Please use this identifier to cite or link to this item:
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11366
Title: | Wind Speed Prediction Using Sentinel-1 OCN Products |
Authors: | Pasari, Sumanta |
Keywords: | Mathematics Sentinel-1 Wind-speed prediction Time-series analysis |
Issue Date: | 2023 |
Publisher: | IEEE |
Abstract: | Assessment of wind speed is inevitable for new offshore wind farm development. The location identification of offshore wind energy plant requires careful planning and analysis of various factors, such as the distance from the shore, wind speed, weather condition, and the water depth (bathymetry). In situ measurements often pose limitations in determining these factors. Alternatively, remote sensing technologies may be employed in setting up offshore wind farms. This paper presents a satellite based methodology for retrieval and forecasting of wind speed in the Kakinada coast of Andhra Pradesh. For this, the level-2 Ocean (OCN) product is used from the Copernicus satellite (Sentinel-1) that contains wind retrieval information. Based on the Global Wind Atlas (GWA) map, several hotspots are identified and the wind-speed time series data (2017–2021) is subsequently obtained for the study site. In total, 126 datasets are retrieved for the purpose of wind-speed prediction using the time-series ARIMA model. The results highlight the usefulness of the proposed technique. |
URI: | https://ieeexplore.ieee.org/document/10073800 http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11366 |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.