR-tree does not explicitly capture any specific pattern of any of the data 

mining algorithms as we do for density based clustering algorithms (see Chapter 3 

on page 50).

2.5 Main Contributions

• In this chapter, we propose a data indexing structure known as Grid-R-tree which 

is a simple, yet effective adaptation of R-tree using Grid. It is a two-level R-tree in 

which the first level R-tree (known as global-R-tree) is for indexing "non-empty" cells 

resultant of virtual gridding of the search space, and the second level comprises of 

multiple R-trees (cell-R-trees) one each for every cell to index points lying in it.

• Grid-R-tree supports efficient execution of region and nearest neighbor queries. Grid- 

R-tree handles the above queries more efficiently than the other conventional index
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ing structures such as R-tree, k-d-tree, etc, as illustrated by experimental results in 

Section 2.3.2 on page 38.

• The structure of Grid-R-tree's helps in overcoming the drawbacks of the above con

ventional data indexing structures, arising due to large size and high dimensionality 

in datasets (such as increase in overlap and height in R-tree & k-d-tree, respectively). 

It also guarantees efficient query execution over data sets of any kind of distribution 

including uniform, normal, skewed, etc., as substantiated by results in Section 2.3.2 

on page 38.

• Grid-R-tree supports a novel query called cell-wise c-neighborhood query (CellWiseNBH), 

which performs locality aware execution of neighborhood queries observed in den

sity based clustering algorithms (DBSCAN and OPTICS). CellWiseNBH computes 

e-neighborhoods for all the points of a cell in a single traversal of global-R-tree, thus 

saving repeated traversals of the same search space (path in the tree). This query 

enables us to re-design the above algorithms making them efficient than their native 

versions (see Section 3.1 on page 50).

• An adaptive grid optimization has been applied to Grid-R-tree to handle dense cells 

(cells having number of points greater than a threshold t) which are resultant of 

indexing datasets of variable density (skewed datasets). This optimization achieves 

better load distribution in the cells and thus improves the performance of above 

queries, as evident from results presented in Section 2.3.3 on page 43.

• We also present a supporting theoretical analysis, which theoretically proves that 

Grid-R-tree exhibits lesser overlap amongst the MBRs of its nodes and results in 

reduction of search space for the above queries, when compared to the conventional 

R-tree (see Section 2.2.6 on page 33). In particular, it can be seen that absence of 

overlap across multiple cells (or cell-R-trees) leads to reduction in search space and 

better query performance.
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2.6 Conclusions & Future Work

2.6.1 Conclusions

This chapter proposes Grid-R-tree, which is a simple, yet effective adaptation of R-tree us

ing the concept of Grid. Grid-R-tree supports efficient execution of conventional queries 

such as region queries and nearest neighbor queries. The design of Grid-R-tree into two 

levels breaks down the downward propagation of overlap and thus reduces the search 

space, leading to improvement in query performance. The construction time of Grid-R- 

tree is comparable to that of conventional R-tree whereas its performance over various 

queries is much better than that of R-tree. The experimental results presented clearly sug

gest that Grid-R-tree outperforms R-tree for the queries listed above. They also demon

strate that the query performance doesn't deteriorate with increase in dimensionality, size 

and density of the dataset. Grid-R-tree also supports a new type of query called Cell

WiseNBH query, which helps in executing the neighborhood queries for all points in a 

given cell efficiently. CellWiseNBH query has been used to re-design DBSCAN clustering 

algorithm whose details are presented in Chapter 3 on the following page and the results 

clearly indicate that the re-designed version performs better than the native DBSCAN. 

Grid-R-tree with adaptive grid optimization has also been proposed to deal with dense 

cells formed due to skewness in data, which further improves the query performance.

2.6.2 Future Directions

The gridding concept used in Grid-R-tree can also be applied to other variants of R- 

trees such as R*-tree, Greene-R-tree, Hilbert-R-tree, etc. [123] and other multidimensional 

indexing structures. This is expected to give even better performance as it will result in 

further minimization of overlap. Grid-R-tree can be directly used in any other domain 

like Geographical Information Systems and Multimedia, that require region and nearest 

neighbor queries. A distributed/ concurrent version of Grid-R-tree can also be designed 

to adapt itself to high performance computing paradigms.
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Chapter 3

Applicability of Grid-R-tree to Data

Mining

3.1 Data Mining Algorithms using Grid-R-tree

Any data mining algorithm that requires usage of neighborhood and nearest neighbor 

queries can be made to execute faster using Grid-R-tree. We discuss two of them here: 

k-NN classifier and DBSCAN clustering. We also give a theoretical bound on the speed up 

that can be achieved for any algorithm that uses Grid-R-tree.

3.1.1 k-NN Classifier using Grid-R-tree

k-NN classifier [121] classifies test data using k-nearest neighbor query over the training 

dataset. Initially Grid-R-tree (or R-tree) can be built over the training data points, and k- 

NN query can be executed over it for test data points to find their respective class labels. 

The performance of k-NN classifier for Grid-R-tree vs R-tree is illustrated in Figure 3.1 

on the next page for Shuttle [138] and Skin [139] datasets. Each of these datasets have 

training and test data, with the ratio of 3:1 approximately. The results presented in the 

figure clearly indicate that k-NN classifier over Grid-R-tree is more efficient than that over 

R-tree.
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Figure 3.1: Execution time of 
k-NN Classifier over R-tree and 
Grid-R-tree for Shuttle and Skin 
datasets
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Figure 3.2: Execution time for DBSCAN over R- 
tree and Grid-R-tree for (a) SBUS2.7M (b) MPA- 
HALO2.8M datasets

3.1.2 DBSCAN clustering using Grid-R-tree

It is a well known fact that DBSCAN algorithm devotes a major portion of execution 

time to neighborhood queries. These neighborhood queries are made to execute faster 

using Grid-R-tree. We present two ways of executing DBSCAN algorithm. First we use 

PointWiseNBH query to execute DBSCAN normally and then we use CellWiseNBH to 

execute DBSCAN in an optimized way.

In the first case the neighborhood queries that are required for execution of DBSCAN, 

are executed simply by using PointWiseNBH query over Grid-R-tree. The pseudo code of 

the DBSCAN algorithm using PointWiseNBH query is presented in Algorithm 3.1 on the 

following page & Algorithm 3.3 on the next page. The change is that R-tree neighborhood 

query is replaced by PointWiseNBH query over Grid-R-tree. Rest of the program is same 

as that of classical DBSCAN using R-tree. To use CellWiseNBH query for DBSCAN, we 

make a minor modification to the algorithm without changing its actual flow. We take 

advantage of CellWiseNBH query to pre-compute the neighborhoods of all the points of 

a given cell and store them temporarily as neighbors of those points. Algorithm 3.2 on 

the following page & Algorithm 3.4 on the next page illustrate the changes to be made 

to the classical DBSCAN code. Instead of calling neighborhood query of a given point 

p directly, we first find out to which cell it belongs to and then execute CellWiseNBH 

query over that cell. This query computes neighborhoods of all the points belonging to 

that cell and stores them temporarily. Next time when we need the neighborhood for
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another point p', we first check if its neighborhood has already been computed by any 

of the previous calls to CellWiseNBH query. If it is so, we simply use it, else we identify 

the cell to which it belongs to and execute CellWiseNBH query over that cell and then 

use neighborhood of p' for further clustering. Rest of the algorithm remains the same 

as that of native DBSCAN. This algorithm is more efficient than the previous one as the 

neighborhood query time is greatly optimized.

Algorithm 3.1: DBSCAN Clustering using 
PointWiseNBH
• procedure DBSCAN-PointWiseNBHO

Input : Data points list DL, Grid-R-tree G, 
Epsilon e, Min points MinPts

Output: List of clusters clusList
2
3
4

6
7
8
9
10

11
12
13

foreach point p in DL do 
if p is visited then continue;
Mark p as visited;
Data list nbhlist = Point-Wise-NBH(p, e, 

G.root);
if NbhList.count < MinPts then

| Mark p as NOISE;
else

Initialize a new cluster Clusl;
Expand-Cluster (p, C, NbhList, 

Clusl, e, MinPts);
Insert Clusl into clusList;

end
end

Algorithm 3.2: DBSCAN Clustering using
CellWiseNBH___________________________

procedure DBSCAN-CellWiseNBHO
Input : Data points list DL, Grid-R-tree G, 

Epsilon e, Min points MinPts
Output: List of clusters clusList

region r; cell cl;
r=DETERMiNE-CELL(p,M I NGRl DS IZE,c);
Cl=CnECK-lf-CELL-ExisJS(G.global-R-tree,r);
Cell-Wise-Nbh (Cl, e, G.root);
if p.neighborslist .count < MinPts then

Mark p as NOISE;
else

Algorithm 3.3: Expand Cluster using Point
WiseNBH 

2
3
4

6
7

8
9

10

procedure Expand-Cluster-PointWiseNBH() 
Input : Data point p, Grid-R-tree G, Data 

points list NbhList, cluster C/»sl, 
Epsilon e, Min points MinPts

Output: Complete Formation of Cluster Clusl 
Initialize a temporary points list tempNbhList; 
Add p to C/wsl;
foreach point p’ in NbhList do

if p' not visited then
Mark p as visited;
tempNbhList = Point-Wise-NBH (p, 

e, G.root);
if tempNbhList.count > MinPts then 

NbhList = NbhList u 
tempNbhList;

end

Algorithm 3.4: Expand Cluster using Cell
WiseNBH_______________________________ 
i procedure Expand-Cluster-CellWiseNBHO

Input : Data point p, Grid-R-tree G, Data 
points list NbhList, Cluster Clusl, 
Epsilon e, Min points MinPts

Output: Complete Formation of Cluster Clusl

n
12
13
14

end
if p’ is not a member of any cluster then 

| Add p' to Clusl;
end

if neighborhood of p' is not computed then 
region r; cell Cl;
r=DETERMiNE-CELL(p,MINGRlDSIZE,c);
C1=Check-If-Cell-Exists
(G.global-R-tree,r);
Cell-Wise-Nbh (Cl, e, G.root);

tempNbhList = p'.neighborsList;

end

All the three variants of DBSCAN (using RtreeNBH, PointWiseNBH and CellWiseNBH) 

have been executed over SBUS2.7M and MPAHALO2.8M data sets and the results are pre

sented in Figure 3.2 on page 51. The e values chosen for experimentation are presented 
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in Table 2.1 on page 37. The value of Min pts has been set to 5. The results indicate that 

DBSCAN execution time over Grid-R-tree is much lesser than that of R-tree over both the 

datasets. More specifically the execution with CellWiseNBH query is most efficient as this 

captures the query access pattern of DBSCAN. Note that the memory requirement of DB

SCAN using CellWiseNBH query is little higher since we are storing neighborhoods. But 

since the number of points lying within a cell is very less, the total memory required to 

store their neighborhoods is also very less. Also, as soon as the point is processed by DB

SCAN, the memory allocated to its neighbors list is cleared. Thus, the space complexity 

doesn't increase.

Similar experimentation can be performed for OPTICS [35] clustering as well. Grid-R- 

tree can also be used for other variants of DBSCAN such as IDBSCAN [140] and KIDB- 

SCAN [141] for efficient neighborhood queries in the same fashion.

3.1.3 Upper bound on speed up achieved by using Grid-R-tree

In this section, we present a theoretical upper bound on the speed up that can be achieved 

for any algorithm that uses queries supported by Grid-R-tree. We give the analysis with 

the help of DBSCAN clustering. As mentioned before, the execution time of DBSCAN has 

a major portion of time spent on performing neighborhood queries. Let p be the fraction 

of time spent on neighborhood queries. The speed up that can be achieved for executing 

DBSCAN is governed by speed up achieved in this portion of the program. Let z be 

that speed up achieved by using Grid-R-tree for neighborhood computations, instead of 

R-tree. By Amdahl's Law [142] the maximum speed up achieved for executing DBSCAN 

by replacing R-tree with Grid-R-tree will be:

1 
£ + 1 - p

This is the theoretical upper bound for speed up that can be achieved. This analysis can be 

generalized for any algorithm that uses Grid-R-tree instead of R-tree for its neighborhood 

computations. This result is verified for DBSCAN for SBUS2.7M and MPAHALO2.8M 

datasets. Table 3.1 on the following page separately presents the time of execution of en

tire DBSCAN and the portion comprising of neighborhood queries for the above datasets, 

along with the actual speed and the expected maximum speed up calculated using the 

above equation. It is very clear from the table that the actual speed up is very close to the
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Table 3.1: Theoretical Upper Bound vs Obtained Speed Up for DBSCAN Clustering

Dataset Query Type
Exec. Time for 
NBH queries 
only (sec.)

Exec. Time 
for DBSCAN
(sec.)

Improvement 
factor in NBH 
queries (z)

Actual
Speedup

Expected 
Max 
Speedup

R-tree-NBH 3071.241 3174.043 - - -
SBUS2.7M I’ointWiseNBH 1924.425 2028.425 1.595 1.564 1.565

CellWiseNBH 1420.79 1525.79 2.161 2.080 2.083
R-tree-NBH 210331.325 210465.903 - - -

MPAHALO2.8M I’ointWiseNBH 9624.115 9769.988 21.854 21.542 21.567
CellWiseNBH 4896.365 5042.693 42.956 41.736 41.834

estimate for both the datasets.

3.1.4 Other Uses of Grid-R-tree

Grid-R-tree have been used to re-engineer clustering algorithms like DBSCAN and SLINK 

from their basics [32, 33, 36]. These re-engineered versions work at grid level with opera

tions over cells as well as over points, rather than only points as in the native algorithms, 

and give exact clustering results as that of their native versions. Grid-R-tree can also be 

employed in Grid based clustering algorithms like BANG [129], AMR [130], etc. to index 

non-empty cells in place of other indexing structures. Grid-R-tree can also be used in 

any other application domains that require extensive use of neighborhood and nearest 

neighbor queries.

3.2 Discussion

• Gridding has been used in several clustering algorithms: GRIDCLUS [129], BANG 

[143], STING [144], AMR [130], etc. These algorithms work at a coarser granularity 

performing operations on partitioned cells rather than on points. Our contribution 

on Grid-R-tree is in demonstrating that gridding can be used effectively to perform 

queries on points as required by many data mining algorithms such as DBSCAN, 

OPTICS, SLINK, k-NN classifier, etc, rather than cell level operations.

• We used Grid-R-tree to efficiently implement data mining algorithms - DBSCAN 

and k-NN classifier. A few variants of the DBSCAN algorithm - IDBSCAN [140], 

KIDBSCAN [141], DBSCALE [145] - have been proposed in literature which are ef

ficient than the original DBSCAN. However, these variants use sampling techniques 
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3.3 Main Contributions

to reduce the number of neighborhood queries resulting in "approximate" cluster

ing. On the contrary, we have focused on reducing the computation time for each 

neighborhood query (rather than number of queries) without compromising on the 

correctness of DBSCAN clustering as shown by above experimental results.

3.3 Main Contributions

• In this chapter, we demonstrated the utility of Grid-R-tree in spatial data mining 

algorithms like k-NN classifier and DBSCAN clustering algorithm and have shown 

that usage of Grid-R-tree improves their performance (See Section 3.1 on page 50).

• We have also derived a theoretical upper bound on the speed-up that can be achieved 

by using Grid-R-tree in place of any other indexing structure using Amdahl's law.

3.4 Conclusions

In this chapter, we have demonstrated how usage of Grid-R-tree can optimize the perfor

mance of data mining algorithms such as k-NN classifier and DBSCAN clustering. The 

experimental results clearly show that CellWiseNBH query clearly optimizes the search 

space during its execution making the neighborhood queries efficient, and thus making 

DBSCAN efficient.
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Part II

Anytime Mining of Data Streams
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A data stream is characterized by continuously arriving data objects at a fast and 

variable rate, ordered by time. Mining data streams is typically constrained by limited 

available time to process and limited memory to store the incoming data objects. The 

time available to process each arriving object depends upon the stream speed and usually 

allows only for a single pass. And, within these constraints, evolving patterns have to 

be captured. Mining of data streams has enormous applications of various domains that 

include - retail chain analysis, network traffic analysis, web log analysis, mining data 

feeds from sensor networks, surveillance systems, disease surveillance systems, etc.

Researchers have proposed various algorithms for mining data streams. These stream 

mining algorithms can be broadly categorized into four tasks - Classification, Cluster

ing, Frequent Itemset Mining and Anomaly Detection. Various stream classification algo

rithms have been proposed in - [146,147,148,14, 99]. A survey of these algorithms can be 

found in [149]. Similarly, various stream clustering algorithms include - CluStream [102], 

HP-Stream [103], DenStream [95], Optics Stream [150], D-Stream [151], MR-Stream [152], 

etc. A survey of these can be found in [153]. Various algorithms proposed for frequent 

itemset mining in data streams include - Sticky Sampling & Lossy Counting [154], FP- 

Stream [98], CPS-Tree [53], DSM-FI [96], SWP-Tree [97], VSW [155], etc. A survey of these 

can be found in [156, 157]. And, various algorithms for anomaly detection in data streams 

are proposed in [109,158,159,160,108]. A survey of these can be found in [106].

With increasing complexity of the modern data generating systems, data is being gen

erated in the from of multiple sources resulting in multi-port streams. Researchers have 

proposed various algorithms for mining multi-port data streams as well. Few such algo

rithms are - Classification - [161,162,163]; Clustering - [164,165,166,167,168]; FI Mining 

- [169,170,115,171,172]; and Anomaly Detection - [110,173,174].

The existing algorithms (both sequential and multi-port algorithms), however, miss 

out on two important characteristics of real-time data streams. Firstly, very often streams 

do not have constant speed or inter-arrival rate of transactions that can greatly vary depending 

upon the application domain. For example, in retail chain analysis, the rate of arrival of 

transactions is higher during rush hours and lower during other times. Similar scenario 

can occur in domains like sensor networks, web server logs, etc. The algorithms proposed 

in literature are typically budget algorithms, i.e. they are designed for a fixed maximum 
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stream speed (known as budget). When the stream speed is higher than the budget, they 

would have to either process sampled data or buffer unlimited data and eventually fail 

[104]. And when the stream speed is lower, they sit idle after processing the current data 

object, until the next one arrives. An ideal algorithm, however, should be able to process 

any stream speed. Higher speeds should be handled using deferred insertions and spare 

time available while processing lower speed streams should be utilized for refining the 

information received.

The second characteristic missed out is that they lack the ability to produce immedi

ate mining results with compromised accuracy, if required. There are applications such 

as stock market analysis, where the mining results are sometimes instantaneously re

quired. For example, a short term stock investor for whom time is money, would require 

an instantaneous result. On the other hand, a long term investor would wait for some 

additional time until a more accurate result is computed. So, an ideal algorithm should 

give a mining result almost immediately as soon as a request comes from the user, and 

improve its quality/accuracy with increase in time allowance. Figure 1.6 on page 9 shows 

the behaviour of an anytime algorithm, where accuracy of the result improves with in

crease in time allowance for processing. The existing stream mining algorithms lack such 

capability. They typically execute an offline phase to mine for the final result, which is 

computationally expensive and hence cannot provide immediate mining results.

The above two properties - 1. handling varying inter-arrival rate of transactions, and 2. 

giving the best possible result according to the available time allowance; are the characteristics 

of an anytime mining algorithm for data streams. Only a few such anytime algorithms 

have been proposed in literature. They include - clustering [104, 117, 118], classification 

[100, 101, 175, 116], and amomaly detection - [119]. These algorithms address either one 

or both the properties of an anytime mining algorithm.

A few anytime mining algorithms have also been proposed for static datasets (non

stream environment). They typically have only the second characteristic of the anytime 

algorithm. They include - Classification [176, 177, 178, 179], Clustering [180, 181] and FI 

Mining [182]. Since, the focus of anytime algorithms in this thesis is pertaining to data 

streams, we don't discuss them further.

In this part, we develop three anytime mining algorithms for data streams - one each 
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for frequent itemset mining (Chapter 4 on the next page), set-wise classification (Chapter 5 on 

page 103) and clustering (Chapter 6 on page 126). They are presented as follows:
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Chapter 4

Anytime Frequent Itemset Mining of

Data Streams

4.1 Frequent Itemset Mining

Frequent Itemset (or Frequent Pattern) Mining is the task to discover frequently occurring 

items in a transactional database. For example, consider the sales database of a bookstore, 

where each transaction consists of books purchased by a customer. The task of find

ing sets of books most frequently purchased together by customers is a frequent itemset 

mining problem. The bookstore can use the knowledge acquired from frequent itemset 

mining for advertising, shelf placement, etc. Similarly, there are many other application 

areas for frequent itemset mining that include - catalog design, store layout, customer 

segmentation, telecommunication alarm diagnosis, and so on.

Frequent itemset (FI) mining has been well studied for static datasets in two broad 

categories: Apriori like methods [47, 50, 51, 183] and FP-tree like methods [184, 53]. The

• Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal. AnyFl: An Anytime Frequent 
Itemset Mining Algorithm for Data Streams. In Proceedings of 2017 IEEE International Conference on Big 
Data (IEEE Big Data 2017), pp. 942-947,11-14 December 2017, Boston, MA, USA

• Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal. Anytime Frequent Itemset Mining 
of Transactional Data Streams. Submitted for review in Big Data Research, Elsevier.
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4.2 Frequent Itemset Mining in Data Streams

former find FIs of length k from a set of pre-generated candidate itemsets of length k — 1. 

They scan the dataset multiple times and generate many candidate itemsets of which 

many could be infrequent. To address this issue FP-tree was proposed which uses FP- 

growth algorithm [184]. This reduces the number of dataset scans to two and doesn't 

enumerate candidate itemsets like in Apriori.

4.2 Frequent Itemset Mining in Data Streams

Mining for frequent iteinsets (FIs) in transactional data streams is commonly used in vari

ous applications such as retail chain analysis, stock market analysis, web log analysis, network 

traffic analysis, mining data feeds from sensor networks, etc. Researchers have proposed a 

few algorithms for mining FIs from data streams [154, 98, 53, 96, 97, 155]. These algo

rithms have two phases - online & offline. In the online phase, they insert the incoming 

transactions into a summary structure, either batch by batch [98, 53, 96] or transaction by 

transaction [97]. And, whenever a request for mining result comes from the user, they 

execute the offline phase to extract FIs from their summary structures.

For modeling data streams, researchers have typically used landmark window [154, 98, 

96] and sliding zoindow [53,183, 97, 155, 185] models. Landmark window summarizes the 

entire stream from its beginning, whereas sliding window only keeps a fixed number of 

last arrived transactions. Sticky-Sampling and Lossy Counting [154] are the first algo

rithms proposed for FI mining of data streams. They are based on Apriori and follow 

the landmark window model. They produce less accurate results with a theoretical error 

bound. FP-Stream [98] is the next approach that uses tilted-time window model (variation 

of landmark window). It takes in transactions batch-wise and for each batch it builds an 

FP-tree, mines for FIs, and inserts them into a pattern tree that has tilted-time windows 

stored at its nodes. Pattern trees are mined similar to FP-Trees to output the mining 

result. FIDS [186] is another approach proposed that processes transactions batch-wise. 

They propose a new representation for the items and a data structure known as Latticereg 

to maintain FIs coupled with a fast pruning strategy. They also use the tilted-time win

dow model. DSM-FI [96] is another approach which also uses landmark window. It keeps 

a forest of prefix trees which are similar to FP-trees. Every arriving transaction of size k 
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4.2 Frequent Itemset Mining in Data Streams

is converted into k — 1 smaller transactions which are suffixes of the original transaction, 

and each suffix is inserted into its respective tree in the forest. This algorithm is a budget 

algorithm and has to insert all the incoming transactions completely into the forest irre

spective of the stream speed. Mining for FIs in DSM-FI is similar to the Apriori approach 

wherein the infrequent itemsets of size k are broken down into itemsets of size k — 1 and 

are checked if they are frequent.

CPS-Tree [53] is a FP-tree based algorithm that uses sliding window model. It takes in 

the transactions batch-wise, and undergoes re-structuring and pruning after processing 

every batch, which is time consuming. It uses FP-growth for mining FIs on request. 

MFI-TransSW [183] is another sliding window based approach that represents the items 

in the form of a bit vector and uses Apriori for mining. SWP-Tree [97] is also a sliding 

window based algorithm that uses a prefix tree similar to FP-tree. It additionally uses 

decay on support count of items stored in it to give higher weightage to recently arrived 

ones. Mining for FIs from SWP-tree is similar to that of FP-Tree. Another algorithm 

which adjusts the size of sliding window on demand, is the VSW [155]. It uses ECLAT 

[51] which is a variant of Apriori and is slow in its insertion and mining. VSW also uses 

expensive computations to compute the new window size after processing every batch 

of transactions and thus is not capable of handling high speed streams. Another recent 

algorithm is WIS [185], which mines for FIs within a given time horizon. It uses a test 

window which is a minimal window to discard the infrequent itemsets. However, in this 

approach, the support counting is limited to the test window. Another approach MSWTP 

[105], which mines for top k frequent itemset from the stream over a sliding window 

without using any threshold on support. They propose SWTP-tree to store the itemsets 

in the sliding window and provide a lower bound on the support of klh frequent itemset 

using Chernoff bound theory.

With increase in utilities of systems that generate data from multiple sources, mining 

for FIs from multiple streams is increasingly becoming popular. Researchers have pro

posed a few algorithms for FI mining over multi-port data streams. H-Stream [169] is the 

first proposed approach, which extends the FP-Stream [98] and uses tilted-time window 

framework for storing FIs from multiple streams. PAMS [170] is another algorithm that 

mines for progressive sequential patterns from multiple data streams. It uses a structure 
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4.2 Frequent Itemset Mining in Data Streams

known as PSM-tree for storing FIs. DIMine & CooMine [115] are another set of algo

rithms proposed for mining frequent co-occurrence patterns from multiple streams. A 

co-occurrence pattern is an itemset that occurs in at least a pre-defined number of streams 

out of many incoming streams. They use a structure known as Seg-tree to index itemsets. 

Similarly, DFCP & MDFCP [171] are another set of algorithms that mine for co-occurence 

patterns from multiple streams. More recently proposed algorithm is the CP-Graph [172] 

that mines for top k co-occurrence patterns across multiple streams in real-time. They 

use sliding window model and a structure known as CP-Graph, which is a hybrid index 

of a graph and an inverted file structure that is used for efficient support counting and 

pruning of infrequent itemsets.

4.2.1 Research Gap and Motivation

The existing algorithms (both sequential and multi-port algorithms), however, miss out on 

both the characteristics of anytime mining algorithms for data streams explained in Part II 

on page 57. All of them are budget algorithms, i.e., they are designed for fixed maximum 

speeds beyond which they would fail to process the stream. Also, these algorithms either 

use Apriori like methods or FP-tree like methods for mining FIs. Apriori like methods 

enumerate a large number of candidate itemsets and thus are very slow in mining for 

FIs, especially for lower support thresholds. Similarly, FP-tree like methods enumerate 

conditional pattern trees to compute the FIs and thus take time to output the result. It 

can be seen that both kind of methods are not capable of delivering an immediate mining 

result (even with compromised accuracy) if required. Hence, all of the above algorithms 

do not fit the bill for requirements of an anytime FI mining algorithm for data streams.

There is one anytime algorithm for FI mining in multi-user applications over a large 

static database [182]. It uses sampling and addresses the second aspect of an anytime 

algorithm, i.e., it gives an immediate approximate mining result and improves it with 

increase in time allowance. However, it is static in nature and doesn't fit for streams. 

Thus, there doesn't exist any anytime algorithm for FI mining of data streams.

In this chapter, we present AnyFI which is the first Anytime Frequent Itemset mining 

algorithm for data streams, It is characterized by both the aspects of an anytime algo-
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4.3 Preliminaries

Table 4.1: Notations and Definitions

Notation Definitions

/ = {'i<'2....
S — {l\,.... } 
tr 
(tid,arrTime, S')

/ is a Dictionary of unique items. Each literal i, denotes a unique item. Literals are considered 
as integers.
S is an Itemset if $ Q I: x < y and x.u € T..«j.
tr is a Transaction consisting of the tuple - trans ID, arrmil time of the transaction and an ilemset 
S'. If for an itemset S, S C S', we say that tr contains S.

DS
A Data Stream is a continuous unbounded sequence of transactions, DS = trl,...,trr,..., where 
tr, is the j"' arrived transaction.

>DS A finite contiguous subsequence of transactions from DS.

freq^S) It is the frequency count/support count of an itemset S with respect to sDS (no. of 
transactions in sDS where S has occurred).
Given a minimum support threshold r(0 < <T < 1), S is said to frequent (or c-frequent) in sDS,

rrequent Itemset if freq^psfS) > rlsDS . Similarly, given an error threshold e (0 < e < r), S is said to be 
e-frequent or sub-frequent, if e sDS < freq^^tS) < r sDS . And if freq.p$(S) < c sDS\, S is 
said to be infrequent.
Given a transaction tr containing an itemset S. Let the items in S be ordered according to some

SP pre-defined total order (lexicographical ordering). Then for the ordered itemset < abed >, the 
suffix projections will be: < abed >, < bed >, < cd > and < d >. The total number of suffix 
projections will be S .

rithm. The rest of the chapter is organized as follows: Section 4.3 gives brief background 

on related concepts; Section 4.4 on page 66 explains the proposed data structure - BFI- 

forest; Section 4.5 on page 68 presents the proposed algorithm - AnyFI; Section 4.6 on 

page 88 presents the parallel framework MPAnyFI; Section 4.7 on page 90 presents the 

experimental results; Section 4.8 on page 101 highlights the main contributions of this 

chapter; followed by conclusions and future work in Section 4.9 on page 102.

4.3 Preliminaries

4.3.1 Definitions & Problem Statements

Table 4.1 gives a few notations and definitions. Following these definitions, we can define 

the problem of FI mining from a data stream as: given DS, sDS and a, find itemsets in 

sDS that have freqsns > cr|sDS|. When we process transactions arriving with variable 

inter-arrival rate, the problem is referred to as Anytime FI Mining of Data Streams.

Researchers use e to prune away infrequent itemsets in order to save space and time 

[154, 96]. AnyFI also uses e to prune away infrequent itemsets. This introduces approxi

mation in results, and hence the quality of results is measured using - precision and recall.
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4.3 Preliminaries

4.3.2 Stream Model

The set sDS is modelled as a window of different forms - landmark window [98], slid

ing window [97, 183], damped window[97], etc., for different algorithms explained in 

Section 4.2 on page 61. In our work, we had used two stream models -Damped Window 

model for modeling stream in AnyFI, which is the sequential algorithm; and Tilted Time 

Window Framework for modeling multi-port streams in the parallel framework - MPAnyFI. 

We explain each of these as follows:

4.3.2.1 Damped Window

Damped window lowers the effect of older transactions with time and thus lets us control 

the contribution of a transaction with respect to its arrival time. Recent transactions get 

greater weightage and hence recent trends can be captured more effectively. We use a 

decay factor f, 0 < f < 1, to decay the frequency counts of itemsets with time. We denote 

frequency count of an itemset S at time T\ as freq(S, Tj). At time T? (^2 > T\), the decayed 

frequency count of S will be:

frcq(S,T2) = freq(S,Tt) x (4.1)

If we do not decay frequency counts with time, the frequency counts would be the true 

frequency counts as in a pure landmark window model with window starting from be

ginning of the stream. In AnyFI, whenever we update/increment the frequency count of 

an itemset due to arrival of a new transaction, we first decay the existing frequency count 

using Equation (4.1) and then increment it, i.e., if itemset S has occurred in a transaction 

arrived at time 72, then the updated frequency count of S will be:

freq(S,T2) = freq(S,Tt) x fn-T,) + j (4.2)

Whenever we compute frequency count of an itemset S with respect to a support threshold 

(e or a), sDS is the window containing transactions occurring between the timestamps - 

current tid (currud) and tid of the first transaction (ftid) where S has occurred, ftid is 

stored in tree nodes of BFI-forest (see Section Section 4.4 on the next page).
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4.4 BFI-Forest

4.4 BFI-Forest

BFI-forest is a summary structure used for anytime processing of incoming transactions 

by AnyFI and MPAnyFI. It stores the enumerated suffix projections (SPs) (see Table 4.1 on 

page 64 for definition of SP) of the incoming transactions in a compressed way. They are 

so arranged in the forest that it becomes easy and efficient to mine for FIs. Figure 4.1 on 

the next page illustrates its structure, which is elucidated as follows:

• BFI-forest consists of a set of BFI-trees (Buffered Frequent Itemset trees), whose total 

number < |/|. The root node of each tree represents a unique item from I. Figure 4.1 

on the following page shows a BFI-forest constructed over I = {a,b,c,d,e}, and 

thus contains five BFI-trees. Each node of a BFI-tree represents an itemset that is 

formed by collecting all the items in the traversal path from the root to the node. 

For example, node? in Treel of Figure 4.1 on the next page represents the itemset 

{a,c,d}, which is formed by the path: nodel -> node6 -> node?.

• An internal node of a BFI-forest stores the following fields:

o item: It is an integer identifier representing a literal in set /. It is the item 

indexed at the current node.

o efreq: It is the frequency count of the itemset represented at this node.

o ftid: It is the transaction id (tid) at which this node was created, i.e., the first oc

currence of the itemset represented by the current node. It is used for pruning 

infrequent itemsets (see Section 4.5.1 on page 68).

o Itime: It is the timestamp at which the node was last accessed or updated. It 

is used to decay the the node's frequency count with time under the damped 

window model.

o buff: This field represents the buffer at the node. Buffers store SPs that are 

incompletely processed and are waiting to be inserted into the tree. Their 

processing has been deferred either due to insufficient time allowance or out of 

deliberation to achieve some optimization goals (see Section 4.5.1 on page 68). 

Thus, buffers become a key requirement for AnyFI. Buffers in BFI-trees are im

plemented as hash tables with linear chaining as shown in Figure 4.1 on the 

following page. Using a hash table for the buffers makes the complexity of
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4.4 BFI-Forest

Tree?Treel

Figure 4.1: Structure of BFI-forest and BFI-trees

insertion and removal of a projection from any of its bucket to be 0(1). Each 

bucket in the hash table is a linked list of buffer-nodes. Each buffer-node stores 

(i.) partial _trans: a SP; (ii.) ft id: Timestamp at which this buffer-node was 

created; (Hi.) Itinie: The last accessed/updated timestamp of the buffer-node; 

and (iv.) efreq: The frequency count of the SP stored at the buffer-node. The 

buffer has a limit on the number of buffer-nodes it can hash in total, which we 

denote as buff Capacity. The size of the hash table array (hash_size) is typically 

chosen as 10% of |/|. We use simple mod function as the hash function for the 

buffer, i.e. for a SP p_tr = < abc >, the value of the bucket to which it should 

get indexed is computed by - a % \hash_size\, where a is the first item in p_tr. 

Note that a (even b or c) is an integer literal € I.

o child Arr: It is an array of max size - |/|, used to store pointers to the sub-trees 

indexed at the current node. The size of this array varies among the tree node 

as we insert lexicographically ordered transactions (see Section 4.5 on the next 

page). Consider Treel in Figure4.1 which was constructed over / = {a,b,c,d,e}. 

The node at level 0 (node 1) will have a child array of size 4 as it can have sub

trees with their roots containing items - b, c, d & e. Similarly, node 2 would 

have a child array of size 3 as it can have sub-trees with their roots containing 

items - c, d & e only. Node 2 can never have item a in any of the sub-trees due 

to insertion of lexicographically ordering transactions. Thus array of size 3 is 

sufficient. Similarly, other nodes will contain child arrays of sizes as per the 

number of children they can have. Node 11 will not have any child array as 

there is no item in I that can occur after e. Similar scheme applies to other trees 
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4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

in the forest.

• All the nodes of BFI-trees that are present at a height, Max_Height, are called ex

ternal nodes. The value of Max_Height is user defined. In Figure 4.1 on page 67, 

Max_Height is 2. So, the nodes 3, 4, 5, 7, 8 & 10 are external nodes, nodell is not 

external since it is not at Maxjieight. External nodes differ from internal nodes only 

in one field - instead of childArr, they store fpRoot which is a pointer to an FP-tree 

[184]. The suffix projections reaching Max_Height during insertion and refinement 

step are inserted into FP-trees. This reduces memory consumed by BFI-forest and 

eliminates the need to store so many infrequent projections (see Section 4.5). If there 

are no projections to be stored in the FP-tree beneath a given external node, fpRoot 

remains NULL (nodes 5, 8 & 10). Also note that buffers are present in both internal 

and external nodes.

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

The AnyFI algorithm in principle consists of the following steps that are elaborated in 

subsequent subsections.

• Read the incoming transactions one by one and order them lexicographically.

• Insert each transaction into BFI-forest and refine the trees of the forest as per the 

available time allowance.

• Intermittently prune the infrequent itemsets from BFI-forest after arrival of a certain 

batch of transactions.

• Whenever user requests for a mining result, BFI-forest is mined for FIs within the 

given time allowance.

4 .5.1 Inserting a transaction into the BFI-forest and Refinement of BFI-forest

The insertion of an incoming transaction and its refinement is an anytime operation, i.e., 

it is interruptible whenever the time allowance expires, which is typically triggered by 

arrival of a new transaction. It is explained as follows:
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Figure 4.2: Inserting a transaction < acde > into BFI-forest

Algorithm 4.1: Any-FI
i procedure ANY-FI(s/n’flw)

Input : Stream of continuously arriving transactions at a variable rate 
Output: Each transaction being inserted into the BFI-forest

2 count *— 0;
3 forest <- Init-BFI-Forest();
4 while !EOF(sfri’(/»i) do
s trans <- Get-Next-Trans(s/hwh);
6 ORDER-LEXICOCRAl’HICALLYf/rans);
7 lNSERT-lN-BFI-FoREST(/orfsf, trans);
8 count <— count + 1;
? end

4.5.1.1 Inserting a transaction into a BFI-forest

Each incoming transaction (trans) from the stream is processed one after the other (Algo

rithm 4.1). It is first lexicographically ordered and then inserted into the BFI-forest (lines 

5-7 of Algorithm 4.1). To insert trans into the BFI-forest, we take its suffix projections 

and insert each projection into the root of the corresponding BFI-tree (lines 2-6 of Algo

rithm 4.2 on the next page). This is illustrated in Figure 4.2. Suppose trans =< acde >, 

we would insert the SPs: < acde > in Treel, < cde > in Tree3, < de > in Tree4 and < e > 

in Tree5 as shown in the figure. To insert < acde > in Treel, we first increment the efreq 

of the root node of Treel (which contains item a), after decaying it using Equation (4.2) 

on page 65 (Algorithm 4.3 on the following page). Please note that T] and T2 will be I time 

and current_time respectively. We then place the rest of the projection < cde > (formed 

after trimming the Head, which is a) into its buffer. Similarly, we process the remaining 

projections by first incrementing the efreq of the root nodes of trees and inserting the 

trimmed suffix projections into the buffers of the respective tree roots as shown in the
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Algorithm 4.2: Insert-1n-BF1-Forest

1 procedure iNSERT-IN-BFI-FoREsrf/on'sfJnms)
I Input : A BFI-forest and an incoming transaction 

Output: Transaction inserted into the BFI-forest
2 foreach shffix_proj of trans do
3 rootNode forest\HEAD(sn ffix_proj)].root;
4 root Node.efreq <p( root Node ).efreq ~ 1;
5 trimmed_proj «- stiff _proj after trimming its Head;
6 1nsert-In-Buffer( root Nodedni f f, trimmed _proj);
7 end
s if NEW-TRANS ^ARRIVED then return;
9 REFlNE-BFl-FoREST(/<>rrst);

Algorithm 4.3:
i procedure ^(node)

Input : A BFI-tree node or a buffer node
Output: BFI-tree node with decayed frequency count

2 node.efreq <— node.efreq * pURRJiw m>deitht.
3 return node;

figure. Since < e > is singleton, its insertion into Tree5 will just be increment of efreq of 

its root.

Since, buffers are implemented as hash tables with linear chaining, to insert < cde > 

into the buffer of root of Treel, we find the hash value of < cde > to identify the bucket 

into which it has to be inserted (bucketid = c mod hash_size). All the projections starting 

with c will be hashed to this bucket. Then we check if a buffer node indexing < de > al

ready exists in this bucket. If yes, we increment its efreq by 1, after decaying it. Otherwise 

we create a new buffer for it and append it to the end of the bucket (see Figure 4.1 on 

page 67). All other projections are also inserted in the same way into their corresponding 

buffers.

This operation - taking suffix projections and inserting into the root nodes of trees, is an 

atomic operation (non-interruptible) (lines 2-6 of Algorithm 4.2). We then check if a new 

transaction has arrived, if yes we stop here and process the newly arrived transaction 

(lines 7-8 of Algorithm 4.2). However, if a new transaction has not arrived, we refine the 

forest until the time allows (line 9 of Algorithm 4.2).

4 .5.1.2 Refinement of BFI-Forest

Each tree of BFI-forest undergoes refinement in a random biased way (Algorithm 4.4 

on the next page). We select a tree for refinement from the forest with non-uniform 

probability, where we give higher weight to the trees whose root nodes have items of
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Algorithm 4.4: Refine-BFI-Forest

i procedure Refine-BF1-Forest(/<ws/ )
Input : A BFI-forest
Output: Trees of BFI-forest refined until time allows

2 while exitFlag ! = TRUE do
3 tree a biased random tree from forest;
4 if tree is not being pruned then
5 i | exitFlag <- Refine-BFI-Tree (tree.root);
6 | end
7 I end

Figure 4.3: Refinement of BFI-tree

lower rank in I (when / is lexicographically ordered). If the probability of selecting a 

tree with root representing item ij (j is the rank in lexicographically ordered I) is Wj, then 

Wj = where dj = |/| - ; + 1 and zpi > zi’2 > - > One can observe from 

Figure 4.1 on page 67 that the trees with roots representing items from lower ranks in 

lexicographically arranged / will have larger size than those with higher ranks. So, by 

doing a biased selection this way, larger trees get higher chance of getting selected for 

refinement. This makes sure that all the trees in the forest is refined uniformly. Also, 

we must note here that if we select a tree for refinement that is undergoing intermittent 

pruning (see Section 4.5.2 on page 75), we don't refine it and select another tree. After 

finishing refinement of a tree, if time allowance is remaining, we will pickup another 

tree and refine it. If during the refinement of a tree, a new transaction arrives, exitFlag 

becomes TRUE (lines 5 & 24 of Algorithm 4.5 on the following page), and we quit from 

there to process the newly arrived transaction.

To refine a BFI-tree, we take out the SPs stored in the buffers of its nodes and expand 

them into sub-trees until time allows. The refinement of each tree is carried out in depth 

first order (Algorithm 4.5 on the next page). Consider Treel in Figure 4.3, where < cde > 

is inserted in its root's buffer. We start refining Treel beginning with its root (curr_node = 

root). First, we take out the first SP from a randomly chosen bucket of its buffer (lines 7-9 

of Algorithm 4.5 on the next page). Consider < cde > was taken out. We then update
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Algorithm 4.5: Refine-BFI-Tree

2
3
4
5
6
7
8
9
10
11
12
13
14
15
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19
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21
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23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

procedure Refine-BFI-Tree(tree)
Input : A BFI-tree to refine
Output: BFI-tree refined until time allows
stack <- Init-New-Stack();
PusHfsfnck, tree.root);
while Is-Not-EmptyIs/acK) do

if NEW_TRAN-ARRIVED then return TRUE ;
curr_node Pop(shuA);
randBuf fNode <— CnT-RAND-NoDE(enrr_nade.lmf f);
randBuf fNode.ef req <- tp(raiidBuf fNode);
ptrans «— randBuffNode.partial-trails;
if Get-Height(node) > LEAF-LEVEL then

j FP-lNSERT(CHrr_HOi/t’.f pRoot, ptrans)
else

| foreach suffix_proj of pt rails do
child <- curr_node.childArr HtAD(suffix_proj)\;
if randBuffNode.ef req is e - infrequent and child is NULL then

| continue; 
end
if child is NULL then

| curr_iiode.childArr\HEAD(suffix_proj)] <— New-BFI-Node(); 
end
Insert-In-Buff ER^child.buff, suff ix_proj);
chihLefreq <— <p(child.efreq) - randBuffNode.efreq; 

end 
if NEW_TRANS_ARRIVED then return TRUE ;
foreach stiff ix_proj of plrans do

affected_child = ciirr_itode.childArr\HEAD(su f fix_proj)];
if buffer priming condition for affected _child is met then

| PRUNE-BUFFER(rt//l’Cfrt/_c7n7d) 
end
if affected_child is c-frequent then

if affected_child has a child into which suffix_proj can be inserted or affccted_child is 
0-frequent then 
| P(jSH(stack,affected_child);

end
end 

end 
end 

end 
return FALSE;

its frequency count using Equation (4.1) on page 65. If curr_node is an external node, 

we would insert this projection into the FP-tree beneath it (lines 10-11 of Algorithm 4.5). 

Otherwise, we take SPs of < cde > and insert them into the buffers of the corresponding 

children of curr_node as shown in Figure 4.3 on page 71 (nodes 6 & 9 get projections into 

their buffers). The insertion into buffer is same as explained before. We also increment the 

frequency counts of nodes 6 & 9 with the frequency count of the corresponding SP being 

inserted into their buffers, after decaying them (line 20 of Algorithm 4.5). If any child 

into which a projection has to be inserted, doesn't exist, we create that child, insert the SP 

into its buffer and assign it a frequency count (lines 17-18 of Algorithm 4.5). Also, while 

inserting into the buffer, we take care that the buffers do not overflow. If they exceed a 

pre-defined capacity- bitf/Capacity, we remove a random SP from the bucket in which
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Algorithm 4.6: Prune-Buffer 
i procedure Prune-Buffer( node) 

| Input : A node of BFI-tree 
I Output: Buffer of the node pruned 

2 foreach buffjiode in node.bu f f do
3 if tp(buff junie) < e.(currtid - buffnode.ftid} then
4 | if nodexliildArr[HEMl(buffjiode.partialTnin*) is NULL then
5 | ' delete buffjiode from nodedntf'f;
6 | end
7 end
8 end

we are trying to append the new projection. After this step, we check if a new transaction 

has arrived. If yes, we quit the refinement and move on to process the next transaction. 

Note that at the beginning of refinement of every node, we do check if a new transaction 

has arrived (line 5 of Algorithm 4.5 on page 72), if yes, we simply quit this function and 

proceed to process the newly arrived transaction; otherwise we proceed to further steps.

Buffer Pruning After insertion of projections into the sub-trees, we now conduct buffer 

pruning, which prunes infrequent projections lying in the buffers. So, the buffers of 

affected children of curr_node (children into which suffix projections were inserted in the 

previous step - nodes 6 & 9 in Fig.Figure 4.3 on page 71) are pruned before we proceed 

with further refinement. We do not conduct buffer pruning each time we visit a given 
node in the traversal. This is because, each time we visit a node’s buffer, we may not 

have infrequent projections. So, we let it accumulate a few infrequent projections so that 

all of them can be removed in one go. We conduct buffer pruning in intervals of some 

minimum time decided by a parameter 7 and the height of the node. It can be observed 

that closer the node to the root, more filled will be its buffer. Thus, buffers at lesser depth 

must be pruned more often than the buffers at greater depth. The pruning interval (PI) 

for each node is computed using the following formula-

PI = \ (batch_size) / (10 x 7 x height (node)]) (4.3)

where batch_size is the number of transactions after which we perform intermittent prun

ing (see Section 4.5.2 on page 75). So, whenever we are visiting a node, we prune its 

buffer only when it was last pruned at least PI transactions earlier (lines 24-25 of Algo

rithm 4.5 on page 72). In buffer pruning (Algorithm 4.6), we visit every buffer-node in 

a given buffer (nodes from all the buckets) and prune them. If partial_trans in a buffer 

node being visited, is not e-frequent (after decaying its frequency count), then we check if 

the current af fected_child (node for which buffer pruning is being conducted) has a child 
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in its childArr that corresponds to the head of the partial _trans. If it does, then we don't 

delete this projection, as we might lose a potential FI by removing it. Otherwise we safely 

delete it.

