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ABSTRACT 

Tungsten Heavy Alloy (WHA) is a two phase composite alloy having a unique 

combination of high density, high thermal conductivity, high strength, moderate 

ductility and good corrosion resistance. Due to these excellent properties, WHAs are 

ideally suitable for a wide range of density application, especially in kinetic energy 

penetrator (KEP). WHAs and depleted uranium (DU) alloys are currently the basic 

materials for KEPs. However, DU alloys have raised serious concerns about long-

term environmental pollution and health issues. Hence, a considerable effort has been 

focused on improving the manufacturability of WHAs. Manufacturing of KEP 

involves liquid phase sintering or extrusion followed by swaging to form bars with 

non-uniform cross section area. Therefore, to get the desired finish/shape as well as 

a precise dimension, machining is indispensable as a secondary operation. However, 

the properties that make WHA as one of the prospective materials for KEPs, pose a 

challenge while machining them into long rods of desired dimensions and finish. 

Present study focuses on the machinability of WHAs in terms of different machining 

characteristics such as chip morphology, material removal rate, cutting forces, 

surface roughness and tool wear under varied cutting conditions. From the 

machinability tests, there exists a strong relationship between various machining 

outputs, such as chip morphology, material removal rate, cutting force and surface 

roughness and input parameters namely, cutting velocity, feed rate, tool geometry 

and tungsten content. Furthermore, experimental tool wear results show that flank 

wear growth significantly affects other machining outputs. The predominant wear 

mechanism is identified as adhesion based on SEM analysis and three commonly 

used analytical tool wear rate models and one newly proposed model (modified Zhao 

model) are utilized for the prediction of flank wear growth and tool life. It is observed 

that the modified Zhao model could predict tool flank wear fairly well within error 

percentage of 4-7%. 

The fundamental understanding of the chip formation mechanism leads to proper 

choice of cutting tools, workpiece fixture, cutting parameters and its optimization. 

However, the trial and error experimental tests are very time consuming and 
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expensive. Hence, a 2D FE model has been developed to overcome the limitations of 

experimental tests. Various parametric studies are performed to fine-tune the input 

parameters (especially related to material models) with the aim of producing results 

closer to experimental ones. It is well known that the chip formation in machining 

operation involves high strain-rates and temperatures, large plastic deformations, 

localization of failure of target material, etc. This predominantly adds complications 

in modelling the material behavior accurately undergoing deformation during FE 

simulations. Thus, four different sets of JC constants, namely, M1, M2, M3 and M4 

are considered. The first three models are based on experimental approach wherein 

the high strain rate test data are taken from literature and material constants are 

determined using conventional optimization technique, GA and ABC algorithm, 

respectively. Whereas, M4 is determined from machining tests using the analytical 

approach in conjunction with PSO algorithm. Besides, damage model constants are 

also determined for the given grades of WHAs using a combined experimental–

numerical approach. To validate the identified material and damage constants, 

machining outputs (cutting forces, temperature and shear strain) are predicted 

considering M1, M2, M3 and M4 along with the damage constants as input under 

different cutting conditions and compared with the corresponding experimental 

values. The predicted outputs obtained using M4 closely matched with that of the 

experimental ones with error percentage well within 10%. FE based analysis provided 

detailed qualitative and quantitative insight to the chip formation process that is very 

much required for profound understanding of the influence of machining parameters 

and their optimization. 

Finally, multi-objective optimization is performed using two different approaches, 

namely, L27 orthogonal array design and full factorial design. The first approach used 

experimental test data, whereas the second approach used the developed FE model to 

generate full factorial data. The former used Grey Relational Analysis (GRA) while 

the latter used evolutionary algorithms, namely NSGA II, Hybrid ABC (HABC) and 

Hybrid Cuckoo Search (HCS) to perform multi-objective optimization. The data for 

GRA is derived from experimental tests based on L27 orthogonal array. While, FE 

simulations are performed for generating the full factorial data for the evolutionary 

algorithms. The optimum combinations predicted by each method is compared and 
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validated by performing confirmation tests. HCS outperformed others while NSGA 

II showed higher deviation in the predicted values. The optimum cutting conditions 

predicted using HCS algorithm can be employed in precise machining of WHAs for 

manufacture of KEPs that require stringent design tolerances.  
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Chapter1 INTRODUCTION 

The current chapter briefly describes the broad research area, provides the 

background of the study and gives an overview of the proposed research work. 

Finally, the objectives of the current research work and outline of the thesis are 

presented.  

1.1 Tungsten heavy alloys and its applications 

Tungsten Heavy Alloy (WHA) is a two phase composite alloy consisting of a 

primary phase (nearly spherical) tungsten particles and a secondary phase of a matrix 

of iron-nickel elements. These alloys provide a unique combination of high density, 

high thermal conductivity, high strength, moderate ductility and good corrosion 

resistance. The most outstanding property of WHA is the high density of 17-19 g/cm³. 

Such comparable densities are only reached by gold or platinum metals, which are 

considerably more expensive. Other exotic materials like rhenium, uranium or 

tantalum achieve these densities, but are either too difficult or expensive to obtain, or 

have unsatisfactory mechanical characteristics. Due to these excellent properties, 

WHAs are ideally suitable for a wide range of density applications such as 

counterweights, inertial masses, radiation shielding, sporting goods, and 

ammunitions (Hong, Ryu and Baek 2002, Kiran, et al. 2016), as shown in Figure 1.1 

 

Figure 1.1 Applications of WHAs 
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1.2 Kinetic energy penetrators 

  A kinetic energy penetrator (KEP) is a type of weapon that does not contain 

explosives, like that of a bullet, instead uses kinetic energy to penetrate the target. 

High density materials enable the long rod penetrators to bring a large amount of 

kinetic energy to bear upon a small presented area of a target, while high strength and 

good ductility ensure penetrators surviving the severity of their launch and 

touchdown. WHAs and depleted uranium (DU) alloys are currently the basic 

materials for KEPs. However, DU alloys have raised serious concerns about long-

term environmental pollution and health issues, so a considerable effort has been 

focused on improving the susceptibility of WHAs. WHAs with tungsten content 90-

97% possess an excellent combination of mechanical properties comparable to DU, 

thus, replacing DU in various high density applications. Table 1.1 shows the 

mechanical properties of both DU and WHA.  

Table 1.1 Mechanical properties of DU and WHA 

Mechanical Properties 
DU (Crowe, Hasson and 

Joyce 1980) 
WHA (Das,et al. 2010) 

Tensile Strength 1130-1580 MPa 580- 1400 MPa 

Elongation 2-25% 5-30% 

Density 18-18.6 g/cm
3

 16-18.8 g/cm
3

 

Hardness Up to 42 HRC >29.5 HRC 

High temperature stability Up to 960 °C Up to 1000 °C 

Thermal conductivity 27.5-35 W/m-K 50-70 W/m-K 

Liquid phase temperature 1100-1200 °C 1200-1350 °C 

 

The density of WHAs increases with the tungsten content, which makes it 

indeed a material of choice for high density applications. But with the increase in 

density, ductility of the material decreases and hardness increases, making these 

alloys as one of the difficult to cut materials (Islam, et al. 2007, Magness Jr. 1994). 

As it is known that parts of critical weight and tight tolerance essentially require some 

secondary machining operations, understanding the machining behaviour of WHAs 

is very much necessary. 

1.3 Research motivation and scope 

The defense industry is a strategically important sector in our country that 

continuously demands technological advancements in ammunitions. The KEP is a 
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type of ammunition that typically refers to a modern armor-piercing weapon, known 

as armor-piercing fin-stabilized discarding sabot (APFSDS), a type of long-rod 

penetrator. These penetrators are different from small arms bullets. APFSDS is used 

to attack modern vehicle armors such as tanks, aircrafts and ships. The basic principle 

of the KEP is that it uses its kinetic energy, which is a function of mass and velocity, 

to compel its way through armor. The modern KEP maximizes kinetic energy and 

minimizes the area over which it is delivered. This is achieved by firing with a very 

high muzzle velocity concentrating the force in a small impact area. While doing this, 

it still retains a relatively large mass maximizing the mass of whatever (though small) 

volume is occupied by the projectile. This demands the use of densest metals as the 

most feasible solution. The core of a KEP is made up of WHA which is commonly 

10–30 mm in diameter and 500–800 mm in length. As more modern penetrators are 

developed, their length tends to increase and the diameter tends to decrease. 

1.4 Need of study on machining of Tungsten heavy alloys 

The efficiency of KEPs depends on self-sharpening ability, high density, and 

high strength to withstand the impact (Das , et al. 2014, Venkatesan 1985). WHAs 

with higher tungsten content possess such characteristic features. These alloys are 

processed by liquid phase sintering followed by swaging (Prabhu, Kumar and Nandy 

2018, Liang and Wang 1996). Generally, the swaged tungsten alloy bars that form 

the cores of KEPs may develop a non-uniform cross-section and poor surface finish 

(Dikshit 1998). Therefore, to get the desired finish/shape as well as a precise 

dimension, machining is indispensable as a secondary operation. However, the 

properties that make WHA as one of the prospective materials for KEPs, pose a 

challenge while machining them into long rods of desired dimensions and finish. 

WHAs are generally considered to have machinability similar to gray cast iron 

because of its abrasiveness and formation of small fragmented chips. Not only this, 

with high elastic stiffness, WHAs require greater cutting forces which essentially 

demands rigid tooling and adequate spindle torque for effective machining. Tool wear 

occurs at a much faster rate while machining WHAs because of tungsten’s 

abrasiveness as well as high temperatures attained due to the heat generated in high 

speed and heavy feed machining. Hence, to avoid frequent tool replacements 
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(because of tool failures) and chatter (because of higher forces), Metal Removal Rate 

(MRR) has to be relatively low. This causes longer machining time, which leads to a 

lower productivity, certainly, an issue that needs utmost attention. 

The age old techniques of trial and error experimental tests have, no doubt, 

laid the foundation stone in the area of metal cutting studies; but they are very time 

consuming and expensive. The focus, nowadays, is mainly to simulate the real 

machining operation by Finite Element (FE) models, which may substitute the 

expensive cutting experiments to a great extent (Becker, et al. 2018). These 

simulations predict some of the difficult to measure variables (stress, strain and 

machining temperature) that provide a detailed insight into the chip formation 

process. Furthermore, FE simulations take into consideration the material properties 

and non-linearity better than analytical models, thereby predicting results with higher 

accuracy. This motivates us to develop an FE model and understand the machining 

behavior of WHAs under varied cutting conditions using commercial FE package 

ABAQUS. Much of the focus would be given to the selection of an appropriate 

material and damage model and determination of their respective material constants 

while performing the FE simulations. Various parametric studies are performed to 

fine–tune the input parameters with the aim of producing results closer to the 

experimental results. FE based analysis provides detailed qualitative and quantitative 

insight to the chip formation process that is very much required for profound 

understanding of the influence of machining parameters and their optimization. 

Furthermore, a methodology is developed that makes use of a hybrid approach 

to determine the optimal cutting parameters while machining WHAs with minimum 

possible experimental tests. The developed FE model is used for the generation of 

full factorial data required for performing multi-objective optimization. The current 

research work makes use of Grey relational analysis (GRA) and Non-dominating 

sorting genetic algorithm (NSGA-II) as benchmarks and proposes two hybrid 

algorithms namely, Hybrid artificial bee colony algorithm (HABC) and Hybrid 

cuckoo search algorithm (HCS), for performing multi-objective optimization. 
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Chapter2 LITERATURE REVIEW 

Metal cutting or machining is the most important mechanical process in the 

industry through which almost all the products get their final shape and size, either 

directly or indirectly. The technique by which the metal is cut or removed is complex 

not merely because it involves high straining and heating but also because the 

conditions of operation are most varied in the machining process as compared to other 

manufacturing processes (Modern metal cutting : a practical handbook 1997). The 

type of input parameters selected during the machining process decides the output 

variables. The critical output variables are cutting force and power, surface finish, 

tool wear and tool failure, the size and properties of the finished product. A small 

change in input variables say, cutting parameters, tool geometry and workpiece or 

tool material may alter these output variables to a great extent (Akdemir, et al. 2012, 

Astakhov 2006). A large number of input variables leads to a significant number of 

combinations and consequently, understanding the interrelationship between the 

input and output variables, becomes an arduous task. Therefore, researchers have 

always been fascinated by the area of metal cutting both for its obvious technical and 

economic importance and the complexities associated with the process. Efforts are 

being made continuously to understand the complex mechanism of cutting in a simple 

and an effective way. The age-old technique of trial and error experiments has 

contributed significantly and is still widely used in metal cutting research. Various 

mathematical models have also been developed which form the core of the metal 

cutting theory. These models range from simplified analytical models to complex, 

computer-based numerical models. 

WHA has emerged as one of the superior materials for high-density 

applications, especially in armour-piercing (AP) ammunition (Kiran, et al. 2015) 

because of its additional unique properties like high elastic modulus, toughness, 

corrosion resistance, and hardness. However, such properties pose challenges while 

machining during manufacture of KEPs. To overcome such challenges, there is a 

need for a proper understanding of machinability aspects of these alloys. Hence, a 

detailed literature review is presented in this chapter that gives a better insight of the 

recent developments and achievements in the area of conventional machining. The 

chapter also discusses the mechanical behavior of WHAs and the probable challenges 
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faced during machining of such alloys. Finally, based on the literature survey, 

research gaps are addressed and objectives are stated to overcome the identified gaps. 

2.1 Characterization studies on WHAs 

In general, WHAs are processed by three different methods, namely, liquid 

phase sintering (LPS), spark plasma sintering (SPS), and extrusion. Further to 

compact these alloys, swaging is performed. Material properties vary based on 

tungsten content and its alloying elements. The density, thermal conductivity, yield 

strength, and hardness tend to increase with the increase in tungsten content (Gero, 

Borukhin and Pikus 2001). Islam, et al. (2007) performed microstructural analysis on 

three grades of WHA (88, 93 and 95 WHA). The observations showed that an 

increase in tungsten content increases the grain size, solid volume fraction, 

contiguity, and connectivity. The tensile test and fractography study revealed that the 

tensile properties of these alloys are affected by the matrix volume fraction and 

contiguity. Kiran, et al. (2013) found that with the increase in tungsten content, there 

was a decrease in elongation and impact properties due to increased contiguity and 

reduced volume fraction of the matrix phase.  

Similarly, Das, et al. (2010) found that different alloying elements like copper 

and iron in the matrix affected tensile behavior. The WHA containing iron exhibited 

superior tensile properties at room temperature because W-grain undergoes cleavage 

fracture due to a stronger matrix phase. In contrast, WHA containing copper exhibited 

inferior tensile properties as the matrix suffered interface fracture due to a relatively 

weaker matrix phase. On performing high-temperature tensile tests on WHA (Gong, 

Fan and Ding 2015), it was observed that the mechanical properties such as ultimate 

tensile strength, yield strength and fracture strength decreased with an increase in 

temperature. The findings were supported by scanning electron microscope (SEM) 

fractographic observations, which showed that the W cleavage and ductile rupture of 

matrix phase was dominant at room temperature, whereas at elevated temperatures 

(400-1100 °C) fracture was purely because of W/M and W/W interfacial debonding. 

Similarly, the effect of cyclic heat treatment was investigated (Kiran, Kumar, et al. 

2016) wherein it was found that the increase in the number of heat treatment cycles 

increased the solubility of tungsten in the matrix and the matrix volume fraction and 
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consequently, improved the fracture toughness. However, no change in work 

hardening exponent was observed.  

Further, Zhou, et al.(2004) performed high strain rate tensile impact tests 

taking strain rates in the range of 100-1300 s-1 to analyze the effect of strain softening 

and fracture behavior of WHA. The observations showed that an increase in strain 

rate increased the tensile strength, but decreased the failure strain. The fractographic 

observations showed that the matrix developed dimples followed by void formation 

and void coalescence indicating ductile failure behavior of matrix. In contrast, 

tungsten grains failed predominantly due to trans-granular cleavage fracture. 

  The high strain rate torsion test on WHA was also performed (Kim, Lee and 

Noh 1998) on the torsional Klosky bar. The tests revealed that the shear stress 

increased, while the shear strain decreased due to adiabatic shear bandings formation 

at a point where shear strain was minimum and shear stress was maximum. The 

compression tests performed on 90 WHA by (Coates and Ramesh 1991) taking strain 

rates in the range of 10-4 to 7 ×103 s-1 found that the material exhibited little strain 

hardening. However, flow stress increased up to 25% with an increase in strain rate 

as more significant hardening was observed in the matrix phase than that of tungsten 

grains. 

Similarly, Kim, et al. (1998) conducted a high strain rate compression tests 

for 93 WHA grade with strain rate in the range of 3000 to 5000 s-1 and performed 

controlled barreling test for temperature in the range of 25 to 725 °C for analyzing 

the shear band formation. SEM analysis showed that when the tests were conducted 

at room temperature, the shear band and fracture initiation were observed. Whereas 

at higher temperatures, thermal softening suppressed the shear band formation. Along 

the similar lines, Lee, et al. (1998) observed that flow stress increased with the 

increase in strain rate, but decreased with the increase in temperature. Also, work 

hardening decreased considerably with the increase in strain rate and temperature. 

Hence, it could be concluded that there exists a strong relationship between strain 

rate and temperature, flow stress and micro hardness. Woodward, et al. (1985) also 

studied the effect of strain rates on 90, 95, and 97 WHA at room temperature and 
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analyzed the compression flow stress behavior. The results showed that softening 

occurred at the higher strain rates due to cracking and self-heating of the specimens.  

Similarly, Gero, et al. (2001) performed tensile and compression tests at lower strain 

rates for 90, 93, and 95 WHA grades. From fractography studies, it was found that 

the failure under tension occurred due to W-W interface separation, producing 

cleaved tungsten grains after strain hardening in the matrix phase. In contrast, failure 

under compression mode occurred after deeper deformation of tungsten grains and 

matrix phase. From this behavior, it could be concluded that the failure mode in 

compression completely differed from that of tension mode due to the absence of W-

W interface separation. It was also observed that with the decrease in tungsten 

content, there was an increase in plasticity of the alloy due to the ductile behavior of 

the matrix phase. 

Hence, from the above literature survey, it was observed that tungsten content, 

and the test conditions such as strain rate, type of loading and temperature 

significantly affect the material properties and mechanical behavior of WHAs. The 

detailed literature review on manufacturing aspects and associated mechanical 

properties of WHAs, so presented, would help in understanding the machining 

behavior of WHAs and addressing the concerns related to machining of WHAs which 

is a requisite during manufacture of KEPs.  

2.2 Manufacturing of KEPs 

WHAs are gaining popularity in defense applications for the development of 

KEPs owing to their high density, strength, and ductility (McLaughlin, et al. 2003). 

Adiabatic shear localization is an important deformation and failure mechanism of 

materials for penetrations at high strain rates, as observed in case of KEPs. Adiabatic 

shear bandings when formed on penetrator head keep the penetrator head in acute 

shape and reduce the diameter of the penetration tunnel, thus leading to self-

sharpening phenomenon (MagnessJr. 1994). But, WHAs are found to be resistant to 

such phenomena due to their high strain rate sensitivity. WHAs usually form 

mushroom-like heads, resulting in inferior penetration performance (Jinxu, et al. 

2008). Thus, creating WHAs with a high susceptibility to adiabatic shear bandings 

has been a goal for many years. The manufacturing of KEPs involves either LPS, 
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SPS or extrusion followed by swaging as primary operation (Jinxu, et al. 2008, 

Xiaoqing, et al. 2010). WHA with 90W sintered by LPS in vacuum environment 

showed even grain distribution with dispersed coarse tungsten grains (Vettivel, 

Selvakumar and Leema 2013), whereas, SPS could produce fine grains with lesser 

W-W contiguity in WHA (Li, et al. 2014). Extrusion is one of the preferred methods 

for the generation of homogenous cylindrical specimens for WHAs (Essam, et al. 

2019). 

However, it was found that the hot-hydrostatic extrusion resulted in the poor 

susceptibility of WHA rod to adiabatic shear bandings on the axial direction (Jinxu, 

et al. 2008). One of the recent works stated that the self-sharpening ability can be 

enhanced by making improvements on the type of operations used such as hot 

extrusion, hot torsion, swaging (Xiaoqing, et al. 2010) and cyclic heat treatment 

processes (Kiran, Kumar, et al. 2016). Cury, et al. (2013) had investigated the 

performance of cobalt free WHA by long term vacuum heat treatment process to 

achieve mechanical properties close to cobalt containing WHA. The heat treatment 

process had improved grain refinement and solubility of tungsten grains in the matrix 

phase. This led to improved strength and ductility of cobalt free WHA with improved 

adiabatic shear bandings formation during penetration. Similarly, Luo, et al. (2016) 

compared the self-sharpening behavior of fine-grained WHA and conventional WHA 

rod with 95 W. It was observed that fine grained WHA had a 10.5% increased 

penetration depth compared to that of conventional WHA. This was due to W-W 

debonding, which was the main fracture mode for fine-grained WHA, and higher 

dynamic compression strength. Further, by grain refinement of higher grades of 

WHA using controlled heat treatment process, penetrator efficiency and adiabatic 

shear band formation were improved (Kim, et al. 1998). 

Employing extrusion followed by swaging as the only process, it is not 

possible to manufacture KEPs completely. Generally, the swaged tungsten alloy bars 

may develop non-uniform cross-section with poor surface finish. Therefore, in order 

to get the desired finish/shape as well as precise dimension, machining is necessary 

as a secondary operation. Smooth surface finish while machining is a must since the 

WHAs are highly notch sensitive and any stress concentration at the surface will lead 

to catastrophic failure during applications, especially in case of KEPs. But precision 
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machining with desired surface finish can be challenging and uneconomical owing 

to higher values of strength, hardness and elastic modulus of the alloys (Vladimir and 

Leonid 1997). Machining of hard materials involves significant challenges like tool 

wear, high co-efficient friction, poor surface finish, segmented or discontinuous chip 

formation and longer machining time (A. Pramanik 2013). Hard materials can be 

machined by two techniques i.e., grinding and turning. Grinding is suggested for 

small dimensional changes because grinding involves multiple cutting edges that are 

randomly scattered over grinding wheel and effective rake angles vary over a large 

area. This would form longer contact time and cause thermal damage to workpiece 

material (Ruzzi, et al. 2020). Hence, grinding is not much preferred for machining 

WHA (Sahin 2014). On the contrary, turning operation imparts greater precision, 

especially with regards to features such as concentricity, roundness and thread 

details/dimension. However, there are only a few research articles available related 

to the turning of WHAs. 

Although, significant efforts have been made to improve the primary 

processing techniques and mechanical behavior of WHAs (Das, Rao and Pabi 2010, 

Kiran, Kumar, et al. 2016), there are limited studies that address the challenges faced 

during machining of difficult to cut WHAs. Hence, the next section focuses on the 

machining aspects of various difficult to machine material that would help in 

performing machinability assessment on WHAs while exploring the alloys as 

prospective materials for KEPs. 

2.3 Machinability aspects 

The metal cutting process involves various independent and dependent 

variables. Independent variables are the input variables over which the machinist has 

direct control, as shown in Figure 2.1. The type of input parameters selected during 

the machining process decides the dependent variables. The important dependent or 

output variables are cutting force and power, surface finish, tool wear and tool failure, 

and the size and properties of the finished product. Machinability assessment is 

carried out by considering any of these output variables as one of the limiting criterion 

(Zimmerman , Boppana and Katbi 1989, Akdemir, et al. 2012, El-Hossainy, et al. 

2010, Zheng and Liu 2014), as discussed in the subsequent sections. It is a common 
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practice to perform turning experiments on a lathe equipped with a dynamometer for 

the measurement of cutting forces that are easier to analyze and directly related to the 

mechanics of the cutting process (Modern metal cutting : a practical handbook 1997). 

Extensive efforts have been made to evaluate the machining behavior of metallic 

materials. The present section reviews extensively the machinability of some of the 

difficult to machine materials such as titanium alloys, nickel-based alloys, tungsten 

copper composite, and copper infiltrated tungsten to discuss and present the effect of 

machining parameters on cutting force, heat generation, chip formation, tool wear, 

surface integrity and mechanical properties (hardness, residual stress, and fatigue). 

 

Figure 2.1 Factors affecting machinability 

The machinability of titanium alloys was reviewed and possible solutions were 

suggested to improve the machining efficiency of the same (A. Pramanik 2013, 

Pramanik and Littlefair 2015). From the study, it was observed that machining of 

titanium alloy was a complex process and had significant challenges like saw tooth 

chips, high temperature, high tool wear, residual stress, high-pressure loads, and 

undercut parts. Hence, the use of following methods like vibration analysis kit, high-

pressure coolant, cryogenic cooling, thermally enhanced machining, hybrid 

machining and high conductive cutting tool were suggested to overcome these 

challenges and improve the machinability of titanium alloy. Similarly, Thakur, et al. 

(2009) investigated the machinability of Inconel 718 alloy for high speed turning 

using cemented tungsten carbide tools. It was observed that machinability indices 

such as chip compression ratio were higher in Inconel 718 alloy due to work 

hardening during machining. A higher shear angle was observed as thin chips were 
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formed with reduced cutting force and friction at high speed turning. Also, flank wear 

and micro-chipping came out to be predominant failure modes which affected tool 

performance and tool life greatly. 

Further, a comparative study was performed (Parida and Maity 2018) on three 

nickel-based alloys, namely, Inconel 718, Inconel 625, and Monel-400 during hot 

turning process. The investigations showed that the type of workpiece material being 

machined greatly affected all the output variables. Higher cutting forces and better 

surface finish values were found while machining Inconel 718 as compared to that of 

the other two alloys. Notch wear was found to be the significant for Inconel 625, 

whereas diffusion and crater wear were predominant for Inconel 718 and Monel-400, 

respectively. Similarly, machinability studies were performed on infiltrated tungsten 

copper alloy and tungsten copper composite, respectively using the tungsten carbide 

tools (Das, Chakraborty, et al. 2008). The studies showed that the cutting force 

components were affected by feed rate for any value of cutting speed. The surface 

roughness increased with feed rate and decreased with an increase in cutting speed. 

From the response surface method (RSM) and analysis of variance (ANOVA), it was 

observed that a combination of higher cutting speed followed by a medium to low 

feed rate was advantageous in reducing cutting forces and surface roughness values 

(Gaitonde, et al. 2010). 

2.3.1 Cutting Forces and MRR 

The cutting forces in machining is a result of the extreme conditions at the 

tool-workpiece interface. This interaction can be directly related to many other output 

variables such as the generation of heat, tool wear and quality of machined surface as 

well as the chip morphology (Bartarya and Choudhury 2012, Saini, Ahuja and 

Sharma 2012). Moreover, the estimation of cutting forces is essential for the 

determination of the cutting power consumption, structural design of the machine–

fixture-tool system as well as condition monitoring of both the cutting and machine 

tools (Chen, et al. 2019). The cutting force is generally measured using a piezoelectric 

tool dynamometer during machining that captures the deflections or the strains in the 

elements supporting the cutting tool. A significant number of investigations were 

directed towards the prediction and measurement of cutting forces, of which few 

recent and most relevant ones are discussed below. 
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The effect of feed rate on cutting forces while machining St 44 steel. The 

results showed that cutting force decreased with increasing cutting speed and 

increased with an increase in feed rate at a constant depth of cut (Seker, Kurt and 

Ciftci 2004). Further, Filho, et al. (2019) investigated the effect of cutting speed, feed 

rate, and depth of cut on cutting force for Ti-6Al-4V and Ti-6Al-7Nb alloys under 

dry condition. The lowest cutting force was found when the depth of cut and feed rate 

was low and cutting speed was high. Further, it was observed that the depth of cut 

was the most significant factor affecting cutting force. Similarly, Wyen and Wegener 

(2010) studied the effect of cutting-edge radius on cutting forces while machining Ti-

6Al-4V with changing cutting speeds and feeds. From machining tests, it was found 

that, as compared to cutting force, feed force was more sensitive to change in cutting 

edge radius. The influence of cutting speed on feed force was nonlinear and was 

dependent on cutting edge radius. Similar investigations were performed on 

AISI52100 alloy steel (Shihab, Khan and Siddiquee 2013), AISI 1050 steel (Rao, Rao 

and Srihari 2013) and AISI D3 steel (Ravi and Gurusamy 2020). 

MRR is defined as the amount of material removed during machining from 

the workpiece per unit time. Experimental MRR is measured by taking the difference 

between initial weight of the workpiece before machining and final weight of the 

workpiece after machining for a specific period of time, as shown in equation (2.1). 

While equation (2.2) shows the analytical expression providing the relationship 

between cutting parameters and MRR. 

𝑀𝑅𝑅𝐸𝑥𝑝 = (
𝑊𝑖 − 𝑊𝑓

 𝑡𝑚
) 

(2.1)  

𝑀𝑅𝑅𝑇ℎ = 𝑉𝑐𝑓𝑑 (2.2)  

The dry turning was performed on Al6061 and the effect of process parameters were 

studied. It was observed that the feed rate had major influence on MRR followed by 

the depth of cut and cutting speed. Further, optimum process parameters were 

determined for finding desired MRR using ANOVA considering depth of cut of 0.15 

mm and cutting speed of 429 m/min (Rajendra and Deepak 2016). Similarly, Thakur, 

et al. (2020) investigated the effect of cutting parameters on MRR for AISI1018 low 

carbon steel and plastic mould steel (P20) during turning operation on CNC lathe 

using tungsten carbide tools. From the Taguchi analysis, the results revealed that 
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cutting speed had the most significant effects on MRR, followed by the depth of cut 

and feed rate for both the materials. Similar kind of findings were obtained in other 

works as well (Nguyen and Hsu 2017, A. Thakur, et al. 2020). However, based on 

the available literature, it is difficult to draw a general conclusion regarding cutting 

force and MRR with respect to various workpiece materials, thus instigating further 

investigations.  

2.3.2 Surface roughness 

Surface roughness is measured as the average deviation from nominal surface. 

This is a widely used index of product quality and, in most cases, a technical 

requirement for mechanical products (Khare, Agarwal and Srivastava 2018). 

Achieving the desired surface quality is of great importance for the functional 

behavior of a part. However, surface roughness is dependent on numerous 

uncontrollable factors that influence pertinent phenomena, thus making it almost 

impossible to find a straightforward solution. Hascalik and Caydas (2007) studied the 

effect of machining parameters on surface roughness while turning Ti-6Al-4V using 

uncoated tungsten carbide cutting tool. The ANOVA test revealed that feed rate had 

a major effect on surface roughness followed by the depth of cut. Further, Taguchi 

analysis using S/N ratios showed that velocity of 90 m/min, a feed rate of 0.15 

mm/rev and depth of cut of 0.5 mm had predicted lowest surface roughness values.  

Similarly, Singh, et al. (2016) studied the effect of nose radius on surface roughness 

while CNC turning of Aluminum 6061 under dry conditions. The ANOVA and RSM 

method exhibited that the nose radius followed by feed rate was the most significant 

parameters that affect surface roughness. Increasing the cutting speed and depth of 

cut increased surface roughness to a small extent. Whereas, increasing the nose radius 

resulted in decrease in surface roughness. Similar observations were also found while 

machining AISI4140 hardened steel and 300M high strength steel (Asilturk and 

Akkus 2011, Zheng, et al. 2018). 

2.3.3 Cutting temperature 

Temperature is one of the limiting factors in metal cutting operations that 

affect several parameters during cutting, such as tool life, mechanics of chip 
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formation, cutting forces, process efficiency, surface quality, etc. (Bartarya and 

Choudhury 2012, Liu, et al. 2020). The precise measurement of cutting temperature 

is not as straight forward as that of cutting forces. There is no simple equivalent 

device like a cutting tool dynamometer that exists for measuring the cutting 

temperature. Instead, several alternate methods have been proposed in the literature 

to measure cutting temperature during machining (Diaz-Alvarez, et al. 2017). Some 

of those methods are thermocouples, application of thermal paints, infrared radiation 

pyrometer, infrared photography, fine powder technique and metallographic methods 

(Goyal, et al. 2014). Most of the techniques provide limited information on complete 

temperature distribution during machining. 

Tool work thermocouples are the most practical and economic methods. 

However, these are not without limitations (Kuczmaszewski and Zagorski 2013) as 

these measure the mean temperature over the entire contact area and is incapable of 

determining high local or flash temperatures, which may occur for short periods 

(Stephenson 1991, Michalski, Strąk and Piasecka 2017). There are also risks of 

obtaining inaccurate results if a built-up edge (BUE) is formed. This technique has 

limited application in high speed machining because of the electrical resistance 

properties of the cutting tools used (Buruaga, et al. 2018). Even there exists a great 

challenge while machining hard materials such as WHAs as they are known to form 

discontinuous chips (Nandam, Ravikiran and Rao 2014). This adds further 

discrepancy in the temperature measurement. Hence, in the past few years, vast 

developments in sensors, high range measuring devices and image capturing 

techniques have been made (Diaz-Alvarez, et al. 2017).  

