Evolutionary Computation for
Optimization of Selected Non-Linear
Chemical Processes

THESIS
Submitted in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY

By
RAKESH ANGIRA

Under the supervision of

Prof. (Dr.) B. V. BABU

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA
2005

BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE
PILANI (RAJASTHAN) INDIA

CERTIFICATE

This is to certify that the thesis entitled “Evolutionary Computation for
Optimization of Selected Non-Linear Chemical Processes” and submitted by
Rakesh Angira ID. No. 2000PHXFO011 for award of Ph.D. Degree of the Institute,

embodies the original work done by him under my supervision.

Signature in full of the Supervisor

Name in capital block letters B. V. BABU

Date: 1§-lo-2605 Designation
Professor of Chemical Engineering
Group Leader - Chemical Engineering &
Assistant Dean - Engineering Services Division

T0O
MY Father

ACKNOWLEDGEMENTS

I wish to express deep sense of gratitude and sincere thanks to my guide Prof.
(Dr.) B. V. Babu for allowing me to work in the emerging area of Evolutionary
Computation, helping me understand the concepts, continuous encouragement,
providing me all guidance and moral support. It is from him that I learned the traits of
research and developed a desire to excel.

I thank Prof. S. Venkateswaran, Vice-Chancellor, BITS, Pilani for allowing me to
pursue my thesis in the Institute.

My sincere thanks to Prof. L. K. Maheshwari — Pro Vice-Chancellor, Prof. K. E.
Raman - Deputy Director (Administration), Prof. V. S. Rao - Deputy Director (Off-
Campus Programmes), Prof. Ravi Prakash — Dean (R & C Division), and Prof. A. K.
Sarkar - Dean (Instruction Division and Faculty Division I), for providing the
necessary infrastructure and other facilities whenever required.

I also express my gratitude for the kind and affectionate enquiries about the work,
providing the computing facility & the encouragement given by Prof. B. R. Natrajan —
Dean (DLP).

Special thanks and appreciation is extended to Prof. R. P. Vaid, Prof. T. N. S.
Mathur, Dr. S. D. Manjare, Mr. B. D. Munshi, Mr. H. K. Mohanta, and other faculty
members of Chemical Engineering Group for their valuable advice and moral support
throughout the study.

Special thanks are also extended to Mr. Pankaj Vyas, Dr. Deepak Satpati, Dr. N.
N. Sharma, Dr. B K. Mishra, Dr. S. D. Pohekar, and Dr. V. Ramakrishna for their
cooperation and encouragement in completing my research work.

I sincerely thank anonymous reviewers of International Journals of ‘Computers &
Chemical Engineering’ for accepting research paper for publication based on the
present study.

Sincere thanks to Dr. M. Ishwara Bhat, Librarian, BITS as well as to librarian at
11T, Delhi for providing literature useful for the present study. Special thank to my
friend Mr. Ravindra Marathe - Research scholar (National University of Singapore)
for sending various research papers throughout the study. I thank my co-researchers
Mr. B. K. Rout, Mr. K. K. Gupta, Mr. R. R. Singh, and Mr. Sunil Kumar for their
cooperation and encouragement in completing my research work.

[express my thanks to Mr. Narender Saini, Mr. Ashok Jitawat, and other members
of DLP Division for their help and cooperation. I also wish to acknowledge Mr.
Babulal Saini, Mr. Jangvir, Mr. Shankar, Mr. Jeevan, Mr. Ashok and other non-
teaching staff of Chemical Engineering Group for their help and cooperation. I
express my thanks to Mr. V. N. Sharma, Mr. Mahendra Saini and Mr. Rajkumar Saini
of ESD (Workshop) for their help while sending research papers related to thesis
work. I would like to thank members of Reprography, Xerox and Printing Sections
for their prompt services.

I would be failing in my duties if I do not mention the name of my wife —
Priyanka, daughters - Riya & Vrinda for their constant help and encouragement
without disturbing me while spending nights at work. This work would not have been
completed without the moral support I got from my brothers — Mr. Rajesh Angira and
Mr. Mahesh Angira and loving parents — Mrs. Tripta Angira and Late Dr. O. P.
Angira.

Last but not the least, I would like to thank one and all who have helped me in
myriad ways throughout the course of this work.

Rakesh Angira

i

ABSTRACT

The chemical industry has undergone significant changes during the past 25 years
due to the increased cost of energy and increasingly stringent environmental
regulations. Most observers both from academia and industry believe that the
emphasis in the near future will be on improving efficiency and increasing
profitability of existing plants rather than on plant expansion. One of the most
important engineering tools that can be employed in such activities is ‘optimization’.
Unfortunately, none of the traditional algorithms are guaranteed to find the global
optimal solution but population based search algorithms are found to have a better
global perspective than the traditional methods.

Now-a-days, non-traditional search and optimization methods (also called
Evolutionary Computation Methods) that often rely on physical analogies in order to
generate trial points that mimic the approach to an equilibrium condition, are
becoming popular. Examples include Simulated Annealing (SA), Genetic Algorithms
(GA) and Differential Evolution (DE) to name a few. DE, a recent optimization
technique, is an exceptionally simple evolution strategy, which is significantly faster
& robust at numerical optimization and is more likely to find a function’s true global
optimum. But the application of DE to chemical processes is scarce.

The present thesis deals with the application of Differential Evolution, an
evolutionary computation technique, for the optimization of selected nonlinear
chemical processes. There are many chemical processes which are highly nonlinear
and complex with reference to optimal operating conditions with many equality and
inequality constraints; such as optimization of a thermal cracker, optimal operation of
alkylation unit, optimal design of ammonia reactor, reactor network design, and
optimal design of heat exchanger network, multi-product batch plant design, dynamic
optimization of a batch reactor etc. These processes represent various types of
optimization problems such as linear programming problems, non-linear
programming problems, process synthesis and design (mixed integer non-linear
programming) problems, and dynamic optimization problems etc.

The performance of DE is evaluated using various benchmark test functions and
selected nonlinear chemical processes. Also the performance of DE, for a given
problem, is compared with that of other traditional/evolutionary optimization
methods. It is important to note that for some of the problems DE is able to locate
better solution (possibly global optimum) than that reported in literature. In case of
optimal design of ammonia synthesis reactor a possible error in the NAG routine is
found along with the new value of optimum reactor length, and profit function. DE
takes large computational time for problems involving computationally expensive

1ii

objective functions. In order to reduce the computational efforts, an attempt is made
to seek improvements on original DE by finding better mutation and crossover
schemes or by hybridizing it with traditional methods.