0-deferring After buffer pruning, we now select which nodes in the tree are to be re

fined further. We do not refine all the nodes in the tree, rather we deliberately defer the 

refinement of certain nodes to save space and time. We let the nodes accumulate more 

itemsets in their buffers before they are refined or expanded for insertion into their sub

trees. This step is critical in making the insertion and refinement step faster as it avoids 

repeated insertions/removals of same infrequent itemsets into/from the forest. This is 

because the frequency counts of the itemsets represented by the nodes keeps deceasing 

as we go down the tree. Refining the lower level nodes each time will lead to insertion 

of infrequent itemsets in the form of infrequent sub-trees, which will be pruned again in 

the intermittent pruning step. This leads to repeated insertions and removal of infrequent 

itemsets. This can be avoided, if we are selective in refining nodes and let the buffers in 

the nodes accumulate more itemsets in the them before they can be refined. Moreover, 

many infrequent itemsets will be pruned from buffers itself, rather than getting expanded 

into a large number of infrequent sub-trees. This deferred refinement is achieved by a 

tuning parameter 0 and this process is referred to as ^-deferring. In this step, for every 

affected child (children in which suffix projections were inserted earlier), we first check 

whether it is E-frequent or not. If yes, then we check whether the sub-tree corresponding 

to the head of the projection to be inserted into it, is present in its childArr or not. If this 

is so, we push this node (selected_child) into the stack, so that it can be refined in subse

quent iteration of the DFS order (lines 26-28 of Algorithm 4.5 on page 72). For example, 

consider node 6 in Figure 4.3 on page 71. If it is E-frequent and there exists a sub-tree 

with root d present in its childArr (node 7), we would want this node to be refined further 

and thus, push it into the stack. However, if the sub-tree doesn't exist, then we check if 

the selected_child is 0-frequent or not. If it is so, only then we would want this node to 

be refined further and we push it into the stack. Else, we don't refine this node and let it 

accumulate more transactions in its buffer before it gets refined further, thus saving space 

which would otherwise be occupied by an infrequent sub-tree. After this, we proceed
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Algorithm 4.7: Prune-Forest

i

2
3
4

6
7
8
9
10
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12
13
14
15
16
17
18
19
20
21
22
23
24

procedure Prune-Forest^/ph’s/J
Input : BFI-forest
Output: BFI-forest post pruning
foreach tree in forest do

j stack Init-New-Stack();
PRL'NE-BLFFER(friT.rOO/);
if tp(tree.rool) < c.[cnrrjid - tree.root, ft id} then

| DELETE-St’ll-TREEpn’l’.rOOf);
| continue; 

else
| PusH(shnA); 

end
while Is-Not-Emi’Ty(sMiA-) do 

node <- Pop(stack);
PRUNE-BUFFERpItx/c); 
foreach child in nodexhildArr do 

if Is-External-Node(c7»/</) then
| FP-PRUNE(t7»7rf./pRoot);

else if (<l>(>iode.bitff [child.item } - (pichild)) < efcitrrjid - child.ftid) then 
| DELETE-SUB-TREEfc/li/lf);

else
| PvsH(stack,child); 

end
end 

end
end

for the next iteration in the DFS traversal, where the nodes accumulated in the stack are 

refined (line 6 of Algorithm 4.5 on page 72).

4 .5.2 Intermittent Pruning of BFI-forest

Since we are operating in a stream environment, it is required to regularly prune away 

itemsets which become infrequent from our summary structure, to manage the space 

constraint as time progresses. This is achieved by an intermittent pruning mechanism 

(Algorithm 4.7). This step also helps in making insertion efficient as it avoids visiting 

unnecessary branches in the trees, by pruning them periodically after a certain batch_size 

of arriving transactions. We iterate over all the trees in the forest and prune each tree 

separately. To prune a given tree, we use depth first traversal. In the traversal, when 

we encounter a node that is not e-frequent (or is infrequent), we delete it along with all 

its child sub-trees. Removing the sub-trees beneath infrequent nodes doesn't affect the 

accuracy of the algorithm because all itemsets in those sub-trees can never be frequent. If 

however, the node is e-frequent, then we insert it into the stack so that its children can be 

pruned in subsequent iterations. If the node we visited was a leaf, we prune its FP-tree 

as explained in [97], i.e., if an infrequent item is inside the FP-tree, we delete this item 
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from all branches of the FP-tree by traversing the similar node links present in it. And 

after deleting the nodes with that item, we merge their child branches with those of their 

parents recursively and update the frequency counts. For more details, please refer to 

[97].

Proposition 3. Deletion of an infrequent node (or a sub-tree) from a given BFI-tree doesn't 

affect the correctness of the results, i.e. frequency counts of the itemsets in the same tree 

or the other trees are not affected.

Justification. AnyFI, enumerates all possible suffix projections of incoming transactions, 

and inserts them in different trees of the forest. And during the refinement step while 

taking a projection down the tree, SPs are enumerated at every level and get stored in in

dependent branches. The frequency counts of itemsets represented by the other branches 

(or trees) have no connection with the node being deleted. There is exactly one node 

for representing any given itemset in the entire forest. So, unlike other algorithms like 

DSM-FI [96], deletion of a sub-tree in BFI-tree does not affect the other branches of the 

tree (and other trees as well), and thus there is no need to update or remove items from 

other branches of the trees. Hence, it doesn’t interfere with frequency counts of other 

itemsets in the forest. Also, during deletion of a node (or a sub-tree) from the tree, we 

are not required to update the frequency counts of nodes in the path starting from the 

node being deleted to the root (like in FP-tree). This is because, we do not store prefixes 

in BFI-trees. So the itemset represented until the parent of the node being deleted would 

still remain frequent with the frequency count as it is. This saves a lot of tree traversals 

during the intermittent pruning step, making it very efficient.

We conduct intermittent pruning of the forest without actually halting or disturbing 

the incoming stream. To achieve this, we use multi-threading. We dedicate a separate 

thread to perform this task. While a given tree is being pruned, we continue inserting 

SPs of incoming transactions into its root node. However, we do not refine this tree (line 

4 of Algorithm 4.4 on page 71) until pruning finishes. Also, since pruning of a tree is 

efficient (as substantiated by proposition Proposition 3), the intermittent pruning step has 

negligible effect on the accuracy of the algorithm.
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Algorithm 4.8: Any-Mine

i procedure ANY-MiNE(/<wsf,»nH_SHp)
Input : BFI-forest and support threshold
Output: Set of frequent itemsets whose frequency counts are greater than min_$up

2 EMPTY-BfFFERS(forest);
3 Mine-forest (forest, min _stip);

Algorithm 4.9: Empty-Buffers

i procedure EMlTY-BuFFERsl/orrst)
Input : A BFI-forest
Output: BFI-forest with buffers emptied

2 tpu-ne <- Init-New-Queue();
3 foreach free in forest do
4 | ENQUELEG/Hi’ui’Jnr.rcwf);
5 end
6
7
8
9
10
11
12
13
14
15

while Is-NoT-EMPTYO/Henc) do
if TIME_OVER == TRUE then return;
node Dequeue(</»i’hl’);
if node.buff > 0 then

| FLUSH-BUFFER(HOdl’.l»M//); 
end
foreach child in node do

| Enqueue((]ueue,child);
end

end

4.5.3 Mining BFI-forest for Frequent Itemsets

FIs are extracted from the BFI-forest in an offline manner whenever user requests for 

them. The mining is very simple and straight forward. During insertion, we have inserted 

suffix projections of incoming transactions in all the trees. And within each tree we have 

enumerated all possible suffix projections and inserted them either into the tree or in the 

buffers of the tree nodes. Thus, we don't have to enumerate any candidate itemsets like 

in Apriori or generate conditional trees like in FP-growth. This makes mining BFI-forest 

faster than that of existing algorithms (see Section 4.7 on page 90 for results). All we need 

to do is to empty all the buffers in the trees and simply traverse the tree in depth first 

order accumulating the itemsets whose frequency counts are greater than a threshold - 

min_sup or a (Algorithm 4.8). When we empty the buffers, we traverse every node in each 

tree in DFS order (Algorithm 4.9), and flush out the projections in the buffer and push 

them to the next level of the tree as was done in the refinement step (ignoring infrequent 

projections).

After the buffers are emptied, we traverse each tree in DFS order again (Algorithm 4.10 

on the next page), where we check at every node if the itemset represented by it is a- 

frequent or not. If yes, we store the itemset in Flset, which is a set to accumulate FIs (lines
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Algorithm 4.10: Mine-Forest 
i

2
3
4
5
6
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8
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25

procedure Mine-Forest(forest, utin_sup)
Input : BFI-forest and minimum support threshold ntin_sup
Output: Set containing frequent itemsets
iteniSfack <- Init-New-Stack();
FISet <- Init-New-Set();
foreach tree in forest do

nodeStack <- Init-New-Stack();
PusH(nodeStack,tree.root);
while Is-NoT-EMPTY(HO</fStrtcA*) do

curr_node = Por(nodeSlack);
if curr_node.efreq > niiii_sup then

Pusn(i!e/uStack,curr_node.iteiu);
Insert-In-Set(F I Set,CoLLEcrfitemStack));
if Is-ExTERNAL-NoDE(cnrr_Hi>(ft’) then

f pltemsList <- FP-GROvmi(curr_node, f pRoot);
foreach fpltem in f pltemsList do

I lNSERT-lN-SET(F/$l'f, CONCATENATE(CoLLECT(iftwStack)), fpltem); 
end

else
foreach child of currjiode do

| Pusn(nodeStack, child); 
end

end
end
Pov(itemStack);

end
end

9-11 of Algorithm 4.10). Whenever an external node is encountered, we simply mine 

the FP-tree beneath and concatenate all the FIs that come from FP-tree with the itemset 

represented by the current node, and add all of them to the FISet (lines 12-15 of Algo

rithm 4.10). For example, in Fig. Figure 4.3 on page 71, if acd is frequent, the FIs mined 

from the FP-tree beneath node 7, will be appended to acd and added to FISet. Finally 

FISet would consists of all the FIs. In the pseudo code (Algorithm 4.10) we have used 

two explicit stacks- nodeStack for the DFS traversal (storing tree nodes); and itemStack to 

store all the items in the traversal path from root to the current node being traversed. The 

Collect() procedure returns an itemset made out of all the items in the itemstack, which 

is the itemset represented by the current node.

Proposition 4. To mine for an itemset starting with an item ij, it is necessary and sufficient 

to mine the tree with root representing ij.

Justification. Consider mining for an itemset {b,c,d}, i.e. ij = b. Consider insertion of a 

transaction (say < abed >) into the forest, where we inserted SPs - < abed >, < bed >, 

< cd > and < d > into the trees with roots having a, b, c and d respectively. So, the 

contribution of transaction < abed > to the frequency count of itemset {b,c,d} is taken 

78



4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

care by the insertion of SP < bed > into the tree with root as b. Similarly its contribution 

to the frequency count of {erf} is taken care by insertion < cd > into the tree with root 

having c and so on. Thus, for mining {b, c, d} it sufficient to mine the tree with root having 

item b. □

Note that the proposition Proposition 4 on page 78 is also applicable within each tree 

as well. This also gives another justification for the correctness of intermittent pruning 

step, where we are able to prune a sub-tree of a given BFI-tree without affecting other 

BFI-trees or other branches in the same tree (see Section 4.5.2 on page 75).

The Any-Mine algorithm, consists of two steps - 1) Empty-Buffers, and 2) Mine- 

Forest. We observed that Empty-Buffers is the step that takes majority of the time of 

Any-Mine. Therefore, we have made Empty-Buffers step anytime (line 6 of Algorithm 4.9 

on page 77), i.e. it is interruptible and when the quantum of time allotted by the user 

expires, the algorithm exits from this step and quickly mines the forest accumulating FIs 

to output them. At this point, the residual projections in the buffer, if any, are ignored, and 

a very quick mining result with compromised accuracy is obtained. Note that given more 

time allowance for the empty-buffers step, the accuracy of the mining results improves 

(see Fig. Figure 4.16 on page 94).

4.5.4 Why is AnyFI Efficient? A Summary:

AnyFI enumerates all possible SPs of the incoming transactions and inserts them into 

the BFI-Forest. This makes the mining of FIs from the forest very efficient, making it 

merely a traversal of its trees without enumerating candidate itemsets like in apriori 

like methods [96, 47, 50] or generating conditional trees like in FP-growth like meth

ods [98, 97, 53,184, 105]. Also, the insertion and refinement step is carried out efficiently 

by using techniques like ^-deferring, buffer pruning, intermittent pruning and usage of 

FP-tree beyond Max_height. They are summarized as follows:

• Theta-deferring: 0-deferring deliberately delays the refinement of certain nodes in 

the tree and processes only those SPs that have the potential to become frequent in 

future. This prevents repeated creation and deletion of infrequent sub-trees, leading 

to reduction in memory and process time.
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• Buffer Pruning mid Intermittent Pruning: Buffer pruning, prunes the infrequent item

sets from the buffers attached to the tree nodes alongside refinement, and con

tributes to memory reduction. Intermittent pruning, prunes infrequent sub-trees 

in the forest, also leading to memory reduction.

• Usage of FP-tree: We know that, as the length of the itemsets increase, their frequency 

counts reduce [6] and many of the greater length itemsets would be infrequent. In 

BFI-forest, these greater length itemsets are stored at the bottom levels of BFI-trees, 

of which most of them would be infrequent. Also, at such height, branching in the 

BFI-tree shall be very high due to storage of large number of SPs, which means 

we shall end up storing many infrequent subtrees. And, these sub-trees would be 

repeatedly created and deleted in the process of insertion and intermittent prun

ing respectively. However, we know that FP-trees are efficient in storage, especially 

when their sizes are small. So, keeping FP-trees beyond depth = Maxjieight in a 

BFI-tree, avoids storing those infrequent subtrees, and thus reduces memory con

sumption and processing time. Also, as mining small sized FP-trees is efficient, the 

mining of BFI-forest remains efficient.

4.5.5 Theoretical Analysis

In this section, we present theoretical analysis for: (a) deriving the cost of insertion and 

refinement step of AnyFI; (b) deriving the complexity of space occupied by BFI-forest. We 

make the following assumptions for this analysis:

We model the stream of transactions by assuming a probability distribution on the 

dictionary elements. Given set I = {6, *2/—} containing all the items in the dictionary 

with size = |/|. Let Aa- be probability that ix appears in an incoming transaction (Ax 

estimates the support count of singleton itemset {fA }). We assume that the items occur 

independent of each other in the incoming transactions. Also given is the decay factor 

f (0 < f < 1), which is used to decay the support counts of itemsets arrived in older 

transactions with time. We estimate the behaviour of 0-deferring using a probability, 

which we refer to as c. So, c denotes the probability of refining any given node in the tree, 

i.e. removing a SP from the node's buffer and further enumerating and inserting its SPs
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• Buffer Priming and Intermittent Priming: Buffer pruning, prunes the infrequent item

sets from the buffers attached to the tree nodes alongside refinement, and con

tributes to memory reduction. Intermittent pruning, prunes infrequent sub-trees 

in the forest, also leading to memory reduction.

• Usage ofFP-tree: We know that, as the length of the itemsets increase, their frequency 

counts reduce [6] and many of the greater length itemsets would be infrequent. In 

BFI-forest, these greater length itemsets are stored at the bottom levels of BFI-trees, 

of which most of them would be infrequent. Also, at such height, branching in the 

BFI-tree shall be very high due to storage of large number of SPs, which means 

we shall end up storing many infrequent subtrees. And, these sub-trees would be 

repeatedly created and deleted in the process of insertion and intermittent prun

ing respectively. However, we know that FP-trees are efficient in storage, especially 

when their sizes are small. So, keeping FP-trees beyond depth = Maxjieight in a 

BFI-tree, avoids storing those infrequent subtrees, and thus reduces memory con

sumption and processing time. Also, as mining small sized FP-trees is efficient, the 

mining of BFI-forest remains efficient.

4.5.5 Theoretical Analysis

In this section, we present theoretical analysis for: (a) deriving the cost of insertion and 

refinement step of AnyFI; (b) deriving the complexity of space occupied by BFI-forest. We 

make the following assumptions for this analysis:

We model the stream of transactions by assuming a probability distribution on the 

dictionary elements. Given set I = {i}fi2> •••} containing all the items in the dictionary 

with size = |/|. Let A.r be probability that ix appears in an incoming transaction (A.v 

estimates the support count of singleton itemset {ix}). We assume that the items occur 

independent of each other in the incoming transactions. Also given is the decay factor 

f (0 < f < 1), which is used to decay the support counts of itemsets arrived in older 

transactions with time. We estimate the behaviour of 0-deferring using a probability, 

which we refer to as c. So, c denotes the probability of refining any given node in the tree, 

i.e. removing a SP from the node's buffer and further enumerating and inserting its SPs 
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into the sub-trees in the insertion and refinement step. Now, we derive the expected time 

complexity of insertion and refinement a transaction.

Theorem 2. The expected cost of insertion and refinement of a w-length transaction into 

BFI-forest is 0 U Q . \ c /

Proof. First, we compute the expected cost of refinement of a SP into a BFI-Tree beginning 

from the root. Let X be a SP (X =< h,/?/•••//» >;ii € /) of length n and let T(n) denote 

this cost. So, the total time for refinement of X is the total time for refining all the tree 

nodes traversed in the path of refinement of X. Note that the nodes in the refinement 

path are refined with probability c to accommodate 0-deferring. Then, for length = 1 

(base case): T(l) = 0(1), which is the cost of incrementing the support count of the tree 

node. For length = n:

T(n) = ©00 + f x [T(h -1) + T(n- 2) 4-... + T(l)] (4.4)
cost of refining the root cost of refining the sub-trees underneath root

which is the sum of costs of (i.) refining the root, i.e. enumerating the SPs of X, inserting 

them into the buffers of their respective sub-trees and then incrementing the frequency 

counts, and (ii.) refining the sub-trees underneath the root. Now, Equation (4.4) implies that 

there exists constants a\ and a2 such that the following inequality holds for some n > Hq:

ay n + c [T(n - 1) 4-... 4- T(1)] < T(n) < a2 n + c [T(n - 1) -I-... 4- T(1)]

Using this we can express T(n) and T(n - 1) respectively as:

T(n) <a2n + c [T(n - 1) 4-... + T(l)] (4.5)

T(/z — 1) > (n-l)4-c[T(«-2)4-...4-T(l)] (4.6)

Equation (4.5) can be re-written as

T(n) -a2n-c T(n - 1) < c [T(n - 2) 4-... + T(1)] (4.7)

Now, substituting the RHS part of Equation (4.7) in Equation (4.6), we get an upper 
bound onT(n) which is:

T(n) < (a2 - ) n 4- ni 4- (1 4- c) T(n - 1) (4.8)

Similarly, considering the alternate arrangement of inequalities for T(n) and T(n - 1), we 

can get a lower bound on T(n), which will be similar to Equation (4.8) with inequality sign 
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reversed. We derive the complexity using the upper bound (Equation (4.8) on page 81) 

herein, and a similar derivation can be shown with the lower bound as well. Considering 

az — = ay, we get:

T(n) < ay a + a} + (1 + c) T(h - 1)

Substituting T(n - 1) in terms of T(n - 2) and considering a^ = - ay, we get:

T(n) < ay n +a} 4- (1 4- c) [«3 (n - 1) 4- 47] + (1 + c)2 T(n - 2)]

T(a) < ay n 4- 4- (1 4- c) ay ii — (1 4- c) ay + (1 4- c) 4- (1 4- c)“ T(n — 2)]
T(h) < ay a +a} 4- (1 4- c) ay n 4- (1 + c) (a} - ay) 4- (1 4- c)2 T(n - 2)]
T(n) < ay a [1 4- (1 4- c)] 4- 47j 4- (1 4- c) 474 4- (1 4- c)2 T'fn — 2)]

Similarly, substituting T(n — 2) in terms of T(n — 3), T(h — 3) in terms of T(n — 4) and so 

on we get:

T(h) < ay a [1 + (1 4- c) + ... 4* (1 4- c)n “] 4- 47] 4- (1 4- c) 474 4- (1 4" c)~ay 4" ...4~
(1 +cr~2 «„., + (!+ c)"-' T(l)

T(h) < <13n ^^—^■ + SOME_CONSTANT + (T+c)"-’ 0(1)

This can be simplified to:

(1 4-c)”-1T(n) < (ay n 4- c) -- 4- SOME-CONSTANT

Using this, we compute the cost of insertion and refinement of a transaction tr of length m 

into the BFI-forest. This is equal to sum of (i.) cost of enumerating SPs of tr; (ii.) inserting 

SPs into the buffers of the root nodes of respective BFI-Trees; (iii.) cost of incrementing 

the frequency counts; and (iv.) cost of refining all BFI-Trees. This is equal to:

Total time = &(m) 4- T(m) 4- T(m - 1) 4- T(m - 2) 4-... 4- T(l)
(i), (ii) & (iii) (iv)

by solving which we get:

(1 4- cY”Total time < (am m 4- c) 4- SOME-CONSTANT c

Similarly, if we derive using the lower bound on T(n), as explained earlier, we get a 

similar equation with inequality sign reversed. Thus we can safely claim that the total
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time is: O Ml+cT □

Note that actual expected time will be much lesser than the derived complexity be

cause - 1) Usage of use FP-trees at Maxjieight reduces the size of each tree and also the 

expected insertion and refinement time, as insertion in FP-tree is a operation; 2) 

While computing the expected time, we ignored the anytime property (interruption in 

between) and gave worst case time when there is sufficient time allowance available to 

complete insertion and refinement of a transaction. Also note that the value of c has been 

experimentally found to be in the range - [0.05 - 0.2] for the values of 6 chosen based 

on recommendations given in Section 4.7.0.4 on page 96. Also, an analysis has been pre

sented in Section 4.7.0.5 on page 97, where the curve obtained by the above complexity 

is plotted and compared with the curve that plots the actual time taken for insertion and 

refinement of varying length transactions.

We now derive the space occupied by the BFI-forest. Since we enumerate all possible 

SPs and expand them into sub-trees, the total space occupied by BFI-forest will be of 

the order of total number of nodes in it, along with their buffers. Since every itemset is 

represented by a unique node in BFI-forest, the total number of nodes in the forest will 

be < total number of e-frequent itemsets. It will be "less than" because the decay factor 

f decays the frequency counts with time. We provide an estimate on maximum number 

of nodes present in the forest at the steady state, while accounting the role of the decay 

factor.

Consider a k-length itemset ...,iik} which is a subset of I and the items are 

arranged in non-increasing order of their frequency counts, i.e. A/t > A/2 > A/t, with their 

indices following the order 0 < < I2 < — < Ik < |/|. We first derive a support threshold

known as critical support threshold (7), which is the minimum support required for an 

itemset to be present in the BFI-forest at steady state.

Theorem 3. All those k-length itemsets that have A{,; J; j > 7, where 7 = (1 - f)e, 
(k 

A^ i) i, } denotes PJA/.
■'2... ‘ /=1

Proof. Let us consider that we have processed a good number of transactions in the stream, 

and the forest is at steady state. We now examine the itemsets which can exist in the tree 
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at this state. Let freq({iiif i^,..., i;k},/) be the decayed frequency count of the itemset 

...,iik} at time t. For brevity, we denote {//,,//,,...,/\} as /j. We get:

/'^(q/ph...= / x............- I) + Xf (0 < / < 1)

where X, = 1 if } occurs in the latest transaction tr arriving at time t; 0 otherwise

Taking expectations, we get

£L/'^(q/„/2...4p)] =f x ...- 1)] + £[X/]

E[X,] = 1 x Pr[X/ = 1] + 0 x Pr[Xt = 0] by definition, we get 

k k
pr[Xf = 1] = Pr[ih € trMl2 € tr K ... € tr] = € M = TTV = A{'/r'/.... M

/=! /=1

On writing E[freq(iij2... ik,t - 1)] in terms of E[freq(iiltl2... lk,t - 2)] and so on, we get

E[freq(i{lj2.../Jj] = + (^{/i,/2,.jj ) 1/y

After long time, at steady state we have: lim^^ E[freq(iilti2... ik, t)] = sO/ an

itemset {//,,//,,..., iik} would persist in the forest if is at least e-frequent, i.e., —e. 

This means that all the itemset that have nA', > (1 — f)e (= q) would persist in the 
qc/

forest. □

Now, we shall find an estimate on total number of itemsets that qualify the above 

critical support threshold criteria. This shall estimate the total number of nodes in the 

BFI-forest, giving us an estimate of space occupied. Let A.v now be modelled using the 

zipf distribution [187], such that A.v = A(x) = where ci & C2 are constants with 

q,c2 > 0 & d < 1 and x is the rank of the item ix in non-increasingly sorted I (according 

to the frequency counts). Using this assumption, we now estimate the count of k-length 

FIs in two steps: (1) in Lemma 1 on the following page we estimate the total number of 

integral points lying inside a high dimensional hyperbola [188] centered at the origin and 

bounded by the positive coordinate axes (see Figure 4.4a on the next page); (2) we use 

Lemma 1 on the following page to estimate the count of k-length FIs.

A fc-length frequent itemset of the form {iit,ii2,-,iik} (items are arranged in non-
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(b) (d)

Figure 4.4: (a) The solution region bounded by a high dimensional hyperbola and the co
ordinate planes; (b) The enveloping tetrahedron which approximates the hyperbola; (c) The 
tetrahedron fully covering the feasible solution region; (d) The solution region and enveloping 
tetrahedron after shifting the origin to (1,1,1).

increasing order of their frequency counts) can be represented by a point on a A'-dimensional 

hyper-plane with its coordinates = (h, h,Ik). After modelling the sorted support counts 

of items by the zipf function, we will find that the FIs are restricted to lie within a k- 

dimensional hyperbola - (X] 4- «)(x'2 4- fi)... (x^- 4- n) = D (see Theorem 4 on the next 

page). Note that x,(l < j < k) denotes a dimension on /c-dimensional hyper-plane. By 

estimating the total number of integer lattice points that lie inside the volume formed by 

the above hyperbola (Figure 4.4a), we can estimate the count of A'-length FIs. For this, we 

find an enveloping solid (a ^-dimensional tetrahedron) that envelopes the volume of the 

solid formed by the ^-dimensional hyperbola as shown in Figure 4.4b & Figure 4.4c. The 

volume of this enveloping tetrahedron shall now give us an estimate of the volume of the 

hyperbola, which will give an estimate of the total number of integer lattice points lying 

inside the solid formed by the hyperbola. This is achieved by the following lemma:

Lemma 1. The number of solutions of the equation (xi 4- n)(x2 4- a)... (x* + a) < D such
(I | k 4- 1)

that 0 < Xi < X2 < ... < xk, Xj G Z, i G {1,2,...,k] and p > 0, is less than ———-------
D . , .

where I,it = —r — n is the intercept over any coord, axis. 
oK 1

Proof. We begin by identifying the intercepts cut by this equation on each of the k axes. By 

symmetry all of them are at an equal distance from the origin. From Figure 4.4a, it is easy 

to see that the intercepts are at a distance of - a from the origin. Let IHl = - a be

this value.

Consider a ^-dimensional tetrahedron (simplex) with (k 4- 1) vertices - (vo, V\,Vk), 
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such that Vq lies on the origin, while v, lies on Xi (the i,h coordinate axis) at a distance I„t 

from the origin, i.e. v, = An x a (see Figure 4.4c on page 85) with e, as the basis vector. 

The volume of the solid bounded by this tetrahedron is easier to find as compared to the 

original curve. The equation of this tetrahedron is .vj 4- x2 4-... 4- Al- = An- In its current 

form, the enveloping tetrahedron is not covering the points which are lying on the surface 

of the original solid since the volume will only consider interior points. So we shift the 

origin to the point (1,1,..., 1) such that its equation now becomes (a'i — 1) 4- (x2 — 1) 4- 

...(x* -1) = hit, i.e., Xi 4- a*2 4-... + x^- = hit + k (Figure 4.4d on page 85). Finding solution 

to this equation will now give us an estimate of the number of points within, as well as 

on the boundary of the solid formed by the hyperbola. The new tetrahedron must have 

intercept > An 4- k in all dimensions. To keep a margin, we take it to be hit 4- k 4-1. Hence, 

its vertices are at a distance of Am 4- k 4-1 from origin.

For a tetrahedron with vertices - (vq, vi, ..., v^), its volume [189] is: 
l^det - U0, U2 - ^0/ • • -'Vil - ^0^ |' where <fet - Vq, V2~Vq, 

determinant of the diagonal matrix with the given diagonal elements. Note that vr — vq 

represents an edge of the tetrahedron. For all such values of r, the length of an edge is 

equal to hit- Since the determinant of a diagonal matrix is simply the product of its diago- 
/1 fa

nal elements, the volume of the new enveloping tetrahedron, will be = ——. □

Note that in Figure 4.4 on page 85, the hyperbola is shown only for the first quadrant. 

We now estimate the total number of k-length frequent itemsets in BFI-forest.

(I | k | 1)^ 
Theorem 4. Number of itemsets of length k in the BFI-forest is estimated by ———, 

ck
where I„tk = -777 7 “ c2-

C2

Proof. A singleton itemset {//} (0 < A < |/|) is frequent if sup({i/1}) > 7- Replacing the 

true support of {A(} with its expected support, we get:

So, for all values of /i >0 satisfying the above inequality, we get a corresponding item 

A G / which is 1-FI with respect to the support rj. So, estimated total number of 1-FIs is 

[7 + 1*
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Count of 2-FIs: Let us consider an arbitrary 2-length FI {//,, } such thatO < l\ < h < |/|. 

For to be frequent, sup( {//,, //,}) > //. Again replacing true support with the

expected support we get:

(h + £2)^2 + Q) (L9)

reduces to find l\ and b such that they satisfy inequality (1.9).

1, the number of such (/1J2) pairs is estimated by + 3 .—— where

So now our problem 

According to Lemma

Count of k-FIs: The general case of estimating the number of k-FIs is a simple ex

tension of the above. For < iix,i^,> to be frequent, it's support must exceed

We will finally get the constraint similar to inequality men

tioned in lemma Lemma 1 on page 85, i.e. (/1 -I- C2)(/2 + C2)... (l^ + C2) < — • So, the

4. £ J)*
number of (/i,/2z--z4) tuples that satisfy the above inequality are: —-——--------where

^11 tk = — c2- □

In the formula derived above, for lower values of k, the numerator term dominates the 

denominator. And subsequently after a maxima is reached, the denominator term starts 

dominating. This makes the count of FIs increase with increase in k initially up to a certain 

value and then later decline. This can be observed by results presented in Section 4.7.0.5 

on page 97 (Table 4.5 on page 99) that compare our estimates with the actual counts. Note 

that the total number of nodes in the BFI-forest will be much lesser than the total number 

of itemsets computed using Theorem 4 on page 86 (for all values of k). This is because, 

we use FP-trees in the BFI-forest beyond the depth = Max_Height.

Also, since we know that the total number of SPs stored in the buffers is limited by 

Buff-Capacity, the total space occupied by the buffers in the worst case is proportional 

to the number of nodes in the forest. However, in practice the nodes at the upper levels 

of the trees have buffers filled closed to its capacity, and buffers at the lower levels of the 

trees are less filled. This is substantiated by an experiment presented in Section 4.7.0.5 

on page 97 (Table 4.6 on page 99) where the average size of the buffers is shown for each 

level when the forest is at the steady state. So, the contribution of buffers to space is also
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Figure 4.5: The MPAnyFI Framework

considerably lesser than the worst case.

4.6 MPAnyFI: Anytime FI Mining of Multi-Port Data Streams

We extend AnyFI into a parallel framework known as MPAnyFI, for anytime FI min

ing over multi-port data streams. MPAnyFI works over distributed memory architecture, 

which is typically a cluster of computing nodes. Each computing node (or a port) receives 

a stream where transactions are arriving at variable inter-arrival rate. We mine for FIs 

from all these streams and produce the mining result. Figure 4.5 illustrates the MPA

nyFI framework. Every computing node in the cluster runs AnyFI independently for the 

stream it receives, and captures the incoming transactions in their respective BFI-forests 

in batches of units of time. At the end of each batch, every computing node captures 

the stream for the next batch in a fresh BFI-forest. Also, at the end of each batch, every 

computing node executes the following steps:

• Flush all the buffers in the BFI-forest (Algorithm 4.9 on page 77).

• Prune the forest (Algorithm 4.7 on page 75) to eliminate all infrequent sub-trees. 

This leaves only e-frequent itemsets.

• Encode all the trees along with the frequency counts stored at each node and send 

the forest to a master machine. Encoding can be done using any of the tree traversal 

algorithms like BFS or DFS. We used BFS encoding.

The master machine receives and decodes all the forests received from different com

puting nodes. Then we do a pair-wise merging of forests received from all the machines 

resulting into a single BFI-forest for this batch. This merged BFI-forest contains only the 

e-frequent itemsets received from all the computing nodes in last tjn units of time. We 

now insert this forest into the tilted-time window framework [98] and update it.
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Consider Figure B.l on page 212 showing the TTWF. Let us start with an empty TTWF. 

Say a new batch of transactions has arrived and we have built the merged BFI-forest (say 

Fi). We store Fi in u’i. Now lets say another batch of transactions arrive (resulted in 

forest F?). At this time, we move Fi to and put F? in Now after another batch of 

transactions arrives (forest F3 arrives), we shift Fj to the temporary window present in 

level 2 (fttb)/ shift F2 to cP2 and insert F3 in zpi. This state is depicted in Figure B.2 on 

page 213. When the next batch arrives (F^, we do the following steps:

• Merge forests in W2 and tw2 (forests F\ and F2).

• Decay the frequency counts of itemsets in the merged forest using the decay factor - 

ft (0 < ft < 1) similar to using Equation (4.1) on page 65. (Note that fit is different 

from f used by AnyFI.)

• Prune to the forest using DFS similar to Algorithm 4.7 on page 75 to eliminate e- 

infrequent itemsets.

• Move the merged forest into Wj as shown in the figure.

• Move F3 to W2 and insert F4 into W\.

Going this way, after receiving another 4 batches of transactions, the forest in W3 

(Fi + F2) will be placed in twj. And after another 4 batches, the forests in W3 and will 

be merged and stored in W4 as was done previously. And in this way the TTWF grows 

logarithmically.

A user can request for mining results (containing FIs) from a specific window or for 

a duration covered by multiple windows. For this, we traverse the trees of BFI-forests 

present in these windows, accumulate the FIs (as was done in Algorithm 4.10 on page 78) 

and return them as the mining result.

Please note that since we use ft to decay the frequency counts of itemsets stored in BFI- 

forests in TTWF, it eliminates the need to separately decay them in individual computing 

nodes using the parameter f. Capturing transactions batch-wise in fresh BFI-forests also 

eliminates the need for intermittent pruning in each computing node.

It can be observed that MPAnyFI addresses only the first characteristic of an anytime 

mining algorithm, i.e. it handles varying inter-arrival rate of transactions. Since, MPAnyFI 
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involves communication between the computing nodes of the cluster, and also the mining 

of multiple forests in the TTWF, it is not feasible to generate an immediate mining result in 

shorter time allowances. Hence, it doesn't cater to the second characteristic of an anytime 

algorithm.

4.7 Experimental Results & Analysis

All experiments were performed on a Linux workstation with an i7 processor & 32 GM 

RAM. All programs are implemented in C. We used both synthetic and real datasets for 

experimentation. The synthetic datasets are generated using IBM Synthetic Data Gen

erator [190]. The nomenclature of the synthetic datasets is as follows: 1MD1000T10I4 

represents a dataset that has IM transactions, drawn from a dictionary of 1000 unique 

items (D1000), with average transaction length of 10 (T10) and average FI length of 4 (14). 

The details of the real datasets are given in Table 4.2. The Retail dataset [191] contains 

market basket data from a Belgian retail store. MSNBC [192] is a click stream dataset describ

ing page visits on msnbc.com. We evaluate the quality of results produced using precision 

and recall.

Table 4.2: Details of Real Datasets used for experimentation

Dataset transactions # Unique Items Average Transaction Length
Retail 88162 16470 10.3

MSNBC 989818 17 1.71

We evaluate the quality of results produced using precision and recall. For details on 

these quality measures, please refer to appendix C on page 214.

The Any-Mine algorithm can mine FIs from the BFI-Forest in two modes: False Neg

ative mode (FAN) and False Positive mode (FAP). In FAN mode, we mine with support 

a, where we get precision = 1, i.e., the result will not have any itemset which is not a- 

frequent. However, we may miss some of the <r-FIs leading to reduction in recall. In FAP 

mode, we mine with support = e, where we should ideally get results with recall = 1 

and compromised precision. In our anytime algorithm, at very high speeds we may lose 

some suffix projections from the buffers, whenever they overflow. As a result, we may not 

always get recall of 1. In all our experiments, we choose FAN mode, where precision is 1
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Figure 4.6: Effect of decrease in f on recall

and study the effect on recall with variation in various parameters.

To simulate a stream with varying inter-arrival rates, we use Poisson streams, which is 

a stochastic model used to model random arrivals [193]. It takes in a parameter /\ which 

controls the speed of the stream. For, A = |, the model generates an expected number of 

A transactions (or objects) per second , with expected inter-arrival rate of x sec. between 

any two consecutive transactions (or objects).

The values of the other parameters chosen for experimentation are: Max_Height = 5, 

0=0.05, 7=2, batch_size = 10000, buff Capacity = 100 and hash_size is 10% of |/|. These are 

default, unless explicitly stated.

Since, AnyFI uses a damping factor f over the frequency counts of the itemsets to dif

ferentiate the contribution of old and newly arrived transactions, the recall of the output 

computed by AnyFI, with respect to non-decayed ground truth will always be lesser and 

will show a decreasing pattern with decrease in f. Figure 4.6 illustrates this effect for 

1MD1000T10I4 and 1MD500T10I4 datasets with 0=0.001, A=20k, 6=0.005 and cr=0.01. We 

can clearly observe that recall has reduced for both the datasets with decrease in f. So, 

for fairness, we generate the ground truth using the transactions whose frequency counts 

are decayed, and then compare our results with it.

------- a 0.01 -------a 0.0075
-------  a = 0.005
99.5

99.25

3 99-----_ _ _ --- ------
s -------------------------
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Figure 4.7: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T10I4 dataset

91



4.7 Experimental Results & Analysis

HO ——■—■—<—.—------- ------ ----
5 lo 15 20 25 50 55 40

>. (i 10* tpx) 
(a)

Figure 4.8: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T15I8 dataset

Figure 4.9: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T20I15 dataset

4.7.0.1 Performance of AnyFI

In this subsection, we evaluate the quality of mining results produced by AnyFI along with 

the behavior of peak memory consumption and mining time, with variation in various param

eters. In all experiments, the Any-Mine algorithm has been run without any interruption 

(i.e., without exercising the anytime property), unless explicitly stated, to evaluate the 

quality of mining results with respect to various parameters.

In the first experiment, we analyze the effect of varying stream speed (A) on re- 

call(%), peak memory consumption & mining time, with different support thresholds 

(a), on the datasets - 1MD1000T10I4 (Figure 4.7 on page 91), 1MD1000T15I8 (Figure 4.8) 

and 1MD1000T20I15 (Figure 4.9), with e=0.005 and /=0.99. The results observed for 

1MD1000T10I4 dataset show that recall (close to 100%) is not affected by variation in 

stream speed. However for the other two datasets, recall has shown slight decline with 

increase in stream speed and decrease in a. This is because at higher stream speeds, pro-
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Figure 4.10: Effect of in
creasing stream speed on 
recall for real datasets

Figure 4.11: Effect of varying stream speed (A) and varying 
dictionary size on (a) Recall (b) Memory for IMD*T1OI4 
datasets

Figure 4.12: Effect of varying stream 
speed (A) and average transaction length 
on (a) Recall (b) Memory for 1MD1OOOT*I4 
datasets

Figure 4.13: Effect of varying stream speed 
(A) and average Frequent Itemset length on 
(a) Recall (b) Memory for 1MD1000T20I* 
datasets

jections are removed from the buffers when they become full, which leads to reduction in 

recall. The peak memory consumption for all three datasets, has reduced with increase in 

stream speed, at all values of cr. This is because, the algorithm is not able to refine the tree 

nodes frequently and thus more transactions get buffered at higher speeds which stops 

the forest to grow large. Mining time has also reduced with increase in stream speed due 

to reduction in number of nodes visited in the DFS traversal, at high speeds.

Next, we study the behavior of AnyFI on real datasets with increase in stream speeds. 

Figure 4.10 shows the affect on recall for retail and msnbc datasets, with /=0.99, e=0.002 

and (7=0.01. The reduction in recall observed for retail dataset with increase in stream 

speed, is because of longer transactional length possessed by transactions in it, due to 

which the percentage of transactions that get sufficient time to get completely processed 

is reduced.
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Figure 4.14: Effect 
of varying c on peak 
memory consumption

Figure 4.15: Pattern of 
Memory consumption 
in stream processing

Figure 4.16: Effect on recall with 
increase in mining time allowance 
for 1MD1000T10I4 & retail

Next, we study the effect of increase in dimensionality (dictionary size) of the dataset 

on recall and peak memory consumption (Figure 4.11 on page 93) for different stream 

speeds on 1MD*TK)I4 synthetic datasets, with 6=0.005, <7=0.01 and f=0.99. The results 

show improvement in recall and increase in memory consumption with increase in di

mensionality, at all stream speeds. Increase in recall is because, the dataset becomes 

sparse with growing dimensions and thus the number of FIs in the dataset reduces. Peak 

memory consumption increases because of increase in number of trees in the forest for 

higher dimensionality.

Next, we study the effect of variation in average transaction length (ATL) (Figure 4.12 

on page 93) and average FI length (AFL) (Figure 4.13 on page 93) on recall & memory, for 

1MD1OOOT*I4 and 1MD1000T20I* datasets respectively, at different stream speeds with 

/=0.99, 6=0.005 and <7=0.01. The results show slight reduction in recall with increase in 

ATL or AFL at all stream speeds. This is because of the increase in density of dataset in 

both cases, which leads to increase in processing time for each transaction, which further 

leads to increase in chance for buffer overflows. Increase in peak memory is attributed to 

higher number of projections getting enumerated and stored in the forest at larger ATL 

or AFL.

Next, we study the effect of change in epsilon on peak memory consumption for 

1MD1000T10I4 dataset with <7=0.01 (Figure 4.14). The results show that increase in epsilon 

leads to reduction in peak memory consumption, because at greater epsilon values, larger 

number of itemsets become infrequent and get pruned.

Next, we study the pattern of memory consumption of AnyFI while processing the 

stream for 10MD1000T15I8 and retail datasets (Figure 4.15). For synthetic dataset we 

choose /=0.99, 6=0.005 and £7=0.01. For retail dataset we choose /=0.99, 6=0.0025 and
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Table 4.3: Comparing Speed and Memory of AnyFI with budget algorithms

Algorithm Category 1MD1000T10I4
Speed (tps) Memory (MB) Speed (tps) Memory (MB)

FPStream Tilted-Time W 27000 99 15000 220
SWP-tree Sliding Window 12000 530 8200 1020
DSM-F1 Landmark Window 9200 1200 6300 2500
vsw Sliding Window 900 700 650 1600
AnyFI Damped Window upto 60000 600-3400 upto 40000 1900-7000

Table 4.4: Comparision of Mining Time (in seconds)

Algorithm 100KD100T10I4 100KD100T15I8
SW P-Tree / FP-St rea m 5.8 sec 20.6 sec
DSM-F1 3.3 sec 18.5 sec
Any-FI 1.2 sec 6.5 sec

tT=0.003. For both datasets, A=20000 tps. The results show that memory consumption ini

tially increases and later on remains almost the same with slight fluctuations throughout 

the run until it finishes insertion of all transactions. The increase in memory observed 

towards the end of the curves is because of emptying of the buffers which happens before 

the mining step.

4.7. 0.2 Anytime Mining of Frequent Itemsets

We study the quality of FI mining with variation in time allowance to mine. Figure 4.16 

on page 94 presents the effect on recall with increase in time allowance for mining, which 

is the second anytime mining feature of our algorithm. We conduct this experiment on 

1MD1000T10I4 and retail datasets with A=20000, /=0.99, e=0.0025 and (7=0.005. The result 

clearly shows that AnyFI is able to output mining results with compromised accuracy, 

within a few milli seconds. And then it is able to improve its recall with increase in time 

allowance to mine, for both the datasets.

4.7. 0.3 Comparing AnyFI with existing approaches

In this subsection, we do a comparative study of AnyFI with existing algorithms. First, 

we compare the speed handling capacity and peak memory consumption of AnyFI with 

the existing budget algorithms for 1MD1000T10I4 (e=0.005 & (7=0.01) and retail datasets 

(e=0.002 & (7=0.01). The batch size in all of them is chosen to be 10,000. The results given 

in Table 4.3 clearly show that these algorithms have limited budget and cannot process 

higher stream speeds. Whereas our algorithm is able to work for speeds upto 60,000
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Figure 4.17: Effect on Memory consumption with increase in (a) fl (b) 7 (c) Maxjieight

tps for the same datasets. We can also observe from the table that the peak memory 

requirement for AnyFI is at little higher than the existing approaches. This is because of 

storing a large number of SPs.

Next, we compare the mining time of FP-growth, DSM-FI and AnyFI for 100KD100T10I4 

and 100KD100T15I8 datasets (see Table 4.4 on page 95). For fair comparison, we insert 

the complete dataset into the summary structures of all the three algorithms without con

ducting any pruning and then mine for FIs. Mining in AnyFI is running in complete 

mode, i.e. without anytime interruptible feature. The values of parameters chosen are 

as stated in the previous experiment. The results show that the mining time in AnyFI is 

lesser when compared to the existing approaches. It is worth noting that FP-growth is 

used in SWP-tree and FP-Stream.

4.7. 0.4 Parameter Tuning and Recommendations

In this section, we study the effect of various parameters used by AnyFI and give recom

mendations for choosing their appropriate values. First, we study the affect of varying 0 

(Figure 4.17a), 7 (Figure 4.17b) and Mnxjieight (Figure 4.17c) on peak memory consump
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tion, over 1MD500T10I4,1MD- 1000T10I4, 1MD500T15I8 & 1MD1000T15I8 datasets, with 

z\=10k, /=0.99, e=0.005 & <r=0.01. The results for 0 show that peak memory reduces with 

increase in 0, for all datasets. This is because, as we delay the refinement of a transaction 

down the tree, the memory consumption reduces. Similar pattern have been observed 

for other datasets as well. From the observations made, we recommend to choose 0 in 

[0.05 - 0.2]. The results for 7 show that peak memory increases with increase in 7. This 

is because, as the pruning interval increases (7 dictates the size of pruning interval), the 

number of obsolete subsets getting accumulated in the BFI-forest also increases. From the 

observation made, we recommend to choose 7 in [0.5 - 2]. The results for Max_Height 

(level for FP-tree) show that the peak memory grows with increase in Max_Height, be

cause of creation of a large number of branches for storing enumerated SPs at greater 

depths. We recommend use of Max_Height < 5 for datasets of high dictionary sizes and 

larger average transaction lengths.

Next, we study the affect of varying hash_size (size of the hash table in a buffer) 

(Figure 4.18 on the following page) and buf/Capacity (max no. of SPs in a buffer) ( 

Figure 4.19 on the next page) on recall and peak memory consumption for 1MD1000T15I8 

and retail datasets, with the above parameter values. The results show that increase in 

hash_size has no effect on recall. This is because of the algorithm design, which ensures 

constant time buffer accesses irrespective of its size. However, increase in buf/Capacity 

has led to increase in recall until a point beyond which the increase in not significant. 

This is because, increase in bu//Capacity reduces the chance of a loss of SPs from the 

buffer. Memory consumption, on the other hand, has increased with increase in both 

hash_size and bu//Capacity for obvious reasons. So, we can restrict the value of hash_size 

to 5% or 10% of I, and bu//Capacity to 100, as beyond this there is no significant change 

observed in recall. Note that similar observations have been made for other speeds and 

other datasets as well.

4.7. 0.5 Experiments establishing Theoretical Analysis

In this section, we present a few experimental results that verify the theoretical analysis 

presented in Section 4.5.5 on page 80. We first validate the time complexity of insertion 

and refinement of a /n-length transaction derived in Theorem 2 on page 81, with that of
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Figure 4.18: Effect on (a) Recall and 
(b) Memory consumption with increase 
hash_size

Figure 4.19: Effect on (a) Recall and 
(b) Memory consumption with increase 
buff Capacity

Figure 4.20: Comparing (a) complexity curve vs (b) actual time taken for processing a trans
action with increase in transaction length - m

real time values of insertion and refinement, with varying m. AnyFI has been run in 

non-anytime mode in this experiment. The curve in Figure 4.20a plots the complexity 

curve derived with c=0.2, for varying m. The curve in Figure 4.20b plots the actual time 

taken for insertion and refinement of ///-length transaction for 1MD1000T10I4 dataset. We 

can clearly see that both the curves show similar behaviour and hence can justify the 

correctness of our analysis.

We also verify the counts of ^-length FIs estimated by Theorem 4 on page 86, with 

that of true FI counts produced by FP-growth. C] and ci of zipf function were chosen by 

performing curve fitting [194] with that of the original values for each dataset separately 

using a stream sample. The results were computed for 1MD1000T10I4 & 1MD1000T15I8 

datasets at three values of a - 0.05, 0.01, 0.005. k is varied from 1 to 7. The results 

presented in Table 4.5 on the next page show that the estimated count of FIs is very close 

to the actual counts for most values of k.