The radiation techniques are non–contact thermographic methods to measure 

the surface temperature of the body based on its emitted thermal energy. It is used for 

both temperature field measurement (infrared thermography) and point measurement 

(pyrometer or infrared thermometer). Infrared thermography includes the use of 

photo cameras with films sensitive to infrared radiation or the infrared cameras. 

These techniques are superior to thermocouples in many aspects. The advantages 

include fast response, no physical contact with the heat source and no interference 

with heat flows. This makes it even suitable for high speed machining applications 
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where high temperatures can be captured easily due to no direct contact with the heat 

source. The radiation techniques has been used by many of the researchers in the past, 

(J. Heigel, E. Whitenton, et al. 2017, Masoudi, et al. 2017, Lauro, Brandao and Filho 

2013), just to name a few. Kus, et al. (2015) performed dry machining experiments 

on heat-treated AISI 4140 alloy steel using coated tungsten carbide inserts and 

measured experimental cutting temperature using K-type thermocouple and infrared 

radiation pyrometers. The investigations showed that infrared radiation pyrometer 

was able to capture better insight of chip tool interface temperature than K-type 

thermocouple due to lower thermal conductivity of coated inserts. The experimental 

cutting temperature was then validated with developed 3D FE machining simulation 

model at the tool chip contact area, and the results showed good agreement with 

experimentally measured temperatures. In pyrometer, the possible source of error in 

temperature measurement is related to the uncertainty of the surface emissivity. 

Knowing the exact surface emissivity is extremely difficult because it varies with 

surface temperature, surface roughness and possible phase transitions (Sutter and 

Ranc 2007). On the contrary, infrared photography has come up as one efficient 

technique that can overcome most of the above mentioned challenges and provide 

better accuracy in temperature measurement during machining. Kuczmaszewski and 

Zagorski (2013) used infrared camera while face milling of magnesium alloys. It was 

observed that temperature measured by the infrared camera was the most suitable 

method in terms of temperature measurement in unstable areas as compared to the 

thermocouple method. Further, Cotterell, et al. (2013) used infrared thermal imaging 

while machining Ti-6Al-4V alloy during the milling process at low speed and feed 

rates. The measured experimental cutting temperatures were validated with the Ernst-

Merchant thermal model by video analysis technique. 

2.3.4 Chip morphology 

Chip morphology is one of the important parameters to determine the 

machinability of any material. Different types of chips are formed under various 

cutting conditions and are known to affect output variables such as cutting forces, 

temperature, tool wear, and surface finish (Buruaga, et al. 2018). Generally, four 

types of chips are formed during machining, namely, continuous type, continuous 

with BUE, discontinuous type and serrated type. From the available literature, it was 
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observed that the machining of hard materials usually formed serrated or 

discontinuous chips due to their high strength, hardness and lower thermal 

conductivity (Cotterell, et al. 2013, Parida and Maity 2018). Zang, et al. (2018) 

investigated serrated chip formation during machining Ti-6Al-4V alloy for various 

cutting speeds and developed FE model to identify the effect of thermal conductivity 

on the degree of segmentation and the adiabatic shear localization. The results of 

simulation and experimental SEM analysis of chips showed that with the increase in 

cutting speed and decrease in thermal conductivity, the tendency of chip 

segmentation increased. The high-temperature zones, as predicted in simulations, 

illustrated the adiabatic shear due to material softening and deformation.  

While machining Inconel 718 alloy (Pawade and Joshi 2011, Rakesh and 

Datta 2019), it was observed that the serrated chips were formed at higher cutting 

speeds. In contrast, continuous helical chips were observed at lower cutting speeds. 

Chip serration at higher cutting speeds was attributed to the shear instability and 

intense localized deformation in the primary deformation zone. While at lower 

cutting speeds, the dominance of strain hardening and thermal softening led to 

continuous helical chips. Further, Das, et al. (2008) found discontinuous chips almost 

powder form with serrated edges while machining infiltrated copper tungsten alloy. 

Similar kind of chips were found when tungsten carbide was machined using CBN 

tools (Liu and Li 2001). Nandam, et al. (2014) also observed discontinuous chip while 

machining 90, 93 and 95 WHA grades under cryogenic conditions. 

2.3.5 Tool wear 

WHAs are one of the difficult to machine materials that cause rapid tool wear 

because of its high yield strength and hardness (Lim, et al. 1993, Young 1996). It is 

well known that cutting tool wear profoundly affects the parts productivity, 

production costs, dimensional accuracy, and workpiece surface integrity. Hence, a 

better understanding of the wear mechanisms during machining operation remains 

essential. In general, the distinct wear mechanisms that are predominant under 

various cutting conditions are as follows: abrasion, adhesion, plastic deformation, 

oxidation, diffusion, and chipping or notching (Mativenga and Hon 2005, Najar and 

Butt 2018, Kuram 2016). Machining of hard materials, as in the case of WHAs 

involves discontinuous chip formation, which possibly leads to formation of abrasive 
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or adhesive wear on the flank surface with BUE (Dargusch, et al. 2018, Jahan, et al. 

2019, Venugopal, Paul and Chattopadhyay 2007). Chen, et al. (2018) evaluated 

abrasiveness index and observed diffusion, chemical, abrasive, and microchipping as 

the significant cause for rapid crater wear while dry machining high chromium cast 

iron using PCBN inserts. Similarly, Kagnaya, et al. (2014) observed severe abrasion 

and pullout phenomena during dry machining on AISI 1045 steel using WC-6Co 

uncoated carbide tools near chip/tool contact. Zhang, et al. (2014) also evaluated tool 

failure for TC21 alloy under dry machining using coated carbide tools, and from SEM 

analysis it was found that adhesion and chipping were significant factors responsible 

for tool failure. Tang, et al. (2019) found the predominant wear mechanism had 

changed as the hardness of the work material changed for PCBN tool during dry 

machining of AISI D2 hardened steel by varying the hardness in the range of 40-60 

HRC under similar cutting conditions. Wu, et al. (2018) performed tool wear studies 

on PCD tools by micro end milling operation on tungsten carbide and found the 

occurrence of brittle fracture and generation of micro defects on the milled surface.  

Once the tool wear mechanism has been identified, the prediction of tool wear 

by analytical method plays a significant role in avoiding a large number of trial and 

error experiments. Usui, Shirakashi and Kitagawa (1984) developed an analytical tool 

wear model that was able to capture crater and flank wear for tungsten carbide tools 

for a wide variety of tool shapes and cutting conditions. Similarly, Zhao, Barber and 

Zou (2002) modified Usui wear model by incorporating temperature-dependent 

hardness constants, which in turn captured thermal softening effects of the cutting 

tool. Luo, et al. (2005) developed a new flank wear model that captured the relative 

sliding velocity between tool and workpiece, the hardness of tool, and temperature 

effects on tool flank wear reasonably well. In a few of the recent works, FE models 

have been used in conjunction with user-defined subroutines for deriving tool wear 

model constants to predict the tool wear growth (Zanger and Schulze 2013, Attanasio, 

et al. 2008, Yen, et al. 2004). Likewise, Li, et al. (2019) developed a meta-learning 

tool wear rate model to predict tool wear for the dynamic process control system for 

changing machining conditions. Considering the fact that prediction of tool life using 

tool life equations is very tedious, there is always a need for an accurate tool wear 
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rate model that is able to capture tool wear mechanism efficiently, mainly, for 

difficult to cut materials such as WHAs. 

2.4 Application of FEM in machining 

The focus, nowadays, is mainly to simulate the real machining operation by 

FEM, which may substitute the expensive cutting experiments to a great extent. These 

methods not only aid in better understanding of machining behavior of emerging 

alloys but also lead to optimization of cutting parameters with lesser experimental 

tests data (Arrazola, et al. 2013). Numerous FE codes such as DEFORM, FORGE2, 

ABAQUS/Explicit, Ansys/LS-DYNA, MSC Marc, and Thirdwave AdvantEdge have 

come up that are being used by the researchers. ABAQUS/Explicit and Thirdwave 

systems’ AdvantEdge were used for simulation and compared the results with 

experimental test results (Dali, Ghani and CheHaron 2017). It was found that there 

were hardly any research papers available related to the FE simulations of machining 

WHAs. But similar researches were found related to machining simulations of other 

hard materials which can be correlated with machining behavior of WHA. 

In one of the recent works, the ALE-FEM model was developed to understand 

the tool edge geometries while hard turning of AISI 4340 using coated PCBN tools 

(Coelho, Ng and Elbestawi 2007, Jiang and Wang 2019). Effect of different tool wear 

models and friction models on the parameters affecting the wear process for cemented 

carbide tools while machining alloy 718 were analyzed using MSC Marc (Diaz-

Alvarez, et al. 2014). 3D numerical predictions of tool wear based on modified 

Takeyama and Murata wear model was simulated using SFTC Deform 3D software 

(Ozel, et al. 2011). Similarly, a 3D model was developed to predict the cutting forces 

for various cutting speeds and feed rates using a modified Zerilli-Armstrong model 

for Co-Cr-Mo alloy using Deform 3D software (Trimble, et al. 2020). The effect of 

tool geometry on chip segmentation was analyzed using the FE model by 

incorporating stress triaxiality factor in the damage model for AISI1045 steel during 

machining (Devotta, et al. 2017).  

It is well known that the chip formation in machining operation involves high 

strain-rates and temperatures, large plastic deformations, localization of failure of 

target material, etc. This predominantly adds complications in modelling the material 
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behavior accurately undergoing deformation during FE simulations. The inherent 

strain rates experienced during machining are usually in the order of 104 ~106 s-1 

which is 6 to 7 orders of magnitude higher than typical values used in quasi-static 

tension tests (Zhou, et al. 2017, Oxley 1963, Frueh, et al. 2016). This predominantly 

adds complications in modeling the material behavior undergoing deformation during 

FE simulations. Hence, the selection of an appropriate material constitutive model 

and the damage model, as well as the determination of respective material constants, 

are vital concerns to develop realistic FE models for machining. 

2.4.1 Material model 

Several classical plasticity models have been widely employed that represent, 

with varying degrees of accuracy, the material flow stresses as a function of strain, 

strain rate and temperature. These models include the Oxley model, the Johnson-cook 

model, Zerilli-Armstrong model, Mechanical Threshold stress (MTS) model, 

Litonski-Batra model, Maekawa model, etc. (Arrazola, et al. 2013). The Johnson-

Cook (JC) plasticity model has been successfully used by many researchers because 

of availability, as an in-built model, in most of the commercial FE codes (Bosetti , 

Bort and Bruschi 2013). Machining outputs such as temperature distributions, cutting 

forces, residual stresses in the machined surface, strain in the deformation zones and 

chip formation characteristics were simulated for a continuous and segmented chip 

(Palanisamy, et al. 2020, Trimble, et al. 2020) using JC model. Mabrouki, et al. 

(2016) found that JC model predicted chip thickness better than that of other models 

and gave better insight.  

Besides selecting a suitable material constitutive model, there is also a need 

to determine the material model constants, precisely for obtaining accurate results 

using FE models. In the past, researchers have developed different methods to derive 

the JC constants for various materials, namely, experimental, analytical, and 

numerical techniques. The experimental technique includes performing high strain 

testing and then making use of the obtained stress strain data in conjunction with 

conventional optimization techniques to determine the JC constants (Zhou, et al. 

2017). Taylor’s impact tests and Split Hopkinson Pressure Bar (SHPB) are typically 

categorized as high strain rate tests. These tests are capable of undergoing very high 

strain rates closer to what is expected in machining or ballistics for certain materials. 
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But the availability of this advanced equipment is very limited because of the 

extremely high cost and need of skilled operator. Moreover, conducting high strain 

rate tests for materials like WHAs is highly challenging because of their higher 

hardness and increased work hardening effects at higher strain rates (Gong, Fan and 

Ding 2015). An advancement over standard optimization methods in experimental 

approach is the use of evolutionary computational algorithms which identify material 

parameters through a fine grain search technique and state superiority over classical 

data fitting techniques (G. Chen, et al. 2012, Gupta, et al. 2013). The numerical 

approaches use FE analysis to simulate the machining process in which the predicted 

outputs (chip morphology, machining force, temperature, etc.) are compared to that 

of experiments and JC constants are fine-tuned using an inverse approach (Bosetti , 

Bort and Bruschi 2013, Sagar, Priyadarshini , et al. 2018). The analytical approach 

includes the use of inverse identification algorithms in conjunction with either SHPB 

tests or machining tests to determine material characterization and predict the flow 

stress behavior of the material (J. C. Filho 2017). Table 2.1 shows a summary of some 

of the relevant works related, especially to the analytical approach for the 

identification of JC constants. 

Table 2.1 Summary of analytical approach for determination of JC model constants 

Experimental 

tests 

Strain 

rates 
Method Material % Error 

SHPB 104 s-1 

FEM orthogonal simulation 

Steel (Aviral Shrota* 2012), 

51CrV4 steel (Zabel, Rödder 

and Tiffe 2017) 

10 

Levenberg–Marquardt 

Algorithm using orthogonal 

turning model 

AISI 52100 (Aviral and Martin 

2011), AA2024-T351 

(Saleem, et al. 2017) 

10 

Descriptors and proxies 

using press forge model 
Hyperfoam (Martin Bäker 2013) 15 

Extended Oxley’s shear 

zone theory 

AISI 1045 (Lalwani, Mehta and 

Jain 2009) 
15 

Response surface method 

Inconel 718 (Amir Malakizadi 

2016), 95 WHA (Sagar, 

Kumar, et al. 2019) 

16 

Impact 106 s-1 Impact on flat-ended 
AISI 4340 (Chakraborty , Shaw 

and Banerjee 2015) 
15 



Chapter2: Literature Review 

 

22 

 

cylindrical rod using 

Axisymmetric model 

Computational modeling of 

Taylor impact test 

OFHC copper (Campagne-

Lambert, et al. 2008) 
18 

Machining 106 s-1 

Inverse Oxley’s predictive 

theory and optimization of 

cutting forces by PSO and 

iterative gradient method 

AISI 1045 (J. C. Filho 2017), AL 

6082-T6 (Ning and Liang 2019) 
5 

Kalman filter using 

orthogonal turning model 

AISI 4140 (Mathias, Aylin and 

Jan-Eric 2014), Rene-108 

(Niaki, Ulutan and Mears 2015) 

1.64 

 

The literature survey indicates that there is limited data available related to 

high strain testing of WHAs and as a result, JC constants for the same are also 

unavailable. The possible reason could be the difficulties and limitations associated 

with carrying out of the high strain rate tests for different grades of WHA using drop 

weight or SHPB tests because of their high hardness and strain hardening effects. 

Furthermore, it also is noted that inverse analysis showed higher accuracy over other 

approaches. Though many works are available based on inverse analysis, none has 

considered WHA as the work material. 

2.4.2 Damage model 

The damage models describe failure in the material as a function of the 

mechanical variables such as stress, strain, temperature, strain rate, etc., such that if 

the prescribed function reaches a critical value, failure is expected in the material. 

Such a state is called the damage initiation criterion. Further, the failure or element 

deletion occurs due to the accumulation of strain at the onset of damage. The process 

of element deletion is controlled by damage initiation criteria and damage evolution 

process (Abaqus, User's manual Version 6.14-1 2014). The use of a damage model 

in FE modeling in machining is necessary to simulate both the realistic tool 

penetration into the workpiece as well as to predict discontinuous chips during the 

metal cutting process. The elements at the chip-tool interface undergo severe plastic 

deformation in the form of progressive degradation of material stiffness leading to 
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skewing of elements. These skewed elements have reached the damage initiation 

criterion threshold and have lost completely load-bearing capacity leading to element 

deletion (Hibbitt, and Karlsson & Sorensen 2007). This process of damage is most 

successively governed by the JC damage model and has been commonly used among 

other damage models during FE machining simulations (Palanisamy, et al. 2020). 

Jomaa, et al. (2017) applied the JC material and the damage model to simulate the 

high-speed machining of AA7075-T651 alloy for analysis of serrated chip formation. 

Chen, et al. (2014) calculated fracture initiation strain in the chip layer using JC 

plastic and damage models by simulating the cutting process of aluminum alloy and 

found that the fracture strain had an effect on predicted cutting force and deformation 

at high strain rate conditions. Hence, the failure model and the determination of 

failure parameters are crucial to the deformation at high strain rate conditions. 

The failure parameters of the JC damage model are calculated according to 

the failure strain measured from the flow curves at various loading conditions such 

as quasi-static and dynamic split Hopkinson bar tests. Johnson and Cook (1985) 

determined the fracture constants of the JC damage model according to the fracture 

strain measured using the tensile Hopkinson bar test. The fracture strain was 

identified by measuring the cross-sectional area of post-tested fractured specimens 

and the maximum stress point in the flow curves was considered as the initiation of 

localized instabilities. Majzoobi and Dehgolan (2011) derived JC damage model 

constants by performing low strain rate quasi-static tensile test to high strain rate tests 

on flying wedge apparatus and combined experimental deformation with numerical 

simulations using LS-Dyna and then determined the constants using a genetic 

optimization algorithm. Similarly, Murugesan and Jung (2019) identified JC damage 

model constants for AISI 1045 medium carbon steel by performing low strain rate 

tensile test on flat, smooth round and pre-notched specimens at room and high 

temperature using numerical and graphical validations methods. Chen, et al. (2018) 

used high strain rate compression test at various strain rates (2500-10000 s-1) and 

temperatures (20 to 300 °C) for Ti-6Al-4V alloy. The failure initial strains for flow 

stress were calculated at the transition from stable plastic to damage evolution stage 

using a combined experimental-numerical approach and fitted JC damage model by 

GA optimization method. 
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2.5 Multi-objective optimization 

The main focus of the machinability study is to improve the quality of 

machined products and reduce the manufacturing cost. This summons optimization 

problem which seeks identification of the best parametric combination for the 

machining process. However, machining is a complex process involving numerous 

input cutting parameters and multiple output variables that are conflicting in nature 

(material removal rate and surface roughness). Hence, the optimization of machining 

parameters has to be necessarily a multi-objective optimization task (Serra, Chibane 

and Duchosal 2018). Though much work has been reported in the literature to 

improve the process performance, proper selection of process parameters remains a 

challenge. There are several multi-objective optimization techniques for the same as 

goal programming, simulated annealing (SA), grey relation, and genetic algorithms 

(GA), and so on. Generally, optimization of the machining process requires a large 

number of experimental tests to be performed, which is time-consuming and 

expensive. As a result, experimental test arrays are usually chosen based on a 

compromise between the cost of the experiments (cost includes the time required to 

run the experiments) and the required accuracy of the results. Orthogonal arrays in 

terms of Taguchi’s design come up as a fair compromise between cost and accuracy 

(A. Thakur, et al. 2020). Taguchi’s design is a method that includes a plan of 

experiments to acquire data in a controlled manner and subsequently, execute these 

experiments, and analyze data for obtaining information about the behavior of the 

given process (Pandey, Goyal and Meghvanshi 2017). 

Further, many researchers in the past have used orthogonal array along with 

GRA to optimize multiple responses in the machining process (Raykar, D'Addona 

and Mane 2015, Prakash, Gopal and Karthik 2020). The main advantage of GRA is 

that it requires a minimum number of experimental data set for optimization of multi-

response outputs. While, the drawback is that it normalizes the output responses, and 

mean of normalized values are converted to Grey relational grades (GRG). The 

highest GRG is considered as an optimum combination, but these optimum 

combinations are highly localized optimum values which are deviated from global 

optima of output responses. To overcome such problem, many evolutionary 

algorithms like Nondominated sorting genetic algorithm (NSGA II), artificial bee 
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colony algorithm (ABC), cuckoo search algorithm (CS), differential evolution (DE), 

SA and particle swarm optimization (PSO) were proposed. Based on the versatility, 

efficiency, and accuracy of the results, NSGA II, ABC, and CS have gained a lot of 

popularity. 

NSGA II algorithm was proposed by (Deb, et al. 2002) with fast computation, 

elitist multi-objective evolutionary algorithm based on the nondominated sorting 

approach and efficient constraint handling method. The algorithm was able to 

converge the optimal solution with minimum iteration. Single pass dry turning tests 

were performed on EN24 steel using tungsten carbide tool to minimize tool wear and 

maximize the MRR using NSGA II (Yang and Natarajan 2010). The electro-chemical 

machining was optimized using L27 orthogonal array for EN19 using NSGA II to 

achieve desired MRR and surface roughness (Twari, Mandal and Kumar 2015). It 

was observed that NSGA II could handle only two objective functions at a time for 

the optimization process, and the third objective function was considered as dummy 

function and predicted the value of the latter based on optimum combination derived 

(Ciro, et al. 2016). In addition to this, during the formulation of crowding distance in 

NSGA II, an instability was produced when the front Fi was used to restrict the 

population size. Consequently, the algorithm could lose some closely packed pareto 

optimal solutions and give place to other non-pareto optimal solution, thus leading to 

loss in convergence property (Deb, et al. 2002). This was solved by introducing ABC 

and CS algorithms which could handle more than two objective functions. 

ABC algorithm was proposed by (Karaboga and Basturk 2008) and the 

performance of the former was compared with DE, PSO, and evolutionary algorithm. 

It was observed that the ABC algorithm performed better than the mentioned 

algorithms and was able to solve multimodal engineering problems with high 

dimensionality. The cutting parameters in rough turning were optimized of AISI 1045 

steel using ABC algorithm for minimizing specific cutting energy and maximizing 

MRR using L27 orthogonal array test data (Sredanovic , et al. 2019). Das, et al. 

(2014) optimized surface roughness and MRR using ABC algorithm for EN31 steel 

for electro-discharge machining. Similarly, Hossain and Liao (2017) performed 

optimization on end mill operation for hot die steel for minimizing machining time 

and surface roughness using HABC algorithm. Further, Yildiz (2013) performed 
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multi-pass turning and combined Taguchi’s method and ABC algorithm for 

optimization. Yang and Deb (2013) developed a CS algorithm for solving multi-

objective optimization of complex nonlinear engineering design problems. Qiang, et 

al. (2018) optimized outlet power and wear rate of abrasive waterjet machining using 

CS algorithm for L18 orthogonal array test data. Further, Senthilkumar, et al. (2014) 

combined other methods like Taguchi’s DOE, GRA and developed hybrid Taguchi-

Grey relational and CS while hard turning AISI D3 using coated inserts to achieve 

minimum tool wear and surface roughness and maximum MRR. Ding, et al. (2019) 

developed a hybrid method by combining PSO and CS algorithm for two different 

engineering problems and observed that hybrid method was capable of handling 

nonlinear optimization problems with multi-constraints and, consequently, predicting 

local optimal with better performance than PSO and CS algorithms.  

Based on the literature survey presented, it is clear that GRA and NSGA II 

optimization methods could predict optimal solutions with normalized and 

compromised local minima whereas ABC and CS algorithm could handle more 

number of response outputs with a better search strategy. To add further, the hybrid 

methods, so developed, showed significant improvements over these algorithms. But, 

most of the literature work related to machining had utilized orthogonal array design 

for optimization. Such an approach may end up in predicting local optima and, 

subsequently, fail to give priority to response parameters based on their effectiveness 

on the process. Hence, this demands further improvements in the existing algorithms. 

Research gap Table 2.2 presents the overall summary of the literature review 

presented in the previous sections highlighting the research gaps. 

 

Table 2.2 Summary of literature survey 

Topics Methods WHA 

Manufacturing 

of KEPs 

SPS method 

(Li, et al. 2014, Senthilnathan, 

Annamalai and Venkatachalam 

2018) 

liquid phase sintered 
( Kiran, Venkat, et al. 2013, Das, 

Chakraborty, et al. 2008), 
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Extrusion (Xiaoqing, et al. 2010) 

Grinding ------------- 

Turning (Nandam, Ravikiran and Rao 2014) 

Machinability 

aspects 

Cutting forces and MRR 
(Das, Chakraborty, et al. 2008, 

Gaitonde, et al. 2010, Nandam, 

Ravikiran and Rao 2014)  

Cutting temperature 

Surface finish 

Chip morphology 

Tool wear analysis Research Gap 

Machining 

simulations 

Material model constants 
(Rohr, et al. 2008, Lee, Xiea and 

Lin 1998) 

Damage model constants Research Gap 

Prediction of output variables Research Gap 

Optimization 
Single-objective optimization (Gaitonde, et al. 2010) 

Multi-objective optimization Research Gap 

 

Based on the research gaps identified from the existing literature survey, the possible 

solutions are proposed in Table 2.3. 

Table 2.3 Research gaps and proposed solutions 

Gaps Proposed solution 

Gap-1: No detailed machinability study 

of WHA has been reported in the 

literature. Only a limited study on 

machining of WHA has been reported. 

Sol-1: A detailed machinability studies 

need to be carried out using turning 

experiments for different grades of 

WHA and need to analyze the effect of 

cutting parameters on response outputs 

Gap-2: Limited studies have been 

observed related to experimental and 

analytical tool wear analysis of hard 

materials and limited discussions has 

been observed related to WHA. 

Sol-2: The effect of tool geometry on 

tool wear and type of wear mechanism 

need to be identified and the 

development of new tool wear rate 

model for WHA. 
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Gap-3: Though extensive studies 

pertaining to FE machining simulations 

of hard materials are found in 

literature, no work related to WHAs 

have been reported so far. 

Sol-3: There is a need to develop the 

FE machining simulation model, 

identify the effect of strain rate on the 

material model, and analyze chip 

morphology. Validation of the FE 

model with machining test results need 

to be performed.  

Gap-4: Limited research work has been 

reported for the multi objective 

optimization of hard material 

machining and no studies have been 

reported related to the optimization of 

machining WHA. 

Sol-4: A new hybrid multi-objective 

optimization model needs to be 

developed and validate with the 

existing optimization model for 

identifying optimum cutting parameters 

for machining. 

 

2.6 Objectives of the current research work  

Based on the above discussion, the following have been laid down as the 

objectives of the present work: 

 Determination of the mechanical properties and machinability analysis of 

WHAs; 

 Determination of the material model constants of WHAs for high deformation 

rates;  

 FE Analysis of the chip formation process during turning of WHAs under 

different cutting conditions to predict cutting forces, temperatures, chip 

morphology, and stress; 

 Experimental validation of the simulation results; 

 Optimization of Machining performance measures (cutting forces, surface 

roughness, temperature, tool wear, etc.) while machining WHAs. 

2.7 Overall work plan 

This section presents the overall work plan adopted for the detailed 

machinability studies of WHAs and their correlation with mechanical properties, FE 
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modelling of chip formation and determination of optimum cutting parameters for 

higher productivity. Figure 2.2 illustrates the schematic representation of the overall 

work plan adopted in the present work. 

 

Figure 2.2 Overall work plan adopted  

2.8 Thesis outline 

This thesis includes seven chapters as a whole. These chapters can be 

summarized as follows: 

Chapter 1 Provides a basic introduction to the topic chosen and briefly 

discusses the problem definition and research motivation.  

Chapter 2 Includes a comprehensive literature review that gives a better 

insight of the recent developments and achievements in the area of conventional 

machining. Literature reviews are arranged under different headings that discuss the 

material characterization of WHAs and the probable challenges faced during 

machining of difficult to machine alloys. Finally, based on the literature survey, 

F
in

it
e 

E
le

m
en

t 

M
o

d
el

 D
ev

el
o

p
m

en
t

C
h
ap

te
r 

4
FE simulation procedure

Multi-objective 

Optimization

Chapter 6 

C
h
ar

ac
te

ri
za

ti
o
n
 a

n
d

 

M
ac

h
in

ab
il

it
y
 A

n
al

y
si

s

C
h

ap
te

r 
3

Machinability studies

Material 

characterization

Finite Element 

Simulations and validation

Chapter 5

Orthogonal array 

design approach

Full factorial 

design approach

Confirmation and 

validation

Experimental 

validations

Tungsten 

heavy 

alloys

Machinability 

studies

Tool wear analysis and 

Analytical modeling

Determination of JC 

model constants

Determination of JC 

damage model constants

Experimental approach 

Analytical approach

Mesh refinement 

study

Analysis of chip 

formation mechanism



Chapter2: Literature Review 

 

30 

 

research gaps are highlighted and objectives are proposed to overcome the identified 

gaps. 

Chapter 3 Focuses on the material characterization and machinability analysis 

of WHA grades. A detailed microstructural analysis of the given WHA grades along 

with experimental studies related to machinability assessments, tool wear analysis 

and analytical modeling of tool wear growth during machining with varying tungsten 

content. This chapter attempts to explain the complex interrelationship between 

material properties such as hardness, ductility/brittleness and tungsten content with 

that of machining outputs such as cutting forces, temperature, surface roughness and 

tool wear. 

Chapter 4 Provides a detailed description of the formulation of the 2D FE 

model for orthogonal cutting. This chapter presents a methodology to determine both 

the material and damage model constants that are used as FE inputs. 

Chapter 5 Focus on mesh refinement study of 2D FE simulation model and 

the predicted results are compared with the experimental ones under similar cutting 

conditions to validate the developed FE simulation model.  

Chapter 6 Explores the capability of two approaches used in multi-objective 

optimization, namely, orthogonal array design and full factorial design. This chapter 

focuses on formulating a strategy that utilizes a hybrid approach to reduce the number 

of experimental trials by combining the developed FE model with the evolutionary 

algorithms to be used for full factorial design. 

Chapter 7 Concludes this thesis and suggests directions for future research. 

Summary 

This chapter presents an overview of the various types of studies carried out 

in the analysis of the metal cutting process. There has been a considerable amount of 

research work devoted to the development of experimental, analytical and numerical 

methods for providing a detailed insight into the chip formation process. 

Experimental methods, though an indispensable part of the metal cutting studies, are 

generally time-consuming and expensive. The focus is mainly to develop a robust 

model that would enable evaluation of machining performance, i.e., prediction of 

various output variables such as cutting force, temperature, chip thickness and so on 



Chapter2: Literature Review 

 

31 

 

without the need for expensive machining tests. With the advent of powerful 

computers, FE models are gaining much of the popularity for predicting the output 

responses. However, there are certain key aspects in FEM which needs to be 

addressed adequately. Thereupon, some of the critical numerical aspects as well as 

the prediction capabilities of FE simulations have been discussed. Finally, recent 

most developments in multi objective optimization and its relevance in machining 

has been conferred. Based on the comprehensive literature review presented, research 

gaps are identified and objectives are proposed to overcome the identified gaps. 

Finally, the thesis outline is presented.  
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Chapter3 CHARACTERIZATION AND MACHINABILITY ANALYSIS 

This chapter focuses on material characterization techniques and analysis of three 

different grades of WHAs with varying tungsten content. Besides, experimental 

studies related to machinability assessments, tool wear analysis and analytical 

modelling of tool wear growth during machining of WHAs are performed and results 

are discussed in much details. Machinability assessment is somewhat complicated 

because there is no single unique criterion based on which it can be decided. This is 

often evaluated through several criteria such as tool life, cutting force, surface finish, 

dimensional accuracy, and chip controllability. The material properties of the work 

material (composition, microstructure, hardness, strength, etc.) and operating 

conditions (cutting speed, feed, depth of cut and tool geometry) have a direct 

influence on the machinability of a work material. WHAs are one of the difficult to 

machine material that causes rapid tool wear because of its high yield strength and 

hardness (Lim, et al. 1993, Young 1996). It is well known that cutting tool wear 

highly affects the parts productivity, production costs, dimensional accuracy and 

work piece surface integrity. Hence, a better understanding of the wear mechanisms 

and prediction of tool wear growth during machining operation are equally essential. 

The present chapter makes an attempt to assess the material properties and 

machinability of these alloys as a potential material for high density applications. 

Such analysis may help in understanding and resolving critical issues, such as 

process-related problems during manufacturing and causes of failure when put in 

service.  

3.1 Material characterization 

Material characterization is the process of measuring and determining the physical, 

chemical, mechanical and microstructural properties of materials. The specific 

techniques, associated instruments and detailed analysis of various material 

properties of WHAs are presented in the following sections. 

The goal of chemical characterization is to identify and quantify the chemical 

constituents of a material. It is the chemical composition that determines the density, 

hardness, strength and other properties of a particular material and hence, is 
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considered as the most crucial factor for analyzing the material behavior. Chemical 

composition tests were performed using X-ray fluorescence spectrometry (XRF), as 

shown in Figure 3.1. XRF is a non-destructive analytical technique used to determine 

the elemental composition of materials. Cylindrical samples of specific dimensions 

were prepared for the analysis. The samples were placed in X-ray chamber wherein 

they are bombarded with short-wavelength X-rays. These X-rays ionize the work 

material and result in the emission of radiation from work material. Since these 

emitted radiations have different energy levels and are unique for a specific element, 

individual atoms can be detected, allowing for a complete breakdown of chemical 

composition. 

