DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11438
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, Divyum-
dc.date.accessioned2023-08-16T08:50:03Z-
dc.date.available2023-08-16T08:50:03Z-
dc.date.issued2022-
dc.identifier.urihttps://arxiv.org/abs/2204.12082-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11438-
dc.description.abstractLet r,h∈N with r≥7 and let F(x,y)∈Z[x,y] be a binary form such that F(x,y)=(αx+βy)r−(γx+δy)r, where α, β, γ and δ are algebraic constants with αδ−βγ≠0. We establish upper bounds for the number of primitive solutions to the Thue inequality 0<|F(x,y)|≤h, improving an earlier result of Siegel and of Akhtari, Saradha & Sharma.en_US
dc.language.isoenen_US
dc.publisherARXIVen_US
dc.subjectMathematicsen_US
dc.subjectThue Equationsen_US
dc.titleDiagonalizable Thue Equations -- revisiteden_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.