DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bits-pilani.ac.in:8080/jspui/xmlui/handle/123456789/9633
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHazra, Arnab-
dc.date.accessioned2023-03-10T09:05:21Z-
dc.date.available2023-03-10T09:05:21Z-
dc.date.issued2021-
dc.identifier.urihttps://pubs.rsc.org/en/content/articlelanding/2021/an/d0an01757d-
dc.identifier.urihttp://dspace.bits-pilani.ac.in:8080/xmlui/handle/123456789/9633-
dc.description.abstractThis work presents a comparative sensing study of three sensors based on pristine TiO2 nanotubes, Pd loaded TiO2 nanotubes, and Pt loaded TiO2 nanotubes. Pristine TiO2 nanotubes were synthesized using an electrochemical anodization method and an electroless plating method was used for the uniform deposition of noble metal nanoparticles of either Pd or Pt over the surface of TiO2 nanotubes. The samples were thoroughly characterized by XRD, FESEM, EDS, TEM, and XPS techniques. The sensitivity of all three sensors was investigated at room temperature (300 K) for different volatile organic compounds like ethanol, methanol, 2-propanol, acetone, and benzene. The results revealed that loading of Pd and Pt nanoparticles improved the response magnitude of the sensor remarkably as these noble metals possess better oxygen dissociation capability than pristine TiO2. The Pd–TiO2 nanotube sensor exhibited a maximum response magnitude of 20–98% towards 100–1000 ppb of ethanol at room temperature. Notably, the formation of Pd/Pt–TiO2 discrete heterojunctions on the surface of TiO2 nanotubes was found to be responsible for enhanced sensitivity of the sensors.en_US
dc.language.isoenen_US
dc.publisherRSCen_US
dc.subjectEEEen_US
dc.subjectElectrolessen_US
dc.subjectEthanolen_US
dc.subjectSilver nanoparticlesen_US
dc.titleElectroless deposition of Pd/Pt nanoparticles on electrochemically grown TiO2 nanotubes for ppb level sensing of ethanol at room temperatureen_US
dc.typeArticleen_US
Appears in Collections:Department of Electrical and Electronics Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.