 

Figure 3.1 X-ray fluorescence spectrometry composition test setup (make: 

Panalytical EPSILON 3) 

The resulting chemical compositions for the selected materials are shown in Table 

3.1. The results showed that tungsten content was the major element followed by 

nickel and ferrous in all the three grades. However, in 90 WHA cobalt was also 

identified along with other alloying elements. 

  

Sample holding jar 

Test Sample 

5 mm

10 mm
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Table 3.1 composition of WHAs 

 

Grade 

Composition 

Fe Ni Co W 

90WHA 2.5 5 2 90.5 

95WHA 1.5 3 - 95.5 

97WHA 1.5 2 - 96.5 

 

3.1.1 Physical and mechanical properties 

Equipment details 

The knowledge of physical and mechanical properties is requisite for finding the 

suitability of a material for different applications. Physical properties denote the 

physical state of materials that are exclusive of their chemical or mechanical 

components. While mechanical properties determine a material's behavior when 

subjected to mechanical stresses. The subsequent section presents the details of the 

equipment used and methods adopted, followed by the results of a few of the 

significant properties concerning the selected work materials. 

 Density 

The density of all the three grades of WHAs was measured using Mettler Toledo 

Density Kit, as shown in Figure 3.2. The density measurement was based on the 

buoyancy technique which utilizes Archimedes' principle. The method included 

measuring the mass or weight of the work sample of specific dimensions in the 

air 𝑀𝑎𝑖𝑟 as well as in water 𝑀𝑤𝑎𝑡𝑒𝑟 and then calculating the density 𝜌  using Equation 

(3.1). 

𝜌 =
𝑀𝑎𝑖𝑟

𝑀𝑎𝑖𝑟 −𝑀𝑤𝑎𝑡𝑒𝑟
× 𝜌𝑤𝑎𝑡𝑒𝑟 

(3.1)  
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Figure 3.2 Density tester (make: MS-DNY-54) 

 Hardness 

The hardness was measured on the given work materials using Micro Vickers 

Hardness Tester, as shown in Figure 3.3. The Vickers method is based on an optical 

measurement system. A square base pyramid shaped diamond was used in the 

Vickers scale by applying an indentation load of 1 kgf with a dwell time of 30 s for 

each test. The hardness value was estimated and the same process is repeated three 

to four times at different locations for each of the samples to confirm the average 

hardness values. 

 

Figure 3.3 Micro-Vickers hardness tester (Mitutoyo HM-200 Series 810) 
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 Thermal conductivity and specific heat 

The thermal conductivity and specific heat were measured using the transient plane 

source method using Hot disk TPS 500 S tester, as shown in Figure 3.4. Work 

samples of particular dimensions were held in die with 5501 kapton sensor. The 

sensor was electrically connected to a power supply and sensing circuit. As the 

current was supplied to the sensor, an increase in temperature was observed, which 

was recorded over time. The heat generated was diffused into the sample at a rate 

dependent on the thermal transport characteristics of the material. Consequently, 

thermal conductivity and specific heat values for the given alloys were calculated. 

 

Figure 3.4 Thermal constant analyzer test setup 

 Elasticity and strength 

Young's modulus, Poisson’s ratio, yield strength and ultimate tensile strength were 

determined by conducting uniaxial tension tests on universal tensile testing machine 

using a contact type extensometer, as shown in Figure 3.5. The tests were performed 

on all three grades keeping strain rate at 0.01 s-1. The samples were prepared in the 

form of round bars following ASTM-E8 sub size standard with specific dimensions. 

The force-displacement responses obtained from the tests were re-plotted in terms of 

engineering stress and strain (refer Figure 3.6) to calculate Young’s Modulus, yield 

strength and ultimate tensile strength. 
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Figure 3.5 Universal tensile testing machine (make: Zwick/Roell Z100) 

 

Figure 3.6 Engineering stress versus strain plot for three grades of WHAs 

Analysis of material properties 

The physical and mechanical properties of WHAs obtained from the tests discussed 

in the previous section are listed in Table 3.2. 

Table 3.2 Physical and mechanical properties of WHAs 

Sl.No. Property 
Grade 

90 95 97 

1 Density (g/cc) 17.0 17.5 18.1 

2 Hardness (HV) 294 321 330 

3 Specific heat (J/kg °C) 320 307.37 293.10 
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4 Thermal conductivity (W/m °C) 56.92 57.43 58.30 

5 Young’s Modulus (GPa) 213.91 267.59 309.36 

6 Poisson’s ratio 0.24 0.22 0.19 

7 Yield strength (MPa) 653.64 658.88 743.03 

8 Ultimate tensile strength (MPa) 955.11 962.99 971.08 

 

The data presented in Table 3.2 clearly showed the effect of tungsten content on both 

the physical and mechanical properties of WHAs. It was observed that both the 

density and hardness increased as the tungsten content increased. In addition, 

Young’s modulus, yield strength and ultimate strength also tend to increase with the 

increasing tungsten content. Poison’s ratio was measured from uniaxial tensile test as 

shown in Table 3.2 using methodology followed by (Kenji and Hideo 1961). Lateral 

strain was calculated by measuring the initial diameter at gauge length and final 

diameter at fracture using digital micro-meter and stereo microscope, respectively. 

The Poisson’s ratio measured by extensometer and calculated using the above method 

were almost same and mean values of three experimental trials were presented in 

Table 3.2. Poisson’s ratio values were found to be relatively lower for all three grades 

and show a decreasing trend with the increase in tungsten content. Furthermore, a 

decrease in the values of specific heat and an increase in thermal conductivity is 

observed with the increase in tungsten content. 

3.1.2 Microstructural properties 

Standard procedures were followed in preparing the samples by cutting, mounting, 

grinding and polishing for microstructural evaluation using inverted metallurgical 

microscope (make: Meiji IM7200). The sample surfaces were etched with 

Murakami’s reagent for a time period of 30-60 seconds. The size of the tungsten 

particles, grain number, contiguity and volume fraction of the matrix phase of the 

WHAs were determined from images recorded using Scanning Electron Microscope 

(SEM), as shown in Figure 3.7. 



Chapter3: Characterization and Machinability Analysis 

 

39 

 

 

Figure 3.7 Scanning Electron Microscope (make: FE-SEM, Apero S, FEI) 

The use of mean chord intercept length, point-counting method and counting W-W 

and W-M mean chord intercept line technique, average grain size, contiguity and 

matrix volume fraction were calculated using Equation (3.2), (3.3) and (3.4). 

𝐺 ̅ =  
2 𝑉𝑊

2 𝑁𝑊𝑊 + 𝑁𝑊𝑀
 

(3.2)  

𝐶𝐶 = 
2𝑁𝑊𝑊

2𝑁𝑊𝑊 + 𝑁𝑊𝑀
× 100 

(3.3)  

𝑉𝑀 = 
𝑁𝑀

𝑁𝑀 + 𝑁𝑊
× 100 

(3.4)  

Figure 3.8 shows SEM images of 90, 95 and 97 WHA alloys along with 

arrows showing the planar surface. Different phases are labeled in the micrograph. 

In 90 WHA, the W grains appeared smaller and relatively more round in shape as 

compared to those in 95 WHA and 97 WHA. The particle size increased from 90 to 

97 WHA. The difference in grain size could be attributed to decreasing volume 

fraction of matrix phase with increasing W. Also, as W increased, the grains tend to 

become more angular. As the volume fraction of the matrix phase decreases and 

that of W increases, there is a process called shape accommodation to ensure 

maximum packing that leads to planar interfaces and thereby, angular particles (J. 

Das , A. G. Rao , et al. 2014). 
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(a) 

 
(b) 

 
(c) 

Figure 3.8  Micrographs of (a) 90 WHA (b) 95 WHA and (c) 97 WHA 

The contact area of the tungsten-matrix interface decreases and tungsten-tungsten 

interface increases with increasing W. A similar trend was observed by (Islam, et al. 

2007) when the tungsten content was increased from 88 WHA to 95 WHA. Figure 

3.9 clearly shows the increase of grain size, W-W contiguity and decrease in matrix 

volume fraction with increase in W content. The data points from the literature were 

superimposed (Islam, et al. 2007). 

 
(a) 

 
(b) 

Figure 3.9 Variation of (a) average grain size, matrix volume fraction and (b) 

contiguity as a function of tungsten content 

There was a reduction of 25 - 34% in the grain size of 90 WHA as compared to 

those of 95 WHA and 97 WHA. Consequently, the volume fraction of the matrix 

phase decreased from 12% to 7%, whereas the contiguity values increased from 50 

to 65 % as the W content increased. Higher contiguity indeed leads to an increase in 

hardness with the increase in tungsten content that will have significant implications 

on material behavior. 
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3.2 Machinability studies 

Turning tests were performed on WHAs to study the machining behavior in terms of 

various machining outputs such as cutting forces, MRR, surface roughness and chip 

morphology. This section discusses the experimental techniques used, followed by 

the results obtained during the turning tests. An in-depth analysis is presented 

showing the correlation between the material properties and cutting conditions with 

the measured outputs during machining of WHAs 

3.2.1 Sample preparation and experimental details 

WHA samples were manufactured through sintering followed by swaging. The 

sample selected for machining was around 130 mm length and 11 mm diameter. Each 

of the work samples were heat-treated for stress relieving to reduce the internal 

stresses that might have developed in the work materials due to the originating 

manufacturing process. The specimens were heated to temperature of 550 °C and 

held for about 4 hours in order to attain uniform temperature on the entire specimen. 

Inert atmosphere was maintained during the entire heat treatment process by passing 

argon gas through tubular furnace until the cycle gets completed (J. Das , A. G. Rao 

, et al. 2014). Figure 3.10 (a) and (b) show the set up for heat treatment and heating-

cooling curves for WHAs, respectively. 

Turning tests were conducted using uncoated cemented carbide tools with 

varying rake angles on a CNC lathe. In these tests, cutting speed, feed rate and depth 

of cut were varied while the length of cut is kept constant. The tangential and feed 

cutting force components acting on the tool holder were measured using a three-

component piezoelectric force dynamometer. Surface roughness values were 

measured on the machined surface using a profilometer of 4 mm sampling length, 1 

mm/sec traverse speed, cut off 0.8 mm and 5 μm diamond tip to measure arithmetic 

mean deviation (Ra) using Gaussian filter method. Three readings were taken in the 

middle of the machined surface at 90° angle on each sample.  
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(a) 

 

(b) 

Figure 3.10 (a) Heat treatment tubular furnace setup (b) Heating and cooling curve 

for WHA samples 

The machined chips were collected to measure the chip thickness and study the chip 

morphology with the help of a tool maker’s microscope. The machining time was 

recorded for machining 15 mm length by a stopwatch. The chips obtained after every 

cut were collected and weights of the same were measured in grams by a precision 

digital weight balance to calculate MRR in gram/minute. The tests were conducted 

in dry conditions. The experimental setup and the equipment used are shown in 

Figure 3.11, while test conditions and equipment specifications are listed in Table 

3.3. 
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Figure 3.11 Experimental machining test setup 

Table 3.3 Experimental details of the machining tests 

Machine tool CNC Lathe HMT PTC200 

Tool holder MCLNL2020K12, MSSNL2020K12 

Tool Insert CNMG120408, CNMA120408  

Tool rake angles (˚) 2, -5 

Nose radius (mm) 0.8 

Cutting parameters 

Cutting speed (m/min) 70, 50, 30 

Feed (mm/rev) 0.05, 0.1. 0.15 

Depth of cut (mm) 0.10, 0.15, 0.2 

Length of cut (mm) 15 

Tool cutting edge angles (˚)  80 

Cutting condition Dry 

Cutting force measurement 3- axis Piezoelectric lathe tool dynamometer 

Machining Experiments
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CNC lathe

Cutting inserts

Experimental outputs
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Dynamometer
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machine
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Surface roughness tester Mitutoyo SJ410 surface roughness tester 

Microscope Tool Maker’s microscope Olympus-STM6 

Weighing machine Shimadzu AUW220 Analytical Balance 

 

3.2.2 Analysis of machining outputs 

The effect of tungsten percentage on the machinability of WHAs is investigated under 

different cutting conditions and cutting tool geometry. The machinability assessment 

includes chip morphology, MRR, cutting forces and surface roughness. In order to 

ensure the reliability of these measured parameters, each test was repeated three times 

with the same cutting parameters. 

Chip morphology and chip thickness 

The chip morphology during the machining of WHAs at cutting speeds of 30, 50 and 

70 m/min, feed of 0.1 mm/rev and depth of cut of 0.15 mm for rake angles -5º and 2° 

are shown in Figure 3.12 (a) and (b), respectively. 

 

(a) 

Discontinuous chip

Continuous chip
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(b) 

Figure 3.12 Chip morphology while machining WHAs using rake angle of (a) -5º and 

(b) 2º at cutting speeds of 30, 50 and 70 m/min, feed 0.1 mm/rev and depth of cut 

0.15 mm 

Tool rake angle, tungsten content, and cutting velocity have a significant effect on 

the chip morphology. Machining with positive rake angle yields mixed type chips 

that are discontinuous chips along with continuous type as compared to negative rake 

angle wherein the chips are the discontinuous type with only one exception that is in 

case of 90% W (Figure 3.12 (a). viii). The difference is basically attributed to the 

material flow of work-piece in the vicinity of the tool rake face. In general, when the 

rake angle is negative, the material flow becomes unsteady, resulting in cracks, 

especially in a brittle material. In contrast, when the rake angle is positive, shear 

deformation occurs leading to longer chips (Piispanen 1948). Since WHAs exhibit 

limited ductility, work-piece material undergoes limited plastic deformation with 

negative rake angle resulting in fragmented chips. Hence, as the tungsten content 

increases, the tendency of chip fragmentation increases, an indication of increase in 

brittleness of material resulting in smaller chips. This may also be attributed to 

increasing contiguity that results in increasing brittleness as W-W interface is a 

potential crack nucleation site (Rabin and German 1988). In the case of positive rake 

angle, a mixture of ductile and brittle failure gives rise to a mixed chip morphology.  
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Figure 3.13(a) and (b) shows the variation in chip thickness, (c) and (d) shows the 

variation in chip reduction coefficient as a function of cutting speed and feed for the 

three grades of WHAs. The chip thickness varies from 70-100 m. In the chip 

thickness and chip reduction coefficient versus cutting velocity plot, the trends are 

again not very definitive for negative rake angle. It is mentioned earlier that a negative 

rake angle promotes brittle failure that leads to scatter in data. However, for positive 

angle, the thickness decreases with increase in cutting velocity. This may be due to 

temperature rise during machining. Also, with the increase in temperature the 

ductility of the material increases giving rise to thicker chips. Besides temperature 

effect, the decrease in chip thickness could also be because of change in shear plane 

angle which certainly has an effect on chip thickening. Higher is the shear angle, 

lower is the chip thickness. However, at higher cutting speed, the ductility may 

decrease because of high strain effects. 
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Figure 3.13 Effect of cutting velocity on (a) chip thickness, (c) chip reduction 

coefficient and effect of feed on (b) chip thickness, (d) chip reduction coefficient at 

depth cut 0.15 mm. 

Material Removal Rate 

MRR is calculated experimentally using Equation (2.1), while Equation (2.2) depicts 

the analytical expression explaining the relation between cutting parameters and 

MRR. 

Figure 3.14 (a) and (b) show the effect of cutting speed and feed on MRR for the 

selected grades of WHA using two different cutting tool geometries (2° and -5°). 

 
(a) 

 
(b) 

Figure 3.14 Effect of MRR on (a) cutting velocity and (b) feed at depth cut 

0.15 mm 

It can be seen that all three grades of WHA show an increasing trend with the increase 

in cutting speed and feed for both the type of rake angles. This is expected because 

cutting speed, feed and depth of cut are directly proportional to MRR (refer Equation 

(6)). It is noted that when the cutting speed is highest (i.e., at 70 m/min), 97 WHA 

(Figure 3.14 (a)) at constant feed rate shows maximum MRR both for positive and 

negative rake angles. On the contrary, 97 WHA shows lowest MRR at highest value 

of feed and 95 WHA showed the maximum one, especially when rake angle is 2°, at 

constant cutting speed. These variations may be explained by looking at the type of 

chip morphology obtained for the respective cutting conditions in Figure 3.12. It is 

inferred that higher chip fragmentation and lower chip thickness ensure better chip 

flow and hence, higher MRR. 
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Cutting forces 

The experimentally measured cutting force signature and its variation with respect to 

cutting velocity and feed are shown in Figure 3.15 (a), (b) and (c), respectively. 

The measured cutting forces with varying cutting speeds at a constant feed for all 

grades show different trends for positive and negative rake angles, as shown in Figure 

3.15 (b). For the positive rake angle, the force decreases with increasing speed. But, 

it does not show any consistent trend for the negative rake angle. For the lower cutting 

speeds, the values of cutting forces are higher with positive rake as compared to that 

of negative rake angle. However, a cross over occurs at the highest speed (70 m/min.). 

This phenomenon could be correlated well with the type of chips being produced in 

the respective cutting conditions. The chips obtained using negative rake angle are 

discontinuous producing small fragments due to brittle fracture; whereas, in case of 

positive rake angle chips are partly continuous type undergoing shear deformation. 

Since less force is required for removing smaller fragments, values of cutting force 

are lower in case of negative rake angle.  

The crossover at the highest speed may be due to additional parameter that is 

increasing temperature that may lead to material softening. When the rake angle is -

5°, the cutting force appears to go through minimum at 50 m/min for 95 WHA and 

97 WHA, whereas for 90 WHA there is a hint of maximum at 50 m/min. Thus, the 

trends are not consistent and this may be a result of brittle fragmentation, which is 

statistical in nature and may be prone to scatter. The radius of curvature of chip curl 

could also be one probable factor for such trend. It is observed that smaller is the 

radius of curvature, more constricted is the curling of chips, thus increasing the 

compressive load on the negative rake face of the tool while removing the chip. As 

far as the effect of feed rate is concerned, the force increases with the increase in feed 

rate (Figure 3.15(c)), an expected trend as the thickness of the chips increases with 

increasing feed. 

It is noted that higher values of cutting forces are exhibited by 97 WHA for positive 

rake angle with respect to both cutting speed and feed. This may be attributed to 

higher hardness because of the higher tungsten content in 97 WHA. Owing to 

predominant brittle failure of the chips for negative rake angle, the hardness does not 
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play a role and with scatter dominating the trends are inconsistent for negative rake 

angle. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.15 (a) Cutting force signature with respect to time, the effect of (b) cutting 

velocity and (c) feed on cutting forces at a depth of cut 0.15 mm. 

Surface roughness 

The measured surface roughness profile for a distance of 4 mm as shown in Figure 

3.16 (a). While Figure 3.16 (b) and (c) show the effect of cutting speed and feed on 

surface finish using both positive and negative rake angles for the investigated 

alloys. While for the positive rake angle, the surface roughness does not change 

much or at most exhibits a marginal decrease, no particular trend is seen for the 

negative rake angle. In the surface roughness versus feed plot, as the feed rate 

increases, surface roughness increases. For the positive rake angle, despite the 

presence of minima, a hint of positive trend is observed. 90 WHA appears to give a 

better surface finish (lower surface roughness values). This is expected since this 

alloy has higher ductility that will promote mixed chip formation. 97WHA, at least 
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in one case, shows higher surface roughness which is possibly a result of its limited 

ductility. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.16 (a) Surface roughness profile with respect to sample length, the effect 

of (b) cutting velocity and (c) feed on surface roughness at a depth of cut 0.15 mm. 

The variation of surface roughness as a function of cutting force for all three grades 

of WHA at different cutting speeds are shown in Figure 3.17. 
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Figure 3.17 Variation of surface roughness versus cutting force for different grades 

of WHA at feed = 0.1 mm/rev and rake angles -5°and 2° 

While the data are spread all over, a general trend is discernible that is, for 

negative and positive rake angle, the surface roughness increases with an increase in 

cutting force. The positive rake showed overall higher values for both cutting force 

and surface roughness as compared to that of negative rake angle. It is observed that 

90 WHA and 95 WHA at relatively lower cutting velocities showed the best possible 

values of cutting force and surface roughness, together, whereas, 97 WHA showed 

the worst of all. 

Tungsten content effect 

With increasing tungsten content, the volume fraction of the matrix phase decreases 

and the contiguity of W increases. This results in increasing hardness, which has 

implications on surface roughness, MRR and cutting force. On the whole, it can be 

concluded that with the increase in tungsten content, there is an increase in MRR and 

cutting force for different cutting speeds, feed rates and tool rake angles (see Figure 

3.18 (a) and (b)). Surface roughness against tungsten content does not change 

significantly, exhibiting a flat trend. 
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(a) 

 
(b) 

Figure 3.18 Effect of tungsten content on surface roughness, cutting force, material 

removal rate for (a) positive and (b) negative rake angle 

3.3 Tool wear analysis and analytical modeling 

Tool wear is of foremost importance in machining operation. Owing to its direct 

impact on the surface quality and machining economics, tool wear is typically used 

to evaluate the overall productivity of the machining process. From the preceding 

section, it is inferred that 90 WHA showed relatively better machinability attributes 

as compared to other two grades. Hence, 90 WHA is considered as the work material 

for tool wear analysis. The present section is divided into two parts. First part deals 

with the experimental approach for analysis of flank wear, estimation of tool life and 

identification of predominant wear mechanism. While the second part focuses on the 

analytical approach for prediction of flank wear growth and tool life. 
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3.3.1 Experimental analysis of tool wear 

In this study, machining tests were conducted by turning of 90 WHA under 

dry conditions. Firstly, the growth of flank wear is studied and tool life is determined 

for different tool geometries as well as its effect on other machining variables is 

investigated. Secondly, the predominant tool wear mechanism is identified using 

SEM analysis. 

Test procedure 

Uncoated carbide inserts (make: WIDIA) with two different rake angles i.e., 

-5º and 2º, were used with the following specifications: CNMA120408-THMF and 

CNMG120408MS-W10HT, respectively. Both the inserts were mounted using a tool 

holder with specification MCLNL2020K12 (make: WIDIA). Flank wear tests were 

performed at constant velocity of 50 m/min, feed rate of 0.1 mm/rev and depth of cut 

of 0.15 mm using two different types of cutting inserts. The turning operations were 

continued until the failure criterion is achieved i.e., tool flank wear of 600 µm is 

reached. Measured flank wear progressions for both the tool geometries are plotted 

as a function of cutting time to determine the tool life. During the flank wear tests, 

cutting force components, temperatures as well as surface roughness values were also 

measured simultaneously at specific time intervals. Minimum of three readings are 

taken at different locations of the work piece and average of the same are taken as the 

final value. Flank wear was measured by METZER M optical microscope at 40 X 

magnification. The worn surfaces were analyzed using SEM as well as Energy-

dispersive X-ray spectroscopy (EDS) at successive machining time intervals. Figure 

3.19 depicts the methodology adopted for performing the experimental studies and 

analytical approach. 
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Figure 3.19 Flowchart showing the overall methodology adopted 

Tool life estimation 

Tool flank wear progression along with SEM images and built up edge measurements 

for two different tool geometries (-5º and 2º rake angle) has been shown in Figure 

3.20 (a) and (b). The images were taken at regular time intervals as the wear 

progressed and presented according to three distinct regions of the wear growth 

curve, namely, initial or rapid growth region, steady state region and catastrophic 

failure region.  

The tool lives for both the cutting tools were estimated from the flank wear 

growth curve by considering the time taken to reach the failure criterion (i.e., 600 µm 

of flank wear). As presented in Figure 3.20 (a) and (b), tool life comes out to be 18 

minutes and 14.82 minutes for -5º and 2º rake angles, respectively. Though the 

difference in the values of estimated tool life was not much with respect to the given 

tool geometries, SEM images showed certain amount of difference in flank wear 

growth pattern. The development of BUE on fresh cutting edge was observed during 

the initial and steady state region for both the cases. Based on the measured tool life 

values, it can be stated that the cutting tool with negative rake angle performed 

reasonably well as compared to that of positive rake angle for machining 90 WHA 

under similar cutting conditions. This is expected because the negative rake angle 

leads to higher wedge angle which results in increased strength of tool tip, thus 

making the cutting tool more sustainable under severe cutting conditions. 
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(a) 

 

(b) 

Figure 3.20 Flank wear measurements, SEM micrographs and BUE measurement 

for (a) -5º, (b) 2º rake angles  

Figure 3.20 (a) and (b) shows the development of BUE with respect to three regions 

of flank wear growth. The graph clearly shows the difference in values of BUE 

formation for -5º and 2º angles. The BUE measured in case of 2º rake angle is fairly 
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low as compared to that of -5º. The BUE size for the rake angle -5º reduced in the 

catastrophic failure region, thus confirming to the cause of change in chip 

morphology as the machining progressed. Whereas for 2º rake angle, BUE size 

slightly increased and became stable as it reached steady state region. 

Figure 3.21 shows the variation in chip morphology as the flank wear 

progressed. As expected, discontinuous chips are observed during machining using 

negative rake angle (-5º). The chips became highly fragmented in the catastrophic 

failure region for -5º rake angle. It was observed that there is a prominent BUE in the 

first two regions. The presence of BUE on the tool tip possibly change the effective 

rake angle from negative to near positive. Consequently, in the initial and steady state 

regions, chips obtained were slightly continuous. Nevertheless, as the BUE reduces, 

chips produced were highly fragmented or discontinuous. Whereas, for 2º rake angle, 

chips were not as fragmented as observed in case of -5º rake angle. Furthermore, not 

much change in chip morphology is observed with respect to the flank wear progress. 

Also, BUE formation for 2º rake angle is not as prominent as in case of -5º. 

Phase 1 Phase 2 Phase 3 

   
(a) 

   
(b) 

Figure 3.21 Variation of chip morphology with the flank wear progress for (a) -5º 

and (b) 2º rake angles. 
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Effect of flank wear on machining outputs 

The correlation between flank wear and cutting force components with respect to 

time for the rake angles -5º and 2º are shown in Figure 3.22 (a) and (b), respectively. 

The graphs in Figure 3.22 show a strong relationship between force components 

and the flank wear. The trend for force components and that of flank wear closely 

match, especially for -5º rake angle, showing three distinct regions similar to that of 

flank wear. A steep increase in force components was observed for both the tool 

geometries. This sudden increase in cutting force may be attributed to the 

development of BUE on tool tip as shown in SEM images (Figure 3.20(a) and (b)). 

Beyond this point, it is observed that the forces reached a steady state. For -5º rake 

angle, the steady state is followed by a sudden increase in the forces. The point at 

which the cutting forces abruptly increased coincided with the catastrophic failure 

region of the flank wear growth. 

  

(a) (b) 

Figure 3.22 Variation of flank wear, cutting force and thrust force with respect to 

time for rake angles (a) -5º and (b) 2º. 

However, for 2º rake angle, the forces increased gradually reaching a 

maximum value, nearly same as that obtained in case of -5º rake angle. Hence, it can 

be inferred cutting force and thrust force trends are different for positive and negative 

rake angles. A similar pattern is observed for the temperature measured as the flank 

wear progressed. Figure 3.23 (a) and (b) show the correlation between flank wear and 

cutting temperature with respect to time for the rake angles -5º and 2º, respectively. 

In Figure 3.23 (a), the sharp increase in cutting temperature can be attributed to the 

development of prominent BUE on the tool tip in initial as well as steady region of 

flank wear growth, as shown in Figure 3.20 (a). Because of such a steep increase in 

cutting temperature, thermal softening became the dominant factor over strain 
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hardening and consequently cutting force components achieved a steady state. In the 

catastrophic failure region, BUE reduced considerably, thereby reducing the cutting 

temperature. However, further reduction in cutting temperature could be possibly 

because of the formation of highly fragmented chips with the flank wear progression. 

It is noted that there could be possible chances of getting error while measuring the 

cutting temperatures experimentally for highly fragmented chips. In Figure 3.23 (b), 

for positive rake angle, a gradual increase in cutting temperature is observed as the 

flank wear progressed. This suggests that the gradual increase in cutting temperature 

resulted in increase of flank wear. 

Figure 3.23 (c) and (d) show the effect of flank wear on surface roughness 

with respect to time for the rake angles -5º and 2º, respectively. In both the cases, it 

is evident that with the increase in flank wear, surface roughness increased. The 

surface roughness value reached a maximum value in the catastrophic failure region. 

It is observed that surface roughness values are lower in case of negative rake angle 

with a maximum value not exceeding 2.2 μm. Whereas for the positive rake angle, 

the maximum value of surface roughness is closer to 3.7 μm. 

Thus, overall, it can be inferred that as the cutting temperature increases flank 

wear increases and as the flank wear increases there is a considerable increase in 

forces. The increase in forces could possibly lead to vibrations which in turn would 

prove detrimental to the surface finish of the workpiece, thus leading to higher surface 

roughness values. Hence, this shows machining is such a complex process in which 

not merely the input parameters affect the machining outputs but also the machining 

outputs are interdependent on each other. The basic understanding of the tool wear 

growth and its mechanism is not only challenging but also equally important to 

perform machining operations effectively and economically. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.23 Variation of flank wear and cutting temperature with respect to time for 

rake angles (a) -5º and (b) 2º. Variation of flank wear and surface roughness with 

respect to time for rake angles (c) -5º and (d) 2º. 

SEM analysis and identification of wear mechanism 

Identification of the predominant wear mechanism plays a vital role in understanding 

the tool wear growth. Figure 3.24 shows the SEM micrograph of the flank surface of 

unworn cutting tool and the corresponding EDS analysis of the surface. The 

micrograph showed the arrangement of WC-Co microstructure on the surface of the 

unworn surface. While EDS analysis confirmed the chemical composition of the 

uncoated carbide inserts. These results would suffice as a reference for studying the 

worn surfaces of the given carbide inserts. 
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Figure 3.24 SEM micrographs, microstructure and EDS analysis of the unworn 

surface for the uncoated carbide inserts  

Figure 3.25 shows the SEM micrographs and the corresponding EDS analysis of the 

worn surface for the uncoated carbide inserts in the catastrophic failure region for 

rake angles -5º and 2º, respectively. In Figure 3.25 (a) and (b), the microstructural 

arrangements in the SEM micrographs appear disorganized as compared to the initial 

one (see Figure 3.24). Such disarrangement could be due to abrasion that would lead 

to micro-cracks at WC/WC or at WC/Co interfaces or chipping due to the alternative 

stress (Kagnaya, et al. 2014, Najar and Butt 2018). Consequently, few deep grooves 

or slip line traces on the surface of WC grains on the worn flank surface are observed.  

In addition, a prominent adhesion layer is also observed. This may be 

attributed to a combination of high friction forces between the tool and the chip and 

high cutting temperatures in the catastrophic failure region. The EDS analysis in 

Figure 3.25 (a) and (b) shows the presence of W-Ni-Fe elements. This indicated that 

the elements present in the adhesion layer are same as that of the workpiece material, 

thus confirming adhesion as one of the predominant mechanism. Furthermore, it is 

observed that Co and W elements have not diffused into the adhesion layer. Hence, 

the SEM micrographs show the occurrence of both abrasion and adhesion. However, 

the accumulation of workpiece elements as adhesion layers is more prominent for 

both the tool geometries as compared to that of abrasive micro-scratches on the worn 

WC

Co

SEM micrographs

Microstructure
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surface. Hence, in the present work, adhesion is considered as the dominant 

mechanism while machining 90 WHA using uncoated carbide for both -5º and 2º rake 

angles. 

 
(a) 

 
(b) 

Figure 3.25 SEM micrographs, microstructure and EDS analysis of the worn surface 

for the uncoated carbide insert (a) -5º and (b) 2º rake angle in the catastrophic failure 

region. 

In the case of 2º rake angle (Figure 3.25 (b)), deep scars appeared similar to the 

micrographs obtained by (Kagnaya, et al. 2014). It is also reported that the adhesive 
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layer at the tool–chip separation zone is formed according to a “formation–

stacking–pulling out” process, which may get removed periodically by the chip. 

Such removal can be further amplified by the debonding of WC fragments. In order 

to confirm debonding, further investigations are performed on cutting insert with 2º 

rake angle by etching the worn surface in ultrasonic cleaner for 1 hour using 

methanol solution and then observing at higher magnification using SEM. 

 Figure 3.26 (a) shows the deep scars before etching, which appeared similar 

to debonding phenomenon, while Figure 3.26 (b) shows the wear scars after etching. 

It can be seen that the adhered layer on the tool disappeared after etching, leaving 

few abrasion marks on the flank surface. This confirms that it is an accumulation of 

workpiece material elements in the form of the adhesive layer that got dissolved 

when etching is done. However, further use of this cutting tool would have led to 

debonding and, consequently, complete damage of the tool tip. 

 

(a) 

 

(b) 

Figure 3.26 SEM micrograph of worn flank surface for 2º rake angle (a) before 

etching (b) after etching 

3.3.2 Analytical tool wear rate models 

Once the tool wear mechanism is identified, the prediction of tool wear by analytical 

method plays a major role in avoiding large number of trial and error experiments. 

