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FOREWORD
By Stuart A. Rice

“The gravest problem of our times is the maintenance of peace and
security. An effective solution to this problem rests upon the ability
of nations and men to conduct their political, economic, and social affairs
in such ways as to make peaceful accommodation possible. The first
step toward this accomplishment must be an agrecment upon the hard
core of facts underlying these vital human relationships. If this is true,
as | believe, the professional statistician is confronted with a supreme
moral obligation. Whether in international organizations, national gov-
ernments, private enterprise, or academic research he must strive con-
stantly to improve the methods of securing valid and reliable data so
that the integrity of these facts may be assured. If we dedicate our-
selves to this purpose we shall be building for peace and shall be entitled
tohope for a World without war.”

The preceding words seem to me to have taken on increased validity
since I used them to close the International Statistical Conferences of
1947 in Washington. ‘‘Valid and reliable data” will not assure a “World
without war”’; but a peaceful world will depend heavily for its preserva-
tion upon such data, and upon the improvement of statistical methods
of obtaining data.

No other development in the field of data-collection has been so revo-
lutionary in its effects as statistical sampling. Modern statistics would
be impossible without sampling techniques, whose advantages of speed,
low cost, and reliability, and whose applicability to a constantly widening
range of problems, are now generally recognized. The methods them-
selves, undoubtedly because of their rapid development, are less generally
understood; as is also the fact that the acquisition of skill in their use is
difficult, requiring training in mathematics and extensive survey expe-
rience in some one or more fields of subject-matter. It is the purpose of
Dr. Deming’s book to make sampling understandable and usable by
those with the necessary preparation. The classroom in which he teaches
is already world-wide. His book should induce many new students in
many countries to take his course with consequent enlargement of their
scientific interests and their professional skills.

Division of Statistical Standards

Bureau of the Budget
13 March 1950






PREFACE

The preface gives an author a chance to write his own review of the
book. A review should state what the author tried to do, and why.
It should also state whether he succeeded, but on this point only the
judgment of the reader counts. Briefly, the aim here is to teach some
theory of sampling as met in large-scale surveys in government and
industry, and to develop in the student some power and desire for origi-
nality in dealing with problems of sampling.

This book is planned for two types of teaching. In the social sciences
and commerce, teachers will find that Chapters 1 through 13 constitute
a year’s study. A first course in statistical methods is assumed. The
day is past when students of the social sciences may hope to learn their
subjects without thinking quantitatively with the aid of mathematics,
yet it is a fact that most of the essential theory of these chapters goes
ngt beyond the level of college algebra, although occasionally some for-
gotten calculus may need refreshment. In the natural sciences, engi-
neering, and industrial management, students may start with Chapter 4
and work their way through to the end of the book, touching Chapters
11 and 12 only lightly for want of time. Such students, it is presupposed,
will have done reading in the statistical control of quality and in the
design of experiment.

Graduates in mathematical statistics, when taking up practice, dis-
cover yawning gaps between theory and practice: the better their theo-
retical training, the wider the gap. Chapters 1, 2, 4, 5, 11, and 12 are
designed to help to bridge this gap.

One aim of the book has been directed toward the needs of the ma-
ture specialist in subject-matter who, like the author, must teach him-
gelf in the theory of statistics.

Copious exercises have been provided for the classroom and for the
self-taught student. Almost every exercise illustrates some principle
that has been found useful in the author’s experience as a teacher and as
a consultant in government, industry, and marketing.

It should be made clear that this book is not intended as a textbook
in mathematical statistics. The reader is therefore advised to supple-
ment his studies by pursuing mathematical works like the books by
Fisher, Aitken, Neyman, E. 8. Pearson, Cramér, Wilks, Kendall, Wald,
Bose, the Statistical Research Group, and others, and by attendance at a
statistical teaching center, if possible.

To the theoretical statistician of today the problem of sampling is
the development and application of the theory of probability to the
planning and interpretation of surveys, with the aim of acquiring and

Vil



viii PREFACE

presenting to management and to other research workers quantitative
information having maximum usefulness and maximum reliability per
unit cost. Through proper planning with the aid of statistical theory,
the reliability of the information obtained in a survey is controllable and
demonstrable, so that the range of possible interpretations of the in-
formation is delimited.

It is interesting to note that sampling today is not confined to partial
coverages: the censuses of population, agriculture, commerce, and in-
dustry in the United States and Canada now include concurrent and
supplementary samples, not only to broaden the scope of the information,
but to study and evaluate the errors and biases of the census in order
that the data may be made more useful. It is significant that the recent
excellent book on sampling by my friend F. Yates, D.Sc.,, F.R.S,, is
entitled Sampling Methods for Censuses and Surveys (Griffin, 1949).

Modern statistical practice requires knowledge of statistical theory,
but knowledge exists only where there is research, however humble.
Statistical research is therefore one of the most vital components of any
statistical program. Statistical research is particularly necessary in the
government service because of the high level of quality and economy
that the public has a right to expect in government statistics. More-
over, there are many theoretical and practical problems that are en-
countered only in large-scale statistical surveys. The chief concern of
any government statistical agency should be assurance of the necessity,
the success, and the economy of any survey that is authorized at public
expense. Such obligations can not be met in the absence of knowledge
and research in statistical theory. Statistical research is constantly
lowering costs and enhancing the reliability and usefulness of statistical
information.

The intuition, like the conscience, must be trained. Gone are the
days when the intuition, guided by expert knowledge of subject-matter,
constituted sufficient qualifications for carrying out sample studies.
Knowledge of the subject-matter of a survey is as essential as ever, but
in modern practice this knowledge must be combined with the theory of
sampling. Some of the most important contributions to research in
population, vital statistics, economics, agricultural science, psychological
testing, industrial relations, standardization, development and testing
of product, manufacturing, and marketing, have come from theoretical
statisticians.

The treatment given here omits the theory of several important
developments in sampling that are now from three to six years old and
already in use in government surveys. One important omission is an
extended account of Hansen and Hurwitz’s theories of sampling with
varying probabilities. Another omission is an adequate account of new
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theories of estimation. Optimum allocation in stratified multistage
sampling is barely mentioned. The very act of writing a book isolates
its author for a time while the stream of research moves forward, leaving
him behind. This stream is moving so rapidly that any book in sta-
tistical theory produced today will be out of date before it is printed,
but this does not mean that none should be printed. Moreover, the
particular deficiencies mentioned may be excused on the ground that
they will be included by Mr. Hansen and his colleagues in a subsequent
volume. At best, a book today on statistical theory can be only an
exposure of some man’s ignorance.

A legion of friends have helped in the writing of this book. First,
there is my wife, Lola S. Deming, without whose dependable aid in
calculation, preparation of manuscript, and proofreading, attempts to
produce a book would long ago have been abandoned. A roster of the
world’s leading statisticians has assisted generously. Foremost, for con-
tinual inspiration and guidance, I record with pleasure my indebtedness
to Morris H. Hansen, William N. Hurwitz, and P. C. Mahalanobis,
FXR.S. Crushed with the load of work that government statistical con-
sultants must bear, Mr. Hurwitz nevertheless spent many weary hours
reading manuscript and deliberating with the author. Mr. Arnold Frank
has kindly worked through many of the exercises and has given attention
to a number of mathematical details. Miss Theresa Hoerner of the
Forest Service has assisted me expertly in the proof stages. Mr. Jacob
E. Lieberman, Dr. P. C. Tang, and Mr. Richard H. Blythe have read
parts of the manuscript and made numerous suggestions. Contributions
from Messrs. Frederick F. Stephan, Harold F. Dodge, H. G. Romig,
Jerome Cornfield and Miss Mary N. Torrey, and others are partially
recorded in appropriate places in the text. I am indebted to Professor
Ronald A. Fisher and to Messrs. Oliver & Boyd Ltd., Edinburgh, for
permission to reprint Table VI from their book Statistical Methods for
Research Workers. For prominence, the last name to be mentioned will
be that of Professor Philip M. Hauser, who in 1939 invited me out of the
natural sciences and into the problems of the sampling of human popu-
lations as they are met in the Census, and who, from the vantage point
of keen technical sense and professional prestige, coupled with high ad-
ministrative responsibilities, cleared away the brush of administrative
hierarchy and tradition that so often foil, bewilder, and discourage real
technical ability, and provided room for the growth of modern sampling
practice.

W. E. D.
Washington
1 January 1950
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PART 1. THE SPECIFICATION OF THE
RELIABILITY REQUIRED

CHAPTER 1. THE PLANNING OF SURVEYS

In these days when so much emphasis is properly being placed on econ-
omy in government research operations, it is important to take advantage
of the substantial savings that can be effected by substituting sound mathe-
matical analysis for costly experimentation. In science as well as in busi-
ness, it pays to stop and figure things out in advance.—Edward U. Condon,
The National Applied Mathematics Laboratories (The National Bureau of
Standards, February 1947).

The three major theoretical problems of survey-design. The statisti-
cian’s speciality is measurement: more precisely, the method and design
of measurement. Part of his problem is to decide the following: What
is to be measured? What questions should be asked? What precision
is* needed? How can the survey best be carried out to provide the
information desired with the desired precision and no more? What will
the survey cost? What do the results mean? How can objective meas-
ures of the sampling errors and biases be obtained, so that the reliability
and meaning of the results can be assessed and methods improved? To
him, once the nature of the measurement has been decided upon, the
theoretical aspects of the design of surveys consist of three major
problems:

Specify the reliability to be aimed at, in view of the allowable
cost (Step vi in the section “Steps in taking a survey,” p. 6).

A suitable specification of reliability will consist of an aimed-at precision
(such as a coefficient of variation of 1 percent, 5 percent, or 25 percent in
some important characteristic). In addition, in order to achieve better
interpretation of the data, the specifications may require measurements of
the differences between various procedures (two or more different ways of
stating the questions, different methods of training the interviewers, dif-
ferent definitions, ete.).

Design the survey or experiment so that it will produce the
prescribed precision at the lowest possible cost and with the per-
sonnel and physical facilities likely to be available (Steps v—xi).
The design must meet any irremovable administrative restrictions.
It must provide an index of precision and comparisons between var-
ious alternative procedures.

If the expected cost appears to be too great, the problem must be recon-
sidered, the scope of the survey narrowed, the prescribed precision relaxed;
perhaps the survey may be abandoned.

1



2 THE SPECIFICATION OF THE RELIABILITY REQUIRED

Appraise the precision actually attained in several important
characteristics, and evaluate the differences between the various
procedures specified for comparison. Also, compute the costs of
various phases of the survey, and evaluate any remaining variances
or other statistical measures that will be useful in cutting the costs or
increasing the reliability of future surveys of this kind.

In modern statistical practice the three problems of sampling (viz.,
specification, design, and appraisal, as enumerated above) are not inde-
pendent, but react on each other. Thus the specification of the precision
to be aimed at is not finalized until some work has been done on the
design to get some idea concerning the costs of various levels of precision.
Preliminary calculations of costs and expected precision (Step vi) may
show, for instance, that the survey that was contemplated will be too
costly; whereupon the aims of the survey (Step i) must in part be re-
formulated on a smaller scale. Conversely, one can not start laying out
the mathematical design of a survey without some preliminary specifi-
cations of what is wanted. Finally, Step xiv tells what precision was
attained and how the cost of a similar survey in the future can be re-
duced (Ch. 10).

Sampling is not mere substitution of a partial coverage for a total
coverage. Sampling is the science and art of controlling and measuring
the reliability of useful statistical information through the theory of
probability.

Before the theory of probability was used, the three problems listed
above, specification, design, and appraisal, were independent. It was
possible to specify that accuracy was desired, and it was possible to
design surveys, but the two were not linked together or linked with cost.
One could only hope that his plan would produce what was wanted,
but he could never know whether it would or whether it did, or whether
he had bought what he bought at a much higher figure than necessary,
as without probability theory no objective calculations of precision were
possible, either before or after a survey was carried out. There was no
way of comparing the efficiency of one plan with the efficiency of another;
in fact, there was no talk of efficiency. Little was learned from the
experience of one survey that could be helpful in the design of another,
as no appraisal of precision was possible or even contemplated. The
only thing that could be done without probability theory toward apprais-
ing the results of a survey was to make comparisons with other surveys
and census material. If they appeared to agree, the survey was pro-
nounced good; if they appeared to disagree in some respects, there was
no way of knowing whether the difference was attributable to sampling
errors, or to “significant” differences between the questionnaires or the
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training of interviewers, or to other possible contributory causes.
Without probability, “significance’” may be unrecognizable.

Economic balance in design. The statistician’s aim in designing
surveys and experiments is to meet a desired degree of reliability at the
lowest possible cost under the existing budgetary, administrative, and
physical limitations within which the work must be conducted. In
other words, the aim is efficiency—the most information (smallest error)
for the money. These aims accord with Fisher’s principles of modern
design of experiment.!

A great deal is implied by good design. It would be possible to design
a very efficient plan for obtaining too little precision for the purpose,
or too much. The statistician, through the use of statistical theory,
aims to ride between two types of error:

1. His plan may yield more precision than is needed and may
thus be too costly, too slow, and (in the case of population-studies)
excessively burdensome on the public.

« 2. It may yield insufficient precision, in which case significant
results fail of attainment, and the efforts and expense of the survey
are largely lost.

The statistician himself will occasionally slip into one of these errors,
but through his specialized knowledge of theory he minimizes, in the
long run, the net economic losses resulting therefrom.

A third type of error, much more deplorable than either of these two,
is to design a beautiful plan that elicits irrelevant information or sets
up protection where none is needed. The first step is therefore to find
out what the problem is: what s wanted? With the aid of theory, and
by finding out first of all what is wanted, the statistician aims to strike
an economic balance between all these errors: he aims to obtain enough
but no more precision or protection than necessary, and not to incur
losses in carrying out meaningless surveys and experiments, however
efficient.

The requirement of a plain statement of what is wanted (the specifica-
tion of the survey) is perhaps one of the greatest contributions of modern
theoretical statistics.

The relation of sampling to other characteristics of a statistical pro-
gram. A good statistical program for a government or a corporation
possesses six important characteristics:

1. Usefulness and comprehensiveness of content
#t. Reliability of results, sufficient for the purpose
127, Intelligibility (classifications and definitions that are understood)

1 No special reference is necessary: this aim permeates all his books and papers.
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%v. Speed

v. Economy of operation
vt. Accurate interpretation and presentation

In general, statistical work consists first of all of determining what kinds
of statistical information would be useful for the ends in view; of deciding
whether the desired information can be obtained at all or at reasonable cost;
and then of procuring this information at the lowest possible cost, and inter-
preting 1t in a form that assists rational decisions and adds to knowledge.
Statistical research itself is directed toward increasing the speed, relia-
bility, and usefulness of whatever statistical information is deemed
necessary ; decreasing the cost of getting it; providing better measures
of its reliability and more accurate interpretations.

A matured perspective for the mathematical statistician is best gained
through several years’ experience under competent leadership,? during
which time his mathematical reading and research are expected to con-
tinue. For instance, in the planning of surveys it is important for the
statistician not to insist on sampling refinements that are costly and
unnecessary for the purpose intended, but without a matured perspective
he can not see what levels of refinement are requisite and proper in any
particular survey. Moreover, he must know how to estimate the costs
and time required for various statistical operations in field and
office.

Statistics are a basis for action, and every survey therefore has a purpose,
namely, to get the answers to certain questions that will affect decisions
or provide increased knowledge. Until the purpose is stated, there is no
right or wrong way of going about the survey. To be specific, in the
planning of a sample the statistician must know whether to aim for a
standard error of 2 percent or 10 percent or 50 percent, and this requires
that a decision be reached on what is wanted, and when, why, and
how.

Steps in taking a survey. The following summary of the various steps
that are passed through in taking a survey is presented here with no
claim that it is complete or that the steps must take place in this or any
other particular order, but with the hope that it provides some indication
of the framework in which a statistician finds himself in practice. The
student -should note that most of the steps are the same whether the
survey is a complete count or a sample. Preparations cease at any
stage where it seems unwise or futile to proceed.

2 This is the only satisfactory way of learning how to estimate the costs and time
required for various operations in field and office, how to write instructions for field
and office, how to lay out training programs, how to provide suitable controls on
the office-work. and how to carry out a host of other kinds of deta:led work without
which a statistical program breaks down.
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1. Define the problem statistically. Decide what statistical in-
formation is really needed.

Several paragraphs have already appeared regarding this step. See if
there is really a statistical problem at all. List the various decisions that
are possible and determine whether these decisions will depend on the
possible results of any proposed survey. If the possible results of a survey
will not help in the decisions, no survey is needed. The best way to go
about this is to draw up some specimen tabulations that might arise from
a proposed survey, and observe whether any quantitative information will
be helpful in leading to the right decision. The specimen tabulation plans
will also be of inestimable help in defining the universe and drawing up the
questionnaire.

The reader might now turn to the beginning of Chapter 12 to perceive
how the problem of observing an election was translated into several
statistical questions, capable of measurement.

7t. Define the universe to be studied.

The universe must be defined so clearly that the interviewers will have
no difficulty deciding whether a particular farm or household or which
ember of the family belongs in the survey. A careful statement of the
problem and consideration of the tabulation plans and how they will be
used will assist greatly in defining the universe. Further notes occur in
the next chapter; also in Chapter 4 wherein it will be seen that the defini-
tion of the universe is often necessarily limited by the frames that can be
found or constructed.

It is important to note that the universe can only be defined operationally
in terms of a real frame or a combination of frames and in the manner of
using these frames. (See Chs. 2 and 4 for the definition of the frame.)

121. Make a thorough investigation to see how much of the in-
formation that is needed is already available in published or un-
published reports. Aim to keep the survey, if any, as small as
possible.

7v. Decide what type of survey, if any, could possibly provide
the information that is desired, and do so at reasonable cost.
Decide also the best frequency of coverage, and the best time of the
year for the date of the survey. Should this be a single survey?
Or would it be better and perhaps less expensive in the end to plan a
series of surveys? If so, should a relatively large survey be taken at
rare intervals, or would a series of smaller surveys at frequent inter-
vals be better? (Ch. 7 has a bearing on this question.)

v. Lay plans for reducing the burdens of response. and for
eliciting clear, intelligible information. Begin work on definitions
and classifications, keeping the field-workers and the respondents
in mind. Follow conventions where possible. Get started on the
questionnaire, for which skilled consulting assistance may well be
required. Start the hiring and training of supervisors.
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Consider the difficulties of definition and interviewing and obtaining the
information desired. There will be some nonresponse. How much?
Enough to impair the survey seriously? How can it be reduced? Can the
first wave of response be corrected by interviewing a sample (e.g., every
third) of the people not responding at the first interview, or not returning
their questionnaires by mail? Will the people have the information that is
wanted? Small business firms are notorious for lack of records concerning
sales, purchases, and costs of operation.

But I keep no log of my daily grog,

For what’s the use o’ being bothered?

I drink a little more when the wind’s off shore,
And most when the wind’s from the north’ard.

—Arthur Macy, The Indifferent Mariner.

Even income taxes bring blessings: they have forced people to keep some
records where none existed before. Unemployment compensation also
necessitates records of wages where no records existed before.

If this is to be a postal survey, devise systematic procedures for sending
one, two, or three letters to delinquents, to be followed by telegrams, tele-
phone calls, and finally by personal calls on all or a definite sample of the
hard core of resistance.

Consider the resources that are available with which to conduct the
survey—the office-equipment and personnel, field-force, maps, lists, instruc-
tions, and experience in similar work. Decide whether it is worth while
to go ahead.

vi. Lay out roughly several alternative sample designs, to show
approximately what the costs will be for various degrees of precision.
Aim to keep the survey small and well controlled in office and field.

Decide the maximum allowable sampling error (2, 5, 25, or 50
percent). Again, Steps i and ii may now need revision.

The decision on the allowable error is an administrative matter but must
usually be solved by the statistician in deliberation with others. The
administrator who needs the information to be supplied by the survey usually
thinks of figures as being absolute and may be unaware of the difficulties in
collecting or interpreting data. He may think of sampling as a game of
chance, not appreciating the fact that sampling errors are under control.
He is responsible for administering a program and can not take unnecessary
chances. He needs facts and not errors or probabilities (pp. 298 and 562).
It is therefore natural for him to demand too big a sample or even a com-
plete count. The statistician must stand his ground firmly, weighing the
requirements and balancing the loosest precision that will serve these
requirements against the additional cost of obtaining greater precision.

It is sometimes possible to fix the precision objectively on the basis of
expected net profit: cf. Richard H. Blythe, ‘“The economics of sample-size
applied to the scaling of sawlogs,”” The Biometrics Bulletin, Washington,
vol. 1, 1945: pp. 67-70.

vit. Provide by proper design interpenetrating, concurrent, and
supplementary “illuminating’ samples that will measure (@) the
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completeness of coverage and the possible effects on the data attrib-
utable to incomplete coverage; (b) the possible effects of errors
arising from response and nonresponse, and from differences between
interviewers; (c) differences arising from various admissible proce-
dures of collection, interviewing, or training; (d) differences in cost
between various admissible procedures.

These “illuminating’’ samples are as important or more important for a
complete census than they are for a sample. In fact, no census can be
regarded as finished unless it is accompanied by properly designed tests of
the quality of the job, and a frank discussion of the deficiencies so dis-
covered. A splendid example is furnished by the “complete’” census of the
commerce of France in 1946, which was tested by a subsequent areal sample
of re-interviews and found to be too deficient to warrant publication.
(3. Chevry, “Control of a general census by means of an areal sampling
method,” J. Amer. Stat. Assoc., vol. 44, 1949: pp. 373-9.) Other examples
are furnished by the censuses of population, agriculture, and housing in the
United States in 1950, and by the census of Canada in 1951.

v23i. Draw up instructions for the field-workers.

The field-workers must first of all be hired and told when and where to
report for training, how long the survey will occupy them, etc. A set of
instructions must be prepared for every step that takes place: listing, draw-
ing the sample from -the list, interviewing (definitions, staying within
bounds), cleaning up, sending the completed forms to headquarters.
Serious bias of almost any kind may occur through faulty instructions.
The supervisors will require special additional instructions. Examples of
instructions for listing, drawing the sample, and interviewing will be found
in Appendix A to A Chapter itn Population Sampling (full reference on p.
79).

Schools of instruction are to be conducted, and they will require mate-
rials for teaching (the instructions just mentioned, records of interviews,
review of the sampling procedure, examinations).

Remember that instructions are for the benefit of the people that are
going to do the work—not for the writer. The aim of the survey, and the
reasons for each instruction must be made clear.

ir. Get started in earnest on the tabulation plans and eventually
finalize them. Settle upon the areas of tabulation, detail, sizes of
classes, table-captions, headings, stubs, ete. (Permissible minimum
size of class is a problem in statistical theory, whether the survey be
a complete count or a sample: see Ch. 7.)

r. Pretest the questionnaire and instructions for the field-
workers, which have supposedly been in preparation and pretty
well developed by now. Several pretests may be a good invest-
ment. If pretests show that the refusal rate is high, or that the
quality of the information is poor, the survey may well be aban-
doned or modified at this point.
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A pilot survey offers an opportunity not only to pretest and compare dif-
ferent versions of the questionnaire and instructions so as to improve the
accuracy and amount of response, but also to obtain advance estimates of
some of the variances, proportions, and correlations that appear in the
formulas for the sampling errors, so that the cost of the sample may be
trimmed to a minimum.

A pilot survey should not be used merely as a device to be doing some-
thing. No procedure should be tested unless it has a reasonable chance of
acceptance.

This is a good time to draw up the instructions for coding: the results of
the pretest will illustrate most of the different kinds of problems that will
be met. The coding should do more than merely classify the answers: it
should be carried out so that the tabulations will convey information on
the subject of the survey, and the uses intended.

zi. Revise the questionnaire and instructions.
zti. Finalize the sampling procedure.

This is an attempt to meet the specifications finally decided upon.

Provide maps, lists, and controls for the interviewers and the supervisors.
Draw up the tabulation plans and other office-procedures for forming esti-
mates and estimates of reliability; they are part of the sample-design.

ziti. Carry out the survey and the tabulations.

It is difficult to lay enough emphasis on the need for careful execution of
any survey, complete or sample. A good sample-design is lost if it is not
carried out according to plans. A statistician’s responsibility is not con-
fined to plans: he must also seek assurance of cooperation in field and
office, and maintain constant touch with the work, also with the interpreta-
tion of the re.ults. Many so-called “complete counts” have been badly
in error because of careless and incompetent work in field and office.
Neither an incompleted “complete count” nor an incompleted sample is a
sample, but rather a form of chunk (p. 14).

On the other hand, it is easy to become too finical about many of the
operations in the collecting and processing of data. Too much time
laboring over some fine points in the coding of unusual cases may not be
worth while. One hundred percent verification of every step may be
wasteful.3 Editing by machine is gaining favor for searching out gross errors.

Adjustments must be made and rules established for handling difficulties
and departures from instructions. For example, during the interviewing,
certain problems will be discovered in the listing. Some dwelling units
(d.us.) listed will not be found by the interviewers. For some of these the
explanation will be obvious; in others, not so. Some d.us. will be missed
by the listers. Some d.us. will be burned or removed, and here and there
new d.us. will have been constructed in the interim between listing and inter-
viewing. Some listings will not be d.us., but will turn out to be warehouses,
garages, or offices. Some d.us. will be found unoccupied. In others the
inhabitants will have gone to Florida during the interval of interviewing,.
There will be refusals and incomplete returns. These must all be accounted

3 W. Edwards Deming and Leon Geoffrey, ‘“On sample inspection in the processing
of census returns,” J. Amer. Stat. Assoc., vol. 36, 1941: pp. 351-60; W. Edwards
Deming, Benjamin J. Tepping, and Leon Geoffrey, “Errors in card punching,” ibid.,
vol. 37, 1942: pp. 525- 36.
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for and reported, and their possible effects calculated. (Cf. Appendix C
to A Chapter in Population Sampling.)

ziv. From a subsample of the returns compute the sampling errors
of some of the important figures obtained in the survey (Ch. 10).
zv. Interpret and publish the results.

Study the sampling errors and any comparisons that were made between
interviewers and different versions of the questionnaire. Compare the re-
sults of this survey with the results of other surveys; point out differences
in definitions and procedure.

First comes a report for administrative use, setting forth the conclusions
reached as a result of the survey. This report is expected to throw light
on the question that prompted the survey in the first place, and thus to assist
the administrator to come to a rational decision on his problem. This report
may well be the chief aim of the survey. The findings therein will be based
on first-hand knowledge of the field-work and on calculations made with
the aid of the theory of probability, as well as on knowledge of the risks and
gains that appear to be associated with the various alternative decisions.
However, this report should not contain any talk of probabilities or errors:
it is for action only (pp. 298, 562). It should be brief, confined if possible to
one telegraph blank.

Next it may he worth while to prepare a research paper for the informa-
tion of colleagues. This paper should contain detailed results and the con-
clusions reached. It should describe the sampling plan and the necessary
theory or references thereto. It should likewise include the main definitions
and a copy of the questionnaire if space permits. It should show the calcu-
lated sampling errors for the chief results, and the conclusions derived from
any supplementary tests. It should include a careful statement of any
difficulties encountered in the field or in the coding, and their possible
effects on the data. Enough detail must be given so that the reader can
verify the formulas that were used for the standard errors, and form his
own opinions concerning the precision and the accuracy and the conclu-
sions. Comparison of the results and procedures with those of other surveys,
along with reasons for differences, may be worth while. The observed vari-
ances and correluations and any unusual experience encountered will be of aid
to statisticians elsewhere in the planning of surveys dealing with similar mate-
rial. Distinguish between sampling errors and errors of forecasting (p. 18).

The reader is directed to a memorandum entitled ‘“Recommendations
concerning the preparation of reports on sampling surveys,” which was
written by the United Nations Subcommission on Statistical Sampling in
1948. This memorandum is obtainable from the United Nations Statistical
Office and will also be found on pp. 141 ff in F. Yates’s Sampling Methods
Jor Censuses and Surveys (Griffin, 1949).

Probability-samples and judgment-samples. In his daily practice the
statistician must tonstantly be aware of two different types of samples,
probability-samples and judgment-samples.+

4 These terms and definitions were first put forward by the author in an article,
“Some criteria for judging the quality of surveys,” J. of Marketing, vol. xii, 1947:
pp- 145-57. This article is a revision of a chapter bearing the same title in the
book Measurement of Consumer Inlerest (University of Pennsylvania, 1947), edited
by C. West Churchman, Russell L. Ackoff, and Murray Wax.
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Probability-samples, for which the sampling errors can be calcu-
lated, and for which the biases of selection, nonresponse, and
estimation are virtually eliminated or contained within known
limits.

Judgment-samples, for which the biases and sampling errors can
not be calculated from the sample but instead must be scttled by
judgment.

The two types of surveys are not distinguished by the questionnaire
and instructions, but by the procedures for selecting the sample, for
calculating the estimates, and for appraising the precisions of these esti-
mates. A probability-survey is carried out according to a statistical
plan embodying automatic selection of the elements (people, farms,
manufactured material) concerning which information is to be obtained.
In a probability-sample neither the interviewer nor the elements of the
sample have any choice about who is in the sample. If a sample of
individuals is desired, the design of a probability-sample must give rules
for finding these individuals; it is not sufficient that it give rules that
lead to a random selection of households, leaving the selection of the
individuals in these households to the judgment of the interviewer. A
probability-sample demands a competent field-force and careful exccu-
tion of the instructions at all stages of the work. Tt is also to be noted
that in a probability-sample the procedure for forming the estimates is
automatic, being laid down beforehand as part of the sample-design.
Unless these conditions are met, probability theory can not be used to
appraise the precision of the results, and a survey can not be characterized
as a probability-sample.

A probability-sample will send the interviewer through mud and cold,
over long distances, up decrepit stairs, to people who do not welcome
an interviewer; but such cases occur only in their correct proportions.
Substitutions are not permitted: the rules are ruthless.

Actually, a pure probability-sample with complete response is a rarity.
In practice there will usually be some nonresponse and some departure
from instructions. An upper limit to the biases so created may often
be assigned, nevertheless, through knowledge of the subject matter, in
which case the survey will still satisfy the definition of a probability-sam-
ple, viz., a calculable error. Thus, suppose that in a survey of 1000 house-
holds, 500 are found to be users of a certain product, 450 are found to
be nonusers, and 50 were never found at home. By assigning the 50
nonresponses first to the users and then to the nonusers, upper
and lower limits to the mean square error of the results may be
calculated (for the definition of mean square error; see p. 129).
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In contrast, the results from a judgment-sample are obtained by
procedures which depend to some appreciable part on . a judgment-
selection of “typical”’ or “representative’ counties, cities, road-segments,
blocks, individual people, households, firms, farms, articles, or packages
concerning which information is to be obtained; or on 4i. weighting
factors that are prescribed arbitrarily or by expert judgment to make
allowances for certain sizable segments of the population whose magni-
tudes and characteristics are unknown and not determined by the sam-
ple. The following examples may be noted in this respect: the assump-
tion that nonresponding groups are similar to responding groups; that
homes without telephones are similar to homes with telephones; that
packages that are difficult to get at are similar to packages on the out-
side of a pile. There are many problems in which the survey itself,
through (e.g.) failure of proper design, failure of the questionnaire, or
for lack of sufficient response, fails to elicit certain information that is
needed in calculating the final estimates: in such cases the survey is of
the judgment type, whether originally intended thus or not.

The “quota’” method is one type of judgment-sample. In this method
an interviewer is assigned to procure (e.g.) 10 interviews with people
conforming to certain sociological and economic characteristics within a
prescribed area, such as housewives who do not work full time for
pay, who own their homes, who belong in a certain economic level, a
particular age-class, and live in a particular block, tract, or precinct.
The quota method is subject to the biases of selectivity and availability,
besides the errors of incorrect assignment of weights to the various
classes of the population. This assertion, however, is not intended to
cast doubts on the quota method, but to acquaint the reader with some
of the problems.

This book will deal entirely with probability-samples; in other words,
this is a book on statistical theory, not subject-matter or manipulation
of data. Judgment-samples, so far as I know, are not amenable to
statistical analysis. I know of no way to remove the biases of selectivity,
availability, nonresponse, and incorrect assignment of weights. More-
over, I know of no way in which to calculate the standard errors of
data from a quota sample, the reason being that a particular man or
house has no assignable probability of coming into the sample; hence
probability does not apply. It is more important to learn something
about the biases of a judgment-sample than about its sampling errors.
The usefulness of data from judgment-samples is judged by expert
knowledge of the subject-matter and comparisons with the results
of previous surveys, not from knowledge of probability. A skilled sta-
tistical theorist would be helpless in the analysis of a judgment-sample
if he were to depend on his knowledge of theory. It is a fact, though,
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that some of the lessons regarding economy in the design (not analysis)
of probability-samples are equally applicable to judgment-samples. For
example, theory can assist judgment-samples in the choice of sampling
unit, allocation of the sample to economic levels and to urban and rural
areas, and in the number of survey points.

Such remarks are not meant to imply that judgment-samples can not
and do not deliver useful results, but rather that the reasons why they
do when they do are not well understood. Indeed, quota and other types
of judgment-samples will undoubtedly continue to play an important
role in research, and they will become more and more useful as their
strong points and weak points are more generally understood.

Pilot surveys are usually judgment-samples. In trying out a question-
naire or set of instructions, or for getting a rough idea of how much a
certain operation is going to cost,® or what the refusal rate is likely to be,
it may not be necessary or desirable to carry out a probability-survey;
it will often be sufficient to conduct a trial in a particular county or city
or even in a few blocks, chosen by judgment. Examples abound. The
proposed instructions and questionnaire for the decennial census of
population in 1940 were put to a test in St. Joseph and Marshall Counties
in Indiana in August 1939. These counties were not selected as a
probability-sample, but because they contained an abundance of
“typical” situations. They served the purpose well, as they focused
attention on weak points of the instructions and the questionnaire.
Moreover, a large operation in two adjoining counties provided a
dress-rehearsal for the big census eight months later, as a widely dis-
persed probability-sample would not have done. Much of the experi-
mental work in the planning of the 1950 censuses of population and
agriculture is being conducted in areas chosen by judgment.

As for comparisons of costs between probability- and judgment-
samples, no satisfactory basis for comparison is possible because the
two types of survey are different commodities and are not interchange-
able. Price without knowledge of quality is meaningless, and it is
impossible to compare the costs of two proposed methods of conducting
a study unless the precision and biases of the results of both methods
are known and controllable. In many of the surveys on characteristics
of the population, of farms, of agricultural production that are carried
out by the government, a controllable and measurable error of sampling
and freedom from the biases of selection and nonresponse are considered
indispensable and cheaper than a wrong decision based on biased results.
Moreover, business, industry, and private research demand quality in
government statistics. For similar reasons there is a decided trend in
private research in marketing toward the use of probability-samples.

§ It should be emphasized that careful studies of cost require probability-samples
and other skilled statistical techniques not treated here.



1. THE PLANNING OF SURVEYS 13

A relatively inefficient but unbiased design for a single (nonrecurring)
probability-sample need not be costly to lay out. An inexpensive map
and a visit to the library to look at Census figures will often provide
sufficient information for the delineation of large roughly equal sampling
units for single- or double-stage sampling. The inefliciency of the design
is then to be counterbalanced by taking a sufficiently large sample. On
the other hand, for a recurring survey, it usually pays to make more
elaborate preparations by providing several years’ supply of small effi-
cient sampling units and listings so that smaller samples may be used
month after month.

Either way, a probability-sample demands careful field-work, con-
stantly reviewed by a competent statistician, with records and call-
backs, proper training and supervision. These safeguards cost money,
but there is no alternative if demonstrable precision is required. To
say that the job can be done cheaper without them is to confuse the
issue, as there can be no talk of price without a simultaneous measure
of quality.

A judgment-sample can often be devised quickly without bencfit of
skilled statistical assistance, which is sometimes very hard to find.

Remark 1. As already stated, strictly, there is hardly ever a pure prob-
ability-sample. The purest examples are the simple ones in which the
universe to be sampled is by definition a file of cards: there are then no
refusals or nonresponses unless some entries are illegible. However, as there
were refusals, nonresponses, and inevitable errors of response in the original
collection of the information on the cards, these imperfections will be carried
over into any sample, even 100 percent, that is drawn from the cards.

In the collection of original data, either by interview or mail, unless
response is mandatory (e.g., income tax, electric bills, and the like), some
incompleteness of returns is inevitable, and the reliability of the returns is
then to some though perhaps negligibly small extent dependent on expert
judgment. Under particularly unfortunate circumstances the unwilling-
ness or inability to provide the information muy be so serious that little
semblance of a probability-sample remains, even though the selection of
respondents was originally designed on a probability-basis: under such
circumstances one might just as well have started off with a judgment-
sample (e.g., an assignment of quotas). Careful pretests should avoid such
difficulties.

A sample that is 95 or 98 percent a probability-sample and the other 5 or
2 percent a judgment-selection or judgment-adjustment for refusals, for
people not at home, etc., may still be an excellent sample, although it is
important to investigate the remaining 5 or even 2 percent as soon as possi-
ble. There have been instances in our experience when a nonresponse rate
as low as 5 percent was found later to be seriously affecting the results.
(Further remarks regarding the biases arising from nonresponse will he
found in Ch. 2, pp. 33-6.)

It is sometimes supposed that there are no troubles with nonresponse
when inanimate materials are sampled for testing. Curiously enough, this
is not always so. In the author's experience, a sample of 208 manholes



14 THE SPECIFICATION OF THE RELIABILITY REQUIRED

belonging to a large utility company appealing to the court for higher rates
was drawn for the purpose of inspecting the manholes themselves, the ducts,
and the cables therein. It was then discovered that 22 of the manholes
designated for the sample had been paved over. Civic authorities would
not let them be uncovered. Substitutions could not be permitted, nor a
new sample. The difficulty was settled unfavorably to the company by
declaring them to be one grade lower than average. The sample was still a
probability-sample because a lower limit to the value of the property could
be assigned.

Remark 2. Statistical research has disclosed and explained several
amazing facts about sampling. It is entirely possible to build up a “sample”
of people by adding a few names here and subtracting a few there, so that
the list finally agrees almost perfectly with the last census and any addi-
tional information in regard to the proper proportions by area, age-groups,
sex, color, education, economic level, ownership of home, telephone, and
in fact with respect to almost any conceivably complex patterri® This is
what in lay language is sometimes described as “a perfect cross-section.”
In fact, however, this kind of “sample” is extremely dangerous, as it may fail
miserably to correspond with the population of the country, city, or county
that it was intended to represent in regard to the characteristics that the
surrey is expected to measure (e.g., the number of people intending to buy
certain books or holding certain political opinions). Such hazards are
avoided in probability-samples.

Remark 3. Judgment is indispensable in any survey. It would be
decidedly incorrect to say that knowledge of the universe is not utilized in a
probability-sample, and blind chance substituted. In modern sampling,
judgment and all possible knowledge of the subject-matter under study
are put to the best possible use. Knowledge and judgment come into
play in many ways in the design of probability-samples; for instance, in
defining the kind and size of sampling units, in delineating homogeneous or
heterogeneous areas, and in classifying the houscholds into strata in ways
that will be contributory toward reduction of sampling error. There is no
limitation to the amount of judgment or knowledge of the subject that can
be used, but this kind of knowledge is not allowed to influence the final
selection of the particular cities, counties, blocks, roads, households, or
business establishments that are to be in the sample; this final selection must
be automatic, for it is only then that the bias of selection is eliminated, and
the sampling tolerance is measurable and controllable.

Definition of a chunk. A chunk 7 is a convenient slice of a population.
A judgment-sample is planned with expert judgment; a chunk is dictated
by convenience. The following examples may be classed as chunks:

A certain city, selected mainly because the surveying organization has a
field-force there, not yet disbanded from a previous survey.

The first 1000 returns of any form, compulsory or voluntary.

Any group of people who happen to be handy (a class of students, for
example).

¢ This device is often confused with stratification.
7 The term “chunk” was first used in this connexion by Dr. Philip M. Hauser in
an effort to distinguish between a sample and a chunk.
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Interviews of ‘“average people” on street-corners.

An investigation that is carried out by somehow finding people who fit
the descriptions of varied classes of the population and will answer the
questions.

A list of names, however large, unless selected by a random procedure from
the entire universe.

A study of the economic status and religious affiliation of the principals
in weddings held in June (cf. Werner J. Cahnman, Amer. Soctol. Review,
vol. 13, February 1948: pp. 96-7).

