
Design and Development of Data Indexing
Techniques for Mining Large and Streaming Data

THESIS

Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

JAGAT SESH CHALLA
2006PH120559P

Under the Supervision of

Prof. Poonam Goyal
Associate Professor, Department of Computer Science & Information Systems

BITS Pilani, Pilani Campus, India

&

Prof. Anil Maheshwari
Professor, School of Computer Science
Carleton University, Ottawa, Canada

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI
PILANI CAMPUS, RAJASTHAN, INDIA

November, 2019

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI
PILANI CAMPUS, RAJASTHAN, INDIA

CERTIFICATE

This is to certify that the thesis titled "Design and Development of Data Indexing Tech
niques for Mining Large and Streaming Data", submitted by Jagat Sesh Challa ID No
2006PH120559P for award of Ph.D. of the Institute embodies original work done by him
under my supervision.

Signature of the Supervisor

Name
Designation

: Prof. Poonam Goyal
: Associate Professor & Head

Department of Computer Science
and Information Systems,
BITS Pilani, Pilani Campus
Pilani, India

Date : NUx/ Ao } I

Signature of the co-supervisor:

Name
Designation

Prof. Anil Maheshwari
Professor
Department of Computer Science
Carleton University, Ottawa
Canada

Date

Dedicated To

My Teachers & The Almighty...

Acknowledgements

I would like to express my sincere gratitude to several personalities for their

constant guidance, help, support and well-wishes. Firstly, I would like to

thank the Vice-Chancellor of the BITS-Pilani University, Prof. Souvik Bhat

tacharya, and the Director of Pilani Campus, Prof. Ashoke Kumar Sarkar for

giving a conducive research environment to the Institute, without which my

Ph.D. would not have been possible. I would also like to thank the Head

of the Department, Dept, of Computer Science & Information Systems, Prof.

Poonam Goyal, for providing the required research facilities to our depart

ment. I am greatly indebted to my supervisor - Prof. Poonam Goyal, and my

co-supervisor - Prof. Anil Maheshwari, who gave me the vision of research,

moral support and constant guidance throughout my Ph.D.. I sincerely thank

my Doctoral Advisory Committe members - Prof. Navneet Goyal and Dr. K.

Haribabu for taking out time for reading my thesis and giving valuable com

ments and suggestions. I am also thankful to Prof. Sundar Balasubramaniam

for his active guidance and support throughout my Ph.D.. I am greatly in

debted to all my teachers who have been a great support throughout my life.

I also acknowledge the support of my colleagues working in ADAPT Lab -

Mr. Saiyedul Islam, Dr. Sonal Kumari, Mrs. Prerna Kaushik, Mr. Nikhil S,

Mr. Dhruv Kumar, Mr. Shivin Srivastava, Mr. Amogh Sharma, Mr. Vijay M.

Giri, Mr. Dhananjay Mantri and Mr. Anand Wani. I strongly acknowledge

the patience and support given by my wife Mrs. Nandini Challa, my parents -

Mr. Kesava Rao Challa and Mrs. Usha Sri Challa, and my brother Mr. Manish

Kalyan Challa. Last but not the least, I thank the Supreme Almighty for giving

me the inspiration to carry out this work.

Abstract

Today, data mining has become a very important technology that is direct-

ly/indirectly impacting all aspects of life. Data in this world is growing at an

unprecedented rate and today's decision making has become highly complex

and data-centric than ever before. There is a lot of data being collected and

warehoused from various domains like web, e-commerce, sensor networks,

satellites, etc. And the speed of collection of data has also significantly in

creased to a magnitude of GigaBytes/hour. Traditional data mining algorithms

are neither capable of handling such large volumes of data nor can process the

data with respect to their velocity.

To deal with such large data, researchers have proposed innovative algorithms.

Large volumes of data are handled by data mining algorithms specifically de

signed for parallel architectures such as shared memory, distributed memory

or hybrid architectures. And large velocity of data is handled by stream min

ing algorithms. The specific area of study that processes such large amounts

of data is known as "Big Data Analytics" or "Big Data".

This thesis deals with development of various data indexing techniques to

handle "volume", "velocity" and variability" of Big data. This thesis presents

the following solutions to handle large volume of data:-

• Presents a data structure known as Grid-R-tree, which supports efficient

execution of spatial queries such as neighborhood & nearest neighbor

queries used by spatial data mining algorithms. Grid-R-tree also enables

efficient execution of density-based clustering algorithms like DBSCAN

& OPTICS, as well as the k-nearest neighbor classifiers.

• Presents a dynamic distributed data structure known as DD-RTree, which

supports effective distribution of incremental datasets over a cluster of

computing nodes. The distribution is based on R-tree spatial containment

principles and is shown to preserve spatial locality in the distribution.

This aids in efficient execution of parallel spatial data mining algorithms

like DBSCAN, OPTICS, etc.

• Presents a few data distribution strategies (P-based Split, PD-Split and

CD-Split) for distributing large static datasets over a cluster of computing

nodes. These methods are specifically designed for attaining performance

gain in parallel density based and hierarchical clustering algorithms. Ap

propriate recommendations for their usage have also been presented.

To handle large velocity and variability of data, this thesis presents the following:-

• Presents the first anytime set-wise classification algorithm for data streams

known as AnySC. It uses a proposed data structure known as CProf-forest

for handling varying inter-arrival rate of objects in the stream. CProf-forest

supports anytime incremental update and enables anytime classification

of test entities as well. The utlity of the proposed algorithm has been

shown with respect to two problems: community detection in twitter and

website fingerprinting attack.

• Presents AnyClus and Any-MP-Clus, which are frameworks for anytime

clustering of single-port and multi-port data streams, respectively. They

use a proposed data structure known as AnyRtree to handle variable inter

arrival rate of data objects. The proposed frameworks handle noise and

concept drift more effectively than the existing frameworks. The spatial

locality preservation of AnyRtree aids them to produce micro-clusters of

higher quality and compactness.

• Presents AnyFI and MPAnyFI, which are the first algorithms for anytime

frequent itemset mining of single-port and multi-port data streams, re

spectively. They use a proposed data structure known as BFI-Forest to

handle variable inter-arrival rate of transactions. The proposed frame

works are shown to handle high and variable speed streams and identify

Frequent Itemsets with high value of recall.

Among the above problems, Grid-R-tree, anytime set-wise classification, any

time FI mining and DD-Rtree, are the first proposed approaches of their kind.

All the algorithms have been implemented, experimented and benchmarked

with the existing solutions (if any). The overall work done for this thesis shows

a significant contribution to research in the area of "Big Data".

Table of Contents

List of Figures xiii

List of Tables xix

List of Abbreviations/Symbols xxiv

1 Introduction 1

1.1 Data Deluge!.. 3

1.2 Big Data.. 5

1.2.1 Handling Large Static Data... 6

1.2.2 Handling Streaming Data.. 8

1.2.2.1 Anytime Stream Mining... 9

1.3 Research Gap and Motivation... 10

1.4 Thesis Contributions... 11

1.5 Thesis Organization.. 14

I Data Indexing Structures for Efficient Spatial Queries in Data Mining 15

2 Grid-R-tree: A data structure for efficient neighborhood and nearest neighbor

queries 19

2.1 Grid-R-tree... 19

2.1.1 Grid-R-tree: Design & Structure.. 20

2.1.2 Virtual Gridding... 21

2.1.2.1 Adaptive Gridding .. 22

2.1.3 Grid-R-tree: Construction & Insertion.. 23

vi

TABLE OF CONTENTS

2.1.4 Deletion in Grid-R-tree ... 25

2.2 Queries over Grid-R-tree.. 26

2.2.1 Point Query.. 26

2.2.2 Cell Window Query.. 26

2.2.3 Window Query.. 27

2.2.4 Neighborhood Queries... 27

2.2.5 Nearest Neighbor Query ... 32

2.2.6 Theoretical Analysis.. 33

2.3 Experimental Results and Analysis... 36

2.3.1 Experimental Setup .. 36

2.3.2 Performance Analysis of Neighborhood and k-NN Queries............... 38

2.3.3 Performance of queries over Grid-R-tree with adaptive grid opti

mization ... 43

2.3.4 Construction and Query Execution Time: Grid-R-tree vs R-tree ... 44

2.3.5 Tradeoff in choice of R-tree vs k-d-tree for analysis........................... 45

2.4 Discussion.. 46

2.5 Main Contributions.. 47

2.6 Conclusions & Future Work... 49

2.6.1 Conclusions... 49

2.6.2 Future Directions.. 49

3 Applicability of Grid-R-tree to Data Mining 50

3.1 Data Mining Algorithms using Grid-R-tree... 50

3.1.1 k-NN Classifier using Grid-R-tree... 50

3.1.2 DBSCAN clustering using Grid-R-tree ... 51

3.1.3 Upper bound on speed up achieved by using Grid-R-tree............... 53

3.1.4 Other Uses of Grid-R-tree.. 54

3.2 Discussion... 54

3.3 Main Contributions.. 55

3.4 Conclusions... 55

vii

TABLE OF CONTENTS

II Anytime Mining of Data Streams 56

4 Anytime Frequent Itemset Mining of Data Streams 60

4.1 Frequent Itemset Mining.. 60

4.2 Frequent Itemset Mining in Data Streams... 61

4.2.1 Research Gap and Motivation ... 63

4.3 Preliminaries.. 64

4.3.1 Definitions & Problem Statements... 64

4.3.2 Stream Model.. 65

4.3.2.1 Damped Window... 65

4.4 BFI-Forest... 66

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams.......................... 68

4.5.1 Inserting a transaction into the BFI-forest and Refinement of BFI-forest 68

4.5.1.1 Inserting a transaction into a BFI-forest 69

4.5.1.2 Refinement of BFI-Forest.. 70

4.5.2 Intermittent Pruning of BFI-forest... 75

4.5.3 Mining BFI-forest for Frequent Itemsets... 77

4.5.4 Why is AnyFI Efficient? A Summary:.. 79

4.5.5 Theoretical Analysis... 80

4.6 MPAnyFI: Anytime FI Mining of Multi-Port Data Streams.......................... 88

4.7 Experimental Results & Analysis.. 90

4.7. 0.1 Performance of AnyFI ... 92

4.7. 0.2 Anytime Mining of Frequent Itemsets............................. 95

4.7. 0.3 Comparing AnyFI with existing approaches.................... 95

4.7. 0.4 Parameter Tuning and Recommendations....................... 96

4.7. 0.5 Experiments establishing Theoretical Analysis.............. 97

4.7.1 Experiments on MPAnyFI.. 99

4.7.1.1 Experimental Results... 99

4.8 Main Contributions... 101

4.9 Conclusions and Future Work... 102

4.9.1 Conclusions... 102

viii

TABLE OF CONTENTS

4.9.2 Future Directions.. 102

5 Anytime Set-wise Classification of Data Streams 103

5.1 The Set-wise Classification Problem in Data Streams 103

5.1.1 Applications.. 104

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC) . 106

5.2.1 The Set-wise Classification model.. 107

5.2.2 Processing Incoming Stream Objects... 109

5.2.3 Research Gap & Motivation.. 110

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method . . Ill

5.3.1 Anytime Incremental Model Update... 113

5.3.2 Anytime Classification of test entities.. 114

5.4 Experimental Results & Analysis.. 117

5.4 .0.1 Synth... 117

5.4 .0.2 ECover .. 117

5.4 .0.3 CDetect.. 117

5.4 .0.4 WebFing ... 118

5.4.1 Experimental Results... 119

5.5 Discussion.. 122

5.5.1 Our Contributions.. 124

5.6 Conclusions & Future Work... 124

5.6.1 Future Directions... 125

6 Anytime Clustering of Data Streams 126

6.0.1 Research Gap & Motivation.. 127

6.1 Preliminaries... 128

6.1.1 Micro-Clusters (mcs)... 129

6.2 AnyClus: The Proposed Framework... 129

6.2.1 AnyRTree... 130

6.2.2 Anytime Micro-Cluster Maintenance of AnyRTree.............................. 131

6.2.2.1 Time Complexity ... 135

6.2.3 Key Factors of AnyRTree design.. 135

TABLE OF CONTENTS

6.3 Any-MP-Clus... 137

6.3.1 Offline Phase.. 137

6.3.1.1 Partitioning.. 138

6.3.1.2 Local Merging.. 139

6.3.1.3 Global Merging... 140

6.3.1.4 Tilted-Time Window Maintenance of micro-clusters 140

6.4 Experimental Results and Analysis... 141

6.4.1 Experiments on AnyRTree.. 143

6.4.2 Experiments on Any-MP-Clus.. 148

6.5 Main Contributions.. 150

6.6 Conclusions & Future Work.. 151

6.6.1 Conclusions.. 151

6.6.2 Future Directions... 151

III Data Distribution Strategies 152

7 Data Distribution for Large Static datasets 158

7.1 Survey of Parallel Clustering Algorithms... 158

7.1.1 Parallel partitioning-based clustering algorithms.............................. 159

7.1.2 Parallel density-based clustering algorithms....................................... 160

7.1.2.1 Parallel OPTICS.. 162

7.1.2.2 Parallel Shared Nearest Neighbor Clustering..................... 163

7.1.3 Parallel hierarchical clustering algorithms .. 164

7.1.4 Parallel subspace clustering algorithms... 166

7.2 Data Distribution Methods ... 168

7.2.1 Random Partitioning... 168

7.2.2 KD-Split.. 169

7.2.3 Projection Based Split... 169

7.2.4 Parameterized Dimensional Split... 170

7.2.5 CD-Split.. 173

7.3 Distribution Methods for very large datasets.. 174

TABLE OF CONTENTS

7.4 Experimental Results and Analysis... 175

7.4.1 Experimental Setup ... 175

7.4.2 Load balancing achieved .. 176

7.4.3 Performance of Parallel Spatial Clustering Algorithms.................... 176

7.4.3.1 Parallel DBSCAN.. 177

7.4.3.2 Parallel SNN.. 180

7.4.3.3 Parallel SLINK... 181

7.5 Discussion and Recommendations... 182

7.6 Main Contributions.. 183

7.7 Conclusions and Future Work... 183

7.7.1 Conclusions... 183

7.7.2 Future Directions.. 184

8 Data Distribution for dynamic incremental datasets 185

8.1 A Review on Distributed Data Structures.. 185

8.2 DD-Rtree ... 187

8.2.1 DD-Rtree design... 187

8.2.2 DD-Rtree Construction.. 189

8.2.3 Queries supported by DD-Rtree.. 191

8.3 Performance Evaluation... 193

8.3.1 Quality Evaluation.. 194

8.3.2 Efficiency Evaluation.. 196

8.4 Discussion... 198

8.5 Main Contributions.. 199

8.6 Conclusions & Future Work... 200

8.6.1 Conclusions... 200

8.6.2 Future Directions.. 200

9 Conclusions and Future Work 202

9.1 Conclusions... 202

9.2 Future Directions... 205

xi

TABLE OF CONTENTS

A R-tree 206

A.l Structure of an R-tree.. 206

A.2 R-tree: Construction, Insertion and Deletion... 207

A.3 Distance Measures in an R-tree... 208

A.4 Queries Supported by R-tree .. 209

A.4.1 Point Query.. 209

A.4.2 Window Query.. 209

A.4.3 Neighborhood Query... 210

A.4.4 Nearest Neighbor Query ... 210

B Tilted-Time Window FrameWork (TTWF) 212

B.0.1 Maintenance of TTWF... 212

C Quality Evaluation Measures 214

C.l External Measures ... 214

C.2 Internal Measures.. 217

References 222

Publications 238

Biographies 239

xii

List of Figures

1.1 Broad Classification of Data Mining Tasks [1].. 2

1.2 Growing number of internet users {Source: [2]} ... 4

1.3 Statistics of growing data by DOMO I Data Never Sleeps 6.0 [3]................ 5

1.4 IDC prediction of Data Growth {Source: IDC Study 2018: EMC [4]}............ 6

1.5 The TV's of Big Data {Source: [5]}... 7

1.6 Characteristic of an anytime algorithm .. 9

2.1 Structure of Grid-R-tree.. 20

2.2 Illustrating MBRs formed over a two dimensional synthetic dataset using

(a) R-tree (b) Grid-R-tree.. 21

2.3 Virtual Grid in 2D.. 22

2.4 Illustrating Cell-Window Query ... 26

2.5 Illustrating Proposition 1 on page 28 & Result 1 on page 28 for = 1 . . 28

2.6 Illustrating Result 1 on page 28 for [I] = 2... 28

2.7 Illustrating Inductive Step of Result 1 on page 28.. 31

2.8 Illustrating Proposition 2 on page 30... 31

2.9 Execution time for neighborhood queries for Grid-R-tree and R-tree over

various datasets.. 38

2.10 Execution time of nearest neighbor queries for Grid-R-tree and R-tree over

various datasets.. 39

xiii

LIST OF FIGURES

2.11 Execution time of (a) & (b) neighborhood queries and (c) nearest neighbor

queries with varying dimensions on SFONT1M dataset. Execution time

of (d) & (e) neighborhood queries and (f) nearest neighbor queries with

varying dimensions on MPAHALO2.8M dataset................................... 41

2.12 Execution time of neighborhood queries and nearest neighbor queries with

increase in data sizes on (a) & (b) SBUS datasets; (c) & (d) samples of delucia

(MPAGD5M).. 42

2.13 Execution times of (a) neighborhood (b) k-NN queries; with increase in

density of the dataset for Delucia (MPAGD5M) data samples........... 42

2.14 Execution time of (a) Neighborhood (b) k-NN queries with increase in cell

size (c) for 3DSRN dataset.. 43

2.15 Exec, time of (a) NBH queries with variation in e; (b) k-NN queries with

variation in k; for MPAGD3.2M.. 43

2.16 Execution Time of queries over adaptive grid optimized Grid-R-tree vs orig

inal Grid-R-tree.. 43

2.17 Execution time of neighborhood query over Grid-R-tree with adaptive grid

optimization with varying t for (a) SBUS2.7M & (b) MPAGD5M datasets . 44

2.18 Construction time of Grid-R-tree & R-tree for (a) 3DSRN and (b) MPAGD3.2M

datasets with increase in cell size (c)... 44

3.1 Execution time of k-NN Classifier over R-tree and Grid-R-tree for Shuttle

and Skin datasets... 51

3.2 Execution time for DBSCAN over R-tree and Grid-R-tree for (a) SBUS2.7M

(b) MPAHALO2.8M datasets.. 51

4.1 Structure of BFI-forest and BFI-trees.. 67

4.2 Inserting a transaction < acde > into BFI-forest ... 69

4.3 Refinement of BFI-tree.. 71

xiv

LIST OF FIGURES

4.4 (a) The solution region bounded by a high dimensional hyperbola and the

coordinate planes; (b) The enveloping tetrahedron which approximates the

hyperbola; (c) The tetrahedron fully covering the feasible solution region;

(d) The solution region and enveloping tetrahedron after shifting the origin

10(1,1,1).. 85

4.5 The MPAnyFI Framework... 88

4.6 Effect of decrease in f on recall... 91

4.7 Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory

Consumption (c) Mining time for 1MD1000T10I4 dataset.................... 91

4.8 Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory

Consumption (c) Mining time for 1MD1000T15I8 dataset.................... 92

4.9 Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory

Consumption (c) Mining time for 1MD1000T20I15 dataset................. 92

4.10 Effect of increasing stream speed on recall for real datasets.......................... 93

4.11 Effect of varying stream speed (A) and varying dictionary size on (a) Recall

(b) Memory for 1MD*T1OI4 datasets... 93

4.12 Effect of varying stream speed (A) and average transaction length on (a)

Recall (b) Memory for 1MD1OOOT*I4 datasets.. 93

4.13 Effect of varying stream speed (A) and average Frequent Itemset length on

(a) Recall (b) Memory for 1MD1000T20I* datasets................................ 93

4.14 Effect of varying € on peak memory consumption... 94

4.15 Pattern of Memory consumption in stream processing................................ 94

4.16 Effect on recall with increase in mining time allowance for 1MD1000T10I4

& retail.. 94

4.17 Effect on Memory consumption with increase in (a) 0 (b) 7 (c) Max_height 96

4.18 Effect on (a) Recall and (b) Memory consumption with increase hash_size . 98

4.19 Effect on (a) Recall and (b) Memory consumption with increase buffCapacity

98

4.20 Comparing (a) complexity curve vs (b) actual time taken for processing a

transaction with increase in transaction length - m................................ 98

xv

LIST OF FIGURES

4.21 (a) Max memory at a computing node with stream progression (b) Memory

consumed by windows of TTWF after processing the complete dataset (c)

Mining time of each window in TTWF.. 100

5.1 Illustrating Set-wise Classification Problem... 104

5.2 The Set-wise Classification model of SC... 107

5.3 CProf-forest... Ill

5.4 Effect on Accuracy with variation in number of classes refined at A=60,000

ops .. 119

5.5 Effect of varying (/ on performance for (a) Synth (b) ECover (c) CDetect (d)

WebFing datasets ... 120

5.6 Effect of varying A on performance of AnySC for (a) Synth (b) ECover (c)

CDetect (d) WebFing datasets ... 121

5.7 Performance of AnySC with stream progression... 122

6.1 Structure of AnyRTree.. 130

6.2 Distance Computations: AnyRTree vs ClusTree & LiarTree........................... 135

6.3 Illustrating Granular Noise Buffers of AnyRTree... 135

6.4 Workflow of Any-MP-Clus... 137

6.5 Data Partitioning... 138

6.6 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

FC & K.DD at different stream speeds... 144

6.7 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

M32 & SF at different stream speeds... 144

6.8 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

FC & KDD for varying granularity at A=100k... 145

6.9 Purity of leaf level mcs generated by AnyRTree with variation in 6............ 147

6.10 Purity of leaf level mcs generated by AnyRTree with variation in 7............ 147

6.11 Purity of leaf level mcs generated by AnyRTree with variation in [5............ 147

6.12 Purity of mcs generated by AnyRTree vs ClusTree & LiarTree in various

windows of TTWF over FOF dataset.. 148

xvi

LIST OF FIGURES

4.21 (a) Max memory at a computing node with stream progression (b) Memory

consumed by windows of TTWF after processing the complete dataset (c)

Mining time of each window in TTWF.. 100

5.1 Illustrating Set-wise Classification Problem.. 104

5.2 The Set-wise Classification model of SC... 107

5.3 CProf-forest... Ill

5.4 Effect on Accuracy with variation in number of classes refined at z\=60,000

ops .. 119

5.5 Effect of varying q on performance for (a) Synth (b) ECover (c) CDetect (d)

WebFing datasets ... 120

5.6 Effect of varying A on performance of AnySC for (a) Synth (b) ECover (c)

CDetect (d) WebFing datasets ... 121

5.7 Performance of AnySC with stream progression.. 122

6.1 Structure of AnyRTree.. 130

6.2 Distance Computations: AnyRTree vs ClusTree & LiarTree........................... 135

6.3 Illustrating Granular Noise Buffers of AnyRTree.. 135

6.4 Workflow of Any-MP-Clus... 137

6.5 Data Partitioning... 138

6.6 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

FC & KDD at different stream speeds... 144

6.7 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

M32 & SF at different stream speeds... 144

6.8 Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for

FC & KDD for varying granularity at A=100k.. 145

6.9 Purity of leaf level mcs generated by AnyRTree with variation in 5............ 147

6.10 Purity of leaf level mcs generated by AnyRTree with variation in 7............ 147

6.11 Purity of leaf level mcs generated by AnyRTree with variation in £............ 147

6.12 Purity of mcs generated by AnyRTree vs ClusTree & LiarTree in various

windows of TTWF over FOF dataset.. 148

xvi

LIST OF FIGURES

6.13 Sil. Co-eff. of mcs generated by AnyRTree vs ClusTree & LiarTree in various

windows of TTWF over M1B... 148

6.14 Quality of DBSCAN clustering for mcs produced by AnyRTree, ClusTree &

LiarTree in windows wl, w2 & w3 over FOF dataset.......................... 149

6.15 Purity of mcs in u»i generated by AnyRTree at different stream speeds for

varying number of machines over FOF dataset..................................... 149

7.1 Dendrogram... 164

7.2 Kd-tree based data partitioning (KD-Split) .. 169

7.3 Projection based Split data partitioning (Pbased-Split)................................... 170

7.4 Parameterized Dimensional Split data partitioning (PD-Split).................... 171

7.5 e-extended regions for Computing Node M212 in case of kd-tree based split 172

7.6 e-extended regions for Computing Node M212 in case of PD-Split............... 172

7.7 Sample division in CD-Split... 173

7.8 Performance of parallel GridDBSCAN algorithm for various data distribu

tions .. 177

7.9 Performance of parallel PDSDBSCAN algorithm for various data distributions 178

7.10 Performance of GridDBSCAN-D and PDSDBSCAN-D with variation in e

for various distributions over 32 computing nodes................................ 179

7.11 Performance of parallel dR-SNN algorithm for various data distributions

with variation in number of computing nodes of the cluster............... 180

7.12 Performance of parallel GridSLINK algorithm for various data distributions 182

8.1 Structure of DD-Rtree ... 187

8.2 Sample Distribution .. 194

8.3 Silhouette Co-efficient with increase in buffer size.. 195

8.4 Silhouette Co-efficient with increase in degree of emptiness....................... 195

A.l R-tree: Structure... 206

A.2 Minimum Bounding Rectangles.. 206

A.3 Illustrating euclidean distance and min-distance... 208

A.4 Illustrating Window Query.. 210

xvii

LIST OF FIGURES

A.5 Illustrating Neighborhood Query.. 210

A.6 Illustrating k-NN Query (k=6).. 210

B.l Tilted-Time Window Framework.. 212

B.2 Updating TTWF after receiving batch F4... 213

xviii

List of Tables

2.1 Description of Datasets used for Experimentation... 37

2.2 Average number of nodes visited in neighborhood and nearest neighbor

queries for 3DSRN dataset... 39

2.3 Execution time (in seconds) for various queries on synthetic datasets 40

2.4 Construction and querying times for R-tree and Grid-R-tree over MPAGD3.2M

dataset with c=2.25.. 45

2.5 Neighborhood query exec, time of R-tree and k-d-tree over 3DSRN &

MPAGD3.2M ... 46

3.1 Theoretical Upper Bound vs Obtained Speed Up for DBSCAN Clustering . 54

4.1 Notations and Definitions... 64

4.2 Details of Real Datasets used for experimentation.. 90

4.3 Comparing Speed and Memory of AnyFI with budget algorithms 95

4.4 Comparision of Mining Time (in seconds)... 95

4.5 FI counts - Estimated vs Actual: with varying k for 1MD1000T10I4 and

1MD1000T15I8 datasets ... 99

4.6 Size of the buffers in the nodes (level wise).. 99

5.1 Datasets used for Experimentation in Anytime Set-wise Classification . . . 117

5.2 Comparison of AnySC with SC at its budget and non-anytime performance

of AnySC at q = 40.. 122

6.1 Details of the datasets ... 142

xix

LIST OF TABLES

6.2 Granularity of mcs generated by AnyRTree vs ClusTree & LiarTree for FC

& KDD at different stream speeds... 144

6.3 Purity of leaf level mcs produced by AnyRtree vs LiarTree for SC dataset . 145

6.4 DBSCAN and k-NN Classifier Exec. Time: AnyRTree vs LiarTree on M32

dataset.. 146

6.5 Parallel Merging Time vs Sequential Merging Time.............................. 150

7.1 Data distribution strategies used by various parallel clustering algorithms . 168

7.2 Details of datasets used for experimentation.. 176

7.3 Number of data points received by each computing node for various data

distributions with variation in number of computing nodes (n), for FOF57M3D

dataset... 176

7.4 Split-up of execution times of various steps of GridDBSCAN-D for MPAGD100M3D

dataset... 179

7.5 Split-up of execution times of various steps of PDSDBSCAN-D for MPAGD100M3D

dataset.. 179

7.6 Execution Time for various steps of dR-SNN algorithm for MPAGD16M

dataset... 181

7.7 Execution Time for various steps of dGridSLINK algorithm for MPAGD16M

dataset... 183

8.1 Datasets used for Experimentation... 194

8.2 Validating Quality Evaluation Measures.. 195

8.3 Load Balancing for SR10M2D dataset... 196

8.4 Construction time of DD-Rtree vs SD-Rtree... 196

8.5 Construction time of DD-Rtree with variation in Buffer size........................ 197

8.6 Querying Performance of DD-Rtree and SD-Rtree..................................... 198

8.7 Parallel DBSCAN using DD-Rtree and SD-Rtree... 199

8.8 Data distribution quality for varying number of computing nodes for vari

ous datasets.. 201

9.1 Key concepts used in proposed algorithms... 202

xx

LIST OF TABLES

C.l External Evaluation Measures.. 215

C.2 Internal Evaluation Measures.. 219

xxi

List of Algorithms

2.1 Construction of Grid-R-tree... 24

2.2 Determining the Cell to which p belongs to.. 24

2.3 Checking if cell exists in global-R-tree.. 25

2.4 Adding a Cell to Global-R-tree.. 25

2.5 Point Query over Grid-R-tree.. 27

2.6 Cell Window Query... 27

2.7 Window Query over Grid-R-tree.. 28

2.8 Point-Wise NBH Query over Grid-R-tree.. 30

2.9 Cell-Wise NBH Query over Grid-R-tree... 31

2.10 Construct Auxiliary Grid-R-tree.. 32

2.11 k-NN Query over Grid-R-tree ... 32

3.1 DBSCAN Clustering using PointWiseNBH... 52

3.2 DBSCAN Clustering using CellWiseNBH.. 52

3.3 Expand Cluster using PointWiseNBH.. 52

3.4 Expand Cluster using CellWiseNBH... 52

4.1 Any-FI.. 69

4.2 Insert-In-BFI-Forest.. 70

4.3 </>... 70

4.4 Refine-BFI-Forest.. 71

4.5 Refine-BFI-Tree... 72

4.6 Prune-Buffer.. 73

4.7 Prune-Forest.. 75

xxii

LIST OF ALGORITHMS

4.8 Any-Mine.. 77

4.9 Empty-Buffers... 77

4.10 Mine-Forest.. 78

5.1 Insert and Update in CProf-Tree.. 115

5.2 Classifying a Test Entity... 116

6.1 Insert-In-AnyRTree.. 134

6.2 Local-Merging.. 139

8.1 DD-Rtree Construction... 188

8.2 Insertion in DD-Rtree.. 188

8.3 Flush Buffer... 188

8.4 Re-Distribute DD-Rtree... 188

8.5 NBH Query in DD-Rtree.. 192

8.6 Forwarding NBH Query.. 192

8.7 fc-NN Query in DD-Rtree.. 192

8.8 Forwarding t-NN Query.. 192

A.l Insertion in R-tree... 207

A.2 R-Pick-Child .. 207

A.3 R-Split-Node.. 207

A.4 R-Pick-Seeds .. 207

A.5 Point Query over R-tree... 209

A.6 Window Query over R-tree... 209

A.7 e-Neighborhood Query over R-tree.. 210

A.8 k-Nearest Neighbor Query over R-tree.. 211

xxiii

LIST OF ALGORITHMS

List of Abbreviations/Symbols

List of symbols used in Chapters 2 & 3 (Grid-R-tree)
Term Definition
Grid-R-tree Grid based R-tree
global-R-tree first level R-tree of Grid-R-tree
cell-R-tree second level R-tree of Grid-R-tree, present with each cell
Gm & GM Fanout parameters of global-R-tree
Rm & RM Fanout parameters of cell-R-trees
MBR Minimum Bounding Rectangle
N Data Size
d Dimensionality of the dataset
c Cell size
T Threshold on number of points per cell
DL Data list
CL Cells list
T No. of cells
r Average no. of cells returned by cell-window query in Grid-R-tree
e Parameter for neighborhood query
PointWiseNBH Point-wise neighborhood query in Grid-R-tree
CellWiseNBH Cell-wise neighborhood query in Grid-R-tree
BF-kNN Best-First KNN search over and R-tree
RKNN KNN query over an R-tree
GRKNN KNN query over Grid-R-tree
CellWiseNBHDO CellWiseNBH over Grid-R-tree with adaptive gridding

PointWiseNBHpo
PointWiseNBH over Grid-R-tree with adaptive gridding

GRKNNDo GRKNN over Grid-R-tree with adaptive gridding

List of symbols used in Chapter 4 (AnySC)
Term Definition
AnySC Anytime set-wise classification of data streams
CProf-forest Class Profile Forest
CProf-tree Class Profile Tree
SC Set-wise Classification Model
d Dimensionality of the dataset
N No. of traning entities

Si Ph training entity
No. of data objects in £;

c No. of classes
n No. of test entities

Ph test entity
Yr r‘h object in the stream

P No. of class profiles

q No. of anchor points
Wi Ph anchor point _____

Ci Ph cluster

xxiv

LIST OF ALGORITHMS

fl Ph relative cluster frequency
|U| No. of objects updated in 8, before adding a point Y,
AGS rf-dimensional vector containing sum of the fingerprints of a set of entities
min_stat Min no. of objects to be accumulated in a test entity before it can be classified
m & M Fanout parameters of a CProf-tree
PTe Pointer to the sub-trees under an node entry e of a CProf-tree
CPe Class Profile at node entry e
BFe Buffer containing two ij-dimensional vectors V, and V„

Parameter that controls stream speed in Possion streams
scA SC converted into an anytime model

List of symbols used in Chapter 5 (AnyClus) & Any-MP-Clus
Term Definition
AnyClus Anytime Clustering of Data Streams
Any-MP-Clus Anytime Clustering of Multi-Port Data Streams
N Data size
d Dimensionality of the dataset
DS Data Stream
me (mcj) Micro-Cluster

"i No. of points indexed in mcj
Vector storing linear sum of points indexed in mcj for each dimension

SSj Vector storing squared sum of points indexed in mcj for each dimension

Pi Mean of mcj

Pi Radius of mcj
MBR Minimum bounding rectangle
Pi Pointer to child node in AnyRTree
b Buffer in AnyRTree nodes
nb Noise Buffer in AnyRTree nodes
m & M Fanout values of AnyRTree
6 Percentage limit on expansion area to determine noise in AnyRTree

7 Time interval for noise to concept transition

0 Min no. of points to be accumulated in noise beffire before it can become a concept
ft Hitchiker

11 me No. of leaf level mcs in AnyRTree
T Threshold on radius for merging
mine No. of mcs in a given machine

_/______________ Parameter to control radius of mcs
e DBSCAN parameter
minpts DBSCAN paramter
AR AnyRTree
CT ClusTree
LT LiarTree
A Parameter that controls stream speed in Possion streams

List of symbols used in Chapter 6 (AnyFI) & MPAnyFI
Term Definition

XXV

LIST OF ALGORITHMS

AnyFI Anytime Frequent Itemset Mining of Data Streams
MPAnyFI Anytime Frequent Itemset Mining of Multi-port Data Streams
I Dictionary of unique items
tr A transaction containing a set of items
DS Data Stream
sDS A finite contiguous subsequence of transactions from DS
freq.Ds(S) frequency count of an itemset S with respect to sDS
Fl Frequent Itemset
SP Suffix Projections
a Support Threshold
e Error Threshold
f Decay factor to decay the frequency counts of itemsets
TTWF Tilted-Time Window Framework
Head First item of a Transaction
e An optimization parameter used for 0-deferring

An optimization parameter used for Buffer Pruning
Max_Height Maximum height of BFI-tree. It is the height at which FP-tree resides.
hash_size Size of the hash table in a buffer
buf/Capacity The maximum number of suffix projections a buffer can store
batch_size The number of transactions after which to conduct intermittent pruning.
PI Pruning Interval for pruning a buffer's node
Ax Probability that an item ix appears in an incoming transaction
c Probability of refining a node of BFI-tree

>1 Critical support threshold used to derive counts of A'-length FIs

hit Units of time used to capture a batch in MPAnyFI

fit A decay factor used to decay itemsets in TTWF
A Parameter used to simulate Poisson stream. A is the expected inter-arrival rate.
FAN False Negative Mode
FAP False Positive Mode
ATL Average Transaction Length
AFL Average Frequent Itemset Length

List of symbols used in Chapters 7 & 8 (Data Distribution)
Term Definition
DD-RTree Dynamic Distributed R-tree
PD-Split Paremeterized Dimensional Split
CD-Split Cell-based Dimensional Split
P-based Split Projection-based Split
MPI Message Passing Interface
e Epsilon for neighborhood query
Min Pts DBSCAN parameter
k Parameter for nearest neighbor query
N No of data points in a dataset
n No. of computing nodes in the cluster
T Threshold on number of points in a cell
DDS Distributed Data Structures

xxvi

LIST OF ALGORITHMS

IR-Tree Index-R-tree
MR-Tree Machine-R-tree
Im & IM Fanout values of IR-Tree

be Buffer Capacity
me Machine Capacity
t' Threshold on number of points being shifted
mmd Min-Max Distance
md Min-Distance

xxvii

Chapter 1

Introduction

Data Mining has become a pervasive technology that is poised to touch all aspects of

our lives. This can be mainly attributed to the fact that data in the world is growing at

an unprecedented rate. Along with this, decision making is becoming more and more

data-centric and complex than ever before. There is a lot of data being collected and

warehoused from various domains like web, e-commerce, transactional systems, sen

sor networks, satellites, gene expressions, scientific simulations, etc [6]. And moreover

the speed of collection of data has also significantly increased to a magnitude of Giga

Bytes/hour. So, the interest of researchers in the field of data mining has increased by

leaps and bounds. Innovative algorithms are being designed to solve varieties of new

problems that analyze varieties of data and extract useful knowledge. Data mining has

applications in almost all disciplines and often requires an interdisciplinary/multidisci

plinary approach to solve a particular problem. This has led to significant increase in the

scope and strength of data mining tasks.

Tan et. al [6] define data mining as:

• Non-trivial extraction of implicit, previously unknown and potentially useful infor

mation from data.

• Exploration & analysis, by automatic or semi-automatic means, of large quantities

of data in order to discover meaningful patterns.

Data mining can be broadly classified into four main tasks- Classification, Clustering,

Association Rule Mining and Anomaly Detection [6]. Fig. 1.1 [1] shows a detailed classifica-

1

Time Series
Analysis

Predictive
Tasks

Data Mining

Descriptive
Tasks

Prediction Association
Rule Mining Summarization

u

....

Classification

y-—~ ~ a
Sequence
Discovery

Figure 1.1: Broad Classification of Data Mining Tasks [1]

tion of data mining tasks. Each of these tasks are described below in brief.

Classification Classification is one of the important supervised learning tasks of data

mining [6]. Classification algorithms typically use a set of labelled records for training

a classification model, that allows us to predict the class label of a previously unseen

record. A few popular classification algorithms include: Decision-tree [7, 8, 9], Artificial

Neural Networks [10, 11], Rule based Classifier [12, 13], Naive-Bayes Classifier [14, 15],

Nearest Neighbor Classifier [16], Support Vector Machines [17, 18], Ensemble Classifiers

[19], etc. The applications of classification task include: Document Classification [20],

Network Fraud Detection (in cases like credit card transactions or terrorist identification)

[21, 22], Email Spam Detection [23], Galaxy Categorization [24], Malignant Cells Detection

[25], etc.

Clustering Clustering [6] is an important unsupervised data mining task that have been

extensively used and studied in various data mining problems. It is all about finding

groups of objects such that the objects in a group will be similar (or related) to one another

and different from (or unrelated to) the objects in other groups [6]. Clustering algorithms

can be broadly classified into: (1) Representative/partitioning-based clustering [26, 27, 28,

29], (2) Hierarchical clustering [30, 31, 32, 33] (3) Density-based clustering [34, 35, 36], and

(4) Subspace Clustering [37, 38, 39]. Various application domains where clustering is used

2

1.1 Data Deluge!

include - social networks [40z 41, 42], image segmentation [43], object identification [44],

information retrieval [45, 46], etc.

Association Rule Mining Association Rule Mining has been introduced in [47] for mar

ket basket analysis. It involves mining of frequent itemsets (or frequent patterns), which

are subsets of items that appear frequently in a transactional dataset [48, 49]. Frequent

itemset (or FI) mining algorithms can be broadly classified into two types: Apriori based

[47, 50, 51] and FP-growth based [52, 53]. Apriori based algorithms use apriori principle,

where as FP-growth based algorithms use the indexing structure - FP-tree, or similar

structures. Various applications of frequent itemset mining include - retail chain analysis,

stock market analysis, software bug analysis, fault and fraud prediction, etc. Frequent

itemset mining also facilitates other data mining tasks such as classification, clustering

and outlier detection [54, 55, 51].

Anomaly Detection Anomaly detection is a data mining task that finds data objects or

patterns in a dataset that do not follow an expected behavior [56]. Various classification

and clustering algorithms have been used for detecting anomalies [57, 58, 59, 59, 60, 61].

Its applications include network intrusion detection [61] transactional fraud detection [62],

image processing [63], health insurance applications [57], etc.

1.1 Data Deluge!

In recent past, data has been growing exponentially, resulting in a data deluge! This is

primarily attributed to exponentially increasing utilities of data generating systems such

as web, e-commerce, internet of things, transactional systems, embedded systems, digital

cameras, particle accelerators, DNA sequencers etc. The primary source of data is web

and related systems. According to Statista [2], the number of web users had been growing

year by year as shown in Fig. 1.2. As a result, the data being generated is increasing at

an exponential rate. The 2018 Study of DOMO Data Never Sleeps 6.0 [3] states that, every

minute, there are 3.8M Google searches, Amazon ships 1,111 packages, Uber takes 1389

rides, users watch 4.3M videos on Youtube, 49.3k users post photos on Instagram, and

so on. These figures are shown in Fig. 1.3 and are expected to keep increasing year by

3

1.1 Data Deluge!

Figure 1.2: Growing number of internet users (Source: [2])

year. Ion Stoica, a director at the University of California, Berkley, made an observation

that "Data is growing faster than the Moore's law". The 2018 iteration of the IDC's study

states that data is being generated by more than 40 types of devices, from RFID tags and

sensors to supercomputers and supercolliders, from PCs and servers to cars and planes

[4]. IDC also estimates that from 2013 to 2020, the digital universe will grow by a factor

of 10 - from 4.4 trillion GB to 44 trillion GB (which is equal to 5,200 GB of data for every

person on earth) (illustrated in Fig. 1.4). Data is increasing more than two times every

two years. This indicates that data is expected to grow by a factor of 50 in a span of 10

years (2010 to 2020). By the year 2020, it is expected that, per day data created by a smart

home will be over 3,000 GB [64], by self-driving cars will be over 2 Peta Bytes [65], by a

connected factory will be 1,000,000 GB [64], and so on.

Although, there is so much of useful data that is being generated, the latest IDC study

[4] reveals that only a small fraction (3%) of the world's data is being properly utilized.

Also, the world's amount of available storage capacity (i.e., unused bytes) across all media

types is growing slower than the growing digital universe. In 2013, the available storage

capacity could hold just 33% of the digital universe. By 2020, it will be able to store less

than 15%. Because of this, large quantities of useful data is getting lost.

By mining or analyzing such large datasets, the decision making becomes more ra

tional and effective, and is capable of changing the face of the society. This is because

of its vast variety of applications in businesses, healthcare, society, economies, education,

commerce, IT, etc. However, when data becomes so large, the traditional methods of data

4

1.2 Big Data

Figure 1.3: Statistics of growing data by DOMO I Data Never Sleeps 6.0 [3]

mining and analytics described in the previous section become unfit for extracting knowl

edge out of it. This is because they either need too much of time (unreasonable) to process

or they are incapable of scaling on bigger hardware setups, or both. This problem has at

tracted several business analysts, data scientists, and IT professionals to develop efficient

and scalable - analytical, computational and storage solutions to mine and analyze such

ever increasing data. This lead to the advent of the era of "Big Data".

1.2 Big Data

Big Data or Big Data Analytics refers to solutions to the problems of mining or analyzing

very large sized datasets, which are almost impossible to store or process using traditional

techniques and hardware. The term "Big Data" was coined by Roger Magoulas [66] from

5

1.2 Big Data

The Digital
Universe is Huge
-And Growing
Exponentially

If the Digital
Universe were
represented by the
memory in a stack
of tablets, in 2013
it would have
stretched
two-thirds the
way to the Moon*

By 2020, there
would be 6.6 stacks
from the Earth to
the Moon*

Figure 1.4: IDC prediction of Data Growth (Source: IDC Study 2018: EMC [4]}

O'Reilly media. The term explains different characteristics of the digital age data, which

are typically 7Vs as illustrated in Fig. 1.5 [5].

Big datasets typically manifest in two forms: Large Static Data and Dynamic Streaming

Data. Large Static datasets have large volumes and are collected over a period of time.

They are like snapshot data and don't evolve with time. They are used for a specific

study or knowledge extraction. For example, astronomical data, gene expression data,

etc. are static datasets that have huge volumes (typically tera bytes) and are analyzed

on a whole for a specific purpose. Dynamic stream datasets are those datasets whose

data objects are being continuously generated at a fast and variable rate, ordered by time.

These streams have data patterns that evolve with time. These patterns are to be captured

within the constraints of limited time and storage. Also, the outdated patterns/data that

are previously captured are to be continuously discarded as new data keeps arriving.

Data from transactional systems, sensor networks, smart digital systems, network traffic,

stock markets, etc. are a few examples of streaming data. We shall now describe how

each of these types of data are handled by a Big Data Scientist!

1.2.1 Handling Large Static Data

To process large volumes of data, traditional mining algorithms and hardware become

inadequate. They will either take very large amount of time to process and analyze or the

traditional hardware becomes insufficient to even load data into memory, without which

it is difficult to analyze the data. So, data scientists have come up with High Performance

6

1.2 Big Data

The speed at which
data is generated

Figure 1.5: The 7V's of Big Data (Source: [5]}

Computing technologies which can process and analyze such large datasets. They use ad

vanced hardware architectures such as distributed memory, shared memory, hybrid of these

two, distributed shared memory and accelerator based parallel architecture. Distributed mem

ory architecture typically consists of a cluster of computing nodes communicating with

each other over a high band width network. HPC frameworks such as Hadoop [67, 68],

NIMBLE [69], Spark [70], MPI [71], etc. work over distributed memory. Shared memory

architectures comprise of a single workstation that has multiple processors (or processor

cores) executing multiple threads in parallel, while sharing a global memory. Technolo

gies such as Posix Threads, OpenMP [72], Intel-TBB [73], etc. support shared memory.

Computational Scientists often use hybrid of distributed memory and shared memory

architectures, giving rise to hybrid architecture. This comprises of a cluster of computing

nodes in which each node supports multi-threading. Typically MPI + OpenMP or MPI +

Pthreads combinations are used over such architectures. Distributed shared memory (or

Partitioned Global Address Space Model) is again realized with a cluster of computing

nodes but this time with a software layer that mimics the behaviour of shared memory.

Technologies such as UPC (C) [74], CAF (Fortran) [75], Titanium (Java) [76], Global Ar

rays (Library) [77], XI0 [78], etc. are used over distributed shared memory architectures.

7

1.2 Big Data

Accelerator based parallel architectures are those that execute a large number of light

weight threads in parallel while sharing a global memory. They are typically realized by

GP-GPUs, FPGAs, Intel Xeon Phi co-processor [79], etc. Technologies such as CUDA [80],

OpenCL [81], Open ACC [82] work over GP-GPUs; OpenCL works over FPGAs, and both

OpenCL and OpenMP [72] work over Intel Xeon Phi co-processor.

Data scientists have come up with various data mining algorithms and libraries that

leverage one or more of the above architectures to process and analyze large datasets.

Few of them include - parallel classification algorithms [83, 84, 85], parallel clustering

algorithms [86, 87, 88, 36, 89], parallel frequent itemset mining algorithms [90, 91, 92],

etc. The performance of these algorithms scale with increase in hardware resources and

thus enable data scientists to process large datasets. Apart from these there are openly

available ready to use libraries that support parallel data mining algorithms. They include

Apache Mahout [93] for Hadoop, MLlib [94] for Spark, etc.

1.2.2 Handling Streaming Data

The scenario of a data stream is different from that of large static data. Streams are

typically characterized by continuously arriving data objects at a fast and variable rate.

In streams we do not store data, rather detect patterns in the arriving data and store

them. The patterns keep evolving, and these evolving patterns are captured by the stream

mining algorithms within the constraints of limited time to process each object and limited

memory to store incoming data. Moreover, the outdated patterns are also discarded

time to time. This is typically achieved by using various mathematical models such as

exponential decay [95], landmark window [96], sliding window [97], tilted-time window

[98], etc.

Stream mining has got vast variety of applications. A few of them include - retail

chain analysis, stock market analysis, web log analysis, network traffic analysis, mining

data feeds from sensor networks, etc. Various stream mining algorithms that have been

proposed in literature include - stream classification algorithms [99, 100, 101], stream

clustering algorithms [102, 103, 95, 104], stream frequent itemset mining algorithms [98,

96, 97,105], stream anomaly detection algorithms [106,107,108] etc. All these algorithms

8

1.2 Big Data

Time

Figure 1.6: Characteristic of an anytime algorithm

usually handle single port stream on a single workstation. For handling multiple streams,

a few multi-port mining algorithms have also been proposed. Few of them include -

[109,110, 111, 112,113,114,115]. These algorithms typically leverage distributed memory

frameworks for their efficient execution.

1.2.2.1 Anytime Stream Mining

A class of stream mining algorithms that handle varying inter-arrival rate of data streams

is known as anytime stream mining algorithms. The stream mining algorithms proposed

in literature (described earlier) are budget algorithms, i.e. they are designed for a fixed

maximum stream speed (known as budget). When the stream speed is higher than the

budget, they would have to either process sampled data or buffer unlimited data and

eventually fail [104]. And when the stream speed is lower, they sit idle after processing the

current data object, until the next one arrives. An ideal algorithm, however, should be able

to process any stream speed. Higher speeds should be handled using deferred insertions

and spare time available while processing lower speed streams should be utilized for

refining the information received. Anytime algorithms are such algorithms that handle

variable and high stream speeds and produce a mining result for any given processing

time allowance for the incoming objects. They produce a quick approximate result and

improve its accuracy with increase in time allowance as shown in Figure 1.6. A few

such algorithms proposed in literature include - anytime classification [100,116], anytime

clustering [104,117,118], and anytime anomaly detection [119].

9

1.3 Research Gap and Motivation

1.3 Research Gap and Motivation

Amidst many algorithms and techniques available in literature to process big data, there

are quite a few gaps that are identified in terms of availability of specific data indexing

mechanisms for mining large static and dynamic stream datasets. We present the identi

fied gaps as follows:

• Efficient data indexing structures tailor-made for data mining algorithms. Data mining

algorithms such as DBSCAN, OPTICS, KNN Classifier, etc, rely heavily on usage

of region (neighborhood) and nearest neighbor queries. They essentially use data

indexing structures such as R-tree (and its variants) or kd-tree for indexing data in

them such that the above queries are efficiently executed. However, these data struc

tures have certain drawbacks that limits their performance. R-tree and its variants

have the problem of downward propagation of overlap in its internal nodes, kd-

tree's binary nature leads to large height especially while indexing large datasets.

Moreover, these data structures are borrowed from database systems and do not

capture any specific querying requirements or patterns of any specific data mining

algorithms.

• Efficient data indexing structures and algorithms for anytime mining of data streams. Data

streams are characterized by arriving data objects at fast and variable rate. Typical

stream mining algorithms can not handle streams that have variable or very high

inter-arrival rates. Anytime algorithms handle the above streams without any stalls.

However, no anytime stream mining algorithm exists for many mining tasks such

as set-wise classification and frequent itemset mining. Also, the available anytime

mining algorithms are very basic and have drawbacks. There is a lot of scope for

designing better and efficient algorithms for anytime mining of variable speed data

streams.

• Efficient data distribution strategies for executing parallel spatial clustering algorithms over

distributed memory architectures. When parallel spatial clustering algorithms are exe

cuted over a cluster of computing nodes, the first step is to distribute data over the

computing nodes. This distribution is usually done so as to achieve load balanc

ing and preserve spatial locality. This improves the performance of the algorithms,

10

1.4 Thesis Contributions

as these algorithms require spatial locality for execution of various spatial queries

(neighborhood and nearest neighbor queries). To achieve this, researchers typically

use random or kd-partitioning to distribute data over the nodes. However again,

these are not specifically made for parallel spatial clustering algorithms, nor do they

are designed to optimize the performance of any specific class of parallel cluster

ing algorithms. There is a lot of scope for designing efficient partitioning strategies

both for large static data as well as dynamic incremental data, which can capture

specific spatial patterns of parallel density based and hierarchical clustering algo

rithms, maximize spatial locality preservation and achieve their efficient execution.

1.4 Thesis Contributions

A summary of the main contributions of the thesis are listed below.

• We developed a new data indexing structure known as Grid-R-tree which is a simple,

yet effective adaptation of R-tree using the concept of Grid. It is a two-level R-tree in

which the first level R-tree (known as global-R-tree) is for indexing "non-empty" cells

resultant of virtual gridding of the search space, and the second level comprises of

multiple R-trees (cell-R-trees) one each for every cell to index points lying in it. Grid-

R-tree supports efficient execution of region and nearest neighbor queries. It addresses

the drawbacks of the conventional data structures such as R-tree, kd-tree, etc. and is

experimentally found to handle the above queries more efficiently. Grid-R-tree sup

ports a novel query called cell-wise e-neighborhood query (CellWiseNBH), which per

forms locality aware execution of neighborhood queries observed in density-based

clustering algorithms (DBSCAN and OPTICS), and thus makes them efficient. The

experimental analysis also demonstrates that using Grid-R-tree for k-NN classifier

and DBSCAN clustering algorithm improves their efficiency.

• New anytime mining algorithms for data streams

- We proposed an Anytime Frequent Itemset mining algorithm for data streams,

AnyFI. To the best of our knowledge, this is first such attempt. It uses novel

data structure known as Buffered Frequent Itemset Forest (BFI-forest), which aids

11

1.4 Thesis Contributions

AnyFI to handle variable inter-arrival rate of incoming transactions in a stream.

Its design also enables a user to obtain immediate mining results with best pos

sible accuracy for the available time allowance and improve its quality with

increase in time allowance. We also propose MPAnyFI for anytime Fl min

ing of multi-port data streams over commodity clusters. It uses AnyFI at each

computing node and stores the aggregate FIs in a tilted-time windoiv framework.

The experimental analysis shows that AnyFI can handle greater speed streams

upto 60,000 transactions per second (tps), and produce mining results with re

call close to 100%. The comparative analysis shows that AnyFI handles higher

stream speeds and mines for FIs efficiently, when compared to the existing

algorithms. The experiments conducted over MPAnyFI also show its efficiency.

- We propose AnySC, which is an Anytime Set-wise Classification algorithm for data

streams. To the best of our knowledge, this is the first such approach. It uses a

proposed data structure known as CProf-forest, for set-wise classification of vari

able speed data streams. AnySC incrementally updates the CProf-forest using

the objects arriving in the stream within any given time allowance dictated by

the stream speed. AnySC leverages the hierarchical structure of CProf-trees

to classify the test entities within any given processing time allowance. The

experimental results show that AnySC can: (i) handle variable stream speeds

and produce accurate classification results; (ii) handle very high speed streams

with reasonable performance, unlike the baseline approaches that fail to exe

cute when speed exceeds its budget; (Hi) give very high classification accuracy

when stream speed is low, since it makes use of greater time available to refine

the results to the greatest possible degree.

- We propose a framework known as AnyClus which performs online anytime

maintenance of micro-clusters for handling data streams that have variable

inter-arrival rate of data objects. It uses a proposed variant of R-tree known

as AnyRTree, that stores summary statistics of the arriving objects in the form

of micro-clusters at hierarchical granularities. The design of AnyRtree enables

AnyClus to effectively handle noise and capture concept drift. The experimen-

12

1.4 Thesis Contributions

tai analysis establish that AnyRTree maintains micro-clusters more compactly

and with greater quality when compared to the existing methods. We also ex

tend AnyClus into a parallel framework known as Any-MP-Clus for anytime

clustering of multi-port data streams over distributed memory architectures (a

cluster of computing nodes). The experiments performed over Any-MP-Clus

establish that it can handle multi-port data streams of billions scale efficiently

and produce clustering of high quality.

• Data Distribution Strategies

- We proposed three distribution strategies for distribution of large static data

across computing nodes of a cluster for execution of parallel clustering algo

rithms. They include - PD-Split, Pbased-Split, and CD-Split. Each of the distribu

tion strategies preserve spatial locality and ensure perfect or near perfect load

balancing. We experimentally demonstrate the applicability of the proposed

methods for various classes of parallel clustering algorithms and benchmark

them against the known KD-Split and random partitioning schemes, in terms

of parallel data mining algorithms such as DBSCAN, SLINK and SNN.

- We proposed DD-Rtree, a novel dynamic distributed data structure, based on

R-tree [18]. It is useful for distribution of dynamic and incrementally gener

ated data across computing nodes of a cluster for executing parallel spatial

data mining algorithms efficiently. The distribution preserves spatial locality

and ensures proper load balancing. DD-Rtree structure consists of R-trees

at two levels. The first level R-tree is the index — R — tree (IR-TREE), which

serves as the index during construction/insertion. The second level comprises

of multiple R-trees for each compute node (MR — TREE), which indexes data

belonging to that. DD-Rtree was experimentally found to outperform best

known existing methods in terms of locality in distribution, communication

cost, construction & querying time, and performance of parallel data mining

algorithms.

All algorithms, including those used for bench-marking, have been implemented in

13

1.5 Thesis Organization

C/C++. All parallel programs were implemented using MPI and OpenMP. The codes

and datasets used for various problems shall be made publicly available on github after

all of them get published.

This thesis deals with 3 Vs of Big Data - Volume, Velocity, and & Variability. Grid-

R-tree and data distribution strategies deal with the volume, whereas anytime stream

mining algorithms deal with velocity and variability.

1.5 Thesis Organization

This thesis has been divided into three parts. Part I on page 16 presents the proposed

data indexing structure - Grid-R-tree. This part has two chapters - Chapter 2 on page 19

presents the Grid-R-tree structure and demonstrates the efficiency in execution of neigh

borhood and nearest neighbor queries supported by it; Chapter 3 on page 50 presents the

usefulness of Grid-R-tree in spatial data mining algorithms. Part II on page 57 presents

three algorithms proposed for anytime mining of data streams. It is divided into three

chapters - Chapter 5 on page 103 presents AnySC, which is the first anytime set-wise

classification algorithm for data streams; Chapter 6 on page 126 presents AnyClus and

Any-MP-Clus, which are anytime micro-cluster maintenance frameworks for single port

and multi-port data streams respectively; Chapter 4 on page 60 presents AnyFI and MP-

Any-FI which are frameworks for anytime Frequent Itemset Mining of single-port and

multi-port data streams respectively. Part III on page 153 presents data distribution strate

gies used for distributing data during execution of parallel data mining algorithms. This

part comprises of two chapters - Chapter 8 on page 185 presents a dynamic distributed

data structure known as DD-Rtree, which is useful in distributing dynamic incremental

data into computing nodes of a cluster while preserving spatial locality in its distribution.

Chapter 7 on page 158 presents a few data distribution strategies for large static datasets

while maintaining spatial locality and adopting to specific requirements of parallel spatial

data mining algorithms. Chapter 9 concludes the thesis and throws an insight on future

directions.

14

Part I

Data Indexing Structures for Efficient

Spatial Queries in Data Mining

15

Multi-dimensional indexing structures are extensively used in different data mining algo

rithms such as density based clustering algorithms (DBSCAN [34] & OPTICS [35, 120]),

hierarchical clustering algorithms (S-LINK [30], C-LINK [6], Average LINK [6]), k-nearest

neighbors (k-NN) classifiers [121], etc. For example, R-tree [122] and its variants (like

R ’ tree, R* tree, Hilbert-R-tree, etc. [123]), k-d-tree [124], quad-tree [125], Grid file [126], etc.

are used for efficient execution of region queries (point, window & neighborhood queries) and

nearest neighbor queries. These indexing structures were originally designed to index spa

tial data in database applications. Queries supported by these structures are extensively

used in data mining algorithms mentioned above.

These above mentioned data structures are not specifically designed for use in data

mining algorithms, i.e.they do not capture any specific access patterns of data mining al

gorithms. Moreover, these data structures have certain drawbacks associated with them.

In R-tree and its variants, the query performance suffers with increase in size and dimen

sionality of the dataset [123] because, overlap amongst their nodes leads to a very large

search space. This problem afflicts most variants of R-trees except R+-tree [123]. But,

R+-Tree is not commonly used because it exhibits higher fan-out and allows duplication

of data points in the leaf nodes of the tree, leading to higher memory requirement, and

thus rendering it inefficient for indexing large data sets. Moreover, R-tree and its variants

do not perform good as the size and dimensionality of data increases. This is because the

overlap between MBRs of its nodes increases with increase in data size and dimensionality

[123].

Query performance suffers also in k-d-tree and quad-tree. The smaller branching

factor in case of k-d-tree results in increased height while indexing large datasets, thus

becoming inefficient for neighborhood queries. Quad-tree, on the other hand, is space

inefficient for high dimensional data because of presence of a large number of nil pointers

[126]. Further, quad-tree is not height balanced and thus does not provide asymptotic

guarantees.

Grid file [126] is a hash-based structure that is developed specifically for multi-key

accesses. It is commonly used in data indexing and space partitioning. It consists of a

grid file directory (typically a d-dimensional array) to index cells resultant of gridding, and

one bucket (a linked list) per cell for indexing data points. Although, the usage of array

16

for the grid file directory guarantees 0(1) asymptotic complexity for query retrieval, it

leads to inefficient space utilization while indexing datasets of high dimensionality. This

is because, as the number of dimensions grow, the distribution of points in the space

becomes sparse, leading to large number of null pointers. In such cases, linked lists are

usually employed to store the grid directory, which saves space but increases look up

time to Similar problem is observed when the data distribution is skewed. The

other limitation of grid file is the chaining of points in buckets, which also results in

linear access time. Thus, grid files are efficient only when the number of dimensions are

not large and data distribution is uniform [127].

Density-based clustering algorithms like DBSCAN [34] and OPTICS [35] exhibit a phe

nomena where the neighborhood queries of points lying within the locality of a given

point are executed closely rather than randomly. None of the existing data structures

exploit this locality to improve their query performance. When R-tree and its variants,

k-d-tree or quad-tree are used for such neighborhood queries, the same search subspace

is searched repeatedly, (i.e., the same path in the tree is traversed repeatedly) for neigh

borhood computations of all points lying in one region. Thus, it will be beneficial if a

single traversal can compute the neighborhoods for all the points lying in that region.

A data structure called GR-tree [128] has been reported in literature which was de

signed using R-tree and Grid coordinate division. GR-tree is also two level tree in which

first level is an R-tree with leaves as intermediate MBRs. The second level is a coordinate

tree which is constructed based on grid coordinate division for each of the leaf level MBR

of the first level tree. A coordinate tree represents gridding in the form of a tree, where

each leaf represents a cell that stores a circular linked list of points. But, in this GR-tree,

the leaves of the first level R-tree are overlapping, which results in searching multiple

coordinate trees to locate a data point. This deteriorates the efficiency of a neighborhood

query, especially for datasets of high dimensionality and large sizes. Other disadvantage

of GR-tree is that the points indexed in each cell are stored in a circular linked list which

yields a linear search time. Also, the authors of GR-tree do not validate their results

for datasets of large size and high dimensionality. Moreover, GR-tree does not explicitly

capture any specific pattern of any of the data mining algorithms.

From the above discussion, we can clearly observe that none of the above described

17

data structures were designed specifically for use in data mining and do not capture any

typical requirements of data mining tasks. So, there is a need for efficient data structures

for "indexing and mining" large, high-dimensional datasets, and at the same time capture

the querying requirements of data mining algorithms. This part has two chapters. In

the first chapter (Chapter 2 on the following page), we present a proposed data struc

ture known as Grid-R-tree, which addresses the above limitations and facilitates efficient

execution of neighborhood and nearest neighbor queries, specifically for spatial data min

ing algorithms. The second chapter Chapter 3 on page 50 presents the applicability of

Grid-R-tree to spatial data mining algorithms.

