DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11486
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrivedi, Shailesh-
dc.date.accessioned2023-08-17T11:03:29Z-
dc.date.available2023-08-17T11:03:29Z-
dc.date.issued2016-
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/dema-2016-0009/html-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11486-
dc.description.abstractLetApDqdenote the disk algebra. Every endomorphism ofApDqis inducedby someφPApDqwith}φ}≤1. In this paper, it is shown that ifφis not an automorphismofDandφhas a fixed point in the open unit disk then the endomorphism induced byφis decomposable if and only if the fixed set ofφis singleton. Further, we determine thelocal spectra of the endomorphism induced byφin the cases when the fixed set ofφeitherincludes unit circle or is a singleton.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectMathematicsen_US
dc.subjectAlgebraic Approachen_US
dc.titleLocal spectral theory of endomorphisms of the disk algebraen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.