
Please use this identifier to cite or link to this item:
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/19425
Title: | Reliability analysis of imperfect repair and switching failures: a bayesian inference and monte carlo simulation approach |
Authors: | Shekhar, Chandra |
Keywords: | Mathematics Switching failure Imperfect repair Mean time-to-failure Availability γ-prior β-prior Monte-Carlo simulation |
Issue Date: | Jun-2025 |
Publisher: | Elsevier |
Abstract: | Reliability analysis of complex systems is essential to ensuring their dependable operation. This study examines a dual-active, single-standby storage unit system, which is integral to various industrial and technological applications. The research delves into the reliability metrics of this system, particularly addressing the challenges posed by unreliable repairs and standby switching failures. Bayesian inference, utilizing Gamma and Beta prior distributions along with Monte Carlo simulations, offers a robust methodology for estimating unknown parameters and deriving posterior distributions. The analysis assumes exponential distributions for both time-to-failure and time-to-repair, while time-to-inspection for perfect and imperfect rejuvenations also follows exponential distributions. The probability of unsuccessful standby switching, denoted as , is incorporated into the model. The results, presented through detailed tables and graphical representations, provide valuable insights into the system’s reliability and the effectiveness of the statistical methods employed. |
URI: | https://www.sciencedirect.com/science/article/pii/S0377042724007064 http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/19425 |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.