DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11430
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRana, Anirudh-
dc.date.accessioned2023-08-16T06:31:48Z-
dc.date.available2023-08-16T06:31:48Z-
dc.date.issued2011-05-
dc.identifier.urihttps://ui.adsabs.harvard.edu/abs/2011AIPC.1333..627S/abstract-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11430-
dc.description.abstractClassical hydrodynamics—the laws of Navier-Stokes and Fourier—fails in the description of processes in rarefied gases. For not too large Knudsen numbers, extended macroscopic models offer an alternative to the solution of the Boltzmann equations. Anlytical and numerical solutions show that the regularized 13 moment equations can capture all important linear and non-linear rarefaction effects with good accuracy.en_US
dc.language.isoenen_US
dc.publisherAIP Conference Proceedingsen_US
dc.subjectMathematicsen_US
dc.subjectHydrodynamicsen_US
dc.subjectNavier-Stokes equationsen_US
dc.subjectRarefied gas dynamicsen_US
dc.subjectNumerical analysisen_US
dc.subjectKinetic theory of gasesen_US
dc.subjectOrdinary and partial differential equationsen_US
dc.subjectBoundary value problemsen_US
dc.titleAnalytical and Numerical Solutions of Boundary Value Problems for the Regularized 13 Moment Equationsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.