A Modified Differential Evolution (MDE) is proposed and its performance is
compared with that of DE and other optimization methods with which the given
problem has been solved in literature. Two methods for handling bound violations are
studied and compared. Also, a new approach for handling binary variable is proposed
and compared with nonlinear transformation modeling for binary variables. The
proposed approach for handling binary variables is found to be better than the latter.
Further the performance of MDE is found to be better than that of DE and some other
methods.

A new Hybrid DE (HDE) algorithm is proposed and discussed. This new method
is a hybrid of DE and quasi-Newton method. HDE located the global optimum with
high accuracy as compared to DE, Enhanced Continuous Tabu Search, a hybrid
method of Tabu Search & Quasi-Newton, and GA. The HDE took less CPU-time as
compared to DE. Further, the performance of HDE algorithm is evaluated by its
application to various chemical engineering problems and comparing its performance
with that of DE.

Also, two new strategies of DE, viz., New Strategy-1 (NS-1) and New Strategy-2
(NS-2) are proposed and tuned to their best possible control parameters. In the
proposed strategies, the best features of the three existing DE strategies are exploited
in order to increase the convergence rate while maintaining the robustness of the
algorithm. Further they are applied to selected difficult nonlinear chemical
engineering problems and their performance is compared with that of DE and MDE.
The proposed strategies are found to be competitive with DE and MDE algorithms.

Two novel techniques to solve multi-objective optimization problems, Non-
dominated Sorting Differential Evolution (NSDE) and Modified Non-dominated
Sorting Differential Evolution (MNSDE) are proposed and described in detail with
the help of two benchmark test problems. Further the effect of control parameters (CR
— crossover constant & F — scaling factor) on the performance of NSDE and MNSDE
is investigated. It is recommended to use a high CR value for both NSDE & MNSDE
and lower value of F for MNSDE and a value of 0.5 for NSDE. The maximum
number of generations (Max_gen) is found to be problem dependent.

The proposed new evolutionary algorithms (MDE and HDE), two new strategies
of DE (NS-1 & NS-2), and new evolutionary multi-objective optimization algorithms
(NSDE and MNSDE) are very useful in solving highly complex real world single and
multi-objective optimization problems. And all these newly developed algorithms in
this study are found to outperform the existing evolutionary algorithms.

Keywords: Optimization; Evolutionary Algorithms, Differential Evolution; Genetic
Algorithms: Chemical processes; Ammonia synthesis reactor; Alkvlation; Thermal
cracking; Liquid extraction; Heat exchanger network design: Reactor network
design; Drving; Simulation; Modified Differential Evolution; Dynamic optimization;
Process svnthesis and design; Nonlinear programming problems. Mixed integer
nonlinear programming problems.

iv

TABLE OF CONTENTS

Acknowledgments
Abstract

Table of contents
List of figures

List of tables

List of symbols

1. Introduction
1.1 Optimization
1.2 Traditional Methods & their limitations
1.3 Evolutionary Computation (EC)
1.3.1 History
1.3.2 Whatis EC?
1.3.2.1 Paradigms of EC
1.3.2.1.1 Evolutionary Programming
1.3.2.1.2 Evolution Strategies
1.3.2.1.3 Genetic Algorithms
1.3.3 WhyEC?
1.3.3.1 Optimization
1.3.3.2 Robust adaptation
1.3.3.3 Machine intelligence
1.3.3.4 Understanding of biology
1.4 EC vs. Traditional Methods
1.5 Motivation
1.6 Objectives
1.7 Scope of the present study
1.8 Structure of the thesis
2. Evolutionary Computation Methods
2.1 Genetic Algorithm (GA)
2.1.1 Stepwise Procedure of GA
2.1.2 Applications of GA
2.2 Differential Evolution (DE)
2.2.1 Working of DE
2.2.2 Applications of DE
2.3 Comparison of GA and DE
2.4 Application of DE to a Test function
2.5 Conclusions

1

Xiv
Xvii

W W WWNNNDNNDNDNNN
SO e B O R RN B e O R R RO R —mO 0O BN~

3.5.6.2 Problem Formulation 100

3.5.6.3 Results and Discussion 101

3.5.6.4 Conclusions 103

3.5.7 Optimum Fuel Allocation in Power Plant (FAPP) 104
3.5.7.1 Introduction 104

3.5.7.2 The Problem 105
3.5.7.2.1 Problem Formulation 106

3.5.7.3 Results and Discussion 107

3.5.7.4 Conclusions 109

3.5.8 Water Pumping System 110
3.5.8.1 Introduction 110

3.5.8.2 The Problem 110
3.5.8.2.1 Problem Modification 112

3.5.8.2.2 Problem Reformulation-1 112

3.5.8.3 Results and Discussion 113
3.5.8.3.1 Problem Reformulation-2 115

3.5.8.4 Conclusions 116

3.5.9 Liquid Extraction Problem 116
3.5.9.1 Introduction 116

3.5.9.2 Process Model 118
3.5.9.2.1 Objective Function 121

3.5.9.3 Results and Discussion 121

3.5.9.4 Conclusions 122

3.5.10 Heat Exchanger Network Design (HEND) 123
3.5.10.1 Introduction 123
3.5.10.2 Problem Formulation 123
3.5.10.3 Results and Discussion 125
3.5.10.4 Conclusions 127

4. Application of MDE to Process Synthesis and Design 128
4.1 Introduction 128
4.2 Background 129
4.3 Problem Formulation 132
4.4 Handling of Integer and Binary variables 133
4.4.1 Integer variables 133
4.42 Binary or discrete variables 134
4.42.1 Approach-1 134
4.42.2 Approach-2 134

4.5 Test Problems on Process Synthesis and Design 135
4.6 Results and Discussion 142
4.6.1 Approach-1 143
4.6.1.1 Comparison of DE and MDE 144

4.6.2 Approach-2 ' 146
4.6.2.1 Comparison of DE and MDE 148

4.6.3 Comparison of Approach-1 and Approach-2 150
4.6.4 Comparison of MDE, GA, M-SIMPSA, and ES (2 + 1) 156
4.7 Conclusions 159
5. HDE and its Application to Test functions and Selected
Nonlinear Chemical Processes 160

