DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11295
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShekhawat, Krishnendra-
dc.date.accessioned2023-08-10T10:16:43Z-
dc.date.available2023-08-10T10:16:43Z-
dc.date.issued2022-07-
dc.identifier.urihttps://arxiv.org/abs/2207.13268-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11295-
dc.description.abstractThe automatic generation of floorplans given user inputs has great potential in architectural design and has recently been explored in the computer vision community. However, the majority of existing methods synthesize floorplans in the format of rasterized images, which are difficult to edit or customize. In this paper, we aim to synthesize floorplans as sequences of 1-D vectors, which eases user interaction and design customization. To generate high fidelity vectorized floorplans, we propose a novel two-stage framework, including a draft stage and a multi-round refining stage. In the first stage, we encode the room connectivity graph input by users with a graph convolutional network (GCN), then apply an autoregressive transformer network to generate an initial floorplan sequence. To polish the initial design and generate more visually appealing floorplans, we further propose a novel panoptic refinement network(PRN) composed of a GCN and a transformer network. The PRN takes the initial generated sequence as input and refines the floorplan design while encouraging the correct room connectivity with our proposed geometric loss. We have conducted extensive experiments on a real-world floorplan dataset, and the results show that our method achieves state-of-the-art performance under different settings and evaluation metrics.en_US
dc.language.isoenen_US
dc.publisherARXIVen_US
dc.subjectMathematicsen_US
dc.subjectPanoptic Refinementen_US
dc.subjectGraph-constraineden_US
dc.titleEnd-to-end Graph-constrained Vectorized Floorplan Generation with Panoptic Refinementen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.