18

Chapter 2

Grid-R-tree: A data structure for

efficient neighborhood and nearest

neighbor queries

In this chapter, we present a proposed multi-dimensional indexing structure known

as Grid-R-tree, which is a two-level generalization of R-tree using the concept of grid. The

aim of this data structure is to facilitate efficient execution of neighborhood and nearest

neighbor queries used in spatial data mining algorithms and also to facilitate efficient

execution of clustering algorithms.

2.1 Grid-R-tree

Following the discussion on R-tree presented in Appendix A on page 206, we now present

our proposed data structure - Grid-R-tree. Grid-R-tree is adaptation of R-tree using Grid.

We first propose its design and structure, followed by its construction and complexity

analysis.

• Poonam Goyal, Jagat Sesh Challa, Dhruv Kumar, Navneet Goyal, Sundar Balasubramaniam. Grid-R-
tree: A data structure for efficient neighborhood and nearest neighbor queries in data mining. Submitted for
review in Journal of Data Science and Analytics (JDSA), Springer.

19

2.1 Grid-R-tree

Figure 2.1: Structure of Grid-R-tree

2.1.1 Grid-R-tree: Design & Structure

The structure of Grid-R-tree has been illustrated in Figure 2.1. Grid-R-tree comprises of

R-trees at two levels. First, for a given d-dimensional dataset, a d-dimensional uniform

virtual grid is first superimposed over the entire search space of the dataset, creating cells

which are hyper-cubes (Figure 2.3 on page 22). The "non-empty” cells resultant of this

gridding are stored in the first level R-tree, referred to as global-R-tree (see Figure 2.1).

Then a separate R-tree, referred to as cell-R-tree, is constructed for every cell to index data

points belonging to that cell. The global-R-tree together with cell-R-trees constitute the

Grid-R-tree data structure.

Each node (both internal and external) of the global-R-tree store between Gm and GM

entries (where Gm < GM/2), except the root which can have less than Gm entries. The

entries in the internal nodes store d - dimensional minimum bounding rectangles (referred

to as Gmbrs). A Gmbr stores a bounding rectangle that contains all the regions indexed

by its children. External nodes consist of d-dimensional cells.

Similarly, each node (both internal and external) of a cell-R-tree store between Rm and

RM entries (where Rm < RM/2), except the root which can have less than Rm entries.

The entries in the internal nodes store minimum bounding rectangles (Rmbrs) and entries

in the external nodes store pointers to data points.

20

2.1 Grid-R-tree

(a) (b)

Figure 2.2: Illustrating MBRs formed over a two dimensional synthetic dataset using (a) R-tree
(b) Grid-R-tree

Benefits of Grid-R-tree design. The design of Grid-R-tree into two levels reduces the

overall overlap amongst the tree nodes and subsequently leads to reduction of search

space. Figure 2.2 shows the MBRs of R-tree and Grid-R-tree when constructed over a

small synthetic 2-dimensional dataset comprising of 27 data points. The fanout values

for all kinds of trees were chosen to be 2 and 4. All the trees are of two levels. It is

very clear from the figure that the MBRs formed by Grid-R-tree (formed by dividing the

search space into 4 disjoint cells and then constructing separate R-tree for each cell) exhibit

lesser overlap than those formed by R-tree. This reduction in overlap reduces the search

space (number of nodes traversed) and computational cost of region and nearest neighbor

queries (see Section 2.3.2 on page 38 for experimental results). Note that the quantum of

reduction in cost depends on the size of the cells.

2.1.2 Virtual Gridding

Figure 2.3 on the following page shows a virtual grid constructed over the search space

of the dataset. We call it virtual because we are not storing any grid index in physical

memory. Initially, we compute the data ranging across each dimension at the time of

reading the dataset and store that information. Then, we do uniform gridding, i.e. we

divide the range (computed above) equally in each dimension, using the length of the

cell c (cell size). The cell size c is a very important parameter to be chosen. We follow

a heuristic presented in [129, 130], where c is estimated using the average density of the

cell, i.e.:
A/

c = U — x t where V = fl (A' — B/)

21

2.1 Grid-R-tree

Figure 2.3: Virtual Grid in 2D

where V is the d-dimensional volume of the data ranging of the entire dataset, Ai and B,

correspond to maximum and minimum possible values, respectively, of any data point

in the dataset across itb dimension, and N is the data size, r is a given threshold on

the number of points per cell. If the distribution of data points is uniform, the above

formula would result in exactly r points in each cell and it would result in optimal load

distribution and query performance. However, for skewed datasets, this would result in

certain cells having more number of points than the others, resulting in deterioration of

query performance. To overcome this problem, we apply adaptive gridding over the space

as explained below:

2.1.2.1 Adaptive Gridding

We perform adaptive gridding on the dense cells. Cells with number of points more

than t, are treated as dense. For every dense cell, we divide the cell size by two in each

dimension, resulting in division of the cell into 2(/ cells. The non-empty cells that result

from this gridding over each dense cell, will be stored in a separate Grid-R-tree referred to

as the cell-Grid-R-tree. This cell-Grid-R-tree is local to a cell. If any of the divided cells are

found to be dense again, the same procedure is applied recursively until no cell is dense.

And, finally cell-R-trees are constructed over all the non-dense cells. In practice, not more

than two levels of division was required for the data sets used in experimentation. Thus,

adaptive gridding handles datasets with variable densities without degrading the query

performance. Empirically, we observed that the value of t in the range of 2000 to 3000

22

2.1 Grid-R-tree

would result in optimal performance of region and nearest neighbor queries in most of

the cases (see Section 2.3 on page 36 for experimental results). The results clearly show

that the queries using Grid-R-tree with adaptive gridding referred to as dense optimized

(DO), perform better than their respective non-optimized versions over skewed datasets.

2.1.3 Grid-R-tree: Construction & Insertion

Grid-R-tree is constructed for a given dataset (or a data list) DL, in three steps as described

by the pseudo code presented in Algorithm 2.1 on the following page. In the first step,

the data ranging across all dimensions is computed and stored in MINGRIDSIZE and

MAXGRIDSIZE arrays (lines 4-5 of Algorithm 2.1 on the next page). In the second step,

the global-R-tree is constructed over DL (lines 6-14 of Algorithm 2.1 on the following

page). Here, for every point p in DL, we first calculate the coordinate boundaries of the

cell to which p would belong to (see Algorithm 2.2 on the next page). We then check if a

cell with these boundaries exists in the global-R-tree constructed until now in a top-down

recursive search similar to that of search in an R-tree (using Algorithm 2.3 on page 25). If

the cell exists in the global-R-tree we simply insert p into its PointsList. Else, we create a

new cell with the coordinate boundaries calculated above, insert p to its PointsList, and

then insert the new cell into the global-R-tree and the cells list CL. Insertion of a cell into

global-R-tree (see Algorithm 2.4 on page 25) is also a top-down recursive function similar

to that of R-tree insertion. In the third step, after all the points are inserted into their

respective cells in global-R-tree, we construct cell-R-trees (which are conventional R-trees)

separately for each cell over the data points indexed in their respective PointsLists (lines

15-16 of Algorithm 2.1 on the following page).

The average time complexity of construction of global-R-tree is the complexity of in

serting all T cells in it, which is 0(TlogCM/ T). If the data size is N, the average number

of points in a cell will be N/T, assuming uniform gridding. Then the average case time

complexity of construction of all T cell-R-trees is

0 (^log^ (7)) = O (wi°8R„, (7))

Thus, the total average time complexity of constructing a Grid-R-tree is the sum of com

plexities of global-R-tree construction and cell-R-trees construction, which is:

0 ^TioSc,mT +

23

2.1 Grid-R-tree

Algorithm 2.1: Construction of Grid-R-tree
i procedure Construct-Grid-R-tree ()

Input : List of data points DL
Output: Grid-R-tree G constructed

/ / Stepl
2 Initialize an empty Grid-R-tree C;
3 Initialize an empty cells list CL;
4 int MINGRIDSlZEtL, MAXGRIDSIZE d ;
5 Find range of values across all d dimensions for all data points and store in MINGRIDSIZE and

MAXGRIDSIZE arrays;

6
7
8
9
10
11
12
13
14
15
16

// Step2
foreach Data point p in DL do

Region r = Determine-Cell(/»);
if (cell C=CHECK-lF-CELL-ExisTS(G.y/()M-R-fnv,r,U + NULL then

| Insert p into C.pointsList;
else

Initialize a new cell C2 with boundaries as r;
Insert p into C2.pointsList;
Add-Cell-To-GlobalRTree(C2, G.global-R-tree);
Add-Cell-To-CellsList(C2, CL);

end
end

// Step3
17 foreach cell C3 in CL do
18 | C3.cell-R-tree = CoNSTRUcr-R-TREE(C3.pointsLisl);
19 end

Algorithm 2.2: Determining the Cell to which p belongs to
i procedure Determine-CellO

Input : Data point p, MINGRIDSIZE array, cell size c
Output: Region r containing boundaries of the cell to which p would belongs to

2 int temp; region r;
3 foreach dimension i do

. (/> i -MINGRIDSIZE i4 tern p = ['---------- -—----J;
5 r.bottomLeft[i] = MINGRlDSIZE[i] 4- temp x c;
6 r.topRighf[i] = MlNGRlDSlZE[i\ + (temp - 1) x c;
7 end
8 return r;

This complexity is of similar order as that of R-tree. The functions G-Split-Node(), G-

Pick-Child(), etc. used in Algorithm 2.4 on the next page are similar to the corresponding

functions for R-tree (see Appendix A on page 206).

Grid-R-tree also supports dynamic incremental insertion of a random point into it.

To insert a given point p into an existing Grid-R-tree we can follow the same top-down

recursive approach explained in construction. We first determine the coordinates of the

cell to which p belongs to. If a cell with these coordinates exists in global-R-tree, we simply

add p into its PointsList and corresponding cell-R-tree. Else, we create a new cell, insert p

into it, and insert the new cell into global-R-tree and CL. The average time complexity of

inserting a point into Grid-R-tree equals the sum of average case complexities of inserting

24

2.1 Grid-R-tree

Algorithm 2.3: Checking if cell exists in global-R-tree
1 procedure Check-1f-Cell-Exists()

Input : node node of G.global-R-tree. region r of the cell
Output: returns the cell if it exists, returns NULL otherwise
if node.type == EXTERNAL then

3 । if node indexes a cell C with region r then return C ;
4 | else return NULL ;
5 else if node.type == INTERNAL then
6 1 ' foreach entrv e of node do
7 if e contains region r then cell C2 = Check-If-Cell-Exists(i'.i7i/7(/);
8 | end
9 1 end
10 1 return C2

Algorithm 2.4: Adding a Cell to Global-R-tree
i procedure /\dd-Cell-To-Global-R-treeO

Input : cell C, node node of global-R-tree/sub-tree
Output: C inserted into global-R-tree

2 if node.type == EXTERNAL then
3 Insert C into node as a new entry;
4 if node overflows then
5 I G-Si’LiT-NoDE(»odf); // splits the node into two and inserts both the nodes into global-R-tree and

| does necessary adjustments
6 end
7
8
9
10
II

G-UrDATE-MBRs-BoTTOM-Ui’(nodi’);
else if node.type == INTERNAL then

| bestChild = G-PicK-CniLD(node); // returns most appropriate child to insert
| ADD-CELL-To-GLOBAL-R-TREE(l>t’sfC/n7</); //recursive call

end

a cell into the global-R-tree and inserting a point into cell-R-tree, which is

,n A _ .
OgRoi p J

This is of the same order as that of insertion in R-tree which is 0(log,n N).

2.1.4 Deletion in Grid-R-tree

Deletion of a point p from Grid-R-tree is performed in a manner similar to insertion. First

the cell to which the point p belongs to is identified. Then the point p is removed from

that cell's cell-R-tree. If the cell becomes empty, it has to be removed from global-R-tree.

If removal of the cell from global-R-tree or removal of point from cell-R-tree causes node

underflow, it has to be handled in a manner similar as that of R-tree (Appendix A on

page 206).

25

2.2 Queries over Grid-R-tree

2.2 Queries over Grid-R-tree

In this section, we discuss various queries such as point query, window query, neighborhood

query and nearest neighbor query supported by Grid-R-tree. The details of these queries

are discussed in Appendix A on page 206.

2.2.1 Point Query

Point query checks the existence of a given data point p in a dataset. The algorithm

executing Point query over Grid-R-tree is illustrated in Algorithm 2.5 on the next page.

The algorithm first checks the existence of the cell, to which the data point would belong,

in the global-R-tree. If the cell exists, then the query becomes a point query over its

cell-R-tree, which is illustrated in Algo Algorithm A.6 on page 209. The average time

complexity of point query over Grid-R-tree is the sum of the complexities of the query

over global-R-tree and point query over cell-R-tree, which is 0 (logG,„ T 4- logR)J/ y).

2.2.2 Cell Window Query

The cell-window query or cell query is a query which executes over the global-R-tree of

Grid-R-tree. This query is illustrated in Figure 2.4 for d=2, where it returns all the cells

that are overlapping with a given region or a window r (cells highlighted in grey). Cell

window query is used by window and neighborhood queries. The algorithm executes in

a top-down recursive fashion similar to that of a point query (see Algorithm 2.6 on the

following page). It simply accumulates all the overlapping cells (present in leaves of the

26

2.2 Queries over Grid-R-tree

Algorithm 2.5: Point Query over Grid-R-tree
i procedure Point-Query-Grid-R-tree ()

Input : Data point p, Grid-R-tree G
Output: TRUE if p exists in G, FALSE otherwise

2 region r = Determine-Cell (G, r);
3 cell C = Check-If-Cell-Exists (G, r);
4 if C # NULL then return R-Point-Qlery (p, C.cell-R-tree);
5 return FALSE;

Algorithm 2.6: Cell Window Query
i procedure Cell-Window-Query ()

I Input : root node of G.global-R-tree, region r, cells list CL
i Output: cells list CL containing cells in G overlapping with r

2 1 if node.type == EXTERNAL then Add all cells indexed at node, that overlap with r, to CL ;
3 I else if node.lype == INTERNAL then
4 I I foreach entry e of node do
5 | if e overlaps with r then Cell-Window-Query (e.child, r, CL);
6 ; end
7 | end

global-R-tree) it encounters in its traversal to a temporary cells list CL and returns it. The

average time complexity this query is 0(logC/f) T).

2.2.3 Window Query

Window query is a query which returns all the data points that lie in a d-dimensional win

dow or a region r, from the entire data space. Figure A.4 on page 210 illustrates the win

dow query for d=2. Algorithm 2.7 on the following page illustrates this for Grid-R-tree.

This algorithm first calls the cell-window query which returns all the cells overlapping

with the window r. Then, for each cell returned, window query is called over its cell-R-

tree, which returns points belonging to that cell lying in r. The results of window queries

from all these cell-R-trees are merged into a data list and returned. The average time com

plexity of this query is the sum of the complexities of cell-window query over global-R-

tree and all the window queries over cell-R-trees, which is: 0(logC//; T + T'logR;iJ (N/T))

where, T' is the average number of cells returned by cell-window query.

2.2.4 Neighborhood Queries

Neighborhood query (or e-neighborhood query) is a query that returns all the data points

that are lying withing a distance of e from a given point p. Figure A.5 on page 210 illus

trates this query for d=2. e-neighborhood queries are extensively used in density based

clustering algorithms. Algorithm A.7 on page 210 explains how e-neighborhood query is

27

2.2 Queries over Grid-R-tree

Algorithm 2.7: Window Query over Grid-R-tree
i procedure Window-Query-Grid-R-tree ()

Input : root node of G.global-R-tree, region r
Output: list of data points lying in region r

2 Initialize empty data points lists plist and Ijist;
3 Initialize an empty cells list CL I;
4 Cell-Window-Qlery (node, r, CL1);
5 foreach cell C in CL 1 do
6 I R-Window-Query (C.cell-R-tree.root, r, t_lift);
7 Append tji>t to plitt;
8 1 end
9 | return plist;

Figure 2.5: Illustrating Proposition 1 & Re
sult 1 for [£] = 1

executed over an R-tree. Before explaining how e-neighborhood query is executed over

Grid-R-tree, we first present a few propositions and results.

Proposition 1. In Grid-R-tree, to find the points lying in e-neighborhood of p, it is suf

ficient to check only those points that lie in the cells that are geometrically overlapping

with the window r, which is the e-extended region of p.

Justification. For two dimensions, we prove this claim geometrically. To compute e- neigh

borhood of p, it is sufficient to examine only those points that lie in cells 7, 8, 9, 12, 13,

14, 17, 18 and 19 in Figure 2.5. The e-neighborhood of p is fully contained in e-extended

region (r) of p. So, all the points that lie in the e - neighborhood of p must be contained in

the cells overlapping with r. So, any point that lies outside these cells will not contribute

to e-neighborhood of p. □

Result 1. The maximum number of cells to be considered for e-neighborhood query of

any point p over Grid-R-tree is ((2 x where c is the cell size and d is the

28

2.2 Queries over Grid-R-tree

dimensionality of the dataset.

Proof. We prove this for two dimensions for simplicity. The proof is by induction on [t].

Base Case: When = 1, i.e., when 0 < e < c, the maximum number of cells to be

searched =(2 x 1 + I)2 = 9 as shown in Figure 2.5 on page 28. For finding e-neighborhood

of any point p e cell 13, it is sufficient to search a maximum of 9 cells shaded in the figure.

Similar illustration is given in Figure 2.6 on page 28 when f =2.

Induction Hypothesis: Assume this result to be true for = 1, i.e. the maximum

number of cells to be searched for this case is (2/ -I-1)2.

Inductive Step: We have to prove this result for m = '+ 1, i.e. the maximum number of

cells to be searched for the case / = / + 1 is (2(/ + 1) + I)2 = (2/ + 3)2. We need to find

the number of additional cells to be added to that of the case for [= I, in order to get

the maximum number. Since for = I, e will lie between (/ — l)c < e < Ic and for

[£] = / 4-1, e will lie between Ic < e < (/ + l)c, it is sufficient to add one more level of

cells to our search region that appears shaded in Figure 2.7 on page 31. Now the size of

the side of this new square becomes 2(7 4-1)4-1 = 2/ + 3 and the maximum number of

cells to be searched then becomes (2/ + 3)2. □

This result gives an upper bound of the number of cells to be searched while per

forming an e-neighborhood query over Grid-R-tree. Grid-R-tree supports two kinds of

such queries: point-zvise e-neighborhood query and cell-zoise e-neighborhood query. They are

explained as follows:

Point-Wise e-Neighborhood Query (PointWiseNBH) This query is the conventional

neighborhood query which executes a window query for e-extended region of p and

selects those points that lie within e-distance from p (see Algorithm 2.8 on the next page).

The e-extended region of p is constructed by extending the coordinates of p across all

dimensions by e, in both positive and negative directions. Figure 2.6 on page 28 shows

this region for d=2. The average time complexity of point-wise e-neighborhood query

over Grid-R-tree is same as that of a window query, which is O(logG„(T 4- T' logR„; y).

29

2.2 Queries over Grid-R-tree

Algorithm 2.8: Point-Wise NBH Query over Grid-R-tree
i procedure Point-Wise-NBH ()

Input : Data point p. Epsilon c, root node of G.global-R-tree
Output: Points lying in t'-neighborhood of p

2 Construct an e-extended region r of p;
3 Initialize an empty list pList;
4 data list tjist = Window-Query-Grid-R-tree (node, r);
5 Insert all points of tjist that lie within c distance from p into plist;
6 return pList;

Cell-Wise e-Neighborhood Query (CellWiseNBH) This query computes e-neighborhoods

of all the points in a given cell C in one go. This is an optimized way of computing e-

neighborhood queries for all the points lying in C against their computations for each

point separately. In density-based clustering algorithms such as DBSCAN and OPTICS,

the neighborhood computation of any given point p is followed by neighborhood com

putations of the points lying in the e-neighborhood of p. CellWiseNBH optimizes these

computations by reducing multiple traversals in the same search space. Before presenting

its details, we first state the following proposition:

Proposition 2. To find e-neighborhoods of all points lying in cell C, it is sufficient to check

only those points that lie in the cells that are geometrically overlapping with the window

r, constructed by extending the coordinates of C by e on both sides across all dimensions

(e-extended region of C).

Justification. Figure 2.8 on the next page shows the e-extended region r for cell 13. Con

sider the corner point p of cell 13. p's e -neighborhood is contained within the cells

overlapping with r. This is true for all boundaries and corner points of the cell. Therefore

we can find e-neighborhoods for all the points lying in this cell by examining only these

highlighted cells. □

In CellWiseNbh query (see Algorithm 2.9 on the following page), first a list of cells

containing ail the cells overlapping with the e-extended region of a given cell C is com

puted using the cell-window query and stored in an auxiliary Grid-R-tree. Then a win

dow query is executed for every point p of the cell over this auxiliary Grid-R-tree. Those

points that lie within the e-distance from p are stored as e-neighborhood of p. Since,

this is repeated for every point in the cell, it saves multiple top-down traversals over the

global-R-tree (multiple scans of same search space) for executing neighborhood queries

for all points G C, thereby improving the overall query performance.

30

2.2 Queries over Grid-R-tree

Algorithm 2.9: Cell-Wise NBH Query over Grid-R-tree
i procedure Cell-Wise-NBH ()

| Input : Cell C, Epsilon f, root node of G.global-R-tree
। Output: t-neighborhoods of all points of C computed

2 Construct an e-extended region r for cell C;
3 I Initialize an empty cells list CL1; CELL-WiNDOW-QcERY(G.x/(»M-R-trrt’.HW, r, CL 1);
4 ; Grid-R-tree aux-G = Construct-Aux-Grid-R-tree (CL 1);
5 | foreach point p indexed by C do
6 • I Construct an e-extended region r2 for p;
" I tjist = Window-Qlery-Grid-R-tree (aux-G, r2);
a Insert all points of tjist that lie within c distance from p into p.nei^hborslist;
9 * end

The average complexity of the executing cell-wise e-neighborhood query over Grid-R-

tree is the sum of the complexities of cell-window query, construction of auxiliary Grid-

R-tree, search in auxiliary Grid-R-tree, and search in cell-R-trees:

o (logo,,, T + T' l0gCA,„ T'+" logcz„, T'+^T logR„, y)

where, the average number of cells returned by cell-window query is Tf, and GAm repre

sents min-entries of auxiliary Grid-R-tree. The complexities for construction of auxiliary

Grid-R-tree and search in auxiliary Grid-R-tree are very small when compared to that

of cell-window query and search in cell-R-trees. So the first and last term in the above

complexity dominate the middle two terms, making it equal to the complexity of Point-

WiseNBH query.

The CellWiseNBH query can be used to make density-based clustering algorithms

such as DBSCAN & OPTICS efficient. The implementation of DBSCAN using the Cell

WiseNBH query is presented in Section 3.1 on page 50.

21+1

21+3

Figure 2.7: Illustrating Inductive Step of
Result 1 on page 28

31

2.2 Queries over Grid-R-tree

Algorithm 2.10: Construct Auxiliary Grid-R-tree
i procedure Construct-Alx-Grid-R-tree ()

Input : Cells List CL
Output: Auxiliary Grid-R-tree mtx-G

2 Initalize an empty Grid-R-tree tmx-G;
3 foreach cell C in CL do
4 j Add-Cell-To-Grid-R-Tree («».v-C, C);
5 end
6 return attx-G;

Algorithm 2.11: k-NN Query over Grid-R-tree

2
3
4

6
7
8
9
10
11
12
13
14
15
16

procedure KNN-Grid-R-tree ()
Input : Data point q, Grid-R-tree R, k
Output: k nearest neighbors of q
Initialize Empty Priority Queue PQ; int i = 1;
/\dd root node of the global-R-tree into PQ along with its minDistance from p as key;
while PQ not empty do

| element ele = Remove-Min (PQ);
if ele is an internal node of global-R-tree or cell-R-tree then

| Add all its entries to PQ with their respective minDist (from q) as keys;
else if ele is an external node of the global-R-tree then

| Add the root nodes of cell-R-trees indexed at it, with their minDistances from q as keys;
else if ele is an external node of a cell-R-tree then

| Add all its entries to PQ with their respective euclideanDist (from q) as keys;
else if ele is a data point then

report ele as i11' nearest neighbor; i++;
if i > k then return;

| end
end

2.2.5 Nearest Neighbor Query

k-nearest neighbor (k-NN) query is a query that returns the k closest data points to a given

query point p [121]. k-NN query for k=6 is illustrated in Figure A.6 on page 210, where all

the points within the circle form the k nearest neighbors of p. The best known algorithm

for nearest neighbor search over R-tree is the BF-kNN [131] explained in Appendix A on

page 206. It uses a min-priority queue (PQ) that stores nodes of an Grid-R-tree as well as

data points indexed in it. The key for insertion into priority queue is the euclidean distance

for data points and minDist for nodes (or MBRs of nodes). BF-kNN is a greedy algorithm

with minimum distance as the greedy choice.

k-NN query algorithm for Grid-R-tree is similar to the BF-kNN algorithm except that

the elements we store in the priority queue (PQ) are of three kinds:- global-R-tree node,

cell-R-tree node and data point, in place of only the latter two in case of R-tree. minDist(p,Z)

(Z is the MBR of cell-R-tree or global-R-tree) for both global-R-tree nodes and cell-R-tree

nodes are computed in the same way as that for R-tree nodes. Algorithm 2.11 presents

the pseudo code. The algorithm first adds the root node of a global-R-tree G into PQ.

32

2.2 Queries over Grid-R-tree

Then in a loop it executes the following steps until k nearest neighbors are found. A

Remove-Min() operation is performed over PQ. If the min-object is an internal node

of global-R-tree, we add all its indexed entries into PQ; else if it is an external node of

global-R-tree, we add the root nodes of the cell-R-trees indexed in the cells stored at the

present node. In both cases the entries are added with their respective minDist from q as

key values. If the min-object is an internal node of a cell-R-tree, we add all its indexed

entries into PQ with their respective minDist from q as key values; else if it is an external

node of a cell-R-tree, we simply add all its indexed entries into PQ with their respective

euclideanDist from q as the key. If the min object is a data point, it is marked as the ith

nearest neighbor. This step is repeated until / > k, with i initially set to 1.

Since, the overall flow of the algorithm for R-tree and Grid-R-tree is the same, the

average case time complexity of BF-kNN algorithm over Grid-R-tree would be equal to

that for an R-tree, which is O(k\ogk) [131]. However, the worst case complexity is O(N),

wherein all the nodes in the R-tree are added to the priority queue.

Please note that the pseudo codes presented above for both region and nearest neigh

bor queries are for Grid-R-tree without adaptive grid optimization. The queries over

adaptive grid optimized Grid-R-tree would require a minor modifications to the above

pseudo codes, and hence are not explicitly presented.

2.2.6 Theoretical Analysis

In this section, we give theoretical evidence that Grid-R-tree exhibits lesser overlap when

compared to R-tree, resulting in a smaller search space and consequently in better query

performance. A comparative analysis of R-tree and R+-tree has been presented in [132].

They compare the overlap exhibited amongst the tree nodes and number of nodes searched

for a neighborhood query, for both kind of trees. We use this analysis to compare the

overlap and number of nodes searched for Grid-R-tree and R-tree. The analysis origi

nally presented assumes line segments stored in the leaf nodes. This can be very easily

extended for storing d-dimensional data points. Also, the analysis assumes that all the

nodes of trees store number of entries equal to the maximum fanout value. So, the anal

ysis states that, the total number of nodes, N_n, that are searched for any neighborhood

33

2.2 Queries over Grid-R-tree

query over R-tree is:

N-n = h + 1 + Q • (1 - pTTf) C2-1)

where h is the height of the R-tree and is given by h = logy Ov represents the overlap

which is measured by the number of objects overlapping with the queried object and is

given by:
O, = r^(N + 1) (2.2)

where C is the capacity of the page, N is the total number of data objects present in the

tree, f represents the fanout and a represents the size of each data object. When N is

large, (1 — yvn) ~ 1. So, ignoring this term, Equation (2.1) reduces to:

N_n =// + ! + • (yTi) (23)

We use this result to prove the following claims for Grid-R-tree. In the analysis presented

below, we chose the values of min-entries and max-entries for all the trees appropriately

for number of elements indexed in them.

Theorem 1. The overlap in Grid-R-tree is less than that of R-tree, resulting in a smaller

search space for neighborhood queries.

Proof. We compare the overlap and number of nodes searched in R-tree vs Grid-R-tree.

R-tree: We rewrite Equation (2.2) and Equation (2.3) here with the corresponding

parameters for R-tree substituted:

O„R = ^-(N + l) (2.4)
I + (Tp

N_nR=h + 1 + (Ol,R ~'1) ■ (2.5)
\ L / \/R-M

The page size, C, shall remain same throughout this analysis.

Grid-R-tree: In case of Grid-R-tree (G), we query on one global-R-tree and multiple

cell-R-trees. Thus we consider the number of nodes visited and overlap separately for

global-R-tree and cell-R-trees. Let Nc be the number of cells indexed in global-R-tree of

G. Then, the average number of points in a single cell-R-tree will be Thus, we rewrite

Equation (2.2) and Equation (2.3) for global-R-tree and cell-R-tree as Equation (2.6) &

Equation (2.7) on the next page and Equation (2.8) on the following page & Equation (2.9)

on the next page respectively:
OI,C = T^-(NC + 1) (2.6)

I +ac

34

2.2 Queries over Grid-R-tree

N_„c = hc +1 + (
\ C / UG-V

Njtc = hc + 1+ (—) • (7~~\ 1

(2.7)

(2.8)

(2.9)

Dividing Equation (2.4) on page 34 by Equation (2.6) on page 34, we get:

So, we get

o^ =
OvG ^(Nc + l)

OvR _ N + 1 _ _n_
Ovg Ng +1 Ng

where r =0(1)

. n _ n Ng°vG - ■ v (2.10)

Similarly, by dividing equation Equation (2.4) on page 34 with equation Equation (2.8),

we get:
OyR
Ovc Ng

OvR
Ng

(2.11)

So, the total number of nodes to be accessed for a neighborhood query over G will be the

sum total of number of nodes to be accessed for one scan of global-R-tree and number of

nodes to be accessed for searching in Ng' cell-R-trees, where Ng' is the average number

of cells returned by the query over global-R-tree of G. Thus,

N_hgr = N_hg + Ng' • N_hg (2.12)

Substituting the values of N_hg and N_nc in Equation (2.12), we get:

N_hGr = hG + ^ +) (7~^C i) + 6’c +1 + f ~ S- ~(/C i)) Ng

Now, = 0(1) for / = fG, fc or fR. So, we get:

N_hgr = he + 1 + (he + 1) • Ng' 4- (OyG + Ovq.Ng' — (N'c +1))

Substituting the values of Ovg and Ovc from Equation (2.10) and Equation (2.11) respec

tively, we get:

N_hgr = he +1 + (he +1) • Ng' + (ovR • (- (N^ +1)^ (2.13)
c \ \ w Ng / /

Now we compare the number of nodes searched in case of R-tree (Equation (2.5) on

page 34) with that of Grid-R-tree (Equation (2.13)). The ratio of second terms in these two

equations is:
__________OvR - 1__________ % 1
(o-r- (^ + ^) -(n^ + d) & +

35

2.3 Experimental Results and Analysis

This ratio is large, since Nc/ « Nc < N, in practice. This indicated that the overlap in

R-tree is higher than that in Grid-R-tree and thus making the number of nodes searched

in R-tree on the higher side. Similarly, the ratio of first terms in these two equations is:

h + 1_ h
Ag + 1 + (/ic T 1) • Ng* Iiq + he • Nq'

Since he < he < h, and Ng is small, this ratio, is likely to be very small (< 1). This

poses negative impact on Grid-R-tree by increasing the number of nodes searched. But

the positive impact of the reduced overlap is much higher than the negative impact of the

increased height. Thus, the number of objects/nodes searched for a neighborhood query

in Grid-R-tree is expected to be lesser than that in R-tree. This has been substantiated by

an experiment which measures the actual number of nodes traversed by the neighborhood

and nearest neighbor queries over Grid-R-tree as well as R-tree, presented in Table 2.2 on

page 39. □

2.3 Experimental Results and Analysis

2.3.1 Experimental Setup

All the experiments are conducted on Server that has - Intel Xeon 3.3GHz processor and

32 GB RAM. All the algorithms are implemented in C and the running time is measured

using Vampir Trace [133]. The details of the datasets and their respective parameters used

for experimentation are given in Table 2.1 on the following page, along with their refer

ences. First 13 datasets are real and the remaining are synthetically generated. 3DSRN

data set contains geographical information (latitude, longitude and altitude) of road net

works in Denmark. MPAGD*, SFONT1M and MPAHALO2.8M datasets are taken from

Millennium data repository that contains astronomical data of galaxies. SBUS* datasets

contain GPS traces of buses in Shanghai. KDDBIO dataset consists of 74 features of pro

tein hematology. SHUTTLE data set contains data on the features of space shuttle. SKIN

data set contains features related to texture of face images. The synthetic random datasets

(SR1M2D, 3D & 5D) consists of randomly generated points. Synthetic uniform datasets

(SU1M2D, 3D & 5D) comprises of points that are uniformly distributed over the search

space. Synthetic normal datasets (SN1M2D, 3D & 5D) consists of data points generated

36

2.3 Experimental Results and Analysis

Table 2.1: Description of Datasets used for Experimentation

S No. Name of the Dataset Data Size Dimensions Value of Epsilon (c) Cell Size (c) Reference

1. 3DSRN 0.34M 3 0.05 0.05 [134]
2. MPAGD3.2M (Delucia) 3.2M 3 2 2.25 [135]
3. MPAGD5M (Delucia) 5M 3 1.72 6 [135]
4. MPAGD56M (Delucia) 56M 3 0.006 3 [135]
5. MPAGD100M (Delucia) 100M 3 0.006 3 [135]
6. SBUS2.7M 2.7 M 2 0.00625 0.002 [136|
7. SBUS4M 4M 2 0.000419 0.0012 [136]
8. SBUS6M 6M 2 0.000291 0.001 [136]
9. KDDBIO 0.145M 74 0.005 0.005 [137]
10. SFONT1M IM 11 2 6 [135]
11. MPAHALO2.8M 2.8M 9 30 45 [135]
12. SHUTTLE 0.058M 9 4 6 [138]
13. SKIN 0.24M 4 4 6 1139]
14. SR1M2D IM 2 10 30 -
15. SR1M3D IM 3 40 60 -
16. SR1M5D IM 5 120 180 -
17. SU1M2D IM 2 5 5 -
18. SU1M3D IM 3 4 4 -
19. SU1M5D IM 5 2 2 -
20. SN1M2D IM 2 0.1 0.15 -
21. SN1M3D IM 3 0.62 0.9 -
22. SN1M5D IM 5 2.3 3.2 -

using normal distribution. All synthetic datasets contain IM data points with varying

dimensions aA§ 2, 3 & 5.

The experimental results presented in the following subsections compare the perfor

mance of neighborhood and nearest neighbor queries over Grid-R-tree and R-tree. The

results of point and window queries are not presented since they follow the same pattern

as that of neighborhood queries. The following notations have been used in this sec

tion: RTreeNBH represents neighborhood query and RKNN represents k-NN query for

R-tree. CellWiseNBH, PointWiseNBH and GRKNN represent the Cell-wise neighborhood

query, point-wise neighborhood query and nearest neighbor query for Grid-R-tree re

spectively (without adaptive grid optimization). CellWiseNBH_DO, PointWiseNBH _DO

and GRKNN_DO represent the respective queries for adaptive grid optimized Grid-R-

tree. The value of e and the cell size chosen for experiments are given in Table 2.1 for each

dataset. In all our experiments, the length of the side of a cell (c) is kept uniform across all

dimensions. However, one can also choose different lengths across different dimensions.

The fanout values for all the trees have been appropriately chosen for number of elements

indexed in them. In the experiments for k-NN queries, we choose k = 4, unless explicitly

stated. Also, the execution times shown in the subsequent experiments are measured for

executing queries for all the data points of the given dataset.

37

2.3 Experimental Results and Analysis

Figure 2.9: Execution time for neighborhood queries for Grid-R-tree and R-tree over various
datasets

S(dl« kl-XBH

■ RlrceXBH

MI’AIIAKC SM

2.3.2 Performance Analysis of Neighborhood and k-NN Queries

In the first experiment, we measure the execution time of neighborhood and nearest neigh

bor queries when executed on various real datasets for both R-tree and Grid-R-tree, and

the results are presented in Figure 2.9 & Figure 2.10 on the next page. The maximum size

of a dataset considered in this experiment is 100M and maximum dimensionality is 74.

We can clearly observe from the graphs that, in all cases, the execution time of queries

over Grid-R-tree is much lesser than that of R-tree. The maximum speed up achieved is 42

for CellWiseNBH query, 21 for PointWiseNBH query and 25 for KNN query. This clearly

indicates that Grid-R-tree outperforms R-tree for all the queries considered. The improve

ment achieved is attributed to reduction in search space when compared to that of R-tree

(as explained in Section 2.1.1 on page 20). It can also be observed from these figures that

greater reduction is achieved for the datasets of high dimensionality (MPAHALO2.8M

with 9 dimensions, SFONT1M with 11 dimensions and KDDBIO for 74 dimensions). This

is because, R-tree exhibits very large overlap while indexing high dimensional datasets

and thus leads to increase in search space [123]. Whereas, the overlap exhibited by Grid-

R-tree is very less in spite of high dimensionality, and thus gives very good query perfor

mance.

In order to support the above results, we measured the average number of nodes

visited and average per query time in R-tree and Grid-R-tree, while executing both kinds

of queries for 3DSRN dataset. The results presented in Table 2.2 on the next page clearly

38

2.3 Experimental Results and Analysis

Figure 2.10: Execution time of nearest neighbor queries for Grid-R-tree and R-tree over vari
ous datasets

Table 2.2: Average number of nodes visited in neighborhood and nearest neighbor queries
for 3DSRN dataset

Factors RTreeNBH CellWiseNBH PointWiseNBH

Average Time Per NBH Query (in milli seconds) 2.575 1.955 2.046
Average number of internal nodes per NBH Query 9048 6966 7376

R-KNN GR-KNN
Average Time Per k-NN Query (in milli seconds) 0.574 0.156
Average number of internal nodes per k-NN Query 2164 595

show that the avg. number of nodes visited is lesser for Grid-R-tree. This is in sync with

the theoretical analysis presented in Section 2.2.6 on page 33.

We evaluate the above queries over synthetic datasets to examine the robustness of

Grid-R-tree for different characteristics of data. The results presented in Table 2.3 on the

next page clearly show that the performance of Grid-R-tree is very encouraging for syn

thetic datasets also. The reduction in query execution time over Grid-R-tree observed in

case of synthetic normal and synthetic random datasets is higher because the dense re

gions present in these datasets tend to make R-tree perform poorly. Grid-R-tree performs

better because of reduced search space, owing to its two-level design.

In the next experiment, we evaluate the performance of Grid-R-tree for varying di

mensionality of the dataset. Two datasets have been chosen and sampled for different

number of dimensions. SFONT1M dataset (originally 11 dimensions) has been projected

for 3, 5, 7 & 9 dimensions and MPAHALO2.8M dataset (originally 9 dimensions) has

been projected for 3, 5 & 7 dimensions. The value of e in all these experiments has been

39

2.3 Experimental Results and Analysis

Table 2.3: Execution time (in seconds) for various queries on synthetic datasets

Dataset RTree-
NBH

Cell-
WiseNBH

Point
WiseNBH

% improve
ment in

Cell
WiseNBH

% improve
ment in
Point

WiseNBH
RKNN GRKNN

o/ /o
improve-
ment in

KNN

SR1M2D 2254 240 463 89.35"» 79.457. 2995 153 94.89%
SR1M3D 6476 324 637 94.99".. 90.167, 7659 316 95.877..
SRIM5D 37373 847 1750 97.737. 95.31% 52814 1245 97.64%
SU1M2D 362 75 101 79,06".. 71,89".. 543 113 79.137,
SU1M3D 1577 389 432 75,32".. 72.607, 1104 179 83.76"..
SU1M5D 2619 1425 1335 45.57";. 48.99% 1187 327 72.477,
SN1M2D 2451 174 376 92,89";. 84.64% 4142 339 91.8%
SN1M3D 9316 386 904 95.86% 90.29% 11782 667 94.37.
SN1M5D 63770 3084 7082 95,12".. 90.89"/., 53425 5887 88.9",,

chosen such that the average number of points coming in e- neighborhood of any point

for all the projected datasets remains approximately the same. The results presented in

Figure 2.11 on the following page clearly show that the performance of neighborhood

and nearest neighbor queries for Grid-R-tree greatly improves with increase in number of

dimensions, when compared to that of R-tree. The improvement is higher for datasets of

high dimensionality because of reasons explained in the first experiment.

The next experiment evaluates the query performance of Grid-R-tree with datasets

of varying size. Two sets of datasets - Shanghai Bus (SBUS 2.7M, 4M & 6M) and Delu-

cia5M (MPAGD5M) (Sampled for IM, 2M, 3M, 4M & 5M data points) are used for this

analysis. In all experiments, the average number of points in the e-neighborhood is main

tained approximately the same for uniformity, similar to the previous experiment. Results

presented in Figure 2.12 on page 42 clearly indicates that as the size of the data grows,

the query performance of Grid-R-tree becomes better when compared to that of R-tree.

Again, this is attributed to the reduction in the search space. The performance of k-NN

queries is also maintained with increase in data size.

We also study the robustness of Grid-R-tree over datasets with variable/high densities.

The experiment has been conducted on samples of MPAGD5M (delucia5M) data set (IM

to 5M). These samples are generated by increasing the number of data points coming

in e-neighborhood proportionately with growth in data size (unlike random sampling

in the previous experiment). The results presented in Figure 2.13 on page 42 show that

improvement in execution time is maintained for both kinds of queries with increase in

density of the dataset.

40

2.3 Experimental Results and Analysis

(a) (b)

Figure 2.11: Execution time of (a) & (b) neighborhood queries and (c) nearest neighbor queries
with varying dimensions on SFONT1M dataset. Execution time of (d) & (e) neighborhood
queries and (f) nearest neighbor queries with varying dimensions on MPAHALO2.8M dataset

The next experiment studies the effect of varying cell size on neighborhood and near

est neighbor queries on Grid-R-tree over 3DSRN dataset and results are presented in

Figure 2.14 on page 43. For the case of k-NN queries, there has been no specific pattern

observed in performance with variation in cell size. However, the query performance for

Grid-R-tree has always been better than that of R-tree. In case of neighborhood queries,

it can be seen that a dip is observed in the curves for both kinds of neighborhood queries

at a particular cell size. The same has been observed for other datasets as well. The ex

planation for this dip is as follows: when the cell size of Grid-R-tree is too small the total

number of cells obtained from gridding is very high and the average number of points

per cell is very low. In this case the query time of global-R-tree is higher and dominates

the query time of cell-R-trees. When the cell size is too large, the total number of cells

resultant of gridding is very less and the average number of points per cell is very high.

In this case the query time of cell-R-trees dominates. So, the cell sizes around which the

dip is observed in the curve is the range of optimum cell sizes where there is a balance

41

2.3 Experimental Results and Analysis

--------------CcllW iwSBH
..................PomtWiscMMI
.................. RlrceMill .

SUI S2 7M SUI S4M SIHS6M
SBl S Datasel size

(a)
SUI S Dataset size

---------------- IcIIUimSBH
--------------- l’.>.ntW1«MII,r'
.................... RtrcrSBH

(b)

IM 2M 3M 4M 5M
Delucia sample size

6

I 5

o 4

GRKN\
RKW

IM 2M 5M 4M 5M
Delucia sample size

(c) (d)

Figure 2.12: Execution time of neighborhood queries and nearest neighbor queries with in
crease in data sizes on (a) & (b) SBUS datasets; (c) & (d) samples of delucia (MPAGD5M)

(a) (b)

Figure 2.13: Execution times of (a) neighborhood (b) k-NN queries; with increase in density
of the dataset for Delucia (MPAGD5M) data samples

established between the query time of global-R-tree and cell-R-trees. Any cell size in this

range is expected to give maximum speed up. However, it is not necessary to conduct

this experiment every time to measure the optimal cell size. The analysis presented in

Section 4.2 on Grid-R-tree with adaptive grid optimization, shows that it eliminates the

need for a separate experiment to determine the optimal cell size. This has been further

substantiated with experimentation in Section 2.3.3 on the following page.

In the next experiment, we study the effect of varying e and k on the performance of

neighborhood and nearest neighbor queries respectively, on Grid-R-tree over MPAGD3.2M

dataset keeping cell size (c) constant (c = 2). The results presented in Figure 2.15 on the

next page clearly indicate that the performance improvement of neighborhood queries

for Grid-R-tree is consistent with increase in e. Also increase in e led to increase in

the execution time of all kinds of queries because, it will bring more points inside the

e-neighborhood of any point. Similarly, the results also show that the performance im

provement of k-NN query over Grid-R-tree is consistent with increase in value of k. Sim

ilar results were obtained for other datasets as well.

42

2.3 Experimental Results and Analysis

(a) (b)

0 02X 0 03 0.0-1 0.05 0 06 0.07

Figure 2.15: Exec, time of (a) NBH queries
with variation in e; (b) k-NN queries with
variation in k; for MPAGD3.2M

Figure 2.14: Execution time of (a) Neigh
borhood (b) k-NN queries with increase in
cell size (c) for 3DSRN dataset

(b)

Figure 2.16: Execution Time of queries over adaptive grid optimized Grid-R-tree vs original
Grid-R-tree

2.3.3 Performance of queries over Grid-R-tree with adaptive grid optimization

In this section, we present the performance results of neighborhood and nearest neighbor

queries over datasets with skewed distribution using adaptive grid optimized Grid-R-

tree. The experiments were conducted over following datasets- 3DSRN, SFONT1M and

MPAGD5M, which are skewed in their distribution. The value of t had been chosen to

be 3000. The results presented in Figure 2.16 clearly show that queries over adaptive

grid optimized Grid-R-tree perform better than their corresponding queries over non

optimized Grid-R-tree. This is because adaptive grid optimization achieves better load

distribution and aids in executing the queries more efficiently.

We also conducted an experiment to measure the neighborhood query performance

of Grid-R-tree with adaptive grid optimization for varying r. The results presented in

Figure 2.17 on the next page clearly show that the value of t between 2000 and 3000

gives optimal query performance for neighborhood queries over both the datasets. This

43

2.3 Experimental Results and Analysis

PomtWiseXHII DO < ell\\ iscXBH DO PoinlWiMiXBIl DO

5(H) |(MX> 1500 2000 2500 5000 5500 4000 4500 5000 500 1000 1500 2000 2500 51X10 5500 4000 4500 5000

(a) (b)

Figure 2.17: Execution time of neighborhood query over Grid-R-tree with adaptive grid opti
mization with varying t for (a) SBUS2.7M & (b) MPAGD5M datasets

(a) (b)

< cllW i.cMIH DO

Figure 2.18: Construction time of Grid-R-tree & R-tree for (a) 3DSRN and (b) MPAGD3.2M
datasets with increase in cell size (c)

is because, choosing a very small t results in a large number of cells leading to a large

search time in global-R-tree of Grid-R-tree and global-R-trees of cell-Grid-R-trees. On the

other hand, choosing a large t leads to very less number of cells, resulting in large search

time in cell-R-trees. The same behavior has been observed for other datasets as well. The

value of t in the range - [2000-3000], gives optimal query performance as better load

distribution between global-R-tree and cell-R-trees is achieved in this range.

2.3.4 Construction and Query Execution Time: Grid-R-tree vs R-tree

A comparative analysis on construction and neighborhood query execution times for

Grid-R-tree and R-tree has been conducted for datasets: 3DSRN and MPAGD3.2M. The

results presented in Figure 2.18 clearly show that in Grid-R-tree, an increase in cell size

leads to reduction in construction time of global-R-tree, but increases the construction

time of cell-R-trees. The results also indicate that the total construction time of Grid-R-

tree (global-R-tree + cell-R-trees) is comparable to that of conventional R-tree for most of

the cell sizes. In certain cases the construction time of Grid-R-tree is even lesser ((a) of

44

2.3 Experimental Results and Analysis

Figure 2.18 on page 44). This is attributed to the fact that search time during insertion is

also reduced in Grid-R-tree. Also, the increase in time of Grid-R-tree construction in case

of (b) part of Figure 2.18 on page 44 (c=1.5), is much lesser than the reduction in time

achieved for neighborhood and k-NN queries.

Table 2.4: Construction and querying times for R-tree and Grid-R-tree over MPAGD3.2M
dataset with c=2.25

Table 2.4 presents the execution time of neighborhood queries for MPAGD3.2M dataset

along with the construction times for R-tree and Grid-R-tree (global-R-tree + cell-R-trees).

The cell size c was chosen to be 2.25 units. The results show that the reduction in exe

cution time for CellWiseNBH and PointWiseNBH queries were 638.484 sec. (39.5%) and

323.894 sec. (20.1%) respectively when compared to the neighborhood queries over R-tree.

Whereas, the increase in Grid-R-tree construction time was only 4.03 sec. (3.04%). This

establishes the efficiency of Grid-R-tree over R-tree.

Operation on
R-tree

Time Operation on Time
(sec.) Grid-R-tree (sec.)

Construction
R-tree-NBH

130 Construction 134
1613 PointWiseNBH 1289

CellWiseNBH 975

2.3.5 Tradeoff in choice of R-tree vs k-d-tree for analysis

In this section we present a tradeoff analysis conducted between R-tree and k-d-tree. The

neighborhood query execution time for R-tree and k-d-tree over 3DSRN and MPAGD3.2M

datasets are presented in Table 2.5 on the following page. The results clearly show that

the time required to execute neighborhood queries for all the points of the dataset is

very less for R-tree when compared to that of k-d-tree. This is primarily attributed to

the fact that the height of the k-d-tree becomes large as the size of the data and the

number of dimensions grow. This was the reason why k-d-tree was dropped from further

experimentation. Part I on page 16 also presents the problems of quad-tree and shows

that k-d-tree is better than quad-tree.

45

2.4 Discussion

Table 2.5: Neighborhood query exec, time of R-tree and k-d-tree over 3DSRN & MPAGD3.2M

Dataset Exec. Time for
R-tree (sec)

Exec. Time for
k-d-tree (sec)

3DSRN 1119 2708
MPAGD3.2M 1613 17172

2.4 Discussion

In this section, how Grid-R-tree has addressed the drawbacks associated with conven

tional data structures described in preamble of Part I on page 16.

• Grid-R-tree, by its design into two levels, reduces the downward propagation of

overlap amongst MBRs of its nodes, as the cells are completely free from overlap.

This solves the problem of overlap in R-tree and its variants and thus giving very

good query performance as illustrated by experiments in Section 2.3 on page 36.

Also, reduction in overlap helped in maintaining the query performance with in

crease in size and dimensionality of the dataset, unlike R-tree which had shown de

terioration. Also, note that all these advantages are achieved without any increase

in construction time of the indexing structure.

• Query performance for Grid-R-tree has also been better than kd-tree and quad-tree

as illustrated by an experiment in Section 2.3.5 on page 45. Grid-R-tree manifests

small height and larger fanout due to which deterioiration of query performance as

in the case of kd-tree doesn't occur here. Also, kd-trees are found to be better than

quad trees [124, 126] as it completely avoids nil pointers and is height balanced.

Thus we can claim without hesitation that that Grid-R-tree outperforms both quad

tree and kd-tree.

• Grid-R-tree also addresses the drawbacks of grid file structure. As explained in

preamble of Part I on page 16, usage of array for the grid file directory guarantees

(9(1) asymptotic complexity for query retrieval, but leads to inefficient space uti

lization while indexing datasets of high dimensionality. And usage of linked lists

instead saves space, but leads to 0(n) look-up time. Similar problem is observed

when the data distribution is skewed. So, in order to maintain both space and query

efficiency, Grid-R-tree uses R-tree (global-R-tree) to store non-empty cells resulting

from virtual gridding instead of the grid directory. R-tree guarantees (9(logT) aver

46

2.5 Main Contributions

age case performance, for T number of cells indexed in it, irrespective of sparsity or

dimensionality of the dataset. Grid-R-tree also uses R-trees (cell-R-trees) for index

ing points in a cell thereby avoiding chaining exhibited by buckets in the grid file.

Additionally, we have also demonstrated in Section 2.3 on page 36 that Grid-R-tree

can guarantee efficient query execution for data sets of any kind of distributions in

cluding uniform, skewed, normal distribution, etc. This is in contrast with grid files

which give optimal query performance only when when the number of dimensions

are not large and data distribution is uniform [127].

• Grid-R-tree also addresses the drawbacks of the proposed GR-tree structure [128].

As explained in preamble of Part I on page 16, in GR-tree, the leaves of the first level

R-tree are overlapping, which results in searching multiple coordinate trees to locate

a data point. This deteriorates the efficiency of a neighborhood query, especially for

datasets of high dimensionality and large sizes. Whereas, the design of Grid-R-tree

has the leaves of global-R-tree fully disjoint, as a result of which only one cell-R-tree

will be required to be searched to locate a data point, leading to reduction in search

space. Other disadvantage of GR-tree is that the points indexed in each cell are

stored in a circular linked list which yields a linear search time. Whereas, in Grid-R-

tree, the points in a cell are indexed in cell-R-tree leading to logarithmic search time.

Moreover, GR-tree does not explicitly capture any specific pattern of any of the data

mining algorithms as we do for density based clustering algorithms (see Chapter 3

on page 50).

2.5 Main Contributions

• In this chapter, we propose a data indexing structure known as Grid-R-tree which

is a simple, yet effective adaptation of R-tree using Grid. It is a two-level R-tree in

which the first level R-tree (known as global-R-tree) is for indexing "non-empty" cells

resultant of virtual gridding of the search space, and the second level comprises of

multiple R-trees (cell-R-trees) one each for every cell to index points lying in it.

• Grid-R-tree supports efficient execution of region and nearest neighbor queries. Grid-

R-tree handles the above queries more efficiently than the other conventional index

47

2.5 Main Contributions

ing structures such as R-tree, k-d-tree, etc, as illustrated by experimental results in

Section 2.3.2 on page 38.

• The structure of Grid-R-tree's helps in overcoming the drawbacks of the above con

ventional data indexing structures, arising due to large size and high dimensionality

in datasets (such as increase in overlap and height in R-tree & k-d-tree, respectively).

It also guarantees efficient query execution over data sets of any kind of distribution

including uniform, normal, skewed, etc., as substantiated by results in Section 2.3.2

on page 38.

• Grid-R-tree supports a novel query called cell-wise c-neighborhood query (CellWiseNBH),

which performs locality aware execution of neighborhood queries observed in den

sity based clustering algorithms (DBSCAN and OPTICS). CellWiseNBH computes

e-neighborhoods for all the points of a cell in a single traversal of global-R-tree, thus

saving repeated traversals of the same search space (path in the tree). This query

enables us to re-design the above algorithms making them efficient than their native

versions (see Section 3.1 on page 50).

• An adaptive grid optimization has been applied to Grid-R-tree to handle dense cells

(cells having number of points greater than a threshold t) which are resultant of

indexing datasets of variable density (skewed datasets). This optimization achieves

better load distribution in the cells and thus improves the performance of above

queries, as evident from results presented in Section 2.3.3 on page 43.

• We also present a supporting theoretical analysis, which theoretically proves that

Grid-R-tree exhibits lesser overlap amongst the MBRs of its nodes and results in

reduction of search space for the above queries, when compared to the conventional

R-tree (see Section 2.2.6 on page 33). In particular, it can be seen that absence of

overlap across multiple cells (or cell-R-trees) leads to reduction in search space and

better query performance.

48

2.6 Conclusions & Future Work

2.6 Conclusions & Future Work

2.6.1 Conclusions

This chapter proposes Grid-R-tree, which is a simple, yet effective adaptation of R-tree us

ing the concept of Grid. Grid-R-tree supports efficient execution of conventional queries

such as region queries and nearest neighbor queries. The design of Grid-R-tree into two

levels breaks down the downward propagation of overlap and thus reduces the search

space, leading to improvement in query performance. The construction time of Grid-R-

tree is comparable to that of conventional R-tree whereas its performance over various

queries is much better than that of R-tree. The experimental results presented clearly sug

gest that Grid-R-tree outperforms R-tree for the queries listed above. They also demon

strate that the query performance doesn't deteriorate with increase in dimensionality, size

and density of the dataset. Grid-R-tree also supports a new type of query called Cell

WiseNBH query, which helps in executing the neighborhood queries for all points in a

given cell efficiently. CellWiseNBH query has been used to re-design DBSCAN clustering

algorithm whose details are presented in Chapter 3 on the following page and the results

clearly indicate that the re-designed version performs better than the native DBSCAN.

Grid-R-tree with adaptive grid optimization has also been proposed to deal with dense

cells formed due to skewness in data, which further improves the query performance.

2.6.2 Future Directions

The gridding concept used in Grid-R-tree can also be applied to other variants of R-

trees such as R*-tree, Greene-R-tree, Hilbert-R-tree, etc. [123] and other multidimensional

indexing structures. This is expected to give even better performance as it will result in

further minimization of overlap. Grid-R-tree can be directly used in any other domain

like Geographical Information Systems and Multimedia, that require region and nearest

neighbor queries. A distributed/ concurrent version of Grid-R-tree can also be designed

to adapt itself to high performance computing paradigms.

49

Chapter 3

Applicability of Grid-R-tree to Data

Mining

3.1 Data Mining Algorithms using Grid-R-tree

Any data mining algorithm that requires usage of neighborhood and nearest neighbor

queries can be made to execute faster using Grid-R-tree. We discuss two of them here:

k-NN classifier and DBSCAN clustering. We also give a theoretical bound on the speed up

that can be achieved for any algorithm that uses Grid-R-tree.

3.1.1 k-NN Classifier using Grid-R-tree

k-NN classifier [121] classifies test data using k-nearest neighbor query over the training

dataset. Initially Grid-R-tree (or R-tree) can be built over the training data points, and k-

NN query can be executed over it for test data points to find their respective class labels.

The performance of k-NN classifier for Grid-R-tree vs R-tree is illustrated in Figure 3.1

on the next page for Shuttle [138] and Skin [139] datasets. Each of these datasets have

training and test data, with the ratio of 3:1 approximately. The results presented in the

figure clearly indicate that k-NN classifier over Grid-R-tree is more efficient than that over

R-tree.

50

3.1 Data Mining Algorithms using Grid-R-tree

Figure 3.1: Execution time of
k-NN Classifier over R-tree and
Grid-R-tree for Shuttle and Skin
datasets

ORkwIMISl AS ’ol, ' 's
SGRIrccDIISCAS P.unlUf^MIH BGRIrcd>llsi AS P.untWi.cSHH
OGRtrccDHSCAS CdlUiKSHH . DGRIrcd>HSA AS CdlWiwSHH

(a) (b)

Figure 3.2: Execution time for DBSCAN over R-
tree and Grid-R-tree for (a) SBUS2.7M (b) MPA-
HALO2.8M datasets

3.1.2 DBSCAN clustering using Grid-R-tree

It is a well known fact that DBSCAN algorithm devotes a major portion of execution

time to neighborhood queries. These neighborhood queries are made to execute faster

using Grid-R-tree. We present two ways of executing DBSCAN algorithm. First we use

PointWiseNBH query to execute DBSCAN normally and then we use CellWiseNBH to

execute DBSCAN in an optimized way.

In the first case the neighborhood queries that are required for execution of DBSCAN,

are executed simply by using PointWiseNBH query over Grid-R-tree. The pseudo code of

the DBSCAN algorithm using PointWiseNBH query is presented in Algorithm 3.1 on the

following page & Algorithm 3.3 on the next page. The change is that R-tree neighborhood

query is replaced by PointWiseNBH query over Grid-R-tree. Rest of the program is same

as that of classical DBSCAN using R-tree. To use CellWiseNBH query for DBSCAN, we

make a minor modification to the algorithm without changing its actual flow. We take

advantage of CellWiseNBH query to pre-compute the neighborhoods of all the points of

a given cell and store them temporarily as neighbors of those points. Algorithm 3.2 on

the following page & Algorithm 3.4 on the next page illustrate the changes to be made

to the classical DBSCAN code. Instead of calling neighborhood query of a given point

p directly, we first find out to which cell it belongs to and then execute CellWiseNBH

query over that cell. This query computes neighborhoods of all the points belonging to

that cell and stores them temporarily. Next time when we need the neighborhood for

51

3.1 Data Mining Algorithms using Grid-R-tree

another point p', we first check if its neighborhood has already been computed by any

of the previous calls to CellWiseNBH query. If it is so, we simply use it, else we identify

the cell to which it belongs to and execute CellWiseNBH query over that cell and then

use neighborhood of p' for further clustering. Rest of the algorithm remains the same

as that of native DBSCAN. This algorithm is more efficient than the previous one as the

neighborhood query time is greatly optimized.

Algorithm 3.1: DBSCAN Clustering using
PointWiseNBH
• procedure DBSCAN-PointWiseNBHO

Input : Data points list DL, Grid-R-tree G,
Epsilon e, Min points MinPts

Output: List of clusters clusList
2
3
4

6
7
8
9
10

11
12
13

foreach point p in DL do
if p is visited then continue;
Mark p as visited;
Data list nbhlist = Point-Wise-NBH(p, e,

G.root);
if NbhList.count < MinPts then

| Mark p as NOISE;
else

Initialize a new cluster Clusl;
Expand-Cluster (p, C, NbhList,

Clusl, e, MinPts);
Insert Clusl into clusList;

end
end

Algorithm 3.2: DBSCAN Clustering using
CellWiseNBH___________________________

procedure DBSCAN-CellWiseNBHO
Input : Data points list DL, Grid-R-tree G,

Epsilon e, Min points MinPts
Output: List of clusters clusList

region r; cell cl;
r=DETERMiNE-CELL(p,M I NGRl DS IZE,c);
Cl=CnECK-lf-CELL-ExisJS(G.global-R-tree,r);
Cell-Wise-Nbh (Cl, e, G.root);
if p.neighborslist .count < MinPts then

Mark p as NOISE;
else

Algorithm 3.3: Expand Cluster using Point
WiseNBH

2
3
4

6
7

8
9

10

procedure Expand-Cluster-PointWiseNBH()
Input : Data point p, Grid-R-tree G, Data

points list NbhList, cluster C/»sl,
Epsilon e, Min points MinPts

Output: Complete Formation of Cluster Clusl
Initialize a temporary points list tempNbhList;
Add p to C/wsl;
foreach point p’ in NbhList do

if p' not visited then
Mark p as visited;
tempNbhList = Point-Wise-NBH (p,

e, G.root);
if tempNbhList.count > MinPts then

NbhList = NbhList u
tempNbhList;

end

Algorithm 3.4: Expand Cluster using Cell
WiseNBH_______________________________
i procedure Expand-Cluster-CellWiseNBHO

Input : Data point p, Grid-R-tree G, Data
points list NbhList, Cluster Clusl,
Epsilon e, Min points MinPts

Output: Complete Formation of Cluster Clusl

n
12
13
14

end
if p’ is not a member of any cluster then

| Add p' to Clusl;
end

if neighborhood of p' is not computed then
region r; cell Cl;
r=DETERMiNE-CELL(p,MINGRlDSIZE,c);
C1=Check-If-Cell-Exists
(G.global-R-tree,r);
Cell-Wise-Nbh (Cl, e, G.root);

tempNbhList = p'.neighborsList;

end

All the three variants of DBSCAN (using RtreeNBH, PointWiseNBH and CellWiseNBH)

have been executed over SBUS2.7M and MPAHALO2.8M data sets and the results are pre

sented in Figure 3.2 on page 51. The e values chosen for experimentation are presented

52

3.1 Data Mining Algorithms using Grid-R-tree

in Table 2.1 on page 37. The value of Min pts has been set to 5. The results indicate that

DBSCAN execution time over Grid-R-tree is much lesser than that of R-tree over both the

datasets. More specifically the execution with CellWiseNBH query is most efficient as this

captures the query access pattern of DBSCAN. Note that the memory requirement of DB

SCAN using CellWiseNBH query is little higher since we are storing neighborhoods. But

since the number of points lying within a cell is very less, the total memory required to

store their neighborhoods is also very less. Also, as soon as the point is processed by DB

SCAN, the memory allocated to its neighbors list is cleared. Thus, the space complexity

doesn't increase.