We also empirically measure the total number of SPs stored in the buffers of the nodes 

in the forest level by level for 1MD1000T10I4 & retail datasets, with 0=0.001, A=20, c=0.005,
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1MD1000T10I4 1MD1000T15I8

Table 4.5: FI counts - Estimated vs Actual: with varying k for 1MD1000T10I4 and 
1MD1000T15I8 datasets

k 1 2 3 4 5 6 7 1 2 3 4 5 6 7

s=0.05 Predicted 58 82 36 10 5 1 I 86 126 58 29 11 6 1
Actual 62 98 28 9 4 0 0 92 143 46 25 9 5 0

s=0.01 Predicted 124 1765 1265 291 19 3 1 157 2622 5349 2014 243 56 12
Actual 90 1396 994 269 17 2 0 104 1873 3782 635 72 16 4

s=0.005 Predicted 136 3048 9204 941 48 3 1 201 4274 14045 9473 3013 1026 56
Actual 94 2237 5096 721 52 3 0 158 3256 9305 7284 2487 856 42

Table 4.6: Size of the buffers in the nodes (level wise)

Level
1MD1000T10I4 Retail

Max(%) Avg(%) Max(%) Avg(%)
1 (root) 100 10.75 100 20.85
2 58 7.03 69 10.58
3 37 1.31 42 5.92
4 10 1.00 33 3.48
5 5 1.00 27 2.16

67=0.01 and Max_Height = 5. The results presented in Table 4.6 show the maximum and 

average occupancy of buffers of nodes at each level in the forest. They clearly show that 

the buffers at the top level of the trees are more filled than the buffers at the lower level. 

However the avg. occupancy remains quite less due to the optimizations made like 0- 

deferring, buffer pruning & intermittent pruning. Similar behaviour has been observed 

for other datasets too. This proves the claim made in Section 4.5.5 on page 80 that the 

contribution of buffers to the space occupied by BFI-forest is considerably less.

4.7.1 Experiments on MPAnyFI

All experiments are conducted on a cluster of 32 computing nodes which are IBM x3250 

m4 Servers. Each server has Intel Xeon (64-bit) processor and 32 GB RAM. All implemen

tations are in C with MPI. In all experiments, f is chosen to be 1, i.e., the frequency counts 

are not decayed within the local BFI-forests present in the computing nodes. Rather f_tt 

is used to decay the frequency counts in TTWF as explained in Section 4.6 on page 88. 

f_tt is chosen to be 0.99.

4.7.1.1 Experimental Results

First, we measure the peak memory consumption across any slave computing node as 

the stream progresses for 960MD100T10I4 dataset. This dataset has been equally divided 
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amongst the computing nodes, where each node gets 30M transactions for 32 computing 

nodes. The parameters are: c=0.005, (7=0.01, tin=10 sec., t//ctn=0.05 and z\=10k and 20k. 

The peak memory consumption across any slave node for first 20 batches of the stream 

has been presented in Figure 4.21a. The results show that peak memory consumption is 

stable and doesn't fluctuate with stream progression. The average deviation in from the 

mean is 79.97 KB for z\=10k and 100.24 KB for z\=20k.

Next we measure the number of nodes present in the forest of each window in TTWF 

(stored at the master node), along with the mining time required for mining FIs from 

each window. We use the same dataset along with same parameter values as above. We 

conduct this experiment for 32 nodes and all measurements were taken after the entire 

dataset has been processed. The results presented in Figure 4.21b show that the rate of 

increase in number of nodes in the forest declines with increase in age of the windows 

at both the speeds. This is because of use of decay factor ftl and logarithmic nature of 

TTWF. The mining time of each window also shows similar behavior (Figure 4.21c). This 

establishes the memory efficiency of MPAnyFI.

Figure 4.21: (a) Max memory at a computing node with stream progression (b) Memory 
consumed by windows of TTWF after processing the complete dataset (c) Mining time of 
each window in TTWF
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4.8 Main Contributions

• We present an Anytime Frequent Itemset mining algorithm for data streams, AnyFI, 

characterized by both the properties of an anytime algorithm. To the best of our 

knowledge, this is first such attempt.

• We propose a novel data structure known as Buffered Frequent Itemset Forest (BFI- 

forest), which stores buffers at its tree nodes and aids AnyFI to handle variable 

inter-arrival rate of transactions. Its design also enables a user to obtain immediate 

mining results.

• We also propose MPAnyFI for anytime FI mining of multi-port data streams over com

modity clusters. It uses AnyFI at each computing node and stores the aggregate FIs 

in a tilted-time window framework.

Salient Features of proposed work

1. Fast Mining. AnyFI inserts all suffix projections of incoming transactions (defined 

in Section 4.3.1 on page 64) into the BFI-forest, depending upon the available time 

allowance. As a result, mining the forest for FIs becomes a simple traversal of its 

trees accumulating FIs without generating any candidate itemsets as in apriori like 

methods [47, 50, 51], or conditional trees as in FP-growth like methods [53,184, 98, 

97], thus making mining very efficient.

2. Quick approximate result. AnyFI can give an immediate approximate mining result 

with best possible accuracy for the available time allowance, and can improve its 

quality with increase in time allowance.

3. Key Concepts Used. AnyFI uses techniques such as 0-deferring, buffer-pruning, inter

mittent pruning and usage of small sized FP-trees within the BFI-Forest, to efficiently 

manage memory consumption, which otherwise would have been high as we store 

a large number of enumerated suffix projections. 0-deferring deliberately delays the 

insertion of infrequent & semi-frequent projections into BFI-forest and thus saves 

memory and time. Buffer-pruning prunes infrequent projections from buffers when

ever time allows. Intermittent pruning prunes infrequent sub-trees from the forest at 

regular intervals without disturbing the stream. Using FP-trees within the BFI-forest 

saves unnecessary creation and deletion of sub-trees that store infrequent itemsets.
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4. Efficiency & Performance. The extensive experimental analysis shows that AnyFI 

brings in the features of an anytime algorithm. It also establishes that AnyFI can 

handle greater speed streams upto 60,000 transactions per second (tps), with recall 

close to 100%. The comparative analysis shows that AnyFI handles higher stream 

speeds and mines for FIs efficiently, when compared to the existing algorithms. Ex

periments have also been conducted to tune the parameters used by AnyFI (0,7) and 

recommendations are given for choosing their values appropriately for maximizing 

efficiency. The experiments conducted over MPAnyFI also show its efficiency.

4.9 Conclusions and Future Work

4.9.1 Conclusions

We presented AnyFI which is the first anytime FI mining algorithm for data streams. 

AnyFI incorporates both the functionalities of an anytime algorithm - ability to handle vari

able stream speeds, & ability to give an immediate mining result with compromised accuracy if 

required and improve its accuracy with increase in time allowance. AnyFI uses a novel data 

structure known as BFI-forest, which handles stream of transactions arriving with vary

ing inter-arrival rate. Also, unlike other methods, mining BFI-forest requires a simple 

traversal of its trees accumulating FIs, making it very efficient. The experimental analysis 

presented shows that AnyFI can handle variable and high stream speeds while main

taining high recall. We have also extended AnyFI into a parallel framework known as 

MPAnyFI for anytime FI mining of multi-port streams. This framework uses Tilted-Time 

Window Framework to summarize the entire stream in logarithmic space. The experimental 

results also establish its efficiency.

4.9.2 Future Directions

In future, we shall extend MPAnyFI to mine for frequent (or top k) co-occurrence patterns 

from multiple streams.
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Chapter 5

Anytime Set-wise Classification of

Data Streams

5.1 The Set-wise Classification Problem in Data Streams

Due to increasing utilities of data generating systems such as web, sensor networks, retail 

chains, etc., classification in data streams has become very popular [146, 99, 148, 147, 14, 

149]. These algorithms build a classification model on the initial training corpus, which 

is used to classify the test objects arriving in the stream. These algorithms allow only a 

single pass for classifying each test object.

In many stream applications such as community detection from text feeds, website 

fingerprinting attack, retail chain analysis, etc., the classification labels are not associated 

with individual data objects, but with groups of objects. Each group is treated as an 

indivisible entity with an associated class label. And, a class label can be meaningfully as

signed to an entity only by studying the overall distribution pattern of objects in it, rather 

than studying a single object. Consider Figure 5.1 on the next page2. It has two kinds

2bor rowed from [1951

• J. S. Challa, P. Goyal, V. M. Giri, D. Mantri and N. Goyal. AnySC: Anytime Set-wise Classification of 
Variable Speed Data Streams. In Proceedings of 2018 IEEE International Conference on Big Data (Big 
Data 2018), pages 967-974, IEEE Press, 2018
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Figure 5.1: Illustrating Set-wise Classification Problem

of data objects - Os and Is. At a first look, there doesn't seem to be any difference in the 

distribution of Os and Is as they are interleaved and no proper boundary exists. However, 

if we carefully observe, we can see that Os are more concentrated near the boundaries and 

Is are more concentrated in the interior region. By observing such distribution patterns, 

we can meaningfully assign a class label to the set of all Os or set of all Is. This kind 

of problem is known as the Set-wise Classification problem [195] and can be found in the 

applications described below:

5.1.1 Applications

Community Detection using text feeds. Community detection allows us to find groups 

of users who have common interests [196]. These groups can be used for targeted ad

vertising on social networks or viral advertising campaigns. There can be multiple users 

belonging to various communities creating text feeds on a social networking website such 

as twitter. Using these feeds (or tweets), we can predict the community to which each 

user belongs to. This problem can be viewed as a set-wise classification problem. Each 

tweet can be considered as a data object, each user can be considered as an entity (asso

ciated with tweets tweeted by him), and a community class label can be associated with 

each user, with each class having multiple users associated. We can clearly observe that 

based on a single tweet, we may not be able to meaningfully assign a class label to a user. 

However, by studying the pattern formed by a set of tweets by a user, we can study his 

behavior and appropriately assign a class label. In this problem, we can first construct an 

initial classification model over a given sample of tweets from various users (entities) with 

known community class labels. Then in the stream we will receive and process real-time 

tweets that are being posted by various users. The stream can receive tweets from both 
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labeled and unlabeled users. The tweets from labelled users (training entities) can be used 

to incrementally update the classification model. The tweets from unlabelled users can be 

used to construct the test entities (unlabelled users), whose class labels can be predicted 

using the above model. As more tweets belonging to a user arrive, the prediction becomes 

more accurate.

Website Fingerprinting attack. It is a Trac Analysis Attack, where network attackers 

try to breach web navigation security and privacy [197, 198]. Certain web users accessing 

web pages use anonymous communication mechanisms to hide the content and meta data 

exchanged between the browser and the server hosting the web page using methods like 

Tor network [199]. An Attacker can use ML techniques to identify the web page accessed 

by a user by capturing the network packets secretly (even encrypted ones). Such attackers 

can target individuals, businesses and governments. In order to prevent them, researchers 

study different attack schemes and provide counter measures. This attack can be modeled 

as set-wise classification problem over a stream of network packets captured when various 

users are accessing the web. Given a set of web pages that are being accessed by the users, 

each web page shall have different network traces associated where each trace consists of 

uplink and downlink packets generated when a user loads the web page. Each packet 

contains information like time, direction and length in bytes. We can consider a group 

of consecutive packets (known as a burst) going in a specific direction as a data object. 

Each burst is characterized by burst length and direction, which are the features used by 

the attackers [197]. The set of packets (bursts) exchanged (uplink and downlink) between 

the user and the server for loading a complete web page forms a trace, which can be 

considered as an entity. Each trace can be associated with a class label (web page label). 

So, in this problem, an individual packet (or a burst) may not be associated with a class 

label since similar packets can occur over multiple web pages. Instead, a class label is 

associated with a set of packets (or set of bursts), which forms a trace (entity). We can 

build an initial classification model over a given sample of packets from various traces 

with known class labels. In the stream, the packets received from labeled traces can be 

used to incrementally update the training model, and packets from unlabeled traces can 

be used to construct test entities whose class label can be predicted using the classification 
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model.

To the best of our knowledge, only a couple of approaches have been proposed for set

wise classification for data streams. The approach in [195] formally defines this problem 

and presents a classification model & method for classifying test entities. Its classification 

model consists of sets of class profiles (one set for each class). A class profile is an object 

that characterizes the average distribution pattern of a set of entities (see Section 5.2). A 

test entity is matched with all class profiles (from all classes) to find the closest, whose 

class label is assigned to the test entity. The second approach [198] extends the previous 

by using an ensemble of classifiers such as nearest neighbors, bayesian classifier, etc.

The rest of the chapter is organized as follows: Section 5.2 presents the set-wise clas

sification model for data streams proposed in [195]; Section 5.3 on page 111 presents the 

proposed approach - AnySC; Section 5.4 on page 117 presents the experimental results 

and analysis; Section 5.5 on page 122 discusses how AnySC addresses the limitations of 

existing models; Section 5.5.1 on page 124 highlights the main contributions of this chap

ter; Section 5.6 on page 124 concludes this chapter and gives recommendations for future 

work.

5.2 Background: The Set-wise Classification Algorithm for Data

Streams (SC)

In this section, we describe the set-wise classification algorithm for data streams (SC) 

proposed in [195].

Let there be N training entities (labeled) in the entire corpus denoted by Sp.-S/v, where 

each entity 8, has e, data objects in it. Let there be a total of c different classes, with 

associated class labels [l...c]. Let d be the dimensionality of the dataset. Each object 

in an entity is a d-dimensional vector. Similarly, let there be a set of n test (unlabeled) 

entities (Ti.-Th). Let the data objects in the stream be received in the form of tuples - 

< Y],entityid},labels > ... < Yr/entityidr,labelr > ... and so on. Yr is a d-dimensional 

object which could either belong to a training entity or to a test entity; entity idr is the 

id of the entity to which the object belongs to; and labelr is its class label. If Yr belongs 

to a training entity, its class label will be in the range [l...c], and if it belongs to a test
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Figure 5.2: The Set-wise Classification model of SC

entity, its class label will be -1. So, the stream receives a mixture of objects belonging to 

training and test entities. Note that training and test entities are disjoint. So, given a set of 

training entities £|...€,v, the problem of set-wise classification in data streams is: constructing a 

classification model using a sample of objects from training entities, using which we can classify 

test entities whose objects arrive in the stream.

5.2.1 The Set-wise Classification model

The classification model for SC, is constructed over an initial sample of data objects from 

training entities and is then incrementally updated using the training objects received 

in the stream. The model consists of: c classes, p class profiles and N training entities 

(c << p << N), as shown in Figure 5.2. Each class contains a subset of class profiles and 

each class profile is an aggregate of a subset of training entities. It is explained as follows:

An entity (either training or test) is represented by a (/-dimensional vector known as 

fingerprint, which contains the distribution pattern of objects belonging to it. Initially, a 

set of q data objects known as anchor points (denoted by W|...W(/) are selected from the 

initial training sample, £-means clustering (with k = q) is performed over it and the final 

centroids are chosen as the anchors. Note that q is an input parameter. The distribution 

pattern of objects for any given entity is captured as a frequency vector around these 

q anchors forming a histogram like structure, which is the fingerprint. The value of q 

dictates the granularity of the fingerprint. It is defined as follows:

Definition 5.1. (Fingerprint). Let there be r objects denoted as Y[...Yr, in a given entity 

Let these objects be assigned to their respective closest anchor points (one in Wj.-.W^), 

resulting in a partitioning consisting of q clusters C[...C(/. Let the corresponding (rela- 
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five) cluster frequencies be denoted as where = 1. Then, the fingerprint of 

£p defined with respect to the above q anchors, is denoted by the (/-dimensional vector 

[/i-AI-

Given a set of data objects Y|...Yr belonging to an entity the fingerprint of 8, by 

constructed by incrementally adding each object to it. For each Y,, we first identify the 

closest anchor point using euclidean distance as the distance measure. Say the index of 

selected anchor point is ind in the fingerprint vector. Let the number of objects updated 

in the fingerprint of 8/ before adding Y, be |U|. Then the new fingerprint vector after 

adding Y, to 8/ can be computed as:

After constructing the fingerprints for the training entities in the initial data sample, the 

class profiles are created over them. A class profile contains the average fingerprint char

acterization for a given set of entities. It is defined as:

Definition 5.2. (Class Profile). Given a set of entities S = 81 ...8s belonging to one class 

with label / and associated (/-dimensional fingerprints L[...LS. A class profile is a tuple of: 

(i) A (/-dimensional vector AGs containing the sum of the fingerprints of all the entities 

6 S across all dimensions, i.e. AGs[p] = L, for each dimension p € [O...(/ - 1]. (ii) 

An integer value s storing the number of entities aggregated in this class profile, (iii) A 

class label /.

Class profiles are used for predicting class labels of test entities. There can be multiple 

class profiles associated with each class and to construct them, fc-means is applied over 

the entities belonging to a given class, and one class profile is constructed for each cluster 

by aggregating the entities belonging to it. Let p, be the number of class profiles for the 

class with label i. The total number of class profiles in the model will be p = pj. 

Thus, the SC's model comprises a set p of class profiles with associated class labels.
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5.2.2 Processing Incoming Stream Objects

The stream receives a mixture of objects belonging to labeled and unlabeled entities. The 

objects from labeled (training) entities are used to incrementally update the classification 

model. The objects from unlabeled (test) entities are used to construct the test entities, 

which are assigned appropriate class labels using the classification model.

For incoming object Y, e training entity Zj, the following steps are executed to incre

mentally update the classification model: (/) Identify the closest anchor point, (n) Update 

the fingerprint of Sy using Equation (5.1) on page 108. (iii) Determine the closest class 

profile within the same class and re-assign Sy to it if necessary, and update the class profile 

statistics.

Since, class profiles are simple aggregate vectors, they posses additivity property by 

which we can add (or subtract) an entity fingerprint vector to (or from) it. This property 

is used to update the class profile statistics, wherein we subtract the old fingerprint vector 

from it and add the newly updated one. If the incoming object Y, € a test entity Tj, the 

first two steps are the same as the above. In the third step, a class label is assigned to

if it was not assigned previously, or Ty is re-assigned to the most appropriate class 

(either same or a different class). Before a class label is assigned to it, the algorithm lets 

the test entity accumulate at least min_stat objects in it. This allows the test entity to 

accumulate sufficient number of objects into it before it can be meaningfully assigned to 

a class. As the number of objects being accumulated to an entity increases, its class label 

prediction becomes more accurate, since its objects' distribution pattern shall be known 

more accurately. So, to assign a class label to Ty, all p class profiles (belonging to all c 

classes) are scanned to identify the closest, whose class label is assigned to Ty. Cosine 

similarity is used to measure distance between a fingerprint and a class profile, both of 

which are ty-dimensional vectors.

The model described above has certain limitations and cannot be used over variable 

stream speeds (as explained in Section 5.2.3 on the next page). It's limitations and how 

they have been addressed by AnySC, is described in Section 5.5 on page 122.
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5.2.3 Research Gap & Motivation

Limitations of Budget Approaches

• The SC model is a budget algorithm. It takes a fixed duration of time (budget) for 

assigning class label to each test entity. However, real-time streams do not have con

stant speed and thus cannot guarantee availability of such budget for every object 

received. For example, in community detection using text feeds, the rate of arrival 

of tweets is not fixed. It can vary depending upon many factors. Similarly, in web

site fingerprinting attack, the number of packets exchanged in the network is high 

during peak hours and low during other times.

• The classification model of SC pose a flat linear structure (list of class profiles) that 

can not handle variable inter-arrival rate of objects, which is a key requirement in 

the above applications. When the stream speed is lesser than their budget, they 

successfully process the incoming objects, and then sit idle for the remaining time 

allowance without any effort to improve the accuracy. And when the stream speed 

is higher than the budget, they fail to execute! An ideal algorithm, however, should 

be able to process any stream speed, giving the best possible result within any given 

time allowance, even if it is approximate, and refine its accuracy with increase in 

time allowance. Such an algorithm is known as an anytime algorithm, as explained in 

Part II on page 57. SC is a budget algorithms and lacks such capabilities.

A few algorithms were proposed in literature for anytime classification in data streams 

based on nearest-neighbors [100] and Bayesian Classifiers [101, 175, 116]. The first pro

posed approach [100] was based on nearest-neighbors. This approach orders the training 

data objects into a specific order so as to minimize the error while classifying the objects 

arriving in the stream with variable rate. Anytime Bayesian Classifier has been proposed 

in [101], which uses a hierarchical indexing structure known as Bayes Tree to insert data 

objects at hierarchical granularities. MC-tree [175] and BT* [116] are its extensions that 

are more accurate classifiers than Bayes Tree. All the three trees are based on R-tree 

structure, storing guassian kernels and gaussian mixture models in external and internal 

nodes respectively. However, none of them were designed for set-wise classification of 

data streams.
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5.3 Anytime Set-wise Classification Model - AnySC: The Pro

posed Method

We now present our proposed method - AnySC, which is the first anytime set-wise clas

sification algorithm for data streams. We first present the data structure - CProf-forest 

(Figure 5.3), which serves as the classification model for AnySC. It consists of CProf-trees 

whose total number is equal to the number of classes (c). CProf-trees store hierarchy of 

class profile vectors in their internal nodes. We define CProf-tree as follows:

Definition 5.3. CProf-tree. It is a height balanced multi-dimensional indexing structure 

(see Figure 5.3) having the following properties:

• All nodes (both internal and external) contain between in and M entries. The root 

has at least one entry. Figure 5.3 shows a CProf-tree with in = 2 and M = 4.

• All nodes store a pointer Parent which points to the parent entry.

• An entry e in an external node stores the ^/-dimensional fingerprint vector represent

ing an entity.

• An entry e in an internal node stores: (/) a pointer PTe pointing to the root of 

sub-tree beneath e; (ii) a class profile CPe storing the aggregate of all the entity 

fingerprints indexed at its child node, which is the root of the subtree indexed at 

e; (iii) a buffer BFe, which consists of 2 q-dimensional vectors - W & Vn, and a flag 

eFl which is set to TRUE if buffer is empty. The two vectors of BFe is used for 
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deferred updation of CProf-tree that occurs while processing high speed streams 

(see Section 5.3.1 on the next page).

Definition 5.4. CProf-forest. It is collection of c CProf-trees, one for each class.

The structure of CProf-tree results in an hierarchy of class profiles from coarser to 

finer granularity as we descend down the tree from root to the leaf level. This enables us 

to represent the distribution patterns of the objects belonging to a class in a hierarchical 

fashion. The root of each tree summarizes the distribution pattern of all the entities 

belonging to a class at coarsest granularity. And, as we keep going down the levels in 

the tree, the granularity of the class profiles (stored at internal nodes) becomes finer and 

finer, until we reach the leaf nodes containing entity fingerprints, which are of finest 

granularity. Consider the CProf-tree in Figure 5.3 on page 111. We can arrange the nodes 

in increasing level of granularity as follows: 1 < 2,3 < 4,5,6 < 7,8,9. This model 

of hierarchical granularities helps in classification of test entities within any given time 

allowance dictated by variable inter-arrival rate of objects (see Section 5.3.2 on page 114).

A CProf-tree for a given class is constructed by dynamic insertion (of logarithmic 

cost) of training entities belonging to it, in a top-down recursive fashion similar to that 

of an R-tree. The only difference is that the distance metric is computed between the 

entity fingerprint vector and class profile vectors stored at the internal nodes (using cosine 

similarity metric), rather than with the Minimum Bounding Rectangles as in R-trees (refer 

[122] for more details). The node overflows are handled in a similar manner as that of 

an R-tree and the node splits propagate upwards leading to CProf-tree growing upwards. 

The vectors in the buffers of CProf-trees are left empty during the creation of the initial 

CProf-forest in the training phase.

Definition 5.5. Anytime Set-wise Classification in Data Streams. Given a set of train

ing (labeled) entities with associated labels /] h. ... In, we construct a CProf-forest 

over an initial sample of objects 6 training entities, which serves as the classification 

model for classifying test entities 71 72 ... whose objects are arriving in the stream with 

variable inter-arrival rate.
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5.3.1 Anytime Incremental Model Update

The classification model is incrementally updated using training objects received in the 

stream, within the variable time allowance dictated by variable inter-arrival rate of objects. 

It is illustrated with Figure 5.3 on page 111 & Algorithm 5.1 on page 115 and explained 

as follows:

Let the arriving training object be < Yr,entityidr,labelr >. Firstly, we need to update 

the fingerprint of the entity to which Yr belongs to (Algorithm 5.1 on page 115: line 3), 

which is the entity with id = entityidr. This entity will be indexed in a leaf node of the 

CProf-tree with class label - labelr. To do this update, we first identify the nearest anchor 

point among q anchors and update the fingerprint using Equation (5.1) on page 108. This 

operation can be done in 0(1) time by additionally indexing all the entities in a separate 

array with their respective ids as the rank. After this, we need to perform a bottom-up up

date of the tree in which the above entity is present, in order to accommodate the change 

that has just happened. We need to update the class profile aggregates along the path 

from the current entity to the root node. For this, we make use of the additivity property 

of the vector AG (stored in class profiles), where at each class profile in this bottom-up 

path, we subtract the old aggregate of the entities present in the sub-tree rooted at it and 

add the new aggregate (lines 13-25). For example, consider Figure 5.3 on page 111. Let 

the entity which just got updated be stored at entry of leaf node 9. The entry etz at 

node 4 contains a class profile that stores the aggregate of all the fingerprints indexed at 

node 9. To accommodate this change, we update the class profile indexed at etz, by sub

tracting the old fingerprint vector of entity at et\ from it (vect_old), and adding the newly 

updated fingerprint to it (vect_new). We then proceed for subsequent iteration and in this 

way the update propagates up to the root along the path consisting of entries highlighted 

in orange in the figure. However, if during the bottom-up update, the time allowance 

for processing this object expires (triggered typically due to arrival of a new object in the 

stream), we defer its completion. For this, we use Vo and Vn vectors stored in the buffers 

for temporarily storing the old and new aggregate vectors, respectively (lines 7-12). Say, 

the time allowance has expired before the class profile indexed at etz got updated, we 

simply leave the old and new fingerprint vectors of entity indexed at et\ in the buffer of 
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its parent entry et2, and exit to process the newly arrived object. Next time when a new 

update triggered by the insertion of another data object passes through et2, the vectors 

in its buffer are taken out and processed along with (lines 13-25). The class profile at ef? 

will be updated with respect to the old and new vectors stored in the buffer in a similar 

manner explained above (lines 17-21), along with the recent old and new vectors (lines 16 

& 22). And then the combined update propagates upwards in subsequent iterations. This 

way the deferred update triggered by an old object can reach the root and get eventually 

completed. Note: In this algorithm, the update of a class profile is a unit operation. Unit 

operation is an atomic non-interruptible operation, i.e., we will process the next object 

only after this operation completes, even if the next object arrives before it finishes.

In the above algorithm, it is possible that multiple vectors, resultant of update of 

different entities, get accumulated in the same buffer. However, owing to the additive 

nature of these vectors, the algorithm's correctness is not affected and the class profiles 

in the tree remain consistent. The above bottom-up update is of logarithmic order of the 

number of entities indexed in the tree.

Also, note that the buffer vectors store aggregates of multiple vectors, eliminating the 

need to keep multiple objects in the buffers like in BFI-Forest explained in the AnyFI 

chapter. In AnyFI buffers were hash tables storing multiple suffix projections. Here 

buffers store aggregates of multiple vectors.

5.3.2 Anytime Classification of test entities

Let the arrived test object be < Yr,entityidr, -1 >. First we update the fingerprint of the 

entity 'JeHtityid, with respect to Yr as was done in case of training objects. If Tentityidr doesn't 

exist in this test set, we first create it and then update. Once Tentitvidr contains at least 

min_stat objects updated in its fingerprint, we can meaningfully assign it to a class. The 

process of classifying a test entity is illustrated in Algorithm 5.2 on page 116. Essentially, 

we do a best-first traversal of the CProf-trees using c number of priority queues, one for 

each class. These traversals can be interrupted anytime, i.e. whenever a new object arrives 

in the stream we can assign a class label to the current test entity on the basis of class 

profiles of different trees visited until now, and then exit to process the newly arrived

114



5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

Algorithm 5.1: Insert and Update in CProf-Tree

2
3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

procedure Insert-And-Update-In-CProf-TreeO
Input : A CProf-tree CPTlt a training object: Y,, entityidr, label,
Output: Y, inserted into CPT, and CPT, updated bottom-up until time allows 
vect_old = .fingerprint;
Update fingerprint with respect to Yr;
vect_new = Ee,,tllullt,-fingerprint;
cnrr_entry = ENTRY_OF(F,,.„/Illzljr );
while NoDE_OF(cnrr_entry)! = root do 

if NEWJlBJECTy\RIUVED then 
| foreach dimension p fl- t] do
I I NoDE_oF(carr_entrv).parenl.BE.V„lpl += veelyien’lpl;

I NoDE_OF(cHrr_t’Htri/).prtrnif.Br.V’l,[p] += r’iT/_o/</[p|; 
end
NoDE_OF(eiirr_enfry).parenl.BF.eTI = FALSE; 
return

curr_entry = NoDE_oF(cnrr_entry).purent;
foreach dimension p e do 

temp = CHrr_»’Htri/.CPip];
CHrr_t'»/n/.CP.AC[p] -= reel_oL/|p|;
if cnrr_entry.BF.eFl == FALSE then

curr_entry.CP.AC[p] -= cnrr_entry.BF.V,,{p];
c»rr_i’»tn/.CP.AGipj += cnrr_entry.BF. V,4pJ;
n<rr_4’Hfry.BF.V'„(pJ = 0;
CHrr-i’Hfrv.BF.VUp] = 0;

cHrr_i’iifn/.CP.AG[p| += PiTf_»<’«’[p|;
vecf-OldJp ] = temp;
ri’ct_Ht’<<'[p] = CHrr_en/ri/.CP.AG|p]; 

end
ciirr_entry.BF.eFI = TRUE;

end

object. The class label assigned should be the most accurate for the given processing 

time allowance. For this, we shall have to compare the current test entity with respect 

to class profiles/entities belonging to all the classes and then assign the class label of the 

closest class profile/entity (using cosine similarity as distance measure). However, we 

may not have sufficient time to scan all the class profiles/entities of all classes. So, we 

start our comparisons with the class profiles stored in the root node of all the trees. This 

is because the entries in the root node summarize all the entities of a given class. So, 

we add all the entries of the roots to their respective priority queues (lines 2-5). And we 

iteratively refine our search space by removing the closest entry to the test object from 

each priority queue, and add its child entries into the same priority queue (lines 7-10). 

This step increases the granularity of the search space, because the class profiles stored 

in the entries which got just added to the priority queues are of finer granularity than 

those that were removed. In this way we iteratively refine our search space in every 

tree in best-first manner, until a point of time when the priority queues are only filled 

with leaf entries that index entities. However, our processing time allowance may not
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Algorithm 5.2: Classifying a Test Entity

i procedure Classify-Test-EntityO
i Input : A CProf-forest Forest, a test entity ‘I, 

Output: Class label assigned to ‘.Tr
2 Initialize c Priority Queues PQi ... PQt;
3 foreach CProf-tree CPT, of Forest do
4 | foreach entry e in C PT,.root do
5 | PQ,.Add(i’);
6 { end
7 end
8
9

10
11
12
13
14
15
16
17
18

while TRUE do
foreach CProf-tree CPT, of Forest do

[ temp = RemoveMin(CPTi);
foreach entry r in temp.PT do

| PQ,.Add(c);
end

end
if (NEW_OB}ECT_ARRIVED or all leaves are scanned) then

I 7,.label = Closest(RemoveMin(PQi), RemoveMin(PQ2), ...
। return;

end

RemoveMin( PQ, )).label;

allow us to reach this point. So, whenever time allowance expires, we assign the current 

test entity to the class of the most closest entry (could be an entity or a class profile) 

among all the entries in all the priority queues, and then exit to process the newly arrived 

object (lines 11-13). So, the label assigned to test entity will be the most accurate one 

for the given time allowance. If we have sufficient time allowance to reach the leaf levels 

of the CProf-trees, the classification accuracy will be highest. So, when processing time 

allowance is high at lower stream speeds, or when we execute without any constraint on 

processing time allowance for each object (non-anytime mode), we reach finer granularities 

of the CProf-trees and get highly accurate results (see Figure 5.6 on page 121 and Table 5.2 

on page 122). Also, as the test entities evolve with more number of objects being added 

into them, the classification accuracy also improves. The unit operation in the above 

algorithm is removal of an entry from a PQ and adding its children to it.

We conducted an empirical study, where we tested our approach by refining only 

a subset of top k nearest classes rather than refining all the classes (see Figure 5.4 on 

page 119). The results clearly show that it is sufficient to refine top 4 classes to get 

accurate results for all datasets used in experimentation.
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5.4 Experimental Results & Analysis

All experiments were conducted over a workstation with 32 GB RAM, Intel i7 processor 

and Ubuntu 14.04 installed in it. All programs were implemented in C. Table 5.1 lists the 

datasets used for experimentation. A brief description about them is as follows:

Table 5.1: Datasets used for Experimentation in Anytime Set-wise Classification

Name Size #Dim #Entities #Classes Entities in each class
Synth IM 10 IK 50 equal (20 entities/class)
ECover 0.58M 10 1.5K 10 equal (150 entities/class)
CDetect 1.68M - 751 6 skewed(14- 455 entities/class)
WebFing HIM 2 410K 2,000 approximately equal (190-210 entities/class)

5.4. 0.1 Synth

It a synthetic dataset generated using guidelines given in [195]. It has IM 10-dimensional 

objects generated using gaussian mixture models. It consists of 50 classes, with each class 

having 20 entities (total 1000 entities).

5.4. 0.2 ECover

This is generated by converting the Forest Cover dataset (FC) [200] into an applicable form 

using guidelines given in [195]. We use first 10 dimensions of FC, which are numeric. It 

has 0.58M objects distributed in 10 different classes. Objects in each class have been 

clustered into 150 different entities, giving a total of 1500 entities.

5.4. 0.3 CDetect

We created this dataset by collecting tweets of various Indian celebrities that include - 

Politicians, Sportsmen, Journalists, Film stars, Philanthropists and Businessmen (6 classes). 

A maximum of 3200 historical tweets were collected from each user using Tweepy API on 

15 Aug 2018. The data set consists of 1,688,365 tweets (data objects), collected from 751 

users (entities), belonging to 6 communities (class labels). We extracted keywords from 

the tweets using Stanford Postagger [201] and represented each tweet as vector around 

these keywords. We use Jaccard Coefficient as the distance measure to compute distance 

117



5.4 Experimental Results & Analysis

between two objects (tweets), unlike euclidean distance for other dataset. Also, the dis

tribution of entities per class is skewed in this dataset (14-455 entities/class), unlike the 

previous two which were uniform.

5.4. 0.4 WebFing

The Website Fingerprinting attack dataset has been borrowed from [197]. It consists of 

approx. HIM bursts (data objects) categorized into 41K traces (entities) from 2000 web 

pages (classes). This dataset also has uniform distribution of entities/class (190-210).

We set 80% of the entities as training entities and 20% as test entities for all datasets. 

We build the initial training model using 20% of the objects from training entities. The 

remaining objects arrive in the stream in a random mixture of training and test objects. 

The values of fanout parameters for CProf-tree have been set to: m = 2 and M = 4, 

Choosing larger fanout values can lead to increase in linear scan within each node of the 

tree. So, it has to be in accordance with the number of entities indexed in the tree. & 

min_stat is set to 50. The term SC indicates the baseline result generated by using the 

method proposed in [195].

The streams with varying inter-arrival rate are simulated using Poisson streams that 

takes an input parameter A and generates objects with rate A objects/sec., as explained in 

Section 4.7 on page 90.

We use accuracy as the measure of evaluation for all datasets except CDetect, for which 

we use Fl-score. This is because CDetect has skewed distribution of entities per class, and 

hence use of accuracy can give misleading results. The remaining datasets have equal or 

almost equal distribution of entities per class. So, accuracy is used. For more details on 

the above measures refer to Appendix C on page 214.

The streams with varying inter-arrival rate are simulated using Poisson streams that 

takes an input parameter A and generates objects with rate A objects/sec., as explained in 

Section 4.7 on page 90.

We use Jaccard Coefficient as the distance measure to compute distance between two 

objects (tweets) for CDetect dataset (unlike euclidean distance for other three datasets), 

since it is based on text data. Also, we use accuracy as the measure of evaluation for all 

datasets except CDetect, for which we use Fl-score. This is because CDetect has skewed
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Figure 5.4: Effect on Accuracy with variation in number of classes refined at A =60,000 ops

distribution of entities per class, and hence use of accuracy can give misleading results. 

The remaining datasets have equal or almost equal distribution of entities per class. So, 

accuracy gives good results.

5.4.1 Experimental Results

In the first experiment, we measure the classification accuracy of test entities for AnySC 

with increase in number of classes refined, at speed (A) = 40,000 ops & q = 40 for Synth 

and ECover datasets. The results presented in Figure 5.4 clearly show that accuracy in

creases until we reach 4 classes and then remains steady for sometime and later shows 

a decline. The initial increase is because, when we refine lower number of classes, we 

may not reach the closest class profile. This problem reduces with increase in number of 

classes refined. The decline in later part of the curve is because, as the number of classes 

refined increases, after a point in the curve, the additional classes being added for refine

ment does not involve any of the closest probable classes that could help in improving 

classification accuracy. Rather, they only add up to the computation overhead, and does 

not allow us to reach finer granularity levels of CProf-trees, leading to reduction in clas

sification accuracy. It can be observed from Figure 5.4 that refining only the top 4 classes 

yields better classification results for both the datasets. Similar pattern was observed for 

other datasets as well. This is also evident from results presented in the last column of 

Table 5.2 on page 122, which gives the %age of test entities whose true class value actu

ally lies within top 4 closest classes refined by AnySC when run in non-anytime mode. 

Therefore, in subsequent experiments, we restrict our search to top 4 closest classes and 

utilize the spare time to reach finer granularity levels within the closest classes to obtain 

more accurate results.

In the next experiment, we study the classification accuracy/ Fl-score of AnySC with 

variation in number of anchor points (q) at two different stream speeds - A=30,000 (mod-
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Figure 5.5: Effect of varying q on performance for (a) Synth (b) ECover (c) CDetect (d) WebFing 
datasets

erate speed) and A=60,000 (high speed). The results presented in Figure 5.5 show that 

the accuracy increases with increase in anchor points up to a certain point and then 

declines for all the datasets at both the stream speeds. The decline is because, as the 

number of anchor points increase, the distance computation cost increases due to which 

the speed handling capacity reduces and thus with lower processing time allowances at 

higher speeds, we will not be able to reach finer granularities in CProf-trees.

We also tested the performance of AnySC with variation in stream speed and com

pared it with that of SC. The number of class profiles for SC has been set to 100 for Synth 

& ECover, 150 for CDetect & 20,000 for WebFing. We studied the accuracy/ Fl-score at q 

= 40 & 60. The results presented in Figure 5.6 on the next page clearly show that AnySC 

is able to give a classification result at all the speeds, unlike SC which is limited to giving 

results up to its budget respective to the dataset (budget speeds are marked with circles 

and their values are given in Table 5.2 on page 122). We can also observe that the accuracy 

at lower stream speeds is much higher for AnySC than SC whose accuracy is constant for 

all speeds up to its budget. This is because AnySC refines its search space to finer gran

ular levels of CProf-trees (upto the entities at the leaf level), which is not possible in SC. 

Also note that the rate of reduction in accuracy with increase in stream speed is greater 

for q=60, which is due to increase in cost of distance computations.

To get a fair baseline comparison, we tried to convert the SC model into an anytime 

model, where we do a linear scan of the class profiles list only to the extent time allows.
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For e.g., if we have a list of 100 class profiles, and time allowance is sufficient to scan 

only the first 15 class profiles, we assign class label to the test entity only on the basis of 

these 15 class profiles scanned. We refer to this strategy as SC_A. Figure 5.6 also presents 

results comparing SC_A with AnySC. Note that SC and SC_A shall give the same result 

until SC's budget speed. The results clearly show that accuracy of AnySC is higher than 

SC_A. This is because, giving a class label to a test entity on the basis of only a few 

scanned class profiles doesn't guarantee the scanning of its actual closest class profile, 

which is the case in SC_A.

Next, we compared the accuracy/ Fl-score of AnySC with that of SC at SC's budget. 

The results presented in Table 5.2 on the following page clearly show that AnySC outper

forms in every case. AnySC is giving better accuracy than SC even at the budget speed 

of SC. We also present the accuracy of AnySC without applying the anytime feature i.e. 

each time the refinement will take place up to the finest level in the CProf-trees with-
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Table 5.2: Comparison of AnySC with SC at its budget and non-anytime performance of
AnySC at q = 40

Dataset
Max. Speed of 

SC (budget) 
(approx.)

Accuracy 
/Fl of SC at 
its budget

Accuracy/ Fl 
of AnySC at 
SC's budget

Non-anytime 
accuracy /Fl 
of AnySC

Non-anytime 
speed of 
AnySC 

(approx.)

% test entities 
with actual class 

within top 4 
classes refined

Svnth 46,000 ops 51.2 53.4 80.7 14,000 ops 85.1
ECover 41,000 ops 81.2 85.6 91.5 11,000 ops 95.6
CDetect 25,000 ops 0.568 0.651 0.715 9,000 ops 90.3
WebFing 12,000 ops 52.3 65.1 69.8 12,000 ops 80.1

out any constraint on time allowance. AnySC gives remarkable performance in this case. 

However, this hampers its speed handling capacity, as it takes more time to reach finest 

granularity levels (entity fingerprints at leaf nodes). Note that the difference observed 

in non-anytime accuracy (column 5) and percentage of test entities with true class value 

within top 4 refined classes in non-anytime mode (column 7), is because of anomalies 

present in the dataset.

80
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Figure 5.7: Performance of AnySC with stream progression

We also studied the evolution of test classification accuracy with stream progression 

for both AnySC and SC. The results presented in Figure 5.7 show that the accuracy 

increases with more objects received for both SC and AnySC for Webfing dataset. This is 

because: (/) model gets incrementally updated and drift in patterns is captured as more 

training objects are received; (n) the distribution patterns of the test entities are predicted 

more accurately when more test objects are received. Similar behavior has been observed 

for other datasets as well.

5.5 Discussion

AnySC addresses the following limitations of SC:

Flat Structure Limitation. SC's model is a linear flat structure consisting of a list of 

p class profiles. Test entities are assigned labels by identifying the closest in this list 
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using a linear scan (of 0(p) cost) that takes a fixed amount of time (budget) to complete, 

irrespective of the stream speed. AnySC addresses this limitation by using CProf-forest, 

which stores class profiles at hierarchical granularities and thus enables us to classify 

test entities within any given time allowance. We scan the hierarchy of class profiles in 

increasing order of granularity until time allows and give best possible class label to the 

test entity based on the finest granularity reached until now. Also, the model allows us 

to reach the closer coarser class profiles faster (class profiles stored in the top levels of the 

trees), without scanning the whole list of class profiles as was the case in SC.

Classification Accuracy at low speeds. At low speed streams, when the time available 

is more than the budget, SC doesn't utilize the excess time to improve the classification 

accuracy. The accuracy remains the same as its budget speed. However, AnySC makes 

best use of such time by reaching finest levels in the trees where entity fingerprints are 

stored, and thus gives very high classification accuracy.

Efficient incremental update. The cost of incremental update of the classification model 

in AnySC is little higher than the SC because of the bottom-up update in CProf-trees. 

However, due to the support given by buffers, we can always defer & merge multiple 

such updates (as explained in Section 5.3.1 on page 113) and traverse together leading to 

reduction in the update cost. This reduction is visible in AnySC s capability of handling 

high speed streams.

Efficient Class Assignment. Class label assignment cost is logarithmic for AnySC, un

like linear cost for SC, thus making it more efficient.

Class profiles construction. The class profiles for each class in SC are constructed using 

k-means algorithm, with k as a user given parameter. On the other hand, in AnySC, the 

class profiles are created as natural outcome of CProf-forest construction, eliminating the 

need of any input parameter.
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5.5.1 Our Contributions

• We have proposed AnySC, which is an Anytime Set-wise Classification algorithm for 

data streams. To the best of our knowledge, this is the first such approach.

• It uses a proposed data structure - CProf-forest, which is built over the initial train

ing data, and serves as the classification model for processing the incoming test 

objects. The CProf-trees in the CProf-forest store class profiles at hierarchical granu

larities. AnySC incrementally updates the CProf-forest using the objects arriving in 

the stream that belong to the labeled entities, within any given processing time al

lowance dictated by the stream speed. The incremental updates are deferred in case 

the time allowance expires before the update finishes, and are completed alongside 

subsequent updates occurring on the same traversal path in the underlying CProf- 

tree.

• AnySC leverages the hierarchical structure of CProf-trees to classify the test entities 

within any given processing time allowance (see Section 5.3 on page 111).

• We have also developed the CDetect dataset which consists of tweets of various 

Indian Celebrities. This can be used as a benchmark for community detection prob

lems.

5.6 Conclusions & Future Work

In this chapter, we proposed AnySC, which is the first Anytime Set-wise Classification al

gorithm for data streams. AnySC uses a proposed data structure known as CProf-forest, 

which serves as the classification model for processing the incoming stream. AnySC is 

capable of incrementally updating the CProf-forest using the labelled objects arriving in 

the stream within any given processing time allowance without any budget contraint. 

Similarly, it can handle unlabelled objects by classify the test entities within any given 

processing time allowance. The experimental results presented in Section 5.4 on page 117 

show that AnySC can: (/) handle variable stream speeds and produce accurate classifi

cation results; (ii) handle very high speed streams with reasonable performance, unlike 

the baseline approach (SC) [195] that fails to execute when speed exceeds its budget; (Hi) 
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give very high classification accuracy (compared to SC) when stream speed is low, since 

it makes use of greater time available to refine the result to the greatest possible degree. 

The experiments also demonstrate the applicability of set-wise classification problem over 

both the applications described above.

5.6.1 Future Directions

AnySC model can be further improved by incorporating exponential decay in its training 

entities in order to perform intermittent pruning of outdated entities. This enables AnySC 

to detect concept drift more efficiently. AnySC model can also be adopted to image 

datasets.
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Chapter 6

Anytime Clustering of Data Streams

Clustering of data streams has been increasingly becoming important in the recent 

past owing to rapid rise in utilities of loT, transactional systems, real-time systems and 

other data generating systems. In a typical stream clustering algorithm, data objects 

continuously arrive into the system where an algorithm processes them and stores their 

summary statistics. Clustering of data streams have the same constraints of time and 

memory as described in Part II on page 57. Various stream clustering algorithms pro

posed in literature include - CluStream [102], HP-Stream [103], DenStream [95], Optics 

Stream [150], D-Stream [151], MR-Stream [152], SWEM [202], etc. These algorithms store 

summary statistics of the incoming data. For example, CluStream [102], DenStream [95], 

HP-Stream [103] and Optics-Stream [150] use micro-clusters to store the summary statis

tics (micro-clusters were originally conceived in BIRCH [203]). Then a suitable clustering 

algorithm (like DBSCAN, K-means, SLINK, etc.) is applied over the means of these micro

clusters in an offline manner (see Section 6.1.1 on page 129). The above algorithms also 

use mathematical models such as pyramidal time frames [102], exponential decay [95], 

sliding window [202], etc. to represent the age of micro-clusters. These models enable the 

system to weigh down the influence of older data and capture concept drift.

• Jagat Sesh Challa, Poonam Goyal, Ajinkya Kokandakar, Dhananjay Mantri, Pranet Verma, Sundar 
Balasubramaniam, Navneet Goyal. A New Micro-Cluster based Approach for Anytime Clustering of Data 
Streams that handles Noise and Concept Drift. Submitted for review in Journal of Experimental & Theo
retical Artificial Intelligence (TETA), Taylor & Francis
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In various real time applications like sensor networks, network traffic management, 

security surveillance systems, disease surveillance systems, web log analysis, etc., data is 

being generated from multiple sources resulting in multiple streams. Researchers have 

proposed various methods [164, 165, 166, 167, 168] for clustering of data objects arriv

ing from multiple sources. These methods collect summary of arriving data streams 

in parallel among different computing nodes of a cluster, and then later compute their 

global aggregate on demand. For example, the methods proposed in [164, 166] repeat

edly update the global k-centers using k-mediod clustering over the computing nodes 

in parallel and store them as the global aggregate. Similarly, the method proposed 

in [168] stores parameters related to EM-clustering as a global aggregate and updates 

them with evolving patterns at the computing nodes. In some multi-port algorithms like 

[204, 111, 205,113,112], based upon the characteristics of the incoming objects in each in

coming stream, the streams themselves are clustered into groups that evolve with change 

in characteristics of incoming objects.

6.0.1 Research Gap & Motivation

One major problem associated with any real-time stream (including multi-port streams) 

is that, the rate of arrival of data objects is not fixed. Many data generating systems 

generate data at a varying rate as explained in Part II on page 57. The traditional stream 

clustering algorithms [102,95,103,151,150,152,168,164,166] are not capable of handling 

such varying inter-arrival rates. They run on their own limited stream speed handling 

capability and are not flexible. Hence, they are unfit for such use.

To address this issue, anytime stream clustering algorithms have been proposed. They 

perform anytime online maintenance of micro-clusters for streams that have varying inter

arrival rate of objects. A few anytime stream clustering algorithms [104, 117, 118] have 

already been proposed in literature. However, there are a few drawbacks associated with 

them. ClusTree [104] is a generic technique for anytime clustering of data streams that 

uses a summary structure, also known as ClusTree, to capture streams having variable 

speed in the form of micro-clusters. ClusTree has a drawback of inserting the incom

ing objects using distance computations performed from each object to the means of the 
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aggregated micro-clusters that are stored in internal nodes of the tree. This method of 

insertion doesn't gaurantee the insertion of the object at its most appropriate spatial loca

tion in the tree while preserving spatial locality. This leads to reduction in overall purity 

of the micro-clusters being indexed, especially for high dimensional data. Also, ClusTree 

is not capable of handling noise and detecting concept drift. LiarTree [117] is an extension 

of ClusTree that captures noise and detects concept drift. However each noise to con

cept transition in LiarTree, builds a completely new sub-tree, which again distorts spatial 

locality of the micro-clusters indexed in the tree, and thus suffers drop in their purity. 