5.1 Introduction 160

vii

5.2 HDE algorithm
5.3 Test Functions
5.3.1 Results and Discussion
5.4 Selected Non-linear Chemical Processes
5.4.1 Water Pumping System
5.4.1.1 Results and Discussion
5.4.2. Heat Exchanger Network Design (HEND)
5.4.2.1. Problem Reformulation
5.4.2.2. Results and Discussion
5.4.3. Three Stage Compressor with Inter-cooling
5.4.3.1. Problem Formulation
5.4.3.2. Results and Discussion
5.4.4. Drying Problem
5.4.4.1. Results and Discussion
5.5 Conclusions

161
163
163
167
168
168
170
170
171
172
173
174
175
175
176

6. New Strategies of DE and their Application to Selected Non-

Linear Chemical Processes
6.1 Introduction
6.2 New Strategies of DE
6.3 Test Functions
6.3.1 Results and Discussion
6.3.1.1 New Strategy-1
6.3.1.2 New Strategy-2
6.4 Selected Non-linear Chemical Processes
6.4.1 Multi-Product Batch Plant
6.4.1.1 Results and Discussion
6.4.2 Reactor Network Design
6.4.2.1 Results and Discussion
6.4.3 Dynamic optimization of a Batch Reactor
6.4.3.1 Results and Discussion
6.5 Conclusions

178
178
179
181
182
182
186
189
189
189
191
191
193
194
196

7. An Extension of DE and MDE for Multi-Objective

Optimization
7.1 Introduction
7.2 Multi Objective Optimization Problems (MOOPs)
7.2.1 Pareto Optimal Solutions
7.3 Non-dominated Sorting Differential Evolution (NSDE)
7.3.1 Test Problems
7.3.2 Results and Discussion
7.3.2.1 Schaffer’s Function
7.3.2.1.1 Effect of Max_gen
7.3.2.1.2 Effectof CRand F
7.3.2.2 Cantilever design problem
7.3.2.2.1 Effect of Max_gen
7.3.2.2.2 Effectof CRand F
7.3.3 Conclusions
7.4 Modified Non-dominated Sorting Differential Evolution (MNSDE)
7.4.1 Results and Discussion
7.4.1.1 Schaffer’s Function

viii

197
197
199
200
201
203
204
204
204
206
209
209
210
214
215
216
216

7.4.1.1.1 Effect of Max_gen on MNSDE & its Comparison with

NSDE

217

7.4.1.1.2 Effect of CR on MNSDE & its Comparison with NSDE

217

7.4.1.1.3 Effect of F on MNSDE & its Comparison with NSDE

7.4.1.2 Cantilever design problem

220
221

7.4.12.1 Effect of Max_gen on MNSDE & its Comparison with

NSDE

221

7.4.1.2.2 Effect of F on MNSDE & its Comparison with NSDE

222

7.4.12.3 Effect of CR on MNSDE & its Comparison with NSDE

7.4.2 Conclusions
7.5 Overall Conclusions
7.5.1 Shaffer’s Function
7.5.2 Cantilever Design Problem
8. Concluding Remarks
8.1 Summary
8.1.1 Introduction
8.1.2 Comparison of DE with GA
8.1.3 Modified Differential Evolution (MDE)
8.1.4 Hybrid Differential Evolution (HDE)
8.1.5 New Strategies of DE
8.1.6 Extension of DE and MDE for MOOPs
8.2 Conclusions
8.3 Major Contributions
8.4 Future Scope for Research

References

List of Publications
Biographies
Appendix I
Appendix II
Appendix III
Appendix IV
Appendix V
Appendix VI

ix

223
226
226
226
227
228
228
228
229
230
231
231
232
233
234
235

236
252
254
256
262
290
293
295
303

1.1
12
1.3
1.4
1.5
2.1
22
3.1
32
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

LIST OF FIGURES

Types of optimization problems
A typical evolutionary algorithm
The evolutionary programming algorithm
The evolution strategy algorithm
The genetic algorithm
Schematic of working of DE
Comparison of DE and GA
Schematic of DE

Schematic of MDE

Effect of CR

Effect of F

Error variation for GP;

Error variation for H;

Error variation for ES;

Error variation for Zo ((2 to 10) x 5 generations)

Error variation for Z;o ((11 to 250) x 5 generations)

Error variation for Rjo
Classification of cracking process

Thermal cracker

Variation of objective function value with ethylene processing constraint

Auto-thermal ammonia synthesis reactor

Energy and material balance on control volume

Computation procedure

Profile obtained using RKFS (step size = 0.01)
Profile obtained using EULER (step size = 0.01)
Profile obtained using POLYMATH (step size = 0.01)
Profile obtained using DO2EJF (step size = 0.01)
Profile obtained using DO2EJF (step size = 0.001)

O 00 W

1
12
28
36
40
40
43
43
48
48

49

49
50
50
53
55
62
67
70
72
73
74
74
75
75

3.22
3.23
3.24
3.25
3.26

3.27
3.28

3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Profile obtained using RKFS for top temperature of 664 K
Profile obtained using RKFS for top temperature of 640 K
Profile obtained using RKFS for top temperature of 600 K
Profile obtained using DO2EJF for top temperature of 664 K

77
78
78
79

Variation of objective function with reactor length (various numerical

methods)
Magnification of highlighted part of Fig. 3.26

81
81

Objective function variation with reactor length at various top temperatures

using RKFS
The variation of optimum reactor length with top temperature
Schematic of reactor network design problem

Convergence history of RND problem

Variation of f with time and temperature (temperature range: 500-1000K)

Convergence history of isothermal CSTR design problem
Simplified alkylation process flow sheet

Convergence history of alkylation problem

Convergence history of drying process problem
Schematic of two-boiler-turbine-generator power plant
Convergence history of FAPP problem

Schematic of water pumping system

Schematic of extraction column

Schematic of heat exchanger network design problem
Convergence history of HEND problem

Superstructure for two-reactor problem

NFE variation using DE and MDE (MWFB, Approach-1)
NRC variation using DE and MDE (MWFB, Approach-1)
NFE variation using DE and MDE (FBM, Approach-1)
NRC variation using DE and MDE (FBM, Approach-1)
NFE variation using DE and MDE (MWFB, Approach-2)
NRC variation using DE and MDE (MWFB, Approach-2)
NFE variation using DE and MDE (FBM, Approach-2)
NRC variation using DE and MDE (FBM, Approach-2)
NFE variation using DE for Approach-1 and Approach-2 (MWFB)
NRC variation using DE for Approach-1 and Approach-2 (MWEFB)

X1

82

82

86

89

93

93

95

100
104
105
109
111
119
124
126
139
145
145
147
147
149
149
151
151
152
152

4.12 NFE variation using MDE for Approach-1 and Approach-2 (MWFB) 154
4.13 NRC variation using MDE for Approach-1 and Approach-2 (MWFB) 154

