DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/20090
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDunning, Antony J.-
dc.contributor.authorMingins, James-
dc.contributor.authorPethica, Brian A.-
dc.contributor.authorRichmond, Peter-
dc.date.accessioned2025-11-18T10:47:39Z-
dc.date.available2025-11-18T10:47:39Z-
dc.date.issued1978-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/20090-
dc.description.abstractNumerical calculations of the pressure and electrical contribution to the Helmholtz interaction free energy for two uniformly charged sheets interacting across 1 : 1 electrolyte solution are presented. The model differs from that considered by most other workers in that the electrolyte is allowed to penetrate the charged surfaces. Further, in addition to the cases of constant charge and constant potential, the case where the surfaces contain reversibly ionised groups is considered. In order that the results may have some relevance to cell–membrane interactions, all the numerical calculations are done using parameters which represent approximately the conditions in physiological saline solution. The results for constant potential are identical to those obtained for impenetrable interacting charged sheets. The results for constant charge differ in an essential way. Specifically, the pressure in the limit of zero separation tends to a constant value whereas for impermeable surfaces it is, for small separations, inversely proportional to the square of the separation and thus diverges as the separation approaches zero. Consequently, the difference between constant potential and constant charge for this model is not as marked as differences obtained by other workers who studied impermeable surfaces. As one might anticipate, the results for reversibly ionised surfaces lie between the two extremes of constant charge and constant potential. Present calculations differ from those of Gingell in that the complete Poisson–Boltzmann equation is solved numerically.en_US
dc.language.isoenen_US
dc.publisherJournal of the Chemical Society : Faraday Transaction - I. The Chemical Society, London. 1978, 74 (09-12)en_US
dc.subjectChemistryen_US
dc.subjectCharged surfacesen_US
dc.subjectElectrical double layeren_US
dc.subjectJournal of the Chemical Society : Faraday Transaction - Ien_US
dc.titleElectrical Force Between Two Permeable Planar Charged Surfaces in an Electrolyte Solutionen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles (before-1995)

Files in This Item:
File Description SizeFormat 
2617-2624.pdf
  Restricted Access
358.37 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.