DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/14906
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarita-
dc.date.accessioned2024-05-13T05:36:36Z-
dc.date.available2024-05-13T05:36:36Z-
dc.date.issued2024-01-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/14906-
dc.descriptionUnder the Supervision of Dr. Sumanta Pasarien_US
dc.language.isoenen_US
dc.publisherBITS Pilani, Pilani Campusen_US
dc.subjectMathematicsen_US
dc.subjectStatisticsen_US
dc.subjectRenewable energyen_US
dc.subjectMachine learningen_US
dc.titleForecasting of renewable energy using statistics and machine learningen_US
dc.typeThesisen_US
Appears in Collections:Department of Mathematics

Files in This Item:
File Description SizeFormat 
Thesis_Sarita_2018PHXF0439P.pdf6.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.