DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYadav, Sangita-
dc.date.accessioned2023-08-16T04:01:59Z-
dc.date.available2023-08-16T04:01:59Z-
dc.date.issued2014-
dc.identifier.urihttps://core.ac.uk/download/pdf/97237.pdf-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11400-
dc.description.abstractIn this article, we discuss an alternate approach to a priori error estimates for the semidiscrete Galerkin approximation to a time dependent parabolic integro-differential equation with nonsmooth initial data. It is based on energy arguments and on a repeated use of time integration, but without using parabolic type duality technique. Optimal L2- error estimate is derived for the semidiscrete approximation, when the initial data is in L2.en_US
dc.language.isoenen_US
dc.publisherOUPen_US
dc.subjectMathematicsen_US
dc.subjectParabolic integro-differential equations (PIDE)en_US
dc.subjectFinite element methoden_US
dc.subjectSemidiscrete solutionen_US
dc.subjectEnergy argumentsen_US
dc.subjectOptimal error estimateen_US
dc.titleOptimal L2 estimates for semidiscrete Galerkin methods for parabolic integro-differential equations with nonsmooth dataen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.