A “flying questionnaire’ is a familiar form of chunk which is occa-
sionally used by restaurants, air-lines, and department stores which
provide their patrons with simple questionnaires enquiring whether this
or that item or service is satisfactory, why they bought what they bought,
and why they bought it here. The returns show only the extremes in
satisfaction and vexation, and at that only from the articulate. Such
devices do serve some useful if limited purposes, but if interpreted as
representative the results may be disastrous. An investment in even
a very small sample, taken at a much higher cost per schedule, may be
muith wiser.

It would be wrong to imply that no good has ever been done by study-
ing chunks. On the contrary, some very useful results have been accom-
plished in this way. Moreover, some of the best research that has been
done in the arts of questioning and interviewing has been carried out on
chunks of the population.

Definition of a preferred procedure. Definition of a procedural bias.
The definition of any characteristic, whether it be age, emplovment
status, income from interest, change in liquid assets, vield per acre,
quality of being defective, or anything else, must be given in terms of
an operation or procedure for the measurement of this characteristic. For
some characteristies it will be agreed by the experts that there is a pre-
Serred procedure, even if in practice some preferred procedures are never
or hardly ever used. A preferred procedure is distinguished by the fact
that it supposedly gives or would give results nearest to what are needed
for a particular end; and also by the fact that it is more expensive, or
more time-consuming, or even impossible to carry out.

A preferred definition for a person’s age might be specified as the result
of subtracting the date of his birth from the present date. In turn, date
of birth might be defined as the figure obtained by examining the person’s
birth certificate; or if there is no birth certificate, his horoscope, family
album, or sworn evidence, or by tying his past with some important
event, preference being in the order given. This definition for age would
of course be unworkable in the ordinary survey. In practice, an unpre-
ferred procedure is substituted—for example, merely ask the man his
age at his last birthday, or his date of birth, and write down the answer.
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If the man himself is not at home, enquire of any responsible member
of the household.

For the characteristic seeking work, there is no definition that is useful
for all purposes. Being registered with an unemployment agency may
be taken as one definition of seeking work, but there are many circum-
stances where supplementary sufficient conditions must be specified, and
these conditions vary much with the intended uses of the data. An
application for unemployment compensation might be taken as another
definition of seeking work. Educational level, occupation, industry,
income, expenditures, prices, yield, and in fact practically every other
characteristic, are difficult to agree upon. People have devoted their
careers to definitions and concepts in the labor force, income, expendi-
tures, etc. An appreciation for such efforts is fundamental to good
statistical work.

Besides preferred and unpreferred definitions and ways of asking ques-
tions, there are preferred and unpreferred ways of hiring, training, and
supervising the field- and office-workers, and of conducting the field-
work. Three call-backs might be preferred over two, one, or none; etc.

The results of two surveys, one using a preferred definition, the other
an unpreferred definition, will be different-—often greatly different. The
result of a preferred procedure is sometimes called a frue value.

A preferred procedure, if one exists, may be random or stable in the
Shewhart sense and hence may possess a mathematically “expected’
value, but again, it may not; and the same thing may be said about an
unpreferred procedure. It is usually assumed without justification in
the design of surveys that “expected”’ values do exist for the procedures
contemplated, and such assumptions will be made in this book in spite
of the fact that too little is known about the validity of these assump-
tions and about what to do when they are violated. It is to be hoped
that the next decade will see much research into such questions.

A preferred procedure is always subject to modification and obsoles-
cence. What is preferred today may not be preferred tomorrow.

The bias of any unpreferred or biased procedure is the difference between
the results that it produces and the results that would be produced had
a preferred procedure been used instead. If both the preferred and un-
preferred procedures possess mathematically “expected’”’ values, the
definition of bias is very simple: it is then merely the difference between
the two ““expected’ values.

The results of a biased or unpreferred procedure may safely be inter-
preted only when its relation to a preferred procedure is pretty thor-
oughly understood. Hence one of the most fruitful kinds of statistical
research for the near future lies in the study of differences between
various procedures, preferred and unpreferred. So-called ‘“complete”
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censuses are in dire need of this kind of research. Field trials by means
of interpenetrating or supplementary samples are required for such
studies. Sampling and the design of experiment are the essential sta-
tistical tools.

As a preferred procedure is always subject to modification or obso-
lescence, we are forced to conclude that neither the accuracy nor the bias
of any procedure can ever be known in a logical sense. The precision of a
random or stable procedure, however, may be measured and known. For
our purposes, the precision of some particular random procedure for
measuring a particular characteristic of the universe may be defined as
the inverse of the standard deviation of the distribution of the estimates
obtained in repeated applications of the procedure.

In what follows, the bias of some proposed procedure will be the dif-
ference between its “expected’” results and the “expected” results of a
procedure that is by definition preferred as of today.

Besides procedural biases, there are also the small and usually negli-
gible biases of sampling (next chapter).

“Biases and accidental variation. There are two main kinds of errors
in surveys—biases and accidental variation. The insidious thing about
biases is their constancy and the consequent difficulty of detecting them.
Tests conducted to demonstrate the absence of bias are ofttimes only
experimental demonstrations of remarkable ability to repeat the same
mistake. To be specific, if the results of a large survey are divided into
ten piles at random, or are divided according to the geographic locations
of the regions whence they originate, intercomparisons are incapable of
detecting a bias in the overall procedure because the results in each pile
may all be wrong by the same amount. Similarly, agreement year after
year does not demonstrate the absence of a bias. It should also be re-
marked that most biases are not removed or diminished simply by in-
creasing the size of the sample.

Accidental variations are disclosed by a visible scattering of results
when a survey is repeated. Variability exists whether the biases are
appreciable or negligiblee. When a survey is repeated, the counties,
cities, blocks, road-segments, households, farms, business establish-
ments, people interviewed, interviewers, time of day when particular
people are interviewed, and results obtained, will vary. It may come as
a shock to some readers to learn that accidental variability is not all
wiped out by a complete canvass. The reasons lie in the changing
picture of a multitude of circumstances that lead to the results that are
actually obtained. In any complete canvass (and of course the same
remarks hold for a sample) a particular set of interviewers is engaged to
carry out the work. That these particular ones were engaged is to some
extent a matter of chance. Certain people happened to see the advertise-
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ment for interviewers; others might have applied for the jobs had they
not failed to see it. A new selection of interviewers will bring forth a
new set of results, perhaps inappreciably different when tabulated in
classes, but nevertheless different. A new selection of supervisors who
are to train the interviewers will bring still another new set of results.
Even the weather has an effect; an interviewer on a household survey
finds a particular woman at home merely because a thundershower is
in the offing and she decides not to go shopping just now: the replies
that she gives to the questionnaire will be different in some respects from
the replies that would have been obtained from her daughter, who would
have given the responses had the thundershower not come up just then.
A lawn-sprinkler sends an interviewer around her assigned area in a
different direction than she would otherwise have taken, and she finds
certain people at home to give responses who otherwise, & few minutes
later or a few minutes earlier, would not have been found at home.
The time of day and a multitude of accidental circumstances affect
responses.

In sampling, a part of the accidental variations arises from the chance
selection of the areas, households, people, farms, manufactured articles,
or other elements which are drawn into the sample. In a probability-
sample the accidental variability arising from selection may be usefully
treated mathematically as a “random variable.”

Definition of sampling error. Thus, as we shall see, a sample can be
designed so that it will estimate within 2 percent, or closer if desired,
what would have been the result of applying the same procedure to every
member of the universe. That is, through sampling, we can discover to
within (e.g.) 2 percent what would have been the result of asking erery
person in some region, by use of the same procedures and care as were
exercised on the sample, how many families in an area own the homes
that they are living in, how many homes are mortgaged, how much
certain types of families spent for various items of food and clothing,
how much wheat they raised last year, and how many acres were in
wheat, and how many families intend to purchase certain items of house-
hold equipment next year. Yet the sampling error of such a survey is no
measure of the reliability of someone’s prediction of how many families
will own their homes five years hence, what they will spend for various
items of food, how many men will be employed or unemployed a year
hence, how much wheat they will raise next year, or what they will
purchase. Too many people have confused sampling error with a meas-
ure of the validity of a prediction of the condition of the universe a year
hence. The distinction is important.

Good sampling is essential for good prediction but it is no guarantee
of good prediction. Anyone can easily misuse good data. Prediction
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of what people will do, even on the basis of a complete and perfect census,
can fail for many reasons—unreliable methods of predicting, failure to
understand the questionnaire and the information that was obtained,
or because of unforeseen events, such as people changing their minds,
and for many other reasons.

An empirical test of sampling theory may be made as follows: (a)
carry out a complete census, and then (b) designate a sample of areas,
people, firms, or farms; (c) tabulate the returns for the sample and for
the whole; (d) by subtraction, compute the actual sampling errors.
By designating a long series of independent samples of the one com-
plete count, a distribution of sampling errors can be constructed. This
distribution will follow closely the predictions of the theory of sampling.
In this way, comparability of procedures between sample and complete
count is assured, and the test is valid. This definition for the measure-
ment of sampling error studiously avoids confusion between a predic-
tion and the actual error of sampling. It likewise avoids confusion
between the real errors of sampling and the biases of various kinds
which are never exactly the same in two different surveys, sample or
complete.?

Illustration of sampling error and bias. One of the simplest illustra-
tions of bias and sampling variability is found in shots aimed at a target.
The target might be the vertical line seen in Fig. 1. Under the assump-
tion of randomness there will be an “expected” center of gravity when
any number of shots is fired. If the “expected” center of gravity of the
shots falls to the right, as in the two top panels, there is a bias which can
be corrected by changing the setting of the sights. In surveys, a bias
can be correeted by revising the questionnaire, by changing the method
of survey (such as by changing from a judgment-selection to a random
selection of the houscholds that are to be interviewed), or by removing
the bias of nonresponse by calling back again and again if neeessary on
people not at home at first. call (instead of omitting such people or making
substitutions or adjustments by judgment).

An important characteristic of repeated shots, even under ideal condi-
tions, is that they do not all fall at the same spot; there is a scatter,
even with a fixed setting of the sights. Under conditions of random-
ness, the sampling variability has the property of possessing a range or
tolerance with an associated degree of probability. In Chapter 9 it will
be seen that the 3-sigma sampling tolerance is a band outside of which
practically no shots ever fall. A 2-sigma band is narrower and may be

8 This definition of sampling error is taken from a paper by Morris H. Hansen
and W. Iidwards Deming cntitled “On an important limitation to the use of data
from samples,” which was read at the meeting of the International Statistical Insti-
tute in Berne, 5-10 September 1949.
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TARGET
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Method A
Heavy bias; wide sampling tolerances
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Method B
Heavy bias, narrow sampling tolerances

Sampling tolerance
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Method C
Negligible bias, wide samphing tolerances

Sampling tolerance

2T

Method D
Negligible bias; narrow sampling tolerances

Fie. 1. Illustrating the meaning of bias and sampling error. The dots in any pancl
represent repetitions of a particular sampling and estimating procedure and of a
particular operation by which the surveys are carried out. If the sampling pro-
cedure is “random,” a large number of repetitions will cluster about an “‘expected”
value, and a prescribed percentage of them will fall within a ‘“sampling tolerance”
of some prescribed size such as 95 percent or 99 percent. The vertical line repre-
sents the “expected” value of a preferred method, which might be a combination of
better training, better supervision, improved questionnaire, ete. The ‘‘bias” of any
method is defined as the distance between its “expected’’ value and the “expected”
value of some particular preferred method.

expected to contain about 95 percent of the shots. It is impossible to
predict the exact position of an individual shot, but under conditions of
randomness it is possible to predict and control the probability or propor-
tion of hits that will fall inside a particular band of error, and such is the
aim of this book.?

® A magnificent set of comparisons between predictions of sampling tolerances

and actual subsequent results from the complete Census of Agriculture of 1945 was
published by Morris H. Hansen and William N. Hurwitz, “On dependable samples
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In Fig. 1 are four panels illustrating different degrees of bias and
sampling variability that are produced by different types of sample-
design.’® In the top panel heavy biases are present. One contributory
bias might be the bias of selection—as, for example, exists when the
interviewer’s judgment is allowed to come into play (mentioned earlier),
or when nothing is done to elicit responses from people who are not at
home at first call or who mislay their questionnaires. The sampling
tolerance in the top panel is wide, but in a probability-sample it is
under control and can be made narrower (as in Panel B) by increasing
the size of the sample or changing the procedure of selection or using
more efficient methods of estimation (cf. Ch. 5). In Panel C the biases
have practically all been removed, as by using automatic selection and
energetic follow-up of nonresponse, or corrections by other devices, but
the sampling tolerance is still wide. In Panel D the sampling tolerance
of Panel C above has been narrowed, again possibly by increasing the
size of sample or making other suitable modifications in procedure.

« Remark. Like most illustrations the chart is oversimplified. Almost
every sample actually consists of several samples, as many as there are
questions to be tabulated, whereas the chart applies to any one question,
but to only one at a time.

In designing a sample it will usually be found that there is one essential
characteristic whose desired precision determines the type and size of sample.
Thus, in a sample that is intended to produce a population count as well
as population characteristics, the design will ordinarily be laid out along
lines that will produce the required reliability in the population count
(such as a standard error of 1 percent), because a sample that will do this
will yield more reliability than is usually required for characteristics such as
age distribution in 5-year age-classes, the sex ratio, school attendance,
classes of employment, marital status, and other characteristics for which
ordinarily only proportions in broad classes are desired.

Number of field-workers for greatest precision. An important con-
sideration in deciding the number of interviewers to be employed arises
from a desire to minimize the effect of differences between interviewers.

for market surveys,” J. Marketing, vol. xiv, 1949: pp. 363-72. “On the basis of
tabulations from a sample of the returns, the Bureau of the Census in July 1946
published national estimates for 61 agricultural items, together with a statement of
the precision of each estimate. Corresponding figures from the complete Census of
Agriculture became available about a year later. The estimates and their sampling
errors as originally published, together with the relative differences between the
sample estimates and the complete census returns, appear in the table below. It
is seen that the complete census was in reasonable agreement with the advance
statements of the precision of the original estimates. Three (5 percent) of the 61
differences between sample estimate and census exceeded 2 standard deviations, and
none excecded 3 standard deviations.”

19 This figure and several accompanying paragraphs in the text appeared in the
article and book cited in footnote 4.
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Given a job to do of a certain size, save for limitations of time it would
be conceptually possible for a single interviewer to perform the entire
task. At the other extreme, a large corps of interviewers might be hired
and trained and the job finished up in a hurry. Of course, the latter
procedure is more costly because of the higher proportionate cost of
training the large corps of interviewers. It might seem that the more
interviewers the better, in order to give differences between interviewers
a chance to cancel out. This would be so if each member of a large
corps of interviewers could be hired, trained, and supervised as well as
if he were a member of & small corps, but in many situations this is
not so—in fact, it is hardly ever so.

The following simple model serves as a suggestion in many actual
situations. Assume that if the size of the corps of interviewers exceeds
some easily manageable number (perhaps 10, 15, or 20 at a single ad-
ministrative center; the exact number is unimportant now), the effec-
tiveness of the interviewing falls off, and may fall off rapidly.

Suppose that the variance or? between interviewers is crudely but
effectively represented by the function

or® = a? + b2F? ¢))

wherein a® is roughly the average variance between interviewers in
ideally small groups, and b® is a coefficient that is introduced to tuke
care of the poorer work done by larger numbers. F is the number of
interviewers. Drawing upon a general theorem from Chapter 4, we
may say that the variance of the results (Z) of the survey may be
represented by

2
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wherein f(n) is some function of the size n of the sample and the manner
of selecting it. By differentiating ¢-°> with respect to F it is secn that
o7 is a minimum when

a

F= 3

X )
This is the optimum number of interviewers from the standpoint of
minimizing the effects of differences between interviewers, regardless of
cost.

It may be noted that when this number of interviewers is employed,

or? = 2a%; hence to evaluate b we need only discover at what number

(F) of? is double its ideal value, a>. To date, no such measurements
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exist, so far as I know; but in a particular survey which had as its aim
the evaluation of the plant and equipment of a public utility company,
op? was measured for several types of equipment. As the corps of ob-
servers were all small (usually from 2 to 10), the values of a®> may be
assumed equal to op®. As a surmisc, and only that, we might suppose
that ¢r? would have been doubled if  had been 25. Then 25 would
have been the optimum number of observers, had cost not heen a con-
sideration.

It is important to note that the optimum number of interviewers or
observers apparently does not depend on the sample-size n or on f(n);
hence the number obtained as optimum is siill optimum for all sizes of
sample, cven for a complete count.  Of course, not all functional relations
between ep? and F lead to a like conclusion (e.g., or® = a? and op® =
a® + bF do not), but any function ox? possessing a minimum will do so,
and the conclusions just arrived at are probably valid under most cir-
cumstances.

Exercise 1. If you were required to pick out a county to represent
the whole country for studies of a price index, or unemployvment, or
income, or consumption of various foods, or crop yield, or a combination
of such measures, would you prefer to pick out the county by judgment
or to pick it out at random?

Personally, I should refuse to do it, but if it must be done, I should prefer
to sce a judgment-selection made. As the number of sampling units in-
creases, the reliability of a judgment-selection remains about constant,
whereas the reliability of a probability-sclection increases. For a single
unit, or even six, I should prefer to see judgment-selections.

Exercise 2. A publisher of technical books wishes to determine
whether his public prefer their books in bright or dead colors. If you
were asked Lo carry out a study to get an answer to this question, how
would you define the universe and what sort of questionnaire would you
draw up?



CHAPTER 2. THE VARIOUS ERRORS OF A SURVEY

The Bureau of Standards has worked hard to learn the accuracy of its
measurements and it supplies each weight with a certificate indicating how
much the weight may differ from one pound. The calibration of the weight
is valuable just because its possible error is known. When the Bureau of
the Census makes an enumeration, there are errors, which they acknowl-
edge. They know the extent of the errors from many sources and they try
to learn more about them from others. . . . It is far easier to put out a
figure than to accompany it with a wise and reasoned account of its liability
to systematic and fluctuating errors. Yet if the figure is . . . to serve
as the basis of an important decision, the accompanying account may be
more important than the figure itself.—John W. Tukey in Amer. Statisti-
cian, vol. 3, 1949, p. 9.

A. LIST OF ERRORS AND BIASES

Imperfections in all surveys. In any survey there are many sources
of error (cf. the list on pp. 26-30). A perfect survey is a myth. Some
surveys are of course better than others, but even the best surveys con-
tain imperfections. It must not be supposed, however, that all surveys
are worthless because all have errors.! There are varying degrees and
kinds of error, and some types are less disturbing than others. Errors
possessing something of a random character may partially cancel each
other. Other errors, even though nonrandom and hence persistent,
may be harmless. Sometimes this persistence (bias) can be measured
and subtracted out; at least this is the aim in research on biases. Much
depends on how the data are to be used. For instance, when trends or
proportions rather than absolute numbers are to be considered, no harm
is done if the figures that are to be compared are all in error by the
same percentage.? Moreover, in some problems, an error of 100 percent
or even much more will not affect the decision one way or another.

The figures (tabulations) that are produced by a survey are the results
of carrying out certain operations; a change in any of the operations,
even a change in the color of the paper on which the questionnaire is
printed, may be expected to produce different results. Improvement
in survey-design comes about as a result of better understanding of

1 Discussions on errors in surveys, limitations of data, and possible improvements
in methods sometimes lead some people to suppose that all statistical data arc worth-
less. This effect was actually observed in a meeting of the Washington Statistical
Society in 1948. 1t was also observed on one occasion in a hearing when a certain
government statistical agency requested additional funds with which to test the
quality of the data collected, and to measure the completeness of coverage: the com-
mittee were amazed to learn that the agency had not been doing a perfect job.

2Too often, however, people forget that the assumption of equal percentages of
error requires demonstration.

24
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what information is wanted and how to get it more accurately and
cheaper.

The statistician can not, in practice, overspecialize in sampling theory.
He must be on the alert for all kinds of errors and biases. For what
profiteth a statistician to design a beautiful sample when the question-
naire will not elicit the information desired, or if the universe has not
been satisfactorily defined, or the field-force is so badly organized that
the results will not be worth tabulating? And again, what is accom-
plished if a well-designed questionnaire and well-disciplined field-force
are used with a biased sampling procedure?

A sampling procedure is to be judged adequate or over- or under-
refined only relative to the other errors that will afflict any survey. It
thus falls to the statistician to act as a court of equalization. He is
error-conscious by training, and he must keep his eye on all the sources
of error that may afflict a survey if he is to come out with a proper
balance and anything useful. In order to minimize costs he must be
careful not to over-refine his sampling ecrror or any other kind of
error. A

To the administrator who must rely on information from a survey in
making a decision affecting the pocketbooks or the health of the people
or stockholders whom he serves, it makes little difference where an error
in a figure came from —badly designed questionnaire, sampling error,
unsatisfactory definition of the universe, sloppy field-work, or mistakes
in interpretation; it is all the same to him; it is still a wrong figure.
The statistician who designed the sample is guilty along with his col-
leagues who took part in the plinning if the figures obtained are not
useful. Ocecasionally, owing to insurmountable difficulties in timing,
lack of facilities (maps, lists, personnel), impossible problems in the
definition of the universe or in the questionnaire, or lack of funds, the
best survey-design that can possibly be devised within the limitations
may not be good enough to attain the reliability desired. In such a
situation the statistician owes a responsibility to his employer and his
profession to issue a firm disavowal of participation. A better plan is
to find ways of overcoming the apparently insurmountable obstacles.

Economic balancing of errors. For many purposes the vector or
right-angled addition of the biases and sampling error of a survey pro-
cedure is a useful concept, as depicted in Fig. 9, page 129. The statis-
tician should keep in mind the hypotenuse and strive to reduce it. The
hypotenuse is the root-mean-square error, which is the resultant of the
two legs—the sampling errors on one leg, and the biases from all causes
on the other leg. When the biases are large, it is uneconomical and
ineffective to spend a lot of money to keep the sampling errors small.
As a matter of fact, ofttimes the most effective way to shorten the
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hypotenuse is to decrease the bias while increasing the sampling
€rror.

That is to say, the overall usefulness and reliability of a survey may
actually be enhanced by cutting down on the size of sample and using the
money so saved to hire better interviewers and to provide better train-
ing and supervision in the field, thus trimming the biases of interview-
ing, response, and nonresponse more than enough to counterbalance the
increased sampling error.

Detailed list of sources of error. As has already been stated several
times, some sources of error are present in both samples and complete
counts; others owe their origin only to sampling. Some of the first
group are in practice not entirely independent of the size of sample and
may actually increase as the size of sample is increased. A list of some
of the sources of error, along with some brief remarks, is now to be given.3
Most of them can be controlled or measured by careful planning, fol-
lowing the steps that are outlined in the preceding chapter. Not all
of them are independent; e.g., mistakes of the interviewer can sometimes
hardly be distinguished from careless and disorganized field-procedure,
or even from bias arising from the interviewer. In turn, bias arising
from the interviewer is sometimes indistinguishable from errors in re-
sponse. Failure to design the questionnairc properly can hardly be
distinguished from a wrong interpretation of the results. Nevertheless,
the list hereunder has been most useful in the form given.

The various errors and biases will rank differently in importance for
different surveys. Thus, in a survey asking farmers their intentions to
plant a certain crop next spring, the date of the survey would perhaps
be more important than the auspices. On the other hand, we know
from experience that in times of economic depression, the results of a
survey of unemployment are greatly influenced by the auspices of the
survey, whereas in better times the auspices may not be so important.

PROCEDURAL BIASES, OR
ERRORS COMMON TO BOTH COMPLETE COUNTS AND SAMPLES*

1. Failure to state the problem carefully and to decide just what
statistical information is needed (Step i on p. 5).

) Failure to grasp the aims of the survey: failure to perceive what informa-
tion will be needed and in what form.

3 This list is similar to one given in a paper by the author entitled, “On errors in
surveys,” Amer. Sociol. Review, vol. 9, 1944: pp. 359-69. Some paragraphs in this
chapter are copied with little change.

4 The student of engineering, physies, or chemistry may wish to formulate a parallel
list of errors for physical measurements.
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2. Failure of the questionnaire.

Failure to recognize the difficulties of acquiring certain types of informa-
tion, through unwillingness of respondents to give it or their sheer inability
to provide it or understand what is wanted.

Lack of clarity in definitions; ambiguity; varying meanings of same
word to different groups of people; eliciting an answer liable to misinterpreta-
tion.

Omitting questions that would be illuminating to the interpretation of
other questions.

Use of emotional words; leading questions; patterned response.

Fostering errors and nonresponse of a questionnaire through formidable
appearance and lack of clarity in printing and layout (so that the respondent
writes his answer in the wrong place; checks the wrong block; lays it away;
ete.)

As stated in Chapter 1, page 5, the design of a questionnaire requires
professional skill, which should be engaged early in the planning.

3. Failure to recognize differences between various kinds and degrees
of carivass, and to fit the questions to the type of canvass.

Mail, telephone, telegraph, direct interview.
Intensive vs. extensive interviews.

Long vs. short schedules.

Check-block plan vs. free response.
Correspondence panels.

Key reporters.

4. Failure to define the universe with enough precision and to provide
a satisfactory frame therefor.’
5. Faulty instructions and definitions.

Too many words and too many instructions, without disclosure of the
reasons underlying the procedures, is a common fault. An interviewer may
become as confused as a waitress with too much detail and not enough
purpose.

6. Bias arising from nonresponse. Respondent—

Not found at home, even after repeated calls.

Refuses to give the information.

Merely fails to take the trouble to return the questionnaire, or to keep
an appointment with the interviewer.

Is unable to furnish the information.

7. Bias arising from late returns.

The bias of late returns is not as serious as the bias of nonresponse.
Moreover, in a periodic series, late returns can be added to produce revised
figures in subsequent reports.

8 The frame is a description of the sampling units that compose the universe. This
term was adopted by the United Nations Subcommission on Statistical Sampling in
1948. It was suggested by Fisher, who in the deliberations of the Subcommis-
sion also suggested the term substrate, for which I now have a slight preference.
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8. Errors in response, voluntary and involuntary.

Plain honest accidental mistakes in responding.

Illegible entries.

Failure of memory.

Memory-bias.

Guessing, made necessary through lack of records.

Unwillingness to give the right answers.

Refusal to give any answer.

Failure to understand the question: answering the wrong question.

Wrong answers arising from pride, called “prestige-bias,” by which the
respondent upgrades his education, occupation, income, expenditures,
literature, or purchases, or downgrades her age.

Wrong answers arising from protection of self-interest: understatement of
income and production, overstatement of expenses.

Response-conditioning—the impact on the respondent of being invited to
participate, and the effect of being asked or interviewed a number of times
in repeated surveys. Repeated interviews have advantages and disadvan-
tages. My friend Sam Barton of Industrial Surveys Company, New York,
tells me that in his experience about 13 weekly questionnaires are required
before response on consumption of foods and drugs becomes reliable enough
for use.

9. Accidental variations in response.
10. Bias (in response) arising from the interviewer.

Answers guided by suggestions from the interviewer or by check blocks
or other suggestions in the questions, any of which may channel the respond-
ent into grooves.

Injection of the interviewer’s beliefs and prejudices into his interpretations
of the answers and in the way he records them (cf. the reference to Rice,
p. 42).

Failure of the interviewer to establish good relations, with the result that
many questions are incorrectly or incompletely answered.

The opposite failure, establishing relations that are entirely too cordial,
with the result that the respondent tries to please the interviewer.

11. Bias (in response) arising from the auspices.

People will report differently in different surveys, because they can not
separate information from its ultimate uses. They will unintentionally
report differently in censuses of agriculture and population, and still differ-
ently in-a census of unemployment or to the tax-collector. They will unin-
tentiopally report differently in surveys carried out by the government
and in surveys carried out by private research organizations.

12. Blunders of the interviewer.

Failure to understand the definition of the universe (thereby including
certain people or business establishments that should not be included;
failing to include some that should be included).

Failure to understand the questions, definitions, and instructions, and
thereby doing things incorrectly.
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Failure to heed the questions, definitions, and instructions.

Failure to stay within the bounds of the area assigned to him.

Failure to cover his area or assignment completely.

Failure to state his business and the questions clearly.

Failure to persist in finding someonc at home.

Getting responses from some member of the family who does not know
the answers.

Omitting some questions and guessing at the answers.

Fatigue bias, or dilution bias, whereby an interviewer, inspector, or coder
fails to note a characteristic that appears infrequently, such as a rare race,
occupation, industry, or defective article.

13. Careless and disorganized field-procedure.

Faulty instructions and definitions, faulty methods of selecting super-
visors and interviewers, faulty or insufficient training, negligence through
which some areas and classes of the universe are missed, areas and classes
being covered that should not be covered, areas covered in duplicate
(hardly possible except in sampling), or just plain misunderstanding.

14. Bias arising from an unrepresentative date for the survey or of
the period covered.

This might be classed as an error of sampling, even though the canvass is
complete.

15. Ineffectual tabulation plans.

Failure to portray the results effectively for the uses intended (poor
selection of characteristics, class intervals, too many or too few cross-
tabulations).

16. Errors in processing (coding, editing, tabulating, calculating,
tallying, posting, and consolidating).
17. Faulty publication and interpretation of the results.

Failure to understand the definitions.

Failure to calculate the sampling errors and to give information on the
other errors in the data.

Failure to understand the difficulties of the field-work or of the coding
and tabulating,.

Failure to recognize secular changes that take place in the universe before
the results are written up and recommendations made.

Personal bias.

Bias arising from bad curve-fitting; wrong weighting; incorrect adjust-
ment. N

Placing too much confidence in small numbers.

Making unwarranted forecasts. (A sample, however good, can only de-
scribe the past, not the future; see p. 18.)

Applying the interpretations and forecasts to domains or other universes
not covered by the survey.



30

THE SPECIFICATION OF THE RELIABILITY REQUIRED

ERRORS HAVING THEIR ORIGIN IN SAMPLING

Probability-samples

18. Random sampling errors.

The aim of this book is the
evaluation and control of these
€rrors.

19. Sampling biases.

t. Human failures.

a. Getting into the wrong areas,
going beyond bounds, partially or
wholly omitting an occasional
sample area or household that
presents difficulties.

b. Preferential treatment of
sample areas and households.

1. Biases of the estimating pro-
cedure.

a. Use of the wrong formula of
estimation; usually a failure to
tailor the estimating procedure to
the probabilities of selection (cf.
the exercises commencing on p.
87).

b. Bias of the base. Usually
the proportion f contains an un-
biased estimate of Y in its denom-
inator, in which case the product
fY is unaffected by error in Y.
This is the usual case with a ratio-
estimate (Ch. 5). Sometimes,
however, the sample gives an esti-
mated proportion f independently
of error in the base, Y. The error
in Y is then carried into the prod-
uct fY.

131, Bias arising from failure to
randomize the starting points ina
systematic selection (p. 89).

Judgment-samples
(Including the quota method)
18’. Random sampling errors.

19’. Sampling biases.

1. Biases of selection, conven-
iently described as the biases of
judgment, selectivity, and avail-
ability.

1. Bias of the estimating pro-
cedure. Ina quotasample, a base
must be used in the estimating
procedure because the sample can
only give proportions and can not
stand on its own feet.

B. REMARKS ON THE VARIOUS ERRORS AND BIASES

Numerous vigorous researches on the biases of response, interviewing,
format, response-conditioning, prestige-bias, effect of nonresponse, and
biases of both probability- and quota-samples under various conditions
are in progress. Results of such studies will help to improve the quality
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and lower the costs of obtaining information on population, agriculture,
and commerce, in regular censuses and occasional or monthly surveys.

In spite of the fact that the subject is in a state of flux owing to the
large amount of research now in progress, a few notes will be attempted
in this chapter regarding some of the errors and biases in surveys.

Failure of the questionnaire. A questionnaire is never perfect: some
are simply better than others. All questionnaires are difficult. As has
been said already, the first step in planning a survey is to find out what
is wanted. The questionnaire is the channel through which the needed
information is eclicited. TFaulty design usually arises from lack of
knowledge of the subject-matter and failure to grasp the problem, but
a questionnaire can fail in many ways. It can fail to ask relevant ques-
tions: it may fail to elicit sufficient ancillary information to permit correct
interpretation. It may be too detailed, too tedious, resulting in non-
response. Instructions and format are exceedingly important.®

Failure to define the universe with enough precision and to provide
a satisfactory frame. Only a few remarks will be made here on this
topie, in spite of its importance. The definition of the universe follows
almost automatically from a careful statement of the problem. How-
ever, this is only the start: there is still the mechanical labor of finding
ways of making the definition intelligible and workable, and to provide
a frame. In the actual operation of drawing a sample of areas, a good
rule to follow is this: exclude from the universe any area that would
cause embarrassment if it were to fall into the sample. Swamp-land,
railroad yards, rivers, lakes, parks, and other uninhabited territory
should be excluded in a survey of the population of a city. Mountain
tops, bad-lands, forests, and any uninhabited areas should be excluded.
1f a fully unbiased procedure is intended, one must, before excluding
any area on such grounds, make certain that it is really uninhabited.
Likewise, in a survey of poultry farms, any areas where there are no
poultry farms should be excluded.

One further remark must be made in this connexion. Although it is
not necessary to attempt to exclude uninhabited areas from the frame
in a population-survey, it is certainly desirable to do so, for two reasons.
First, as will be seen later, the variance of the sample is reduced if the
arcal units are made as nearly alike as possible: in other words, the
presence of O-areas (no population) increases the variance between
areas (o2 in Ch. 5) and raises the cost per unit amount of information.
It should be carefully noted, however, that O-areas do not cause bias.
Second, an interviewer feels as if he had been sent on a wild-goose chase
when he follows his map to an area where no one lives, particularly if he

¢ John A. Clausen and Robert N. Ford, “Controlling bias in mail questionnaires,”
J. Amer. Stal. Assoc., vol. 42, 1947: pp. 497--511.
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traveled a long way to get there: moreover, the interviewer, unless he
has been given some instruction in the theory of sampling, imagines that
the sample is seriously impaired, and he may easily develop a detri-
mental lack of confidence in the organization. What is really bad, in
his zeal to improve the sample, he may substitute an inhabited area for
an uninhabited area, and thus impair the sample instead of improving it.

Sometimes it is well to exclude from the universe sparsely populated
areas whose total population is known to be not more than 2 or 3 percent
of the type of population to be covered in the universe, particularly if
the costs of canvassing such sparsely populated areas is excessive.
Another plan, which is free from bias, is to sample such areas very
lightly, a suggestion which is in line with the mathematical theory of
Chapter 6 on the most efficient allocation of the sample. ‘

The problem of providing an adequate frame ® for the universe is often
serious and costly. It is easy to define a universe as “all concerns that
export or import petroleum-products.” But where are all the concerns
that export or import petroleum-products? A few big companies are
known, but there must be a myriad of smaller ones whose aggregate
business would perhaps be a sizable portion of the total. And how about
companies that export only for their own use abroad? Are they to be
included?

The reader might pause further to think of the difficulties in providing
a frame for a census of transportation. The Class I railroads and Class I
trucking concerns already report monthly to the Interstate Commerce
Commission, and their names and addresses are on file: census informa-
tion from such concerns could be obtained through the Interstate Com-
merce Commission in a special enquiry, either sample or complete.
But there remain literally scores of thousands of surface and water
transportation companies not doing interstate business or not large
enough to be registered with the Interstate Commerce Commission or
anywhere else: how can they be covered? How can they be found and
identified? There are telephone and business directorics, but they are
not complete, and they do not definitely identify all the transportation
companies as transportation companies. Even if such concerns are
discovered, they often do not have records by which the desired informa-
tion may be obtained. Then there are numerous unknown and un-
reachable concerns that derive some sizable part of their incomes from
transportation. Should they be included? Besides, there are as many
more concerns (no one knows how many) that have their own transporta-
tion departments, serving only themselves (e.g., department stores).
Some of these concerns even own small (i.e., short) railroads and ships.
Should a census of transportation cover these? How? The answers to
such questions lie in determining what is wanted and why. What will it
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cost? Where is the money coming from? These are some of the prob-
lems that the mathematical statistician must help solve, and solve satis-
factorily, before he has a mathematical problem to work on.

The following actual examples illustrate a few more kinds of universes
and some of the difficulties.

All farm operators in a certain area. (The definition of a farm is ex-
tremely difficult and must be carefully learned and followed out if useful
results are to be compiled.)

School children. (Public or private or both? How about children not
in school because of sickness?)

Costs of construction in a certain county. (Illustration of the kind of
care that must be exercised: a site for a new building has been cleared of
timber at a cost of $1000, and the timber sold for $2000. Is this $1000
to be charged as part of the cost of construction?)

In a survey of radio-ownership, is a radio to be included if it is not in
working order? if in the repair shop? or if an order has been placed for its
repair?

Differences between various kinds and degrees of canvass. Too little
is known in regard to the differences in results obtained from mail,
telephone, telegraph, and interview canvasses, or the results obtained
from different plans of questionnaire.” The problem is not whether
differences exist, but how great are the differences, and why do they
exist, and what effect will they have on the uses that are made of the
data? Theory and more extensive empirical evaluations are needed so
that comparability can be obtained between different methods, and so
that the cheaper methods may have greater utility.

Bias arising from nonresponse. As already indicated (p. 13) non-
response in sufficient quantity may seriously impair the usefulness of a
survey and undo the work that went into the sample and other tasks
of preparation. The root of the difficulty lies in the fact that the people
who do not respond are in some ways and to varying degrees different
from them that do.® As was indicated earlier, nonresponse arises from
i. people not found at home, even after repeated calls; ii. refusal to give
the information; #7z. mere failure to take the trouble to return the ques-
tionnaire, or to keep an appointment with the interviewer; 7v. sheer
inability to furnish the information. These points can not all be dis-
cussed adequately here. Some remarks on these points have been made
already: for example, the use of pilot studies for improving the question-

* Tt is important not to confuse (a) the differences in response elicited from different
kinds and degrees of canvass, with (b) the different proportions of response that will
be obtained.

8 At the time of writing many studies are being made of this problem, but few of
them have so far been published. One in particular will be mentioned—an illu-
minating article by E. H. Hilgard and Stanley L. Payne, “Those not at home: riddle
for pollsters,” Pub. Opin. Quart., vol. viii, 1944: pp. 254-61.
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naire and instructions so as to get more accurate responses and more
responses, and the failure of small business concerns to keep accurate
records on purchases, sales, and costs of operation have been mentioned
(Ch. 1). Many very important studies, for example, studies on family-
income and expenditures, are rendered difficult through failure of families
to have the required information on record.

The proportion of nonresponse in any voluntary survey depends
strongly on several factors: 7. the questionnaire; 7i. the interviewer;
17i. the training and supervision of the interviewer; . advance notice by
letter; v. publicity by newspaper or radio; endorsement, as by the local
chamber of commerce. The design of the questionnaire is important,
as it must incite and maintain the interest of the respondent, even if it
is long and tedious or requires daily records of purchases of food and
clothing. Extreme skill is required as the interviewer introduces him-
self and his problem to the intended respondent. The variation in per-
formance between interviewers is amazing. Some interviewers have
persistently good luck at inducing people to give answers: others have
persistently bad luck. Some interviewers actually find significantly
fewer or more than an average proportion of people “at home” at first
call. Much depends on the interviewer’s self-reliance, persistence, and
belief in the usefulness of the survey; also probably on a host of intan-
gibles, such as clothing and speech. Sometimes a second trial at the
door brings success: sometimes it only draws forth a more emphatic and
dramatic refusal. Often a second interviewer will succeed where the
first one failed.

The net amount of nonresponse in an area will depend greatly on the
supervisor in charge, who may cleverly choose the interviewers, train
them, and fire them with crusading enthusiasm; who may know his
territory and match certain interviewers to certain areas; who may
cleverly handle refusals and sense whether it will be advantageous to
return the first interviewer or send another one to a household or busi-
ness establishment that has refused, and whether to send a letter in ad-
vance.

Advance publicity by press and radio is very helpful, even if the pub-
licity is unfavorable. A whispering campaign, however, may be dis-
astrous. One interviewer that I talked with recently had sat three hours
in the kitchen of a respondent listening to family history and reasons
why she was not going to give answers to the interviewer’s questions,
all as a result of coaching by neighbors who perhaps justifiably thought
that their area was being oversurveyed.

It is important to bear in mind that the problem of nonresponse is not
solved by starting off with an excess of cases to allow for shrinkage. There
is no substitute for response.
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A sample is no longer a probability-sample if it is ruined by non-
response or any other difficulty of execution. The amount of nonre-
sponse that may be tolerated in a probability-sample depends on the
aims of the survey. As illustrated in Chapter 1, on the basis of substan-
tive knowledge, outside limits may sometimes be placed on the bias
arising from nonresponse, in which case the sample is still a probability-
sample, as it permits calculation of the errors. However, in some sur-
veys, for example on income, sales, inventories, purchases of raw mate-
rials, such limits may be so broad that they are useless, and the survey
is no longer a probability-sample.

