DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11470
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Rahul-
dc.date.accessioned2023-08-17T09:00:59Z-
dc.date.available2023-08-17T09:00:59Z-
dc.date.issued2020-05-
dc.identifier.urihttps://arxiv.org/pdf/2005.07217-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11470-
dc.description.abstractLet R be a commutative ring with identity. The ring R × R can be viewed as an extension of R via the diagonal map : R →֒ R×R, given by (r) = (r, r) for all r ∈ R. It is shown that, for any a, b ∈ R, the extension (R)[(a, b)] ⊂ R×R is a minimal ring extension if and only if the ideal < a−b > is a maximal ideal of R. A complete classification of maximal subrings of R(+)R is also given. The minimal ring extension of a von Neumann regular ring R is either a von Neumann regular ring or the idealization R(+)R/m where m ∈ Max(R). If R ⊂ T is a minimal ring extension and T is an integral domain, then (R : T) = 0 if and only if R is a field and T is a minimal field extension of R, or RJ is a valuation ring of altitude one and TJ is its quotient field.en_US
dc.language.isoenen_US
dc.publisherARXIVen_US
dc.subjectMathematicsen_US
dc.subjectMinimal ring extensionen_US
dc.subjectVon Neumann regular ringen_US
dc.subjectValuation ringen_US
dc.subjectFlat epimorphismen_US
dc.titleOn minimal ring extensionsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.