DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/12366
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharyya, Suvanjan-
dc.date.accessioned2023-10-12T08:46:00Z-
dc.date.available2023-10-12T08:46:00Z-
dc.date.issued2020-10-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0960077920306901-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/12366-
dc.description.abstractThe COVID-19 is a severe respiratory disease caused by a devastating coronavirus family (2019-nCoV) has become a pandemic across the globe. It is an infectious virus and transmits by inhalation or contact with droplet nuclei produced during sneezing, coughing, and speaking by infected people. Airborne transmission of COVID-19 is also possible in a confined place in the immediate environment of the infected person. Present study investigates the effectiveness of conditioned air released from air-conditioning machines to mix with aerosol sanitizer to reach every point of the space of the isolation room so as to kill the COVID-19 virus which will help to protect the lives of doctors, nurses and health care workers. In order to numerically model the laminar-transitional flows, transition SST k-ε model, which involves four transport equations are employed in the current study. It is found from the analysis that high turbulent fields generated inside the isolation room may be an effective way of distributing sanitizer in entire volume of isolation room to kill the COVID-19 virus.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectMechanical Engineeringen_US
dc.subjectCOVID-19en_US
dc.subjectHospital isolation roomen_US
dc.subjectSanitizeren_US
dc.subjectAirborne transmissionen_US
dc.subjectTurbulent fielden_US
dc.titleA novel CFD analysis to minimize the spread of COVID-19 virus in hospital isolation roomen_US
dc.typeArticleen_US
Appears in Collections:Department of Mechanical engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.