Supplementation by a judgment-sample of families to take the place
of those that have dropped out and ruined a probability-sample is
prescribed by some statisticians. However, the reliability of a ruined
probability-sample must be evaluated as if it were a judgment-sample.

A mailed-canvass or postal survey presents special hazards from non-
response. Too often a postal survey is a makeshift, hastily and incom-
pletely devised, trusting to luck. Too often it is not realized that a
postal survey, if it is to be a probability-sample, requires careful and
explicit preparation. First, the sample for a postal survey is more
exacting than a sample for interviews (cf. Ch. 4 on this point). Second,
provision must be made for keeping records of nonreturns, so that letters
may be sent out pleading for cooperation. Finally, pressure in the form
of telegrams, telephone calls, and personal interviews on a fraction (1 in
2 or 1 in 3) of the delinquents must be exerted on the hard core of
resistance.®

Through perseverance in a recurring survey, mail response may some-
times be boosted to 95 percent or better: in fact, in the monthly report
on retail business activity conducted by the Bureau of the Census, 95,
98, and 100 percent response is being maintained in some cities.

Important economies may often be effected by making the fullest pos-
sible use of postal surveys combined with direct interviews in the non-
responding segment.

The consulting statistician must be explicit at the outset regarding
support for battling nonresponse; otherwise his mathematical skill in
design may go for naught. From the standpoint of sheer cost, pro-
vision for whittling the nonresponse at the first call or at the first receipt
of a mailed questionnaire is of vital concern in the planning because of

9 This device was.suggested by Frank Yates in “Mecthods and purposes of agri-
cultural surveys,” J. Royal Soc. Arts, vol. xci, 1943: pp. 367-79. The optimum pro-
portion of the delinquents to be interviewed was computed by Hansen and Hurwitz
in “The problem of nonresponse in sample surveys,” J. Amer. Stal. Assoc., vol. 41,
1946: pp. 517-29. A sample of 1 interview in 3 of the nonreturns is a good rule, to
be increased to 1 in 2 if interviewing costs are not excessive.
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the terrific expense of second and third calls and (in the case of a postal
survey) the relatively high cost of telegrams and personal interviews
compared with the cost of mailing a questionnaire. Pilot studies in
which the questionnaire is refined and improved, and variances and
costs are studied, may thus be a wise investment. From 5 to 25 per-
cent of the total cost of a survey may well be invested in pilot
studies.

Occasionally an unsuspecting statistician encounters a postal survey
in which there is no interest in correction for nonresponse for the simple
reason that the questionnaire is intended mainly as an advertisement.
Its utility as an advertisement is hardly diminished by the absence of
follow-up. Such uses of questionnaires should not be confused with
statistics. :

Postal surveys are not feasible for studies of the general population
in some parts of the world where there is preponderant illiteracy.

Nonresponse is an annoyance peculiar to probability-sampling. Non-
response does not appear in a quota-sample because interviewers fill
their quotas with people who are willing or eager to talk, and they do
not come in contact with people who are timid or do not like to be inter-
viewed. Nonresponse is rarely encountered when the sample is drawn
from a ‘‘chunk’ consisting of a list of ‘“‘representative’” respectable,
literate people of the community who are known or thought to be willing
to cooperate in various studies. Peace of mind under such circumstances
is unfortunately a delusion because such methods are biased to start
with; 100 percent response may still be badly in error. To do
good sampling one must face the problem of nonresponse and not
bury it.

Small gifts are often given out to people as an inducement to keep
records of consumption or purchases and thus to build up response.
Undoubtedly a bias is introduced, but it is probably small in most
surveys. It could be measured by comparing two interpenetrating net-
works of samples, one with a gift and one without.

Remark. Alfred Politz of New York has kept the author informed of
a series of experiments in which correction for the nonresponse of people not
at home is accomplished without calling back.® The plan depends on the
fact that, of people who are at home half the days at a given hour, half are
actually at home at that hour, and a sample run over all days of the week
will find half of them. When the responses of these people are multiplied
by 2, the result is unbiased. Similar corrections are made for people who
are customarily at home a quarter of the time or three-quarters of the time
at a given hour. This suggestion was made independently by H. O.
Hartley, J. Royal Stat. Soc., vol. cix, 1946: p. 37.

1 Alfred Politz and Willard Simmons, “An attempt to get the not-at-homes into
the sample without callbacks,” J. Amer. Stat. Assoc., vol. 44, 1949: pp. 9-31.
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Errors in response. There are two kinds of variability in response,
different descriptions of the same situation 7. given by the same person
at two different times; 7¢. given by different persons. Both kinds of
error are often much greater than is ordinarily supposed, and both can
be controlled to some extent by the drafting of the questionnaire and the
training of the interviewers. In a continuing survey the cooperation
and education of the respondent may often be fostered so as to decrease
the first type. However, it must be recognized that respondents under
repeated questioning often change their characteristics.

It might be thought that factual data such as age could be collected
with little error, and that only data with looser definition such as
employment status and education are subject to wide variation. An
extensive study carried out by Gladys L. Palmer," however, shows that
variation in response is indeed large in all these characteristics, and that
age is certainly no exception. Yet what property could be more objec-
tive? In a recanvass of 8500 people in Philadelphia, after an interval
of only 8 to 10 days, 10 percent of the ages were different by 1 year or
more when reported by the same respondent in both canvasses (an
example of the first kind of variability), and 17 percent of the ages were
different by 1 year or more when reported by different respondents (an
example of the second kind of variability).

The author once saw a diagram in a government office on which were
plotted the self-reported ages of 300,000 men. On the r-axis were the
ages as reported on a certain date; on the y-axis were the ages as re-
ported just 2 years later by the same men. Perfectly consistent reports
would have given a 45-degree line with an intercept of 2 years. Actually,
88 percent of the points lay on this line. About 9 percent lay on parallel
lines a unit above and below. Distinet paths were also traced out 5 and
10 years above and below, with many points scattered indiseriminately.

Another example of the second kind of variability in response is
furnished by Katherine D. Wood,!? who exhibited tables showing the
discrepancies between duplicate reports of the occupations of 4500
workers, one report coming from the worker himself or some member
of the houshold, and the other report coming from the worker’s employer.
Table 1 in her article shows that when the occupations are classified into
only 9 major occupational groups, 21.7 percent of the total number of
duplicate reports are in disagreement—i.e., fall in a different one of the
9 broad groups. Her Table 2 shows that when the occupations are classi-
fied into 233 groups, the difference jumps to 35.5 percent.

1t Gladys L. Palmer, “Factors in the variability of response in enumerative studies,”
J. Amer. Stat. Assoc., vol. 38, 1943: pp. 143-52.

12 Katherine D. Wood, “The statistical adequacy of employers’ occupational
records,” Social Sec. Bull., vol. 2, May 1939: pp. 21-4.
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Apparent variations from place to place and from time to time in the
incidence of disease and crime are often only variations in definitions
and in the thoroughness and accuracy of reporting.

It should be pointed out that the net effect of variability in reporting
is not always as bad as might be surmised. One reason is that many
errors can be caught in a careful job of editing. For instance, in process-
ing the reports on the annual production of lumber which are sent into
the Census from sawmills, every effort is made to diminish the net
effect of variability and carelessness in response. Kach report is care-
fully compared with the previous annual report from that mill. To
expert editors who know the lumber business, the respondent’s difficulty
and the conscquent correction of an erroneous report are often obvious.
When not obvious, the case may be turned over to the Forest Service,
which in turn may initiate correspondence or send a local representative
to the mill to discover what difficulty if any exists. A second reason is
that the poorest reporting on production and sales often occurs in the
small establishments, which all told contribute only a small fraction
of the total of the annual production or sales. The larger establishments
keep records and can make better reports. Tor a third reason there is
an element of randomness in reporting dictated by the accident of
circumstance. The weather, time of day, the particular person providing
the information, the route followed by the interviewer, and many other
factors are accidental in nature and affect the results. As a result, some
reports (of age, number of board-feet of wood cut, sales, and stocks)
are accidentally higher and others are accidentally lower than they
might have been under other circumstances. This random element is
compensating on a probability basis, the net effect being that the final
tabulations may portray distributions that arc reasonably independent
of the random element of variability and able to serve many useful
purposes. Random errors have less chance of canceling each other if
the tabulations are made in fine classes.

It is a mistake, however, to take refuge in the assumption that errors
in response are going to cancel each other and thus to excuse poorly
designed questionnaires and inexpert interviewing. The random ele-
ment may wash out, but a bias is different; it is not necessarily partially
or wholly compensated by another bias in the opposite direction. For
instance, in spite of variability in the reporting of age, frequencies show-
ing characteristics of the population by age will usually turn out to be
remarkably independent of the random errors in reporting, but will
clearly show the downward and upward heaping toward the fives and
tens. Likewise, the random errors that occur in taking inventories of
canned peas in a number of grocery stores may pretty well cancel each
other, leaving only the effect of (a) the downward bias that arises from



2. THE VARIOUS ERRORS OF A SURVEY 39

failures to look in the basement or out-of-the-way places for peas, and
(D) the downward or upward bias that arises from the natural tendency
to undercount or overcount, whichever it may be.

In view of errors in response, not to speak of the other factors that
affect the uscfulness of a survey, it is obvious that a complete coverage
can not give absolute accuracy. As a matter of fact, absolute accuracy
is nondecfinable.

In this connexion I am reminded of a conversation with Frederick F.
Stephan. e was once asked how big a sample would be required to
measure within 5 percent the extent of unemployment in the country.
This was in 1934, when plans for a sample census of unemployment
were being considered. His reply was that even a 100 percent sample
could not give 5 percent accuracy because of differing ideas regarding
definitions of unemployment and the interpretation of the questions.
Even with the elimination of sampling errors, there would remain un-
settled differences between various alternative definitions of unemploy-
ment. There would remain, moreover, errors of enumeration (variability
in response; housewife doesn’t know the answer but answers anyhow;
some families missed; some refuse; ete.). Before it is profitable to talk
of reducing sampling errors to 5 percent, it would he necessary to reduce
both the variability in response (by sharpening the definition) and the
error of ecnumeration to magnitudes comparable with 5 percent
aceuracy.

A magnificent series of experiments on errors of response has been
carried on by Mahalanobis in connexion with his surveys of jute and
other crops in Bengal. Such surveys show the limitations of data col-
lected on a 100 percent basis, and give guidance on methods of training
interviewers. They show the necessity of building up a reliable human
agency, whether one is to do sampling or a complete canvass. The
following paragraphs are quoted from Mahalanobis,® beginning on
page 408.

210. Severul things became clear in the course of these studies. The
number of discrepancies at the stage of the field survey was very high.
The absolute sum of both positive and negative discrepancies gives a con-
venient picture of the accuracy of the field work. In 1937, for example,
it was found that for a group of villages taken together the absolute dis-
crepancy was as high as 58 percent of the actual area under jute. The
positive and negative discrepancies, however, occurred to a large extent
in equal proportions, so that they tended to cancel out. The algebraic sum
of discrepancies was thus much smaller; and in the case of the same group
of villages considered above the total algebraic discrepancy was of the order

13 P, C. Mahalanobis, “On large-scale sample surveys,” Phil. Trans. Royal Soc.,
vol. 231B, 1944: pp. 320-451; “Recent experiments in statistical sampling in the
Indian Statistical Institute,” J. Royal Stat. Soc., vol. cix, 1946: pp. 325-78.
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of only 5 percent. A good proportion of the recording mistakes at this stage
were thus amenable to statistical treatment.

211. This is satisfactory, but clear evidence was also found of inaccuracies
which could not have arisen excepting from false entries or gross negligence.
The magnitude of the discrepancy, both algebraic and absolute, also varied
widely from one investigator to another. A part of this no doubt may be
ascribed to differences in the “personal equation’ of the individual workers,
but detailed comparison and scrutiny of the material left little doubt that
some of the investigators were dishonest in their field work.

212. Crop record. In the next stage of the work, namely, preparation
of crop records, a similar detailed comparison was carried out. Here the
absolute discrepancy was something of the order of 9 or 10 percent, while
the algebraic discrepancy was less than 2 percent. On the whole inac-
curacies at this stage were far smaller in magnitude than the mistakes which
occurred at the stage of field survey. This is, of course, just what may be
expected in view of the fact that the field survey has had to be carried out
under far more difficult conditions.

213. Area measurement. A detailed study was also made of errors occur-
ring at the stage of copying the area of individual plots from revenue records
which were kept in the district headquarters and were thus scattered all
over the province. This arrangement was difficult to supervise, and large
mistakes were detected. From 1940, therefore, the practice was adopted
of measuring the area of individual plots directly in the Laboratory with
the help of photographic scales. The absolute discrepancy by this method
is of the order of 2 percent, and the algebraic discrepancy appreciably below
1 percent.

214. Border effect. In a sample survey on a large scale there were
naturally many other sources of error, some of which were studied experi-
mentally. Tor example, there was the question of the border effect. It
was found that there was persistent overestimating in working with units of
very small size. In the case of field survey the obvious explanation is that
the investigator has a tendency to include rather than to exclude plants or
land which stand near the boundary line or perimeter of the grid. This
boundary effect naturally becomes less and less important as the size of the
grid is increased. In crop-cutting work on jute it was found, for example,
that mean values for all the characters studied (such as number of plants
per acre, weight of green plants, weight of dry fibre) were much higher for
sample units of small size, so that it was not at all safe to work with cuts
of a size less than say 25 sq. ft. In the case of the area survey it was gener-
ally found inadvisable to work with grids of size less than about 1 acre.

215. The above studies revealed the great importance of controlling and
eliminating as far as possible the mistakes which occurred at the stage of
the field survey. This is why from the very beginning special attention was
given to the need of building up a reliable human agency. In 1937 there
was not a single trained field worker, and only about half a dozen com-
puters. Whatever training was possible was given in the very short time
at the disposition of the Laboratory, and this had to be repeated every year,
as the scheme was sanctioned from year to year. The whole of the field
staff was recruited for only three or four months, and continuity of employ-
ment could not be guaranteed. A large number, especially the abler men,
left after one season and did not come back, so that work had to be carried
on with a large proportion of untrained men each year. On the statistical
side, however, it became possible to train up and give more or less con-
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tinuous employment to a good proportion of computers by employing them
on other projects.

216. Various attempts were made to improve the efficiency of the survey
by proper selection of workers. With this purpose in view, a study was
made of variations in output (and in certain instances also of mistakes)
of individual workers. Without entering into details I may mention one
or two typical results. The average output of all workers for any particular
type of work was adopted as the basis for comparison, and the index of out-
put of each individual worker was found by dividing his actual output by
the adopted standard and multiplying by 100. Individual variations were
enormous. For example, in the field survey the index number in 1937
varied from 48 for a particular worker to 146 for another investigator;
the output of the quickest worker was three times as large as the output
of the slowest. The coefficient of variation fluctuated roughly between 25
and 40 percent, depending on the particular type of work in the case of the
field survey.

217. The position was much the same in the statistical portion of the work.
The coefficient of variation in output among individual workers was roughly
about 20 or 25 percent in the case of simple operations like listing and com-
pzmqon of entries, and of the order of 30 or 35 percent in the case of work
*involving (,ompumtlons The question of accuracy was also studied to some
extent by comparing the proportion of mistakes made by different workers
for different types of work. Here also large variations were found.

218. In 1940 and 1941 arrangements were made from the Indian Statisti-
cal Institute to hold examinations for the award of certificates for computing
work and field survey. I am making a passing reference to these things to
indicate the kind of methods which were adopted from time to time for
selecting suitable workers with a view to improving the general efficiency
of the survey.

Examples of errors in response in a census of business.!* The Census
mailing list shows 24 business establishments in an area. A question-
naire is mailed to each establishment (and this might be either a sample
or a complete count). Some of the questionnaires come back correctly
filled out to the best of the respondents’ knowledge and understanding,
but the following errors can and do occur. They ought not to occur,
but they do.

1. In spite of care taken to compile lists of businesses from previous
Census records and from Social Security records, some businesses exist in
the area that were not on the list. No list has ever been completely
correct and up to date. Unlisted businesses have no chance of being in the
sample (unless the proprietors hear about it and enquire at the nearest
Census office), and bias of underenumeration is the result.

2. Some of the 24 businesses have gone bankrupt, but there is still a
receptacle for miil, and the envelope is delivered by the Post Office. No
questionnaire is returned from such people, and a bias is introduced by any
attempt to adjust the results.

3. Some of the 24 businesses have moved, and the questionnaire is for-
warded to them. Some questionnaires come back filled out with no indica-
tion of the new address, and the results are biased by overenumeration.

M The examples are typical, but do not refer to any actual area.
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4. Some of the names are duplicates of the same business—Smith’s Cycle
Shop and the Green Meadow Sport Mart being the same establishment.
Only one report comes back, and the other is charged to nonresponse, an
adjustment made, and the result biased. Or, both reports come back,
filled out, and the results are biased from overenumeration.

5. A business is owned jointly by two partners who do not keep in touch
with each other. One fills out the report and sends it in. The other’s
conscience hurts him when he hears of the survey; he obtains a form or
writes the information in a letter and sends it in. The names and figures
are sometimes so different that it is difficult to recognize the second report
as a duplicate. This is another form of overenumeration.

6. A man has two businesses at the same address but only one may be
listed. He makes ice cream and retails it in his own ice-cream parlor, but
he also sells it to several ice-cream parlors located elsewhere. He fills out
the form for his retail business, skipping his more important business of
manufacturing and wholesaling ice cream, and the results are biased by
underenumeration.

7. A man changes his type of business: the form that he rececives does
not now apply, and he fails to send it in or to heed later pleas for its return.
This is one form of nonresponse.

8. A business changes hands and name. The questionnaire is forwarded
by the Post Office, and that is the end of it. The business that is now
carried on in the old premises is not reported. This is another form of
underenumeration.

9. Plain nonresponse through inadvertence or refusal.

10. Errors in response.

These last two errors are listed at the end, not because they are least
important, but to emphasize the fact that they are only two of the errors
of response in a business survey. It should be noted that nonc of the
errors mentioned is a sampling error.

Skilled workers in the Census office in Washington are able to uncover
most of these errors and correct them with uncanny ability. They of
course occasionally require the assistance of a local official. Some errors,
however, can be discovered only by a personal canvass.

Bias arising from the interviewer. In 1914 Rice ¥ in a social study of
2000 destitute men found that the reasons given by them for being down
and out carried a strong flavor of the interviewer. Results recorded by
a prohibitionist showed a strong tendency for the men that he inter-
viewed to ascribe their sorry existence to drink; those interviewed by a
man with socialist leanings showed a strong tendency to blame their
plight on industrial causes. Quantitative measures of the interviewer
bias in this particular survey turned out to be amazingly large. The men
may have been glad to please anyone that showed an interest in them.

Variation attributable to the interviewer arises from many factors:
the political, religious, and social beliefs of the interviewer; his economic

16 Stuart A. Rice, “Contagious bias in the interview,” Amer."J. Sociology, vol. 35,

1929: pp. 420-23. See also C. C. Lienau, “Selection, training, and performance,”
Amer. J. Hygiene, vol. 34, 1941: pp. 110-32.
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status, environment, and education. Also, perhaps most interviewers
can not help being swayed in the direction of their employers’ interests.
But how much? What is the effect on the tabulations? Different inter-
viewers will record different descriptions of the same situation and dif-
ferent interpretations to identical statements from a respondent.

One source of bias and variability arising from the interviewer has its
roots in lack of understanding of the subject and purpose under investiga-
tion, without which the interviewer can not evaluate a situation or
properly record the respondent’s statements.

Part of the variation attributable to the interviewer arises from the
different moods into which different interviewers cast their respondents.
The interviewer may make the respondent gay or despairing, garrulous
or clammish. Some interviewers unconsciously cause respondents to
take sides with them, some against them. This kind of variability is
difficult to distinguish from the error in response.

A small corps of interviewers can be trained to a high level of homo-
geneity; hence in sample surveys and other partial coverages it is possible
to diminish differences between interviewers to a degree not attainable
in large-scale surveys. In particular, partial coverages repeated at
intervals may possess an cnhanced degree of comparability from one
survey to another.

Training will sometimes introduce biases in a corps of interviewers,
depending on how they are trained. A corps of enumerators with less
training and greater variability might come nearer to finding out what a
social scientist really wishes to know about. Bias produced by training
partakes of bias of the auspices (see below), and it is sometimes difficult
to make the distinction.

Bias of the auspices. Any change in the method of collecting or
processing data can be expected to show a change in results. A shift
in the sponsoring organization is no exception. Bias of the auspices
probably stems from a conscious or unconscious desire on the part of
the respondent to take sides for or against the organization sponsoring the
survey, but perhaps more to protect his own interests, which may vary
with the sponsoring agency. Everyone supposes, for instance, that the
replies elicited by an agent of a relief organization concerning income and
work status are different, on the whole, from those elicited by a govern-
ment agency such as the Census. The Census and the WPA (Works
Progress Administration) both collected information on the work status
of the people the week containing the 1st April 1940. The WPA found
more people working for the WPA, and more females seeking work, than
the Census found.

Bias arising from an unrepresentative date for the survey or the period
covered. The measurement of total annual sales, total annual postal
traffic in various classes, telephone, telegraph, freight, passenger, or air
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traffic, or movement of some particular commodity, consumption of
foods of various kinds, or the pattern of consumption or service rendered,
and a host of other problems which require totals or averages over a year
or some other period, present difficult problems because of heavy weekly
or seasonal variability. Actually, in such problems it is necessary to
recognize the fact that a good sample of time is as imperative as a good
sample of areas, business establishments, families, or anything else. In
many cases it is possible and advisable to conduct the survey on a random
sample of days scattered throughout the year in sufficient number to give
a good total or average. Often the problem is but a collection or tran-
seription of records, such as waybills, sales slips, orders, toll tickets,
railway tickets, air tickets, in which case a continuous sample of (e.g.)
every 100th waybill or toll ticket from every station or from a-good
sample of stations may be the answer. The collection and tabulation
then proceed on an orderly basis; they can be run efficiently and accu-
rately, and ean be adjusted to the requirements. More important, they
provide speedy information so that shifts in distribution, rates, and
services can be made at the most opportune time. A number of busi-
ness firms and government agencies have adopted such methods.

Too often in the past, a huge survey or collection of transactions has
been conducted during a selected week (or during two or four selected
weeks of the year), the particular week or weeks having been chosen by
judgment as “average” or “representative.” No matter how good be
the sample of areas, such a sample is still a judgment-sample in time.
The reader may agree that the tabulation of more than a sample (e.g.,
every 10th or 100th) of all the waybills, toll tickets, or sales slips that
were issued during “representative’” periods would in most cases be an
unjustifiable expenditure. Not even a complete tabulation, nor any
amount of wishful thinking, can alter the fact that such a sample is
inadequate for measuring either an annual total or the pattern of services
rendered.

On more than one occasion the author has seen complete tabulations of
“representative’’ weeks bogged down with sheer bulk, months after the
date of collection. The speedy tabulation of every 100th ticket would
have displayed most of the information contained in the original collec-
tion, in time to be useful.

A continuous sample of transactions, with its speed, simplicity, and
flexibility, provides the answer to many problems where current informa-
tion on totals, averages, patterns, and changes is needed for intclligent
administration in government and private business. It would be wrong
to leave the impression, however, that continuous samples are always
possible. A census of population, agriculture, or commerce, for exam-
ple, must give full and complete details for a particular date, and this
date must be selected by judgment. A date that is satisfactory for a
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census of population may not be so good for a census of agriculture, yet
for economy and comparability the two censuses must be taken together
at a time when the vast army of interviewers will not be impeded by
snow or floods. Intermediate samples, monthly, quarterly, and an-
nually, then provide current and continuous information on changes,
while these changes are taking place.!

Errors in processing. A review of the codes assigned on a schedule
is oftentimes not a matter of correcting wrong codes, but merely a matter
of honest differences of opinion between coder and reviewer. Two coders
will often find themselves in disagreement on the correct codes to assign
to a response. Two coders working on the same set of schedules are
going to turn out two different sets of results; likewise two sections of
coders working on the same set of schedules are going to turn out two
different sets of results. A fortiori, two sections of coders working under
slightly different instructions will show still greater differences, even
though the two sets of instructions supposedly say the same thing in
different words. 'The two sets of results may, however, produce distribu-
tions so nearly alike that in most problems they would lead to the same
action, and that is what counts. Research needs to be carried out to
show the extent of the differences to be expected from various shades of
wording of instructions for coding, editing, and field-work. The con-
clusion seems inevitable that unless it is merely a matter of transcription
(such as 1 for male and 2 for female) it is impossible to define a perfect
job of coding except in terms of the distributions produced, because there
is no way of determining whether the individual codes have been assigned
correctly. One can say only that two different sets of instructions or
two different sets of coders produced substantially the same distribu-
tions. In view of this fact it seems to follow that when the work of a
coder or editor or punch operator is uniformly good enough so that his
errors are relatively insignificant compared with the other errors (such
as variability of response) it is necessary only to perform enough review
of his work (preferably by sampling methods) to be assured of the con-
tinuity of control.'” Workers who can not qualify for sample review
should be transferred.

Machine and tally errors are often supposed to be negligible or non-
existent, but the actual situation is otherwise. These errors can be held
at a reasonable minimum, however, by machine controls and other
checks, especially with a force of workers in which there are a few key
people with seasoned experience.

18 Tn Chapters 4 and 5 we shall see ways in which data from a census may be used
to enhance the efficiency of these intermediate samples.

7 W. Edwards Deming and Leon Geoffrey, J. Amer. Stal. Assoc., vol. 36, 1941:
pp- 351-60; W. Edwards Deming, Benjamin J. Tepping, and Leon Geoffrey, J. Amer.
Stat. Assoc., vol. 37, 1942: pp. 525-36.
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A sample study or other partial coverage possesses a distinct advantage
in the processing for the same reason that it does in the interviewing,
viz., the smaller force required to do the work, and the consequent better
control that is possible.

Faulty interpretation of the results. In any study made for the analy-
sis of causes, preliminary to formulating a course of action for the future,
there must be inferences drawn from empirical data. These inferences,
if they are to be useful, must often take the form of predictions—pre-
dictions of future populations, where they will live and what they will
eat and wear, and how they will react to a particular product or service.
Unfortunately, even the best survey is a story of the past, not of the
future; and unless the underlying cause system is expressible analytically
or in probability form, there may be no statistical method of predicting
the future.

Even with the best of intentions there may be a personal and profes-
sional bias in interpretation. This fact is so well known that it would
be superfluous to go into the subject here or to point out the magnitude
of the differences that can exist purely on the grounds of personal dif-
ferences in education, experience, and environment. A familiar example
is the picture of a labor situation presented by management, as opposed
to the picture presented by labor organizations.

Errors and differences in interpretation sometimes arise from mis-
understanding the questionnaire or failure to take into consideration
the form of the questions as written on it or as actually used in the
interview. Without some recognition of the problems involved in carry-
ing out the survey, from the standpoint of both the collecting agency
and the respondent, sizable errors in interpretation are almost sure to
arise. The more important the survey, the more important are the
errors of interpretation. For careful interpretation it is necessary to be
acquainted with the field-work; not just with the instructions which tell
how the field-work should have been carried out, but with the procedure as
actually followed (see the quotation from The Production of Lumber,
p. 49).

The conditions that are described by a survey may have changed by
the time the tabulations are ready for processing. These changes detract
from the utility of the survey, and if they are ignored, serious errors may
creep into the interpretations.

A complete count requires a longer time than a sampke for processing—-
so much longer, in fact, that often because of changes in conditions, it is
merely a historical record by the time it is ready. As a basis for action
(the only excuse for taking a survey) a sample will thercfore often be
more reliable because of the shorter time required for collecting and
processing the data.
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Sampling errors. One often hears objections to sampling because of
sampling errors. Such objections can be sustained only if, after con-
sideration of the other inaccuracies, the elimination or reduction of the
sampling errors seems to be a wise investment. Sampling errors have
the favorable characteristics of being controllable through the size and
design of the sample, which is the purpose of this book. It isnow possible
to lay out sample-designs in many types of surveys whereby one can
state in advance the width of a band that will contain 99 percent or
any other percent of the sampling errors. Sampling errors, even for
small samples, are often the least of the errors present.

The next step in the direction of greater reliability of surveys must
lie along the line of further research in other types of errors.

At present, sampling crrors are the only errors that are in satisfactory
condition so far as theoretical and experimental knowledge is concerned.

Sampling biases. Complete counts and samples may be expected to
show persistent differences arising from psychological factors associated
with fatigue and differences in the training and procedures. Intermis-
sions occupied in travel hetween sample-arcas and sample-houscholds
relicve fatigue. Knowledge that one sample-area or household represents
many others apparently calls forth special efforts on the part of the
interviewers. A similar difference between complete and sample-
inspection has long been noted in industry; and it has been noted also
that, in the sample-inspection of office work like coding and punching,?”
sample-inspection usually discovers about 25 percent more errors than
complete inspection.

When a sample is taken along with a complete count in a population
study, the sample-areas or names are designated on maps and lists by
heavy boundaries and other distinguishing marks, and these designa-
tions apparently lead some interviewers to give the sample slight pref-
crential treatiment. '™ A deleterious effect arises when an interviewer,
waxing overzealous in his efforts to produce a good census, substitutes
what he regards as an average home, average farm, or average person,
when the rules for the selection of the sample have led him to an unusual
home, farm, or person.

18 The definition of sampling error given on page 18 is not afflicted with preferential
treatment of the sample.

¥ In the United States Census of Population in 1940, in spite of instructions and
training, several hundred of the 110,000 interviewers substituted an adult for a child
in the sample, apparently because the “supplementary questions’™ (asked only of
the people in the sample) on usual occupation and fertility would not apply to a
child. It is to be noted that this kind of substitution required extra effort. on the
part of the interviewer, at no extra pay.

Incidentally, in this instance, little loss of census information resulted from these

substitutions because the supplemental information required for a child could be
largely inferred from information regarding an adult member of the family.
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It may be of interest to census workers to note that, as a sample taken
by itself is a smaller operation, a higher grade of worker can be recruited
and trained more satisfactorily than the larger corps of workers that is
required for a complete canvass. It would be wrong, however, to give
the impression that the differences are always large or that the sample
always gives better results. The purpose of this section is merely to say
that differences are to be expected.

Other types of sampling biases, specifically the bias that arises from
failure to randomize the starting points in a systematic selection, or the
tiny bias that arises from a ratio-estimate, are treated elsewhere in the
text.

A word on sample studies of complete returns. Samples of completed
reports, which might be waybills, tax forms, census returns, wage reports,
hospital records, relief records, consumers’ accounts, or the like, con-
stitute one of the chief uses of sampling.?® In fact, several censuses
have been salvaged through sampling, cven after the field-work was
completed. Examples are the 1:1000 sample of the Japanese census in
1923, interrupted in processing by the earthquake, and the 1:50 sample
of the Indian census of 1941. Many of the publications of the census of
the United States in 1940 were tabulated by a 1:20 sample. There is
sometimes reluctance to adopt sampling methods because of a com-
mendable pride in traditional accuracy. But let us look at the problem
in its entirety and sec just how far this accuracy goes. If the study were
purely for accounting purposes, a complete count with an attempt at
perfect processing would be justified or even demanded. It should be
borne in mind that the purpose is not accounting, however, unless the
action to be taken is with respect to each respondent by reason of the
data on his response; an income tax report is an example. Most studies
are for purposes of analysis, wherein the ultimate aim is policy and action
for the future, not the past. For purposes of analysis, even a complete
count, however perfect, is still a sample and must be interpreted as
such (Ch. 7).

Presentation of data requires description of errors and difficulties.”
In the presentation of data the omission of an adequate discussion of all
the errors present and the difficulties encountered constitutes a serious

% The.reader may wish to consult Walter M. Perkins, Simple Methods for Repre-
sentative Sampling in Studies of Public Assistance Cuse-loads (Social Security Board,
Public Assistance Research Memorandum No. 6, Washington, March 1944). At
the time of writing, copies of this publication are on hand for distribution.

Some exercises on the sampling of records occur in Chapter 4 of this book, begin-
ning on page 87.

# Chapter 111 in Shewhart’s Statistical Method from the Viewpoint of Quality Con-
trol (Graduate School, Department of Agriculture, Washington, 1939) should be
read in connexion with these remarks. ’
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defect in the data and is sure to lead to misinterpretation and misuse.
It is common in a sample study to point out the sampling errors, as
should always be done. One of the main things to keep in mind is that
the figures obtained in any survey are useful to the careful research
worker only if the operations by which they were obtained are carefully
described, and all weaknesses reported. There are several ways of
doing this. The paragraph below appears in many of the reports pub-
lished from the Sixteenth Census (1940) on the basis of the 5 percent
sample.

The statistics based on the sample tabulations are expected to differ
somewhat from those which would have been obtained from a complete
count of the population. An analysis of the statistics based on the tabula-
tions of the 5 percent sample of the population for items that were obtained
also for the total population indicates that in 95 percent of the cases the
sample statistics differ from the complete census statistics by less than
5 percent of all numbers of 10,000 or more, by less than 10 percent for
numbers between 5000 and 10,000, and by less than 20 percent for numbers
between 2000 and 5000. Somewhat larger variation may be expected in
numbers below 2000. Even for these small numbers, however, the majority
of the differences between the sample and the complete census statistics are
less than 10 percent, although much larger differences occasionally occur.

The statement of a standard deviation or band of variation in the
form of a plus and minus (e.g., 1123 4 42), along with the number of
independent sampling units on which the calculation is based, is a com-
mon way of calling attention to the sampling errors. The formula for
the calculation must also be given.

Unfortunately there is no simple way of indicating the possible magni-
tudes of the other errors, but it can be done in one way or another. As
an example it is a pleasure to cite a few lines from The Production of
Lumber, by States and by Species; 1942 (Bureau of the Census, November
1943), published under the direction of Mr. Maxwell R. Conklin, Chief
of the Industry Division.

These statistics are based on a mail canvass, supplemented by a field
enumeration conducted by the U. S. Forest Service and the Tennessee
Valley Authority. In the field enumeration, Forest Service and TVA
representatives interviewed mills that did not respond to the mail canvass,
and, in addition, conducted an intensive search for mills. . . . Among the
smaller mills, bookkeeping is generally inadequate. Even the total cut
for a mill may be an estimate, and the species breakdown for such a mill,
particularly in areas of diversified growth, must frequently be estimated
by the mill operator or by the enumerator. . . . Difficulties in enumeration
because of lack of adequate mill records were overcome in many cases where
the mill disposed of its total cut through a concentration yard. In such
instances enumerators were able to obtain information for individual mills
from the yard operator, particularly in the South and Southeast, where
concentration yards are an important factor in the distribution of lumber.
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This approach was not satisfactory, however, when an operator sold his
lumber to several different yards in the course of the year, and where the
records at the concentration yard did not indicate clearly whether the cut
was for 1942 or 1941. ... Mills engaged solely in remanufacturing,
finishing, or otherwise processing lumber were excluded. . . . In a number
of cases, the mill reports were in terms of dressed or processed lumber, since
many integrated mills, i.e., those both sawing and dressing, were able to
report only on a finished basis. The discrepancy, which is of unknown
magnitude, is equivalent to the amount of waste in processing. In can-
vassing integrated mills, however, the cut was counted at only one point
in the processing operation, so that no duplication occurred. . . . An ever-
present complicating factor in the canvass was the extreme mobility of the
smaller mills. . .

Exercise 1. Comment on the following excerpts. Keep in mind the
possible biases in nonresponse, and the aims of the surveys. ‘Think
through the following questions before you comment.

In what ways could the samples of respondents be criticized?

How important was it in each case to obtain interviews of a sam-
ple of nonresponses?

Describe the additional uses that could be made of data on such
subjects if a probability-sample had been taken and the field-work
well controlled, including rigid following of nonresponses or a sample
thereof.

Are the conclusions justified?

Could you devise better procedures at the same cost? Are higher
costs warranted?

a. (From the New York World-Telcgram, 17 Nov. 1947, p. 17.)

To date—two weeks after the questions were sent out—40 pereent of the
replies have been received. This is regarded by professional poll-takers
as a good return and a fair sample. On the basis of answers thus far, these
main trends can already be observed:

1. Further American aid to Kurope is supported seven to one.

2. A two-to-one majority say they would support a $15-billion-to-$30-
billion, four-year plan to put Europe on its fect.

’ b. (Leaflet distributed by the Central Railroad of New Jersey, 1948.)

On November 12, 1947, the questionnaire “Now . .. YOU tell us!”
was distributed on regularly scheduled Jersey Central trains. Here are the
results of that survey, which covered Jersey Central schedules and air-
conditioned coaches for “Commuter Clubs.”

We received 4024 replies to the questionnaire, which we consider sufficient
to give us an accurate cross-section of opinion. . . . In regard to changes in
schedules, however, majority preference indicated satisfaction with present
arrival and departure times. In many cases, requests for changes in
schedules were not only in the minority, but, for all practical purposes,
actually canceled themselves. . . . Overcrowding of trains: Our records
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show that less than 1 percent of the passengers are forced to stand, and
these only for short distances. . . . Poor lighting: The lighting on some of
our battery-equipped cars is not always satisfactory and this is particularly
noticeable during severe cold weather. To correct this, we are equipping
our cars with “head-end” lighting which eliminates the dim lights at slow
speeds and while standing at stations. Two hundred of our cars have been
so equipped and we are continuing the program. We even are making
some changes in the “head-end” lighted equipment which will further im-
prove the illumination, including the elimination of the “flicker” you may
have noticed on our long trains when hauled by the Diesel locomotives.
. . . Poor coffee on ferries: Yes, one person complained about this—and
we’ve spoken to the chef!

¢. (The Evening Star, Washington, 1 July 1946, p. 1.)

The White House reported that telegrams received there since the
President’s veto message Saturday, and his radio address to the country
that night, have been running 50 to 1 in support of the President’s action
on the basis of the first 2500 communications examined.

« d. Criticize this description of a proposed method of study (an actual
example). Bear in mind that this is all of the description.
The questionnaire will be used on a sampling basis, with the size of sample
determined by local conditions.  The number of interviews will not exceed

10 percent of the prospective and present consumers in any area and never
less than 30.

Exercise 2. C(riticize the following plans for a proposed survey of
social workers.  (This is an actual example; practically every statement
represents dangerous technology.)

Since it has not been possible to provide as much publicity for the study
as is desirable, it is believed necessary to send out questionnaires to all
social workers in the state [rather than to a sample] so as to insure an ade-
quate number of replies within a relatively short period of time. More-
over, it will he necessary to make a number of relatively fine classifications
on the basis of the returns that would not normally be needed for a single
state. No ficld recalls are to be made but we plan to send out a short flyer
about a week after the original mailing to all those to whom the original
questionnaire was sent, to remind them to send in their replies.

Exercise 3. The publishers of a certain magazine desire to learn
something about the characteristics of its subscribers. It is a magazine
devoted mostly to commerce, and the publishers wish to learn (e.g.) how
many of their subscribers control the purchasing of typewriters and
other divers types of office equipment within their organizations. A
random sample of subseribers is to be drawn and interviewed, and
amongst a battery of questions, two of them are these:

How many typewriters has your company on hand now, under
your control?



52 THE SPECIFICATION OF THE RELIABILITY REQUIRED

Do you exercise control over the purchase of typewriters in your
company?

The reason for including these particular questions is to have some
basis for selling advertising space to manufacturers of typewriters.
Criticize the above questions. (Hint: how would you carry out the
tabulations to estimate how many typewriters are controlled by all the
subscribers, and how many subscribers control the purchase of type-
writers? Remember that two or more executives in a company may
subscribe to the magazine, and that both or all, because of divided and
group authority, may think that they have jurisdiction over all type-
writers: each typewriter then has more than one chance of getting into
the sample. It would be impossible to untangle the probabilities and
derive an unbiased estimate. An entirely new approach was adopted.
Note that increasing the size of the sample will not help.)

Exercise 4. (Suggested by a remark from Frederick F. Stephan.)
A random sample of individuals or of households is drawn, and a short
screening questionnaire is used with the aim of identifying which of
them belong to a particular class (age group, home owners, farm oper-
ators), which it is desired to study with a longer questionnaire a few
weeks later. Describe a reason why the results of this study will differ
from the results that would be obtained by using the detailed question-
naire on the original and larger sample, and throwing away the ques-
tionnaires that apparently do not come from the class that it is desired
to study. (Hint: the short screening questionnaire does not do its work
perfectly: it admits some to the main study which should not be ad-
mitted, and it fails to admit some that should be admitted. The longer
questionnaire does a better job of screening, but is more expensive to
administer.22)

Exercise 6. In a certain survey a total of 3000 interviews was desired.
A refusal rate of 25 percent was expected in one class of areas, and a
rate of 10 percent in another class. The sample-sizes in these areas were
increased by 4 and § respectively, to allow for shrinkage. Criticize this
procedure. (It does not correct the nonresponse, but it does help to
hold the precision to desired levels.)

