Please use this identifier to cite or link to this item:
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11437
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rana, Anirudh | - |
dc.date.accessioned | 2023-08-16T08:43:05Z | - |
dc.date.available | 2023-08-16T08:43:05Z | - |
dc.date.issued | 2018-10 | - |
dc.identifier.uri | https://www.jstor.org/stable/26645679 | - |
dc.identifier.uri | http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11437 | - |
dc.description.abstract | In theclassicalframework,theNavier–Stokes–Fourier equations areobtainedthroughthelinearuncoupled thermodynamic force-fluxrelationswhichguarantee the non-negativityoftheentropyproduction. However,theconventionalthermodynamicdescrip- tion isonlyvalidwhentheKnudsennumberis sufficientlysmall.Here,itisshownthattherangeof validity oftheNavier–Stokes–Fourierequationscan be extendedbyincorporatingthenonlinearcoupling among thethermodynamicforcesandfluxes.The resultingsystemofconservationlawsclosedwith the coupledconstitutiverelationsisabletodescribe many interestingrarefactioneffects,suchasKnudsen paradox, transpirationflows,thermalstress,heat flux withouttemperaturegradients,etc.,which cannot bepredictedbytheclassicalNavier–Stokes– Fourier equations.Forthissystemofequations, a setofphenomenologicalboundaryconditions, which respectthesecondlawofthermodynamics, is alsoderived.Someofthebenchmarkproblems in fluidmechanicsarestudiedtoshowthe applicability ofthederivedequationsandboundary conditions. | en_US |
dc.language.iso | en | en_US |
dc.publisher | RSC | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Coupled constitutive Relations | en_US |
dc.subject | Navier–Stokes–Fourierequations | en_US |
dc.subject | Rarefaction effects | en_US |
dc.title | Coupled constitutive relations: a second lawbased higher-order closure for hydrodynamics | en_US |
dc.type | Article | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.