4.14 NFE variation using DE for Approach-1 and Approach-2 (FBM) 155
4.15 NRC variation using DE for Approach-1 and Approach-2 (FBM) 155
4.16 NFE variation using MDE for Approach-1 and Approach-2 (FBM) 157
4.17 NRC variation using MDE for Approach-1 and Approach-2 (FBM) 157
5.1 AD variation for GP; function using DE and HDE 166
5.2 AD variation for WPS problem using DE and HDE 169
5.3 AD variation for HEND problem using DE and HDE 172
5.4 Three-stage compressor with inter-cooling 172
5.5 AD variation for MWC problem using DE and HDE 174
5.6 AD variation for drying problem using DE and HDE 176
6.1 Effect of CR and F on Ackley’s function using NS-1 183
6.2 Effect of CR and F on Rastrigin’s function using NS-1 183
6.3 Convergence history for Ackley’s function using DE and NS-1 185
6.4 Convergence history for Rastrigin’s function using DE and NS-1 185
6.5 Effect of CR and F on Ackley’s function using NS-2 186
6.6 Effect of CR and F on Rastrigin’s function using NS-2 187
6.7 Convergence history for Ackley’s function using DE and NS-2 188
6.8 Convergence history for Rastrigin’s function using DE and NS-2 188
6.9 Convergence history of RND problem 192
6.10 Optimal temperature profile 195
7.1 Pareto optimal front for Schaffer’s function (NP = 40) 205
7.2 Effect of Max_gen on NPS 205
7.3 Pareto optimal front for Schaffer’s function (NP = 400) 206
7.4 Pareto optimal front for Schaffer’s function for different seed values 207
7.5 Pareto optimal front for Schaffer’s function for different F values 208
7.6 Pareto optimal front for cantilever design problem 209
7.7 Effect of Max_gen on NPS (cantilever design problem) 210

7.8 Pareto optimal front for different F values (cantilever design problem) 211
7.9 Effect of scaling factor (F) on NPS (cantilever design problem) 212
7.10 Pareto optimal fronts for different CR values (cantilever design problem) 213
7.11 Effect of CR on NPS (cantilever design problem) 214
7.12 Pareto front using MNSDE and NSDE (Schaffer’s function) 216

X1

4.12 NFE variation using MDE for Approach-1 and Approach-2 (MWFB) 154
4.13 NRC variation using MDE for Approach-1 and Approach-2 (MWFB) 154

4.14 NFE variation using DE for Approach-1 and Approach-2 (FBM) 155
4.15 NRC variation using DE for Approach-1 and Approach-2 (FBM) 155
4.16 NFE variation using MDE for Approach-1 and Approach-2 (FBM) 157
4.17 NRC variation using MDE for Approach-1 and Approach-2 (FBM) 157
5.1 AD variation for GP;, function using DE and HDE 166
5.2 AD variation for WPS problem using DE and HDE 169
5.3 AD variation for HEND problem using DE and HDE 172
5.4 Three-stage compressor with inter-cooling 172
5.5 AD variation for MWC problem using DE and HDE 174
5.6 AD variation for drying problem using DE and HDE 176
6.1 Effect of CR and F on Ackley’s function using NS-1 183
6.2 Effect of CR and F on Rastrigin’s function using NS-1 183
6.3 Convergence history for Ackley’s function using DE and NS-1 185
6.4 Convergence history for Rastrigin’s function using DE and NS-1 185
6.5 Effect of CR and F on Ackley’s function using NS-2 186
6.6 Effect of CR and F on Rastrigin’s function using NS-2 187
6.7 Convergence history for Ackley’s function using DE and NS-2 188
6.8 Convergence history for Rastrigin’s function using DE and NS-2 188
6.9 Convergence history of RND problem 192
6.10 Optimal temperature profile 195
7.1 Pareto optimal front for Schaffer’s function (NP = 40) 205
7.2 Effect of Max_gen on NPS 205
7.3 Pareto optimal front for Schaffer’s function (NP = 400) 206
7.4 Pareto optimal front for Schaffer’s function for different seed values 207
7.5 Pareto optimal front for Schaffer’s function for different F values 208
7.6 Pareto optimal front for cantilever design problem 209
7.7 Effect of Max_gen on NPS (cantilever design problem) 210

7.8 Pareto optimal front for different F values (cantilever design problem) 211
7.9 Effect of scaling factor (F) on NPS (cantilever design problem) 212
7.10 Pareto optimal fronts for different CR values (cantilever design problem) 213
7.11 Effect of CR on NPS (cantilever design problem) 214
7.12 Pareto front using MNSDE and NSDE (Schaffer’s function) 216

xii

7.13

7.14
7.15
7.16
7.17
7.18

7.19

7.20

7.21
7.22

Effect of Max_gen on NPS using MNSDE and NSDE (Schaffer’s function)

217
Effect of CR using MNSDE (Schaffer’s function) 218
Effect of seed for Schaffer’s function 219
Effect of F on NPS for Schaffer’s function (MNSDE and NSDE) 220
Comparison of MNSDE and NSDE at F=0.2 220
Effect of Max gen on NPS for cantilever design problem (MNSDE and
NSDE) 221
Effect of F on NPS for cantilever design problem using MNSDE and NSDE
(CR=0.5) 222
Pareto front for cantilever design problem (MNSDE and NSDE) 223

Effect of CR on NPS for cantilever design problem (MNSDE and NSDE) 224
Effect of CR on Pareto front for cantilever design problem (MNSDE) 225

Xiil

2.1
2.2
23
24
2.5
2.6
2.7
2.8
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11

3.12

3.13
3.14
3.15
3.16
3.17
3.18
3.19

LiST OF TABLES

Initial Population

Mutation and Crossover

Next Generation Population

Comparison of GA and DE

Results of GA

Results of DE with all ten strategies

Results of Strategy DE/best/1/bin

Results of Strategy DE/best/1/exp

Details of global minimum

Results of DE and MDE

Product Matrix with yield structure: (weight fraction)
Fuel requirements for each feedstock type

Heating value of fuels

Cost of feed, product and fuel (cents/1b)

Results of LP and Simplex and DE

Results of DE (all ten strategies)

Results of MDE and DE for Thermal cracker problem
Comparison of different numerical methods at x = 10m

Reactor length at which variables N & T intersect
Reactor length at which variables N, & T intersect

Optimal Length and Profit obtained from various methods
Comparison with literature values