Exercise 6. A sample-survey is to be carried out by the quota method
of selection: if the size of the survey is doubled, are your chances of being
interviewed doubled? In the notation of Chapter 4, if n = N are you
certain to be interviewed? (If the survey were a probability-sample,
and n = N, you would be interviewed with certainty.)

# An article of interest here is Joseph Berkson, “Cost-utility as a function measure
of the efficiency of a test,” J. Amer. Stat. Assoc., vol. 42, 1947: pp. 246-55.



PART 1I. SOME ELEMENTARY THEORY FOR DESIGN

CHAPTER 3. MOMENTS AND EXPECTED VALUES

“Yes, books are all right.” Winslow gave a little sigh. “Though it’s
remarkable how little help they offer in some of the more curious problems
of life.”—From James Hilton’s novel So Well Remembered (Little, Brown
& Co., 1945).

A. MOMENTS OF DISTRIBUTIONS

The moment coefficients of a set of numbers. The moment coefficients
of a set of numbers are of great importance in the study of statistics.
Any set of finite numbers possesses moment coefficients. The set of
numbers may be grouped into a distribution (Fig. 2), and this distribu-
tion may describe a universe or a sample or a number of samples
thrown together. It may in fact be a universe whose shape (proportions
;) is determined by calculations in probabilities, rather than by an
actual set of observations.

The source of the numbers is of no importance so far as the formal
definitions of moment coefficients are concerned. So let

Tyy X2y ="y IN

be a set of N numbers, some or all of which may be replicates. Then
their kth moment coefficient about the origin (x = 0) is defined by the
equation
! Zak 1

MEe = N I ¢))
in which the summation is to cover all N numbers. The suffix &£ may
take on the values 0, 1, 2, 3, etc.—0 for the 0-th moment coefficient, 1
for the 1st, 2 for the 2d, etc.

In Eq. 1 the moments are said to be calculated about the origin
(x = 0), but it is often useful to calculate moments about some point
other than 0. To calculate a moment about the point x = a, Eq. 1
is rewritten in the form

! Z( )k (1a)
R = — ry—a a

*TN
in which each z; is measured from a. The mean of the set of numbers is
that value of a about which u; has the value 0; in other words, u; by

definition satisfies the equation
_ [Put £ = 1 and
Z@i—m =0 a = u; in Eq. 1a]
53
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which gives T z; — Nu; = 0, or
1
W = N Z r; = the mean 2)

Otherwise said, the mean u; (or simply x) is the 1st moment coefficient of
the N numbers about 0.

The central moment coefficients are calculated about the mean. Some-
times it will be desirable to distinguish the symbols for moments about
the mean from the symbols for moments about some other axis, in which
case the notation of Eqs. 21 and 22 will be used. The 2d moment
coefficient about the mean has a special name, the variance, designated
by o2 or s? (a distinction between which will be made later), and it should
be noted that

1 dut b =
2 __ 2 [Put £ = 2 and
7= NE (@ = w) a = pin Eq. 1a]
1 2 2
=N21'i — 4 (3)

The square root of the variance is called the standard deviation and
is designated by ¢ or s, whichever is applicable (cf. the Remark, p. 70).

Remark 1. The 0-th moment coefficient of any set of numbers is equal
to 1.

Remark 2. The kth moment coefficient w; is an average value of &,
and the kth root of ux is an average value of «. This can be seen best,
perhaps, by rewriting Eq. 1 in the form

Al](nk+#k+-~- to N terms) = %7(:1:1"+x2"+-~-+ )

The constant u, on the left gives the same result as the variable x;* on the
right. LEach value of k gives a different kind of average (cf. Exs. 4 and 7
on p. 7).

Exercise. Work out the first four moment coefficients about 0 of the
set of five numbers 1, 2, 3, 4, 5; also their variance and standard devi-
ation.

Ansiver: pp =1, p =3, pp =11, pz = 45,
pe = 1958, o =11 — 3% = 2;
c=1/2=141.

The moment coefficients of a distribution. The N numbers may not
all be different; in fact there may be only M < N different numbers, in
which case let the N numbers be sorted into M classes, described by the
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accompanying table and depicted in Fig. 2, for which it may be supposed
that each of the N numbers is written on a poker chip, and the chips
sorted and stacked at the proper positions along the horizontal axis.

ComPOSITION OF THE N NUMBERS

Np1 chips labeled 23
N’,2 “ 3 23

Npm “ «“ M

pl p2 p3 P‘ pS

)

1 L 1 1 1 1 1
P I T |

Fra. 2. A distribution of N numbers. They have been grouped by size into cells
centered at 2y, 29, - -+, 26, 27, the proportions in these cells being py, p2, - -+, Ps, P7.
In the figure Cell 6 is empty; i.e., ps = 0. The centers need not be equally spaced.

The proportions in the various cells will be denoted by py, P2, -« -, Pu.
The whole set of N numbers is composed of its 3 parts, wherefore
ptpttpn =1 #)
Some of the proportions (p;) may be equal, and in a rectangular distribu-
tion, all arc equal. According to Eq. 1, the kth moment coefficient
of the distribution described in the accompanying table (or by Fig. 2)
will be calculated as
1 k k ; k
e = (Np1z1” + Npgzo" + -+ -+ Nparzy©)
= piat® + pazo* +- -+ paant (5)
Its mean will be gotten by setting & = 1, whereupon (writing u for u;)
g = m2z + pez2 +-- -+ pyay = Zpz; (6)

The variance o2 of the distribution is gotten by putting & = 2 and meas-
uring each number from the mean; thus

1
o = F Z Npi(z; — u)? )



56 SOME ELEMENTARY THEORY FOR DESIGN
which reduces to

o? =Zpzd —u? = —4? )
as in Eq. 3, u; being the 2d moment coefficient about O.

Remark 1. It should be noted that the number N does not appear in
these equations, having canceled out. Only the proportions py, pe, - - - are
left. Thus, a set of numbers possesses moment coefficients even if the num-
ber N is unspecified, provided only that the proportions p; in the various
classes are known.

Remark 2. Eq. 5 agrees strictly with Eq. 1 only if all the numbers in a
cell are equal to the central value (2;). When this is not so, “errors of
grouping” are introduced. Much theoretical work has been presented in
the literature on errors of grouping, no treatment of which will be given
here except to mention that the maximum possible error in the mean is
1h, where % is the (constant) class-interval. Errors of grouping are rela-
tively more pronounced for the higher moments, but for any moment they
diminish with the class-interval. On the other hand, the relative stand-
ard error or coefficient of variation of an estimate of the frequency within
any cell increases as the class-interval is diminished, causing the “expected”
frequency to diminish also. For most distributions met in practice, the
errors of grouping are largely under control. Thus, in a distribution of
incomes in a population in which most incomes fall at discrete levels such
as $1000, $1440, 81860, it might be advisable to choose intervals that
would contain these principal levels approximately in the middle. Similar
decisions must be made in tabulating hours worked per week, or weeks
unemployed. When nothing much is known beforehand about the material
being tabulated, it is advisable to specify too many intervals rather than
too few. There are two reasons: first, classes can be consolidated afterward;
second, with most distributions met in social and economic surveys, the rela-
tive errors of grouping are almost certain to be negligible in the first four
moments if there are from 10 to 15 class-intervals. Costs of tabulating
and printing must be kept in mind; they rise rapidly as the number of
intervals increases.

Exercise. The standard deviation of two numbers is half the distance
between them.

The definition of a moment. The kth moment M} of a set of numbers
is defined as the numerator of Eq. 1. In accordance with this definition
it follows that the kth moment coefficient is that quantity which, when
multiplied by the total frequency N, gives the kth moment. In symbols

My = Nu )

When the scales along the axes of a distribution are so chosen that the
area under the distribution curve is equal to unity, instead of the total
frequency N, the curve is said to be normalized. The moment coefficient
i and the moment M are then numerically equal. In statistical work,
distribution curves are nearly always normalized, and it is easy to fall
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into the habit of speaking of the moments of a curve instead of its moment
coefficients.

Remark. The kth moment coefficient is dimensionally a distance raised
to the kth power, but the kth moment is a distance raised to the kth power
multiplied by an area. So, although for a normalized curve the kth moment
coefficient and the kth moment are numerically equal, they are physically
different things.

Moment coefficients of combined distributions. Sometimes in statis-
tical work, after the mean and variance and perhaps other moments of a
distribution have been worked out, supplemental tabulations bring in
additional data requiring that new values for the moment coefficients be
obtained. It is not necessary to recompute the work that has already
been done.

Area or total
frequency = A Area or total
Mean, p, frequency = B
Variance, g,2 Mean, u,

;m{mh‘\ Ak
1in Jﬂﬂh
[ [ Hp

F1a. 3. The means and variances of two distributions have been calculated. The
problem is to find the means and variances of the combination.

It will be useful to go into the matter in a little detail. In Fig. 3 are
shown two distributions. For convenience they are shown disjointed,
but it is not necessary that they be. They will be referred to as the
A-distribution and the B-distribution. The letters A and B will also be
used to denote the separate total frequencies or areas of the two distribu-
tions. A and B are often usefully measured in terms of their ratio to the
total frequency A + B, for which the letters P and Q may be introduced
and defined by the equations

. Q= B (10)
" A+B T A+B

It follows from the definition contained in Eq. 1 that the kth moment
coefficient about 0 for the combined distribution is

Za*
A+ B

The summation in the namerator is to be taken over both parts, A and
B. It can be broken up into two terms, one for a summation of z* over
distribution 4, and another term for the summation of z* over distribu-

(63

BE =
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tion B. Thus
= + z*
B Z zB: _ Apea + Burs
He A+B A+B
= Pura + Quin (12)

wherein u; refers to the combined distribution, and ux4 and uxp to the
two component distributions. This equation can easily be extended to
any number of component distributions in the form
[The subscript ¢ runs

over the number of (13)

component  distri-
butions]

pr = Z P pps

which says that the k&th moment coefficient of a combined distribution is
equal to the weighted average of the kth moment coefficients of the
component distributions. P; is the relative frequency in the 7th com-
ponent, and 2 P; = 1; i.e., the frequencies are normalized.
By multiplying through by N, the total frequency, the last equation
gives
[NP; is the frequency in the
Nuy = Z NP; py; ith component, uy; its kth
moment coefficient]
or
[M; is the kth mo-
My =2 My; ment of the ith (14)
component]
Thus moments are additive.

Remark 1. The distribution shown in Fig. 3 may be regarded as a com-
bined distribution made up of M component distributions, the ith com-
ponent having a moment of NPz;*. Eq. 5 is then only a simplified form
of Eq. 13 in which each component consists of NP; numbers all cqual to z;.

Exercise 1. Let the means of the two distributions 4 and B in Fig. 3

be denoted by u4 and up, and their standard deviations by ¢4 and op.
Prove that for the combined distribution

g = Pps + Qup
o® = Pos® + Qog® + PQ(up — pa)?
= Poa® + Qog® + P(ua — 1)? + Q(up — u)?

Remark 2. If the frequencies A and B are equal, the mean u is midway
between the component means. Whether equal or not, the mean u is
always between them. Only exceptionally u = p4 if @ = 0, and u = pyp if
P=0.

Remark 3. These equations have application in statistical offices when
the means and variances are computed for the returns that have arrived
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up to a certain date. Later, when more returns come in, and there is need
of taking account of all of them to make final estimates, it is not necessary
to recompute ab tnilio the means and variances or any other moment coeffi-
cient, but only to add correction terms to the earlier computations, as called
for in the equations just written. For example, in the spring of 1944,
when sample censuses of certain areas were taken, the mean and standard
deviation for the number of rooms in occupied dwelling places were com-
puted immediately, but the unoccupied dwelling places were not counted

till later. When the figures on unoccupied dwelling places were counted,
the corrected means and standard deviations were quickly computed, and
the sampling errors for the censuses made ready without delay.

Exercise 2. If u(;) is the mean of the ith component, prove that
Z Pi(uw?® — #?) = Z Piluwy — u)?
hence, for the mean and the variance of a combined distribution made
up of any number of component distributions,

r=2P;uu

and

o = ZP;0? + Z Pi(pyy — n)?
=2 Piof? + 2 Pilui?® — )
Remark 4. The sccond term on the right is the external variance of the

separate means uy, po, - - -. Thus the variance ¢ of the combined distribu-
tion is equal to the sum of the “internal variances” (¢,%), properly weighted,

added to the “external variance.”

Moment coefficients of the area under a continuous curve.! For
mathematical convenience it is customary to deal with continuous distri-

bution curves instead of discrete
summations. Actual distributions
of universes and samples are always
discrete, but the probability distri-
butions that are derived by using
continuous curves as approxima-
tions are almost always thoroughly
satisfactory and calculated at con-
siderably less mathematical labor
than if a discrete distribution were
rigidly adhered to. The moment
coefficients of the area under a
curve, about the y-axis, are defined

y
y= f(x)

f(x)

o L dx

Fia. 4. Illustrating the area under the
curve y = f(x), for which moments are to
be computed.

in precisely the same way as the moment coefficients of a discrete
distribution, except that integrals replace summations as the limits of

1This scction and the 14 exercises that follow it may be touched only lightly if
the teacher so desires. The results of Exercises 9 and 13c should nevertheless be

carefully observed.
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the sums that are obtained by taking finer and finer intervals along
the approximating curve. The kth moment coefficient about O of the
curve y = f(z) between x = a and = b is then

b
f z* f(z) dx
= as)

fbf(a;) dr

The limits of integration are to cover the entire curve or whatever portion
is under consideration. The limits will be —o« and 4o when the curve
has no definite cut-off and the entire curve is to be covered. The normal
curve is a familiar example. Sometimes the limits 0 and -+ will cover
the entire curve, an example being the Type III curve (Fig. 57, p. 468)
or half of a normal curve (see Ex. 13, p. 64).

Ordinarily, a frequency curve is normalized—i.e., the area under it
is made equal to unity by proper choice of scales. y = f(x) is the dis-
tribution curve of x or the denstty function of z if f(x) dx is the probability

of z in the interval r =+ } dx. f f(z) dz is the cumulative distribution
—w

Sfunction (c.d.f.) of z. The moment coefficients ux and moments M

are obviously equal numerically when a curve is normalized.

Remark 1. The odd moment coefficients about the mean of a symmetric
distribution are all 0. A difficulty may seem to appear in certain cases
when the limits of integration are —o and +«. For example, the student
might try to evaluate the mean or 3d moment coefficient of the Cauchy
distribution

1
s = 2t (16)
as the integral f T2 2d:c doesnot exist fork = 1,3, 5, ---. Thisdiffi-

culty disappears, however when the principal value of the integral in the
Cauchy sense is specified. This is done by writing

gs = Lim f " 2 f(2) do kodd (17)
b~ wdJd_p

A positive contribution to the integral for a symmetric curve is then annulled
by an_ equal negative contribution, and the integral is 0 for all values of b
if k is odd.

Remark 2. In contrast, an even moment coefficient of a symmetrical
distribution can not be negative.

Remark 3. The Cauchy distribution does not possess a standard devi-
ation because

Accordingly the distributions of Student’s z and Fisher’s ¢ do not possess
standard deviations for sample-sizes n = 3.



3. MOMENTS AND EXPECTED VALUES 61

Exercise 1. a. Prove that the curve y = ¢ between z = 0 and
z = o« is normalized.
b. Its kth moment coefficient is equal to k! (Hint: Prove, by

integrating by parts, that f e *dx =k f ! ¢~ dx, which by con-

tinued reduction gives k!)
c. By the same integral, the kth moment of the Type III curve
y=2"1e* is (k+mn—1),, and its kth moment coefficient is

k+n-— 1)'/f "ledr = (k+n—1)!/(n— 1!

Exercise 2. The moments of the curve y = C f(z) about the y-axis
depend on the value of C, but the moment coefficients do not. Hence,
though the ordinates of a curve be doubled or in fact be multiplied by any
constant factor whatever, the moment coefficients of the curve remain
unaltered.

* Exercise 3. The 0-th moment of any figure about any axis is the area
of the figure.

Exercise 4. As the y-axis recedes further and further to the left from
a given figure, u, po, us', ue!, - - - finally become more and more nearly
equal. Illustrate this principle with the two sets of numbers
(@ 1,2,3,4,5; () 11,12 13, 14, 15.

The numerical calculations give the accompanying table, whence it is
obvious

a b
3 13
\/m 3.316 13.077
v u3 3.557 13.152

that the variation in Col. a is much greater than the variation in Col. b,
although the variances of the original sets of numbers are identical.

Exercise 6. If a figure lies wholly to the positive side of the axis of
moments, then u; < pa! < 3! < ust <---. When the axis recedes in-
definitely, the inequalities tend to equalities.

Exercise 6. No matter where the y-axis is placed, the even moment
coefficients stand in the following order: us! < pet < ug* <---. As the
y-axis recedes indefinitely, the inequalities tend to equalities.

Exercise 7. The harmonic mean H of the numbers z,, 2o, - - -, 2, i8
defined by the equation

1 1
—=—(+++)

H n\ry =z
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The geometric mean @ is defined by the equation

G = \7 Ty . :E;
Find the harmonic and geometric means of the two sets of numbers in
Exercise 4 and compare them with the arithmetic mean and standard
deviation.

Exercise 8. Show that the arithmetic mean of the sum of the
logarithms of »n numbers is the logarithm of the geometric mean of
the n numbers.

Exercise 9. Derive the variances shown for the accompanying panels,
which might represent various possible shapes of universes. Without
knowing the answers, could you have arranged the panels in descending
order of variance?

h Standard
\ Variance deviation
3
|
. h?/24 *.20h
h%/18 *.24h
]
1
2 ), h?/16 25h

r?/36 17h
(The curve is drawn so
| that b = 6q)
F1a. 5. Illustrat- * Approximations.

ing some simple
shapes of uni-
verses whose var-
iances are to be
computed as an
exercise.

The results of this exercise have been very useful to the author in the
planning of surveys (cf. p. 108).
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Exercise 10. a. Reckoning moments about the y-axis, find the 1st,
2d, and 3d moment coefficients of the positive quadrant of the ellipse
22/a® + y2/b® = 1. Answers: 4a/3x, a®/4, 8a®/15x. (HinT: Use z =
a cos 6 and y = b sin 6 for the ellipse.)

b. Do the same for the positive quadrant of the hypoeycloid (z/a)* +
(/b))% = 1. Answers: 256a/315w, 7a%/64,8192a%/45045x. (z = a cos® 4,
y = bsin®4.)

c¢. From considerations of symmétry, write down the three moment
coefficients of the same areas about the z-axis.

d. Without further calculation write down the 1st, 2d, and 3d moment
coefficients of a semicircle of radius » about its diameter.

e. For Parts a and b, take the square root of the 2d moment coefficient
and the cube root of the 3d moment coefficient, and note that u; <
pa! < uzl.  (See also Fx. 4 on p. 61.)

Suggestion. 'The integrals that occur in this exercise can all be thrown

«nto the form j; l"rsin”' 0 cos™ 6 d6 by trigonometric substitution. The value

of this integral is simply

(m — )(m — 3)m — 85)---20r1 (n — 1)(n—3)(n —5)---20r1
m+n)m+n—2)m+n—4)---20rl @

[m and n integral
and positive]

wherein « is unity unless m and n are both even, in which event « is to be
replaced by 4w. This extremely convenient formula was given by Wallis.

Integrals such as f l’rsin"' 0 d6 also yield to this rule; the missing index is sim-
0
ply ignored, save that in determining the value of « it is to be classed as
even. Clearly then,f}'sino db =fh(‘.080 dé = 1.
0 0

t ¢ e t
Exercise 11. Let ¢(t) = [xl ks : + o
age value of the positive numbers x;, 29, « -+, x,: thus, if £ = —1, ¢(f)
is the harmonic mean; if t = 41, ¢(f) is the ordinary arithmetic mean;
if t = 2, ¢(t) is the root-mecan-square; etc. Prove that, if ¢ — 0, ¢(f)
becomes the gcometric mean of x;, x2, - -+, 2 (The case t — 0 gives an
indeterminate form.)

1/t
] . ¢(t) is an aver-

A simple demonstration of the monotonic character of ¢(f) was given by
Nilan Norris, Annals Math. Stat., vol. 6, 1935: pp. 27-9. As ¢ increases,
¢(t) also increases. Hence the geometric mean is larger than the harmonic
mean but smaller than the arithmetic mean, which in turn is less than the
root-mean-square value. This was illustrated in Exercises 4 and 5.
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Exercise 12. If the mass of a body be divided into particles that are
equal and sufficiently small to be treated as points, the sum of the
squares of the distances from the particles to the center of gravity will
be smaller than if measured to any other point. (Due to Legendre;
see David Eugene Smith’s Source Book in Mathematics, McGraw-Hill,
1929.)

Exercise 13. Deduce the formula of reduction
f ame ¥ gy = o%(m — l)f ™24 gy m >0
0 0

and thence show that (a) the 2nth moment coefficient of the nqrmal
curve
1

Y= Vre
about the central axis is (4¢%)"(2n)!/n!; and (b) that the (2n 4 1)-th
moment coefficient of one-half of the normal curve is 2:@ntVg2n+1

X /7 = \7;—'1 (64/2)%" 11,

1 ® 2/.2
Given: —-:f e ¥/ gy =1
\/27“7 —w
and

P L

1 fnxe-'iz’/c’ dr = ._f__:.__ fwe—-v dv = _7
V2ralJ V2r 0 Vor

(These results give the even and odd moment coefficients of half the
normal curve.)

¢. In particular, for the normal curve uy = 3us? = 36* and the
Pearson measure

™
By =—=3
pa?
Exercise 14. Find the limiting average length of the parallel chords
of a circle when the chords are distributed uniformly along (@) a line

perpendicular to the chords; (b) the circumference. Answers: 1xr and
4r/=.

Relations between moment coefficients about the mean and about
some other axis. Suppose that a set of numbers z;, x5, etc., are all
measured from the mean of their distribution, and that their moment
coefficients u1, w2, us, etc., about the mean are known. It is frequently
necessary to know what their moment coefficients would be about some
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other axis, distant u’ to the left (negative side) of the mean. It is fortu-
nately easy to derive a set of relations between the two sets of moment
coefficients, and the work may procced as follows. Let primes be at-
tached to symbols that are reckoned from the new axis. Then

! =x; + 4 (18)
and
we =2 x,-"‘ =2 (&; + M’)k (19)

The parenthetical term (z; + u')* may be expanded by the binomial
theorem, and the relations between the two sets of moment coefficients
written down mentally. In particular, with k¥ = 1 the last equation
gives

W=p+4

requiring u to be zero, as of course it was to start with. If k =2,
Eg. 19 gives
pe' = Z (z; + u)?

3 (@d + 2z + u'?)
= pg + 2up’ + p?

= py + p? [Because p = 0] (20)

which is equivalent to Eq. 8 because y; is the variance, o2.

Exercise 16. Derive the following relations between the two sets of
moment coefficients. On the left are the moment coefficients about the
new axis, which is distant u’ to the left of the mean.

M =1

#I = O + #I

pe' = pp + 0 + 2

ps' = uz + 3uwng + 0+ p?

B = ug + t'ug + 6470y + 0 + p
Etc

k
k
e’ = Z (r) [T T

k k!
where ( ) is the binomial coefficient ——
T rik — r)!

D

The converse problem can be answered by solving these equations
for the unstroked symbols in terms of the stroked ones, or afresh by
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putting x = 2’ — p’. Either way, the results will be the equations
shown below. On the left are the moment coefficients about the mean,
as is obvious from the fact that x = 0.

o =1

g =0

pe = pg’ — p’®

Mz = ug' — 3u'u’ + 2u7°

ne = pg' — dp'ug’ + 6ppy’ — 3™ 22)
Ete.
k
k) 7 \r
Bk —Z(}:(r Wi—r (—u)

Remark. The student should note that in every row of these equations
the sum of the subscripts, with due account of the exponents, is a constant.
(Remember that the subscript 1 is omitted for the mean.)

Exercise 16. Find by direct integration the first five moment coeffi-
cients of a circle of radius r about a diameter and then about a tangent.
See if your results satisfy Eqgs. 21 and 22.

Answer:

klrk

About a diameter, pyy = ———— .- — [k cven]
T 2R+ 2GR’
=0 [k odd]
2k 4+ 1)1* Lo
About a tangent, u;' = - @k A DI [k even or
2k—1(k + 2)"6' O(l(l]

Short-cuts in the calculation of the mean and variance. It can be
seen that the following equations for the mean and variance of a sample
or any set of numbers are identities:

1 < [a being any
i=- Z (x; —a)+a constant  (23)
n “ whatever]

= % Zn: (x; — a)® — [;1; 2 (x; — a)r 29

With a = 0 this reduces to
1
?=-Z222—3% (25)
n ,
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The last three equations are widely used for computational convenience.
Usually the use of Kq. 23, with @ as a convenient approximation to
%, will save a considerable amount of labor.

The accompanying tabular form will be found convenient for simul-
taneous computation of mean and variance. Cols. 1 and 2 show the
original data. Cols. 3 and 4 can be filled in quickly by choosing a con-

COMPUTATIONAL FORM FOR FINDING THE MEAN AND VARIANCE OF A SET OF
FREQUENCIES

(a is any convenient datum)

(1) (2 6] 4)

Abscissa or  Frequency or  Weighted deviation Weighted square of the
x-value weight * Sfrom a deviation from a
x; i yilz: — a) yi(zs — a)?
) % yi(r — a) e
- k) Y2 y2(x2 — a) Y2l — a)?
3 3 yslrs — a) ya(zs — a)?
. . .

™ yar ym(za — a) yu(zy — a)?
Sum N B «
Weighted averages B/N C/N

* Note. If the frequencies or weights are relative to the total frequency or total
weight, then y; is to be replaced by p; in conformity with the previous notation.
The symbol N in this table is then to be replaced by 1.

veniently. The sums N, B, and C are then formed as indicated. The
next step is to find the quotients B/N and C/N. Then the mean and
variance are computed by the equations

+a [Equivalent to Eq. 23]

B

2
- (.N..> [Equivalent to Eq. 24]

Exercise 1. Ten readings of a micrometer screw are listed in Col. 1
below. Use the computational form of the last section to compute their
mean and standard deviation. a. Take a = 1.075 for an arbitrary
datum. The results follow, as the student should verify.
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1) 2 3) @
Deviation from Square of the devia-
Observation Weight 1.076 tion from 1.076
1.078 1 3x1073 9 x 1078
.080 1 5 25
.071 1 —4 16
.076 1 1 1
.081 1 6 36
.082 1 7 49
.077 1 2 4
.073 1 -2 4
.079 1 4 16
.070 1 -5 25
Sum N =10 17 X 1073 185 X 10~¢
Average 1.7 X 1073 18.5 X 1078
= B/N = C/N
Then i +
Z=—+a
N
= 0.0017 + 1.075 = 1.0767
C (B>2
o =——\—=
N N
=185 X 107% — 1.72 X 107
= 1561 X 107°
o = 0.00395

b. Repeat, using 1.070 as datum.
Exercise 2. Find the mean and standard deviation of the frequency
distribution shown below. Let z be the midpoint of the wage or salary

THE SouTH: FAMILY WAGE OR SALARY INCOME IN 1939, FOR FAMILIES WITHOUT
OTHER INCOME

(Characteristics of Families, Sizteenth Census: 1940; Table 17, p. 47)

Wage or

salary income Number of

(dollars) Jamilies

T Yy

0 3,397,500
1-199 858,380
200-499 1,535,080
500-999 1,627,260
1000-1499 1,020,460
1500-1999 709,520
2000-2499 421,060
2500-2999 213,780
30004999 300,320
5000 and over 04,220

Suggestion. Cut off the last three figures and deal in thousands of families.
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interval (0, 100, 350, 750, etc.). Use $6000 for the mean of the group
$5000 and over.

B. EXPECTED VALUES

Definitions: random variable, probability or theoretical distribution,
‘‘expected” value. A random variable or random number is the result
- of applying a random operation. A function of a random variable or
variables is itself a random variable. To the statistician there are two
essential features of a random variable: 7. as the operation is repeated,
it generates a sequence of values of the random variable whose limiting
distribution (called a probability-distribution or theoretical distribution)
can be derived by sufficient mathematical prowess; 2. a particular
random operation corresponding to a particular set of premises (size
of sample, size and distribution of universe, technique of estimation)
may be simulated in the real world by one device or another, such as the
ideal bowl (next chapter) or by selecting the sample by the use of tables
of random numbers (see the exercises in the next chapter, pp. 87-99).
A repetition of the random operation n times produces n values of
the random variable, called a random sample of size n. In conformity
with one of the statements made above, any function of these n numbers
is itself a random variable. Some usual functions are listed below:

The mean

The sum

Any multiple of the mean or sum |of the n numbers

The median constituting a random
Any percentile sample of size n

The standard deviation

The range

The first member of the sample, or the sec-
ond, or the third, ete.

The mean of the first two members

The mean of three successive random sam-
ples of size n

The difference between two random means

The difference between the mean and any constant

Any number calculated from a random sample as an esti-
mate of some characteristic of the universe whence the
sample was drawn

In application, a probability-distribution represents a prediction con-
cerning the shape of the distribution that will be obtained for some
random variable such as the mean, standard deviation, percentile, or
range, of 1000 samples of n. Comparison between a probability-distribu-
tion and a real distribution is one of the main problems of statistical
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analysis, because such comparisons often enable the scientist to under-
stand nature better, which is to say that he is better able to predict the
results of future samples, or in other circumstances to make the equally
useful statement that no valid prediction is possible. Tests to determine
which variety of wheat does best under given conditions, or which
insecticide is best, tests to determine the effect of any medicinal treat-
ment or social program, are but examples of the scientist’s attempts to
predict. The design of samples and cxperiments is the science of
acquiring information at the least cost for making such predictions
possible.

An “expected” value Ez is by definition the mean of the probability-
distribution of a random variable . The standard deviation of the
probability-distribution of an estimate z is the standard error of z (i.e.,
of the procedure or operation by which the estimate z is produced). The
fundamental requirement for the existence of an “expected” value Ex
is that the distribution of z be produced by a random operation.

Remark 1. Asa matter of notation, the Greek letters u and 2 will usually
be used for the mean and variance of a sct of numbers that represent a
universe. For contrast, the symbols Z and s? will be used when the set of
numbers has been obtained as a sample. So far as the formal computation
is concerned, it makes no difference, but there is good reason on other
grounds to distinguish between a universe and the samples that are drawn
from it—in fact, this distinction is precisely the impetus to modern statistical
rescarch. A further differentiation will be needed in dealing with prob-
ability-distributions. For such distributions the symbol EZ will be used for
the mean of the probability-distribution of &; Var & or ¢z for the variance
E(z — E%)? of the probability-distribution of z; E(z — Ez)® will denote the
3d moment coefficient about the mean, etc. As a matter of fact, it will
often be possible to calculate £Z and Var Z without calculating the shape
of the probability-distribution of Z (as in the next chapter).

If by theory it is calculated that a probability-distribution of z-values
contains z; in the proportion p;, 2z in the proportion p,, ete., then the
“expected” value of z, denoted by Ez, is merely the mean of this prob-
ability-distribution, wherefore Eq. 6 may be rewritten as

Ex = pizy + pozz +- - -+ puam (26)

Hence the rule: to calculate the “expected’” value of a random variable
z take the sum of all the values that z can assume, each value (z;) of
z first being multiplied (weighted) by the probability or proportion (p;)
in which that value occurs in the distribution of z.

Now, if p; is the proportion of z-values that has the value z;, then if
a distribution of z? were drawn up, its mean would be

Ez? = py2® + poz® +- -+ pueu® (27)
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A similar expression with exponent 3 would give £z®; the exponent 4
would give Ex*; ctc. In fact, the “expected” value of any function f(x)
will be

E f(x) = p1 f(z1) + p2f(22) +-- -+ pu fzu) (28)
The variance of the probabhility-distribution of = will be

Varz = E(xr — Ex)? [Definition cor-
responding to

= Ex® — (Kr)? Eq. 3] (29)

The two terms on the right can be calculated from Eqgs. 6 and 8 when the

proportions py, pe, - - - are known. Turned around, this last equation is
also useful in the form

Ex* = Varr + (Ex)? = o,2 + (E2)? (30)

These two forms of the same equation are of extraordinary importance
and will be applied many times in succeeding pages. Sometimes Er?
can be evaluated first (as by Eq. 27), and the Var x found from Eq. 29.
At other times the Vara will be known from some source, and Ez?
will be calculated by Eq. 30.

Remark 2. It is instructive to regard the application of the f-operator as
creating a new distribution (called a derived distribution) out of the original
one. The process can be repeated any number of times: i.e., one might
create a first derived distribution with an fi-operator; out of that a second
derived distribution with an fe-operator.

Remark 3. The word “expected” and the symbol E signify a mathe-
matical average calculated for a probability-distribution. They do not
signify that any particular value of x or anything else is really to be expected
in the ordinary sense of the word, either in any one sample or as an average
of several samples. 1n sampling, as in any science, one takes what he gets.
For this reason I use quotation marks and speak of the “expected” value
of a random variable, even though I do not really expect to get it when
sampling,.

Commutation of £ and 3. It is often nccessary to calculate the
“expected’ value of a sum. This can often be accomplished by noting
that the “expected” value of a sum is the sum of the “expected’’ values.
Symbolically,

EXZ=ZE (31)
For example, -

E(x +y) = Ex + Ey (32)

The commutative property of E and Z, just expressed, is very useful
and holds under all conditions, whether the two-way table of z and y
shows independence or not. A proof will follow further on. Meanwhile
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we pause to note that in contrast,
Exy = Ex By (33)
only if r and y are uncorrelated. Otherwise,
Exy = Ex Ey + po.oy (34)
where p is by definition the Pearson correlation coefficient between z and
Y.

Exercise 1. Prove that

a. Fa=a

b. Eax = aEx

c. Var (r 4+ a) = Varz or o,2

d. Varar = a® Varz, or o,,2 = a%s,2

In particular, Var ni = n2 Var Z.

e. E(@ — a)? = E(x — Ex)? + (Ex — a)?
=0, + (Ex — a)®
= o2 onlyif a = Ex

Thus E(x — a)? has its minimum value, 0,2, when @ = Ez. It may be
helpful to see E(x — a)? plotted as a function of @, as in Fig. 6. The
curve is a parabola with intercept o.2.

E(Jc-a)2

N

Ex a

Fia. 6. Showing E(z — a)? plotted as a function ofa. E(z — a)? has its minimum,
0.2, when a = Ez.

Ox

Exercise 2. Prove that, if Ex; = Exzg =-..-= Ezx, = pu, then

E x; =2 Ex; [Interchange E and ]
=n,

m



3. MOMENTS AND EXPECTED VALUES 73
Exercise 3. Prove that

Elzy+ 23+ -+ 2] = sziz + EZ Zx.-xj
1 =1 j=1
= Ez?+E rix; [ #1]
If z; represents the 7th random drawing from a universe, and if any two
drawings (7 and j) are uncorrelated, the last term is 0. If Ez;? = o?
and if the drawings are independent, then E[z; + 25 4 - -+ 1,)° = no?.
This result will be used in later chapters.
Exercise 4. Prove that, for any random variable £ and any num-
ber A4,

E{x — Ez}3 = E(x — A)}® — 3[E(x — A)*|(Ex — A) + 2(Ex — A)®

Exercise 6. Prove that, for any random variable z, the standardized
variable
z — Ex

Oz

has the mathematical expectation 0 and unit variance. ¢, stands for
the standard deviation of the distribution of z.
Exercise 6. Prove that

Z@i— 2y — 9 =Sy —nij

where z;, y; is a pair of numbers, and ¢ runs from 1 to n. £ and § denote
the averages of the z- and y-series.
Exercise 7. Given a universe

a, ag, -+, ay Mean p Standard deviation ¢
Let a sample be drawn and recorded as
Ty, Ty, **°y Ty Mecan & Standard deviation s

x1 being the 1st chip drawn, x; the 2d, ete. Let all the members of the
universe have equal probabilities. Prove that

Ezy=u
Exy =p
Exz=up

whether the sample be drawn with or without replacement.
a. First do this by putting N = 5 and writing down with equal fre-
quencies all the possible values of x; and taking their average to find
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that Ex; = p. Then for each possible value of z;, write down all the
possible values of x,, and take their average to find that Iz = p.
Similarly prove E 23 = u. It is simplest to assume that the drawings
are made with replacement, then to star those values which are to be
excluded when the sample is drawn without replacement and to take
the averages in the two cases. It follows that I % = u whether the
sample is drawn with or without replacement. This type of illustration
has been very helpful to the author.

b. Now derive a proof. DProve E xz = p by noting that when the
drawing is done without replacement, the probability of any chip being

N -1 1 1

— ———— = —, whence

N -1
1
E'1‘2=N(01 +at---tay) =np

drawn at the sccond draw is

Similarly prove that Ex3 = u, K 24 = u, cle.

Exercise 8. Show that if a; has twice the probability of the other
chips, then F 2, 5% u, E x3 # p, ete., and £ & # u. Under such condi-
tions & is a biased estimate of p. (This bias can be removed by weight-
ing; see Ex. 6 on p. 91.)

Exercise 9. Put N = 5 and write down all the possible combinations
of z;x;, and illustrate the fact that

Exixj=Eux; Ex; = u* with replacement
Gisi) :
o2
Ezax; = p® — # Ex; Ex; without “
(i) N -1

Exercise 10 (Proof that EZ = Z E). Let there be two universes,
i.e., two bowls, designated A and B, containing chips marked in the
following manner:

A:alya2’ ety aN
B: bl, 1)2, ey I)A[

M and N may or may not be equal. et p;; be the probability that a;
and b; will be the result of the sth draw from A and the jth draw from
B. Make up a two-way table of all the possible valucs of p;j(a; + b;).
For illustration this may be done with N = 5 and M = 3. By summa-
tion show that

ZZPﬁ (a; + b)) = Zp;a; + Z p; b;
T

Zpﬁ=m and Zpﬁ=pf'
J i

where
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The result so obtained may be rewritten as E(x +y) = Ex + E vy,
which may be generalized to any number of random variables in the
form

EXz=ZFEzx

which is Eq. 31, q. e. d.

Note that this result holds under any values of p;;. If the two drawings
come out of the same bowl, we merely recognize that p1; = P22 = panv = 0.
The results of the above exercises will be needed in the next chapter.

The coefficient of variation. One of the most useful statistical meas-
ures in sampling is the coefficient of variation of a distribution. The
coeflicient of variation of a distribution is defined as its standard devia-
tion divided by the mean. In symbols, the coefficient of variation may
be written

5

v = hd for a universe
n
g f 1

c= - or a sample
Z p (35)
\/V arxr O .

C,orCV.z =— = — for a probabhility-
Ex Ez  gistribution

Tt will not be practicable to try to maintain a strict notation for the coeffi-
cient of variation.

A statement to the effect that an estimate of the total population
of a particular area or class has a standard error of 1.5 percent is really
only a statement of the coefficient of variation of the probability-
distribution of estimates made aceording to prescribed plans. Thus, a
sample estimate of a population might be written

[7500 being the stand-
ard error]

500,000 + 7500
or

500,000 (1 = 0.015)

The figure 0.015 or 1.5 percent is the estimated coefficient of variation
of the sampling distribution of the estimated population.

The student should prove that a coefficient of variation is independent
of the units in which the measurements are made—pounds, kilograms,
feet, centimeters, hours, seconds, etc. A coefficient of variation is not
used to describe a distribution whose mean is extremely small compared
with its standard deviation.



CHAPTER 4. SOME VARIANCES IN RANDOM SAMPLING

Before the inherent variability of the test-animals was appreciated, assays
were sometimes carried out on as few as three rabbits: as one pharmacologist
put it, those were the happy days.—E. C. Fieller, Suppl., J. Royal Stat. Soc.,
vol. vii, 1940-41: p. 3.

A. SOME PRINCIPLES OF PROCEDURE

Some definitions: universe, frame, ideal bowl, random sampling.
This chapter will contain some basic theory for simple designs and for
further development in later chapters. There will be a frame, which is
to be thought of as a list of the N sampling units which constitute the
universe. A list is one kind of frame, but the frame is often a file of
cards, a map or set of maps, or verbal descriptions—any device by which
the N sampling units are definitely identifiable one by one. In sampling
a file of cards, the cards themselves constitute the frame.

