DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/15138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGhosh, Sarbani-
dc.date.accessioned2024-08-07T10:23:22Z-
dc.date.available2024-08-07T10:23:22Z-
dc.date.issued2021-06-
dc.identifier.urihttps://pubs.aip.org/aip/apl/article/118/22/223302/1061203/Electronic-structure-optical-properties-morphology-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/15138-
dc.description.abstractFuture developments of the thermoelectric technologies based on conducting polymer require to find n-type polymers with performance, especially electrical conductivity, comparable to the one of the state-of-the-art p-type conducting polymers. In this regard, naphthalenediimide based donor–acceptor copolymers have appeared as promising candidates. The backbone of the polymer can be engineered to control the electronic structure and the morphology of the chains in order to maximize both the charge carrier density and mobility. However, at the moment a complete theoretical insight from electronic structures to charge transport is missing. Here, we use a multiscale theoretical framework to study naphthalenediimide based donor–acceptor copolymers where the donor π-conjugated dithienylvinylene moieties are replaced by π non-conjugated dithienylethane in various amounts, and we show that this approach is in position to rationalize many experimental data. The resulting gradual change in electronic structure of polymer chains is investigated by the density functional theory and correlated with experimental absorption spectra. The morphology of a polymer film is studied by means of molecular dynamics simulations, showing that an extended network of inter-chain π–π stacking is preserved upon introduction of non-conjugated units in the polymer backbone. This finding is supported by a subsequent calculation of the charge transport, which shows only a moderate impact of the morphology on the mobility, while the experimental data can be retrieved by considering the effect of the π non-conjugated moiety on the electronic structure. Such a multiscale description of conducting polymers paves the way toward fully theoretical design of future high performances materialsen_US
dc.language.isoenen_US
dc.publisherAIPen_US
dc.subjectChemical Engineeringen_US
dc.subjectThermoelectric (TE) energyen_US
dc.subjectThermoelectricen_US
dc.subjectMorphologyen_US
dc.subjectNaphthalenediimideen_US
dc.titleElectronic structure, optical properties, morphology and charge transport in naphthalenediimide (NDI)-based n-type copolymer with altered π-conjugation: A theoretical perspectiveen_US
dc.typeArticleen_US
Appears in Collections:Department of Chemical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.