Results of MDE” and its comparison with DE* and aBB algorithms
Values of C;j and E;

Results reported in literature

Computational Results using DE and MDE for Isothermal Reactor

Variables and their bounds

Xiv

29
31
31
33
34
34
35
35
46
47
56
56
56
56
62
63

. 64

76
76

76

83
83
88
90
91
92
96

3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
4.1
42
4.3
44
4.5
4.6
4.7
4.8
5.1
5.2
53
5.4
5.5
5.6
5.7
6.1
6.2
6.3
6.4

Comparison of Various Methods

Results of DE and MDE for Alkylation problem

Comparison of DE with DSM and CRS methods (DP problem)
Results of MDE and DE algorithms for DP problem
Comparison of DE with DSM and CRS methods (FAPP problem)
Results of MDE and DE algorithms for FAPP problem
Comparison of DE with Branch & Reduce method

Results of DE with all ten strategies (accuracy = 10%)

Results of DE with all ten strategies (accuracy = 107)

Results of DE and MDE using MWFB

Results of DE and MDE using FBM

Results of DE and MDE for liquid extraction problem (MWFB)
Results of DE and MDE for liquid extraction problem (FBM)
Comparison of DE with MDE and oBB algorithm (HEND problem)
Characteristics of the test problems

Constants for Problem-6

Values of S; and t;; of Problem-7

Results of DE using Approach-1

Results of MDE using Approach-1

Results of DE using Approach-2

Results of MDE using Approach-1

Comparison of MDE, GA, ES, M-SIMPSA & M-SIMPSA-pen
Comparison of DE with HDE

Comparison of AAD for various algorithms

Comparison of Success Rate (SR) for various algorithms
Comparison of DE with HDE for WPS problem

Comparison of DE with HDE for HEND problem

Comparison of DE with HDE for MWC problem

Comparison of DE with HDE for drying problem

Control parameters for two test functions

Comparison of NS-1 and NS-2 MPBP problem (FBM)
Comparison of I;IS-I and NS-2 MPBP problem at higher CR (FBM)
Comparison of NS-1 and NS-2 MPBP problem (MWFB)

Xv

6.5
6.6
6.7
7.1
7.2
7.3
7.4

Comparison of NS-1, NS-2, DE, and MDE for RND problem
Comparison of NS-1, DE, and MDE for RND problem
Comparison of NS-1, NS-2, and DE for Batch Reactor problem
Variation of objective function values (min and max) with F
Variation of objective function values (min and max) with CR
Comparison of maximum function values for two different seeds

Effect of CR on maximum value of objective functions

XVi

191
193
194
212
214
218
226

m

Max_gen

N/NP
NFE
Nox
NRC
P(G)
Pc

Pm
Si

N~ % xS Q338

OFcal

OFAnaI

Greek symbols
AH

&

U
A

ES (u+A4)

Subscripts
0

Distribution coefficient (m = 1.5)

Maximum number of generations allowed in case of
MOOPs

Population size

Mean number of objective function evaluations
Number of transfer units

Percentage of convergencies to the global optimum
Population at G" generation

Crossover probability in GA

Penalty in case of constraint violation/Gas constant
Mutation probability in GA

Surface area of cooling tubes per unit length of reactor
(m)

Cross-sectional area of catalyst zone (m?)

Top temperature (K)

Temperature of Reacting gas (K)

Overall heat transfer coefficient (kCal/m”.hr.K)

Total mass flow rate (kg/hr)

Dimensionless raffinate phase concentration

Distance along axis (m)

Dimensionless extract phase concentration
Dimensionless contactor length

Objective function value at the best point found in each
successful experiment

Known global minimum

Heat of reaction (kCal/kg mole of N3)
Accuracy ‘

Number of parents at a generation
Number of offspring at a generation

Selection takes place between the (u +4) members

Initial

Xviil

LJj
a,b,c
count/G
A, B
min

max
D

f

g

N,

Superscripts
lo

hi

J

k

rn,r,nr

Abbreviations
AD .
AAD
ACO
DE
DP
DSM
CRS
FAPP
EAs
EC
ECTS
EMO
EP

ES
ES;
FBM

ith and jth vector/individual
Randomly selected vector/individual
Generation counter
Component/Material

Minimum

Maximum

Dimension of the problem

Feed gas

Reacting gas

Nitrogen

Lower limit of a variable
Upper limit of a variable
Jjth vector/individual
k-th generation

Randomly selected vector/individual

Absolute Deviation (JOF ¢y — OF anall)
Average Absolute Deviation

Ant Colony Optimization
Differential Evolution

Drying Process

Direct Search Method

Controlled Random Search

Fuel Allocation in Power Plant
Evolutionary Algorithms
Evolutionary Computation
Enhanced Continuous Tabu Search
Evolutionary Multi-objective Optimization
Evolutionary Programming
Evolution Strategy

Easom function

Forced Bound Method

XX

GA
GP;

H;
HDE
HEND
HIM
LP

MA
MDE
MINLP
MNSDE
MOOPs
MPBP
MWFB
NAG
NLP
NPS
NS-1
NS-2
NSDE
PMP
QN

Rp
RKFS

SA
SOMA
SR
SS
TS
TS-QN
Zp

Genetic Algorithm

Goldstein and Price function

Hartmann function

Hybrid Differential Evolution

Heat Exchanger Network Design

Himmelblau function

Linear Programming

Memetic Algorithm

Modified Differential Evolution

Mixed Integer Non-Linear Programming
Modified Non-dominated Sorting Differential Evolution
Multi-Objective Optimization Problems
Multi-Product Batch Palnt

Method Without forcing the Bound
Numerical Algorithm Group

Non-Linear Programming

Number of solutions in final Pareto Set

New Strategy-1

New Strategy-2

Non-dominated Sorting Differential Evolution
Pontryagin’s Maximum Principle
Quasi-Newton method

Rosenbrock function of dimension D

Runge — Kutta fixed step size method (fourth order)
Reactor Network Design

Simulated Annealing

Self Organizing Migrating Algorithm

Success Rate

Scatter Search

Tabu Search

A hybrid method of Tabu search and Quasi-Newton

Zakharov function of dimension D

XX

CHAPTER

1

INTRODUCTION

The chemical industry has undergone significant changes during the past 25 years
due to the increased cost of energy and increasingly stringent environmental
regulations. Modification of both plant flesign procedures and plant operating
conditions have been implemented in order to reduce costs and meet the constraints.
Most observers both from academia and industry believe that the emphasis in the near
future will be on improving efficiency and increasing profitability of existing plants
rather than on plant expansion. One of the most important engineering tools that can
be employed in such activities is ‘optimization’. As computers have become more
powerful, the size and complexity of problems which can be simulated and solved by
optimization techniques, have correspondingly expanded. Some of the most important
examples where optimization involved in chemical industry are: Alkylation Process,
Ammonia Synthesis Reactor, Reactor Network Design, Heat Exchanger Network.
Synthesis & Design, Drying Process, Water Pumping system, Fuel allocation in

power plant, Dynamic optimization of chemical processes, Liquid extraction,

membrane design, Parameter estimation, and Optimal control of chemical reactors &

Distillation column, etc.