For ease in classroom demonstrations, and for simplicity in discourse,
the identification (e.g., name and address) of every sampling unit will
be written on a poker chip, and the N physically similar poker chips
will be placed in a bowl, the ¢deal bowl. One or more of the chips is to
be drawn out of the bowl at random; the corresponding sampling units
constitute the sample. The identifying information is necessary so that
if a particular chip is drawn into the sample, an interviewer may be
sent to the corresponding sampling unit to determine its population. In
industrial sampling, the unit (manufactured article) is usually brought
to the inspector who determines its quality, which in this text will be
called the population of the unit (see Table 1 on p. 84).

Associated with each sampling unit (each chip) is a certain P-value
or probability of being drawn into the sample. The P-values will corre-
spond to some specific procedure of sampling. In the theory to be
developed in this book, the P-values will all be equal within any bowl.!
It is not to be inferred, however, that P-values must always be equal:
some of the recent advances made by Neyman ? and Hansen and Hur-
witz 34 have involved unequal probabilities (e.g., sampling with proba-

1 An_ exception will be seen in the sample of Greece in Chapter 12, in which the
probabilities are sometimes proportionate to size.

2 J. Neyman, “On the two different aspects of the representative method: the
method of stratified sampling and the method of purposive selection,” J. Roy. Stat.
Soc., vol. 97, 1934: pp. 558-625.

* Morris H. Hansen and William N. Hurwitz, “On the theory of sampling from
finite populations,” Annals Math. Stat., vol. xiv, 1943: pp. 833-62.

4 Morris H. Hansen and William N. Hurwitz, “A new sample of the population”
(Bureau of the Census, Sept. 1944). “On the determination of the optimum proba-
bilities in sampling,” Annals Math. Stat., vol. xx, 1949: pp. 429-32.

76
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bility proportionate to the standard deviation of the stratum, or propor-
tionate to some measure of size of the sampling unit). Although the
P-values need not be equal, they must always be known: otherwise
the development of a theory of sampling can not proceed.

In stratified sampling there will be several bowls (sirata), and our
theory, when developed, will apply to each bowl separately. The
P-values may be constant within any bowl, yet different from bowl to
bowl (c¢f. Ch. 6 on allocation of the sample in stratified sampling).

Random sampling with equal probabilities (equal P-values) is simu-
lated in practice by making the chips physically alike, as nearly as possi-
ble, by shuffling them thoroughly (much more thoroughly than might
be supposed necessary), and then drawing a chip after being blind-
folded. Following Shewhart, we shall speak of this procedure as the
ideal-bowl experiment. Sampling theory will give rational predictions
of the distributions obtained by sampling, provided the sampling is
carried out along the line of the ideal-bowl experiment or some procedure
cquivalent to it. In practice, random numbers are used (pp. 86 ff).

Some respect for the word “random’” may be acquired by studying
Shewhart’s Statistical Method from the Viewpoint of Quality Control
(The Graduate School, Department of Agriculture, Washington, 1939).
There is grave danger in assuming that a procedure is random when it
is only haphazard.

The frame and the sampling unit. As has been mentioned in Chapter
1, one difficult problem commonly encountered in sampling is to provide
a suitable frame. Statistical information is desired concerning indi-
viduals, houscholds, farms, firms, areas, manufactured articles, or some
other entity, animate or inanimate. These entities may be called the
ultimate units of the universe. The frame need not show these ultimate
units: often the best frame obtainable merely divides the universe into
an exhaustive set of sampling units (c.g., areas) each of which may
contain ultimate units, none, one, or more than one. It is required that
the totality of sampling units comprise the entire universe of ultimate
units, and that each ultimate unit must be tied to one and only one sam-
pling unit: otherwise the probabilities with which the various ultimate
units may come into the sample can not be stated in advance, and
probability theory can not apply.

A sampling unit (chip in the ideal bowl) might be intended to contain
an individual person; a single household; 2, 3, 4, or more successive
households (a cluster; cf. Ch. 5); a farm; a group of farms; a business
firm; 1 bag or bale; 1 manufactured article; 4 or 5 successive articles;
a whole case of articles, or something else definitely identifiable. Once
a key map or list is made, showing definable units, a random sample of
ultimate units can be drawn, with known probabilities (vide infra).
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In the choice of sampling unit a great deal will depend on the possible
frames that are possessed or can somehow be acquired. Sometimes the
frames on hand permit little choice in the definition of the sampling unit.
Sometimes they permit wide latitude, in which case certain special
requirements can perhaps be met, such as near equality of size as meas-
ured by number of inhabitants or acreage or other content.

A sampling unit that is good for one purpose may not be so good for
another, yet often a set of units, once defined, must be left as they are
for some time to serve several surveys because of the time and expense
required for drawing up a new frame. It should also be noted that any
one survey is multipurpose to some degree, as no survey elicits informa-
tion on only one question. Every survey is thus several surveys in one.
If any latitude of choice is possible in the shapes or sizes of the sampling
units, they should be fitted to the main purpose of the survey.

In areal sampling there is the added problem of striving not only for
a frame of some kind but a frame that describes areal units that are
fairly uniform in size as measured by the number of people, acreage,
inventory, or something else. It will be seen later that if the popula-
tions ay, ag, - - -, ay of the sampling units are fairly uniform, the crrors
of sampling for characteristics closely correlated with these populations
will be small without requiring a large sample.

In terms of the theory soon to be encountered, what is wanted is a
small coefficient of variation, which is often sought by defining arcal
units that are small and as uniform as reasonably possible. The detailed
labor of delineating small units provides good insurance against large
ones, which do the damage (p. 344).

In many instances in census work a frame of small and efficient units
is provided automatically by some inevitable routine operation not
chargeable directly to the sample. The best cxample is a complcte
census, which happily provides a perfect frame consisting of units of
any description, down to the individual person.

In taking a complete census, a listing of the entire population is made,
and it is possible to draw from the listings, either concurrently or sub-
sequently, a sample of (c.g.) every 20th individual, household, farm,
male or female head, wife of head, oldest child, or of people of any char-
acteristic. Sampling was 80 used in the Census of the United States in
1940 to obtain supplementary information from a 5 percent sample of
the population, thus considerably broadening the scope of the eensus
with great economy; and in fact many of the tabulations, not only of
the supplementary information but of the regular information as well,
were carriell out only for the people in the sample. In the census of
1950, still heavier dependence is being placed on sampling; and I under-
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stand that similar dependence is in the plans for the census of Canada
in 1951.

The extent, accuracy, and detail of maps showing recognizable bound-
aries, along with pertinent census information, will be limiting factors
in the choice of areal unit. In the sampling of business and manufactur-
ing firms, lists of large and medium-sized firms are necessary : fortunately
such lists are in many countries kept fairly well current. Lists of the
smaller firms by anything but name and address are incomplete, more
or less: sometimes nonexistent. Fortunately again, lists of the smaller
firms are not so necessary, as incomplete lists of small firms can be
supplemented and corrected by drawing a sample of areas. Lists of the
smaller firms, cven though incomplete, are nevertheless useful also for
control of the field-work in the sample-arcas.

If a city is not too large every address may be prelisted over the whole
city and every nth address selected for the sample, n and hence the
sampling interval N /n being calculated after the manner to be expounded
(ef. the exercise on p. 106). This plan was used in several cities in
America in 1944 for samples designed to give estimates of the number
of inhabitants—an extremely exacting problem in sampling.?

In using a plan of prelisting it is important to stress the need for
thoroughness in listing in order that the sampling units (addresses in
this case) be kept as uniform in size as is reasonably possible, and—even
more important-- that no areas be missed. In the particular surveys
just mentioned, boarding houses and institutions were listed and sampled
separately because they often contain large numbers of people and are
highly variable.

In the United States small areal sampling units are now used in many
government surveys, cach unit containing a small group of households,
farms, or business firms, or even a single household or business or manu-
facturing concern. In rural areas there is the Master Sample of Agri-
culture,® and in urban and suburban areas the Sanborn and other maps
on which very small and uniform segments of arca have been delinecated
through the vision of Morris H. Hansen, by whom also lists of large
and medium-sized business and manufacturing concerns have been
developed. These facilities are useful not only as aids to sampling, but

5 In some of the nine cities, the sample censuses were taken in one stage of sam-
pling, and in the remaining cities the sampling was done in two stages. The theory
and procedure are described in a small volume by Hansen, Hurwitz, Tepping, and
Deming, entitled A Chapter in Population Sampling, which the reader may find
useful, as frequent references will be made to it. Purchase may be made from the
Superintendent of Documents, Washington 25, at the price of one dollar. In future
references the source and date will be listed as Bureau of the Census, 1947.

8 R. J. Jessen, “The master sample projeet and its use in agricultural economics,”
J. Farm Economics, vol. xxix, 1947: pp. 531-40.



80 SOME ELEMENTARY THEORY FOR DESIGN

also as aids to the interpretation of data obtained in complete coverages
of population, agriculture, business, and manufacturing, and for calibra-
tion of the completeness of coverage.

For recurring sample surveys the cost of elaborate maps and lists and
of their upkeep is more than offset by savings in current surveys and
improvement in the quality of the data.

It is often remarkable to observe how fruitful honest efforts can be
when directed toward the procurement of a frame. Ration lists (may
they soon be no more!) have provided frames in more than one instance.
In one experience the electric light company kindly furnished a list of
meters classified by business and residence, which provided the base for
an excellent frame.

Howard Whipple Green’s Real Property Inventory of Metropolitan
Cleveland 7 and surrounding urban area provides an almost perfect list
of addresses for sampling in Cleveland, either for population or business.
Each address is classified by type of business or as a dwelling unit, and
the whole list is brought up to date in the fall of every year. Similar
inventories if developed for other cities would doubtless save their cost
many times over by improving the quality of the information obtained
in market and opinion surveys and other studies of the characteristics
of business and population.

The author had the privilege of working in Japan on samples for
studies of the population in 1947 and was pleased to find remarkable
lists and maps.

In Japan the shikuchoson offices formerly contained complete lists
of everybody in the shi, ku, or chdoson. Furthermore, a separate list
existed for the households in each tonari-gumi or neighborhood associa-
tion which usually consisted of 10 to 15 families. However, these
tonari-gums were officially abolished two years ago for rationing and
other administrative purposes. While it is still true that in a great many
cases, perhaps more than half, nearly all the households in the shiku-
choson are shown on lists in the local offices, in some cases the lists are
not kept up to date and therefore can not be used directly for sampling
purposes. The reliance to be placed on the records varies considerably
from one shikuchdson to another. This is true because there is now no
compulsion to keep up-to-date records of the population. However,
the tradition of record-keeping is an old one in Japan. For this and other
reasons the records in many cases are still complete or almost complete
on a fairly current basis. Furthermore, in the majority of cases, detailed
maps show the location of every household within the shi, ku, or chason.
There is also some variation in the degree to which these maps are kept

7 Address, Real Property Inventory of Metropolitan Cleveland, 1001 Huron Road,
Cleveland 15.
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up to date. Thus, while it is true that the tonari-gumi have been
abolished and are no longer suitable sampling units, the maps still
provide the basic information that is essential for efficient sampling.
They are particularly good for the formation of small areal sampling
units. The following excerpts from a letter from the author’s colleague
William J. Cobb at the present writing in Japan, represent the tentative
opinions of Mr. Cobb and Dr. Kinichiro Saito of the Cabinet Bureau of
Statistics, Tokyo, who made a joint investigation to obtain information
on facilities available for the formation of small areal sampling units
and for other sampling purposes.

All Japan is divided for administrative purposes into shi and chason.
The shi are cities of 30,000 or more population. Ku are divisions within the
shz corresponding roughly to our wards. All Japan outside the shi is divided
into chason, which is a generic name for macht and mura (small towns and
villages). In general the machi tend to be somewhat more urban and of
somewhat larger population than the mura, although this is not universally
true. The term shikuchdson is used to mean all administrative subdivisions

* of the country, including shi, ku within the shi, and chason.

The expedients which may best be used vary from place to place and
even within places. In general, the job is easy. This is because of the
fact that very detailed maps exist, including plot maps, and, in most cases,
inventories of all households in each enumeration district (chdosa-ku) by plot
numbers. The inventories, being in most cases fairly recent, provide a
measurement of the number of households in a given small area which is
highly correlated with the actual number, and therefore extremely useful
for the formation of basic small areal sampling units. Sometimes we use
roads, sometimes streams or other natural features, occasionally plot lines,
which we have verified, are known and can be found. In any case, it is
surprisingly easy to set up small areal sampling units with the basic requi-
sites—determinable boundaries, average number of households sufficiently
small, and very small variation in number of households—in fact, much
easier than in the U.S.A.

For the revision of the wage-survey, we wish to set up a monthly index of
changes of employment. There is of course the possibility of very large
sampling errors in estimates of this kind arising from great changes in one or
a few establishments in a group from which only a small proportion is
selected. I therefore explored the problem of finding other sources of
information from which, at least, some indication of such changes might be
obtained, so that such manufacturing plants could be sampled separately,
with the assurance that we would have about the right proportion of rapidly
changing (in number of employees) establishments. In nearby prefectures,
I asked about this problem and was gratified to find that monthly changes
are reported to the prefectural social security departments for all establish-
ments having 5 or more workers. In some cases these reports may not be
complete in coverage, but preliminary checks indicate that they are probably
adequate to control this source of sampling variation.

The author has had the pleasure of talking with a number of Chinese
scholars who convey the information that China both in urban and rural
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areas is organized on very nearly the same basis, the chia being a neigh-
borhood of approximately 10 families, and the pao consisting of an
aggregate of approximately 10 chia.

Detailed maps showing the plots of land by crop (jute, rice, maize,
ete.) are to be found over almost every province in India, and the accu-
racy is such that Mahalanobis, in sampling for crop-acreages in Bengal,
uses a square of area (grid or quad), stamped randomly on the map,
for the sampling unit (cf. the quotation, p. 39).

National registers in some countries such as Sweden, Nederland,
Belgium, and the United Kingdom provide reasonably accurate frames
for studies of the population on a national basis, either directly from the
register or extended to include direct interviews. IFor local frames,
however, a national register could hardly be adequate, owing to lag in
keeping any national register posted for local areas.

The subsampling of small areas through the use of rough detailed
maps that are produced and used on the spot opens up many possibilities.
An illustration is given in Fig. 10, page 139.

Remark 1. A frequent error made by beginners is to put in too much
effort attempting to equalize the sizes of sampling units. The main require-
ment is to avoid relatively large units. Small units do relatively little
harm (Ch. 10). If a ratio-estimate is to be used (vide infra), the attempts
to equalize the units may be greatly relaxed.

Remark 2. As a matter of fact, even though one were completely suc-
cessful in delineating sampling units of equal numbers of d.us. as meys-
ured on the basis of previous information, the sizes at the time of sampling
will be different because of changes that take place meanwhile—building,
demolition, and natural changes within d.us. (D.u. = dwelling units.)

Remark 3. It should be borne in mind, too, that sampling units that
possess equal populations for one characteristic (e.g., total number of
inhabitants or number of d.us.) will usually possess unequal populations
for some other characteristic (e.g., number of unemployed or number of
people with annual incomes above $4000). However, the populations of
units as measured by one characteristic will often be related fairly closely
to the several populations as measured by many other characteristics. For
characteristics for which this is not so, a successful design for one char-
acteristic may be much less successful for some other. One of the problems
of sample-design is to compromise on such difficulties, not sacrificing one
characteristic too far in order to achieve high efficiency for another.

Remark 4. It is to be remembered that lack of facilities for providing
a frame for a sample will also make a respectable complete count equally
difficult and inaccurate.

Remark 5. When a frame is a list of d.us. in geographical order (e.g., a
city directory) it can and should be used in an unbiased manner so that omis-

. sions do not impair the final estimates. This can be done by defining the
sampling unit as a half-open interval which extends (e.g.) from and includ-
ing No. 17 Varick Street up to but not including No. 19. Dwellings for any
reason not listed are thus given the same chance as others of coming into
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the sample. Omissions of course increase ¢ and the size of sample required
to reach a desired degree of precision.

Drawing the sample from the frame. The frame in some manner of)
other provides an identifying list of the N sampling units that compose |
the universe. A random sample of n units is desired. -

Once the frame is established it is usually not difficult to devise in-
structions that can be followed by alert workmen for drawing a sample of
n units with equal probabilities from the frame. One way is to use
random numbers (see the exercises, p. 87), but in our work here in
Washington we usually use patterned or systematic sampling, whereby the
sample is designated on the frame by a random start and a constant
sampling interval, usually a convenient integer not far from the calcu-
lated value of N/n (vide infra). One procedure for drawing a patterned
or systematic sample of areas with equal probabilities is to number
them on the key map in serpentine fashion, as in Fig. 11, page 141,
commencing (e.g.) at the northeast corner, and then with a random start
o designate for the sample every 5th or every 10th, or to use whatever
other interval is conveniently near to the calculated magnitude of N/n.

Patterned or systematic sampling is simple and foolproof. It gives
excellent geographic stratification, but under certain definable condi-
tions there may be hidden difficulties.® Particular care is necessary in
industrial sampling. But in the sampling of human populations, in-
ventories, farms, and the like, experience shows that systematic sampling
with a random start may be expected to yield small gains over random
sampling, possibly from 2 to 10 percent smaller variance than the results
of a sample of the same size selected entirely at random from the whole
universe.

Much greater efficiency may be encountered under certain conditions.
For example, in forest surveys Osborne ® showed that systematic sam-
pling may decrease the sampling variance tremendously—from 5 to 17
fold. In this book I shall recommend systematic sampling as a practical
foolproof way of drawing samples of human populations, which include
farms and business establishments. Another method of sampling, also
studied by Osborne, is by randomized blocks, in which groups of con-

8a. William G. Madow and Lillian H. Madow, “On the theory of systematic
sampling, I,” Annals Math. Stat., vol. xv, 1944: pp. 1-24. b. Lillian H. Madow,
“Systematic sampling and its relation to other sampling designs,” J. Amer. Stat.
Assoc., vol. 41, 19467 pp. 204-17. ¢. William G. Madow, “‘On the theory of systematic
sampling, II,” Annals Math. Stat., vol. xx, 1949: pp. 333-54. d. W. G. Cochran,
‘“Relative accuracy of systematic and stratified random samples,” 1bid., vol. xvii,
1946: pp. 164-77.

? James G. Osborne, “On the precision of estimates from systematic versus random
samples,” Science, vol. 94: pp. 584--5; “Sampling errors of systematic and random
surveys of cover-type areas,” J. Amer. Stat. Assoc., vol. 37, 1942: pp. 256-64.
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tiguous sampling units are blocked off into contiguous or consecutive
groups or strata, and one or two or more units drawn from each group
by the use of random numbers. In a 10 percent sample, for example,
1 name in every consecutive 10 might be chosen at random. This plan
preserves the advantage of stratification by geographic position or order,
yet it avoids the risk of running into possible losses arising from pat-
terned or systematic sampling.

In Chapter 10, where the appraisal of precision is treated, it is recom-
mended that the subsample by which the appraisal is made be taken
s0 as to reflect the gains and losses of the particular sampling procedure
that was actually used.

Definition of population. Notation for universe and sample. The
population of a sampling unit is determined by measurement, which in
social and economic studies involves answers to questions, perhaps
written at leisure or spoken in direct response to an interview. In
industrial sampling and in surveys of equipment and inventories, the
population of a unit is determined by some sort of visual test, or some
mechanical or electrical test or measurement, which may perhaps be
recorded automatically.

For any sampling unit, whatever it is, the population (a;) depends on
the particular characteristic being measured and on the procedure for
measuring this population. For a given procedure there are in any one
household as many values of a; as there are questions in the enquiry.
Some possible sampling units and values of population are listed in
Table 1.

TABLE 1. SOME EXAMPLES OF POPULATIONS

Sampling unit or chip Characleristic Population of the unit, a;
Household Total number of inhabitants 5
Same household Number of males 20-29 employed 0

“ “ Number of girls under 15 in school 2

Adults in household  Satisfaction with laundry service 0 if satisficd
1 if one is not satisfied
2if both are not satisfied

Manufactured article Defective 0 if good
1if bad
“ “ Diameter 1.061 inches

In this chapter the population a; of sampling unit 7 is to be deter-
mined by a complete coverage of all the ultimate units therein. In
Chapter 5 the population a; will be estimated by a second stage of
sampling.

It is brazenly assumed in the development of this. theory that all
measurements are exactly reproducible; in other words, any two inter-
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viewers will elicit the same information for the population a; of sampling
unit 2. The sampling problem will thus be purely one of selection. This
course is adopted here, not because errors of measurement and inter-
viewing are any less important than the problems of sampling, but
rather because this book treats only the random errors of selection.

Numerically the universe consists of a set of N finite numbers, the N
populations a;, ag, - -+, ay. The universe therefore possesses a mean,
a standard deviation, a range, and other statistical measures. A sample
consists of a set of n numbers drawn from the universe. A sample will
thus also possess a mean, a standard deviation, a range, and other
statistical measures.

The N populations a; of the universe need not all be different. If
some of them are equal, the N populations of the universe may be
grouped into M classes, assumed to be centered at 2y, 25, - -, 2y, the
respective proportions in these classes being initially ' py, p2, -+, Dy
as depicted in Fig. 2 on page 53. According to what has just preceded,
the population of the universe (for any particular characteristic) is

A=a+at+ay §

The mean population per unit is

A
b=y ()
and the variance of the universe is
o = -]— i (a; — u)?
N & T
| &
-5 Dt = @)

1

Now to return to the problem of sampling, it was stated earlier in this
chapter that every sampling unit in the bowl must have associated with
it a certain P-value or “probability”’ of being drawn. It is the mathe-
matical manipulations of the P-values that build up probability-
distributions for estimates computed from random samples.

As was also stated earlier, the P-values of the chips in the bowl may
all be equal, or they may not be, but in either case it is absolutely essen-
tial that the probabilities be known. When the theory corresponds (or
is intended to correspond) to drawings that are made with replacement,
the P-value of each chip remains constant. An element may then
appear twice or thrice or more times in one sample of n draws. But

10 If the drawings are carried out with replacement, the adverb “initially’”’ may be
omitted.
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when the drawings are made without replacement, an element, once
drawn, has a P-value of 0 until replaced; hence it can not appear more
than once in one sample.

It will suffice for the purposes of this book to identify a calculated
probability-distribution with the theoretical or predicted distribution of
a particular procedure of sampling, interviewing, and estimating. The
mean of the probability-distribution of x is called the “expected” value
of the estimate r, and the variance of this probability-distribution is the
predicted variance of x.

The proper P-values to assign to the chips depend on the method of
drawing. Experience has shown that when carefully manufactured
physically similar poker chips are placed in a smooth bowl and very
thoroughly shuffled, blindfolded drawings therefrom produce distribu-
tions in good accord with the probability-theory in which the P-values
of all the chips in the bowl at any one time are equal. But if the weight
or the texture of the chips affects their frequency of appearance in
samples, as when the finish of the red chips is rougher than that of the
white, the probability-distributions calculated on the basis of equal
P-values will almost surely depart considerably from the actual results
of real samples, and bias will result.

If certain people, such as families of managers of business establish-
ments, fail to respond to a questionnaire or refuse to be interviewed,
they have P-values of 0, and the distributions calculated on the basis of
equal P-values for everyone in the sample may be considerably in error.
These failures to respond or to be interviewed cause bias and alter the
equations or at least the constants (such as certain variances of the uni-
verse) for calculating the sampling variances, because the responses con-
stitute a sample only from that class of family or business establishment
which will respond: the other class, the hard core of nonresponse, is left
out unless special treatment is given to them (intensive follow-up or
face-to-face interview). On the other hand, experience has shown that—

when employees, households, firms, areas, or any other sampling
units are drawn by the use of random numbers or some equivalent
device, with P-values properly assigned (not necessarily equal) in
the various strata;

if no discretion is left to the interviewer as to who is in or out of the
sample;

if the response from the clements selected for the sample is near
100 percent, or if adequate procedures are carried out to break up
and elicit answers from a sample of the hard core of resistance;

then the bias of selection (Ch. 2) is practically eliminated, and the
sampling tolerances of selection are closely predictable by sampling theory.
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It is now necessary to introduce a notation for the n populations of a
sample. The populations of the chips in the universe can be listed on N
lines or cards, as stated earlier; but in recording the population of a sam-
ple on n lines, a change in the symbol for population is required because
the first chip drawn into the sample can come from any one of the N
lines on which the universe is listed, and thus it may or may not be equal
to a;. The distinction between the members of the universe and of a
sample will be assisted by the use of two sets of letters, a; for the popula-
tion listed on the 4th line of the universe, and z; for the population re-
corded on the 7th line of the sample.

In conformity with comments in Chapter 1, it is important to recog-
nize the fact that a; is the result of applying a particular operation
(interview, test, or weighing procedure) on a sampling unit. If the
operation is altered, intentionally or otherwise, a new set of values of
a; may be obtained. The theory of sampling can only predict proba-
bility limits for the result of expanding a particular operation of measure-
ment to every member of the universe. It can not predict the result
of some other operation (p. 18).

EXERCISES ON THE USE OF RANDOM NUMBERS AND ON THE BIASES OF
CERTAIN SAMPLING PROCEDURES

At this point the student should acquire and learn to use a table of random
numbers. Some of the following exercises will assist. An excellent table
of 100,000 random numbers is contained in Fisher and Yates’s Statistical
Tables for Biological, Agricudtural and Medical Research (Oliver & Boyd,
193%), which is indispensable not only as a set of tables, but also as a book
on statistical methods. Another table of 100,000 random numbers was
published by M. G. Kendall and B. Babington Smith, Tracts for Computers,
No. 24 (Cambridge, 1939). A new table of 105,000 numbers in groups of
5 digits has been issued by H. Burke Horton (Interstate Commerce Com-
mission, Washington, 1949). Tippett’s famous table of 1927 is now out of
print. A sample page of random numbers appears in the Appendix for
assistance in the following exercises.

Exercise 1. a. Explain how to read out of a table of random numbers
a number lying between 1 and 72 in such manner that all numbers be-
tween 1 and 72 have equal probabilities of being drawn.

b. A sample of 100 cards is to be drawn from a file of 759 cards all of
which are to have cqual probabilities. Explain how 100 random draw-
ings may be made with random numbers.

¢. Show how to use two columns of a table of random numbers to
provide 10 random starts between 1 and 100. (Hint: 1 = 01, 100 = 00.)

d. An interviewer is told to interview the housewife in every seventh
dwelling unit in a sample of small areas (“blocks”’). Show how he may
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randomize his starting points in the areas, and thus avoid ‘“‘corner
bias,” without the use of random numbers.

Exercise 2. a. A sampling interval of 10 is to be applied with a
random start between 1 and 10 inclusive to a universe of 106 cards.
Show that every card has the same probability of being drawn. This
procedure gives a systematic sample.

b. An unbiased procedure is one whose ‘‘expected” result agrees with
the total population of the universe, which in turn is defined as the sum
of the populations of all N sampling units when each is measured with
the same carc as is exercised in the sample. Illustrate this definition
by writing any 12 numbers on 12 cards. With 5 for a sampling interval,
write down the results of all 5 possible samples (starting pomts 1, 2,
3, 4, 5). Introduce these estimating procedures:

Mm
X=———E :
1ml~’l«'
and

=k N [k = 5, the sumpling inter-
- Z e val]

Here M = 12, m is the number of cards in the sample (2 or 3), and z;
is the number on the ¢th card drawn into the sample. Compute X,
and X, for all 5 samples, and find the average values of X, and X,—
in other words, their “expected” values.

Suggestion. As an illustration of what is wanted here, let the 12 cards
be identified and sampled as shown in the accompanying tables.

Card i=1] 2, 3 4 5 6, 7, 8 9 10, 11, 12
Numbera; =2, 3, 5, 6, 6, 7, 9, 10, 14, 20, 25, 30

M
Sum =Z z; = 137
1

M
Sample 2z Xy =;Ez.~ X =52
1=1,6,11 34 136 170
2,7, 12 42 168 210
3,8 15 90 75
4,9 20 120 100
5, 10 26 156 130
Average 134 137
Standard error -
Note that—

i. X1is biased. How much? (Answer: 184 — 137 = —3.)
7. X3 is unbiased, but apparently fluctuates over a greater
range than Xi.
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¢. Calculate the standard errors of the two estimates X; and X,, and
enter them in the table.

d. Which estimate would you prefer in practice?

Exercise 3. Explain nonmathematically why you would expect the
variance of any estimate derived from a systematic sample to change
when the order of the members of the universe is shuffled.

Exercise 4. Often the files or lists that are to be sampled are located
in several places, some here, some there, miles apart.

a. Devise a plan by which a uniform sampling interval, giving a

proportionate sample (Ch. 6), may be applied to all the files simul-
taneously by as many workers as there are files. (Hint: Provide a list
of random starts, as many random starts as there are files to be sampled.
The author has done this with as many as 90 random starts. It may
of course happen by chance that two random starts are the same, and
if the sampling interval is less than the number of files, some of the
starts must be the same.)
« b. Why not deliberately give all workers the same random start?
(In some types of work it would make little or no difference whether
the starts were randomized, or the same random number used for all.
Both procedures are unbiased, but there may be a gain in precision if
the starts are randomized.)

¢. Would you be worried if a particular file contains only 98 cards
and the random start assigned for that file was 1217 What would you
do about it? (Nothing: this file simply does not contribute to the sam-
ple. Some other file, as small or smaller, might and occasionally will
receive a low number as a random start and will contribute to the sample.
Moreover, if the sample were to be redrawn, over and over, a file that
does not contribute one time will contribute another time and in the
right proportion of times. All this should be explained to the workers;
otherwise they may suppose that the sampling procedure is defective
through oversight, and they may in good faith and with the best of
intentions draw some cards out of a file that should be skipped, to give
it representation. Why would this impair the sampling procedure?)

d. Suppose that in some if not all the files the practice has been to
put the rural cards at the front of the file. Would you modify your
plan?

Remark. Perhaps as a preliminary step the rural cards might be counted
and totalled, so that urban and rural cards could be sampled separately with
prescribed random starts, just as if the number of files were doubled. The
urban and rural intervals need not be the same and may in fact be adjusted
8o that approximately 1000 cards will be drawn from the urban universe and
1000 cards from the rural universe; separate estimates may then be pre-

pared if desired. But if separate estimates are not desired, and if the urban
and rural accounts are not greatly different, I would not go to the trouble of
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sampling them separately. Exact expressions for the gains and losses of
stratified sampling will be found in Chapter 6.

Exercise 5. A list contains the names of all the people in an area,
along with certain information concerning each, such as sex, age, rela-
tionship to head, school attendance, employment information, and per-
haps other details as might be obtained by taking a complete census.
The heads of the families are designated II. Some lines on the list
do not contain names but contain notes regarding the description of the
area, special difficulties encountered, explanations for the continuation
of a particular family on another sheet, and the like. To save time and
expense, the characteristics of families will be tabulated by a 5 percent
sample instead of by a complete tabulation. The procedure will be
to draw a 5 percent sample of heads, and to carry out the tabulations
for the families whose heads are in the sample. The question is then
how to draw a sample of heads so as to get a good 5 percent sample of
families.

a. Show that any of the 8 plans described below will give a 5 percent
systematic sample of heads.

7. With a random start take every 20th line.
7. With a random start take every 20th name.
#1. With a random start take every 20th head.
w. With a random start take all the heads on every 20th shect.
v. From every successive 20 lines, draw one at random.
vi. From every successive 20 names, draw one at random.
vii. From every successive 20 heads, draw one at random.
vit. From every successive 20 sheets, draw one at random, and
take all the heads on these sample sheets.

b. Which plan do you think will give the smallest variance? (Answer:
141 or vit, under conditions usually met in practice.)

¢. Would the extra expense of using ¢ or vii be justified? (The
answer depends on many considerations of cost, which vary depending
on circumstances. In my own experience, I should be inclined toward
plans 222 or v, especially as it is possible for alert workers to use these
plans without making a separate list of heads:)

d. Suppose that the listing has been carried out by name, by family—
head, wife, oldest child, etc., as in the regular census procedure, 30, 40,
or 50 lines per page. The top lines of all pages will contain a preponder-
ance of heads, and most heads are male. The bottom lines, on the other
hand, will frequently be vacant: instructions to leave no lines vacant
will not be wholly successful. The first line of the first page will in fact
be the head of a family in a corner house; the second line will be his
wife; ete. Then follows a second family, and a third, etc. Show that
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to the extent that lines are left vacant at the bottoms of pages, the
systematic procedure ¢ will be subject to sampling biases (loading in
favor of heads, or wives, oldest children, etc.) unless the precaution is
taken to divide the schedules into groups roughly equal in size (enumera-
tion districts will do) and to randomize the starting point from group to
group, or to rotate it systematically from line 1 to line 20. (Cf. a paper
by Deming, Stephan, and Hansen, ‘“The sampling procedures of
the 1940 population census,” J. Amer. Stat. Assoc., vol. 35, 1940: pp.
615-30.)

Exercise 6. A file of cards contains one card for each address in an
area. At some addresses there is 1 family, at other addresses there
are 2 families, at others 3 families, at some addresses 10 families.
An estimate of A, the total savings of all the people in the area, is
desired.

a. If the cards are sampled with equal probabilities, and if all the
families listed on a sample card are interviewed, then the estimate

[Unbiased. M is the total
number of cards; m the

X = M i Y, number of cards in the
T m - i sample; X; the total sav-

ings of all the families on
the ith card of the sample]

is an unbiased estimate of A, the total savings, no matter how distributed
amongst the familics of the arca. (Recall Exercise 7, p. 73.)

b. Suppose that a sample of families is drawn by taking a family
at random from cach of m sample cards which have been drawn with
equal probabilities. Show that the estimate

[Biased. m is the number of

m cards in the sample; z;

N Z . the savings of the family

Ti drawn from the ith card;

N the total number of
families.]

is biased. (ITowever, the bias may not be serious; see Exs. 9 and 11.)

¢. Suppose again that a sample is drawn by taking a family at random
from each of the m sample cards which have been drawn with equal
probabilities. Let there be N; families on card ¢ (1 = 1, 2, ---, M),
and let z; be the savings of the family drawn at random from the card
that was drawn at the ith draw (@ = 1, 2, ---, m). Show that the esti-
mate

M
X=— E Nix; [Unbiased]
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is an unbiased estimate of A. This device, although it yields an unbiased
estimate and does not require counting all the families, does require
weighting by the factor N;, which will raise costs and complicate the
estimating procedure. The variance of this estimate will be calculated
in Chapter 5 where sampling in two stages is treated.

d. Show that the estimate

X = 1%{5 (i N.‘) (i .r,) [Biased]

is biased unless N; and z; are uncorrelated.

Remark. A very important lesson is contained in the four estimates
occurring in this exercise: two estimates are biased ; the other two are not. A
similar circumstance was met in Exercise 2. The bias or lack of bias in an
estimate must thus be attributed not only to the manner of drawing the
sample but to the manner of performing the calculations as well. More-
over, as will be seen, the variance of an estimate will also depend on the
manner of performing the calculations. The procedure of estimation
must therefore always be considered as part of the sample design.

Exercise 7. a. Suppose that probabilities P; are assigned to the
M cards (z = 1, 2, ---, M) and that a sample of m cards is drawn at
random with these probabilities. Let A; be the total savings shown for
all the families listed on card 7. Also let

M
A= A; = the grand total
2
Let X; be the savings of all the families on the card that is drawn at the
ithdraw (¢ = 1,2, -- -, m) and redefine

1 X;
X =— — Unbiased
mZP.- (nbised]

Prove that
EX=A

hence that X is an unbiased estimate of A for any set of probabilities
P;, none 0.
An important question is how in practice to assign these probabilities to
give the smallest possible variance to X. The next part of the exercise

shows that it is desirable that P; be assigned as nearly proportional to A4;
as possible with the knowledge at hand.

b. A sample of one card (m = 1) is to be drawn. Show that if P;
is proportional to A4;, which denotes the savings shown on.card: (z = 1, 2,
-+ -, M), then the variance of the sample is 0.
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Solution
Var X = E(X — EX)?

. 2

; f—ll_—A] [Because EX = A]
1

[PutPi = 4;

k=iAi=A]
1

Note: The student may wish to show that the variance of X, although not
0, is very small if P; is nearly but not quite proportional to A; for every 1.
Of course, probabilities cannot be assigned in exact proportion to the sizes
A;, because the A; are not known exactly. In practice approximations
« afforded by previous census or other information are used for assigning
probabilities.
This result may be extended to samples of any size m by dividing the
universe into m strata and then drawing one card at random from each
stratum.

Exercise 8. In a survey of earnings a random sample of households
was drawn with equal probabilities, and when several members of a
sample household had income, one of them was drawn at random and
an estimate of the average earnings per worker was calculated by the

formula [Biased. Here m is the
number of households in

1 & the sample, and also the

T = — Ez; number of earners; z; is

m 45 the earnings of the earner

selected from the zth

household of the sample]

Show that this estimate is biased but that the bias can be removed by
weighting the sample earner in a multicarner family by the factor N;,
where N, is the number of earners in the ¢th household of the sample.
An unbiased estimate is thus [Unbiased. The symbols m

and z; are as defined in

the preceding equation,
~ m N = N/M, N being the

s _ 1 Z N total number of earners
2 = mN i in the universe, and M
! the total number of house-

holds therein. N is the

average number of earners

per household.]
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The bias of the estimate Z, will be derived in Exercise 11. If N and N
are not easily determined, as by counting, the ratio-estimate of Exercise
10f may be used.

Exercise 9. A card-file has been built up by commencing the
history of each client on a card. With the passage of time some people’s
histories (accounts) run over on to two or more cards. A sample of
accounts is to be drawn. If the cards have equal probabilities of being
drawn, the individual accounts do not, as accounts covering several cards
have higher probabilities than accounts that cover only one card.

Examine the theoretical and practical advantages and disadvantages
of the two following plans for drawing a 1:50 sample of accounts:
(@) with a random start, draw every 50th account; (b) with a random
start, use a caliper to mark off intervals of 50 cards; include an account
in the sample only if its initial card is at the commencement of one of
these intervals.

By a clever device first used by Mildred Parten, the overexposure
of accounts that cover several cards may be partially avoided by drawing
cards systematically or at random with equal probabilities but taking
into the sample the account next following any card that is drawn.
Show that although the individual accounts do not have equal proba-
bilities under this plan either, the estimate

,, [n is the number of accounts

P _l . in the sample; z; the
T Zl v ith account drawn into

the sample]

will have small bias provided there is little correlation between A; and
N;_i, wherein A; is the ith account in the universe 0 = 1,2, ---, M)
and N;_; is the number of cards in the preceding account. Ny is to be
counted as Nyy.

Solution
Let A; be the amount of the ith account in the universe ( = 1,2, - - -, M),
. 1 n 1 M
BlaS=Ei—y=;ZE’.lI.'—ﬂ [#=A—IZIA,]

1 E N M -
=22y Ai—r IN=D N; N =N/M]
1 1 1

LS Wi = W)
== i-1— N]4;
N £ !

See also Cornfield’s correction for overexposure on page 126.

1 See Frederick F. Stephan, ‘“Practical problems of sampling procedure,” Amer.
Soc. Rev., vol. 1, 1936: pp. 569-80.
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Exercise 10. An electric company has 9800 pages of maps, bound
into volumes, showing the locations of poles. On some pages there is
only 1 pole; on others, 2, 3, or more poles—sometimes as many as 20 or
25. It is desired to draw a sample of poles in order to examine their
condition and the condition of the cables and wires and cross-arms
that the poles carry. The total number of poles is known from the
accounting department to be about 105,000, and it has been decided that
the sample should consist of approximately 1000 poles drawn systemati-
cally. Every pole and likewise every other picce of equipment sup-
posedly possesses a ‘“percent condition” which upon examination will
be found to lie between 0 and 100, depending on its age, amount of rot,
treatment (whether creosoted or not), or amount of rust, injury, and
other factors such as loading, soil, and weather conditions. A erew of
2 inspectors will be sent to examine every pole in the sample and the
equipment on these poles. An average ‘percent condition” for the
universes of poles and for every other type of equipment will be calcu-
IAted from the sample thus examined.

As there arc 9800 pages of maps, and 105,000 poles, there is an
average of about 10.7 poles per page. A sample that averages 1 pole for
every 10 pages will therefore be about the desired size.

a. Show that the following plan does not give equal probabilities to
the poles. “With a random start between 1 and 10, stop at every 10th
page, and from these sample pages select a pole at random.”

b. The estimate [Biased. m is the number of

1 & pages in the sample; z;
I = — x; the “percent condition”
m & of the pole drawn from

the 7th sample page]

for the average percent condition of the universe of poles is therefore
biased when the sample is drawn in the manner just deseribed. (How-
ever, the bias may not be serious; sce Exs. 9 and 11.)