Analytical approach includes utilization of tool wear rate models. These models 

describe the wear growth rate, i.e., the rate of volume loss at the tool face (rake or 

flank) per unit contact area per unit time, as a function of various cutting process 

variables (Arsecularatne, Zhang and Montross 2006).  
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The analytical approach requires experimental tests to be continued until the 

tool wear criterion is reached. The minimum number of trials that must be performed 

is determined by the number of constants included in the given model. The tool wear 

rate models are derived from one or several wear mechanisms, namely, adhesion, 

abrasion, diffusion, etc. In the present work, worn surfaces are carefully examined 

and dominant wear mechanism is identified. Depending upon the obtained results, 

suitable tool wear rate models are taken into consideration. Four models, based on 

adhesion as dominant wear mechanism, are selected; out of which, three models are 

developed by the researchers in the past and one is newly proposed. The basic 

intention is to test the efficiency of the selected tool wear models by comparing the 

predicted results with the experimental ones and come up with the best tool wear rate 

model. The identified best tool wear rate model would be used further to predict tool 

life for different cutting velocities and feed rates. 

Tool wear rate models 

Four tool wear rate models used based on adhesion are: (1) W1: Usui model, (2) W2: 

Matsumura model, (3) W3: Zhao model and (4) W4: modified Zhao model. 

W1: Usui model (Usui, Shirakashi and Kitagawa 1984) 

In this model, wear rate is dependent on 𝜎𝑛 normal stress, 𝑣𝑐 cutting velocity and 휃𝑓 

cutting temperature variation. The model is based on the following assumptions: 

 Rake angle is assumed to be zero degrees 

 Hardness of cutting tool remains constant  

 Coefficient of friction is equal to the wear land 

 Temperature increases logarithmically 

The predicted wear rate, in terms of adhesive wear volume per unit time, is given as 

follows: 

𝑑𝑊

𝑑 𝑡𝑚
= 𝐵𝑒 𝜎𝑛 𝑣𝑐 𝑒

( 
−𝐶𝑑
𝜃𝑓
)
 (3.5) 

where, Be is experiment wear rate constant, 𝐶𝑑 is constant of element diffused layer 

at contact surface. The constants are not taken straight away from the literature, 

instead, the values are derived using the methodology given in the literature (Usui, 

Shirakashi and Kitagawa 1984). Incidentally, the derived values came out to be closer 

to the ones given in the literature and 𝑡𝑚 machining time 
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Equation(3.5) was further integrated and represented as follows: 

𝑊 = 𝐵𝑒 𝜎𝑛 𝑣𝑐  𝑒
( 
−𝐶𝑑
𝜃𝑓
)
 𝑡𝑚 

(3.6) 

Since rake angle was assumed as zero degree and volume of wear was almost equal 

to flank wear. It was assumed that volume of wear W is equal to flank wear VB. 

𝑊 = 𝑉𝐵 (3.7)  

Equation (3.5) has been modified further using Equation (3.7) and represented in 

following from. 

𝑉𝐵 = 𝐵𝑒 𝜎𝑛 𝑣𝑐 𝑒
( 
−𝐶𝑑
𝜃𝑓
)
  𝑡𝑚 

(3.8) 

where, Be = 7.9x10-9 and Cd = 5301.8,  𝜎𝑛= 
𝐹𝑡

𝐴𝑡
, At = bVB . Since thrust force increases 

with tool wear, a time dependent thrust force polynomial equation is developed for -

5° and 2° rake angles using Figure 3.22 (a) and (b). This is achieved by taking initial 

thrust force 𝐹𝑡𝑖 for every new cutting parameter combination during turning operation 

for a single pass. Equations (3.9) and (3.10) shows the developed polynomial 

equations for the rake angles -5º and 2º, respectively 

𝐹𝑡 = 𝐹𝑡𝑖 × 𝑡𝑚
0.0556 (3.9)  

𝐹𝑡 = 𝐹𝑡𝑖 × 𝑡𝑚
0.0295 (3.10)  

Similarly, cutting temperature 휃𝑓 is determined by measuring the initial temperature 

휃𝑓𝑖 and calculating the average temperature rise  ∆휃𝐸𝑥𝑝 from the experimental cutting 

temperature versus time graph during turning operation for single pass under varied 

cutting conditions. The expression is as follows: 

휃𝑓 = 휃𝑓𝑖 + 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡(∆휃𝐸𝑥𝑝) (3.11)  

W2: Matsumura model  

(Matsumura, Shirakashi and Usui 2008) is the modified version of Usui wear rate 

model which considers the variation of normal stress, cutting velocity, cutting 

temperature as well as tool geometry (in terms of rake angle 𝛼 and relief angle 𝛽 ) 

with respect to time. The model is based on the following assumptions: 

 Frictional stress is equal to normal stress 

 Temperature increases logarithmically 

 Hardness of cutting tool remains constant 
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The tool flank wear is shown in Equation (3.12). 

𝑑𝑉𝐵
𝑑 𝑡𝑚
= 𝐵𝑒 𝜎𝑛 𝑣𝑐 𝑒

( 
−𝐶𝑑
𝜃𝑓
)
 (
1

𝑡𝑎𝑛𝛽
− 𝑡𝑎𝑛𝛼) (3.12) 

Equation (3.12) is further integrated and represented as follows: 

𝑉𝐵 = 𝐵𝑒 𝜎𝑛 𝑣𝑐 𝑒
( 
−𝐶𝑑
𝜃𝑓
)
 (
1

𝑡𝑎𝑛𝛽
− 𝑡𝑎𝑛𝛼)  𝑡𝑚 (3.13) 

where, Be, Cd are the constants taken from W1 model, σn is calculated using thrust 

force similar to W1 model using Equation (3.8), (3.9) and θf values are calculated 

using the Equation (3.11). β is taken as 5º and α is taken as per experimental settings. 

W3: Zhao model (Zhao, Barber and Zou 2002) 

The W1 and W2 wear models consider tool hardness, indirectly, in terms of wear 

constants. This indicates that the tool hardness would remain constant for any 

variation of temperature, which is not true. In order to overcome this limitation, 

(Zhao, Barber and Zou 2002) introduced the effect of tool hardness concerning the 

change in temperature, cutting velocity, relief angle and normal stress with time 

progression during machining which is expressed as follows:  

𝑉𝐵 = 𝐷𝑡 (
2 𝑣𝑐
𝑑2 𝑡𝑎𝑛𝛽

)

1
3
(
𝐹𝑡    𝑡𝑚
𝑍𝑡
)

1
3
 (3.14) 

𝑍𝑡(휃𝑓) =  𝐴1휃𝑓
3 + 𝐴2휃𝑓

2 + 𝐴3휃𝑓 + 𝐴4 (3.15)  

where, Dt depends on tool wear experiments, Zt is temperature dependent tool 

hardness as shown in Equation (3.15), hardness constants A1 = 0.000006, A2 = -0.054, 

A3 = 0.5853 and A4= 1517 (Zhao, Barber and Zou 2002) and 𝐹𝑡, 휃𝑓were calculated 

using Equations (3.9) to (3.11) by similar procedure. The model is based on the 

following assumptions: 

 Rake angle is assumed to be zero degrees 

 Frictional stress is equal to normal stress 

 Temperature increases logarithmically 

W4: Modified Zhao model 

The proposed model is a modified form of Zhao model which includes rake angle as 

an additional input parameter along with other factors considered in Zhao model. 
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Besides, the modified Zhao model altered the temperature expression used in Zhao 

model by incorporating non-linear temperature variation to capture temperature rise 

during flank wear growth more precisely. Note that all the three models considered 

temperature variation to be linear which is not valid. The basic objective is to develop 

a robust wear rate model that fits well for varied rake angles and capture non-linear 

temperature behaviour. The proposed model is based on the following assumptions: 

 Frictional stress is equal to normal stress 

 Endurance limit of workpiece material remains constant 

The underlying relation between flank wear and various input parameters is shown 

below (Luo, et al. 2005): 

𝑊 = 𝐷𝑡 (
𝐹𝑡𝐿𝑚
𝑑𝑉𝐵𝑍𝑡
) (3.16) 

Figure 3.27 presents the schematic diagram of a cutting tool showing the wear land 

and cutting tool angles. Wear volume is converted to wear land measurement VB in 

Equation (3.17) according to Stephenson analysis (Stephenson and Agapiou 2016). 

𝑊 =
1

2
𝑑𝑉𝐵𝑀𝑁 (3.17) 

Wear land is measured in terms of rake angle and relief angle (see Figure 3.27) and 

hence, expressed in Equation (3.18). 

𝑉𝐵
𝑀𝑁
= 𝑐𝑜𝑡𝛽 − 𝑡𝑎𝑛𝛼 (3.18) 

 

Figure 3.27 Schematic diagram of cutting tool with rake angle α and relief angle β 

Further wear land MN from Equation (3.18) has been substituted in Equation (3.17) 

and expressed as follows: 
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𝑊 =
𝑑𝑉𝐵
2

2(𝑐𝑜𝑡𝛽 − 𝑡𝑎𝑛𝛼)
 (3.19) 

VB is a variable which increases with the development of flank wear. By substituting 

Equation (3.19) in Equation (3.16), flank wear is expressed as follows: 

𝑉𝐵 = 𝐷𝑡  (
2 (𝑐𝑜𝑡𝛽 − 𝑡𝑎𝑛𝛼)

𝑑2
)

1
3

(
𝐹𝑡 𝐿𝑚
𝑍𝑡
)

1
3
 (3.20) 

Since Lm = VC tm, Equation (3.20) can further be expressed as: 

𝑉𝐵 = 𝐷𝑡  (
2 (𝑐𝑜𝑡𝛽 − 𝑡𝑎𝑛𝛼)𝑣𝑐

𝑑2
)

1
3

(
𝐹𝑡 𝑡𝑚
𝑍𝑡
)

1
3
 (3.21) 

where, Dt depends on tool wear experiments,  𝐹𝑡 thrust force, d depth of cut, Zt are 

calculated using Equations (3.9), (3.10) and (3.15). But as mentioned earlier, the 

above three wear rate models could not capture nonlinear temperature rise behaviour 

as these models assumed temperature rise as linear increment parameter with time. 

So, in order to capture nonlinear temperature rise behavior, a time-dependent 

temperature polynomial equation for -5° and 2° tool geometries is derived as shown 

in Equations (3.22) and (3.23) from experimental temperature measured graph as 

shown in Figure 3.23 (a) and (b). 

휃𝑓 = 3.5 × 10
−6𝑡𝑚
2 + 4.1 × 10−2 𝑡𝑚 + 휃𝑓𝑖 + ∆휃𝐴𝑡 (3.22)  

휃𝑓 = 4 × 10
−5𝑡𝑚
2 + 3.57 × 10−2 𝑡𝑚 + 휃𝑓𝑖 + ∆휃𝐴𝑡 (3.23)  

Equations (3.22) and (3.23) require measurement of 휃𝑓𝑖 during turning operation for 

single pass at varied cutting conditions, as done for the other three models. But 

instead of considering the average temperature increase (∆휃𝐸𝑥𝑝), proposed model 

incorporates analytical temperature rise ∆휃𝐴𝑡 which is calculated analytically. The 

analytical expression for temperature variation is taken from (Luo, et al. 2005), as 

shown in Equation (3.24). 

∆휃𝐴𝑡 = 
2𝑄𝑙𝑐

𝑘𝑤√𝜋(1.27𝑆𝑒𝑖 + 𝑃𝑒𝑖)
 (3.24) 

where ∆휃𝐴𝑡 is calculated by determining tool flank workpiece contact length 𝑙𝑐 near 

tool flank face of workpiece, 𝑄 =
𝐾𝑤×∆𝜃𝑓

𝑓
 with the rate of heat generated in primary 

shear deformation zone with respect to Peclet number 𝑃𝑒𝑖 and endurance limit 𝑆𝑒𝑖 
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equal to 425 MPa (Lorenzo, et al. 2013) and thermal conductivity 𝑘𝑤 of workpiece 

material to carry away the heat from tool flank–workpiece zone. 

𝑃𝑒𝑖 depends on the rate of material removal per unit depth of cut and the thermal 

diffusivity of material and is expressed in Equation (3.25). 

𝑃𝑒𝑖 =
𝑣𝑐𝑑𝜌𝑐𝑝

𝑘𝑤
 (3.25) 

Length of contact 𝑙𝑐 near tool flank face is taken as a function of depth of cut and 

rake angle (Iqbal, Mativenga and Sheikh 2009) and expressed as shown in Equation 

(3.26) 

𝑙𝑐 = 2𝑑(𝜉(1 − 𝑡𝑎𝑛𝛼) + 𝑠𝑒𝑐𝛼) (3.26)  

Figure 3.28 shows the stepwise approach for calculating the flank wear growth 

analytically using the four tool wear rate models. 

 

Figure 3.28 Step wise approach for flank wear growth prediction analytically 

3.3.3 Experimental validation of tool wear rate models 

This section compares the flank wear growth curves predicted analytically using the 

selected tool wear rate models with the experimental ones under similar cutting 

conditions. Figure 3.29 (a) and (b) show the predicted flank wear growth using the 

selected analytical models and their validation with the experimentally measured 

ones for rakes angles -5º and 2º, respectively. 

In Figure 3.29 (a) for -5° rake angle, it is observed that all the four models are 

able to predict flank wear growth with respect to machining time. But, W1 and W2 

models could not capture the steady state wear region satisfactorily. This could be 

due to the incapability of the models to capture the temperature dependent tool 

hardness. On the contrary, flank wear growth curves predicted by W3 and W4 models 
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could show the three regions of flank wear growth distinctly. However, a larger 

deviation is observed for the model W3, particularly in the catastrophic failure region, 

as compared to that of W4. It is known that during the flank wear growth, until the 

steady growth region, temperature is not that sensitive. Nevertheless, as the flank 

wear enters catastrophic failure region, temperature plays a major role in accelerating 

the wear. Since W4 is the only model that considered non-linear temperature 

variations, it could show better results as compared to others. Figure 3.29 (b) for -5° 

rake angle, shows the percentage error of the predicted flank wear as the flank wear 

progressed with respect to the experimental ones. The newly proposed model W4 

showed the least percentage error amongst all with error percentage as low as 

0.003%.  

Similarly, in the case of 2º rake angle (Figure 3.29), all the models could 

predict the flank wear growth reasonably well, including W1 and W2, which had 

failed to replicate the steady region satisfactorily for -5º rake angle. Figure 3.29 (b) 

for 2º rake angle showed the estimated error percentage of the predicted flank wear 

for all the models. Again, W4 showed the least error as compared to others.  

Overall, it is observed that the newly proposed model came out to be the best 

model for predicting flank wear growth for both the positive as well as negative rake 

angles. It is noted that one of the most commonly used model W1 i.e., Usui model 

showed larger deviations, especially for the negative rake angle. This was obvious 

because the model included neither the rake angle effect nor the tool hardness factor. 

On the other hand, W2 considered both rake angle and relief angle effect but did not 

consider tool hardness variation. Such a phenomenon indicates that the commonly 

used models such as W1 and W2 could not predict the flank wear growth 

satisfactorily. 
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(a) 

  

(b) 

Figure 3.29 Comparison of tool life with respect to experimental and predicted tool 

wear models for -5° and 2° rake angle (a) tool life plot (b) bar chart and error 

percentage with experiment 

Similarly, for W3, higher deviations are observed in the catastrophic region, 

especially for negative rake angle. This may be because temperature dependent tool 

hardness (in case of W1 and W2), rake angle effect and nonlinear temperature 

behavior are not considered as input to these models. Moreover, in theory of 

machining, most of the analyses are based upon ideal conditions i.e., assuming rake 

angle as positive. Whereas, in the case of newly proposed model W4 rake angle is 

included explicitly as one of the key inputs, in addition to temperature dependent tool 

hardness and relief angle, to include the overall effect of tool geometry on flank wear. 

Consequently, W4 could show the best results for both positive and negative rake 

angles. Further, W4 is the only model that considered non-linear temperature 

variations and thus, showed better results as compared to others. 
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3.3.4 Analytical prediction of tool life  

The model which showed the best results, i.e., W4 (modified Zhao model), is used 

for predicting tool life at varying cutting speeds. Experimental tool life tests are also 

conducted under similar cutting conditions and measured values of tool life are 

compared with the predicted ones. The primary objective is to check the robustness 

of the proposed model under varied cutting conditions. Figure 3.30 presents the 

predicted values of tool life using W4 at different cutting speeds for -5º rake angle as 

well as the error percentages with respect to that of measured values. It is observed 

that W4 could replicate the effect of the cutting speeds on tool life fairly well, i.e., as 

the cutting speed increased, there was a decrease in tool life. Such observation is in 

accordance with Taylor’s tool life equation. Also, this is much expected considering 

the fact that higher cutting speeds lead to higher material removal rate and, 

consequently, higher cutting temperatures and thermal softening of tool (Hoier, et al. 

2019). Furthermore, the predicted values of tool life closely matched the 

experimental ones with error percentage well within 7%. 

 

Figure 3.30 Comparison of experimental and W4 predicted tool life for varying 

cutting velocity at -5° rake angle. 

As a whole, it can be stated that the proposed model W4 came out to be a good choice 

when compared with the tool wear models that are commonly being used to predict 

tool life analytically under varied cutting conditions. It is to be noted that the same 

model can also be extended not only for predicting the tool life for different grades 
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of WHAs but also for cooling or lubrication conditions. Although the mathematical 

equations did not consider any parameters that are directly related to lubrication 

conditions, it considers the effect of cooling and lubrication indirectly in the form of 

outputs such as cutting forces and temperatures. Since these outputs are affected by 

cooling or lubrication conditions considerably, the effect of the latter on tool wear 

growth gets captured inevitably. 

It is also observed that approaches based on artificial intelligence techniques like 

fuzzy logic, neural networks and meta-learning models have emerged in the recent 

past for monitoring and prediction of tool wear (Li, et al. 2019). There is no doubt 

that such approaches have shown substantial improvements in the accuracy of 

predicting tool wear. However, the drawback of such an approach is that it is based 

on an empirical model which generally needs extensive experimental data (Salimiasl 

2017). In addition, these empirical models fail to explain the physical meaning. 

Whereas, the proposed model in the current work includes mathematical equations 

representing the corresponding physical laws, thus, giving a better insight of tool 

wear growth with respect to input and other output parameters. Hence, one feasible 

way could be to combine these approaches, if possible, to get the benefit of both. 

Summary 

The present chapter attempts to assess a comprehensive analysis of material 

properties for three different grades of WHAs with varying tungsten content. There 

exists a strong relationship between tungsten content, material properties and 

microstructural parameters. Such a phenomenon is further analyzed by machinability 

of WHAs with varying tungsten content in terms of different machining 

characteristics such as chip morphology, material removal rate, cutting force and 

surface roughness. Besides, experimental analysis and analytical prediction of the 

tool wear growth under varied cutting conditions are performed. From the 

machinability tests, it is found that the dependence of chip morphology, MRR, cutting 

force and surface roughness on feed rate, tungsten content and tool geometry show a 

clear trend but not in the case of cutting velocity. A complex interplay of different 

variables such as hardness, ductility/brittleness, and temperature rise during 

machining appears to be responsible for such behavior. Similarly, experimental tool 
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wear results show there exists a strong relationship between flank wear and other 

machining outputs, namely, force components, cutting temperature, chip morphology 

and surface roughness. Overall, it can be stated that machining is a complex process 

in which not merely the input parameters affect the machining outputs, but also the 

machining outputs affect each other adversely. This instigates for a comprehensive 

understanding of the physics underlying the chip formation mechanism during 

machining of difficult to machine WHAs. Hence, the next chapter focuses on the FE 

modelling of the chip formation process to simulate difficult to measure variables 

such as the distribution of stress, strain and temperatures in the cutting zone.
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Chapter4 FINITE ELEMENT MODEL DEVELOPMENT 

The metal cutting is considered as a thermo–mechanical process involving numerous 

complexities. An adequate quantitative understanding of the mechanics governing 

the metal cutting process is essential to carry the metal removal process efficiently 

and economically. With advances in computational techniques, numerical methods 

such as FE method are one of the popular tools for analysis of the cutting process. 

This approach substitutes the expensive trial and error experimental techniques to a 

great extent. However, the selection of suitable material and damage models and 

subsequently the determination of precise material model constants are one of the 

prime concerns in FEM. The present work focuses on formulating a methodology to 

calculate and fine-tune the material as well as damage model constants. Hence, a 2D 

FE model of the orthogonal cutting process is developed considering the computed 

material and damage model constants as material inputs. 

4.1 FE simulation procedure 

 The present work focuses on the development of a 2D FE model of chip 

formation under orthogonal cutting conditions. Although 2D analysis is a restrictive 

approach from a practical point of view, it reduces the computational time 

considerably and provides satisfactory results regarding the details of the chip 

formation. A plane strain condition is assumed because the feed value is generally 

very less as compared to the depth of cut. A fully coupled temperature displacement 

analysis is performed using ABAQUS/Explicit version 6.14 to simulate the chip 

formation process.  

4.1.1 Geometric details, boundary conditions and material properties 

 The 2D model comprises a portion of the cutting tool and a rectangular block 

representing the workpiece. The cutting tool is considered to be perfectly sharp based 

on the fact that the effect of the tool edge radius hardly plays any role once a steady 

state is reached in cutting (Priyadarshini, Pal and Samantaray 2012). The cutting tool 

used in the model is uncoated tungsten carbide with rake angles -8°, -5° and 2° and 

clearance angle 7°. Both the workpiece and the tool are considered as deformable 

bodies and discretized with four-noded plane strain thermally coupled quadrilateral, 
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bilinear displacement and temperature (CPE4RT) with reduced integration and 

hourglass control element type.  

As boundary conditions, the cutting tool movement is constrained in the vertical 

direction by fixing the top edge in Y-axis and velocity equal to the cutting speed (in 

m/sec) is given in negative X-direction. The bottom of the workpiece is fixed in Y-

axis and the left edge of the workpiece is fixed in X-axis. By this, it not only restricts 

the workpiece movement but also aids in calculating the cutting and feed force in X 

and Y directions, respectively. As thermal boundary conditions, the tool and the 

workpiece are kept initially at room temperature. The geometric details with 

boundary conditions and meshing are shown in Figure 4.1. The material properties 

of both the workpiece and cutting tool used in the simulation of the chip formation 

process are listed in Table 4.1. 

 

Figure 4.1 Geometric model, meshing and boundary conditions in the FE model 

Table 4.1 Material properties of workpiece and cutting tool (Priyadarshini, Pal and 

Samantaray 2012) for FE simulations 

Property 
Workpiece Tool 

(Tungsten 

carbide) 90WHA 95WHA 97WHA 

Density (kg/m3) 17013 17500 18106 11900 

Young’s Modulus (N/m2) 213 x 109 267 x 109  309x 109 534 x 109 

Poisson’s ratio 
0.24 0.22 0.2 0.22 

Specific heat (J/kg °C) 320 307.37 293.1 400 

Thermal Conductivity (W/m °C) 56.92 57.43 58.30 50 

Coefficient of thermal Expansion 

(m/m °C) 
4.4 x 10-6 4.2 x 10-6 4.0 x 10-6  --- 

Fracture Toughness (MPa m1/2)  36 41 44 --- 

Work piece

Tool
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ABAQUS procedure 

4.1.2 Material constitutive equation 

Constitutive equations capture the thermo-mechanical properties of a material 

experiencing deformation. These constitutive equations could be one or a group of 

equations that would depend on the complexity of the material behavior and 

expresses the deformation of the material in terms of flow stresses. 

Deformation of material is distinguished as elastic and inelastic response based on 

the assumption that there exists an additive relationship between the strain rates such 

that: 

휀̇ = 휀�̇� + 휀�̇� (4.1)  

where 휀̇ is total strain rate of material, 휀�̇� is elastic strain rate and 휀�̇� is inelastic strain 

rate. Equation (4.1) specifies that material initially undergoes elastic deformation, 

and when the flow stress is beyond the elastic limit, plastic deformation takes place. 

The elastic deformation can be simply expressed by linear elastic relationship as: 

𝜎 = 𝐷𝑒: 휀𝑒 (4.2)  

where 𝐷𝑒is the elastic stress tensor and 휀𝑒is the elastic strain. 

The plastic deformation is usually expressed in terms of constitutive equations and it 

contains yield criterion, flow rule and strain hardening rule. The yield criteria define 

the state of stress at yielding, the flow rule describes increment of plastic strain during 

yielding and the strain hardening rule defines how the material strain hardened as the 

plastic strain increases. The machining process usually comes under the category of 

large deformation problems were the Von Mises yield criterion and Prandtl-Reuss 

flow rule are generally used to describe the isotropic yielding and hardening 

(Rodriguez, Jonsen and Svoboda 2017). 

These criteria make machining a complex process of plastic deformation since the 

workpiece material is subjected to very high levels of strain, strain rate and 

temperature, which significantly affects flow stress. So, an accurate and reliable rate-

dependent constitutive model is required to define stress-strain response in terms of 

strain rate, temperature and work hardening such that the physics of metal cutting is 

represented adequately. Johnson-Cook constitutive model (Johnson and Cook 1983) 

is one such model that considers the flow stress behavior of the work material in 
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terms of strain, strain rate and temperature. This model is most widely used and 

regarded as numerically robust. The equivalent flow stress is expressed as: 

𝜎 = (𝐴 + 𝐵휀𝑛)(1 + 𝐶𝑙𝑛휀�̇�
∗)(1 − 𝑇∗𝑚) (4.3)  

휀�̇�
∗ =

�̇�𝑝

�̇�𝑝𝑜
 and 𝑇∗ = (

𝑇−𝑇𝑟

𝑇𝑚−𝑇𝑟
) (4.4) 

where 𝑇𝑟 is the room temperature taken as 25°C, 𝑇𝑚 is the melting temperature of the 

workpiece material, A is the initial yield stress at reference strain rate (MPa), B the 

hardening modulus at reference strain rate, n the work-hardening exponent, C the 

strain rate dependency coefficient, and m the thermal softening coefficient. A, B, C, 

n and m are empirical material model constants derived from different mechanical 

tests. Since the machining process involves strain rate in the range of 104 to 106 s-1, 

the evaluation of these material property data accurately is a very challenging task. 

SHPB test is one of the alternatives which enables material testing in the range of 104
 

s
-1 and it can be used up to reasonable strains and for elevated temperatures (Zabel, 

Rodder and Tiffe 2017). Hence, this method is widely used to determine the materials 

constants required as inputs in modeling of FE machining simulations (Xie, et al. 

2019, Ozel and Karpat 2007). The present work determines the JC model constants 

experimentally by utilizing the high strain rate test data available in literature as well as 

analytically by using machining data. 

4.1.3 Damage model 

A ductile failure model is additionally incorporated both for chip separation and 

simulation of discontinuous chips as expected in case of machining WHAs. The use 

of the damage model as chip separation criterion aids in a smoother movement of the 

cutting tool into workpiece without any mesh distortion near the tool tip. Material 

failure refers to the complete loss of load carrying capacity which results from 

progressive degradation of material stiffness. Specifications for the damage model 

include a material response (undamaged), damage initiation criterion, damage 

evolution and choice of element deletion (Abaqus, User's manual Version 6.14-1 

2014). 

Damage initiation criterion 

Damage initiation criterion refers to the commencement of damage for a given state 

of a material. This damage initiation criteria for the fracture of metals includes ductile 
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and shear failure. In the present case, this damage initiation has been taken care of by 

the Johnson-Cook damage model. This model makes use of damage parameter ωd 

which is defined as the sum of the ratio of initial equivalent plastic strain 휀0
𝑝
 and 

summation of increment of the equivalent plastic strain Δ휀𝑝 to the fracture strain 

휀𝑓 (Ab qus, User's m  u   Vers o  6.14-1 2014), given as follows: 

𝜔𝑑 =
휀0
𝑝 +∑Δ휀𝑝

휀𝑓
 (4.5) 

The fracture strain 휀𝑓is expressed as follows (Johnson and Cook 1983): 

휀𝑓 = [𝐷1 + 𝐷2exp (𝐷3𝜎
∗)] [1 + 𝐷3 𝑙𝑛 (

휀̇

휀̇0
)] [1 − 𝐷5𝑇

∗] (4.6) 

𝜎∗ =
𝜎ℎ
𝜎

 (4.7) 

where, 𝜎ℎ is the hydrostatic stress and D1 to D5 are experimentally determined 

damage constants. The expression in the first set of the bracket in Equation (4.6) 

refers to the decrease in fracture strain as the hydrostatic stress increases and the yield 

stress decreases. The second and third terms in the bracket show the effect of strain 

rate and temperature on fracture strain. The damage initiation criteria are met when 

the value of ωd (Equation (4.5)) reaches one. In machining, it is known that the 

maximum stress and strain occur in front of the cutting tool. With the advancement 

of the cutting tool, the plastic strain increases within the workpiece material near the 

tool tip. Hence, as the plastic strain increases ωd of the element gradually reaches the 

damage initiation criterion threshold.  

Damage evolution 

The damage evolution occurs when progressive degradation of material stiffness 

takes place, leading to material failure by following the process of damage initiation 

criterion. By this the stress tensor in the material at any given time during analysis, 

is presented by (Hibbitt, and Karlsson & Sorensen 2007): 

𝜎 = (1 − 𝐷)�̅� (4.8)  

where 𝜎 is the equivalent stress tensor computed in the current increment. When the 

overall damage variable D reaches a value 1, at this point, failure occurs and the 

concerned elements are deleted from the computation. By this, the material has lost 

its load-bearing capacity and it has been explained with the help of Figure 4.2, which 



Chapter4: Finite Element Model Development 

 

79 

 

describes the characteristic stress-strain curve for the material undergoing damage 

(Hibbitt, and Karlsson & Sorensen 2007). The solid curve represents the damaged 

stress-strain response, while the dashed curve is the response in the absence of 

damage. In Figure 4.2 σy0 and 휀0
𝑝
 are the yield stress and equivalent plastic strain at 

the onset of damage and 휀𝑓
𝑝
 is the equivalent plastic strain at failure (i.e., D = 1). 

 

Figure 4.2 Stress-strain curve with damage evolution 

The effective plastic displacement, after the damage initiation criterion is met can be 

defined with evolution law, i.e., If a linear evolution of the damage variable with 

plastic displacement is assumed, then the damage variable increases as follows: 

𝐷 =
𝐿𝑒휀
𝑝

𝑢𝑓
𝑝 =
𝑢𝑝

𝑢𝑓
𝑝 

𝑢𝑓
𝑝 =
2𝐺𝑓

𝜎𝑦𝑜
 

(4.9) 

where Le is the typical length of a line across an element for a first-order element, 

known as characteristic length of the element, 𝑢𝑓
𝑝
is the plastic displacement at failure 

and Gf is the fracture energy per unit area. 

 The above model ensures that the energy dissipated during the damage 

evolution process is equal to Gf only if the effective response of the material is 

perfectly plastic (constant yield stress) beyond the onset of damage. In this work, Gf 

is given as an input parameter which is a function of fracture toughness KIC, Young’s 

modulus E and Poisson’s ratio 𝜈 as follows (Mabrouki, et al. 2008). 

𝐺𝑓 = (
1 − 𝜈2

𝐸
)𝐾𝐼𝐶
2  (4.10) 

(D = 0)

𝜎𝑦0

𝜎0

�̅�

𝐷�̅�

휀0
𝑝 휀𝑓

𝑝 휀

𝜎

(D = 1)
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Element deletion 

The ELEMENT DELETION = YES module in ABAQUS 6.14 software along with 

the Johnson-Cook damage model of the software are used to delete the elements that 

fail. 

4.1.4 Interfacial contact and heat generation 

A contact constraint has been enforced by applying a kinematic contact algorithm in 

a master-slave contact pair, where the rake surface of the cutting tool is defined as 

the master surface and chip as the salve surface. Through this process, momentum is 

conserved between the contacting bodies. The kinematic contact algorithm works in 

two steps. It firstly identifies which slave nodes in the predicted configuration 

penetrate the surface and then estimates the resisting force required to oppose the 

penetration based on the depth of penetration of slave nodes, mass associated with it 

and the time increment. The contact algorithm calculates the total internal mass of 

the contacting interfaces and the acceleration correction for the master surface nodes. 

The acceleration correction for the slave nodes is then determined by using the 

predicted penetration of each node for a time increment and the acceleration 

correction for the master surface nodes. By this, a corrected configuration can be 

obtained in which the contact constraints are enforced. Modeling of tool-chip friction 

is based on Coulomb’s law with the mean value of coefficient of friction taken as 0.2 

which came out to be the best compromise between computational efficiency and 

cutting force accuracy (Aviral and Martin 2011). 

