DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11441
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, Divyum-
dc.date.accessioned2023-08-16T09:00:04Z-
dc.date.available2023-08-16T09:00:04Z-
dc.date.issued2017-10-
dc.identifier.urihttps://arxiv.org/abs/1710.09873-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11441-
dc.description.abstractLet q be an integer ≥2 and let Sq(n) denote the sum of digits of n in base q. For α=[0;1,m¯¯¯¯¯¯¯¯¯], m≥2, let Sα(n) denote the sum of digits in the Ostrowski α-representation of n. Let m1,m2≥2 be integers with gcd(q−1,m1)=gcd(m,m2)=1. We prove that there exists δ>0 such that for all integers a1,a2, |{0≤n<N:Sq(n)≡a1(modm1), Sα(n)≡a2(modm2)}|=Nm1m2+O(N1−δ). The asymptotic relation implied by this equality was proved by Coquet, Rhin & Toffin and the equality was proved for the case α=[ 1¯¯¯ ] by Spiegelhofer.en_US
dc.language.isoenen_US
dc.publisherARXIVen_US
dc.subjectMathematicsen_US
dc.subjectOstrowski digital sumsen_US
dc.titleJoint distribution in residue classes of the base-q and Ostrowski digital sumsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.