SubClusTree [118] is ClusTree's adaptation to subspace clustering.

A concurrent version of ClusTree (uses multi-threading) was proposed for handling 

multi-port data streams in a shared memory environment [206]. However, this work 

presents only a conceptual model without substantiating with experimental analysis.

In this chapter, we propose AnyClus, which is a framework for anytime micro-cluster 

maintenance of variable speed data streams that handles noise, captures concept drift, 

preserves spatial locality, and produces micro-clusters of greater quality. It addresses the 

drawbacks presented above using a proposed variant of R-tree, AnyRTree, which allows 

insertion of objects arriving in the stream with varying inter-arrival rate. We also propose 

a parallel framework, Any-MP-Clus, which handles multi-port streams efficiently and 

produce clustering of high quality.

The rest of the chapter is organized as follows: Section 6.1 gives some preliminary 

concepts; Section 6.2 on the next page presents the proposed framework AnyClus along 

with the proposed data structure - AnyRTree; Section 6.3 on page 137 presents the pro

posed parallel framework Any-MP-Clus; Section 6.4 on page 141 presents experimental 

results & analysis; Section 6.5 on page 150 Section 6.6 on page 151 concludes the chapter 

while giving directions for future work.

6.1 Preliminaries

Let DS represent the incoming data stream, consisting of a set of objects Xi,X2,...Xfc... 

arriving at time-stamps Ti,T2,....Tfc... where X, [x],x]is a d-dimensional object.
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6.1.1 Micro-Clusters (mcs)

Micro-clusters (or mcs) are a popular technique used in clustering of data streams [102, 

103, 95, 150, 104, 117]. It is a very small cluster that stores summary statistics of a few 

very closely related data objects. It is defined as follows:

Definition 6.1. For representing a set of (/-dimensional objects X],...,Xn, a micro-cluster is 

a tuple: mCj=(nj,Sj,SSt), where each of these entries is defined as follows:

• Hj is the number of represented objects in micro-cluster j.

• Sj is a vector of size d storing sum of data values of all the represented objects for 

each dimension, i.e. for a dimension p, Sj[p] = xi-

• SSj is also a vector of size d storing squared sum of data values of all the represented 

objects for each dimension, i.e. for a dimension p, SSjp] = L-lj-vf)2-

The above stream clustering algorithms exploit the additive property of mcs to incre

mentally aggregate incoming data objects. For merging a data object X( into a micro

cluster mcp we do the following operations for each dimension p:

s,(p] = SJp] + .<...(1) ss,(p| = SS,|p| + (.<)2....(2) "i = "i + l-(3)

Also, two mcs (mca & mq,) can be merged into incmer as follows:

S»cr[p] = Sa [p] + SUp] ...(4) SS„,fr[p] = SSa [p] + SS|,[p] — (5) timer = "a + ^-(6)

The mean and radius of a me can be computed as follows:

SiMean(pj) = ^-(7) Radius(pj) =

6.2 AnyClus: The Proposed Framework

AnyClus is the proposed framework for online maintenance of mcs for handling streams 

that have variable and high inter-arrival rates. In its online phase, AnyClus receives data 

objects from the stream, and inserts them into AnyRTree, which stores and maintains mcs 

for the arriving data. AnyRTree is described as follows:
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root

3 16

Figure 6.1: Structure of AnyRTree

6.2.1 AnyRTree

AnyRTree is the proposed hierarchical indexing structure, illustrated in Figure 6.1. It is 

a variant of R-tree, which stores mcs at hierarchical granularities in its nodes, alongside 

the minimum bounding rectangles (MBRs) [122]. There are two types of nodes in AnyRTree: 

internal and leaf. The internal nodes store the following entries: a pointer pt, a minimum 

bounding rectangle MBR, a micro-cluster me (S, SS, n), a buffer b and a noise buffer nb (see 

Figure 6.1). pt points to the root of the child sub-tree underneath the current entry. MBR 

is a d-dimensional rectangle that bounds all the data objects indexed in the child sub-tree. 

me stores the aggregate of all the objects indexed at the leaf level of the underneath child 

sub-tree. Buffer b is another micro-cluster, which is used for temporary local aggregation 

of incompletely processed data objects (see Section 6.2.2 on the following page). It is this 

buffer that enables deferred anytime insertion of data objects into AnyRTree. The noise 

buffer nb is used for handling noise (see Section 6.2.2 on the next page). Entries of leaf 

nodes store a micro-cluster me that summarizes the data objects aggregated in it. They, 

however, do not contain MBR or buffers. This is because inserts at leaf level are final 

and any kind of deferred processing or handling of noise is not required. Definition 6.2 

defines AnyRTree.

Definition 6.2. AnyRTree is a height balanced multi-dimensional indexing structure hav

ing the following properties:

• Each node (both internal and leaf) contains between m and A4 entries. The root has 

at least one entry.

• An entry e in an internal node stores the following entries: (/) a pointer pt to the 

child sub-tree; (//) an minimum bounding rectangle MBR; (Hi) a micro-cluster me;
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(iv) a buffer b; and (v) a noise buffer nb.

• An entry e in a leaf node stores a micro-cluster me.

One can see that AnyRTree stores hierarchy of mcs. A me in an entry of any internal 

node stores the aggregate of the mcs stored in its child, which themselves are aggregates 

of mcs present in their own children. In this way, any me in an internal node summarizes 

all the leaf level mcs indexed in the subtree rooted at it.

6.2.2 Anytime Micro-Cluster Maintenance of AnyRTree

AnyClus handles the incoming stream by continuous insertion of each object into AnyRTree. 

The insertion procedure for AnyRTree is a top-down node by node traversal similar to 

that of an R-tree, with an additional support of anytime interruption and noise han

dling. Anytime interruption means that the insertion of a data object progresses as long 

as the processing time allowance permits, after which it interrupts (even if its insertion 

is not complete) to process a newly arrived object. This is achieved using "buffer and 

hitchhiker" concept [104]. While inserting an object, if time allowance expires before the 

insertion finishes, the object is left inside the buffer of the closest entry (calculated us

ing min-distance) of the node being traversed, and the algorithm proceeds to process the 

newly arrived object. When insertion of another object passes through the same insertion 

path, it picks up the object stored in the buffer and takes it along as a hitchhiker, to finish 

its insertion to the leaf level.

The insertion step also handles noise using noise buffers and enables capture of con

cept drift. An object is treated to be noise with respect to a node in the traversal, if 

merging this object to the closest entry in the node, leads to expansion of the entry's MBR 

by more than 6%. We then insert this noise object into the closest entry's noise buffer. 

We perform periodic checks of the noise buffers to detect any noise to concept transition. 

This is achieved by using a time interval 7. For each entry of a node, after every 7 units 

of time, we check the me in the noise buffer for any possible noise to concept transition. 

If noise becomes a concept, we carry this me as another hitchhiker down for insertion. 

There are two criteria for noise to buffer transition: 1) absorption of a me into entry's 

MBR should lead to less than J% increase in area of entry's MBR; 2) the noise buffer must 

131



6.2 AnyClus: The Proposed Framework

have accumulated at least jB new objects in it. All three parameters - 6, 7 and ft are user 

defined. We give appropriate recommendations for choosing their values in Section 6.4.1 

on page 143.

Algorithm 6.1 on page 134 gives the pseudo code for anytime insertion of a data object 

X into AnyRTree, R. It proceeds in the following steps:

• The algorithm takes an object X to the root node of R and recursively descends 

down the tree to locate the most appropriate leaf node for its insertion.

• At each internal node we encounter in the traversal, we find the closest entry e to X 

(line 3 of Algorithm 6.1 on page 134) using min of min-distances. If there is a tie, we 

break it using the distance of X from the means of the mcs stored in the entries.

• We then check if X is noise with respect to e (lines 4-5). If it is so, we insert it into 

e's noise buffer using Eqs. 1, 2 & 3.

• If we were carrying a hitchhiker A object with us, we also check if it is noise. If so, 

we do the same steps to absorb it into the noise buffer of its nearest entry (line 8).

• At this point in time, we check if a new object has arrived arrives (say Y), we inter

rupt the insertion of X and process Y (lines 12-15). For doing so, we merge X into 

the buffer of e (e.b) using Eqs. 1, 2 & 3, and then quit its insertion. We also merge 

the hitchhiker to the buffer of its nearest entry.

• Next time when we descend down the same path for insertion of another object, we 

carry the me stored in the buffer down as a hitchhiker to complete its insertion (lines 

20-22 of Algorithm 6.1 on page 134). While doing so, we update the statistics in e.mc 

with respect to the descending object X and the hitchhiker H, and then recursively 

descend into the sub tree rooted at e.

• While carrying the hitchiker down, if the subsequent traversal path of descending 

object X and hitchiker fl differ, we merge H into the nearest entry's buffer and 

continue insertion of X (lines 6-10).

• If it is now time to do the periodic check for noise to concept transition for this entry, 

we do the check with the criteria described earlier (lines 17-19). If the transition 
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happens, the noise buffer is merged with a separate hitchhiker h„ and is handled 

separately. It is made sure to reach the leaf level without being locally merged 

anywhere in between. The handling of this separate hitchiker is not depicted in 

Algorithm 6.1 on the next page, for simplicity.

• When we encounter an external node (lines 23-30), we first merge H to its nearest 

entry in the node using Eqs. 4, 5 & 6 and empty it. Then we create a new me 

containing X using Eqs. 1, 2 & 3, and store it as a new entry in the node as shown 

in node 6 of Figure 6.1 on page 130.

o If creation of a new entry has created a node overflow, we split the node into 

two and accommodate the newly created entry. The split operation is similar to 

split of an R-tree node, which can propagate up to the root leading to creation 

of a new root. If however, there is a new object that has arrived and there is no 

time to perform split, we simply merge the two closest entries in this node and 

exit.

We can also enforce a limit on total number of leaf level mcs in the tree. Whenever the 

limit is reached, we don't let the tree grow further, i.e., we don't let any further node splits 

to happen and merge the incoming objects (or mcs) to their nearest entries only instead 

of creating new entries.

The concept of aggregating incoming objects into buffers and later carrying them 

down the tree, is known as local aggregation. More than one data object can get ag

gregated into any of the two kinds of buffers and the aggregated mcs in the buffers are 

carried down as hitch-hikers in a future descent. Local aggregation helps in retaining the 

maximum possible granularity of the object at any given stream speed.

Note here that the buffers store aggregated objects like in AnySC and unlike AnyFI. 

So, only one object is sufficient to be stored in the buffer.

We can clearly observe from the insertion algorithm that it is interruptible and at the 

same time makes best use of available time. AnyRTree is capable of processing very fast 

streams and at the same time use greater time allowances during lower stream speeds 

to refine the clustering model. Whenever, the processing time allowance given to a data 

object is less, it places it in the most appropriate buffer and exits the insertion, rather than
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Algorithm 6.1: Insert-In-AnyRTree

i procedure Insert-In-AnyRTree ()
। Input : AnyRTree node node, Data Object X, Hitchiker H, Hitchiker H„ 
| Output: X inserted into sub-tree rooted at node until time allows

if node is an internal node then
3 e = Cet-Closest-Entry(ho</i’, X); flagctr - 0;
4 if IsNoise(X, e) then
5 1 Merge-MC-To-MC(X, e.nb); flagctr++;
6 end
7 if H * NULL then
8 e)t = Get-Closest-Entry-MCOwi/c, H);
9 if IsNoise(H, eO then Merge-MC-To-MC(//, eh.nb);
10 else if e t eh OR fla^ctr - I then
11 ! Merge-MC-To-MC(H, eh.b); H - NULL;
12 end
13 end
14 if fla^Ctr = 1 then exit;
15 if new object arrived then
16 | Merge-Object-To-MC(X, «•./>);
17 if H r NULL then Merge-MC-To-MC(H, e.b);
18 exit;
19 else
20 if time to check for noise to concept transition then
21 if Check-Noise-To-Concei'tG'.hIO == TRUE then
22 | MERGE-MC-To-MC(r.nh,/!„); Merge-MC-To-MC(H,,, e.mc); e.nb = NULL;
23 end
24 end
25 if e.b / NULL then
26 | Merge-MC-To-MC(H,, H); Merge-MC-To-MC(H, e.mc); e.b = NULL;
27 end
28 Merge-Object-To-MC(X, e.mc); Insert-In-AnyRTree(i’.c/h7(L X, H, H„);
29 end
30 end
31 if node is a leaf node then
32 if H NULL then
33 | ei, = Get-Closest-Entry(w(/c, H); Merge-MC-To-MC(/V, eh.b); H = NULL;
34 end
35 newMC = Create-Micro-Cluster(X); Insert newMC as a new entry in node;
36 if node overflows then
37 if new object arrived then
38 | MERGE-CLOSEST-Two-ENTRiEsfnode); exit;
39 end
40 else Si’LtT-NoDE(»odc);
41 end

giving up all together. And then, it makes the best use of future descents down the same 

path by carrying the object inserted into the buffer as hitchhiker. Similarly, whenever the 

time allowance is more, insertion reaches the most appropriate leaf in the tree. This shows 

that AnyRTree handles variable stream speeds effectively. Also, note that a me closer to 

root would be of coarser granularity, whereas the one at greater depth would be of finer 

granularity. The processing time allowance for an incoming object affects the granularity 

at which it gets absorbed into the tree. Greater the time allowance, greater the granularity 

at which the object gets absorbed.
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6.2.2.1 Time Complexity

The insertion into AnyRTree simply follows a traversal which is logarithmic in height of 

the tree. In the worst case, every data object will reach a leaf node. So, if nmc is the total 

number of leaf level mcs in the tree, the worst case insertion complexity will thus become 

- O(l0Xmnmc), where m is the minimum number of entries in each node of the tree. Note 

that in worst case nmc = N, where N is the data size.

6.2.3 Key Factors of AnyRTree design

We gain the following advantages from the design of AnyRTree:

Figure 6.2: Distance Computations: 
AnyRTree vs ClusTree & LiarTree

Node Ni

Figure 6.3: Illustrating Granular Noise 
Buffers of AnyRTree

• Efficient method of descent in insertion. The major advantage of AnyRTree when com

pared to ClusTree and LiarTree is that the AnyRTree is more closer to the R-tree 

spatial containment principles. AnyRTree additionally keeps MBRs in the entries of 

its nodes along with mcs. While descending into the tree during the insertion of 

an object, an entry is selected for descending down that has the minimum of min

distances from the descending object X, in case of AnyRTree. Whereas, in ClusTree 

& LiarTree, the entry is selected based on minimum distance from the means of the 

mcs present in the entries. This is illustrated in Figure 6.2. It is clear from the figure 

that the object X will descend into the entry whose mean is [i\ in case of ClusTree & 

LiarTree, and the entry with MBR Z? will be selected in case of AnyRTree. So, X will 

be inserted into spatially closer nodes under Z2 than that of Z] in AnyRTree, and 

thus, the object gets inserted into more appropriate leaf nodes than in ClusTree & 

LiarTree. This achieves better, compact and purer mcs (substantiated by experiments
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in Section 6.4.1 on page 143).

• Greater Granularity of Noise Buffers for efficient handling of noise and concept drift. An

other advantage of AnyRTree is its greater granularity in noise buffers. LiarTree 

has only one noise buffer per node, whereas AnyRTree has number of noise buffers 

equal to number of entries in a node. This helps in capturing noise at greater gran

ularity. Consider Figure 6.3 on page 135, which has a node N\, having three entries 

- t’i, e2 & e$, whose MBRs are Z|, Z2 & Z3, and means are p\, P2 & P3, respectively. 

Lets say, we have two noise points detected - npi and np2. Note that npi is spatially 

closer to entry e\ and np2 is spatially close to 1’2- LiarTree would have simply ag

gregated both of them into a single noise buffer which would have led to creation 

of a single aggregate which would have been far away from both t’i and f2- How

ever, AnyRTree keeps separate noise buffers for each entries separately, leading to 

insertion of np\ into noise buffer of t’i and np2 into noise buffer of 02. This keeps the 

noise points more spatially distinct, so that in case they become a concept in future, 

the spatial locality is maintained and the mcs thus formed are purer (see Table 6.3 

on page 145).

• Effective noise to concept transition preserving spatial locality. When noise to concept 

transition takes place, LiarTree creates a new subtree for that resultant me, which is 

indexed as a new entry in node. This new subtree now grows top-down, unlike the 

remaining sub-trees that grow bottom-up. The me resultant of the above transition, 

could now be actually closer to one of the entries in the node. LiarTree forces even 

such spatially close mcs to be inserted into the new sub-tree, thus making them 

spatially far from nearby mcs and thus distorting the spatial locality of the tree. 

However, AnyRTree inserts the such resultant mcs into the sub-tree underneath 

closest entry of the node, so that they are absorbed into spatially closest mcs, if 

required. This results in effectively preserved spatial locality of the tree and as a 

result of which we get more purer mcs. (See Table 6.4 on page 146).
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6.3 Any-MP-Clus

Any-MP-Clus is the proposed parallel framework for anytime clustering of multi-port 

data streams. Figure 6.4 illustrates its work flow. It has two phases - online and offline. 

In the online phase, data objects arriving at variable inter-arrival rate are received at 

multiple computing nodes in parallel and are stored as mcs in separate AnyRTrees for 

each computing node. The online phase executes in batches of tm units of time. After 

receiving a batch, the leaf level mcs captured in AnyRTrees from all the computing nodes 

are processed in the offline phase, while a fresh batch of data objects is captured into 

fresh AnyRTrees at each computing node. These two things happen in parallel and is 

achieved by using multi-threading at each computing node. We have described how each 

computing node captures data objects into AnyRTree in the previous section. We now 

describe the offline processing that happens for each batch of mcs.

6.3.1 Offline Phase

After receiving the stream for ti„ units of time across all the computing nodes, we execute 

the offline phase. In this phase, we process the mcs created in this time window across 

all the machines, aggregate them and efficiently store them in the tilted-time window 

framework. The offline phase has four steps as shown in Figure 6.4. We now explain each 

of these in detail.

Offline PhaseOnline Phase

Figure 6.4: Workflow of Any-MP-Clus
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Figure 6.5: Data Partitioning

6.3.1.1 Partitioning

After executing the online phase, we are left with leaf level mcs in AnyRTrees across mul

tiple computing nodes. For efficient aggregation (merging) of these mcs in parallel, we 

create a spatially disjoint partitioning having equal number of mcs in each computing 

node (or machine) to ensure load balancing. Figure 6.5 shows a spatially disjoint parti

tioning for four machines over a two dimensional dataset. To achieve this, we compute 

the boundaries of the splits (which are medians) such that each partition gets equal num

ber of data objects. Computation of these medians would require entire dataset to be 

present on a single machine. So, it would lead to a very high communication cost if all 

the machines were to transfer their mcs to that single machine. To minimize communica

tion cost, we achieve a similar disjoint partitioning with "almost" equal number of mcs in 

each machine. We take a sample of mcs (say q%) from each machine and then send them 

to all other machines. Every machine now gets the same set of sampled mcs over which 

each machine computes medians equal to number of machines minus 1, with respect to 

one dimension only (as shown in Figure 6.5 for A'-dimension). The dimension that has 

maximum spread is chosen for splitting. Once the medians are computed, the mcs are 

partitioned according to them and moved to their respective machines to achieve disjoint 

partitioning as shown in Figure 6.5. Please note that all the medians are computed over 

the means of the mcs. Also, in case of large number of streams being received, we can use 

more than one dimension for partitioning.

Please note that we use two MPI broadcast calls in total for this step. Median compu

tations are performed locally and doesn't involve any communication.
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Algorithm 6.2: Local-Merging

i
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procedure Local-Merging ()
Input : Machine M)
Output: Leaf-Level mcs of Al। aggregated to coarser granularity
List ml = Mi.microcludcrsLid; RTree R| = Create-R-Tree (ml);
List ml,t.-;C - New-List(); flag = TRUE;
while flag do

I flag = FALSE;
[ foreach me, in ml do

| | if mex.marked == FALSE then
j ( mcu = Get-One-NNOhg.Ri ) 11 gets closest unmarked me;
I if Merged-Radius(mcx, mcu) < t then
! ! | = Merge-MCs (met.mcu); insert mc„lt.r^.lt into ml„,.:i.;

। । mark mcx and mcv as processed in ml; flag = TRUE;
1 else
j | mark mcx as processed in ml; append mcx to mllltd-;
I end
। end
I end

| ml = ml,,.:v: EMi*TY(/n/,Jt.();
| end

6.3.1.2 Local Merging

In this step, every machine aggregates the mcs received from different machines in the 

partitioning step (which are now locally present), into a single set of mcs to be stored 

in Tilted-Time Window Framework (TTWF). The mcs are aggregated to a user-defined 

granularity, using a user defined threshold on maximum radius referred to as t. We do 

an iterative pair-wise merging of mcs based on r, i.e. we merge a pair of mcs only if 

the merged me has radius below t. The smaller or larger choice of t produces mcs at 

finer or coarser granularity respectively. Algorithm 6.2 gives the pseudo code for the local 

merging step. In brief, for every iteration, we iterate through the entire list ml of mcs and 

merge every closest pair of unprocessed mcs mcx & mcv, if the radius of the merged me 

mCmerged is less than t. We use R-tree to index mcs as it aids in finding the closest me in 

logarithmic time. And then we add mcmerge(i to a new list ml„ew, and mark mcx and mcv as 

processed in ml. However, if we do not merge them, we mark mcx as processed in ml and 

add it ml new > to give it a chance to get merged to some other me in the next iteration. After 

processing all the mcs in ml, we proceed to the next iteration where we process mlltew in 

the same way. Finally, when there is no possibility of merging of mcs anymore, we exit 

the loop and present ml as the list of aggregated mcs.

Let mmc be the number of mcs in a given machine. The worst case complexity of find

ing a pair of closest mcs shall be O(mtltc). So, for each iteration, total cost shall be O^rnmc2).
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Since, we do parwise merging, expected number of iterations shall be O(logw,„t). Then 

the worst case complexity of local merging step shall be O(mnic2 log/n„R).

6.3.1.3 Global Merging

After the local merging step at each machine, global merging is done. In this step, we 

perform merging of the mcs across the machines. For this, we transfer mcs lying in the 

strips of width t from all the machines to a master machine. For the distribution shown 

in Figure 6.5 on page 138, we do a pairwise merging of strips - Si & S?; S3 & S4; and S5& 

S^. This merging is also similar to local merging, where we merge micro-clusers based 

on the threshold criteria - r. When the number of streams (or machines in the cluster 

receiving streams) is high, we can use tree-parallel mode of merging as well [36]. This 

would be more efficient than merging all pairs of strips in a single master. The above step 

shall take total number of MPI calls equal to number of machines in the cluster.

Finally, we have merged mcs lying in all the machines along with the globally merged 

mcs in the master machine. All these sets of aggregated mcs are then stored in a Tilted- 

Time Window Framework (TTWF) [98], which is explained in Appendix B on page 212. 

Note that this step would require additional MPI calls equal to number of computing 

nodes.

We can clearly see that, the mcs have been merged in parallel across all the machines 

of the cluster using the steps - local merging and global merging. However, one could take 

an alternative sequential approach to merging, where we transfer all the mcs to a single 

machine and aggregate them (would require MPI calls equal to number of computing 

nodes). However, this leads to a higher merging time. Table 6.5 on page 150 substan

tiates this argument and also shows that purity of mcs resultant of parallel merging is 

approximately same as for those resultant of sequential merging.

6.3.1.4 Tilted-Time Window Maintenance of micro-clusters

We store the aggregated mcs generated for each batch in tilted-time window framework. 

As explained in Appendix B on page 212, TTWF [98] keeps a set of windows (Figure B.l 

on page 212) which records the entire stream from its beginning, but in logarithmically 
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decreasing order of granularity. The average radius of the mcs in n’i and W2 will be the 

lowest and it keeps on increasing from 1P3 to <(’4 and so on. Following the description of 

maintenenance of TTWF from Appendix B on page 212, we now explain how TTWF is 

maintained with mcs:

We start with an empty TTWF. After receiving three batches, we shall have <(’1, W2 and 

tW2 full. These sets of mcs were aggregated with t as the radius threshold. When next 

batch arrives, we merge sets in W2 and tuh and place them in window Wy The radius 

threshold used for this merging will be r • f where f > 1 is a user defined parameter. 

Essentially, we increase the radius threshold for merging, which is controlled by f. In 

general, for merging mcs from two windows to place in window Wj, the radius threshold 

for merging will be equal to t • It • f, where It — i — 2. For window w$, h = 1. The merging 

of the mcs of two windows happen in a similar way as that of local merging step. In 

this way, by exponentially increasing the radius threshold of the mcs in the windows, 

we are progressively achieving coarser granularity of the mcs, and thus giving lesser and 

greater importance to older and recent data respectively. And when we have to perform 

clustering over these mcs, we simply pick up a required subset of windows and perform 

clustering over the mcs present in them. In those clustering results, the recently arrived 

objects will have the highest importance.

Please note the the offline phase of AnyClus is similar to that of Any-MP-Clus, but 

without any merging step. The leaf level mcs of the single AnyRTree are aggregated to 

appropriate granularity and are fed into TTWF as explained above. The whole thing is 

executed only on a single computing node. Also note that, along with the noise to concept 

transitions that happen in the online phase, TTWF also supports in capturing the concept 

drift for both AnyClus and Any-MP-Clus.

6.4 Experimental Results and Analysis

All experiments are conducted on a cluster of 32 computing nodes, where each node is 

an IBM x3250 m4 Server with Intel Xeon CPU E3-1230 v2 @ 3.30GHz (64-bit) processor 

and 32 GB (DDR3 aA§ 1600 MHz) RAM. The experiments on AnyRTree are conducted 

over a single node of the cluster. All algorithms were implemented in C with MPI. The

141



6.4 Experimental Results and Analysis

Table 6.1: Details of the datasets

Dataset No. of Data 
Objects No. of Dimensions No. of

Classes/CI usters
FOREST COVER (FC) 0.58 M 10 7
KDDCUP1999 (KDD) 4.8 M 38 24
SYTHETIC CLUSTER (SC) IM 3 4
MPAGD3.2M (M32) 6 M 2 9464
SFONT1M (SF) 1 M 11 6690
FOF57M (FOF) 57 M 3 1613820
MPAGD1B (M1B) 1 B 10 —

details of the datasets used for experimentation are given in Table 6.1. Forest Cover (FC) 

is a labelled data from UCI repository [200]. It has 0.58M objects with 10 numerical 

attributes. KDDCUP1999 ([207]. Synthetic Cluster (SC) is synthetically generated dataset 

that consists of IM objects with 3 dimensions. It consists of 4 well separate clusters (4 

x 0.2M objects) as well as noise (0.2M objects). The last four datasets are unlabeled and 

taken from Millennium repository and contain astronomical data of galaxies in the sky 

[135].

Ground Truth Generation. The ground truth (class labels) for FC and KDD are already 

available in the dataset. SC has been synthetically generated and class labels are known. 

Ground truth for the remaining datasets has been created using DBSCAN clustering, 

by treating each cluster and noise point as a separate class. The parameters chosen for 

DBSCAN over these datasets are as follows: e=2 & min_pts=5 for MPAGD3.2M (M32); 

and e=l & min_pts=5 for SFONT1M (SF); & e=1 and min__pts=6 for FOF57M (FOF). These 

values were chosen by an experiment on each of these datasets, where we order the data 

objects based on the increasing order of their distances from their kth nearest objects, using 

k = tnin_pts, and a plot is generated with x-axis as the ID of the data object and y-axis 

as the distances computed above. In this plot wherever the curve takes a steep curve, the 

distance at that point is chosen as e [6]. We couldn't run DBSCAN on MPAGD1B (M1B) 

dataset because of limited available computational resources to process such large dataset 

as a result of which we couldn't generate its ground truth.

We perform two sets of experiments. In the first, experiments are performed on a 

single-port stream to compare the effectiveness of AnyRTree (AR) with respect to Clus

Tree (CT) and LiarTree (LT) (Section 6.4.1 on the following page). In the second set, ex
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periments are performed over Multi-Port streams (Section 6.4.2 on page 148), to highlight 

the proposed parallel framework. We have not explicitly conducted a separate experi

ment to show the effectiveness of the sequential AnyClus framework, as the results are 

of similar nature as those for Any-MP-Clus. We evaluate the quality of mcs produced by 

AnyRTree, ClusTree and LiarTree in terms of two parameters - (i) granularity: the num

ber of mcs present at the leaf level of the tree, and (n) purity: the average purity of leaf 

level mcs (see Appendix C on page 214 for definition of purity) The streams with varying 

inter-arrival rate are simulated using Poisson streams that takes an input parameter A and 

generates objects with rate A objects/sec., as explained in Section 4.7 on page 90.

The default values of parameters chosen for AnyRTree are 6 = 5%, 7 = 0.5 sec and 

ft = 10. These parameters have been chosen on the basis of parameter tuning experi

ments conducted (see Figure 6.9 on page 147, Figure 6.10 on page 147 and Figure 6.11 

on page 147) The noise probability for LiarTree has been chosen to be 0.7 as suggested in 

its chapter. The fanout parameters has been set to m=2 and A4=4 for all the trees, as per 

the recommendations given in [104]. Also note that for fair comparision of ClusTree and 

LiarTree with AnyRTree, we don't employ exponential decay in them. AnyRTree doesn't 

have exponential decay as aging is taken care by TTWF. In every experiment, we insert 

the initial 10% of the data into the indexing structure (any of the above) without anytime 

features, and then start the stream.

6.4.1 Experiments on AnyRTree

All experimental results shown in this subsection are performed for single-port stream. 

In each experiment, we insert the entire dataset into each of the summary structures, and 

compare the quality of mcs produced.

First, we compare the purity and granularity of the leaf-level mcs generated by AnyRTree 

(AR), ClusTree (CT) and LiarTree (LT) at different stream speeds, for both labelled (FC & 

KDD) and unlabelled (M32 & SF) datasets. The labels of the curves in all the figures follow 

the notation: <dataset> - <tree>. For example, "FC-AR" indicates that the experiment 

was conducted on FC dataset using AnyRTree. The results presented in Figure 6.6 on 

the next page & Figure 6.7 on the following page show that AnyRTree has generated mcs
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Figure 6.6: Purity of leaf level mcs gener
ated by AnyRTree vs ClusTree & LiarTree 
for FC & KDD at different stream speeds
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Figure 6.7: Purity of leaf level mcs gener
ated by AnyRTree vs ClusTree & LiarTree 
for M32 & SF at different stream speeds

Table 6.2: Granularity of mcs generated by AnyRTree vs ClusTree & LiarTree for FC & KDD 
at different stream speeds

Dataset 50k 100k 150k 200k 250k
FC-CT 450564 352482 281436 220003 182474
FC-LT 449852 349865 274865 214587 176325
FC-AR 423386 340684 266358 202477 163677
KDD-CT 2081826 929505 466450 259595 144552
KDD-LT 2071865 903654 448752 239547 135842
KDD-AR 1717778 856284 404157 225124 123736

with greater purity than ClusTree and LiarTree for both the datasets, especially at higher 

stream speeds where aggregation is high. Also, the difference in purity for KDD (38 di

mensions) is higher than that for FC (10 dimensions). This shows that AnyRTree performs 

better for high dimensional datasets. Also, the results presented in Table 6.2 show that 

the number of mcs generated at leaf level (granularity) is slightly less for AnyRTree. This 

shows that AnyRTree generates less number of micro-clusters with greater purity, which 

implies that the mcs generated are more compact, i.e. AnyRTree keeps spatially closer 

points in the same micro-cluster.

Next, we compare the purity of leaf level mcs generated by AnyRTree, ClusTree and 

LiarTree for a given speed (A=100k ops), while varying the granularity of mcs generated 

over FC and KDD datasets. For each run, we fix the maximum number of leaf level mcs 

to be indexed in the tree and do not let the tree grow beyond it (explained in Section 6.2.2 

on page 131). The results presents in Figure 6.8 on the next page show that even at coarser 

granularity AnyRTree is able to produce high quality mcs.

Next, we compare AnyRTree and LiarTree in terms of their ability to capture noise and
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Figure 6.8: Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for FC & 
KDD for varying granularity at A=100k

concept drift. For this we created a synthetic dataset (SC) of IM objects and 3 dimensions, 

which consists of 4 well separated clusters with each cluster having 0.2M objects in it. 

It also contains 0.2M noise points randomly spread across the dataset. We simulate the 

stream in such a way that the objects arrive cluster by cluster and noise points come arbi

trarily. This simulates evolving concepts in the stream. For fair comparison, we run this 

experiment in non-anytime mode (without fixing any limit on processing time allowance 

for any incoming object) and insert the objects into AnyRTree and LiarTree. We measure 

the purity of mcs produced intermittently at regular interval of 1 second. The results 

presented in Table 6.3 show that the purity of the leaf level mcs produced is higher for 

AnyRTree than LiarTree at all the time intervals measured. This shows its effectiveness in 

capturing noise and concept drift as explained in Section 6.2.3 on page 135.

Table 6.3: Purity of leaf level mcs produced by AnyRtree vs LiarTree for SC dataset

Time Interval (Sec.) 1 2 3 4 5 6 7 8 9 10
Purity of LiarTree 0.79 0.81 0.81 0.78 0.77 0.79 0.80 0.78 0.82 0.79
Purity of AnyRTree 0.88 0.89 0.91 0.89 0.87 0.90 0.90 0.89 0.89 0.88

We also compare the preservation of spatial locality for AnyRTree and LiarTree. Both 

AnyRTree and LiarTree are based on R-Trees and it is a well known fact that R-trees are 

very efficient in executing e-neighborhood and A'-nearest neighbor queries. The greater 

the preservation of locality in an R-tree, the better the performance of above queries. So, 

we can check performance of both the queries over AnyRTree and LiarTree to establish 

which one has better preservation of spatial locality. We use DBSCAN Clustering and 

A:-NN Classifier algorithms to check for the performance of neighborhood and nearest 
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neighbor queries respectively, as these queries are extensively used in them (> 95% of 

execution time). For this, we index a complete dataset into both AnyRTree and LiarTree 

and then convert Liartree into an R-tree by bottom-up construction of MBRs with the leaf 

level mcs as data points. AnyRTree intrinsically has MBRs in its nodes, so there is no 

need for any such conversion. So, finally we will have two R-trees - one from LiarTree 

and one from AnyRTree, both of which have MBRs in the internal nodes and data objects 

(means of mcs) in the leaf nodes. We execute DBSCAN and k-NN Classifier [121, 208] 

over the objects in the leaf level, using the above R-trees for queries. We do this for M32 

dataset with c=2 and miti_pts=6 for DBSCAN, and k=4 for k-NN Classifier, and compare 

the run-time performance. While indexing the complete dataset, the speed of the stream 

was set to /\=50k for both the trees. We run this experiment in two modes. In the first, we 

fix the number of leaf level mcs to 0.5M. This will fix the total number of queries executed. 

In the second, we don't enforce any such limit. The results presented in Table 6.4 clearly 

show that the performance of DBSCAN algorithm has always been better for AnyRTree 

than LiarTree, in both the modes. Also, one can see that the memory requirement is 

only a little higher for AnyRTree in the first mode, where the number of mcs indexed is 

fixed. This is due to increase in granularity of buffers. However, in the second mode, the 

memory is lesser than LiarTree due to lesser number of mcs indexed in AnyRTree. This 

establishes the ability of AnyRTree to preserve spatial locality without any substantial 

increase in memory requirement. Also note that DBSCAN is very commonly used for 

offline clustering in typical stream algorithms. Thus usage of AnyRTree also makes the 

offline clustering efficient.

We then conduct experiments to give recommendations for choosing appropriate val-

Table 6.4: DBSCAN and k-NN Classifier Exec. Time: AnyRTree vs LiarTree on M32 dataset

With limit on no. of mcs Without limit on no. of mcs
No. of mcs 0.5M 1.53M
Purity of mcs 0.85 0.99

LiarTree Memory Occupied by the tree 521 MB 1404 MB
DBSCAN Exec. Time 763 sec. 1816 sec.
k-NN Classifier Exec. Time 312 sec. 803 sec.
No. of mcs 0.5M 1.39M
Purity of mcs 0.92 0.99

AnyRTree Memory Occupied by the tree 559 MB 1256 MB
DBSCAN Exec. Time 621 sec. 1396 sec.
k-NN Classifier Exec. Time 264 sec. 617 sec.
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Figure 6.9: Purity of leaf 
level mcs generated by 
AnyRTree with variation 
in J

Figure 6.10: Purity of 
leaf level mcs generated 
by AnyRTree with varia
tion in 7

Figure 6.11: Purity of 
leaf level mcs generated 
by AnyRTree with varia
tion in /•>

ues of user defined parameters - d, 7 and /I. Please note that 6 is the percentage of area 

expansion permissible to treat an object as concept (not noise) while inserting into a sub

tree; 7 is the time interval after which we check for any possible noise to concept transition 

for a given entry of a node; is the minimum number of objects to be aggregated into a 

noise buffer, before we start treating it to be concept. Figure 6.9, Figure 6.10, Figure 6.11 

show the purity of mcs produced for SC and KDD datasets with variation in 6, 7 and 

values respectively, while keeping the other two to their default values. Two values of 

stream speed (A) has been chosen - 100k & 200k. We can observe in Figure 6.9 that when 

the value of d is too less, it is considering true concepts also as noise, which is distorting 

purity of mcs produced. And when it is high, the purity is distorted even then as noise 

points are considered as true concepts. So, value of b between 5% to 10% is appropriate 

as observed for both the datasets at both the stream speeds. Regarding the value of 7, 

Figure 6.10 shows that smaller the value of 7 more purer are the mcs produced. However, 

until it becomes too high, the purity of mcs doesn 't have much change. So value of 0.1 

to 0.5 sec. is appropriate. One can choose this depending upon the stream speed as well. 

The value of ft, when too low or too high, reduces purity (see Figure 6.11). It has to be 

optimal. This is because at low values, noise is immediately made concept. So, it has 

to be sufficiently high to get high purity. Typically one can choose /I to be equal to the 

min_pts paramater used in offline DBSCAN clustering. Value above 10 is recommended 

as observed for both the datasets. Please note that the above recommendations have been 

used and worked well with other datasets as well.
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6.4.2 Experiments on Any-MP-Clus

In this section we conduct experiments to evaluate Any-MP-Clus. We use ClusTree, 

LiarTree and AnyRTree in the online phase, for its evaluation. In all the experiments 

presented in this subsection, we process the entire dataset and then take the results. The 

value of the parameter f, which controls the granularity of mcs in windows of TTWF, 

is chosen to be 1.1. The value of i.e. the duration of window n’j in TTWF has been 

chosen to be 2 seconds for FOF dataset and 10 seconds for M1B dataset. The value of t 

(maximum radius threshold for n>i) has been chosen to be 0.005 for FOF and 0.05 for Ml 13. 

The value of q, which is the percentage of data objects communicated to other machines 

for median computations, has been chosen to be 10%. We evaluate the quality of mcs 

produced over FOF dataset using with average purity of the mcs, using the class labels 

generated by DBSCAN. For M1B dataset, we use Silhouette co-efficient instead, as we 

couldn't generate its ground truth.

a CT - X 32 — A- - I I - X 32 ------ A-------- AR - X 32

-H----CI-X 16 — O- I I -N 16 ------a-------- AR-X 16

Figure 6.12: Purity of mcs generated by 
AnyRTree vs ClusTree & LiarTree in vari
ous windows of TTWF over FOF dataset
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Figure 6.13: Sil. Co-eff. of mcs gener
ated by AnyRTree vs ClusTree & LiarTree 
in various windows of TTWF over M1B

First, we measure the quality of mcs produced by ClusTree, LiarTree and AnyRTree 

in different windows of the TTWF for FOF and M1B datasets, while using 16 and 32 

machines of the cluster. The number of machines of the cluster indicates the number of 

arriving streams. The stream speed has been fixed to A=150k ops across all the machines. 

The results shown in Figure 6.12 & Figure 6.13 indicate that the quality of mcs produced in 

windows 7t’i and wz are the highest and it decreases as we progress to the later windows. 

This is because of greater aggregation present in the later windows. The experiments also
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Figure 6.14: Quality of DBSCAN cluster
ing for mcs produced by AnyRTree, Clus
Tree & LiarTree in windows wl, w2 & w3 
over FOF dataset

Figure 6.15: Purity of mcs in n’i generated 
by AnyRTree at different stream speeds 
for varying number of machines over FOF J o
dataset

establish the fact that AnyRTree has been consistently performing well in all the windows 

(especially in the latest windows), when compared to ClusTree and LiarTree.

Next, we measure the quality of clustering result produced by applying DBSCAN 

clustering over the mcs generated by AnyRTree vs ClusTree & LiarTree. We take all the 

mcs from windows wl, w2 and w3 (in case of all three trees), while varying the number 

of machines (streams). While performing DBSCAN over the mcs, we treat their means 

as stand-alone data objects and apply clustering over them. For DBSCAN clustering 

over FOF dataset, we choose e=l and min_pts=6. And for M1B, we choose c=2 and 

niin_pts=6. We measure quality of clustering for FOF using purity and for MPAGD1B 

using silhouette. The stream speed has been chosen to A=150k ops across all the machines. 

The results are presented in Figure 6.14. The results show that the quality of clusters 

produced is greater for AnyRTree than the remaining two. Also, the quality of clustering 

increases with increase in number of machines due to increase in granularity of the mcs, 

which is resultant of increase in number of mcs processed.

Next, we measure the purity of mcs produced in window nq at different stream 

speeds, while varying the number of machines used in the cluster, for AnyRTree over 

FOF dataset. Please note that the number of machines used is equal to number of streams 

being captured. The results presented in Figure 6.15 show that with increase in number 

of streams, the purity of the mcs achieved also increases at all the stream speeds. This 

is because with increase in number of streams, the overall granularity also increases and
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Table 6.5: Parallel Merging Time vs Sequential Merging Time

Strategy Purity Merging Time
Parallel Merging 0.9542 31 sec.
Sequential Merging 0.9551 341 sec.

thus achieving mcs of greater purity.

Next, we compare the efficiency of parallel merging with that of sequential merging. 

In parallel merging, we merge mcs using local merging and global merging steps as 

described in the offline phase of the proposed framework (See Section 6.3.1 on page 137). 

This parallel merging leverages a cluster of machines and hence is faster. In sequential 

merging, we instead transfer all the data objects from multiple machines to a single master 

machine and merge all of them over there. Table 6.5 shows the purity of mcs produced 

by both strategies along with the time taken to perform each of them over FOF dataset 

at stream speed of A=150k ops, for a single window of duration f/„=60 sec. The results 

clearly show that the purity of mcs is almost the same in both the cases, whereas the total 

merging time using parallel merging over 32 nodes is very less when compared to that of 

sequential merging. Similar results were observed for other datasets as well.

6.5 Main Contributions

• We propose AnyClus, which is a framework for anytime micro-cluster maintenance 

of variable speed data streams that handles noise, captures concept drift, preserves 

spatial locality, and produces micro-clusters of greater quality. It addresses the 

drawbacks of ClusTree and LiarTree and hence produces mcs of greater quality.

• AnyClus uses a proposed variant of R-tree, AnyRTree, which is an indexing structure 

that stores micro-clusters at hierarchical granularities using R-tree spatial contain

ment principles. AnyRTree enables the above features of AnyClus.

• We also propose a parallel framework, Any-MP-Clus, for anytime micro-cluster 

maintenance of multi-port streams over distributed memory architectures (cluster 

of computing nodes). This is the first such framework proposed. Any-MP-Clus 

also uses AnyRTree at each computing node to capture incoming streams.
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6.6 Conclusions & Future Work

6.6.1 Conclusions

In this chapter, we proposed AnyClus & Any-MP-Clus, which are frameworks for any

time micro-cluster maintenance of single-port and multi-port data streams respectively. 

They use a proposed variant of R-tree known as AnyRTree for indexing the incoming 

stream objects (arriving with variable rate) in the form of micro-clusters of hierarchical 

granularity Both AnyClus & Any-MP-Clus store the micro-clusters in a logarithmic 

tilted-time window framework. Any-MP-Clus uses a simple parallel merging strategy 

that leverages the cluster of computing nodes to merge and aggregate micro-clusters.

The experimental results presented in Section 6.4.1 on page 143 show that AnyRTree - 

1) produces micro-clusters of greater quality and compactness, 2) captures noise and concept drift 

more effectively, and 3) preserves spatial locality more effectively leading to improvement in offline 

clustering performance, when compared to ClusTree and LiarTree. The experiments also 

establish the efficiency and scalability of Any-MP-Clus.

6.6.2 Future Directions

In future, we can work upon changing the representation of both kinds of buffers to 

contain multiple micro-clusters, which can improve their quality. One can also design a 

similar parallel framework for anytime subspace clustering as well.
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Data Clustering is one of the most commonly used data mining technique for knowl

edge discovery. Clustering groups data into meaningful groups, known as clusters, 

such that the dissimilarity between objects belonging to the same cluster is minimized 

and dissimilarity between objects from different clusters is maximized [6]. A few com

monly used clustering algorithms include - partitioning based clustering algorithms (K- 

means [26], K-mediods[209]), density based clustering algorithms (DBSCAN[34], OPTICS 

[35], SNN [210]), hierarchical clustering algorithms (SLINK [30], CLINK [6], ALINK [6], 

BIRCH[203]), subspace clustering algorithms (CLIQUE [211], MAFIA[37], ENCLUS [212], 

PROCLUS [213], ORCLUS [214], FINDIT [38]), grid based clustering algorithms (STING 

[144], CLIQUE [211], MAFIA [213], WAVECLUSTER [215]) etc. These algorithms are 

commonly used in many applications such as satellite image segmentation [216], noise 

filtering and outlier detection [107], clustering of bio-informatics data [217], finding halos 

in cosmology [218], prediction of stock prices [219], etc.

Due to advent of Big Data, there is a huge data deluge created as generation of data 

has become faster and cheaper. To discover knowledge from such data, parallel clustering 

algorithms have been proposed to work over distributed memory architectures. Their de

sign is usually data parallel, where they distributed data among the available computing 

nodes of a cluster and process each chunk in parallel. A few such solutions include - paral

lel partitioning based clustering algorithms [29, 220, 27, 220, 28, 221, 222], parallel density 

based clustering algorithms [36, 223, 86, 224, 87], parallel subspace clustering algorithms 

[89, 225, 226, 227, 228, 229], parallel hierarchical clustering algorithms [88, 230, 33, 231], 

parallel grid based clustering algorithms [232, 233, 234], etc. These solutions are typically 

based on high performance computing frameworks such as MPI, Hadoop, Spark, etc., 

which run the algorithms on a cluster of computing nodes.

Step I: Data Distribution

Step 2: Retrieval of Extra Data

Step 3: Local Computation

Step 4: Global Merging
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Figure III.l: Workflow of a Parallel Clustering Algorithm

A typical parallel clustering algorithm has its work-flow as shown in Fig. III.l in the 

previous page. It has the following steps:

1. Data Distribution: In this step, the data is distributed among all the computing nodes 

of the cluster depending upon the design and requirements of the algorithm. Dis

tribution of data enables each computing node to process the data chunk allocated 

to it in parallel. Load balancing in terms of memory and computational overhead is 

an important criterion to be considered while distributing the data to achieve opti

mal speed up of the parallel algorithm. Commonly used distribution strategies are 

random partitioning and spatial partitioning (like kd-tree).

2. Retrieval of Extra Data: This is an optional step and is usually used by algorithms 

using spatial partitioning. In this step, each computing node fetches data, required 

for local computation, from other computing nodes of the cluster. This require 

inter-node communication. Some algorithms do not require any data from other 

computing nodes, for example - parallel K-means. Whereas some algorithms might 

require data from all other computing nodes, for example - parallel DBSCAN that 

uses random partitioning.

3. Local Computations: In this step, each computing node executes a local step for the 

portion of data allocated to it and produces a local clustering result. This step may 

require inter-node communication, depending upon the algorithm.

4. Global Merging: In this step, the local clustering result from all the computing nodes 

are merged either sequentially or in parallel to give a global clustering result. An 

algorithm may iterate over steps 2-4, if required by its design.

