DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/11487
Title: Decomposability of Weighted Composition Operators on $L^p$ of Atomic Measure Space
Authors: Trivedi, Shailesh
Keywords: Mathematics
Atomic Measure Space
Issue Date: 2015
Publisher: PMF
Abstract: In this paper, we discuss the decomposability of weighted composition operator $uC_\phi$ on $L^p(X)(1\leq p<\infty)$ of a $\sigma$-finite atomic measure space $(X,\mathcal{S},\mu)$ with the assumption that $u\in L^\infty(X)$ and $|u|$ has positive ess inf. We prove that if the analytic core of $uC_\phi$ is zero and $uC_\phi$ is not quasinilpotent, then it is not decomposable. We also show that if $\phi$ is either injective almost everywhere or surjective almost everywhere but not both, then $uC_\phi$ is not decomposable. Finally, we give a necessary condition for decomposability of $uC_\phi$.
URI: http://journal.pmf.ni.ac.rs/faac/index.php/faac/article/view/41
http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/11487
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.