DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/12654
Title: An organic field effect transistors-based sensing platform for environmental/security applications
Authors: Rao, V. Ramgopal
Keywords: EEE
Organic field effect transistors (OFETs)
TNT
RDX
CuTPP
Ionizing radiation
Issue Date: 2011
Publisher: World Scientific
Abstract: Organic semiconducting material based sensors have been used for various environmental applications. Organic field effect transistors (OFETs) also find their applications in explosive vapor detection and total ionizing radiation dose determination. OFETs using poly 3-hexylthiophene (P3HT), a p-type organic semiconductor material and CuII tetraphenylporphyrin (CuTPP) composite as their active material were investigated as sensors for detection of various nitro-based explosive vapors with greater than parts per billion sensitivity range. Significant changes, suitable for sensor response, were observed in ON current (Ion) and transconductance (gm) extracted from electrical characteristics of the OFET after exposure to vapors of various explosive compounds. However, a similar device response was not observed to strong oxidizing agents such as benzoquinone (BQ) and benzophenone (BP). Also, the use of organic semiconducting material sensors for determining total ionizing radiation dose was studied, wherein the conductivity of the material was measured as a function of total ionizing radiation dose. An organic semiconducting material resistor was exposed to γ-radiation and it was observed that the change in resistance was proportional to the ionizing radiation dose. Changes in various parameters extracted from electrical characteristics of the OFET after γ-radiation exposure resulted in an improved sensitivity. To protect the organic semiconductor layer from the degradation in the ambient the sensors were passivated with a thin layer of silicon nitride.
URI: https://www.worldscientific.com/doi/abs/10.1142/S0219581X11009222
http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/12654
Appears in Collections:Department of Electrical and Electronics Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.