In the above workflow, data distribution is the step that plays a pivotal role in reducing 

the cost of data communication in the local computations step or in iterations global and 

local computations. It can influence the overall performance of the algorithm by several 

factors. Some parallel algorithms simply use random distribution [31, 88, 231] and some 

parallel algorithms that execute spatial queries (like neighborhood and nearest neighbor 
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queries) use a distribution that preserves spatial locality of some points or majority of 

points (except the boundary points) [235, 86, 120, 236, 36, 33, 230]. By preservation of 

spatial locality, we mean that for a given data point p, the data points surrounding p 

are available locally in the same compute node. Spatial locality also leads to minimum 

possible overlap in the search space of different computing nodes. Consider Fig. III.2 on 

previous page, which shows three kinds of distributions over four computing nodes - A, 

B, C and D. The first distribution (a) has no preservation of spatial locality in distribution 

of data points to different machines. The search space of all the machines overlap a lot 

and is almost the same. In the second distribution (b) the data points are somewhat 

spatially organized. However, there are some overlaps in their search space. In the third 

distribution (c) the data points of are perfectly spatially organized with no overlap in the 

search space of the machines.
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Figure III.2: Spatial locality preservation (a) None (b) Moderate (c) High

Preservation of spatial locality in the distribution helps in reducing the communication 

cost as well as the computation cost involved in steps 2,3 & 4 of the algorithm. Consider 

the case of parallel DBSCAN. In the local computations step, this algorithm executes e- 

neighborhood queries for all the points in every computing node. Consider the computing 

node A of Figure. III.2. To compute e- neighborhoods correctly for all the points in it, we 

shall require to fetch extra data points from all other computing nodes in case of Figure 

III.2 (a), as epsi/oH-boundaries for some points of node A are overlapping with the search 

spaces of all other computing nodes. We can clearly see that there no spatial locality 

maintained in the distribution shown in Figure. III.2 a. For distribution shown in Figure 

III.2 (b), a lesser number points shall be needed to be retrieved, and still fewer points in 

case of distribution IH.e (c). This is because spatial locality is best preserved in distribution 

(c). Thus, a good spatial distribution helps in reducing inter-node communication of step
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2, make local computations in step 3 efficient, and as well make the merging step (step 4) 

efficient.

Literature reveals only very few distribution strategies used in parallel clustering al

gorithms. They include - random distribution [31, 88, 231], kd-tree distribution [235, 86, 120, 

236,36] and grid/cell-based distribution [237, 33,230,224]. Initial approaches to parallel clus

tering had used random partitioning [238, 239, 240, 241, 242, 88]. However, researchers 

soon realized that it become a performance bottleneck for many clustering algorithms like 

density based and hierarchical clustering algorithms. So recent algorithms use spatial par

titioning to get more efficient design of the parallel algorithms [86, 224, 36, 230, 89]. Other 

algorithms which don't rely on spatial locality principles simply use random distribution.

Research Gap & Motivation

Here are a few drawbacks associated with the existing data distribution schemes:

• Although the above distribution schemes are being used for parallel data mining 

algorithms, they are not specifically designed for such use. Also, they don't cap

ture any specific data access patterns associated with any typical spatial parallel 

clustering algorithms. One can make tailor made partitioning scheme for a class of 

algorithms like density based or hierarchical clustering algorithms, which specifi

cally capture the design requirements of that respective class.

• Although, the above data distribution schemes achieve good spatial locality, the 

distribution scheme however is static. That is, once the partitioning is done, it can't 

be incrementally updated. We shall have to redo the entire partitioning to include 

new data points. This renders them unfit for usage in dynamic incremental datasets.

• Another drawback associated with these schemes is that they require to scan (and 

store sometimes) the entire data into memory for computing the partition bound

aries. It would thus become very expensive to use them for distributing large 

datasets. This is because, memory in a single machine may not be sufficient to 

accommodate the entire dataset, and thus leading to a lot of disk I/O. To the best of 

our knowledge, in only one instance, kd-tree like distribution has been done for dis
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tributing large data using sampling [223] for eliminating disk I/O. This partitioning 

scheme is also static.

To, address the above limitations, we present two kinds of data distribution schemes 

in this part. Chapter 7 on the following page presents a few data distribution schemes for 

large static datasets, while addressing the specific data access patterns of density based 

and hierarchical agglomerative clustering algorithms. It also presents a few distribution 

schemes for datasets that don't fit into main memory, while eliminating the need for disk 

I/O. Chapter 8 on page 185 presents a dynamic distributed data structure known as DD- 

Rtree, which is meant for data distribution for large dynamic incremental datasets.
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Chapter 7

Data Distribution for Large Static 

datasets

In this chapter we present a few data distribution strategies proposed for distributing 

large static datasets over a cluster of computing nodes. We evaluate each of these in 

terms of performance of parallel clustering algorithms. Before presenting the methods 

and experimentation, we give a brief survey of parallel clustering algorithms proposed 

in literature for distributed memory architectures, with specific discussion on the data 

distribution strategy they employ.

7.1 Survey of Parallel Clustering Algorithms

We survey the existing MPI based parallel clustering algorithms in four broader cate

gories and are explained below. Table 7.1 on page 168 summarizes the data distribution 

strategies used by these algorithms.

• Jagat Sesh Challa, Poonam Goyal, Nikhil S, Amogh Sharma, Sundar Balasubramaniam, Navneet Goyal, 
"Effective Data Distribution Strategies for Parallel Spatial Clustering Algorithms based on MPI", To be 
submitted to ACM TKDD.
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7.1 Survey of Parallel Clustering Algorithms

7.1.1 Parallel partitioning-based clustering algorithms

Partitioning based clustering algorithms are those algorithms that create k number of 

partitions in the data, while reducing the inter-cluster similarity and increasing the intra

cluster similarity of data points in each cluster. The clustering is performed iteratively, 

until the it converges to the expected thresholds on distances specified above. The most 

basic partitioning based clustering is the K-means algorithm [6]. It starts with k centroids 

and assigns all the points in the dataset to their nearest centroid. Then the centroids 

are updated with respect to the membership obtained. The above steps are iteratively 

repeated, wherein we get new centroids after every iteration. The iterations continue 

until a threshold is reached on the inter-cluster similarity. Variations of k-means clustering 

include k-medians [243], k-mediods [29], Fuzzy C-means [244], etc. k-medians computes 

medians at every iteration instead of mean, k-mediods computes mediods, which are 

actual points in the dataset, after every iteration. This makes it more robust to noise 

and outliers than k-means. Fuzzy C-means is a variant of k-means, which performs soft 

clustering.

Parallelization of k-means algorithm is very straight-forward for an MPI based dis

tributed memory architecture. Initially data is randomly distributed to each computing 

node and a list of global centroids is created, which is known to each computing node. In 

every computing node, data points are assigned to the nearest centroid and the centroids 

are updated. Then an average of all the centroids is taken globally leading to a new set 

of global centroids. Using these new global centroids the next iteration begins and in this 

way the algorithm goes on for subsequent iterations until a threshold criteria is met.

A few implementations of MPI based k-means algorithm that have been proposed 

include [28, 245, 246, 27]. All of them are based on the workflow explained above. [28] 

presented the basic parallel k-means clustering algorithm with the above workflow. [245] 

used parallel k-means to cluster large remote sensing data. [246] presented parallel k- 

means algorithm using coresets. [27] presented an efficient parallel algorithm for selection 

of initial seeds of k-means clustering.

A few implementations of k-means on MapReduce and Spark frameworks have also 

been presented in literature [247, 221, 248, 249, 250, 29, 251].
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7.1 Survey of Parallel Clustering Algorithms

7.1.2 Parallel density-based clustering algorithms

DBSCAN is the most commonly used density-based clustering algorithm [34]. It finds 

clusters of data points with respect to two parameters e(>0) and MinPts(<0). It computes 

e-neighborhood for each point in the dataset and labels the point as core, border, or noise. 

A core point initiates a cluster and the cluster is expanded by computing neighborhoods 

for points in the e-neighborhood of the above core point, until no core point is found. 

This completes the expansion of the cluster. The next random point from the remaining 

unprocessed points is visited to extract another cluster and this process continues until 

all the points are processed. The time complexity of the DBSCAN algorithm that uses 

R-tree for neighborhood queries, is O(n logn) where n is the number of data points to be 

clustered.

Early approaches to parallelization of DBSCAN were based on master-slave compu

tation model [238, 239, 252, 253, 254, 255, 256]. All these approaches simply distribute 

data to the slave computing nodes randomly without maintaining any spatial locality. 

However, they do maintain load balancing to ensure maximum speed up. The first such 

parallel approach to DBSCAN, known as PDBSCAN [238], uses dR*-tree for region queries. 

dR*-tree is a variant of R*-tree [257] in which R*-tree is replicated over multiple comput

ing nodes for efficient data access on a distributed system. The next approach [239] gave 

various optimizations to DBSCAN and proposed a parallel version too. This parallel ver

sion distributes data over multiple computing nodes randomly, performs local clustering 

and then the local results are merged to get global clustering at the master node. The next 

approach [252] gave a parallel DBSCAN algorithm in which DBSCAN is divided into two 

major operations: clustering assignment and neighborhood querying. Master node per

forms clustering assignment while all slaves perform neighborhood queries in parallel for 

the data partition they have. Random partitioning is used here as well. [253] also presents 

a similar master-slave model based parallel DBSCAN in which each slave keeps a copy 

of an R*-tree. It is very much similar to the previous approach. [256] also gave a parallel 

DBSCAN, named as P-DBSCAN, which distributes the data among several nodes, builds 

Priority R-tree on each node, runs local DBSCAN, and aggregate the local results to get 

global clustering results. Priority R-tree is a variant of R-tree which performs efficient

160



7.1 Survey of Parallel Clustering Algorithms

region queries. It uses a kind of projection based distribution for data partitioning, which 

is spatially disjoint.

The major drawback of master-slave model is the sequential data access pattern and 

serialized computations which affects the scalability of the parallel algorithm. All the 

approaches described above incur high communication cost between master and slave 

nodes. The parallelization during the merging phase is also limited. And most impor

tantly they don't exploit the spatial locality exhibited by neighborhood queries used in 

DBSCAN clustering during their data distribution phase and most of them simply use 

random distribution. All of the above reasons render the master-slave model for DB

SCAN inefficient.

The first approach to DBSCAN that breaks the sequential data access pattern in a 

solid way is PDSDBSCAN [86]. To do so it uses union-find (UF) data structure, which 

also makes it amenable to parallelization and achieves better scalability. The authors 

presented the parallel versions PDSDBSCAN-D and PDSDBSCAN-S for distributed and 

shared memory systems, respectively. The same authors have given two more hueristic- 

based approximate DBSCAN clustering algorithms - Pardicle [87] and BD-CATS [223], 

which are based on PDSDBSCAN-D. These two algorithms are capable of processing 

massive datasets with some approximation in the results. All the above algorithms use 

kd-tree based data distribution, perform local clustering at each node, and then the local 

clusterings are merged into a global clustering output.

Recently, a grid-based parallel implementations of DBSCAN, HPDBSCAN [224], has 

been presented. In this algorithm, following an initial random distribution, points are re

distributed to computing nodes using a cost heuristic, thus achieves a distribution similar 

to a grid. Then local computations are performed on each computing node and then the 

results are merged into global clustering. Another grid-based DBSCAN, GridDBSCAN 

[36], has been proposed recently which reduces the total number of neighborhood queries 

as well as the search space for each query, while producing exact DBSCAN clustering 

output. It uses Grid-R-tree (described in Chapter 2 on page 19) for efficient computation 

of cell-wise neighborhoods. GridDBSCAN is parallelized for distributed memory, shared 

memory and hybrid architectures. It uses kd-tree based partitioning for data distribution, 

performs local GridDBSCAN clustering on each node and merges the local clusterings in
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7.1 Survey of Parallel Clustering Algorithms

a tree-parallel way. The experimental results claim better scalablity and run-time than the 

previously proposed MPI based exact clustering approaches.

Apart from MPI based solutions we have solutions for GPGPU based systems, MapRe

duce/Hadoop, Spark and hybrid systems. A few GPGPU based parallel DBSCAN imple

mentations are proposed in [237, 258, 259, 260]. A few Map-Reduce based implementa

tions are proposed in [261, 262, 263, 264, 265, 266]. Similarly, a few Spark based imple

mentations are proposed in [267, 268, 269, 270, 271, 272].

7.1.2.1 Parallel OPTICS

OPTICS (Ordering Points To Identify the Clustering Structure) is a hierarchical density

based clustering algorithm [35]. OPTICS addresses major limitation of DBSCAN, i.e., the 

problem of detecting meaningful clusters in a dataset that has varying density. OPTICS 

gives an overview of the cluster structure of a given dataset with respect to density and 

contains information about every cluster level. For this, OPTICS generates a linear order

ing of points where spatially closest points are arranged as neighbors. Additionally, for 

each point, a spatial distance (known as reachability distance) is computed which repre

sents the density. Once the ordering and the reachability distances are computed using e 

and MinPts, we can now generate clusters for a particular value of e' (known as clustering 

distance), where e'< e.

The first parallel version of OPTICS clustering was proposed in [235]. They re-engineered 

the algorithm using Prim's MST algorithm and presented a variant called MST-OPTICS. 

MST-OPTICS breaks the sequential data access pattern of OPTICS algorithm and makes 

it amenable to parallelization. They present POpticsD which is the parallel version that 

works over distributed memory architectures. POpticsD uses random distribution and 

doesn't rely on spatial locality in distribution. On each partition, a local MST is con

structed in the local computations phase, and all those MSTs are merged into a global 

MST. Clustering results obtained by this approach are comparable but not exactly the 

same as that obtained by classical OPTICS algorithm.

The next parallel approach is DOPTICS, which is presented in [236, 120]. DOPTICS 

is data parallel approach that uses spatial data partitioning using kd-tree. Data is then 

distributed among the processing elements and stored locally in R-trees [122]. At each 
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processing element, OPTICS is run locally and a hierarchical merging of cluster-orderings 

is done to get the final cluster-ordering. The clustering results obtained are identical to 

classical OPTICS.

There are no known parallel implementations of OPTICS for MapReduce and Spark 

in literature.

7.1.2.2 Parallel Shared Nearest Neighbor Clustering

Shared Nearest Neighbor Clustering (or SNN) is a density-based clustering algorithm that 

uses a similarity measure known as SNNSimilarity [210]. SNN-similarity for two points is 

defined as the number of shared neighbors if they are in each other's nearest neighbors 

lists. A DBSCAN like algorithm is applied over the core points (using SNNsimilarity) to 

identify clusters of arbitrary size and shape and filters out noise/outliers. It is especially 

suited for high dimensional data.

To the best of our knowledge there is only attempt of parallelization of SNN for MPI 

based clusters [230], The authors also present parallel versions for shared memory and 

hybrid architectures. They first presents R-SNN algorithm which is a modification to the 

classical SNN algorithm. R-SNN uses uses R-tree for nearest neighbor computations and 

is more optimized in terms of memory requirement. It is a single pass algorithm and pro

cesses data cluster-wise. A SPMD (Single Processor Multipe Data) based parallelization 

of R-SNN, Parallel R-SNN, is then presented. Parallel R-SNN uses kd-tree partitioning for 

data distribution, then local computations are performed over each partition and then the 

local results are merged to a global clustering. The spatial partitioning ensures good load 

balancing and makes the merging step efficient.

A parallel JP-Clustering algorithm for MapReduce framework has also been proposed 

[273]. More recently a parallel version of SNN has been presented for MapReduce frame

work [274]. A variant also exists for GPGPUs [275]. There is no known variant for Spark 

in the literature.
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7.1.3 Parallel hierarchical clustering algorithms

Hierarchical clustering is also one of the popular techniques of clustering. There are two 

kinds of hierarchical clustering proposed in literature:

i. Top-down, also known as Hierarchical Divisive Clustering (HDC). It starts with consid

ering all the points in a single cluster and then recursively splits the clusters until 

some criteria is met [6]. The criteria could be a limit on inter-cluster distances or on 

number of clusters.

ii. Bottom-up, also known as Hierarchical Agglomeratwe Clustering (HAC). It starts with 

considering individual point as a cluster and then repeatedly merges the closest 

pairs of clusters until one of the above criteria is met.

Figure 7.1: Dendrogram

The result of any of the above clustering techniques is a dendrogram (see Fig. 7 A), 

which is a tree-like structure showing the clusters agglomerated at each level. There are 

many variants of HAC such as AverageLINK [6], SLINK [30], CLINK [6], etc. But the most 

popular and widely used among them is the single-linkage or SUNK algorithm. HAC's 

variants differ from each other in terms of the ways the proximity distance between a pair 

of clusters is defined. SLINK algorithm has both time and space complexity of O(n2).

The early approaches of parallel hierarchical clustering were based on similarity ma

trix [240, 241, 242]. The first parallel hierarchical algorithm was presented in [240]. It 

has a time complexity of O(n2) and was based on single instruction multiple data model 

(SIMD) that uses shuffle exchange network to access similarity matrix and input data. The 

next approach was presented in [241], which uses re-configurable optical buses (AROB) 

architecture. The limitations of the above two approaches is that they are designed for 

specialized parallel architectures. A MPI-based approach was presented in [242]. In this 
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approach, similarity matrix along with the data points is distributed across multiple nodes 

and then synchronized at each merging step. The clustering quality is dependent on the 

chosen input parameter threshold. The above similarity matrix based approaches incur a 

high communication cost for iteratively updating the similiarity matrix. This limits their 

performance & scalability, and renders them unfit to process large amount of data. Note 

that the above approaches don't employ any spatial partitioning scheme to distribute data 

among the processors.

In more recent approaches, SLINK algorithm has been viewed as an Minimum Span

ning Tree (MST) problem and parallel SLINK as constructing MST in parallel. An MPI 

based distributed memory parallel clustering algorithm, known as CLUMP was proposed 

[231]. They have considered whole data as graph which is partitioned randomly into 

smaller sub-graphs composed of complete bipartite graphs, then computed MST for each 

sub-graph. These local MSTs are merged to get the final MST. The basic idea is to min

imize the communication cost at the expense of redundant computations. Another ap

proach was presented in [276], which gave a parallel hierarchical algorithm using parallel 

Euclidean Minimum Spanning Tree (EMST) for AROB distributed memory and PRAM 

shared memory systems. These algorithms assume uniform distribution of data points, 

which allows partitioning of the data space into uniform grids.

The next parallel MPI based algorithm was PINK [88], which is similar to CLUMP. 

They also minimize the communication cost by decomposing the problem into sub-problems, 

which removes redundant computations at the same time. This approach partitions the 

data into k equal partitions randomly and assign each possible combinations to vari

ous nodes for cross-edge and self-edge computations. At each node a local clustering is 

performed where MSTs are computed locally. Then these MSTs are merged into a global 

MST resulting in the final clustering. A similar algorithm known as SHRINK [31] was 

also presented for shared memory systems. Both the above approaches use disjoint set 

data structure for merging clusters at each iteration.

The Sibson's SLINK algorithm does not take into account spatial locality of data. And 

thus all its parallelizations use random distribution of data. An efficient HAC algorithm 

known as Partially Overlapping Partitioning (POP) has been proposed which exploits 

spatial locality [277]. The pPOP algorithm [278] is a parallel implementation of the POP 
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algorithm for shared memory architectures. It uses a partially overlapping partitioning 

scheme for data distribution.

The most recent parallel version SLINK is dCr/dSLINK [33, 32]. It is a parallel version 

of GridSLINK algorithm (proposed by the same authors). GridSLINK exploits spatial 

locality of data using adaptive gridding, and reduces the number of distance calculations, 

while producing exactly the same dendrogram as that of classical SLINK. GridSLINK has 

been parallelized for distributed memory (dGridSLINK), shared memory (sGridSLINK) 

and hybrid architectures (//GridSLINK). dGridSLINK ensures load-balancing by spatially 

distributing equal amounts of data to multiple nodes using a spatial distribution (which 

we call as CD-Split). After data distribution, at each node GridSLINK is executed leading 

to local MSTs. Local computations in GridSLINK are more optimal than in PINK as this 

exploits spatially locality attained by grid. Then the local MSTs are merged into a global 

MST in a tree-parallel way to get the final dendrogram.

A few GPU based implementations of parallel hierarchical clustering have also been 

proposed in literature [279, 280], Apart from these a few Map/Reduce and Spark based 

implementations have also been proposed [281, 282, 283, 284].

7.1.4 Parallel subspace clustering algorithms

Subspace clustering algorithms are specifically designed for processing high dimensional 

datasets. It is possible that data points might have been drawn from multiple subspaces 

and membership of points to those subspaces is not known. Another problem associated 

with processing of high dimensional data is the "curse of dimensionality". The conven

tional similarity measures become unfit for processing such high dimensional data. Sub

space clustering algorithms are a solution to the above problems. They cluster data into 

multiple subspaces and find a low dimensional subspace fitting each cluster.

There are two kinds of subspace clustering algorithms - top-down and bottom-up. The 

top-down subspace clustering algorithms produce highly disjoint clusters since they use 

partitioning based clustering approaches. A few top-down subspace algorithms include 

- PROCLUS [213], ORCLUS [214], FINDIT [38], J-Clusters [285], COSA [286], and LAC 

[287]. Bottom-up subspace clustering is similar to finding frequent itemsets using apri- 
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ori principle. Clusters are first found for each single dimension, and then dimensions 

are added for finding clusters in higher dimensions in the same way as that of apriori. 

Dimensions are added until cluster quality is preserved. The anti-monotonic property 

is used to prune away infrequent or irrelevant subspaces. Commonly used grid based 

bottom-up subspace clustering algorithms include CLIQUE [211], MAFIA [37], ENCLUS 

[212], SCHISM [288], and CBF [289]. Also, there are a few density based bottom-up 

subspace clustering algorithms that include - SUBCLUE [290], FIRES [291], DUSC [292], 

INSCY [293], and SUBSCALE [294].

Literature reveals very few approaches to parallel subspace clustering on distributed 

memory architectures. The first such approach is parallelization of MAFIA known as 

PMAFIA [225]. This algorithm is a data parallel algorithm in which data is distributed 

over multiple processing elements randomly and local computations are performed on 

each processing element. The results are then merged into a global output. A GPU based 

parallelization of MAFIA has also been presented in [227].

More recently a parallel framework [89] has been presented for grid-based bottom-up 

subspace clustering algorithms like CLIQUE, MAFIA, ENCLUS, SCHISM and CBF. This 

framework has five major steps- 1) gridding, 2) finding dense units, 3) candidate unit/- 

subspace generation for next iteration, 4) Steps 2 and 3 are repeated until no dense units 

are found, 5) cluster extraction. These steps are common to above bottom-up subspace 

clustering algorithms. The parallel framework first distributes the data randomly over the 

computing nodes and then every node executes steps 1, 2 & 3 iteratively. At each itera

tion, a local trie is generated at every node, which is communicated to the master to form 

a global trie for dense unit identification. This is repeated until the algorithm converges. 

Finally the clusters are extracted at the master node from the aggregates received.

The above approaches simply use random data distribution and do not rely on spatial 

locality. Hence we don't consider them for experimentation.

Apart from the above, the top-down subspace clustering algorithm LAC has been 

parallelized for shared memory architecture, which is known as PLAC [226]. A parallel 

version of SUBSCALE algorithm has also been presented for shared memory and GPU

based architectures [295]. A spark based parallelization of SUBCLUE algorithm, known as 

CLUS, is also presented in [228]. More recently, a grid-based parallel subspace clustering
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Table 7.1: Data distribution strategies used by various parallel clustering algorithms

Algorithm Year of Publication kd-tree Random Distribution Others

Parallel K-means |28| 2011 4

[245| 2011 v

(246| 2013 V

PDBSCAN (238( 1999 J

|239| 2000 4
[2521 2001 J

|253| 2002
P-DBSCAN |256| 2010 projection-based
PDSDBSCAN-D [86] 2012 v

Pardicle ,871 2014 V

BD-CATS [223| 2015 v

HPDBSCAN [224] 2015 grid-based
GridDBSCAN-D |36| 2017 4

POpticsD [235| 2013 4
DOPT1CS 1120| 2015 V
Parallel RSNN [23O| 2016 ■J
CLUMP (231| 2009 V
|276| 2005 grid-based
PINK [88] 2013 4
GridSLINK [32, 33] 2016 CD-Split
PMAFIA [225[ 2000 4
,89] 2016 4

algorithm known as PSCEG [296] has also been presented for spark. A few MapReduce 

based parallel implementations are also proposed in literature [229, 297].

7.2 Data Distribution Methods

We now describe the data distribution strategies which include both existing methods 

(Random and KD-Split) and proposed methods (Pbased-Split, PD-Split and CD-Split). Most 

of the illustrated existing/proposed distribution strategies are only slightly different in 

their approach of partitioning. However, they cause a big effect on the overall execution 

of the parallel algorithms. We use the following terminologies: Let N be the size of the 

data, n be the total number of computing nodes or processors and d be the dimensionality 

of the dataset.

7.2.1 Random Partitioning

In random partitioning, data points are randomly divided to the computing nodes of the 

cluster. In practice, the first chunk of N/n data points are assigned to the first computing 

node, the next chunk to the second node and so on, which cannot be called as truly 

random partitioning. Load balancing is maintained in the distribution to achieve better
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Figure 7.2: Kd-tree based data partitioning (KD-Split)
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performance, i.e., each computing node gets equal number of data points. A few examples 

of the algorithms that use random partitioning can be found in - [88, 28, 235].

When random partitioning is used for density based and hierarchical clustering al

gorithms, we are not making best use of the inherent spatial pattern of their execution, 

leading to suffering of execution performance. It is better to use one of the spatial parti

tioning schemes explained below, as they capture inherent spatial patterns.

7.2.2 KD-Split

KD-Split or kd-tree based partitioning is the most commonly used spatial partitioning 

technique for distributing data to the computing nodes [36, 86, 120, 32, 230]. This tech

nique recursively divides data among the computing nodes based on axis aligned split 

(see Figure 7.2). For every division, the splitting axis that has the largest spread is chosen 

and split is performed on the basis of the median for perfect load balancing (equal data 

points for every split). Recursive division continues until the total number of partitions is 

equal to the total number of computing nodes. Since load balancing is maintained at each 

split, each computing node will get equal number of data points. Figure 7.2 illustrates 

kd-tree based partitioning for n=8. It shows stage by stage splitting, where median for 

each split is chosen across the dimension that has largest spread.

7.2.3 Projection Based Split

Projection Based split (Pbased-Split), is our first proposed partitioning scheme. Initially, the 

axis with the largest spread is chosen. Then it recursively divides data into partitions on 

the basis of median. Each division is done along the same axis, unlike kd-tree where axis 

is chosen for every split. The recursive division continues until each partition or a cell 

contains a total number of points < r, where t is parameter threshold. Figure 7.3 (Left 

169



7.2 Data Distribution Methods

Hand Side) illustrates this split.

After the division is complete, all the cells formed are projected onto the axis chosen 

for splitting. The cells formed in Figure 7.3 (LHS) are projected over .v-axis. This results 

in an ordering among the cells. Following this order, cells are packed together into non

overlapping groups (or partitions) in such a way that each group doesn't contain more 

than N/n points (Figure 7.3 (RHS)). This scheme results in a load balancing which is 

very close to perfect load balancing. We can observe that the smaller the value of t, the 

perfect the load balancing is.

This distribution strategy is an in independent generic method that can be applied to 

any parallel clustering algorithm. As it can be observed from the above description, the 

partitioning happens across only one dimension. This kind of partitioning reduces the 

number of machines to be communicated in steps 2 and 4 of any parallel clustering algo

rithm. This is because its boundaries overlap with lesser number of machines. However it 

may lead to increase in overall number of points transferred due to increase in perimeter 

of the boundaries. It is explained in the next subsection. Note that this method is more 

suitable to low-band width interconnects as it reduces the communication cost.

7.2.4 Parameterized Dimensional Split

Parameterized Dimensional Split or PD-Split is our second proposed partitioning scheme. 

This is specifically designed for parallel density based clustering algorithms [86, 36]. This 

partitioning scheme strives to minimize the communication overhead required during the 

local computations phase. A typical parallel density based clustering has the following 

execution layout:

Figure 7.3: Projection based Split data partitioning (Pbased-Split)
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Figure 7.4: Parameterized Dimensional Split data partitioning (PD-Split)

scheme (typically KD-Split partitioning)

° In step 2, everv computing node request for data points from other nodes, which 

are lying within e-extended boundaries of the local node, where t' is a user defined 

parameter. This is depicted in Figure 7.5 on the next page for kd-tree partitioning, 

where Node M212 requests data points from Nodes M121, M122/ M211 and M222- 

These data points are required for computing exact e-neighborhoods for the points 

lying near the boundaries of the local computing node, e-neighborhoods of the 

points are required for DBSCAN and other density-based clustering algorithms in 

the next phase.

• In phase 3, local computations are performed where DBSCAN is performed on the 

local data with the help of additionally retrieved data for the neighboring computing 

nodes as explained previously.

• In phase 4, local clusterings are merged together to get global clustering.

Exploiting this execution layout, we try to minimize the communication overhead 

that occurs during phase 2 of the algorithm by changing the kd-tree partitioning scheme. 

Instead of computing the axis for splitting for each division, we let the splitting happen 

across the initially chosen dimension (like in Pbased-Split) until a threshold is reached. 

This time, however, threshold is on the width of the cell, along to the axis chosen. If a 

split is causing a cell's width to be < 2e, we then choose the next dimension for splitting, 

which has the current largest spread. Figure 7.4 illustrates this. In the first and the second 

splits, the splitting has occurred only along the x-axis. However, in the third recursive 

split, partition Mu was split along y-axis. This is because, the width of one of the cells 

resultant of splitting this partition along x-axis, is becoming lesser than 2e. So the axis of 

split was changed.
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Figure 7.5: c-ex tended regions for 
Computing Node M212 in case of 
kd-tree based split

Figure 7.6: t'-extended regions for 
Computing Node M->p in case of 
PD-Split

Figure 7.5 and Figure 7.6 illustrate the the t'-extended strips (also known as halo region) 

for partition M112 for kd-tree based split and pd-split respectively. It is clear form the 

figure that the halo region spawn four partitions in case of kd-tree and only two partitions 

in case of PD-Split. When the dimensionality of the dataset increases, the number of nodes 

overlapping can even be more in kd-tree based partitioning as the axis for split keeps 

changing for every division. So, PD-split reduces the data required to be communicated 

in steps 2 & 4 of a parallel density-based clustering algorithm as it reduces the number of 

nodes to be approached for acquiring extra data points.

Note that the threshold on the width of each resultant partition has been chosen to be 

2e. This is because if the width of the partition becomes less than e, the c-extended strip 

might spawn to multiple partitions across the same axis. For example, in Figure 7.6, if 

width of partition M(2i is lesser than e, the c-extended strip of Mi 12 can spawn to machine 

M122 as well, which means that we are including all of M121 and some portion of M122 as 

well. This becomes huge communication cost. So, we restrict the width of each cell to be 

> 2c and whenever a split can cause the width to go lesser than this value, we change our 

axis to split.

Note that such a restriction is not imposed on Pbased-Split which only splits across 

one axis. So, when e value becomes large, Pbased-Split will have excessive communication 

as substantatiated by results presented in Figure 7.10 on page 179. Similarly for PD-Split 

also, it might happen that at larger values of e that, although fetching points from lesser 

number of machines, the number of points fetched in total might exceed that for KD- 

Split. This is because large perimeter of intersection with the neighboring machines that 

has happened because of splitting along only one dimension. So, at larger values of c, this 

problem could be present in PD-Split also, although not as severe as Pbased-Split. This is
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Figure 7.7: Sample division in CD-Split

substantiated by results presented in the above figure.

7.2.5 CD-Split

Cell based Dimensional Split or CD-Split is our third proposed partitioning scheme. This 

scheme has been specifically designed for grid based parallel SLINK (dGridSLINK) algo

rithm and has been introduced in our previous papers [33, 32]. dGridSLINK is the only 

parallel variant of SLINK that uses spatial distribution of data points.

The CD-Split partitioning is performed using gridding and median based split. It is 

similar to PD-Split, except that it additionally uses gridding. Initially a uniform virtual 

grid is overlaid on the entire data space, with an initially chosen cell size = CellSizeinit / r. 

CellSizeinit is the cell size parameter of GridSLINK algorithm and r(> 1) is a constant. 

For example, CellSizeinit is calculated using the formula - y/ where RegionSize

is the volume of the data-space occupied by the points in the dataset, N is the size of the 

dataset and r is a user defined threshold on maximum number of points we wish to keep 

in a cell. After gridding, we recursively split the data space into equal partitions by first 

splitting along one dimension, similar to PD-Split. Each split is a kd-tree like median 

split. However every time, the splitting axis is aligned with the nearest cell boundary as 

illustrated in Figure 7.7. The change in the dimension for splitting in case of CD-Split, 

however, is triggered by the cell size threshold, instead of e-threshold like in PD-Split. 

The dimension for splitting is changed when the partition width can fit in only one cell 

across the current dimension. The total number of dimensions across which splitting is 

performed usually remains small, similar to PD-Split.

As mentioned before, CD-Split has been specifically designed for the dGridSLINK 

algorithm. The dGridSLINK algorithm internally performs local gridding in the local 

computations phase and performs the SLINK clustering using the local gridding. This 
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local computations phase makes use of the initial global gridding performed and the par

titioning performed with alignment to the grid boundaries (during the data distribution 

phase). This makes the local computations faster as inherently captures the design re

quirements of dGridSLINK. One can use KD-Split or Pbased-Split instead of CD-Split. 

However, the algorithm is expected to run slower for them as they don't do the split-axis 

alignment. This is substantiated by experiments presented in Section 7.4.3 on page 176. 

For more details of dGridSLINK algorithm, refer to [33].

7.3 Distribution Methods for very large datasets

The distribution methods described in the previous section, load the entire data into main 

memory for computing the splits of partitioning. However, while processing very large 

datasets (billions of floating points), the memory associated with the node performing the 

partitioning may not be sufficient enough to load the entire dataset. This makes those 

schemes unfit for distributing very large datasets. To handle such scenarios one can use 

sampling based techniques for data distribution. One such technique has been proposed 

in [223]. We name this technique as A-KD-Split and explain it as follows:

i. Randomly distribute all the data points to all the machines in the cluster.

ii. Randomly select a small fraction of data points from each machine and broadcast 

them to all other machines in the cluster.

iii. Every machine now has the same sample. Each machine now computes the first 

median for splitting over that sample.

iv. Every machine partitions the data into two sets, with one set on the left side of the 

median and the second on the right side of the median. The partition is performed 

along the axis that has maximum spread.

v. Then in a pair of two, machines exchange its left and right sets such that one machine 

gets the entire left half and the other gets entire right half.

vi. Now for all the machines that are on the left half, steps 2-6 are repeated recursively. 

They are also repeated for machines on the right half as well.
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vii. Thus, this algorithm achieves disjoint partitioning in logn iterations, where n is the 

number of machines.

Note that this partitioning scheme may not lead to perfect load balancing. However, 

it is experimentally observed to give reasonably good load balancing. Also, note that 

the approximate versions of PD-Split (A-PD-Split) and CD-Split (A-CD-Split), are also de

signed in a similar fashion. In case of A-PD-Split, the nodes shall also have to additionally 

keep track of and communicate the dimension of splitting. In case of A-CD-Split, the ini

tial virtual grid is to be calculated globally by inter-node communication, and a copy of 

the gridding information is to be broadcasted to each node. Then the splitting starts in 

a similar manner as that of A-KD-Split, except that the dimension across with the split 

has to happen shall change as per the cell size. Also, at every split, split-axis is aligned 

with the nearest cell boundary of the global grid. For the case of Pbased-Split, such an 

iterative distribution is not possible. The entire partitioning has to happen on the first 

taken sample and the data points are eventually distributed to their respective partitions, 

without any kind of iterative refinement. This may not result in good load balancing and 

hence we omit it for further discussion.

7.4 Experimental Results and Analysis

7.4.1 Experimental Setup

All experiments were conducted on the 32 nodes cluster infrastructure whose details are 

mentioned in Section 6.4 on page 141. All algorithms were implemented in C or C++ 

with MPI. The list of the datasets used for experimentation are given in Table 7.2 on the 

following page. The details of these datasets can be found in Section 2.3 on page 36.

The execution time for each experiment has been measured using MP I_Wt ime () of 

<mpi.h> library. The default parameters chosen for experimentation are: for Pbased- 

Split, we choose the value of r=1000; for approximate distributions based on sampling, 

we choose 10% points of the dataset as the sample. Note that for datasets of size > 20M, 

we have used approximate sampling based distributions.

We evaluate the proposed data distribution strategies in terms of (i) load balancing
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Table 7.2: Details of datasets used for experimentation

Dataset Size Dimensionality c value for DBSCAN

3DSRN 434 K 3 0.01
MP/XGB8M3D 8M 3 2
MPAGD16M3D I6M 3 2
FOF57M3D 57X1 3 3
MPAGD100M3D 100M 3 1
MPAHALO2.8M9D 2.8X1 9 30

Table 7.3: Number of data points received by each computing node for various data distribu
tions with variation in number of computing nodes (n), for FOF57M3D dataset

Distribution Scheme
Load Distribution 

h = 16 h=32

Random 
KD-Split 
PD-Split 
Pbased-Split 
CD-Split 
A-KD-Split 
A-PD-Split 
A-CD-Split

3,561,887 1,780,944
3,561,887 1,780,944
3,561,887 1,780,944

3,541,062 - 3,571,329 1,721,712 - 1,813,961
3,498,032 - 3,638,541 1,597,254 - 1,862,171
3,397,251 - 3,795,134 1,584,754 - 1,922,658
3,344,652 - 3,786,249 1,571,113 - 1,911,904
3,285,412 - 3,799,763 1,523,624 - 1,924,521

achieved; and (ii) performance of various parallel spatial clustering algorithms. The re

sults are presented as follows:

7.4.2 Load balancing achieved

Table 7.3 shows the load balancing achieved for each of the distribution strategy. Each 

value in the table denotes the number of data points received per computing node. As 

explained earlier, random partitioning, KD-Split and PD-Split achieve perfect load balanc

ing. Pbased-split achieve near perfect load balancing because of the packing techniques as 

explained in Section 7.2.3 on page 169. Similarly, CD-Split also achieves near perfect load 

balancing as the splitting boundaries get aligned with grid/cell boundaries (as explained 

in Section 7.2.5 on page 173). Please note that similar load balancing has been observed 

for other datasets as well.

7.4.3 Performance of Parallel Spatial Clustering Algorithms

We now compare the performance of various parallel spatial clustering algorithms for the 

proposed distribution strategies. We compare for various versions of parallel DBSCAN, 

SNN and SLINK.
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Figure 7.8: Performance of parallel GridDBSCAN algorithm for various data distributions

7.4.3.1 Parallel DBSCAN

We compare the performance of PDSDBSCAN-D [86] and GridDBSCAN-D [36] for vari

ous distribution strategies. The e value for each dataset under experimentation has been 

given in Table 7.2 on page 176. The value of Minpts has been set to 5 for all datasets.

Figure 7.8 and Figure 7.9 on the next page present the performance of GridDBSCAN- 

D and PDSDBSCAN-D, for KD-Split, Pbased-Split and PD-Split distributions for various 

datasets executed over increasing number of computing nodes. The results show that PD- 

Split and KD-Split are competitive in execution performance. We can clearly observe that 

for lesser number of computing nodes, PD-Split is better than KD-Split. However, with
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Figure 7.9: Performance of parallel PDSDBSCAN algorithm for various data distributions
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increase in number of computing nodes, both them give almost the same performance, 

with KD-Split being slightly better (except for MPAHALO2.8M9D dataset). The result of 

MPAHALO2.8M9D dataset clearly show that PD-Split works much better than KD-Split 

for high dimensional data, even at higher number of computing nodes. This is because of 

reduced communication overhead in steps 2 and 4 of both the algorithms, as explained in 

Section 7.2.4 on page 170. This is also substantiated by the split-up time of various steps 

of the algorithms presented in Table 7.4 on the next page and Table 7.5 on the following 

page. PD-Split improves overall execution time as well as the execution time of each step 

of the algorithm. The results of 3DSRN dataset are erratic at higher number of computing 

nodes, because of insufficient data to be processed for such large number of processors.
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Table 7.4: Split-up of execution times of various steps of GridDBSCAN-D for MPAGD100M3D 
dataset

KD-Split Pbased-Split PD-Split

Data Distribution Step + Retrieval of Extra Points 26.58 37.23 19.33
Local Computations 1174.91 1673.6 1023.45
Merging Step 167.92 287.34 149.34

Total Time 1369.43 1998.23 1192.12

Table 7.5: Split-up of execution times of various steps of PDSDBSCAN-D for MPAGD100M3D 
dataset

KD-Split Pbased-Split PD-Split

Data Distribution Step + Retrieval of Extra Points 26.58 37.23 19.33
Local Computations 376.23 508.72 305.53
Merging Step 92.51 138.01 79.23

Total Time 468.72 683.95 404.09
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Figure 7.10: Performance of GridDBSCAN-D and PDSDBSCAN-D with variation in c for 
various distributions over 32 computing nodes

Next, we conduct an experiment to measure the performance of both the parallel al

gorithms with variation in e value. Figure 7.10a and Figure 7.10b present the results, 

which shows that PD-Split works better for lower values of e. Whereas, KD-Split is found 

to dominate for higher values of e. This is because at higher values of e, the communi

cation cost of Pbased-Split and PD-Split becomes higher. This is because the number of 

points lying within the e-extended boundaries of the machines becomes large at higher 

e. And it becomes more larger for Pbased-Split and PD-Split than KD-Split. This is also 

substantiated in Section 7.2.4 on page 170.
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Figure 7.11: Performance of parallel dR-SNN algorithm for various data distributions with 
variation in number of computing nodes of the cluster
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7.4.3.2 Parallel SNN

In this section, we evaluate the performance of dR-SNN algorithm [230] which is the only 

parallel SNN algorithm proposed for MPI based architectures. The values of the parame

ters chosen for experimentation are: k=30, c=12 & Minpts=15, for all datasets. Note that 

c of SNN is different from that of DBSCAN. It is a threshold on number of data points in 

case of SNN and a threshold on distance in case of DBSCAN. Figure 7.11 presents the ex

ecution time of dR-SNN for KD-Split and Pbased-Split distributions for various datasets 

executed over increasing number of computing nodes. The results clearly show that KD- 

Split approach has always been better than Pbased-Split. This is because of two reasons:
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1) It uses K-NN queries inside the algorithm and K-NN query is more optimized for kd- 

trees, so naturally KD-Split is expected to do better in local computations phase; 2) The 

merging step in dR-SNN algorithm requires more communication in case of Pbased-Split. 

This is because in case of Pbased-Split the number of points that participate in the merg

ing step is high. Both the arguments are substantiated by the split-up values presented in 

Table 7.6, which clearly shows the difference in local compuations step as well as merging 

step. Note that similar behaviour has been observed for different variations to the SNN 

algorithm parameters and other datasets as well.

Note that PD-Split and CD-Split are not applicable to dR-SNN algorithm as they are 

tailor-made for DBSCAN variants and GridSLINK respectively.

Table 7.6: Execution Time for various steps of dR-SNN algorithm for MPAGD16M dataset

KD-Split Pbased-Split

Data Distribution Step 49.81 63.84
Local Computations Step 171.86 5,192.13
Merging Step 27.40 1,661.48

Total Time 249.07 6,917.45

7.4.3.3 Parallel SLINK

Figure 7.12 on the following page presents the performance of dGridSLINK algorithm 

[33,32] for KD-Split, Pbased-Split and CD-Split distributions for various datasets executed 

over increasing number of computing nodes. The value of t, which dictates the initial cell 

size has been set to 300 as per the recommendations in the above papers. The results 

clearly show that CD-Split has always been better in all the cases. This is mainly because 

of the reduction of time in the global merging step which was possible by adjusts the 

partition boundaries to align with grid/cell boundaries. The split-up of execution time of 

various steps of the algorithm is presented in Table 7.7 on page 183 for MPAGD16M3D 

dataset. The results clearly show that CD-Split takes more time to distributed data. This 

is attributed to extra load of aligning splits with grid/cell boundaries. However, The time 

saved in local computations and merging step compensates for it. The merging time, 

especially is very low for CD-Split, because of the alignment of the split boundaries. On 

a whole, CD-Split is better than the remaining two. Similar behaviour has been observed 

for other datasets as well.
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Figure 7.12: Performance of parallel GridSLINK algorithm for various data distributions

7.5 Discussion and Recommendations

Based on the above experimentation and results, we give the following recommendations 

regarding the usage of appropriate distribution methods for each of the above parallel 

clustering algorithms.

• For parallel DBSCAN (and DBSCAN like) algorithms, PD-Split and KD-tree based split 

are competitive. PD-Split is more suitable for smaller number of computing nodes and 

smaller values of e. KD-Split is recommended to be used for larger values of e.

• For parallel shared nearest neighbors clustering (dR-SNN), KD-Split always works bet-
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Table 7.7: Execution Time for various steps of dGridSLINK algorithm for MPAGD16M dataset

KD-Split Pbased-Split CD-Split

Data Distribution Step 49.81 63.84 59.23
Local Computations Step 1459.09 1961.98 1250.35
Merging Step 273.23 401.34 99.30

Total Time 1782.13 2427.17 1408.88

ter, as it K-NN based. Its usage is recommended at all times.

• For parallel GridSLINK algorithm, CD-Split has always been better than KD-Split and 

Pbased-Split. Its usage is recommended all the times.

• One can use Pbased-Split as a generic distribution scheme, free from parameters, when 

one wants to split across one dimension only. Pbased-Split also works good for high 

dimensional data in some cases (see Figure 7.9c on page 178).

7.6 Main Contributions

• We proposed three data distribution schemes - Pbased-Split, PD-Split and CD-Split, for 

distributing data over a cluster of computing nodes for executing MPI based parallel 

clustering algorithms.

• We also proposed approximate versions of the above schemes for distributing very 

large datasets that don't fit into the main memory for computing partition boundaries.

• We have also given appropriate recommendations for each of the distribution with 

respect to various parallel clustering algorithms.

• We have given very comprehensive literature survey of MPI based parallel clustering 

algorithms, with specific reference to the distribution methods they use.

7.7 Conclusions and Future Work

7.7.1 Conclusions

This chapter proposed three data distribution schemes - Pbased-Split, PD-Split and CD- 

Split, for distributing data over a cluster of computing nodes for executing MPI based 
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parallel clustering algorithms. Data distribution is an important step of any data parallel 

clustering algorithm. To the best of our knowledge, data distribution is not yet discussed 

in existing literature.

The chapter also presented empirical evaluation of each of the distributions proposed 

for various parallel clustering algorithms that include - DBSCAN, SLINK and SNN, and 

gives suitable recommendations for usage of appropriate distribution scheme for the 

above algorithms. This chapter has also presented a very comprehensive review of paral

lel clustering algorithms.

7.7.2 Future Directions

Grid-based techniques can be exploited in future to design more efficient distribution 

strategies that are more efficient in run-time performance. Improving the run-time per

formance makes the parallel algorithms all the more faster and scalable.
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Chapter 8

Data Distribution for dynamic 

incremental datasets

In this chapter we present DD-tree which is a dynamic distributed data structure 

for indexing and distributing large incremental multi-dimensional datasets in a cluster 

of computing nodes. As discusses earlier, the distribution strategies proposed in the 

previous chapter are static, that they can not be incrementally updated with new set of 

data points. They shall have to re-do their entire distribution. DD-tree addresses this 

issue as it supports dynamic incremental insertions. Before we present the proposed data 

structure, we give a brief review on the existing dynamic distributed data structures.

8.1 A Review on Distributed Data Structures

Distributed Data Structure (DDS) is a data structure that is used in a message passing 

system (typically a cluster of computing nodes). DDS is composed of a data organiza

tion scheme and a set of distributed access protocols to enable computing nodes to issue 

query and modification instructions and get appropriate responses. The data organiza-

• Jagat Sesh Challa, Poonam Goyal, Nikhil S., Aditya Mangla, Sundar Balasubramaniam, Navneet Goyal. 
DDR-Tree: A dynamic distributed data structure for efficient data distribution among cluster nodes for spatial 
data mining algorithms. In Proceedings of 2016 IEEE International Conference on Big Data (IEEE Big 
Data 2016), pp. 27-36, 5-8 December 2016, Washington DC, USA
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tion scheme acts like an index to the collection of local data structures that are stored 

at each computing node [298]. Many DDSs are proposed in literature for various do

mains including peer-peer network overlays, data analytics, social network mining, etc. 

[299, 298, 300, 301]. These data structures are typically used to index data for efficient 

query processing, routing, etc. Distributed versions of R-tree and its variants proposed 

in literature include - Parallel R-tree [302, 303], Distributed B-link tree [304], Distributed 

Random tree [299], Master-Client R-tree [305], Upgraded Parallel R-tree [306], SD-RTREE 

[307], etc. These data structures were originally proposed for database systems to im

prove the efficiency of various queries. Most of these focus on optimizing communica

tion overheads and increasing degree of parallelism to get optimal query performance 

[302, 303, 304]. They achieve this by organizing data in such a way that multiple comput

ing nodes can be simultaneously accessed to answer a query.

The above data structures were neither specifically designed for data distribution nor 

address any of the requirements of parallel spatial data mining algorithms. They don't 

target: preservation of spatial locality in their distribution, achieving good load balancing 

and giving optimal query performance at the same time. The above are the key require

ments for any parallel spatial data mining algorithm [86, 235, 32, 36, 120, 33].