¢. Show that a sample consisting of all the poles on every 105th page
with a random start will also give a sample of about the right size and
will give equal probabilities to all poles. The estimate

[Slightly biased. n, the num-
n ber of poles in the sample,
1 ‘ is a random variable, hence
n & i this is a ratio-estimate. z;
is the condition of the tth

pole of the sample]

will, however, be slightly biased, and this plan would probably have high
variance because of the likelihood of similarity between adjacent poles.

d. Another plan, giving equal probabilities to all poles, is simply
to count poles on the maps, beginning with pole No. 1 on page 1, and
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with a random start between 1 and 105, count off every 105th pole for
the sample. Show that the estimate just written in part ¢ is now
unbiased.

Remark 1. Because of the likelihood of high serial correlation between
adjacent poles, this plan may be expected to give much smaller variance
than the previous plan of drawing all the poles on every 105th page.

Remark 2. Tukey’s independent subsamples. By increasing the inter-
val to 1050 and using 10 random starts between 1 and 1050 it is simple to
specify 10 independent subsamples of 100 poles each. Moreover, the
teams of inspectors (1 or 2 men to a team) might be designated 4, B,
C, D, E, F (if there were 6 teams), and they might be assigned to these
subsamples equally at random or in some other balanced design. The
variability of the inspectors will thus cancel out, leaving a pure measure of
the sampling error along with separate estimates of the variability in per-
formance of the teams of inspectors and the variance between teams. This
plan has been used by the author at the suggestion of Professor John W.
Tukey and Dr. W. J. Youden. (Cf. p. 353 for the reference.)

e. Show that the same size of sample would be obtained with two
stages of sampling (next chapter) by setting

wherein M /m is the counting interval for pages and N;/n; is the counting
interval for poles. For example, let M/m = 5 and N;/n; = 21. Then
1. with a random start draw every 5th page into the sample, numbering
these pages ¢ = 1, 2, 3, ---; 7i. count the poles on these pages only,
beginning with the first pole on the first sample page, and continue
serially to the end; 777. with a random start mark every 21st pole for the
sample (on the sample pages only, of course).
Remark 3. In practice the precision of this plan will be found close to
the single-stage plan suggested in the preceding part of this exercise.
Remark 4. To introduce Tukey’s plan of independent subsamples,
increase the counting interval for poles to N;/n; = 210, and take 10 random
starts between 1 and 210.
If desired, the pages may be drawn with probabilities closely proportional
to their sizes as measured by number of poles, as is suggested in Exercise 12.
f. Suppose that the sample consists of one pole selected at random
from every 10th page. If z; is the condition of this pole, and if there
are N; poles on the page whence it came, the estimate

m

E N X3

e [Slightly biased; a ratio-
F=— estimate, to be encoun-

“ tered in Ch. 5]
2N

1
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may be used. This is a ratio-estimate, so-called because the denominator
as well as the numerator is a random variable. With this estimate, the
total number of poles need not be counted. However, weighting by the
factor N, is required and this may be burdensome (as in Ex. 6¢). More-
over, the variance of this estimate in this particular application would
probably be pretty high and it would be far preferable to go to the

trouble of using the sampling procedure of part d or e.

Exercise 11. Compute the bias in the biased estimate
m [In the sample, m pages, m
i = l Z . poles. The pages have
m & ¢ equal probabilities; the
poles do not}]

which was encountered in the preceding exercise, part b.

Solution
Let a be the condition of pole k in the universe (k = 1,2, - - -, N) and put

“w e

1 as thus defined is the true average condition of the N poles of the universe.
Also let a; be the average condition of the N; poles on page t. Then

ZI

Biasin £ = EZ — u

=%z"::E1‘."‘#

11
-;Z:i Gt a+-+au} —p
M " [M is the total num-
= L — 7 ber of pages; N =
M 21: N Z: i NM the total num-
ber of poles]

= 3% Z N — Noas

Thus the bias in the given formula may be estimated in advance, provided
something is known about the correlation between N; and ;. In particular,
if Ns and @; are uncorrelated, the bias is 0.

Exercise 12. In the property of a large public utility company there
are approximately 235,000 electrical multiple terminals, these being a
mixture of cross-connecting terminals and distributing terminals, located
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in hundreds of buildings, scattered over a large city and several counties.
An estimate of the physical condition of this property is desired. The
detailed maps of the company show where each of these 235,000 ter-
minalsislocated. The maps consist of 18,000 sheets, bound into volumes.
The number of terminals per sheet ranges from 5 up to possibly 150,
although some sheets contain only 1 terminal and some may contain
more than 150. Discuss and criticise the following plan of sampling
(an actual plan used by the author).

i. Assemble all the maps and freeze them until the sample is
completed.

#2. Number the volumes 1, 2, 3, - - - and also number the sheets
consecutively through all volumes. '

i1i. Make a quick eye-estimate T; of the number of terminals
on Sheet ¢ (i =1, 2, 3, ---). If this number appears to be more
than 30, allow 2 or 3 more seconds for the estimate.

. Record this estimate T'; and the cumulative total, in the
manner shown in Table 10, page 394.

v. Let T = Z T;. Suppose that a sample of about 300 terminals
is desired. Take
T
C=_—
30
for the counting interval, which is to be applied successively with
10 random starts to draw 10 subsamples of sheets.

vi. For the sample of terminals from Sheet 7, first number the
terminals on this sheet from 1 to T;/. (T is an exact count and
will be more or less than T;, depending on how closc the estimate
T; happened to be.) Draw a random number Z; between 1 and T’.
Terminal Z; will be in the sample; also terminal Z; + T if it exists.
If the eye-estimate was less than half the correct value T/, there
may be a 3d terminal Z; + 2T; in the sample. But if T; > T/,
it may be that Z; > T/, in which case there is no sample from this
sheet.

vii. Show that every terminal has the same probability as any
other one of coming into any subsample; hence that an unbiased
estimate of the average physical condition of the universe of ter-
minals will be the simple average

zjr being the condition of the kth terminal in subsample j. The
superscript (j) runs from 1 to 10 for the 10 subsamples. Actually,
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the sample-sizes n,, ny, - -+, nyo will all be practically equal. The
grand average
1 10
P o= — @
10 &

would be used as the final estimate of the overall condition of the
universe of terminals, and

__lz—up
10
%Z[im“ﬂz
1

would give an upper confidence limit to u by the use of the Nekras-
soff nomogram on page 555. As each £ is very closely normally
distributed because of the large number of terminals in each sub-
sample, the conditions underlying the development of the t-test
are in this case well satisfied.

t2

Additional exercises on sampling biases will be found on pages 242 ff.

B. SOME GENERAL THEOREMS ON VARIANCE

Calculation of the mean and variance of the probability-distribution
of the estimated sum and mean. The procedure to be followed here is
a general one, applicable to any universe that has a variance. If at
any time all the chips in the bowl have the same “probability” or P-value,
then the P-value to be assigned to any one of them is

1
Number of chips in the bowl

Imagine that every chip in the universe bears a label typified by a;,
the population of the 7th sampling unit. The first chip x; drawn in
any sample might bear the label ay, ag, - - -, or ay. It will be assumed
that x, is a random variable; that it varies by chance from one sample to
another; that it has a theoretical distribution with a mean and variance
which can be computed by the theory now to be developed.

Imagine that a large but finite number of samples has been drawn.?2
There will be an x; for the first sample, an x; for the second sample, ete.;

2 1f the chips of any one sample are drawn without replacement, each sample of
n chips is to be returned to the bowl before the next sample is drawn.
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likewise an z, for the first sample, an z, for the second sample, etc.
So there will exist—

A sequence of z; values

£ 1 '3 43
X2

&}AN&SI

Each of these sequences is a set of numbers and has a distribution. The
shapes and means and variances of these distributions change more or
less as they are extended by taking more samples, but to each sequence
there corresponds a probability-distribution, and the present problem is
to calculate the means and variances of these probability-distributions.
Later on, the exact shapes of these probability-distributions and mean-
ingful ways of comparing them with the distributions of actual drawings
may become a problem of interest (Ch. 9). For any one sample of
the sequence compute

The sum of the sample, z=x+ 1+ -+ 2, )

. . N
The estlmat.ed population X == Nz )
of the universe, n

The estimated mean popu- T
lation per sampling unit % = — 6)
in the universe,

S

In a moment it will be seen that X is an unbiased estimate of the total
population A in the universe, and that % is an unbiased estimate of u,
the average population per unit.

The problem of finding the “expected” value of the sum z for samples
of n is the problem of finding the mean of the probability-distribution of
z. To proceed, it is noted first that

Ex = E(xy + 2o+ -+ z,)

[Theorem
=FEx+Exo+---+Ex, EZz=ZXEz, (7)
Ch. 3]

Now Ez; = p for all drawings, whether with or without replacement.
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This is so because any chip left in the bowl must be as good a sample
as one already drawn out. As a matter of fact, the probability-distribu-
tions of 1, x2, - - - are all identical to each other and to the original dis-
tribution of the a;. (See also Ex. 7 on p. 73.) It follows that

Ex = nu ®
whence
1 ] -
Ef=—-FEx=p
n J ©)
EX=Nuy=4

An estimate is unbiased if its “expected” value agrees with a particular
characteristic of the universe. Thus %, according to Eq. 9, is an unbiased
estimate of u, which is by definition the average population per unit.
Likewise NZ and X are unbiased estimates of the total population 4
of the universe.

Next, the problem is to find the variances of the distributions of X
and Z.

Varz = E(x — Ex)? [Definition; last chapter]
= Ez? — (Er)? [An algebraic identity]
n 2
=5[] - oy
C[F a4 3 Y] -
T T=1 i=1
(i#:)
N 1 n n
=1In —zf+ E g ] — (np)?
n n n
[Because EZ 2= Z Ex? = Z (6 4+ u?)
1 1 1
= n(e* + uz)]
=@+ ) — (W) + E)_ Y xa (10)
i=1 j=1
(J#%1)

To evaluate the double summation on the right it is necessary to go
separate paths, depending on whether the sampling is done with or
without replacement.'* The derivation will be continued in Table 2.

12 This order of presentation was suggested to me by my friend William N. Hurwitz
of the Bureau of the Census.
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TABLE 2. VARIANCES VALID FOR ANY UNIVERSE

With replacement Without replacement
n n n n n n n ”
EZ Z Tirj = E Z Ezxz; EZ Z T = Z Z Exix;
=1 =1 i=1 j=1 1=1j=1 i=17=1
Gt G U= TE)
= n(n — 1)Exir; [f#id =nn— D)Era; [j # 4]
= n(n — 1) Z Z 3 @id; =nn —1) Z Z N(N a.a,
=1 j=1 i=1 Jj=
(VEX))
n(n—l) non-—1 ul K,
(Z ) NN:T[(Z“*‘)‘Z:“*]
n(n — 1) 2 n on— 2 . 2 ,
=— (Np) (11 —EN—“ [(Nw)® — N(e* + 9] (11)

Line by line, the explanation is this.
First apply the thecorem EX =2 E (p.
71). Next, by symmetry, each product
z:z; has the same “expected” value re-
gardless of ¢ and j, and there are n(n — 1)
cross-products in a sample of n. Next,
the P-value of any one cross-product is
1/N? because there are N2 possible prod-
ucts, including the admissible values
may, azap, etc. It follows that

o? = ne® + np? — (np)?

n(n — 1) 2
+ N (Nw)

= no? (12

Then, because 2 = 2/n = X/N, it fol-
lows from Exercise 1d on page 72 that

2 o
o ==

(13)

Line by line, the explanation is this.
First, apply the theorem EZ =Z E (p.
71). Next, by symmetry, each product
z;z; has the samc “expected” value re-
gardless of ¢ and j, and there arc n(n — 1)
cross-products in a sample of n. Next,
the P-value of any cross-product is
1/N(N — 1) because there are N(N — 1)
possible products, excluding the inad-

missible values a;a;, asas, ete. It follows
that
o2 = no? + nu? — (np)?
n(n — 1) 2 2, o
+ NN = [(N#) — N(e®+n7)]
N —-n
= V1 ne? (12"
= (1 =2 ne? (12"

Then, because £ = z/n = X/N, it fol-
lows from Kxcrcise 1d on page 72 that

N —no?
2 — — ,
®"N-1n 13)
;(r_ﬁ.)f 13"
= 7 (13")
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TABLE 2. VARIANCES VALID FOR ANY UNIVERSE (Continued)

With replacement Without replacement

The square root of each member gives The square root of cach member gives

a N—-—n o ,
oz = N (19) oz = \’N——:T n (14)

. (l n o (147)
- 2N/ /n
Then as X = Nz (Iq. 5) it follows Then as X = N (Eq. 5) it follows
that that
ox = Noz (14a) ox = Noz (14a’)

By dividing both sides of Eq. 14 by EE By dividing both sides of Eq. 14’ by
or u, and by recognizing the cqualitics  ET or g, and by recognizing the cqualities
#/Ef = z/Exr = X/EX, it is scen that #/Ef = x/Ezx = X/EX, it is seen that

CV.i=CV.r=CV. X (15 CV.z=CV.z=CV.X (15)

o Ny ,

= n (6) “Vy—1yn W
= .__"_ L ’”

a (1 2}\') Vn 16"

where v = o/u, being the coefficiecnt of where v = o/u, being the coefficient of
variation of the universe (p. 75). variation of the universe (p. 75).

Remark 1. It is to be noted that the two columns correspond to two
different sampling procedures. The results are illustrative of the fact that
if two sampling procedures are different, their variances are also different.

Remark 2. As N — o while the sample-size n remains finite, the results
on the right approach those on the left. Moreover, if n = 1, the results
in the two columns are identical, as should be so.

Remark 3. The factor (N — n)/(N — 1) in Egs. 12’ and 13’ is known as
the fintte multiplier because it corrects for the finite size of the universe
when the sampling is donc without replacement. It is approximately
equal to 1 — n/N. Thus, if the sample decimates the universe (n = 0.1.V),
the finite multiplier is closely 1 — 0.1 or 0.9, wherefore nonreplacement
reduces the variances of X and & about a tenth and their standard errors
about half as much, or 5 percent (note the term n/2N in Egs. 14" and 16”).

It may be seen from Eqs. 16 and 16’ that the effect of the finite multiplier

. s . coon 1 v\?
is very closely this: if fo be defined as the sampling fraction NN ( C)

calculated withouf the finite multiplier, then f = fo/(1 + fo) will be the cor-
rected sampling fraction [Yates, Sampling Methods (Griffin, 1949): p. 246].

Remark 4. Other derivations of Eqs. 12 and 12’ will be found in the
exercises on pages 119 and 131.

Further characteristics of the probability-distribution of the mean.
As an exercise, the student is asked to find the 3d and 4th moment
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coefficients of the distribution of the means of samples of » drawn with
replacement from any universe possessing 1st, 2d, 3d, and 4th moment
coefficients. For convenience let the mean u of the universe be 0. o2
will be its variance, and 8o = us/ue® = ps/o*. The collected results are
shown below.!

1. Ei=up=0 . [Assumption)
o
7. E#* = Var& + (£7)? = — [Because u = 0]
n
ves e M
1. Ei® = %
n
. L 304 1 4 3t ot
0. Ex =T+“*§(#4—30)=‘2—+"*§(ﬁ2—3)
hence n n n n
w

1
v. ﬁz(-’i‘)—3=—(ﬂz—3)

wherein 8;(Z) denotes the ratio £&*: (Var £)2.

These results illustrate how the distribution of the mean approaches
the normal curve of standard deviation o//n. The skewness disappears
rapidly with increasing sample-size because of the n2 in the denominator
of Ez3. B, — 3 for a normal curve is 0 (p. 64); hence the last relation
shows that 82(Z) approaches the normal value 3 with increasing sample-
size.

Remark. The reader should note that no finite number of relations like
those shown above really proves that the distribution of & approaches the
normal; they only show how the approach is made. A rigorous proof of the

approach to normality involves the use of the characteristic function, and
the assumption that all the moment coefficients of the universe exist.

Solution for Part i3t
1 n 3 [x: denotes the ith
Ei* = S E (Z :t,-) element of the
n
v sample]

[Z, 4, k denote dif-

1
T w {F Z i+ B E vtz + EZ 2‘;111‘;.} ferent elements
1.k of the sample]
;:5 {nps E Er? Ex; +Z Ez; Ex; F;‘}
13k
1
=—lms 40 + 0}
= — as required

" The relation between 8 for Z and 82 for the universe was given by L. Isserlis,
“On the value of a mean as calculated from a sample,” J. Royal Stat. Soc., vol. Ixxxi,
1918: pp. 75-81.
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These results follow because z; and z; and 2 are independent, being differ-
ent elements of the sample (though perhaps the same element of the uni-
verse) ; wherefore Ex*z; = Ez;? Ex; = 0 because Ex; = u = 0. The result
for EZ¢ is left to the student.

Use of the above theory. The importance of the theorems of variance
that have just been derived is difficult to exaggerate. They are true for
any universe that possesses a standard deviation. They are applicable
to single-stage problems in which the sampling units are drawn inde-
pendently and at random (i.e., not in clusters, Ch. 5).

Once the frame is provided, the theoretical problem from then on is
to determine in advance the standard error of an estimated total (X)
or mean (Z), and to calculate in advance the required size and cost of a
sample that will yield a desired precision, such as a coefficient of varia-
tion of 5 percent. The essential quantity is the variance o2 or the coeffi-
cient of variation vy of the universe which is to be sampled: once these
are known, the required size of sample can be calculated. Unfortunately
o and ¥ may not be known very closely before the sample is taken;
nevertheless with some intelligent effort, supplemented by some numeri-
cal investigations of previously acquired data or by a pilot study, ade-
quately good prior estimates can almost always be made. Once a fairly
good estimate of ¢ is made, the required size of sample (n) can be calcu-
lated. The smaller ¢ is, or v, the smaller the sample required to give a
sample estimate within some prescribed range of error, such as a stand-
ard error of 5 percent.

Experience along with good mathematical training is needed for the
numerical guidance which is absolutely essential in the planning of a sam-
ple. Theoretically, the distribution of a universe can have almost any
variance whatever, but there seem to be observable upper limits to ¢ and
v in nature, imposed by physical circumstances. Some grocery stores are
bigger than others, some farms bigger than others, some trains longer
than others, and some families bigger than others, but there seem to be
natural limitations to many things. Sizes of banks and corporations,
whether measured by demand-deposits or capital, vary more than in-
ventories of grocers; and when sampling (e.g.) financial institutions to
determine their total cash on hand, Series-G bonds, or net income before
taxes, these institutions should, if at all possible, first be grouped or
stratified by size as of some previous date, to cut down the coefficient of

15 Early examples of the use of pilot studies and recurring surveys, in which each
survey furnishes improved estimates of the variances and other characteristics of the
universe, by which subsequent surveys can be carried out at decreased cost or in-
creased precision, are furnished by P. V. Sukhatme, “Contribution to the theory of
the representative method,” Suppl., J. Royal Stat. Soc., vol. ii, 1935: pp. 25368,
p. 255 in particular; and by Mahalanobis, references to whose work will be found on
page 39. This idea is common practice now in several statistical centers.
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variation within classes (Ch. 6). In sampling for the total inventory of
grain, sugar, or tires held by retail dealers, it is useful to know that such
universes almost never have coefficients of variation greater than 3.
If they do, there is something wrong with the planning, because with
some care the big dealers or warehouses (which are responsible for the
high coefficient of variation) can usually be discovered and isolated and
sampled separately, perhaps 100 percent. The inventories of the smaller
dealers should then have a much reduced coefficient of variation. With
some care the coefficient of variation in a stratum of inventories can often
be made as low as 1.5 or 2. Any reduction in the variance of the universe
cuts down the size of sample required for attaining a prescribed or
aimed-at sampling error (such as a prescribed standard error of 5 per-
cent). With a coefficient of variation of 3 for the universe, the sample-
size required for a 5 percent cocfficient of variation in the total estimated
inventory would be calculated in the following manner. From Eq. 16’

N-—n 2 n—1 2
peBn (Y fi 2ol () -
Nn-1\¢/ | " w~=-1l\c
wherein C stands for the coefficient of variation of the estimates X, z, or
Z. For a rough calculation, the finite multiplier might be neglected,

giving
2
Y
=|— 18
" (C) a8

as would be obtained from Eq. 16. Now, if ¥ = 3 and C is dcsired at
5 percent, then

3 2
n = (-) = 60% = 3600 (19)
.05

If v could be decreased to 2 by any deviee, or a 7 percent coefficient of
variation tolerated in the sample-estimate, the sample-size could be
greatly reduced. The finite multiplier should not be neglected if the
sample is bigger than 10 percent of the universe. The effect of the finite
multiplier is to reduce the required sample by the factor fo/(1 + fo) as
already mentioned.

Sampling for total acreage in wheat or some other crop is ordinarily
difficult in the United States when a farm or group of farms forms the
sampling unit; this is because of nonuniformity in size of farm. This
difficulty is being reduced by constructing lists of extra-big farms and
specialty farms, which may be sct off into a separate stratum for separate
treatment. The coeflicient of variation of the remainder will be much
reduced. In India, where holdings are much smaller and more uniform,
the coefficient of variation of the area in rice or jute will run about
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unity, so I am told, after the large holdings are set off into a separate
stratum—a relatively easy job there, because large farms are few and
well known. Mahalanobis uses a geometrical grid for a sampling unit,
which is stamped at random on a map: his unit, being of constant size,
is independent of the size of farm (cf. the references and quotation on
pp. 39 ff).

In sampling for crop-yield (bushels per acre), Sukhatme in Delhi tells
me that the coefficient of variation of the number of bushels per acre of
rice, wheat, and likewise the yield for many other crops, measured be-
tween fields within a village is usually somewhere between } and 3.
The coefficient of variation measured between villages is somewhat
smaller, + to 2. Abnormal areas or abnormal rainfall may raise or
lower this figure, but usually the required sample (number of cuts)
for a 5 percent coefficient of variation in estimated crop-yield can be
calculated in advance with considerable confidence.!®

Exercise 1. For many cities in the United States the coefficient of
varfation in the number of inhabitants per dwelling place is somewhat
less than unity, often perhaps from 0.7 to 0.9. Assume it to be unity,
for safety, and that a certain city contains about 40,000 dwelling places,
a frame for which has been provided by a complete listing of dwelling
places. The estimate of the number of inhabitants is to have a coefficient
of variation of 1 perecent. Find the required size of sample of dwelling
places.

Solution
Turn back to Eq. 17 and write

N-onwy_ =l 1)“
"=NZi\c _{1 N—l}(('

wherein C stands for the desired coefficient of variation of the estimated
number of inhabitants. Withy = 1 and C = 0.01 the required value of n
would be 10,000 if N were infinite. With N = 40,000, it may be seen that
n = 8000.

Exercise 2. Some pieces of a particular type of property (such as
meters, switches, relays) belonging to a public utility company vary in

18 Some useful numerical variances and theory will be found in the following
papers by P. V. Sukhatme: “Reports on crop-estimating surveys: outturn of wheat
in the Punjab, 1943-44,” “Outturn of wheat in the Northwest Frontier Provinces,
194445, ‘‘Outturn of paddy in Madras, 1945—46,"” ‘“Outturn of paddy in the Central
Provinces and Berar, 1945—46,” all published by the Indian Council of Agricultural
Research (New Delhi); “Random sampling for estimating rice yield in Madras
Provinee,” Indian J. Agric. Sci., vol. xv, 1945: pp. 308-17; ‘‘Random sampling for
estimating rice yicld in Kolaba District,”” Proc. Indian Acad. Sei., vol. xxiii, 1946:
pp. 194-209; ‘“The problem of plot-size in large scale yield surveys,” J. Amer. Stat.
Assoc., vol. 42, 1947: pp. 297-310.



108 SOME ELEMENTARY THEORY FOR DESIGN

condition only between 80 percent and 100 percent of their value when
new. (The range of variability is small because the apparatus must be
kept in excellent condition, else customers complain.)

a. Turn to Fig. 5 on page 62. Assume a rectangular distribution
between the two given limits and show that a sample of only 133 pieces
selected at random will provide an estimate of the total value of this
type of property with a 3-sigma error band of 14 percent, which is well
below the limits of observation. Thus, if the value of a particular type
of property is $200,000, its value would be determined by this sample
within a 3-sigma band of $3000, which is well within any rational basis
for argument.

b. If the distribution were right-triangular, with the base at either
end, the required stze of sample would be 89. '

¢. If the distribution were normal, the required size of sample would
be only 45.

Remark. This exercise illustrates the use of Fig. 5 on page 62 which has
been helpful to the author in circumstances in which previous sampling
experience is lacking, but in which enough substantive knowledge can be
mustered for identifying the universe (or some stratum thereof that is to be
sampled) as approximately rectangular, right-triangular, or some other shape
suggested by the figure, and definitely contained within certain limits (80
and 100 in the above exercise). Under the circumstances of this exercise,
for example, a sample of no more than 133 pieces would be required. Any
shape, once assumed, fixes ¢ and v, upon which the calculation of the re-
quired sample-size may proceed. After the sample is finished, the precision
of the results will not be a matter of conjecture, but will be calculated inde-
pendently of any assumptions that entered the planning stages (Ch. 8).

In the design of a sampling plan for measuring a new material, I prefer
to make use of previous experience with similar materials or operations,
along the lines just described, in preference to placing complete reliance
on the use of some small number of measurements of the new material.
No new problem is ever entirely new. Someone can always be found whose
knowledge and experience can be translated, with the aid of theory, into a
guide to a sampling plan not far from optimum. As experience accumulates
with a “new’”’ material there may be a chance to revise the plans.

Exercise 3. Bales of tobacco are being unloaded from a ship and
from previous experience it is known that the coefficient of variation
o:u of the weights of the bales from this particular source is not more
than 5 percent. A load of N = 1267 bales is to be unloaded, and its
total weight is desired with a precision of 1.5 percent for the 3-sigma
limits. Solve Eq. 17 for n and observe that a random sample of n = 93
bales will be sufficient. In practice, a systematic sample of 1 bale in
every 12 would be a good plan. Then the estimated total weight would
be X = Nz, where Z is the average weight of the n bales in the sample.
o and px and the standard error of the estimate X should be computed
after the sample of bales is weighed.
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Special results for a universe of two cells. Sometimes the tabulation
plans of a survey call for a dichotomy or the classification of the elements
of the sample into two and only two mutually exclusive categories.
Sampling from a universe of two categories is sometimes called “sam-
pling for attributes.” A few examples of dichotomies are written in the
accompanying Table 3. It has been assumed all along and will continue

TaABLE 3. EXAMPLES OF TWO-CELLED UNIVERSES

Object Dichotomy
Chip 0 1
“ White Red
Area Rural Urban
House Occupied Vacant
Person At work Not at work
“ Under 14 14 and over
Family With 1 child or none  With two or more children
Farm Under 10 acres 10 or more acres
Industrial product | Accepted Rejected
“ “ Good Defective
“hip or household | zy k)

to be assumed that the elements have been unequivocally defined so that
when drawn into the sample there will be no difficulties about classify-
ing them into one pile or the other. Let the universe contain initially N
chips, classifiable into two categories as follows—
Ngq chips colored white, each counting x;
Np 113 19 red, {3 'Y 1.2
g and p are the relative proportions; ¢ + p = 1. The mean of this
universe is
p=qz1 + pr2 = 71 + plrz — 1) (20)
and its variance is
0? = qr,® + pro? — u? [Eq. 8. p. 56]
pglre — 1,)? (21)
A special case of great practical utility is provided by setting &r; = 0
and rg = 1 (ealled “the 0, 1 basis”). This system of numbering is
ordinarily tacitly adopted in counting defectives in a lot or in a sample,
in counting vacancies in a housing survey, or in counting the number of
boys under 10 in a community of children. On the 0, 1 basis
uw=1p [Putz;=0andz =1inEq. 20] (22)

a2 = Pq [« “« « “  « Rq.21) (23)
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Suppose now that n chips be drawn to make a sample. The drawings
are to be made independently and at random, which only means that we
know the rules for assigning the P-values to the chips. The rule will
be that, at every draw, every chip has the same probability of being
drawn as any other chip still in the bowl.

Let several samples be drawn. If the » chips of a sample are drawn
without replacement, they are to be returned before the next sample is

White Red
_Ne__

Ne UNIVERSE

1 1

0 1
1st sample

1 1

0 1
2d sample

T T

0 1
3d sample

] 1|

0 1

F1a. 7. A bowl-universe has in it initially N chips, Nq being white and counting O,

and Np being red and counting 1. Several successive samples of the same size n

arc drawn, with or without replacement after cach draw. The chipsin each sample

are stacked as shown. The number of red chips varies from onc sample to an-

other. The problem is to find the theoretical distribution of 7, the number of
red chips in a sample of n.

drawn. The white (0) and red (1) chips of each sample are to be stacked,
as shown in Fig. 7, and compared with the universe shown at the top.
The number of red chips (r) varies from sample to sample; it is a random
variable. In some samples there may be no red chips at all (r = 0).
In other samples there may be 1 red chip, in others 2, ete.; and, finally,
in some samples there may be n red chips. After some large number of
samples is drawn, r being recorded for each, a distribution can be made
for r; also for r/n.

Some interesting and useful results can be set down at once by re-
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writing the equations of Table 2 in terms of a two-celled universe,
replacing u by z; + p(xe — x;) and ¢® by pg(rz — ;)%2. On the 0, 1
basis, £ is r/n, and nZ is r. It should not be difficult for the student to
derive from Table 2 the equations exhibited in Table 4.

TABLE 4. VARIANCES FOR SAMPLES FROM A TWO-CELLED UNIVERSE

With replacement Without replacement

For any two-celled universe
Er = nuy = nxy + np(xs — 21) (24) Ez = nu = nxy + np(xe — z1) (24")

n
— npq(ze — z1)* (25"

Var z = npg(rs — z1)? 25) Varz = 1—1::

= (1 - %) npg(zz — z)? (25”)

It is also important to note that the C.V. z is the same as the C.V. r and
CV.r/unifzy =0.

For a 0, 1 universe

Er =np (26) Er = np (26")
N —

Var r = npgq 27) Varr = - :anq @7)

= (1 - %) npqg  (27”)

EZ=p (28) El=p (28)

n n

r q r N —n pq ,

Var — = — (29) Var - = ——uw — (29"
n o n n N-—-1n

N =
cV.r=CV..=4/L @0 cv.r=cv..= \/ "L 309
n np n N-—-1Vnp

(-

(30")

~

The theoretical distribution of r and r/n in samples from a two-celled
universe. So far, we have found the mean and variance of r and r/n,
these symbols denoting the number of red chips, and the proportion red,
respectively. This is a considerable amount of information, to be sure,
but one might well proceed to enquire into the shapes of the probability-
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distributions of r and r/n. This is the problem of finding a series of
probabilities for various values of r for a given sample-size n. The
symbol P(r, n, N) will be used for this probability, N being the initial
size of the universe. As we shall see, the letter N can be dropped when
sampling with replacement, because it disappears from the final result
(cf. the last line of Table 5).

TABLE 5. DERIVATION OF THE PROBABILITY THAT A SAMPLE OF SIZE 7t WILL CON-
TAIN . — 7 WHITE AND r RED CHIPS

With replacement

Without replacement

The number of combinations that can be
formed with n — r white chips and r red

ones 18
(’)

The number of ways of drawing a sample
of size n — r from Ng distinguishable
white chips is

(Ng™"

The number of ways of drawing a sample
of size r from Np distinguishable red
chips is

(Np)
The total number of possible samples
containing n — r white and r red chips

drawn from a universe containing Ng
white and Np red chips is therefore

(%) @ar—aor

The total number of possible samples of
n chips that can be drawn from N dis-
tinguishable chips is

Nn

The reciprocal of this number is the P-
value of any one sample. Therefore the
sum of the P-values of all the samples

The number of combinations that can be
formed with n — r white chips and r red

ones is
(")
r

The number of ways of drawing a sample
of size n — r from Ngq distinguishable
white chips is

Ng-N¢g —1-N¢g —2---N¢g—n—r—1

The number of ways of drawing a sample
of size r from Np distinguishable red
chips is

Np-Np —1-Np —2---Np —r — 1

The total number of possible samples
containing n — r white and 7 red chips
drawn from a universe initially contain-
ing Ng white and Np red chips is there-
fore

n—r factors

)

(1:) Ng-Ng—1-Ng—2-- -Ngq—n—r—1
X Np-Np—1-Np—2---Np—r—1

r factors

The total number of possible samples of
n chips that can be drawn from N dis-
tinguishable chips is

N-N—-—1:-N—-2.--N—-n-—-1

The reciprocal of this number is the P-
value of any one sample. Therefore the
sum of the P-values of all the samples
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TABLE 5. DERIVATION OF THE PROBABILITY THAT A SAMPLE OF SIZE M WILL CON-
TAIN # — r WHITE AND r RED CHIP8 (Continued)

With replacement Without replacement
containing n — r white and r red chipsis  containing n — r white and r red chips is
1 P(r, n, N)
n 1
Po,m = 3 (7) Wor—way -

NN-1N-2---N—-n—-1

n
x(7)

r
X N¢g-N¢g—1---Ng—n—r—1
XNp-Np—1---Np—-r—1

(o) ()

- n n—r, ¢ - —_— (31')
(r) P (31) ( N)
[This is known as the rth n
term of the binomial [This is known as the rth term of
or Bernoulli " series) the hypergeometric series)

Note that the letter N has disappeared. Note that the letter N appears in the
Only the constant proportions ¢ and p  final result, along with the initial propor-
appear. tions ¢ and p.

The symbol (7:_) denotes the number of different combinations that can

be made with r red chips and n — r white ones. Another symbol C:I, which
means the same thing, is sometimes used.

Thus, samples drawn with replacement give the binomial or Bernoull:
series, whereas samples drawn without replacement give the hyper-
geometric series.'® The two terms, binomial and hypergeometric, when
calculated and compared numerically for particular values of n and r,
will be found in near agreement when N is large in comparison with =,
and the agreement improves as N increases relative to n (see Ex. 5,

p. 122).
It is next to be noted that
r=(n—rr +re=nr+ (xg —z)r (32)
"z 1
T=-=x+-(rz —z))r (33)
n n

17 After Jacques Bernoulli (1654-1705), who studied this series with ability and zeal.
1¢ The Bernoulli or binomial series is also hypergeometric in form as will be shown
in Chapter 13, page 431.
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Now the probability of getting a particular value of r in a sample of n
is also the probability of getting the corresponding values of r/n, z,
and Z. Except for appropriate changes in scale, the distributions of
r, r/n, z, and £ will therefore all be alike. The results so reached are
summarized in Table 6.

Special difficulties encountered in sampling for small proportions.
Some very important general principles of sampling are evident from
Table 4, in spite of the fact that the theory thus far developed applies
only to samples of n units drawn independently from a single bowl.
In the bottom row of Table 4 it is seen that the coefficient of variation
C of both r and r/n contains p in the denominator. Turned around and
solved for n, Eq. 30’ gives

N—-—n ¢ '(34)

TN-1C%

[An approximation,
. _1_ useful if p is very (35)
= C?p small and n/N not ‘™

large]

According "to this equation, the smaller be p, the larger the sample re-
quired to give a desired precision C; or, alternatively, the lower the preci-
sion obtainable for a given size of sample. An example is a housing
survey, aimed at discovering the number and characteristics of vacant
dwelling units for rent within a particular city, when there are extremely
few vacancies. Under such conditions a very large sample would be
required if the proportion p of vacancies were desired with great precision.

Fortunately no great precision of sample is usually required when the
proportion p is extremely small. In a housing survey difficulties with the
definition of a habitable dwelling unit and a dwelling unit for rent will
mask the sampling error. Thus a coefficient of variation of less than
30 percent may be considered wasteful when p is 1 percent or less. Any
decision on the question of the need for new housing would be in the
affirmative whether the vacancy ratio were 4 percent or § percent. If
the sampling were binomial and hence described by Table 4, the re-
quired size of sample for a 30 percent coefficient of variation would be

n 032 X 01 1111 d.us. (36)
In practice, binomial sampling would not usually be used: instead, for
economy, blocks of areas would perhaps be drawn into the sample as
primary units, to be subsampled in various ways. By such a procedure
the actual size of sample would be more like 3000 d.us., depending on the
variances between blocks and within blocks for the particular city being
sampled. Such calculations will form the subject of Chapter 5.
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When p is small, something like 99 dwelling units must be visited by
the interviewers to find 1 vacancy. In a sense, visiting these 99 dwelling
units represents wasted effort. If one only knew in advance where the
vacant dwelling units were, so that he could go and count them and
record their characteristics (whether single dwelling, apartment, duplex,
in a building with business, etc.), the cost of a housing survey would be
cut to a fractional part of the actual necessary cost. The fraction vacant
over. the entire city would of course not be known, however, unless the
total number of dwelling units were known from external sources, as in
fact it usually is from Census data and records of building and con-
struction.

If the total number of dwelling units over the city, vacant plus oc-
cupied, is an unknown quantity, then the aim of the sample might be
two-fold, not only to learn the proportion vacant and their character-
istics, but also to determine the total number of all dwelling units.
Visitation of the 99 occupied for every 1 vacant is then not to be re-
garded as a total loss, but rather as necessary to estimate the total
number.

A similar problem arises in consumer research where the opinions of
a rare group of people are desired, such as the owners of a particularly
expensive radio set or high-class automobile. If all households are given
equal probabilities, a score or more of them must be visited to find one
that owns a particular type of radio set or automobile.

Such difficulties have led to the invention and attempted justifications
of biased procedures for estimating proportions. One common plan is
to attempt to isolate particular areas of the city in which most of certain
classes of people live and to confine the survey to these areas. Surveys
on the consumption and spending-habits of wage-earners are too often
carried out in this manner. Bias is introduced in such a plan because
it is usually impossible to isolate areas that will contain all or practically
all of any particular class of people. Without covering the excluded
areas with a sample, there is no telling how many people of any particu-
lar class are thus excluded, nor any way of knowing what their char-
acteristics are in the particular question of investigation. The results
from the delineated areas are thus biased, and the sample is a judgment-
sample because the bias must be evaluated by judgment. As was men-
tioned in Chapter 1, and as will be proved in Chapter 6, an unbiased
sample-design would call for a light sample from any areas that are
lightly inhabited by the class of people that are to be studied. The
added cost may be trifling compared with the enhanced usefulness of
the data and peace of mind.

Another type of biased procedure for isolating particular classes of
people is often obtained through the use of selected mailing lists. Thus
the automobile registrations of a city will disclose the owners of high-
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priced automobiles. Interviews in a sample of such homes constitute
a cheap but biased procedure for exacting information from an upper
economic group. This is one kind of chunk (Ch. 1).

Here I have only attempted to state the basic difficulty in estimating
a small proportion by sampling. There is no magic way out that I
know of. The most economical solution appears to be through a com-
bination of . methods. The cheap method is exploited for all it is worth,
and the more expensive method is used sparingly for finishing out the
job. Mail responses from those who will respond, supplemented by
face-to-face interviews of a sample of perhaps 1 in 3 of the people who
failed to respond, is one application of this idea (Chs. 1 and 2). A plan
was described two paragraphs above whereby a relatively heavy sample
would be drawn from areas where most of a particular class of people
are thought to live, and a light sample would be drawn from the other
areas, instead of omitting them and running the risk of bias. Other
ideas along these lines will readily suggest themselves when an unbiased
procedure is really desired.

Remark. The requirement of large samples to reach high precision when
the proportion p to be estimated is small is only one of the difficulties.
There is also the dilution bias arising from the interviewer’s or inspector’s
fatigue. After inspecting 999 pieces on the average to find 1 defective
piece, an inspector is partially blind to defectives and misses some propor-
tion of them. Similar remarks apply to the interviewing, coding, card-
punching, and other operations in the preparation of statistical informa-
tion concerning elements of a sample (individuals, houses, farms, etc.)
that exist in great dilution. Just what proportions are lost by the dilution
bias under various circumstances has not been carefully studied.