Similar experimentation can be performed for OPTICS [35] clustering as well. Grid-R-

tree can also be used for other variants of DBSCAN such as IDBSCAN [140] and KIDB-

SCAN [141] for efficient neighborhood queries in the same fashion.

3.1.3 Upper bound on speed up achieved by using Grid-R-tree

In this section, we present a theoretical upper bound on the speed up that can be achieved

for any algorithm that uses queries supported by Grid-R-tree. We give the analysis with

the help of DBSCAN clustering. As mentioned before, the execution time of DBSCAN has

a major portion of time spent on performing neighborhood queries. Let p be the fraction

of time spent on neighborhood queries. The speed up that can be achieved for executing

DBSCAN is governed by speed up achieved in this portion of the program. Let z be

that speed up achieved by using Grid-R-tree for neighborhood computations, instead of

R-tree. By Amdahl's Law [142] the maximum speed up achieved for executing DBSCAN

by replacing R-tree with Grid-R-tree will be:

1
£ + 1 - p

This is the theoretical upper bound for speed up that can be achieved. This analysis can be

generalized for any algorithm that uses Grid-R-tree instead of R-tree for its neighborhood

computations. This result is verified for DBSCAN for SBUS2.7M and MPAHALO2.8M

datasets. Table 3.1 on the following page separately presents the time of execution of en

tire DBSCAN and the portion comprising of neighborhood queries for the above datasets,

along with the actual speed and the expected maximum speed up calculated using the

above equation. It is very clear from the table that the actual speed up is very close to the

53

3.2 Discussion

Table 3.1: Theoretical Upper Bound vs Obtained Speed Up for DBSCAN Clustering

Dataset Query Type
Exec. Time for
NBH queries
only (sec.)

Exec. Time
for DBSCAN
(sec.)

Improvement
factor in NBH
queries (z)

Actual
Speedup

Expected
Max
Speedup

R-tree-NBH 3071.241 3174.043 - - -
SBUS2.7M I’ointWiseNBH 1924.425 2028.425 1.595 1.564 1.565

CellWiseNBH 1420.79 1525.79 2.161 2.080 2.083
R-tree-NBH 210331.325 210465.903 - - -

MPAHALO2.8M I’ointWiseNBH 9624.115 9769.988 21.854 21.542 21.567
CellWiseNBH 4896.365 5042.693 42.956 41.736 41.834

estimate for both the datasets.

3.1.4 Other Uses of Grid-R-tree

Grid-R-tree have been used to re-engineer clustering algorithms like DBSCAN and SLINK

from their basics [32, 33, 36]. These re-engineered versions work at grid level with opera

tions over cells as well as over points, rather than only points as in the native algorithms,

and give exact clustering results as that of their native versions. Grid-R-tree can also be

employed in Grid based clustering algorithms like BANG [129], AMR [130], etc. to index

non-empty cells in place of other indexing structures. Grid-R-tree can also be used in

any other application domains that require extensive use of neighborhood and nearest

neighbor queries.

3.2 Discussion

• Gridding has been used in several clustering algorithms: GRIDCLUS [129], BANG

[143], STING [144], AMR [130], etc. These algorithms work at a coarser granularity

performing operations on partitioned cells rather than on points. Our contribution

on Grid-R-tree is in demonstrating that gridding can be used effectively to perform

queries on points as required by many data mining algorithms such as DBSCAN,

OPTICS, SLINK, k-NN classifier, etc, rather than cell level operations.

• We used Grid-R-tree to efficiently implement data mining algorithms - DBSCAN

and k-NN classifier. A few variants of the DBSCAN algorithm - IDBSCAN [140],

KIDBSCAN [141], DBSCALE [145] - have been proposed in literature which are ef

ficient than the original DBSCAN. However, these variants use sampling techniques

54

3.3 Main Contributions

to reduce the number of neighborhood queries resulting in "approximate" cluster

ing. On the contrary, we have focused on reducing the computation time for each

neighborhood query (rather than number of queries) without compromising on the

correctness of DBSCAN clustering as shown by above experimental results.

3.3 Main Contributions

• In this chapter, we demonstrated the utility of Grid-R-tree in spatial data mining

algorithms like k-NN classifier and DBSCAN clustering algorithm and have shown

that usage of Grid-R-tree improves their performance (See Section 3.1 on page 50).

• We have also derived a theoretical upper bound on the speed-up that can be achieved

by using Grid-R-tree in place of any other indexing structure using Amdahl's law.

3.4 Conclusions

In this chapter, we have demonstrated how usage of Grid-R-tree can optimize the perfor

mance of data mining algorithms such as k-NN classifier and DBSCAN clustering. The

experimental results clearly show that CellWiseNBH query clearly optimizes the search

space during its execution making the neighborhood queries efficient, and thus making

DBSCAN efficient.

55

Part II

Anytime Mining of Data Streams

56

A data stream is characterized by continuously arriving data objects at a fast and

variable rate, ordered by time. Mining data streams is typically constrained by limited

available time to process and limited memory to store the incoming data objects. The

time available to process each arriving object depends upon the stream speed and usually

allows only for a single pass. And, within these constraints, evolving patterns have to

be captured. Mining of data streams has enormous applications of various domains that

include - retail chain analysis, network traffic analysis, web log analysis, mining data

feeds from sensor networks, surveillance systems, disease surveillance systems, etc.

Researchers have proposed various algorithms for mining data streams. These stream

mining algorithms can be broadly categorized into four tasks - Classification, Cluster

ing, Frequent Itemset Mining and Anomaly Detection. Various stream classification algo

rithms have been proposed in - [146,147,148,14, 99]. A survey of these algorithms can be

found in [149]. Similarly, various stream clustering algorithms include - CluStream [102],

HP-Stream [103], DenStream [95], Optics Stream [150], D-Stream [151], MR-Stream [152],

etc. A survey of these can be found in [153]. Various algorithms proposed for frequent

itemset mining in data streams include - Sticky Sampling & Lossy Counting [154], FP-

Stream [98], CPS-Tree [53], DSM-FI [96], SWP-Tree [97], VSW [155], etc. A survey of these

can be found in [156, 157]. And, various algorithms for anomaly detection in data streams

are proposed in [109,158,159,160,108]. A survey of these can be found in [106].

With increasing complexity of the modern data generating systems, data is being gen

erated in the from of multiple sources resulting in multi-port streams. Researchers have

proposed various algorithms for mining multi-port data streams as well. Few such algo

rithms are - Classification - [161,162,163]; Clustering - [164,165,166,167,168]; FI Mining

- [169,170,115,171,172]; and Anomaly Detection - [110,173,174].

The existing algorithms (both sequential and multi-port algorithms), however, miss

out on two important characteristics of real-time data streams. Firstly, very often streams

do not have constant speed or inter-arrival rate of transactions that can greatly vary depending

upon the application domain. For example, in retail chain analysis, the rate of arrival of

transactions is higher during rush hours and lower during other times. Similar scenario

can occur in domains like sensor networks, web server logs, etc. The algorithms proposed

in literature are typically budget algorithms, i.e. they are designed for a fixed maximum

57

stream speed (known as budget). When the stream speed is higher than the budget, they

would have to either process sampled data or buffer unlimited data and eventually fail

[104]. And when the stream speed is lower, they sit idle after processing the current data

object, until the next one arrives. An ideal algorithm, however, should be able to process

any stream speed. Higher speeds should be handled using deferred insertions and spare

time available while processing lower speed streams should be utilized for refining the

information received.

The second characteristic missed out is that they lack the ability to produce immedi

ate mining results with compromised accuracy, if required. There are applications such

as stock market analysis, where the mining results are sometimes instantaneously re

quired. For example, a short term stock investor for whom time is money, would require

an instantaneous result. On the other hand, a long term investor would wait for some

additional time until a more accurate result is computed. So, an ideal algorithm should

give a mining result almost immediately as soon as a request comes from the user, and

improve its quality/accuracy with increase in time allowance. Figure 1.6 on page 9 shows

the behaviour of an anytime algorithm, where accuracy of the result improves with in

crease in time allowance for processing. The existing stream mining algorithms lack such

capability. They typically execute an offline phase to mine for the final result, which is

computationally expensive and hence cannot provide immediate mining results.

The above two properties - 1. handling varying inter-arrival rate of transactions, and 2.

giving the best possible result according to the available time allowance; are the characteristics

of an anytime mining algorithm for data streams. Only a few such anytime algorithms

have been proposed in literature. They include - clustering [104, 117, 118], classification

[100, 101, 175, 116], and amomaly detection - [119]. These algorithms address either one

or both the properties of an anytime mining algorithm.

A few anytime mining algorithms have also been proposed for static datasets (non

stream environment). They typically have only the second characteristic of the anytime

algorithm. They include - Classification [176, 177, 178, 179], Clustering [180, 181] and FI

Mining [182]. Since, the focus of anytime algorithms in this thesis is pertaining to data

streams, we don't discuss them further.

In this part, we develop three anytime mining algorithms for data streams - one each

58

for frequent itemset mining (Chapter 4 on the next page), set-wise classification (Chapter 5 on

page 103) and clustering (Chapter 6 on page 126). They are presented as follows:

59

Chapter 4

Anytime Frequent Itemset Mining of

Data Streams

4.1 Frequent Itemset Mining

Frequent Itemset (or Frequent Pattern) Mining is the task to discover frequently occurring

items in a transactional database. For example, consider the sales database of a bookstore,

where each transaction consists of books purchased by a customer. The task of find

ing sets of books most frequently purchased together by customers is a frequent itemset

mining problem. The bookstore can use the knowledge acquired from frequent itemset

mining for advertising, shelf placement, etc. Similarly, there are many other application

areas for frequent itemset mining that include - catalog design, store layout, customer

segmentation, telecommunication alarm diagnosis, and so on.

Frequent itemset (FI) mining has been well studied for static datasets in two broad

categories: Apriori like methods [47, 50, 51, 183] and FP-tree like methods [184, 53]. The

• Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal. AnyFl: An Anytime Frequent
Itemset Mining Algorithm for Data Streams. In Proceedings of 2017 IEEE International Conference on Big
Data (IEEE Big Data 2017), pp. 942-947,11-14 December 2017, Boston, MA, USA

• Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal. Anytime Frequent Itemset Mining
of Transactional Data Streams. Submitted for review in Big Data Research, Elsevier.

60

4.2 Frequent Itemset Mining in Data Streams

former find FIs of length k from a set of pre-generated candidate itemsets of length k — 1.

They scan the dataset multiple times and generate many candidate itemsets of which

many could be infrequent. To address this issue FP-tree was proposed which uses FP-

growth algorithm [184]. This reduces the number of dataset scans to two and doesn't

enumerate candidate itemsets like in Apriori.

4.2 Frequent Itemset Mining in Data Streams

Mining for frequent iteinsets (FIs) in transactional data streams is commonly used in vari

ous applications such as retail chain analysis, stock market analysis, web log analysis, network

traffic analysis, mining data feeds from sensor networks, etc. Researchers have proposed a

few algorithms for mining FIs from data streams [154, 98, 53, 96, 97, 155]. These algo

rithms have two phases - online & offline. In the online phase, they insert the incoming

transactions into a summary structure, either batch by batch [98, 53, 96] or transaction by

transaction [97]. And, whenever a request for mining result comes from the user, they

execute the offline phase to extract FIs from their summary structures.

For modeling data streams, researchers have typically used landmark window [154, 98,

96] and sliding zoindow [53,183, 97, 155, 185] models. Landmark window summarizes the

entire stream from its beginning, whereas sliding window only keeps a fixed number of

last arrived transactions. Sticky-Sampling and Lossy Counting [154] are the first algo

rithms proposed for FI mining of data streams. They are based on Apriori and follow

the landmark window model. They produce less accurate results with a theoretical error

bound. FP-Stream [98] is the next approach that uses tilted-time window model (variation

of landmark window). It takes in transactions batch-wise and for each batch it builds an

FP-tree, mines for FIs, and inserts them into a pattern tree that has tilted-time windows

stored at its nodes. Pattern trees are mined similar to FP-Trees to output the mining

result. FIDS [186] is another approach proposed that processes transactions batch-wise.

They propose a new representation for the items and a data structure known as Latticereg

to maintain FIs coupled with a fast pruning strategy. They also use the tilted-time win

dow model. DSM-FI [96] is another approach which also uses landmark window. It keeps

a forest of prefix trees which are similar to FP-trees. Every arriving transaction of size k

61

4.2 Frequent Itemset Mining in Data Streams

is converted into k — 1 smaller transactions which are suffixes of the original transaction,

and each suffix is inserted into its respective tree in the forest. This algorithm is a budget

algorithm and has to insert all the incoming transactions completely into the forest irre

spective of the stream speed. Mining for FIs in DSM-FI is similar to the Apriori approach

wherein the infrequent itemsets of size k are broken down into itemsets of size k — 1 and

are checked if they are frequent.

CPS-Tree [53] is a FP-tree based algorithm that uses sliding window model. It takes in

the transactions batch-wise, and undergoes re-structuring and pruning after processing

every batch, which is time consuming. It uses FP-growth for mining FIs on request.

MFI-TransSW [183] is another sliding window based approach that represents the items

in the form of a bit vector and uses Apriori for mining. SWP-Tree [97] is also a sliding

window based algorithm that uses a prefix tree similar to FP-tree. It additionally uses

decay on support count of items stored in it to give higher weightage to recently arrived

ones. Mining for FIs from SWP-tree is similar to that of FP-Tree. Another algorithm

which adjusts the size of sliding window on demand, is the VSW [155]. It uses ECLAT

[51] which is a variant of Apriori and is slow in its insertion and mining. VSW also uses

expensive computations to compute the new window size after processing every batch

of transactions and thus is not capable of handling high speed streams. Another recent

algorithm is WIS [185], which mines for FIs within a given time horizon. It uses a test

window which is a minimal window to discard the infrequent itemsets. However, in this

approach, the support counting is limited to the test window. Another approach MSWTP

[105], which mines for top k frequent itemset from the stream over a sliding window

without using any threshold on support. They propose SWTP-tree to store the itemsets

in the sliding window and provide a lower bound on the support of klh frequent itemset

using Chernoff bound theory.

With increase in utilities of systems that generate data from multiple sources, mining

for FIs from multiple streams is increasingly becoming popular. Researchers have pro

posed a few algorithms for FI mining over multi-port data streams. H-Stream [169] is the

first proposed approach, which extends the FP-Stream [98] and uses tilted-time window

framework for storing FIs from multiple streams. PAMS [170] is another algorithm that

mines for progressive sequential patterns from multiple data streams. It uses a structure

62

4.2 Frequent Itemset Mining in Data Streams

known as PSM-tree for storing FIs. DIMine & CooMine [115] are another set of algo

rithms proposed for mining frequent co-occurrence patterns from multiple streams. A

co-occurrence pattern is an itemset that occurs in at least a pre-defined number of streams

out of many incoming streams. They use a structure known as Seg-tree to index itemsets.

Similarly, DFCP & MDFCP [171] are another set of algorithms that mine for co-occurence

patterns from multiple streams. More recently proposed algorithm is the CP-Graph [172]

that mines for top k co-occurrence patterns across multiple streams in real-time. They

use sliding window model and a structure known as CP-Graph, which is a hybrid index

of a graph and an inverted file structure that is used for efficient support counting and

pruning of infrequent itemsets.

4.2.1 Research Gap and Motivation

The existing algorithms (both sequential and multi-port algorithms), however, miss out on

both the characteristics of anytime mining algorithms for data streams explained in Part II

on page 57. All of them are budget algorithms, i.e., they are designed for fixed maximum

speeds beyond which they would fail to process the stream. Also, these algorithms either

use Apriori like methods or FP-tree like methods for mining FIs. Apriori like methods

enumerate a large number of candidate itemsets and thus are very slow in mining for

FIs, especially for lower support thresholds. Similarly, FP-tree like methods enumerate

conditional pattern trees to compute the FIs and thus take time to output the result. It

can be seen that both kind of methods are not capable of delivering an immediate mining

result (even with compromised accuracy) if required. Hence, all of the above algorithms

do not fit the bill for requirements of an anytime FI mining algorithm for data streams.

There is one anytime algorithm for FI mining in multi-user applications over a large

static database [182]. It uses sampling and addresses the second aspect of an anytime

algorithm, i.e., it gives an immediate approximate mining result and improves it with

increase in time allowance. However, it is static in nature and doesn't fit for streams.

Thus, there doesn't exist any anytime algorithm for FI mining of data streams.

In this chapter, we present AnyFI which is the first Anytime Frequent Itemset mining

algorithm for data streams, It is characterized by both the aspects of an anytime algo-

63

4.3 Preliminaries

Table 4.1: Notations and Definitions

Notation Definitions

/ = {'i<'2....
S — {l\,.... }
tr
(tid,arrTime, S')

/ is a Dictionary of unique items. Each literal i, denotes a unique item. Literals are considered
as integers.
S is an Itemset if $ Q I: x < y and x.u € T..«j.
tr is a Transaction consisting of the tuple - trans ID, arrmil time of the transaction and an ilemset
S'. If for an itemset S, S C S', we say that tr contains S.

DS
A Data Stream is a continuous unbounded sequence of transactions, DS = trl,...,trr,..., where
tr, is the j"' arrived transaction.

>DS A finite contiguous subsequence of transactions from DS.

freq^S) It is the frequency count/support count of an itemset S with respect to sDS (no. of
transactions in sDS where S has occurred).
Given a minimum support threshold r(0 < <T < 1), S is said to frequent (or c-frequent) in sDS,

rrequent Itemset if freq^psfS) > rlsDS . Similarly, given an error threshold e (0 < e < r), S is said to be
e-frequent or sub-frequent, if e sDS < freq^^tS) < r sDS . And if freq.p$(S) < c sDS\, S is
said to be infrequent.
Given a transaction tr containing an itemset S. Let the items in S be ordered according to some

SP pre-defined total order (lexicographical ordering). Then for the ordered itemset < abed >, the
suffix projections will be: < abed >, < bed >, < cd > and < d >. The total number of suffix
projections will be S .

rithm. The rest of the chapter is organized as follows: Section 4.3 gives brief background

on related concepts; Section 4.4 on page 66 explains the proposed data structure - BFI-

forest; Section 4.5 on page 68 presents the proposed algorithm - AnyFI; Section 4.6 on

page 88 presents the parallel framework MPAnyFI; Section 4.7 on page 90 presents the

experimental results; Section 4.8 on page 101 highlights the main contributions of this

chapter; followed by conclusions and future work in Section 4.9 on page 102.

4.3 Preliminaries

4.3.1 Definitions & Problem Statements

Table 4.1 gives a few notations and definitions. Following these definitions, we can define

the problem of FI mining from a data stream as: given DS, sDS and a, find itemsets in

sDS that have freqsns > cr|sDS|. When we process transactions arriving with variable

inter-arrival rate, the problem is referred to as Anytime FI Mining of Data Streams.

Researchers use e to prune away infrequent itemsets in order to save space and time

[154, 96]. AnyFI also uses e to prune away infrequent itemsets. This introduces approxi

mation in results, and hence the quality of results is measured using - precision and recall.

64

4.3 Preliminaries

4.3.2 Stream Model

The set sDS is modelled as a window of different forms - landmark window [98], slid

ing window [97, 183], damped window[97], etc., for different algorithms explained in

Section 4.2 on page 61. In our work, we had used two stream models -Damped Window

model for modeling stream in AnyFI, which is the sequential algorithm; and Tilted Time

Window Framework for modeling multi-port streams in the parallel framework - MPAnyFI.

We explain each of these as follows:

4.3.2.1 Damped Window

Damped window lowers the effect of older transactions with time and thus lets us control

the contribution of a transaction with respect to its arrival time. Recent transactions get

greater weightage and hence recent trends can be captured more effectively. We use a

decay factor f, 0 < f < 1, to decay the frequency counts of itemsets with time. We denote

frequency count of an itemset S at time T\ as freq(S, Tj). At time T? (^2 > T\), the decayed

frequency count of S will be:

frcq(S,T2) = freq(S,Tt) x (4.1)

If we do not decay frequency counts with time, the frequency counts would be the true

frequency counts as in a pure landmark window model with window starting from be

ginning of the stream. In AnyFI, whenever we update/increment the frequency count of

an itemset due to arrival of a new transaction, we first decay the existing frequency count

using Equation (4.1) and then increment it, i.e., if itemset S has occurred in a transaction

arrived at time 72, then the updated frequency count of S will be:

freq(S,T2) = freq(S,Tt) x fn-T,) + j (4.2)

Whenever we compute frequency count of an itemset S with respect to a support threshold

(e or a), sDS is the window containing transactions occurring between the timestamps -

current tid (currud) and tid of the first transaction (ftid) where S has occurred, ftid is

stored in tree nodes of BFI-forest (see Section Section 4.4 on the next page).

65

4.4 BFI-Forest

4.4 BFI-Forest

BFI-forest is a summary structure used for anytime processing of incoming transactions

by AnyFI and MPAnyFI. It stores the enumerated suffix projections (SPs) (see Table 4.1 on

page 64 for definition of SP) of the incoming transactions in a compressed way. They are

so arranged in the forest that it becomes easy and efficient to mine for FIs. Figure 4.1 on

the next page illustrates its structure, which is elucidated as follows:

• BFI-forest consists of a set of BFI-trees (Buffered Frequent Itemset trees), whose total

number < |/|. The root node of each tree represents a unique item from I. Figure 4.1

on the following page shows a BFI-forest constructed over I = {a,b,c,d,e}, and

thus contains five BFI-trees. Each node of a BFI-tree represents an itemset that is

formed by collecting all the items in the traversal path from the root to the node.

For example, node? in Treel of Figure 4.1 on the next page represents the itemset

{a,c,d}, which is formed by the path: nodel -> node6 -> node?.

• An internal node of a BFI-forest stores the following fields:

o item: It is an integer identifier representing a literal in set /. It is the item

indexed at the current node.

o efreq: It is the frequency count of the itemset represented at this node.

o ftid: It is the transaction id (tid) at which this node was created, i.e., the first oc

currence of the itemset represented by the current node. It is used for pruning

infrequent itemsets (see Section 4.5.1 on page 68).

o Itime: It is the timestamp at which the node was last accessed or updated. It

is used to decay the the node's frequency count with time under the damped

window model.

o buff: This field represents the buffer at the node. Buffers store SPs that are

incompletely processed and are waiting to be inserted into the tree. Their

processing has been deferred either due to insufficient time allowance or out of

deliberation to achieve some optimization goals (see Section 4.5.1 on page 68).

Thus, buffers become a key requirement for AnyFI. Buffers in BFI-trees are im

plemented as hash tables with linear chaining as shown in Figure 4.1 on the

following page. Using a hash table for the buffers makes the complexity of

66

4.4 BFI-Forest

Tree?Treel

Figure 4.1: Structure of BFI-forest and BFI-trees

insertion and removal of a projection from any of its bucket to be 0(1). Each

bucket in the hash table is a linked list of buffer-nodes. Each buffer-node stores

(i.) partial _trans: a SP; (ii.) ft id: Timestamp at which this buffer-node was

created; (Hi.) Itinie: The last accessed/updated timestamp of the buffer-node;

and (iv.) efreq: The frequency count of the SP stored at the buffer-node. The

buffer has a limit on the number of buffer-nodes it can hash in total, which we

denote as buff Capacity. The size of the hash table array (hash_size) is typically

chosen as 10% of |/|. We use simple mod function as the hash function for the

buffer, i.e. for a SP p_tr = < abc >, the value of the bucket to which it should

get indexed is computed by - a % \hash_size\, where a is the first item in p_tr.

Note that a (even b or c) is an integer literal € I.

o child Arr: It is an array of max size - |/|, used to store pointers to the sub-trees

indexed at the current node. The size of this array varies among the tree node

as we insert lexicographically ordered transactions (see Section 4.5 on the next

page). Consider Treel in Figure4.1 which was constructed over / = {a,b,c,d,e}.

The node at level 0 (node 1) will have a child array of size 4 as it can have sub

trees with their roots containing items - b, c, d & e. Similarly, node 2 would

have a child array of size 3 as it can have sub-trees with their roots containing

items - c, d & e only. Node 2 can never have item a in any of the sub-trees due

to insertion of lexicographically ordering transactions. Thus array of size 3 is

sufficient. Similarly, other nodes will contain child arrays of sizes as per the

number of children they can have. Node 11 will not have any child array as

there is no item in I that can occur after e. Similar scheme applies to other trees

67

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

in the forest.

• All the nodes of BFI-trees that are present at a height, Max_Height, are called ex

ternal nodes. The value of Max_Height is user defined. In Figure 4.1 on page 67,

Max_Height is 2. So, the nodes 3, 4, 5, 7, 8 & 10 are external nodes, nodell is not

external since it is not at Maxjieight. External nodes differ from internal nodes only

in one field - instead of childArr, they store fpRoot which is a pointer to an FP-tree

[184]. The suffix projections reaching Max_Height during insertion and refinement

step are inserted into FP-trees. This reduces memory consumed by BFI-forest and

eliminates the need to store so many infrequent projections (see Section 4.5). If there

are no projections to be stored in the FP-tree beneath a given external node, fpRoot

remains NULL (nodes 5, 8 & 10). Also note that buffers are present in both internal

and external nodes.

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

The AnyFI algorithm in principle consists of the following steps that are elaborated in

subsequent subsections.

• Read the incoming transactions one by one and order them lexicographically.

• Insert each transaction into BFI-forest and refine the trees of the forest as per the

available time allowance.

• Intermittently prune the infrequent itemsets from BFI-forest after arrival of a certain

batch of transactions.

• Whenever user requests for a mining result, BFI-forest is mined for FIs within the

given time allowance.

4 .5.1 Inserting a transaction into the BFI-forest and Refinement of BFI-forest

The insertion of an incoming transaction and its refinement is an anytime operation, i.e.,

it is interruptible whenever the time allowance expires, which is typically triggered by

arrival of a new transaction. It is explained as follows:

68

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Figure 4.2: Inserting a transaction < acde > into BFI-forest

Algorithm 4.1: Any-FI
i procedure ANY-FI(s/n’flw)

Input : Stream of continuously arriving transactions at a variable rate
Output: Each transaction being inserted into the BFI-forest

2 count *— 0;
3 forest <- Init-BFI-Forest();
4 while !EOF(sfri’(/»i) do
s trans <- Get-Next-Trans(s/hwh);
6 ORDER-LEXICOCRAl’HICALLYf/rans);
7 lNSERT-lN-BFI-FoREST(/orfsf, trans);
8 count <— count + 1;
? end

4.5.1.1 Inserting a transaction into a BFI-forest

Each incoming transaction (trans) from the stream is processed one after the other (Algo

rithm 4.1). It is first lexicographically ordered and then inserted into the BFI-forest (lines

5-7 of Algorithm 4.1). To insert trans into the BFI-forest, we take its suffix projections

and insert each projection into the root of the corresponding BFI-tree (lines 2-6 of Algo

rithm 4.2 on the next page). This is illustrated in Figure 4.2. Suppose trans =< acde >,

we would insert the SPs: < acde > in Treel, < cde > in Tree3, < de > in Tree4 and < e >

in Tree5 as shown in the figure. To insert < acde > in Treel, we first increment the efreq

of the root node of Treel (which contains item a), after decaying it using Equation (4.2)

on page 65 (Algorithm 4.3 on the following page). Please note that T] and T2 will be I time

and current_time respectively. We then place the rest of the projection < cde > (formed

after trimming the Head, which is a) into its buffer. Similarly, we process the remaining

projections by first incrementing the efreq of the root nodes of trees and inserting the

trimmed suffix projections into the buffers of the respective tree roots as shown in the

69

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.2: Insert-1n-BF1-Forest

1 procedure iNSERT-IN-BFI-FoREsrf/on'sfJnms)
I Input : A BFI-forest and an incoming transaction

Output: Transaction inserted into the BFI-forest
2 foreach shffix_proj of trans do
3 rootNode forest\HEAD(sn ffix_proj)].root;
4 root Node.efreq <p(root Node).efreq ~ 1;
5 trimmed_proj «- stiff _proj after trimming its Head;
6 1nsert-In-Buffer(root Nodedni f f, trimmed _proj);
7 end
s if NEW-TRANS ^ARRIVED then return;
9 REFlNE-BFl-FoREST(/<>rrst);

Algorithm 4.3:
i procedure ^(node)

Input : A BFI-tree node or a buffer node
Output: BFI-tree node with decayed frequency count

2 node.efreq <— node.efreq * pURRJiw m>deitht.
3 return node;

figure. Since < e > is singleton, its insertion into Tree5 will just be increment of efreq of

its root.

Since, buffers are implemented as hash tables with linear chaining, to insert < cde >

into the buffer of root of Treel, we find the hash value of < cde > to identify the bucket

into which it has to be inserted (bucketid = c mod hash_size). All the projections starting

with c will be hashed to this bucket. Then we check if a buffer node indexing < de > al

ready exists in this bucket. If yes, we increment its efreq by 1, after decaying it. Otherwise

we create a new buffer for it and append it to the end of the bucket (see Figure 4.1 on

page 67). All other projections are also inserted in the same way into their corresponding

buffers.

This operation - taking suffix projections and inserting into the root nodes of trees, is an

atomic operation (non-interruptible) (lines 2-6 of Algorithm 4.2). We then check if a new

transaction has arrived, if yes we stop here and process the newly arrived transaction

(lines 7-8 of Algorithm 4.2). However, if a new transaction has not arrived, we refine the

forest until the time allows (line 9 of Algorithm 4.2).

4 .5.1.2 Refinement of BFI-Forest

Each tree of BFI-forest undergoes refinement in a random biased way (Algorithm 4.4

on the next page). We select a tree for refinement from the forest with non-uniform

probability, where we give higher weight to the trees whose root nodes have items of

70

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.4: Refine-BFI-Forest

i procedure Refine-BF1-Forest(/<ws/)
Input : A BFI-forest
Output: Trees of BFI-forest refined until time allows

2 while exitFlag ! = TRUE do
3 tree a biased random tree from forest;
4 if tree is not being pruned then
5 i | exitFlag <- Refine-BFI-Tree (tree.root);
6 | end
7 I end

Figure 4.3: Refinement of BFI-tree

lower rank in I (when / is lexicographically ordered). If the probability of selecting a

tree with root representing item ij (j is the rank in lexicographically ordered I) is Wj, then

Wj = where dj = |/| - ; + 1 and zpi > zi’2 > - > One can observe from

Figure 4.1 on page 67 that the trees with roots representing items from lower ranks in

lexicographically arranged / will have larger size than those with higher ranks. So, by

doing a biased selection this way, larger trees get higher chance of getting selected for

refinement. This makes sure that all the trees in the forest is refined uniformly. Also,

we must note here that if we select a tree for refinement that is undergoing intermittent

pruning (see Section 4.5.2 on page 75), we don't refine it and select another tree. After

finishing refinement of a tree, if time allowance is remaining, we will pickup another

tree and refine it. If during the refinement of a tree, a new transaction arrives, exitFlag

becomes TRUE (lines 5 & 24 of Algorithm 4.5 on the following page), and we quit from

there to process the newly arrived transaction.

To refine a BFI-tree, we take out the SPs stored in the buffers of its nodes and expand

them into sub-trees until time allows. The refinement of each tree is carried out in depth

first order (Algorithm 4.5 on the next page). Consider Treel in Figure 4.3, where < cde >

is inserted in its root's buffer. We start refining Treel beginning with its root (curr_node =

root). First, we take out the first SP from a randomly chosen bucket of its buffer (lines 7-9

of Algorithm 4.5 on the next page). Consider < cde > was taken out. We then update

71

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.5: Refine-BFI-Tree

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

procedure Refine-BFI-Tree(tree)
Input : A BFI-tree to refine
Output: BFI-tree refined until time allows
stack <- Init-New-Stack();
PusHfsfnck, tree.root);
while Is-Not-EmptyIs/acK) do

if NEW_TRAN-ARRIVED then return TRUE ;
curr_node Pop(shuA);
randBuf fNode <— CnT-RAND-NoDE(enrr_nade.lmf f);
randBuf fNode.ef req <- tp(raiidBuf fNode);
ptrans «— randBuffNode.partial-trails;
if Get-Height(node) > LEAF-LEVEL then

j FP-lNSERT(CHrr_HOi/t’.f pRoot, ptrans)
else

| foreach suffix_proj of pt rails do
child <- curr_node.childArr HtAD(suffix_proj)\;
if randBuffNode.ef req is e - infrequent and child is NULL then

| continue;
end
if child is NULL then

| curr_iiode.childArr\HEAD(suffix_proj)] <— New-BFI-Node();
end
Insert-In-Buff ER^child.buff, suff ix_proj);
chihLefreq <— <p(child.efreq) - randBuffNode.efreq;

end
if NEW_TRANS_ARRIVED then return TRUE ;
foreach stiff ix_proj of plrans do

affected_child = ciirr_itode.childArr\HEAD(su f fix_proj)];
if buffer priming condition for affected _child is met then

| PRUNE-BUFFER(rt//l’Cfrt/_c7n7d)
end
if affected_child is c-frequent then

if affected_child has a child into which suffix_proj can be inserted or affccted_child is
0-frequent then
| P(jSH(stack,affected_child);

end
end

end
end

end
return FALSE;

its frequency count using Equation (4.1) on page 65. If curr_node is an external node,

we would insert this projection into the FP-tree beneath it (lines 10-11 of Algorithm 4.5).

Otherwise, we take SPs of < cde > and insert them into the buffers of the corresponding

children of curr_node as shown in Figure 4.3 on page 71 (nodes 6 & 9 get projections into

their buffers). The insertion into buffer is same as explained before. We also increment the

frequency counts of nodes 6 & 9 with the frequency count of the corresponding SP being

inserted into their buffers, after decaying them (line 20 of Algorithm 4.5). If any child

into which a projection has to be inserted, doesn't exist, we create that child, insert the SP

into its buffer and assign it a frequency count (lines 17-18 of Algorithm 4.5). Also, while

inserting into the buffer, we take care that the buffers do not overflow. If they exceed a

pre-defined capacity- bitf/Capacity, we remove a random SP from the bucket in which

72

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.6: Prune-Buffer
i procedure Prune-Buffer(node)

| Input : A node of BFI-tree
I Output: Buffer of the node pruned

2 foreach buffjiode in node.bu f f do
3 if tp(buff junie) < e.(currtid - buffnode.ftid} then
4 | if nodexliildArr[HEMl(buffjiode.partialTnin*) is NULL then
5 | ' delete buffjiode from nodedntf'f;
6 | end
7 end
8 end

we are trying to append the new projection. After this step, we check if a new transaction

has arrived. If yes, we quit the refinement and move on to process the next transaction.

Note that at the beginning of refinement of every node, we do check if a new transaction

has arrived (line 5 of Algorithm 4.5 on page 72), if yes, we simply quit this function and

proceed to process the newly arrived transaction; otherwise we proceed to further steps.

Buffer Pruning After insertion of projections into the sub-trees, we now conduct buffer

pruning, which prunes infrequent projections lying in the buffers. So, the buffers of

affected children of curr_node (children into which suffix projections were inserted in the

previous step - nodes 6 & 9 in Fig.Figure 4.3 on page 71) are pruned before we proceed

with further refinement. We do not conduct buffer pruning each time we visit a given
node in the traversal. This is because, each time we visit a node’s buffer, we may not

have infrequent projections. So, we let it accumulate a few infrequent projections so that

all of them can be removed in one go. We conduct buffer pruning in intervals of some

minimum time decided by a parameter 7 and the height of the node. It can be observed

that closer the node to the root, more filled will be its buffer. Thus, buffers at lesser depth

must be pruned more often than the buffers at greater depth. The pruning interval (PI)

for each node is computed using the following formula-

PI = \ (batch_size) / (10 x 7 x height (node)]) (4.3)

where batch_size is the number of transactions after which we perform intermittent prun

ing (see Section 4.5.2 on page 75). So, whenever we are visiting a node, we prune its

buffer only when it was last pruned at least PI transactions earlier (lines 24-25 of Algo

rithm 4.5 on page 72). In buffer pruning (Algorithm 4.6), we visit every buffer-node in

a given buffer (nodes from all the buckets) and prune them. If partial_trans in a buffer

node being visited, is not e-frequent (after decaying its frequency count), then we check if

the current af fected_child (node for which buffer pruning is being conducted) has a child

73

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

in its childArr that corresponds to the head of the partial _trans. If it does, then we don't

delete this projection, as we might lose a potential FI by removing it. Otherwise we safely

delete it.

0-deferring After buffer pruning, we now select which nodes in the tree are to be re

fined further. We do not refine all the nodes in the tree, rather we deliberately defer the

refinement of certain nodes to save space and time. We let the nodes accumulate more

itemsets in their buffers before they are refined or expanded for insertion into their sub

trees. This step is critical in making the insertion and refinement step faster as it avoids

repeated insertions/removals of same infrequent itemsets into/from the forest. This is

because the frequency counts of the itemsets represented by the nodes keeps deceasing

as we go down the tree. Refining the lower level nodes each time will lead to insertion

of infrequent itemsets in the form of infrequent sub-trees, which will be pruned again in

the intermittent pruning step. This leads to repeated insertions and removal of infrequent

itemsets. This can be avoided, if we are selective in refining nodes and let the buffers in

the nodes accumulate more itemsets in the them before they can be refined. Moreover,

many infrequent itemsets will be pruned from buffers itself, rather than getting expanded

into a large number of infrequent sub-trees. This deferred refinement is achieved by a

tuning parameter 0 and this process is referred to as ^-deferring. In this step, for every

affected child (children in which suffix projections were inserted earlier), we first check

whether it is E-frequent or not. If yes, then we check whether the sub-tree corresponding

to the head of the projection to be inserted into it, is present in its childArr or not. If this

is so, we push this node (selected_child) into the stack, so that it can be refined in subse

quent iteration of the DFS order (lines 26-28 of Algorithm 4.5 on page 72). For example,

consider node 6 in Figure 4.3 on page 71. If it is E-frequent and there exists a sub-tree

with root d present in its childArr (node 7), we would want this node to be refined further

and thus, push it into the stack. However, if the sub-tree doesn't exist, then we check if

the selected_child is 0-frequent or not. If it is so, only then we would want this node to

be refined further and we push it into the stack. Else, we don't refine this node and let it

accumulate more transactions in its buffer before it gets refined further, thus saving space

which would otherwise be occupied by an infrequent sub-tree. After this, we proceed

74

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.7: Prune-Forest

i

2
3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

procedure Prune-Forest^/ph’s/J
Input : BFI-forest
Output: BFI-forest post pruning
foreach tree in forest do

j stack Init-New-Stack();
PRL'NE-BLFFER(friT.rOO/);
if tp(tree.rool) < c.[cnrrjid - tree.root, ft id} then

| DELETE-St’ll-TREEpn’l’.rOOf);
| continue;

else
| PusH(shnA);

end
while Is-Not-Emi’Ty(sMiA-) do

node <- Pop(stack);
PRUNE-BUFFERpItx/c);
foreach child in nodexhildArr do

if Is-External-Node(c7»/</) then
| FP-PRUNE(t7»7rf./pRoot);

else if (<l>(>iode.bitff [child.item } - (pichild)) < efcitrrjid - child.ftid) then
| DELETE-SUB-TREEfc/li/lf);

else
| PvsH(stack,child);

end
end

end
end

for the next iteration in the DFS traversal, where the nodes accumulated in the stack are

refined (line 6 of Algorithm 4.5 on page 72).

4 .5.2 Intermittent Pruning of BFI-forest

Since we are operating in a stream environment, it is required to regularly prune away

itemsets which become infrequent from our summary structure, to manage the space

constraint as time progresses. This is achieved by an intermittent pruning mechanism

(Algorithm 4.7). This step also helps in making insertion efficient as it avoids visiting

unnecessary branches in the trees, by pruning them periodically after a certain batch_size

of arriving transactions. We iterate over all the trees in the forest and prune each tree

separately. To prune a given tree, we use depth first traversal. In the traversal, when

we encounter a node that is not e-frequent (or is infrequent), we delete it along with all

its child sub-trees. Removing the sub-trees beneath infrequent nodes doesn't affect the

accuracy of the algorithm because all itemsets in those sub-trees can never be frequent. If

however, the node is e-frequent, then we insert it into the stack so that its children can be

pruned in subsequent iterations. If the node we visited was a leaf, we prune its FP-tree

as explained in [97], i.e., if an infrequent item is inside the FP-tree, we delete this item

75

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

from all branches of the FP-tree by traversing the similar node links present in it. And

after deleting the nodes with that item, we merge their child branches with those of their

parents recursively and update the frequency counts. For more details, please refer to

[97].

Proposition 3. Deletion of an infrequent node (or a sub-tree) from a given BFI-tree doesn't

affect the correctness of the results, i.e. frequency counts of the itemsets in the same tree

or the other trees are not affected.

Justification. AnyFI, enumerates all possible suffix projections of incoming transactions,

and inserts them in different trees of the forest. And during the refinement step while

taking a projection down the tree, SPs are enumerated at every level and get stored in in

dependent branches. The frequency counts of itemsets represented by the other branches

(or trees) have no connection with the node being deleted. There is exactly one node

for representing any given itemset in the entire forest. So, unlike other algorithms like

DSM-FI [96], deletion of a sub-tree in BFI-tree does not affect the other branches of the

tree (and other trees as well), and thus there is no need to update or remove items from

other branches of the trees. Hence, it doesn’t interfere with frequency counts of other

itemsets in the forest. Also, during deletion of a node (or a sub-tree) from the tree, we

are not required to update the frequency counts of nodes in the path starting from the

node being deleted to the root (like in FP-tree). This is because, we do not store prefixes

in BFI-trees. So the itemset represented until the parent of the node being deleted would

still remain frequent with the frequency count as it is. This saves a lot of tree traversals

during the intermittent pruning step, making it very efficient.

We conduct intermittent pruning of the forest without actually halting or disturbing

the incoming stream. To achieve this, we use multi-threading. We dedicate a separate

thread to perform this task. While a given tree is being pruned, we continue inserting

SPs of incoming transactions into its root node. However, we do not refine this tree (line

4 of Algorithm 4.4 on page 71) until pruning finishes. Also, since pruning of a tree is

efficient (as substantiated by proposition Proposition 3), the intermittent pruning step has

negligible effect on the accuracy of the algorithm.

76

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.8: Any-Mine

i procedure ANY-MiNE(/<wsf,»nH_SHp)
Input : BFI-forest and support threshold
Output: Set of frequent itemsets whose frequency counts are greater than min_$up

2 EMPTY-BfFFERS(forest);
3 Mine-forest (forest, min _stip);

Algorithm 4.9: Empty-Buffers

i procedure EMlTY-BuFFERsl/orrst)
Input : A BFI-forest
Output: BFI-forest with buffers emptied

2 tpu-ne <- Init-New-Queue();
3 foreach free in forest do
4 | ENQUELEG/Hi’ui’Jnr.rcwf);
5 end
6
7
8
9
10
11
12
13
14
15

while Is-NoT-EMPTYO/Henc) do
if TIME_OVER == TRUE then return;
node Dequeue(</»i’hl’);
if node.buff > 0 then

| FLUSH-BUFFER(HOdl’.l»M//);
end
foreach child in node do

| Enqueue((]ueue,child);
end

end

4.5.3 Mining BFI-forest for Frequent Itemsets

FIs are extracted from the BFI-forest in an offline manner whenever user requests for

them. The mining is very simple and straight forward. During insertion, we have inserted

suffix projections of incoming transactions in all the trees. And within each tree we have

enumerated all possible suffix projections and inserted them either into the tree or in the

buffers of the tree nodes. Thus, we don't have to enumerate any candidate itemsets like

in Apriori or generate conditional trees like in FP-growth. This makes mining BFI-forest

faster than that of existing algorithms (see Section 4.7 on page 90 for results). All we need

to do is to empty all the buffers in the trees and simply traverse the tree in depth first

order accumulating the itemsets whose frequency counts are greater than a threshold -

min_sup or a (Algorithm 4.8). When we empty the buffers, we traverse every node in each

tree in DFS order (Algorithm 4.9), and flush out the projections in the buffer and push

them to the next level of the tree as was done in the refinement step (ignoring infrequent

projections).

After the buffers are emptied, we traverse each tree in DFS order again (Algorithm 4.10

on the next page), where we check at every node if the itemset represented by it is a-

frequent or not. If yes, we store the itemset in Flset, which is a set to accumulate FIs (lines

77

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Algorithm 4.10: Mine-Forest
i

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

procedure Mine-Forest(forest, utin_sup)
Input : BFI-forest and minimum support threshold ntin_sup
Output: Set containing frequent itemsets
iteniSfack <- Init-New-Stack();
FISet <- Init-New-Set();
foreach tree in forest do

nodeStack <- Init-New-Stack();
PusH(nodeStack,tree.root);
while Is-NoT-EMPTY(HO</fStrtcA*) do

curr_node = Por(nodeSlack);
if curr_node.efreq > niiii_sup then

Pusn(i!e/uStack,curr_node.iteiu);
Insert-In-Set(F I Set,CoLLEcrfitemStack));
if Is-ExTERNAL-NoDE(cnrr_Hi>(ft’) then

f pltemsList <- FP-GROvmi(curr_node, f pRoot);
foreach fpltem in f pltemsList do

I lNSERT-lN-SET(F/$l'f, CONCATENATE(CoLLECT(iftwStack)), fpltem);
end

else
foreach child of currjiode do

| Pusn(nodeStack, child);
end

end
end
Pov(itemStack);

end
end

9-11 of Algorithm 4.10). Whenever an external node is encountered, we simply mine

the FP-tree beneath and concatenate all the FIs that come from FP-tree with the itemset

represented by the current node, and add all of them to the FISet (lines 12-15 of Algo

rithm 4.10). For example, in Fig. Figure 4.3 on page 71, if acd is frequent, the FIs mined

from the FP-tree beneath node 7, will be appended to acd and added to FISet. Finally

FISet would consists of all the FIs. In the pseudo code (Algorithm 4.10) we have used

two explicit stacks- nodeStack for the DFS traversal (storing tree nodes); and itemStack to

store all the items in the traversal path from root to the current node being traversed. The

Collect() procedure returns an itemset made out of all the items in the itemstack, which

is the itemset represented by the current node.

Proposition 4. To mine for an itemset starting with an item ij, it is necessary and sufficient

to mine the tree with root representing ij.

Justification. Consider mining for an itemset {b,c,d}, i.e. ij = b. Consider insertion of a

transaction (say < abed >) into the forest, where we inserted SPs - < abed >, < bed >,

< cd > and < d > into the trees with roots having a, b, c and d respectively. So, the

contribution of transaction < abed > to the frequency count of itemset {b,c,d} is taken

78

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

care by the insertion of SP < bed > into the tree with root as b. Similarly its contribution

to the frequency count of {erf} is taken care by insertion < cd > into the tree with root

having c and so on. Thus, for mining {b, c, d} it sufficient to mine the tree with root having

item b. □

Note that the proposition Proposition 4 on page 78 is also applicable within each tree

as well. This also gives another justification for the correctness of intermittent pruning

step, where we are able to prune a sub-tree of a given BFI-tree without affecting other

BFI-trees or other branches in the same tree (see Section 4.5.2 on page 75).

The Any-Mine algorithm, consists of two steps - 1) Empty-Buffers, and 2) Mine-

Forest. We observed that Empty-Buffers is the step that takes majority of the time of

Any-Mine. Therefore, we have made Empty-Buffers step anytime (line 6 of Algorithm 4.9

on page 77), i.e. it is interruptible and when the quantum of time allotted by the user

expires, the algorithm exits from this step and quickly mines the forest accumulating FIs

to output them. At this point, the residual projections in the buffer, if any, are ignored, and

a very quick mining result with compromised accuracy is obtained. Note that given more

time allowance for the empty-buffers step, the accuracy of the mining results improves

(see Fig. Figure 4.16 on page 94).

4.5.4 Why is AnyFI Efficient? A Summary:

AnyFI enumerates all possible SPs of the incoming transactions and inserts them into

the BFI-Forest. This makes the mining of FIs from the forest very efficient, making it

merely a traversal of its trees without enumerating candidate itemsets like in apriori

like methods [96, 47, 50] or generating conditional trees like in FP-growth like meth

ods [98, 97, 53,184, 105]. Also, the insertion and refinement step is carried out efficiently

by using techniques like ^-deferring, buffer pruning, intermittent pruning and usage of

FP-tree beyond Max_height. They are summarized as follows:

• Theta-deferring: 0-deferring deliberately delays the refinement of certain nodes in

the tree and processes only those SPs that have the potential to become frequent in

future. This prevents repeated creation and deletion of infrequent sub-trees, leading

to reduction in memory and process time.

79

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

• Buffer Pruning mid Intermittent Pruning: Buffer pruning, prunes the infrequent item

sets from the buffers attached to the tree nodes alongside refinement, and con

tributes to memory reduction. Intermittent pruning, prunes infrequent sub-trees

in the forest, also leading to memory reduction.

• Usage of FP-tree: We know that, as the length of the itemsets increase, their frequency

counts reduce [6] and many of the greater length itemsets would be infrequent. In

BFI-forest, these greater length itemsets are stored at the bottom levels of BFI-trees,

of which most of them would be infrequent. Also, at such height, branching in the

BFI-tree shall be very high due to storage of large number of SPs, which means

we shall end up storing many infrequent subtrees. And, these sub-trees would be

repeatedly created and deleted in the process of insertion and intermittent prun

ing respectively. However, we know that FP-trees are efficient in storage, especially

when their sizes are small. So, keeping FP-trees beyond depth = Maxjieight in a

BFI-tree, avoids storing those infrequent subtrees, and thus reduces memory con

sumption and processing time. Also, as mining small sized FP-trees is efficient, the

mining of BFI-forest remains efficient.

4.5.5 Theoretical Analysis

In this section, we present theoretical analysis for: (a) deriving the cost of insertion and

refinement step of AnyFI; (b) deriving the complexity of space occupied by BFI-forest. We

make the following assumptions for this analysis:

We model the stream of transactions by assuming a probability distribution on the

dictionary elements. Given set I = {6, *2/—} containing all the items in the dictionary

with size = |/|. Let Aa- be probability that ix appears in an incoming transaction (Ax

estimates the support count of singleton itemset {fA }). We assume that the items occur

independent of each other in the incoming transactions. Also given is the decay factor

f (0 < f < 1), which is used to decay the support counts of itemsets arrived in older

transactions with time. We estimate the behaviour of 0-deferring using a probability,

which we refer to as c. So, c denotes the probability of refining any given node in the tree,

i.e. removing a SP from the node's buffer and further enumerating and inserting its SPs

80

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

• Buffer Priming and Intermittent Priming: Buffer pruning, prunes the infrequent item

sets from the buffers attached to the tree nodes alongside refinement, and con

tributes to memory reduction. Intermittent pruning, prunes infrequent sub-trees

in the forest, also leading to memory reduction.

• Usage ofFP-tree: We know that, as the length of the itemsets increase, their frequency

counts reduce [6] and many of the greater length itemsets would be infrequent. In

BFI-forest, these greater length itemsets are stored at the bottom levels of BFI-trees,

of which most of them would be infrequent. Also, at such height, branching in the

BFI-tree shall be very high due to storage of large number of SPs, which means

we shall end up storing many infrequent subtrees. And, these sub-trees would be

repeatedly created and deleted in the process of insertion and intermittent prun

ing respectively. However, we know that FP-trees are efficient in storage, especially

when their sizes are small. So, keeping FP-trees beyond depth = Maxjieight in a

BFI-tree, avoids storing those infrequent subtrees, and thus reduces memory con

sumption and processing time. Also, as mining small sized FP-trees is efficient, the

mining of BFI-forest remains efficient.

4.5.5 Theoretical Analysis

In this section, we present theoretical analysis for: (a) deriving the cost of insertion and

refinement step of AnyFI; (b) deriving the complexity of space occupied by BFI-forest. We

make the following assumptions for this analysis:

We model the stream of transactions by assuming a probability distribution on the

dictionary elements. Given set I = {i}fi2> •••} containing all the items in the dictionary

with size = |/|. Let A.r be probability that ix appears in an incoming transaction (A.v

estimates the support count of singleton itemset {ix}). We assume that the items occur

independent of each other in the incoming transactions. Also given is the decay factor

f (0 < f < 1), which is used to decay the support counts of itemsets arrived in older

transactions with time. We estimate the behaviour of 0-deferring using a probability,

which we refer to as c. So, c denotes the probability of refining any given node in the tree,

i.e. removing a SP from the node's buffer and further enumerating and inserting its SPs

80

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

into the sub-trees in the insertion and refinement step. Now, we derive the expected time

complexity of insertion and refinement a transaction.

Theorem 2. The expected cost of insertion and refinement of a w-length transaction into

BFI-forest is 0 U Q . \ c /

Proof. First, we compute the expected cost of refinement of a SP into a BFI-Tree beginning

from the root. Let X be a SP (X =< h,/?/•••//» >;ii € /) of length n and let T(n) denote

this cost. So, the total time for refinement of X is the total time for refining all the tree

nodes traversed in the path of refinement of X. Note that the nodes in the refinement

path are refined with probability c to accommodate 0-deferring. Then, for length = 1

(base case): T(l) = 0(1), which is the cost of incrementing the support count of the tree

node. For length = n:

T(n) = ©00 + f x [T(h -1) + T(n- 2) 4-... + T(l)] (4.4)
cost of refining the root cost of refining the sub-trees underneath root

which is the sum of costs of (i.) refining the root, i.e. enumerating the SPs of X, inserting

them into the buffers of their respective sub-trees and then incrementing the frequency

counts, and (ii.) refining the sub-trees underneath the root. Now, Equation (4.4) implies that

there exists constants a\ and a2 such that the following inequality holds for some n > Hq:

ay n + c [T(n - 1) 4-... 4- T(1)] < T(n) < a2 n + c [T(n - 1) -I-... 4- T(1)]

Using this we can express T(n) and T(n - 1) respectively as:

T(n) <a2n + c [T(n - 1) 4-... + T(l)] (4.5)

T(/z — 1) > (n-l)4-c[T(«-2)4-...4-T(l)] (4.6)

Equation (4.5) can be re-written as

T(n) -a2n-c T(n - 1) < c [T(n - 2) 4-... + T(1)] (4.7)

Now, substituting the RHS part of Equation (4.7) in Equation (4.6), we get an upper
bound onT(n) which is:

T(n) < (a2 -) n 4- ni 4- (1 4- c) T(n - 1) (4.8)

Similarly, considering the alternate arrangement of inequalities for T(n) and T(n - 1), we

can get a lower bound on T(n), which will be similar to Equation (4.8) with inequality sign

81

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

reversed. We derive the complexity using the upper bound (Equation (4.8) on page 81)

herein, and a similar derivation can be shown with the lower bound as well. Considering

az — = ay, we get:

T(n) < ay a + a} + (1 + c) T(h - 1)

Substituting T(n - 1) in terms of T(n - 2) and considering a^ = - ay, we get:

T(n) < ay n +a} 4- (1 4- c) [«3 (n - 1) 4- 47] + (1 + c)2 T(n - 2)]

T(a) < ay n 4- 4- (1 4- c) ay ii — (1 4- c) ay + (1 4- c) 4- (1 4- c)“ T(n — 2)]
T(h) < ay a +a} 4- (1 4- c) ay n 4- (1 + c) (a} - ay) 4- (1 4- c)2 T(n - 2)]
T(n) < ay a [1 4- (1 4- c)] 4- 47j 4- (1 4- c) 474 4- (1 4- c)2 T'fn — 2)]

Similarly, substituting T(n — 2) in terms of T(n — 3), T(h — 3) in terms of T(n — 4) and so

on we get:

T(h) < ay a [1 + (1 4- c) + ... 4* (1 4- c)n “] 4- 47] 4- (1 4- c) 474 4- (1 4" c)~ay 4" ...4~
(1 +cr~2 «„., + (!+ c)"-' T(l)

T(h) < <13n ^^—^■ + SOME_CONSTANT + (T+c)"-’ 0(1)

This can be simplified to:

(1 4-c)”-1T(n) < (ay n 4- c) -- 4- SOME-CONSTANT

Using this, we compute the cost of insertion and refinement of a transaction tr of length m

into the BFI-forest. This is equal to sum of (i.) cost of enumerating SPs of tr; (ii.) inserting

SPs into the buffers of the root nodes of respective BFI-Trees; (iii.) cost of incrementing

the frequency counts; and (iv.) cost of refining all BFI-Trees. This is equal to:

Total time = &(m) 4- T(m) 4- T(m - 1) 4- T(m - 2) 4-... 4- T(l)
(i), (ii) & (iii) (iv)

by solving which we get:

(1 4- cY”Total time < (am m 4- c) 4- SOME-CONSTANT c

Similarly, if we derive using the lower bound on T(n), as explained earlier, we get a

similar equation with inequality sign reversed. Thus we can safely claim that the total

82

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

time is: O Ml+cT □

Note that actual expected time will be much lesser than the derived complexity be

cause - 1) Usage of use FP-trees at Maxjieight reduces the size of each tree and also the

expected insertion and refinement time, as insertion in FP-tree is a operation; 2)

While computing the expected time, we ignored the anytime property (interruption in

between) and gave worst case time when there is sufficient time allowance available to

complete insertion and refinement of a transaction. Also note that the value of c has been

experimentally found to be in the range - [0.05 - 0.2] for the values of 6 chosen based

on recommendations given in Section 4.7.0.4 on page 96. Also, an analysis has been pre

sented in Section 4.7.0.5 on page 97, where the curve obtained by the above complexity

is plotted and compared with the curve that plots the actual time taken for insertion and

refinement of varying length transactions.

We now derive the space occupied by the BFI-forest. Since we enumerate all possible

SPs and expand them into sub-trees, the total space occupied by BFI-forest will be of

the order of total number of nodes in it, along with their buffers. Since every itemset is

represented by a unique node in BFI-forest, the total number of nodes in the forest will

be < total number of e-frequent itemsets. It will be "less than" because the decay factor

f decays the frequency counts with time. We provide an estimate on maximum number

of nodes present in the forest at the steady state, while accounting the role of the decay

factor.

Consider a k-length itemset ...,iik} which is a subset of I and the items are

arranged in non-increasing order of their frequency counts, i.e. A/t > A/2 > A/t, with their

indices following the order 0 < < I2 < — < Ik < |/|. We first derive a support threshold

known as critical support threshold (7), which is the minimum support required for an

itemset to be present in the BFI-forest at steady state.

Theorem 3. All those k-length itemsets that have A{,; J; j > 7, where 7 = (1 - f)e,
(k

A^ i) i, } denotes PJA/.
■'2... ‘ /=1

Proof. Let us consider that we have processed a good number of transactions in the stream,

and the forest is at steady state. We now examine the itemsets which can exist in the tree

83

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

at this state. Let freq({iiif i^,..., i;k},/) be the decayed frequency count of the itemset

...,iik} at time t. For brevity, we denote {//,,//,,...,/\} as /j. We get:

/'^(q/ph...= / x............- I) + Xf (0 < / < 1)

where X, = 1 if } occurs in the latest transaction tr arriving at time t; 0 otherwise

Taking expectations, we get

£L/'^(q/„/2...4p)] =f x ...- 1)] + £[X/]

E[X,] = 1 x Pr[X/ = 1] + 0 x Pr[Xt = 0] by definition, we get

k k
pr[Xf = 1] = Pr[ih € trMl2 € tr K ... € tr] = € M = TTV = A{'/r'/.... M

/=! /=1

On writing E[freq(iij2... ik,t - 1)] in terms of E[freq(iiltl2... lk,t - 2)] and so on, we get

E[freq(i{lj2.../Jj] = + (^{/i,/2,.jj) 1/y

After long time, at steady state we have: lim^^ E[freq(iilti2... ik, t)] = sO/ an

itemset {//,,//,,..., iik} would persist in the forest if is at least e-frequent, i.e., —e.

This means that all the itemset that have nA', > (1 — f)e (= q) would persist in the
qc/

forest. □

Now, we shall find an estimate on total number of itemsets that qualify the above

critical support threshold criteria. This shall estimate the total number of nodes in the

BFI-forest, giving us an estimate of space occupied. Let A.v now be modelled using the

zipf distribution [187], such that A.v = A(x) = where ci & C2 are constants with

q,c2 > 0 & d < 1 and x is the rank of the item ix in non-increasingly sorted I (according

to the frequency counts). Using this assumption, we now estimate the count of k-length

FIs in two steps: (1) in Lemma 1 on the following page we estimate the total number of

integral points lying inside a high dimensional hyperbola [188] centered at the origin and

bounded by the positive coordinate axes (see Figure 4.4a on the next page); (2) we use

Lemma 1 on the following page to estimate the count of k-length FIs.

A fc-length frequent itemset of the form {iit,ii2,-,iik} (items are arranged in non-

84

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

(b) (d)

Figure 4.4: (a) The solution region bounded by a high dimensional hyperbola and the co
ordinate planes; (b) The enveloping tetrahedron which approximates the hyperbola; (c) The
tetrahedron fully covering the feasible solution region; (d) The solution region and enveloping
tetrahedron after shifting the origin to (1,1,1).

increasing order of their frequency counts) can be represented by a point on a A'-dimensional

hyper-plane with its coordinates = (h, h,Ik). After modelling the sorted support counts

of items by the zipf function, we will find that the FIs are restricted to lie within a k-

dimensional hyperbola - (X] 4- «)(x'2 4- fi)... (x^- 4- n) = D (see Theorem 4 on the next

page). Note that x,(l < j < k) denotes a dimension on /c-dimensional hyper-plane. By

estimating the total number of integer lattice points that lie inside the volume formed by

the above hyperbola (Figure 4.4a), we can estimate the count of A'-length FIs. For this, we

find an enveloping solid (a ^-dimensional tetrahedron) that envelopes the volume of the

solid formed by the ^-dimensional hyperbola as shown in Figure 4.4b & Figure 4.4c. The

volume of this enveloping tetrahedron shall now give us an estimate of the volume of the

hyperbola, which will give an estimate of the total number of integer lattice points lying

inside the solid formed by the hyperbola. This is achieved by the following lemma:

Lemma 1. The number of solutions of the equation (xi 4- n)(x2 4- a)... (x* + a) < D such
(I | k 4- 1)

that 0 < Xi < X2 < ... < xk, Xj G Z, i G {1,2,...,k] and p > 0, is less than ———-------
D . , .

where I,it = —r — n is the intercept over any coord, axis.
oK 1

Proof. We begin by identifying the intercepts cut by this equation on each of the k axes. By

symmetry all of them are at an equal distance from the origin. From Figure 4.4a, it is easy

to see that the intercepts are at a distance of - a from the origin. Let IHl = - a be

this value.

Consider a ^-dimensional tetrahedron (simplex) with (k 4- 1) vertices - (vo, V\,Vk),

85

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

such that Vq lies on the origin, while v, lies on Xi (the i,h coordinate axis) at a distance I„t

from the origin, i.e. v, = An x a (see Figure 4.4c on page 85) with e, as the basis vector.

The volume of the solid bounded by this tetrahedron is easier to find as compared to the

original curve. The equation of this tetrahedron is .vj 4- x2 4-... 4- Al- = An- In its current

form, the enveloping tetrahedron is not covering the points which are lying on the surface

of the original solid since the volume will only consider interior points. So we shift the

origin to the point (1,1,..., 1) such that its equation now becomes (a'i — 1) 4- (x2 — 1) 4-

...(x* -1) = hit, i.e., Xi 4- a*2 4-... + x^- = hit + k (Figure 4.4d on page 85). Finding solution

to this equation will now give us an estimate of the number of points within, as well as

on the boundary of the solid formed by the hyperbola. The new tetrahedron must have

intercept > An 4- k in all dimensions. To keep a margin, we take it to be hit 4- k 4-1. Hence,

its vertices are at a distance of Am 4- k 4-1 from origin.

