DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16506
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Anu-
dc.contributor.authorGupta, Rajiv-
dc.date.accessioned2024-11-26T11:04:45Z-
dc.date.available2024-11-26T11:04:45Z-
dc.date.issued2023-07-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-981-99-0483-9_5-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/16506-
dc.description.abstractThis paper presents a low-power ASIC architecture of a feedforward Artificial Neural Network using Posit representation. The ASIC Posit shows 50% improvement over ASIC using IEEE 754 format in terms of Power and Silicon Area and is also 13% faster while achieving the same accuracy. The same design using the FPGA platform consumes more power than the ASIC design. The designs are done using Cadence RTL Encounter with TSMC 180 nm technology node.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectEEEen_US
dc.subjectASICen_US
dc.subjectArtificial neural networks (ANN)en_US
dc.titleEfficient ASIC Implementation of Artificial Neural Network with Posit Representation of Floating-Point Numbersen_US
dc.typeBook chapteren_US
Appears in Collections:Department of Electrical and Electronics Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.