 During the machining, heat is generated in the primary shear deformation 

zone and the secondary shear deformation zone due to severe plastic deformation 

and the friction in the tool-chip interface. It is formulated by steady-state energy 

equation for orthogonal machining process as: 

�̅� = �̅�𝑝 + �̅�𝑓 (4.11)  

�̅�𝑝 = 휂𝑝𝜎휀̇
𝑝 (4.12)  

�̅�𝑓 = 휂𝑓𝐽𝜏�̇� (4.13)  

where �̅�𝑝 is the heat generation rate due to plastic deformation, 휂𝑝 the fraction of the 

inelastic heat, �̅�𝑓 is the volumetric heat flux due to frictional work, �̇� the slip rate, 휂𝑓 
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the frictional work conversion factor considered as 1, J the fractional of the thermal 

energy conducted into the chip and 𝜏  is frictional stress. 

 The factor 휂𝑝 defines the heat generation caused by shear deformation (plastic 

strain) of the workpiece due to cutting tool movement. This term is introduced as a 

source of temperature stress coupling for coupled temperature displacement analysis 

and the thermal solution is obtained only at nodes were thermal degrees of freedom 

have been activated. Thus, the value of 휂𝑝 is assumed to be 0.9 (Mabrouki, et al. 

2008). By this chip retains 90% of the heat generated due to shear deformation, while 

10% is lost to the environment. The fraction of dissipated energy caused by friction 

휂𝑓 is assumed to be 1. From the fraction 휂𝑓 there is an amount of heat J remaining in 

the chip and a heat fraction (1-J), conducted into the cutting tool. In the present work, 

the value of J is assumed to be 0.8. Thus, the chip carries away a part of the heat is 

taken care by Equation (4.11) to (4.13) which combine both the heat fractions, i.e., J 

and 휂𝑝 giving an average within a range of 70-80% of the total heat. 

4.1.5 Solution procedure  

In the present study, FE machining simulations is formulated using the explicit 

dynamic analysis with ALE technique. 

ALE formulation 

The ALE technique combines the features of pure Lagrangian and Eulerian analysis. 

The ALE approach allows flow boundary technique without altering elements and 

connectivity of the mesh using the adaptive meshing technique in ABAQUS/Explicit. 

The idea is to apply features of the Eulerian approach for modeling the area around 

the tooltip, while Lagrangian form can be applied to the free surface of the chip. By 

this method, severe element distortion and entanglement can be avoided in the cutting 

zone without the use of a re-meshing criterion. 

Explicit dynamic analysis 

The explicit dynamic ALE formulation is mainly used to solve highly non-linear 

problems involving large deformations and changing contact, as observed in 

machining. It is known that the mechanical solution response is obtained using the 

explicit central difference integration rule with a lumped mass matrix. Since both the 
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forward difference and central difference integrations are explicit, the heat transfer 

and mechanical solutions are obtained simultaneously by an explicit coupling. 

Therefore, no iteration or tangent stiffness matrices are required. 

The explicit procedure integrates through time by using many small time increments. 

Both the central difference and forward difference operators are conditionally stable.  

FE software: ABAQUS 

The selection of software plays a significant role in FE machining simulation for 

determining the quality and scope of analysis that can be performed. Presently there 

are many commercial software packages available for solving various engineering 

problems that might be static, dynamic, linear, or non-linear. Some of the dominant 

general-purpose FE software packages are ABAQUS, ANSYS, MSC/NASTRAN, 

SRDC-IDEAS, MSC Marc, COMSOL Multiphysics, etc. These different software 

packages would offer different capabilities, and this makes it critical to select a 

suitable software package with appropriate features required for performing a given 

analysis successfully. In the present study, ABAQUS/Explicit software package has 

been used because of its several unique features. 

  The software like Deform and AdvantEdge with specific modules that are 

explicitly designed for machining simulations and the solvers are optimized 

specifically for metal cutting processes. This feature makes it effective where a quick, 

easy to set up machining simulation is needed. By this, it may lead to limited use of 

a program, thus giving not much flexibility in configuring the control of the solver. 

On the contrary, ABAQUS is a general-purpose, highly sophisticated simulation 

program based on FEM that can solve problems ranging from relatively simple linear 

analyses to the highly complex non-linear simulations. From this, it clear that more 

skill, effort and time is required to set up simulations as no preset controls and 

assumptions are available. But this is the feature that takes modeling to a very high 

level of detail and ensures a thorough analysis by allowing precise control on the 

boundary conditions, mesh attributes, element type, solver type and so on. A 

complete ABAQUS program consists of three stages, namely pre-processing, 

analysis and post-processing. The input file and output file link these stages. The 

subsequent sub-sections would discuss various modules of ABAQUS/CAE in brief. 
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 Part module 

Individual parts are created in the part module either by sketching their geometry 

directly in Abaqus/CAE or by importing their geometry from other geometric 

modeling programs. Depending upon the analysis, the parts can be 2D or 3D 

deformable, discrete rigid, analytical rigid parts. In the present study, both the cutting 

tool and the workpiece are considered as 2D deformable bodies. The part tools 

contained in this module allow editing and manipulating the existing parts defined in 

the current model. 

 Property module 

Property modules allow us to assign various material properties to the part instance. 

A material definition specifies all the property data relevant to a particular analysis. 

For a coupled temperature displacement analysis, both the mechanical strength 

properties and heat transfer properties must be given as inputs. Various plasticity 

models and damage models are also contained in the property module. As an input, 

the material constants of the selected plastic model and damage model, such as the 

Johnson-Cook material model and Johnson-Cook damage model respectively, are 

defined in a tabular form. 

 Assembly module 

The individual parts that are created in part module exist in their coordinate system. 

It is in the assembly module that these parts are assembled by relative positioning for 

each other in a global coordinate system. 

 Step module 

In the present study, coupled temperature displacement explicit dynamic analysis has 

been used for the machining simulation process. Further step module provides a 

convenient way to capture changes that occur in the model during analysis. Step 

module helps us to specify specific output requests with region-specific. The general 

solution controls and solver controls can also be customized. Furthermore, adaptive 

mesh regions and the controls for adaptive meshing in selected areas can be specified 

in this module. So in the present case, ABAQUS/Explicit is used to implement ALE 

adaptive meshing. 
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 Interaction module 

The interaction module allows us to specify mechanical and thermal interactions 

between regions of a model or between a region of a model and its surroundings. 

Surface-to-surface contact interaction has been used to describe contact between tool 

and workpiece in the present study. The interaction between contacting bodies is 

defined by assigning a contact property model to a contact interaction that defines 

tangential behavior and normal behavior. Further kinematic contact algorithm has 

been used to enforce contact constraints in master-slave contact pairs, where the rake 

surface of the cutting tool is assigned as master surface and chip as the slave surface. 

Both the frictional conditions and the friction-generated heat are included in the 

kinematic contact algorithm through TANGENTIAL BEHAVIOUR and GAP HEAT 

GENERATION modules of the software. 

 Load module 

The load module is used to assign loads, boundary conditions and predefined fields 

on geometric model surfaces and edges. 

 Mesh module 

The mesh module allows generating mesh on parts and assemblies created within 

ABAQUS/CAE. In the present case, the CPE4RT element type was selected for 

meshing. An advancing front algorithm was used while free meshing the parts to 

avoid large differences in element size and make the numerical procedure more 

efficient. 

 Job 

The job module allows us to create a job, to submit it to ABAQUS/explicit for 

analysis and to monitor its progress. 

 Visualization 

The visualization module provides graphical display of FE models and results. It 

extracts the information of the model and results from the output database. 

In the analysis, the stage solver solves the numerical problem defined in the model. 

In the present case, ABAQUS/Explicit has been used as a solver to simulate the 

machining model. 
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 Solution strategy 

Since the machining process involves nonlinear dynamic response, a direct 

integration system needs to be used. ABAQUS/Explicit solver is beneficial since no 

convergence criteria are considered, non-linear contact simulations proceed 

smoothly.  

4.2 Determination of JC model constants 

The JC model constants for various materials can be determined using experimental, 

analytical, and numerical techniques. The experimental technique includes 

performing high strain testing and then making use of the obtained stress-strain data 

in conjunction with conventional optimization techniques to determine the JC 

constants (Zhou, et al. 2017). An advancement over standard optimization methods 

in experimental approach is the use of evolutionary computational algorithms that 

identify material parameters through a fine grain search technique and state 

superiority over classical data fitting techniques (Bosetti , Bort and Bruschi 2013, 

Gupta, et al. 2013). The analytical approach includes the use of inverse identification 

algorithms in conjunction with either high strain rate tests or machining tests to 

determine material characterization and predict the flow stress behavior of the 

material (Frueh, et al. 2016). The numerical approaches use FE analysis to simulate 

the machining process in which the predicted outputs (chip morphology, machining 

force, temperature, etc.) are compared to that of experiments (Woodward, et al. 1985) 

and JC constants are fine-tuned using an inverse approach (Kiran, et al.2018). 

The present section discusses the methodology to identify the JC model constants for 

WHAs using four different approaches, out of which three were experimental based 

(M1, M2 and M3) and one analytical (M4). The details are as follows: 

M1:  M1 is based on the experimental approach, as discussed earlier, wherein the 

stress-strain data using high strain rate test is taken from the literature (Woodward, 

et al. 1985) and JC constants are derived using the conventional optimization 

technique. 

M2 and M3: M2 and M3 are also based on the experimental approach similar to M1, 

with the only exception that JC constants are further fine-tuned using evolutionary 

algorithms, namely, GA and ABC, respectively (Bosetti , Bort and Bruschi 2013). 
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M4: M4 is based on analytical approach such that JC constants are calculated using 

inverse identification algorithm in conjunction with machining tests and Oxley’s 

model (Ning, et al. 2019). 

The schematics of the overall methodology adopted to determine JC constants is 

present in Figure 4.3. 

 

Figure 4.3 Overall methodology adopted to determine JC constants 

4.2.1 Experimental approach  

The experimental approach makes use of stress-strain data obtained using high strain 

rate test from the available literature in conjunction with conventional optimization 

techniques or evolutionary algorithms to determine the JC model constants. 

 M1 

The true stress-strain data are calculated from the stress-strain data obtained from the 

literature. The data points are then considered in the plastic region until Ultimate 

Tensile Strength (UTS). The computed stress-strain data are used further to determine 

M1, as discussed below. 

At reference strain rate and temperature: 

Constant A is yield stress at room temperature was considered  

𝜎 = (𝐴 + 𝐵휀𝑛) (4.14)  
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Equation (4.14) was further modified and the graph was plotted in terms 

of   (𝜎 − 𝐴) 𝑣𝑠 𝑙𝑛휀, where n is slope and B is an intercept of the plot. 

At fixed plastic strain and reference temperature: 

𝜎 = (𝐴 + 𝐵휀𝑛)(1 + 𝐶𝑙𝑛휀∗) (4.15)  

From Equation (4.15) graphs was plotted in terms of (
𝜎

(𝐴+𝐵𝜀𝑛)
− 1) 𝑣𝑠   (휀∗) from 

the slope of the graph, a value of C is calculated. 

At fixed plastic strain and reference strain rate: 

𝜎 = (𝐴 + 𝐵휀𝑛)(1 − 𝑇∗𝑚) (4.16)  

From Equation (4.16) graphs was plotted in terms of   (1 −
𝜎

(𝐴+𝐵𝜀𝑛)
) 𝑣𝑠    (𝑇∗). 

From the slope of the graph, the value of m is calculated. For each plastic strain value, 

one set of C and m values is derived. Thus, there exist many sets of C and m constants. 

Thereby considering minimum average absolute error (∆)from Equation (4.17) and 

maximum correlation coefficient from Equation (4.18), an optimum C and m values 

were determined. 

𝛥 =
1

𝑁
∑|
𝜎𝑒𝑥𝑝
𝑖 − 𝜎𝑝𝑟𝑒

𝑖

𝜎𝑒𝑥𝑝
𝑖

|

𝑖=𝑁

𝑖=1

× 100 

(4.17)  

𝑅 =
∑ (𝜎𝑒𝑥𝑝

𝑖 − 𝜎𝑒𝑥𝑝)(𝜎𝑝𝑟𝑒
𝑖 − 𝜎𝑝𝑟𝑒)

𝑖=𝑁
𝑖=1

√∑ (𝜎𝑒𝑥𝑝
𝑖 − 𝜎𝑒𝑥𝑝)2∑ (𝜎𝑝𝑟𝑒

𝑖 − 𝜎𝑒𝑥𝑝)2
𝑖=𝑁
𝑖=1

𝑖=𝑁
𝑖=1

 
(4.18)  

 M2 

GA is the process derived from biological evolution. This algorithm modifies the 

individual solution repeatedly. At each stage, GA selects individual parents randomly 

from the current population and children are produced for the next generation by 

mutation process. The population evolves. An optimal solution over a successive 

generation is obtained (Addona and Teti 2013). 

The constants B, C, n and m, were considered as design variables. The initial 

population is created by a random selection of each design variable from the 

corresponding defined range. 

Once the initial population is formed, three members are selected randomly and the 

one which satisfies the fitness function 𝛥(𝑥) is chosen as a parent. Similarly, a set of 
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ten parents are selected. Fitness function, in this case, is the difference between 

experimental and calculated data of true stress-strain curve, as given below in 

Equation (4.19) where 𝛥(𝑥) is absolute error functions at ith strain rates. The objective 

of the fitness function is to minimize 𝛥(𝑥), i.e., 

𝑥(𝐵, 𝑛, 𝐶,𝑚)  =  𝑀𝑖𝑛{ 𝛥(𝑥)} (4.19)  

The selected ten parents are encoded to binary strings and considered as 

chromosomes. Then the recombination of chromosomes is done by the crossover of 

the binary strings of two randomly selected chromosomes. During crossover between 

two parents, a probability of 0.1 is considered as a mutation factor and one of its bit 

is flipped to form children. The children's chromosomes are then decoded to obtain 

design variables. This procedure has been repeated for 250 generations. The solution 

converged at around the 230th generation. After that, there is not much change in 

absolute error and hence, the process is terminated. Figure 4.4 shows the flow chart 

of the implemented strategy for GA to determine JC Model constants. 

 

Figure 4.4 Flow chart of the implemented strategy for GA 
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 M3 

ABC Algorithm is a naturally inspired algorithm based on the intelligent behavior of 

foraging honey bee swarms. The foraging behavior, learning, memorizing and 

information sharing characteristics of honey bees are used in solving multi-objective 

optimization problems (R.Yildiz 2013). 

Firstly, the constants B, C, n & m are considered as design variables. The range of 

each design variable is divided into different solution sets, i.e., food sources. At the 

same time, the initial population of a swarm is taken based on the number of food 

sources. The process starts with scout bees, which identifies food source and converts 

it to employed bee and transports one combination of the solution, i.e., nectar to the 

hive. The onlooker bees at hive check the nectar amount using fitness function 𝛥(𝑥). 

The fitness function defined in this algorithm is the same as the one taken for GA in 

Equation (4.19). Next onlooker bees compare the nectar amount and stores P as the 

best solution, using objective function 𝑥(𝐵, 𝑛, 𝐶,𝑚) in its memory using Equation 

(4.19) 

If the solution representing food source does not improve after a number of trials, 

then the food source is abandoned and employed bee gets converted to scout and 

again, a new search for new food source begins. After a certain number of trials 

onlooker bees memorize the P best solution stored in the memory using an objective 

function. If there is no further improvement in the solution for all desired sets of food 

sources, then the process terminates and overall best design variable combination is 

displayed as an optimal solution. Figure 4.5 shows the flow chart of the implemented 

strategy for ABC algorithm to determine JC model constants 

Both of these optimization algorithms are coded in python using libraries NumPy, 

SciPy and pandas. 
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Figure 4.5 Flow chart of the implemented strategy for ABC algorithm 

4.2.2 Analytical approach (M4) 

The analytical approach makes use of PSO (Particle swarm optimization) as inverse 

identification algorithm in conjunction with machining tests and Oxley’s model to 

determine the JC model constants for WHAs. 

Extended Oxley’s machining theory 

This model uses extended Oxley’s machining theory to predict the JC model 

constants. The exponent 𝑛𝑒𝑞 was calculated using the JC model constants A, B & n 

using the following Equation (A.1): 

The shear zone model for orthogonal cutting based on the parallel-sided theory by 

Lalwani and his co-workers (Lalwani, Mehta and Jain 2009) is shown in Figure A.1. 

The values of 𝜙, 𝐶0 and ζ from a given set of input parameters such as feed, depth of 

cut, cutting speed and rake angle are evaluated using Oxley’s machining model using 

an iterative loop-based computer program. The error between shear stress (𝜏𝑖𝑛𝑡) and 

shear flow stress (𝑞𝑐ℎ𝑖𝑝) in the chip at the interface is used to estimate the final value 

of the shear angle. Similarly, 𝐶0 was approximated by determining the minimum 

difference between normal stress at the tool-chip interface and the stress derived 

using the stress boundary condition at point B (𝜎 𝑁). The value of ζ is determined by 

finding the minimum force value. These parameters are calculated using Equations 

(A.1)-(A.31), detailed in Appendix. 
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PSO algorithm  

PSO is an evolutionary computational technique developed based on the social 

behavior of bird flocks. It was first proposed by Kennedy and Eberhart (1995). In 

PSO, each particle is considered as i, move in search space of the optimization 

problem of j solution space. The particle with the best fitness value is considered as 

the leader of the swarm and guides other particles to move in the best search areas. 

Each particle is influenced by its search direction by intellectual information (its own 

best position found so far called yg best). The leader of the swarm is updated on each 

interaction or generation. 

The extended Oxley’s model has been formulated as follows: 

Min f (�⃗�), �⃗� ∈ 𝑆, 𝑔𝑖(�⃗�) ≤ 0, 𝑖 = 1,…… ,𝑚, 𝐿𝑗 ≤ 𝑦𝑗 ≤ 𝑈𝑗 , 𝑗 = 1,… . . . , 𝑛 (4.20)  

where f (�⃗�) is the function to be optimized, �⃗� is the vector of solutions, 𝑔𝑖(�⃗�) is the 

constraint function. 𝐿𝑗and 𝑈𝑗are the lower and upper limits of solution space. 

The two elements, 𝑦𝑝 𝑏𝑒𝑠𝑡 and 𝑦𝑔 𝑏𝑒𝑠𝑡, besides the current position of the particle 𝑦𝑖, 

were used to calculate its new velocity 𝑣𝑖(𝑡 + 1)based on its current velocity 𝑣𝑖(𝑡) 

using the following equation: 

𝑣𝑖(𝑡 + 1) =  𝑣𝑖 + 𝑃1𝑟𝑎𝑛𝑑(𝑦𝑝 𝑏𝑒𝑠𝑡 − 𝑦𝑖) + 𝑃2𝑟𝑎𝑛𝑑(𝑦𝑔 𝑏𝑒𝑠𝑡 − 𝑦𝑖) (4.21)  

where P1 and P2 are acceleration constants to control the influence of the intellectual 

and social information concerning random real numbers between 0 and 1 generated 

with a uniform distribution. 

After each particle updated its analogous velocity, the following equation is used to 

update its position: 

𝑦𝑖(𝑡 + 1) = 𝑦𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (4.22)  

where, 𝑦𝑖(𝑡)is the current position of the particle and 𝑦𝑖(𝑡 + 1) is its new position. 

In order to start the optimization process, an initial population is created. To each 

particle of the initial population, a random boundary constraint value is chosen as 

(𝑎𝑖, 𝑏𝑖) of the ith variable is assigned using the following equation: 

𝑦𝑖(𝑡 = 0) = 𝑎𝑖 + 𝑟𝑎𝑛𝑑𝑖(𝑏𝑖 − 𝑎𝑖) (4.23)  

where, randi denotes a uniformly distributed number between 0 and 1, generating a 

new value for each parameter. Each particle uses Oxley’s model to predict cutting 

forces for the new random position of the JC model constants in the define solution 
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space and measures error between experiments cutting forces using the following 

equation: 

𝐸𝑟 = √

𝐹𝐶 𝑝𝑟𝑒 − 𝐹𝐶 𝑒𝑥𝑝

𝐹𝐶 𝑒𝑥𝑝
2 + (
𝐹𝑡 𝑝𝑟𝑒 − 𝐹𝑡 𝑒𝑥𝑝
𝐹𝑡 𝑒𝑥𝑝

)
2 (4.24) 

From the least error value of 𝐹𝐶 predicted from Oxley’s model using PSO JC model 

constants are derived as M4. 

The flow chart in Figure 4.6 explains the procedure to evaluate the desired output 

parameters. Table 4.2 shows the various predicted optimum output from M4 

approach for three grades of WHA based on PSO optimization technique for 

machining test data. 

 

Figure 4.6 Flow chart for predicting JC model constants using analytical approach 
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Table 4.2 Predicted outputs from M4 approach for three grades of WHA 

90 WHA 

Test 

No. 
휁 𝐶0 𝜙 𝑡2 휀𝐴𝐵 ɛ̇𝐴𝐵 휀𝑖𝑛𝑡 ɛ̇𝑖𝑛𝑡 𝑇𝐴𝐵 𝑇𝑖𝑛𝑡 𝑞𝐴𝐵 𝑛𝑒𝑞  𝜓 Lint 𝐹𝐶 𝐹𝑡 

1 0.12 7 20.2 0.27 0.87 17118 4.52 7408 278.76 571.06 704.33 0.0844 51 0.31 42.18 28.03 

2 0.14 7 19.4 0.28 0.91 11709 4.23 4159 269.05 527.01 712.15 0.0847 52 0.33 44.23 30.77 

3 0.2 7 18.2 0.30 0.96 6564 3.65 1525 252.65 457.13 725.96 0.0851 53 0.36 47.72 33.48 

4 0.23 7 17.8 0.15 0.98 21375 3.48 4218 248.47 437.39 739.65 0.0852 54 0.19 24.78 17.82 

5 0.1 7 20.4 0.40 0.87 8238 5.04 4323 278.86 589.16 698.63 0.0844 51 0.46 62.21 37.87 

95 WHA 

Test 

No. 
휁 𝐶0 𝜙 𝑡2 휀𝐴𝐵 ɛ̇𝐴𝐵 휀𝑖𝑛𝑡 ɛ̇𝑖𝑛𝑡 𝑇𝐴𝐵 𝑇𝑖𝑛𝑡 𝑞𝐴𝐵 𝑛𝑒𝑞  𝜓 Lint 𝐹𝐶 𝐹𝑡 

1 0.12 7 20.0 0.27 0.88 16936 4.58 7251 308.02 651.10 775.34 0.0762 53 0.32 47.53 31.16 

2 0.16 7 19.0 0.29 0.92 11452 4.00 3481 297.68 587.37 780.53 0.0764 53 0.35 50.08 34.95 

3 0.18 7 17.8 0.31 0.98 6412 3.93 1616 277.58 522.93 790.37 0.0768 54 0.38 56.67 40.28 

4 0.22 7 17.4 0.16 1.00 20869 3.62 4203 272.44 494.22 803.80 0.0769 54 0.19 27.83 21.38 

5 0.1 7 20.2 0.41 0.87 8151 5.11 4233 308.16 672.59 769.13 0.0761 53 0.48 70.10 45.37 

97 WHA 

Test 

No. 
휁 𝐶0 𝜙 𝑡2 휀𝐴𝐵 ɛ̇𝐴𝐵 휀𝑖𝑛𝑡 ɛ̇𝑖𝑛𝑡 𝑇𝐴𝐵 𝑇𝑖𝑛𝑡 𝑞𝐴𝐵 𝑛𝑒𝑞  𝜓 Lint 𝐹𝐶 𝐹𝑡 

1 0.09 6 20.6 0.25 0.90 15698 5.53 11378 405.66 848.69 958.15 0.0548 56 0.29 56.19 39.86 

2 0.14 6 19.6 0.27 0.94 10603 4.31 4672 389.32 798.61 963.02 0.0549 57 0.31 57.07 42.72 

3 0.22 6 18.4 0.29 0.99 5931 3.55 1550 358.67 671.06 970.88 0.0551 57 0.34 61.06 49.39 

4 0.29 6 18 0.15 1.01 19297 3.22 3735 347.40 617.32 976.32 0.0551 58 0.17 39.34 33.99 

5 0.09 6 20.8 0.38 0.89 7557 5.51 5537 408.35 899.57 955.76 0.0548 56 0.44 63.22 43.32 

 

4.3 Determination of JC damage model constants 

The JC damage model is effective to define the failure state for high strain rate 

conditions, such as impact compression/tension (Chakraborty , Shaw and Banerjee 

2015, Campagne-Lambert, et al. 2008) and machining (Martin Bäker 2013, Sagar, 

Kumar, et al. 2019), by taking into account the eff ects of the stress state, strain rate 

and temperature on the initiation of fracture strain (IFS). Normally, the damage 

parameters are calculated according to the failure strain measured from the flow 

curves at various loading conditions, such as high strain rate tests. The present section 

discusses the approach adopted to determine the JC damage constants of WHAs for 

high strain rate compression deformation. The failure initiation parameters of JC 

damage model are obtained by optimization using a combined experimental–

numerical approach, as presented in one of the recent works (G. Chen, C. Ren and L. 

Lu, et al. 2018). The experimental data i.e., high strain rate testing data required for 
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the calculations are taken from the available literature (Woodward, et al. 1985, J. Das, 

G. Rao, et al. 2011). 

4.3.1 Overall approach 

In this work, to determine the JC damage constants for high strain rate deformation, 

stress-strain data from high strain rate tests from the available literature (Woodward, 

et al. 1985) for the given grades of WHAs are considered. In the given literature, a 

series of high strain rate tests were performed for a strain rate in the range of 11 to 

775 s-1 and temperature in the range of 25 to 500 ͦ C for all the three grades of WHA. 

An FE model for high strain rate test is developed without a damage model under 

similar experimental conditions. The predicted stress strain from the developed 

model is then validated with that of the experimental ones under various strain rates. 

The damage parameters are further optimized according to the measured IFS and the 

simulated stress triaxiality, equivalent strains, stresses and temperatures. In the 

present work, it is assumed that the fracture in the compression test samples occur at 

the point where the stress drops off. Therefore, the flow stresses at the conditions with 

cracks are used to calculate the IFS. 

Generally, the damage behavior in high strain rate compression samples occurs in 

three stages. In the first stage, the strain hardening dominates in the stable plastic 

region of the flow stress curve. In the second stage, a drop in flow stress due to 

damage initiation occurs and leads to the start of instability. In the third stage, damage 

evolution occurs wherein the flow stress decreases gradually and leads to crack 

propagation. The IFS is identified from experimental stress strain curves by drawing 

a tangent line to the stable plastic region and damage evolution region of flow stress 

curve. The intersection point of these tangent lines is considered as IFS. Five loading 

conditions are taken into considerations to determine the IFS and the measured values 

are listed in Table 4.3. The derived IFS from the compression deformation process is 

taken as reference, and simulated results are fitted with specific equations in terms of 

equivalent plastic strain versus time. The fitted coefficients from the derived 

expressions, as shown in Equation (5.1) to (5.4) corresponding to the five conditions 

are determined to calculate IFS for the given grades of WHA. Using the measured 

IFS at five conditions for each grade and the predicted stress, strain and temperature 
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from the high strain rate simulations, the parameters D1 to D5 are determined by 

optimization using GA. Figure 4.7 illustrates the overall methodology adopted 

schematically to determine the JC damage constants. 

Table 4.3 Identification of IFS for high strain rate tests on three grades of WHA  

WHA grade 
Test 

condition 

Strain rate 

(s-1) 

Temperature 

(°C) 

Initiation of 

failure strain 

(IFS) 

90 WHA 

1 11.5 20 0.32 

2 370 20 0.26 

3 685 20 0.23 

4 11.5 400 0.41 

5 11.5 500 0.43 

95 WHA 

1 27 20 0.31 

2 350 20 0.25 

3 775 20 0.22 

4 27 400 0.40 

5 27 500 0.42 

97 WHA 

1 12.4 20 0.28 

2 340 20 0.24 

3 600 20 0.19 

4 12.4 400 0.36 

5 12.4 500 0.38 

 

 

Figure 4.7 Overall methodology to derive JC damage model constants 

4.3.2 FE simulations for high strain rate tests 

A series of high strain rate simulations with plastic but without damage model has 

been considered, as followed in the literature (Chen, Ke, et al. 2016). This is based 
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on following assumptions. Firstly, the stress, strain field, and stress state are assumed 

to be unaffected by damage in the uncoupled approach (Borvik, Hopperstad and 

Berstad 2003). Secondly, it is presumed that the influence of plastic deformation on 

damage is negligible (Khan and Liu 2012). Figure 4.8 shows a 3D FE geometric 

model with meshing and boundary conditions using FE software ABAQUS/Explicit 

(version 6.14). It is noted that in the 3D high strain rate deformation model, the 

specimen is supported by the transmission bar and incident bar. The strain rate is 

applied in terms of velocity (m/sec) in the X-axis at the free end of the transmission 

bar. The specimen is supported by the incident bar which absorbs and resists the 

transmission velocity through the specimen. The free end of the incident bar is 

constrained in all directions. Since the yield strength of both transmission and 

incident bar is higher than the specimen, deformation will occur in the specimen. The 

lengths of the incident and transmission bars are the same as used in experiments. All 

the geometric parts, i.e., transmission, incident bar, and specimen, are modeled as 

deformable bodies and discretized with eight-noded thermally coupled brick, trilinear 

displacement, and temperature (C3D8RT) with reduced integration and hourglass 

control element type. The total number of elements on the specimen is 258240 and 

69084 on transmission and incident bar. Mesh distortion is controlled by ALE mesh 

control, and interaction is defined using the general contact method. In the simulation, 

the temperature is set at ambient conditions on bars. While the temperature on the 

specimen is set as per experimental conditions. The physical properties of the WHA 

specimens and tungsten carbide bars as are listed in Table 4.1. 

 

Figure 4.8 High strain rate 3D geometric model with meshing and boundary 

condition 
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The JC material model constants as well as damage model constants, so obtained, are 

presented in the following chapter. The derived constants are used to develop the FE 

simulation model to simulate the chip formation during machining of WHAs. The 

predicted outputs are then compared with the experimental ones under similar 

conditions for validation of the developed model. 

Summary 

This chapter deals with the methodology adapted for numerical simulation of FE 

based 2D orthogonal cutting model. Three different grades of workpiece material are 

selected, namely 90, 95 and 97 WHA grade to carry out machining simulations. 

Further this chapter presents a methodology to determine the JC constants of WHAs 

under high strain rate conditions using machining tests in conjunction with Oxley’s 

predictive model and PSO algorithm. Currently, availability of the high strain rate 

data for stated grades of WHA is limited and consequently, JC constants for the same 

are not readily available. The overall methodology includes the determination of four 

sets of JC constants, namely, M1, M2 and M3 from the high strain rate test data 

available in literature by using conventional optimization technique, GA and ABC 

algorithm, respectively. Whereas M4 is determined from machining tests using the 

inverse identification method. Besides, damage model constants are also determined 

for the given grades of WHAs by GA optimization using a combined experimental–

numerical approach. The results obtained from the developed model are discussed in 

the next chapter.
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Chapter5 FINITE ELEMENT SIMULATIONS AND 

VALIDATION 

Validation is the final and mandatory stage of any model development. No digital 

simulation can ever completely replace the experimental tests. However, simulations 

can greatly reduce the number of experiments that are required in certain cases such 

as optimization of cutting parameters, thus saving enormous amount of workpiece 

material. This chapter presents the computed values of JC material and damage model 

constants that are used as FE inputs in the developed FE model. The adequacy of the 

developed model is investigated by simulating the model for varied cutting 

parameters and comparing the obtained results such as cutting force, thrust force, chip 

morphology and temperature with that of the experimental ones. 

5.1 Computed values of JC model constants 

Table 5.1 lists the JC model constants determined using M1, M2, M3 and M4 for all 

the three grades of WHA. It is noted that the value of A and n, i.e., initial yield 

strength and strain hardening exponent predicted by M4 is comparatively lower in 

case of all three grades of WHA. This could be because of the determination of M4 

constants at temperatures encountered during machining in contrast to M1, M2 and 

M3 wherein constants are calculated taking the high strain rate stress-strain data at 

room temperature (Woodward, et al. 1985). Lower values are expected for M4 

because as the temperature increases, yield strength and strain hardening effect 

reduce. A similar trend has been reported in the literature (Jaspers and Dautzenberg 

2002). The value of m is determined by following a trial and error approach using FE 

machining simulations similar to the one reported in the literature (Ning and Liang 

2018). It is to be noted that temperature rise during turning tests varied in the range 

of 100 to 200 ͦ C. But, thermal softening effect in WHAs is observed when the 

temperature exceeds 500 ͦ C (Das, Sarkar, et al. 2012). This implies that the effect of 

m has the least effect on machining simulation outputs.  
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Table 5.1 Values of JC model constants derived using M1, M2, M3 and M4 approach 

for three grades of WHA. 