For a tetrahedron with vertices - (vq, vi, ..., v^), its volume [189] is:
l^det - U0, U2 - ^0/ • • -'Vil - ^0^ |' where <fet - Vq, V2~Vq,

determinant of the diagonal matrix with the given diagonal elements. Note that vr — vq

represents an edge of the tetrahedron. For all such values of r, the length of an edge is

equal to hit- Since the determinant of a diagonal matrix is simply the product of its diago-
/1 fa

nal elements, the volume of the new enveloping tetrahedron, will be = ——. □

Note that in Figure 4.4 on page 85, the hyperbola is shown only for the first quadrant.

We now estimate the total number of k-length frequent itemsets in BFI-forest.

(I | k | 1)^
Theorem 4. Number of itemsets of length k in the BFI-forest is estimated by ———,

ck
where I„tk = -777 7 “ c2-

C2

Proof. A singleton itemset {//} (0 < A < |/|) is frequent if sup({i/1}) > 7- Replacing the

true support of {A(} with its expected support, we get:

So, for all values of /i >0 satisfying the above inequality, we get a corresponding item

A G / which is 1-FI with respect to the support rj. So, estimated total number of 1-FIs is

[7 + 1*

86

4.5 AnyFI: Anytime Frequent Itemset Mining of Data Streams

Count of 2-FIs: Let us consider an arbitrary 2-length FI {//,, } such thatO < l\ < h < |/|.

For to be frequent, sup({//,, //,}) > //. Again replacing true support with the

expected support we get:

(h + £2)^2 + Q) (L9)

reduces to find l\ and b such that they satisfy inequality (1.9).

1, the number of such (/1J2) pairs is estimated by + 3 .—— where

So now our problem

According to Lemma

Count of k-FIs: The general case of estimating the number of k-FIs is a simple ex

tension of the above. For < iix,i^,> to be frequent, it's support must exceed

We will finally get the constraint similar to inequality men

tioned in lemma Lemma 1 on page 85, i.e. (/1 -I- C2)(/2 + C2)... (l^ + C2) < — • So, the

4. £ J)*
number of (/i,/2z--z4) tuples that satisfy the above inequality are: —-——--------where

^11 tk = — c2- □

In the formula derived above, for lower values of k, the numerator term dominates the

denominator. And subsequently after a maxima is reached, the denominator term starts

dominating. This makes the count of FIs increase with increase in k initially up to a certain

value and then later decline. This can be observed by results presented in Section 4.7.0.5

on page 97 (Table 4.5 on page 99) that compare our estimates with the actual counts. Note

that the total number of nodes in the BFI-forest will be much lesser than the total number

of itemsets computed using Theorem 4 on page 86 (for all values of k). This is because,

we use FP-trees in the BFI-forest beyond the depth = Max_Height.

Also, since we know that the total number of SPs stored in the buffers is limited by

Buff-Capacity, the total space occupied by the buffers in the worst case is proportional

to the number of nodes in the forest. However, in practice the nodes at the upper levels

of the trees have buffers filled closed to its capacity, and buffers at the lower levels of the

trees are less filled. This is substantiated by an experiment presented in Section 4.7.0.5

on page 97 (Table 4.6 on page 99) where the average size of the buffers is shown for each

level when the forest is at the steady state. So, the contribution of buffers to space is also

87

4.6 MPAnyFI: Anytime FI Mining of Multi-Port Data Streams

Figure 4.5: The MPAnyFI Framework

considerably lesser than the worst case.

4.6 MPAnyFI: Anytime FI Mining of Multi-Port Data Streams

We extend AnyFI into a parallel framework known as MPAnyFI, for anytime FI min

ing over multi-port data streams. MPAnyFI works over distributed memory architecture,

which is typically a cluster of computing nodes. Each computing node (or a port) receives

a stream where transactions are arriving at variable inter-arrival rate. We mine for FIs

from all these streams and produce the mining result. Figure 4.5 illustrates the MPA

nyFI framework. Every computing node in the cluster runs AnyFI independently for the

stream it receives, and captures the incoming transactions in their respective BFI-forests

in batches of units of time. At the end of each batch, every computing node captures

the stream for the next batch in a fresh BFI-forest. Also, at the end of each batch, every

computing node executes the following steps:

• Flush all the buffers in the BFI-forest (Algorithm 4.9 on page 77).

• Prune the forest (Algorithm 4.7 on page 75) to eliminate all infrequent sub-trees.

This leaves only e-frequent itemsets.

• Encode all the trees along with the frequency counts stored at each node and send

the forest to a master machine. Encoding can be done using any of the tree traversal

algorithms like BFS or DFS. We used BFS encoding.

The master machine receives and decodes all the forests received from different com

puting nodes. Then we do a pair-wise merging of forests received from all the machines

resulting into a single BFI-forest for this batch. This merged BFI-forest contains only the

e-frequent itemsets received from all the computing nodes in last tjn units of time. We

now insert this forest into the tilted-time window framework [98] and update it.

88

4.6 MPAnyFI: Anytime FI Mining of Multi-Port Data Streams

Consider Figure B.l on page 212 showing the TTWF. Let us start with an empty TTWF.

Say a new batch of transactions has arrived and we have built the merged BFI-forest (say

Fi). We store Fi in u’i. Now lets say another batch of transactions arrive (resulted in

forest F?). At this time, we move Fi to and put F? in Now after another batch of

transactions arrives (forest F3 arrives), we shift Fj to the temporary window present in

level 2 (fttb)/ shift F2 to cP2 and insert F3 in zpi. This state is depicted in Figure B.2 on

page 213. When the next batch arrives (F^, we do the following steps:

• Merge forests in W2 and tw2 (forests F\ and F2).

• Decay the frequency counts of itemsets in the merged forest using the decay factor -

ft (0 < ft < 1) similar to using Equation (4.1) on page 65. (Note that fit is different

from f used by AnyFI.)

• Prune to the forest using DFS similar to Algorithm 4.7 on page 75 to eliminate e-

infrequent itemsets.

• Move the merged forest into Wj as shown in the figure.

• Move F3 to W2 and insert F4 into W\.

Going this way, after receiving another 4 batches of transactions, the forest in W3

(Fi + F2) will be placed in twj. And after another 4 batches, the forests in W3 and will

be merged and stored in W4 as was done previously. And in this way the TTWF grows

logarithmically.

A user can request for mining results (containing FIs) from a specific window or for

a duration covered by multiple windows. For this, we traverse the trees of BFI-forests

present in these windows, accumulate the FIs (as was done in Algorithm 4.10 on page 78)

and return them as the mining result.

Please note that since we use ft to decay the frequency counts of itemsets stored in BFI-

forests in TTWF, it eliminates the need to separately decay them in individual computing

nodes using the parameter f. Capturing transactions batch-wise in fresh BFI-forests also

eliminates the need for intermittent pruning in each computing node.

It can be observed that MPAnyFI addresses only the first characteristic of an anytime

mining algorithm, i.e. it handles varying inter-arrival rate of transactions. Since, MPAnyFI

89

4.7 Experimental Results & Analysis

involves communication between the computing nodes of the cluster, and also the mining

of multiple forests in the TTWF, it is not feasible to generate an immediate mining result in

shorter time allowances. Hence, it doesn't cater to the second characteristic of an anytime

algorithm.

4.7 Experimental Results & Analysis

All experiments were performed on a Linux workstation with an i7 processor & 32 GM

RAM. All programs are implemented in C. We used both synthetic and real datasets for

experimentation. The synthetic datasets are generated using IBM Synthetic Data Gen

erator [190]. The nomenclature of the synthetic datasets is as follows: 1MD1000T10I4

represents a dataset that has IM transactions, drawn from a dictionary of 1000 unique

items (D1000), with average transaction length of 10 (T10) and average FI length of 4 (14).

The details of the real datasets are given in Table 4.2. The Retail dataset [191] contains

market basket data from a Belgian retail store. MSNBC [192] is a click stream dataset describ

ing page visits on msnbc.com. We evaluate the quality of results produced using precision

and recall.

Table 4.2: Details of Real Datasets used for experimentation

Dataset transactions # Unique Items Average Transaction Length
Retail 88162 16470 10.3

MSNBC 989818 17 1.71

We evaluate the quality of results produced using precision and recall. For details on

these quality measures, please refer to appendix C on page 214.

The Any-Mine algorithm can mine FIs from the BFI-Forest in two modes: False Neg

ative mode (FAN) and False Positive mode (FAP). In FAN mode, we mine with support

a, where we get precision = 1, i.e., the result will not have any itemset which is not a-

frequent. However, we may miss some of the <r-FIs leading to reduction in recall. In FAP

mode, we mine with support = e, where we should ideally get results with recall = 1

and compromised precision. In our anytime algorithm, at very high speeds we may lose

some suffix projections from the buffers, whenever they overflow. As a result, we may not

always get recall of 1. In all our experiments, we choose FAN mode, where precision is 1

90

4.7 Experimental Results & Analysis

IMDKMHH 1014 --------------1X11)50011014

80 ------ ■------------ ■------------ ------------- ------------- ■------------ ------------- ------------- ------->
0 9999 0 999 0 99 0 98 f 0.9(, 0.94 0 92 0.9

Figure 4.6: Effect of decrease in f on recall

and study the effect on recall with variation in various parameters.

To simulate a stream with varying inter-arrival rates, we use Poisson streams, which is

a stochastic model used to model random arrivals [193]. It takes in a parameter /\ which

controls the speed of the stream. For, A = |, the model generates an expected number of

A transactions (or objects) per second , with expected inter-arrival rate of x sec. between

any two consecutive transactions (or objects).

The values of the other parameters chosen for experimentation are: Max_Height = 5,

0=0.05, 7=2, batch_size = 10000, buff Capacity = 100 and hash_size is 10% of |/|. These are

default, unless explicitly stated.

Since, AnyFI uses a damping factor f over the frequency counts of the itemsets to dif

ferentiate the contribution of old and newly arrived transactions, the recall of the output

computed by AnyFI, with respect to non-decayed ground truth will always be lesser and

will show a decreasing pattern with decrease in f. Figure 4.6 illustrates this effect for

1MD1000T10I4 and 1MD500T10I4 datasets with 0=0.001, A=20k, 6=0.005 and cr=0.01. We

can clearly observe that recall has reduced for both the datasets with decrease in f. So,

for fairness, we generate the ground truth using the transactions whose frequency counts

are decayed, and then compare our results with it.

------- a 0.01 -------a 0.0075
------- a = 0.005
99.5

99.25

3 99-----_ _ _ --- ------
s -------------------------
98.75

98.5................“
5 10 15 20 25 30 35 40 50 60

>. (x 1(P tps)

(a)

a 0.01 -------a 0.0075 ------- a =0 01 -------a - 0.0075

?. (x «ps)).(x 10J tps)

(b) (0

Figure 4.7: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T10I4 dataset

91

4.7 Experimental Results & Analysis

HO ——■—■—<—.—------- ------ ----
5 lo 15 20 25 50 55 40

>. (i 10* tpx)
(a)

Figure 4.8: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T15I8 dataset

Figure 4.9: Effect of varying stream speed (A) and a on (a) Recall (b) Peak Memory Consump
tion (c) Mining time for 1MD1000T20I15 dataset

4.7.0.1 Performance of AnyFI

In this subsection, we evaluate the quality of mining results produced by AnyFI along with

the behavior of peak memory consumption and mining time, with variation in various param

eters. In all experiments, the Any-Mine algorithm has been run without any interruption

(i.e., without exercising the anytime property), unless explicitly stated, to evaluate the

quality of mining results with respect to various parameters.

In the first experiment, we analyze the effect of varying stream speed (A) on re-

call(%), peak memory consumption & mining time, with different support thresholds

(a), on the datasets - 1MD1000T10I4 (Figure 4.7 on page 91), 1MD1000T15I8 (Figure 4.8)

and 1MD1000T20I15 (Figure 4.9), with e=0.005 and /=0.99. The results observed for

1MD1000T10I4 dataset show that recall (close to 100%) is not affected by variation in

stream speed. However for the other two datasets, recall has shown slight decline with

increase in stream speed and decrease in a. This is because at higher stream speeds, pro-

92

4.7 Experimental Results & Analysis

Figure 4.10: Effect of in
creasing stream speed on
recall for real datasets

Figure 4.11: Effect of varying stream speed (A) and varying
dictionary size on (a) Recall (b) Memory for IMD*T1OI4
datasets

Figure 4.12: Effect of varying stream
speed (A) and average transaction length
on (a) Recall (b) Memory for 1MD1OOOT*I4
datasets

Figure 4.13: Effect of varying stream speed
(A) and average Frequent Itemset length on
(a) Recall (b) Memory for 1MD1000T20I*
datasets

jections are removed from the buffers when they become full, which leads to reduction in

recall. The peak memory consumption for all three datasets, has reduced with increase in

stream speed, at all values of cr. This is because, the algorithm is not able to refine the tree

nodes frequently and thus more transactions get buffered at higher speeds which stops

the forest to grow large. Mining time has also reduced with increase in stream speed due

to reduction in number of nodes visited in the DFS traversal, at high speeds.

Next, we study the behavior of AnyFI on real datasets with increase in stream speeds.

Figure 4.10 shows the affect on recall for retail and msnbc datasets, with /=0.99, e=0.002

and (7=0.01. The reduction in recall observed for retail dataset with increase in stream

speed, is because of longer transactional length possessed by transactions in it, due to

which the percentage of transactions that get sufficient time to get completely processed

is reduced.

93

4.7 Experimental Results & Analysis

Figure 4.14: Effect
of varying c on peak
memory consumption

Figure 4.15: Pattern of
Memory consumption
in stream processing

Figure 4.16: Effect on recall with
increase in mining time allowance
for 1MD1000T10I4 & retail

Next, we study the effect of increase in dimensionality (dictionary size) of the dataset

on recall and peak memory consumption (Figure 4.11 on page 93) for different stream

speeds on 1MD*TK)I4 synthetic datasets, with 6=0.005, <7=0.01 and f=0.99. The results

show improvement in recall and increase in memory consumption with increase in di

mensionality, at all stream speeds. Increase in recall is because, the dataset becomes

sparse with growing dimensions and thus the number of FIs in the dataset reduces. Peak

memory consumption increases because of increase in number of trees in the forest for

higher dimensionality.

Next, we study the effect of variation in average transaction length (ATL) (Figure 4.12

on page 93) and average FI length (AFL) (Figure 4.13 on page 93) on recall & memory, for

1MD1OOOT*I4 and 1MD1000T20I* datasets respectively, at different stream speeds with

/=0.99, 6=0.005 and <7=0.01. The results show slight reduction in recall with increase in

ATL or AFL at all stream speeds. This is because of the increase in density of dataset in

both cases, which leads to increase in processing time for each transaction, which further

leads to increase in chance for buffer overflows. Increase in peak memory is attributed to

higher number of projections getting enumerated and stored in the forest at larger ATL

or AFL.

Next, we study the effect of change in epsilon on peak memory consumption for

1MD1000T10I4 dataset with <7=0.01 (Figure 4.14). The results show that increase in epsilon

leads to reduction in peak memory consumption, because at greater epsilon values, larger

number of itemsets become infrequent and get pruned.

Next, we study the pattern of memory consumption of AnyFI while processing the

stream for 10MD1000T15I8 and retail datasets (Figure 4.15). For synthetic dataset we

choose /=0.99, 6=0.005 and £7=0.01. For retail dataset we choose /=0.99, 6=0.0025 and

94

4.7 Experimental Results & Analysis

Table 4.3: Comparing Speed and Memory of AnyFI with budget algorithms

Algorithm Category 1MD1000T10I4
Speed (tps) Memory (MB) Speed (tps) Memory (MB)

FPStream Tilted-Time W 27000 99 15000 220
SWP-tree Sliding Window 12000 530 8200 1020
DSM-F1 Landmark Window 9200 1200 6300 2500
vsw Sliding Window 900 700 650 1600
AnyFI Damped Window upto 60000 600-3400 upto 40000 1900-7000

Table 4.4: Comparision of Mining Time (in seconds)

Algorithm 100KD100T10I4 100KD100T15I8
SW P-Tree / FP-St rea m 5.8 sec 20.6 sec
DSM-F1 3.3 sec 18.5 sec
Any-FI 1.2 sec 6.5 sec

tT=0.003. For both datasets, A=20000 tps. The results show that memory consumption ini

tially increases and later on remains almost the same with slight fluctuations throughout

the run until it finishes insertion of all transactions. The increase in memory observed

towards the end of the curves is because of emptying of the buffers which happens before

the mining step.

4.7. 0.2 Anytime Mining of Frequent Itemsets

We study the quality of FI mining with variation in time allowance to mine. Figure 4.16

on page 94 presents the effect on recall with increase in time allowance for mining, which

is the second anytime mining feature of our algorithm. We conduct this experiment on

1MD1000T10I4 and retail datasets with A=20000, /=0.99, e=0.0025 and (7=0.005. The result

clearly shows that AnyFI is able to output mining results with compromised accuracy,

within a few milli seconds. And then it is able to improve its recall with increase in time

allowance to mine, for both the datasets.

4.7. 0.3 Comparing AnyFI with existing approaches

In this subsection, we do a comparative study of AnyFI with existing algorithms. First,

we compare the speed handling capacity and peak memory consumption of AnyFI with

the existing budget algorithms for 1MD1000T10I4 (e=0.005 & (7=0.01) and retail datasets

(e=0.002 & (7=0.01). The batch size in all of them is chosen to be 10,000. The results given

in Table 4.3 clearly show that these algorithms have limited budget and cannot process

higher stream speeds. Whereas our algorithm is able to work for speeds upto 60,000

95

4.7 Experimental Results & Analysis

— — - IMU5OOI1518 IMDKMHII1518iMDSiHii uni --------- iMpmoormu

(a)

Figure 4.17: Effect on Memory consumption with increase in (a) fl (b) 7 (c) Maxjieight

tps for the same datasets. We can also observe from the table that the peak memory

requirement for AnyFI is at little higher than the existing approaches. This is because of

storing a large number of SPs.

Next, we compare the mining time of FP-growth, DSM-FI and AnyFI for 100KD100T10I4

and 100KD100T15I8 datasets (see Table 4.4 on page 95). For fair comparison, we insert

the complete dataset into the summary structures of all the three algorithms without con

ducting any pruning and then mine for FIs. Mining in AnyFI is running in complete

mode, i.e. without anytime interruptible feature. The values of parameters chosen are

as stated in the previous experiment. The results show that the mining time in AnyFI is

lesser when compared to the existing approaches. It is worth noting that FP-growth is

used in SWP-tree and FP-Stream.

4.7. 0.4 Parameter Tuning and Recommendations

In this section, we study the effect of various parameters used by AnyFI and give recom

mendations for choosing their appropriate values. First, we study the affect of varying 0

(Figure 4.17a), 7 (Figure 4.17b) and Mnxjieight (Figure 4.17c) on peak memory consump

96

4.7 Experimental Results & Analysis

tion, over 1MD500T10I4,1MD- 1000T10I4, 1MD500T15I8 & 1MD1000T15I8 datasets, with

z\=10k, /=0.99, e=0.005 & <r=0.01. The results for 0 show that peak memory reduces with

increase in 0, for all datasets. This is because, as we delay the refinement of a transaction

down the tree, the memory consumption reduces. Similar pattern have been observed

for other datasets as well. From the observations made, we recommend to choose 0 in

[0.05 - 0.2]. The results for 7 show that peak memory increases with increase in 7. This

is because, as the pruning interval increases (7 dictates the size of pruning interval), the

number of obsolete subsets getting accumulated in the BFI-forest also increases. From the

observation made, we recommend to choose 7 in [0.5 - 2]. The results for Max_Height

(level for FP-tree) show that the peak memory grows with increase in Max_Height, be

cause of creation of a large number of branches for storing enumerated SPs at greater

depths. We recommend use of Max_Height < 5 for datasets of high dictionary sizes and

larger average transaction lengths.

Next, we study the affect of varying hash_size (size of the hash table in a buffer)

(Figure 4.18 on the following page) and buf/Capacity (max no. of SPs in a buffer) (

Figure 4.19 on the next page) on recall and peak memory consumption for 1MD1000T15I8

and retail datasets, with the above parameter values. The results show that increase in

hash_size has no effect on recall. This is because of the algorithm design, which ensures

constant time buffer accesses irrespective of its size. However, increase in buf/Capacity

has led to increase in recall until a point beyond which the increase in not significant.

This is because, increase in bu//Capacity reduces the chance of a loss of SPs from the

buffer. Memory consumption, on the other hand, has increased with increase in both

hash_size and bu//Capacity for obvious reasons. So, we can restrict the value of hash_size

to 5% or 10% of I, and bu//Capacity to 100, as beyond this there is no significant change

observed in recall. Note that similar observations have been made for other speeds and

other datasets as well.

4.7. 0.5 Experiments establishing Theoretical Analysis

In this section, we present a few experimental results that verify the theoretical analysis

presented in Section 4.5.5 on page 80. We first validate the time complexity of insertion

and refinement of a /n-length transaction derived in Theorem 2 on page 81, with that of

97

4.7 Experimental Results & Analysis

Figure 4.18: Effect on (a) Recall and
(b) Memory consumption with increase
hash_size

Figure 4.19: Effect on (a) Recall and
(b) Memory consumption with increase
buff Capacity

Figure 4.20: Comparing (a) complexity curve vs (b) actual time taken for processing a trans
action with increase in transaction length - m

real time values of insertion and refinement, with varying m. AnyFI has been run in

non-anytime mode in this experiment. The curve in Figure 4.20a plots the complexity

curve derived with c=0.2, for varying m. The curve in Figure 4.20b plots the actual time

taken for insertion and refinement of ///-length transaction for 1MD1000T10I4 dataset. We

can clearly see that both the curves show similar behaviour and hence can justify the

correctness of our analysis.

We also verify the counts of ^-length FIs estimated by Theorem 4 on page 86, with

that of true FI counts produced by FP-growth. C] and ci of zipf function were chosen by

performing curve fitting [194] with that of the original values for each dataset separately

using a stream sample. The results were computed for 1MD1000T10I4 & 1MD1000T15I8

datasets at three values of a - 0.05, 0.01, 0.005. k is varied from 1 to 7. The results

presented in Table 4.5 on the next page show that the estimated count of FIs is very close

to the actual counts for most values of k.

We also empirically measure the total number of SPs stored in the buffers of the nodes

in the forest level by level for 1MD1000T10I4 & retail datasets, with 0=0.001, A=20, c=0.005,

98

4.7 Experimental Results & Analysis

1MD1000T10I4 1MD1000T15I8

Table 4.5: FI counts - Estimated vs Actual: with varying k for 1MD1000T10I4 and
1MD1000T15I8 datasets

k 1 2 3 4 5 6 7 1 2 3 4 5 6 7

s=0.05 Predicted 58 82 36 10 5 1 I 86 126 58 29 11 6 1
Actual 62 98 28 9 4 0 0 92 143 46 25 9 5 0

s=0.01 Predicted 124 1765 1265 291 19 3 1 157 2622 5349 2014 243 56 12
Actual 90 1396 994 269 17 2 0 104 1873 3782 635 72 16 4

s=0.005 Predicted 136 3048 9204 941 48 3 1 201 4274 14045 9473 3013 1026 56
Actual 94 2237 5096 721 52 3 0 158 3256 9305 7284 2487 856 42

Table 4.6: Size of the buffers in the nodes (level wise)

Level
1MD1000T10I4 Retail

Max(%) Avg(%) Max(%) Avg(%)
1 (root) 100 10.75 100 20.85
2 58 7.03 69 10.58
3 37 1.31 42 5.92
4 10 1.00 33 3.48
5 5 1.00 27 2.16

67=0.01 and Max_Height = 5. The results presented in Table 4.6 show the maximum and

average occupancy of buffers of nodes at each level in the forest. They clearly show that

the buffers at the top level of the trees are more filled than the buffers at the lower level.

However the avg. occupancy remains quite less due to the optimizations made like 0-

deferring, buffer pruning & intermittent pruning. Similar behaviour has been observed

for other datasets too. This proves the claim made in Section 4.5.5 on page 80 that the

contribution of buffers to the space occupied by BFI-forest is considerably less.

4.7.1 Experiments on MPAnyFI

All experiments are conducted on a cluster of 32 computing nodes which are IBM x3250

m4 Servers. Each server has Intel Xeon (64-bit) processor and 32 GB RAM. All implemen

tations are in C with MPI. In all experiments, f is chosen to be 1, i.e., the frequency counts

are not decayed within the local BFI-forests present in the computing nodes. Rather f_tt

is used to decay the frequency counts in TTWF as explained in Section 4.6 on page 88.

f_tt is chosen to be 0.99.

4.7.1.1 Experimental Results

First, we measure the peak memory consumption across any slave computing node as

the stream progresses for 960MD100T10I4 dataset. This dataset has been equally divided

99

4.7 Experimental Results & Analysis

amongst the computing nodes, where each node gets 30M transactions for 32 computing

nodes. The parameters are: c=0.005, (7=0.01, tin=10 sec., t//ctn=0.05 and z\=10k and 20k.

The peak memory consumption across any slave node for first 20 batches of the stream

has been presented in Figure 4.21a. The results show that peak memory consumption is

stable and doesn't fluctuate with stream progression. The average deviation in from the

mean is 79.97 KB for z\=10k and 100.24 KB for z\=20k.

Next we measure the number of nodes present in the forest of each window in TTWF

(stored at the master node), along with the mining time required for mining FIs from

each window. We use the same dataset along with same parameter values as above. We

conduct this experiment for 32 nodes and all measurements were taken after the entire

dataset has been processed. The results presented in Figure 4.21b show that the rate of

increase in number of nodes in the forest declines with increase in age of the windows

at both the speeds. This is because of use of decay factor ftl and logarithmic nature of

TTWF. The mining time of each window also shows similar behavior (Figure 4.21c). This

establishes the memory efficiency of MPAnyFI.

Figure 4.21: (a) Max memory at a computing node with stream progression (b) Memory
consumed by windows of TTWF after processing the complete dataset (c) Mining time of
each window in TTWF

100

4.8 Main Contributions

4.8 Main Contributions

• We present an Anytime Frequent Itemset mining algorithm for data streams, AnyFI,

characterized by both the properties of an anytime algorithm. To the best of our

knowledge, this is first such attempt.

• We propose a novel data structure known as Buffered Frequent Itemset Forest (BFI-

forest), which stores buffers at its tree nodes and aids AnyFI to handle variable

inter-arrival rate of transactions. Its design also enables a user to obtain immediate

mining results.

• We also propose MPAnyFI for anytime FI mining of multi-port data streams over com

modity clusters. It uses AnyFI at each computing node and stores the aggregate FIs

in a tilted-time window framework.

Salient Features of proposed work

1. Fast Mining. AnyFI inserts all suffix projections of incoming transactions (defined

in Section 4.3.1 on page 64) into the BFI-forest, depending upon the available time

allowance. As a result, mining the forest for FIs becomes a simple traversal of its

trees accumulating FIs without generating any candidate itemsets as in apriori like

methods [47, 50, 51], or conditional trees as in FP-growth like methods [53,184, 98,

97], thus making mining very efficient.

2. Quick approximate result. AnyFI can give an immediate approximate mining result

with best possible accuracy for the available time allowance, and can improve its

quality with increase in time allowance.

3. Key Concepts Used. AnyFI uses techniques such as 0-deferring, buffer-pruning, inter

mittent pruning and usage of small sized FP-trees within the BFI-Forest, to efficiently

manage memory consumption, which otherwise would have been high as we store

a large number of enumerated suffix projections. 0-deferring deliberately delays the

insertion of infrequent & semi-frequent projections into BFI-forest and thus saves

memory and time. Buffer-pruning prunes infrequent projections from buffers when

ever time allows. Intermittent pruning prunes infrequent sub-trees from the forest at

regular intervals without disturbing the stream. Using FP-trees within the BFI-forest

saves unnecessary creation and deletion of sub-trees that store infrequent itemsets.

101

4.9 Conclusions and Future Work

4. Efficiency & Performance. The extensive experimental analysis shows that AnyFI

brings in the features of an anytime algorithm. It also establishes that AnyFI can

handle greater speed streams upto 60,000 transactions per second (tps), with recall

close to 100%. The comparative analysis shows that AnyFI handles higher stream

speeds and mines for FIs efficiently, when compared to the existing algorithms. Ex

periments have also been conducted to tune the parameters used by AnyFI (0,7) and

recommendations are given for choosing their values appropriately for maximizing

efficiency. The experiments conducted over MPAnyFI also show its efficiency.

4.9 Conclusions and Future Work

4.9.1 Conclusions

We presented AnyFI which is the first anytime FI mining algorithm for data streams.

AnyFI incorporates both the functionalities of an anytime algorithm - ability to handle vari

able stream speeds, & ability to give an immediate mining result with compromised accuracy if

required and improve its accuracy with increase in time allowance. AnyFI uses a novel data

structure known as BFI-forest, which handles stream of transactions arriving with vary

ing inter-arrival rate. Also, unlike other methods, mining BFI-forest requires a simple

traversal of its trees accumulating FIs, making it very efficient. The experimental analysis

presented shows that AnyFI can handle variable and high stream speeds while main

taining high recall. We have also extended AnyFI into a parallel framework known as

MPAnyFI for anytime FI mining of multi-port streams. This framework uses Tilted-Time

Window Framework to summarize the entire stream in logarithmic space. The experimental

results also establish its efficiency.

4.9.2 Future Directions

In future, we shall extend MPAnyFI to mine for frequent (or top k) co-occurrence patterns

from multiple streams.

102

Chapter 5

Anytime Set-wise Classification of

Data Streams

5.1 The Set-wise Classification Problem in Data Streams

Due to increasing utilities of data generating systems such as web, sensor networks, retail

chains, etc., classification in data streams has become very popular [146, 99, 148, 147, 14,

149]. These algorithms build a classification model on the initial training corpus, which

is used to classify the test objects arriving in the stream. These algorithms allow only a

single pass for classifying each test object.

In many stream applications such as community detection from text feeds, website

fingerprinting attack, retail chain analysis, etc., the classification labels are not associated

with individual data objects, but with groups of objects. Each group is treated as an

indivisible entity with an associated class label. And, a class label can be meaningfully as

signed to an entity only by studying the overall distribution pattern of objects in it, rather

than studying a single object. Consider Figure 5.1 on the next page2. It has two kinds

2bor rowed from [1951

• J. S. Challa, P. Goyal, V. M. Giri, D. Mantri and N. Goyal. AnySC: Anytime Set-wise Classification of
Variable Speed Data Streams. In Proceedings of 2018 IEEE International Conference on Big Data (Big
Data 2018), pages 967-974, IEEE Press, 2018

103

5.1 The Set-wise Classification Problem in Data Streams

0
I 0 I

I 0
o I 1 0 1

1 1 1
1 0 0 0

0
111 1
0 0 0

Figure 5.1: Illustrating Set-wise Classification Problem

of data objects - Os and Is. At a first look, there doesn't seem to be any difference in the

distribution of Os and Is as they are interleaved and no proper boundary exists. However,

if we carefully observe, we can see that Os are more concentrated near the boundaries and

Is are more concentrated in the interior region. By observing such distribution patterns,

we can meaningfully assign a class label to the set of all Os or set of all Is. This kind

of problem is known as the Set-wise Classification problem [195] and can be found in the

applications described below:

5.1.1 Applications

Community Detection using text feeds. Community detection allows us to find groups

of users who have common interests [196]. These groups can be used for targeted ad

vertising on social networks or viral advertising campaigns. There can be multiple users

belonging to various communities creating text feeds on a social networking website such

as twitter. Using these feeds (or tweets), we can predict the community to which each

user belongs to. This problem can be viewed as a set-wise classification problem. Each

tweet can be considered as a data object, each user can be considered as an entity (asso

ciated with tweets tweeted by him), and a community class label can be associated with

each user, with each class having multiple users associated. We can clearly observe that

based on a single tweet, we may not be able to meaningfully assign a class label to a user.

However, by studying the pattern formed by a set of tweets by a user, we can study his

behavior and appropriately assign a class label. In this problem, we can first construct an

initial classification model over a given sample of tweets from various users (entities) with

known community class labels. Then in the stream we will receive and process real-time

tweets that are being posted by various users. The stream can receive tweets from both

104

5.1 The Set-wise Classification Problem in Data Streams

labeled and unlabeled users. The tweets from labelled users (training entities) can be used

to incrementally update the classification model. The tweets from unlabelled users can be

used to construct the test entities (unlabelled users), whose class labels can be predicted

using the above model. As more tweets belonging to a user arrive, the prediction becomes

more accurate.

Website Fingerprinting attack. It is a Trac Analysis Attack, where network attackers

try to breach web navigation security and privacy [197, 198]. Certain web users accessing

web pages use anonymous communication mechanisms to hide the content and meta data

exchanged between the browser and the server hosting the web page using methods like

Tor network [199]. An Attacker can use ML techniques to identify the web page accessed

by a user by capturing the network packets secretly (even encrypted ones). Such attackers

can target individuals, businesses and governments. In order to prevent them, researchers

study different attack schemes and provide counter measures. This attack can be modeled

as set-wise classification problem over a stream of network packets captured when various

users are accessing the web. Given a set of web pages that are being accessed by the users,

each web page shall have different network traces associated where each trace consists of

uplink and downlink packets generated when a user loads the web page. Each packet

contains information like time, direction and length in bytes. We can consider a group

of consecutive packets (known as a burst) going in a specific direction as a data object.

Each burst is characterized by burst length and direction, which are the features used by

the attackers [197]. The set of packets (bursts) exchanged (uplink and downlink) between

the user and the server for loading a complete web page forms a trace, which can be

considered as an entity. Each trace can be associated with a class label (web page label).

So, in this problem, an individual packet (or a burst) may not be associated with a class

label since similar packets can occur over multiple web pages. Instead, a class label is

associated with a set of packets (or set of bursts), which forms a trace (entity). We can

build an initial classification model over a given sample of packets from various traces

with known class labels. In the stream, the packets received from labeled traces can be

used to incrementally update the training model, and packets from unlabeled traces can

be used to construct test entities whose class label can be predicted using the classification

105

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC)

model.

To the best of our knowledge, only a couple of approaches have been proposed for set

wise classification for data streams. The approach in [195] formally defines this problem

and presents a classification model & method for classifying test entities. Its classification

model consists of sets of class profiles (one set for each class). A class profile is an object

that characterizes the average distribution pattern of a set of entities (see Section 5.2). A

test entity is matched with all class profiles (from all classes) to find the closest, whose

class label is assigned to the test entity. The second approach [198] extends the previous

by using an ensemble of classifiers such as nearest neighbors, bayesian classifier, etc.

The rest of the chapter is organized as follows: Section 5.2 presents the set-wise clas

sification model for data streams proposed in [195]; Section 5.3 on page 111 presents the

proposed approach - AnySC; Section 5.4 on page 117 presents the experimental results

and analysis; Section 5.5 on page 122 discusses how AnySC addresses the limitations of

existing models; Section 5.5.1 on page 124 highlights the main contributions of this chap

ter; Section 5.6 on page 124 concludes this chapter and gives recommendations for future

work.

5.2 Background: The Set-wise Classification Algorithm for Data

Streams (SC)

In this section, we describe the set-wise classification algorithm for data streams (SC)

proposed in [195].

Let there be N training entities (labeled) in the entire corpus denoted by Sp.-S/v, where

each entity 8, has e, data objects in it. Let there be a total of c different classes, with

associated class labels [l...c]. Let d be the dimensionality of the dataset. Each object

in an entity is a d-dimensional vector. Similarly, let there be a set of n test (unlabeled)

entities (Ti.-Th). Let the data objects in the stream be received in the form of tuples -

< Y],entityid},labels > ... < Yr/entityidr,labelr > ... and so on. Yr is a d-dimensional

object which could either belong to a training entity or to a test entity; entity idr is the

id of the entity to which the object belongs to; and labelr is its class label. If Yr belongs

to a training entity, its class label will be in the range [l...c], and if it belongs to a test

106

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC)

Figure 5.2: The Set-wise Classification model of SC

entity, its class label will be -1. So, the stream receives a mixture of objects belonging to

training and test entities. Note that training and test entities are disjoint. So, given a set of

training entities £|...€,v, the problem of set-wise classification in data streams is: constructing a

classification model using a sample of objects from training entities, using which we can classify

test entities whose objects arrive in the stream.

5.2.1 The Set-wise Classification model

The classification model for SC, is constructed over an initial sample of data objects from

training entities and is then incrementally updated using the training objects received

in the stream. The model consists of: c classes, p class profiles and N training entities

(c << p << N), as shown in Figure 5.2. Each class contains a subset of class profiles and

each class profile is an aggregate of a subset of training entities. It is explained as follows:

An entity (either training or test) is represented by a (/-dimensional vector known as

fingerprint, which contains the distribution pattern of objects belonging to it. Initially, a

set of q data objects known as anchor points (denoted by W|...W(/) are selected from the

initial training sample, £-means clustering (with k = q) is performed over it and the final

centroids are chosen as the anchors. Note that q is an input parameter. The distribution

pattern of objects for any given entity is captured as a frequency vector around these

q anchors forming a histogram like structure, which is the fingerprint. The value of q

dictates the granularity of the fingerprint. It is defined as follows:

Definition 5.1. (Fingerprint). Let there be r objects denoted as Y[...Yr, in a given entity

Let these objects be assigned to their respective closest anchor points (one in Wj.-.W^),

resulting in a partitioning consisting of q clusters C[...C(/. Let the corresponding (rela-

107

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC)

five) cluster frequencies be denoted as where = 1. Then, the fingerprint of

£p defined with respect to the above q anchors, is denoted by the (/-dimensional vector

[/i-AI-

Given a set of data objects Y|...Yr belonging to an entity the fingerprint of 8, by

constructed by incrementally adding each object to it. For each Y,, we first identify the

closest anchor point using euclidean distance as the distance measure. Say the index of

selected anchor point is ind in the fingerprint vector. Let the number of objects updated

in the fingerprint of 8/ before adding Y, be |U|. Then the new fingerprint vector after

adding Y, to 8/ can be computed as:

After constructing the fingerprints for the training entities in the initial data sample, the

class profiles are created over them. A class profile contains the average fingerprint char

acterization for a given set of entities. It is defined as:

Definition 5.2. (Class Profile). Given a set of entities S = 81 ...8s belonging to one class

with label / and associated (/-dimensional fingerprints L[...LS. A class profile is a tuple of:

(i) A (/-dimensional vector AGs containing the sum of the fingerprints of all the entities

6 S across all dimensions, i.e. AGs[p] = L, for each dimension p € [O...(/ - 1]. (ii)

An integer value s storing the number of entities aggregated in this class profile, (iii) A

class label /.

Class profiles are used for predicting class labels of test entities. There can be multiple

class profiles associated with each class and to construct them, fc-means is applied over

the entities belonging to a given class, and one class profile is constructed for each cluster

by aggregating the entities belonging to it. Let p, be the number of class profiles for the

class with label i. The total number of class profiles in the model will be p = pj.

Thus, the SC's model comprises a set p of class profiles with associated class labels.

108

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC)

5.2.2 Processing Incoming Stream Objects

The stream receives a mixture of objects belonging to labeled and unlabeled entities. The

objects from labeled (training) entities are used to incrementally update the classification

model. The objects from unlabeled (test) entities are used to construct the test entities,

which are assigned appropriate class labels using the classification model.

For incoming object Y, e training entity Zj, the following steps are executed to incre

mentally update the classification model: (/) Identify the closest anchor point, (n) Update

the fingerprint of Sy using Equation (5.1) on page 108. (iii) Determine the closest class

profile within the same class and re-assign Sy to it if necessary, and update the class profile

statistics.

Since, class profiles are simple aggregate vectors, they posses additivity property by

which we can add (or subtract) an entity fingerprint vector to (or from) it. This property

is used to update the class profile statistics, wherein we subtract the old fingerprint vector

from it and add the newly updated one. If the incoming object Y, € a test entity Tj, the

first two steps are the same as the above. In the third step, a class label is assigned to

if it was not assigned previously, or Ty is re-assigned to the most appropriate class

(either same or a different class). Before a class label is assigned to it, the algorithm lets

the test entity accumulate at least min_stat objects in it. This allows the test entity to

accumulate sufficient number of objects into it before it can be meaningfully assigned to

a class. As the number of objects being accumulated to an entity increases, its class label

prediction becomes more accurate, since its objects' distribution pattern shall be known

more accurately. So, to assign a class label to Ty, all p class profiles (belonging to all c

classes) are scanned to identify the closest, whose class label is assigned to Ty. Cosine

similarity is used to measure distance between a fingerprint and a class profile, both of

which are ty-dimensional vectors.

The model described above has certain limitations and cannot be used over variable

stream speeds (as explained in Section 5.2.3 on the next page). It's limitations and how

they have been addressed by AnySC, is described in Section 5.5 on page 122.

109

5.2 Background: The Set-wise Classification Algorithm for Data Streams (SC)

5.2.3 Research Gap & Motivation

Limitations of Budget Approaches

• The SC model is a budget algorithm. It takes a fixed duration of time (budget) for

assigning class label to each test entity. However, real-time streams do not have con

stant speed and thus cannot guarantee availability of such budget for every object

received. For example, in community detection using text feeds, the rate of arrival

of tweets is not fixed. It can vary depending upon many factors. Similarly, in web

site fingerprinting attack, the number of packets exchanged in the network is high

during peak hours and low during other times.

• The classification model of SC pose a flat linear structure (list of class profiles) that

can not handle variable inter-arrival rate of objects, which is a key requirement in

the above applications. When the stream speed is lesser than their budget, they

successfully process the incoming objects, and then sit idle for the remaining time

allowance without any effort to improve the accuracy. And when the stream speed

is higher than the budget, they fail to execute! An ideal algorithm, however, should

be able to process any stream speed, giving the best possible result within any given

time allowance, even if it is approximate, and refine its accuracy with increase in

time allowance. Such an algorithm is known as an anytime algorithm, as explained in

Part II on page 57. SC is a budget algorithms and lacks such capabilities.

A few algorithms were proposed in literature for anytime classification in data streams

based on nearest-neighbors [100] and Bayesian Classifiers [101, 175, 116]. The first pro

posed approach [100] was based on nearest-neighbors. This approach orders the training

data objects into a specific order so as to minimize the error while classifying the objects

arriving in the stream with variable rate. Anytime Bayesian Classifier has been proposed

in [101], which uses a hierarchical indexing structure known as Bayes Tree to insert data

objects at hierarchical granularities. MC-tree [175] and BT* [116] are its extensions that

are more accurate classifiers than Bayes Tree. All the three trees are based on R-tree

structure, storing guassian kernels and gaussian mixture models in external and internal

nodes respectively. However, none of them were designed for set-wise classification of

data streams.

110

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

5.3 Anytime Set-wise Classification Model - AnySC: The Pro

posed Method

We now present our proposed method - AnySC, which is the first anytime set-wise clas

sification algorithm for data streams. We first present the data structure - CProf-forest

(Figure 5.3), which serves as the classification model for AnySC. It consists of CProf-trees

whose total number is equal to the number of classes (c). CProf-trees store hierarchy of

class profile vectors in their internal nodes. We define CProf-tree as follows:

Definition 5.3. CProf-tree. It is a height balanced multi-dimensional indexing structure

(see Figure 5.3) having the following properties:

• All nodes (both internal and external) contain between in and M entries. The root

has at least one entry. Figure 5.3 shows a CProf-tree with in = 2 and M = 4.

• All nodes store a pointer Parent which points to the parent entry.

• An entry e in an external node stores the ^/-dimensional fingerprint vector represent

ing an entity.

• An entry e in an internal node stores: (/) a pointer PTe pointing to the root of

sub-tree beneath e; (ii) a class profile CPe storing the aggregate of all the entity

fingerprints indexed at its child node, which is the root of the subtree indexed at

e; (iii) a buffer BFe, which consists of 2 q-dimensional vectors - W & Vn, and a flag

eFl which is set to TRUE if buffer is empty. The two vectors of BFe is used for

111

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

deferred updation of CProf-tree that occurs while processing high speed streams

(see Section 5.3.1 on the next page).

Definition 5.4. CProf-forest. It is collection of c CProf-trees, one for each class.

The structure of CProf-tree results in an hierarchy of class profiles from coarser to

finer granularity as we descend down the tree from root to the leaf level. This enables us

to represent the distribution patterns of the objects belonging to a class in a hierarchical

fashion. The root of each tree summarizes the distribution pattern of all the entities

belonging to a class at coarsest granularity. And, as we keep going down the levels in

the tree, the granularity of the class profiles (stored at internal nodes) becomes finer and

finer, until we reach the leaf nodes containing entity fingerprints, which are of finest

granularity. Consider the CProf-tree in Figure 5.3 on page 111. We can arrange the nodes

in increasing level of granularity as follows: 1 < 2,3 < 4,5,6 < 7,8,9. This model

of hierarchical granularities helps in classification of test entities within any given time

allowance dictated by variable inter-arrival rate of objects (see Section 5.3.2 on page 114).

A CProf-tree for a given class is constructed by dynamic insertion (of logarithmic

cost) of training entities belonging to it, in a top-down recursive fashion similar to that

of an R-tree. The only difference is that the distance metric is computed between the

entity fingerprint vector and class profile vectors stored at the internal nodes (using cosine

similarity metric), rather than with the Minimum Bounding Rectangles as in R-trees (refer

[122] for more details). The node overflows are handled in a similar manner as that of

an R-tree and the node splits propagate upwards leading to CProf-tree growing upwards.

The vectors in the buffers of CProf-trees are left empty during the creation of the initial

CProf-forest in the training phase.

Definition 5.5. Anytime Set-wise Classification in Data Streams. Given a set of train

ing (labeled) entities with associated labels /] h. ... In, we construct a CProf-forest

over an initial sample of objects 6 training entities, which serves as the classification

model for classifying test entities 71 72 ... whose objects are arriving in the stream with

variable inter-arrival rate.

112

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

5.3.1 Anytime Incremental Model Update

The classification model is incrementally updated using training objects received in the

stream, within the variable time allowance dictated by variable inter-arrival rate of objects.

It is illustrated with Figure 5.3 on page 111 & Algorithm 5.1 on page 115 and explained

as follows:

Let the arriving training object be < Yr,entityidr,labelr >. Firstly, we need to update

the fingerprint of the entity to which Yr belongs to (Algorithm 5.1 on page 115: line 3),

which is the entity with id = entityidr. This entity will be indexed in a leaf node of the

CProf-tree with class label - labelr. To do this update, we first identify the nearest anchor

point among q anchors and update the fingerprint using Equation (5.1) on page 108. This

operation can be done in 0(1) time by additionally indexing all the entities in a separate

array with their respective ids as the rank. After this, we need to perform a bottom-up up

date of the tree in which the above entity is present, in order to accommodate the change

that has just happened. We need to update the class profile aggregates along the path

from the current entity to the root node. For this, we make use of the additivity property

of the vector AG (stored in class profiles), where at each class profile in this bottom-up

path, we subtract the old aggregate of the entities present in the sub-tree rooted at it and

add the new aggregate (lines 13-25). For example, consider Figure 5.3 on page 111. Let

the entity which just got updated be stored at entry of leaf node 9. The entry etz at

node 4 contains a class profile that stores the aggregate of all the fingerprints indexed at

node 9. To accommodate this change, we update the class profile indexed at etz, by sub

tracting the old fingerprint vector of entity at et\ from it (vect_old), and adding the newly

updated fingerprint to it (vect_new). We then proceed for subsequent iteration and in this

way the update propagates up to the root along the path consisting of entries highlighted

in orange in the figure. However, if during the bottom-up update, the time allowance

for processing this object expires (triggered typically due to arrival of a new object in the

stream), we defer its completion. For this, we use Vo and Vn vectors stored in the buffers

for temporarily storing the old and new aggregate vectors, respectively (lines 7-12). Say,

the time allowance has expired before the class profile indexed at etz got updated, we

simply leave the old and new fingerprint vectors of entity indexed at et\ in the buffer of

113

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

its parent entry et2, and exit to process the newly arrived object. Next time when a new

update triggered by the insertion of another data object passes through et2, the vectors

in its buffer are taken out and processed along with (lines 13-25). The class profile at ef?

will be updated with respect to the old and new vectors stored in the buffer in a similar

manner explained above (lines 17-21), along with the recent old and new vectors (lines 16

& 22). And then the combined update propagates upwards in subsequent iterations. This

way the deferred update triggered by an old object can reach the root and get eventually

completed. Note: In this algorithm, the update of a class profile is a unit operation. Unit

operation is an atomic non-interruptible operation, i.e., we will process the next object

only after this operation completes, even if the next object arrives before it finishes.

In the above algorithm, it is possible that multiple vectors, resultant of update of

different entities, get accumulated in the same buffer. However, owing to the additive

nature of these vectors, the algorithm's correctness is not affected and the class profiles

in the tree remain consistent. The above bottom-up update is of logarithmic order of the

number of entities indexed in the tree.

Also, note that the buffer vectors store aggregates of multiple vectors, eliminating the

need to keep multiple objects in the buffers like in BFI-Forest explained in the AnyFI

chapter. In AnyFI buffers were hash tables storing multiple suffix projections. Here

buffers store aggregates of multiple vectors.

5.3.2 Anytime Classification of test entities

Let the arrived test object be < Yr,entityidr, -1 >. First we update the fingerprint of the

entity 'JeHtityid, with respect to Yr as was done in case of training objects. If Tentityidr doesn't

exist in this test set, we first create it and then update. Once Tentitvidr contains at least

min_stat objects updated in its fingerprint, we can meaningfully assign it to a class. The

process of classifying a test entity is illustrated in Algorithm 5.2 on page 116. Essentially,

we do a best-first traversal of the CProf-trees using c number of priority queues, one for

each class. These traversals can be interrupted anytime, i.e. whenever a new object arrives

in the stream we can assign a class label to the current test entity on the basis of class

profiles of different trees visited until now, and then exit to process the newly arrived

114

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

Algorithm 5.1: Insert and Update in CProf-Tree

2
3
4

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

procedure Insert-And-Update-In-CProf-TreeO
Input : A CProf-tree CPTlt a training object: Y,, entityidr, label,
Output: Y, inserted into CPT, and CPT, updated bottom-up until time allows
vect_old = .fingerprint;
Update fingerprint with respect to Yr;
vect_new = Ee,,tllullt,-fingerprint;
cnrr_entry = ENTRY_OF(F,,.„/Illzljr);
while NoDE_OF(cnrr_entry)! = root do

if NEWJlBJECTy\RIUVED then
| foreach dimension p fl- t] do
I I NoDE_oF(carr_entrv).parenl.BE.V„lpl += veelyien’lpl;

I NoDE_OF(cHrr_t’Htri/).prtrnif.Br.V’l,[p] += r’iT/_o/</[p|;
end
NoDE_OF(eiirr_enfry).parenl.BF.eTI = FALSE;
return

curr_entry = NoDE_oF(cnrr_entry).purent;
foreach dimension p e do

temp = CHrr_»’Htri/.CPip];
CHrr_t'»/n/.CP.AC[p] -= reel_oL/|p|;
if cnrr_entry.BF.eFl == FALSE then

curr_entry.CP.AC[p] -= cnrr_entry.BF.V,,{p];
c»rr_i’»tn/.CP.AGipj += cnrr_entry.BF. V,4pJ;
n<rr_4’Hfry.BF.V'„(pJ = 0;
CHrr-i’Hfrv.BF.VUp] = 0;

cHrr_i’iifn/.CP.AG[p| += PiTf_»<’«’[p|;
vecf-OldJp] = temp;
ri’ct_Ht’<<'[p] = CHrr_en/ri/.CP.AG|p];

end
ciirr_entry.BF.eFI = TRUE;

end

object. The class label assigned should be the most accurate for the given processing

time allowance. For this, we shall have to compare the current test entity with respect

to class profiles/entities belonging to all the classes and then assign the class label of the

closest class profile/entity (using cosine similarity as distance measure). However, we

may not have sufficient time to scan all the class profiles/entities of all classes. So, we

start our comparisons with the class profiles stored in the root node of all the trees. This

is because the entries in the root node summarize all the entities of a given class. So,

we add all the entries of the roots to their respective priority queues (lines 2-5). And we

iteratively refine our search space by removing the closest entry to the test object from

each priority queue, and add its child entries into the same priority queue (lines 7-10).

This step increases the granularity of the search space, because the class profiles stored

in the entries which got just added to the priority queues are of finer granularity than

those that were removed. In this way we iteratively refine our search space in every

tree in best-first manner, until a point of time when the priority queues are only filled

with leaf entries that index entities. However, our processing time allowance may not

115

5.3 Anytime Set-wise Classification Model - AnySC: The Proposed Method

Algorithm 5.2: Classifying a Test Entity

i procedure Classify-Test-EntityO
i Input : A CProf-forest Forest, a test entity ‘I,

Output: Class label assigned to ‘.Tr
2 Initialize c Priority Queues PQi ... PQt;
3 foreach CProf-tree CPT, of Forest do
4 | foreach entry e in C PT,.root do
5 | PQ,.Add(i’);
6 { end
7 end
8
9

10
11
12
13
14
15
16
17
18

while TRUE do
foreach CProf-tree CPT, of Forest do

[temp = RemoveMin(CPTi);
foreach entry r in temp.PT do

| PQ,.Add(c);
end

end
if (NEW_OB}ECT_ARRIVED or all leaves are scanned) then

I 7,.label = Closest(RemoveMin(PQi), RemoveMin(PQ2), ...
। return;

end

RemoveMin(PQ,)).label;

allow us to reach this point. So, whenever time allowance expires, we assign the current

test entity to the class of the most closest entry (could be an entity or a class profile)

among all the entries in all the priority queues, and then exit to process the newly arrived

object (lines 11-13). So, the label assigned to test entity will be the most accurate one

for the given time allowance. If we have sufficient time allowance to reach the leaf levels

of the CProf-trees, the classification accuracy will be highest. So, when processing time

allowance is high at lower stream speeds, or when we execute without any constraint on

processing time allowance for each object (non-anytime mode), we reach finer granularities

of the CProf-trees and get highly accurate results (see Figure 5.6 on page 121 and Table 5.2

on page 122). Also, as the test entities evolve with more number of objects being added

into them, the classification accuracy also improves. The unit operation in the above

algorithm is removal of an entry from a PQ and adding its children to it.

We conducted an empirical study, where we tested our approach by refining only

a subset of top k nearest classes rather than refining all the classes (see Figure 5.4 on

page 119). The results clearly show that it is sufficient to refine top 4 classes to get

accurate results for all datasets used in experimentation.

116

5.4 Experimental Results & Analysis

5.4 Experimental Results & Analysis

All experiments were conducted over a workstation with 32 GB RAM, Intel i7 processor

and Ubuntu 14.04 installed in it. All programs were implemented in C. Table 5.1 lists the

datasets used for experimentation. A brief description about them is as follows:

Table 5.1: Datasets used for Experimentation in Anytime Set-wise Classification

Name Size #Dim #Entities #Classes Entities in each class
Synth IM 10 IK 50 equal (20 entities/class)
ECover 0.58M 10 1.5K 10 equal (150 entities/class)
CDetect 1.68M - 751 6 skewed(14- 455 entities/class)
WebFing HIM 2 410K 2,000 approximately equal (190-210 entities/class)

5.4. 0.1 Synth

It a synthetic dataset generated using guidelines given in [195]. It has IM 10-dimensional

objects generated using gaussian mixture models. It consists of 50 classes, with each class

having 20 entities (total 1000 entities).

5.4. 0.2 ECover

This is generated by converting the Forest Cover dataset (FC) [200] into an applicable form

using guidelines given in [195]. We use first 10 dimensions of FC, which are numeric. It

has 0.58M objects distributed in 10 different classes. Objects in each class have been

clustered into 150 different entities, giving a total of 1500 entities.

5.4. 0.3 CDetect

We created this dataset by collecting tweets of various Indian celebrities that include -

Politicians, Sportsmen, Journalists, Film stars, Philanthropists and Businessmen (6 classes).

A maximum of 3200 historical tweets were collected from each user using Tweepy API on

15 Aug 2018. The data set consists of 1,688,365 tweets (data objects), collected from 751

users (entities), belonging to 6 communities (class labels). We extracted keywords from

the tweets using Stanford Postagger [201] and represented each tweet as vector around

these keywords. We use Jaccard Coefficient as the distance measure to compute distance

117

5.4 Experimental Results & Analysis

between two objects (tweets), unlike euclidean distance for other dataset. Also, the dis

tribution of entities per class is skewed in this dataset (14-455 entities/class), unlike the

previous two which were uniform.

5.4. 0.4 WebFing

The Website Fingerprinting attack dataset has been borrowed from [197]. It consists of

approx. HIM bursts (data objects) categorized into 41K traces (entities) from 2000 web

pages (classes). This dataset also has uniform distribution of entities/class (190-210).

We set 80% of the entities as training entities and 20% as test entities for all datasets.

We build the initial training model using 20% of the objects from training entities. The

remaining objects arrive in the stream in a random mixture of training and test objects.

The values of fanout parameters for CProf-tree have been set to: m = 2 and M = 4,

Choosing larger fanout values can lead to increase in linear scan within each node of the

tree. So, it has to be in accordance with the number of entities indexed in the tree. &

min_stat is set to 50. The term SC indicates the baseline result generated by using the

method proposed in [195].

The streams with varying inter-arrival rate are simulated using Poisson streams that

takes an input parameter A and generates objects with rate A objects/sec., as explained in

Section 4.7 on page 90.

We use accuracy as the measure of evaluation for all datasets except CDetect, for which

we use Fl-score. This is because CDetect has skewed distribution of entities per class, and

hence use of accuracy can give misleading results. The remaining datasets have equal or

almost equal distribution of entities per class. So, accuracy is used. For more details on

the above measures refer to Appendix C on page 214.

The streams with varying inter-arrival rate are simulated using Poisson streams that

takes an input parameter A and generates objects with rate A objects/sec., as explained in

Section 4.7 on page 90.

We use Jaccard Coefficient as the distance measure to compute distance between two

objects (tweets) for CDetect dataset (unlike euclidean distance for other three datasets),

since it is based on text data. Also, we use accuracy as the measure of evaluation for all

datasets except CDetect, for which we use Fl-score. This is because CDetect has skewed

118

5.4 Experimental Results & Analysis

100 -1
£ 80 ■

J 60 ■
i 40 ■

£ 20 -

Synth Ecover

123 4 56789 10
a of Classes refined

Figure 5.4: Effect on Accuracy with variation in number of classes refined at A =60,000 ops

distribution of entities per class, and hence use of accuracy can give misleading results.

The remaining datasets have equal or almost equal distribution of entities per class. So,

accuracy gives good results.

5.4.1 Experimental Results

In the first experiment, we measure the classification accuracy of test entities for AnySC

with increase in number of classes refined, at speed (A) = 40,000 ops & q = 40 for Synth

and ECover datasets. The results presented in Figure 5.4 clearly show that accuracy in

creases until we reach 4 classes and then remains steady for sometime and later shows

a decline. The initial increase is because, when we refine lower number of classes, we

may not reach the closest class profile. This problem reduces with increase in number of

classes refined. The decline in later part of the curve is because, as the number of classes

refined increases, after a point in the curve, the additional classes being added for refine

ment does not involve any of the closest probable classes that could help in improving

classification accuracy. Rather, they only add up to the computation overhead, and does

not allow us to reach finer granularity levels of CProf-trees, leading to reduction in clas

sification accuracy. It can be observed from Figure 5.4 that refining only the top 4 classes

yields better classification results for both the datasets. Similar pattern was observed for

other datasets as well. This is also evident from results presented in the last column of

Table 5.2 on page 122, which gives the %age of test entities whose true class value actu

ally lies within top 4 closest classes refined by AnySC when run in non-anytime mode.

Therefore, in subsequent experiments, we restrict our search to top 4 closest classes and

utilize the spare time to reach finer granularity levels within the closest classes to obtain

more accurate results.

In the next experiment, we study the classification accuracy/ Fl-score of AnySC with

variation in number of anchor points (q) at two different stream speeds - A=30,000 (mod-

119

5.4 Experimental Results & Analysis

10 20 30 40 50 60 70 80 90 100
« Anchor Points

_100
£ 80
i 60
3 40
“ 20

0

0 8------------- X=30k X=60k

o 0.6 - x '--------------------_
6 x '
J! 0 4 ■
~ 02 ■ /

0 -U-----,----------- ,-----.-----,-----,----- ------------„

10 20 30 40 50 60 70 80 90 100
« Anchor Points

_ 100
* 80
J 60
3 40
S 20

0
10 20 30 40 50 60 70 80 90 100

» Anchor Points

so
£ 40
> 30
3 20
3 10

(b)

10 20 30 40 50 60 70 80 90 100
it Anchor Points

(d)(0

Figure 5.5: Effect of varying q on performance for (a) Synth (b) ECover (c) CDetect (d) WebFing
datasets

erate speed) and A=60,000 (high speed). The results presented in Figure 5.5 show that

the accuracy increases with increase in anchor points up to a certain point and then

declines for all the datasets at both the stream speeds. The decline is because, as the

number of anchor points increase, the distance computation cost increases due to which

the speed handling capacity reduces and thus with lower processing time allowances at

higher speeds, we will not be able to reach finer granularities in CProf-trees.

We also tested the performance of AnySC with variation in stream speed and com

pared it with that of SC. The number of class profiles for SC has been set to 100 for Synth

& ECover, 150 for CDetect & 20,000 for WebFing. We studied the accuracy/ Fl-score at q

= 40 & 60. The results presented in Figure 5.6 on the next page clearly show that AnySC

is able to give a classification result at all the speeds, unlike SC which is limited to giving

results up to its budget respective to the dataset (budget speeds are marked with circles

and their values are given in Table 5.2 on page 122). We can also observe that the accuracy

at lower stream speeds is much higher for AnySC than SC whose accuracy is constant for

all speeds up to its budget. This is because AnySC refines its search space to finer gran

ular levels of CProf-trees (upto the entities at the leaf level), which is not possible in SC.

Also note that the rate of reduction in accuracy with increase in stream speed is greater

for q=60, which is due to increase in cost of distance computations.

To get a fair baseline comparison, we tried to convert the SC model into an anytime

model, where we do a linear scan of the class profiles list only to the extent time allows.

120

5.4 Experimental Results & Analysis

10 20 30 40 50 60 70 80 90 100
A (x 10' pps)

(b)(a)

10 20 30 40 50 60 70 80 90 100
A(x 10' pps)

(0

10 20 30 40 50 60 70 80 90 100
A (xlO* pps)

(d)

Figure 5.6: Effect of varying A on performance of AnySC for (a) Synth (b) ECover (c) CDetect
(d) WebFiiig datasets

For e.g., if we have a list of 100 class profiles, and time allowance is sufficient to scan

only the first 15 class profiles, we assign class label to the test entity only on the basis of

these 15 class profiles scanned. We refer to this strategy as SC_A. Figure 5.6 also presents

results comparing SC_A with AnySC. Note that SC and SC_A shall give the same result

until SC's budget speed. The results clearly show that accuracy of AnySC is higher than

SC_A. This is because, giving a class label to a test entity on the basis of only a few

scanned class profiles doesn't guarantee the scanning of its actual closest class profile,

which is the case in SC_A.

Next, we compared the accuracy/ Fl-score of AnySC with that of SC at SC's budget.

The results presented in Table 5.2 on the following page clearly show that AnySC outper

forms in every case. AnySC is giving better accuracy than SC even at the budget speed

of SC. We also present the accuracy of AnySC without applying the anytime feature i.e.

each time the refinement will take place up to the finest level in the CProf-trees with-

121

5.5 Discussion

Table 5.2: Comparison of AnySC with SC at its budget and non-anytime performance of
AnySC at q = 40

Dataset
Max. Speed of

SC (budget)
(approx.)

Accuracy
/Fl of SC at
its budget

Accuracy/ Fl
of AnySC at
SC's budget

Non-anytime
accuracy /Fl
of AnySC

Non-anytime
speed of
AnySC

(approx.)

% test entities
with actual class

within top 4
classes refined

Svnth 46,000 ops 51.2 53.4 80.7 14,000 ops 85.1
ECover 41,000 ops 81.2 85.6 91.5 11,000 ops 95.6
CDetect 25,000 ops 0.568 0.651 0.715 9,000 ops 90.3
WebFing 12,000 ops 52.3 65.1 69.8 12,000 ops 80.1

out any constraint on time allowance. AnySC gives remarkable performance in this case.

