DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/11126
Title: Entropy Generation and Thermal Radiation Analysis of EMHD Jeffrey Nanofluid Flow: Applications in Solar Energy
Authors: Sharma, Bhupendra Kumar
Keywords: Mathematics
Solar radiations
Exponential heat source
Copper nanoparticles
Gyrotactic motile microorganisms
Joule heating
Issue Date: 2023
Publisher: MDPI
Abstract: This article examines the effects of entropy generation, heat transmission, and mass transfer on the flow of Jeffrey fluid under the influence of solar radiation in the presence of copper nanoparticles and gyrotactic microorganisms, with polyvinyl alcohol–water serving as the base fluid. The impact of source terms such as Joule heating, viscous dissipation, and the exponential heat source is analyzed via a nonlinear elongating surface of nonuniform thickness. The development of an efficient numerical model describing the flow and thermal characteristics of a parabolic trough solar collector (PTSC) installed on a solar plate is underway as the use of solar plates in various devices continues to increase. Governing PDEs are first converted into ODEs using a suitable similarity transformation. The resulting higher-order coupled ODEs are converted into a system of first-order ODEs and then solved using the RK 4th-order method with shooting technique. The remarkable impacts of pertinent parameters such as Deborah number, magnetic field parameter, electric field parameter, Grashof number, solutal Grashof number, Prandtl number, Eckert number, exponential heat source parameter, Lewis number, chemical reaction parameter, bioconvection Lewis number, and Peclet number associated with the flow properties are discussed graphically. The increase in the radiation parameter and volume fraction of the nanoparticles enhances the temperature profile. The Bejan number and entropy generation rate increase with the rise in diffusion parameter and bioconvection diffusion parameter. The novelty of the present work is analyzing the entropy generation and solar radiation effects in the presence of motile gyrotactic microorganisms and copper nanoparticles with polyvinyl alcohol–water as the base fluid under the influence of the source terms, such as viscous dissipation, Ohmic heating, exponential heat source, and chemical reaction of the electromagnetohydrodynamic (EMHD) Jeffrey fluid flow. The non-Newtonian nanofluids have proven their great potential for heat transfer processes, which have various applications in cooling microchips, solar energy systems, and thermal energy technologies.
URI: https://www.mdpi.com/2079-4991/13/3/544
http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11126
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.