Please use this identifier to cite or link to this item:
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/15593
Title: | Chirality induction to porphyrin derivatives co-confined at the air–water interface with silica nano-helices: towards enantioselective thin solid film surfaces |
Authors: | Grover, Nitika |
Keywords: | Chemistry Supramolecular networks Surface plasmon resonance (SPR) |
Issue Date: | 2024 |
Publisher: | RSC |
Abstract: | A supramolecular approach based on self-assembled structures allows the formation of large structured co-assemblies based on chiral and achiral compounds with original physicochemical features. In this contribution, an achiral and hydrophobic porphyrin was co-assembled at the air–water interface with mesoscopic silica nano-helices dispersed in the water subphase of a Langmuir trough without covalent bond formation. This procedure allowed transferring the porphyrin/nano-helix co-assemblies on a solid support within a thin hybrid layer. The interaction between the two species was characterized using spectroscopic techniques and atomic force microscopy. As evidenced by the circular dichroism measurements performed directly on solid films, tunable chirality was induced to the porphyrin aggregates according to the chirality of the silica nano-helices. When the co-assemblies were transferred on surface plasmon resonance (SPR) slides and exposed to aqueous solutions of histidine enantiomers, selective chiral discrimination was observed which was determined by the matching/mismatching between the chirality of the analyte and the helicity of the nano-helical structure. |
URI: | https://pubs.rsc.org/en/Content/ArticleLanding/2024/NR/D4NR02344G http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/15593 |
Appears in Collections: | Department of Chemistry |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.