
Please use this identifier to cite or link to this item:
http://dspace.bits-pilani.ac.in:8080/jspui/handle/123456789/2649
Title: | Temperature Optimization in Non-isothermal Tubular Reactor using Genetic Algorithm |
Authors: | Pani, Ajaya Kumar |
Keywords: | Chemical Engineering Genetic Algorithm Non-isothermal reactor Mutation function |
Issue Date: | 2020 |
Publisher: | IEEE |
Abstract: | Genetic algorithm (GA) is a heuristic search algorithm that is inspired by evolution. It is a powerful optimization tool that uses the stochastic procedure with populations of initial guesses rather than using a single value like gradient-based methods. This prevents GA from being trapped in a local optimum. In the present work, GA applications to industrial optimization problems are thoroughly reviewed to get a perspective on different variations of genetic algorithms being used in industries. Subsequently, GA is applied to an industrial tubular reactor system where the technique is used to determine the optimum feed temperature at reactor inlet so that the product attains desirable temperature at the reactor outlet. In addition to successful application of GA, some other performances such as effect of mutation function and selection technique on the number of iterations are also investigated. |
URI: | https://ieeexplore.ieee.org/abstract/document/9137782 http://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/2649 |
Appears in Collections: | Department of Chemical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.