DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/10002
Title: Asymptotic performance of ZF and MMSE crosstalk cancelers for DSL systems
Authors: Zafaruddin, S.M.
Keywords: EEE
Asymptotic Analysis
Digital subscriber lines
Minimum-mean-square-error (MMSE)
Random matrix theory (RMT)
Wireline Channels
Zero forcing (ZF)
Issue Date: May-2019
Publisher: Elsevier
Abstract: We present asymptotic expressions for user throughput in a multi-user digital subscriber line system (DSL) with a linear decoder, in increasingly large system sizes. This analysis can be seen as a generalization of results obtained for wireless communication. The features of the diagonal elements of the wireline DSL channel matrices make wireless asymptotic analyses inapplicable for wireline systems. Further, direct application of results from random matrix theory (RMT) yields a trivial lower bound. This paper presents a novel approach to asymptotic analysis, where an alternative sequence of systems is constructed that includes the system of interest in order to approximate the spectral efficiency of the linear zero-forcing (ZF) and minimum mean squared error (MMSE) crosstalk cancelers. Using works in the field of large dimensional random matrices, we show that the user rate in this sequence converges to a non-zero rate. The approximation of the user rate for both the ZF and MMSE cancelers are very simple to evaluate and does not need to take specific channel realizations into account. The analysis reveals the intricate behavior of the throughput as a function of the transmission power and the channel crosstalk. This unique behavior has not been observed for linear decoders in other systems. The approximation presented here is much more useful for the next generation G.fast wireline system than earlier DSL systems as previously computed performance bounds, which are strictly larger than zero only at low frequencies. We also provide a numerical performance analysis over measured and simulated DSL channels which show that the approximation is accurate even for relatively low dimensional systems and is useful for many scenarios in practical DSL systems.
URI: https://www.sciencedirect.com/science/article/pii/S1051200418304603
http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/10002
Appears in Collections:Department of Electrical and Electronics Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.