However, this hampers its speed handling capacity, as it takes more time to reach finest

granularity levels (entity fingerprints at leaf nodes). Note that the difference observed

in non-anytime accuracy (column 5) and percentage of test entities with true class value

within top 4 refined classes in non-anytime mode (column 7), is because of anomalies

present in the dataset.

80

60
40

20

0

AnySC SC

10% 20% 30% 40% S0% 60% 70% 80% 90% 100%
%age of stream objects processed

Figure 5.7: Performance of AnySC with stream progression

We also studied the evolution of test classification accuracy with stream progression

for both AnySC and SC. The results presented in Figure 5.7 show that the accuracy

increases with more objects received for both SC and AnySC for Webfing dataset. This is

because: (/) model gets incrementally updated and drift in patterns is captured as more

training objects are received; (n) the distribution patterns of the test entities are predicted

more accurately when more test objects are received. Similar behavior has been observed

for other datasets as well.

5.5 Discussion

AnySC addresses the following limitations of SC:

Flat Structure Limitation. SC's model is a linear flat structure consisting of a list of

p class profiles. Test entities are assigned labels by identifying the closest in this list

122

5.5 Discussion

using a linear scan (of 0(p) cost) that takes a fixed amount of time (budget) to complete,

irrespective of the stream speed. AnySC addresses this limitation by using CProf-forest,

which stores class profiles at hierarchical granularities and thus enables us to classify

test entities within any given time allowance. We scan the hierarchy of class profiles in

increasing order of granularity until time allows and give best possible class label to the

test entity based on the finest granularity reached until now. Also, the model allows us

to reach the closer coarser class profiles faster (class profiles stored in the top levels of the

trees), without scanning the whole list of class profiles as was the case in SC.

Classification Accuracy at low speeds. At low speed streams, when the time available

is more than the budget, SC doesn't utilize the excess time to improve the classification

accuracy. The accuracy remains the same as its budget speed. However, AnySC makes

best use of such time by reaching finest levels in the trees where entity fingerprints are

stored, and thus gives very high classification accuracy.

Efficient incremental update. The cost of incremental update of the classification model

in AnySC is little higher than the SC because of the bottom-up update in CProf-trees.

However, due to the support given by buffers, we can always defer & merge multiple

such updates (as explained in Section 5.3.1 on page 113) and traverse together leading to

reduction in the update cost. This reduction is visible in AnySC s capability of handling

high speed streams.

Efficient Class Assignment. Class label assignment cost is logarithmic for AnySC, un

like linear cost for SC, thus making it more efficient.

Class profiles construction. The class profiles for each class in SC are constructed using

k-means algorithm, with k as a user given parameter. On the other hand, in AnySC, the

class profiles are created as natural outcome of CProf-forest construction, eliminating the

need of any input parameter.

123

5.6 Conclusions & Future Work

5.5.1 Our Contributions

• We have proposed AnySC, which is an Anytime Set-wise Classification algorithm for

data streams. To the best of our knowledge, this is the first such approach.

• It uses a proposed data structure - CProf-forest, which is built over the initial train

ing data, and serves as the classification model for processing the incoming test

objects. The CProf-trees in the CProf-forest store class profiles at hierarchical granu

larities. AnySC incrementally updates the CProf-forest using the objects arriving in

the stream that belong to the labeled entities, within any given processing time al

lowance dictated by the stream speed. The incremental updates are deferred in case

the time allowance expires before the update finishes, and are completed alongside

subsequent updates occurring on the same traversal path in the underlying CProf-

tree.

• AnySC leverages the hierarchical structure of CProf-trees to classify the test entities

within any given processing time allowance (see Section 5.3 on page 111).

• We have also developed the CDetect dataset which consists of tweets of various

Indian Celebrities. This can be used as a benchmark for community detection prob

lems.

5.6 Conclusions & Future Work

In this chapter, we proposed AnySC, which is the first Anytime Set-wise Classification al

gorithm for data streams. AnySC uses a proposed data structure known as CProf-forest,

which serves as the classification model for processing the incoming stream. AnySC is

capable of incrementally updating the CProf-forest using the labelled objects arriving in

the stream within any given processing time allowance without any budget contraint.

Similarly, it can handle unlabelled objects by classify the test entities within any given

processing time allowance. The experimental results presented in Section 5.4 on page 117

show that AnySC can: (/) handle variable stream speeds and produce accurate classifi

cation results; (ii) handle very high speed streams with reasonable performance, unlike

the baseline approach (SC) [195] that fails to execute when speed exceeds its budget; (Hi)

124

5.6 Conclusions & Future Work

give very high classification accuracy (compared to SC) when stream speed is low, since

it makes use of greater time available to refine the result to the greatest possible degree.

The experiments also demonstrate the applicability of set-wise classification problem over

both the applications described above.

5.6.1 Future Directions

AnySC model can be further improved by incorporating exponential decay in its training

entities in order to perform intermittent pruning of outdated entities. This enables AnySC

to detect concept drift more efficiently. AnySC model can also be adopted to image

datasets.

125

Chapter 6

Anytime Clustering of Data Streams

Clustering of data streams has been increasingly becoming important in the recent

past owing to rapid rise in utilities of loT, transactional systems, real-time systems and

other data generating systems. In a typical stream clustering algorithm, data objects

continuously arrive into the system where an algorithm processes them and stores their

summary statistics. Clustering of data streams have the same constraints of time and

memory as described in Part II on page 57. Various stream clustering algorithms pro

posed in literature include - CluStream [102], HP-Stream [103], DenStream [95], Optics

Stream [150], D-Stream [151], MR-Stream [152], SWEM [202], etc. These algorithms store

summary statistics of the incoming data. For example, CluStream [102], DenStream [95],

HP-Stream [103] and Optics-Stream [150] use micro-clusters to store the summary statis

tics (micro-clusters were originally conceived in BIRCH [203]). Then a suitable clustering

algorithm (like DBSCAN, K-means, SLINK, etc.) is applied over the means of these micro

clusters in an offline manner (see Section 6.1.1 on page 129). The above algorithms also

use mathematical models such as pyramidal time frames [102], exponential decay [95],

sliding window [202], etc. to represent the age of micro-clusters. These models enable the

system to weigh down the influence of older data and capture concept drift.

• Jagat Sesh Challa, Poonam Goyal, Ajinkya Kokandakar, Dhananjay Mantri, Pranet Verma, Sundar
Balasubramaniam, Navneet Goyal. A New Micro-Cluster based Approach for Anytime Clustering of Data
Streams that handles Noise and Concept Drift. Submitted for review in Journal of Experimental & Theo
retical Artificial Intelligence (TETA), Taylor & Francis

126

In various real time applications like sensor networks, network traffic management,

security surveillance systems, disease surveillance systems, web log analysis, etc., data is

being generated from multiple sources resulting in multiple streams. Researchers have

proposed various methods [164, 165, 166, 167, 168] for clustering of data objects arriv

ing from multiple sources. These methods collect summary of arriving data streams

in parallel among different computing nodes of a cluster, and then later compute their

global aggregate on demand. For example, the methods proposed in [164, 166] repeat

edly update the global k-centers using k-mediod clustering over the computing nodes

in parallel and store them as the global aggregate. Similarly, the method proposed

in [168] stores parameters related to EM-clustering as a global aggregate and updates

them with evolving patterns at the computing nodes. In some multi-port algorithms like

[204, 111, 205,113,112], based upon the characteristics of the incoming objects in each in

coming stream, the streams themselves are clustered into groups that evolve with change

in characteristics of incoming objects.

6.0.1 Research Gap & Motivation

One major problem associated with any real-time stream (including multi-port streams)

is that, the rate of arrival of data objects is not fixed. Many data generating systems

generate data at a varying rate as explained in Part II on page 57. The traditional stream

clustering algorithms [102,95,103,151,150,152,168,164,166] are not capable of handling

such varying inter-arrival rates. They run on their own limited stream speed handling

capability and are not flexible. Hence, they are unfit for such use.

To address this issue, anytime stream clustering algorithms have been proposed. They

perform anytime online maintenance of micro-clusters for streams that have varying inter

arrival rate of objects. A few anytime stream clustering algorithms [104, 117, 118] have

already been proposed in literature. However, there are a few drawbacks associated with

them. ClusTree [104] is a generic technique for anytime clustering of data streams that

uses a summary structure, also known as ClusTree, to capture streams having variable

speed in the form of micro-clusters. ClusTree has a drawback of inserting the incom

ing objects using distance computations performed from each object to the means of the

127

6.1 Preliminaries

aggregated micro-clusters that are stored in internal nodes of the tree. This method of

insertion doesn't gaurantee the insertion of the object at its most appropriate spatial loca

tion in the tree while preserving spatial locality. This leads to reduction in overall purity

of the micro-clusters being indexed, especially for high dimensional data. Also, ClusTree

is not capable of handling noise and detecting concept drift. LiarTree [117] is an extension

of ClusTree that captures noise and detects concept drift. However each noise to con

cept transition in LiarTree, builds a completely new sub-tree, which again distorts spatial

locality of the micro-clusters indexed in the tree, and thus suffers drop in their purity.

SubClusTree [118] is ClusTree's adaptation to subspace clustering.

A concurrent version of ClusTree (uses multi-threading) was proposed for handling

multi-port data streams in a shared memory environment [206]. However, this work

presents only a conceptual model without substantiating with experimental analysis.

In this chapter, we propose AnyClus, which is a framework for anytime micro-cluster

maintenance of variable speed data streams that handles noise, captures concept drift,

preserves spatial locality, and produces micro-clusters of greater quality. It addresses the

drawbacks presented above using a proposed variant of R-tree, AnyRTree, which allows

insertion of objects arriving in the stream with varying inter-arrival rate. We also propose

a parallel framework, Any-MP-Clus, which handles multi-port streams efficiently and

produce clustering of high quality.

The rest of the chapter is organized as follows: Section 6.1 gives some preliminary

concepts; Section 6.2 on the next page presents the proposed framework AnyClus along

with the proposed data structure - AnyRTree; Section 6.3 on page 137 presents the pro

posed parallel framework Any-MP-Clus; Section 6.4 on page 141 presents experimental

results & analysis; Section 6.5 on page 150 Section 6.6 on page 151 concludes the chapter

while giving directions for future work.

6.1 Preliminaries

Let DS represent the incoming data stream, consisting of a set of objects Xi,X2,...Xfc...

arriving at time-stamps Ti,T2,....Tfc... where X, [x],x]is a d-dimensional object.

128

6.2 AnyClus: The Proposed Framework

6.1.1 Micro-Clusters (mcs)

Micro-clusters (or mcs) are a popular technique used in clustering of data streams [102,

103, 95, 150, 104, 117]. It is a very small cluster that stores summary statistics of a few

very closely related data objects. It is defined as follows:

Definition 6.1. For representing a set of (/-dimensional objects X],...,Xn, a micro-cluster is

a tuple: mCj=(nj,Sj,SSt), where each of these entries is defined as follows:

• Hj is the number of represented objects in micro-cluster j.

• Sj is a vector of size d storing sum of data values of all the represented objects for

each dimension, i.e. for a dimension p, Sj[p] = xi-

• SSj is also a vector of size d storing squared sum of data values of all the represented

objects for each dimension, i.e. for a dimension p, SSjp] = L-lj-vf)2-

The above stream clustering algorithms exploit the additive property of mcs to incre

mentally aggregate incoming data objects. For merging a data object X(into a micro

cluster mcp we do the following operations for each dimension p:

s,(p] = SJp] + .<...(1) ss,(p| = SS,|p| + (.<)2....(2) "i = "i + l-(3)

Also, two mcs (mca & mq,) can be merged into incmer as follows:

S»cr[p] = Sa [p] + SUp] ...(4) SS„,fr[p] = SSa [p] + SS|,[p] — (5) timer = "a + ^-(6)

The mean and radius of a me can be computed as follows:

SiMean(pj) = ^-(7) Radius(pj) =

6.2 AnyClus: The Proposed Framework

AnyClus is the proposed framework for online maintenance of mcs for handling streams

that have variable and high inter-arrival rates. In its online phase, AnyClus receives data

objects from the stream, and inserts them into AnyRTree, which stores and maintains mcs

for the arriving data. AnyRTree is described as follows:

129

6.2 AnyClus: The Proposed Framework

root

3 16

Figure 6.1: Structure of AnyRTree

6.2.1 AnyRTree

AnyRTree is the proposed hierarchical indexing structure, illustrated in Figure 6.1. It is

a variant of R-tree, which stores mcs at hierarchical granularities in its nodes, alongside

the minimum bounding rectangles (MBRs) [122]. There are two types of nodes in AnyRTree:

internal and leaf. The internal nodes store the following entries: a pointer pt, a minimum

bounding rectangle MBR, a micro-cluster me (S, SS, n), a buffer b and a noise buffer nb (see

Figure 6.1). pt points to the root of the child sub-tree underneath the current entry. MBR

is a d-dimensional rectangle that bounds all the data objects indexed in the child sub-tree.

me stores the aggregate of all the objects indexed at the leaf level of the underneath child

sub-tree. Buffer b is another micro-cluster, which is used for temporary local aggregation

of incompletely processed data objects (see Section 6.2.2 on the following page). It is this

buffer that enables deferred anytime insertion of data objects into AnyRTree. The noise

buffer nb is used for handling noise (see Section 6.2.2 on the next page). Entries of leaf

nodes store a micro-cluster me that summarizes the data objects aggregated in it. They,

however, do not contain MBR or buffers. This is because inserts at leaf level are final

and any kind of deferred processing or handling of noise is not required. Definition 6.2

defines AnyRTree.

Definition 6.2. AnyRTree is a height balanced multi-dimensional indexing structure hav

ing the following properties:

• Each node (both internal and leaf) contains between m and A4 entries. The root has

at least one entry.

• An entry e in an internal node stores the following entries: (/) a pointer pt to the

child sub-tree; (//) an minimum bounding rectangle MBR; (Hi) a micro-cluster me;

130

6.2 AnyClus: The Proposed Framework

(iv) a buffer b; and (v) a noise buffer nb.

• An entry e in a leaf node stores a micro-cluster me.

One can see that AnyRTree stores hierarchy of mcs. A me in an entry of any internal

node stores the aggregate of the mcs stored in its child, which themselves are aggregates

of mcs present in their own children. In this way, any me in an internal node summarizes

all the leaf level mcs indexed in the subtree rooted at it.

6.2.2 Anytime Micro-Cluster Maintenance of AnyRTree

AnyClus handles the incoming stream by continuous insertion of each object into AnyRTree.

The insertion procedure for AnyRTree is a top-down node by node traversal similar to

that of an R-tree, with an additional support of anytime interruption and noise han

dling. Anytime interruption means that the insertion of a data object progresses as long

as the processing time allowance permits, after which it interrupts (even if its insertion

is not complete) to process a newly arrived object. This is achieved using "buffer and

hitchhiker" concept [104]. While inserting an object, if time allowance expires before the

insertion finishes, the object is left inside the buffer of the closest entry (calculated us

ing min-distance) of the node being traversed, and the algorithm proceeds to process the

newly arrived object. When insertion of another object passes through the same insertion

path, it picks up the object stored in the buffer and takes it along as a hitchhiker, to finish

its insertion to the leaf level.

The insertion step also handles noise using noise buffers and enables capture of con

cept drift. An object is treated to be noise with respect to a node in the traversal, if

merging this object to the closest entry in the node, leads to expansion of the entry's MBR

by more than 6%. We then insert this noise object into the closest entry's noise buffer.

We perform periodic checks of the noise buffers to detect any noise to concept transition.

This is achieved by using a time interval 7. For each entry of a node, after every 7 units

of time, we check the me in the noise buffer for any possible noise to concept transition.

If noise becomes a concept, we carry this me as another hitchhiker down for insertion.

There are two criteria for noise to buffer transition: 1) absorption of a me into entry's

MBR should lead to less than J% increase in area of entry's MBR; 2) the noise buffer must

131

6.2 AnyClus: The Proposed Framework

have accumulated at least jB new objects in it. All three parameters - 6, 7 and ft are user

defined. We give appropriate recommendations for choosing their values in Section 6.4.1

on page 143.

Algorithm 6.1 on page 134 gives the pseudo code for anytime insertion of a data object

X into AnyRTree, R. It proceeds in the following steps:

• The algorithm takes an object X to the root node of R and recursively descends

down the tree to locate the most appropriate leaf node for its insertion.

• At each internal node we encounter in the traversal, we find the closest entry e to X

(line 3 of Algorithm 6.1 on page 134) using min of min-distances. If there is a tie, we

break it using the distance of X from the means of the mcs stored in the entries.

• We then check if X is noise with respect to e (lines 4-5). If it is so, we insert it into

e's noise buffer using Eqs. 1, 2 & 3.

• If we were carrying a hitchhiker A object with us, we also check if it is noise. If so,

we do the same steps to absorb it into the noise buffer of its nearest entry (line 8).

• At this point in time, we check if a new object has arrived arrives (say Y), we inter

rupt the insertion of X and process Y (lines 12-15). For doing so, we merge X into

the buffer of e (e.b) using Eqs. 1, 2 & 3, and then quit its insertion. We also merge

the hitchhiker to the buffer of its nearest entry.

• Next time when we descend down the same path for insertion of another object, we

carry the me stored in the buffer down as a hitchhiker to complete its insertion (lines

20-22 of Algorithm 6.1 on page 134). While doing so, we update the statistics in e.mc

with respect to the descending object X and the hitchhiker H, and then recursively

descend into the sub tree rooted at e.

• While carrying the hitchiker down, if the subsequent traversal path of descending

object X and hitchiker fl differ, we merge H into the nearest entry's buffer and

continue insertion of X (lines 6-10).

• If it is now time to do the periodic check for noise to concept transition for this entry,

we do the check with the criteria described earlier (lines 17-19). If the transition

132

6.2 AnyClus: The Proposed Framework

happens, the noise buffer is merged with a separate hitchhiker h„ and is handled

separately. It is made sure to reach the leaf level without being locally merged

anywhere in between. The handling of this separate hitchiker is not depicted in

Algorithm 6.1 on the next page, for simplicity.

• When we encounter an external node (lines 23-30), we first merge H to its nearest

entry in the node using Eqs. 4, 5 & 6 and empty it. Then we create a new me

containing X using Eqs. 1, 2 & 3, and store it as a new entry in the node as shown

in node 6 of Figure 6.1 on page 130.

o If creation of a new entry has created a node overflow, we split the node into

two and accommodate the newly created entry. The split operation is similar to

split of an R-tree node, which can propagate up to the root leading to creation

of a new root. If however, there is a new object that has arrived and there is no

time to perform split, we simply merge the two closest entries in this node and

exit.

We can also enforce a limit on total number of leaf level mcs in the tree. Whenever the

limit is reached, we don't let the tree grow further, i.e., we don't let any further node splits

to happen and merge the incoming objects (or mcs) to their nearest entries only instead

of creating new entries.

The concept of aggregating incoming objects into buffers and later carrying them

down the tree, is known as local aggregation. More than one data object can get ag

gregated into any of the two kinds of buffers and the aggregated mcs in the buffers are

carried down as hitch-hikers in a future descent. Local aggregation helps in retaining the

maximum possible granularity of the object at any given stream speed.

Note here that the buffers store aggregated objects like in AnySC and unlike AnyFI.

So, only one object is sufficient to be stored in the buffer.

We can clearly observe from the insertion algorithm that it is interruptible and at the

same time makes best use of available time. AnyRTree is capable of processing very fast

streams and at the same time use greater time allowances during lower stream speeds

to refine the clustering model. Whenever, the processing time allowance given to a data

object is less, it places it in the most appropriate buffer and exits the insertion, rather than

133

6.2 AnyClus: The Proposed Framework

Algorithm 6.1: Insert-In-AnyRTree

i procedure Insert-In-AnyRTree ()
। Input : AnyRTree node node, Data Object X, Hitchiker H, Hitchiker H„
| Output: X inserted into sub-tree rooted at node until time allows

if node is an internal node then
3 e = Cet-Closest-Entry(ho</i’, X); flagctr - 0;
4 if IsNoise(X, e) then
5 1 Merge-MC-To-MC(X, e.nb); flagctr++;
6 end
7 if H * NULL then
8 e)t = Get-Closest-Entry-MCOwi/c, H);
9 if IsNoise(H, eO then Merge-MC-To-MC(//, eh.nb);
10 else if e t eh OR fla^ctr - I then
11 ! Merge-MC-To-MC(H, eh.b); H - NULL;
12 end
13 end
14 if fla^Ctr = 1 then exit;
15 if new object arrived then
16 | Merge-Object-To-MC(X, «•./>);
17 if H r NULL then Merge-MC-To-MC(H, e.b);
18 exit;
19 else
20 if time to check for noise to concept transition then
21 if Check-Noise-To-Concei'tG'.hIO == TRUE then
22 | MERGE-MC-To-MC(r.nh,/!„); Merge-MC-To-MC(H,,, e.mc); e.nb = NULL;
23 end
24 end
25 if e.b / NULL then
26 | Merge-MC-To-MC(H,, H); Merge-MC-To-MC(H, e.mc); e.b = NULL;
27 end
28 Merge-Object-To-MC(X, e.mc); Insert-In-AnyRTree(i’.c/h7(L X, H, H„);
29 end
30 end
31 if node is a leaf node then
32 if H NULL then
33 | ei, = Get-Closest-Entry(w(/c, H); Merge-MC-To-MC(/V, eh.b); H = NULL;
34 end
35 newMC = Create-Micro-Cluster(X); Insert newMC as a new entry in node;
36 if node overflows then
37 if new object arrived then
38 | MERGE-CLOSEST-Two-ENTRiEsfnode); exit;
39 end
40 else Si’LtT-NoDE(»odc);
41 end

giving up all together. And then, it makes the best use of future descents down the same

path by carrying the object inserted into the buffer as hitchhiker. Similarly, whenever the

time allowance is more, insertion reaches the most appropriate leaf in the tree. This shows

that AnyRTree handles variable stream speeds effectively. Also, note that a me closer to

root would be of coarser granularity, whereas the one at greater depth would be of finer

granularity. The processing time allowance for an incoming object affects the granularity

at which it gets absorbed into the tree. Greater the time allowance, greater the granularity

at which the object gets absorbed.

134

6.2 AnyCIus: The Proposed Framework

6.2.2.1 Time Complexity

The insertion into AnyRTree simply follows a traversal which is logarithmic in height of

the tree. In the worst case, every data object will reach a leaf node. So, if nmc is the total

number of leaf level mcs in the tree, the worst case insertion complexity will thus become

- O(l0Xmnmc), where m is the minimum number of entries in each node of the tree. Note

that in worst case nmc = N, where N is the data size.

6.2.3 Key Factors of AnyRTree design

We gain the following advantages from the design of AnyRTree:

Figure 6.2: Distance Computations:
AnyRTree vs ClusTree & LiarTree

Node Ni

Figure 6.3: Illustrating Granular Noise
Buffers of AnyRTree

• Efficient method of descent in insertion. The major advantage of AnyRTree when com

pared to ClusTree and LiarTree is that the AnyRTree is more closer to the R-tree

spatial containment principles. AnyRTree additionally keeps MBRs in the entries of

its nodes along with mcs. While descending into the tree during the insertion of

an object, an entry is selected for descending down that has the minimum of min

distances from the descending object X, in case of AnyRTree. Whereas, in ClusTree

& LiarTree, the entry is selected based on minimum distance from the means of the

mcs present in the entries. This is illustrated in Figure 6.2. It is clear from the figure

that the object X will descend into the entry whose mean is [i\ in case of ClusTree &

LiarTree, and the entry with MBR Z? will be selected in case of AnyRTree. So, X will

be inserted into spatially closer nodes under Z2 than that of Z] in AnyRTree, and

thus, the object gets inserted into more appropriate leaf nodes than in ClusTree &

LiarTree. This achieves better, compact and purer mcs (substantiated by experiments

135

6.2 AnyClus: The Proposed Framework

in Section 6.4.1 on page 143).

• Greater Granularity of Noise Buffers for efficient handling of noise and concept drift. An

other advantage of AnyRTree is its greater granularity in noise buffers. LiarTree

has only one noise buffer per node, whereas AnyRTree has number of noise buffers

equal to number of entries in a node. This helps in capturing noise at greater gran

ularity. Consider Figure 6.3 on page 135, which has a node N\, having three entries

- t’i, e2 & e$, whose MBRs are Z|, Z2 & Z3, and means are p\, P2 & P3, respectively.

Lets say, we have two noise points detected - npi and np2. Note that npi is spatially

closer to entry e\ and np2 is spatially close to 1’2- LiarTree would have simply ag

gregated both of them into a single noise buffer which would have led to creation

of a single aggregate which would have been far away from both t’i and f2- How

ever, AnyRTree keeps separate noise buffers for each entries separately, leading to

insertion of np\ into noise buffer of t’i and np2 into noise buffer of 02. This keeps the

noise points more spatially distinct, so that in case they become a concept in future,

the spatial locality is maintained and the mcs thus formed are purer (see Table 6.3

on page 145).

• Effective noise to concept transition preserving spatial locality. When noise to concept

transition takes place, LiarTree creates a new subtree for that resultant me, which is

indexed as a new entry in node. This new subtree now grows top-down, unlike the

remaining sub-trees that grow bottom-up. The me resultant of the above transition,

could now be actually closer to one of the entries in the node. LiarTree forces even

such spatially close mcs to be inserted into the new sub-tree, thus making them

spatially far from nearby mcs and thus distorting the spatial locality of the tree.

However, AnyRTree inserts the such resultant mcs into the sub-tree underneath

closest entry of the node, so that they are absorbed into spatially closest mcs, if

required. This results in effectively preserved spatial locality of the tree and as a

result of which we get more purer mcs. (See Table 6.4 on page 146).

136

6.3 Any-MP-Clus

6.3 Any-MP-Clus

Any-MP-Clus is the proposed parallel framework for anytime clustering of multi-port

data streams. Figure 6.4 illustrates its work flow. It has two phases - online and offline.

In the online phase, data objects arriving at variable inter-arrival rate are received at

multiple computing nodes in parallel and are stored as mcs in separate AnyRTrees for

each computing node. The online phase executes in batches of tm units of time. After

receiving a batch, the leaf level mcs captured in AnyRTrees from all the computing nodes

are processed in the offline phase, while a fresh batch of data objects is captured into

fresh AnyRTrees at each computing node. These two things happen in parallel and is

achieved by using multi-threading at each computing node. We have described how each

computing node captures data objects into AnyRTree in the previous section. We now

describe the offline processing that happens for each batch of mcs.

6.3.1 Offline Phase

After receiving the stream for ti„ units of time across all the computing nodes, we execute

the offline phase. In this phase, we process the mcs created in this time window across

all the machines, aggregate them and efficiently store them in the tilted-time window

framework. The offline phase has four steps as shown in Figure 6.4. We now explain each

of these in detail.

Offline PhaseOnline Phase

Figure 6.4: Workflow of Any-MP-Clus

137

6.3 Any-MP-Clus

r

Ah

Si s2

Ah

s3 s4

Ah

s5 s6

Ah

Figure 6.5: Data Partitioning

6.3.1.1 Partitioning

After executing the online phase, we are left with leaf level mcs in AnyRTrees across mul

tiple computing nodes. For efficient aggregation (merging) of these mcs in parallel, we

create a spatially disjoint partitioning having equal number of mcs in each computing

node (or machine) to ensure load balancing. Figure 6.5 shows a spatially disjoint parti

tioning for four machines over a two dimensional dataset. To achieve this, we compute

the boundaries of the splits (which are medians) such that each partition gets equal num

ber of data objects. Computation of these medians would require entire dataset to be

present on a single machine. So, it would lead to a very high communication cost if all

the machines were to transfer their mcs to that single machine. To minimize communica

tion cost, we achieve a similar disjoint partitioning with "almost" equal number of mcs in

each machine. We take a sample of mcs (say q%) from each machine and then send them

to all other machines. Every machine now gets the same set of sampled mcs over which

each machine computes medians equal to number of machines minus 1, with respect to

one dimension only (as shown in Figure 6.5 for A'-dimension). The dimension that has

maximum spread is chosen for splitting. Once the medians are computed, the mcs are

partitioned according to them and moved to their respective machines to achieve disjoint

partitioning as shown in Figure 6.5. Please note that all the medians are computed over

the means of the mcs. Also, in case of large number of streams being received, we can use

more than one dimension for partitioning.

Please note that we use two MPI broadcast calls in total for this step. Median compu

tations are performed locally and doesn't involve any communication.

138

6.3 Any-MP-Clus

Algorithm 6.2: Local-Merging

i

3
4

6

8
9
10
11
12
13
14
13
16
17
18

procedure Local-Merging ()
Input : Machine M)
Output: Leaf-Level mcs of Al। aggregated to coarser granularity
List ml = Mi.microcludcrsLid; RTree R| = Create-R-Tree (ml);
List ml,t.-;C - New-List(); flag = TRUE;
while flag do

I flag = FALSE;
[foreach me, in ml do

| | if mex.marked == FALSE then
j (mcu = Get-One-NNOhg.Ri) 11 gets closest unmarked me;
I if Merged-Radius(mcx, mcu) < t then
! ! | = Merge-MCs (met.mcu); insert mc„lt.r^.lt into ml„,.:i.;

। । mark mcx and mcv as processed in ml; flag = TRUE;
1 else
j | mark mcx as processed in ml; append mcx to mllltd-;
I end
। end
I end

| ml = ml,,.:v: EMi*TY(/n/,Jt.();
| end

6.3.1.2 Local Merging

In this step, every machine aggregates the mcs received from different machines in the

partitioning step (which are now locally present), into a single set of mcs to be stored

in Tilted-Time Window Framework (TTWF). The mcs are aggregated to a user-defined

granularity, using a user defined threshold on maximum radius referred to as t. We do

an iterative pair-wise merging of mcs based on r, i.e. we merge a pair of mcs only if

the merged me has radius below t. The smaller or larger choice of t produces mcs at

finer or coarser granularity respectively. Algorithm 6.2 gives the pseudo code for the local

merging step. In brief, for every iteration, we iterate through the entire list ml of mcs and

merge every closest pair of unprocessed mcs mcx & mcv, if the radius of the merged me

mCmerged is less than t. We use R-tree to index mcs as it aids in finding the closest me in

logarithmic time. And then we add mcmerge(i to a new list ml„ew, and mark mcx and mcv as

processed in ml. However, if we do not merge them, we mark mcx as processed in ml and

add it ml new > to give it a chance to get merged to some other me in the next iteration. After

processing all the mcs in ml, we proceed to the next iteration where we process mlltew in

the same way. Finally, when there is no possibility of merging of mcs anymore, we exit

the loop and present ml as the list of aggregated mcs.

Let mmc be the number of mcs in a given machine. The worst case complexity of find

ing a pair of closest mcs shall be O(mtltc). So, for each iteration, total cost shall be O^rnmc2).

139

6.3 Any-MP-Clus

Since, we do parwise merging, expected number of iterations shall be O(logw,„t). Then

the worst case complexity of local merging step shall be O(mnic2 log/n„R).

6.3.1.3 Global Merging

After the local merging step at each machine, global merging is done. In this step, we

perform merging of the mcs across the machines. For this, we transfer mcs lying in the

strips of width t from all the machines to a master machine. For the distribution shown

in Figure 6.5 on page 138, we do a pairwise merging of strips - Si & S?; S3 & S4; and S5&

S^. This merging is also similar to local merging, where we merge micro-clusers based

on the threshold criteria - r. When the number of streams (or machines in the cluster

receiving streams) is high, we can use tree-parallel mode of merging as well [36]. This

would be more efficient than merging all pairs of strips in a single master. The above step

shall take total number of MPI calls equal to number of machines in the cluster.

Finally, we have merged mcs lying in all the machines along with the globally merged

mcs in the master machine. All these sets of aggregated mcs are then stored in a Tilted-

Time Window Framework (TTWF) [98], which is explained in Appendix B on page 212.

Note that this step would require additional MPI calls equal to number of computing

nodes.

We can clearly see that, the mcs have been merged in parallel across all the machines

of the cluster using the steps - local merging and global merging. However, one could take

an alternative sequential approach to merging, where we transfer all the mcs to a single

machine and aggregate them (would require MPI calls equal to number of computing

nodes). However, this leads to a higher merging time. Table 6.5 on page 150 substan

tiates this argument and also shows that purity of mcs resultant of parallel merging is

approximately same as for those resultant of sequential merging.

6.3.1.4 Tilted-Time Window Maintenance of micro-clusters

We store the aggregated mcs generated for each batch in tilted-time window framework.

As explained in Appendix B on page 212, TTWF [98] keeps a set of windows (Figure B.l

on page 212) which records the entire stream from its beginning, but in logarithmically

140

6.4 Experimental Results and Analysis

decreasing order of granularity. The average radius of the mcs in n’i and W2 will be the

lowest and it keeps on increasing from 1P3 to <(’4 and so on. Following the description of

maintenenance of TTWF from Appendix B on page 212, we now explain how TTWF is

maintained with mcs:

We start with an empty TTWF. After receiving three batches, we shall have <(’1, W2 and

tW2 full. These sets of mcs were aggregated with t as the radius threshold. When next

batch arrives, we merge sets in W2 and tuh and place them in window Wy The radius

threshold used for this merging will be r • f where f > 1 is a user defined parameter.

Essentially, we increase the radius threshold for merging, which is controlled by f. In

general, for merging mcs from two windows to place in window Wj, the radius threshold

for merging will be equal to t • It • f, where It — i — 2. For window w$, h = 1. The merging

of the mcs of two windows happen in a similar way as that of local merging step. In

this way, by exponentially increasing the radius threshold of the mcs in the windows,

we are progressively achieving coarser granularity of the mcs, and thus giving lesser and

greater importance to older and recent data respectively. And when we have to perform

clustering over these mcs, we simply pick up a required subset of windows and perform

clustering over the mcs present in them. In those clustering results, the recently arrived

objects will have the highest importance.

Please note the the offline phase of AnyClus is similar to that of Any-MP-Clus, but

without any merging step. The leaf level mcs of the single AnyRTree are aggregated to

appropriate granularity and are fed into TTWF as explained above. The whole thing is

executed only on a single computing node. Also note that, along with the noise to concept

transitions that happen in the online phase, TTWF also supports in capturing the concept

drift for both AnyClus and Any-MP-Clus.

6.4 Experimental Results and Analysis

All experiments are conducted on a cluster of 32 computing nodes, where each node is

an IBM x3250 m4 Server with Intel Xeon CPU E3-1230 v2 @ 3.30GHz (64-bit) processor

and 32 GB (DDR3 aA§ 1600 MHz) RAM. The experiments on AnyRTree are conducted

over a single node of the cluster. All algorithms were implemented in C with MPI. The

141

6.4 Experimental Results and Analysis

Table 6.1: Details of the datasets

Dataset No. of Data
Objects No. of Dimensions No. of

Classes/CI usters
FOREST COVER (FC) 0.58 M 10 7
KDDCUP1999 (KDD) 4.8 M 38 24
SYTHETIC CLUSTER (SC) IM 3 4
MPAGD3.2M (M32) 6 M 2 9464
SFONT1M (SF) 1 M 11 6690
FOF57M (FOF) 57 M 3 1613820
MPAGD1B (M1B) 1 B 10 —

details of the datasets used for experimentation are given in Table 6.1. Forest Cover (FC)

is a labelled data from UCI repository [200]. It has 0.58M objects with 10 numerical

attributes. KDDCUP1999 ([207]. Synthetic Cluster (SC) is synthetically generated dataset

that consists of IM objects with 3 dimensions. It consists of 4 well separate clusters (4

x 0.2M objects) as well as noise (0.2M objects). The last four datasets are unlabeled and

taken from Millennium repository and contain astronomical data of galaxies in the sky

[135].

Ground Truth Generation. The ground truth (class labels) for FC and KDD are already

available in the dataset. SC has been synthetically generated and class labels are known.

Ground truth for the remaining datasets has been created using DBSCAN clustering,

by treating each cluster and noise point as a separate class. The parameters chosen for

DBSCAN over these datasets are as follows: e=2 & min_pts=5 for MPAGD3.2M (M32);

and e=l & min_pts=5 for SFONT1M (SF); & e=1 and min__pts=6 for FOF57M (FOF). These

values were chosen by an experiment on each of these datasets, where we order the data

objects based on the increasing order of their distances from their kth nearest objects, using

k = tnin_pts, and a plot is generated with x-axis as the ID of the data object and y-axis

as the distances computed above. In this plot wherever the curve takes a steep curve, the

distance at that point is chosen as e [6]. We couldn't run DBSCAN on MPAGD1B (M1B)

dataset because of limited available computational resources to process such large dataset

as a result of which we couldn't generate its ground truth.

We perform two sets of experiments. In the first, experiments are performed on a

single-port stream to compare the effectiveness of AnyRTree (AR) with respect to Clus

Tree (CT) and LiarTree (LT) (Section 6.4.1 on the following page). In the second set, ex

142

6.4 Experimental Results and Analysis

periments are performed over Multi-Port streams (Section 6.4.2 on page 148), to highlight

the proposed parallel framework. We have not explicitly conducted a separate experi

ment to show the effectiveness of the sequential AnyClus framework, as the results are

of similar nature as those for Any-MP-Clus. We evaluate the quality of mcs produced by

AnyRTree, ClusTree and LiarTree in terms of two parameters - (i) granularity: the num

ber of mcs present at the leaf level of the tree, and (n) purity: the average purity of leaf

level mcs (see Appendix C on page 214 for definition of purity) The streams with varying

inter-arrival rate are simulated using Poisson streams that takes an input parameter A and

generates objects with rate A objects/sec., as explained in Section 4.7 on page 90.

The default values of parameters chosen for AnyRTree are 6 = 5%, 7 = 0.5 sec and

ft = 10. These parameters have been chosen on the basis of parameter tuning experi

ments conducted (see Figure 6.9 on page 147, Figure 6.10 on page 147 and Figure 6.11

on page 147) The noise probability for LiarTree has been chosen to be 0.7 as suggested in

its chapter. The fanout parameters has been set to m=2 and A4=4 for all the trees, as per

the recommendations given in [104]. Also note that for fair comparision of ClusTree and

LiarTree with AnyRTree, we don't employ exponential decay in them. AnyRTree doesn't

have exponential decay as aging is taken care by TTWF. In every experiment, we insert

the initial 10% of the data into the indexing structure (any of the above) without anytime

features, and then start the stream.

6.4.1 Experiments on AnyRTree

All experimental results shown in this subsection are performed for single-port stream.

In each experiment, we insert the entire dataset into each of the summary structures, and

compare the quality of mcs produced.

First, we compare the purity and granularity of the leaf-level mcs generated by AnyRTree

(AR), ClusTree (CT) and LiarTree (LT) at different stream speeds, for both labelled (FC &

KDD) and unlabelled (M32 & SF) datasets. The labels of the curves in all the figures follow

the notation: <dataset> - <tree>. For example, "FC-AR" indicates that the experiment

was conducted on FC dataset using AnyRTree. The results presented in Figure 6.6 on

the next page & Figure 6.7 on the following page show that AnyRTree has generated mcs

143

6.4 Experimental Results and Analysis

100k 150k 200k

Stream Speed l>.>

Figure 6.6: Purity of leaf level mcs gener
ated by AnyRTree vs ClusTree & LiarTree
for FC & KDD at different stream speeds

o 7 --------- ------------------- ------------------- - . .-------- -

50k look 150k 200k 250k

stream Speed tz.)

Figure 6.7: Purity of leaf level mcs gener
ated by AnyRTree vs ClusTree & LiarTree
for M32 & SF at different stream speeds

Table 6.2: Granularity of mcs generated by AnyRTree vs ClusTree & LiarTree for FC & KDD
at different stream speeds

Dataset 50k 100k 150k 200k 250k
FC-CT 450564 352482 281436 220003 182474
FC-LT 449852 349865 274865 214587 176325
FC-AR 423386 340684 266358 202477 163677
KDD-CT 2081826 929505 466450 259595 144552
KDD-LT 2071865 903654 448752 239547 135842
KDD-AR 1717778 856284 404157 225124 123736

with greater purity than ClusTree and LiarTree for both the datasets, especially at higher

stream speeds where aggregation is high. Also, the difference in purity for KDD (38 di

mensions) is higher than that for FC (10 dimensions). This shows that AnyRTree performs

better for high dimensional datasets. Also, the results presented in Table 6.2 show that

the number of mcs generated at leaf level (granularity) is slightly less for AnyRTree. This

shows that AnyRTree generates less number of micro-clusters with greater purity, which

implies that the mcs generated are more compact, i.e. AnyRTree keeps spatially closer

points in the same micro-cluster.

Next, we compare the purity of leaf level mcs generated by AnyRTree, ClusTree and

LiarTree for a given speed (A=100k ops), while varying the granularity of mcs generated

over FC and KDD datasets. For each run, we fix the maximum number of leaf level mcs

to be indexed in the tree and do not let the tree grow beyond it (explained in Section 6.2.2

on page 131). The results presents in Figure 6.8 on the next page show that even at coarser

granularity AnyRTree is able to produce high quality mcs.

Next, we compare AnyRTree and LiarTree in terms of their ability to capture noise and

144

6.4 Experimental Results and Analysis

I C- \R

kill). \R

Figure 6.8: Purity of leaf level mcs generated by AnyRTree vs ClusTree & LiarTree for FC &
KDD for varying granularity at A=100k

concept drift. For this we created a synthetic dataset (SC) of IM objects and 3 dimensions,

which consists of 4 well separated clusters with each cluster having 0.2M objects in it.

It also contains 0.2M noise points randomly spread across the dataset. We simulate the

stream in such a way that the objects arrive cluster by cluster and noise points come arbi

trarily. This simulates evolving concepts in the stream. For fair comparison, we run this

experiment in non-anytime mode (without fixing any limit on processing time allowance

for any incoming object) and insert the objects into AnyRTree and LiarTree. We measure

the purity of mcs produced intermittently at regular interval of 1 second. The results

presented in Table 6.3 show that the purity of the leaf level mcs produced is higher for

AnyRTree than LiarTree at all the time intervals measured. This shows its effectiveness in

capturing noise and concept drift as explained in Section 6.2.3 on page 135.

Table 6.3: Purity of leaf level mcs produced by AnyRtree vs LiarTree for SC dataset

Time Interval (Sec.) 1 2 3 4 5 6 7 8 9 10
Purity of LiarTree 0.79 0.81 0.81 0.78 0.77 0.79 0.80 0.78 0.82 0.79
Purity of AnyRTree 0.88 0.89 0.91 0.89 0.87 0.90 0.90 0.89 0.89 0.88

We also compare the preservation of spatial locality for AnyRTree and LiarTree. Both

AnyRTree and LiarTree are based on R-Trees and it is a well known fact that R-trees are

very efficient in executing e-neighborhood and A'-nearest neighbor queries. The greater

the preservation of locality in an R-tree, the better the performance of above queries. So,

we can check performance of both the queries over AnyRTree and LiarTree to establish

which one has better preservation of spatial locality. We use DBSCAN Clustering and

A:-NN Classifier algorithms to check for the performance of neighborhood and nearest

145

6.4 Experimental Results and Analysis

neighbor queries respectively, as these queries are extensively used in them (> 95% of

execution time). For this, we index a complete dataset into both AnyRTree and LiarTree

and then convert Liartree into an R-tree by bottom-up construction of MBRs with the leaf

level mcs as data points. AnyRTree intrinsically has MBRs in its nodes, so there is no

need for any such conversion. So, finally we will have two R-trees - one from LiarTree

and one from AnyRTree, both of which have MBRs in the internal nodes and data objects

(means of mcs) in the leaf nodes. We execute DBSCAN and k-NN Classifier [121, 208]

over the objects in the leaf level, using the above R-trees for queries. We do this for M32

dataset with c=2 and miti_pts=6 for DBSCAN, and k=4 for k-NN Classifier, and compare

the run-time performance. While indexing the complete dataset, the speed of the stream

was set to /\=50k for both the trees. We run this experiment in two modes. In the first, we

fix the number of leaf level mcs to 0.5M. This will fix the total number of queries executed.

In the second, we don't enforce any such limit. The results presented in Table 6.4 clearly

show that the performance of DBSCAN algorithm has always been better for AnyRTree

than LiarTree, in both the modes. Also, one can see that the memory requirement is

only a little higher for AnyRTree in the first mode, where the number of mcs indexed is

fixed. This is due to increase in granularity of buffers. However, in the second mode, the

memory is lesser than LiarTree due to lesser number of mcs indexed in AnyRTree. This

establishes the ability of AnyRTree to preserve spatial locality without any substantial

increase in memory requirement. Also note that DBSCAN is very commonly used for

offline clustering in typical stream algorithms. Thus usage of AnyRTree also makes the

offline clustering efficient.

We then conduct experiments to give recommendations for choosing appropriate val-

Table 6.4: DBSCAN and k-NN Classifier Exec. Time: AnyRTree vs LiarTree on M32 dataset

With limit on no. of mcs Without limit on no. of mcs
No. of mcs 0.5M 1.53M
Purity of mcs 0.85 0.99

LiarTree Memory Occupied by the tree 521 MB 1404 MB
DBSCAN Exec. Time 763 sec. 1816 sec.
k-NN Classifier Exec. Time 312 sec. 803 sec.
No. of mcs 0.5M 1.39M
Purity of mcs 0.92 0.99

AnyRTree Memory Occupied by the tree 559 MB 1256 MB
DBSCAN Exec. Time 621 sec. 1396 sec.
k-NN Classifier Exec. Time 264 sec. 617 sec.

146

6.4 Experimental Results and Analysis

Figure 6.9: Purity of leaf
level mcs generated by
AnyRTree with variation
in J

Figure 6.10: Purity of
leaf level mcs generated
by AnyRTree with varia
tion in 7

Figure 6.11: Purity of
leaf level mcs generated
by AnyRTree with varia
tion in /•>

ues of user defined parameters - d, 7 and /I. Please note that 6 is the percentage of area

expansion permissible to treat an object as concept (not noise) while inserting into a sub

tree; 7 is the time interval after which we check for any possible noise to concept transition

for a given entry of a node; is the minimum number of objects to be aggregated into a

noise buffer, before we start treating it to be concept. Figure 6.9, Figure 6.10, Figure 6.11

show the purity of mcs produced for SC and KDD datasets with variation in 6, 7 and

values respectively, while keeping the other two to their default values. Two values of

stream speed (A) has been chosen - 100k & 200k. We can observe in Figure 6.9 that when

the value of d is too less, it is considering true concepts also as noise, which is distorting

purity of mcs produced. And when it is high, the purity is distorted even then as noise

points are considered as true concepts. So, value of b between 5% to 10% is appropriate

as observed for both the datasets at both the stream speeds. Regarding the value of 7,

Figure 6.10 shows that smaller the value of 7 more purer are the mcs produced. However,

until it becomes too high, the purity of mcs doesn 't have much change. So value of 0.1

to 0.5 sec. is appropriate. One can choose this depending upon the stream speed as well.

The value of ft, when too low or too high, reduces purity (see Figure 6.11). It has to be

optimal. This is because at low values, noise is immediately made concept. So, it has

to be sufficiently high to get high purity. Typically one can choose /I to be equal to the

min_pts paramater used in offline DBSCAN clustering. Value above 10 is recommended

as observed for both the datasets. Please note that the above recommendations have been

used and worked well with other datasets as well.

147

6.4 Experimental Results and Analysis

6.4.2 Experiments on Any-MP-Clus

In this section we conduct experiments to evaluate Any-MP-Clus. We use ClusTree,

LiarTree and AnyRTree in the online phase, for its evaluation. In all the experiments

presented in this subsection, we process the entire dataset and then take the results. The

value of the parameter f, which controls the granularity of mcs in windows of TTWF,

is chosen to be 1.1. The value of i.e. the duration of window n’j in TTWF has been

chosen to be 2 seconds for FOF dataset and 10 seconds for M1B dataset. The value of t

(maximum radius threshold for n>i) has been chosen to be 0.005 for FOF and 0.05 for Ml 13.

The value of q, which is the percentage of data objects communicated to other machines

for median computations, has been chosen to be 10%. We evaluate the quality of mcs

produced over FOF dataset using with average purity of the mcs, using the class labels

generated by DBSCAN. For M1B dataset, we use Silhouette co-efficient instead, as we

couldn't generate its ground truth.

a CT - X 32 — A- - I I - X 32 ------ A-------- AR - X 32

-H----CI-X 16 — O- I I -N 16 ------a-------- AR-X 16

Figure 6.12: Purity of mcs generated by
AnyRTree vs ClusTree & LiarTree in vari
ous windows of TTWF over FOF dataset

A I I - X 32 — A- — 1 I - X *2 ------ A-------- \R - X 32

---a—ci-x 16 — a- I r-x 16 —■—ar-x 16

Figure 6.13: Sil. Co-eff. of mcs gener
ated by AnyRTree vs ClusTree & LiarTree
in various windows of TTWF over M1B

First, we measure the quality of mcs produced by ClusTree, LiarTree and AnyRTree

in different windows of the TTWF for FOF and M1B datasets, while using 16 and 32

machines of the cluster. The number of machines of the cluster indicates the number of

arriving streams. The stream speed has been fixed to A=150k ops across all the machines.

The results shown in Figure 6.12 & Figure 6.13 indicate that the quality of mcs produced in

windows 7t’i and wz are the highest and it decreases as we progress to the later windows.

This is because of greater aggregation present in the later windows. The experiments also

148

6.4 Experimental Results and Analysis

I < >1 -

Figure 6.14: Quality of DBSCAN cluster
ing for mcs produced by AnyRTree, Clus
Tree & LiarTree in windows wl, w2 & w3
over FOF dataset

Figure 6.15: Purity of mcs in n’i generated
by AnyRTree at different stream speeds
for varying number of machines over FOF J o
dataset

establish the fact that AnyRTree has been consistently performing well in all the windows

(especially in the latest windows), when compared to ClusTree and LiarTree.

Next, we measure the quality of clustering result produced by applying DBSCAN

clustering over the mcs generated by AnyRTree vs ClusTree & LiarTree. We take all the

mcs from windows wl, w2 and w3 (in case of all three trees), while varying the number

of machines (streams). While performing DBSCAN over the mcs, we treat their means

as stand-alone data objects and apply clustering over them. For DBSCAN clustering

over FOF dataset, we choose e=l and min_pts=6. And for M1B, we choose c=2 and

niin_pts=6. We measure quality of clustering for FOF using purity and for MPAGD1B

using silhouette. The stream speed has been chosen to A=150k ops across all the machines.

The results are presented in Figure 6.14. The results show that the quality of clusters

produced is greater for AnyRTree than the remaining two. Also, the quality of clustering

increases with increase in number of machines due to increase in granularity of the mcs,

which is resultant of increase in number of mcs processed.

Next, we measure the purity of mcs produced in window nq at different stream

speeds, while varying the number of machines used in the cluster, for AnyRTree over

FOF dataset. Please note that the number of machines used is equal to number of streams

being captured. The results presented in Figure 6.15 show that with increase in number

of streams, the purity of the mcs achieved also increases at all the stream speeds. This

is because with increase in number of streams, the overall granularity also increases and

149

6.5 Main Contributions

Table 6.5: Parallel Merging Time vs Sequential Merging Time

Strategy Purity Merging Time
Parallel Merging 0.9542 31 sec.
Sequential Merging 0.9551 341 sec.

thus achieving mcs of greater purity.

Next, we compare the efficiency of parallel merging with that of sequential merging.

In parallel merging, we merge mcs using local merging and global merging steps as

described in the offline phase of the proposed framework (See Section 6.3.1 on page 137).

This parallel merging leverages a cluster of machines and hence is faster. In sequential

merging, we instead transfer all the data objects from multiple machines to a single master

machine and merge all of them over there. Table 6.5 shows the purity of mcs produced

by both strategies along with the time taken to perform each of them over FOF dataset

at stream speed of A=150k ops, for a single window of duration f/„=60 sec. The results

clearly show that the purity of mcs is almost the same in both the cases, whereas the total

merging time using parallel merging over 32 nodes is very less when compared to that of

sequential merging. Similar results were observed for other datasets as well.

6.5 Main Contributions

• We propose AnyClus, which is a framework for anytime micro-cluster maintenance

of variable speed data streams that handles noise, captures concept drift, preserves

spatial locality, and produces micro-clusters of greater quality. It addresses the

drawbacks of ClusTree and LiarTree and hence produces mcs of greater quality.

• AnyClus uses a proposed variant of R-tree, AnyRTree, which is an indexing structure

that stores micro-clusters at hierarchical granularities using R-tree spatial contain

ment principles. AnyRTree enables the above features of AnyClus.

• We also propose a parallel framework, Any-MP-Clus, for anytime micro-cluster

maintenance of multi-port streams over distributed memory architectures (cluster

of computing nodes). This is the first such framework proposed. Any-MP-Clus

also uses AnyRTree at each computing node to capture incoming streams.

150

6.6 Conclusions & Future Work

6.6 Conclusions & Future Work

6.6.1 Conclusions

In this chapter, we proposed AnyClus & Any-MP-Clus, which are frameworks for any

time micro-cluster maintenance of single-port and multi-port data streams respectively.

They use a proposed variant of R-tree known as AnyRTree for indexing the incoming

stream objects (arriving with variable rate) in the form of micro-clusters of hierarchical

granularity Both AnyClus & Any-MP-Clus store the micro-clusters in a logarithmic

tilted-time window framework. Any-MP-Clus uses a simple parallel merging strategy

that leverages the cluster of computing nodes to merge and aggregate micro-clusters.

The experimental results presented in Section 6.4.1 on page 143 show that AnyRTree -

1) produces micro-clusters of greater quality and compactness, 2) captures noise and concept drift

more effectively, and 3) preserves spatial locality more effectively leading to improvement in offline

clustering performance, when compared to ClusTree and LiarTree. The experiments also

establish the efficiency and scalability of Any-MP-Clus.

6.6.2 Future Directions

In future, we can work upon changing the representation of both kinds of buffers to

contain multiple micro-clusters, which can improve their quality. One can also design a

similar parallel framework for anytime subspace clustering as well.

151

Part III

Data Distribution Strategies

152

Data Clustering is one of the most commonly used data mining technique for knowl

edge discovery. Clustering groups data into meaningful groups, known as clusters,

such that the dissimilarity between objects belonging to the same cluster is minimized

and dissimilarity between objects from different clusters is maximized [6]. A few com

monly used clustering algorithms include - partitioning based clustering algorithms (K-

means [26], K-mediods[209]), density based clustering algorithms (DBSCAN[34], OPTICS

[35], SNN [210]), hierarchical clustering algorithms (SLINK [30], CLINK [6], ALINK [6],

BIRCH[203]), subspace clustering algorithms (CLIQUE [211], MAFIA[37], ENCLUS [212],

PROCLUS [213], ORCLUS [214], FINDIT [38]), grid based clustering algorithms (STING

[144], CLIQUE [211], MAFIA [213], WAVECLUSTER [215]) etc. These algorithms are

commonly used in many applications such as satellite image segmentation [216], noise

filtering and outlier detection [107], clustering of bio-informatics data [217], finding halos

in cosmology [218], prediction of stock prices [219], etc.

Due to advent of Big Data, there is a huge data deluge created as generation of data

has become faster and cheaper. To discover knowledge from such data, parallel clustering

algorithms have been proposed to work over distributed memory architectures. Their de

sign is usually data parallel, where they distributed data among the available computing

nodes of a cluster and process each chunk in parallel. A few such solutions include - paral

lel partitioning based clustering algorithms [29, 220, 27, 220, 28, 221, 222], parallel density

based clustering algorithms [36, 223, 86, 224, 87], parallel subspace clustering algorithms

[89, 225, 226, 227, 228, 229], parallel hierarchical clustering algorithms [88, 230, 33, 231],

parallel grid based clustering algorithms [232, 233, 234], etc. These solutions are typically

based on high performance computing frameworks such as MPI, Hadoop, Spark, etc.,

which run the algorithms on a cluster of computing nodes.

Step I: Data Distribution

Step 2: Retrieval of Extra Data

Step 3: Local Computation

Step 4: Global Merging

153

Figure III.l: Workflow of a Parallel Clustering Algorithm

A typical parallel clustering algorithm has its work-flow as shown in Fig. III.l in the

previous page. It has the following steps:

1. Data Distribution: In this step, the data is distributed among all the computing nodes

of the cluster depending upon the design and requirements of the algorithm. Dis

tribution of data enables each computing node to process the data chunk allocated

to it in parallel. Load balancing in terms of memory and computational overhead is

an important criterion to be considered while distributing the data to achieve opti

mal speed up of the parallel algorithm. Commonly used distribution strategies are

random partitioning and spatial partitioning (like kd-tree).

2. Retrieval of Extra Data: This is an optional step and is usually used by algorithms

using spatial partitioning. In this step, each computing node fetches data, required

for local computation, from other computing nodes of the cluster. This require

inter-node communication. Some algorithms do not require any data from other

computing nodes, for example - parallel K-means. Whereas some algorithms might

require data from all other computing nodes, for example - parallel DBSCAN that

uses random partitioning.

3. Local Computations: In this step, each computing node executes a local step for the

portion of data allocated to it and produces a local clustering result. This step may

require inter-node communication, depending upon the algorithm.

4. Global Merging: In this step, the local clustering result from all the computing nodes

are merged either sequentially or in parallel to give a global clustering result. An

algorithm may iterate over steps 2-4, if required by its design.

In the above workflow, data distribution is the step that plays a pivotal role in reducing

the cost of data communication in the local computations step or in iterations global and

local computations. It can influence the overall performance of the algorithm by several

factors. Some parallel algorithms simply use random distribution [31, 88, 231] and some

parallel algorithms that execute spatial queries (like neighborhood and nearest neighbor

154

queries) use a distribution that preserves spatial locality of some points or majority of

points (except the boundary points) [235, 86, 120, 236, 36, 33, 230]. By preservation of

spatial locality, we mean that for a given data point p, the data points surrounding p

are available locally in the same compute node. Spatial locality also leads to minimum

possible overlap in the search space of different computing nodes. Consider Fig. III.2 on

previous page, which shows three kinds of distributions over four computing nodes - A,

B, C and D. The first distribution (a) has no preservation of spatial locality in distribution

of data points to different machines. The search space of all the machines overlap a lot

and is almost the same. In the second distribution (b) the data points are somewhat

spatially organized. However, there are some overlaps in their search space. In the third

distribution (c) the data points of are perfectly spatially organized with no overlap in the

search space of the machines.

o-Machine A a-Machine B a -Machine C o-Machine D

(a)

° °o o°oo
o*ow
°:P Qo^o 2:2

(b)

o„ o o o o
o o o q

o a 0 $ s
e ® 3 Ia a a so

a 0®. a 0

oa;

(c)

0 0
O - o J

o

o ? o
O - o J O 3

Figure III.2: Spatial locality preservation (a) None (b) Moderate (c) High

Preservation of spatial locality in the distribution helps in reducing the communication

cost as well as the computation cost involved in steps 2,3 & 4 of the algorithm. Consider

the case of parallel DBSCAN. In the local computations step, this algorithm executes e-

neighborhood queries for all the points in every computing node. Consider the computing

node A of Figure. III.2. To compute e- neighborhoods correctly for all the points in it, we

shall require to fetch extra data points from all other computing nodes in case of Figure

III.2 (a), as epsi/oH-boundaries for some points of node A are overlapping with the search

spaces of all other computing nodes. We can clearly see that there no spatial locality

maintained in the distribution shown in Figure. III.2 a. For distribution shown in Figure

III.2 (b), a lesser number points shall be needed to be retrieved, and still fewer points in

case of distribution IH.e (c). This is because spatial locality is best preserved in distribution

(c). Thus, a good spatial distribution helps in reducing inter-node communication of step

155

2, make local computations in step 3 efficient, and as well make the merging step (step 4)

efficient.

Literature reveals only very few distribution strategies used in parallel clustering al

gorithms. They include - random distribution [31, 88, 231], kd-tree distribution [235, 86, 120,

236,36] and grid/cell-based distribution [237, 33,230,224]. Initial approaches to parallel clus

tering had used random partitioning [238, 239, 240, 241, 242, 88]. However, researchers

soon realized that it become a performance bottleneck for many clustering algorithms like

density based and hierarchical clustering algorithms. So recent algorithms use spatial par

titioning to get more efficient design of the parallel algorithms [86, 224, 36, 230, 89]. Other

algorithms which don't rely on spatial locality principles simply use random distribution.

Research Gap & Motivation

Here are a few drawbacks associated with the existing data distribution schemes:

• Although the above distribution schemes are being used for parallel data mining

algorithms, they are not specifically designed for such use. Also, they don't cap

ture any specific data access patterns associated with any typical spatial parallel

clustering algorithms. One can make tailor made partitioning scheme for a class of

algorithms like density based or hierarchical clustering algorithms, which specifi

cally capture the design requirements of that respective class.

• Although, the above data distribution schemes achieve good spatial locality, the

distribution scheme however is static. That is, once the partitioning is done, it can't

be incrementally updated. We shall have to redo the entire partitioning to include

new data points. This renders them unfit for usage in dynamic incremental datasets.

• Another drawback associated with these schemes is that they require to scan (and

store sometimes) the entire data into memory for computing the partition bound

aries. It would thus become very expensive to use them for distributing large

datasets. This is because, memory in a single machine may not be sufficient to

accommodate the entire dataset, and thus leading to a lot of disk I/O. To the best of

our knowledge, in only one instance, kd-tree like distribution has been done for dis

156

tributing large data using sampling [223] for eliminating disk I/O. This partitioning

scheme is also static.

To, address the above limitations, we present two kinds of data distribution schemes

in this part. Chapter 7 on the following page presents a few data distribution schemes for

large static datasets, while addressing the specific data access patterns of density based

and hierarchical agglomerative clustering algorithms. It also presents a few distribution

schemes for datasets that don't fit into main memory, while eliminating the need for disk

I/O. Chapter 8 on page 185 presents a dynamic distributed data structure known as DD-

Rtree, which is meant for data distribution for large dynamic incremental datasets.

157

Chapter 7

Data Distribution for Large Static

datasets

In this chapter we present a few data distribution strategies proposed for distributing

large static datasets over a cluster of computing nodes. We evaluate each of these in

terms of performance of parallel clustering algorithms. Before presenting the methods

and experimentation, we give a brief survey of parallel clustering algorithms proposed

in literature for distributed memory architectures, with specific discussion on the data

distribution strategy they employ.

7.1 Survey of Parallel Clustering Algorithms

We survey the existing MPI based parallel clustering algorithms in four broader cate

gories and are explained below. Table 7.1 on page 168 summarizes the data distribution

strategies used by these algorithms.

• Jagat Sesh Challa, Poonam Goyal, Nikhil S, Amogh Sharma, Sundar Balasubramaniam, Navneet Goyal,
"Effective Data Distribution Strategies for Parallel Spatial Clustering Algorithms based on MPI", To be
submitted to ACM TKDD.

158

7.1 Survey of Parallel Clustering Algorithms

7.1.1 Parallel partitioning-based clustering algorithms

Partitioning based clustering algorithms are those algorithms that create k number of

partitions in the data, while reducing the inter-cluster similarity and increasing the intra

cluster similarity of data points in each cluster. The clustering is performed iteratively,

until the it converges to the expected thresholds on distances specified above. The most

basic partitioning based clustering is the K-means algorithm [6]. It starts with k centroids

and assigns all the points in the dataset to their nearest centroid. Then the centroids

are updated with respect to the membership obtained. The above steps are iteratively

repeated, wherein we get new centroids after every iteration. The iterations continue

until a threshold is reached on the inter-cluster similarity. Variations of k-means clustering

include k-medians [243], k-mediods [29], Fuzzy C-means [244], etc. k-medians computes

medians at every iteration instead of mean, k-mediods computes mediods, which are

actual points in the dataset, after every iteration. This makes it more robust to noise

and outliers than k-means. Fuzzy C-means is a variant of k-means, which performs soft

clustering.

Parallelization of k-means algorithm is very straight-forward for an MPI based dis

tributed memory architecture. Initially data is randomly distributed to each computing

node and a list of global centroids is created, which is known to each computing node. In

every computing node, data points are assigned to the nearest centroid and the centroids

are updated. Then an average of all the centroids is taken globally leading to a new set

of global centroids. Using these new global centroids the next iteration begins and in this

way the algorithm goes on for subsequent iterations until a threshold criteria is met.