WHA 

Grade 
Models A (MPa) B (MPa) C n m 

90 WHA 

M1 1100 1221 0.03 0.87 1.913 

M2 1100 758.62 0.06 0.203 0.921 

M3 1100 766.66 0.019 0.294 1.323 

M4 1030 1040 0.01 0.17 0.449 

 

95 WHA 

M1 1300 1281.8 0.02 0.85 1.980 

M2 1300 1084.3 0.02 0.59 1.830 

M3 1300 1166.7 0.06 0.42 1.940 

M4 800 842 0.01 0.15 0.91 

 

97 WHA 

M1 1066 1217 0.043 0.48 1.903 

M2 1066 879.76 0.078 0.29 1.950 

M3 1066 1140 0.022 0.59 1.812 

M4 821 1020 0.01 0.14 1.265 

Figure 5.1 shows the comparison of predicted flow stress behavior using M1, M2, 

M3 and M4 with measured ones with different strain rates at room temperature for 

three grades of WHA. It is observed that M4 followed by M3, showed better results 

as compared to M1 and M2 for all grades of WHA. The possible reason for M4 to 

outperform others could be because of the fact that the JC model constants are 

calculated for the strain rates that are encountered during the machining operation. 

Whereas for the remaining models, material constants are determined from the stress-

strain data using high strain rate test (Woodward, et al. 1985). However, fine-tuning 

of the material constants using ABC algorithm (Sagar, et al. 2018) showed 

considerable improvement over M2 and M1.  
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(a) (b) 

 
(c) 

Figure 5.1 Comparison of predicted flow stress behavior using M1, M2, M3 and 

M4 with experimental varied strain rates (a) 90WHA, (b) 95WHA, (c) 97WHA. 

5.2 Computed values of JC damage constants 

To determine the damage parameters D1 to D5 the triaxial stress σ*, loading strain rate 

휀̇, temperature T and fracture strain 휀𝑓 needs to be identified. In present work σ*, 휀̇, T 

is calculated by high strain rate simulation without damage model, and the measured 

IFS is used to determine the damage parameters as stated by (G. Chen, C. Ren and L. 

Lu, et al. 2018). 

Figure 5.2 shows the experimental and simulated flow stresses for deformed 

specimen at five different conditions for 90 WHA. The IFS is measured from the 

experimental flow stress curve drawing tangent lines at stable plastic region and in 

damage evolution region. The intersection point of these two tangent lines is IFS. 

Similar procedure is followed for 95 and 97 WHA. 
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(a) (b) 

(c) (d) 

 
(e) 

Figure 5.2 Determination of IFS and comparison of experimental with simulated 

flow stress without JC damage constants at (a) Sim.1: 11.5 s-1, 20 ͦ C; (b) Sim.2: 370 

s-1, 20 ͦ C; (c) Sim.3: 685 s-1, 20 ͦ C; (d) Sim.4: 11.5 s-1, 400 ͦ C; (e) Sim.5: 11.5 s-1, 

500 ͦ C. 

The Equations (5.1) to (5.4) are used to fit the measured IFS, as given below: 

𝜎𝑘 = 𝑅1   (휀𝑘) + 𝑆1 (5.1)  

𝑃𝑘 = 𝑅2   (휀𝑘) + 𝑆2 (5.2)  
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휀𝑘 = 𝑅3𝑡 + 𝑆3 (5.3)  

𝑇𝑘 = 𝑅4휀𝑘 + 𝑆4 (5.4)  

where k represents a specific loading condition. Then substituting these equations 

into Equation (4.6), the IFS at specific condition k can be calculated by Equation 

(5.5). 

휀𝑓𝑘 = [𝐷1 + 𝐷2exp (𝐷3
−𝑃𝑘
𝜎𝑘
)] [1 + 𝐷3 𝑙𝑛 (

휀̇𝑘
휀̇0
)] [1 − 𝐷5 (

𝑇𝑘 − 𝑇𝑟
𝑇𝑚 − 𝑇𝑟

)] (5.5) 

where 휀𝑓𝑘is the IFS at the specific condition k. In the present work, the strain rate of 

compression test 휀̇𝑘 is calculated by the slope of the fitted curve of equivalent plastic 

strain versus time. Further, to increase the prediction accuracy of triaxial stress, a 

ratio of simulated pressure to Von Mises stress is calculated.  

Figure 5.3 show the simulated and fitted curves of von Mises stress, positive value of 

pressure, strain and temperature of one node in the cross-section of the specimen at 

the strain rate 370 s-1 and temperature 20 ͦ C (Sim.2) for 90WHA. Similar procedure 

is followed to measure fitted coefficients for other two grades of WHA. The fitted 

coefficients corresponding to the conditions 1-5 which are used to calculate IFS are 

shown in Table 5.2. 
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(c) (d) 

Figure 5.3 Simulated and fitted curves of Von Mises stress, the positive value of 

pressure, equivalent plastic strain, and temperature at one node in the cross-section 

of the specimen at 370 s-1 and 20 ͦ C (Sim.2) for 90WHA. 

Table 5.2 Fitted parameters for Equation (5.1) to (5.4) by high strain rate simulation 

without damage model for three grades of WHA. 

WHA 

Grade 
Test R1 S1 R2 S2 R3 S3 R4 S4 

90 

Sim.1 94.36 2468.5 22.13 425 701.10 -0.124 386.94 17.12 

Sim.2 78.98 1997.9 19.86 398 458.51 -0.091 252.23 17.74 

Sim.3 61.23 1994.7 14.52 324 780.06 -0.083 187.79 13.57 

Sim.4 88.36 2212.8 21.86 405 685.42 -0.148 371.35 16.87 

Sim.5 82.67 2108.6 20.74 384 672.13 -0.152 351.28 16.42 

 

95 

Sim.1 92.42 1990.2 11.32 514 356.45 -0.093 382.53 20.62 

Sim.2 96.52 1998.3 8.96 501 373.66 -0.105 364.42 18.49 

Sim.3 89.73 1893.6 14.52 526 384.72 -0.132 403.68 22.41 

Sim.4 74.62 1991.8 13.56 506 413.74 -0.231 410.73 15.82 

Sim.5 72.83 1987.2 14.61 498 426.51 -0.226 413.62 16.24 

 

97 

Sim.1 63.42 1997.5 39.47 346 512.47 -0.116 378.46 24.51 

Sim.2 59.62 1992.4 37.25 326 448.66 -0.085 245.01 19.28 

Sim.3 68.53 1995.7 22.58 312 696.96 -0.066 242.71 19.55 

Sim.4 60.83 1982.6 32.62 335 558.62 -0.142 354.53 22.82 

Sim.5 58.41 1973.1 41.84 328 523.48 -0.167 314.78 21.72 
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Table 5.3 shows the computed values of JC damage model constants from the FE 

high strain simulation model by the GA optimization method for 90, 95, and 97WHA. 

Finally, the constants D1 to D5 are identified by the GA optimization method using 

both the predicted stress, strain, and temperature from simulations and the measured 

IFS. The objective function of GA optimization is set as the minimum value of the 

accumulated square error function 𝛥(x), aiming to minimize the total relative errors 

between the calculated and measured IFS. 

𝑓(𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5 ) = 𝑚𝑖𝑛{𝛥(𝑥)} (5.6)  

The optimized damage constants for all the three grades are presented in Table 5.3. 

Further the high strain rate simulation with optimized damage constants is validated 

with experimental flow stresses at two different conditions for 90 WHA as shown in 

Figure 5.4. The results predicted by the high strain rate simulation with damage 

constants closely matched with the experimental flow stress curves. From this it can 

be confirmed that the derived damage constants could predict damage initiation and 

damage evolution successfully under similar experimental conditions. 

Table 5.3 JC damage model constants for three grades of WHA 

 Grade D
1
 D

2
 D

3
 D

4
 D

5
 

90WHA -0.953 -2.443 -4.785 0.019 0.623 

95WHA -1.225 -2.134 -3.679 0.023 0.768 

97WHA -1.312 -1.897 -2.893 0.036 0.853 

 

 

(a) 

 

(b) 

Figure 5.4 Comparison of experimental with simulated flow stress using JC damage 

constants at (a) Sim.2: 370 s-1, 20 ͦ C; (b) Sim.3: 685 s-1, 20 ͦ C 
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The appropriate FE inputs along with damage constants are used to develop the FE 

model and the adequacy of the same is investigated by simulating the model under 

varied cutting conditions and comparing the obtained results such as cutting forces, 

chip morphology, etc. with that of the experimental ones. Various parametric studies 

such as the effect of mesh size, JC material model constants and cutting parameters 

are performed while simulating the chip formation process for 90, 95 and 97 WHA. 

5.3 Mesh refinement study 

The selection of proper mesh size plays a critical role in defining the accuracy and 

computational time of the FE simulation model. It is even well known that finer mesh 

leads to greater accuracy but at the cost of higher computational time. So, the best 

way of meshing a model is to get results closer to the experimental ones on the one 

hand and consumes relatively less computational time, on the other hand. Even it 

should be noted that refining mesh beyond a limit leads to increase in CPU time and 

no significant changes in numerical results can be observed. Thus, a mesh sensitivity 

analysis is performed to identify optimum meshing condition that yields consistent 

and accurate results with relatively lesser computational time. 

In the present work three different varied meshing conditions have been considered 

in chip region by varying mesh size of 29 × 29 μm, 19 × 19 μm, 15 × 15 μm and 11 

× 11 μm in the chip thickness direction as shown in Figure 5.5. 

(a) (b) 
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(c) (d) 

Figure 5.5 Mesh configuration for (a) 29 × 29 μm, (b) 19 × 19 μm, (c) 15 × 15 μm 

and (d) 11 × 11 μm 

Table 5.4 summarizes the effect of mesh size on FE outputs and CPU time. Not much 

variation in average values of stress, strain and temperature in the shear zone is 

observed for mesh size beyond 19 × 19 μm. This implies that further mesh refinement 

may not be required as far consistency of the result is concerned. Moreover, there is 

a limitation to the reduction of element size from the software point of view. Since 

the time step in ABAQUS/Explicit is controlled by the smallest element size, 

reduction of element size beyond a certain point leads to termination of the analysis 

in the first time step itself. Hence, mesh size 15 × 15 μm is considered as a fair choice 

for the subsequent simulations. 

Table 5.4 Mesh sensitivity analysis for a simulation time of 1 ms 

Mesh size Stress (GPa) Strain Temperature (ͦ C) 

CPU time 

(hr:min:s) for 1ms 

29 × 29 μm 1.58 0.68 486 30:96 

19 × 19 μm 1.29 0.56 284 0:58:32 

15 × 15 μm 1.27 0.54 280 1:19:48 

11 × 11 μm 1.27 0.54 280 1:56:30 
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5.4 Experimental validations 

FE simulations taking M1, M2, M3 and M4 as input are run under similar cutting 

conditions as that of the experimental ones and the predicted results were compared 

with the ones measured experimentally. 

5.4.1 Chip morphology 

Machining tests showed that the type of chip obtained during machining of all three 

grades of WHA are purely discontinuous chips. Figure 5.6 (a), (b) and (c) shows the 

chip morphology and equivalent plastic strain distribution for a specific cutting 

parameter combination ((Vc = 50 m/min, f = 0.1 mm, d = 0.15 mm and α = -50) using 

M1, M2, M3 and M4 for 90, 95 and 97 WHA, respectively. It is evident from the 

experimentally obtained chips that chips tend to be more fragmented with the increase 

in the tungsten content. All the four models could replicate such phenomena 

satisfactorily. Although, the chips predicted using M1, M2 and M3 are discontinuous 

in nature, but the fragments appear scattered and triangular shaped. It is clearly 

observed that M4 could simulate discontinuous chips fairly well as compared to that 

of other two models when compared with experimental chip morphology. It can be 

inferred that as the JC constants vary, not just the maximum value of equivalent 

plastic strain but the distribution pattern of equivalent plastic strain near the shear 

plane also change; consequently, affecting the chip morphology. This clearly showed 

the interdependence of FE simulations on JC constants.  

 90WHA 95WHA 97WHA 

Exp 
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M1 

   

M2 

   

M3 

   

M4 

 
(a) 

 
(b) 

 
(c) 

Figure 5.6 Comparison of predicted chip morphology and equivalent plastic shear 

strain distribution using M1, M2, M3 and M4 for (a) 90 WHA (b) 95 WHA and (c) 

97 WHA  

Furthermore, Figure 5.7 (a) and (b) show chips obtained experimentally as well as 

predicted using M4 for -5° and 2° rake angles, respectively while machining 97 
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WHA. As expected, chip curling is more prominent for a positive rake angle as 

compared to that of negative one. A similar trend is observed for the predicted chips 

as the rake angle changed from negative to positive. It can be stated that M4 could 

simulate chip formation satisfactorily for both positive and negative rake angle.  

  

 

(a) 

 

(b) 

Figure 5.7 Experimental and predicted chip morphology while machining 97WHA 

using (a) -5° and (b) 2° rake angles 

5.4.2 Cutting forces 

To give a clear picture of how the force varies concerning JC constants, a force 

signature (both measured and predicted) while machining 97WHA under specific 

cutting conditions has been presented in Figure 5.8 
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(a) 

 
(b) 

Figure 5.8 Comparison of cutting force signature (a) Experimental, (b) change in 

the JC model constants from predicted FE machining simulations.  

It can be observed that the force signatures of respective models correspond to the 

type of chips simulated. The force signature of M4 is found to be relatively smoother 

and closer to the experimental cutting force signature as compared to M1, M2 and 

M3. The lower values of cutting forces look reasonable and are expected because of 

the discontinuous chips being formed during the cutting operation. 

Figure 5.9 and Figure 5.10 show the predicted values of cutting force and thrust force 

with respect to that of experimental ones as a function of cutting velocity and feed 

rate, respectively for two different rake angles and three WHA grades. Models M3 

and M4 could replicate the trend observed for both cutting force and thrust force with 

respect to cutting velocity, feed, grade and rake angle. Whereas M1 showed 

incapability in showing the trend, especially concerning cutting velocity and feed 

rate. Moreover, M1 showed maximum deviation with error percentage exceeding 

23% both for cutting force as well as thrust force. However, M2 and M3 showed a 

slight improvement over M1. It is in the case of M4 wherein predicted values of both 

cutting force and thrust force completely coincided with the experimental ones except 

for one specific combination of cutting parameters where the maximum deviation is 

close to 15%. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.9 Comparison of experimental and predicted cutting force, thrust force as a 

function of cutting velocity and rake angle for (a) & (b) 90 WHA, (c) & (d) 95 WHA, 

(e) & (f) 97 WHA. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.10 Comparison of experimental and predicted cutting force, thrust force as 

a function of feed and rake angle for (a) & (b) 90 WHA, (c) & (d) 95 WHA, (e) & (f) 

97 WHA. 

5.4.3 Temperatures 

Besides cutting forces is measured, another significant parameter that affects the 

machining process is cutting temperature. The measurement of cutting temperature 

by the experimental techniques is challenging. In the past, many researchers have 

used different techniques to measure cutting temperature (Silva et al. 1999, Goyal et 

al. 2014). But in the present study, the temperature is measured using thermal imaging 

camera FLIR E60 with temperature measuring range of -20° to 650 °C. IR camera is 
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calibrated by placing WHA and tungsten carbide samples in a muffle furnace for 

different steady-state temperatures.  

The emissivity is found to be 0.85, which lies well within the range 

documented in the literature (Sassi and Ghmari 2009). Figure 5.11 (a) shows the 

average temperature measured by IR camera for one particular combination of cutting 

parameters. While Figure 5.11 (b) and (c) show the temperature distribution predicted 

along the tool chip interface and primary shear zone for a specific cutting condition 

as a sample. The average temperature is then predicted by taking into consideration 

the temperature at shear zone and the chip tool interface. 

 
(a) 

 
(b) 

 
(c) 

Figure 5.11 (a) Measured temperature using IR camera and temperature distribution 

predicted along (b) shear zone and (c) tool chip interface 

Figure 5.12 shows the simulated temperature at chip tool interface for variation of JC 

model constants. It is observed that the M4 model had the least maximum temperature 

as compared to that of M1, M2 and M3. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.12 Comparison of simulated temperature distribution at chip tool interface 

for (a) M1, (b) M2, (c) M3 and (d) M4. 

Figure 5.13 and Figure 5.14 show the variation of temperature with respect to cutting 

velocity and feed rate, respectively for different WHA grades and rake angles. 

Overall, it can be stated that the measured values of temperatures were lower than 

that of the predicted ones. This is much expected as the IR camera could only capture 

the average temperature of the chip, which was continuously in motion while 

machining.  

Another reason could be because of the fact that orthogonal cutting conditions 

are considered in simulations for simplification. Orthogonal cutting conditions tend 

to give a higher value of temperatures as compared to that of oblique cutting. 

However, similar approach has been adopted for experimental validations in quite a 

few of number of literature (Ning, et al. 2019). Furthermore, the differences in the 

values predicted by three of the models are much evident from the graphs presented. 

The deviation in average temperature values is fairly large both for M1, M2 and M3. 

On the other hand, M4 is able to replicate the material behavior undergoing 
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deformation during the chip formation process perfectly with predicted cutting 

temperatures closely matching with that of the experimental ones. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.13 Comparison of experimental and predicted average temperature as a 

function of cutting velocity and rake angle for (a) & (b) 90 WHA, (c) & (d) 95 

WHA, (e) & (f) 97 WHA. 
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(a) (b) 

  
(c) (d) 

   
(e) (f) 

Figure 5.14 Comparison of experimental and predicted average temperature as a 

function of feed and rake angle for (a) & (b) 90 WHA, (c) & (d) 95 WHA, (e) & (f) 

97 WHA. 

Likewise, Figure 5.15 and Figure 5.16 show the predicted values of equivalent shear 

strain with respect to that of experimental ones under varying cutting velocities and 

feed rates, respectively. Note that the determination of experimental equivalent shear 

strain, which is a function of shear angle and rake angle, was calculated using Equation 

(A.4). The measured value of chip thickness and consequently chip thickness ratio 

were utilized for determination of shear angle as given in Equation (5.7). 
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𝜑 =  𝑡𝑎𝑛−1 (
𝑟𝑡𝑐𝑜𝑠𝛼

1 − 𝑟𝑡𝑠𝑖𝑛𝛼
) (5.7) 

Further, shear strain values predicted using M4 showed minimum deviation when 

compared with that of experiments.  

  
(a) 

  
(b) 

  
(c) 

Figure 5.15 Comparison of experimental and predicted equivalent shear strain as a 

function of cutting velocity and rake angle for (a) 90 WHA, (b) 95 WHA and (c) 97 

WHA 
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(a) 

  
(b) 

  
(c) 

Figure 5.16 Comparison of experimental and predicted equivalent shear strain as a 

function of feed and rake angle for (a) 90 WHA, (b) 95 WHA and (c) 97 WHA 

As a whole, M4 came out to be the best choice for machining simulations. Such 

observation is very much clear from values presented in Table 5.5. 
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Table 5.5 comparison of overall adequacy of model M1, M2, M3 and M4 

Predicted 

Output  

M1 M2 M3 M4 

Mean of 

error % 

Mean 

STD 

Mean of 

error % 

Mean 

STD 

Mean of 

error % 

Mean 

STD 

Mean of 

error % 

Mean 

STD 

Cutting force 16.30 4.59 12.34 3.13 11.54 2.98 5.49 1.25 

Thrust force 22.59 4.44 17.31 3.42 15.64 3.12 7.35 1.44 

Temperature 56.63 32.18 41.04 22.38 38.98 21.86 24.55 13.03 

Shear strain 14.44 3.95 11.29 3.10 10.86 2.98 7.12 2.80 

 

The graphic representations provided in Figure 5.17 shows a better insight into the 

capability of M4 to predict the machining outputs using FE model. 

 

Figure 5.17 Mean error percentages of M1, M2, M3 and M4 for cutting force, thrust 

force, average temperature and equivalent shear strain. 

Since M4 values are derived under similar strain rates and temperatures that are 

actually exhibited during machining, it could successfully predict all the outputs 

closer to that of experimental ones. Whereas, in M1 the constants are derived for 

strain rates in the range of 11-775 s-1 at room temperature. As a result, it could not 

replicate the material behavior precisely during the machining process as these strain 

rates are much lower than the ones that are experienced during machining. 

It is observed that M2 and M3 showed some amount of improvement over M1 

because of the fine-tuning of the constants, using GA and ABC algorithm. As a 

whole, when the results of current work are compared to that of the similar works 

available in the literature (Sagar, et al. 2018), it is observed that the other models 
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could achieve the error percentages in the range of 15-20 %. While M4 could achieve 

a mean error percentage as low as 6%. Such improvement could be because of the 

modifications made in the error expression (see Equation (4.24)) as well as 

refinement done to typical ranges selected for  ζ, 𝐶0 and Φ in the PSO algorithm as 

compared to that of Filho’s (J. C. Filho 2017). 

5.5 Analysis of chip formation mechanism 

A detailed analysis is performed using the model M4 under varied cutting conditions 

for understanding of the physics underlying the chip formation mechanism during 

machining of WHAs. Hence, an attempt is made to explain the phenomenon with the 

help of predicted variables that are difficult to measure such as the distribution of 

stress, strain and temperatures in the cutting zone. 

5.5.1 Effect of tungsten content 

Figure 5.18 and Figure 5.19 present the distribution of stress and temperature, 

respectively for rake while machining 90 WHA, 95 WHA and 97 WHA under varied 

cutting velocities keeping other cutting parameters constant. 

Cutting 

velocity 
90 WHA 95 WHA 97 WHA 

30 
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Figure 5.18 Distribution of stresses while machining 90, 95 and 97 WHA at varied 

cutting velocities 

It is observed that as the tungsten content increases, the stresses in the primary shear 

zone increase for the given cutting velocities, which in turn causes higher straining 

in the primary shear zone. Such a phenomenon increases the chance of occurrence of 

fragmentations in chips. A similar trend in chip morphology is observed during 

machinability studies, as presented in Chapter 4 (see Figure 3.12). Favorably, the 

predicted stress distributions could give a better insight into the mechanism 

responsible for the resulting chip morphologies during the machining of WHAs. It is 

interesting to note that the temperature at primary shear zone follows a similar pattern 

like that of the stresses as the tungsten content varies under varied cutting velocities, 

as shown in Figure 5.19 As far as cutting tool temperatures are concerned, 97 WHA 

tend to have higher maximum temperatures on the rake face for the given cutting 

velocities. Generally, higher cutting temperatures accelerate the tool wear, which 

consequently deteriorates the machined surface. This could be one of the reasons for 

getting higher surface roughness values while machining 97 WHA under varied 

cutting conditions during machinability studies (see Figure 3.16). 
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Figure 5.19 Distribution of temperature while machining 90, 95 and 97 WHA at 

varied cutting velocities 

5.5.2 Effect of rake angle 

Figure 5.20 (a), (b) and (c) present the distribution of stress, strain and temperature, 

respectively for rake angles, -5° and 2°, under a specific cutting condition while 

machining 90 WHA. 

Figure 5.20 shows that the rake angle plays a crucial role in determining the type of 

chip produced. The negative rake angle resulted in a decrease in shear plane angle 
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and higher compression on chip, which in turn in led to the increase of stress in the 

primary shear zone from 0.9 GPa to 1.29 GPa (see Figure 5.20 (a)). Consequently, 

the strain in the primary shear zone increased from 0.8 to 1.3 and as the material 

strength is decreased with increasing straining, ultimate fracture occurs when the 

predefined damage evolution criterion is satisfied. Hence, the tendency to obtain 

discontinuous chips increases as the rake angle changes from a positive value to 

negative one. 

α = -50 α = 20 

  
(a) 

  
(b) 

  
(c) 

Figure 5.20 Distribution of (a) stress, (b) strain and (c) temperature for -5° and 2° 

rake angles while machining 90 WHA 

Φ = 48.16° Φ = 56.12° 
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From Figure 5.20 (c), it is observed that temperature rises mainly in the chip region, 

with maximum values localized along with the tool-chip interface for both the rake 

angles. However, a higher value of temperature is found for negative rake angle 

which is expected because of the lower value of shear plane angle that leads to higher 

shear plane area and increased chip thickness. It can be seen that the maximum 

temperature on the rake face of the cutting tool with -5° rake angle is above 450°C; 

whereas maximum temperature achieved in case of 2° rake angle is below 300°C. 

The higher temperature value in case of -5° rake angle explains the development of 

prominent BUE, which was found during experimental measurement of flank wear 

in Chapter 4 (see Figure 3.20 ) under similar cutting conditions. Since the maximum 

temperatures on the rake for both the tool geometries are above 300°C, it essentially 

validates the experimental findings stating that the dominant wear mechanism is 

adhesion for both the cases. 

Summary  

This chapter deals with the analysis and validation of results obtained from the 

developed FE model using computed values of JC material and damage model 

constants. The adequacy of the developed model is investigated by simulating the 

model for varied cutting parameters and comparing the obtained results with that of 

the experimental ones. To validate the identified material and damage constants, 

machining outputs (cutting forces, temperature and shear strain) are predicted 

considering M1, M2, M3 and M4 along with the damage constants as input under 

different cutting conditions and compared with the corresponding experimental 

values. The predicted outputs obtained using M4 closely matched with that of the 

experimental ones with error percentage well within 10%. Furthermore, the 

developed FE model with M4 as material input is used as a substitute for the 

experimental test for developing full factorial data that are requisite for performing 

multi-objective optimization in the following chapter. 
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Chapter6 MULTIOBJECTIVE OPTIMIZATION 

Multi-objective optimization is a method that determines a unique optimal solution 

for a process involving multiple input parameters and has more than one objective 

function. Machining is one such process that involves many input cutting parameters 

and has multiple output responses (cutting force, surface roughness, MRR and tool 

wear) that have interdependent correlations. A broad understanding of the machining 

behavior and the chip formation mechanism of WHAs under different cutting 

conditions have been arrived at. But, in order to find the optimal cutting parameters 

and tool geometry that gives the best possible values of machining variables for all 

the three grades of WHAs, it requires optimization. However, the optimization of the 

machining process involves a large number of experimental tests to be performed 

which is time consuming and expensive. As a result, experimental test arrays are 

usually chosen based on a compromise between the cost of the experiments (cost 

includes the time required to run the experiments) and the required accuracy of the 

results. Orthogonal arrays are the most common type of Taguchi DOE that come up 

as a fair compromise between cost and accuracy. However, precise machining of 

WHAs, especially for critical applications, may require a higher degree of accuracy 

during the identification of optimum parameters. On that account, a full factorial 

design approach could be an alternate solution for such cases. Hence, the present 

chapter explores the capability of both the approaches, namely, orthogonal array and 

full factorial design, in multi objective optimization.  

6.1 Overall methodology 

In the present study, five input parameters, namely, Vc, f, d, α and g with three levels 

are considered for optimization, as shown in Table 6.1. The first approach, i.e., the 

orthogonal array design, uses L27 orthogonal array for conducting the experimental 

tests. The machining tests for 90, 95 and 97 WHA are performed on CNC lathe (HMT 

PTC 200) and the output responses such as cutting forces, cutting temperature and 

flank wear are measured using piezoelectric lathe tool dynamometer, FLIR E60 

thermal image camera and METZER M stereo microscope, respectively. The test 

data, so obtained, is used for multi-objective optimization using GRA. 
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In the second approach, a full factorial design with total of 81 test data is 

considered. Since conducting these many tests would be time consuming and 

expensive, the developed FE model, as discussed in Chapter 5, is used for generating 

the full factorial data required for multi objective optimization. The developed FE 

model is used to predict the cutting force and average cutting temperature for the 81 

test combinations. Further, tool flank wear is calculated for a machining time of 10 

minutes using modified Zhao model, as presented in Chapter 4, by considering the 

predicted cutting forces and temperatures. Subsequently, the full factorial data is used 

for multi-objective optimization using three evolutionary algorithms, namely, 

NSGA-II, Hybrid ABC, and Hybrid CS. Out of the three algorithms, NSGA II is one 

of the commonly used algorithms for multi objective optimization, while the 

remaining two are newly proposed ones.  

The basic idea of considering NSGA II in the current analysis is to use it as a 

benchmark for comparison with HABC and HCS algorithms. Finally, the optimal 

solutions predicted by all the four methods are compared and validated. The 

confirmation tests are performed based on the differences between the values 

predicted by optimization models and that of the experimentally measured ones. The 

method having the least error difference is considered as the best model, out of the 

four, for predicting optimal solutions for machining WHAs. The overall methodology 

is shown schematically in Figure 6.1. 

 

Figure 6.1 Overall methodology for multi-objective optimization 
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6.2 Orthogonal Array design approach 

Turning tests are performed employing the Taguchi L27 orthogonal array based on 

the process parameters presented in Table 6.1. Table 6.2 shows the experimental 

design considered for performing Taguchi analysis and GRA based optimization. The 

machining tests are repeated three times and average values of the output responses, 

namely, cutting force, temperature and tool flank wear are also presented in Table 

6.2. The selection of input parameters and their corresponding ranges are based on 

few critical factors such as the limiting cutting conditions on CNC lathe for vibration 

free machining under dry cutting conditions, tool manufacturer’s catalog and the 

range of values taken by researchers in the literature (Nandam, Ravikiran and Rao 

2014). 

Table 6.1 Process parameters and their levels 

Factors Level 1 Level 2 Level 3 

Cutting velocity (Vc) 30 50 70 

Feed (f) 0.05 0.10 0.15 

Depth of cut (d) 0.10 0.15 0.20 

Rake angle (α) -8 -5 2 

Grade (g) 90 95 97 

 

Table 6.2 L27 orthogonal array and measured output responses  

Exp. 

No. 

Vc 

m/min 

f 

mm/rev 

d 

mm 

α 

deg 
g 

Fc 

N 

T 

ͦ C 

VB 

µm 

1 30 0.05 0.2 -5 90 46.40 85.25 204.71 

2 30 0.05 0.2 -5 95 45.11 82.70 193.00 

3 30 0.05 0.2 -5 97 47.32 70.83 203.20 

4 30 0.1 0.1 2 90 33.23 96.65 389.62 

5 30 0.1 0.1 2 95 34.42 85.30 377.69 

6 30 0.1 0.1 2 97 32.33 129.00 392.70 

7 30 0.15 0.15 -8 90 68.80 88.30 239.65 

8 30 0.15 0.15 -8 95 71.00 125.50 240.49 

9 30 0.15 0.15 -8 97 68.43 104.40 246.99 

10 50 0.05 0.15 2 90 44.58 108.00 366.90 

11 50 0.05 0.15 2 95 32.88 105.00 328.67 
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12 50 0.05 0.15 2 97 45.91 106.00 363.73 

13 50 0.1 0.2 -8 90 57.26 163.00 246.04 

14 50 0.1 0.2 -8 95 55.02 127.00 234.76 

15 50 0.1 0.2 -8 97 60.05 214.50 240.13 

16 50 0.15 0.1 -5 90 76.61 94.75 451.12 

17 50 0.15 0.1 -5 95 79.45 86.00 467.45 

18 50 0.15 0.1 -5 97 69.82 87.20 448.82 

19 70 0.05 0.1 -8 90 21.02 79.23 316.82 

20 70 0.05 0.1 -8 95 23.36 70.50 322.84 

21 70 0.05 0.1 -8 97 22.62 74.00 310.61 

22 70 0.1 0.15 -5 90 44.97 87.60 290.39 

23 70 0.1 0.15 -5 95 51.81 102.00 319.61 

24 70 0.1 0.15 -5 97 55.71 127.00 326.02 

25 70 0.15 0.2 2 90 86.17 112.70 406.56 

26 70 0.15 0.2 2 95 86.20 125.50 394.99 

27 70 0.15 0.2 2 97 92.63 111.53 408.19 

 

6.2.1 Taguchi Analysis and ANOVA 

The data presented in Table 6.2 is used for calculation of Signal to Noise (S/N) ratios 

for each output parameter and the S/N ratios is used to identify the constituency of 

results. Further by calculating mean for each output response combinations, a mean 

effect plot and percentage contribution of input variables are identified by Analysis 

of Variance (ANOVA) method (13). Detailed Taguchi’s DOE approach followed in 

the present work has been shown in Figure 6.2. 

 

Figure 6.2 Flow chart for analysis of L27 orthogonal array  

Table 6.3 presents the S/N ratios of the selected output responses for the analysis. 
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Table 6.3 S/N ratios of each output responses 

Exp. 

No. 

