DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/12456
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhattacharyya, Suvanjan-
dc.date.accessioned2023-10-16T10:51:43Z-
dc.date.available2023-10-16T10:51:43Z-
dc.date.issued2023-12-
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S259012302300600X-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/12456-
dc.description.abstractThis study delves into the interplay between magnetic fields, heat transfer, and fluid behavior within a 3D mini-channel. Exploring the effects of a magnetic field on a hybrid nanofluid (Fe3O4–TiO2) under varying intensities (1000–2000 Gauss) and positions. Using numerical simulations (finite volume method), key parameters like Nusselt number (Nu), Friction factor (f), and Thermal Enhancement Factor (TEF) have been analyzed to uncover how magnetic fields and nanofluids interact in complex geometries. Results showed that the application of a magnetic field significantly enhanced heat transfer performance, with a maximum Nusselt number enhancement of 230%. Moreover, it was shown that greater magnetic field intensities were associated with elevated friction factors, whereas friction factors exhibited a declining trend as Reynolds numbers increased. The thermal enhancement factor initially increased with Reynolds numbers, but declined after reaching a peak. However, higher magnetic field strengths mitigated this decline, intensifying heat transfer enhancement effects reaching a maximum of 2.18 at 2000G magnetic field. These findings provide quantitative insights into the effectiveness of magnetic fields in enhancing heat transfer in Fe3O4–TiO2 hybrid nanofluids.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectMechanical Engineeringen_US
dc.subjectNon-uniform magnetic fielden_US
dc.subjectHeat transfer enhancementen_US
dc.subjectHybrid nanofluiden_US
dc.subjectMini-channel PV panel coolingen_US
dc.titleMini-channel cooling system for solar PV Panels with hybrid magnetic nanofluid and magnetic fielden_US
dc.typeArticleen_US
Appears in Collections:Department of Mechanical engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.