A few implementations of MPI based k-means algorithm that have been proposed

include [28, 245, 246, 27]. All of them are based on the workflow explained above. [28]

presented the basic parallel k-means clustering algorithm with the above workflow. [245]

used parallel k-means to cluster large remote sensing data. [246] presented parallel k-

means algorithm using coresets. [27] presented an efficient parallel algorithm for selection

of initial seeds of k-means clustering.

A few implementations of k-means on MapReduce and Spark frameworks have also

been presented in literature [247, 221, 248, 249, 250, 29, 251].

159

7.1 Survey of Parallel Clustering Algorithms

7.1.2 Parallel density-based clustering algorithms

DBSCAN is the most commonly used density-based clustering algorithm [34]. It finds

clusters of data points with respect to two parameters e(>0) and MinPts(<0). It computes

e-neighborhood for each point in the dataset and labels the point as core, border, or noise.

A core point initiates a cluster and the cluster is expanded by computing neighborhoods

for points in the e-neighborhood of the above core point, until no core point is found.

This completes the expansion of the cluster. The next random point from the remaining

unprocessed points is visited to extract another cluster and this process continues until

all the points are processed. The time complexity of the DBSCAN algorithm that uses

R-tree for neighborhood queries, is O(n logn) where n is the number of data points to be

clustered.

Early approaches to parallelization of DBSCAN were based on master-slave compu

tation model [238, 239, 252, 253, 254, 255, 256]. All these approaches simply distribute

data to the slave computing nodes randomly without maintaining any spatial locality.

However, they do maintain load balancing to ensure maximum speed up. The first such

parallel approach to DBSCAN, known as PDBSCAN [238], uses dR*-tree for region queries.

dR*-tree is a variant of R*-tree [257] in which R*-tree is replicated over multiple comput

ing nodes for efficient data access on a distributed system. The next approach [239] gave

various optimizations to DBSCAN and proposed a parallel version too. This parallel ver

sion distributes data over multiple computing nodes randomly, performs local clustering

and then the local results are merged to get global clustering at the master node. The next

approach [252] gave a parallel DBSCAN algorithm in which DBSCAN is divided into two

major operations: clustering assignment and neighborhood querying. Master node per

forms clustering assignment while all slaves perform neighborhood queries in parallel for

the data partition they have. Random partitioning is used here as well. [253] also presents

a similar master-slave model based parallel DBSCAN in which each slave keeps a copy

of an R*-tree. It is very much similar to the previous approach. [256] also gave a parallel

DBSCAN, named as P-DBSCAN, which distributes the data among several nodes, builds

Priority R-tree on each node, runs local DBSCAN, and aggregate the local results to get

global clustering results. Priority R-tree is a variant of R-tree which performs efficient

160

7.1 Survey of Parallel Clustering Algorithms

region queries. It uses a kind of projection based distribution for data partitioning, which

is spatially disjoint.

The major drawback of master-slave model is the sequential data access pattern and

serialized computations which affects the scalability of the parallel algorithm. All the

approaches described above incur high communication cost between master and slave

nodes. The parallelization during the merging phase is also limited. And most impor

tantly they don't exploit the spatial locality exhibited by neighborhood queries used in

DBSCAN clustering during their data distribution phase and most of them simply use

random distribution. All of the above reasons render the master-slave model for DB

SCAN inefficient.

The first approach to DBSCAN that breaks the sequential data access pattern in a

solid way is PDSDBSCAN [86]. To do so it uses union-find (UF) data structure, which

also makes it amenable to parallelization and achieves better scalability. The authors

presented the parallel versions PDSDBSCAN-D and PDSDBSCAN-S for distributed and

shared memory systems, respectively. The same authors have given two more hueristic-

based approximate DBSCAN clustering algorithms - Pardicle [87] and BD-CATS [223],

which are based on PDSDBSCAN-D. These two algorithms are capable of processing

massive datasets with some approximation in the results. All the above algorithms use

kd-tree based data distribution, perform local clustering at each node, and then the local

clusterings are merged into a global clustering output.

Recently, a grid-based parallel implementations of DBSCAN, HPDBSCAN [224], has

been presented. In this algorithm, following an initial random distribution, points are re

distributed to computing nodes using a cost heuristic, thus achieves a distribution similar

to a grid. Then local computations are performed on each computing node and then the

results are merged into global clustering. Another grid-based DBSCAN, GridDBSCAN

[36], has been proposed recently which reduces the total number of neighborhood queries

as well as the search space for each query, while producing exact DBSCAN clustering

output. It uses Grid-R-tree (described in Chapter 2 on page 19) for efficient computation

of cell-wise neighborhoods. GridDBSCAN is parallelized for distributed memory, shared

memory and hybrid architectures. It uses kd-tree based partitioning for data distribution,

performs local GridDBSCAN clustering on each node and merges the local clusterings in

161

7.1 Survey of Parallel Clustering Algorithms

a tree-parallel way. The experimental results claim better scalablity and run-time than the

previously proposed MPI based exact clustering approaches.

Apart from MPI based solutions we have solutions for GPGPU based systems, MapRe

duce/Hadoop, Spark and hybrid systems. A few GPGPU based parallel DBSCAN imple

mentations are proposed in [237, 258, 259, 260]. A few Map-Reduce based implementa

tions are proposed in [261, 262, 263, 264, 265, 266]. Similarly, a few Spark based imple

mentations are proposed in [267, 268, 269, 270, 271, 272].

7.1.2.1 Parallel OPTICS

OPTICS (Ordering Points To Identify the Clustering Structure) is a hierarchical density

based clustering algorithm [35]. OPTICS addresses major limitation of DBSCAN, i.e., the

problem of detecting meaningful clusters in a dataset that has varying density. OPTICS

gives an overview of the cluster structure of a given dataset with respect to density and

contains information about every cluster level. For this, OPTICS generates a linear order

ing of points where spatially closest points are arranged as neighbors. Additionally, for

each point, a spatial distance (known as reachability distance) is computed which repre

sents the density. Once the ordering and the reachability distances are computed using e

and MinPts, we can now generate clusters for a particular value of e' (known as clustering

distance), where e'< e.

The first parallel version of OPTICS clustering was proposed in [235]. They re-engineered

the algorithm using Prim's MST algorithm and presented a variant called MST-OPTICS.

MST-OPTICS breaks the sequential data access pattern of OPTICS algorithm and makes

it amenable to parallelization. They present POpticsD which is the parallel version that

works over distributed memory architectures. POpticsD uses random distribution and

doesn't rely on spatial locality in distribution. On each partition, a local MST is con

structed in the local computations phase, and all those MSTs are merged into a global

MST. Clustering results obtained by this approach are comparable but not exactly the

same as that obtained by classical OPTICS algorithm.

The next parallel approach is DOPTICS, which is presented in [236, 120]. DOPTICS

is data parallel approach that uses spatial data partitioning using kd-tree. Data is then

distributed among the processing elements and stored locally in R-trees [122]. At each

162

7.1 Survey of Parallel Clustering Algorithms

processing element, OPTICS is run locally and a hierarchical merging of cluster-orderings

is done to get the final cluster-ordering. The clustering results obtained are identical to

classical OPTICS.

There are no known parallel implementations of OPTICS for MapReduce and Spark

in literature.

7.1.2.2 Parallel Shared Nearest Neighbor Clustering

Shared Nearest Neighbor Clustering (or SNN) is a density-based clustering algorithm that

uses a similarity measure known as SNNSimilarity [210]. SNN-similarity for two points is

defined as the number of shared neighbors if they are in each other's nearest neighbors

lists. A DBSCAN like algorithm is applied over the core points (using SNNsimilarity) to

identify clusters of arbitrary size and shape and filters out noise/outliers. It is especially

suited for high dimensional data.

To the best of our knowledge there is only attempt of parallelization of SNN for MPI

based clusters [230], The authors also present parallel versions for shared memory and

hybrid architectures. They first presents R-SNN algorithm which is a modification to the

classical SNN algorithm. R-SNN uses uses R-tree for nearest neighbor computations and

is more optimized in terms of memory requirement. It is a single pass algorithm and pro

cesses data cluster-wise. A SPMD (Single Processor Multipe Data) based parallelization

of R-SNN, Parallel R-SNN, is then presented. Parallel R-SNN uses kd-tree partitioning for

data distribution, then local computations are performed over each partition and then the

local results are merged to a global clustering. The spatial partitioning ensures good load

balancing and makes the merging step efficient.

A parallel JP-Clustering algorithm for MapReduce framework has also been proposed

[273]. More recently a parallel version of SNN has been presented for MapReduce frame

work [274]. A variant also exists for GPGPUs [275]. There is no known variant for Spark

in the literature.

163

7.1 Survey of Parallel Clustering Algorithms

7.1.3 Parallel hierarchical clustering algorithms

Hierarchical clustering is also one of the popular techniques of clustering. There are two

kinds of hierarchical clustering proposed in literature:

i. Top-down, also known as Hierarchical Divisive Clustering (HDC). It starts with consid

ering all the points in a single cluster and then recursively splits the clusters until

some criteria is met [6]. The criteria could be a limit on inter-cluster distances or on

number of clusters.

ii. Bottom-up, also known as Hierarchical Agglomeratwe Clustering (HAC). It starts with

considering individual point as a cluster and then repeatedly merges the closest

pairs of clusters until one of the above criteria is met.

Figure 7.1: Dendrogram

The result of any of the above clustering techniques is a dendrogram (see Fig. 7 A),

which is a tree-like structure showing the clusters agglomerated at each level. There are

many variants of HAC such as AverageLINK [6], SLINK [30], CLINK [6], etc. But the most

popular and widely used among them is the single-linkage or SUNK algorithm. HAC's

variants differ from each other in terms of the ways the proximity distance between a pair

of clusters is defined. SLINK algorithm has both time and space complexity of O(n2).

The early approaches of parallel hierarchical clustering were based on similarity ma

trix [240, 241, 242]. The first parallel hierarchical algorithm was presented in [240]. It

has a time complexity of O(n2) and was based on single instruction multiple data model

(SIMD) that uses shuffle exchange network to access similarity matrix and input data. The

next approach was presented in [241], which uses re-configurable optical buses (AROB)

architecture. The limitations of the above two approaches is that they are designed for

specialized parallel architectures. A MPI-based approach was presented in [242]. In this

164

7.1 Survey of Parallel Clustering Algorithms

approach, similarity matrix along with the data points is distributed across multiple nodes

and then synchronized at each merging step. The clustering quality is dependent on the

chosen input parameter threshold. The above similarity matrix based approaches incur a

high communication cost for iteratively updating the similiarity matrix. This limits their

performance & scalability, and renders them unfit to process large amount of data. Note

that the above approaches don't employ any spatial partitioning scheme to distribute data

among the processors.

In more recent approaches, SLINK algorithm has been viewed as an Minimum Span

ning Tree (MST) problem and parallel SLINK as constructing MST in parallel. An MPI

based distributed memory parallel clustering algorithm, known as CLUMP was proposed

[231]. They have considered whole data as graph which is partitioned randomly into

smaller sub-graphs composed of complete bipartite graphs, then computed MST for each

sub-graph. These local MSTs are merged to get the final MST. The basic idea is to min

imize the communication cost at the expense of redundant computations. Another ap

proach was presented in [276], which gave a parallel hierarchical algorithm using parallel

Euclidean Minimum Spanning Tree (EMST) for AROB distributed memory and PRAM

shared memory systems. These algorithms assume uniform distribution of data points,

which allows partitioning of the data space into uniform grids.

The next parallel MPI based algorithm was PINK [88], which is similar to CLUMP.

They also minimize the communication cost by decomposing the problem into sub-problems,

which removes redundant computations at the same time. This approach partitions the

data into k equal partitions randomly and assign each possible combinations to vari

ous nodes for cross-edge and self-edge computations. At each node a local clustering is

performed where MSTs are computed locally. Then these MSTs are merged into a global

MST resulting in the final clustering. A similar algorithm known as SHRINK [31] was

also presented for shared memory systems. Both the above approaches use disjoint set

data structure for merging clusters at each iteration.

The Sibson's SLINK algorithm does not take into account spatial locality of data. And

thus all its parallelizations use random distribution of data. An efficient HAC algorithm

known as Partially Overlapping Partitioning (POP) has been proposed which exploits

spatial locality [277]. The pPOP algorithm [278] is a parallel implementation of the POP

165

7.1 Survey of Parallel Clustering Algorithms

algorithm for shared memory architectures. It uses a partially overlapping partitioning

scheme for data distribution.

The most recent parallel version SLINK is dCr/dSLINK [33, 32]. It is a parallel version

of GridSLINK algorithm (proposed by the same authors). GridSLINK exploits spatial

locality of data using adaptive gridding, and reduces the number of distance calculations,

while producing exactly the same dendrogram as that of classical SLINK. GridSLINK has

been parallelized for distributed memory (dGridSLINK), shared memory (sGridSLINK)

and hybrid architectures (//GridSLINK). dGridSLINK ensures load-balancing by spatially

distributing equal amounts of data to multiple nodes using a spatial distribution (which

we call as CD-Split). After data distribution, at each node GridSLINK is executed leading

to local MSTs. Local computations in GridSLINK are more optimal than in PINK as this

exploits spatially locality attained by grid. Then the local MSTs are merged into a global

MST in a tree-parallel way to get the final dendrogram.

A few GPU based implementations of parallel hierarchical clustering have also been

proposed in literature [279, 280], Apart from these a few Map/Reduce and Spark based

implementations have also been proposed [281, 282, 283, 284].

7.1.4 Parallel subspace clustering algorithms

Subspace clustering algorithms are specifically designed for processing high dimensional

datasets. It is possible that data points might have been drawn from multiple subspaces

and membership of points to those subspaces is not known. Another problem associated

with processing of high dimensional data is the "curse of dimensionality". The conven

tional similarity measures become unfit for processing such high dimensional data. Sub

space clustering algorithms are a solution to the above problems. They cluster data into

multiple subspaces and find a low dimensional subspace fitting each cluster.

There are two kinds of subspace clustering algorithms - top-down and bottom-up. The

top-down subspace clustering algorithms produce highly disjoint clusters since they use

partitioning based clustering approaches. A few top-down subspace algorithms include

- PROCLUS [213], ORCLUS [214], FINDIT [38], J-Clusters [285], COSA [286], and LAC

[287]. Bottom-up subspace clustering is similar to finding frequent itemsets using apri-

166

7.1 Survey of Parallel Clustering Algorithms

ori principle. Clusters are first found for each single dimension, and then dimensions

are added for finding clusters in higher dimensions in the same way as that of apriori.

Dimensions are added until cluster quality is preserved. The anti-monotonic property

is used to prune away infrequent or irrelevant subspaces. Commonly used grid based

bottom-up subspace clustering algorithms include CLIQUE [211], MAFIA [37], ENCLUS

[212], SCHISM [288], and CBF [289]. Also, there are a few density based bottom-up

subspace clustering algorithms that include - SUBCLUE [290], FIRES [291], DUSC [292],

INSCY [293], and SUBSCALE [294].

Literature reveals very few approaches to parallel subspace clustering on distributed

memory architectures. The first such approach is parallelization of MAFIA known as

PMAFIA [225]. This algorithm is a data parallel algorithm in which data is distributed

over multiple processing elements randomly and local computations are performed on

each processing element. The results are then merged into a global output. A GPU based

parallelization of MAFIA has also been presented in [227].

More recently a parallel framework [89] has been presented for grid-based bottom-up

subspace clustering algorithms like CLIQUE, MAFIA, ENCLUS, SCHISM and CBF. This

framework has five major steps- 1) gridding, 2) finding dense units, 3) candidate unit/-

subspace generation for next iteration, 4) Steps 2 and 3 are repeated until no dense units

are found, 5) cluster extraction. These steps are common to above bottom-up subspace

clustering algorithms. The parallel framework first distributes the data randomly over the

computing nodes and then every node executes steps 1, 2 & 3 iteratively. At each itera

tion, a local trie is generated at every node, which is communicated to the master to form

a global trie for dense unit identification. This is repeated until the algorithm converges.

Finally the clusters are extracted at the master node from the aggregates received.

The above approaches simply use random data distribution and do not rely on spatial

locality. Hence we don't consider them for experimentation.

Apart from the above, the top-down subspace clustering algorithm LAC has been

parallelized for shared memory architecture, which is known as PLAC [226]. A parallel

version of SUBSCALE algorithm has also been presented for shared memory and GPU

based architectures [295]. A spark based parallelization of SUBCLUE algorithm, known as

CLUS, is also presented in [228]. More recently, a grid-based parallel subspace clustering

167

7.2 Data Distribution Methods

Table 7.1: Data distribution strategies used by various parallel clustering algorithms

Algorithm Year of Publication kd-tree Random Distribution Others

Parallel K-means |28| 2011 4

[245| 2011 v

(246| 2013 V

PDBSCAN (238(1999 J

|239| 2000 4
[2521 2001 J

|253| 2002
P-DBSCAN |256| 2010 projection-based
PDSDBSCAN-D [86] 2012 v

Pardicle ,871 2014 V

BD-CATS [223| 2015 v

HPDBSCAN [224] 2015 grid-based
GridDBSCAN-D |36| 2017 4

POpticsD [235| 2013 4
DOPT1CS 1120| 2015 V
Parallel RSNN [23O| 2016 ■J
CLUMP (231| 2009 V
|276| 2005 grid-based
PINK [88] 2013 4
GridSLINK [32, 33] 2016 CD-Split
PMAFIA [225[2000 4
,89] 2016 4

algorithm known as PSCEG [296] has also been presented for spark. A few MapReduce

based parallel implementations are also proposed in literature [229, 297].

7.2 Data Distribution Methods

We now describe the data distribution strategies which include both existing methods

(Random and KD-Split) and proposed methods (Pbased-Split, PD-Split and CD-Split). Most

of the illustrated existing/proposed distribution strategies are only slightly different in

their approach of partitioning. However, they cause a big effect on the overall execution

of the parallel algorithms. We use the following terminologies: Let N be the size of the

data, n be the total number of computing nodes or processors and d be the dimensionality

of the dataset.

7.2.1 Random Partitioning

In random partitioning, data points are randomly divided to the computing nodes of the

cluster. In practice, the first chunk of N/n data points are assigned to the first computing

node, the next chunk to the second node and so on, which cannot be called as truly

random partitioning. Load balancing is maintained in the distribution to achieve better

168

7.2 Data Distribution Methods

Second Split Third SplitFirst Split

Figure 7.2: Kd-tree based data partitioning (KD-Split)

Mn

_ J
Mu, M,u

M...

performance, i.e., each computing node gets equal number of data points. A few examples

of the algorithms that use random partitioning can be found in - [88, 28, 235].

When random partitioning is used for density based and hierarchical clustering al

gorithms, we are not making best use of the inherent spatial pattern of their execution,

leading to suffering of execution performance. It is better to use one of the spatial parti

tioning schemes explained below, as they capture inherent spatial patterns.

7.2.2 KD-Split

KD-Split or kd-tree based partitioning is the most commonly used spatial partitioning

technique for distributing data to the computing nodes [36, 86, 120, 32, 230]. This tech

nique recursively divides data among the computing nodes based on axis aligned split

(see Figure 7.2). For every division, the splitting axis that has the largest spread is chosen

and split is performed on the basis of the median for perfect load balancing (equal data

points for every split). Recursive division continues until the total number of partitions is

equal to the total number of computing nodes. Since load balancing is maintained at each

split, each computing node will get equal number of data points. Figure 7.2 illustrates

kd-tree based partitioning for n=8. It shows stage by stage splitting, where median for

each split is chosen across the dimension that has largest spread.

7.2.3 Projection Based Split

Projection Based split (Pbased-Split), is our first proposed partitioning scheme. Initially, the

axis with the largest spread is chosen. Then it recursively divides data into partitions on

the basis of median. Each division is done along the same axis, unlike kd-tree where axis

is chosen for every split. The recursive division continues until each partition or a cell

contains a total number of points < r, where t is parameter threshold. Figure 7.3 (Left

169

7.2 Data Distribution Methods

Hand Side) illustrates this split.

After the division is complete, all the cells formed are projected onto the axis chosen

for splitting. The cells formed in Figure 7.3 (LHS) are projected over .v-axis. This results

in an ordering among the cells. Following this order, cells are packed together into non

overlapping groups (or partitions) in such a way that each group doesn't contain more

than N/n points (Figure 7.3 (RHS)). This scheme results in a load balancing which is

very close to perfect load balancing. We can observe that the smaller the value of t, the

perfect the load balancing is.

This distribution strategy is an in independent generic method that can be applied to

any parallel clustering algorithm. As it can be observed from the above description, the

partitioning happens across only one dimension. This kind of partitioning reduces the

number of machines to be communicated in steps 2 and 4 of any parallel clustering algo

rithm. This is because its boundaries overlap with lesser number of machines. However it

may lead to increase in overall number of points transferred due to increase in perimeter

of the boundaries. It is explained in the next subsection. Note that this method is more

suitable to low-band width interconnects as it reduces the communication cost.

7.2.4 Parameterized Dimensional Split

Parameterized Dimensional Split or PD-Split is our second proposed partitioning scheme.

This is specifically designed for parallel density based clustering algorithms [86, 36]. This

partitioning scheme strives to minimize the communication overhead required during the

local computations phase. A typical parallel density based clustering has the following

execution layout:

Figure 7.3: Projection based Split data partitioning (Pbased-Split)

170

7.2 Data Distribution Methods

Figure 7.4: Parameterized Dimensional Split data partitioning (PD-Split)

scheme (typically KD-Split partitioning)

° In step 2, everv computing node request for data points from other nodes, which

are lying within e-extended boundaries of the local node, where t' is a user defined

parameter. This is depicted in Figure 7.5 on the next page for kd-tree partitioning,

where Node M212 requests data points from Nodes M121, M122/ M211 and M222-

These data points are required for computing exact e-neighborhoods for the points

lying near the boundaries of the local computing node, e-neighborhoods of the

points are required for DBSCAN and other density-based clustering algorithms in

the next phase.

• In phase 3, local computations are performed where DBSCAN is performed on the

local data with the help of additionally retrieved data for the neighboring computing

nodes as explained previously.

• In phase 4, local clusterings are merged together to get global clustering.

Exploiting this execution layout, we try to minimize the communication overhead

that occurs during phase 2 of the algorithm by changing the kd-tree partitioning scheme.

Instead of computing the axis for splitting for each division, we let the splitting happen

across the initially chosen dimension (like in Pbased-Split) until a threshold is reached.

This time, however, threshold is on the width of the cell, along to the axis chosen. If a

split is causing a cell's width to be < 2e, we then choose the next dimension for splitting,

which has the current largest spread. Figure 7.4 illustrates this. In the first and the second

splits, the splitting has occurred only along the x-axis. However, in the third recursive

split, partition Mu was split along y-axis. This is because, the width of one of the cells

resultant of splitting this partition along x-axis, is becoming lesser than 2e. So the axis of

split was changed.

171

7.2 Data Distribution Methods

Figure 7.5: c-ex tended regions for
Computing Node M212 in case of
kd-tree based split

Figure 7.6: t'-extended regions for
Computing Node M->p in case of
PD-Split

Figure 7.5 and Figure 7.6 illustrate the the t'-extended strips (also known as halo region)

for partition M112 for kd-tree based split and pd-split respectively. It is clear form the

figure that the halo region spawn four partitions in case of kd-tree and only two partitions

in case of PD-Split. When the dimensionality of the dataset increases, the number of nodes

overlapping can even be more in kd-tree based partitioning as the axis for split keeps

changing for every division. So, PD-split reduces the data required to be communicated

in steps 2 & 4 of a parallel density-based clustering algorithm as it reduces the number of

nodes to be approached for acquiring extra data points.

Note that the threshold on the width of each resultant partition has been chosen to be

2e. This is because if the width of the partition becomes less than e, the c-extended strip

might spawn to multiple partitions across the same axis. For example, in Figure 7.6, if

width of partition M(2i is lesser than e, the c-extended strip of Mi 12 can spawn to machine

M122 as well, which means that we are including all of M121 and some portion of M122 as

well. This becomes huge communication cost. So, we restrict the width of each cell to be

> 2c and whenever a split can cause the width to go lesser than this value, we change our

axis to split.

Note that such a restriction is not imposed on Pbased-Split which only splits across

one axis. So, when e value becomes large, Pbased-Split will have excessive communication

as substantatiated by results presented in Figure 7.10 on page 179. Similarly for PD-Split

also, it might happen that at larger values of e that, although fetching points from lesser

number of machines, the number of points fetched in total might exceed that for KD-

Split. This is because large perimeter of intersection with the neighboring machines that

has happened because of splitting along only one dimension. So, at larger values of c, this

problem could be present in PD-Split also, although not as severe as Pbased-Split. This is

172

7.2 Data Distribution Methods

Figure 7.7: Sample division in CD-Split

substantiated by results presented in the above figure.

7.2.5 CD-Split

Cell based Dimensional Split or CD-Split is our third proposed partitioning scheme. This

scheme has been specifically designed for grid based parallel SLINK (dGridSLINK) algo

rithm and has been introduced in our previous papers [33, 32]. dGridSLINK is the only

parallel variant of SLINK that uses spatial distribution of data points.

The CD-Split partitioning is performed using gridding and median based split. It is

similar to PD-Split, except that it additionally uses gridding. Initially a uniform virtual

grid is overlaid on the entire data space, with an initially chosen cell size = CellSizeinit / r.

CellSizeinit is the cell size parameter of GridSLINK algorithm and r(> 1) is a constant.

For example, CellSizeinit is calculated using the formula - y/ where RegionSize

is the volume of the data-space occupied by the points in the dataset, N is the size of the

dataset and r is a user defined threshold on maximum number of points we wish to keep

in a cell. After gridding, we recursively split the data space into equal partitions by first

splitting along one dimension, similar to PD-Split. Each split is a kd-tree like median

split. However every time, the splitting axis is aligned with the nearest cell boundary as

illustrated in Figure 7.7. The change in the dimension for splitting in case of CD-Split,

however, is triggered by the cell size threshold, instead of e-threshold like in PD-Split.

The dimension for splitting is changed when the partition width can fit in only one cell

across the current dimension. The total number of dimensions across which splitting is

performed usually remains small, similar to PD-Split.

As mentioned before, CD-Split has been specifically designed for the dGridSLINK

algorithm. The dGridSLINK algorithm internally performs local gridding in the local

computations phase and performs the SLINK clustering using the local gridding. This

173

7.3 Distribution Methods for very large datasets

local computations phase makes use of the initial global gridding performed and the par

titioning performed with alignment to the grid boundaries (during the data distribution

phase). This makes the local computations faster as inherently captures the design re

quirements of dGridSLINK. One can use KD-Split or Pbased-Split instead of CD-Split.

However, the algorithm is expected to run slower for them as they don't do the split-axis

alignment. This is substantiated by experiments presented in Section 7.4.3 on page 176.

For more details of dGridSLINK algorithm, refer to [33].

7.3 Distribution Methods for very large datasets

The distribution methods described in the previous section, load the entire data into main

memory for computing the splits of partitioning. However, while processing very large

datasets (billions of floating points), the memory associated with the node performing the

partitioning may not be sufficient enough to load the entire dataset. This makes those

schemes unfit for distributing very large datasets. To handle such scenarios one can use

sampling based techniques for data distribution. One such technique has been proposed

in [223]. We name this technique as A-KD-Split and explain it as follows:

i. Randomly distribute all the data points to all the machines in the cluster.

ii. Randomly select a small fraction of data points from each machine and broadcast

them to all other machines in the cluster.

iii. Every machine now has the same sample. Each machine now computes the first

median for splitting over that sample.

iv. Every machine partitions the data into two sets, with one set on the left side of the

median and the second on the right side of the median. The partition is performed

along the axis that has maximum spread.

v. Then in a pair of two, machines exchange its left and right sets such that one machine

gets the entire left half and the other gets entire right half.

vi. Now for all the machines that are on the left half, steps 2-6 are repeated recursively.

They are also repeated for machines on the right half as well.

174

7.4 Experimental Results and Analysis

vii. Thus, this algorithm achieves disjoint partitioning in logn iterations, where n is the

number of machines.

Note that this partitioning scheme may not lead to perfect load balancing. However,

it is experimentally observed to give reasonably good load balancing. Also, note that

the approximate versions of PD-Split (A-PD-Split) and CD-Split (A-CD-Split), are also de

signed in a similar fashion. In case of A-PD-Split, the nodes shall also have to additionally

keep track of and communicate the dimension of splitting. In case of A-CD-Split, the ini

tial virtual grid is to be calculated globally by inter-node communication, and a copy of

the gridding information is to be broadcasted to each node. Then the splitting starts in

a similar manner as that of A-KD-Split, except that the dimension across with the split

has to happen shall change as per the cell size. Also, at every split, split-axis is aligned

with the nearest cell boundary of the global grid. For the case of Pbased-Split, such an

iterative distribution is not possible. The entire partitioning has to happen on the first

taken sample and the data points are eventually distributed to their respective partitions,

without any kind of iterative refinement. This may not result in good load balancing and

hence we omit it for further discussion.

7.4 Experimental Results and Analysis

7.4.1 Experimental Setup

All experiments were conducted on the 32 nodes cluster infrastructure whose details are

mentioned in Section 6.4 on page 141. All algorithms were implemented in C or C++

with MPI. The list of the datasets used for experimentation are given in Table 7.2 on the

following page. The details of these datasets can be found in Section 2.3 on page 36.

The execution time for each experiment has been measured using MP I_Wt ime () of

<mpi.h> library. The default parameters chosen for experimentation are: for Pbased-

Split, we choose the value of r=1000; for approximate distributions based on sampling,

we choose 10% points of the dataset as the sample. Note that for datasets of size > 20M,

we have used approximate sampling based distributions.

We evaluate the proposed data distribution strategies in terms of (i) load balancing

175

7.4 Experimental Results and Analysis

Table 7.2: Details of datasets used for experimentation

Dataset Size Dimensionality c value for DBSCAN

3DSRN 434 K 3 0.01
MP/XGB8M3D 8M 3 2
MPAGD16M3D I6M 3 2
FOF57M3D 57X1 3 3
MPAGD100M3D 100M 3 1
MPAHALO2.8M9D 2.8X1 9 30

Table 7.3: Number of data points received by each computing node for various data distribu
tions with variation in number of computing nodes (n), for FOF57M3D dataset

Distribution Scheme
Load Distribution

h = 16 h=32

Random
KD-Split
PD-Split
Pbased-Split
CD-Split
A-KD-Split
A-PD-Split
A-CD-Split

3,561,887 1,780,944
3,561,887 1,780,944
3,561,887 1,780,944

3,541,062 - 3,571,329 1,721,712 - 1,813,961
3,498,032 - 3,638,541 1,597,254 - 1,862,171
3,397,251 - 3,795,134 1,584,754 - 1,922,658
3,344,652 - 3,786,249 1,571,113 - 1,911,904
3,285,412 - 3,799,763 1,523,624 - 1,924,521

achieved; and (ii) performance of various parallel spatial clustering algorithms. The re

sults are presented as follows:

7.4.2 Load balancing achieved

Table 7.3 shows the load balancing achieved for each of the distribution strategy. Each

value in the table denotes the number of data points received per computing node. As

explained earlier, random partitioning, KD-Split and PD-Split achieve perfect load balanc

ing. Pbased-split achieve near perfect load balancing because of the packing techniques as

explained in Section 7.2.3 on page 169. Similarly, CD-Split also achieves near perfect load

balancing as the splitting boundaries get aligned with grid/cell boundaries (as explained

in Section 7.2.5 on page 173). Please note that similar load balancing has been observed

for other datasets as well.

7.4.3 Performance of Parallel Spatial Clustering Algorithms

We now compare the performance of various parallel spatial clustering algorithms for the

proposed distribution strategies. We compare for various versions of parallel DBSCAN,

SNN and SLINK.

176

7.4 Experimental Results and Analysis

3DSRN

0
4 8 16 32 64 128

No of Computing Nodes

500
450

— 400
X 350
2 300

250
2 200
| 150
“ 100

50
0

MPAGB8M3D

4 8 16 32 64 128
No. of Computing Nodes

—®— KD-Spl it —A— Pbased-Split —PD-Split —o— KD-Split —A— Pbased-Split PD-Split

(b)

MPAHALO2.8M9D

(c)

8000

7000

? 6000
in
<i> 5000
E

4000
| 3000

x 2000

1000

0

—KD-Split

MPAGD100M3D

No. of Computing Nodes

—A— Pbased-Split —♦— PD-Split

(d)

Figure 7.8: Performance of parallel GridDBSCAN algorithm for various data distributions

7.4.3.1 Parallel DBSCAN

We compare the performance of PDSDBSCAN-D [86] and GridDBSCAN-D [36] for vari

ous distribution strategies. The e value for each dataset under experimentation has been

given in Table 7.2 on page 176. The value of Minpts has been set to 5 for all datasets.

Figure 7.8 and Figure 7.9 on the next page present the performance of GridDBSCAN-

D and PDSDBSCAN-D, for KD-Split, Pbased-Split and PD-Split distributions for various

datasets executed over increasing number of computing nodes. The results show that PD-

Split and KD-Split are competitive in execution performance. We can clearly observe that

for lesser number of computing nodes, PD-Split is better than KD-Split. However, with

177

7.4 Experimental Results and Analysis

MPAGB8M3D

4 8 16 32 64 128
No of Computing Nodes

—0—KD-Split —a—Pbased-Split —o—PD-Split

(b)

(c)

Figure 7.9: Performance of parallel PDSDBSCAN algorithm for various data distributions

3000
MPAG100M3D

4 8 16 32 64 128
No of Computing Nodes

—0— KD-Split —A— Pbased-Split —«— PD-Split

(d)

increase in number of computing nodes, both them give almost the same performance,

with KD-Split being slightly better (except for MPAHALO2.8M9D dataset). The result of

MPAHALO2.8M9D dataset clearly show that PD-Split works much better than KD-Split

for high dimensional data, even at higher number of computing nodes. This is because of

reduced communication overhead in steps 2 and 4 of both the algorithms, as explained in

Section 7.2.4 on page 170. This is also substantiated by the split-up time of various steps

of the algorithms presented in Table 7.4 on the next page and Table 7.5 on the following

page. PD-Split improves overall execution time as well as the execution time of each step

of the algorithm. The results of 3DSRN dataset are erratic at higher number of computing

nodes, because of insufficient data to be processed for such large number of processors.

178

7.4 Experimental Results and Analysis

Table 7.4: Split-up of execution times of various steps of GridDBSCAN-D for MPAGD100M3D
dataset

KD-Split Pbased-Split PD-Split

Data Distribution Step + Retrieval of Extra Points 26.58 37.23 19.33
Local Computations 1174.91 1673.6 1023.45
Merging Step 167.92 287.34 149.34

Total Time 1369.43 1998.23 1192.12

Table 7.5: Split-up of execution times of various steps of PDSDBSCAN-D for MPAGD100M3D
dataset

KD-Split Pbased-Split PD-Split

Data Distribution Step + Retrieval of Extra Points 26.58 37.23 19.33
Local Computations 376.23 508.72 305.53
Merging Step 92.51 138.01 79.23

Total Time 468.72 683.95 404.09

MPAGD100M3D

3000

(a)

2000
1800

— 1600
1400

9 1200
1000 c

9 800
o 600

400
200

0

MPAGD100M3D

Epsilon (e)

(b)

—0— KD-Split —A— Pbased-Split —♦— PD-Split

Figure 7.10: Performance of GridDBSCAN-D and PDSDBSCAN-D with variation in c for
various distributions over 32 computing nodes

Next, we conduct an experiment to measure the performance of both the parallel al

gorithms with variation in e value. Figure 7.10a and Figure 7.10b present the results,

which shows that PD-Split works better for lower values of e. Whereas, KD-Split is found

to dominate for higher values of e. This is because at higher values of e, the communi

cation cost of Pbased-Split and PD-Split becomes higher. This is because the number of

points lying within the e-extended boundaries of the machines becomes large at higher

e. And it becomes more larger for Pbased-Split and PD-Split than KD-Split. This is also

substantiated in Section 7.2.4 on page 170.

179

7.4 Experimental Results and Analysis

25

3DSRN

No of Computing Nodes
—o—KD-Split —*—Pbased-Split

(a)

MPAGB8M3D

No of Computing Nodes
—•— KD-Split —a— Pbased-Split

(b)

50000

MPAGD16M3D

No of Computing Nodes
—a— KD-Split —a— Pbased-Split

FOF57M3D

—a— KD-Split —A— Pbased-Split

(d)

Figure 7.11: Performance of parallel dR-SNN algorithm for various data distributions with
variation in number of computing nodes of the cluster

(c)

7.4.3.2 Parallel SNN

In this section, we evaluate the performance of dR-SNN algorithm [230] which is the only

parallel SNN algorithm proposed for MPI based architectures. The values of the parame

ters chosen for experimentation are: k=30, c=12 & Minpts=15, for all datasets. Note that

c of SNN is different from that of DBSCAN. It is a threshold on number of data points in

case of SNN and a threshold on distance in case of DBSCAN. Figure 7.11 presents the ex

ecution time of dR-SNN for KD-Split and Pbased-Split distributions for various datasets

executed over increasing number of computing nodes. The results clearly show that KD-

Split approach has always been better than Pbased-Split. This is because of two reasons:

180

7.4 Experimental Results and Analysis

1) It uses K-NN queries inside the algorithm and K-NN query is more optimized for kd-

trees, so naturally KD-Split is expected to do better in local computations phase; 2) The

merging step in dR-SNN algorithm requires more communication in case of Pbased-Split.

This is because in case of Pbased-Split the number of points that participate in the merg

ing step is high. Both the arguments are substantiated by the split-up values presented in

Table 7.6, which clearly shows the difference in local compuations step as well as merging

step. Note that similar behaviour has been observed for different variations to the SNN

algorithm parameters and other datasets as well.

Note that PD-Split and CD-Split are not applicable to dR-SNN algorithm as they are

tailor-made for DBSCAN variants and GridSLINK respectively.

Table 7.6: Execution Time for various steps of dR-SNN algorithm for MPAGD16M dataset

KD-Split Pbased-Split

Data Distribution Step 49.81 63.84
Local Computations Step 171.86 5,192.13
Merging Step 27.40 1,661.48

Total Time 249.07 6,917.45

7.4.3.3 Parallel SLINK

Figure 7.12 on the following page presents the performance of dGridSLINK algorithm

[33,32] for KD-Split, Pbased-Split and CD-Split distributions for various datasets executed

over increasing number of computing nodes. The value of t, which dictates the initial cell

size has been set to 300 as per the recommendations in the above papers. The results

clearly show that CD-Split has always been better in all the cases. This is mainly because

of the reduction of time in the global merging step which was possible by adjusts the

partition boundaries to align with grid/cell boundaries. The split-up of execution time of

various steps of the algorithm is presented in Table 7.7 on page 183 for MPAGD16M3D

dataset. The results clearly show that CD-Split takes more time to distributed data. This

is attributed to extra load of aligning splits with grid/cell boundaries. However, The time

saved in local computations and merging step compensates for it. The merging time,

especially is very low for CD-Split, because of the alignment of the split boundaries. On

a whole, CD-Split is better than the remaining two. Similar behaviour has been observed

for other datasets as well.

181

7.5 Discussion and Recommendations

MPAGB8M3D
25

3DSRN

0
4 8 16 32 64 128

No of Computing Nodes No of Computing Nodes

—©— KD-Split —a— Pbased-Split—•— K D-Split —a— Pbased-Split —♦— CD-Split CD-Split

9000

8000

— 7000

6000

E 5000
i—
§ 4000

8 3000 o
>5 2000

1000

0

MPAGD16M3D

4 8 16 32 64 128
No of Computing Nodes

3500
FOF57M3D

4 8 16 32 64 128
No of Computing Nodes

—•—KD-Split —a—Pbased-Split —♦—CD-Split—•— KD-Split —a— Pbased-Split —♦—CD-Split

(c) (d)

Figure 7.12: Performance of parallel GridSLINK algorithm for various data distributions

7.5 Discussion and Recommendations

Based on the above experimentation and results, we give the following recommendations

regarding the usage of appropriate distribution methods for each of the above parallel

clustering algorithms.

• For parallel DBSCAN (and DBSCAN like) algorithms, PD-Split and KD-tree based split

are competitive. PD-Split is more suitable for smaller number of computing nodes and

smaller values of e. KD-Split is recommended to be used for larger values of e.

• For parallel shared nearest neighbors clustering (dR-SNN), KD-Split always works bet-

182

7.6 Main Contributions

Table 7.7: Execution Time for various steps of dGridSLINK algorithm for MPAGD16M dataset

KD-Split Pbased-Split CD-Split

Data Distribution Step 49.81 63.84 59.23
Local Computations Step 1459.09 1961.98 1250.35
Merging Step 273.23 401.34 99.30

Total Time 1782.13 2427.17 1408.88

ter, as it K-NN based. Its usage is recommended at all times.

• For parallel GridSLINK algorithm, CD-Split has always been better than KD-Split and

Pbased-Split. Its usage is recommended all the times.

• One can use Pbased-Split as a generic distribution scheme, free from parameters, when

one wants to split across one dimension only. Pbased-Split also works good for high

dimensional data in some cases (see Figure 7.9c on page 178).

7.6 Main Contributions

• We proposed three data distribution schemes - Pbased-Split, PD-Split and CD-Split, for

distributing data over a cluster of computing nodes for executing MPI based parallel

clustering algorithms.

• We also proposed approximate versions of the above schemes for distributing very

large datasets that don't fit into the main memory for computing partition boundaries.

• We have also given appropriate recommendations for each of the distribution with

respect to various parallel clustering algorithms.

• We have given very comprehensive literature survey of MPI based parallel clustering

algorithms, with specific reference to the distribution methods they use.

7.7 Conclusions and Future Work

7.7.1 Conclusions

This chapter proposed three data distribution schemes - Pbased-Split, PD-Split and CD-

Split, for distributing data over a cluster of computing nodes for executing MPI based

183

7.7 Conclusions and Future Work

parallel clustering algorithms. Data distribution is an important step of any data parallel

clustering algorithm. To the best of our knowledge, data distribution is not yet discussed

in existing literature.

The chapter also presented empirical evaluation of each of the distributions proposed

for various parallel clustering algorithms that include - DBSCAN, SLINK and SNN, and

gives suitable recommendations for usage of appropriate distribution scheme for the

above algorithms. This chapter has also presented a very comprehensive review of paral

lel clustering algorithms.

7.7.2 Future Directions

Grid-based techniques can be exploited in future to design more efficient distribution

strategies that are more efficient in run-time performance. Improving the run-time per

formance makes the parallel algorithms all the more faster and scalable.

184

Chapter 8

Data Distribution for dynamic

incremental datasets

In this chapter we present DD-tree which is a dynamic distributed data structure

for indexing and distributing large incremental multi-dimensional datasets in a cluster

of computing nodes. As discusses earlier, the distribution strategies proposed in the

previous chapter are static, that they can not be incrementally updated with new set of

data points. They shall have to re-do their entire distribution. DD-tree addresses this

issue as it supports dynamic incremental insertions. Before we present the proposed data

structure, we give a brief review on the existing dynamic distributed data structures.

8.1 A Review on Distributed Data Structures

Distributed Data Structure (DDS) is a data structure that is used in a message passing

system (typically a cluster of computing nodes). DDS is composed of a data organiza

tion scheme and a set of distributed access protocols to enable computing nodes to issue

query and modification instructions and get appropriate responses. The data organiza-

• Jagat Sesh Challa, Poonam Goyal, Nikhil S., Aditya Mangla, Sundar Balasubramaniam, Navneet Goyal.
DDR-Tree: A dynamic distributed data structure for efficient data distribution among cluster nodes for spatial
data mining algorithms. In Proceedings of 2016 IEEE International Conference on Big Data (IEEE Big
Data 2016), pp. 27-36, 5-8 December 2016, Washington DC, USA

185

8.1 A Review on Distributed Data Structures

tion scheme acts like an index to the collection of local data structures that are stored

at each computing node [298]. Many DDSs are proposed in literature for various do

mains including peer-peer network overlays, data analytics, social network mining, etc.

[299, 298, 300, 301]. These data structures are typically used to index data for efficient

query processing, routing, etc. Distributed versions of R-tree and its variants proposed

in literature include - Parallel R-tree [302, 303], Distributed B-link tree [304], Distributed

Random tree [299], Master-Client R-tree [305], Upgraded Parallel R-tree [306], SD-RTREE

[307], etc. These data structures were originally proposed for database systems to im

prove the efficiency of various queries. Most of these focus on optimizing communica

tion overheads and increasing degree of parallelism to get optimal query performance

[302, 303, 304]. They achieve this by organizing data in such a way that multiple comput

ing nodes can be simultaneously accessed to answer a query.

The above data structures were neither specifically designed for data distribution nor

address any of the requirements of parallel spatial data mining algorithms. They don't

target: preservation of spatial locality in their distribution, achieving good load balancing

and giving optimal query performance at the same time. The above are the key require

ments for any parallel spatial data mining algorithm [86, 235, 32, 36, 120, 33].

We now review the most recent dynamic distributed data structure - SD-Rtree. We

use this structure for benchmarking the performance of the proposed DD-Rtree. SD-

RTREE [307] is a hybrid structure based on AVL-tree [308] and R-tree [122]. Its structure

is conceptually similar to that of a classical AVL tree, with its data organization principles

borrowed from the R-tree spatial containment relationship. It is designed to reduce com

munication overheads in construction and querying. It supports dynamic insertions and

shows good scalability. It supports both region and k-NN queries.

SD-Rtree, however, have a few drawbacks associated with its design. The re-distribution

algorithm that handles node overflows, is based on k-NN search, which doesn't gauran-

tee good preservation of spatial locality. The re-distribution also happens point by point

which makes it slow. Also, the data distribution of SD-Rtree doesn't guarantee good load

balancing in practice. The communication cost involved in its construction is also high.

So, it doesn't suit our requirements.

The rest of this chapter is organized as follows: Section 8.2 on the next page presents

186

8.2 DD-Rtree

IR-Tree

Figure 8.1: Structure of DD-Rtree

the DD-Rtree structure along with its operations and complexity analysis. Section 8.3 on

page 193 presents the quality and performance evaluation. Section Section 8.5 on page 199

summarizes the main contributions of this chapter. Section Section 8.6 on page 200 con

cludes this chapter and gives future directions.

8.2 DD-Rtree

DD-Rtree is a dynamic distributed data structure that resides on a cluster of computing

nodes. DD-Rtree is designed to distribute data across multiple computing nodes with

the following objectives: maximizing spatial locality; achieving good load balance; mini

mizing inter-node communication for its construction, and minimizing execution time of

queries and spatial data mining algorithms. DD-Rtree is first distributed spatial indexing

structure which tries to achieve the above objectives. The design of DD-Rtree also makes

it dynamic, i.e., data can be added incrementally and computing nodes can also be added

incrementally, if required.

8.2.1 DD-Rtree design

The structure of DD-Rtree is illustrated in Figure 8.1. It comprises of R-trees at two

levels. The first level R-tree is the index-R-tree (IR-Tree), which serves as the index to the

entire structure and resides in a master computing node or a server from where all the

instructions are issued. The second level comprises of multiple R-trees stored one each at

187

8.2 DD-Rtree

each machine of the cluster (MR-Tree). MR-Tree indexes data points that belong to its

machine. IR-Tree satisfies the following properties:

• Each node of IR-Tree has a minimum of Im and maximum of IM entries indexed

in it, except the root which can have less than Im entries.

• Each internal node consists of MBRs which store the bounding information of all

the objects indexed at their respective sub-trees.

• Each external node stores MBR information of all the points indexed in a machine.

In other words, it stores the MBR of the root of an MR-Tree. It also stores the

machine ID of the machine where that MR-Tree is stored and a count of points (ent)

indexed in it.

• Each external node also contains a buffer of a fixed capacity be, that temporarily

stores data points before pushing them into the corresponding MR-Tree.

MR-trees are the R-trees with the native R-tree properties. Each machine has a capac

ity me which is the maximum number of data points it can index.

Algorithm 8.1: DD-Rtree Construction Algorithm 8.3: Flush Buffer
i procedure Construct-DD-Rtree () i procedure Flush-Buffer ()

Input : List of Data Point DL Input : Buffer buff
Output: IR-Tree ITree constructed Output: Points in buf f inserted into

2 Initialize an empty IR-Tree ITree; machine’MR-TREE Mtree
3 foreach point p in DL do 2 foreach point p in bu f f do
4 Insert-In-DD-Rtree (p, ITree); 3 INSERT-INTO-R-TREE (p, Mtree);
5 end 4 end
6 foreach leaf leaf in ITree do 5 if no. of points in this machine exceeds me then
7 Flush-Buffer (leaf.buff); 6 if there exists an empty machine in the
8 end cluster then
9 return ITree; 7 | Split-And-Adjust ();

8 else Re-Distribute-DD-Rtree ();
Algorithm 8.2: Insertion in DD-Rtree __
, orocedure Nsekt-In-DD-Rtkee 0 Algorithm 8.4: Re-Distribute DD-Rtree

Input : Data Point p, IR-Tree Itree 1 procedure Re-Distribute-DD-Rtree ()
Output: p inserted into Itree Input : Machine S

2 I Leaf = Choose-Leaf (p, ITree); Output: Data points of S re-distributed
3 Insert p into I Leaf .buffer; 2 Compute the proportion of points to be shifted
4 Update MBRs of ITree in a bottom-up manner; to each overlapping node.;
5 Increment I Leaf .ent by 1; 3 if some node in them is full then
6 if 1 Leaf.buff er is FULL then 4 Recursively call Re-Distribute-DD-Rtree
7 Send Flush-Buffer message to machine over those machine to create space.;

with ID = I Leaf .machine ID to empty the 5 Shift points based on overlap
contents of I Leaf .buffer into its minimization.;
MR-Tree; 6 if sufficient points are not shifted then

8 end 7 Shift points based on fc-NN;

188

8.2 DD-Rtree

8.2.2 DD-Rtree Construction

The pseudo codes of algorithms for construction of DD-Rtree are explained in Algo

rithm 8.1 on page 188, Algorithm 8.2 on page 188, Algorithm 8.3 on page 188 & Algo

rithm 8.4 on page 188. Initially an empty IR-Tree is created. Then data points in the

data list DL are inserted into the DD-Rtree one after the other. In insertion, we first find

the most appropriate leaf (I Leaf) of the IR-Tree to insert a data point p, by the usual

R-tree recursive top down search using expansion area principles. We then store p in

ILeaf.buffer and update the MBRs of IR-Tree in a bottom up manner similar to that of

R-tree. We also increment 1 Leaf .ent, which indicates the number of points stored or to be

stored in the corresponding machine. If ILeaf.buffer reaches buffer capacity (be), then

the points indexed in the buffer are flushed into the corresponding machine, by inserting

them into its MR-Tree. If at this point, the machine exceeds its capacity, it tries to identify

if there is any other new machine in the cluster available by contacting the master. If, yes,

the machine splits itself into two equal halves by the usual R-tree split algorithm and one

of the halves is transmigrated to the new machine and two new MR-Trees are created.

This would lead to MBR updates in the MR-Trees as well as the IR-Tree, which are done

using a few MPI messages. If there is no free machine available in the cluster, then the

machine performs re-distribution. In this process, we try to shift a few points from the

current machine to few other machines so that some space is created for incoming data

points. Re-distribution is explained in the next subsection. Finally, after all insertions

finish, all the buffers of IR-Tree are flushed into their respective MR-Trees.

Re-distribution. Unlike SD-Rtree, where only one point is shifted out from a full com

puting node, we shift points in bulk, i.e. we shift multiple points in one re-distribution,

creating more space for incoming points. This helps in reducing the communication over

heads for subsequent insertions. The algorithm is as follows: when a computing node A is

full, we first identify if there are any other computing nodes (B or C or both) whose MBRs

are overlapping with that of A. If yes, we try to shift a maximum of t points in total from

the overlapping regions from A to their respective machines B or C. In practice t = x x be

where x € [0,11. If any of B or C is full, then we first recursively apply re-distribution over

that computing node to create space in it and then shift points from A into it. If however,

189

8.2 DD-Rtree

we don't have sufficient space in the overlapping machines to shift t points, or there are

no overlapping computing nodes, we try to shift them to non-full machines that are not

overlapping with A based on k-NN. In this, we compute min-distances from the centroid

of these non-full overlapping computing nodes to A and order them in increasing order

of min distance. Then depending on space availability in each of these machines, we

greedily transfer points to them. For example if we have to shift points to node B having

remaining space y, then we trigger 1/-NN using centroid of B over points in A and shift

those y points from A to B. Similarly, we shift points to other non-overlapping machines.

In practice, the A'-NN based re-distribution is triggered very less number of times. So, it's

the overlap based re-distribution strategy that suffices and ensures that spatial locality is

not affected.

DD-Rtree advantages. We can see from the above discussion, that the design of DD-

Rtree achieves minimal overlap among the bounding rectangles of the machines. This is

because, all the algorithms governing construction of DD-Rtree are based on R-tree's con

struction principles. DD-Rtree exhibits good spatial locality and efficient query perfor

mance (verified by experiments in next section). Buffers attached to the leaves of IR-Tree

enable reduction in communication overheads during the construction phase. Although

the redistribution strategy of DD-Rtree involves high communication overhead, it is ex

pected to be more efficient because the number of re-distributions occurring in total is

quite less when compared to that of SD-Rtree. As a result, DD-Rtree has a lesser con

struction time. This has been verified by experiments (see next section). Also the redis

tribution strategy is based on the principles of minimizing overlap among the bounding

rectangles of the machines when compared to that of SD-Rtree which is based on k-NN

only. Thus, it gives better locality in distribution and efficient query performance. DD-

Rtree serves as an efficient data distribution method to distribute data across computing

nodes in a cluster and thereby improving the efficiency of the parallel spatial data mining

algorithms.

190

8.2 DD-Rtree

8.2.3 Queries supported by DD-Rtree

DD-Rtree supports e-neighborhood queries and k-NN queries. Queries are issued from

the master or the server where the IR-Tree is stored.

Neighborhood Queries. The pseudo code explaining the execution of e-neighborhood

query over DD-Rtree is presented in Algorithm 8.5 on the following page and Algo

rithm 8.6 on the next page. We first construct an e-extended region r by extending the

coordinates of p in both directions across all dimensions. We then perform a region query

over IR-Tree (Itree) similar to the top-down recursive search in an R-tree, to retrieve all the

machines that overlap with r. Then for each of the leaves retrieved, we pass an MPI mes

sage (Forward-Nbh-Query()) asking it to perform neighborhood query over its MR-Tree

using r. The results of all of them are collected back at the master and are collectively

returned. The number of MPI messages required to perform this query is double the

number of machines visited. We can also minimize the messages by doing a sequential

visit of all those leaves overlapping with r, reducing MPI messages to no. of machines

visited + 1. But the first approach works faster for big datasets as it works in parallel.

191

8.2 DD-Rtree

Algorithm 8.5: NBH Query in DD-Rtree

1 procedure DDR-Nbh-Query ()
Input : Query point p, c, IR-Tree I tree

| Output: I’oints lying in c-neighborhood of p
2 Construct an e-extended region r of p;
3 Perform a top-down recursive search over I tree

to find the leaves of I tree that oxerlap with r
and store them in a Queue, MQ;

4 foreach leaf in MQ do
5 Forward-NBH-Query (p,c) to MR-Tree of

leaf and collect the results;
6 end

Algorithm 8.8: Forwarding A-NN Query
i procedure Forward-KNN-Query ()

Input : Machine S, data point p, Priority
Queues NbhPQ, PQ,,^, PQ,^

Output: NbhPQ containing k nearest neighbors
of p from machine S

2 Remove S from PQmmj and PQ,„./;
3 Perform locally the A-NN search over MR-Tree

of S;
4 if NbhPQ is empty then
5 I Insert all the A nearest neighbors in

I NbhPQ with distance from p as keys;
6 end

Algorithm 8.6: Forwarding NBH Query
i procedure Forward-Nbh-Query ()

Input : Data point p, e
| Output: tempList containing points of the
l MR-Tree lying in e neighborhood of p

2 I R-Nbh-Query (p, e, Mlree, tempList); //
I accumulates c-NBH of point p lying in the
I MR-Tree of the current machine to tempList

3 | return tempList to the master;

Algorithm 8.7: A-NN Query in DD-Rtree

i procedure DDR-KNN-Query ()
Input : Query point /’, k, a max-prioritv queue

NbhPQ of size k, IR-Tree I tree
Output: k nearest neighbors stored in NbhPQ

2 Create two min-prioritv queues PQ,„„tli and
PQnuP

3 foreach machine i e ITreedeaves do
4 I Insert machinelD, into PQ,,,,,,,/ with

minMaxdist and into PQ„ht with mindist
I from p as keys;

5 end
6 Find the machine 5 that contains p from I tree;
7 Forward-KNN-Query (S, p, NbhPQ, PQ„„,ht,

PQnni) 11 makes an MPI call to machine S;

io
n
12
13
14
15

17
18
19

else
tempDist = distance between p and k"‘

nearest neighbor from NbhPQ;
Insert only those neighbors that are at a

distance < tempdist from p and update
NbhPQ;

if PQmmd is empty OR PQ,„,i is empty then
| return NbhPQ;

end
(id), mmd) *- RemoveMin {PQ„i„ia)',
(id2, md) — RemoveMin (PQ,lht);
if mmd < tempDist then

I Forward-KNN-Query (S„/|, p,
NbhPQ, PQmmib PQmj); 11

| continuing search on machine S,^
end
else if md < tempDist then

I Forward-KNN-Query (Sh/2, p,
NbhPQ, PQmmJ, PQmJ); //
continuing search on machine

| hosting Sh/2
end
else

| return NbhPQ; // return to master
end

end

Nearest Neighbor Queries. The k-NN query (Algorithm 8.7) uses one max priority

queue NbhPQ of size k to store k nearest neighbors. It also uses two min priority queues

- PQmmd and PQimb into which all the machinelDs are inserted with their minMaxdist and

mindist from p as keys respectively. We then find machine S that could contain p from

ITree, by doing a top-down recursive search over it similar to R-tree. An MPI call is then

made to S to execute Forward-KNN-Query and send all three priority queues to S. In

the function Forward-KNN-Queary (Algorithm 8.8), being executed at S, we first re

move S from both PQmntd and PQmd and then perform a local k-NN search over MR-Tree

of S. If S is the first machine of the cluster we are visiting, then we add all the k nearest

neighbors to NbhPQ. Else we insert only those neighbors that are at a distance less than

the distance between p and the current kth nearest neighbor (temp Dis t) and the NbhPQ

is then updated. After this, we do a removeMin() operation on both PQmmd and PQmd

192

8.3 Performance Evaluation

and store the retrieved (machineID, distance) pairs in (idl,mmd) and (id2,md) respectively.

mind is the distance at which there is at least one point in machine with machinelD -

idl (Sl(n). md is the minimum possible distance between p and any point in the machine

with machinelD - id2 (S^)- If mind < tempDist, then there is at least one data point in

S(,n which is at a distance less than tempDist from p. So, we forward the search request

to . If not, we check if md < tempDist, then we forward the request to S;i/2- If md

would have been greater than tempDist, we don't explore this machine. Now, if both the

above criteria fail, we don't need to visit any more machines and we simply return the

result. The number of MPI calls required for execution of this query is equal to number

of machines visited + 1.

8.3 Performance Evaluation

We evaluate DD-Rtree with respect to (1) spatial locality, (2) communication cost (3) con

struction & querying time, and (4) performance of parallel spatial data mining algorithms

it supports. We compare it with SD-Rtree and randomly distribution. We implement the

IMCLIENT variant of SD-RTREE, where we have the image stored in a service providing

server or the master. This is the most suitable for data distribution as we assume that the

dataset is initially stored on this master. The details of the datasets used for experimenta

tion are mentioned in Table 8.1 on the following page. The first four datasets are synthetic

and the rest are real. SR500M2D & SR10M2D are randomly generated. Data in SN100M2D

follow normal distribution. SC100M2D consists of synthetically generated well separated

clusters equal to number of machines used for a particular experiment. SFONT1M11D,

MPAHALO2.8M9D, MPAGD56M3D, MPAGD16M3D and FOF113M3D datasets are taken

from Millennium data repository that contains astronomical data of galaxies in the sky

[135]. These datasets are skewed in nature and do not follow any distribution. SBUS6M2D

dataset contains samples of GPS traces of buses in Shanghai [136].

All the experiments were conducted on a cluster of 32 compute nodes whose details

are mentioned in Section 6.4 on page 141. All the implementations were done in C with

MPI library. In all our experiments, we make the following choices by default until and

unless explicitly stated. We choose machine capacity (me) in such a way that 5% of the

193

8.3 Performance Evaluation

Table 8.1: Datasets used for Experimentation

s. No. Dataset Data Size Dimensionality Reference

1 SR500M2D 500M 2 -
2 SN100M2D 100M 2 -
3 SC100M2D I00M 2 -
4 SR10M2D 10M 2 -
5 SFONT1M11D IM 11 [135]
6 MPAHALO2.8M9D 2.8M 9 1135|
7 MPAGD56M3D 56M 3 [135]
8 MPAGD16M3D 16M 3 [I35|
9 FOF113M3D 113M 3 [1351
10 SBUS6M2D 6M 2 [1361

Figure 8.2: Sample Distribution

total capacity of all the machines remains vacant. We choose be = 10% of the me. The

measurement of run-time has been done using MPI_Wt ime () of <mpi . h> library.

8.3.1 Quality Evaluation

There are no specific measures reported in literature to evaluate the quality of data distri

bution in terms of spatial locality. So, we use various internal quality evaluation measures

described in Appendix C on page 214 to evaluate the quality of DD-Rtree distribution.

In order to check their appropriateness for evaluating quality of spatial locality, we have

taken a synthetically generated data set of 10 million data points (two dimensions) con

taining four well separated partitions as given in Figure 8.2. We took this as the base

dataset and generated a few more distributions to distort spatial locality by changing the

membership of 10%, 20%, 30% randomly chosen data points from their original position

to the next best partition. We also generated a dataset which has the membership assigned

randomly. Table shows the values of all the measures for generated datasets. The results

clearly indicate that the values of these measures deteriorate with increase in distortion of

spatial locality. Thus, they are suitable for our evaluation. Similar results were obtained

for other datasets with higher number of partitions, as well.

In our experiments, we have observed that all the measures shown in Table 8.2 on the

194

8.3 Performance Evaluation

Table 8.2: Validating Quality Evaluation Measures

Dataset BetaCV Modularity Norm. Cut Davies-Bouldin Norm. Hubert Stat. Silhouette
SCIM2D 0.175 -0.208 3.886 0.078 0.562 0.987
SCIM2D_10"o_man 0.303 -0.181 3.807 0.177 0.467 0.943
SCIM2D_20".._man 0.414 -0.159 3.741 0.246 0.399 0.904
SClM2D_30"o_man 0.507 -0.142 3.688 0.307 0.346 0.871
SClM2D_rand 0.820 -0.091 3.519 0.7346 0.112 0.743

following page are behaving consistently with change in spatial locality. Hence in our

subsequent presentation, we present our results with only two measures - BetaCV and

Silhouette Co-efficient (see Table C.2 on page 219).

Distribution Quality. Table 8.8 on page 201 presents the values of quality measures for

data distribution of DD-Rtree when compared with random distribution and distribution

using SD-Rtree for various synthetic and real datasets. For synthetic random and syn

thetic normal datasets, the results show that the measures have always been consistently

better for DD-Rtree than random distribution and SD-Rtree for different number of com

puting nodes used in the cluster. The quality of distribution for synthetic cluster dataset

however, is slightly lower than that of SD-Rtree. This is because of difference in the re

distribution strategies used. Since the dataset has fully disjoint clusters, the k-NN based

re-distribution strategy of SD-Rtree works better than the overlap based re-distribution

strategy of DD-Rtree. The quality of distribution using DD-Rtree for all real datasets

is found to be better than that of SD-Rtree. This shows the efficiency of DD-Rtree in

handling skewed datasets. For SFONT1M11D and MPAGD2.8M9D, DD-Rtree performs

much better than others. This is because at high dimensional space, overlap based re

distribution of DD-Rtree performs considerably better than k-NN based re-distribution

of SD-Rtree.

