DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSharma, Yashvardhan-
dc.date.accessioned2024-11-14T06:57:04Z-
dc.date.available2024-11-14T06:57:04Z-
dc.date.issued2021-08-
dc.identifier.urihttps://link.springer.com/article/10.1007/s00521-021-06450-4-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16370-
dc.description.abstractIn the current era of social media, the popularity of smartphones and social media platforms has increased exponentially. Through these electronic media, fake news has been rising rapidly with the advent of new sources of information, which are highly unreliable. Checking off a particular news article is genuine or fake is not easy for any end user. Search engines like Google are also not capable of telling about the fakeness of any news article due to its restriction with limited query keywords. In this paper, our end goal is to design an efficient deep learning model to detect the degree of fakeness in a news statement. We propose a simple network architecture that combines the use of contextual embedding as word embedding and uses attention mechanisms with relevant metadata available. The efficacy and efficiency of our models are demonstrated on several real-world datasets. Our model achieved 46.36% accuracy on the LIAR dataset, which outperforms the current state of the art by 1.49%.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectComputer Scienceen_US
dc.subjectFake newsen_US
dc.subjectSocial mediaen_US
dc.subjectLIAR dataseten_US
dc.titleAENeT: an attention-enabled neural architecture for fake news detection using contextual featuresen_US
dc.typeArticleen_US
Appears in Collections:Department of Computer Science and Information Systems

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.