DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/17639
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYadav, Sangita-
dc.date.accessioned2025-02-13T04:38:22Z-
dc.date.available2025-02-13T04:38:22Z-
dc.date.issued2023-10-
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/cmam-2023-0061/html-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/17639-
dc.description.abstractThis article develops and analyses a conforming virtual element scheme for the spatial discretization of parabolic integro-differential equations combined with backward Euler’s scheme for temporal discretization. With the help of Ritz–Voltera and L2 projection operators, optimal a priori error estimates are established. Moreover, several numerical experiments are presented to confirm the computational efficiency of the proposed scheme and validate the theoretical findings.en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.subjectMathematicsen_US
dc.subjectDifferential equationsen_US
dc.subjectError estimatesen_US
dc.subjectVirtual element methoden_US
dc.subjectParabolic integro-differential equationsen_US
dc.titleA conforming virtual element method for parabolic integro-differential equationsen_US
dc.typeArticleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.