Chart for reading coefficients of variation in binomial sampling. Fig.
8 shows a chart that was in daily use at the Census during the planning
and analysis of the 2} percent and 5 percent samples of population
taken in 1940, for which the binomial theory applied acceptably for all
population characteristics tabulated. If p represents the proportion of
people in a population of N people having a particular characteristic,
then a table made up from a perfect complete count would show Np
people in the cell corresponding to that characteristic. A sample of n
would have an “expected’”’ value Er = np in that cell. A single sample
shows r, which when inflated by the factor N/n gives Nr/n for the cell.
The following question often arises in sample censuses. A cell shows r
people (or families or dwellings or farms) having a particular character-
istic: what is the coefficient of variation associated with this cell-
frequency? The chart in Fig. 8 was designed to answer this question.
The coefficient of variation is read off in percent on the vertical scale.
The lower solid line is used to find the coefficient of variation of a cell-
frequency r as given by a sample, and the upper solid line is used to find
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the coefficient of variation of 5 percent samples, in terms of a cell-fre-

quency in the universe, as explained further on.

Scales (Vertical scale to be used with horizontal scale
[ B A of corresponding letter)
1.0 1100 100
1 | ] 11 !
——~For a 2} % sample
- vd |
] 05]50)50 ™~ ¢ | Coeff. of var. fora |||
g A N 5% sample froma | ||
~ ™~ Q) universe containing
f? N \14}\ )d Np elementsofa |-
z \\l\ | / specified characteristic
€lo2|20]2 ey \\
. I
g VR I
S 2 N (N
s 01101} 10
€
!
gloos|05 | 5 ~
o N
[
£
= Coeff. of var. for a NN (o)
k: L sample in which Er [~ G,
2 002 02| 2 is the “expected” ,/ Ny&
310 - number of elements N
having a specified N
[~ characteristic ‘\\
oor| o1 | 1 I B
100 200 500 1,000 2,000 5000 10,000 Scale A
10,000 100,000 1,000,000 Scale B
1,000,000 10,000,000 100,000,000 Scale C
Scale for Er or Np

Fi1a. 8. Chart for reading coefficients of variation in a 5 percent sample, calculated
with binomial probabilities.

(Drawn for the author by his pupil Leonard Brickham.)

The chart is to be used for random sampling from a universe so large
that the correction for nonreplacement may be ignored, in which case the
binomial theory applies, giving

CV.r

I
np Er

- 37)
1 [In percent, provided ¢

= 100 \Er I8 practically unity] (38)
[For a 5 percent sam-
2 ple from a universe

= 100 , f_ of which the propor- (39)
Np tion p has the speci-

fied characteristic)

These relations are linear on log-log paper. With sainples that are
fairly large, coefficients of variation may be found closely enough by
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assuming that the observed r is equal to Er, and this is what must be
done in practice. For example, suppose that in the sample for the state
of Rhode Island (April 1, 1940) there were 413 families living in their
own homes but having no member of the family in the labor force.?
The coefficient of variation of this sample is seen from the chart to be
about 5 percent.

Working the other way around, in planning a census one might wonder
how reliable is a 5 percent random sample for determining the number of
families having the aforesaid characteristic. On a guess that there are
between 5000 and 10,000 such families in the state of Rhode Island, one
could quickly see from the upper solid line of the chart that the coefficient
of variation of the frequency of this class as given by a 5 percent sample
would be about 53 percent. It is customary to accept 3 coefficients of
variation (Ch. 9) as the extreme error of sampling, only rarely exceeded.
A 5 percent sample for this characteristic would thus have a possible
range of about 15 percent above and below Np. For the customary
bysiness-uses that are made of such figures, this margin of error is not
too great, and a 5 percent sample should be considered adequate.

The dashed line was used for consideration of a 21 percent sample,
which was taken in some areas instead of a 5 percent sample for certain
family characteristics. Other parallel lines corresponding to other sizes
of sample may be drawn as desired.

SOME EXERCISES ON THE BINOMIAL

Exercise 1. Find the mean and variance of the point binomial by
evaluating the fundamental definitions

p= 2 r P(r, n)
r=0

o> =2 (r — w?P(r,n)

Solution (classical)

m! N =Tt —_ n! N —Ta T
mq P [Because Ptr,n) = (n--r)!r!q P ]
(n— 1!

[(mn—1) —(—-D)E-—1)!
np(q + p)*~! = np as before

u=2

=npZ gin—D—(r=Npr=t [This summation

is unity; why?]

19 Bureau of the Census, Sizleenth Census: 1940. Population and Housing, General
Characteristics of Families, Table 31, p. 134. The actual number appearing in the
table is 8260, this being just 20 times 413. The sample turned out to be so close to
exactly 1/20th of all classes of the population that the inflation factor 20 was used
uniformly, there being no necessity for adjusting to marginal totals given by the
complete count. See Chapter VII in the author's Statistical Adjustment of Data
(John Wiley, 1943).
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0.2 = 2 (r — np)2 (’:) q""p' !
n
=2 [r(r — 1) + r(1 —2np) + n’p? eI
(n—2)! (0 =2) ~(r—2)pyr—2
m e R ey - DN =91 ¢ P
+ (1 — 2np) 2 r P(r, n) + n?p?Z P(r, n)
= n(n — DpXg+ p)"~* + (1 — 2np)np + n?p?
= n(n — 1)p*+ (1 — 2np)np + n?p? = npg as before
Exercise 2. Letp = r/nand § = (n — r)/n be estimates of p and gq.
PI'OVe that C.V. Is q

CV.4 »p

For measuring small proportions, such as the number of females in
some occupation usually followed by males, p will be small, ¢ near unity,
g/p large, and the C.V. p much greater than the C.V.4. Thus, while p
if small can not be measured precisely without a large sample, its comple-
ment ¢ may be measured with great precision.

Exercise 3 (Moment coefficients of the binomial universe). Accord-
ing to Eq. la on page 54, the kth moment coefficient of a universe of
two cells about its mean will be

e = p1@1 — w)* + py(ry — w)*

Now let 21=0 2o =1 [These equations define
a binomial universe
P1=¢q P2=7p on the 0, 1 basis]
First prove that the mean of this universe is
k=D
and that its variance is 2
o = pq

Then prove that
en prove we = a(—p)* + pg*

These are general results, valid for any value of k. Obviously, if p=
g = %, then u; = 0 for all odd values of k. The following special cases
should be observed.

k=0, w=gl+pl=1l
B 1, = g pg =0 Momentsbin iken
k=2, pp=0*=qp®+ pg?

= pg(g + p) = pg
k=3, wu=—qp®+ pg

= pg(g — p) [This is 0 if p = ¢
k=4, w=gp*+ pgt :

= pg(¢* + p%)
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Ete. The Pearson measure

3
P s
Pq
As p may take any value from O to 1, it is obvious that 8, can take any
value from its minimum at p = ¢ = % on up to infinity as p — 0 or 1.
B2 is important because it enters the formula that determines the
requisite size of sample that is needed for estimating the variance ¢*
of the universe, with a prescribed precision. Further discussion on this
point appears later (pp. 340 and 343).
Exercise 4. Find the mean and variance of the hypergeometric serie:
by evaluating the fundamental definitions
n
u=Er=) rP@nN)
0

o2 =2 (r — p)?P(r,n, N)

Sl E

Solution (classical)

By canceling r out of ! and pulling n, Np, and N outside the factorials,
also by being careful to make suitable rearrangements, such as
[n — 1] — [r — 1] for n — r, one finds that

)

p=FEr=2ZrP(r,n) =

(o) oo —w)
= Np ¥ r—1/\n—=1—[r—1] [This summatior
N (N — 1) is unity; why?
n—1
= "'7\]‘2 = np [As before, p. 111]
And likewise,

g2 = Z (r — np)?P(r,n)

N N
( rp) ( ! [Now make can
Tlrtr — 1) + r(1 — 2np) + n2p?] ——=—"-  cellations as

(N) above]

n
- n(n — DNp(Np — 1) E (1\:‘1’_‘22) ([n - 2]]? [r— 2])
NN -1) (N —22
n—

+ (1 — 2np) Z r F(r, n, N) + n*p*Z P(r,n, N)
— DNp(Np —
=M N()Nli(- 1;’ Dy = 2npymp + n?p?

N —
N "Pe [As obtained before, p. 111]
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Remark. The student should note that the sums

NGy [ R

(N—l
and Np—2 n_lN
Z(rp—2)([n—2]—q[r—2])
(N—2
n—2

seen in the above development are both unity. The first quantity is the
probability of getting r — 1 red balls in a sample of n» — 1 from a universe
of N — 1, and the second is the probability of getting r — 2 red balls in a
sample of n — 2 from a universe of N — 2. The sum of each set of
probabilities is unity because some number of red chips from 0 on up must
appear in any sample.

Exercise b6 (Comparison of the hypergeometric series with the point
binomial). a. Take p = 0.2, ¢ = 0.8, N = 50, n = 10, and calculate
the eleven terms of the hypergeometric series and of the binomial
expansion, and compare them after filling out the table below.

Point binomial Hypergeomelric series

I G160
O ey

0

1

2

3

4

5

6

7

8

9

10
Sum 1 1
“Expected” r np =2 np =2

. N-—-n

Variance npg = 1.6 N1 1.3

b. Show that as N increases, the terms of the hypergeometric series
approach the corresponding terms of the point binomial.
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Solution
P(r,n, N)
Np
(M)
)
_ Ng! nl(N — n)!
T Np =D (n—nI(Ng—n+ 1! N!

{Np-Np—l‘Np——2---Np—r+1 }
(n) N¢g:-N¢g—1-N¢g—2---Ng—n+r+1
T N-N—1:-N—-2---N—-n+1

-
O P I0R N
Lm0 B
GHIEHICHREEY

n ﬂ""f—.._]__ PR ————__
=i (") op F O+ 124 47D

In P(r, n, N)

1 -
— @12 )

+§<o+1+2+~-~+5"'—""1)

+ terms in — N"’ and higher powers [Recall In(1 ~2) =
1.2 IS
—r-T - ]
P(r,n, N)
_(" n—ror 1 7'("' - 1) (n - 1‘)(11 —_r - ])
_(r)q p{l-}-é-ﬁ[n(n—l)— — - - ]

+ terms i N’ and higher powers}
()i

Thus, if N is large compared with the sample-size n, the probabilities
in sampling without replacement are closely equal individually to what they
would be if the sampling were done with replacement. The correction
term in the brackets gives an approximate measure of this difference.
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It is interesting to note that when summed over all values of r, the first
correction term adds up to zero, as can be seen by writing

z': (':) q.._fpréz_v [n(n —n- f(r; ) _(n-— r)(nq— r— 1)]

=Z (':) "’ L [np® + (¢ — p)r — (r — np)}

2pgN
1 2 —_ — 2
Zpgl [np? 4+ (@ — P)np — 0.7
— 1 2 — 2
= Spql [np? + npg — np? — npq]
=0

*
The terms in 1/N? and higher powers must also add up to 0. Why?

Exercise 6. Define the correlation between the z- and y-coordinates
of N points z;, y; ¢ = 1, 2, - - -, N) by the usual formula

_ Ezxy;

P
g0y

wherein

1
Zz;=0 o,° =NE:¢;2

1
Ey,'=0 0’,,2 =N2y,~2

for convenience each coordinate being measured from the centroid. Now

let a series of samples of n points each be drawn without replacement;

prove that the “expected” correlation between the sample means is

equal to the correlation p between the original points. In other words,
if

__ [% and § are random variables.

Ez:g Zf is also and is to be aver-

Pn = 6—5 s a%ed over the series of sam-
ples.]
then
Epn =»p
Solution (due to Jerome Cornfield)

For any one sample,

z= i(am + csza +- - -+ awzN)

1
i =;(a1y1+0¢27/z + -+ anyn)
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wherein «; is a random variable such that
a; =1 if Point ¢is in the sample}
= (0 otherwise

while 7y, 73, - - -, zv are fixed. Then, because o is either 0 or 1, it follows
that

Ea,- = %
Ea;’ = %
Moreover,
nn—1 [Because the points are
Eaa; = NV -1 drawn without re-
- placement]
Then

Ezj = n"‘l, Elawr, + azze + - - -+ avry)oays + azyz + - - -+ anyw)

=1 N v] [ runs from 1 to N;
G [Zz i +Z« Z;: B i J also, but j # 1]
1

n—1 .
N [2 Ty + -N-_—lzzriyj]

L7 W ol v ] [Because 2z =0
____[ ‘ +N_1{E:¢'.~Eyi"zrt?/'}] and Zy; = 0]

From Eq. 13’ on page 102 it is known that

2

=

__N—naﬁ P — N oy
Va.r:::--N_1 - Vary—N_1 .
and therefore
| -—I—N_nE:ty
anN N -1 i
Ep, = N = owy =p Q.E.D.
N-1 n

Exercise 7. There are two areas, 1 and 2, containing N; and N,
households respectively. At first, only Area 1 was to be sampled, and
a sampling plan for Area 1 was designed to give a desired coefficient of
variation C for a particular characteristic of the population, viz., the
proportion of men of age 20-29 engaged in nonagricultural employ-
ment. After the plans for the sample of Area 1 had been frozen (or, in
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the actual incident, after the sample had been taken), a decision was
made to cover Area 2 as well, aiming at the same coefficient of varia-
tion C for the two areas combined. The problem arose of determining
the required size of sample in Area 2. The sampling was to be done by
drawing households at random from complete lists of all the households
in the two areas.

Solution
For Area 1,
1 N 1— Ny 0‘1"" _
m2Ni—1m
Herein y; is the average number of men per family, aged 20-29 and engaged
in nonagricultural employment. Nu; would be the total number of such
men. 0,2 is the variance between households in Area 1 for this particular
population characteristic, and n; is the number of households in the sample.
The subseript 1 refers to Area 1: the subscript 2 refers to Area 2.
The problem is to determine ng so that

Ni—n o N; — ng 02?
2 (4% 2 V2 o2
Nl N1—1n1 21\72—]. "lz_m
(N1 + Nopg)?

The numerator is the variance of the sample in the combined areas, and
the denominator is the square of the number of men in both areas having
the aforesaid characteristic. By equating the two values of C and perform-
ing some algebraic reduction, first simplifying the finite multipliers to
1 — ny/Nyand 1 — ng/N, respectively, the result is found to be

e () ()

This is not the value of np explicitly but is the quantity really desired,
because it gives the sampling interval to be applied in Area 2.

Exercise 8 (Cornfield’s solution for the overexposure of large fami-
lies %), A sample of workers’ families is to be drawn from the card-files
of a factory. If two or more people of the same family work in the fac-
tory, this family is ““overexposed.” Cornfield provided a correction in the
following form, which the student is to verify. If p is the fraction of all
workers to be included in the sample, then the probability of a family
with 7 earners being included in the sample is 1 — ¢, where ¢ = 1 — p.
If there are N; families with ¢ earners in the factory, the “expected”
number of these families to be found in the sample is (1 — ¢*)NV;, whereas
if each family had but one worker the “expected” number would be
pN;. If therefore the families of the sample are grouped by the number
of earners per family, the weight of the sth group will be p/(1 — ¢°).

% Jerome Cornfield, “On certain biases in samples of human populations,” J. Amer.
Stat. Assoc., vol. 37, 1942: pp. 63-8.
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Exercise 9. A universe consists of N members, Nq of which lie at or
below some value £, and Np of which lie above this value. A sample of
n is to be drawn in such manner that all members of the universe have
equal probabilities.

a. The probability that »r members of the sample will exceed £ is

n 3
P = ( )q”"p' with replacement
r
L))
n—r r
=N without replacement
() |
b. Put r = n to find the probability that the smallest member of
the sample will exceed &.

* The N numbers might be the breaking strengths of N test-pieces. The
probability just called for is the probability that all n pieces of a random
sample therefrom will fall below some critical strength &.

c¢. The probability is only (3)!° that all 10 members of a sample of
10 drawn with replacement will fall below the median of a universe of
N numbers.

Some instructors may wish to intercalate Parts A and B of Chapter 13
at this point.

C. THE PROPAGATION OF ERROR

An illustration of simple propagation of error. One could almost make
the statement that the mathematical theory of sampling is largely a
suceession of problems of finding the variance of a function in terms of
the variances and correlations of the random variables in the function,
and the rcader will perhaps become more and more convinced that this
statement is not far from the truth. Thus far, for example, we have been
concerned with the variances of the mean (Z) and sum (n£) of n random
variables, and of NZ or the estimated population 4 of the universe.
Further on, many more functions will be encountered, and various
methods. At this point we pause 7. to examine some general principles
in the propagation of error, in order to attain a better understanding
of the results and developments that will take place later; 7. to derive
a simple method, called the differential method, for calculating the error
in a function in terms of the errors in its variables; ¢#Z. to calculate some
results that will be nceded later, and in the process to recalculate some
that have been derived on previous pages by other methods.
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One or more variables are observed, all subject to the errors of sam-
pling, and these errors are propagated into any function of these vari-
ables. A diameter is measured, perhaps several times: the measurements
vary, and the area calculated from each measured diameter also varies.
The measurements on the diameter might be random variables with an
“expected’”’ value and a variance. What is the “expected” area and its
variance? Under such circumstances let z; be a measurement on the
radius, and let

Ex;=pu forany< (40)
and
E(z; — u)? = o> foranyi (41)
Also let
Zi=p+ (@ — n
[AZ.' = — U=
= p+ Az the error in z;]
_ 2 [S* = the “true”’
S* = mu area]
2 [S: = acalculated
8; = mz; area)
AS; = w(z? — u?) [The error in S.]
= 7(2u + Az;) Ax; (42)

It is now to be noted that if the error Ax; is small compared with u or

Ex;, then approximately
[Subscripts omitted for
convenience)}

_ [Compare with
= ;i—:; Az Eq. 45] (43)

the derivative dS/dx or 2=z being evaluated in the neighborhood of
z = p. Moreover, division of both sides by S or 7z shows that approxi-
mately

AS | _ Az

S z
saying that an error of 1 percent in the measurement of the radius
corresponds to about 2 percent error in the area.

In general, if the variables z, y, z are subject to small errors Az, Ay, Az,
a function f will be subject to the error

Af =f0x+f, Ay +f. A2+ R (45)

It will be assumed that the rem;xinder R, arising from the higher powers
of the Taylor series, may be neglected.

(44)
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The derivatives f, f,, fs are to be evaluated in the neighborhood of
z = Ez,y = Ey, z = Ez.

Exercise. The area of an ellipse is v = wzy. Show that approxi-
mately

v z y

The right-triangular relation connecting the mean square error, the
variance, and the bias of an estimate. In Chapter 1 the idea of a
preferred procedure was introduced (p. 15), and this led to the definition
of a bias as an “expected” departure from the “expected” result of
the preferred procedure. An important relation exists between the “‘ex-
pected” mean squares. Thus, let

a = the “expected” value of a preferred procedure
Ezx = the “expected”’ value of some particular procedure of sampling,
interviewing, and estimating, not necessarily preferred

Tl:en, as the student has already proved on page 72,
E(z — a)? = E[(z — Ez) + (Ez — o)]?
= E(x — Ez)? + (Ex — a)® (46)
That is, term for term,
82 =02 + b2 CY)

wherein §, is the root-mean-square error of z, o, is the standard error of
z, and b, is the bias of 2 (more precisely, the root-mean-square error,
standard error, and bias of the procedure that gives z). The relation

Standard error, g,

Bias, b,

F1a. 9. The triangular relation connecting the bias, standard error of sampling,
and the resultant root-mean-square error of an estimate x. It is to be noted that
the leg representing the standard error may be shortened by increasing the size or
complexity of the design of the sample, whereas the leg representing the bias may be
shortened only by introducing an improved procedure of survey, such as a revised
questionnaire or a new method of asking for the information, or better performance
in the field-work, or some other improvement. The resultant or root-mean-square
error in z can not be shorter than the leg representing the bias, and in fact for
moderately small sampling errors, the resultant will be but little longer than the bias.
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connecting these three quantities &, ., and b, is obviously the Pytha-
gorian relation connecting the legs and hypotenuse of a right triangle,
as shown in Fig. 9. This relationship has already been referred to in
Chapter 2, where it was stated that the aim in sample design should be
to control the hypotenuse and not merely the leg representing the sam-
pling error.

Figure 6 on page 72 may be of further interest here. It may be inter-
preted to show that, for a fixed sampling procedure and sample-size, and
hence for a given value of ¢, the hypotenuse of the triangle of Fig. 9
is increased but little beyond the standard error ¢, by the presence of
small biases. However, large biases may completely eclipse the sam-
pling error.

The propagation of mean square error and variance. Let both mem-
bers of Eq. 45 be squared and the expected value of every term be taken.
Then

5f2 = (fr"'z)2 + (.f:l‘rll)2 + (fzo'z)2 + 2fzfypzy°'zay + 2fxfszza'.rdz
+ 2f yf 2Pyz0y02 (48)

072 = the mean square er-
2=EA?*=E({f~f** ‘rorinf. & = the root-
mean-square error in f]

wherein

f* = f(Ex, By, Ez) [The “true” value of f] (19)

0.2 = E Ax? [The variance of z)
_EAz Ay [The correlation between

Pzy = o0y Ar and Ay]

When Az, Ay, and Az are all uncorrelated, the terms involving p drop out.
Equation 48 is the equation for the propagation of mean square crror.
The distinction between mean square error and variance involves only
moment coefficients of Ar, Ay, Az already in the remainder, and
Eq. 48 is therefore often called the equation for the propagation of vari-
ance. It is called the differential method because it is based on the use
of the differentials in the Taylor series. Another method, already used
in Eq. 10, is to calculate E(f — Ef)? directly, but this can not be done
unless the probability of every variable is known. The characteristic
function, not to be treated here, provides still another device, but there
the problem is to find the distribution of f and not merely its second
moment. The differential method has the advantage of giving results
even when the distributions of z, y, z and the function f are not known;
but because the higher powers of Az, etc., are neglected, it has the dis-
advantage for nonlinear functions in giving results whose validity is
sometimes difficult to calculate. In spite of the approximate character
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of the derivation for nonlinear functions, Eq. 48 nevertheless often gives
remarkably good results for most of the functions and the sample-sizes
met in practice. This happens, for example, when z, y, z are means of
samples, and Az, Ay, Az are statistical fluctuations above and below the
“‘expected” values of z, y, 2. By making the sample-sizes big enough,
the remainder, consisting of the terms in the second and higher powers
‘of Az, Ay, Az in the Taylor series, can be reduced below any prescribed
small numbers, although for any given function it is difficult to calculate
in advance just what size of sample is required, as the answer depends
on the distributions of Az, Ay, Az.

Exercise 1. A universe consists of N numbers a¢;(: = 1, 2, ---, N),
not necessarily all different. A sample of n is to be drawn at random.
Let the members of the sample be x;, 25, -+, z,. As z; is a random
variable, let

Er;=u

” for every ¢
0'52 = E(J‘,‘ - y)" = 0'2}

Pu
J=ntx+ -t 2

Find the “expected” value and variance of f. As Ezx; = u for all 7,
it follows that

Ef = nu

whether the drawings be made with or without replacement. For the

variance,
n

o = no® + E pij0i0;
1)
wherein p;; denotes the correlation between two successive drawings, and
o; = 0; = o. By symmetry, p;; is constant regardless of ij, wherefore
p:ij may be put equal to p and

o = na® + n(n — 1)po®

= no’[l + (n — 1]

a. With replacement. Here the drawings are independent, and p = 0
)

of? = ne’
as was seen before (p. 102).
b. Without replatement. First evaluate p by noting that if the uni-
verse were exhausted by the sample, f would equal the total population

A of the universe, regardless of the order in which the N members of the
sample were drawn. Then as

Yot tav=4
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it follows that because A is constant,
042 =0 = No? + Z po?
= No? + N(N — 1)pa®

whence

Then, for a sample of =,

n—1
”’2=""2[1—N—1]

N-—-n
ne
N-1
agreeing with Eq. 12’ on page 102.
Exercise 2. Prove directly that p = —1/(V — 1), as p is defined in
the preceding exercise.

2

Solution

E(z; — p)(z; — w) N
- \/E(fti — u)2E(x; — p)? [Definition]

N(N 5 Z Z (a: — u)(a; — )

fm]l jml

= =1l
N(N {[E(a. = W - Z(a: — w3
0,2
.___1___ {0 - Na”}
NN =1
= —~
- XrL-T Q.E.D.

Exercise 3. Neglect the bias (if any) in the following functions (which
is the same as assuming oy = §; for any function), and by using Eq. 48
obtain the following relations between variances.
a. Let r = nsin®46.
If
Er = np as for the binomial (p. 111)}

[{ 14 {3 [{
o, = npq

then
g = — - [0 in radians|
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Solution

If r = ngin?0, then sinf = +/r/n and cosd = /1 — r/n. Then, by
Eq. 48,

(d9 iy

= 2na[sin 6 cos 0], g,

= 2n-\’g1\/1 _Er ae
n n

= 2n\/pg s

But o, = 4/ npg, so

09 = L
2\/n

which is equivalent to the result sought. This is the standard error for the
arc sine transformation which is to be used later.

d. Linear function
f=az 4 by + cz
o/ = (a02)® + (boy)® + (c02)* + 2abpayos0y + 200pz:0:0,
+ 2bcpy.0y0.

[ = axyz

c;z

¢ + cyz +c.2+ 2p2y2Cy + 2pz2C2C: + 2py:CC5

wherein ¢ denotes coefficient of variation.
d. Quotient

z
f=aZ
wz
cfz =c’+ cyz +co® + ¢t + 2p242Cy — 2pzuCsCw — 2pz:CzCs

= 2pyuCio — 20ys€yfs + 2pwCuls

e. Product of powers

f=aps
clz = azczz + ﬁzcyz + 72032 + 2aBp:4C2Cy + 207pz5C2C: + 28vpyiCiC:

f. In particular, if f = x!, ¢; = 4c,. This theorem will be encountered
a number of times in the book. For example, on page 340, C.V. % =
V (B2 — 1)/k, and it is stated there that C.V. s is closely half as much.
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See also pages 526-28, where the series for Var s> and Var s may be
compared ; also Var 62 and Var 6.
g- ¥f=Inz/a

6]=c;

Exercise 4. Verify the fact that 10 percent is the resultant coefficient
of variation in the estimated total of all the uses of forest timber listed
in the left-hand column. (This table arose in the design of a sample
for timber-drainage in the state of Illinois, 1948, and is presented through
the kindness of Messrs. Edward C. Crafts and Roy A. Chapman of the
Forest Service.)

Estimaled percent  Allowable coefficient

Commodity of total of variation
Lumber 45 2
Fuel wood 30 25
Fence posts 10 40
Tight cooperage 3 75
Mining timber 3 75
Veneer 2 100
Pulpwood 2 100
Handle stock 1 100
Poles and piling 1 100
Slack cooperage 1 100
Miscellaneous 2 100

Total 100 10



CHAPTER 5. MULTISTAGE SAMPLING, RATIO-ESTIMATES,
AND CHOICE OF SAMPLING UNIT

Research in statistical theory and technique is necessarily mathematical,
scholarly, and abstract in character, requiring some degree of leisure and
detachment, and access to a good mathematical and statistical library.
The importance of continuing such research is very great, although it is
not always obvious to those whose interest is entirely in practical applica-
tions of already existing theory. Excepting in the presence of active re-
search in a pure science, the applications of the science tend to drop into a
deadly rut of unthinking routine, incapable of progress beyond a limited
range predetermined by the accomplishments of pure science, and are in
constant danger of falling into the hands of people who do not really under-
stand the tools that they are working with and who are out of touch with
those that do. . . . Tt is in fact rather absurd, though quite in line with
the precedents of earlier centuries, that scientific men of the highest talents
can live only by doing work that could be done by others of lesser special
ability, while the real worth of their most important work receives no
?ﬂ‘iciul recognition.—Harold Hotelling, Memorandum to the Government of

ndia, 24 Feb. 1940 (by permission of the author).

A. MULTISTAGE SAMPLING

Advantages of two or more stages of sampling. Up to this point the
sampling under consideration has been single-stage sampling: units
were drawn into the sample and the population of each unit was deter-
mined by canvassing it completely without recourse to further sampling.
But unless the units are small, a prescribed precision may sometimes
be met cheaper by drawing more units into the sample and then esti-
mating their populations by subsampling them. Such a plan is a 2-stage
plan. The original units into which the universe is divided are primary
units. Kach primary unit that falls into the sample is subdivided into
secondary units in preparation for the 2d stage of sampling. In 3-stage
sampling there will be primary, secondary, and tertiary units. Some-
times four stages are used. Sampling in stages has in fact long been used
in one way or another, but it has recently been exploited by Hansen and
colleagues with new techniques, one being the device of creating large
heterogeneous primary units, with advantages that may become appar-
ent later.

The frame, as in Chapters 2 and 4, is a workable description of the
sampling units. In multistage sampling a frame must be found or con-
structed for every sampling unit that is to be sampled. Thus, to start
with, there must be a frame that describes all the primary units in the
universe. Then, for each primary unit that falls into the sample there
must be a frame that describes the secondary units. For each secondary
unit that falls into the sample there must be a frame that describes the

135



136 SOME ELEMENTARY THEORY FOR DESIGN

tertiary units. At every successive stage the sampling units become
smaller and smaller, and the frames more and more detailed. Finally,
at the last stage, the frame may show the ultimate units, which might
be small areas, single households, or several successive households.

One of the main advantages of multistage sampling is that preparation
of the frames for the next stage is required only in the units that have
already fallen into the sample.

The subunits within any larger unit must be exhaustive; together
they must account for the whole of the larger unit, so that every square
foot of area, every person, every farm, every business establishment,
every article, every bale, etc., is in one and only one primary unit, and
in one and only one subunit at the 2d, 3d, or any other stage. Otherwise
the probability of any one person, d.u., farm, etc., coming into the sample
will not correspond with the premises on which the mathematical theory
will be built, and the calculations of the errors of sampling will be
invalid.

From the standpoint of sheer efficiency of sampling, small units such
as households or very small areas, widely dispersed, drawn by a sample
of one stage, appear to be excellent. There are three reasons, however,
for hesitating to recommend such a plan. First, the cost of travel would
be too high in proportion to the amount of interviewing that is done.
Second, control of the nonsampling errors would be difficult and costly
(Ch. 2): a supervisor should know what is going on in the areas under
his charge, and if the areas are small and widely dispersed he may spend
nearly all of his time traveling and scarcely any time actually supervis-
ing. Third, a probability-sample of small units drawn at one stage,
no matter how thin the sample, requires a frame which lists all the small
units: such a frame may be costly beyond reason. These arguments
happily break down when sampling is used as part of a complete census:
the complete census then provides the frame and certain basic marginal
totals; it provides also field-workers and supervisors, who would be
employed anyway, sample or no sample.

It is sometimes supposed that through the use of a mailed questionnaire
it is possible to avoid the problems just mentioned. It is to be noted,
however, that if a probability-sample by mail is intended, an even
more careful basic listing of addresses is required than is needed for
interviews. An interviewer may collect information from two or more
households that are found listed under one address (one sampling
unit), but a mailed questionnaire can not so split and direct itself. Any
household not listed has no chance of getting into a mailed sample.
Moreover, if the sample is to be a probability-sample, it must be expected
that field-work will be required to seek interviews in households that do
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not respond at all or in full, or from which some of the information is
apparently faulty. A well-executed single-stage mailed questionnaire
may thus turn out to be an expensive affair unless by good fortune the
costs of the basic listing and of the field-work are in some way provided
by outside sources.

When the cost of providing the frame is chargeable to the sample,
it is necessary to remember that the cost of listing the households over
an entire city increases with the size of the city, whereas the sample that
is to be drawn and interviewed remains nearly constant, being affected
only through the finite multiplier (N — n)/(N — 1) of Chapter 4. For
a city of 500,000 inhabitants the cost of listing may far outrun all the
other costs; and for a bigger city the discrepancy is even more glaring.
A point in population is reached at which it is better to draw out a sam-
ple of several hundred areas and perform the listing of households only
in these areas '—in other words, to introduce two stages of sampling.
For reasons mentioned in the preceding paragraph, the argument is the
sathe whether the survey is to be accomplished by interviews or by
mail.

Multistage sampling is no less useful in the testing of incoming or
outgoing industrial product than it is in surveys of inventories and in
social and economic surveys, and the theory is the same. In the sam-
pling of industrial product the primary unit may be bags, bales, or boxes,
or groups or layers of bags, bales, or boxes. The secondary sample may
be bags, bales, or boxes, or handfuls, small boxes, or other samples such
as individual articles drawn according to certain rules from within those
primary units which have themselves been drawn into the sample.
Once defined, the sampling units possess certain variances (¢, 3%,
o>, defined in the notation, p. 142) for any particular population char-
acteristic. For any given plan of subsampling the magnitude of the
sampling error can be computed in terms of these variances. Moreover,
with information on the costs of interviewing and traveling from one
secondary unit to another, theory tells how many primary units and
how many secondary units to draw into the sample to achieve the greatest
possible precision for an allowable cost.

For a national sample of households the country might first be divided
into primary arcal units, e.g., counties or combinations of dissimilar
counties to achieve heterogeneity. Small counties might be tied to
larger ones to form a new ‘“county,” and were it possible, extra-large
counties might be broken into smaller ones to roughly equalize the
populations in the primary units. From each stratum a predesignated

1 A Chapter in Population Sampling (Bureau of the Census, 1947), p. 13 and else-
where.
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number of ‘“counties” might be drawn into the sample.? A primary
unit of this description is not too large to be supervised with care, but
it is too large to be completely enumerated. Subsampling provides a
way out of the difficulty. Each primary unit (county) is divided into
subunits of some kind, and a sample of these subunits is selected, which
in turn might be subdivided and sampled again. Eventually, after a
nest of sampling operations, the ultimate units are reached in the form
of households. The number of ultimate units will be large, while the
primary units may be made the right size for economical and careful
supervision, yet sufficient in number to constrain the sampling error
within the allowable tolerances.

A typical 2-stage plan for a city might be described as follows: 2.
Obtain a map and divide the city into primary units of roughly equal
numbers of inhabitants or d.us. (Remark 1, p. 82). The primary units
may be numbered in serpentine fashion from 1 to M. . Draw a specified
number m of primary units into the sample—this is usually done by
marking the map in a systematic manner, using a constant interval
rounded downward from the computed value of M/m. <dii. Prepare
maps or lists of each of the m primary units and subdivide them into
secondary units of some kind, such as small areas or single d.us. or
possibly uniform “clusters” of d.us. (to be studied later in this chapter):
this may be done from detailed commercial maps or from maps made
hastily on the spot (see Fig. 10). . Draw a sample of the secondary
units and canvass them to elicit the information desired. (These
secondary units will in turn sometimes be further subdivided for another
stage of sampling.)

Alternative point of view. The following description has often been
helpful to the author in illustrating what takes place when steps are
taken to decrease the external variance ¢, by forming large heteroge-
neous primary units.

Let us return to the ideal-bowl experiment of Chapter 4 and see what
would happen if, before any samples are drawn, red and white chips
could be paired off in approximately the proportions in which they
actually exist initially in the bowl. As a concrete example, suppose
that for every red chip there are 3 white chips; then initially p = %,
g = 4. Suppose now that each red chip be consolidated with 3 white
ones to make a new sampling unit. The new units will be uniform, in
this ideal case, and it will be observed that samples of any number

3 This is a brief description of the sample devised by Morris H. Hansen for the
Current Population Survey (giving the Monthly Report on the Labor Force), a
monthly miniature sample census of the United States. This monthly survey was
initiated in 1939 and planned along somewhat different lines by Lester R. Frankel
and J. Stevens Stock.
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of them will give the proportion red in the universe without any sampling
error whatever. The reason is that the elements are now all alike, having
been made so by joining the red and the white in the proper proportions.

Of course, in practice one cannot combine chips of dissimilar colors in
precisely the proportions in which they are found in the universe, but
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Fia. 10. A “map-list” which was made by the author on a cold, blustery, rainy
day in Athens in February 1946. A map-list is usually rough, as it need only defi-
nitely identify every d.u. or small group of d.us. within a prescribed area, so that
any d.u. or group, if drawn into the sample, may be found unequivocally. Here the
d.us. or groups of d.us. were identifiable by legible street numbers on the gates or
doors, but sometimes the maker of the map must describe them by location or other
physical characteristics, and by assigning numbers arbitrarily. A rough but en-
tirely serviceable map-ist like this can be made quickly on the spot, without ringing
door bells or asking questions. The preassigned sampling interval is then applied
with a random start to select the d.us. for the sample, whereupon the interviewing
may be commenced at once. In this particular area the counting interval was 2
and the d.us. in the sample were marked by an asterisk. The author has successfully
made similar map-lists elsewhere, as in Bangalore in 1947 for a pilot-study of a sur-
vey of the consumption of food in wage-earners’ homes.
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he can take steps in this direction. Such steps are accomplished by the
statistician through his ingenuity at finding and making maps, lists,
and data giving population and agricultural characteristics of various
areas, and through uses of lists of business establishments, giving not
only names and addresses, but characteristics as well, such as type of
business, number of employees, total annual sales, inventory, annual
pay-roll, capitalization.

Of course, maps, census information, and lists are expensive, but the
cost of obtaining them and using them may actually result in large net
savings in sampling enterprises, particularly if the costs can be distributed
over a number of surveys.

Another way to view this aspect of sample-design is to return to
Eq. 16 of Chapter 4, in which it was found that ‘

C.V. universe
V'n

When sampling without replacement there is of course the finite multiplier
to be introduced, but for simplicity it will be ignored here.

CV.z =

It will be observed from this equation that there are two ways of reducing
the coefficient of variation of £; one is to ¢ncrease the sample-size n,
and the other is to decrease the numerator on the right-hand side—that is,
decrease the coefficient of variation in the universe. For many years
statisticians have exploited the simple idea of decreasing the variance
of Z by increasing the size of the sample, but it is only recently that effort
has been directed toward obtaining more information per unit cost
through clever definitions of the sampling units.

Remark. Areas bounded by streets (called blocks in America) will for
many surveys be a natural primary unit for urban population enquiries.
Since such areas may contain very unequal numbers of d.us., people, and
business establishments, equalization may be attempted by subdivision,
or the blocks may be stratified, or drawn with probability in proportion
to size (Ch. 12). If no census information is at hand by which approximate
sizes can be ascertained block by block, a quick cruise by automobile and a
very rough count of the d.us. (or business establishments in a business
enquiry) is usually sufficient (Ch. 12).

Unpopulated and sparsely populated areas should be tied to populated
areas or sampled separately; they must not be omitted, because what
appears to be unpopulated on the map may since have become very much
populated. In fact, huge housing projects are a perennial source of diffi-
culty as they must be discovered, isolated, and sampled separately.

Subdivision of blocks and the tying of one block to another may be indi-
cated on the map with a heavy pencil in hand during a quick cruise. Fortu-
nately, as already remarked, only approximate uniformity is required even
if no stratification is used, and for stratified sampling or.drawing with
probability in proportion to size only approximate prior measures of size are
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required. Obsolete census figures, unless great changes have taken place,
are good enough. With proper design and tabulation, nonuniformity and
inexactness of prior information cancel out and do not cause bias in the
final results. Even an old city directory can be used to advantage.

Notation for multistage sampling. Fig. 11 shows a universe which
might be a county or city in which M primary areal sampling units have
been delineated. Exclusions of territory known to be uninhabited are
presumed to have been made (Ch. 2). In the sampling of industrial
product,* the illustration might refer to a lot or shipment that has been
sectioned off into layers or groups of containers, or even single containers
numbered from 1 to M. Within each primary unit are a number (N;) of
secondary units, which might be households, groups of households,
small areas, or (in industrial sampling) bales, boxes, or individual articles
to be tested.

1t will be assumed here that in the drawing of the m primary units,
any particular unit has the same probability as any other of coming into
thé@sample. Likewise, within any primary unit, any particular secondary
unit has the same probability as any
other. In other words, all the sam-
pling is to be done with equal prob-
abilities. In good sample-design
equal probabilitics are assigned only
on the premise that the popula-
tions of the primary units and of the
secondary units within a primary
unit are roughly equal, or at least Fia. 11. Delineation of primary sam-
not so dissimilar that the variances pling units. Here are M = 16 primary
o2 and 0','2 will be large, producing sa.mplil:fg units., and they are listed in
large sampling ecrrors in the final SeTPentine fashion so as to gain the bene-

. . . fits of geographic stratification when the
rfasults. The delineation and defini- sample of primary units is drawn.
tion of both primary and secondary
sampling units should therefore be carried out with the aim of making
them as nearly alike as feasible. If natural boundaries define one or
more primary units that are thought to contain roughly twice the popula-
tion of the others, these units may be given two chances of coming into
the sample. This can be done by subdividing a large primary unit into
two primary units, preferably each part interpenetrating the other, as by
assigning the odd-mumbered subunits within it to one primary unit and

3 Some remarks concerning the use of directories were given in Chapter 4, page 82
in particular.

4 Some of the difficulties of devising suitable units in industrial product are pic-
tured by Shewhart on pages 408-17 of his Economic Conirol of Qualily of Manufac-
tured Product (Van Nostrand, 1931).
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TABLE OF NOTATION FOR SAMPLING IN TWO STAGES

A universe consists of M primary units.

