DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/19228
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSinha, Yash-
dc.date.accessioned2025-08-25T10:20:12Z-
dc.date.available2025-08-25T10:20:12Z-
dc.date.issued2018-10-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-981-13-1595-4_55-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/19228-
dc.description.abstractWe present an approach to detect lung cancer from CT scans using deep residual learning. We delineate a pipeline of preprocessing techniques to highlight lung regions vulnerable to cancer and extract features using UNet and ResNet models. The feature set is fed into multiple classifiers, viz. XGBoost and Random Forest, and the individual predictions are ensembled to predict the likelihood of a CT scan being cancerous. The accuracy achieved is 84% on LIDC-IRDI outperforming previous attempts.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.subjectComputer Scienceen_US
dc.subjectLung cancer detectionen_US
dc.subjectCT scansen_US
dc.subjectDeep residual learningen_US
dc.subjectResNeten_US
dc.subjectMedical image analysisen_US
dc.titleLung cancer detection: a deep learning approachen_US
dc.typeBook chapteren_US
Appears in Collections:Department of Computer Science and Information Systems

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.