DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11471
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Rahul-
dc.date.accessioned2023-08-17T09:03:40Z-
dc.date.available2023-08-17T09:03:40Z-
dc.date.issued2020-
dc.identifier.urihttps://arxiv.org/pdf/2005.07214-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11471-
dc.description.abstractThe following result was proved in [5,Remark 2.2]. Theorem 0.1. If R T are Noetherian rings such that there does not exist any integrally dependent adjacent Noetherian rings between them, then for each ¯c/¯b 2 T/Z (where Z = Rad(T) = Rad(R) and ¯b, ¯c regular in R/Z), we have either ¯c/¯b 2 R/Z or ¯ b/¯c 2 R/Z, and so (R/Z)[¯c/¯b] is a localization of R/Z.en_US
dc.language.isoenen_US
dc.publisherARXIVen_US
dc.subjectMathematicsen_US
dc.subjectNoetherian ringsen_US
dc.subjectNormal pairen_US
dc.subjectAdjacent ringsen_US
dc.titleComment on “Two notes on imbedded prime divisorsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.