DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/17361
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDwivedi, Gaurav-
dc.date.accessioned2025-02-07T09:30:11Z-
dc.date.available2025-02-07T09:30:11Z-
dc.date.issued2022-03-
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/17476933.2022.2048297-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/17361-
dc.description.abstractThe aim of this article is twofold: firstly, we deal with the existence and multiplicity of weak solutions to the Kirchhoff problem: ⎧ ⎪ ⎨ ⎪ ⎩ −𝑎⁡(∫Ω|∇𝑢|𝑁d𝑥)⁢Δ𝑁⁢𝑢= 𝑓⁡(𝑥,𝑢) |𝑥|𝑏 +𝜆⁢ℎ⁡(𝑥)in Ω,𝑢=0on ∂Ω, where Ω is a smooth bounded domain in ℝ𝑁⁢(𝑁≥ 2) and 0≤𝑏<𝑁. Secondly, we deal with the existence and multiplicity of weak solutions to the Kirchhoff problem: −𝑎⁡(∫ℝ𝑁|∇𝑢|𝑁+𝑉⁡(𝑥)⁢|𝑢|𝑁d𝑥)⁢(Δ𝑁⁢𝑢+𝑉⁡(𝑥)⁢|𝑢|𝑁−2⁢𝑢)= 𝑔⁡(𝑥,𝑢) |𝑥|𝑏 +𝜆⁢ℎ⁡(𝑥)in ℝ𝑁, where 𝑁≥ 2 and 0≤𝑏<𝑁. We assume that f and g have critical exponential growth at infinity. To establish our existence results, we use the mountain pass theorem, Ekeland variational principle and Moser–Trudinger inequality.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectMathematicsen_US
dc.subjectKirchhoff type problemen_US
dc.subjectExponential nonlinearityen_US
dc.subjectVariational methodsen_US
dc.subjectCritical growthen_US
dc.titleExistence and multiplicity of solutions to N-Kirchhoff equations with critical exponential growth and a perturbation termen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.