1.1. Optimization

Many engineers and researchers face difficulty in understanding the role of
optimization in engineering. To ma-ny of them, optimization is an esoteric technique
used only in mathematics and operations research related activities. A wide variety of
problems in the design, construction, operation, and analysis of chemical plants (as
well as many other industrial processes) can be resolved by optimization. In fact, it is
one of the major quantitative tools in the machinery of decision-making. With the
advent of computers, optimization has become a part of computer aided design
activities also. The goal of optimization is to find the values of the variables in the
process that yield the best value of the performance criterion. What is usually
involved is a trade-off between capital and operating costs. Typical problems in
chemical engineering design or plant operation have many, and possibly infinite
number of, solutions. An important aspect of the optimal design process is the
formulation of design problem in a mathematical format that is acceptable to an
optimization algorithm. Unfortunately, every optimization problem requires different
considerations for formulating objectives, constraints, and variable bounds. Some
problems consist of linear terms but many of the problems involve nonlinear terms for

constraints and objective function. In a few cases, the terms are not explicit functions
of the design variables.
Obtimization is concerned with selecting the best among the entire set of possible

solutions by efficient quantitative methods. Unfortunately no single method or

algorithm of optimization exists that can be applied efficiently to all problems. Some

<

algorithms perform better on one problem, but may perform poorly on other
problems. That is why the literature contains a large number of algorithms, each
suitable to a particular type of problem. The method chosen for any particular c;ase
will depend primarily on: (1) the character of the objective function and whether it is
known explicitly, (2) the nature of the constraints, and (3) the number of independent

and dependent variables. Various types of optimization problems are shown in

Fig.1.1.
| Ogtimizationl
| Integer Programming |
Unconstrained
Stochastic ProgrammingJ
Network Programming |
onlinear IEIobal optimization | " Linear programming |
Equations a |
Nonlinear Nonlinearly Constrainedl
Least Square | Bound Constrained |
Non-differentiable
Optimization

Fig. 1.1. Types of optimization problems

The general objective in optimization is to choose a set of values of the variables
subject to various constraints that will prodﬁce the desired optimum response for
chosen objective function. There are two distinct types of optimization algorithms
which are in use today. Firstly, there are algorithms which are deterministic, with
specific rules for moving from one solution to the other (also known as traditional
methods) which have been successfully applied to some of the engineering design

problems. Secondly, there are algorithms, which are stochastic in nature with

probabilistic transition rules that are comparatively new and are gaining popularity

due to certain properties, which the deterministic algorithms do not have.

1.2. Traditional Methods and their Limitations

The various traditional methods available for the solution of different types of
optimization problems are (Rao, 2003; Babu, 2004): Calculus methods, Calculus of
variations, Nonlinear programming, Geometric programming, Quadratic
programming, Linear programming, Dynamic Programming, Integer programming,
etc. The classical methods of differential calculus can be used to find the
unconstrained maxima and minima of a function of several variables. These methods
assume that function is differentiable twice with respect to the design variables and
the derivatives are continuous. For problems with equality constraints, the Lagrangian
multiplier method can be used. If the problem has inequality constraints, the Kuhn-
Tucker conditions can be used to identify the optima. But these methods lead to a set
of nonlinear simultaneous equations that may be difficult to solve. The methods of
nonlinear, linear, geometric, quadratic, or integer programming can be used for the
solution of a particular class of problems indicated by the name of the method. Thus,
all the traditional methods have their own limitations and applicability. No single
method is suitable for all kinds of optimization problems or not even for most of the
engineering optimization problems encountered in real world.

Many engineering optimization problems contain multiple optimum solutions,
among which one in the case of single objective function and more in the case of
multi-objective optimization may be the absolute minimum or maximum solutions.
These absolute optimum solutions are known as the global optimal solution and the

solutions around and close to the global are called the near global solutions, and the

rest of the optimum solutions are known as local optimal solutions. Ideally, we are
interested in the global optimal solutions because they correspond to the absolute
optimum objective function value. Most of the traditional optimization algorithms
based on gradient methods have the possibility of getting trapped at local optimum
depending upon the degree of non-linearity and initial guess. Unfortunately, none of
the traditional algorithms are guaranteed to find the global optimal solution (Biegler
and Grossmann, 2004), but population based search algorithms are found to have a
better global perspective than the traditional methods (Onwubolu and Babu, 2004).
Moreover, when an optimal design problem contains multiple global solutions,
designers are not only interested in finding just the global optimum solution, but as
many near global solutions as possible for various reasons (Edgar and Himmelblau,
1989). Firstly, a design suitable in one situation may not be valid in another situation.
Secondly, designers may not be interested in finding the absolute global solution.
Instead they are interested in a solution, which corresponds to a marginally inferior
objective function value but is more amenable to fabrication. Thus, it is always
prudent to know about other equally good solutions for later use. However, if the
traditional methods are used to find multiple optimal solutions, they need to be
applied a number of times, each time starting from a different initial guess and hoping
to achieve a different optimal solution.

In the recent past, non-traditional search and optimization techniques based on
natural phenomenon (Evolutionary Computation) such as Genetic Algorithms (GA)
(Holland, 1975), Simulated Annealing (SA) (Kirkpatrick et al., 1983), Tabu Search
(TS) (Glover, 1989), Memetic Algorithms (MAs) (Norman & Moscato, 1991), Ant
colony optimization (ACO) (Dorigo, 1996), Scatter Search (SS) (Glover, 1997),

Differential Evolution (DE) (Price & Storn, 1997), and Self Organizing Migrating

Algorithm (SOMA) (Zelinka and Lampinen, 2000), to name a few, have been

developed to overcome these problems.

1.3. Evolutionary Computation (EC)

1.3.1. History

The field began in the late 1950s and early 1960s as the availability of digital
computing permitted scientists and engineers to build and experiment with various
models of evolutionary processes. Three methodologies have emerged from this early
work:

(1) Evolutionary Programming (EP) (Fogel et al, 1966)

(i) Evolution Strategies (ES) (Rechenberg, 1973)

(iii) Genetic Algorithms (GA) (Holland, 1975).

