DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/15026
Title: The thyroxine inactivating gene, type III deiodinase, suppresses multiple signaling centers in Dictyostelium discoideum
Authors: Singh, Shashi Prakash
Keywords: Biology
dio3
Thyroxine 5′ deiodinase
Dictyostelium
Signaling
Issue Date: Dec-2014
Publisher: Elsevier
Abstract: Thyroxine deiodinases, the enzymes that regulate thyroxine metabolism, are essential for vertebrate growth and development. In the genome of Dictyostelium discoideum, a single intronless gene (dio3) encoding type III thyroxine 5′ deiodinase is present. The amino acid sequence of D. discoideum Dio3 shares 37% identity with human T4 deiodinase and is a member of the thioredoxin reductase superfamily. dio3 is expressed throughout growth and development and by generating a knockout of dio3, we have examined the role of thyroxine 5′ deiodinase in D. discoideum. dio3− had multiple defects that affected growth, timing of development, aggregate size, cell streaming, and cell-type differentiation. A prominent phenotype of dio3− was the breaking of late aggregates into small signaling centers, each forming a fruiting body of its own. cAMP levels, its relay, photo- and chemo-taxis were also defective in dio3−. Quantitative RT-PCR analyses suggested that expression levels of genes encoding adenylyl cyclase A (acaA), cAMP-receptor A (carA) and cAMP-phosphodiesterases were reduced. There was a significant reduction in the expression of CadA and CsaA, which are involved in cell–cell adhesion. The dio3− slugs had prestalk identity, with pronounced prestalk marker ecmA expression. Thus, Dio3 seems to have roles in mediating cAMP synthesis/relay, cell–cell adhesion and slug patterning. The phenotype of dio3− suggests that Dio3 may prevent the formation of multiple signaling centers during D. discoideum development. This is the first report of a gene involved in thyroxine metabolism that is also involved in growth and development in a lower eukaryote.
URI: https://www.sciencedirect.com/science/article/pii/S0012160614005284#keys0005
http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/15026
Appears in Collections:Department of Biological Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.