■ SRI0M2D * SBIS6M2D
I

5 0.95 ■---------• ' -
♦

= 0.9 ■
2 0.85 “ *

= 0.8

J 0 75
* 0.7

5% 10% 15% 20% 25%
Buller Size (% of machine capacity)

Figure 8.3: Silhouette Co-efficient with in
crease in buffer size

— ■ SRI0M2D ♦—SBCS6M2D
I

| ft__B
? 0.9 X

a 0.8
5% 10% 15% 20% 25%

Degree of Emptiness (% of total
capacity)

Figure 8.4: Silhouette Co-efficient with in
crease in degree of emptiness

Quality Analysis on Varying Factors. We analyze the quality of DD-Rtree with vari-

195

8.3 Performance Evaluation

ation in buffer size and the degree of emptiness in the tree for 16 nodes in the cluster for

SR10M2D and SBUS6M2D datasets. Results presented in Figure 8.3 on page 195 show

that the quality of distribution deteriorates with increase in buffer size beyond 10% of

machine capacity in both the cases. This is because large buffer size leads to infrequent

flushes into MR-Tree. It also results in very large number of points being shifted in re

distributions. Optimal quality is observed for buffer sizes between 5 and 10% of machine

capacity. Similarly, results presented in Figure 8.4 on page 195 show that the quality

of distribution initially improves and then deteriorates when we increase the degree of

emptiness in the computing nodes. This is because high degree of emptiness leads to

data being distributed in a skewed manner.

Table 8.3: Load Balancing for SR10M2D dataset

Data Structure Range of no. of points in each machine
SD-Rtree 46,216-62,500
DD-Rtree 56,394 - 60,341

We also compare the load balancing achieved for DD-Rtree and SD-Rtree and results

are presented in Table 8.3 for SR10M2D dataset for n=16, when degree of emptiness is

5%. The results show that DD-Rtree achieves better load balance than SD-Rtree. Similar

results were obtained for other datasets as well.

8.3.2 Efficiency Evaluation

We evaluate DD-Rtree for execution time and MPI messages required for data distribu

tion.

Table 8.4: Construction time of DD-Rtree vs SD-Rtree

Dataset SR10M2D SBUS6M2D

No of Nodes Data Struct. Constr. Time MPI Messages
(approx..) Data Struct. Constr. Time MPI Messages

(approx..)
SD-Rtree 1787 sec. 25.3 M SD-Rtree 1607 sec. 18.4 M

n=16 DD-Rtree 1295 sec. 1.4 M DD-Rtree 1064 sec. 1.2 M
SD-Rtree 1839 sec. 26.4 M SD-Rtree 1672 sec. 19.6 M

n=32 DD-Rtree 1363 sec. 1.6 M DD-Rtree 1114 sec. 1.3 M

Construction of DD-Rtree. We measure construction time and number of MPI messages

required for DD-Rtree and SD-Rtree on SR10M2D and SBUS6M2D datasets for 16 and

32 nodes. The results presented in Table Table 8.4 show that the execution time and the

196

8.3 Performance Evaluation

Table 8.5: Construction time of DD-Rtree with variation in Buffer size

Buffer Size 5% 10% 15% 20% 25%

SR10M2D Construction Time 1462 sec. 1363 sec. 1284 sec. 1106 sec. 1085 sec.
MPI messages 1.8 M 1.6 M 1.2 M 0.9 M 0.8 M

SBUS6M2D Construction Time 1267 sec. 1114 sec. 1068 sec. 1027 sec. 992 sec.
MPI messages 1.5 M 1.3 M 0.8 M 0.6 M 0.5 M

MP! messages required for DD-Rtree is less with respect to SD-Rtree. This is mainly

attributed to buffering technique used to defer insertions and inserting them in bulk

rather than point by point. This is also due to reduction in number of re-distributions for

DD-Rtree.

We have also measured the construction time of DD-Rtree and number of MPI mes

sages required, with variation in buffer size (% of machine capacity) for SR10M2D and

SBUS6M2D datasets on 32 nodes. The results presented in Table 8.5 indicate that the num

ber of MPI messages decrease as the buffer size increases. This is because when buffer

size is small, the buffer is flushed very frequently and re-distribution routine is executed

more number of times. However, we can see from Figure 8.3 on page 195, that quality of

distribution is good when the buffer size is small. Therefore, we have taken buffer size to

be 10% in all our experimentation.

Performance of Queries. We measure the average number of machines visited per query,

average number of MPI messages and average execution time, for e-neighborhood and k-

NN queries when executed over DD-Rtree and SD-Rtree for SR100M2D and MPAGD56M3D

datasets for 32 nodes. We have used 10% sample of the dataset as querying points

and have computed averages. We choose e=0.01 for SR100M2D dataset and e=0.006 for

MPAGD56M3D dataset for executing neighborhood queries. We choose k=20 for all k-NN

queries. The results presented in Table Table 8.6 on the next page clearly indicate that

all these parameters are better for DD-Rtree, proving its better spatial locality. We also

observed that query performance of DD-Rtree is consistently maintained with variation

in c for neighborhood queries and variation in k for f-NN queries when compared to

SD-Rtree.

Performance of Distributed DBSCAN. We perform simple version of distributed DB-

SCAN over SD-Rtree and DD-Rtree, to compare their performance over MPAGD16M3D

197

8.4 Discussion

Table 8.6: Querying Performance of DD-Rtree and SD-Rtree

SR100M2D MPAGD56M

Average
MPI

Average
Execution

Average
number of
Machines

Visited

Average
MPI

Average
Execution

Average
number of
Machines

VisitedMessages Time Messages Time

DD-Rtree
Nbh

Query
A-NN
query

3.18

3.17

0.051 sec.

0.074 sec.

1.59

2.17

2.9

2.96

0.043 sec.

0.058 sec.

1.45

1.96

SD-Rtree
Nbh

Query
A-NN
query

3.44

3.38

0.069 sec.

0.086 sec.

1.72

2.38

3.26

3.24

0.056 sec.

0.072 sec.

1.63

2.24

dataset over 32 machines. The e was chosen to 0.01 and Min_Pts was chosen to be 5. Ta

ble 8.7 on the following page presents the summary of its execution. DBSCAN follows all

four steps of a distributed algorithm explained in section 1. In step 1, we distributed data

using suitable method. In this DD-Rtree takes less time when compared with SD-Rtree.

This is attributed to reasons explained in the above experiments. In step 2, for every

machine, we retrieve data points from other machines in the cluster which lie within e-

extended boundary of the current machine. In this step, the number of MPI messages

required remains same in all cases. However, the execution time for DD-Rtree is lesser

because the number of extra data points fetched from other machines is less due to its

greater preservation of spatial locality in its distribution. Step 3 involves execution of

local DBSCAN at each machine. In this step, the time require for local DBSCAN is less for

DD-Rtree. This is because, preservation of spatial locality helps in reducing the search

space for the neighborhood queries, when data is indexed in R-trees. This is also because

of lesser number of extra points retrieved from other nodes. In step 4, we merge the

results of all local DBSCAN to give the required global clustering. In this step, the time

required for merging is almost the same for DD-Rtree and SD-Rtree. Thus, the above

experiment shows that effective distribution of data using DD-Rtree enables reduction in

communication complexity and thus improves the performance of parallel DBSCAN.

8.4 Discussion

DD-Rtree gains the following advantages by its design:

198

8.5 Main Contributions

Table 8.7: Parallel DBSCAN using DD-Rtree and SD-Rtree

Exec, time for SD-Rtree Exec, time for DD-Rtree
Step 1
Step 2
Step 3
Step 4
Total Execution Time

1948 sec. 1426 sec.
481 sec. 304 sec.
1671 sec. 1428 sec.
150 sec. 139 sec.

4250 sec. 3297 sec.
Number of data points retrieved from other machines

Step 2 1.92 M 1.28 M

• The re-distribution strategy of DD-Rtree is a hybrid strategy based on overlap min

imization and nearest neighbor search, unlike the SD-Rtree which is based only on

nearest neighbor search. Nearest neighbor search alone cannot gaurantee good spa

tial locality and thus DD-Rtree turns out to be better in preserving spatial locality

in its distribution.

• The communication overhead in construction of DD-Rtree is much lesser than that

of SD-Rtree. This is primarily attributed to bulk insertions and bulk re-distributions

(resultant of usage of buffers), unlike SD-Rtree that inserts and re-distributed point

by point and hence becoming a communication bottle-neck. This leads to lesser

construction time for DD-Rtree.

• Also, bulk loading helps in maintaining good load balancing in the machines, which

is one of the key requirements for parallel spatial data mining algorithms.

• All the above factors of DD-Rtree resulted in improved performance of spatial

queries and parallel DBSCAN.

8.5 Main Contributions

• We presented DD-Rtree which is a dynamic distributed data structure for indexing

large and incremental datasets.

• DD-Rtree can be used for distributing data into the computing nodes of the cluster

in such a way that it effectively preserves spatial locality in its distribution and

achieves good load balancing

• Experimentally, we have shown that DD-Rtree gives better performance of spatial

199

8.6 Conclusions & Future Work

queries and parallel DBSCAN, when compared with random distribution and SD-

Rtree.

• Experiments also show that DD-Rtree has lesser communication overhead when

compared to SD-Rtree and thus is efficient in its construction and querying.

8.6 Conclusions & Future Work

8.6.1 Conclusions

This chapter proposes DD-Rtree, which is a dynamic distributed data structure based on

R-tree. DD-Rtree preserves spatial locality in its distribution, achieves good load balanc

ing, exhibits less communication overhead in querying and construction, and improves

the performance of parallel spatial data mining algorithms. DD-Rtree also supports

efficient execution of c-neighborhood and k-NN queries. The quality and efficiency eval

uation together establishes the superiority of DD-Rtree with respect to SD-Rtree and

random distribution.

8.6.2 Future Directions

DD-Rtree can be used to design highly efficient distributed framework for mining data

streams. Also, the DD-Rtree strategy can very well be applied on other R-tree variants.

200

Table 8.8: Data distribution quality for varying number of computing nodes for various datasets

1 1 n=16 n=32 n=64 | n=128 | n=256 |

rand SDR DDR rand SDR DDR rand SDR | DDR 1 rand SDR | DDR | rand SDR 1 DDR |

SR500M2D
BCV 0.715 0.526 0.439 0.632 0.518 0.426 0.698 0.516 | 0.428 1 0.702 0.511 | 0.403 | 0.697 0.506 1 0.411 |
SIL 0.614 0.912 0.953 0.632 0.908 0.955 0.697 0.922 | 0.964 1 0.712 0.911 | 0.963 | 0.706 0.917 1 0.965 |

SN100M2D
BCV 0.765 0.699 0.698 0.712 0.624 0.614 0.703 0.617 | 0.598 1 0.71 0.599 | 0.572 | 0.685 0.548 1 0.516 |
SIL 0.487 0.796 0.844 0.498 0.821 0.869 0.436 0.788 | 0.876 1 0.513 0.842 | 0.912 | 0.559 0.849 1 0.915 |

SC100M2D
BCV 0.833 0.411 0.451 0.795 0.396 0.432 0.768 0.347 | 0.386 1 0.778 0.301 | 0.941 | 0.724 0.282 1 0.304 |
SIL 0.648 0.921 0.854 0.627 0.923 0.867 0.633 0.926 | 0.892 1 0.701 0.929 | 0.915 | 0.693 0.937 1 0.924 |

SFONT1M11D
BCV 0.514 0.398 0.248 0.534 0.375 0.244 0.527 0.368 | 0.214 1 0.486 0.347 | 0.196 | 0.447 0.329 1 0.204 |
SIL 0.247 0.726 0.894 0.164 0.763 0.905 0.187 0.773 | 0.924 1 0.168 0.798 | 0.937 | 0.199 0.812 1 0.94 |

1 MPAHALO2.8M9D
। FOF113M3D

BCV 0.628 0.583 0.473 0.604 0.562 0.436 0.593 0.518 | 0.401 1 0.562 0.501 | 0.386 | 0.579 0.483 1 0.372 |
SIL
BCV

0.363
0.864

0.674
0.635

0.836
0.447

0.381
0.822

0.693
0.622

0.853
0.432

0.394
0.812

0.725 I
0.593 |

0.875
0.458 | 0.427

0.794
0.783
0.605

0.901 1
0.405 |

0.452
0.807

0.812
0.586 | 0.894

0.415
SIL 0.294 0.764 0.889 0.386 0.793 0.892 0.357 0.813 | 0.914 1 0.429 0.818 | 0.927 | 0.414 0.827 1 0.942 |

MPAGD56M3D
BCV 0.62 0.455 0.412 0.637 0.441 0.399 0.587 0.428 | 0.394 1 0.641 0.427 | 0.367 | 0.623 0.428 1 0.338 |

SIL 0.749 0.901 0.914 0.726 0.92 0.921 0.738 0.914 | 0.908 1 0.722 0.908 | 0.917 | 0.685 0.917 1 0.921 |

SBUS6M2D
BCV 0.512 0.458 0.345 0.539 0.469 0.314 0.521 0.431 | 0.324 1 0.566 0.413 | 0.305 | 0.547 0.407 1 0.298 |

SIL 0.802 0.947 0.956 0.765 0.952 0.974 0.744 0.962 | 0.966 1 0.798 0.967 0.982 | 0.783 0.963 1 0.971 |

8.6 Conclusions & Future W
ork

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The work done in this thesis primarily focuses on the following broad research topics

- Data Mining, Data Streams, Data Structures and High Performance Computing. We

specifically deal with the problems on development of efficient data indexing techniques

for efficient spatial queries, mining variable speed streaming data and spatial data distri

bution for parallel data mining over distributed memory architectures. In the course of

this thesis, we have innovatively used the concepts listed in the table below. The applica

bility of these concepts to the problems attempted in this thesis is summarized in Table 9.1

and have been briefly explained as follows:

• Grid-R-tree. This method uses a hybrid method of adaptive gridding and hierarchi-

Table 9.1: Key concepts used in proposed algorithms

Concept G
rid

-R
-tr

ee

A
ny

SC

A
ny

Cl
us

g

St
at

ic
 D

ist
rib

ut
io

n

A
ny

-M
P-

C

A
ny

FI

M
PA

ny
FI

D
D

-R
Tr

ee

Gridding and Adaptive Gridding / X X X X X X /
Hierarchical data structures / / ✓ / / / ✓ /
Spatial locality aware computations / / y / X X /
Computational cost reduction / ✓ y / / ✓ / /
Handling variable stream speeds X j y / / X X
Spatial Data Distribution X X X / X X / /
Buffering X / ✓ y / / / X
Hierarchical Aggregation X / / / X X X X

202

9.1 Conclusions

cal structure, R-tree, in order to efficiently execute spatial queries used in spatial

data mining algorithms. Its two-level design achieves reduction in search space

for spatial queries and reduces the computations cost of clustering algorithms such

as DBSCAN & OPTICS, as well as the K-NN classifier. The innovative use of hy

brid concepts makes Grid-R-tree address the drawbacks of conventional structures

like R-tree and kd-tree, arising due to large size and high dimensionality of the

datasets (such as increase in overlap and height in R-tree & k-d-tree, respectively)

and execute the queries more efficiently. The experimental analysis suggests that

Grid-R-tree outperforms R-tree and kd-tree. The maximum speed up achieved is 42

for CellWiseNBH query, 21 for PointWiseNBH query and 25 for KNN query.

• AnyFI & MPAnyFI. These two methods are the first proposed methods for anytime

frequent itemset mining of single-port and multi-port data streams, respectively.

They use proposed hierarchical structure known as BFI-forest, which is a collec

tion of BFI-trees. BFI-trees use buffers in their nodes to delay the processing of

incompletely processed transactions arriving in variable speed streams. Experimen

tal results suggest that AnyFI can handle stream speeds upto 60,000 transactions

per second with recall close to 100%. The experiments also show the efficiency and

scalability of MPAnyFI.

• AnySC. It is the first proposed anytime set-wise classification algorithm for data

streams. It processes variable stream speeds using a proposed hierarchical struc

ture known as CProf-forest, which is a collection of CProf-trees that are based on

R-tree structure. CProf-trees contain buffers in their internal nodes to defer the pro

cessing of incompletely processed objects arriving in variable speed data streams.

The training data is hierarchically aggregated in the form of CProf-trees to han

dle classification of test data arriving in the stream. AnySC makes best use of the

hierarchical structure of the CProf-forest to get better accuracy when compared to

the non-anytime set-wise classification algorithm (SC), even at SC's budget speed.

This happens because of reduction in computational overhead by the conversion

of the linear model to a hierarchical model. The experimental analysis shows that

AnySC is able to process very high speed streams (upto 100k objects per second)

and produce accurate results. The experimental results also show the applicabil

203

9.1 Conclusions

ity of AnySC to the problem of community detection using text feeds from twitter,

as well as simulation of website fingerprinting attack. AnySC performs the above

applications where stream speed is varying, with good accuracy.

• AnyClus & AnyMPClus. These two problems use the proposed hierarchical struc

ture known as AnyRTree, which is based on R-tree. AnyRTree also uses buffers

to delay the processing of incompletely processed points arriving in variable speed

streams, and also to handle noise and concept drift. AnyRTree is a hierarchical

aggregation of micro-clusters using R-tree spatial containment principles. This pre

serves the spatial locality in the hierarchical arrangement of micro-clusters in the tree

and hence leads to reduction in computation cost of the offline clustering algorithm

applied over these micro-clusters. This also helps in producing purer and compact

micro-clusters when compared to the existing methods. Any-MP-Clus uses spatial

data distribution to efficiently merge the micro-clusters and then feeds them into

a logarithmic tilted-time window framework. The experiments show that AnyClus

and Any-MP-Clus can handle very high speed streams (>200k points per second)

and produce micro-clusters of high purity (~1). The usage of noise buffers in the

internal nodes at higher granularity also led AnyClus and Any-MP-Clus to handle

noise and concept drift more effectively.

• DD-RTree & Static Data Distribution Strategies. The data distribution strategies

proposed in this thesis are fully based on spatial locality principles and are specifi

cally designed for those parallel data mining algorithms that exploit spatial locality.

They achieve computational and communication cost reduction by use of spatial

data distribution attained by following the scheme of hierarchical data indexing

structures such R-tree and k-d-tree. DD-RTree additionally employs buffers to fur

ther reduce the communication overhead and uses bulk-loading. The experimental

results suggests that the proposed static methods outperform the existing kd-tree

based distribution scheme for density-based and hierarchical clustering algorithms.

Appropriate recommendations for the usage of each of the distribution proposed is

also given.

Notable Achievements of work done in this thesis:

204

9.2 Future Directions

• Proposed first of its kind solutions - Grid-R-tree, AnySC, Any-MP-Clus, AnyFI,

MPAnyFI and Data Distribution Strategies.

• Effectively used hybrid concepts such as combination of grid and trees.

• Efficiently processed billions scale data.

• Efficiently processed high speed and variable speed streams.

9.2 Future Directions

An insight on future directions which we plan to pursue.

• More number of Grid-R-tree kind of hybrid structures can be made with combina

tions of multiple data structures.

• Anytime mining algorithms can be developed for anomaly detection and classifiers

like SVM, Decision Tree, etc., for handling both large static data as well as streaming

data. Anytime mining algorithms can also be developed for hierarchical clustering,

subspace clustering, grid-based clustering, etc. over large static datasets.

• A "fast and slow framework" for anytime mining of data streams can be designed

where two processes simultaneously capture the same stream, one using sampling

and the other using anytime features. This is expected to improve the accuracy of

the offline mining results produced for very high speed streams.

• The data distribution strategies can be extended to suit the parallel data mining

algorithms proposed for Map/Reduce and Spark frameworks.

• Effective distributed frameworks based on MPI, Spark and Map/Reduce can be

developed for distributed stream processing.

205

Appendix A

R-tree

R-tree [122] is a commonly used hierarchical indexing structure for indexing multi-dimensional
spatial objects. R-tree and its variants are commonly used in spatial data mining algo
rithms for efficient execution of neighborhood and nearest neighbor queries, in logarith
mic average time.

A.l Structure of an R-tree

External nodes indexing data points

Figure A.l: R-tree: Structure Figure A.2: Minimum Bounding Rectangles

Figure A.l illustrates the structure of an R-tree. It has two kinds of nodes: internal and
external (or leaves). It is defined as follows:

Definition A.l. R-tree is a height balanced multi-dimensional indexing structure having
the following properties:

• Each node (both internal and external) contains between m and M entries (in <
M/2). The root has at least one entry.

• An entry of an internal node stores the following entries: (i) a pointer child to the
child sub-tree; (ii) a minimum bounding rectangle MBR; (iii) a pointer next to the
next entry in the node.

• An entry of a leaf node stores d-dimensional data points.

An MBR stores bounding information of all the points indexed in the sub-tree rooted
at it. Figure A.2 shows MBRs of the nodes of the R-tree formed while indexing data

206

A.2 R-tree: Construction, Insertion and Deletion

points. The MBR of a given entry bounds the MBRs present in all the entries indexed at
its child node. This forms a hierarchy of MBRs in the tree.

Alg
’ P

3
4

6
7
8
9

,orithm A.l: Insertion in R-tree Alg
rocedure Insert-In-R-free () i p

Input : data point />, R-tree node nodel
Output: p inserted into tree rooted at nodel
if nodel.type - = INTERNAL then 2

bestChild — R-Pkk-Child p); 3
Inserf-In-R-free (bestChild); 4

else if node I.type - - EXTERNAL then
I Insert p as a new entry in nodel; 5
I if nodel overflows then 6

| R-SPLlT-NoDE(nodel); 7
I R-Ui'DATE-MBR-BorTOM-Upfnodcl); s

orithm A.2: R-Pick-Child
rocedure R-Pick-Child ()

Input : R-tree node nodel, data point p
Output: bestChild of nodel for insertion of p
bestE nodel's first entry; currE •- bestE;
while currE ± MULL do

1 if Expansion-Area (bestE.MBR, p) >
Expansion-Area (currE.MBR, p) then

| bestE currE;
J currE < currE.next

end
return bestExhild;

Algorithm A.3: R-Split-Nodc Algorithm A.4: R-Pick-Seeds
1 Procedure R-Split-Node () 1 procedure R-Pick-Seeds ()

3
4
5

Input : R-tree node nd
Output: Splits nd into two and updates the tree
ej <— NULL; i’2 <- NULL; te <- nd.firstEntry;
nd[, ndz <- New-R-tree-Node ();
R-Pick-Seeds (nd, e1(e2);
while te NULL do 2

Input : R-tree node nd, entry pointers p| & e2
Output: 1’1 & 1’2, which are the pair of entries of

nd whose MBRs are farthest along any
dimension. They are selected as initial
seeds for splitting

foreach dimension i do
6

7

8
9
10
11
12
13
14

if

e

e

No-Of-Filled-Entries (ndi) < in &
No-Of-Filled-Entries (nd2) < in then

/ / both ndi & inh underflown
if ExpansionAre/X (nd^ te.MBR) <

ExpansionArea (nd2, te.MBR) then
| Add-Entry-To-Node (te, nd\);

else
| Add-Entry-To-Node (te, nd2)

se if Num-Filled-EntriesOk/|)< in then
Add-Entry-To-Node (te, iidt);

se
Add-Entry-To-Node (te, ndi);

3
4

6
7

8

9
10

e
fc

ininE <- Min-Entry-Across-Dim(hJ, i);
maxE <- Max-Entry-Across-Dim(hi/, i);

H ininE & maxE are pointers to entries
of a R-tree node

Arr\i].minEntry <- ininE;
Arr[i].maxEntry <- maxE;
disN\i] Separation-Between-MBRs

(maxE.MBR, ininE.MBR);
disN[i\ <- di^[i'ISvAN(i, Arr[i]); II

normalizes the separation computed
id
ireach dimension i do

15
16
17
18
19

ei
A
A
if

te te.next;
id
dd-Node-To-Rtree-Node (n</|, nd.parent);
dd-Node-To-Rtree-Node (nd2, nd.parent);
nd.parent overflows then

11
12
13
14
15

if

ei

i/zsN[f] > dis then
dis <- disN[i];
t’i 4- Arr[i\.minEiitry;
t*2 <— Arr\i'.maxEntry;

id
20 R-Split-Node (nd.parent); 16 end

A.2 R-tree: Construction, Insertion and Deletion
R-tree is constructed by incremental dynamic insertions of a given list of data points. In
sertion of a data point p happens in a top-down recursive fashion into the sub-tree rooted
at a given node (nodel), beginning from the root. Algorithm A.l illustrates this. If the
current node (nodel) is an internal node, it picks the best child of the node (the child that
has least expansion in its MBR's area after inclusion of p (Algorithm A.2), and makes a
recursive call over that child (lines 2-4 of Algorithm A.l). If nodel is an external node,
it simply inserts the data point into it as a new entry (line 6 of Algorithm A.l). If nodel
overflows because of this insertion, i.e. the number of entries stored in it exceeds M, then
it gets split into two (Algorithm A.3) and the newly created nodes are added to novel's
parent (line 7 of Algorithm A.l). Subsequently, the MBRs of the tree are updated in a
bottom up fashion as per the newly inserted data point (line 8 of Algorithm A.l). The
average case time complexity of inserting a data point into R-tree is O(log,(/ N). Thus, av
erage time complexity of R-tree construction is 0(N log,„ N), where N is the total number
of data points inserted into in the tree.

207

A.3 Distance Measures in an R-tree

The Split Node function (Algorithm A.3 on page 207) is the R-tree's linear split al
gorithm [122]. One can very well use quadratic or exponential split, instead. The linear
split uses a linear cost seed selection algorithm (Algorithm A.4 on page 207). This seed
selection algorithm, for each dimension, finds the entries of the node being split that have
the lowest and the highest extreme rectangles respectively, and stores the pair in an array
Arr of size d (lines 2-9 of Algorithm A.4 on page 207). It then computes the separation
between the MBRs for each pair stored in Arr and stores the separation values in an array
disN of size d. Then disN is normalized by dividing the separation found by the width of
the entire set along the corresponding dimension. The pair of entries that have the highest
normalized separation along any dimension are selected as initial seeds for splitting (lines
10-16 of Algorithm A.4 on page 207). The Split Node function then takes these two seeds
and distributes the remaining entries to these seeds thus creating two nodes (lines 5-15
of Algorithm A.3 on page 207). Distribution happens with minimization of expansion
area as the criteria. It also makes sure that none of the new nodes have underflow. The
two new nodes are then attached to the parent of the older node, which is subsequently
checked for overflow (lines 17-20 of Algorithm A.3 on page 207). If overflow occurs, it is
handled in a similar way and the split can propagate up to the root leading to creation of
new root. Thus in this way, R-tree grows upwards. For more details on Split Node and
Pick Seeds functions, please refer to [122].

Deletion of a point p from R-tree involves finding it using point query and then its
removal from the corresponding node. If this removal causes node under-flow (i.e. no. of
entries become < m), it has to be handled by merging of nodes in a bottom up manner.
Since deletion is out of scope for this thesis, we don’t describe it further.

A.3 Distance Measures in an R-tree
We first present two distance measures used in R-trees.

euclideanDistlp. q)

Figure A.3: Illustrating euclidean distance and min-distance

Definition A.2. Euclidean Distance. Given two d- dimensional points p = (pi,- • • ,pd)
and q = (qi, • • • ,q(t) (see Figure A.3), for 1 < i < d,

euclideanDist(p,q) =
i=0

Definition A.3. Min Distance. Given a d-dimensional query point q = (qi, • • • ,qd) and an
MBR Z = (s, t) of an R-tree defined by two corner points s and t (as shown in Figure A.3

208

A.4 Queries Supported by R-tree

on page 208) such that s = (si, • • • ,s,/), t = (fi, • • • ,^£/) and s, < tj for 1 < / < d, then

i J

mhiDist(q,Z) = . £ \ll ~
\ i=()

where r, = t.
ifq, < s,
ifq> > h
otherwiseV/

minDist(q,Z) is the minimum distance between a query point q and an MBR Z as illus
trated in Figure A.3 on page 208 for d=2. It is the lower bound of the actual distance of
any object lying in Z to q.

A.4 Queries Supported by R-tree

In this section we discuss various queries supported by R-tree. They include - region
queries (point, window & neighborhood queries) and nearest neighbor query.

A.4.1 Point Query

Point query checks the existence of a given data point p in a dataset. The algorithm
for point query over an R-tree executes in a top-down recursive fashion over the R-tree
nodes, recursing into the children whose MBRs promise containment of p. In its traversal,
if it finds p at any of the external nodes, it returns TRUE, else it returns FALSE (See
Algorithm A.5) for pseudo code). The average complexity of point query over R-tree is
O(log„, N).

A Igorithm A.5: Point Query over R-tree
i

3
4
5
6
7
8
9
10
11

12
13

procedure Point-Query-R-tree ()
Input : data point p, R-tree root node
Output: TRUE of p exists, FALSE otherwise
boolean flag <— FALSE ;
if node.type == EXTERNAL then

1 foreach entry e indexed in node do
1 if e == p then
| | flag <- TRUE; break;

| end
else if node.type == INTERNAL then

foreach entry e indexed in node do
if e.inbr contains p then

1 flag Point-Query-R-tree (p,
1 e.child);

end
return flag;

Algorithm A.6: Window Query over R-tree
1 Procedure Window-Query-R-tree ()

2

Input : region r, R-tree root node, data points
list plist

Output: plist containing data points lying in r
if node.li/pe == EXTERNAL then

3

4
5

1 Add all the points indexed at node, that lie
| in r, to pLisf;

end
else if node.type == INTERNAL then

6
7
8

9
10
11

foreach entry e of node do
if e overlaps with r then

1 Window-Query-R-tree (r,
| e.child, plist);

end
end

end

A.4.2 Window Query

Window query is a query which returns all the data points that lie in a d-dimensional
window or a region r, from the entire data space. Figure A.4 on the next page illustrates
the window query for d=2. The window query algorithm for R-tree also executes in a top-
down recursive fashion, recursing itself into the children of a node whose MBRs overlap
with the given region r. In its traversal, whenever it encounters an external node, it simply
accumulates all the data points of this node that lie in region r into a temporary list and
returns it. (See Algorithm A.6 for pseudo code). The average complexity of window
query over R-tree is O(logn/ N).

209

A.4 Queries Supported by R-tree

Algorithm A.7: e-Neighborhood Query over R-tree
i procedure c-Neic.hborhood-Query-R-tree ()

Input : data point p, t, R-tree root node, data points list plht
Output: pits! containing points lying within t distance from p

2 construct an e-extended region r of p;
3 tempLiat = Window-Query-R-tree (r, node);
4 plist = points of templisl within e-distance from p;
5 return pli>t;

A.4.3 Neighborhood Query

Neighborhood query or e-neighborhood query is a query which returns all the data points
lying within an e- distance from a given point p. Figure A.5 illustrates this query for d=2.
The points lying in the circular region in the figure is e-neighborhood of p. Neighborhood
queries are extensively used in density based clustering algorithms like DBSCAN [34] and
OPTICS [35].

The neighborhood query algorithm for an R-tree is presented in Algorithm A.7. In
this, a region r (referred to as e-extended region of p) is first constructed around p by
extending its coordinates across all the dimensions by c, in both positive and negative
directions. Figure A.5 shows this region for 2-dimensional space. Then, a window query
is executed over R-tree with r as the window. From the points returned by the window
query, those that lie within e distance from p are returned as e-neighborhood of p. The
average complexity of neighborhood query over R-tree is O(logm N).

A.4.4 Nearest Neighbor Query

Nearest neighbor query or ^-nearest neighbor (fc-NN) query is a query that returns the
k closest data points to a given query point p [121]. k-NN query for k=6 is illustrated
in Figure A.6, where all the points within the circle form the k nearest neighbors of p.
The best known algorithm for nearest neighbor search over R-tree is the BF-kNN [131],
which uses a min-priority queue (PQ) that stores nodes of an R-tree as well as data points
indexed in it. The key for insertion into priority queue is the euclidean distance for data
points and minDist for nodes (or MBRs of nodes). BF-kNN is a greedy algorithm with
minimum distance as the greedy choice. Algorithm A.8 on the next page presents its
pseudo code. The BF-kNN algorithm first adds the root node of a given R-tree into PQ.
Then in a loop it executes the following steps until k nearest neighbors are found. A
Remove-Min() operation is performed over PQ. If the min object is an internal node, it
inserts all its indexed entries into PQ with their respective minDist from p as key values;

Figure A.4: Illustrating
Window Query

Figure A.5: Illustrating
Neighborhood Query

Figure A.6: Illustrating k-
NN Query (k=6)

210

A.4 Queries Supported by R-tree

Algorithm A.8: A-Nearest Neighbor Query over R-tree

3
4
s
6
7
8
9
10
11
12
13
14

procedure A-NN-Query-R-tree ()
j Input : data point q, k, R-tree root node
I Output: A- nearest neighbors of </
i Initialize Empty Priority Queue PQ; int i = 1;
I Add node into PQ, with its minDistance from /> as the key;
! while PQ not empty do

| element ele = Remove-Mix (PQ);
if ele is internal node of R-tree then

Add all its entries to PQ with their respective minDist (from </) as kevs;
else if ele is external node of R-tree then

Add all its entries to PQ with their respective euclideanDist (from </) as kevs;
else if ele is a data point then

report ele as i"' nearest neighbor; i++;
if i > k then

| return;
end

If the min object is a penultimate node, it inserts all its indexed entries into PQ with their
respective euclideanDist from p as key values. If the min object is a data point, it is marked
as the ith nearest neighbor. This step is repeated until i > k, with i initially set to 1.

The complexity of BF-kNN is dominated by the complexity of priority queue opera
tions [131]. The number of objects inserted into the priority queue is O(k + x/k) and cost
of each insertion is O(log x/k), if PQ is implemented as a binary heap. Thus the average
case complexity of BF-kNN algorithm is O(k + v^).O(log x/k) = O(k\ogk). However,
the worst case complexity is O(N), wherein all the nodes in the R-tree are added to the
priority queue.

211

Appendix B

Tilted-Time Window FrameWork
(TTWF)

Tilted-Time Window is a framework for storing summary statistics of a data stream. It is
used to store the summary entire stream while giving greater weight-age to the recently
arrived objects. TTWF is used by problems of anytime clustering and anytime FI mining
in Chapter 6 on page 126 and Chapter 4 on page 60 respectively.

TTWF [309] is inspired by the fact that very often people are interested in looking
at recent changes at finer granularity and the older changes at coarser granularity. It
consists of a few windows whose cardinality is logarithmic in units of time. Consider
the logarithmic TTWF shown in Figure B.l. Suppose the latest window zt’i stores the
summary statistics of the stream received for last tj„ units of time. Then, n>2 would store
summary statistics for previous units of time, W3 would store for next 2ti„ units of
time, 4tin units in W4 and so on, growing at an exponential rate of 2. Essentially, zt’i and
W2 store summary statistics at finest granularity, and as the units of time represented by
each window increases, the granularity becomes coarser. Note that each window Wj in
TTWF has a temporary window tWj representing the same units of time (as shown in
Figure B.l), except for wi.

Figure B.l: Tilted-Time Window Framework

The above model can be useful in: (1) finding data patterns for a specific period of time
represented by a specific contiguous subset of windows, while giving greater weightage
to the recent windows; (2) specifically finding the period where a particular pattern exists
in the stream; (3) perform weighted analysis on the windows representing a particular
period, etc.

B.0.1 Maintenance of TTWF

Consider Figure B.l. TTWF assumes that objects are arriving in batches (of say tin units of
time). Lets start with an empty TTWF. When the first batch arrives (say FJ, the summary
statistics from Fi are stored in window When second batch arrives (F2), the summary
statistics of Fi are moved from Wi to W2 and summary statistics of F2 are put into W\.
When next batch arrives (F3), summary statistics of F] are moved from W2 to tW2, summary

212

timew2 w.

w5 Wj w2 w.

Figure B.2: Updating TTWF after receiving batch F4

time

statistics of F2 are moved from (pj to uh and summary statistics of Ft, are put into u>|. When
the next batch arrives (Fi), we merge summary statistics of 11'2 and tW2 (Fj and F2) and
put the merged statistics into wj, as shown in Figure B.2. Then we move Ft, from uq to W2,
and put Fi into Going this way, after receiving another 4 batches, summary statistics
in W3 (Fi 4- F2) will be placed in twy And after another 4 batches, the summary statistics
in and will be merged and stored in as was done previously. And in this way
the TTWF grows. We can clearly observe that total number of windows in TTWF at any
point in time is of logarithmic order of units of time for which stream was received. If we
consider to represent the stream received for an hour, then total number of windows
for representing the entire stream for a month will be [(log(1 x 24 x 30))] +1 = 11 instead
of 24 x 30 = 720 windows. Similarly for 1 year and 10 years it would respectively be equal
to 15 and 18 windows respectively. This shows that tilted-time window representation is
very compact and memory efficient. A user can request for a mining output for a time
duration covered by a single or multiple windows. For this, we take summary statistics
from those windows and perform offline processing over them.

213

Appendix C

Quality Evaluation Measures

In this chapter we described a few measures of assessing the quality of data distribution or
partitioning or clustering. There are two kinds of measures - external & internal. External
measures are used when the ground truth is available and Internal measures are used
when ground truth is not available. We explain a few of these measures that are used in
this thesis. They have been summarized in [310].

C.l External Measures

Let D = be a dataset containing n data points of dimensionality d that are par
titioned into k partitions. Let y, € {1,2, ...,k} be the ground-truth label (or ground
truth partition membership) for each point. The ground-truth partitioning is given as
T = {Ti, T2, T/J, where the partition Tj consists of all the points with label j , i.e.,
Tj = {x, G D | y, = j}. Also, let C = {Ci,..., Cr} be a partitioning of the same dataset into r
partitions, obtained via some clustering or a distribution algorithm, and let yj G {1,2,..., r}
denote the obtained label for x,.

External evaluation measures try to capture the extent to which points from the same
ground-truth partition appear in the same obtained partition, and the extent to which
points from different ground-truth partitions are grouped in different obtained partitions.
All of the external measures rely on the r x k contingency table N, which is induced by a
obtained partitioning C and the ground-truth partitioning T , defined as follows:

N(i,j) = Hij = |c,n tj

The count n,) denotes the number of points that are common to an obtained partition
Cj and ground-truth partition Tj . Further, let n, = |CJ be the number of points in an
obtained partition C„ and let nij = |TJ denote the number of points in ground-truth
partition Tj . The contingency table can be computed from T and C in O(n) time by
examining the ground truth partitioning and obtained partitioning labels, y, and y,, for
each point x,- G D and incrementing the corresponding count n^.

On the basis of the above discussion, we now describe a few external evaluation mea
sures. Table C.l on the following page summarizes the external measures used.

Matching Based Measures

Purity. Purity is a measure to quantify the extent to which an obtained partition C,
contains entities from only one ground-truth partition. In other words, it measures how

214

C.l External Measures

Table C.l: External Evaluation Measures

Measure Formula When is it better?

Purity L % purity, ' max{n„} where purity, inuxpij
; 1 '1 'll

High

Precision J £ precision, where precision, - imaxpi,,}
r 1 ' ' 1

High

Recall 1 '‘ XL recoil, where recall, - p High

F-measure 1 V F where F 11^'“'": Highr 2- r, uncrc t, rwi.„,n,. re^lt,

Jaccard Co-efficient IP
i prnr■ t p High

Pair-wise Precision ip
TP^FP High

Pair-wise Recall IP
tp^tx High

1 r
Precision = - precision,

r i=l

Recall. The recall of an obtained partition Ci is defined as

nn tin
recall; = = —

\Th\

"pure" each obtained partition is. Purity of C, can be defined as:

1 a f , purity, = — max

The purity of an obtained partitioning C is defined as the weighted sum of the partition
wise purity values:

• r-< ll i 1 k f i
Piirity = L-Purltyi = -

where the ratio denotes the fraction of points in obtained partition Ci . The maximum
value of purity is 1. The larger the purity of obtained partitioning C, the better the
agreement with the ground-truth.

Precision. Given an obtained partition Q, let j, denote the ground-truth partition that
contains the maximum number of points from Q , that is, j, = max{nij}. The precision of

/=i
a Q is the same as its purity:

precision;
Ik nih

— maxi tin} = —
ni n nj

It measures the fraction of points in C, from the majority partition T^. The precision for
the obtained partitioning C is the mean of partition-wise precision values:

215

C.l External Measures

where = \Tjt\. It measures the fraction of points in partition T,(shared in common with
€j. The recall for an obtained partitioning C is the mean of partition-wise recall values:

Recall = 1 ^recalli

F-measure. The F-measure (or Fl-score) is the harmonic mean of the precision and recall
values for each obtained partition. The F-measure for Ci can be written as:

_ 2 _ 2 • precisioiti • recallj _ 2 • nijt
' —L-----1----- • precisioni 4- recalL in + nijprecisioiit 1 recallt r ' '•

The F-measure for an obtained partitioning C is the mean of partition-wise F-measure
values:

F-measure tries to balance the precision and recall values across all the partitions. For a
perfect partitioning, when r = k, the maximum value of the F-measure is 1.

Pair-Wise Measures

The pair-wise measures utilize the ground-truth and obtained partition labels over all
pairs of points. Let xif Xj C D be any two points, with i j. Depending on whether there
is agreement between the obtained partition labels and ground-truth partition labels, there
are four possibilities to consider:

• True Positives: Xj and Xj belong to the same partition in T, as well as in C. The
number of all true positive pairs is given as:

TP = |{(X„X,) : yt = y, and ft = y,}|

• False Negatives: Xi and x, belong to the same partition in T, but not in C. The
number of all false negative pairs is given as:

FN = | {(xh Xj) : y,- = y, and y,- £ft}\

• False Positives: Xi and Xj do not belong to the same partition in T, but they do in C.
The number of all false positive pairs is given as:

FP = | {(xif Xj) : iji £ \jj and = yj |

• True Negatives: Xi and Xj neither belong to the same partition in T, nor do they in
C. The number of all such true negative pairs is given as:

TN = | {(x,, Xj) : y,- / y, and y, y,} |

Because there are N = Q pairs of points, we have the following identity:

N = TP + FN + FP + TN

216

C.2 Internal Measures

Computation of the above four cases requires quadratic time. However, they can be
computed more efficiently using the contingency table N = h//z with 1 < i < r and
1 < / < k, in O(n 4- rk) time [310]. We now describe a pairwise assessment measures
based on the above four values:

Jaccard Co-efficient. The Jaccard Coefficient measures the fraction of true positive point
pairs, but after ignoring the true negatives. It is defined as follows:

TPJaccard = ———----—1 TP + FN + FP

For a perfect partitioning C, the Jaccard takes the value I, as in that case there are no FPs
or FNs. It denotes the similarity in terms of the point pairs that belong together in both
the obtained partitioning and the ground-truth partitioning, but ignores the point pairs
that do not belong together.

Pairwise Accuracy. The pairwise accuracy for a partitioning C us defined as:

TP + TN
nccurac'J = tp + fp + fn + tn

Accuracy is a simple ratio of correctly predicted point pairs to all the point pairs.

Pairwise Precision & Recall. Pairwise precision and pairwise recall for a partitioning C
are defined as:

TP „ TPprecision = ——------- recall = -----------K TP + FP TP + FN
Precision measures the fraction of correctly partitioned point pairs, in the same obtained
partition. Recall measures the fraction of correctly labeled points pairs in the same
ground-truth partition.

C.2 Internal Measures

Internal evaluation measures are used when the ground-truth partitioning is not available,
which is the typical scenario when clustering a dataset or distributing it to computing
nodes. To evaluate the quality of the partitioning, internal measures utilize the notions of
intra-partition similarity or compactness, when compared with notions of inter-partition
separation, with usually a trade-off in maximizing both of them. The internal measures
are based on the n x n distance matrix (proximity matrix) of all pairwise distances among
the n points:

w=

where $(xj,xf) = ||xz — Xj\is the Euclidean distance between Xj,Xj G D. Because W is
symmetric and 3(xj,Xj) = 0, only the upper triangular elements of W (excluding the diag
onal) are used in the internal measures. The proximity matrix W can also be considered
as the adjacency matrix of the weighted complete graph G over the n points, that is, with
nodes V = {xjx/ G D}, edges E = {(x/,x;)U/,^/ € and edge weights Wjj = W(i,j)
for all Xi, Xj G D.

217

C.2 Internal Measures

Given an obtained partitioning C = Ci,...,Q comprising r = k partitions, with parti
tion Ci containing n, = |CJ points. The partitioning C can be considered as a k-way cut
in G because Ci / for all i, C, DC/ = <p for all i, /, and U,Cj = V. Given any subsets
S, R C V, define W(S, R) as the sum of the weights on all edges with one vertex in S and
the other in R, given as

W(S,R} = E E
v,~S x^R

Also, given SC V, we denote by S the complementary set of vertices, i.e., S — 7 — S.
The internal measures are based on various functions over the intra-partition and inter
partition weights. In particular, note that the sum of all the intra-partition weights over
all partitions is given as

i W(C„C,)

We divide by 2 because each edge within C, is counted twice in the summation given by
W(C„ C(). Also note that the sum of all inter-partition weights is given as

w„„, = 5 £ W(C„Q) = £ £ W(C„C,)
i=\ i>i

Here too we divide by 2 because each edge is counted twice in the summation across
partitions. The number of distinct intra-partition edges, denoted Ni„, and inter-partition
edges, denoted Nout, are given as

Mill = E 2 y ~ 2 ~ 1)

k-1 k -i k k
Nout = £ nrni = ? E E tli •,l)

i=\ j=i+l L , = 1

Note that the total number of distinct pairs of points N satisfies the identity

N = N,„ + N„„, = Q = - 1)

Table C.2 on the next page summarizes a few internal quality evaluation measures.
They are explained in detail as follows:

BetaCV Measure. The BetaCV measure is the ratio of the mean intra-partition distance
to the mean inter-partition distance:

n , Qy _ Win / Njn _ N0lll Win _ Nouf ^i=\ W(Cj,Cj)
e “ “ W0llt/N0llt “ Nin ' Wout “ Nin ’ Etl W(ChCi)

The smaller the BetaCV ratio, the better the partitioning, as it indicates that intra-partition
distances are on average smaller than inter-partition distances.

Normalized Cut Measure. The normalized cut measure tries to minimize the sum of
similarities from a partition C, to other partition not in Ci, taking account the volume of

218

C.2 Internal Measures

Table C.2: Internal Evaluation Measures

Measure Formula When is it better?

BetaCV Low

Normalized Cut (NC) £ 1

Modularity (Q)
C , - (^)!) Low

Davies-Bouldin Index (DB) |max{DB„} where = ‘A-L2. Low
/ : 1 ’ 4 ' 1

Silhouette Co-efficient (SIL) Ei' 1*^1 where si/, High

Normalized Hubert Statistic (f") ^.2 High

the partition:
i _ A w^d)

vol(Cj) ^W(C,,V)

where vol(Cj) — W(Cj, I/) is the volume of obtained partition C,, that is, the total weights
on edges with at least one end in the partition. Since, we are using the proximity or
distance matrix W, instead of the affinity or similarity matrix, the higher the normalized
cut value the better.

Modularity. The modularity objective is measured as:

A / W(C„Cf) _ /W(C„Vh2\

where

W(V, V) = ^kW(Ch K) = £kW(d,Q) + £ W(Ci,Q) = 2(W„, + W„,„)
f = l 1 = 1 1=1

Modularity measures the difference between the observed and expected fraction of weights
on edges within the partitions. Since we are using the distance matrix, the smaller the
modularity measure the better the partitioning, which indicates that the intra-partition
distances are lower than expected.

Davies-Bouldin Index. Let [ij denote the partition mean, given as

= L *i

Further, let i denote the dispersion or spread of the points around the partition mean,
given as

a,,, = y = yjvar(d)

219

C.2 Internal Measures

where var(C,) is the total variance of partition C;. The Davies-Bouldin measure for a pair
of partitions Ci and Cj is defined as the ratio

DBU =

DBjj measures how compact the partitions are compared to the distance between the
partition means. The Davies-Bouldin index is then defined as

1 A
DB‘i = K H™*{DB'i}

K,\

That is, for each obtained partition C/, we pick the Cj that yields the largest DBjj ratio.
The smaller the DB value the better the partitioning, as it means that the partitions are
well separated (i.e., the distance between partition means is large), and each partition is
well represented by its mean (i.e., has a small spread).

Silhouette Coefficient. The silhouette coefficient is a measure of both cohesion and sep
aration of partitions, and is based on the difference between the average distance to points
in the closest partition and to points in the same partition. For each point x, we calculate
its silhouette co-efficient sil, as

s,7. =

where //^(x,) is the mean distance from x, to points in its own partition y,:

M -------

and is the mean of the distances from Xj to points in the closest partition:

= min {------ 1—- I
/ j

The sil, value of a point lies in the interval [-1, +1]. A value close to +1 indicates that xt
is much closer to points in its own partition and is far from other partitions. A value close
to zero indicates that x, is close to the boundary between two partitions. Finally, a value
close to —1 indicates that Xi is much closer to another partition than its own partition, and
therefore, the point may be mis-partitioned. The silhouette coefficient is defined as the
mean sil, value across all the points:

1 H
SIL = -Ysili

A value close to +1 indicates a good partitioning.

Normalized Hubert Statistic. Let X and Y be two symmetric n x n matrices, and let N =
(2). Let x,y e denote the vectors obtained by linearizing the upper triangular elements
(excluding the main diagonal) of X and Y (e.g., in a row-wise manner), respectively. Let

220

C.2 Internal Measures

px denote the element-wise mean of x, given as

i'x = E" -1 E (= ^xTx

and let zx denote the centered x vector, defined as

zx = X - 1 • fix

where 1 G Rv is the vector of all ones. Likewise, let //y be the element-wise mean of y, and
Zy the centered i/ vector. The normalized Hubert statistic is defined as the element-wise
correlation between X and Y,

r, = g.,' - I'MH) - my) = aXY

where a*, and ctJ are the variances, and (Jx\ the covariance, for the vectors x and y. The
normalized Hubert statistic can be used as internal evaluation measure by letting X = W
be the pairwise distance matrix, and by defining Y as the matrix of distances between the
partition means:

Y = {‘S(My,-M»,)}i

Because both W and Y are symmetric, r„ is computed over their upper triangular ele
ments. The higher its value, the better the partitioning.

221

References

[1] M. H. Dunham, Data mining introductory and advanced topics, 1st ed. Prentice Hall, 2003. fxiii, fl, f2
(2J Statista, "Number of internet users worldwide 2005-2018," 2018. [Online]. Available: https:

//www.statista.com/statistics/273018/number-of-internet-users-world wide/ ^xiii, $3, f4
[3] Domo, "Data Never Sleeps 6," 2018. [Online]. Available:

data-never-sleeps-6 fxiii, f3, f5
https://www.domo.com/learn/

[4] IDC, "1DC Study: The Digital Universe of Opportunities: Rich Data and the Increasing
Value of the Internet of Things Sponsored by EMC," 2018. [Online]. Available: https:
// fxiii, f4, f6www.emc.com/leadership/digital-universe/2014iview/index.htm

[5] P. Kudupu, "Web Snippets: 7 v's of big data," 2018. [Online]. Available: http://www.
prathapkudupublog.com/2018/01/7-vs-of-big-data.html fxiii, $6, f7

[6] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Pearson Addison Wesley, 2005. fl,
f2, f!6, f80, fl42, fl53, f 159, f 164

[7] B. M. E. Moret, "Decision Trees and Diagrams," ACM Computing Surveys, vol. 14, no. 4, pp. 593-623,
12 1982. f2

[8] J. R. Quinlan, "Learning decision tree classifiers," ACM Computing Surveys, vol. 28, no. 1, pp. 71-72, 3
1996. f2

[9] S. B. Kotsiantis, "Decision trees: a recent overview," Artificial Intelligence Review, vol. 39, no. 4, pp.
261-283, 4 2013. T2

[10] H. Schiitze, D. A. Hull, and J. O. Pedersen, "A comparison of classifiers and document representations
for the routing problem," in Proceedings of the 18th annual international ACM SIGIR conference on
Research and development in information retrieval - SIGIR '95. New York, New York, USA: ACM Press,
1995, pp. 229-237. f2

[11] E. Wiener, J. O. Pedersen, and A. S. Weigend, "A Neural Network Approach to Topic Spotting," in
Proceedings of 4th annual symposium on document analysis and information retrieval (SDAIR'95), 1995, pp.
332-347. f2

[12] J. Furnkranz and G. Widmer, "Incremental reduced error pruning," in Proceedings of the Eleventh
International Conference on International Conference on Machine Learning. Morgan Kaufmann, CA, 1994,
pp. 70-77. f2

[13] W. W. Cohen, "Fast Effective Rule Induction," in Proceedings of the Twelfth International Conference on
Machine Learning (ICML'95). Morgan Kaufmann, 1 1995, pp. 115-123. f2

[14] T. T. T. Nguyen, T. T. Nguyen, A. W.-C. Liew, and S.-L. Wang, "Variational inference based bayes
online classifiers with concept drift adaptation," Pattern Recognition, vol. 81, pp. 280-293, 9 2018. f2,
f57, fl03

[15] D. Barbara, N. Wu, and S. Jajodia, "Detecting Novel Network Intrusions Using Bayes Estimators," in
Proceedings of the 2001 SIAM International Conference on Data Mining. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 4 2001, pp. 1-17. f2

[16] I. Mani and I. Zhang, "KNN Approach to Unbalanced Data Distributions: A Case Study Involving
Information Extraction I BibSonomy," in Proceedings of workshop on learning from imbalanced datasets (in
ICML 2003). Morgan Kaufmann, 2003, pp. 1-7. f2

[17] V. N. Vapnik, The nature of statistical learning theory. Springer, 1995. f2
[18] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines : and other kernel-based

learning methods. Cambridge University Press, 2000. f2

222

REFERENCES

[19] G. Seni and J. F. Elder, "Ensemble Methods in Data Mining: Improving Accuracy Through Combining
Predictions," Synthesis Lectures on Data Mining and Knoudedge Discovery, vol. 2, no. I, pp. 1-126, 1 2010.
$2

[20] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up? Sentiment classification using machine learning
techniques," in Proceedings of the ACL-02 conference on Empirical methods in natural language processing
(EMNLP'02). Association for Computational Linguistics, 2002, pp. 79-86. $2

[21] C. Phua, D. Alahakoon, and V. Lee, "Minority report in fraud detection," ACM SfGKDD Explorations
Newsletter, vol. 6, no. 1, pp. 50-59, 6 2004. $2

[22] A. Srivastava, A. Kundu, S. Sural, and A. Majumdar, "Credit Card Fraud Detection Using Hidden
Markov Model," IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 1, pp. 37-48, 1 2008.
$2

[23] E. Blanzieri and A. Bryl, "A survey of learning-based techniques of email spam filtering," Artificial
Intelligence Review, vol. 29, no. 1, pp. 63-92, 3 2008. $2

[24] D. Bazell and D. Aha, "Ensembles of Classifiers for Morphological Galaxy Classification," The
Astrophysical Journal, vol. 548, no. 1, pp. 219-223, 2 2001. $2

[25] J. Khan, J. S. Wei, M. Ringner, L. H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R.
Antonescu, C. Peterson, and P. S. Meltzer, "Classification and diagnostic prediction of cancers using
gene expression profiling and artificial neural networks," Nature Medicine, vol. 7, no. 6, pp. 673-679, 6
2001. $2

[26] J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proceed
ings of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1. USA, 1967, pp. 281-297.
$2, T153

[27] S. Kumari, A. Maheshwari, P. Goyal, and N. Goyal, "Parallel Framework for Efficient k-means
Clustering," in Proceedings of the 8th Annual ACM India Conference on - Compute '15. ACM, 2015, pp.
63-71. $2, T153, T159

[28] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, "A Parallel K-Means Clustering Algorithm with MPI," in
2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming. IEEE, 12
2011, pp. 60-64. $2, $153, $159, $168, $169

[29] H. Song, J.-G. Lee, and W.-S. Han, "PAMAE: Parallel k-Mediods Clustering with High Accuracy and
Efficiency," in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD '17. ACM New York, USA, 2017, pp. 1087-1096. $2, $153, $159

[30] R. Sibson, "SLINK: An optimally efficient algorithm for the single-link cluster method," The Computer
Journal, vol. 16, no. 1, pp. 30-34, 1 1973. $2, [16, $153, $164

[31] W. Hendrix, M. M. Ali Patwary, A. Agrawal, W.-k. Liao, and A. Choudhary, "Parallel hierarchical
clustering on shared memory platforms," in 2012 19th International Conference on High Performance
Computing. IEEE, 12 2012, pp. 1-9. $2, $154, $156, $165

[32] P. Goyal, S. Kumari, S. Sharma, V. Kishore, N. Goyal, and S. S. Balasubramaniam, "Spatial Locality
Aware, Fast, and Scalable SLINK Algorithm for Commodity Clusters," in 2016 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 9 2016, pp. 158-159. $2, $54, $166, $168, $169,
$173, $181, $186

[33] P. Goyal, S. Kumari, S. Sharma, D. Kumar, V. Kishore, S. Balasubramaniam, and N. Goyal, "A Fast,
Scalable SLINK Algorithm for Commodity Cluster Computing Exploiting Spatial Locality," in 2016
IEEE 18th International Conference on High Performance Computing and Communications. IEEE, 2016, pp.
268-275. $2, $54, $153, $155, $156, $166, $168, $173, $174, $181, $186

[34] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters a
density-based algorithm for discovering clusters in large spatial databases with noise," in Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996, pp.
226-231. $2, $16, $17, $153, $160, $210

[35] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander, "OPTICS: Ordering Points To Identify the
Clustering Structure," in Proceedings of ACM SIGMOD International Conference on Management of Data
(SIGMOD'99). ACM New York, 1999, pp. 49-60. $2, $16, $17, $53, $153, $162, $210

[36] S. Kumari, P. Goyal, A. Sood, D. Kumar, S. Balasubramaniam, and N. Goyal, "Exact, Fast and Scalable
Parallel DBSCAN for Commodity Platforms," in Proceedings of the 18th International Conference on
Distributed Computing and Networking - ICDCN '17. ACM New York, 2017, pp. 1-10. $2, $8, $54, $140,
$153, $155, $156, $161, $168, $169, $170, $177, $186

223

REFERENCES

[37 | S. Goil, H. Nagesh, and A. Choudhary, "MAFIA: Efficient and Scalable Subspace Clustering for Very
Large Data Sets," in Proceedings of 5th ACM SIGKDD International Conference on Knowledge Discovert/ and
Data Mining. ACM, 1999, pp. 443-452. $2, $153, fl67

[38] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee, "FINDIT: a fast and intelligent subspace clustering
algorithm using dimension voting," Information and Software Technology/, vol. 46, no. 4, pp. 255-271, 3
2004. $2, T153, $166

[39] L. Parsons, E. Haque, and H. Liu, "Subspace clustering for high dimensional data," ACM SIGKDD
Explorations Newsletter, vol. 6, no. 1, pp. 90-105, 6 2004. 12

[40] R. L. Breiger, S. A. Boorman, and P. Arabie, "An algorithm for clustering relational data with
applications to social network analysis and comparison with multidimensional scaling," Journal of
Mathematical Psychology/, vol. 12, no. 3, pp. 328-383, 8 1975. $3

[41] S. Zhang, R.-S. Wang, and X.-S. Zhang, "Identification of overlapping community structure in complex
networks using fuzzy c-means clustering," Physica A: Statistical Mechanics and its Applications, vol. 374,
no. 1, pp. 483-490, 1 2007. $3

[42] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, "Personalized recommendation in social tagging
systems using hierarchical clustering," in Proceedings of the 2008 ACM conference on Recommender
systems - ReeSys '08. New York, New York, USA: ACM Press, 2008, p. 259. $3

[43] G. Coleman and H. Andrews, "Image segmentation by clustering," Proceedings of the IEEE, vol. 67,
no. 5, pp. 773-785, 1979. $3

[44] G. Stockman, S. Kopstein, and S. Benett, "Matching Images to Models for Registration and Object
Detection via Clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-4,
no. 3, pp. 229-241, 5 1982. $3

[45] A. Tramacere and C. Vecchio, "Gamma-ray DBSCAN: a clustering algorithm applied to Fermi -LAT
Gamma-ray data," Astronomy & Astrophysics, vol. 549, p. A138, 1 2013. $3

[46] X.-H. Gao, "Membership determination of open cluster NGC 188 based on the DBSCAN clustering
algorithm," Research hi Astronomy and Astrophysics, vol. 14, no. 2, pp. 159-164, 2 2014. $3

[47] R. Agrawal, T. Imielihski, A. Swami, R. Agrawal, T. Imielihski, and A. Swami, "Mining association
rules between sets of items in large databases," SIGMOD Rec., vol. 22, no. 2, pp. 207-216, 1993. $3,
$60, $79, $101

[48] J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent pattern mining: current status and future directions,"
Data Mining and Knowledge Discovery, vol. 15, no. 1, pp. 55-86, 7 2007. $3

[49] C. C. Aggarwal and J. Han, Frequent Pattern Mining. Springer Publishing Company, 2014. $3
[50] P.-Y. Hsu, Y.-L. Chen, and C.-C. Ling, "Algorithms for mining association rules in bag databases,"

Information Sciences, vol. 166, no. 1-4, pp. 31-47, 10 2004. $3, $60, $79, $101
[51] M. Zaki, "Scalable algorithms for association mining," IEEE Transactions on Knowledge and Data

Engineering, vol. 12, no. 3, pp. 372-390, 2000. $3, $60, $62, $101
[52] J. Han, J. Pei, Y. Yin, J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate

generation," in Proceedings of the 2000 ACM SIGMOD international conference on Management of data -
SIGMOD '00, vol. 29, no. 2. New York, New York, USA: ACM Press, 2000, pp. 1-12. $3

[53] S. K. Tanbeer, C. F. Ahmed, B.-S. Jeong, and Y.-K. Lee, "Sliding window-based frequent pattern mining
over data streams," Information Sciences, vol. 179, no. 22, pp. 3843-3865,11 2009. $3, $57, $60, $61, $62,
$79, $101

[54] J. Blanchard, F. Guillet, R. Gras, and H. Briand, "Using Information-Theoretic Measures to Assess
Association Rule Interestingness," in Fifth IEEE International Conference on Data Mining (ICDM’05).
IEEE, 2006, pp. 66-73. $3

[55] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Efficient mining of association rules using closed
itemset lattices," Information Systems, vol. 24, no. 1, pp. 25-46, 3 1999. $3

[56] V. Chandola, A. Banerjee, and V. Kumar, "Anomaly detection," ACM Computing Surveys, vol. 41, no. 3,
pp. 1-58, 7 2009. $3

[57] Z. He, X. Xu, and S. Deng, "Discovering cluster-based local outliers," Pattern Recognition Letters,
vol. 24, no. 9-10, pp. 1641-1650, 6 2003. $3

[58] L. Portnoy, "Intrusion detection with unlabeled data using clustering," in Proceedings of the ACM
Workshop on Data Mining Applied to Security, 2001, pp. 1-25. $3

224

REFERENCES

[59] S. Hawkins, H. He, G. Williams, and R. Baxter, "Outlier Detection Using Replicator Neural Networks,"
in Outlier detection using replicator neural networks (DaWaK 2002). Springer, Berlin, Heidelberg, 2002,
pp. 170-180. ?3

[60] D. Martinez, "Neural tree density estimation for novelty detection," IEEE Transactions on Neural
Networks, vol. 9, no. 2, pp. 330-338,’3 1998. ?3

[61] D. Barbara, N. Wu, and S. Jajodia, "Detecting Novel Network Intrusions Using Bayes Estimators," in
Proceedings of the 2001 SIAM International Conference on Data Mining. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 4 2001, pp. 1-17. |3

[62] Ghosh and Reilly, "Credit card fraud detection with a neural-network," in Proceedings of the
Twenty-Seventh Hawaii International Conference on System Sciences HICSS-94. IEEE Comput. Soc. Press,
1994, pp. 621-630. ?3