These served as the basis for much of the work done in 1970s — a period of
intense exploration and refinement of these ideas. The result was a variety of robust
algorithms with significant potential for addressing difficult scientific and engineering
problems. In 1980s each of the subgroups associated with the primary EC paradigms
(EP, ESs, and GAs) was involved in planning and holding its own regularly scheduled
conferences. However within the field there was growing sense of the need for more
interaction and cohesion among the various subgroups. And in 1990s, the field
evolved with the name Evolutionary Computation (EC).

1.3.2. Whatis EC?

Definition: Evolutionary Computation (EC) is the branch of computational
intelligence/soft computing that uses computational models of evolutionary processes
as key elements in the design and implementation of computer-based problem solving

system (Spears et al., 1993).

There are a variety of evolutionary computational models that have been proposed
and studied which we will refer hereafter as EC methods/Evolutionary Algorithms.
They share a common conceptual base of simulating the evolution of individual
structures via processes of selection and reproduction (discussed in next paragraph).
These processes depend on the perceived performance (fitness) of the individual
structures as defined by an environment.

More precisely, evolutionary algorithms maintain a population of structures that
evolve according to rules of selection and other operators, such as recombination and
mutation. Each individual in the population receives a measure of its fitness in the
environment. Selection focuses attention on high fitness individuals, thus exploiting
the available fitness information. Recombination and mutation perturb those
individuals, providing general heuristics for exploration. Although simplistic from a
biologist's viewpoint, these algorithms are sufficiently complex to provide robust and
powerful adaptive search mechanisms.

Fig. 1.2 outlines a typical evolutionary algorithm (EA). A population of individual
structures is initialized and then evolved from generation to generation by repeated
applications of evaluation, selection, recombination, and mutation. The population
size N is generally constant in an evolutionary algorithm, although there is no a priori
reason (other than convenience) to make this assumption. |

An evolutionary algorithm typically initializes its population randomly, although
domain specific knowledge can also be used to bias the search. Evaluation measures
the fitness of each individual according to its worth in some environment. Evaluation
may be as simple as computing a fitness function or as complex as running an
elaborate simulation. Selection is often performed in two steps, parent selection and

survival. Parent selection decides who become parents and how many children the

parents have. Children are created via recombination that exchanges information
between parents, and mutation that further perturbs the children. The children are then

evaluated. Finally, the survival step decides who survives in the population.

EA:{
G=0;
Initialization of Population
Initialize P(G);
Evaluation of objective function
Evaluate P(G);
Until (Termination)

G=G+1;
Selection of parents among Population
Parent_selection P(G);
Crossover/recombination
Recombine P(G);
Mutation
Mutate P(G);
Evaluation of Child
Evaluate P(G);
Survival

}

Survive P(G);

Fig. 1.2. A typical evolutionary algorithm

1.3.2.1. Paradigms of EC

The origins of evolutionary algorithms can be traced to as early as 1950's (Fraser,
1957; Box, 1957). Spears et al. (1993) discussed three paradigm of EC that have
emerged in the last few decades: "evolutionary programming” (Fogel et al., 1966),
nevolution strategies” (Rechenberg, 1973), and "genetic algorithms" (Holland, 1975).
They are briefly described below:

Although similar at the highest level, each of these varieties implements an
evolutionary algorithm in a different manner. The differences touch upon almost all
aspects of evolutionary algorithms, including the choices of representation for the

individual structures, types of selection mechanism used, forms of genetic operators,

and measures of performance. We will highlight the important differences (and
similarities) in the following sections, by examining the three paradigms of EC.
1.3.2.1.1. Evolutionary Programming

Evolutionary Programming (EP), developed by Fogel et al. (1966) traditionally
has used representations that are tailored to the problem domain. For example, in real-
valued optimization problems, the individuals within the population are real-valued
vectors. Similarly, ordered lists are used for traveling salesman problems, and graphs
for applications with finite state machines. EP is often used as an optimizer, although
it arose from the desire to generate machine intelligence. The outline of the

evolutionary programming algorithm is shown in Fig. 1.3.

EP: {
G=0;
Initialization of Population
Initialize P(G);
Evaluation of objective function
Evaluate P(G);
Until (Termination)
{
G=G+1,
Selection of parents among Population
Parent_selection P(G);
Mutation
Mutate P(G);
Evaluation of Child
Evaluate P(G);
Survival
Survive P(G);

Fig. 1.3. The evolutionary programming algorithm

After initialization, all N individuals are selected to be parents, and then are
mutated, producing N children. These children are evaluated and N survivors are
chosen from the 2N individuals, using a probabilistic function based on fitness. In

other words, individuals with a greater fitness have a higher chance of survival. The

v'.g

form of mutation is based on the representation used, and is often adaptive. For
example, when using a real-valued vector, each variable within an individual may
have an adaptive mutation rate that is normally distributed with a zero expectation.
Recombination is not generally performed since the forms of mutation used are quite
flexible and can produce perturbations similar to recombination, if desired. One of the
interesting and open issues is the extent to which an EA is affected by its choice of
the operators used to produce variability and novelty in evolving populations.
1.3.2.1.2. Evolution Strategies

Evolution Strategies (ESs) were independently developed by Rechenberg (1973),
with selection, mutation, and a population of size one. Schwefel (1981) introduced
recombination and populations with more than one individual, and provided a nice
comparison of ESs with many traditional optimization techniques. Due to initial
interest in hydrodynamic optimization problems, evolution strategies typically use
real-valued vector representations. Fig. 1.4 outlines a typical evolution strategy.

After initialization and evaluation, individuals are selected uniformly and
randomly to be the parents. In the standard recombinative ES, pairs of parents
produce children via recombination, which are further perturbed via mutation. The
number of children created is greater than N. Survival is deterministic and is
implemented in one of two ways. The first allows the N best children to survive, and
replaces the parents with these children. The second allows the N best children and
parents to survive. Like EP, considerable effort has focused on adapting mutation as
the algorithm runs by allowing each variable within an individual to have an adaptive
mutation rate that is normally distributed with a zero expectation. Unlike EP,
however, recombination does play an important role in evolution sfrategies, especially

in adapting mutation.