Fc 

S/N 

ratio 

T 

S/N 

ratio 

VB 

S/N 

ratio 

1 -33.33 -38.62 -46.22 

2 -33.11 -38.36 -45.71 

3 -33.53 -37.05 -46.16 

4 -30.43 -39.77 -51.81 

5 -30.75 -38.63 -51.54 

6 -30.20 -42.33 -51.88 

7 -36.76 -38.94 -47.59 

8 -37.03 -42.03 -47.62 

9 -36.71 -40.40 -47.85 

10 -32.99 -40.67 -51.29 

11 -30.36 -40.42 -50.34 

12 -33.43 -40.51 -51.22 

13 -35.19 -44.24 -47.82 

14 -34.81 -42.33 -47.41 

15 -35.57 -46.69 -47.61 

16 -37.69 -38.78 -53.09 

17 -38.00 -38.69 -53.40 

18 -36.89 -38.81 -53.04 

19 -26.50 -38.10 -50.02 

20 -27.37 -36.98 -50.18 

21 -27.13 -37.40 -49.84 

22 -33.06 -38.88 -49.26 

23 -34.35 -40.21 -50.09 

24 -34.92 -42.08 -50.27 

25 -38.71 -41.24 -52.18 

26 -38.71 -41.98 -51.93 

27 -39.37 -40.99 -52.22 

 

Cutting forces 

The calculated mean and effect of each input parameter on cutting forces are 

estimated. Figure 6.3 shows the mean effect, percentage contribution of cutting 

parameters and interaction plots for high contributing cutting parameters on cutting 

forces. 

The mean effect plots in Figure 6.3 (a) clearly show that with the increase in feed 

rate, there is a considerable increase in cutting forces. This is very much expected 

because as the feed rate increases, the uncut chip thickness increases, thereby 
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increasing the amount of force required for removing the chip layer. A similar trend 

is observed in the case of depth of cut. No such trend is observed for cutting force 

with respect to cutting velocity, grade and rake angle. 

 

(a) 

(b) (c) 

Figure 6.3 (a) Mean effect plots (b) Percentage contribution of cutting parameters 

and (c) Interaction plot for major contributing cutting parameters for cutting forces 

In Figure 6.3 (b), it is found that feed rate has major contribution with value as high 

as 75% followed by the depth of cut; whereas WHA grade followed by rake angle 

and cutting speed have the least effect on cutting forces. This implies that a small 

variation in feed rate would lead to a significant change in cutting forces. While no 

considerable change in forces would be observed with the variation in WHA grades. 

Further interaction plots are drawn for major contributing factors in Figure 

6.3 (c). It is observed that as the feed rate and depth of cut increase, cutting force 

increases almost linearly for the feed rates 0.05 and 0.1 mm/rev. However, with 

further increase in feed rate, cutting force values increase as a whole, showing lesser 

interaction effect of depth of cut on feed rate.  
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Cutting temperature 

The calculated mean and effect of each input parameter on cutting temperatures are 

estimated. Figure 6.4 shows the mean effect, percentage contribution of cutting 

parameters and interaction plots for high contributing cutting parameters on cutting 

temperatures.  

 

(a) 

 

(b) 

 

(c) 

Figure 6.4 (a) Mean effect plot (b) Percentage contribution of cutting parameters (c) 

Interaction plot for major contributing cutting parameters for cutting temperatures 

The mean effect plots in Figure 6.4 (a) clearly show that all the input parameters 

significantly affect the cutting temperature. However, the effect of depth of cut on 

cutting temperature is quite straight forward, i.e., with the increase in depth of cut, 

cutting temperature increases. In Figure 6.4 (b), it is found that feed rate followed by 

the depth of cut have comparatively higher contributions with values 35% and 21%, 

respectively; whereas percentage contributions of the remaining input parameters 

together comes out to be nearly 50% with individual values falling in the range of 11-
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shown in Figure 6.4 (c), do not follow any proper trend. This implies that the 

temperature effects in machining process are a complex phenomenon.  

Flank wear 

Flank wear is another significant response parameter that affects both cutting force 

and cutting temperature, as discussed in chapter 4. Flank wear is measured for 10 

mins of machining. Figure 6.5 shows the mean effect, percentage contribution of 

cutting parameters and interaction plots for high contributing cutting parameters on 

flank wear.  

 

(a) 

 

(b) 

 

(c) 

Figure 6.5 (a) Mean effect plots (b) Percentage contributions of cutting parameters 

(c) Interaction plot for major contributing cutting parameters on flank wear 

The mean effects plots in Figure 6.5 (a) show that all the input parameters, except 

WHA grade significantly affect the flank wear. It is observed that as the rake angle 

changes from a negative to positive value, there is a drastic increase in flank wear. In 

Figure 6.5 (b), it can be seen that the rake angle followed by the depth of cut have the 

most significant contributions in the variation of flank wear with 34% and 30%, 
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respectively, as percentage contributions. WHA grade is found to have very little 

effect on the flank wear. Similarly, Figure 6.5 (c) shows the interaction effects 

between the major contributing cutting parameter. The interaction effect between 

rake angle and depth of cut is highly prominent for the rake angle -5° as compared to 

that of 2° and -8°, as far as flank wear is concerned. 

6.2.2 Grey relational analysis 

GRA is one of the most widely used multi-objective optimization models for 

solving real-world problems (Pawade and Joshi 2011) GRA divides problem 

information into three stages. In the first stage, the problem variables having no 

information is considered a black region. In the second stage, problem variables 

having complete information is considered as the white region. In the third stage, the 

problem variables having incomplete information are considered a grey region 

(Caydas and Hascalik 2008). It is well known that in complex processes such as 

machining, the relationship between various factors has interdependence that are 

difficult to interpret. Such a system that gives inadequate, incomplete, and uncertain 

information is often called grey. GRA is one commonly used technique to solve such 

kind of problems (Raykar, D’Addona and Mane 2015). GRA converts complicated 

multiple performance characteristics to a single solution level in terms of grey 

relational grades. This section focuses on developing a multi objective optimization 

model, using GRA, that would predict right combinations of cutting parameters to 

achieve optimum machining variables, namely cutting force, cutting temperature, and 

flank wear (Ghetiya, Patel and Kavar 2016, Prakash, Gopal and Karthik 2020) based 

on the data presented in Table 6.1 and Table 6.2. 

The experimental values, normalized mean, Grey relational coefficient, and 

Grey relational grades (GRG) of response outputs Fc, T, and VB are presented in Table 

6.4. The response outputs are normalized and converted to Grey relation coefficients 

as per steps 1, 2, and 3. GRG is computed by taking the mean of the Grey relational 

coefficients corresponding to each experiment combination as per step 4, as shown 

in Figure 6.5. Since the larger value of GRG indicates better performance of the 

process, Experiment 3 in Table 6.4 with the highest GRG is considered as an optimum 

combination within the L27 response table. 
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Figure 6.6 shows the flowchart depicting the major steps that have been followed to 

achieve the optimum output variables (Ghetiya, Patel and Kavar 2016, Prakash, 

Gopal and Karthik 2020). 

 

Figure 6.6 Flow chart for Grey relation analysis 

Table 6.4 Experimental results and Grey relation analysis 

Exp. 

No. 

Normalized mean Grey relation co-

efficient 

GRG Rank 

Fc T VB Fc T VB  

1 0.646 0.898 0.957 0.585 0.830 0.921 0.779 6 

2 0.664 0.915 1.000 0.598 0.855 1.000 0.818 2 

3 0.633 0.998 0.963 0.577 0.995 0.931 0.834 1 

4 0.829 0.818 0.284 0.746 0.734 0.411 0.630 11 

5 0.813 0.897 0.327 0.728 0.829 0.426 0.661 8 

6 0.842 0.594 0.272 0.760 0.552 0.407 0.573 16 

7 0.333 0.876 0.830 0.428 0.802 0.746 0.659 9 

8 0.302 0.618 0.827 0.417 0.567 0.743 0.576 15 

9 0.338 0.765 0.803 0.430 0.680 0.718 0.609 13 

10 0.671 0.740 0.366 0.603 0.658 0.441 0.567 18 

11 0.834 0.760 0.506 0.751 0.676 0.503 0.643 10 
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12 0.652 0.753 0.378 0.590 0.670 0.446 0.568 17 

13 0.494 0.358 0.807 0.497 0.438 0.721 0.552 19 

14 0.525 0.608 0.848 0.513 0.560 0.767 0.613 12 

15 0.455 0.000 0.828 0.478 0.333 0.744 0.519 22 

16 0.224 0.832 0.060 0.392 0.748 0.347 0.496 24 

17 0.184 0.892 0.000 0.380 0.823 0.333 0.512 23 

18 0.319 0.884 0.068 0.423 0.812 0.349 0.528 20 

19 1.000 0.939 0.549 1.000 0.892 0.526 0.806 5 

20 0.967 1.000 0.527 0.939 1.000 0.514 0.817 3 

21 0.978 0.976 0.571 0.957 0.954 0.538 0.816 4 

22 0.666 0.881 0.645 0.599 0.808 0.585 0.664 7 

23 0.570 0.781 0.539 0.538 0.696 0.520 0.584 14 

24 0.516 0.608 0.515 0.508 0.560 0.508 0.525 21 

25 0.090 0.707 0.222 0.355 0.630 0.391 0.459 25 

26 0.090 0.618 0.264 0.355 0.567 0.405 0.442 27 

27 0.000 0.715 0.216 0.333 0.637 0.389 0.453 26 

 

Now, the GRG response is listed in Table 6.5. The values listed in the table are 

obtained by calculating the mean value of each input parameter at its corresponding 

level; for example, the mean of the GRG for Vc=30 m/min is calculated by averaging 

the GRG for the experiments 1-9. The optimum performance is then selected based 

on the highest value of GRG for each parameter in Table 6.5. It is noted that the 

optimal machining parameters can be predicted using the estimated GRG using step 

5 (see Figure 6.5), even for the setting not available in the orthogonal array. 

Table 6.5 Response table for predicted optimum level GRG  

Symbol Cutting parameters 
Grey relation grade Mean 

effect Level 1 Level 2 Level 3 

A Cutting velocity 0.623 0.621 0.601 0.066 

B Feed 0.580 0.621 0.620 0.068 

C Depth of cut 0.629 0.574 0.655 0.072 

D Rake angle 0.643 0.642 0.571 0.063 

E Grade 0.479 0.569 0.609 0.067 

 

The optimum cutting parameter combination are found to be A1B2C3D1E3, i.e., Vc 

= 30 m/min, f=0.1 mm/rev, d=0.2 mm, α=-8°and g=97 WHA. Furthermore, a 

comparison is made between the measured data from L27 orthogonal array and the 
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predicted ones. The corresponding output responses are listed in Table 6.6. These 

results indicated that the value of predicted GRG (0.852) is closer, but slightly higher, 

as compared to that of the experimental one (0.834). Lastly, the confirmation 

experiments are performed at the predicted optimum level of input parameters and 

compared with the ones obtained by evolutionary algorithms using the full factorial 

design approach in the following sections. 

Table 6.6 Comparison of cutting parameters between measure data from L27 

orthogonal array and predicted optimum level 

Parameters 
Optimum cutting parameters 

Experiment Predicted 

Level A1B1C3D2E3 A1B2C3D1E3 

Fc 
47.32  

T 
70.83  

VB 
203.20  

GRG 0.834 0.852 

 

6.3 Full factorial design approach 

In the past, many researchers have used DOEs to reduce the number of experiments 

( Narayanan, Baskar and Ganesan 2018, Sagar, Priyadarshini and Gupta 2020)  and 

utilized orthogonal array data for multi-objective optimization. These orthogonal 

arrays led to much redundancy in predicted optimum response from algorithms due 

to lack of proper training data. Moreover, the present section investigates the 

applicability of the evolutionary algorithms for the optimization of machining 

operations. But it is well known that evolutionary algorithms require a large amount 

of training data for accurate predictions of optimum responses (Serra, Chibane and 

Duchosal 2018). This motivates to consider the full factorial design for optimization 

in addition to L27 orthogonal design approach. In the full factorial approach, four 

input parameters, namely, Vc, f, α and g with three levels are considered, as shown 

in Table 6.7, thus making a total of 81 data sets. The output responses for the same 

are taken from the FE simulations using model M4, the details of which are listed in 

Table A1. Note that depth of cut has not been considered as one of the inputs based 
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on the fact that the effect of depth of cut on the output responses are straight forward 

and precise machining of WHAs require lower values of depth of cut.  

Table 6.7 Process parameters and their levels for full factorial DOE 

Factors Level 1 Level 2 Level 3 

Cutting velocity (Vc) 30 50 70 

Feed (f) 0.05 0.10 0.15 

Rake angle (α) -8 -5 2 

Grade (g) 90 95 97 

 

6.3.1 Need for full factorial design 

In order to check the prediction efficiency of full factorial design and compare the 

same with that of the L27 orthogonal array design, regression analysis is performed 

on the former to formulate a second-order polynomial regression equation, as shown:  

𝐹𝐶  =  4498.594 −  5.967 𝑉𝑐 +  929.592 𝑓 +  24.503 𝛼 −  93.303 𝑔 
+  0.739 𝑉𝑐 𝑓 −  0.031 𝑉𝑐 𝛼 +  0.061 𝑉𝑐 𝑔 −  9.67 𝑓 𝛼 
−  6.617 𝑓 𝑔 −  0.212 𝛼 𝑔 −  666.222 𝑓2   +  0.504 𝛼2  
+  0.485 𝑔2 

(6.1) 

𝑇 =  17394.79 +  0.502 𝑉𝑐 +  343.039 𝑓 −  15.04 𝛼 −  374.238 𝑔 
−  6.944 𝑉𝑐 𝑓 −  0.054 𝑉𝑐 𝛼 +  36.652 𝑓 𝛼 + 13.29 𝑓 𝑔 
+  0.095 𝛼 𝑔 −  3444.441 𝑓2  −  0.860 𝛼2  +  2.011 𝑔2 

(6.2) 

𝑉𝐵  =  5877.67 −  3.466 𝑉𝑐 +  1874.798 𝑓 +  42.265 𝛼 −  120.774 𝑔 
+  1.291 𝑉𝑐 𝑓 −  0.073 𝑉𝑐 𝑔 − 6.471 𝑓 𝛼 −  14.302 𝑓 𝑔 
+  0.310 𝛼 𝑔 −  0.014 𝑉𝑐 2 −  763.630 𝑓2  +  1.076 𝛼2  
+  0.633 𝑔2 

(6.3) 

It is to be noted that the coefficients with the least weightages in the regression 

equations are neglected to reduce the complexity of the equations. Lastly, a statistical 

analysis has been carried out to analyze the suitability of both the approaches. 

Table 6.8 presents the significance levels predicted by both the approaches depicting 

how each of the input parameters affects the output responses. Both the approaches 

show similar results with few exceptions such as, for the inputs, namely, grade and 

rake angle in case of full factorial design. In order to find out the efficiency in the 

prediction of results, correlation coefficient R2, predicted R2, and R
2 adjusted values 

are computed and are presented Table 6.9. An increase in the R2 is observed for full 

factorial design, thus, implying that there is an improvement in the overall efficiency 
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over L27 data set. Since the value of the correlation coefficient R2 lies in the range of 

90-95%, the developed regression model is adequately significant. The regression 

model provides a good relationship between the input parameters and the output 

responses. 

Table 6.8 Comparison of the Significance level of cutting parameters on machining 

performance attributes. 

Cutting parameters 

Cutting force 

(N) 

Cutting temperature 

(ͦ C) 
Flank wear (μm) 

L27 Full fact L27 Full fact L27 Full fact 

Cutting velocity (m/min) LS LS HS HS LS HS 

Feed rate (mm/rev) HS HS HS HS HS LS 

Rake angle ( ͦ ) LS HS LS LS HS HS 

Grade NS NS LS HS NS NS 

HS: High Significance; NS: No significance; LS: Low Significance 

Table 6.9 Comparison of statistical interference of machining parameters 

Response 

parameters 

DOE Correlation 

coefficient 

R2 

Pred R2 Adj R2 

Cutting force 

(N) 

L27 0.924 0.853 0.876 

Full fact 0.934 0.896 0.915 

Cutting 

temperature  

(ͦ C) 

L27 0.896 0.832 0.857 

Full fact 0.929 0.867 0.882 

Flank wear 

(μm) 

L27 0.925 0.827 0.846 

Full fact 0.948 0.918 0.930 

Similarly, a comparison is made regarding the normal probability versus residual 

plots for the predicted responses, as shown in Figure 6.7. The primary purpose of 

such a plot is to examine the standard deviation of predicted values with actual 

values such that the residuals fall on a straight line for normally distributed errors. 

The resulting plots in Figure 6.7 reveal that the full factorial design residuals are 

much closer to the straight line as compared to that of L27 in all cases. This signifies 

that the errors are normally distributed and the regression model is well fitted. 

Besides, it also explains that the regression model provides an excellent relationship 

between input parameters and output responses. 
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L27 Full fact 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6.7 Comparison of normal probability versus residuals of predicted response 

between L27 and Full factorial design for (a), (b) Cutting force, (c), (d) Cutting 

temperature and (e), (f) Tool Flank wear  

6.3.2 Evolutionary algorithms  

Non-dominating sorting genetic algorithm  

NSGA-II is a modified form of the genetic algorithm used for solving multi-objective 

optimization problems (Rao, et al. 2018). The key features of NSGA-II are fast 

nondominated sorting procedure along with an elitist preserving approach and a 
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parameterless niching operator with constraint handling method (Deb, et al. 2002). 

Further, NSGA II can handle only two objective functions at a time for the 

optimization process, and the third objective function is considered as dummy 

function and the value of the latter is predicted based on optimum combination 

derived (Ciro, et al. 2016). 

Figure 6.8 shows the working and selection procedure of optimum solution from each 

population set. Figure 6.8 (a) shows average Pareto spread plots for change in 

distance measured by individuals with respect to previous generations and average 

solution spread for 240 generations. The data points concentrated on one side of 

average Pareto spread plots are the initial population derived by algorithm to start the 

optimization process. Whereas Figure 6.8 (b) shows the number of children formed 

after mutation and crossover process from a population size of 50. The more the 

effective contributing parent in each generation is identified by the histogram 

presented in Figure 6.8 (c) histogram that shows the average distance measured 

between each individual in population size of 50. Then the fractions of individuals 

are placed in each Pareto tier as rank 1 to rank 6 based on the effectiveness of the 

solution, as shown in Figure 6.8 (d). The ranking indicates that the rank 1 individuals 

are best and rank 2 individuals are dominated by rank 1 individuals only. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6.8 (a) Average Pareto spread plot (b) Selection histogram for each population 

size (c) Average Pareto distance between an individual in a population (d) Ranking 

histogram of individuals 

Note that few assumptions have been made while running NSGA II algorithm. 

Firstly, the initial population size is assumed to be 50 with tournament selection 

method. The population is then initialized with a tournament size of two between the 

parent population. In the next step, reproduction between the initial parent population 

is performed by crossover function, considering crossover fraction as 0.8. The 

constrained mutation function with forward migration strategy is taken into 

consideration at every 20 parent population with a maximum generation of 400. 

Finally, based upon these values, optimum responses are predicted, are shown in 

Table 6.10. 

Table 6.10 Constants to run NSGA-II optimization and predicted optimum  

Parameters Functions and constants 

Initial population size 50 

Selection function tournament 

Tournament size 2 

Reproduction Crossover function 

Crossover fraction 0.8 

Mutation function constraint dependent 

Migration direction Forward 

Migration fraction 0.2 

Migration interval 20 

Maximum no of generations 400 

Predicted optima Fc  23.64 

Predicted optima T 107.6 

Predicted optima VB 190 
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Hybrid artificial bee colony algorithm (HABC) 

The ABC algorithm is known to have a better solution search strategy and faster 

convergence. However, sometimes it may get trapped in local minima due to the 

repletion of search strategies, non-consistency in exploration and exploitation of 

solution space (X. S. Yang 2014). To overcome such problems, few hybrid methods 

have been adopted by a few researchers in the past (Hossain and Liao 2017, Das, et 

al. 2014). However, most of them have used experimental test data based on 

orthogonal array design. Such an approach, consequently, end up getting local 

minima as an optimum solution due to inconsistent training data. Hence, in the 

present work, a hybrid algorithm based on full factorial test data has been considered 

giving priority for each response parameter according to their effectiveness on the 

process. 

In the present study, a single objective absolute minima technique is combined with 

ABC algorithm to determine global optima for each response output. Further, these 

global optima values are used as fitness function in ABC algorithm for multi-

objective optimization. The following steps are used to perform the HABC algorithm.  

Step1: Determination of absolute global minima 

In this step, the input variables like cutting velocity (VC), feed rate (f), rake angle (α), 

grade (g) are considered along with output responses like cutting force (Fc), cutting 

temperature (T), flank wear (VB) in the form of following polynomial regression 

equations to initialize objective functions: 

𝐹𝑚𝑖𝑛 = 𝑓1(𝑣𝑐, 𝑓, 𝛼, 𝑔) (6.4)  

𝑇𝑚𝑖𝑛 = 𝑓2(𝑣𝑐, 𝑓, 𝛼, 𝑔) (6.5)  

𝑉𝐵𝑚𝑖𝑛 = 𝑓3(𝑣𝑐, 𝑓, 𝛼, 𝑔) (6.6)  

f1, f2, f3 are the function equations of polynomial regression equations (6.1) to (6.3) 

developed from full factorial DOE. From these three functions, the global minima 

of individual output responses are identified. 

Step 2: Multi-objective optimization by ABC algorithm 

In this step, the weightage is given to each of the response variables based on its 

effectiveness on the machining process. Among the three response variables, the 

highest rank (or effective) response variable is given more priority. Consequently, 
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global minima for this effective response variable is identified and a tolerance limit 

(a) is defined. It is noted that in the present case, Fc comes out to be an effective 

response variable. Hence, to minimize the other two response variables within the 

specified tolerance limit a of Fc global minima value ABC algorithm is used. The 

upper (xg max ) and lower (xg min)  bound values of input variables are identified for the 

allowable range of tolerance limit of Fc from the regression model using the following 

equations: 

Z min(xg min) = (T(xg min), (VB(xg min)) 

Z max(xg max) = (T(xg max), (VB(xg max)) 

Zg min(xg min) ≤ Fc(xg), Zg max(xg max) ≥ Fc(xg) 

(6.7) 

𝑥 =  (𝑣𝑐, 𝑓, 𝛼, 𝑔) (6.8)  

where, xg max, xg and xg min are maxima, best, and minima of global optima input 

variables, and x is the decision vector (input parameters). 

Initialization: 

For the dimensional e problem in the decision space, the main task is to generate food 

sources randomly in the corresponding search space during the initialization phase. 

The following equation initializes each food source: 

𝑥𝑔𝑖
𝑒 = 𝑥𝑔𝑚𝑖𝑛

𝑒 + 𝑟𝑎𝑛𝑑(0,1)(𝑥𝑔𝑚𝑎𝑥
𝑒 − 𝑥𝑔𝑚𝑖𝑛

𝑒 ) (6.9)  

where i is the nectar amount of food source in the position, e is the dimension index 

of food source range, rand (0, 1) is a random distribution of food source in search 

space over the interval (0, 1), 𝑥𝑔𝑚𝑎𝑥
𝑒  and 𝑥𝑔𝑚𝑖𝑛

𝑒  are the maximum and minimum limits 

of the eth dimensional space for global optima food source, respectively. The next 

task is to assign a food source with a variable trial, i = 1,2,…n. The food source is 

said to be abounded if there is no further improvement in successive trials. 

Subsequently, the employed bee related to that particular food source gets converted 

to scout bee to find a new food source randomly. 

Employed bees: 

Each food source xgi is explored by an employed bee. These employed bees explore 

a new temporary food source vi around it. Therefore, for each food source, a 

corresponding employed bee uses one randomly selected neighbor k to generate a 

new position which is formulated as  
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𝑣𝑖
𝑒 = 𝑥𝑔𝑖

𝑒 + 𝜑𝑖
𝑒(𝑥𝑔𝑖
𝑒 − 𝑥𝑔𝑘

𝑒 ) (6.10)  

where k is a random neighbor different from i, 𝜑𝑖
𝑒 is a randomly selected real number 

in the interval [-1,1]. After a new position for a food source is found, its fitness is 

evaluated at hive by onlooker bees using the expression: 

𝑃𝑖 =
  m
𝑖→𝑎
𝑍𝑖

𝑍𝑔
=>
𝑇𝑖
𝑇𝑔
∶
𝑉𝐵𝑖
𝑉𝐵𝑔

 (6.11) 

where 𝑃𝑖is the probability associated with that food source, 𝑍𝑖is the fitness value of 

the solution i (nectar amount of the food source in the position i), a is the user defined 

tolerance limit for global optima, Ti and VBi are other response functions fitness value 

of the solution i, Zg, Tg, and VBg are other response functions at global optima. From 

the above equation, if the fitness of the new position is better than the old one, then a 

new food source replaces the old one. Otherwise, the trial for the old food source gets 

incremented to the next random position. The said procedure is repeated from the 

employed bees until 6000 specified iterations are reached or termination occurs 

provided there is no further improvement in the solution food source for 6000 trials. 

At the time of termination or 6000 iterations, the position of food source and its nectar 

amount are considered as the optimum values of the input variables and the response 

objective functions of the algorithm. Figure 6.9 shows the flow chart of the 

methodology adopted for the HABC algorithm. 

 

Figure 6.9 Flow chart for HABC 
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Table 6.11 shows the predicted global optima response values by absolute global 

minima technique considering the allowable input variables range xg max and xg min for 

tolerance limit of Fc. Further, a constant real number is assumed as 0.8 to identify 

temporary food source by employed bees, and finally, the optimum responses are 

predicted from the algorithm. 

Table 6.11 Predicted outputs and constants to run HABC optimization 

 

Hybrid cuckoo search algorithm (HCS) 

CS is a nature-inspired metaheuristic algorithm developed by (Yang and Deb 2013) 

which is further enhanced by the Levy’s flight method by (Kaveh and Farhoudi 

2013). From the available research works, it is found that the CS algorithm shows 

superior performance and better local search ability due to the use of Levy’s flight 

mechanism as compared to traditional algorithms such as GA and PSO (Yang, et al. 

2018). However, CS algorithm has poor global exploration performance and slow 

convergence speed due to the characteristic of random jumping in Levy’s flight 

(Zhang, Ding and Jia 2019). For these reasons, it is necessary to explore some 

strategies to enhance the performance of CS algorithm. Hybrid approach is one such 

strategy where in the CS algorithm can be modified in a way that can overcome the 

limitations associated with it. Linearly decreasing inertia weight (Rani, AbdulMalek 

and Neoh 2012), individual guidance position update method and contemporary 

individuals with random generation method (Cheng, et al. 2019) etc. are some of the 

methods that have been successfully used in design and manufacturing layout 

management applications to improve the position update. Zhang, et al (2019) 

proposed a hybrid DE and CS algorithm to subgroup the cuckoo population by DE 

approach to increase population diversity between individuals in population iteration. 

Gmili, et al. (2019) modified the step function of cuckoo by combining Levy’s flights 

random walk with PSO’s particle movement strategy to improve the exploration and 

Global optima values by 

step1 

a 

xg max xg min 

𝜑𝑖
𝑒 

Final optima predicted 

𝐹𝑐 𝑚𝑖𝑛 
N 

𝑇𝑚𝑖𝑛 
°C 

𝑉𝐵𝑚𝑖𝑛 
μm 

Vc f α g Vc f α g 
𝐹𝑐 𝑚𝑖𝑛 

N 

𝑇𝑚𝑖𝑛 
°C 

𝑉𝐵𝑚𝑖𝑛 
μm 

17.32 83.34 153 25% 69.2 0.14 2 97 50 0.05 -8 90 0.8 26.29 101.3 196 
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exploitation of search space. Similarly, Chen and Wang (2019) proposed a HCS 

algorithm that uses a nonlinear decrement method to adjust the parameter K with 

increase in number of iterations. While Thirugnanasambandam, et al. (2019) 

proposed CS algorithm with adaptive parameter adjustment and applied it to multi-

peak numerical optimization problems. In the improved algorithm, the parameter K 

is adaptively adjusted to linearly improve the optimal individual fitness value 

information in the contemporary population. Hence, it is felt that a similar approach 

can be used for the optimization of machining parameters. Senthilkumar, 

Tamizharasan and Anandakrishnan (2014) used Hybrid Taguchi-GRA and CS 

algorithm to optimize the performance of multilayered coated inserts for turning AISI 

D3 steel. However, results clearly showed that partial experimental test data based 

on orthogonal array design had again end up in getting local minima as optimum 

solution due to inconsistency in the training data. The major difference between the 

proposed algorithm and the existing ones is that the former directly identifies 

optimum response parameter by improved exploration and exploitation strategies of 

population search space and its diversity within the range of input parameters with 

ascending fitness function these hybrid methods has end up in either inconsistency in 

convergence of global optimal solutions or lack of input parameter data for training 

the algorithm. Thus, the present work explores the application of the hybrid approach 

and considers full factorial test data to improve the search space of the algorithm. 

Based on the hybridization approaches used by researchers in the past, it addresses 

the improvement of CS algorithms exploration and exploitation strategies of 

population search space and its diversity. To enhance the optimization performance 

of CS, the HCS algorithm is proposed in this work. In the present study, a single 

objective absolute minima technique is combined with CS algorithm to determine 

global optima for each response output directly and adopts these global optima values 

as fitness function with tolerance limit. Further, the most effective response 

parameter in the process is identified and the effective response parameter is given 

highest priority among other response parameters. A controlled forward step size 

function is considered in Levy’s flight method which greatly improves the 

exploration of search space and diversity of the population. Following are the steps 

adopted for HCS algorithm and are discussed in detail: 
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Step 1: Determination of absolute global minima 

In this step, the input variables like cutting velocity (VC), feed rate (f), rake angle (α), 

grade (g) are considered along with output responses like cutting force (Fc), cutting 

temperature (T), flank wear (VB) in the form of polynomial regression equations to 

initialize objective functions using Equation (6.4) to (6.6) such that f1, f2, f3 are the 

function equation of polynomial regression equations, (6.1) to (6.3), developed from 

full factorial design. From these three functions, the global minima of individual 

output responses are identified. 

Step 2: Optimization 

Initialization of population:  

Nest = (Vc, f, α, g) a set of input variables. 

Number of nests = 50 

Initially, 50 nests are selected where cuckoo is going to lay eggs based on a step 

function such that 

𝑁𝑒𝑠𝑡 =  𝐿𝑏 + ( 𝑈𝑏 − 𝐿𝑏) ∗  𝑟𝑎𝑛𝑑. (𝑠𝑖𝑧𝑒 (𝐿𝑏)) (6.12)  

where Lb, Ub are the lower bound and upper bound limits of input parameters Vc, f, 

α, g and rand(size(Lb)) refers to the random lower bound vector movement in the 

range of 0 to 1. 

Identification of best nest: 

The function for best nest identification involves the following: 

Nest = get cuckoos (nest, best nest, Lb, Ub) 

The above function is used to replace the other bird eggs with cuckoo’s egg using 

the Levy flight random step function method. 

Levy flight function is expressed as: 

𝜎𝐿 = [
Γ(1 + 𝛽𝑤)𝑠𝑖𝑛 (

𝜋𝛽𝑤
2 )

Γ (
1 + 𝛽𝑤
2 )𝛽𝑤2

𝛽𝑤−1
2

]

1
𝛽𝑤

 (6.13) 
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where 𝛤 is the standard gamma function. Since each cuckoo lays an egg in 

individual nest, 𝛽𝑤 is taken as 1.5. 

For the movement of a step function, solution vectors are defined as u and v. such 

that vector u is said to dominate over vector v. When ui ≤ vi, then these vectors are 

expressed as:  

𝑢 = 𝑟𝑎𝑛𝑑. (𝑠) × 𝜎𝐿 

𝑣 = 𝑟𝑎𝑛𝑑. (𝑠) 
(6.14) 

The random movement taken by cuckoo to lay eggs as the step is expressed as: 

𝑠𝑡𝑒𝑝 = (
𝑢

𝑎𝑏𝑠(𝑣)
)

1
𝛽𝑤

 (6.15) 

The flights for next random nest by the step size is expressed as: 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 0.1 × 𝑠𝑡𝑒𝑝 × (𝑛𝑒𝑠𝑡 − 𝑏𝑒𝑠𝑡𝑛𝑒𝑠𝑡) (6.16)  

The step size of flights is controlled by the typical length scale L and is taken as L/10. 

Otherwise, Levy flights may become too aggressive and make new solutions jump 

outside the design domain. Therefore, the actual random fights are expressed as: 

𝑠 = 𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝑟𝑎𝑛𝑑𝑛(𝑠𝑖𝑧𝑒(𝑠)) (6.17)  

Using Equation (6.12) to (6.16), cuckoos randomly flights to the selected 50 nests 

and replaces the eggs (input variables) in some of the nests using a step function. 

Once the eggs are laid in the nest, the best nest is found using fitness function for 

each nest using the expression: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐹𝑐
𝐹𝑐 𝑚𝑖𝑛

+
𝑇

𝑇𝑚𝑖𝑛
+
𝑉𝐵
𝑉𝐵 𝑚𝑖𝑛

 (6.18) 

If there is further improvement in the solution using fitness function, then best nest 

is expressed as best nest = ( Vc
*, f*, α*, g*). 

