DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16323
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaman, Sundaresan-
dc.date.accessioned2024-11-11T09:49:42Z-
dc.date.available2024-11-11T09:49:42Z-
dc.date.issued2022-09-
dc.identifier.urihttps://journals.lww.com/ijo/fulltext/2022/09000/Advances_in_the_diagnosis_of_herpes_simplex.24.aspx?context=LatestArticles-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16323-
dc.description.abstractInfectious keratitis, especially viral keratitis (VK), in resource-limited settings, can be a challenge to diagnose and carries a high risk of misdiagnosis contributing to significant ocular morbidity. We aimed to employ and study the application of artificial intelligence-based deep learning (DL) algorithms to diagnose VK.en_US
dc.language.isoenen_US
dc.publisherWolters Kluweren_US
dc.subjectComputer Scienceen_US
dc.subjectDeep Learning (DL)en_US
dc.subjectNecrotising keratitisen_US
dc.titleAdvances in the diagnosis of herpes simplex stromal necrotising keratitis: A feasibility study on deep learning approachen_US
dc.typeArticleen_US
Appears in Collections:Department of Computer Science and Information Systems

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.