We now review the most recent dynamic distributed data structure - SD-Rtree. We 

use this structure for benchmarking the performance of the proposed DD-Rtree. SD- 

RTREE [307] is a hybrid structure based on AVL-tree [308] and R-tree [122]. Its structure 

is conceptually similar to that of a classical AVL tree, with its data organization principles 

borrowed from the R-tree spatial containment relationship. It is designed to reduce com

munication overheads in construction and querying. It supports dynamic insertions and 

shows good scalability. It supports both region and k-NN queries.

SD-Rtree, however, have a few drawbacks associated with its design. The re-distribution 

algorithm that handles node overflows, is based on k-NN search, which doesn't gauran- 

tee good preservation of spatial locality. The re-distribution also happens point by point 

which makes it slow. Also, the data distribution of SD-Rtree doesn't guarantee good load 

balancing in practice. The communication cost involved in its construction is also high. 

So, it doesn't suit our requirements.

The rest of this chapter is organized as follows: Section 8.2 on the next page presents
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IR-Tree

Figure 8.1: Structure of DD-Rtree

the DD-Rtree structure along with its operations and complexity analysis. Section 8.3 on 

page 193 presents the quality and performance evaluation. Section Section 8.5 on page 199 

summarizes the main contributions of this chapter. Section Section 8.6 on page 200 con

cludes this chapter and gives future directions.

8.2 DD-Rtree

DD-Rtree is a dynamic distributed data structure that resides on a cluster of computing 

nodes. DD-Rtree is designed to distribute data across multiple computing nodes with 

the following objectives: maximizing spatial locality; achieving good load balance; mini

mizing inter-node communication for its construction, and minimizing execution time of 

queries and spatial data mining algorithms. DD-Rtree is first distributed spatial indexing 

structure which tries to achieve the above objectives. The design of DD-Rtree also makes 

it dynamic, i.e., data can be added incrementally and computing nodes can also be added 

incrementally, if required.

8.2.1 DD-Rtree design

The structure of DD-Rtree is illustrated in Figure 8.1. It comprises of R-trees at two 

levels. The first level R-tree is the index-R-tree (IR-Tree), which serves as the index to the 

entire structure and resides in a master computing node or a server from where all the 

instructions are issued. The second level comprises of multiple R-trees stored one each at 
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each machine of the cluster (MR-Tree). MR-Tree indexes data points that belong to its 

machine. IR-Tree satisfies the following properties:

• Each node of IR-Tree has a minimum of Im and maximum of IM entries indexed 

in it, except the root which can have less than Im entries.

• Each internal node consists of MBRs which store the bounding information of all 

the objects indexed at their respective sub-trees.

• Each external node stores MBR information of all the points indexed in a machine. 

In other words, it stores the MBR of the root of an MR-Tree. It also stores the 

machine ID of the machine where that MR-Tree is stored and a count of points (ent) 

indexed in it.

• Each external node also contains a buffer of a fixed capacity be, that temporarily 

stores data points before pushing them into the corresponding MR-Tree.

MR-trees are the R-trees with the native R-tree properties. Each machine has a capac

ity me which is the maximum number of data points it can index.

Algorithm 8.1: DD-Rtree Construction Algorithm 8.3: Flush Buffer
i procedure Construct-DD-Rtree () i procedure Flush-Buffer ()

Input : List of Data Point DL Input : Buffer buff
Output: IR-Tree ITree constructed Output: Points in buf f inserted into

2 Initialize an empty IR-Tree ITree; machine’MR-TREE Mtree
3 foreach point p in DL do 2 foreach point p in bu f f do
4 Insert-In-DD-Rtree (p, ITree); 3 INSERT-INTO-R-TREE (p, Mtree);
5 end 4 end
6 foreach leaf leaf in ITree do 5 if no. of points in this machine exceeds me then
7 Flush-Buffer (leaf.buff); 6 if there exists an empty machine in the
8 end cluster then
9 return ITree; 7 | Split-And-Adjust ();

8 else Re-Distribute-DD-Rtree ();
Algorithm 8.2: Insertion in DD-Rtree __________________________________________________
, orocedure Nsekt-In-DD-Rtkee 0 Algorithm 8.4: Re-Distribute DD-Rtree

Input : Data Point p, IR-Tree Itree 1 procedure Re-Distribute-DD-Rtree ()
Output: p inserted into Itree Input : Machine S

2 I Leaf = Choose-Leaf (p, ITree); Output: Data points of S re-distributed
3 Insert p into I Leaf .buffer; 2 Compute the proportion of points to be shifted
4 Update MBRs of ITree in a bottom-up manner; to each overlapping node.;
5 Increment I Leaf .ent by 1; 3 if some node in them is full then
6 if 1 Leaf.buff er is FULL then 4 Recursively call Re-Distribute-DD-Rtree
7 Send Flush-Buffer message to machine over those machine to create space.;

with ID = I Leaf .machine ID to empty the 5 Shift points based on overlap
contents of I Leaf .buffer into its minimization.;
MR-Tree; 6 if sufficient points are not shifted then

8 end 7 Shift points based on fc-NN;
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8.2.2 DD-Rtree Construction

The pseudo codes of algorithms for construction of DD-Rtree are explained in Algo

rithm 8.1 on page 188, Algorithm 8.2 on page 188, Algorithm 8.3 on page 188 & Algo

rithm 8.4 on page 188. Initially an empty IR-Tree is created. Then data points in the 

data list DL are inserted into the DD-Rtree one after the other. In insertion, we first find 

the most appropriate leaf (I Leaf) of the IR-Tree to insert a data point p, by the usual 

R-tree recursive top down search using expansion area principles. We then store p in 

ILeaf.buffer and update the MBRs of IR-Tree in a bottom up manner similar to that of 

R-tree. We also increment 1 Leaf .ent, which indicates the number of points stored or to be 

stored in the corresponding machine. If ILeaf.buffer reaches buffer capacity (be), then 

the points indexed in the buffer are flushed into the corresponding machine, by inserting 

them into its MR-Tree. If at this point, the machine exceeds its capacity, it tries to identify 

if there is any other new machine in the cluster available by contacting the master. If, yes, 

the machine splits itself into two equal halves by the usual R-tree split algorithm and one 

of the halves is transmigrated to the new machine and two new MR-Trees are created. 

This would lead to MBR updates in the MR-Trees as well as the IR-Tree, which are done 

using a few MPI messages. If there is no free machine available in the cluster, then the 

machine performs re-distribution. In this process, we try to shift a few points from the 

current machine to few other machines so that some space is created for incoming data 

points. Re-distribution is explained in the next subsection. Finally, after all insertions 

finish, all the buffers of IR-Tree are flushed into their respective MR-Trees.

Re-distribution. Unlike SD-Rtree, where only one point is shifted out from a full com

puting node, we shift points in bulk, i.e. we shift multiple points in one re-distribution, 

creating more space for incoming points. This helps in reducing the communication over

heads for subsequent insertions. The algorithm is as follows: when a computing node A is 

full, we first identify if there are any other computing nodes (B or C or both) whose MBRs 

are overlapping with that of A. If yes, we try to shift a maximum of t points in total from 

the overlapping regions from A to their respective machines B or C. In practice t = x x be 

where x € [0,11. If any of B or C is full, then we first recursively apply re-distribution over 

that computing node to create space in it and then shift points from A into it. If however, 
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we don't have sufficient space in the overlapping machines to shift t points, or there are 

no overlapping computing nodes, we try to shift them to non-full machines that are not 

overlapping with A based on k-NN. In this, we compute min-distances from the centroid 

of these non-full overlapping computing nodes to A and order them in increasing order 

of min distance. Then depending on space availability in each of these machines, we 

greedily transfer points to them. For example if we have to shift points to node B having 

remaining space y, then we trigger 1/-NN using centroid of B over points in A and shift 

those y points from A to B. Similarly, we shift points to other non-overlapping machines. 

In practice, the A'-NN based re-distribution is triggered very less number of times. So, it's 

the overlap based re-distribution strategy that suffices and ensures that spatial locality is 

not affected.

DD-Rtree advantages. We can see from the above discussion, that the design of DD- 

Rtree achieves minimal overlap among the bounding rectangles of the machines. This is 

because, all the algorithms governing construction of DD-Rtree are based on R-tree's con

struction principles. DD-Rtree exhibits good spatial locality and efficient query perfor

mance (verified by experiments in next section). Buffers attached to the leaves of IR-Tree 

enable reduction in communication overheads during the construction phase. Although 

the redistribution strategy of DD-Rtree involves high communication overhead, it is ex

pected to be more efficient because the number of re-distributions occurring in total is 

quite less when compared to that of SD-Rtree. As a result, DD-Rtree has a lesser con

struction time. This has been verified by experiments (see next section). Also the redis

tribution strategy is based on the principles of minimizing overlap among the bounding 

rectangles of the machines when compared to that of SD-Rtree which is based on k-NN 

only. Thus, it gives better locality in distribution and efficient query performance. DD- 

Rtree serves as an efficient data distribution method to distribute data across computing 

nodes in a cluster and thereby improving the efficiency of the parallel spatial data mining 

algorithms.
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8.2.3 Queries supported by DD-Rtree

DD-Rtree supports e-neighborhood queries and k-NN queries. Queries are issued from 

the master or the server where the IR-Tree is stored.

Neighborhood Queries. The pseudo code explaining the execution of e-neighborhood 

query over DD-Rtree is presented in Algorithm 8.5 on the following page and Algo

rithm 8.6 on the next page. We first construct an e-extended region r by extending the 

coordinates of p in both directions across all dimensions. We then perform a region query 

over IR-Tree (Itree) similar to the top-down recursive search in an R-tree, to retrieve all the 

machines that overlap with r. Then for each of the leaves retrieved, we pass an MPI mes

sage (Forward-Nbh-Query()) asking it to perform neighborhood query over its MR-Tree 

using r. The results of all of them are collected back at the master and are collectively 

returned. The number of MPI messages required to perform this query is double the 

number of machines visited. We can also minimize the messages by doing a sequential 

visit of all those leaves overlapping with r, reducing MPI messages to no. of machines 

visited + 1. But the first approach works faster for big datasets as it works in parallel.
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Algorithm 8.5: NBH Query in DD-Rtree

1 procedure DDR-Nbh-Query ()
Input : Query point p, c, IR-Tree I tree 

| Output: I’oints lying in c-neighborhood of p
2 Construct an e-extended region r of p;
3 Perform a top-down recursive search over I tree 

to find the leaves of I tree that oxerlap with r 
and store them in a Queue, MQ;

4 foreach leaf in MQ do
5 Forward-NBH-Query (p,c) to MR-Tree of

leaf and collect the results;
6 end

Algorithm 8.8: Forwarding A-NN Query
i procedure Forward-KNN-Query ()

Input : Machine S, data point p, Priority 
Queues NbhPQ, PQ,,^, PQ,^

Output: NbhPQ containing k nearest neighbors 
of p from machine S

2 Remove S from PQmmj and PQ,„./;
3 Perform locally the A-NN search over MR-Tree 

of S;
4 if NbhPQ is empty then
5 I Insert all the A nearest neighbors in

I NbhPQ with distance from p as keys;
6 end

Algorithm 8.6: Forwarding NBH Query
i procedure Forward-Nbh-Query () 

Input : Data point p, e
| Output: tempList containing points of the
l MR-Tree lying in e neighborhood of p

2 I R-Nbh-Query (p, e, Mlree, tempList); //
I accumulates c-NBH of point p lying in the
I MR-Tree of the current machine to tempList

3 | return tempList to the master;

Algorithm 8.7: A-NN Query in DD-Rtree

i procedure DDR-KNN-Query ()
Input : Query point /’, k, a max-prioritv queue 

NbhPQ of size k, IR-Tree I tree
Output: k nearest neighbors stored in NbhPQ

2 Create two min-prioritv queues PQ,„„tli and
PQnuP

3 foreach machine i e ITreedeaves do
4 I Insert machinelD, into PQ,,,,,,,/ with 

minMaxdist and into PQ„ht with mindist
I from p as keys;

5 end
6 Find the machine 5 that contains p from I tree;
7 Forward-KNN-Query (S, p, NbhPQ, PQ„„,ht,

PQnni) 11 makes an MPI call to machine S;

io 
n
12
13 
14
15

17
18
19

else
tempDist = distance between p and k"‘ 

nearest neighbor from NbhPQ;
Insert only those neighbors that are at a 

distance < tempdist from p and update 
NbhPQ;

if PQmmd is empty OR PQ,„,i is empty then 
| return NbhPQ;

end
(id), mmd) *- RemoveMin {PQ„i„ia)', 
(id2, md) — RemoveMin (PQ,lht);
if mmd < tempDist then

I Forward-KNN-Query (S„/|, p, 
NbhPQ, PQmmib PQmj); 11

| continuing search on machine S,^ 
end
else if md < tempDist then

I Forward-KNN-Query (Sh/2, p, 
NbhPQ, PQmmJ, PQmJ); // 
continuing search on machine

| hosting Sh/2
end 
else

| return NbhPQ; // return to master 
end

end

Nearest Neighbor Queries. The k-NN query (Algorithm 8.7) uses one max priority 

queue NbhPQ of size k to store k nearest neighbors. It also uses two min priority queues 

- PQmmd and PQimb into which all the machinelDs are inserted with their minMaxdist and 

mindist from p as keys respectively. We then find machine S that could contain p from 

ITree, by doing a top-down recursive search over it similar to R-tree. An MPI call is then 

made to S to execute Forward-KNN-Query and send all three priority queues to S. In 

the function Forward-KNN-Queary (Algorithm 8.8), being executed at S, we first re

move S from both PQmntd and PQmd and then perform a local k-NN search over MR-Tree 

of S. If S is the first machine of the cluster we are visiting, then we add all the k nearest 

neighbors to NbhPQ. Else we insert only those neighbors that are at a distance less than 

the distance between p and the current kth nearest neighbor (temp Dis t) and the NbhPQ 

is then updated. After this, we do a removeMin() operation on both PQmmd and PQmd 
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and store the retrieved (machineID, distance) pairs in (idl,mmd) and (id2,md) respectively. 

mind is the distance at which there is at least one point in machine with machinelD - 

idl (Sl(n). md is the minimum possible distance between p and any point in the machine 

with machinelD - id2 (S^)- If mind < tempDist, then there is at least one data point in 

S(,n which is at a distance less than tempDist from p. So, we forward the search request 

to . If not, we check if md < tempDist, then we forward the request to S;i/2- If md 

would have been greater than tempDist, we don't explore this machine. Now, if both the 

above criteria fail, we don't need to visit any more machines and we simply return the 

result. The number of MPI calls required for execution of this query is equal to number 

of machines visited + 1.

8.3 Performance Evaluation

We evaluate DD-Rtree with respect to (1) spatial locality, (2) communication cost (3) con

struction & querying time, and (4) performance of parallel spatial data mining algorithms 

it supports. We compare it with SD-Rtree and randomly distribution. We implement the 

IMCLIENT variant of SD-RTREE, where we have the image stored in a service providing 

server or the master. This is the most suitable for data distribution as we assume that the 

dataset is initially stored on this master. The details of the datasets used for experimenta

tion are mentioned in Table 8.1 on the following page. The first four datasets are synthetic 

and the rest are real. SR500M2D & SR10M2D are randomly generated. Data in SN100M2D 

follow normal distribution. SC100M2D consists of synthetically generated well separated 

clusters equal to number of machines used for a particular experiment. SFONT1M11D, 

MPAHALO2.8M9D, MPAGD56M3D, MPAGD16M3D and FOF113M3D datasets are taken 

from Millennium data repository that contains astronomical data of galaxies in the sky 

[135]. These datasets are skewed in nature and do not follow any distribution. SBUS6M2D 

dataset contains samples of GPS traces of buses in Shanghai [136].

All the experiments were conducted on a cluster of 32 compute nodes whose details 

are mentioned in Section 6.4 on page 141. All the implementations were done in C with 

MPI library. In all our experiments, we make the following choices by default until and 

unless explicitly stated. We choose machine capacity (me) in such a way that 5% of the
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Table 8.1: Datasets used for Experimentation

s. No. Dataset Data Size Dimensionality Reference

1 SR500M2D 500M 2 -
2 SN100M2D 100M 2 -
3 SC100M2D I00M 2 -
4 SR10M2D 10M 2 -
5 SFONT1M11D IM 11 [135]
6 MPAHALO2.8M9D 2.8M 9 1135|
7 MPAGD56M3D 56M 3 [135]
8 MPAGD16M3D 16M 3 [I35|
9 FOF113M3D 113M 3 [1351
10 SBUS6M2D 6M 2 [1361

Figure 8.2: Sample Distribution

total capacity of all the machines remains vacant. We choose be = 10% of the me. The 

measurement of run-time has been done using MPI_Wt ime () of <mpi . h> library.

8.3.1 Quality Evaluation

There are no specific measures reported in literature to evaluate the quality of data distri

bution in terms of spatial locality. So, we use various internal quality evaluation measures 

described in Appendix C on page 214 to evaluate the quality of DD-Rtree distribution. 

In order to check their appropriateness for evaluating quality of spatial locality, we have 

taken a synthetically generated data set of 10 million data points (two dimensions) con

taining four well separated partitions as given in Figure 8.2. We took this as the base 

dataset and generated a few more distributions to distort spatial locality by changing the 

membership of 10%, 20%, 30% randomly chosen data points from their original position 

to the next best partition. We also generated a dataset which has the membership assigned 

randomly. Table shows the values of all the measures for generated datasets. The results 

clearly indicate that the values of these measures deteriorate with increase in distortion of 

spatial locality. Thus, they are suitable for our evaluation. Similar results were obtained 

for other datasets with higher number of partitions, as well.

In our experiments, we have observed that all the measures shown in Table 8.2 on the
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Table 8.2: Validating Quality Evaluation Measures

Dataset BetaCV Modularity Norm. Cut Davies-Bouldin Norm. Hubert Stat. Silhouette
SCIM2D 0.175 -0.208 3.886 0.078 0.562 0.987
SCIM2D_10"o_man 0.303 -0.181 3.807 0.177 0.467 0.943
SCIM2D_20".._man 0.414 -0.159 3.741 0.246 0.399 0.904
SClM2D_30"o_man 0.507 -0.142 3.688 0.307 0.346 0.871
SClM2D_rand 0.820 -0.091 3.519 0.7346 0.112 0.743

following page are behaving consistently with change in spatial locality. Hence in our 

subsequent presentation, we present our results with only two measures - BetaCV and 

Silhouette Co-efficient (see Table C.2 on page 219).

Distribution Quality. Table 8.8 on page 201 presents the values of quality measures for 

data distribution of DD-Rtree when compared with random distribution and distribution 

using SD-Rtree for various synthetic and real datasets. For synthetic random and syn

thetic normal datasets, the results show that the measures have always been consistently 

better for DD-Rtree than random distribution and SD-Rtree for different number of com

puting nodes used in the cluster. The quality of distribution for synthetic cluster dataset 

however, is slightly lower than that of SD-Rtree. This is because of difference in the re

distribution strategies used. Since the dataset has fully disjoint clusters, the k-NN based 

re-distribution strategy of SD-Rtree works better than the overlap based re-distribution 

strategy of DD-Rtree. The quality of distribution using DD-Rtree for all real datasets 

is found to be better than that of SD-Rtree. This shows the efficiency of DD-Rtree in 

handling skewed datasets. For SFONT1M11D and MPAGD2.8M9D, DD-Rtree performs 

much better than others. This is because at high dimensional space, overlap based re

distribution of DD-Rtree performs considerably better than k-NN based re-distribution 

of SD-Rtree.
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Quality Analysis on Varying Factors. We analyze the quality of DD-Rtree with vari-
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ation in buffer size and the degree of emptiness in the tree for 16 nodes in the cluster for 

SR10M2D and SBUS6M2D datasets. Results presented in Figure 8.3 on page 195 show 

that the quality of distribution deteriorates with increase in buffer size beyond 10% of 

machine capacity in both the cases. This is because large buffer size leads to infrequent 

flushes into MR-Tree. It also results in very large number of points being shifted in re

distributions. Optimal quality is observed for buffer sizes between 5 and 10% of machine 

capacity. Similarly, results presented in Figure 8.4 on page 195 show that the quality 

of distribution initially improves and then deteriorates when we increase the degree of 

emptiness in the computing nodes. This is because high degree of emptiness leads to 

data being distributed in a skewed manner.

Table 8.3: Load Balancing for SR10M2D dataset

Data Structure Range of no. of points in each machine
SD-Rtree 46,216-62,500
DD-Rtree 56,394 - 60,341

We also compare the load balancing achieved for DD-Rtree and SD-Rtree and results 

are presented in Table 8.3 for SR10M2D dataset for n=16, when degree of emptiness is 

5%. The results show that DD-Rtree achieves better load balance than SD-Rtree. Similar 

results were obtained for other datasets as well.

8.3.2 Efficiency Evaluation

We evaluate DD-Rtree for execution time and MPI messages required for data distribu

tion.

Table 8.4: Construction time of DD-Rtree vs SD-Rtree

Dataset SR10M2D SBUS6M2D

No of Nodes Data Struct. Constr. Time MPI Messages 
(approx..) Data Struct. Constr. Time MPI Messages 

(approx..)
SD-Rtree 1787 sec. 25.3 M SD-Rtree 1607 sec. 18.4 M

n=16 DD-Rtree 1295 sec. 1.4 M DD-Rtree 1064 sec. 1.2 M
SD-Rtree 1839 sec. 26.4 M SD-Rtree 1672 sec. 19.6 M

n=32 DD-Rtree 1363 sec. 1.6 M DD-Rtree 1114 sec. 1.3 M

Construction of DD-Rtree. We measure construction time and number of MPI messages 

required for DD-Rtree and SD-Rtree on SR10M2D and SBUS6M2D datasets for 16 and 

32 nodes. The results presented in Table Table 8.4 show that the execution time and the
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Table 8.5: Construction time of DD-Rtree with variation in Buffer size

Buffer Size 5% 10% 15% 20% 25%

SR10M2D Construction Time 1462 sec. 1363 sec. 1284 sec. 1106 sec. 1085 sec.
MPI messages 1.8 M 1.6 M 1.2 M 0.9 M 0.8 M

SBUS6M2D Construction Time 1267 sec. 1114 sec. 1068 sec. 1027 sec. 992 sec.
MPI messages 1.5 M 1.3 M 0.8 M 0.6 M 0.5 M

MP! messages required for DD-Rtree is less with respect to SD-Rtree. This is mainly 

attributed to buffering technique used to defer insertions and inserting them in bulk 

rather than point by point. This is also due to reduction in number of re-distributions for 

DD-Rtree.

We have also measured the construction time of DD-Rtree and number of MPI mes

sages required, with variation in buffer size (% of machine capacity) for SR10M2D and 

SBUS6M2D datasets on 32 nodes. The results presented in Table 8.5 indicate that the num

ber of MPI messages decrease as the buffer size increases. This is because when buffer 

size is small, the buffer is flushed very frequently and re-distribution routine is executed 

more number of times. However, we can see from Figure 8.3 on page 195, that quality of 

distribution is good when the buffer size is small. Therefore, we have taken buffer size to 

be 10% in all our experimentation.

Performance of Queries. We measure the average number of machines visited per query, 

average number of MPI messages and average execution time, for e-neighborhood and k- 

NN queries when executed over DD-Rtree and SD-Rtree for SR100M2D and MPAGD56M3D 

datasets for 32 nodes. We have used 10% sample of the dataset as querying points 

and have computed averages. We choose e=0.01 for SR100M2D dataset and e=0.006 for 

MPAGD56M3D dataset for executing neighborhood queries. We choose k=20 for all k-NN 

queries. The results presented in Table Table 8.6 on the next page clearly indicate that 

all these parameters are better for DD-Rtree, proving its better spatial locality. We also 

observed that query performance of DD-Rtree is consistently maintained with variation 

in c for neighborhood queries and variation in k for f-NN queries when compared to 

SD-Rtree.

Performance of Distributed DBSCAN. We perform simple version of distributed DB- 

SCAN over SD-Rtree and DD-Rtree, to compare their performance over MPAGD16M3D
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Table 8.6: Querying Performance of DD-Rtree and SD-Rtree

SR100M2D MPAGD56M

Average 
MPI

Average 
Execution

Average 
number of 
Machines 

Visited

Average 
MPI

Average 
Execution

Average 
number of 
Machines 

VisitedMessages Time Messages Time

DD-Rtree
Nbh 

Query 
A-NN 
query

3.18

3.17

0.051 sec.

0.074 sec.

1.59

2.17

2.9

2.96

0.043 sec.

0.058 sec.

1.45

1.96

SD-Rtree
Nbh 

Query 
A-NN 
query

3.44

3.38

0.069 sec.

0.086 sec.

1.72

2.38

3.26

3.24

0.056 sec.

0.072 sec.

1.63

2.24

dataset over 32 machines. The e was chosen to 0.01 and Min_Pts was chosen to be 5. Ta

ble 8.7 on the following page presents the summary of its execution. DBSCAN follows all 

four steps of a distributed algorithm explained in section 1. In step 1, we distributed data 

using suitable method. In this DD-Rtree takes less time when compared with SD-Rtree. 

This is attributed to reasons explained in the above experiments. In step 2, for every 

machine, we retrieve data points from other machines in the cluster which lie within e- 

extended boundary of the current machine. In this step, the number of MPI messages 

required remains same in all cases. However, the execution time for DD-Rtree is lesser 

because the number of extra data points fetched from other machines is less due to its 

greater preservation of spatial locality in its distribution. Step 3 involves execution of 

local DBSCAN at each machine. In this step, the time require for local DBSCAN is less for 

DD-Rtree. This is because, preservation of spatial locality helps in reducing the search 

space for the neighborhood queries, when data is indexed in R-trees. This is also because 

of lesser number of extra points retrieved from other nodes. In step 4, we merge the 

results of all local DBSCAN to give the required global clustering. In this step, the time 

required for merging is almost the same for DD-Rtree and SD-Rtree. Thus, the above 

experiment shows that effective distribution of data using DD-Rtree enables reduction in 

communication complexity and thus improves the performance of parallel DBSCAN.

8.4 Discussion

DD-Rtree gains the following advantages by its design:
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Table 8.7: Parallel DBSCAN using DD-Rtree and SD-Rtree

Exec, time for SD-Rtree Exec, time for DD-Rtree
Step 1
Step 2
Step 3
Step 4
Total Execution Time

1948 sec. 1426 sec.
481 sec. 304 sec.
1671 sec. 1428 sec.
150 sec. 139 sec.

4250 sec. 3297 sec.
Number of data points retrieved from other machines

Step 2 1.92 M 1.28 M

• The re-distribution strategy of DD-Rtree is a hybrid strategy based on overlap min

imization and nearest neighbor search, unlike the SD-Rtree which is based only on 

nearest neighbor search. Nearest neighbor search alone cannot gaurantee good spa

tial locality and thus DD-Rtree turns out to be better in preserving spatial locality 

in its distribution.

• The communication overhead in construction of DD-Rtree is much lesser than that 

of SD-Rtree. This is primarily attributed to bulk insertions and bulk re-distributions 

(resultant of usage of buffers), unlike SD-Rtree that inserts and re-distributed point 

by point and hence becoming a communication bottle-neck. This leads to lesser 

construction time for DD-Rtree.

• Also, bulk loading helps in maintaining good load balancing in the machines, which 

is one of the key requirements for parallel spatial data mining algorithms.

• All the above factors of DD-Rtree resulted in improved performance of spatial 

queries and parallel DBSCAN.

8.5 Main Contributions

• We presented DD-Rtree which is a dynamic distributed data structure for indexing 

large and incremental datasets.

• DD-Rtree can be used for distributing data into the computing nodes of the cluster 

in such a way that it effectively preserves spatial locality in its distribution and 

achieves good load balancing

• Experimentally, we have shown that DD-Rtree gives better performance of spatial 
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queries and parallel DBSCAN, when compared with random distribution and SD- 

Rtree.

• Experiments also show that DD-Rtree has lesser communication overhead when 

compared to SD-Rtree and thus is efficient in its construction and querying.

8.6 Conclusions & Future Work

8.6.1 Conclusions

This chapter proposes DD-Rtree, which is a dynamic distributed data structure based on 

R-tree. DD-Rtree preserves spatial locality in its distribution, achieves good load balanc

ing, exhibits less communication overhead in querying and construction, and improves 

the performance of parallel spatial data mining algorithms. DD-Rtree also supports 

efficient execution of c-neighborhood and k-NN queries. The quality and efficiency eval

uation together establishes the superiority of DD-Rtree with respect to SD-Rtree and 

random distribution.

8.6.2 Future Directions

DD-Rtree can be used to design highly efficient distributed framework for mining data 

streams. Also, the DD-Rtree strategy can very well be applied on other R-tree variants.
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Table 8.8: Data distribution quality for varying number of computing nodes for various datasets

1 1 n=16 n=32 n=64 | n=128 | n=256 |

rand SDR DDR rand SDR DDR rand SDR | DDR 1 rand SDR | DDR | rand SDR 1 DDR |

SR500M2D
BCV 0.715 0.526 0.439 0.632 0.518 0.426 0.698 0.516 | 0.428 1 0.702 0.511 | 0.403 | 0.697 0.506 1 0.411 |
SIL 0.614 0.912 0.953 0.632 0.908 0.955 0.697 0.922 | 0.964 1 0.712 0.911 | 0.963 | 0.706 0.917 1 0.965 |

SN100M2D
BCV 0.765 0.699 0.698 0.712 0.624 0.614 0.703 0.617 | 0.598 1 0.71 0.599 | 0.572 | 0.685 0.548 1 0.516 |
SIL 0.487 0.796 0.844 0.498 0.821 0.869 0.436 0.788 | 0.876 1 0.513 0.842 | 0.912 | 0.559 0.849 1 0.915 |

SC100M2D
BCV 0.833 0.411 0.451 0.795 0.396 0.432 0.768 0.347 | 0.386 1 0.778 0.301 | 0.941 | 0.724 0.282 1 0.304 |
SIL 0.648 0.921 0.854 0.627 0.923 0.867 0.633 0.926 | 0.892 1 0.701 0.929 | 0.915 | 0.693 0.937 1 0.924 |

SFONT1M11D
BCV 0.514 0.398 0.248 0.534 0.375 0.244 0.527 0.368 | 0.214 1 0.486 0.347 | 0.196 | 0.447 0.329 1 0.204 |
SIL 0.247 0.726 0.894 0.164 0.763 0.905 0.187 0.773 | 0.924 1 0.168 0.798 | 0.937 | 0.199 0.812 1 0.94 |

1 MPAHALO2.8M9D
। FOF113M3D

BCV 0.628 0.583 0.473 0.604 0.562 0.436 0.593 0.518 | 0.401 1 0.562 0.501 | 0.386 | 0.579 0.483 1 0.372 |
SIL
BCV

0.363
0.864

0.674
0.635

0.836
0.447

0.381
0.822

0.693
0.622

0.853
0.432

0.394
0.812

0.725 I
0.593 |

0.875
0.458 | 0.427

0.794
0.783
0.605

0.901 1
0.405 |

0.452
0.807

0.812
0.586 | 0.894

0.415
SIL 0.294 0.764 0.889 0.386 0.793 0.892 0.357 0.813 | 0.914 1 0.429 0.818 | 0.927 | 0.414 0.827 1 0.942 |

MPAGD56M3D
BCV 0.62 0.455 0.412 0.637 0.441 0.399 0.587 0.428 | 0.394 1 0.641 0.427 | 0.367 | 0.623 0.428 1 0.338 |

SIL 0.749 0.901 0.914 0.726 0.92 0.921 0.738 0.914 | 0.908 1 0.722 0.908 | 0.917 | 0.685 0.917 1 0.921 |

SBUS6M2D
BCV 0.512 0.458 0.345 0.539 0.469 0.314 0.521 0.431 | 0.324 1 0.566 0.413 | 0.305 | 0.547 0.407 1 0.298 |

SIL 0.802 0.947 0.956 0.765 0.952 0.974 0.744 0.962 | 0.966 1 0.798 0.967 0.982 | 0.783 0.963 1 0.971 |

8.6 Conclusions & Future W
ork



Chapter 9

Conclusions and Future Work

9.1 Conclusions

The work done in this thesis primarily focuses on the following broad research topics 

- Data Mining, Data Streams, Data Structures and High Performance Computing. We 

specifically deal with the problems on development of efficient data indexing techniques 

for efficient spatial queries, mining variable speed streaming data and spatial data distri

bution for parallel data mining over distributed memory architectures. In the course of 

this thesis, we have innovatively used the concepts listed in the table below. The applica

bility of these concepts to the problems attempted in this thesis is summarized in Table 9.1 

and have been briefly explained as follows:

• Grid-R-tree. This method uses a hybrid method of adaptive gridding and hierarchi-

Table 9.1: Key concepts used in proposed algorithms

Concept G
rid

-R
-tr

ee

A
ny

SC
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FI

M
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ny
FI

D
D

-R
Tr

ee

Gridding and Adaptive Gridding / X X X X X X /
Hierarchical data structures / / ✓ / / / ✓ /
Spatial locality aware computations / / y / X X /
Computational cost reduction / ✓ y / / ✓ / /
Handling variable stream speeds X j y / / X X
Spatial Data Distribution X X X / X X / /
Buffering X / ✓ y / / / X
Hierarchical Aggregation X / / / X X X X
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cal structure, R-tree, in order to efficiently execute spatial queries used in spatial 

data mining algorithms. Its two-level design achieves reduction in search space 

for spatial queries and reduces the computations cost of clustering algorithms such 

as DBSCAN & OPTICS, as well as the K-NN classifier. The innovative use of hy

brid concepts makes Grid-R-tree address the drawbacks of conventional structures 

like R-tree and kd-tree, arising due to large size and high dimensionality of the 

datasets (such as increase in overlap and height in R-tree & k-d-tree, respectively) 

and execute the queries more efficiently. The experimental analysis suggests that 

Grid-R-tree outperforms R-tree and kd-tree. The maximum speed up achieved is 42 

for CellWiseNBH query, 21 for PointWiseNBH query and 25 for KNN query.

• AnyFI & MPAnyFI. These two methods are the first proposed methods for anytime 

frequent itemset mining of single-port and multi-port data streams, respectively. 

They use proposed hierarchical structure known as BFI-forest, which is a collec

tion of BFI-trees. BFI-trees use buffers in their nodes to delay the processing of 

incompletely processed transactions arriving in variable speed streams. Experimen

tal results suggest that AnyFI can handle stream speeds upto 60,000 transactions 

per second with recall close to 100%. The experiments also show the efficiency and 

scalability of MPAnyFI.

• AnySC. It is the first proposed anytime set-wise classification algorithm for data 

streams. It processes variable stream speeds using a proposed hierarchical struc

ture known as CProf-forest, which is a collection of CProf-trees that are based on 

R-tree structure. CProf-trees contain buffers in their internal nodes to defer the pro

cessing of incompletely processed objects arriving in variable speed data streams. 

The training data is hierarchically aggregated in the form of CProf-trees to han

dle classification of test data arriving in the stream. AnySC makes best use of the 

hierarchical structure of the CProf-forest to get better accuracy when compared to 

the non-anytime set-wise classification algorithm (SC), even at SC's budget speed. 

This happens because of reduction in computational overhead by the conversion 

of the linear model to a hierarchical model. The experimental analysis shows that 

AnySC is able to process very high speed streams (upto 100k objects per second) 

and produce accurate results. The experimental results also show the applicabil
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ity of AnySC to the problem of community detection using text feeds from twitter, 

as well as simulation of website fingerprinting attack. AnySC performs the above 

applications where stream speed is varying, with good accuracy.

• AnyClus & AnyMPClus. These two problems use the proposed hierarchical struc

ture known as AnyRTree, which is based on R-tree. AnyRTree also uses buffers 

to delay the processing of incompletely processed points arriving in variable speed 

streams, and also to handle noise and concept drift. AnyRTree is a hierarchical 

aggregation of micro-clusters using R-tree spatial containment principles. This pre

serves the spatial locality in the hierarchical arrangement of micro-clusters in the tree 

and hence leads to reduction in computation cost of the offline clustering algorithm 

applied over these micro-clusters. This also helps in producing purer and compact 

micro-clusters when compared to the existing methods. Any-MP-Clus uses spatial 

data distribution to efficiently merge the micro-clusters and then feeds them into 

a logarithmic tilted-time window framework. The experiments show that AnyClus 

and Any-MP-Clus can handle very high speed streams (>200k points per second) 

and produce micro-clusters of high purity (~1). The usage of noise buffers in the 

internal nodes at higher granularity also led AnyClus and Any-MP-Clus to handle 

noise and concept drift more effectively.

• DD-RTree & Static Data Distribution Strategies. The data distribution strategies 

proposed in this thesis are fully based on spatial locality principles and are specifi

cally designed for those parallel data mining algorithms that exploit spatial locality. 

They achieve computational and communication cost reduction by use of spatial 

data distribution attained by following the scheme of hierarchical data indexing 

structures such R-tree and k-d-tree. DD-RTree additionally employs buffers to fur

ther reduce the communication overhead and uses bulk-loading. The experimental 

results suggests that the proposed static methods outperform the existing kd-tree 

based distribution scheme for density-based and hierarchical clustering algorithms. 

Appropriate recommendations for the usage of each of the distribution proposed is 

also given.

Notable Achievements of work done in this thesis:

204



9.2 Future Directions

• Proposed first of its kind solutions - Grid-R-tree, AnySC, Any-MP-Clus, AnyFI, 

MPAnyFI and Data Distribution Strategies.

• Effectively used hybrid concepts such as combination of grid and trees.

• Efficiently processed billions scale data.

• Efficiently processed high speed and variable speed streams.

9.2 Future Directions

An insight on future directions which we plan to pursue.

• More number of Grid-R-tree kind of hybrid structures can be made with combina

tions of multiple data structures.

• Anytime mining algorithms can be developed for anomaly detection and classifiers 

like SVM, Decision Tree, etc., for handling both large static data as well as streaming 

data. Anytime mining algorithms can also be developed for hierarchical clustering, 

subspace clustering, grid-based clustering, etc. over large static datasets.

• A "fast and slow framework" for anytime mining of data streams can be designed 

where two processes simultaneously capture the same stream, one using sampling 

and the other using anytime features. This is expected to improve the accuracy of 

the offline mining results produced for very high speed streams.

• The data distribution strategies can be extended to suit the parallel data mining 

algorithms proposed for Map/Reduce and Spark frameworks.

• Effective distributed frameworks based on MPI, Spark and Map/Reduce can be 

developed for distributed stream processing.
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Appendix A

R-tree

R-tree [122] is a commonly used hierarchical indexing structure for indexing multi-dimensional 
spatial objects. R-tree and its variants are commonly used in spatial data mining algo
rithms for efficient execution of neighborhood and nearest neighbor queries, in logarith
mic average time.

A.l Structure of an R-tree

External nodes indexing data points

Figure A.l: R-tree: Structure Figure A.2: Minimum Bounding Rectangles

Figure A.l illustrates the structure of an R-tree. It has two kinds of nodes: internal and 
external (or leaves). It is defined as follows:

Definition A.l. R-tree is a height balanced multi-dimensional indexing structure having 
the following properties:

• Each node (both internal and external) contains between m and M entries (in < 
M/2). The root has at least one entry.

• An entry of an internal node stores the following entries: (i) a pointer child to the 
child sub-tree; (ii) a minimum bounding rectangle MBR; (iii) a pointer next to the 
next entry in the node.

• An entry of a leaf node stores d-dimensional data points.

An MBR stores bounding information of all the points indexed in the sub-tree rooted 
at it. Figure A.2 shows MBRs of the nodes of the R-tree formed while indexing data 
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A.2 R-tree: Construction, Insertion and Deletion

points. The MBR of a given entry bounds the MBRs present in all the entries indexed at 
its child node. This forms a hierarchy of MBRs in the tree.

Alg 
’ P

3 
4

6
7
8
9

,orithm A.l: Insertion in R-tree Alg
rocedure Insert-In-R-free () i p

Input : data point />, R-tree node nodel
Output: p inserted into tree rooted at nodel 
if nodel.type - = INTERNAL then 2

bestChild — R-Pkk-Child p); 3
Inserf-In-R-free (bestChild); 4

else if node I.type - - EXTERNAL then 
I Insert p as a new entry in nodel; 5
I if nodel overflows then 6

| R-SPLlT-NoDE(nodel); 7
I R-Ui'DATE-MBR-BorTOM-Upfnodcl); s

orithm A.2: R-Pick-Child
rocedure R-Pick-Child ()

Input : R-tree node nodel, data point p 
Output: bestChild of nodel for insertion of p 
bestE nodel's first entry; currE •- bestE;
while currE ± MULL do

1 if Expansion-Area (bestE.MBR, p) > 
Expansion-Area (currE.MBR, p) then 

| bestE currE;
J currE < currE.next

end
return bestExhild;

Algorithm A.3: R-Split-Nodc Algorithm A.4: R-Pick-Seeds
1 Procedure R-Split-Node () 1 procedure R-Pick-Seeds ()

3
4
5

Input : R-tree node nd
Output: Splits nd into two and updates the tree 
ej <— NULL; i’2 <- NULL; te <- nd.firstEntry;
nd[, ndz <- New-R-tree-Node ();
R-Pick-Seeds (nd, e1( e2);
while te NULL do 2

Input : R-tree node nd, entry pointers p| & e2 
Output: 1’1 & 1’2, which are the pair of entries of 

nd whose MBRs are farthest along any 
dimension. They are selected as initial 
seeds for splitting 

foreach dimension i do
6

7

8
9
10
11
12
13
14

if

e

e

No-Of-Filled-Entries (ndi ) < in &
No-Of-Filled-Entries (nd2) < in then 

/ / both ndi & inh underflown 
if ExpansionAre/X (nd^ te.MBR) <

ExpansionArea (nd2, te.MBR) then
| Add-Entry-To-Node (te, nd\);

else
| Add-Entry-To-Node (te, nd2) 

se if Num-Filled-EntriesOk/| )< in then 
Add-Entry-To-Node (te, iidt);

se
Add-Entry-To-Node (te, ndi);

3
4

6
7

8

9
10

e 
fc

ininE <- Min-Entry-Across-Dim(hJ, i);
maxE <- Max-Entry-Across-Dim(hi/, i);

H ininE & maxE are pointers to entries 
of a R-tree node

Arr\i].minEntry <- ininE;
Arr[i].maxEntry <- maxE;
disN\i] Separation-Between-MBRs

(maxE.MBR, ininE.MBR);
disN[i\ <- di^[i'ISvAN(i, Arr[i]); II 

normalizes the separation computed
id
ireach dimension i do

15
16
17
18
19

ei
A
A 
if

te te.next;
id
dd-Node-To-Rtree-Node (n</|, nd.parent);
dd-Node-To-Rtree-Node (nd2, nd.parent); 
nd.parent overflows then

11
12
13
14
15

if

ei

i/zsN[f] > dis then 
dis <- disN[i]; 
t’i 4- Arr[i\.minEiitry; 
t*2 <— Arr\i'.maxEntry;

id
20 R-Split-Node (nd.parent); 16 end

A.2 R-tree: Construction, Insertion and Deletion
R-tree is constructed by incremental dynamic insertions of a given list of data points. In
sertion of a data point p happens in a top-down recursive fashion into the sub-tree rooted 
at a given node (nodel), beginning from the root. Algorithm A.l illustrates this. If the 
current node (nodel) is an internal node, it picks the best child of the node (the child that 
has least expansion in its MBR's area after inclusion of p (Algorithm A.2), and makes a 
recursive call over that child (lines 2-4 of Algorithm A.l). If nodel is an external node, 
it simply inserts the data point into it as a new entry (line 6 of Algorithm A.l). If nodel 
overflows because of this insertion, i.e. the number of entries stored in it exceeds M, then 
it gets split into two (Algorithm A.3) and the newly created nodes are added to novel's 
parent (line 7 of Algorithm A.l). Subsequently, the MBRs of the tree are updated in a 
bottom up fashion as per the newly inserted data point (line 8 of Algorithm A.l). The 
average case time complexity of inserting a data point into R-tree is O(log,(/ N). Thus, av
erage time complexity of R-tree construction is 0(N log,„ N), where N is the total number 
of data points inserted into in the tree.
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The Split Node function (Algorithm A.3 on page 207) is the R-tree's linear split al
gorithm [122]. One can very well use quadratic or exponential split, instead. The linear 
split uses a linear cost seed selection algorithm (Algorithm A.4 on page 207). This seed 
selection algorithm, for each dimension, finds the entries of the node being split that have 
the lowest and the highest extreme rectangles respectively, and stores the pair in an array 
Arr of size d (lines 2-9 of Algorithm A.4 on page 207). It then computes the separation 
between the MBRs for each pair stored in Arr and stores the separation values in an array 
disN of size d. Then disN is normalized by dividing the separation found by the width of 
the entire set along the corresponding dimension. The pair of entries that have the highest 
normalized separation along any dimension are selected as initial seeds for splitting (lines 
10-16 of Algorithm A.4 on page 207). The Split Node function then takes these two seeds 
and distributes the remaining entries to these seeds thus creating two nodes (lines 5-15 
of Algorithm A.3 on page 207). Distribution happens with minimization of expansion 
area as the criteria. It also makes sure that none of the new nodes have underflow. The 
two new nodes are then attached to the parent of the older node, which is subsequently 
checked for overflow (lines 17-20 of Algorithm A.3 on page 207). If overflow occurs, it is 
handled in a similar way and the split can propagate up to the root leading to creation of 
new root. Thus in this way, R-tree grows upwards. For more details on Split Node and 
Pick Seeds functions, please refer to [122].

Deletion of a point p from R-tree involves finding it using point query and then its 
removal from the corresponding node. If this removal causes node under-flow (i.e. no. of 
entries become < m), it has to be handled by merging of nodes in a bottom up manner. 
Since deletion is out of scope for this thesis, we don’t describe it further.

A.3 Distance Measures in an R-tree
We first present two distance measures used in R-trees.

euclideanDistlp. q)

Figure A.3: Illustrating euclidean distance and min-distance

Definition A.2. Euclidean Distance. Given two d- dimensional points p = (pi,- • • ,pd) 
and q = (qi, • • • ,q(t) (see Figure A.3), for 1 < i < d,

euclideanDist(p,q) =
i=0

Definition A.3. Min Distance. Given a d-dimensional query point q = (qi, • • • ,qd) and an 
MBR Z = (s, t) of an R-tree defined by two corner points s and t (as shown in Figure A.3
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on page 208) such that s = (si, • • • ,s,/), t = (fi, • • • ,^£/) and s, < tj for 1 < / < d, then

i J 

mhiDist(q,Z) = . £ \ll ~ 
\ i=()

where r, = t.
ifq, < s, 
ifq> > h 
otherwiseV/

minDist(q,Z) is the minimum distance between a query point q and an MBR Z as illus
trated in Figure A.3 on page 208 for d=2. It is the lower bound of the actual distance of 
any object lying in Z to q.

A.4 Queries Supported by R-tree

In this section we discuss various queries supported by R-tree. They include - region 
queries (point, window & neighborhood queries) and nearest neighbor query.

A.4.1 Point Query

Point query checks the existence of a given data point p in a dataset. The algorithm 
for point query over an R-tree executes in a top-down recursive fashion over the R-tree 
nodes, recursing into the children whose MBRs promise containment of p. In its traversal, 
if it finds p at any of the external nodes, it returns TRUE, else it returns FALSE (See 
Algorithm A.5) for pseudo code). The average complexity of point query over R-tree is 
O(log„, N).

A Igorithm A.5: Point Query over R-tree
i

3
4
5
6
7
8
9
10
11

12
13

procedure Point-Query-R-tree ()
Input : data point p, R-tree root node 
Output: TRUE of p exists, FALSE otherwise 
boolean flag <— FALSE ;
if node.type == EXTERNAL then

1 foreach entry e indexed in node do
1 if e == p then
| | flag <- TRUE; break;

| end
else if node.type == INTERNAL then 

foreach entry e indexed in node do 
if e.inbr contains p then

1 flag Point-Query-R-tree (p, 
1 e.child);

end 
return flag;

Algorithm A.6: Window Query over R-tree
1 Procedure Window-Query-R-tree ()

2

Input : region r, R-tree root node, data points 
list plist

Output: plist containing data points lying in r 
if node.li/pe == EXTERNAL then

3

4
5

1 Add all the points indexed at node, that lie 
| in r, to pLisf;

end
else if node.type == INTERNAL then

6
7
8

9
10
11

foreach entry e of node do 
if e overlaps with r then

1 Window-Query-R-tree (r,
| e.child, plist);

end
end

end

A.4.2 Window Query

Window query is a query which returns all the data points that lie in a d-dimensional 
window or a region r, from the entire data space. Figure A.4 on the next page illustrates 
the window query for d=2. The window query algorithm for R-tree also executes in a top- 
down recursive fashion, recursing itself into the children of a node whose MBRs overlap 
with the given region r. In its traversal, whenever it encounters an external node, it simply 
accumulates all the data points of this node that lie in region r into a temporary list and 
returns it. (See Algorithm A.6 for pseudo code). The average complexity of window 
query over R-tree is O(logn/ N).
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Algorithm A.7: e-Neighborhood Query over R-tree
i procedure c-Neic.hborhood-Query-R-tree ()

Input : data point p, t, R-tree root node, data points list plht 
Output: pits! containing points lying within t distance from p

2 construct an e-extended region r of p;
3 tempLiat = Window-Query-R-tree (r, node);
4 plist = points of templisl within e-distance from p;
5 return pli>t;

A.4.3 Neighborhood Query

Neighborhood query or e-neighborhood query is a query which returns all the data points 
lying within an e- distance from a given point p. Figure A.5 illustrates this query for d=2. 
The points lying in the circular region in the figure is e-neighborhood of p. Neighborhood 
queries are extensively used in density based clustering algorithms like DBSCAN [34] and 
OPTICS [35].