The probability of discovering the alien eggs (worst solution set) by considering Pa 

= 0.25 is expressed as: 

𝐾 = 𝑟𝑎𝑛𝑑(𝑠) > 𝑃𝑎 (6.19)  

where K is a Boolean value such that if K = 0, it is undiscovered, else if K = 1, it is 

discovered. 
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It means that cuckoos eggs should look very similar to the host bird eggs, so that it is 

undiscovered. Then, the fitness function has to be compared with the best solutions 

(global optima). So, in order to improve the solution finding efficiency, a random 

flight in a biased manner with the same random step size needs to be followed as 

nest1 = rand (s), nest 2 = rand(s) within 50 predefined nests and step size is expressed 

as: 

𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑠) × (𝑛𝑒𝑠𝑡1 − 𝑛𝑒𝑠𝑡2) (6.20)  

Further, in order to discard the discovered alien egg nests, Equation (6.20) is used. 

𝑛𝑒𝑠𝑡 = 𝑛𝑒𝑠𝑡 + (𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 × 𝐾) (6.21)  

Further, these alien nests are modified with new nests. The current best nest is 

compared with the fitness of already available best nest until the current iteration gets 

the best nest among these using the CS optimization process. The eggs of the best 

nest are considered as the desired optimized value. By following the above steps until 

the solution converges, the algorithm will run for n iterations, and the best possible 

converged solutions are obtained. A flow chart has been presented to explain the 

overall methodology followed in Figure 6.10. 

 

Figure 6.10 Flow chart for HCS algorithm 

Table 6.12 shows the predicted global optima response values using the absolute 

global minima technique. Initially, 50 nests are assumed with Levy flight gamma 

function as 1and beta as 1.5. The length of step size is assumed as 0.1 and probability 
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to identify alien nest was taken as 0.25. By assuming these constant functions 

optimum responses are predicted. 

Table 6.12 Predicted outputs and constants to run HCS optimization 

Global optima values by 

step1 
nest Βw г L Pa 

Final optima predicted 

𝐹𝑚𝑖𝑛 
N 

𝑇𝑚𝑖𝑛 
°C 

𝑉𝐵𝑚𝑖𝑛 
μm 

𝐹𝑚𝑖𝑛 
N 

𝑇𝑚𝑖𝑛 
°C 

𝑉𝐵𝑚𝑖𝑛 
μm 

17.32 83.34 153 50 1.5 1 0.1 0.25 23.98 97 154 

 

6.3.3 Comparison of performances  

The present section compares the performance of all the three evolutionary 

algorithms elaborated in the previous section. The basic purpose of the comparison 

is to identify the best possible optimum cutting parameters for achieving the desired 

outputs. Figure 6.11 (a), (b) and (c) show the Pareto optimal plots drawn for NSAG-

II, HABC and HCS algorithms, respectively. Note that a 2D plot is presented for 

NSGA II considering two objective functions. While the third objective function, i.e., 

flank wear, is considered as dummy function and is predicted based on optimum 

combination derived. While 3D plots are shown for HABC and HCS algorithms 

considering three objective functions. The predicted cutting force and the average 

temperature came out to be 23.64 N, 107.6 ͦ C and 190 μm, respectively for NSGA-

II, as highlighted in a red circle in Figure 6.11 (a). Similarly, the respective values of 

optimum combination of cutting force, average temperature and flank wear predicted 

are 23.62 N, 101.3 °C and 196 μm for HABC algorithm and 25.55 N, 97 °C and 154 

μm for HCS algorithm. 
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(a) 

 

(b) 

 

(c) 

Figure 6.11 Comparison of pareto optimal front obtained for (a) NSGA-II, (b) HABC 

algorithm, (c) HCS algorithm 

Figure 6.12 presents the comparison of optimum solution regions of the three 

algorithms with respect to iterations. In Figure 6.12 (a), crowding distance plot is 

drawn for average distance versus the number of generations. Crowding distance plot 

shows the spread of the solution in design space and the concerned diversity. It also 

specifics the number of generations required to converge the solution for given design 

space which came out to be around 240 for a set of Pareto optimal functions in the 

present case. 
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(c) 

Figure 6.12 Comparison of optimum solution region with respect to iterations (a) 

NSGA-II, (b) HABC algorithm, (c) HCS algorithm 

Similarly, in Figure 6.12 (b) and (c) cutting force versus number of iterations plots 

have been drawn for HABC and HCS, respectively. Since in both the algorithms 

cutting force is considered as an effective output response, plots are presented for 

cutting force only. In HABC algorithm, input variables are identified based on the 

tolerance limit range of cutting force initially and optimal solution of other output 

responses are computed. From Figure 6.12 (b), it is observed that there is no further 

improvement in solution beyond 990 iterations and as a result, the algorithm 

terminates. The optimal solution is found at 450th iteration and consequently, optimal 

response at that particular solution set is considered as the final optimal parameters. 

While, in case of the HCS algorithm, only cutting force value is considered within 

the specified tolerance limit as fitness criteria and optimal solution is searched for the 

entire input variable range. In Figure 6.12 (c), it can be seen that the algorithm has 

run for 6000 iterations and beyond this, no further improvement is observed. 

Subsequently the algorithm gets terminated. The optimal solution from overall 

iterations is found at 2200th iteration, and consequently, the optimal response and 

corresponding input variables at that particular solution are considered as the final 

optimal solution. 

6.4 Confirmation and validation 

In order to verify the obtained optimal results in the case multi-objective optimization 

problem of this process confirmation tests have been carried out. Table 6.13 lists the 

optimal input parameter combinations predicted by four different optimization 

methods. 
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Table 6.13 Computed optimal parameter settings 

Model 
Vc 

m/min 

f 

mm/rev 

d 

mm 

α 

° 
G 

HCS 30 0.05 0.15 -5 95 

HABC 56.4 0.05 0.15 -5 90 

NSGA-2 58.82 0.061 0.15 -5 90 

GRA 30 0.1 0.2 -8 97 

Based on the predicted optimal parameter settings, confirmation experiments are 

performed and repeated three times for each case. Figure 6.13 (a), (b) and (c) show 

the comparison of values predicted by four multi objective optimization methods to 

that of experimentally measured ones for cutting forces, temperatures and flank wear, 

respectively. The optimum cutting parameters predicted by HCS algorithm could 

achieve the lowest values of all three output responses. Figure 6.13 (d) shows the 

experimentally measured values of two contradictory output responses, namely, 

MRR and surface roughness obtained while conducting the confirmatory tests 

considering optimum values of input parameters obtained from each of the four 

analyses. It is noted that the optimum cutting parameters predicted by HCS followed 

by HABC algorithm yield lower values of surface roughness as compared to NSGA 

II and GRA. It is understood that lower values of surface roughness are achieved at 

the cost of MRR. Since WHAs are mainly used in critical applications where 

precision is the prime concern, the cutting parameters predicted by HCS algorithm 

giving the best surface finish with a slight compromise with other outputs could be a 

fair choice.  

As a whole, HCS seems to be the best choice for multi-objective optimization 

problem of the machining process. Such observation is very much clear from the 

values presented in Table 6.14. It is clearly observed that deviations in the predicted 

output responses from the measured ones are in the range of 15-51 % for NSGA-II, 

whereas, for HCS, it is well within 14 %. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.13 Comparison confirmation results of four optimization methods for (a) 

Cutting force, (b) Average temperature, (c) Flank wear, and (d) surface roughness 

and material removal rate.  

Table 6.14 Comparison of the overall adequacy of multi objective optimization 

methods 

Predicted Output  

HCS HABC NSGA II 

error % STD error % STD error % STD 

Cutting force 6.54 3.18 10.15 3.22 51.77 7.53 

Cutting temp 14.74 11.46 15.35 12.96 26.95 15.69 

Flank wear 4.79 20.49 7.14 23.90 15.26 25.47 

 

The confirmation tests showed that HCS algorithm showed better performance as 

compared to the other three algorithms. This improvement may be due to the 

incorporation of the following strategies. Firstly, the effective use of absolute minima 
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technique and secondly, the improved exploration and exploitation search space by 

adopting controlled step size function in Levy’s flight method. It is noted that few of 

the researchers in the recent past have also explored the application of hybrid 

approach by modifying the CS algorithm in complex engineering problems and found 

that the hybrid approach came out to be the best one as compared to other algorithms. 

Whereas, in NSGA II the major drawback is that, it could handle only two objective 

functions at a time for the optimization process, and the third objective function is 

considered as dummy function and in HABC use of constrained range of input 

parameters for predicted global optima by absolute minima technique has end up in 

deviation of global optimum solution. 

Summary  

Multi objective optimization problems are typically very difficult to solve. This 

chapter deals with formulation of four different approaches, namely, GRA based on 

L27 orthogonal array design and three evolutionary algorithms based on full factorial 

design. The data for GRA is derived from experimental tests based on L27 orthogonal 

array. While, FE simulations are performed for generating the full factorial data for 

the evolutionary algorithms. Out of the three algorithms, one is NSGA II which is 

one of the commonly used algorithms for multi objective optimization. The basic idea 

of considering NSGA II in the current analysis is to use it as a benchmark. While the 

other two algorithms are relatively new, namely, HCS and HABC. The experiments 

are performed with those optimum values of process parameters obtained from the 

analysis to confirm the results of the analysis. In comparison with other algorithms, 

HCS performs well for all the output responses. Such improvement may be due to 

the incorporation of controlled forward step size function in Levy’s flight method, 

which greatly enhanced the exploration of search space and diversity of the 

population. 
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Chapter7 CONCLUSIONS AND FUTURE WORK 

7.1 Summary 

WHAs are one of the emerging alloys for a wide range of high density applications. 

The properties, such as high density, high strength, with no environmental effects, 

have made these alloys as one of the most preferred alloys for the manufacture of 

KEPs. Manufacturing of KEP requires machining as a secondary operation. But 

WHAs are generally considered as difficult to machine alloy. Machining of WHA 

requires optimum cutting parameters like feed, speed, depth of cut and tool geometry 

to achieve desired outputs and improve productivity. Hence, a detailed experimental 

analysis is carried out to understand the machining behavior of three different grades 

namely, 90, 95 and 97 WHA, in terms of cutting force, temperature, surface finish 

and tool wear.  

In addition, an attempt was made to develop and analyze analytical tool wear rate 

models that can predict tool life accurately. The experimental findings showed that 

there exists a complex interrelationship between material properties, cutting 

conditions and machining outputs that are difficult to understand with limited number 

of machining tests. This demands to perform exhaustive experimental tests on trial 

and error basis for understanding the physics of chip formation mechanism. However, 

conducting these many tests on WHAs would be both expensive and time-consuming. 

Hence, to overcome this problem, a two-dimensional FE model is developed using 

commercially available software ABAQUS. Both the material and the damage 

models are appropriately selected, and the respective material constants are precisely 

determined.  

Lastly, the developed FE model is used further to generate full factorial machining 

data required for performing multi-objective optimization. Three evolutionary 

algorithms, namely, NSGA II, HABC and HCS, are used to predict the optimal 

cutting parameters, in addition to GRA. The optimal parameters predicted by these 

algorithms are compared and the best parametric combination is presented that may 

be used while machining WHAs for improving the overall efficiency of the process 

and quality of KEPs at a relatively lower cost. 
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7.2 Conclusions 

Following conclusions can be drawn from the current research work: 

Material characterization and microstructural analysis 

 Experimental findings showed that there is a significant effect of tungsten content 

on both the physical and mechanical properties of WHAs.  

 Both the density and hardness increased as the tungsten content increased. Also, 

Young’s modulus, yield strength and ultimate strength tend to increase with the 

increasing tungsten content 

 A decrease in the values of specific heat and increase in thermal conductivity was 

observed with the increase in tungsten content. 

 Microstructural analysis showed that there was a gradual increase in average grain 

size, decrease in matrix volume fraction and increase in contiguity with the 

increase in tungsten content, thus, leading to an increase in hardness with the 

increase in tungsten content. 

Machinability studies of WHAs 

 Chip morphology was found to be sensitive to tungsten content as well as cutting 

parameters, especially the tool geometry.  

 For all three grades of WHA, MRR showed an increasing trend with the increase 

in cutting speed and feed for both the type of rake angles.  

 97 WHA exhibited higher values of cutting forces under all cutting conditions, 

typically for positive rake angle due to higher hardness because of the higher 

tungsten content.  

 90 WHA came up as a fair compromise among the three grades as far as 

machinability was concerned in terms of cutting force and surface finish. 

 A complex interplay of different variables such as hardness, ductility/brittleness, 

and temperature rise during machining was observed. 
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Tool wear analysis and tool life predictions 

 A strong relationship existed between flank wear and other machining response 

outputs, namely, force components, cutting temperature, chip morphology and 

surface roughness. 

 The cutting tool with negative rake angle performed reasonably well as compared 

to that of a positive rake angle for machining 90 WHA under similar cutting 

conditions.  

 SEM micrographs on the worn surface of the tool showed the occurrence of both 

abrasion and adhesion, the adhesion being the dominant one for both the tool 

geometries while machining 90 WHA.  

 Out of four models, the newly proposed one, modified Zhao model, showed 

superior results with error percentage within 4-7%.  

FE machining simulations 

 A 2D plane strain FE model was developed by using simulation software 

ABAQUS/Explicit with computed JC material and damage models for machining 

three different grades of WHA. 

 The JC material model constants derived from the experimental approach using 

high strain rate tests showed a much larger deviation in the predicted results, 

especially for cutting temperatures when compared with the experimental ones.  

 The JC material model constants based on analytical approach could predict all 

the outputs with a mean error percentage well within 10% by using simple 

machining. 

 The predicted temperature distributions could be correlated well with the 

experimentally measured surface roughness and tool wear under varied cutting 

conditions. 

Multi-objective optimization 

 Multi-objective optimization was performed using two different approaches, 

namely, L27 orthogonal array design using GRA and full factorial design using 

evolutionary algorithms, namely NSGA II, HABC and HCS to perform multi-

objective optimization. 
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 The full factorial design showed improved R2 value as compared to that of 

orthogonal array design.  

 NSGA-II showed higher deviation in the predicted values as compared to that of 

HABC and HCS. 

 As a whole, HCS came out to be the best choice for the multi-objective 

optimization model for the machining process.  

The fundamental objective of the proposed research work was to achieve higher 

productivity and better quality at a relatively lower cost while machining WHAs. 

Higher productivity in metal cutting generally implies higher MRRs. But higher 

MRR leads to faster tool wear. Again, the tool wear is directly related to the 

economics of machining and quality of the machined products. Thus, the 

prediction of tool wear rate is one of the prime factors during the optimization of 

the cutting process. Collectively, it can be concluded that the research outcomes 

achieved in the current work could address such concerns during the machining of 

WHAs. And hence, the proposed work would be helpful in both process parameter 

optimization and tool condition monitoring, thus, saving much of the production 

downtime. 

7.3 Major contributions of this thesis 

Based on the above conclusions, the proposed work could offer the following 

deliverables: 

 Detailed machinability analysis of WHAs that show variations in different 

machining outputs with respect to the tungsten content; 

 A tool wear rate model that predicts tool life accurately both for positive and 

negative rake angle; 

 An FE model that predicts not only the cutting forces and chip morphology but 

also some of the difficult to measure variables like temperature, stress, strain, etc. 

under varied cutting conditions; 

 An analytical model that determines JC material model constants at high strain 

rates using machining tests; 
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 A multi-objective optimization model that involves a unique approach by 

combining the FE model with evolutionary algorithms for the determination of 

optimal cutting parameters with minimum experimental tests. 

Overall, it can be stated that a multi-objective optimization model based on combined 

FE–soft computing approach is developed that predicts optimum cutting parameters 

with respect to varied WHA grades with minimum possible experimental tests. For 

finish turning of KE penetrators (for diameters in the range of 10-15 mm), following 

cutting parameter range are found to be optimum: cutting velocity=30–50 m/min, 

feed rate=0.05 mm/rev, d= 0.15 mm and rake angle = -5° to achieve surface 

roughness in the range of 0.5–0.7 microns. 

7.4 Limitations of the work  

 In the present study, the machining tests were performed under dry cutting 

conditions.  

 The newly proposed modified Zhao tool wear rate model can be extended for 

varied lubrication conditions.  

 A more realistic 3D model can replace the developed 2D model wherein the 

effect of approach angle, tool nose radius and chip breakers can be analyzed. 

7.5 Future scope 

Despite the results achieved, there remains scope for further improvement. The 

following ideas can further broaden the scope of the current work: 

 Taking into consideration a 3D FE model and incorporation of the novel 

techniques for lubrication and cooling would provide a more generalized 

approach.  

 Since surface integrity has a direct impact on the fatigue life and tribological 

properties of machined parts, the machinability studies can further be extended 

to examine the machining-induced residual stresses during turning operation. 

 The JC material model constants so determined under high strain rate conditions 

using machining tests can further be used in FE simulations of ballistic impact 

tests to understand the penetration mechanism of WHA armours. 
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APPENDIX 

Extended Oxley’s machining theory 

 

Figure A.1 Parallel sided shear zone model 

The equivalent strain hardening exponent 𝑛𝑒𝑞 was calculated using following 

equation 

𝑛𝑒𝑞 = 
𝑛𝐵휀𝐴𝐵
𝑛

𝐴 + 𝐵휀𝐴𝐵
𝑛  

(A.1) 

where, 휀𝐴𝐵 equivalent strain along shear plane and l the length of shear plane AB is 

obtained from 𝑡1 the undeformed chip thickness and 𝜙 shear angle 

𝑙 =
𝑡1
𝑠𝑖𝑛(𝜙)

 
(A.2) 

Shear velocity vsh is calculated by considering vc cutting velocity, α rake angle and 

shear angle in following form: 

𝑉𝑆ℎ =
𝑉𝑐 𝑐𝑜𝑠(𝛼)

𝑐𝑜𝑠(𝜙 − 𝛼)
 

(A.3) 

The 휀𝐴𝐵 equivalent strain and ɛ̇𝐴𝐵 strain-rate at AB are determined considering the 

Von-Mises criterion: 

휀𝐴𝐵 =
휂𝐴𝐵

√3
=
1

2√3
×

𝑐𝑜𝑠(𝛼)

𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙 − 𝛼)
 

(A.4) 
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휀�̇�𝐵 =
휂̇𝐴𝐵

√3
= 
1

√3
×
𝐶0𝑉𝑠ℎ
𝑙

 
(A.5) 

The 𝑇𝐴𝐵 average temperature along shear plane AB is given by: 

𝑇𝐴𝐵 = 𝑇𝑤 + 𝜍
(1 − 𝜉)𝐹𝑆ℎ𝑉𝑆ℎ
𝑚𝑐ℎ𝑖𝑝𝐶𝑃

 
(A.6) 

where, 𝑇𝑤 work piece initial temperature, 𝜍 sensible heat along shear plane, 𝜉 

coefficient of heat partition, Fsh shear force at shear plane, mchip  chip mas per unit 

time, cp specific heat of workpiece. For the present analysis, 𝜍 was assumed to be 

0.9. Following equations were used for further analysis: 

if 0.04 ≤ 𝑀𝑇 𝑡𝑎𝑛 𝜙 ≤ 10 

𝜉 = 0.5 − 0.35 𝑙𝑜𝑔10(𝑀𝑇 𝑡𝑎𝑛 𝜙) (A.7) 

if 𝑀𝑇    ϕ ≥ 10 

𝜉 = 0.3 − 0.15 𝑙𝑜𝑔10(𝑀𝑇 𝑡𝑎𝑛 𝜙) (A.8) 

 𝑀𝑇 =
𝜌𝐶𝑃𝑉𝑐𝑡1
𝑘𝑤

 
(A.9) 

where, MT non-dimensional thermal number, ρ density of workpiece, kw thermal 

conductivity of workpiece. 

Using Equation (A.5) 𝑚𝑐ℎ𝑖𝑝 has been calculated 

𝑚𝑐ℎ𝑖𝑝 = 𝜌𝑉𝑐𝑇𝑑 (A.10) 

The average flow stress in the primary shear zone 𝑞𝐴𝐵 is calculated using the JC 

Material Model: 

𝑞𝐴𝐵= 
𝜎𝐴𝐵

√3
 =(𝐴 + 𝐵휀𝐴𝐵

𝑛 ) (1 + 𝐶 𝑙𝑛 (
ɛ̇𝐴𝐵

ɛ̇0
)) (1 − (

𝑇𝐴𝐵−𝑇𝑤

𝑇𝑚−𝑇𝑤
)
𝑚

) (A.11) 

The shear force 𝐹𝑆ℎ along the shear plane, AB can be calculated from 𝑞𝐴𝐵, d depth 

of cut: 

𝐹𝑆ℎ = 𝑞𝐴𝐵𝑙𝑑 (A.12) 

The angle 𝜓 between shear plane AB and the resultant force R is given by 

𝜓 = 𝑡𝑎𝑛−1(1 + 2 (
𝜋

4
− 𝜙) − 𝐶0𝑛𝑒𝑞) 

(A.13) 

where, 𝐶0 ratio of shear plane length by thickness of primary shear zone. 

Using the value of 𝜓, the average friction angle at the tool-chip interface 𝜆 can be 

determined: 

𝜆 = 𝜓 − 𝜙 + 𝛼 (A.14) 
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R Resultant cutting force, Ff Friction force and FN Normal force at the tool-chip 

interface, Fc cutting force and Ft thrust force are given by: 

𝑅 =
𝐹𝑆ℎ
𝑐𝑜𝑠 𝜓

 
(A.15) 

𝐹𝑓 = 𝑅 𝑠𝑖𝑛 𝜆 (A.16) 

𝑁 = 𝑅 𝑐𝑜𝑠 𝜆 (A.17) 

𝐹𝐶 = 𝑅 𝑐𝑜𝑠(𝜆 − 𝛼) (A.18) 

𝐹𝑡 = 𝑅 𝑠𝑖𝑛(𝜆 − 𝛼) (A.19) 

𝑡2 cut chip thickness can be calculated from f feed rate, α rake angle and 𝜙 shear 

angle using the equation: 

𝑡2 =
𝑡1 𝑐𝑜𝑠(𝜙 − 𝛼)

𝑠𝑖𝑛(𝜙)
 

(A.20) 

Similarly, velocity of chip 𝑉𝐶ℎ𝑖𝑝 is given as: 

𝑉𝐶ℎ𝑖𝑝 =
𝑉𝑐 𝑠𝑖𝑛(𝜙)

𝑐𝑜𝑠(𝜙 − 𝛼)
 

(A.21) 

The tool-chip interface length 𝐿𝑖𝑛𝑡 and shear stress at the tool-chip interface 𝜏𝑖𝑛𝑡 can 

be evaluated by: 

𝐿𝑖𝑛𝑡 =
𝑡1 𝑠𝑖𝑛(𝜓)

𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛(𝜓)
(1 +

𝐶0𝑛𝑒𝑞

3 (1 + 2 (
𝜋
4 − 𝜙) − 𝐶0𝑛𝑒𝑞)

) 

(A.22) 

𝜏𝑖𝑛𝑡 = 
𝐹𝑓

𝐿𝑖𝑛𝑡𝑑
 (A.23) 

The maximum shear strain at the tool-chip interface 휀𝑖𝑛𝑡 is given by: 

휀𝑖𝑛𝑡 =
휂𝑖𝑛𝑡

√3
=
1

√3
∗ (2휂𝐴𝐵 + 0.5휂𝑀) 

(A.24) 

Where, 휂𝐴𝐵 is shear strain across shear plane, total maximum shear strain across 

chip-tool interface 휂𝑀 =
𝐿𝑖𝑛𝑡

𝜁𝑡2
 and 휁 is the ratio of plastic zone tool-chip interface 

thickness to chip thickness 

The equivalent strain-rate at the tool-chip interface ɛ̇𝑖𝑛𝑡is given by: 

휀̇𝑖𝑛𝑡 =
휂̇𝑖𝑛𝑡

√3
= 
1

√3
∗
𝑉𝐶ℎ𝑖𝑝

휁𝑡2
 

(A.25) 

It is derived based on the assumption that the plastic zone formed at the tool-chip 

interface is a rectangular zone of thickness 휁𝑡2. 
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The average temperature at the tool-chip interface 𝑇𝑖𝑛𝑡 is given by: 

𝑇𝑖𝑛𝑡 = 𝑇𝑤 +
(1 − 𝜉)𝐹𝑆ℎ𝑉𝑆ℎ
𝑚𝑐ℎ𝑖𝑝𝐶𝑃

 + 𝛹𝛥𝑇𝑀 
(A.26) 

The value of maximum temperature increase in chip 𝛥𝑇𝑀 and average temperature 

increase in chip 𝛥𝑇𝐶 is as follows: 

𝑙𝑜𝑔10 (
𝛥𝑇𝑀
𝛥𝑇𝐶
) = 0.06 − 0.195(휁)√

𝑀𝑇𝑡2
𝑡1
+ 0.5𝑙𝑜𝑔10 (

𝑀𝑇𝑡2
𝐿𝑖𝑛𝑡
) 

(A.27) 

𝛥𝑇𝐶 =
𝐹𝑓𝑉𝐶ℎ𝑖𝑝

𝑚𝑐ℎ𝑖𝑝𝐶𝑃
 

(A.28) 

Once 𝑇𝑖𝑛𝑡 is calculated, 𝑞𝑐ℎ𝑖𝑝 can be determined as: 

𝑞𝑐ℎ𝑖𝑝 =
1

√3
(𝐴 + 𝐵휀𝑖𝑛𝑡

𝑛 ) (1 + 𝐶 𝑙𝑛 (
ɛ̇𝑖𝑛𝑡
ɛ̇0
)) (1 − (

𝑇𝑖𝑛𝑡 − 𝑇𝑤
𝑇𝑚 − 𝑇𝑤

)
𝑚

) 
(A.29) 

𝜎 𝑁 = 𝑞𝐴𝐵 (1 +
𝜋

2
− 2𝛼 − 2𝐶0𝑛𝑒𝑞) 

(A.30) 

𝜎𝑁 =
𝑁

𝐿𝑖𝑛𝑡𝑤
 

(A.31) 
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Table A 1 Full factorial data set for optimization 

SN V f 𝛼 G Fc T VB 

1 30 0.05 2 90 47.22 83 285.77 

2 50 0.05 2 90 45.44 116 336.86 

3 70 0.05 2 90 43.41 119 371.33 

4 30 0.1 2 90 62.25 142 316.83 

5 50 0.1 2 90 52.36 157 355.41 

6 70 0.1 2 90 36.28 165 352.22 

7 30 0.15 2 90 87.35 153 355.28 

8 50 0.15 2 90 66.39 161 384.86 

9 70 0.15 2 90 52.83 168 399.34 

10 30 0.05 -5 90 28.96 98 196.04 

11 50 0.05 -5 90 30.8 105 237.57 

12 70 0.05 -5 90 40.61 165 294.51 

13 30 0.1 -5 90 32.3 137 204.61 

14 50 0.1 -5 90 45.43 152 272.48 

15 70 0.1 -5 90 47.76 170 310.76 

16 30 0.15 -5 90 43.89 147 226.91 

17 50 0.15 -5 90 64.59 167 306.95 

18 70 0.15 -5 90 68.88 203 352.23 

19 30 0.05 -8 90 45.09 91 217.78 

20 50 0.05 -8 90 31.84 134 243.31 

21 70 0.05 -8 90 28.56 156 268.01 

22 30 0.1 -8 90 80.12 117 250.24 

23 50 0.1 -8 90 77.59 140 295.69 

24 70 0.1 -8 90 51.11 164 301.05 

25 30 0.15 -8 90 80.31 131 251.09 

26 50 0.15 -8 90 74.41 159 293.59 

27 70 0.15 -8 90 51.67 166 301.82 

28 30 0.05 2 95 27.89 78 239.49 

29 50 0.05 2 95 29.52 113 291.55 

30 70 0.05 2 95 47.76 114 383 

31 30 0.1 2 95 52.56 106 297.45 

32 50 0.1 2 95 47 164 343.19 

33 70 0.1 2 95 46 148 380.31 

34 30 0.15 2 95 56.36 131 305.89 

35 50 0.15 2 95 64.77 153 381.25 

36 70 0.15 2 95 66.61 124 428.38 

37 30 0.05 -5 95 38.41 94 215.19 

38 50 0.05 -5 95 41.39 125 263.18 

39 70 0.05 -5 95 45.44 138 304.41 

40 30 0.1 -5 95 42.28 158 224.57 
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41 50 0.1 -5 95 47.73 167 277.65 

42 70 0.1 -5 95 49 162 313.11 

43 30 0.15 -5 95 45.01 136 228.38 

44 50 0.15 -5 95 54 138 289.24 

45 70 0.15 -5 95 73.14 168 357.99 

46 30 0.05 -8 95 50.07 90 222.71 

47 50 0.05 -8 95 41.4 168 257.54 

48 70 0.05 -8 95 29 197 270.2 

49 30 0.1 -8 95 35.73 117 208.89 

50 50 0.1 -8 95 79.36 134 297.03 

51 70 0.1 -8 95 82.74 168 337.81 

52 30 0.15 -8 95 63.61 149 237.99 

53 50 0.15 -8 95 64.69 153 283.51 

54 70 0.15 -8 95 70.05 160 323.67 

55 30 0.05 2 97 38.38 111 268.28 

56 50 0.05 2 97 49.2 121 346.27 

57 70 0.05 2 97 51.96 132 395.23 

58 30 0.1 2 97 59.22 132 311.08 

59 50 0.1 2 97 52 169 355.19 

60 70 0.1 2 97 47 173 384.34 

61 30 0.15 2 97 65.22 206 324.09 

62 50 0.15 2 97 66.42 198 386.4 

63 70 0.15 2 97 33.65 243 344.87 

64 30 0.05 -5 97 49.89 120 236.01 

65 50 0.05 -5 97 28.3 136 232.37 

66 70 0.05 -5 97 37.17 230 287.11 

67 30 0.1 -5 97 51.58 177 240.58 

68 50 0.1 -5 97 40.9 198 264.59 

69 70 0.1 -5 97 52 217 321.03 

70 30 0.15 -5 97 54.04 212 245.06 

71 50 0.15 -5 97 61.25 150 300.81 

72 70 0.15 -5 97 89.56 281 384.51 

73 30 0.05 -8 97 50 99 223.1 

74 50 0.05 -8 97 55.02 111 270.91 

75 70 0.05 -8 97 57.12 138 307.38 

76 30 0.1 -8 97 57.97 130 232.08 

77 50 0.1 -8 97 78.04 155 296.92 

78 70 0.1 -8 97 81.61 165 336.48 

79 30 0.15 -8 97 84.9 138 255.01 

80 50 0.15 -8 97 66.41 161 285.67 

81 70 0.15 -8 97 106.04 165 360.19 
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Non-dominating sorting genetic algorithm:  

 

Figure A.2 Flow chart for NSGA II 

The steps are detailed as follows:  

Step 1: Initially, a random parent population A0 is created. Then the population size 

is sorted by the non-domination process. The solution containing the population is 

assigned a fitness equal to its non-domination level. Thus, fitness is assumed as a 

minimization function. In the first iteration, the binary tournament selection, 

recombination, and mutation operators are used to create an offspring population Bo 

of size Np.  

Step 2: Then, the procedure changes after the first generation. The total of t = 400 

generations was assigned. Firstly, a combined population 𝑅𝑡 = 𝐴𝑡 ∪ 𝐵𝑡 is formed. 

The population Rt is sorted according to non-domination, At is old population, Bt is 

off spring population and its size is taken as 2N. Since Rt includes the present and 

older population, elitism is ensured.  

Step 3: Further, the best non-dominated solution set for the combined population is 

considered as Rt. If the size of F1 is smaller than Np, then all members of the set F1 

are selected for the new population At+1. The other remaining set of the At+1 

population is chosen from the subsequent non-dominated fronts in the order of their 

ranking, as shown in Figure A.2 Thus, solutions from the set F2, F3 …Fi is chosen 

until maximum possible sets could be accommodated.  

Step 4: Further to choose Np population members accurately and to fill all population 

slots, the best population size from F1 to Fi are selected, using a crowding distance 
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operator γn to sort the solutions according to their rank and crowding distance in 

descending order. The new population At+1 of size Np is used for selection, crossover, 

and mutation to create a new population Bt+1 of size Np. It is noted that first-generation 

binary tournament is used to find F1 solution and a crowding distance operator γn is 

used to find other solution sets in further generations. The operator γn requires rank 

and crowding distance of each population to evaluate the quantities to form 

population At+1. 

Step 5: According to non-domination, sorting an entire population of 2 Np need not 

be sorted as the sorting procedure has found enough number of fronts to have N 

members in At+1. Thus, the diversity among the non-dominated solutions is 

introduced by using crowding distance comparison operators. The crowding 

distances are calculated in objective function space and the solution with a lower rank 

is preferred. If there is a clash between the solutions that belong to the same front, 

then the solution that is located in a lesser crowded region is selected as the best 

solution. 

Step 6: Further, the procedure from step 2 to step 5 will continue till there is no further 

improvement in the solution for a successive number of generations, and the 

algorithm terminations this acts as stopping criteria for NSGA-II.  
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