[63] S. Singh and M. Markou, "An approach to novelty detection applied to the classification of image
regions," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 4, pp. 396-406, 4 2004. T3

[64] CISCO, "Cisco Global Cloud Index: Forecast and Methodology, 2016 to 2021 White Paper,"
2019. [Online]. Available:
global-cloud-index-gci/white-paper-cll-738085.html f4

https://www.cisco.eom/c/en/us/solutions/collateral/service-provider/

[65] "Self-driving Cars Will Create 2 Petabytes Of Data, What Are The Big Da," 2019. [Online]. Available:
 f4https://datafloq.com/read/self-driving-cars-create-2-petabytes-data-annually/172

[66] R. Magoulas, "Roger Magoulas on Big Data - O'Reilly Radar," 2010. [Online]. Available:
 $5http://radar.oreilly.com/2010/01/roger-magoulas-on-big-data.html

[67] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," in Proceedings
of the 6th conference on Symposium on Opearting Systems Design & Implementation. USENIX Association,
2004, pp. 1-13. 17

[68] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop Distributed File System," in 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST). IEEE, 5 2010, pp. 1-10. f7

[69] A. Ghoting, P. Kambadur, E. Pednault, and R. Kannan, "NIMBLE," in Proceedings of the 17th ACM
SIGKDD international conference on Knotvledge discovery and data mining - KDD 'll. New York, New
York, USA: ACM Press, 2011, pp. 334-342. |7

[70] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica, "Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing,"
in Proceedings of the 9th USENIX conference on Netzvorked Systems Design and Implementation (NSDI'12).
USENIX Association Berkeley, 2012, pp. 1-14. |7

[71] M. P. Forum, "MPI: A Message-Passing Interface Standard," University of Tennessee, Tech. Rep., 1994.
17

[72] "Home - OpenMP," 2019. [Online]. Available: f7, f8https://www.openmp.org/
[73] Intel, "Threading Building Blocks," 2017. [Online]. Available: .

org/ X?
https://www.threadingbuildingblocks

[74] Zhang Zhang, J. Savant, and S. Seidel, "A UPC runtime system based on MPI and POSIX threads,"
in 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP'06).
IEEE, 2006, pp. 1-8. f7

[75] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty, "Fortran 2008 coarrays," ACM SIGPLAN
Fortran Forum, vol. 34, no. 1, pp. 10-30, 4 2015. $7

[76] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken, "Titanium: A High-Performance Java Dialect," University of
California at Berkeley, Berkeley CA, Tech. Rep., 1988. f7

[77] "PNNL: Global Arrays Toolkit," 2018. [Online]. Available: ^7https://hpc.pnl.gov/globalarrays/
[78] "The X10 Programming Language," 2019. [Online]. Available: $7http://xlO-lang.org/
[79] "Intel® Xeon PhiaDc Processors," 2019. [Online]. Available:

en/products/processors/xeon-phi/xeon-phi-processors.html f8
https://www.intel.in/content/www/in/

[80] "CUDA Zone I NVIDIA Developer," 2019. [Online]. Available:
cuda-zone f8

https://developer.nvidia.com/

[81] "OpenCL Overview - The Khronos Group Inc," 2019. [Online]. Available:
opencl/ t8

https://www.khronos.org/

225

REFERENCES

[82] "Homepage I OpenACC," 2019. [Online]. Available: $8https://www.openacc.org/
[83] Q. He, F. Zhuang, J. Li, and Z. Shi, "Parallel Implementation of Classification Algorithms Based

on MapReduce," in international Conference on Rough Sets and Knowledge Technology (RSKT 2010).
Springer, Berlin, Heidelberg, 10 2010, pp. 655-662. $8

[84] A. Srivastava, Eui-Hong Sam Han, V. Singh, and V. Kumar, "Parallel formulations of decision-tree
classification algorithms," in Proceedings. 1998 International Conference on Parallel Processing (Cat.
No.98EX2O5). IEEE Comput. Soc, 1998, pp. 237-244. $8

[85] M. Joshi, G. Karypis, and V. Kumar, "ScalParC: a new scalable and efficient parallel classification
algorithm for mining large datasets," in Proceedings of the First Merged International Parallel Processing
Symposium and Symposium on Parallel and Distributed Processing. IEEE Comput. Soc, 1998, pp. 573-579.
$8

[86] M. M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, "A new scalable
parallel DBSCAN algorithm using the disjoint-set data structure," in 2012 International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 11 2012, pp. 1-11. $8, $153, $155,
$156, T161,1-168, $169, $170, T177, $186

[87] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib, and P. Dubey, "Pardicle: Parallel
Approximate Density-Based Clustering," in SC14: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 11 2014, pp. 560-571. $8, $153, $161, $168

[88] W. Hendrix, D. Palsetia, M. M. A. Patwary, A. Agrawal, W.-k. Liao, and A. Choudhary, "A scalable
algorithm for single-linkage hierarchical clustering on distributed-memory architectures," in 2013
IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV). IEEE, 10 2013, pp. 7-13. $8,
$153, T154, $156, $165, $168, $169

[89] P. Goyal, S. Kumari, S. Singh, V. Kishore, S. S. Balasubramaniam, and N. Goyal, "A Parallel Framework
for Grid-Based Bottom-Up Subspace Clustering," in 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA). IEEE, 10 2016, pp. 331-340. $8, $153, $156, $167, $168

[90] Z.-g. Wang and C.-s. Wang, "A Parallel Association-Rule Mining Algorithm," in Proceedings of
International Conference on Web Information Systems and Mining (WISM 2012). Springer, Berlin,
Heidelberg, 10 2012, pp. 125-129. $8

[91] M. H. Marghny and H. E. Refaat, "A new parallel association rule mining algorithm on distributed
shared memory system," International Journal of Business Intelligence and Data Mining, vol. 7, no. 4, pp.
233-252, 2012. $8

[92] R. Agrawal and J. Shafer, "Parallel mining of association rules," IEEE Transactions on Knowledge and
Data Engineering, vol. 8, no. 6, pp. 962-969, 1996. $8

[93] "Apache Mahout," 2019. [Online], Available: $8https://mahout.apache.org/
[94] "MLlib I Apache Spark," 2019. [Online]. Available: $8https://spark.apache.org/mllib/
[95] F. Cao, M. Estert, W. Qian, and A. Zhou, "Density-Based Clustering over an Evolving Data Stream

with Noise," in Proceedings of the 2006 SIAM International Conference on Data Mining. SIAM, 2006, pp.
328-339. $8, $57, $126, $127, $129

[96] H.-F. Li, M.-K. Shan, and S.-Y. Lee, "DSM-FI: an efficient algorithm for mining frequent itemsets in
data streams," Knowledge and Information Systems, vol. 17, no. 1, pp. 79-97, 10 2008. $8, $57, $61, $64,
$76, $79

[97] H. Chen, L. Shu, J. Xia, and Q. Deng, "Mining frequent patterns in a varying-size sliding window of
online transactional data streams," Information Sciences, vol. 215, pp. 15-36, 12 2012. $8, $57, $61, $62,
$65, $75, $76, $79, $101

[98] C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu, "Mining Frequent Patterns in Data Streams at Multiple
Time Granularities," in Data Mining: Next Generation Challenges and Future Directions. AAAI/MIT
Press, 2003, pp. 191-212. $8, $57, $61, $62, $65, $79, $88, $101, $140

[99] Y.-N. Law and C. Zaniolo, "An Adaptive Nearest Neighbor Classification Algorithm for Data
Streams," in Proceedings of European Conference on Principles of Data Mining and Knoivledge Discovery
(PKDD 2005). Springer, Berlin, Heidelberg, 2005, pp. 108-120. $8, $57, $103

[100] K. Ueno, X. Xi, E. Keogh, and D.-j. Lee, "Anytime Classification Using the Nearest Neighbor
Algorithm with Applications to Stream Mining," in Sixth International Conference on Data Mining
(ICDM'06). IEEE, 12 2006, pp. 623-632. $8, $9, $58, $110

226

REFERENCES

[101] T. Seidl, 1. Assent, P. Kranen, R. Krieger, and J. Herrmann, "Indexing density models for incremental
learning and anytime classification on data streams," in Proceedings of the 12th International Conference
on Extending Database Technology Advances in Database Technology - EDBT '09. New York, New York,
USA: ACM Press, 2009, p. 311.' ?8, ?58, THO

[102] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A Framework for Clustering Evolving Data Streams,"
in Proceedings of 29th International Conference on Very Large Databases. ACM New York, 2003, pp. 81-92.
T8, T57, T126, fl27, H29

[103] C. C. Aggarwal, J. Han, and P. S. Yu, "A Framework for Projected Clustering of High Dimensional
Data Streams," in Proceedings of the Thirtieth international conference on Very large data bases. Morgan
Kaufmann Publishers, 2004, pp. 852-863. T8, T57, T126, T127, T129

[104] P. Kranen, 1. Assent, C. Baldauf, and T. Seidl, "The ClusTree: indexing micro-clusters for anytime
stream mining," Knowledge and Information Systems, vol. 29, no. 2, pp. 249-272, 11 2011. T8, L9, T58,
T127, T129,1131, T143

[105] H. Chen, "Mining top-k frequent patterns over data streams sliding window," journal of Intelligent
Information Systems, vol. 42, no. 1, pp. 111-131, 2 2014. $8, $62, ^79

[106] C. H. Park, "Anomaly Pattern Detection on Data Streams," in 2018 IEEE International Conference on Big
Data and Smart Computing (BigComp). IEEE, 1 2018, pp. 689-692. $8, T57

[107] Tran Manh Thang and Juntae Kim, "The Anomaly Detection by Using DBSCAN Clustering with
Multiple Parameters," in 2011 International Conference on Information Science and Applications. IEEE, 4
2011, pp. 1-5. T8,1153

[108] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised real-time anomaly detection for streaming
data," Neurocomputing, vol. 262, pp. 134-147,11 2017. T8, $57

[109] L. Rettig, M. Khayati, P. Cudre-Mauroux, and M. Piorkowski, "Online anomaly detection over Big
Data streams," in 2015 IEEE International Conference on Big Data (Big Data). IEEE, 10 2015, pp.
1113-1122. ?9, T57

[110] Y. Jiang, C. Zeng, J. Xu, School of Computer Science, Technology and Engineering, Nanjing University
of Science, and Technology, C. Nanjing, , and Tao Li, "Real time contextual
collective anomaly detection over multiple data streams," in Proceedings of KDD Workshop on Outlier
Detection and Description under Data Diversity. ACM New York, USA, 2014, pp. 1-8. T9, f57

dolphin.xu@njust.edu.cn

[in] c. Y. Sang and D. H. Sun, "Co-clustering over multiple dynamic data streams based on non-negative
matrix factorization," Applied Intelligence, vol. 41, no. 2, pp. 487-502, 2014. T9, f 127

[112] L. Tu, "Clustering on Multiple Data Streams," in Advances in Intelligent and Soft Computing. Springer,
Berlin, Heidelberg, 2012, pp. 73-78. T9, T127

[113] M.-Y. Yeh, B.-R. Dai, and M.-S. Chen, "Clustering over Multiple Evolving Streams by Events and
Correlations," IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 10, pp. 1349-1362, 10
2007. T9, T127

[114] D. Apiletti, E. Baralis, T. Cerquitelli, P. Garza, F. Pulvirenti, and L. Venturini, "Frequent Itemsets
Mining for Big Data: A Comparative Analysis," Big Data Research, vol. 9, pp. 67-83, 9 2017. T9

[115] Z. Yu, X. Yu, Y. Liu, W. Li, and J. Pei, "Mining Frequent Co-occurrence Patterns across Multiple Data
Streams," in Proceedings of International Conference on Extending Database Technology (EDBT'15). Open
Proceedings, 2015, pp. 73-84. T9, T57, T63

[116] P. Kranen, M. Hassani, and T. Seidl, "BT* - An Advanced Algorithm for Anytime Classification,"
in Proceedings of the 24th international conference on Scientific and Statistical Database Management.
Springer-Verlag, 2012, pp. 298-315. T9, T58, THO

[117] M. Hassani, P. Kranen, and T. Seidl, "Precise anytime clustering of noisy sensor data with logarithmic
complexity," in Proceedings of Fifth International Workshop on Knowledge Discovery from Sensor Data -
SensorKDD 'll. ACM New York, 2011, pp. 52-60. T9, T58, T127, T128, T129

[118] M. Hassani, P. Kranen, R. Saini, and T. Seidl, "Subspace anytime stream clustering," in Proceedings of
the 26th International Conference on Scientific and Statistical Database Management - SSDBM '14. ACM,
2014, pp. 1-4. T9, T58, T127, T128

[119] I. Assent, P. Kranen, C. Baldauf, and T. Seidl, "AnyOut: Anytime Outlier Detection on Streaming Data,"
in Proceedings of the 17th international conference on Database Systems for Advanced Applications - Volume
Part 1. Springer-Verlag, 2012, pp. 228-242. T9, T58

227

REFERENCES

[120] P. Goyal, S. Kumari, D. Kumar, S. Balasubramaniam, N. Goyal, S. Islam, and J. S. Challa, "Parallelizing
OPTICS for Commodity Clusters," in Proceedings of the 2015 International Conference on Distributed
Computing and Networking - ICDCN '15. New York, New York, USA: ACM Press, 2015, pp. 1-10. $16,
fl55, $156, fl62, fl68, fl69, $186

[121] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory,
vol. 13, no. 1, pp. 21-27, 1 1967. $16, $32, $50, $146, ^210

[122] A. Guttman, "R-trees," in Proceedings of the 19S4 ACM SIGMOD international conference on Management
of data - SIGMOD '84. ACM New York, 1984, pp. 47-57. $16, $112, ?130, $162, $186, $206, $208

[123] Y. Manolopoulos, A. Nanopoulos, A. N. Papadopoulos, and Y. Theodoridis, R-Trees: Theory and
Applications. Springer Publishing Company, 2005. $16, $38, $49

[124] J. L. Bentley and J. Louis, "Multidimensional binary search trees used for associative searching,"
Communications of the ACM, vol. 18, no. 9, pp. 509-517, 9 1975. $16, $46

[125] R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval on composite keys," Acta
Informatica, vol. 4, no. 1, pp. 1-9, 1974. $16

[126] J. Nievergelt, H. Hinterberger, and K. C. Sevcik, "The Grid File: An Adaptable, Symmetric Multikey
File Structure," ACM Transactions on Database Systems, vol. 9, no. 1, pp. 38-71,1 1984. $16, $46

[127] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems : the complete book. Pearson Prentice
Hall, 2009. $17, $47

[128] G. Li and J. Tang, "A New R-tree Spatial Index Based on Space Grid Coordinate Division," in
Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering
(ICCE2011). Springer, Berlin, Heidelberg, 2011, pp. 133-140. $17, $47

[129] E. Schikuta, "Grid-clustering: an efficient hierarchical clustering method for very large data sets," in
Proceedings of 13th International Conference on Pattern Recognition. IEEE, 1996, pp. 101-105. $21, $54

[130] W.-k. Liao, L. Ying, and A. Choudhary, "A grid-based Clustering Algorithm using Adaptive Mesh
Refinement," in Proceedings of the 7th Workshop on Mining Scienti c and Engineering Data Sets, 2004. $21,
$54

[131] G. R. Hjaltason and H. Samet, "Distance browsing in spatial databases," ACM Transactions on Database
Systems, vol. 24, no. 2, pp. 265-318, 6 1999. $32, $33, $210, $211

[132] C. Faloutsos, T. Sellis, N. Roussopoulos, C. Faloutsos, T. Sellis, and N. Roussopoulos, "Analysis of
object oriented spatial access methods," in Proceedings of the 1987 ACM SIGMOD international conference
on Management of data - SIGMOD '87, vol. 16, no. 3. New York, New York, USA: ACM Press, 1987,
pp. 426-439. $33

[133] "Vampir Trace Library," 2013. $36
[134] M. Kaul, B. Yang, and C. S. Jensen, "Building Accurate 3D Spatial Networks to Enable Next

Generation Intelligent Transportation Systems," in 2013 IEEE 14th International Conference on Mobile
Data Management. IEEE, 6 2013, pp. 137-146. $37

[135] V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker,
D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, and
F. Pearce, "Simulations of the formation, evolution and clustering of galaxies and quasars," Nature,
vol. 435, no. 7042, pp. 629-636, 6 2005. $37, $142, $193, $194

[136] "SUVN Trace Data," 2012. [Online]. Available: $37, $193, $194http://wirelesslab.sjtu.edu.cn
[137] "KDD Cup 2004 Bio Dataset," 2004. [Online]. Available: $37http://cs.joensuu.fi/sipu/datasets/
[138] J. Catlett, "Statlog (Shuttle) Data Set," 1993. [Online]. Available:

datasets/Statlog+(Shuttle) $37, $50
https://archive.ics.uci.edu/ml/

[139] R. Bhatt and A. Dhall, "Skin Segmentation Data Set." [Online]. Available:
ml/datasets/Skin+Segmentation $37, $50

https://archive.ics.uci.edu/

[140] B. Borah and D. Bhattacharyya, "An improved sampling-based DBSCAN for large spatial databases,"
in Proceedings of 2004 International Conference on Intelligent Sensing and Information Processing. IEEE,
2004, pp. 92-96. $53, $54

[141] C.-F. Tsai and C.-W. Liu, "KIDBSCAN: A New Efficient Data Clustering Algorithm," in International
Conference on Artificial Intelligence and Soft Computing (ICAISC 2006). Springer, Berlin, Heidelberg,
2006, pp. 702-711. $53, $54

228

REFERENCES

[142] G. M. Amdahl, "Validity of the single processor approach to achieving large scale computing
capabilities," in Proceedings of the April 18-20, 1967, spring joint computer conference on - AFIPS '67
(Spring). New York, New York, USA: ACM Press, 1967, pp. 483-485. $53

[143] E. Schikuta and M. Erhart, "The BANG-clustering system: Grid-based data analysis," in International
Symposium on Intelligent Data Analysis (IDA 1997). Springer, Berlin, Heidelberg, 1997, pp. 513-524.
$54

[144] W. Wang, J. Yang, and R. R. Muntz, "STING: A Statistical Information Grid Approach to Spatial
Data Mining," in Proceedings of the 23rd International Conference on Very Large Data Bases. Morgan
Kaufmann, 1997, pp. 186-195. $54, $153

[145] C.-F. Tsai and Chun-Yi Sung, "DBSCALE: An efficient density-based clustering algorithm for data
mining in large databases," in 2010 Second Pacific-Asia Conference on Circuits, Communications and
System. IEEE, 8 2010, pp. 98-101. $54

[146] R. Jin and G. Agrawal, "Efficient decision tree construction on streaming data," in Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03.
Washington, D.C.: ACM Press, New York, New York, USA, 2003, pp. 571-576. ^57, $103

[147] D. Jankowski, K. Jackowski, and B. Cyganek, "Learning Decision Trees from Data Streams with
Concept Drift," Procedia Computer Science, vol. 80, no. C, pp. 1682-1691, 2016. $57, T103

[148] Q. Xue, B.-w. Cao, Z. Chang-wei, Y. Ping-gang, and L. Yong-hong, "Study on Application of Bayesian
Classifier Model in Data Stream," in 2010 International Conference on Computational and Information
Sciences. Chengdu, China: IEEE, 12 2010, pp. 1312-1315. $57, $103

[149] C. C. Aggarwal, Data Classification: Algorithms and Applications, 1st ed. Chapman & Hall / CRC, 2014.
$57, $103

[150] D. K. Tasoulis, G. Ross, and N. M. Adams, "Visualising the Cluster Structure of Data Streams," in
Advances in Intelligent Data Analysis VII. Springer Berlin-Heidelberg, 2007, pp. 81-92. $57, $126, $127,
$129

[151] Y. Chen and L. Tu, "Density-based clustering for real-time stream data," in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD '07. ACM New York,
2007, pp. 133-142. $57, $126, $127

[152] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang, "Density-based clustering of data streams at
multiple resolutions," ACM Transactions on Knowledge Discovery from Data, vol. 3, no. 3, pp. 1-28, 2009.
$57, $126, $127

[153] C. C. Aggarwal and C. K. Reddy, Data Clustering: Algorithms and Applications, 1st ed. Chapman and
Hall/CRC, 2013. $57

[154] G. S. Manku and R. Motwani, "Approximate frequency counts over data streams," in Proceedings of the
28th international conference on Very Large Data Bases. VLDB Endowment, 2002, pp. 346-357. $57, $61,
$64

[155] M. Deypir, M. H. Sadreddini, and S. Hashemi, "Towards a variable size sliding window model for
frequent itemset mining over data streams," Computers & Industrial Engineering, vol. 63, no. 1, pp.
161-172, 8 2012. $57, $61, $62

[156] J. Cheng, Y. Ke, and W. Ng, "A survey on algorithms for mining frequent itemsets over data streams,"
Knowledge and Information Systems, vol. 16, no. 1, pp. 1-27, 7 2008. $57

[157] S. Nasreen, M. A. Azam, K. Shehzad, U. Naeem, and M. A. Ghazanfar, "Frequent Pattern Mining
Algorithms for Finding Associated Frequent Patterns for Data Streams: A Survey," Procedia Computer
Science, vol. 37, pp. 109-116,1 2014. $57

[158] A. Forestiero, "Self-organizing anomaly detection in data streams," Information Sciences, vol. 373, pp.
321-336, 12 2016. $57

[159] L. Tran, L. Fan, and C. Shahabi, "Distance-based outlier detection in data streams," Proceedings of the
VLDB Endowment, vol. 9, no. 12, pp. 1089-1100, 8 2016. $57

[160] S. C. Tan, K. M. Ting, and T. F. Liu, "Fast anomaly detection for streaming data," in Proceedings of the
Twenty-Second international joint conference on Artificial Intelligence. AAAI Press, 2011, pp. 1511-1516.
$57

[161] Y. Xu, K. Wang, A. W.-C. Fu, R. She, and J. Pei, "Classification spanning correlated data streams," in
Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM '06.
ACM New York, USA, 2006, pp. 132-141. $57

229

REFERENCES

[162] Z. Wu, Y.-G. Jiang, X. Wang, H. Ye, and X. Xue, "Multi-Stream Multi-Class Fusion of Deep Networks
for Video Classification," in Proceedings of the 2016 ACM Conference on Multimedia Conference - A4A4 '76.
ACM New York, USA, 2016, pp. 791-800. $57

[163] S. K. Greene, J. Huang, A. M. Abrams, D. Gilliss, M. Reed, R. Platt, S. S. Huang, and M. Kulldorff,
"Gastrointestinal Disease Outbreak Detection Using Multiple Data Streams from Electronic Medical
Records," Foodborne Pathogens and Disease, vol. 9, no. 5, pp. 431-441, 2012. $57

[164] Z. Qi, L. Jinze, and W. Wei, "Approximate clustering on distributed data streams," in Proceedings -
International Conference on Data Engineering. IEEE, 2008, pp. 1131-1139. $57, $127

[165] W. Wu and L. Gruenwald, "Research issues in mining multiple data streams," in Proceedings of the First
International Workshop on Novel Data Stream Pattern Mining Techniques - StreamKDD '10. ACM New
York, 2010, pp. 56-60. $57, $127

[166] J. Gama, P. P. Rodrigues, and L. Lopes, "Clustering distributed sensor data streams using local process
ing and reduced communication," Intelligent Data Analysis, vol. 15, pp. 3-28, 2011. $57, $127

[167] P. P. Rodrigues and J. Gama, "Distributed clustering of ubiquitous data streams," Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 38-54, 2014. $57, $127

[168] A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He, "Distributed data stream clustering: A fast EM-based
approach," in Proceedings - International Conference on Data Engineering. IEEE, 2007, pp. 736-745. $57,
$127

[169] J. Guo, P. Zhang, J. Tan, and L. Guo, "Mining frequent patterns across multiple data streams," in
Proceedings of the 20th ACM international conference on Information and knowledge management - C1KM 'll.
New York, New York, USA: ACM Press, 2011, pp. 2325-2328. $57, $62

[170] B. P. Jaysawal and J.-W. Huang, "Mining Frequent Progressive Usage Patterns Across Multiple Mobile
Broadcasting Channels," in Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD). Springer, Cham, 2014, pp. 149-155. $57, $62

[171] J. Guo, "A Study on Distributed Frequent Co-occurrence Patterns Algorithms across Multiple Data
Streams," Journal of Software, vol. 11, no. 12, pp. 1191-1198,12 2016. $57, $63

[172] D. Amagata and T. Hara, "Mining Top-k Co-Occurrence Patterns across Multiple Streams," IEEE
Transactions on Knowledge and Data Engineering, vol. 29, no. 10, pp. 2249-2262,10 2017. $57, $63

[173] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and S. E. Seker, "Online anomaly
detection for multi-source VMware using a distributed streaming framework," Software: Practice and
Experience, vol. 46, no. 11, pp. 1479-1497, 11 2016. $57

[174] C. Zhang, H. Yan, S. Lee, and J. Shi, "Multiple profiles sensor-based monitoring and anomaly
detection," Journal of Quality Technology, vol. 50, no. 4, pp. 344-362,10 2018. $57

[175] P. Kranen, S. Giinnemann, S. Fries, and T. Seidl, "MC-Tree: Improving Bayesian Anytime
Classification," in Proceedings of International Conference on Scientific and Statistical Database Management
(SSDBM). Springer, Berlin, Heidelberg, 2010, pp. 252-269. $58, $110

[176] S. Esmeir and S. Markovitch, "Interruptible anytime algorithms for iterative improvement of decision
trees," in Proceedings of the 1st international workshop on Utility-based data mining - UBDM '05. ACM
New York, USA, 2005, pp. 78-85. $58

[177] S. Schlobach, E. Blaauw, M. El Kebir, A. Ten Teije, F. Van Harmelen, S. Bortoli, M. Hobbelman,
K. Millian, Y. Ren, S. Stam, P. Thomassen, R. Van Het Schip, and W. Van Willigem, "Anytime
classification by ontology approximation," in Proceedings of the First International Conference on New
Forms of Reasoning for the Semantic Web: Scalable, Tolerant and Dynamic - Volume 291. CEUR-
Aachen, Germany, 2007, pp. 57-71. $58

WS.org

[178] B. Hui, Y. Yang, and G. I. Webb, "Anytime classification for a pool of instances," Machine Learning,
vol. 71, no. 1, pp. 61-102, 10 2009. $58

[179] C. I. Lemes, D. F. Silva, and G. E. Batista, "Adding Diversity to Rank Examples in Anytime
Nearest Neighbor Classification," in Proceedings of 13th International Conference on Machine Learning and
Applications. IEEE, 12 2014, pp. 129-134. $58

[180] S. T. Mai, I. Assent, and M. Storgaard, "AnyDBC: An Efficient Anytime Density-based Clustering
Algorithm for Very Large Complex Datasets," in Proceedings of the 22nd ACM SIGKDD International
Conference on Knoivledge Discoven/ and Data Mining - KDD '16. ACM New York, USA, 2016, pp.
1025-1034. $58

[181] S. T. Mai, I. Assent, and A. Le, "Anytime OPTICS: An Efficient Approach for Hierarchical
Density-Based Clustering," in Proceedings of International Conference on Database Systems for Advanced
Applications. Springer, Cham, 2016, pp. 164-179. $58

230

REFERENCES

[182] Shichao Zhang and Chengqi Zhang, "Anytime mining for multiuser applications," IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 32, no. 4, pp. 515-521, 7 2002. 158,
163

[183] H.-F. Li and S.-Y. Lee, "Mining frequent itemsets over data streams using efficient window sliding
techniques," Expert Systems with Applications, vol. 36, no. 2, pp. 1466-1477, 3 2009. 160,161,162,165

[184] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach," Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-87,1 2004.
160,161,168,179,1101

[185] L. Troiano and G. Scibelli, "Mining frequent itemsets in data streams within a time horizon," Data &
Knoivledge Engineering, vol. 89, pp. 21-37, 1 2014. 161,162

[186] C. Raissi, P. Poncelet, and M. Teisseire, "Towards a new approach for mining frequent itemsets on data
stream," Journal of Intelligent Information Systems, vol. 28, no. 1, pp. 23-36, 2 2007. 161

[187] "Zipf Distribution." [Online]. Available: 184https://en.wikipedia.org/wiki/Zipfslaw
[188] N. T. Gridgeman, "Lam'e ovals," The Mathematical Gazette, vol. 54, no. 387, pp. 31-37, 1970. 184
[189] P. Stein, "A Note on the Volume of a Simplex," The American Mathematical Monthly, vol. 73, no. 3, pp.

299-301, 1966. 186
[190] "Market-Basket Synthetic Data Generator - CodePlex Archive." [Online]. Available: https:

 190//archive.codeplex.com/?p=synthdatagen
[191] "Frequent Itemset Mining Dataset Repository." [Online], Available: 190http://fimi.ua.ac.be/data/
[192] " Anonymous Web Data Data Set." [Online]. Available:

datasets/msnbc.com+anonymous+web+data 190
MSNBC.com http://archive.ics.uci.edu/ml/

[193] R. O. Duda, P. E. P. E. Hart, and D. G. Stork, Pattern classification. Wiley, 2001. 191
[194] "Curve Fitting." [Online]. Available: 198https://en.wikipedia.org/wiki/Curvefitting
[195] C. C. Aggarwal, "The setwise stream classification problem," in Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining - KDD '14. New York, New York, USA:
ACM Press, 2014, pp. 432-441. 1103,1104,1106,1117,1118,‘ 1124

[196] W. Silva, A. Santana, F. Lobato, and M. Pinheiro, "A methodology for community detection in
Twitter," in Proceedings of the International Conference on Web Intelligence - WI '17. Leipzig, Germany:
ACM Press, New York, NY, USA, 2017, pp. 1006-1009. 1104

[197] M. Liberatore and B. N. Levine, "Inferring the source of encrypted HTTP connections," in Proceedings
of the 13th ACM conference on Computer and communications security - CCS '06. Alexandria, Virginia,
USA: ACM Press, New York, NY, USA, 2006, pp. 255-263. 1105, 1118

[198] S. [haver, "Large Scale Data Mining with Applications in Social Computing," Ph.D. dissertation, Uni
versity of Texas, Dallas, 2014. 1105,1106

[199] M. Reed, P. Syverson, and D. Goldschlag, "Anonymous connections and onion routing," IEEE Journal
on Selected Areas in Communications, vol. 16, no. 4, pp. 482-494, 5 1998. 1105

[200] J. A. Blackard and D. j. Dean, "Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables," Computers and Electronics in
Agriculture, vol. 24, no. 3, pp. 131-151, 12 1999. 1117,1142

[201] "Stanford Postagger," 2018. [Online]. Available: ttps://nlp.stanford.edu/software/tagger.shtml 1117
[202] X. H. Dang, V. Lee, W. K. Ng, A. Ciptadi, and K. L. Ong, "An EM-Based Algorithm for Clustering Data

Streams in Sliding Windows," in Proceedings of International Conference on Database Systems for Advanced
Applications (DASFAA 2009). Springer, Berlin, Heidelberg, 2009, pp. 230-235. 1126

[203] T. Zhang, R. Ramakrishnan, and M. Livny, "BIRCH: An Efficient Data Clustering Databases Method
for Very Large," in Proceedings of the 1996 ACM SIGMOD international conference on Management of data.
ACM New York, 1996, pp. 103-114. 1126,1153

[204] A. Balzanella and R. Verde, "Summarizing and detecting structural drifts from multiple data streams,"
in Studies in Classification, Data Analysis, and Knowledge Organization. Springer-Verlag, 2013, pp. 105-
112. 1127

[205] J. Beringer and E. Hullermeier, "Online clustering of parallel data streams," Data & Knowledge
Engineering, vol. 58, no. 2, pp. 180-204, 8 2006. 1127

231

REFERENCES

(206] Z. R. Hesabi, T. Sellis, and X. Zhang, "Anytime concurrent clustering of multiple streams with an
indexing tree," in Proceedings of the 4th International Conference on Big Data, Streams and Heterogeneous
Source Mining: Algorithms, Systems, Programming Models and Applications - Volume 41. , 2015,
pp. 19-32. $128

JMLR.org

[207] "KDD Cup 1999 Data," 1999. [Online]. Available:
kddcup99.html $142

http://kdd.ics.uci.edu/databases/kddcup99/

[208] H. Yigit, "ABC-based distance-weighted kNN algorithm," Journal of Experimental & Theoretical Artificial
Intelligence, vol. 27, no. 2, pp. 189-198, 3 2015. ^146

[209] H.-S. Park and C.-H. Jun, "A simple and fast algorithm for K-medoids clustering," Expert Systems with
Applications, vol. 36, no. 2, pp. 3336-3341, 3 2009. 7153

[210] R. Jarvis and E. Patrick, "Clustering Using a Similarity Measure Based on Shared Near Neighbors,"
IEEE Transactions on Computers, vol. C-22, no. 11, pp. 1025-1034, 11 1973. $153, $163

[211] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan, "Automatic subspace clustering of high dimensional data for data mining applications,"
ACM SIGMOD Record, vol. 27, no. 2, pp. 94-105, 6 1998. $153, $167

[212] C.-H. Cheng, A. W. Fu, and Y. Zhang, "Entropy-based subspace clustering for mining numerical
data," in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD '99. New York, New York, USA: ACM Press, 1999, pp. 84-93. $153, 7167

[213] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, J. S. Park, C. C. Aggarwal, J. L. Wolf, P. S. Yu,
C. Procopiuc, and J. S. Park, "Fast algorithms for projected clustering," in Proceedings of the 1999 ACM
SIGMOD international conference on Management of data - SIGMOD '99. New York, New York, USA:
ACM Press, 1999, pp. 61-72. $153, $166

[214] C. C. Aggarwal, P. S. Yu, C. C. Aggarwal, and P. S. Yu, "Finding generalized projected clusters in high
dimensional spaces," in Proceedings of the 2000 ACM SIGMOD international conference on Management of
data - SIGMOD '00. New York, New York, USA: ACM Press, 2000, pp. 70-81’ $153, $166

[215] G. Sheikholeslami, S. Chatterjee, and A. Zhang, "WaveCluster: a wavelet-based clustering approach
for spatial data in very large databases," The VLDB Journal The International Journal on Very Large Data
Bases, vol. 8, no. 3-4, pp. 289-304, 2 2000. $153

[216] A. Mukhopadhyay and U. Maulik, "Unsupervised Satellite Image Segmentation by Combining SA
Based Fuzzy Clustering with Support Vector Machine," in 2009 Seventh International Conference on
Advances in Pattern Recognition. IEEE, 2 2009, pp. 381-384. $153

[217] S. Madeira and A. Oliveira, "Biclustering algorithms for biological data analysis: a survey," IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 1, no. 1, pp. 24-45,1 2004. $153

[218] K. A., S. R. Knollmann, S. I. Muldrew, F. R. Pearce, M. A. Aragon-Calvo, Y. Ascasibar, P. S. Behroozi,
D. Ceverino, S. Colombi, J. Diemand, K. Dolag, B. L. Falck, P. Fasel, J. Gardner, S. Gottlbber, C.-H.
Hsu, F. lannuzzi, A. Klypin, Z. LukiAfc, M. Maciejewski, C. McBride, M. C. Neyrinck, S. Planelles,
D. Potter, V. Quilis, Y. Rasera, J. I. Read, P. M. Ricker, F. Roy, Springel, V. Stadel, J. Stinson, G. P. M.
Sutter, V. Turchaninov, D. Tweed, G. Yepes, M. Zemp, and M., "Haloes gone MAD: The Halo-Finder
Comparitions Project," Monthly Notics of the Royal Astronomical Society, vol. 415, pp. 2293-2318, 2011.
$153

[219] S. Huo, "Detecting Self-Correlation of Nonlinear, Lognormal, Time-Series Data via DBSCAN
Clustering Method, Using Stock Price Data as Example," Ph.D. dissertation, Ohio State University,
2011. $153

[220] Y. Jiang and J. Zhang, "Parallel K-Medoids clustering algorithm based on Hadoop," in 2014 IEEE 5th
International Conference on Software Engineering and Service Science. IEEE, 6 2014, pp. 649-652. $153

[221] W. Zhao, H. Ma, and Q. He, "Parallel K-Means Clustering Based on MapReduce," in Proceedings of the
1st International Conference on Cloud Computing. Springer-Verlag, 2009, pp. 674-679. $153, $159

[222] R. Jin, A. Goswami, and G. Agrawal, "Fast and exact out-of-core and distributed k-means clustering,"
Knowledge and Information Systems, vol. 10, no. 1, pp. 17-40, 7 2006. $153

[223] M. M. A. Patwary, S. Byna, N. R. Satish, N. Sundaram, Z. Lukic, V. Roytershteyn, M. J. Anderson,
Y. Yao, Prabhat, and P. Dubey, "BD-CATS: big data clustering at trillion particle scale," in Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC
'15. New York, New York, USA: ACM Press, 2015, pp. 1-12. $153, $157, $161, $168, $174 *

[224] M. Gotz, C. Bodenstein, and M. Riedel, "HPDBSCAN: Highly Parallel DBSCAN," in Proceedings of the
Workshop on Machine Learning in High-Performance Computing Environments - MLHPC '15. ACM New
York, USA, 2015, pp. 1-10. $153, $156, $161, $168

232

REFERENCES

[225] H. Nagesh, S. Goil, and A. Choudhary, "A scalable parallel subspace clustering algorithm for massive
data sets," in International Conference on Parallel Processing. IEEE, 2000, pp. 477-484. $153, $167, $168

[226] H. Nazerzadeh, M. Ghodsi, and S. Sadjadian, "Parallel Subspace Clustering," in Proceedings of the 10th
Annual Conference of Computer Society of Iran. IEEE, 2005, pp. 1-8. T153, $167

[227] A. Adinetz, j. Kraus, J. Meinke, and D. Pleiter, "GPUMAF1A: Efficient Subspace Clustering with
MAFIA on GPUs," in Proceedings of European Conference on Parallel Processing. Springer, Berlin,
Heidelberg, 2013, pp. 838-849. $ 153, $167

[228] B. Zhu, A. Mara, and A. Mozo, "CLUS: Parallel Subspace Clustering Algorithm on Spark," in
Proceedings of East European Conference on Advances in Databases and Information Systems. Springer,
Cham, 2015, pp. 175-185. $153, $167

[229] R. L. Ferreira Cordeiro, C. Traina, A. J. Machado Traina, J. Lopez, U. Kang, and C. Faloutsos,
"Clustering very large multi-dimensional datasets with MapReduce," in Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD 'll. New York, New
York, USA: ACM Press, 2011, pp. 690-698. $153, $168’

[230] S. Kumari, S. Maurya, P. Goyal, S. S. Balasubramaniam, and N. Goyal, "Scalable Parallel Algorithms
for Shared Nearest Neighbor Clustering," in 2016 IEEE 23rd International Conference on High Performance
Computing (HiPC). IEEE, 12 2016, pp. 72-81. $153, $155, $156, $163, $168, $169, $180

[231] V. Olman, Fenglou Mao, Hongwei Wu, and Ying Xu, "Parallel Clustering Algorithm for Large
Data Sets with Applications in Bioinformatics," IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 6, no. 2, pp. 344-352, 4 2009. $153, $154, $156, $165, $168

[232] Q. Qian, S. Zhao, C.-J. Xiao, and C.-L. Hung, "Multi-level Grid Based Clustering and GPU Parallel
Implementations," in 2017 14th International Symposium on Pervasive Systems, Algorithms and Networks
& 2017 11th International Conference on Frontier of Computer Science and Technology & 2017 Third
International Symposium of Creative Computing (ISPAN-FCST-ISCC). IEEE, 6 2017, pp. 397-402. $153

[233] C. Xiaoyun, C. Yi, Q. Xiaoli, Y. Min, and H. Yanshan, "PGMCLU: A novel parallel grid-based
clustering algorithm for multi-density datasets," in 2009 1st IEEE Symposium on Web Society. IEEE, 8
2009, pp. 166-171. $153

[234] C. Deng, J. Song, R. Sun, S. Cai, and Y. Shi, "GR1DEN: An effective grid-based and density-based
spatial clustering algorithm to support parallel computing," Pattern Recognition Letters, vol. 109, pp.
81-88, 7 2018. $153

[235] M. A. Patwary, D. Palsetia, A. Agrawal, W.-k. Liao, F. Manne, and A. Choudhary, "Scalable
parallel OPTICS data clustering using graph algorithmic techniques," in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’13. ACM New
York, USA, 2013, pp. 1-12. $155, $156, $162, $168, $169, $186^

[236] P. Goyal, S. Kumari, D. Kumar, S. Balasubramaniam, and N. Goyal, "Parallelizing OPTICS for
multicore systems," in Proceedings of the 7th ACM India Computing Conference on - COMPUTE '14.
ACM New York, USA, 2014, pp. 1-6. $155, $156, $162

[237] B. Welton, E. Samanas, and B. P. Miller, "Mr. Scan: Extreme scale density-based clustering using a
tree-based network of GPGPU nodes," in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’13). ACM Press, 2013, pp. 1-11. $156, $162

[238] X. Xu, J. Jager, and H.-P. Kriegel, "A Fast Parallel Clustering Algorithm for Large Spatial Databases,"
Data Mining and Knowledge Discovery, vol. 3, no. 3, pp. 263-290, 1999. $156, $160, $168

[239] A. Zhou, S. Zhou, J. Cao, Y. Fan, and Y. Hu, "Approaches for scaling DBSCAN algorithm to large
spatial databases," Journal of Computer Science and Technology, vol. 15, no. 6, pp. 509-526, 11 2000. $156,
$160, $168

[240] X. Li, "Parallel algorithms for hierarchical clustering and cluster validity," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12, no. 11, pp. 1088-1092,1990. $156, $164

[241] C.-H. Wu, S.-J. Horng, and H.-R. Tsai, "Efficient Parallel Algorithms for Hierarchical Clustering on
Arrays with Reconfigurable Optical Buses," Journal of Parallel and Distributed Computing, vol. 60, no. 9,
pp. 1137-1153, 9 2000. $156, $164

[242] Z. Du and F. Lin, "A novel parallelization approach for hierarchical clustering," Parallel Computing,
vol. 31, no. 5, pp. 523-527, 5 2005. $156, $164

[243] P. S. Bradley, O. L. Mangasarian, and W. N. Street, "Clustering via concave minimization," in
Proceedings of the 9th International Conference on Neural Information Processing Systems. MIT Press, 1996,
pp. 368-374. $159

233

REFERENCES

[244] J. C. Dunn, "A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact
Well-Separated Clusters," Journal of Cybernetics, vol. 3, no. 3, pp. 32-57,1 1973. $159

[245] J. Kumar, R. T. Mills, F. M. Hoffman, and W. W. Hargrove, "Parallel k-Means Clustering for
Quantitative Ecoregion Delineation Using Large Data Sets," Procedia Computer Science, vol. 4, pp.
1602-1611,1 2011. $159, $168

[246] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, "Distributed k-means and k-median Clustering on General
Topologies," in Advances in Neural Information Processing Systems 26 (NIPS 2013). Neural Information
Processing Systems Foundation, Inc., 2013, pp. 1-9. $159, $168

[247] M. N. Joshi, "Parallel K-Means Algorithm on Distributed Memory Multiprocessors," University of
Minnesota, Twin Cities, Tech. Rep., 2003. 1159

[248] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, "Scalable k-means++," in
Proceedings of the VLDB Endowment. VLDB Endowment, 3 2012, pp. 622-633. $159

[249] K. D. Garcia and M. C. Naldi, "Multiple Parallel MapReduce k-Means Clustering with Validation and
Selection," in 2014 Brazilian Conference on Intelligent Systems. IEEE, 10 2014, pp. 432-437. $159

[250] B. Wang, J. Yin, Q. Hua, Z. Wu, and J. Cao, "Parallelizing K-Means-Based Clustering on Spark," in
2016 International Conference on Advanced Cloud and Big Data (CBD). IEEE, 8 2016, pp. 31-36. $159

[251] V. Santhi and R. Jose, "Performance Analysis of Parallel K-Means with Optimization Algorithms for
Clustering on Spark," in Proceedings of International Conference on Distributed Computing and Internet
Technology (ICDC1T’18). Springer, Cham, 2018, pp. 158-162. $159

[252] D. Arlia and M. Coppola, "Experiments in Parallel Clustering with DBSCAN," in Proceedings of the 7th
International Euro-Par Conference on Parallel Processing. Springer, 2001, pp. 326-331. $160, $168

[253] M. Coppola and M. Vanneschi, "High-performance data mining with skeleton-based structured
parallel programming," Parallel Computing, vol. 28, no. 5, pp. 793-813, 5 2002. $160, $168

[254] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, "DBDC: Density Based Distributed Clustering," in Proceedings
of 2004 International Conference on Extending Database Technology (EDBT ’04). Springer, Berlin,
Heidelberg, 2004, pp. 88-105. $160

[255] S. Brecheisen, H.-P. Kriegel, and M. Pfeifle, "Parallel Density-Based Clustering of Complex Objects,"
in Proceedings of 2006 Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2006).
Springer, Berlin, Heidelberg, 2006, pp. 179-188. $160

[256] M. Chen, X. Gao, and H. Li, "Parallel DBSCAN with Priority R-tree," in 2010 2nd IEEE International
Conference on Information Management and Engineering. IEEE, 2010, pp. 508-511. $160, $168

[257] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger, "The R*-tree: an efficient and robust access method for points and rectangles," in Proceedings
of the 1990 ACM SIGMOD international conference on Management of data - SIGMOD '90. New York,
New York, USA: ACM Press, 1990, pp. 322-331. $160

[258] B. Welton and B. P. Miller, "Mr. Scan: A Hybrid / Hybrid Extreme Scale Density Based Clustering
Algorithm," Northwestern University, Tech. Rep., 2015. $162

[259] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and L. Rocha, "G-DBSCAN: A GPU
Accelerated Algorithm for Density-based Clustering," Procedia Computer Science, vol. 18, pp. 369-378, 1
2013. $162

[260] C.-C. Chen and M.-S. Chen, "HiClus: Highly Scalable Density-based Clustering with Heterogeneous
Cloud," Procedia Computer Science, vol. 53, pp. 149-157,1 2015. $162

[261] Y. He, H. Tan, W. Luo, H. Mao, D. Ma, S. Feng, and J. Fan, "MR-DBSCAN: An Efficient Parallel
Density-Based Clustering Algorithm Using MapReduce," in 2011 IEEE 17th International Conference on
Parallel and Distributed Systems. IEEE, 12 2011, pp. 473-480. $162

[262] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, "MR-DBSCAN: a scalable MapReduce-based DBSCAN
algorithm for heavily skewed data," Frontiers of Computer Science, vol. 8, no. 1, pp. 83-99, 2 2014. $162

[263] B.-R. Dai and I.-C. Lin, "Efficient Map/Reduce-Based DBSCAN Algorithm with Optimized Data
Partition," in 2012 IEEE Fifth International Conference on Cloud Computing. IEEE, 6 2012, pp. 59-66.
$162

[264] Y. Yu, J. Zhao, X. Wang, Q. Wang, and Y. Zhang, "Cludoop: An Efficient Distributed Density-Based
Clustering for Big Data Using Hadoop," International Journal of Distributed Sensor Networks, vol. 11,
no. 6, pp. 1-13, 6 2015. $162

234

REFERENCES

[265] X. Hu, L. Liu, N. Qiu, D. Yang, and M. Li, "A MapReduce-based improvement algorithm for
DBSCAN," Journal of Algorithms & Computational Technology, vol. 12, no. 1, pp. 53-61, 3 2018. f 162

[266] Y. Gu, X. Ye, F. Zhang, Z. Du, R. Liu, and L. Yu, "A parallel varied density-based clustering algorithm
with optimized data partition," Journal of Spatial Science, vol. 63, no. 1, pp. 93-114, 1 2018. $162

[267] H. Song and J.-G. Lee, "RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm Based on Random
Partitioning," in Proceedings of the 2018 International Conference on Management of Data - SIGMOD '18.
ACM New York, USA, 2018, pp. 1173-1187. $162

[268] I. Cordova and T.-S. Moh, "DBSCAN on Resilient Distributed Datasets," in 2015 International
Conference on High Performance Computing & Simulation (HPCS). IEEE, 7 2015, pp. 531-540. T162

[269] D. Han, A. Agrawal, W.-K. Liao, and A. Choudhary, "A Novel Scalable DBSCAN Algorithm with
Spark," in 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 5 2016, pp. 1393-1402. $162

[270] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin, "A Parallel DBSCAN Algorithm Based
on Spark," in 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom). IEEE, 10 2016, pp. 548-553. T162

[271] A. Lulli, M. Dell'Amico, P. Michiardi, and L. Ricci, "NG-DBSCAN," Proceedings of the VLDB
Endowment, vol. 10, no. 3, pp. 157-168, 11 2016. $162

[272] F. Huang, Q. Zhu, J. Zhou, J. Tao, X. Zhou, D. Jin, X. Tan, and L. Wang, "Research on the
Parallelization of the DBSCAN Clustering Algorithm for Spatial Data Mining Based on the Spark
Platform," Remote Sensing, vol. 9, no. 12, pp. 1-33, 12 2017. $162

[273] C. Zewen and Z. Yao, "Parallel Text Clustering Based on MapReduce," in 2012 Second International
Conference on Cloud and Green Computing. IEEE, 11 2012, pp. 226-229. $163

[274] S. Wang and C. F. Eick, "MR-SNN: Design of parallel Shared Nearest Neighbor clustering algorithm
using MapReduce," in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(. IEEE, 3
2017, pp. 312-315. $163

[275] N. Meghwal and S. M, "Parallel Implementation of Shared Nearest Neighbor Clustering Algorithm,"
SERC, Indian Institute of Science, Bangalore, India, Tech. Rep., 2015. fl63

[276] S. Rajasekaran and Sanguthevar, "Efficient parallel hierarchical clustering algorithms," IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 6, pp. 497-502, 6 2005. $165, $168

[277] M. Dash, H. Liu, P. Scheuermann, and K. L. Tan, "Fast hierarchical clustering and its validation," Data
& Knowledge Engineering, vol. 44, no. 1, pp. 109-138, 1 2003. $165

[278] M. Dash, S. Petrutiu, and P. Scheuermann, "pPOP: Fast yet accurate parallel hierarchical clustering
using partitioning," Data & Knowledge Engineering, vol. 61, no. 3, pp. 563-578, 6 2007. $165

[279] S. Kim and D. C. Wunsch, "A GPU based Parallel Hierarchical Fuzzy ART clustering," in The 2011
International Joint Conference on Neural Networks. IEEE, 7 2011, pp. 2778-2782. $166

[280] S. A. Rylov and I. A. Pestunov, "Fast hierarchical clustering of multispectral images and its
implementation on NVIDIA GPU," Journal of Physics: Conference Series, vol. 1096, no. 1, p. 012039, 9
2018. $166

[281] C. Jin, M. A. Patwary, A. Agrawal, W. Hendrix, W.-k. Liao, and A. N. Choudhary, "DiSC : A Distributed
Single-Linkage Hierarchical Clustering Algorithm using MapReduce," in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis on - SC '13. ACM, 2013,
pp. 1-11. $166

[282] C. Jin, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, "Incremental, distributed single-linkage
hierarchical clustering algorithm using mapreduce," in Proceedings of the Symposium on High
Performance Computing. Society for Computer Simulation International, 2015, pp. 83-92. $166

[283] C. Jin, R. Liu, Z. Chen, W. Hendrix, A. Agrawal, and A. Choudhary, "A Scalable Hierarchical
Clustering Algorithm Using Spark," in 2015 IEEE First International Conference on Big Data Computing
Service and Applications. IEEE, 3 2015, pp. 418-426. $166

[284] G. Mazzeo and C. Zanilo, "The parallelization of acomplex hierarchical clustering algorithm: faster
unsu-pervised learning on larger data sets," University of California, Los Angeles, Tech. Rep., 2016.
$166

[285] Jiong Yang, Wei Wang, Haixun Wang, and P. Yu, "d-clusters: capturing subspace correlation in a large
data set," in Proceedings 18th International Conference on Data Engineering. IEEE Comput. Soc, 2002,
pp. 517-528. $166

235

REFERENCES

[286] J. H. Friedman and J. J. Meulman, “Clustering objects on subsets of attributes," Journal of Royal Statistical
Society, vol. 66, no. 4, pp. 815-849, 2004. fl66

[287] C. Domeniconi, D. Papadopoulos, D. Gunopulos, and S. Ma, "Subspace Clustering of High Dimen
sional Data," in 2004 SIAM International Conference on Data Mining. SIAM, 2004, pp. 517-521. fl66

[288] K. Sequeira and M. Zaki, "SCHISM: A New Approach for Interesting Subspace Mining," in Fourth
IEEE International Conference on Data Mining (ICDM'04). IEEE, 2004, pp. 186-193. T167

[289] J.-W. Chang and D.-S. Jin, "A new cell-based clustering method for large, high-dimensional data in
data mining applications," in Proceedings of the 2002 ACM symposium on Applied computing - SAC '02.
ACM Press, 2002, pp. 503-507. T167

[290] K. Kailing, H.-P. Kriegel, and P. Kroger, "Density-Connected Subspace Clustering for High-
Dimensional Data *," in 4th SIAM International Conference on Data Mining. SIAM, 2004, pp. 246-257.
M67

[291] H. Kriegel, P. Kroger, M. Renz, and S. Wurst, "A Generic Framework for Efficient Subspace Clustering
of High-Dimensional Data," in Fifth IEEE International Conference on Data Mining (ICDM'05). IEEE,
2005, pp. 250-257. ?167

[292] I. Assent, R. Krieger, E. Muller, and T. Seidl, "DUSC: Dimensionality Unbiased Subspace Clustering,"
in Seventh IEEE International Conference on Data Mining (ICDM 2007). IEEE, 10 2007, pp. 409—114. fl67

[293] I. Assent, R. Krieger, E. Muller, and T. Seidl, "INSCY: Indexing Subspace Clusters with
In-Process-Removal of Redundancy," in 2008 Eighth IEEE International Conference on Data Mining.
IEEE, 12 2008, pp. 719-724. fl67

[294] A. Kaur and A. Datta, "A novel algorithm for fast and scalable subspace clustering of high-dimensional
data," journal of Big Data, vol. 2, no. 1, p. 17, 12 2015. T167

[295] A. Datta, A. Kaur, T. Lauer, and S. Chabbouh, "Exploiting multiaA^core and manyaA^core parallelism
for subspace clustering," International Journal of Applied Mathematics and Computer Science, vol. 29, no. 1,
pp. 81-91, 2019. T167

[296] B. Zhu, B. Ordozgoiti, and A. Mozo, "PSCEG: An unbiased Parallel Subspace Clustering algorithm
using Exact Grids," in European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning, Publishers, 2016, pp. 581-586. fl68i6doc.com

[297] Z. Gao, Y. Fan, K. Niu, and Z. Ying, "MR-Mafia: Parallel Subspace Clustering Algorithm Based on
MapReduce for Large Multi-dimensional Datasets," in 2018 IEEE International Conference on Big Data
and Smart Computing (BigComp). IEEE, 1 2018, pp. 257-262. fl68

[298] E. N. Adriano Di Pasquale, "Scalable Distributed Data Structures: A Survey," in 3rd International
Workshop on Distributed Data and Structures (WDAS 2000), 2000, pp. 87-111. |186

[299] B. Kroll, P. Widmayer, B. Kroll, and P. Widmayer, "Distributing a search tree among a growing number
of processors," ACM SIGMOD Record, vol. 23, no. 2, pp. 265-276, 6 1994. |186

[300] T. P. Hayes, J. Saia, and A. Trehan, "The forgiving graph: a distributed data structure for low
stretch under adversarial attack," in Proceedings of the 28th ACM symposium on Principles of distributed
computing - PODC '09. New York, New York, USA: ACM Press, 2009, pp. 121-130. fl86

[301] M. T. Goodrich, M. J. Nelson, and J. Z. Sun, "The rainbow skip graph: a fault-tolerant constant-degree
distributed data structure," in Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm (SODA 2006). SIAM, 2006, pp. 384-393. ?186

[302] I. Kamel, C. Faloutsos, I. Kamel, and C. Faloutsos, "Parallel R-trees," in Proceedings of the 1992 ACM
SIGMOD international conference on Management of data - SIGMOD '92, vol. 21, no. 2. New York, New
York, USA: ACM Press, 1992, pp. 195-204. T186

[303] E. G. Hoel and H. Samet, "Data-Parallel R-Tree Algorithms," in 1993 International Conference on Parallel
Processing (ICPP'93). IEEE, 8 1993, pp. 47-50. fl86

[304] T. Johnson and A. Colbrook, "A distributed data-balanced dictionary based on the B-link tree," in
Proceedings of Sixth International Parallel Processing Symposium. IEEE Comput. Soc. Press, 1992, pp.
319-324. |186

[305] B. Schnitzer and S. Leutenegger, "Master-client R-trees: a new parallel R-tree architecture," in
Proceedings. Eleventh International Conference on Scientific and Statistical Database Management. IEEE
Comput. Soc, 1999, pp. 68-77. fl86

[306] L. Shuhua, Z. Fenghua, and S. Yongqiang, "A Design of Parallel R-tree on Cluster of Workstations,"
in International Workshop on Databases in Networked Information Systems (DNIS 2000). Springer, Berlin,
Heidelberg, 2000, pp. 119-133. f!86

236

REFERENCES

[307] C. du Mouza, W. Litwin, and P. Rigaux, "Large-scale indexing of spatial data in distributed
repositories: the SD-Rtree," The VLDB journal, vol. 18, no. 4, pp. 933-958, 8 2009. tl86

[308] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. The MIT
Press, 2009. M86

[309] Y. Chen, G. Dong, J. Han, B. Wah, and J. Wang, "Multi-Dimensional Regression Analysis of Time-Series
Data Streams," in Proceedings of the 28th international conference on Very Large Data Bases. ACM New
York, 2002, pp. 323-334. T212

[310] M. J. Zaki and W. Meira Jr, Data Mining and Analysis. 1st Edition, 2014. L214, T217

237

Publications

Conference Papers
i. Jagat Sesh Challa, Poonam Goyal, Vijay M Giri, Dhananjay Mantri, Navneet Goyal,

"AnySC: Anytime Set-wise Classification of Variable Speed Data Streams", In Pro
ceedings of 2018 IEEE International Conference on Big Data (IEEE Big Data 2018),
pp. 967-974,10-13 December 2018, Seattle, WA, USA.

ii. Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal, "AnyFI: An
Anytime Frequent Itemset Mining Algorithm for Data Streams", In Proceedings of
2017 IEEE International Conference on Big Data (IEEE Big Data 2017), 11-14 Decem
ber 2017, Boston, MA, USA.

iii. Jagat Sesh Challa, Poonam Goyal, Nikhil S., Aditya Mangla, Sundar Balasubrama-
niam, Navneet Goyal, "DDR-Tree: A dynamic distributed data structure for efficient
data distribution among cluster nodes for spatial data mining algorithms", In Pro
ceedings of 2016 IEEE International Conference on Big Data (IEEE Big Data 2016),
5-8 December 2016, Washington DC, USA.

Journal Papers
i. Jagat Sesh Challa, Poonam Goyal, Ajinkya Kokandakar, Dhananjay Mantri, Pranet

Verma, Sundar Balasubramaniam, Navneet Goyal, "A New Micro-Cluster based Ap
proach for Anytime Clustering of Data Streams that handles Noise and Concept
Drift", submitted for review in Journal of Experimental & Theoretical Artificial Intelli
gence (TETA), Taylor & Francis. (Revision submitted)

ii. Poonam Goyal, Jagat Sesh Challa, Shivin Srivastava, Navneet Goyal, "Anytime Fre
quent Itemset Mining of Transactional Data Streams", submitted for review in Big
Data Research, Elsevier.

iii. Poonam Goyal, Jagat Sesh Challa, Dhruv Kumar, Navneet Goyal, Sundar Balasub
ramaniam, "Grid-R-tree: A data structure for efficient neighborhood and nearest
neighbor queries in data mining", submitted for review in Journal of Data Science &
Analytics (JDSA), Springer.

iv. Jagat Sesh Challa, Poonam Goyal, Nikhil S, Amogh Sharma, Shan Balasubrama
niam, Navneet Goyal, "Experiments on Data Distribution Strategies for Parallel
Spatial Clustering Algorithms", to be submitted to ACM Transactions on Knowledge
Discovery from Data (TKDD), ACM.

v. Jagat Sesh Challa, Poonam Goyal, Navneet Goyal, "Anytime Data Mining: A Com
prehensive Survey", to be submitted to Wiley Inter-disciplinary Reviews on Data Min
ing and Knozoledge Discovery (WIRE-DMKD), Wiley.

238

Biographies

Brief Biography of the Candidate
Jagat Sesh Challa is a PhD Student in the Department of Computer Science & Information
Systems at Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India. He has
completed MSc.(Tech) Information Systems in 2010 and Masters of Engineering degree in
Software Systems in 2012, both from the same department at BITS Pilani. His research
interests are in the area of Data Mining, Streaming Data, Anytime Mining, Data Indexing
Structures, Data Distribution strategies and High Performance Computing. He has a total
of 9 publications which are accepted in reputed international conferences and journals. He
is a reviewer for ACM Transactions on Knowledge Discovery from Data. He is a student
member of IEEE. He is well experienced in teaching activities like conducting tutorials
and laboratory sessions for various courses like Data Structures & Algorithms, Design &
Analysis of Algorithms, Computer Programming, Logic in Computer Science, and Dis
crete Structures for Computer Science. Contact him at jagatsesh@pilani.bits-pilani.ac.in.
http://universe.bits-pilani.ac.in/pilani/jagatsesh/profile

Brief Biography of the Supervisor
Prof. Poonam Goyal is currently an Associate Professor and Head in the Department of
Computer Science & Information Systems at Birla Institute of Technology & Science, Pi
lani, Rajasthan, India. She has completed her Ph.D. in Numerical Analysis (Applied Math
ematics) Department of Mathematics University of Roorkee (now IIT, Roorkee), Roorkee,
India in 1995, ME in Software Systems, Department of Computer Science & Information
Systems from BITS-Pilani, Pilani, India in 2002. She has received the IBM Scalable Data
Analytics Innovation Faculty Award 2010 in the area of Scalable Data Analytics for the
research concept titled "Developing a Smart Crop Management System using Data Analyt
ics". She is actively involved with the Advanced Data Analytics and Parallel Technologies
(ADAPT) Lab and she is the Convenor of the Web Intelligence and Social Computing
(WiSOC) Lab. Her current research interests are in the area of Data Mining, High Perfor
mance Computing, Solution for Big Data Analytics, Information/Image Retrieval, Social
Media Analytics, and Stream Mining. She has published more than 35 research papers
in reputed Internal Conferences and Journals. She is a reviewer for various journals like
ACM TKDD, IEEE Transactions SMC, T&F TETA, etc. Contact her at poonam@pilani.bits-
pilani.ac.in. http://universe.bits-pilani.ac.in/pilani/poonam/profile

Brief Biography of the Co-Supervisor
Prof. Anil Maheshwari is currently a Professor and Graduate Director in the Depart
ment of Computer Science at Carleton University, Ottawa, Canada. He is also an Adjunct
Professor at Birla Institute of Technology and Sciences, Pilani (India) since 2007. He has
completed his Ph.D. in Computer Science from Tata Institute of Fundamental Research,
Mumbai, India in 1993. He later worked as a Postdoctoral fellow at the Max Planck Insti
tute for Informatics, Germany (1993-1994) and at the Carleton University, Ottawa, Canada

239

(1994-1995). He is currently working in the Computational Goemetry lab at Carleton Uni
versity, primarily working in the areas of Design and Analysis of Algorithms for problems
in computational geometry, graphs and discrete mathematics. He has received a number
of research grants from various funding sources like MITACS, DFAIT, NSERC, etc. He has
published over 200 papers in various peer reviewed journals and conferences of interna
tional repute. He has also served as the PC member for various National and International
Conferences. Contact him at anil@scs.carleton.ca. http://people.scs.carleton.ca/ mahesh-
wa/

240