The neighborhood query algorithm for an R-tree is presented in Algorithm A.7. In 
this, a region r (referred to as e-extended region of p) is first constructed around p by 
extending its coordinates across all the dimensions by c, in both positive and negative 
directions. Figure A.5 shows this region for 2-dimensional space. Then, a window query 
is executed over R-tree with r as the window. From the points returned by the window 
query, those that lie within e distance from p are returned as e-neighborhood of p. The 
average complexity of neighborhood query over R-tree is O(logm N).

A.4.4 Nearest Neighbor Query

Nearest neighbor query or ^-nearest neighbor (fc-NN) query is a query that returns the 
k closest data points to a given query point p [121]. k-NN query for k=6 is illustrated 
in Figure A.6, where all the points within the circle form the k nearest neighbors of p. 
The best known algorithm for nearest neighbor search over R-tree is the BF-kNN [131], 
which uses a min-priority queue (PQ) that stores nodes of an R-tree as well as data points 
indexed in it. The key for insertion into priority queue is the euclidean distance for data 
points and minDist for nodes (or MBRs of nodes). BF-kNN is a greedy algorithm with 
minimum distance as the greedy choice. Algorithm A.8 on the next page presents its 
pseudo code. The BF-kNN algorithm first adds the root node of a given R-tree into PQ. 
Then in a loop it executes the following steps until k nearest neighbors are found. A 
Remove-Min() operation is performed over PQ. If the min object is an internal node, it 
inserts all its indexed entries into PQ with their respective minDist from p as key values;

Figure A.4: Illustrating 
Window Query

Figure A.5: Illustrating
Neighborhood Query

Figure A.6: Illustrating k- 
NN Query (k=6)
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Algorithm A.8: A-Nearest Neighbor Query over R-tree

3
4
s
6
7
8
9
10
11
12
13
14

procedure A-NN-Query-R-tree ()
j Input : data point q, k, R-tree root node
I Output: A- nearest neighbors of </
i Initialize Empty Priority Queue PQ; int i = 1;
I Add node into PQ, with its minDistance from /> as the key;
! while PQ not empty do

| element ele = Remove-Mix (PQ);
if ele is internal node of R-tree then

Add all its entries to PQ with their respective minDist (from </) as kevs;
else if ele is external node of R-tree then

Add all its entries to PQ with their respective euclideanDist (from </) as kevs; 
else if ele is a data point then

report ele as i"' nearest neighbor; i++;
if i > k then

| return;
end

If the min object is a penultimate node, it inserts all its indexed entries into PQ with their 
respective euclideanDist from p as key values. If the min object is a data point, it is marked 
as the ith nearest neighbor. This step is repeated until i > k, with i initially set to 1.

The complexity of BF-kNN is dominated by the complexity of priority queue opera
tions [131]. The number of objects inserted into the priority queue is O(k + x/k) and cost 
of each insertion is O(log x/k), if PQ is implemented as a binary heap. Thus the average 
case complexity of BF-kNN algorithm is O(k + v^).O(log x/k) = O(k\ogk). However, 
the worst case complexity is O(N), wherein all the nodes in the R-tree are added to the 
priority queue.

211



Appendix B

Tilted-Time Window FrameWork 
(TTWF)

Tilted-Time Window is a framework for storing summary statistics of a data stream. It is 
used to store the summary entire stream while giving greater weight-age to the recently 
arrived objects. TTWF is used by problems of anytime clustering and anytime FI mining 
in Chapter 6 on page 126 and Chapter 4 on page 60 respectively.

TTWF [309] is inspired by the fact that very often people are interested in looking 
at recent changes at finer granularity and the older changes at coarser granularity. It 
consists of a few windows whose cardinality is logarithmic in units of time. Consider 
the logarithmic TTWF shown in Figure B.l. Suppose the latest window zt’i stores the 
summary statistics of the stream received for last tj„ units of time. Then, n>2 would store 
summary statistics for previous units of time, W3 would store for next 2ti„ units of 
time, 4tin units in W4 and so on, growing at an exponential rate of 2. Essentially, zt’i and 
W2 store summary statistics at finest granularity, and as the units of time represented by 
each window increases, the granularity becomes coarser. Note that each window Wj in 
TTWF has a temporary window tWj representing the same units of time (as shown in 
Figure B.l), except for wi.

Figure B.l: Tilted-Time Window Framework

The above model can be useful in: (1) finding data patterns for a specific period of time 
represented by a specific contiguous subset of windows, while giving greater weightage 
to the recent windows; (2) specifically finding the period where a particular pattern exists 
in the stream; (3) perform weighted analysis on the windows representing a particular 
period, etc.

B.0.1 Maintenance of TTWF

Consider Figure B.l. TTWF assumes that objects are arriving in batches (of say tin units of 
time). Lets start with an empty TTWF. When the first batch arrives (say FJ, the summary 
statistics from Fi are stored in window When second batch arrives (F2), the summary 
statistics of Fi are moved from Wi to W2 and summary statistics of F2 are put into W\. 
When next batch arrives (F3), summary statistics of F] are moved from W2 to tW2, summary
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Figure B.2: Updating TTWF after receiving batch F4

time

statistics of F2 are moved from (pj to uh and summary statistics of Ft, are put into u>|. When 
the next batch arrives (Fi), we merge summary statistics of 11'2 and tW2 (Fj and F2) and 
put the merged statistics into wj, as shown in Figure B.2. Then we move Ft, from uq to W2, 
and put Fi into Going this way, after receiving another 4 batches, summary statistics 
in W3 (Fi 4- F2) will be placed in twy And after another 4 batches, the summary statistics 
in and will be merged and stored in as was done previously. And in this way 
the TTWF grows. We can clearly observe that total number of windows in TTWF at any 
point in time is of logarithmic order of units of time for which stream was received. If we 
consider to represent the stream received for an hour, then total number of windows 
for representing the entire stream for a month will be [(log( 1 x 24 x 30))] +1 = 11 instead 
of 24 x 30 = 720 windows. Similarly for 1 year and 10 years it would respectively be equal 
to 15 and 18 windows respectively. This shows that tilted-time window representation is 
very compact and memory efficient. A user can request for a mining output for a time 
duration covered by a single or multiple windows. For this, we take summary statistics 
from those windows and perform offline processing over them.
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Appendix C

Quality Evaluation Measures

In this chapter we described a few measures of assessing the quality of data distribution or 
partitioning or clustering. There are two kinds of measures - external & internal. External 
measures are used when the ground truth is available and Internal measures are used 
when ground truth is not available. We explain a few of these measures that are used in 
this thesis. They have been summarized in [310].

C.l External Measures

Let D = be a dataset containing n data points of dimensionality d that are par
titioned into k partitions. Let y, € {1,2, ...,k} be the ground-truth label (or ground
truth partition membership) for each point. The ground-truth partitioning is given as 
T = {Ti, T2, T/J, where the partition Tj consists of all the points with label j , i.e., 
Tj = {x, G D | y, = j}. Also, let C = {Ci,..., Cr} be a partitioning of the same dataset into r 
partitions, obtained via some clustering or a distribution algorithm, and let yj G {1,2,..., r} 
denote the obtained label for x,.

External evaluation measures try to capture the extent to which points from the same 
ground-truth partition appear in the same obtained partition, and the extent to which 
points from different ground-truth partitions are grouped in different obtained partitions. 
All of the external measures rely on the r x k contingency table N, which is induced by a 
obtained partitioning C and the ground-truth partitioning T , defined as follows:

N(i,j) = Hij = |c,n tj

The count n,) denotes the number of points that are common to an obtained partition 
Cj and ground-truth partition Tj . Further, let n, = |CJ be the number of points in an 
obtained partition C„ and let nij = |TJ denote the number of points in ground-truth 
partition Tj . The contingency table can be computed from T and C in O(n) time by 
examining the ground truth partitioning and obtained partitioning labels, y, and y,, for 
each point x,- G D and incrementing the corresponding count n^.

On the basis of the above discussion, we now describe a few external evaluation mea
sures. Table C.l on the following page summarizes the external measures used.

Matching Based Measures

Purity. Purity is a measure to quantify the extent to which an obtained partition C, 
contains entities from only one ground-truth partition. In other words, it measures how
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C.l External Measures

Table C.l: External Evaluation Measures

Measure Formula When is it better?

Purity L % purity, ' max{n„} where purity, inuxpij 
; 1 '1 'll

High

Precision J £ precision, where precision, - imaxpi,,} 
r 1 ' ' 1

High

Recall 1 '‘ XL recoil, where recall, - p High

F-measure 1 V F where F 11^'“'": Highr 2- r, uncrc t, rwi.„,n,. re^lt,

Jaccard Co-efficient IP 
i prnr■ t p High

Pair-wise Precision ip 
TP^FP High

Pair-wise Recall IP 
tp^tx High

1 r 
Precision = - precision, 

r i=l

Recall. The recall of an obtained partition Ci is defined as

nn tin 
recall; = = —

\Th\

"pure" each obtained partition is. Purity of C, can be defined as:

1 a f , purity, = — max

The purity of an obtained partitioning C is defined as the weighted sum of the partition
wise purity values:

• r-< ll i 1 k f i
Piirity = L-Purltyi = -

where the ratio denotes the fraction of points in obtained partition Ci . The maximum 
value of purity is 1. The larger the purity of obtained partitioning C, the better the 
agreement with the ground-truth.

Precision. Given an obtained partition Q, let j, denote the ground-truth partition that 
contains the maximum number of points from Q , that is, j, = max{nij}. The precision of 

/=i
a Q is the same as its purity:

precision;
Ik nih

— maxi tin} = — 
ni n nj

It measures the fraction of points in C, from the majority partition T^. The precision for 
the obtained partitioning C is the mean of partition-wise precision values: 
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C.l External Measures

where = \Tjt\. It measures the fraction of points in partition T,( shared in common with 
€j. The recall for an obtained partitioning C is the mean of partition-wise recall values:

Recall = 1 ^recalli

F-measure. The F-measure (or Fl-score) is the harmonic mean of the precision and recall 
values for each obtained partition. The F-measure for Ci can be written as:

_ 2 _ 2 • precisioiti • recallj _ 2 • nijt
' —L-----1----- • precisioni 4- recalL in + nijprecisioiit 1 recallt r ' '•

The F-measure for an obtained partitioning C is the mean of partition-wise F-measure 
values:

F-measure tries to balance the precision and recall values across all the partitions. For a 
perfect partitioning, when r = k, the maximum value of the F-measure is 1.

Pair-Wise Measures

The pair-wise measures utilize the ground-truth and obtained partition labels over all 
pairs of points. Let xif Xj C D be any two points, with i j. Depending on whether there 
is agreement between the obtained partition labels and ground-truth partition labels, there 
are four possibilities to consider:

• True Positives: Xj and Xj belong to the same partition in T, as well as in C. The 
number of all true positive pairs is given as:

TP = |{(X„X,) : yt = y, and ft = y,}|

• False Negatives: Xi and x, belong to the same partition in T, but not in C. The 
number of all false negative pairs is given as:

FN = | {(xh Xj) : y,- = y, and y,- £ft}\

• False Positives: Xi and Xj do not belong to the same partition in T, but they do in C. 
The number of all false positive pairs is given as:

FP = | {(xif Xj) : iji £ \jj and = yj |

• True Negatives: Xi and Xj neither belong to the same partition in T, nor do they in 
C. The number of all such true negative pairs is given as:

TN = | {(x,, Xj) : y,- / y, and y, y,} |

Because there are N = Q pairs of points, we have the following identity:

N = TP + FN + FP + TN
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C.2 Internal Measures

Computation of the above four cases requires quadratic time. However, they can be 
computed more efficiently using the contingency table N = h//z with 1 < i < r and 
1 < / < k, in O(n 4- rk) time [310]. We now describe a pairwise assessment measures 
based on the above four values:

Jaccard Co-efficient. The Jaccard Coefficient measures the fraction of true positive point 
pairs, but after ignoring the true negatives. It is defined as follows:

TPJaccard = ———----—1 TP + FN + FP

For a perfect partitioning C, the Jaccard takes the value I, as in that case there are no FPs 
or FNs. It denotes the similarity in terms of the point pairs that belong together in both 
the obtained partitioning and the ground-truth partitioning, but ignores the point pairs 
that do not belong together.

Pairwise Accuracy. The pairwise accuracy for a partitioning C us defined as:

TP + TN
nccurac'J = tp + fp + fn + tn

Accuracy is a simple ratio of correctly predicted point pairs to all the point pairs.

Pairwise Precision & Recall. Pairwise precision and pairwise recall for a partitioning C 
are defined as: 

TP „ TPprecision = ——------- recall = -----------K TP + FP TP + FN
Precision measures the fraction of correctly partitioned point pairs, in the same obtained 
partition. Recall measures the fraction of correctly labeled points pairs in the same 
ground-truth partition.

C.2 Internal Measures

Internal evaluation measures are used when the ground-truth partitioning is not available, 
which is the typical scenario when clustering a dataset or distributing it to computing 
nodes. To evaluate the quality of the partitioning, internal measures utilize the notions of 
intra-partition similarity or compactness, when compared with notions of inter-partition 
separation, with usually a trade-off in maximizing both of them. The internal measures 
are based on the n x n distance matrix (proximity matrix) of all pairwise distances among 
the n points:

w=

where $(xj,xf) = ||xz — Xj\is the Euclidean distance between Xj,Xj G D. Because W is 
symmetric and 3(xj,Xj) = 0, only the upper triangular elements of W (excluding the diag
onal) are used in the internal measures. The proximity matrix W can also be considered 
as the adjacency matrix of the weighted complete graph G over the n points, that is, with 
nodes V = {xjx/ G D}, edges E = {(x/,x;)U/,^/ € and edge weights Wjj = W(i,j) 
for all Xi, Xj G D.
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C.2 Internal Measures

Given an obtained partitioning C = Ci,...,Q comprising r = k partitions, with parti
tion Ci containing n, = |CJ points. The partitioning C can be considered as a k-way cut 
in G because Ci / for all i, C, DC/ = <p for all i, /, and U,Cj = V. Given any subsets 
S, R C V, define W(S, R) as the sum of the weights on all edges with one vertex in S and 
the other in R, given as

W(S,R} = E E
v,~S x^R

Also, given SC V, we denote by S the complementary set of vertices, i.e., S — 7 — S. 
The internal measures are based on various functions over the intra-partition and inter
partition weights. In particular, note that the sum of all the intra-partition weights over 
all partitions is given as

i W(C„C,)

We divide by 2 because each edge within C, is counted twice in the summation given by 
W(C„ C(). Also note that the sum of all inter-partition weights is given as

w„„, = 5 £ W(C„Q) = £ £ W(C„C,) 
i=\ i>i

Here too we divide by 2 because each edge is counted twice in the summation across 
partitions. The number of distinct intra-partition edges, denoted Ni„, and inter-partition 
edges, denoted Nout, are given as

Mill = E 2 y ~ 2 ~ 1)

k-1 k -i k k
Nout = £ nrni = ? E E tli •,l)

i=\ j=i+l L , = 1

Note that the total number of distinct pairs of points N satisfies the identity

N = N,„ + N„„, = Q = - 1)

Table C.2 on the next page summarizes a few internal quality evaluation measures. 
They are explained in detail as follows:

BetaCV Measure. The BetaCV measure is the ratio of the mean intra-partition distance 
to the mean inter-partition distance:

n , Qy _ Win / Njn _ N0lll Win _ Nouf ^i=\ W(Cj,Cj)
e “ “ W0llt/N0llt “ Nin ' Wout “ Nin ’ Etl W(ChCi)

The smaller the BetaCV ratio, the better the partitioning, as it indicates that intra-partition 
distances are on average smaller than inter-partition distances.

Normalized Cut Measure. The normalized cut measure tries to minimize the sum of 
similarities from a partition C, to other partition not in Ci, taking account the volume of
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C.2 Internal Measures

Table C.2: Internal Evaluation Measures

Measure Formula When is it better?

BetaCV Low

Normalized Cut (NC) £ 1

Modularity (Q)
C , - (^)!) Low

Davies-Bouldin Index (DB) |max{DB„} where = ‘A-L2. Low
/ : 1 ’ 4 ' 1

Silhouette Co-efficient (SIL) Ei' 1*^1 where si/, High

Normalized Hubert Statistic (f") ^.2 High

the partition:
i _ A w^d)

vol(Cj) ^W(C,,V)

where vol(Cj) — W(Cj, I/) is the volume of obtained partition C,, that is, the total weights 
on edges with at least one end in the partition. Since, we are using the proximity or 
distance matrix W, instead of the affinity or similarity matrix, the higher the normalized 
cut value the better.

Modularity. The modularity objective is measured as:

A / W(C„Cf) _ /W(C„Vh2\

where

W(V, V) = ^kW(Ch K) = £kW(d,Q) + £ W(Ci,Q) = 2(W„, + W„,„) 
f = l 1 = 1 1=1

Modularity measures the difference between the observed and expected fraction of weights 
on edges within the partitions. Since we are using the distance matrix, the smaller the 
modularity measure the better the partitioning, which indicates that the intra-partition 
distances are lower than expected.

Davies-Bouldin Index. Let [ij denote the partition mean, given as

= L *i

Further, let i denote the dispersion or spread of the points around the partition mean,
given as

a,,, = y = yjvar(d)
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C.2 Internal Measures

where var(C,) is the total variance of partition C;. The Davies-Bouldin measure for a pair 
of partitions Ci and Cj is defined as the ratio

DBU =

DBjj measures how compact the partitions are compared to the distance between the 
partition means. The Davies-Bouldin index is then defined as

1 A
DB‘i = K H™*{DB'i}

K,\

That is, for each obtained partition C/, we pick the Cj that yields the largest DBjj ratio. 
The smaller the DB value the better the partitioning, as it means that the partitions are 
well separated (i.e., the distance between partition means is large), and each partition is 
well represented by its mean (i.e., has a small spread).

Silhouette Coefficient. The silhouette coefficient is a measure of both cohesion and sep
aration of partitions, and is based on the difference between the average distance to points 
in the closest partition and to points in the same partition. For each point x, we calculate 
its silhouette co-efficient sil, as

s,7. =

where //^(x,) is the mean distance from x, to points in its own partition y,:

M -------

and is the mean of the distances from Xj to points in the closest partition:

= min {------ 1—- I
/ j

The sil, value of a point lies in the interval [-1, +1]. A value close to +1 indicates that xt 
is much closer to points in its own partition and is far from other partitions. A value close 
to zero indicates that x, is close to the boundary between two partitions. Finally, a value 
close to —1 indicates that Xi is much closer to another partition than its own partition, and 
therefore, the point may be mis-partitioned. The silhouette coefficient is defined as the 
mean sil, value across all the points:

1 H 
SIL = -Ysili

A value close to +1 indicates a good partitioning.

Normalized Hubert Statistic. Let X and Y be two symmetric n x n matrices, and let N = 
(2). Let x,y e denote the vectors obtained by linearizing the upper triangular elements 
(excluding the main diagonal) of X and Y (e.g., in a row-wise manner), respectively. Let 
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C.2 Internal Measures

px denote the element-wise mean of x, given as

i'x = E" -1 E (= ^xTx

and let zx denote the centered x vector, defined as

zx = X - 1 • fix

where 1 G Rv is the vector of all ones. Likewise, let //y be the element-wise mean of y, and 
Zy the centered i/ vector. The normalized Hubert statistic is defined as the element-wise 
correlation between X and Y,

r, = g.,' - I'MH) - my) = aXY

where a*, and ctJ are the variances, and (Jx\ the covariance, for the vectors x and y. The 
normalized Hubert statistic can be used as internal evaluation measure by letting X = W 
be the pairwise distance matrix, and by defining Y as the matrix of distances between the 
partition means:

Y = {‘S(My,-M»,)}i

Because both W and Y are symmetric, r„ is computed over their upper triangular ele
ments. The higher its value, the better the partitioning.

221



References

[1] M. H. Dunham, Data mining introductory and advanced topics, 1st ed. Prentice Hall, 2003. fxiii, fl, f2
(2J Statista, "Number of internet users worldwide 2005-2018," 2018. [Online]. Available: https: 

//www.statista.com/statistics/273018/number-of-internet-users-world wide/ ^xiii, $3, f4
[3] Domo, "Data Never Sleeps 6," 2018. [Online]. Available:  

data-never-sleeps-6 fxiii, f3, f5
https://www.domo.com/learn/

[4] IDC, "1DC Study: The Digital Universe of Opportunities: Rich Data and the Increasing 
Value of the Internet of Things Sponsored by EMC," 2018. [Online]. Available: https: 
//  fxiii, f4, f6www.emc.com/leadership/digital-universe/2014iview/index.htm

[5] P. Kudupu, "Web Snippets: 7 v's of big data," 2018. [Online]. Available: http://www. 
prathapkudupublog.com/2018/01/7-vs-of-big-data.html fxiii, $6, f7

[6] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Pearson Addison Wesley, 2005. fl, 
f2, f!6, f80, fl42, fl53, f 159, f 164

[7] B. M. E. Moret, "Decision Trees and Diagrams," ACM Computing Surveys, vol. 14, no. 4, pp. 593-623, 
12 1982. f2

[8] J. R. Quinlan, "Learning decision tree classifiers," ACM Computing Surveys, vol. 28, no. 1, pp. 71-72, 3 
1996. f2

[9] S. B. Kotsiantis, "Decision trees: a recent overview," Artificial Intelligence Review, vol. 39, no. 4, pp. 
261-283, 4 2013. T2

[10] H. Schiitze, D. A. Hull, and J. O. Pedersen, "A comparison of classifiers and document representations 
for the routing problem," in Proceedings of the 18th annual international ACM SIGIR conference on 
Research and development in information retrieval - SIGIR '95. New York, New York, USA: ACM Press, 
1995, pp. 229-237. f2

[11] E. Wiener, J. O. Pedersen, and A. S. Weigend, "A Neural Network Approach to Topic Spotting," in 
Proceedings of 4th annual symposium on document analysis and information retrieval (SDAIR'95), 1995, pp. 
332-347. f2

[12] J. Furnkranz and G. Widmer, "Incremental reduced error pruning," in Proceedings of the Eleventh 
International Conference on International Conference on Machine Learning. Morgan Kaufmann, CA, 1994, 
pp. 70-77. f2

[13] W. W. Cohen, "Fast Effective Rule Induction," in Proceedings of the Twelfth International Conference on 
Machine Learning (ICML'95). Morgan Kaufmann, 1 1995, pp. 115-123. f2

[14] T. T. T. Nguyen, T. T. Nguyen, A. W.-C. Liew, and S.-L. Wang, "Variational inference based bayes 
online classifiers with concept drift adaptation," Pattern Recognition, vol. 81, pp. 280-293, 9 2018. f2, 
f57, fl03

[15] D. Barbara, N. Wu, and S. Jajodia, "Detecting Novel Network Intrusions Using Bayes Estimators," in 
Proceedings of the 2001 SIAM International Conference on Data Mining. Philadelphia, PA: Society for 
Industrial and Applied Mathematics, 4 2001, pp. 1-17. f2

[16] I. Mani and I. Zhang, "KNN Approach to Unbalanced Data Distributions: A Case Study Involving 
Information Extraction I BibSonomy," in Proceedings of workshop on learning from imbalanced datasets (in 
ICML 2003). Morgan Kaufmann, 2003, pp. 1-7. f2

[17] V. N. Vapnik, The nature of statistical learning theory. Springer, 1995. f2
[18] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines : and other kernel-based 

learning methods. Cambridge University Press, 2000. f2

222



REFERENCES

[ 19] G. Seni and J. F. Elder, "Ensemble Methods in Data Mining: Improving Accuracy Through Combining 
Predictions," Synthesis Lectures on Data Mining and Knoudedge Discovery, vol. 2, no. I, pp. 1-126, 1 2010. 
$2

[20] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up? Sentiment classification using machine learning 
techniques," in Proceedings of the ACL-02 conference on Empirical methods in natural language processing 
(EMNLP'02). Association for Computational Linguistics, 2002, pp. 79-86. $2

[21] C. Phua, D. Alahakoon, and V. Lee, "Minority report in fraud detection," ACM SfGKDD Explorations 
Newsletter, vol. 6, no. 1, pp. 50-59, 6 2004. $2

[22] A. Srivastava, A. Kundu, S. Sural, and A. Majumdar, "Credit Card Fraud Detection Using Hidden 
Markov Model," IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 1, pp. 37-48, 1 2008. 
$2

[23] E. Blanzieri and A. Bryl, "A survey of learning-based techniques of email spam filtering," Artificial 
Intelligence Review, vol. 29, no. 1, pp. 63-92, 3 2008. $2

[24] D. Bazell and D. Aha, "Ensembles of Classifiers for Morphological Galaxy Classification," The 
Astrophysical Journal, vol. 548, no. 1, pp. 219-223, 2 2001. $2

[25] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. 
Antonescu, C. Peterson, and P. S. Meltzer, "Classification and diagnostic prediction of cancers using 
gene expression profiling and artificial neural networks," Nature Medicine, vol. 7, no. 6, pp. 673-679, 6 
2001. $2

[26] J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proceed
ings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1. USA, 1967, pp. 281-297. 
$2, T153

[27] S. Kumari, A. Maheshwari, P. Goyal, and N. Goyal, "Parallel Framework for Efficient k-means 
Clustering," in Proceedings of the 8th Annual ACM India Conference on - Compute '15. ACM, 2015, pp. 
63-71. $2, T153, T159

[28] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, "A Parallel K-Means Clustering Algorithm with MPI," in 
2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming. IEEE, 12 
2011, pp. 60-64. $2, $153, $159, $168, $169

[29] H. Song, J.-G. Lee, and W.-S. Han, "PAMAE: Parallel k-Mediods Clustering with High Accuracy and 
Efficiency," in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining - KDD '17. ACM New York, USA, 2017, pp. 1087-1096. $2, $153, $159

[30] R. Sibson, "SLINK: An optimally efficient algorithm for the single-link cluster method," The Computer 
Journal, vol. 16, no. 1, pp. 30-34, 1 1973. $2, [16, $153, $164

[31] W. Hendrix, M. M. Ali Patwary, A. Agrawal, W.-k. Liao, and A. Choudhary, "Parallel hierarchical 
clustering on shared memory platforms," in 2012 19th International Conference on High Performance 
Computing. IEEE, 12 2012, pp. 1-9. $2, $154, $156, $165

[32] P. Goyal, S. Kumari, S. Sharma, V. Kishore, N. Goyal, and S. S. Balasubramaniam, "Spatial Locality 
Aware, Fast, and Scalable SLINK Algorithm for Commodity Clusters," in 2016 IEEE International 
Conference on Cluster Computing (CLUSTER). IEEE, 9 2016, pp. 158-159. $2, $54, $166, $168, $169, 
$173, $181, $186

[33] P. Goyal, S. Kumari, S. Sharma, D. Kumar, V. Kishore, S. Balasubramaniam, and N. Goyal, "A Fast, 
Scalable SLINK Algorithm for Commodity Cluster Computing Exploiting Spatial Locality," in 2016 
IEEE 18th International Conference on High Performance Computing and Communications. IEEE, 2016, pp. 
268-275. $2, $54, $153, $155, $156, $166, $168, $173, $174, $181, $186

[34] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters a 
density-based algorithm for discovering clusters in large spatial databases with noise," in Proceedings 
of the Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996, pp. 
226-231. $2, $16, $17, $153, $160, $210

[35] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, "OPTICS: Ordering Points To Identify the 
Clustering Structure," in Proceedings of ACM SIGMOD International Conference on Management of Data 
(SIGMOD'99). ACM New York, 1999, pp. 49-60. $2, $16, $17, $53, $153, $162, $210

[36] S. Kumari, P. Goyal, A. Sood, D. Kumar, S. Balasubramaniam, and N. Goyal, "Exact, Fast and Scalable 
Parallel DBSCAN for Commodity Platforms," in Proceedings of the 18th International Conference on 
Distributed Computing and Networking - ICDCN '17. ACM New York, 2017, pp. 1-10. $2, $8, $54, $140, 
$153, $155, $156, $161, $168, $169, $170, $177, $186

223



REFERENCES

[37 | S. Goil, H. Nagesh, and A. Choudhary, "MAFIA: Efficient and Scalable Subspace Clustering for Very 
Large Data Sets," in Proceedings of 5th ACM SIGKDD International Conference on Knowledge Discovert/ and 
Data Mining. ACM, 1999, pp. 443-452. $2, $153, fl67

[38] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, "FINDIT: a fast and intelligent subspace clustering 
algorithm using dimension voting," Information and Software Technology/, vol. 46, no. 4, pp. 255-271, 3 
2004. $2, T153, $166

[39] L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data," ACM SIGKDD 
Explorations Newsletter, vol. 6, no. 1, pp. 90-105, 6 2004. 12

[40] R. L. Breiger, S. A. Boorman, and P. Arabie, "An algorithm for clustering relational data with 
applications to social network analysis and comparison with multidimensional scaling," Journal of 
Mathematical Psychology/, vol. 12, no. 3, pp. 328-383, 8 1975. $3

[41] S. Zhang, R.-S. Wang, and X.-S. Zhang, "Identification of overlapping community structure in complex 
networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, vol. 374, 
no. 1, pp. 483-490, 1 2007. $3

[42] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, "Personalized recommendation in social tagging 
systems using hierarchical clustering," in Proceedings of the 2008 ACM conference on Recommender 
systems - ReeSys '08. New York, New York, USA: ACM Press, 2008, p. 259. $3

[43] G. Coleman and H. Andrews, "Image segmentation by clustering," Proceedings of the IEEE, vol. 67, 
no. 5, pp. 773-785, 1979. $3

[44] G. Stockman, S. Kopstein, and S. Benett, "Matching Images to Models for Registration and Object 
Detection via Clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-4, 
no. 3, pp. 229-241, 5 1982. $3

[45] A. Tramacere and C. Vecchio, "Gamma-ray DBSCAN: a clustering algorithm applied to Fermi -LAT 
Gamma-ray data," Astronomy & Astrophysics, vol. 549, p. A138, 1 2013. $3

[46] X.-H. Gao, "Membership determination of open cluster NGC 188 based on the DBSCAN clustering 
algorithm," Research hi Astronomy and Astrophysics, vol. 14, no. 2, pp. 159-164, 2 2014. $3

[47] R. Agrawal, T. Imielihski, A. Swami, R. Agrawal, T. Imielihski, and A. Swami, "Mining association 
rules between sets of items in large databases," SIGMOD Rec., vol. 22, no. 2, pp. 207-216, 1993. $3, 
$60, $79, $101

[48] J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent pattern mining: current status and future directions," 
Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 55-86, 7 2007. $3

[49] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer Publishing Company, 2014. $3
[50] P.-Y. Hsu, Y.-L. Chen, and C.-C. Ling, "Algorithms for mining association rules in bag databases," 

Information Sciences, vol. 166, no. 1-4, pp. 31-47, 10 2004. $3, $60, $79, $101
[51] M. Zaki, "Scalable algorithms for association mining," IEEE Transactions on Knowledge and Data 

Engineering, vol. 12, no. 3, pp. 372-390, 2000. $3, $60, $62, $101
[52] J. Han, J. Pei, Y. Yin, J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate 

generation," in Proceedings of the 2000 ACM SIGMOD international conference on Management of data - 
SIGMOD '00, vol. 29, no. 2. New York, New York, USA: ACM Press, 2000, pp. 1-12. $3

[53] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, "Sliding window-based frequent pattern mining 
over data streams," Information Sciences, vol. 179, no. 22, pp. 3843-3865,11 2009. $3, $57, $60, $61, $62, 
$79, $101

[54] J. Blanchard, F. Guillet, R. Gras, and H. Briand, "Using Information-Theoretic Measures to Assess 
Association Rule Interestingness," in Fifth IEEE International Conference on Data Mining (ICDM’05). 
IEEE, 2006, pp. 66-73. $3

[55] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Efficient mining of association rules using closed 
itemset lattices," Information Systems, vol. 24, no. 1, pp. 25-46, 3 1999. $3

[56] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection," ACM Computing Surveys, vol. 41, no. 3, 
pp. 1-58, 7 2009. $3

[57] Z. He, X. Xu, and S. Deng, "Discovering cluster-based local outliers," Pattern Recognition Letters, 
vol. 24, no. 9-10, pp. 1641-1650, 6 2003. $3

[58] L. Portnoy, "Intrusion detection with unlabeled data using clustering," in Proceedings of the ACM 
Workshop on Data Mining Applied to Security, 2001, pp. 1-25. $3

224



REFERENCES

[59] S. Hawkins, H. He, G. Williams, and R. Baxter, "Outlier Detection Using Replicator Neural Networks," 
in Outlier detection using replicator neural networks (DaWaK 2002). Springer, Berlin, Heidelberg, 2002, 
pp. 170-180. ?3

[60] D. Martinez, "Neural tree density estimation for novelty detection," IEEE Transactions on Neural 
Networks, vol. 9, no. 2, pp. 330-338,’3 1998. ?3

[61] D. Barbara, N. Wu, and S. Jajodia, "Detecting Novel Network Intrusions Using Bayes Estimators," in 
Proceedings of the 2001 SIAM International Conference on Data Mining. Philadelphia, PA: Society for 
Industrial and Applied Mathematics, 4 2001, pp. 1-17. |3

[62] Ghosh and Reilly, "Credit card fraud detection with a neural-network," in Proceedings of the 
Twenty-Seventh Hawaii International Conference on System Sciences HICSS-94. IEEE Comput. Soc. Press, 
1994, pp. 621-630. ?3

[63] S. Singh and M. Markou, "An approach to novelty detection applied to the classification of image 
regions," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4, pp. 396-406, 4 2004. T3

[64] CISCO, "Cisco Global Cloud Index: Forecast and Methodology, 2016 to 2021 White Paper," 
2019. [Online]. Available:  
global-cloud-index-gci/white-paper-cll-738085.html f4

https://www.cisco.eom/c/en/us/solutions/collateral/service-provider/

[65] "Self-driving Cars Will Create 2 Petabytes Of Data, What Are The Big Da," 2019. [Online]. Available: 
 f4https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172

[66] R. Magoulas, "Roger Magoulas on Big Data - O'Reilly Radar," 2010. [Online]. Available: 
 $5http://radar.oreilly.com/2010/01/roger-magoulas-on-big-data.html

[67] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," in Proceedings 
of the 6th conference on Symposium on Opearting Systems Design & Implementation. USENIX Association, 
2004, pp. 1-13. 17

[68] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop Distributed File System," in 2010 
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 5 2010, pp. 1-10. f7

[69] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan, "NIMBLE," in Proceedings of the 17th ACM 
SIGKDD international conference on Knotvledge discovery and data mining - KDD 'll. New York, New 
York, USA: ACM Press, 2011, pp. 334-342. |7

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and 
I. Stoica, "Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing," 
in Proceedings of the 9th USENIX conference on Netzvorked Systems Design and Implementation (NSDI'12). 
USENIX Association Berkeley, 2012, pp. 1-14. |7

[71] M. P. Forum, "MPI: A Message-Passing Interface Standard," University of Tennessee, Tech. Rep., 1994. 
17

[72] "Home - OpenMP," 2019. [Online]. Available:  f7, f8https://www.openmp.org/
[73] Intel, "Threading Building Blocks," 2017. [Online]. Available: . 

org/ X?
https://www.threadingbuildingblocks

[74] Zhang Zhang, J. Savant, and S. Seidel, "A UPC runtime system based on MPI and POSIX threads," 
in 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP'06). 
IEEE, 2006, pp. 1-8. f7

[75] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty, "Fortran 2008 coarrays," ACM SIGPLAN 
Fortran Forum, vol. 34, no. 1, pp. 10-30, 4 2015. $7

[76] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham, 
D. Gay, P. Colella, and A. Aiken, "Titanium: A High-Performance Java Dialect," University of 
California at Berkeley, Berkeley CA, Tech. Rep., 1988. f7

[77] "PNNL: Global Arrays Toolkit," 2018. [Online]. Available:  ^7https://hpc.pnl.gov/globalarrays/
[78] "The X10 Programming Language," 2019. [Online]. Available:  $7http://xlO-lang.org/
[79] "Intel® Xeon PhiaDc Processors," 2019. [Online]. Available:  

en/products/processors/xeon-phi/xeon-phi-processors.html f8
https://www.intel.in/content/www/in/

[80] "CUDA Zone I NVIDIA Developer," 2019. [Online]. Available:  
cuda-zone f8

https://developer.nvidia.com/

[81] "OpenCL Overview - The Khronos Group Inc," 2019. [Online]. Available:  
opencl/ t8

https://www.khronos.org/

225



REFERENCES

[82] "Homepage I OpenACC," 2019. [Online]. Available:  $8https://www.openacc.org/
[83] Q. He, F. Zhuang, J. Li, and Z. Shi, "Parallel Implementation of Classification Algorithms Based 

on MapReduce," in international Conference on Rough Sets and Knowledge Technology (RSKT 2010). 
Springer, Berlin, Heidelberg, 10 2010, pp. 655-662. $8

[84] A. Srivastava, Eui-Hong Sam Han, V. Singh, and V. Kumar, "Parallel formulations of decision-tree 
classification algorithms," in Proceedings. 1998 International Conference on Parallel Processing (Cat. 
No.98EX2O5). IEEE Comput. Soc, 1998, pp. 237-244. $8

[85] M. Joshi, G. Karypis, and V. Kumar, "ScalParC: a new scalable and efficient parallel classification 
algorithm for mining large datasets," in Proceedings of the First Merged International Parallel Processing 
Symposium and Symposium on Parallel and Distributed Processing. IEEE Comput. Soc, 1998, pp. 573-579. 
$8

[86] M. M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, "A new scalable 
parallel DBSCAN algorithm using the disjoint-set data structure," in 2012 International Conference for 
High Performance Computing, Networking, Storage and Analysis. IEEE, 11 2012, pp. 1-11. $8, $153, $155, 
$156, T161,1-168, $169, $170, T177, $186

[87] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib, and P. Dubey, "Pardicle: Parallel 
Approximate Density-Based Clustering," in SC14: International Conference for High Performance 
Computing, Networking, Storage and Analysis. IEEE, 11 2014, pp. 560-571. $8, $153, $161, $168

[88] W. Hendrix, D. Palsetia, M. M. A. Patwary, A. Agrawal, W.-k. Liao, and A. Choudhary, "A scalable 
algorithm for single-linkage hierarchical clustering on distributed-memory architectures," in 2013 
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV). IEEE, 10 2013, pp. 7-13. $8, 
$153, T154, $156, $165, $168, $169

[89] P. Goyal, S. Kumari, S. Singh, V. Kishore, S. S. Balasubramaniam, and N. Goyal, "A Parallel Framework 
for Grid-Based Bottom-Up Subspace Clustering," in 2016 IEEE International Conference on Data Science 
and Advanced Analytics (DSAA). IEEE, 10 2016, pp. 331-340. $8, $153, $156, $167, $168

[90] Z.-g. Wang and C.-s. Wang, "A Parallel Association-Rule Mining Algorithm," in Proceedings of 
International Conference on Web Information Systems and Mining (WISM 2012). Springer, Berlin, 
Heidelberg, 10 2012, pp. 125-129. $8

[91] M. H. Marghny and H. E. Refaat, "A new parallel association rule mining algorithm on distributed 
shared memory system," International Journal of Business Intelligence and Data Mining, vol. 7, no. 4, pp. 
233-252, 2012. $8

[92] R. Agrawal and J. Shafer, "Parallel mining of association rules," IEEE Transactions on Knowledge and 
Data Engineering, vol. 8, no. 6, pp. 962-969, 1996. $8

[93] "Apache Mahout," 2019. [Online], Available:  $8https://mahout.apache.org/
[94] "MLlib I Apache Spark," 2019. [Online]. Available:  $8https://spark.apache.org/mllib/
[95] F. Cao, M. Estert, W. Qian, and A. Zhou, "Density-Based Clustering over an Evolving Data Stream 

with Noise," in Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM, 2006, pp. 
328-339. $8, $57, $126, $127, $129

[96] H.-F. Li, M.-K. Shan, and S.-Y. Lee, "DSM-FI: an efficient algorithm for mining frequent itemsets in 
data streams," Knowledge and Information Systems, vol. 17, no. 1, pp. 79-97, 10 2008. $8, $57, $61, $64, 
$76, $79

[97] H. Chen, L. Shu, J. Xia, and Q. Deng, "Mining frequent patterns in a varying-size sliding window of 
online transactional data streams," Information Sciences, vol. 215, pp. 15-36, 12 2012. $8, $57, $61, $62, 
$65, $75, $76, $79, $101

[98] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, "Mining Frequent Patterns in Data Streams at Multiple 
Time Granularities," in Data Mining: Next Generation Challenges and Future Directions. AAAI/MIT 
Press, 2003, pp. 191-212. $8, $57, $61, $62, $65, $79, $88, $101, $140

[99] Y.-N. Law and C. Zaniolo, "An Adaptive Nearest Neighbor Classification Algorithm for Data 
Streams," in Proceedings of European Conference on Principles of Data Mining and Knoivledge Discovery 
(PKDD 2005). Springer, Berlin, Heidelberg, 2005, pp. 108-120. $8, $57, $103

[100] K. Ueno, X. Xi, E. Keogh, and D.-j. Lee, "Anytime Classification Using the Nearest Neighbor 
Algorithm with Applications to Stream Mining," in Sixth International Conference on Data Mining 
(ICDM'06). IEEE, 12 2006, pp. 623-632. $8, $9, $58, $110

226



REFERENCES

[101] T. Seidl, 1. Assent, P. Kranen, R. Krieger, and J. Herrmann, "Indexing density models for incremental 
learning and anytime classification on data streams," in Proceedings of the 12th International Conference 
on Extending Database Technology Advances in Database Technology - EDBT '09. New York, New York, 
USA: ACM Press, 2009, p. 311.' ?8, ?58, THO

[102] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A Framework for Clustering Evolving Data Streams," 
in Proceedings of 29th International Conference on Very Large Databases. ACM New York, 2003, pp. 81-92. 
T8, T57, T126, fl27, H29

[103] C. C. Aggarwal, J. Han, and P. S. Yu, "A Framework for Projected Clustering of High Dimensional 
Data Streams," in Proceedings of the Thirtieth international conference on Very large data bases. Morgan 
Kaufmann Publishers, 2004, pp. 852-863. T8, T57, T126, T127, T129

[104] P. Kranen, 1. Assent, C. Baldauf, and T. Seidl, "The ClusTree: indexing micro-clusters for anytime 
stream mining," Knowledge and Information Systems, vol. 29, no. 2, pp. 249-272, 11 2011. T8, L9, T58, 
T127, T129,1131, T143

[105] H. Chen, "Mining top-k frequent patterns over data streams sliding window," journal of Intelligent 
Information Systems, vol. 42, no. 1, pp. 111-131, 2 2014. $8, $62, ^79

[106] C. H. Park, "Anomaly Pattern Detection on Data Streams," in 2018 IEEE International Conference on Big 
Data and Smart Computing (BigComp). IEEE, 1 2018, pp. 689-692. $8, T57

[107] Tran Manh Thang and Juntae Kim, "The Anomaly Detection by Using DBSCAN Clustering with 
Multiple Parameters," in 2011 International Conference on Information Science and Applications. IEEE, 4 
2011, pp. 1-5. T8,1153

[108] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly detection for streaming 
data," Neurocomputing, vol. 262, pp. 134-147,11 2017. T8, $57

[109] L. Rettig, M. Khayati, P. Cudre-Mauroux, and M. Piorkowski, "Online anomaly detection over Big 
Data streams," in 2015 IEEE International Conference on Big Data (Big Data). IEEE, 10 2015, pp. 
1113-1122. ?9, T57

[110] Y. Jiang, C. Zeng, J. Xu, School of Computer Science, Technology and Engineering, Nanjing University 
of Science, and Technology, C. Nanjing, , and Tao Li, "Real time contextual 
collective anomaly detection over multiple data streams," in Proceedings of KDD Workshop on Outlier 
Detection and Description under Data Diversity. ACM New York, USA, 2014, pp. 1-8. T9, f57

dolphin.xu@njust.edu.cn

[in] c. Y. Sang and D. H. Sun, "Co-clustering over multiple dynamic data streams based on non-negative 
matrix factorization," Applied Intelligence, vol. 41, no. 2, pp. 487-502, 2014. T9, f 127

[112] L. Tu, "Clustering on Multiple Data Streams," in Advances in Intelligent and Soft Computing. Springer, 
Berlin, Heidelberg, 2012, pp. 73-78. T9, T127

[113] M.-Y. Yeh, B.-R. Dai, and M.-S. Chen, "Clustering over Multiple Evolving Streams by Events and 
Correlations," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 10, pp. 1349-1362, 10 
2007. T9, T127

[114] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, F. Pulvirenti, and L. Venturini, "Frequent Itemsets 
Mining for Big Data: A Comparative Analysis," Big Data Research, vol. 9, pp. 67-83, 9 2017. T9

[115] Z. Yu, X. Yu, Y. Liu, W. Li, and J. Pei, "Mining Frequent Co-occurrence Patterns across Multiple Data 
Streams," in Proceedings of International Conference on Extending Database Technology (EDBT'15). Open 
Proceedings, 2015, pp. 73-84. T9, T57, T63

[116] P. Kranen, M. Hassani, and T. Seidl, "BT* - An Advanced Algorithm for Anytime Classification," 
in Proceedings of the 24th international conference on Scientific and Statistical Database Management. 
Springer-Verlag, 2012, pp. 298-315. T9, T58, THO

[117] M. Hassani, P. Kranen, and T. Seidl, "Precise anytime clustering of noisy sensor data with logarithmic 
complexity," in Proceedings of Fifth International Workshop on Knowledge Discovery from Sensor Data - 
SensorKDD 'll. ACM New York, 2011, pp. 52-60. T9, T58, T127, T128, T129

[118] M. Hassani, P. Kranen, R. Saini, and T. Seidl, "Subspace anytime stream clustering," in Proceedings of 
the 26th International Conference on Scientific and Statistical Database Management - SSDBM '14. ACM, 
2014, pp. 1-4. T9, T58, T127, T128

[119] I. Assent, P. Kranen, C. Baldauf, and T. Seidl, "AnyOut: Anytime Outlier Detection on Streaming Data," 
in Proceedings of the 17th international conference on Database Systems for Advanced Applications - Volume 
Part 1. Springer-Verlag, 2012, pp. 228-242. T9, T58

227



REFERENCES

[120] P. Goyal, S. Kumari, D. Kumar, S. Balasubramaniam, N. Goyal, S. Islam, and J. S. Challa, "Parallelizing 
OPTICS for Commodity Clusters," in Proceedings of the 2015 International Conference on Distributed 
Computing and Networking - ICDCN '15. New York, New York, USA: ACM Press, 2015, pp. 1-10. $16, 
fl55, $156, fl62, fl68, fl69, $186

[121] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, 
vol. 13, no. 1, pp. 21-27, 1 1967. $16, $32, $50, $146, ^210

[122] A. Guttman, "R-trees," in Proceedings of the 19S4 ACM SIGMOD international conference on Management 
of data - SIGMOD '84. ACM New York, 1984, pp. 47-57. $16, $112, ?130, $162, $186, $206, $208

[123] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis, R-Trees: Theory and 
Applications. Springer Publishing Company, 2005. $16, $38, $49

[124] J. L. Bentley and J. Louis, "Multidimensional binary search trees used for associative searching," 
Communications of the ACM, vol. 18, no. 9, pp. 509-517, 9 1975. $16, $46

[125] R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval on composite keys," Acta 
Informatica, vol. 4, no. 1, pp. 1-9, 1974. $16

[126] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, "The Grid File: An Adaptable, Symmetric Multikey 
File Structure," ACM Transactions on Database Systems, vol. 9, no. 1, pp. 38-71,1 1984. $16, $46

[127] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems : the complete book. Pearson Prentice 
Hall, 2009. $17, $47

[128] G. Li and J. Tang, "A New R-tree Spatial Index Based on Space Grid Coordinate Division," in 
Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering 
(ICCE2011). Springer, Berlin, Heidelberg, 2011, pp. 133-140. $17, $47

[129] E. Schikuta, "Grid-clustering: an efficient hierarchical clustering method for very large data sets," in 
Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996, pp. 101-105. $21, $54

[130] W.-k. Liao, L. Ying, and A. Choudhary, "A grid-based Clustering Algorithm using Adaptive Mesh 
Refinement," in Proceedings of the 7th Workshop on Mining Scienti c and Engineering Data Sets, 2004. $21, 
$54

[131] G. R. Hjaltason and H. Samet, "Distance browsing in spatial databases," ACM Transactions on Database 
Systems, vol. 24, no. 2, pp. 265-318, 6 1999. $32, $33, $210, $211