From a random sample of m of them,

random subsamples are drawn, consisting of n; secondary units from the primary

unit that was drawn at the jth draw.

for each of the M primary units.

nj is a number predetermined by some rule

Name Universe Sample
Number of primary M m
units
Number of sccondary N; nj

units in the jth
primary unit

Total number of sec-
ondary units

Average number of
secondary units
per primary unit

Population of the z-
characteristic

In the kth secondary
unit of the jth
primary unit

In the jth primary
unit

In all primary units

M
N = Z ‘Vl
1

N
N=3

{j=1,2, e M
Qjk

k=1,2 -, N;

m

n = E ng

1

n

m

=

=12 -

z {.7 ym
e =1,2, -

RO

(Listed in some spccified order) (Listed in the order drawn)

Nj
Aj = E ajk
k=1

A=ZA,‘

1

i
T = E Tk
k=1

. N;
Xj=Nigj=—1x;
nj
an unbiased estimate of A;
because EX; = A;.

m

MS
X = ; Z X;
an unbiasced estimate of A,
because EX = A.
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Name Universe Sample

X' =N
m
2N
1
If N; is variable this is a

biased but consistent * esti-
mate of A, as EX’' = A if

m=M.
Average population d= 4 - 1Y_
per primary unit M M
> 53
M5 m e
-
>3 Ly
=2 Niuj == Nii
M : m 4
an unbiased estimate of A,
because EX = 4.
XI
4 B —
X M
a biased but consistent esti-
mate of 4.
4; zj
Average population B = ;= o
per secondary unit ! . !
in the jth primary an unbiased estimate of p;
unit because EZ; = p;.
i A4 A X X
Average population B=Y=W f= NoF
per secondary . .
unit, weighted an unbiased estimate of u
because Ef = pu.
m
e
po 3
m n
- nj

1

a ratio-estimate of u, biased
but consistent.*

*R. A. Fisher, “On the mathematical foundations of theoretical statistics,”
Phil. Trans. Royal Soc., vol. A222, 1922: pp. 309-68.
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Name Universe Sample
1 & 1 &
Average population Hu = o7 E By £ = - 2,
1

per secondary
unit, unweighted

For the populations of
the y-characteris-
tic, replace

Ratio of the z-popula-
tion to the y-pop-
ulation

In the jth primary
unit

In all primary units

Variances

Internal variance of
the population per
secondary unit
within the jth pri-
mary unit

External variances
Of the population

. per primary
unit
Of the population
per secondary
unit
Weighted

Unweighted

(If Nj is a constant, py is
the same as u)

aji by bjx
A;by B;

AbyB
Aby B

(4; - A?

Q

]
N
_Mz

an unbiased estimate of uy
because E£ = u,.

zjk by yix
z; by yj

Xjby Y;
Xby?Y
Xby?

a biased but consistent esti-
mate of p;.

m
PIRL
1
a biased but consistent esti-
mate of p.

1 &
8 = — Z (zik — 2))*

"ik=1

l m
a.*-;Z(X;—X)*

1 m
2 = z : (F: — P2
b mn 1 ni(i &

l 3 s 2
8‘"‘2’;2@’ £4)
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Name Universe Sample

Average internal

variance
1 & 1 &
Weighted ol = ¥ E Njof st = =D s
1 1
’ 1 & 1O
Unweighted oudt =3 > et fo? = — 3 e
1 1
Total variance of the
popuiation per
secondary unit 1 &MY 1 &Y
Weighted o= z: (@ —wt & =— Z (zp — B?
w2 i 20 2
= b + oo’ = &’ + 8,°
- BED IS APTEES SF P
Unweighted o =g N, £ k)" ST = — .
i
= gpu? + oo’ (zjx — £?
=1
= g50? + 8y’

Not all of these variances will be utilized in the text: some are more
applicable in the design of experiment. They are introduced here to show
some distinction between various types of statistical problems.

The definition of “population” as given on page 84 should be reread
carefully. In a population enquiry, ajx is not necessarily the total n.mber
of people in a secondary unit; it is rather by definition the number of people
in it who possess a particular characteristic, such as male, 20-29, employed.
A household might contain 5 people, but no male, 2029, employed, in which
case a;x = 5in a count of the total population and 0 in a count of the number
of males 2029, employed. In other words, a; depends on the particular
characteristic that is being evaluated, and there are as many values of aj
as there are characteristics. For the sake of simplicity, the discussion
will proceed as if only one characteristic were of interest. In counting
defectives in a container of industrial product, a; will be the number of
defectives in a tray or container of some sort. If the secondary unit is an
individual article, a;x = 1 if the kth article is defective, 0 if not defective.

the even-numbered ones to another. The new primary areas are thus
dispersed over the entire parent area. A similar plan can be carried
out by assigning three chances to any primary unit that is thought to
contain roughly three times the population of those primary units that
are to have one chance of coming into the sample: any such triple-sized
primary unit might be subdivided into three primary units, preferably
by assigning secondary units 1, 4, 7, 10, - - - to one unit; 2, 5, 8, 11, - --
to another; 3, 6, 9, 12, -- - to another. The actual subdivision need be
carried out only for those primary units that actually fall into the sample.
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This plan amounts to sampling with probability in proportion to size,
a recent invention of my colleague Morris H. Hansen. Sampling with
probability in proportion to size largely eliminates the need for delineat-
ing primary areas of roughly equal size and permits the use of natural
and convenient boundaries, even though the primary units are of widely
differing populations. The formulas ® for sampling with probability in
proportion to size will not be developed here although the procedure
will be illustrated in Chapter 12.

It will be necessary to have two sets of “expected” values, because
there are two stages of sampling. E will denote an ““expected” value

J
arising from the sampling of primary units. E will denote an ‘“‘expected”
k

value arising from the sampling of secondary units within a particular
primary area, and E or merely E will denote an “expected”’ operation

of both operations; E EE Then by reference to the notation wherein

X; and X are deﬁned it should be clear that
[All the secondary units in Area j

Iy 1 A; have the same probabxhty, viz.,
Brp = e = (1)
J ik ]
k =T N; N; 1/N;; hence Ex,k = Z — z,k ]
N; <&
EX; = -2 E’Z -
k ALY T
- Nj
=— Ezj = — n, E’:z:,,c
N =1 * nj
N;
= —nu; = Nju; = A; 2
n;
M m
== Z X; == m EX;
m
[All the pnmary units have the same
M probability, v1z 1/M; hence EX; =
A 277X EEX,—-—ZEX,and
Mm & l’?Xi = Al
- — Aj
m M “

= 6]
Thus the estimates X; and X are unbiased. :

8 The reference is to the Hansen-Hurwitz paper in Annals Math. Stat., vol. xiv;
1943: pp. 333-62.
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In developing the formulas for the variances of £ and X in Part A
of Chapter 4 the variance ¢ made a very important appearance. Now,
in two-stage sampling, fwo variances will appear, viz., the external vari-
ance ¢.> and the internal variances o;2(j = 1, 2, - -+, M), as defined in
the notation.

Exercise 1. Prove that

X
EX=E—=4
M
Ezj = u;
k
Ef=p
E-'Bu:ﬂu

Exercise 2. Prove that
o’ = ap? + 0,°

& = 82 + 8,7

2 __ 2 2
0t = Obu’ + Owu

8t® = spu® + 8w’

Exercise 3. a. A universe (e.g., a county or province) is divided into
any number M of areal units, of which m units are to be drawn at random
for a sample and canvassed completely. Show that, regardless of the
relative sizes of these units, even though some units contain 10 times as
many people as others, the probability that a particular person will fall
into the sample is m/M.

b. Let the jth primary unit in the sample be divided into N; secondary
units of which n; are to be drawn at random for the sample. These
secondary units are to be completely canvassed. Show that, regardless
of the relative sizes of the secondary units, the probability that a particu-
lar person residing in primary unit j will be in the sample is mn;/MN;.

Development of the variance in two-stage sampling.® The sampling
will be done without replacement, and the theory already developed in
Part A of Chapter 4 tells us that if each primary unit in the sample were
covered completely then would

M\? N
Vax:X = ('E) Varz X,‘

1

M\’M —
= (_> mmg,z {From Eq. 13/, p. 102] (4)
m/ M—1

¢ This derivation was first shown to me by my colleague William N. Hurwitz,
about 1940.
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It will turn out that a second stage of sampling increases this variance
by the addition of another term. The variance of X arising from the
secondary sample taken from within the primary area j will be

Ni —
Va.r X;= ( ) i n,a,-z [From Eq. 13/, p. 102] (5)
n;j/ N; —

Moreover, by Eq. 30 on page 71,
EX,‘z = Var X; + Ajz [Note ¢, p. 102] (6)
k k

where Var X; denotes the variance arising from the secondary sample
k

within the particular primary unit . Then

Var X = E(X — EX)?
= EX? — (EX)*’

(R ()
o (S ef Sy o g

j=1 j'=1
(' #5)

M\2 [&
= (—) {E EX,'2 + “ EX,‘X,‘r} — A? [Note b]

m M *
_ A — A2 [Notesc
ol 1); ,Z‘:M(M TR "} A7 ada
G #9)
M

M 2 m N,-)zN,-—n,- 2 2]
-(;> [ﬁz[(? N, =1 A
M M
m

mm — 1 2
—_— _ 2 — A2
v +MM—1[(}1:A’) ZA’]} 4
M\? [m IS (NN N —
_<Z) WZ (_7»7 N -1
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M
-G F G =
m— 1 1
2 _ T2
+mlt- 5]l 2000 - 7

1

M\? (m <~ /NN\ZN; — s M-m )
= i o . 7
(m) {MZI: n,) N,—ln’a’+M—1W[ @

This is the desired result, but before going on it will be rewritten with
the two terms interchanged, as it will be easier to remember the equation
and extend it to three or more stages. Thus

M\ (M —m m e~ (NN —n; )
VarX = (— 24 — (._’) I el (8
ar (m) [M—lm +MZ w) N1 ®

A useful approximation obtained by dropping the —1 in the finite
multipliers is written in the form

2
Var X éM2(1 —-—> +MZN2(1 -—)-’-’-— ©)

mn;

Any term in the summation on the right vanishes when the correspond-
ing area is subsampled 100 percent, and the entire sum vanishes when
all the M areas are subsampled 100 percent.

Nores. a. (@a+b+c)2=(a2+b*+ ¢
+ (ab + ba + ac + ca + be + cb)
= sum of squares + sum of cross-products
b. Interchange F and 2 (p. 71).
c. The “expected” value E'X is, as before, the sum of all the 4;, each

multiplied by the probablhty 1/M of drawing it. The same statement
holds for Ij’?X 2. The probability of drawing any particular area is 1/M

m M
because there are M of them. Thusz ?X,’ = mz -Ml—Af. But the
1 1

“expected” operation {J must also be taken, as IE;X 2 is wanted. The
m m
two operators 1;7 and 1:‘ can be used in either order, SOZ: EX? = 12-:1 lki'lji'X i
M1
=mp 37 EX? and EX? = Var X; + A2
1

d. There are M(M — 1) permuted cross-products A;4;-, as each of the
M primary units can be paired off with M — 1 others. Hence the proba-
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bility of drawing any one of them is 1/M(M — 1). The secondary samples
within the two primary units j and ;' are independent, wherefore

EX;Xj = EX;EX; = A;Ay [P. 72)
k k k

So

1
EXX; = EA;A;: = j (A1ds + Asds +

MM -
all other cross-products)

This is true for any pair of primary units, hence true for all pairs, and as
there are m(m — 1) possible permuted pairs in the sample,

2 2 BXiXy = g LS ST Y

J=1]j'=1

Allocation of the sample by means of simple cost-functions. The main
reason for deriving the equation of variance in multistage sampling is
to seek guidance on the very important question of how many primary
units (m) to take into the sample, and what size of secondary sample
(m;) to take out of primary unit j.

A very interesting approximate result can be seen quickly.” Under
the assumption that it costs the same to add a new household to the
sample regardless of where it is located, and that the total cost is merely
proportional to the number of interviews, the total cost of the sample in
Area j will be cnj, where ¢ is the cost of interviewing one household.

m

The total cost of the entire sample would then be CZ nj. Then if the
1
sample-size n; were about constant from one area to another (as will be

roughly true in applications of this theory), cmn; would be the cost of
the entire sample, and it will be observed that if »; is cut to half, m
may be doubled without changing the total cost. Now the quantity mn;
appears in the summation of Eq. 9; hence, save for the effect of the finite
multipliers 1 — n;/N;, which will frequently all be about equal anyhow,
the second term remains unchanged as more primary areas are added
to the sample, provided the sample-size n; is cut accordingly to keep the
total cost constant. The first term, however, does not remain constant;
it decreases as m increases. It therefore appears that under the assump-
tions made above the best design is one in which a great number of
primary units are drawn into the sample, and the secondary samples
within primary units are light.

The assumption that the cost of interviewing a household in one area
is the same as that of interviewing a household in another area, regard-

7 This result was first demonstrated to me by Morris H. Hansen in 1939. See
also P. V. Sukhatme, Report on crop-cutting, Imperial Council of Agricultural
Research (Allahabad, 1943-44), p. 11.



5. MULTISTAGE SAMPLING 151

less of how many primary units are in the sample is, of course, not exact
when the primary units are so large that a salaried supervisor is placed in
charge of each. There is then an overhead cost in starting up operations
in any area, or (in industrial sampling) in opening a box; and conceivably
in a bad design the entire allowable expenditure might be eaten up by
overhead, leaving nothing for interviews or testing. Hence another
formulation of the problem will be attempted. The new formulation
will take account of the overhecad costs of operating in the primary
areas or, in industrial sampling, of moving and opening the containers
to get at the articles to be tested. To avoid some formidable mathe-
matical difficulties it will be assumed that the secondary samples are
all equal in size, for which the symbol 7 will be used. So let the total
cost of the sample be

P = ¢ym + egmit = m(e; + coti) (10)

wherein ¢; is the overhead cost of operating one primary unit for the
survey, and c; is the additional cost of one interview.

With the assumption that n; is constant and equal to 7 the equation
for Var X can be simplified. First, it may as well be assumed that N;
and o2 are also constant and equal to N and 0,2 respectively, because
in practice n; would not be approximately uniform unless these other
assumptions were also pretty closely satisfied. With n; = @, N; = N,
and g; = 0w, Eq. 8 reduces approximately to

v X_(M>2{M—m 5 (N>2N—ﬁ_ 2}
aX =) =™ G o

el

What is desired is a minimum in Var X for an allowable cost P; or
alternatively, a prescribed Var X at minimum cost. First, let Var X
be minimized for a given allowable cost P. From Eq. 10

P

- 10/
" C + Cgﬂ ( )

whence by substitution

e N2
varx = [0 ot e oa gy ¢ o)
n

Now replace i by a continuous variable y between 1 and N. The
minimizing value of y is found by inspecting the derivative
1 dVarX ¢ 01N3

=—(°'e Na’w g

- 2
M2 dy P
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If the quantity 6.2 — N2 is negative or 0, the derivative is always nega-
tive, indicating that Var X reaches no proper minimum but decreases
continuously, reaching its lowest point when y = 2 = N, in which case m,
the number of primary units to be drawn into the sample, is P/(c; + ¢2N)
as is obtained from Eq. 10 by setting # = N. In this case the secondary
sample is complete, for 7 = N.

If 0,2 — No,2 is positive, the derivative vanishes when

y=x \/Z—E—;:—_ (12)
-+

U 2)
- Co ap 2 1
VG -5

indicating that Var X would then have its lowest value when 7 is an
integer near to the right-hand member just written. In this case there
is a second stage of sampling.®

Thus 7 and hence the calculated sampling interval N/ are deter-
mined. The number m of primary units to be in the sample is now to be
found from Eq. 10’. The main aspects of the design would be completed
by computing Var X in Eq. 11 and noting whether it is small enough.
If not, the allowable cost P must be increased, permitting more primary
units to be brought into the sample. Or, perhaps some way can be found
to reduce costs; if not, the survey must be abandoned.

It is to be noted that 7 does not depend on P, the total cost of the
survey; hence if the total cost P is doubled, i and N /7 are unaffected but
m is doubled. This result for the proper allocation of the sample for
greatest efficiency could hardly have been foreseen without mathematics;
certainly without mathematics quite different advice has been given in
the past.

For the second problem, viz., to minimize the cost P for a fixed value
of Var X, we see from Eq. 11 that

Mz[”ez - N"'w2 + Nzo'wz/ﬁ]
- Var X + Mo?

8 Eq 12’ was first published by Hansen, Hurwitz, and Margaret Gurney, “Problems
and methods of the sample survey of business,” J. Amer. Stat. Assoc., vol. 41, 1946:
pp. 173-89. The simpler form shown later on as Fq. 23 seems to have been published
almost simultaneously by L. H. C. Tippett, The Methods of Siatistics (Williams &
Norgate, 1931), p. 177, and by Walter A. Shewhart, The Economic Control of Quality
of Manufactured Product (Van Nostrand, 1931), p. 389.

m

ar)
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This value substituted into Eq. 10 gives

=M[,2_Na 24
VarX + Mo2 L ° et

If 0.2 — No,? is negative or 0, P has its lowest value when 7 = N, in
which case the secondary sample is complete. If ¢,2 — No,,? is positive,
P has its lowest value when 7 is again an integer near to the right-hand
member of Eq. 12. As soon as the best value of 7 is calculated, the
minimum cost P can be computed by the last equation. If this calculated
minimum cost is larger than permissible, it will be necessary to take a
smaller value of m and to accept a greater variance in X, or else to aban-
don the survey, unless some way can be found to reduce costs.

It is to be noted that 7 does not depend on the prescribed value of
Var X. However, from Eq. 11’ it is seen that the number m of primary
units in the sample is to be increased if Var X is decreased. Again, this
allocation of the sample (7 and m) could hardly have been foreseen
without mathematics.

It should be noted also that in order to compute the optimum second-
ary sampling interval N:7, neither ¢;, nor cs, nor o., nor o,, need be
known in absolute terms, but only in the ratios o¢.:0, and ¢;:co. How-
ever, the computation of m and of the total cost and of the expected
precision does require absolute numbers for ¢y, s, o, and o,,. This is
typical of what often happens in sample-design: many questions of
procedure, netting huge savings, can be settled with only meager
information, provided one knows how to use it. Theory indicates what
this information must be, and how far wrong the advance calculations
of cost and precision will be when only broad limits can be placed on the
advance estimates of the ratios g.:04, ¢2:¢;, or on the absolute values of
these four quantities.

As stated earlier in the chapter (p. 136) the overhead cost ¢; for one
primary unit should be sufficient to employ a full-time areal supervisor,
or at least one on half-time. ¢; would then be his salary, travel allow-
ance, office rent, and other expenses for the survey. If one survey is to
be completed per week, on the average, ¢; would be these costs spread
over a week. If there were no costs of supervision, ¢; would be 0, and
the solution would reduce to the earlier one in which the total cost was
equal to ¢mn; and in which it was indicated that many primary units
should be brought, into the sample.

The theory just expounded is oversimplified. In practice the numbers
N; (the number of secondary units in primary unit 7) may not all be the
same, and certainly o; will vary from one primary unit to another.
Moreover, the assumptions made in Eq. 10 relating the total cost P
to the number of primary and secondary units surveyed can be only

N 26,,,2]

n

(13)
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approximate. Nevertheless the foregoing theory has taught us some
very important lessons regarding the allocation of the sample. For the
theory to apply it is only necessary that the numbers N; and o; be not
too heterogeneous: N is then to be taken as an average value of N,
and ¢, as an average value of o;.

Under conditions where the interviewers or inspectors are to reach m
small primary units one after another by some devious route (sup-
posedly so chosen that travel-costs are minimized), the supervision being
handled from some central headquarters and not in each primary unit
separately, the cost-function will hardly be that given by Eq. 10, but
rather of the form shown later on by Eq. 98 (p. 204). This is more
difficult to handle mathematically than Eq. 10, and it will usually
suffice to treat the problem arithmetically by inserting various likely
and unlikely values of the constants A and B in Eq. 98 and of the vari-
ances in Eq. 11, and computing the corresponding values of P to find a
plan of minimum cost. A few hours devoted to such deliberations and
calculations will often result in a clear indication of an optimum plan,
or perhaps several good plans between which there is little choice so far
as efficiency of sampling is concerned. An example is given further on.

Obviously no cost-function and no proper allocation of the sample are
possible without some knowledge of what the costs are. The importance
of keeping records on costs, not merely to determine total cost, but to
discover the various components of cost (supervision, interviewing,
travel) is evident.

A word on tabulation plans. A self-weighting sample is a great con-
venience in tabulation. For the secondary sample one specifics the
same sampling interval in all the m primary units. When the cost-
function P = m(c; + c2ii) of Eq. 10 is used, the calculated sampling
interval will be N:7i, wherein 7 comes from Eq. 12; or,

LN E

as may be seen from the preceding pages. The actual sampling interval
b to be used, however, may be some convenient integer (such as 2, 3, 4,
5, 10, 15, 20, 50, 100) close to the calculated value of N /7.

For drawing the sample of primary units, the calculated sampling
interval M /m will be found by dividing M by the value of m given by
Eq. 10’ or 11'. The actual interval a may be fractional if desired, or
again it may be some integer conveniently near the calculated value of
M/m.

A fractional interval presents no difficulty. Thus if M/m is calculated
to be 2.47, it may be rounded to 2.5 or 5/2. The rule for the selection of
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primary units may then be: Take 1, skip 1, take 1, skip 2. Or, out of
every 5 successive units, take 2 at random.

The estimated population of the universe will be

N .
X=— Z;5 [E = A_I{V_ ,Njin; beingconstant]
n 531 k=1 noomon
N -
= — X (population in the sample) (15)
n

N/n is called the weighting factor. N and n are the total number of
secondary units in the universe and in the sample, respectively. The
same weighting factor N/n applies to all the characteristics estimated
by the sample, such as total number of inhabitants, total male, total
female. In fact, after the returns from the survey are processed, the
various populations in the sample are usually found by addition and
verified by comparing them with various marginal totals also given by
the sample, after which the whole table of sample results is multiplied
by the factor N/n to get the final table of estimates for the universe.
As a matter of fact, the weighting factor that is actually used is hardly
ever so simple as N/n. Even in the most careful surveys there will be a
few nonresponses and other gaps in the information that is brought in.
The decision on how to handle these gaps will affect the weighting factor
as well as the results. Perhaps the missing information will be filled in
by arbitrary rules, such as substituting average values in the gaps, or by
making “educated gucsses” from ancillary information,® or by duplicat-
ing the information elicited from ‘similar’”’ households or individuals.
A small amount of this kind of manipulation must be expected, but if
too much of it is done, the sample is no longer a probability-sample.
For ease in multiplication the weighting factor may be adjusted to
some convenient integer, and the sample likewise raised or lowered in
proportion. This is done before the processing of the sample results is
begun in earnest. Thus, if the weighting factor turned out to be 20.1
before adjustment, it may be altered into the convenient factor 20 by
drawing a sample of 1 in 200 returns, duplicating them, and adding the

? In the population census of 1940 unknown and missing ages were supplied in the
editing operation by an elaborate device using ancillary information, such as marital
status, occupation, relationship to head of family. The savings in tabulation were
computed at about $100,000. The procedure is described in a bulletin by W. Edwards
Deming, “On the elimination of unknown ages in the 1940 population census,”
(Bureau of the Census, January 1942; out of print). A similar plan was used by
Nathan Keyfitz in the Dominion Bureau of Statistics for use in the Canadian census
of 1941. A memorandum on handling other types of small gaps in the information
returned by the interviewers is given in Appendix C of A Chapter in Population
Sampling (Bureau of the Census, 1947).
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duplicates to the original sample. If the weighting factor were 19.9
before adjustment, a sample of 1 in 200 returns would be drawn and
excluded.” The adjusted weighting factor would in both cases be 20.
Extension to three stages and to stratified sampling. Perceiving that
a secondary sample adds a summation term to the variance given in
Eq. 8, we may conjecture (as is true) that a third stage would merely
add another term and give
2(M-m  , mx Nj)z[N~—n, ,
Var X (Z) {M —1 " +MZ(nj N, —1%

j=1

U N2 N — s
+ 1"1 Z (&’_‘) Sk — Tk Mk njk ijz]} .(16)
Nijt=t \ny/ Nj—1

Here there are Nj; tertiary units (households or articles) in the kth
secondary unit of the jth primary unit, and nj, of them are drawn into
the sample. Extension to a fourth stage involves no new difficulty.

In stratified sampling there are a number of strata, say R, in each of
which is a number M; of primary units, supposedly similar in certain
characteristics. In two stages of sampling the formula for the variance is

R

M)N? (M; — m;
varx =) () [T S
ar ; s Mt—l m;o
M;
m; N ) N;] i' 2]
r 15 ¢ 17
+M.-,z_l:(n., Ni — ol 0D

in which (it is hoped) the notation is an obvious modification of the
previous symbols. Stratified sampling is treated elsewhere in Chapters
4, 6, and 12.

Interpretation of theory. The theory that has been worked out in the
last few paragraphs, and indeed throughout the chapter, is really only a
start in the practice of sampling. However, it offers one way to start.
Having learned some theory, the next problem is how to use it: how to
attain greater reliability at less cost. Theory indicates what we need
to know about the universe (county, city, region) and what we need
to do to it in order to design a good sample (low variance, low cost).
For example, the symbols ¢,, 0;, M, N, have occurred, and still others
will make their appearance. These are not absolute properties of the
universe, but they depend in part on how we cut it up into sampling
units. The greater the supply of prior knowledge in the form of maps
and census information, the more information a sample can be made to
deliver for a given cost (compare with a later section, p. 183).

0 Cf. page 82 in A Chapter in Population Sampling (Bureau of the Census, 1947).



6. MULTISTAGE SBAMPLING 167

Advance estimates of the cost and expected precision to be obtained
from a proposed survey are only as good as the advance estimates of
e, Ow, C1, €. Unfortunately, treatises on the subject-matter of demog-
raphy, sociology, agriculture, industrial production, etc., seldom provide
clues to this very necessary type
of quantitative information, and v v v |

v ji=3

the statistician must seek it out i=1
the best he can. After one or

more surveys have been taken, — —
excellent estimates can be ob- L
tained from the returns, and these |4

. 2
estimates serve as advance knowl- viv

edge for improving and lowering Fia. 12. For an illustrative exercise in
the cost of the next survey." the text, a universe consists of three pri-

Theory indicates that if the mary units, in each of which are a num-
primary units are to be drawn ber of d.us., some of which are vacant (V).
with equal probabilities, then Ssmples are to be drawn, and the total
effort must be made to delineate number of vgcant d.us. in the universe is

A . . . to be estimated from the samples.
primary sampling units having
roughly equal populations, so as not to run into a high value of ¢, and
a high variance of X, or high cost, and theory indicates how the costs
will increase with failure to accomplish this aim. Similar remarks hold
for the secondary units.

Exercise 1. The universe pictured in Fig. 12 consists of three primary
units. Each primary unit consists of d.us. (dwelling units) some of which
are vacant (V). Number the d.us. in each primary unit in serpentine
fashion. Let k be the running index signifying a particular d.u.; then

k will take the values 1, 2, - - -, 7 in primary unit 1
k ¢ “ “ “ 1, 2, cee g « “ “« 9
ko« o« “ 1,2 --4,5 €« “« « 3

The double index jk signifies a primary unit and a particular d.u. within
it. Let
aj; = 1 if the d.u. is vacant (V)}

= (0 otherwise

By counting it is easily seen that u
Ay =2 A,=3, A;=2 A=) Aj=T
1

1 A gplendid example of such a series of experiments is Mahalanobis’s surveys for X
the acreage of jute in Bengal, commencing in 1935. The references are given later on.
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M
Ni=7, Np=9, No=5 N=) N;=21
1

M=3
A 7 1 .
. k= — = — =— the overall vacancy ratio
N 21 3
The problem is to compute Z; M1, K2, M3, 0'82: 0'52, 612) 6227 032, Uwzx 02’
Buy Obul, Oun’, 012, N. Verify that ¢ = a42 + 0,2
Exercise 2. a. Draw four or more samples from the universe pictured
here. Let each sample consist of two primary units, drawn at random.
Use the following sample-sizes at the second stage.
. ) [These numbers are approxi-
From primary unit 1, draw n; = 3 d.us. mately proportional to Ny,
« « “« 9 o« —4 “ N3, N3, concerning which the
’ ny = student may wish to turn

“ “ “ “ - “ ahead to the subject of alloca-
3, ng =2 tion in Ch. 6.]

Tippett’s numbers or any other set of random numbers may be used for
drawing the two primary units and for drawing the d.us. from within
whichever primary units fall into the sample.

b. For 2ach sample compute

N;
X; = - Z zj for each of the two primary units
(A in the sample

M 3
= P Z X; = 2 (1 X1 + a2Xs 4+ a3X3)

= the estimated total number of vacant d.us. in the universe

Here
a; = 1 if primary unit j is in the sample)|

0 otherwise J
(In every sample, two of the a; will be 1, and the third one will be 0.)

The instructor may wish to ask each student to draw and compute four
samples, then to assemble all the results in the form on the next page
before assigning Parts ¢ and d.

¢. For the ensemble compute the average value of X and compare
it with the known value 4 = 7.

d. Compute the mean square deviation of X from its average. Com-
pare it with Var X, which is to be computed from Eq. 8 in which m = 2
and in which o, 01, 03, 03 have the values computed in the previous
exercise.
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RECORD OF BAMPLES

.

Sample | Primary unit 1 | Primary unit 2 | Primary unit 3 Esmed
number | (if in the sample) | (if in the sample) | (¢f in the sample) i

L n3 3

II=ZI,~), X1 Ig=izﬂc Xz :cs=z:r:,~k X3 X=%Za,-X,-
1

2
Average XXX XXX XXX
Known
value 2 XXX 3 XXX 2 7

Estimates of the population per secondary unit. There are many prob-
lems in which special interest attaches to the population per secondary
unit (u; or u) rather than to the total population (4; or A). This is so
in many social and economic studies, but excellent examples are fur-
nished also by quality control, field trials in agricultural experiments,
and in the sampling of bulk materials of industry to estimate certain
intensive properties in which there is no definite subunit. Determina-
tions of the percentage of sucrose in raw suger, the percentage of clean
wool in a shipment of grease wool, the percentage of ash in coal, the
percentage defective in a shipment of manufactured articles, are exam-
ples. The number of secondary units (N;) per bag or bale or carload
of bulk material is indefinite, but fortunately the finite multiplier
(Nj —n;)/(Nj — 1) in Eq. 8 can be replaced by 1 — n;/N;, which is
equivalent to 1 — w;/W;, where W; is the weight of a bag or bale or
other unit, and w; is the weight drawn out as a sample. As a matter of
fact, to correspond with most practice, in the theory about to be devel-
oped the sample will be assumed so small that w;/W; can be neglected
and the finite multiplier replaced by unity. Whenever this is not the
best assumption, the factor 1 — w;/W; can easily be restored. The
symbol £ will denote some intensive quality of a lot or shipment which
is to be determined by drawing samples and performing tests. The most
economical sampling procedure for determining £ within prescribed limits
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(such as within 1 percent) is an important problem, to which the fore-
going theory will now be applied. The solution will be seen to depend
on the variance ¢,,> within the bale or other unit and on the variance
032 from bale to bale. Under conditions in which the bales are approxi-
mately the same weight and the sample is small, ¢.2 is replaced by
N2s,2, N; by N, and the finite multiplier (N; — n;)/(N; — 1) by unity.
Then because N = X it is seen from Eq. 8, 9, or 11 that approximately
M — m op? 2
2oy as)

Var 2 =
M—-1m mn

Here M is the number of bales in the shipment, m the number to be
sampled (cored), % the number of samples per bale. The cores should
be randomly selected from within the bale and of equal size, although a
systematic selection in which all parts of the bale have the same chance
of coming into the sample is more practicable. For the coefficient of
variation of £ the last equation when divided through by u? gives

2 2
Momy +2= (19)
M-1m mna

(C.V.2)? =

wherein v, = ¢3/u and v,, = o,/u, these being the external and internal
coefficients of variation per secondary unit in the universe.

Exercise. By making 7 = 1 in all the primary units of the sample,
show that the basic formula of Chapter 4 for sampling in a single stage
still holds for two stages. Hence if 7 = 1 the variance behaves nearly
as if the N secondary units were listed and drawn at a single stage.
(Hint: Place 7 = 1, and recall ;2 + 0,°> = o%; then Eq. 19 for two
stages reduces to Eq. 16’ in Ch. 4. First indicated to me by Morris H.
Hansen, 1949.)

Sampling of bulk products. Wool will serve as an illustration. Wool
is imported in highly compressed bales weighing from 200 to 1000
pounds, depending on the country of origin. Duty and the selling price
are both based on “grade’” and ‘“‘clean content.” The clean content of a
sample of wool is defined as the fraction of “clean” wool remaining after
certain operations of scouring and chemical reduction have been per-
formed on the sample to bring it to a prescribed standard of moisture
and ash content. A routine laboratory procedure for determining
the clean content of a sample of wool was developed in the Bureau of
Customs by Wollner and Tanner,'? who also worked on the problem of
sampling. The samples tested are cores from 13 to 2 inches in diameter

12H. J. Wollner and Louis Tanner, “Sampling of imported wool for the determina-
tion of clean wool content,” Ind. Eng. Chem., vol. 13, 1941: pp. 883-87. A standard
method of test of wool has been promulgated by the A.8.T.M., publication D584-43,
based on the work of Wollner and Tanner.



5. MULTISTAGE SAMPLING 161

and from 8 to about 18 inches in length, depending on the density of
the bale, and bored in the direction of compression, which is the direction
of greatest variability. Cores can be taken from either side of the bale,
centered at any point. The assumption here will be that random z, y
coordinates will be used for the selection of these points, and that bales
for coring can be selected at random out of the shipment.’® Given cer-
tain variances o,,2 and ¢ and a desired precision for the determination
of the clean content (£) of the shipment of M bales, the question is how
many bales (m) are to be bored, and how many cores (77) from each bale?
Equation 18 applies. At the present writing there is a dearth of data
on the necessary variances, but for illustration the following values will
serve:
ap = 2 percent g = 1 percent

These are actual figures on some Australian wool kindly furnished by
Mr. Louis Tanner of the Customs Laboratory in Boston.

For very small shipments (M small), in which every bale must be in
the sample, m = M, and the finite multiplier in Eq. 18 will be 0 because
a core will be taken from every bale, leaving only the second term involv-

ing o, whence
1 fow\2
M=- (——- (20)

n \oz

For shipments smaller than this value of M, all bales are to be in the
sample, and the number 7 of cores per bale must be altered to satisfy
the equation

1 (2)2 [Small shipment; every (1)

n= M s bale sampled]

For larger shipments it is convenient to rewrite Egs. 18 and 19 in the
form

i
m= = (22)

C2
M-1 T

7i is first to be determined from the costs of handling a bale and of taking

13 In practice the nearest approach to a random selection of bales is to take cores
from every nth bale as the shipment is unloaded: any hope that a shipment of 1000
bales, once in the warehouse, will be sampled at random is a vain one indeed, unless
it is all loaded again later for reshipment. Random z, y patterns for the cores could
probably be followed by the workmen if a set of cards were made up showing random
selections of centers, the cards to be used in turn as bale after bale is cored.
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a core out of a bale. Suppose for illustration that:

¢1 = 50¢, the cost of pulling aside an occasional bale for coring during
the unloading of the shipment, and later restoring the bale to
the remainder of the shipment

¢3 = 35¢, the cost of taking 1 core, including wages and repairs on the
machine

The next step is to return to Eq. 12/, neglect the N under the radical,
and perceive that what is left reduces to

4 C1 Y C1
o= — \/: =2 \/: (23)
op VC2 Yo YC2 .

which in this problem gives
i ==q/=— =06 29)

As 7i can not be less than 1, we are assured that 1 core per sample bale is
sufficient.

We might well pause to note that 7, the number of cores per bale, is
independent of the size of lot (M) and the number m of bales to be
sampled; also independent of the total cost and the desired precision.

The standard error of sampling in the determination of clean content
might be prescribed as 4 percent, which allows 1 percent either way as
the 3-sigma tolerance. With ¢, = 0.01, ¢z = 0.0033, and 7 = 1, Eq. 20
gives M = 9, and so for shipments of 9 or fewer bales, every bale would
be sampled, and in fact 9 cores will be required from any shipment of
fewer than 9 bales. For M > 9, Eq. 22 yields values for m, the number
of bales to be in the sample. The proper sampling interval will be M /m
rounded to some convenient integer.

gz = 0.0033, op =002 o, =001, "=1 if M 29

Size of shipment,

M bales 9 25 50 100 250 500 1000
Size of sample, m bales | See note
9 18 26 33 40 42 43
Recommended sampling
interval Takeall | 2 3 [bor6 12 20

Nore. For a shipment of fewer than 9 bales, take 9 cores, distributed as uni-
formly as possible amongst the bales.
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To get some idea concerning the samples required in another case,
assume that
op = 3 percent a,» = 3 percent

For such variability we might relax the prescribed standard error to
1 percent. First of all, Eq. 23 shows that 1 core per bale is again correct,
and Eq. 20 indicates that a minimum of 36 cores is required. Hence
M = 36 is the minimum shipment in which sampling can be used.
Eq. 22 gives the proper sampling plan for shipments bigger than 36.
The samples required are not much greater than on the previous assump-
tions, although it must be borne in mind that the prescribed precision
(o) is slightly looser in the second example.

oz = 0.005, o, =0.03, 0, =003 7A=1 if M =36

Sige of shipment, M bales 36 50 100 250 500 1000
Size of sample, m bales | See note
36 42 53 63 67 70
Recommended sampling
interval Take all 2 4 8 15

Note. For a shipment of fewer than 36 bales, take 36 cores, distributed as uni-
formly as possible amongst the bales.

The illustrations for wool apply equally well to a host of other prob-
lems in industrial sampling. As with many sampling problems, theory
shows what needs to be known in order to design a plan that will deliver
the precision required at the lowest cost.

Naturally the costs ¢; and cp, and the standard deviations o5 and sy,
will vary from one type of problem to another. Sometimes their ratios
will be such that for the most economical sampling plan, 7 as calculated
by Eq. 23 turns out to be 1 (as in the above examples): at other times
7 turns out to be 2, 3, 4, or more.

The first step in introducing a sampling plan is to get some reliable
figures on costs gnd variances. All that is required is proper records,
some small statistical computation, and a few control charts to enable
assignable causes of variability to be identified. The cost is trivial com-
pared with the savings.

Exercise. A certain laboratory engaged in the testing of wool, when
sampling a lot of 500 bales, makes a practice of taking 4 cores from each
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of 50 bales. (a) Show that if ¢, = 3 percent and o, = 6 percent, this
laboratory is providing a 3-sigma sampling tolerance of 2.4 percent
(which is pretty high). (b) Show that if the ratio of costs ¢;:¢c; = 10:7,
this laboratory is paying 20 percent more than necessary for sampling
a lot of 500 bales.

Remark. In Chapter 10 methods will be presented for estimating 7., and
oy on the assumption that records are available concerning the tests of
individual cores. It is possible to obtain estimates of o, and g, without the
use of records of individual cores, and a method for going about this may be
discussed at this time. Suppose that (as actually happened) a manufacturer
of textiles has records on hand showing £ for each of numerous lots of
various types of wool. In some of the lots 7 (the number of cores per bale)
was 2, in others 4, but the tests were not made for the individual cores. .

Let one “‘experiment” be described as the determination of £ for each of
(e.g.) 50 lots of wool of a particular type. In the sampling plan that
was used for this “experiment” 7 = 2. The variance of the actual 50
numerical values of £ may be computed for this ‘“experiment”: call this
variance 4.

In another “experiment” with the same type of wool there are 100 lots,
and 7t = 4. The variance of these 100 numerical values of £ may likewise be
computed: call this variance B. Then for determining ¢, and o, there will
arise from Eq. 18 the two following simultaneous equations, linear in the
two unknowns g, and os:

M—-m 0’52 dw2

A=M—1m mn fm = 50,7 = 2]
M—ma'b“’ 0‘.,,2 _ _
B—ﬂ-*_:—l%- ‘r;z_f: [m—lOO,ﬂ-4]

A difficulty arises in the fact that M (the size of a lot) may differ from 1 lot
to another. However, the factor (M — m)/(M — 1) may not differ greatly
from 1 lot to another, and it may be entirely practicable to replace it by an
average value. When this is not satisfactory for the whole 50 or 100 lots
of an “experiment,” <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>