[132] C. Faloutsos, T. Sellis, N. Roussopoulos, C. Faloutsos, T. Sellis, and N. Roussopoulos, "Analysis of 
object oriented spatial access methods," in Proceedings of the 1987 ACM SIGMOD international conference 
on Management of data - SIGMOD '87, vol. 16, no. 3. New York, New York, USA: ACM Press, 1987, 
pp. 426-439. $33

[133] "Vampir Trace Library," 2013. $36
[134] M. Kaul, B. Yang, and C. S. Jensen, "Building Accurate 3D Spatial Networks to Enable Next 

Generation Intelligent Transportation Systems," in 2013 IEEE 14th International Conference on Mobile 
Data Management. IEEE, 6 2013, pp. 137-146. $37

[135] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, 
D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and 
F. Pearce, "Simulations of the formation, evolution and clustering of galaxies and quasars," Nature, 
vol. 435, no. 7042, pp. 629-636, 6 2005. $37, $142, $193, $194

[136] "SUVN Trace Data," 2012. [Online]. Available:  $37, $193, $194http://wirelesslab.sjtu.edu.cn
[137] "KDD Cup 2004 Bio Dataset," 2004. [Online]. Available:  $37http://cs.joensuu.fi/sipu/datasets/
[138] J. Catlett, "Statlog (Shuttle) Data Set," 1993. [Online]. Available:  

datasets/Statlog+(Shuttle) $37, $50
https://archive.ics.uci.edu/ml/

[139] R. Bhatt and A. Dhall, "Skin Segmentation Data Set." [Online]. Available:  
ml/datasets/Skin+Segmentation $37, $50

https://archive.ics.uci.edu/

[140] B. Borah and D. Bhattacharyya, "An improved sampling-based DBSCAN for large spatial databases," 
in Proceedings of 2004 International Conference on Intelligent Sensing and Information Processing. IEEE, 
2004, pp. 92-96. $53, $54

[141] C.-F. Tsai and C.-W. Liu, "KIDBSCAN: A New Efficient Data Clustering Algorithm," in International 
Conference on Artificial Intelligence and Soft Computing (ICAISC 2006). Springer, Berlin, Heidelberg, 
2006, pp. 702-711. $53, $54

228



REFERENCES

[142] G. M. Amdahl, "Validity of the single processor approach to achieving large scale computing 
capabilities," in Proceedings of the April 18-20, 1967, spring joint computer conference on - AFIPS '67 
(Spring). New York, New York, USA: ACM Press, 1967, pp. 483-485. $53

[143] E. Schikuta and M. Erhart, "The BANG-clustering system: Grid-based data analysis," in International 
Symposium on Intelligent Data Analysis (IDA 1997). Springer, Berlin, Heidelberg, 1997, pp. 513-524. 
$54

[144] W. Wang, J. Yang, and R. R. Muntz, "STING: A Statistical Information Grid Approach to Spatial 
Data Mining," in Proceedings of the 23rd International Conference on Very Large Data Bases. Morgan 
Kaufmann, 1997, pp. 186-195. $54, $153

[145] C.-F. Tsai and Chun-Yi Sung, "DBSCALE: An efficient density-based clustering algorithm for data 
mining in large databases," in 2010 Second Pacific-Asia Conference on Circuits, Communications and 
System. IEEE, 8 2010, pp. 98-101. $54

[146] R. Jin and G. Agrawal, "Efficient decision tree construction on streaming data," in Proceedings of 
the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03. 
Washington, D.C.: ACM Press, New York, New York, USA, 2003, pp. 571-576. ^57, $103

[147] D. Jankowski, K. Jackowski, and B. Cyganek, "Learning Decision Trees from Data Streams with 
Concept Drift," Procedia Computer Science, vol. 80, no. C, pp. 1682-1691, 2016. $57, T103

[148] Q. Xue, B.-w. Cao, Z. Chang-wei, Y. Ping-gang, and L. Yong-hong, "Study on Application of Bayesian 
Classifier Model in Data Stream," in 2010 International Conference on Computational and Information 
Sciences. Chengdu, China: IEEE, 12 2010, pp. 1312-1315. $57, $103

[149] C. C. Aggarwal, Data Classification: Algorithms and Applications, 1st ed. Chapman & Hall / CRC, 2014. 
$57, $103

[150] D. K. Tasoulis, G. Ross, and N. M. Adams, "Visualising the Cluster Structure of Data Streams," in 
Advances in Intelligent Data Analysis VII. Springer Berlin-Heidelberg, 2007, pp. 81-92. $57, $126, $127, 
$129

[151] Y. Chen and L. Tu, "Density-based clustering for real-time stream data," in Proceedings of the 13th ACM 
SIGKDD international conference on Knowledge discovery and data mining - KDD '07. ACM New York, 
2007, pp. 133-142. $57, $126, $127

[152] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, "Density-based clustering of data streams at 
multiple resolutions," ACM Transactions on Knowledge Discovery from Data, vol. 3, no. 3, pp. 1-28, 2009. 
$57, $126, $127

[153] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications, 1st ed. Chapman and 
Hall/CRC, 2013. $57

[154] G. S. Manku and R. Motwani, "Approximate frequency counts over data streams," in Proceedings of the 
28th international conference on Very Large Data Bases. VLDB Endowment, 2002, pp. 346-357. $57, $61, 
$64

[155] M. Deypir, M. H. Sadreddini, and S. Hashemi, "Towards a variable size sliding window model for 
frequent itemset mining over data streams," Computers & Industrial Engineering, vol. 63, no. 1, pp. 
161-172, 8 2012. $57, $61, $62

[156] J. Cheng, Y. Ke, and W. Ng, "A survey on algorithms for mining frequent itemsets over data streams," 
Knowledge and Information Systems, vol. 16, no. 1, pp. 1-27, 7 2008. $57

[157] S. Nasreen, M. A. Azam, K. Shehzad, U. Naeem, and M. A. Ghazanfar, "Frequent Pattern Mining 
Algorithms for Finding Associated Frequent Patterns for Data Streams: A Survey," Procedia Computer 
Science, vol. 37, pp. 109-116,1 2014. $57

[158] A. Forestiero, "Self-organizing anomaly detection in data streams," Information Sciences, vol. 373, pp. 
321-336, 12 2016. $57

[159] L. Tran, L. Fan, and C. Shahabi, "Distance-based outlier detection in data streams," Proceedings of the 
VLDB Endowment, vol. 9, no. 12, pp. 1089-1100, 8 2016. $57

[160] S. C. Tan, K. M. Ting, and T. F. Liu, "Fast anomaly detection for streaming data," in Proceedings of the 
Twenty-Second international joint conference on Artificial Intelligence. AAAI Press, 2011, pp. 1511-1516. 
$57

[161] Y. Xu, K. Wang, A. W.-C. Fu, R. She, and J. Pei, "Classification spanning correlated data streams," in 
Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM '06. 
ACM New York, USA, 2006, pp. 132-141. $57

229



REFERENCES

[162] Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, and X. Xue, "Multi-Stream Multi-Class Fusion of Deep Networks 
for Video Classification," in Proceedings of the 2016 ACM Conference on Multimedia Conference - A4A4 '76. 
ACM New York, USA, 2016, pp. 791-800. $57

[163] S. K. Greene, J. Huang, A. M. Abrams, D. Gilliss, M. Reed, R. Platt, S. S. Huang, and M. Kulldorff, 
"Gastrointestinal Disease Outbreak Detection Using Multiple Data Streams from Electronic Medical 
Records," Foodborne Pathogens and Disease, vol. 9, no. 5, pp. 431-441, 2012. $57

[164] Z. Qi, L. Jinze, and W. Wei, "Approximate clustering on distributed data streams," in Proceedings - 
International Conference on Data Engineering. IEEE, 2008, pp. 1131-1139. $57, $127

[165] W. Wu and L. Gruenwald, "Research issues in mining multiple data streams," in Proceedings of the First 
International Workshop on Novel Data Stream Pattern Mining Techniques - StreamKDD '10. ACM New 
York, 2010, pp. 56-60. $57, $127

[166] J. Gama, P. P. Rodrigues, and L. Lopes, "Clustering distributed sensor data streams using local process
ing and reduced communication," Intelligent Data Analysis, vol. 15, pp. 3-28, 2011. $57, $127

[167] P. P. Rodrigues and J. Gama, "Distributed clustering of ubiquitous data streams," Wiley Interdisciplinary 
Reviews: Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 38-54, 2014. $57, $127

[168] A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He, "Distributed data stream clustering: A fast EM-based 
approach," in Proceedings - International Conference on Data Engineering. IEEE, 2007, pp. 736-745. $57, 
$127

[169] J. Guo, P. Zhang, J. Tan, and L. Guo, "Mining frequent patterns across multiple data streams," in 
Proceedings of the 20th ACM international conference on Information and knowledge management - C1KM 'll. 
New York, New York, USA: ACM Press, 2011, pp. 2325-2328. $57, $62

[170] B. P. Jaysawal and J.-W. Huang, "Mining Frequent Progressive Usage Patterns Across Multiple Mobile 
Broadcasting Channels," in Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data 
Mining (PAKDD). Springer, Cham, 2014, pp. 149-155. $57, $62

[171] J. Guo, "A Study on Distributed Frequent Co-occurrence Patterns Algorithms across Multiple Data 
Streams," Journal of Software, vol. 11, no. 12, pp. 1191-1198,12 2016. $57, $63

[172] D. Amagata and T. Hara, "Mining Top-k Co-Occurrence Patterns across Multiple Streams," IEEE 
Transactions on Knowledge and Data Engineering, vol. 29, no. 10, pp. 2249-2262,10 2017. $57, $63

[173] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and S. E. Seker, "Online anomaly 
detection for multi-source VMware using a distributed streaming framework," Software: Practice and 
Experience, vol. 46, no. 11, pp. 1479-1497, 11 2016. $57

[174] C. Zhang, H. Yan, S. Lee, and J. Shi, "Multiple profiles sensor-based monitoring and anomaly 
detection," Journal of Quality Technology, vol. 50, no. 4, pp. 344-362,10 2018. $57

[175] P. Kranen, S. Giinnemann, S. Fries, and T. Seidl, "MC-Tree: Improving Bayesian Anytime 
Classification," in Proceedings of International Conference on Scientific and Statistical Database Management 
(SSDBM). Springer, Berlin, Heidelberg, 2010, pp. 252-269. $58, $110

[176] S. Esmeir and S. Markovitch, "Interruptible anytime algorithms for iterative improvement of decision 
trees," in Proceedings of the 1st international workshop on Utility-based data mining - UBDM '05. ACM 
New York, USA, 2005, pp. 78-85. $58

[177] S. Schlobach, E. Blaauw, M. El Kebir, A. Ten Teije, F. Van Harmelen, S. Bortoli, M. Hobbelman, 
K. Millian, Y. Ren, S. Stam, P. Thomassen, R. Van Het Schip, and W. Van Willigem, "Anytime 
classification by ontology approximation," in Proceedings of the First International Conference on New 
Forms of Reasoning for the Semantic Web: Scalable, Tolerant and Dynamic - Volume 291. CEUR-  
Aachen, Germany, 2007, pp. 57-71. $58

WS.org

[178] B. Hui, Y. Yang, and G. I. Webb, "Anytime classification for a pool of instances," Machine Learning, 
vol. 71, no. 1, pp. 61-102, 10 2009. $58

[179] C. I. Lemes, D. F. Silva, and G. E. Batista, "Adding Diversity to Rank Examples in Anytime 
Nearest Neighbor Classification," in Proceedings of 13th International Conference on Machine Learning and 
Applications. IEEE, 12 2014, pp. 129-134. $58

[180] S. T. Mai, I. Assent, and M. Storgaard, "AnyDBC: An Efficient Anytime Density-based Clustering 
Algorithm for Very Large Complex Datasets," in Proceedings of the 22nd ACM SIGKDD International 
Conference on Knoivledge Discoven/ and Data Mining - KDD '16. ACM New York, USA, 2016, pp. 
1025-1034. $58

[181] S. T. Mai, I. Assent, and A. Le, "Anytime OPTICS: An Efficient Approach for Hierarchical 
Density-Based Clustering," in Proceedings of International Conference on Database Systems for Advanced 
Applications. Springer, Cham, 2016, pp. 164-179. $58

230



REFERENCES

[182] Shichao Zhang and Chengqi Zhang, "Anytime mining for multiuser applications," IEEE Transactions 
on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 32, no. 4, pp. 515-521, 7 2002. 158, 
163

[183] H.-F. Li and S.-Y. Lee, "Mining frequent itemsets over data streams using efficient window sliding 
techniques," Expert Systems with Applications, vol. 36, no. 2, pp. 1466-1477, 3 2009. 160,161,162,165

[184] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns without Candidate Generation: A 
Frequent-Pattern Tree Approach," Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-87,1 2004. 
160,161,168,179,1101

[185] L. Troiano and G. Scibelli, "Mining frequent itemsets in data streams within a time horizon," Data & 
Knoivledge Engineering, vol. 89, pp. 21-37, 1 2014. 161,162

[186] C. Raissi, P. Poncelet, and M. Teisseire, "Towards a new approach for mining frequent itemsets on data 
stream," Journal of Intelligent Information Systems, vol. 28, no. 1, pp. 23-36, 2 2007. 161

[187] "Zipf Distribution." [Online]. Available:  184https://en.wikipedia.org/wiki/Zipfslaw
[188] N. T. Gridgeman, "Lam'e ovals," The Mathematical Gazette, vol. 54, no. 387, pp. 31-37, 1970. 184
[189] P. Stein, "A Note on the Volume of a Simplex," The American Mathematical Monthly, vol. 73, no. 3, pp. 

299-301, 1966. 186
[190] "Market-Basket Synthetic Data Generator - CodePlex Archive." [Online]. Available: https: 

 190//archive.codeplex.com/?p=synthdatagen
[191] "Frequent Itemset Mining Dataset Repository." [Online], Available:  190http://fimi.ua.ac.be/data/
[192] "  Anonymous Web Data Data Set." [Online]. Available:  

datasets/msnbc.com+anonymous+web+data 190
MSNBC.com http://archive.ics.uci.edu/ml/

[193] R. O. Duda, P. E. P. E. Hart, and D. G. Stork, Pattern classification. Wiley, 2001. 191
[194] "Curve Fitting." [Online]. Available:  198https://en.wikipedia.org/wiki/Curvefitting
[195] C. C. Aggarwal, "The setwise stream classification problem," in Proceedings of the 20th ACM SIGKDD 

international conference on Knowledge discovery and data mining - KDD '14. New York, New York, USA: 
ACM Press, 2014, pp. 432-441. 1103,1104,1106,1117,1118,‘ 1124

[196] W. Silva, A. Santana, F. Lobato, and M. Pinheiro, "A methodology for community detection in 
Twitter," in Proceedings of the International Conference on Web Intelligence - WI '17. Leipzig, Germany: 
ACM Press, New York, NY, USA, 2017, pp. 1006-1009. 1104

[197] M. Liberatore and B. N. Levine, "Inferring the source of encrypted HTTP connections," in Proceedings 
of the 13th ACM conference on Computer and communications security - CCS '06. Alexandria, Virginia, 
USA: ACM Press, New York, NY, USA, 2006, pp. 255-263. 1105, 1118

[198] S. [haver, "Large Scale Data Mining with Applications in Social Computing," Ph.D. dissertation, Uni
versity of Texas, Dallas, 2014. 1105,1106

[199] M. Reed, P. Syverson, and D. Goldschlag, "Anonymous connections and onion routing," IEEE Journal 
on Selected Areas in Communications, vol. 16, no. 4, pp. 482-494, 5 1998. 1105

[200] J. A. Blackard and D. j. Dean, "Comparative accuracies of artificial neural networks and discriminant 
analysis in predicting forest cover types from cartographic variables," Computers and Electronics in 
Agriculture, vol. 24, no. 3, pp. 131-151, 12 1999. 1117,1142

[201] "Stanford Postagger," 2018. [Online]. Available: ttps://nlp.stanford.edu/software/tagger.shtml 1117
[202] X. H. Dang, V. Lee, W. K. Ng, A. Ciptadi, and K. L. Ong, "An EM-Based Algorithm for Clustering Data 

Streams in Sliding Windows," in Proceedings of International Conference on Database Systems for Advanced 
Applications (DASFAA 2009). Springer, Berlin, Heidelberg, 2009, pp. 230-235. 1126

[203] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: An Efficient Data Clustering Databases Method 
for Very Large," in Proceedings of the 1996 ACM SIGMOD international conference on Management of data. 
ACM New York, 1996, pp. 103-114. 1126,1153

[204] A. Balzanella and R. Verde, "Summarizing and detecting structural drifts from multiple data streams," 
in Studies in Classification, Data Analysis, and Knowledge Organization. Springer-Verlag, 2013, pp. 105- 
112. 1127

[205] J. Beringer and E. Hullermeier, "Online clustering of parallel data streams," Data & Knowledge 
Engineering, vol. 58, no. 2, pp. 180-204, 8 2006. 1127

231



REFERENCES

(206] Z. R. Hesabi, T. Sellis, and X. Zhang, "Anytime concurrent clustering of multiple streams with an 
indexing tree," in Proceedings of the 4th International Conference on Big Data, Streams and Heterogeneous 
Source Mining: Algorithms, Systems, Programming Models and Applications - Volume 41. , 2015, 
pp. 19-32. $128

JMLR.org

[207] "KDD Cup 1999 Data," 1999. [Online]. Available:  
kddcup99.html $142

http://kdd.ics.uci.edu/databases/kddcup99/

[208] H. Yigit, "ABC-based distance-weighted kNN algorithm," Journal of Experimental & Theoretical Artificial 
Intelligence, vol. 27, no. 2, pp. 189-198, 3 2015. ^146

[209] H.-S. Park and C.-H. Jun, "A simple and fast algorithm for K-medoids clustering," Expert Systems with 
Applications, vol. 36, no. 2, pp. 3336-3341, 3 2009. 7153

[210] R. Jarvis and E. Patrick, "Clustering Using a Similarity Measure Based on Shared Near Neighbors," 
IEEE Transactions on Computers, vol. C-22, no. 11, pp. 1025-1034, 11 1973. $153, $163

[211] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, R. Agrawal, J. Gehrke, D. Gunopulos, and 
P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications," 
ACM SIGMOD Record, vol. 27, no. 2, pp. 94-105, 6 1998. $153, $167

[212] C.-H. Cheng, A. W. Fu, and Y. Zhang, "Entropy-based subspace clustering for mining numerical 
data," in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data 
mining - KDD '99. New York, New York, USA: ACM Press, 1999, pp. 84-93. $153, 7167

[213] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, J. S. Park, C. C. Aggarwal, J. L. Wolf, P. S. Yu, 
C. Procopiuc, and J. S. Park, "Fast algorithms for projected clustering," in Proceedings of the 1999 ACM 
SIGMOD international conference on Management of data - SIGMOD '99. New York, New York, USA: 
ACM Press, 1999, pp. 61-72. $153, $166

[214] C. C. Aggarwal, P. S. Yu, C. C. Aggarwal, and P. S. Yu, "Finding generalized projected clusters in high 
dimensional spaces," in Proceedings of the 2000 ACM SIGMOD international conference on Management of 
data - SIGMOD '00. New York, New York, USA: ACM Press, 2000, pp. 70-81’ $153, $166

[215] G. Sheikholeslami, S. Chatterjee, and A. Zhang, "WaveCluster: a wavelet-based clustering approach 
for spatial data in very large databases," The VLDB Journal The International Journal on Very Large Data 
Bases, vol. 8, no. 3-4, pp. 289-304, 2 2000. $153

[216] A. Mukhopadhyay and U. Maulik, "Unsupervised Satellite Image Segmentation by Combining SA 
Based Fuzzy Clustering with Support Vector Machine," in 2009 Seventh International Conference on 
Advances in Pattern Recognition. IEEE, 2 2009, pp. 381-384. $153

[217] S. Madeira and A. Oliveira, "Biclustering algorithms for biological data analysis: a survey," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45,1 2004. $153

[218] K. A., S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo, Y. Ascasibar, P. S. Behroozi, 
D. Ceverino, S. Colombi, J. Diemand, K. Dolag, B. L. Falck, P. Fasel, J. Gardner, S. Gottlbber, C.-H. 
Hsu, F. lannuzzi, A. Klypin, Z. LukiAfc, M. Maciejewski, C. McBride, M. C. Neyrinck, S. Planelles, 
D. Potter, V. Quilis, Y. Rasera, J. I. Read, P. M. Ricker, F. Roy, Springel, V. Stadel, J. Stinson, G. P. M. 
Sutter, V. Turchaninov, D. Tweed, G. Yepes, M. Zemp, and M., "Haloes gone MAD: The Halo-Finder 
Comparitions Project," Monthly Notics of the Royal Astronomical Society, vol. 415, pp. 2293-2318, 2011. 
$153

[219] S. Huo, "Detecting Self-Correlation of Nonlinear, Lognormal, Time-Series Data via DBSCAN 
Clustering Method, Using Stock Price Data as Example," Ph.D. dissertation, Ohio State University, 
2011. $153

[220] Y. Jiang and J. Zhang, "Parallel K-Medoids clustering algorithm based on Hadoop," in 2014 IEEE 5th 
International Conference on Software Engineering and Service Science. IEEE, 6 2014, pp. 649-652. $153

[221] W. Zhao, H. Ma, and Q. He, "Parallel K-Means Clustering Based on MapReduce," in Proceedings of the 
1st International Conference on Cloud Computing. Springer-Verlag, 2009, pp. 674-679. $153, $159

[222] R. Jin, A. Goswami, and G. Agrawal, "Fast and exact out-of-core and distributed k-means clustering," 
Knowledge and Information Systems, vol. 10, no. 1, pp. 17-40, 7 2006. $153

[223] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukic, V. Roytershteyn, M. J. Anderson, 
Y. Yao, Prabhat, and P. Dubey, "BD-CATS: big data clustering at trillion particle scale," in Proceedings 
of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC 
'15. New York, New York, USA: ACM Press, 2015, pp. 1-12. $153, $157, $161, $168, $174 *

[224] M. Gotz, C. Bodenstein, and M. Riedel, "HPDBSCAN: Highly Parallel DBSCAN," in Proceedings of the 
Workshop on Machine Learning in High-Performance Computing Environments - MLHPC '15. ACM New 
York, USA, 2015, pp. 1-10. $153, $156, $161, $168

232



REFERENCES

[225] H. Nagesh, S. Goil, and A. Choudhary, "A scalable parallel subspace clustering algorithm for massive 
data sets," in International Conference on Parallel Processing. IEEE, 2000, pp. 477-484. $153, $167, $168

[226] H. Nazerzadeh, M. Ghodsi, and S. Sadjadian, "Parallel Subspace Clustering," in Proceedings of the 10th 
Annual Conference of Computer Society of Iran. IEEE, 2005, pp. 1-8. T153, $167

[227] A. Adinetz, j. Kraus, J. Meinke, and D. Pleiter, "GPUMAF1A: Efficient Subspace Clustering with 
MAFIA on GPUs," in Proceedings of European Conference on Parallel Processing. Springer, Berlin, 
Heidelberg, 2013, pp. 838-849. $ 153, $167

[228] B. Zhu, A. Mara, and A. Mozo, "CLUS: Parallel Subspace Clustering Algorithm on Spark," in 
Proceedings of East European Conference on Advances in Databases and Information Systems. Springer, 
Cham, 2015, pp. 175-185. $153, $167

[229] R. L. Ferreira Cordeiro, C. Traina, A. J. Machado Traina, J. Lopez, U. Kang, and C. Faloutsos, 
"Clustering very large multi-dimensional datasets with MapReduce," in Proceedings of the 17th ACM 
SIGKDD international conference on Knowledge discovery and data mining - KDD 'll. New York, New 
York, USA: ACM Press, 2011, pp. 690-698. $153, $168’

[230] S. Kumari, S. Maurya, P. Goyal, S. S. Balasubramaniam, and N. Goyal, "Scalable Parallel Algorithms 
for Shared Nearest Neighbor Clustering," in 2016 IEEE 23rd International Conference on High Performance 
Computing (HiPC). IEEE, 12 2016, pp. 72-81. $153, $155, $156, $163, $168, $169, $180

[231] V. Olman, Fenglou Mao, Hongwei Wu, and Ying Xu, "Parallel Clustering Algorithm for Large 
Data Sets with Applications in Bioinformatics," IEEE/ACM Transactions on Computational Biology and 
Bioinformatics, vol. 6, no. 2, pp. 344-352, 4 2009. $153, $154, $156, $165, $168

[232] Q. Qian, S. Zhao, C.-J. Xiao, and C.-L. Hung, "Multi-level Grid Based Clustering and GPU Parallel 
Implementations," in 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks 
& 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third 
International Symposium of Creative Computing (ISPAN-FCST-ISCC). IEEE, 6 2017, pp. 397-402. $153

[233] C. Xiaoyun, C. Yi, Q. Xiaoli, Y. Min, and H. Yanshan, "PGMCLU: A novel parallel grid-based 
clustering algorithm for multi-density datasets," in 2009 1st IEEE Symposium on Web Society. IEEE, 8 
2009, pp. 166-171. $153

[234] C. Deng, J. Song, R. Sun, S. Cai, and Y. Shi, "GR1DEN: An effective grid-based and density-based 
spatial clustering algorithm to support parallel computing," Pattern Recognition Letters, vol. 109, pp. 
81-88, 7 2018. $153

[235] M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, "Scalable 
parallel OPTICS data clustering using graph algorithmic techniques," in Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13. ACM New 
York, USA, 2013, pp. 1-12. $155, $156, $162, $168, $169, $186^

[236] P. Goyal, S. Kumari, D. Kumar, S. Balasubramaniam, and N. Goyal, "Parallelizing OPTICS for 
multicore systems," in Proceedings of the 7th ACM India Computing Conference on - COMPUTE '14. 
ACM New York, USA, 2014, pp. 1-6. $155, $156, $162

[237] B. Welton, E. Samanas, and B. P. Miller, "Mr. Scan: Extreme scale density-based clustering using a 
tree-based network of GPGPU nodes," in Proceedings of the International Conference for High Performance 
Computing, Networking, Storage and Analysis (SC ’13). ACM Press, 2013, pp. 1-11. $156, $162

[238] X. Xu, J. Jager, and H.-P. Kriegel, "A Fast Parallel Clustering Algorithm for Large Spatial Databases," 
Data Mining and Knowledge Discovery, vol. 3, no. 3, pp. 263-290, 1999. $156, $160, $168

[239] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu, "Approaches for scaling DBSCAN algorithm to large 
spatial databases," Journal of Computer Science and Technology, vol. 15, no. 6, pp. 509-526, 11 2000. $156, 
$160, $168

[240] X. Li, "Parallel algorithms for hierarchical clustering and cluster validity," IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 12, no. 11, pp. 1088-1092,1990. $156, $164

[241] C.-H. Wu, S.-J. Horng, and H.-R. Tsai, "Efficient Parallel Algorithms for Hierarchical Clustering on 
Arrays with Reconfigurable Optical Buses," Journal of Parallel and Distributed Computing, vol. 60, no. 9, 
pp. 1137-1153, 9 2000. $156, $164

[242] Z. Du and F. Lin, "A novel parallelization approach for hierarchical clustering," Parallel Computing, 
vol. 31, no. 5, pp. 523-527, 5 2005. $156, $164

[243] P. S. Bradley, O. L. Mangasarian, and W. N. Street, "Clustering via concave minimization," in 
Proceedings of the 9th International Conference on Neural Information Processing Systems. MIT Press, 1996, 
pp. 368-374. $159

233



REFERENCES

[244] J. C. Dunn, "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact 
Well-Separated Clusters," Journal of Cybernetics, vol. 3, no. 3, pp. 32-57,1 1973. $159

[245] J. Kumar, R. T. Mills, F. M. Hoffman, and W. W. Hargrove, "Parallel k-Means Clustering for 
Quantitative Ecoregion Delineation Using Large Data Sets," Procedia Computer Science, vol. 4, pp. 
1602-1611,1 2011. $159, $168

[246] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, "Distributed k-means and k-median Clustering on General 
Topologies," in Advances in Neural Information Processing Systems 26 (NIPS 2013). Neural Information 
Processing Systems Foundation, Inc., 2013, pp. 1-9. $159, $168

[247] M. N. Joshi, "Parallel K-Means Algorithm on Distributed Memory Multiprocessors," University of 
Minnesota, Twin Cities, Tech. Rep., 2003. 1159

[248] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, "Scalable k-means++," in 
Proceedings of the VLDB Endowment. VLDB Endowment, 3 2012, pp. 622-633. $159

[249] K. D. Garcia and M. C. Naldi, "Multiple Parallel MapReduce k-Means Clustering with Validation and 
Selection," in 2014 Brazilian Conference on Intelligent Systems. IEEE, 10 2014, pp. 432-437. $159

[250] B. Wang, J. Yin, Q. Hua, Z. Wu, and J. Cao, "Parallelizing K-Means-Based Clustering on Spark," in 
2016 International Conference on Advanced Cloud and Big Data (CBD). IEEE, 8 2016, pp. 31-36. $159

[251] V. Santhi and R. Jose, "Performance Analysis of Parallel K-Means with Optimization Algorithms for 
Clustering on Spark," in Proceedings of International Conference on Distributed Computing and Internet 
Technology (ICDC1T’18). Springer, Cham, 2018, pp. 158-162. $159

[252] D. Arlia and M. Coppola, "Experiments in Parallel Clustering with DBSCAN," in Proceedings of the 7th 
International Euro-Par Conference on Parallel Processing. Springer, 2001, pp. 326-331. $160, $168

[253] M. Coppola and M. Vanneschi, "High-performance data mining with skeleton-based structured 
parallel programming," Parallel Computing, vol. 28, no. 5, pp. 793-813, 5 2002. $160, $168

[254] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, "DBDC: Density Based Distributed Clustering," in Proceedings 
of 2004 International Conference on Extending Database Technology (EDBT ’04). Springer, Berlin, 
Heidelberg, 2004, pp. 88-105. $160

[255] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle, "Parallel Density-Based Clustering of Complex Objects," 
in Proceedings of 2006 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006). 
Springer, Berlin, Heidelberg, 2006, pp. 179-188. $160

[256] M. Chen, X. Gao, and H. Li, "Parallel DBSCAN with Priority R-tree," in 2010 2nd IEEE International 
Conference on Information Management and Engineering. IEEE, 2010, pp. 508-511. $160, $168

[257] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, N. Beckmann, H.-P. Kriegel, R. Schneider, and 
B. Seeger, "The R*-tree: an efficient and robust access method for points and rectangles," in Proceedings 
of the 1990 ACM SIGMOD international conference on Management of data - SIGMOD '90. New York, 
New York, USA: ACM Press, 1990, pp. 322-331. $160

[258] B. Welton and B. P. Miller, "Mr. Scan: A Hybrid / Hybrid Extreme Scale Density Based Clustering 
Algorithm," Northwestern University, Tech. Rep., 2015. $162

[259] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L. Rocha, "G-DBSCAN: A GPU 
Accelerated Algorithm for Density-based Clustering," Procedia Computer Science, vol. 18, pp. 369-378, 1 
2013. $162

[260] C.-C. Chen and M.-S. Chen, "HiClus: Highly Scalable Density-based Clustering with Heterogeneous 
Cloud," Procedia Computer Science, vol. 53, pp. 149-157,1 2015. $162

[261] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, "MR-DBSCAN: An Efficient Parallel 
Density-Based Clustering Algorithm Using MapReduce," in 2011 IEEE 17th International Conference on 
Parallel and Distributed Systems. IEEE, 12 2011, pp. 473-480. $162

[262] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, "MR-DBSCAN: a scalable MapReduce-based DBSCAN 
algorithm for heavily skewed data," Frontiers of Computer Science, vol. 8, no. 1, pp. 83-99, 2 2014. $162

[263] B.-R. Dai and I.-C. Lin, "Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data 
Partition," in 2012 IEEE Fifth International Conference on Cloud Computing. IEEE, 6 2012, pp. 59-66. 
$162

[264] Y. Yu, J. Zhao, X. Wang, Q. Wang, and Y. Zhang, "Cludoop: An Efficient Distributed Density-Based 
Clustering for Big Data Using Hadoop," International Journal of Distributed Sensor Networks, vol. 11, 
no. 6, pp. 1-13, 6 2015. $162

234



REFERENCES

[265] X. Hu, L. Liu, N. Qiu, D. Yang, and M. Li, "A MapReduce-based improvement algorithm for 
DBSCAN," Journal of Algorithms & Computational Technology, vol. 12, no. 1, pp. 53-61, 3 2018. f 162

[266] Y. Gu, X. Ye, F. Zhang, Z. Du, R. Liu, and L. Yu, "A parallel varied density-based clustering algorithm 
with optimized data partition," Journal of Spatial Science, vol. 63, no. 1, pp. 93-114, 1 2018. $162

[267] H. Song and J.-G. Lee, "RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random 
Partitioning," in Proceedings of the 2018 International Conference on Management of Data - SIGMOD '18. 
ACM New York, USA, 2018, pp. 1173-1187. $162

[268] I. Cordova and T.-S. Moh, "DBSCAN on Resilient Distributed Datasets," in 2015 International 
Conference on High Performance Computing & Simulation (HPCS). IEEE, 7 2015, pp. 531-540. T162

[269] D. Han, A. Agrawal, W.-K. Liao, and A. Choudhary, "A Novel Scalable DBSCAN Algorithm with 
Spark," in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 
IEEE, 5 2016, pp. 1393-1402. $162

[270] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin, "A Parallel DBSCAN Algorithm Based 
on Spark," in 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), 
Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) 
(BDCloud-SocialCom-SustainCom). IEEE, 10 2016, pp. 548-553. T162

[271] A. Lulli, M. Dell'Amico, P. Michiardi, and L. Ricci, "NG-DBSCAN," Proceedings of the VLDB 
Endowment, vol. 10, no. 3, pp. 157-168, 11 2016. $162

[272] F. Huang, Q. Zhu, J. Zhou, J. Tao, X. Zhou, D. Jin, X. Tan, and L. Wang, "Research on the 
Parallelization of the DBSCAN Clustering Algorithm for Spatial Data Mining Based on the Spark 
Platform," Remote Sensing, vol. 9, no. 12, pp. 1-33, 12 2017. $162

[273] C. Zewen and Z. Yao, "Parallel Text Clustering Based on MapReduce," in 2012 Second International 
Conference on Cloud and Green Computing. IEEE, 11 2012, pp. 226-229. $163

[274] S. Wang and C. F. Eick, "MR-SNN: Design of parallel Shared Nearest Neighbor clustering algorithm 
using MapReduce," in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. IEEE, 3 
2017, pp. 312-315. $163

[275] N. Meghwal and S. M, "Parallel Implementation of Shared Nearest Neighbor Clustering Algorithm," 
SERC, Indian Institute of Science, Bangalore, India, Tech. Rep., 2015. fl63

[276] S. Rajasekaran and Sanguthevar, "Efficient parallel hierarchical clustering algorithms," IEEE 
Transactions on Parallel and Distributed Systems, vol. 16, no. 6, pp. 497-502, 6 2005. $165, $168

[277] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan, "Fast hierarchical clustering and its validation," Data 
& Knowledge Engineering, vol. 44, no. 1, pp. 109-138, 1 2003. $165

[278] M. Dash, S. Petrutiu, and P. Scheuermann, "pPOP: Fast yet accurate parallel hierarchical clustering 
using partitioning," Data & Knowledge Engineering, vol. 61, no. 3, pp. 563-578, 6 2007. $165

[279] S. Kim and D. C. Wunsch, "A GPU based Parallel Hierarchical Fuzzy ART clustering," in The 2011 
International Joint Conference on Neural Networks. IEEE, 7 2011, pp. 2778-2782. $166

[280] S. A. Rylov and I. A. Pestunov, "Fast hierarchical clustering of multispectral images and its 
implementation on NVIDIA GPU," Journal of Physics: Conference Series, vol. 1096, no. 1, p. 012039, 9 
2018. $166

[281] C. Jin, M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao, and A. N. Choudhary, "DiSC : A Distributed 
Single-Linkage Hierarchical Clustering Algorithm using MapReduce," in Proceedings of the International 
Conference for High Performance Computing, Networking, Storage and Analysis on - SC '13. ACM, 2013, 
pp. 1-11. $166

[282] C. Jin, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, "Incremental, distributed single-linkage 
hierarchical clustering algorithm using mapreduce," in Proceedings of the Symposium on High 
Performance Computing. Society for Computer Simulation International, 2015, pp. 83-92. $166

[283] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, "A Scalable Hierarchical 
Clustering Algorithm Using Spark," in 2015 IEEE First International Conference on Big Data Computing 
Service and Applications. IEEE, 3 2015, pp. 418-426. $166

[284] G. Mazzeo and C. Zanilo, "The parallelization of acomplex hierarchical clustering algorithm: faster 
unsu-pervised learning on larger data sets," University of California, Los Angeles, Tech. Rep., 2016. 
$166

[285] Jiong Yang, Wei Wang, Haixun Wang, and P. Yu, "d-clusters: capturing subspace correlation in a large 
data set," in Proceedings 18th International Conference on Data Engineering. IEEE Comput. Soc, 2002, 
pp. 517-528. $166

235



REFERENCES

[286] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes," Journal of Royal Statistical 
Society, vol. 66, no. 4, pp. 815-849, 2004. fl66

[287] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma, "Subspace Clustering of High Dimen
sional Data," in 2004 SIAM International Conference on Data Mining. SIAM, 2004, pp. 517-521. fl66

[288] K. Sequeira and M. Zaki, "SCHISM: A New Approach for Interesting Subspace Mining," in Fourth 
IEEE International Conference on Data Mining (ICDM'04). IEEE, 2004, pp. 186-193. T167

[289] J.-W. Chang and D.-S. Jin, "A new cell-based clustering method for large, high-dimensional data in 
data mining applications," in Proceedings of the 2002 ACM symposium on Applied computing - SAC '02. 
ACM Press, 2002, pp. 503-507. T167

[290] K. Kailing, H.-P. Kriegel, and P. Kroger, "Density-Connected Subspace Clustering for High- 
Dimensional Data *," in 4th SIAM International Conference on Data Mining. SIAM, 2004, pp. 246-257. 
M67

[291] H. Kriegel, P. Kroger, M. Renz, and S. Wurst, "A Generic Framework for Efficient Subspace Clustering 
of High-Dimensional Data," in Fifth IEEE International Conference on Data Mining (ICDM'05). IEEE, 
2005, pp. 250-257. ?167

[292] I. Assent, R. Krieger, E. Muller, and T. Seidl, "DUSC: Dimensionality Unbiased Subspace Clustering," 
in Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 10 2007, pp. 409—114. fl67

[293] I. Assent, R. Krieger, E. Muller, and T. Seidl, "INSCY: Indexing Subspace Clusters with 
In-Process-Removal of Redundancy," in 2008 Eighth IEEE International Conference on Data Mining. 
IEEE, 12 2008, pp. 719-724. fl67

[294] A. Kaur and A. Datta, "A novel algorithm for fast and scalable subspace clustering of high-dimensional 
data," journal of Big Data, vol. 2, no. 1, p. 17, 12 2015. T167

[295] A. Datta, A. Kaur, T. Lauer, and S. Chabbouh, "Exploiting multiaA^core and manyaA^core parallelism 
for subspace clustering," International Journal of Applied Mathematics and Computer Science, vol. 29, no. 1, 
pp. 81-91, 2019. T167

[296] B. Zhu, B. Ordozgoiti, and A. Mozo, "PSCEG: An unbiased Parallel Subspace Clustering algorithm 
using Exact Grids," in European Symposium on Artificial Neural Networks, Computational Intelligence and 
Machine Learning,  Publishers, 2016, pp. 581-586. fl68i6doc.com

[297] Z. Gao, Y. Fan, K. Niu, and Z. Ying, "MR-Mafia: Parallel Subspace Clustering Algorithm Based on 
MapReduce for Large Multi-dimensional Datasets," in 2018 IEEE International Conference on Big Data 
and Smart Computing (BigComp). IEEE, 1 2018, pp. 257-262. fl68

[298] E. N. Adriano Di Pasquale, "Scalable Distributed Data Structures: A Survey," in 3rd International 
Workshop on Distributed Data and Structures (WDAS 2000), 2000, pp. 87-111. |186

[299] B. Kroll, P. Widmayer, B. Kroll, and P. Widmayer, "Distributing a search tree among a growing number 
of processors," ACM SIGMOD Record, vol. 23, no. 2, pp. 265-276, 6 1994. |186

[300] T. P. Hayes, J. Saia, and A. Trehan, "The forgiving graph: a distributed data structure for low 
stretch under adversarial attack," in Proceedings of the 28th ACM symposium on Principles of distributed 
computing - PODC '09. New York, New York, USA: ACM Press, 2009, pp. 121-130. fl86

[301] M. T. Goodrich, M. J. Nelson, and J. Z. Sun, "The rainbow skip graph: a fault-tolerant constant-degree 
distributed data structure," in Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete 
algorithm (SODA 2006). SIAM, 2006, pp. 384-393. ?186

[302] I. Kamel, C. Faloutsos, I. Kamel, and C. Faloutsos, "Parallel R-trees," in Proceedings of the 1992 ACM 
SIGMOD international conference on Management of data - SIGMOD '92, vol. 21, no. 2. New York, New 
York, USA: ACM Press, 1992, pp. 195-204. T186

[303] E. G. Hoel and H. Samet, "Data-Parallel R-Tree Algorithms," in 1993 International Conference on Parallel 
Processing (ICPP'93). IEEE, 8 1993, pp. 47-50. fl86

[304] T. Johnson and A. Colbrook, "A distributed data-balanced dictionary based on the B-link tree," in 
Proceedings of Sixth International Parallel Processing Symposium. IEEE Comput. Soc. Press, 1992, pp. 
319-324. |186

[305] B. Schnitzer and S. Leutenegger, "Master-client R-trees: a new parallel R-tree architecture," in 
Proceedings. Eleventh International Conference on Scientific and Statistical Database Management. IEEE 
Comput. Soc, 1999, pp. 68-77. fl86

[306] L. Shuhua, Z. Fenghua, and S. Yongqiang, "A Design of Parallel R-tree on Cluster of Workstations," 
in International Workshop on Databases in Networked Information Systems (DNIS 2000). Springer, Berlin, 
Heidelberg, 2000, pp. 119-133. f!86

236



REFERENCES

[307] C. du Mouza, W. Litwin, and P. Rigaux, "Large-scale indexing of spatial data in distributed 
repositories: the SD-Rtree," The VLDB journal, vol. 18, no. 4, pp. 933-958, 8 2009. tl86

[308] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. The MIT 
Press, 2009. M86

[309] Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang, "Multi-Dimensional Regression Analysis of Time-Series 
Data Streams," in Proceedings of the 28th international conference on Very Large Data Bases. ACM New 
York, 2002, pp. 323-334. T212

[310] M. J. Zaki and W. Meira Jr, Data Mining and Analysis. 1st Edition, 2014. L214, T217

237



Publications

Conference Papers
i. Jagat Sesh Challa, Poonam Goyal, Vijay M Giri, Dhananjay Mantri, Navneet Goyal, 

"AnySC: Anytime Set-wise Classification of Variable Speed Data Streams", In Pro
ceedings of 2018 IEEE International Conference on Big Data (IEEE Big Data 2018), 
pp. 967-974,10-13 December 2018, Seattle, WA, USA.

ii. Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal, "AnyFI: An 
Anytime Frequent Itemset Mining Algorithm for Data Streams", In Proceedings of 
2017 IEEE International Conference on Big Data (IEEE Big Data 2017), 11-14 Decem
ber 2017, Boston, MA, USA.

iii. Jagat Sesh Challa, Poonam Goyal, Nikhil S., Aditya Mangla, Sundar Balasubrama- 
niam, Navneet Goyal, "DDR-Tree: A dynamic distributed data structure for efficient 
data distribution among cluster nodes for spatial data mining algorithms", In Pro
ceedings of 2016 IEEE International Conference on Big Data (IEEE Big Data 2016), 
5-8 December 2016, Washington DC, USA.

Journal Papers
i. Jagat Sesh Challa, Poonam Goyal, Ajinkya Kokandakar, Dhananjay Mantri, Pranet 

Verma, Sundar Balasubramaniam, Navneet Goyal, "A New Micro-Cluster based Ap
proach for Anytime Clustering of Data Streams that handles Noise and Concept 
Drift", submitted for review in Journal of Experimental & Theoretical Artificial Intelli
gence (TETA), Taylor & Francis. (Revision submitted)

ii. Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal, "Anytime Fre
quent Itemset Mining of Transactional Data Streams", submitted for review in Big 
Data Research, Elsevier.

iii. Poonam Goyal, Jagat Sesh Challa, Dhruv Kumar, Navneet Goyal, Sundar Balasub
ramaniam, "Grid-R-tree: A data structure for efficient neighborhood and nearest 
neighbor queries in data mining", submitted for review in Journal of Data Science & 
Analytics (JDSA), Springer.

iv. Jagat Sesh Challa, Poonam Goyal, Nikhil S, Amogh Sharma, Shan Balasubrama
niam, Navneet Goyal, "Experiments on Data Distribution Strategies for Parallel 
Spatial Clustering Algorithms", to be submitted to ACM Transactions on Knowledge 
Discovery from Data (TKDD), ACM.

v. Jagat Sesh Challa, Poonam Goyal, Navneet Goyal, "Anytime Data Mining: A Com
prehensive Survey", to be submitted to Wiley Inter-disciplinary Reviews on Data Min
ing and Knozoledge Discovery (WIRE-DMKD), Wiley.

238



Biographies

Brief Biography of the Candidate
Jagat Sesh Challa is a PhD Student in the Department of Computer Science & Information 
Systems at Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India. He has 
completed MSc.(Tech) Information Systems in 2010 and Masters of Engineering degree in 
Software Systems in 2012, both from the same department at BITS Pilani. His research 
interests are in the area of Data Mining, Streaming Data, Anytime Mining, Data Indexing 
Structures, Data Distribution strategies and High Performance Computing. He has a total 
of 9 publications which are accepted in reputed international conferences and journals. He 
is a reviewer for ACM Transactions on Knowledge Discovery from Data. He is a student 
member of IEEE. He is well experienced in teaching activities like conducting tutorials 
and laboratory sessions for various courses like Data Structures & Algorithms, Design & 
Analysis of Algorithms, Computer Programming, Logic in Computer Science, and Dis
crete Structures for Computer Science. Contact him at jagatsesh@pilani.bits-pilani.ac.in. 
http://universe.bits-pilani.ac.in/pilani/jagatsesh/profile

Brief Biography of the Supervisor
Prof. Poonam Goyal is currently an Associate Professor and Head in the Department of 
Computer Science & Information Systems at Birla Institute of Technology & Science, Pi
lani, Rajasthan, India. She has completed her Ph.D. in Numerical Analysis (Applied Math
ematics) Department of Mathematics University of Roorkee (now IIT, Roorkee), Roorkee, 
India in 1995, ME in Software Systems, Department of Computer Science & Information 
Systems from BITS-Pilani, Pilani, India in 2002. She has received the IBM Scalable Data 
Analytics Innovation Faculty Award 2010 in the area of Scalable Data Analytics for the 
research concept titled "Developing a Smart Crop Management System using Data Analyt
ics". She is actively involved with the Advanced Data Analytics and Parallel Technologies 
(ADAPT) Lab and she is the Convenor of the Web Intelligence and Social Computing 
(WiSOC) Lab. Her current research interests are in the area of Data Mining, High Perfor
mance Computing, Solution for Big Data Analytics, Information/Image Retrieval, Social 
Media Analytics, and Stream Mining. She has published more than 35 research papers 
in reputed Internal Conferences and Journals. She is a reviewer for various journals like 
ACM TKDD, IEEE Transactions SMC, T&F TETA, etc. Contact her at poonam@pilani.bits- 
pilani.ac.in. http://universe.bits-pilani.ac.in/pilani/poonam/profile

Brief Biography of the Co-Supervisor
Prof. Anil Maheshwari is currently a Professor and Graduate Director in the Depart
ment of Computer Science at Carleton University, Ottawa, Canada. He is also an Adjunct 
Professor at Birla Institute of Technology and Sciences, Pilani (India) since 2007. He has 
completed his Ph.D. in Computer Science from Tata Institute of Fundamental Research, 
Mumbai, India in 1993. He later worked as a Postdoctoral fellow at the Max Planck Insti
tute for Informatics, Germany (1993-1994) and at the Carleton University, Ottawa, Canada 

239



(1994-1995). He is currently working in the Computational Goemetry lab at Carleton Uni
versity, primarily working in the areas of Design and Analysis of Algorithms for problems 
in computational geometry, graphs and discrete mathematics. He has received a number 
of research grants from various funding sources like MITACS, DFAIT, NSERC, etc. He has 
published over 200 papers in various peer reviewed journals and conferences of interna
tional repute. He has also served as the PC member for various National and International 
Conferences. Contact him at anil@scs.carleton.ca. http://people.scs.carleton.ca/ mahesh- 
wa/

240