10

V-4

form of mutation is based on the representation used, and is often adaptive. For
example, when using a real-valued vector, each variable within an individual may
have an adaptive mutation rate that is normally distributed with a zero expectation.
Recombination is not generally performed since the forms of mutation used are quite
flexible and can produce perturbations similar to recombination, if desired. One of the
interesting and open issues is the extent to which an EA is affected by its choice of
the operators used to produce variability and novelty in evolving populations.
1.3.2.1.2. Evolution Strategies

Evolution Strategies (ESs) were independently developed by Rechenberg (1973),
with selection, mutation, and a population of size one. Schwefel (1981) introduced
recombination and populations with more than one individual, and provided a nice
comparison of ESs with many traditional optimization techniques. Due to initial
interest in hydrodynamic optimization problems, evolution strategies typically use
real-valued vector representations. Fig. 1.4 outlines a typical evolution strategy.

After initialization and evaluation, individuals are selected uniformly and
randomly to be the parents. In the standard recombinative ES, pairs of parents
produce children via recombination, which are further perturbed via mutation. The
number of children created is greater than N. Survival is deterministic and is
implemented in one of two ways. The first allows the N best children to survive, and
replaces the parents with these children. The second allows the N best children and
parents to survive. Like EP, considerable effort has focused on adapting mutation as
the algorithm runs by allowing each variable within an individual to have an édaptive
mutation rate that is normally distributed with a zero expectation. Unlike EP,
however, recombination does play an important role in evolution strategies, especially

in adapting mutation.

10

ES: {
G=0;
Initialization of Population
Initialize P(G);
Evaluation of objective function
Evaluate P(G);
Until (Termination)
{
G=G+1,;
Selection of parents among Population
Parent_selection P(G);
Crossover/recombination
Recombine P(G);
Mutation
Mutate P(G);
Evaluation of Child
Evaluate P(G);
Survival

}

Survive P(G);

Fig. 1.4. The evolution strategy algorithm

1.3.2.1.3. Genetic Algorithms

Genetic Algorithms (GAs), developed by Holland (1975) and subsequently
popularized by Goldberg (1989), have traditionally used a more domain independent
representation, namely, bit-strings. However, many recent applications of GAs have
focused on other representations, such as graphs (neural networks), LISP expressions,
ordered lists, and real-valued vectors. Fig. 1.5 outlines a typical genetic algorithm.

After initialization, parents are selected according to a probabilistic function based
on relative fitness. In general, a fitness function F (x) is first derived from the
objective function f (x) and used in successive genetic operations. Certain genetic
operators require that the fitness function be nonnegative, although certain operators
do not have this requirement. F or maximization problems, the fitness function can be
considered fo be the same as the objective function or F (x) = f(x). For minimization

problems, the fitness function is an equivalent maximization problem chosen such

11

that the optimum point remains unchanged. A number of such transformations are
possible. The following fitness function is often used: F (x) =1/(1 + f (x)). In other
words, those individuals with higher relative fitness are more likely to be selected as
parents. N children are created via recombination/crossover from the N parents. The N

children are mutated and survive, replacing the N parents in the population.

GA: {
G=0;
Initialization of Population
Initialize P(G);
Evaluation of objective function/Fitness
Evaluate P(G);
Until (Termination)

G=G+1;
Selection of parents among Population
Parent_selection P(G);
Crossover/recombination
Recombine P(G);
Mutation
Mutate P(G);
Evaluation of Child’s Fitness
Evaluate P(G);
Survival
Survive P(G);
}

Fig. 1.5. The genetic algorithm

It is interesting to note that the relative emphasis on mutation and crossover is
opposite to that in EP. In simple GA, mutation flips bits with some small probability,
and is often considered to be a background operator. Recombination, on the other
hand, is emphasized as the primary search operator. GAs are often used as optimizers,
although some researchers emphasize its general adaptive capabilities (De Jong,
1992).

These three approaches (EP, ESs, and GAs) have served to inspire an increasing

amount of research on and development of new forms of evolutionary algorithms for

12

use in specific problem solving contexts. Some of the upcoming new optimization
techniques with their applications in engineering and management are well
documented in literature (Onwubolu and Babu, 2004; Corne et al., 1999).

1.3.3. Why EC?

As a recognized field, EC is quite young. The term itself was invented recently (in
1991) and it represents an effort to bring together researchers who have been
following different approaches to simulating various aspects of evolution. Efforts in
evolutionary computation commonly derive from one of four different motivations,
namely optimization, robust adaptation, machine intelligence, and understanding of
biology.
1.3.3.1. Optimization

The classic techniques of gradient descent, deterministic hill climbing, and purely
random search have been generally unsatisfactory when applied to non-linear
optimization problem.s. But these are the problems that nature has solved so very well.
Evolution provides inspiration for computing the solutions to problems that have
previously appeared intractable. This was a key foundation for the efforts in evolution
strategies (Rechenberg, 1973; Schwefel, 1995).
1.3.3.2. Robust adaptation

The real world is never static, and problems of temporal optimization are some of
the most challenging that one would come across. They require the changing
behavioral strategies in light of the most recent feedback concerning the success or
failure of the current strategy. Holland (1975) developed the framework of genetic;
algorithms that has the potential to adjust performance based on feedback from the’

environment.

13

1.3.3.3. Machine intelligence

Intelligence may be defined as the capability of a system to adapt its behavior to
meet desired goals in a range of environments (Fogel, 1995). Evolution has created
creatures of increasing intelligence over time and an alternate approach to generating
machine intelligence is to simulate evolution on a class of predictive algorithms. This
was the foundation for the evolutionary programming (Fogel et al., 1966).
1.3.3.4. Understanding of biology

Rather than attempting to use evolution as a tool to solve a particular engineering
problem, there is a desire to capture the essence of evolution in a computer simulation
to gain new insight into physics of natural evolutionary processes (Ray, 1991).
Success raises the possibility of studying alternate biological systems that are merely
plausible images of what life might be like in some way. Computer simulations under
the rubric of artificial life have generated some patterns that appear to correspond

with naturally occurring phenomena.

1.4. EC vs. Traditional Methods

The EC and traditional methods are compared by bringing out the differences

between them as listed below:

1. Traditional methods starts with a single point while EC methods with a
population of points
2. Traditional methods have fixed transition rules while EC methods have

probabilistic rules

3. Traditional methods may get trapped at local optima but EC methods are more

likely to give global optima

14

4. Traditional methods are not suitable for multimodal and discrete problems
while EC methods are most suited to these kind of problems

5. Traditional methods are to be used again & again to obtain multiple optima
causing extra computational effort. EC methods give multiple optima in a

single run.

1.5. Motivation

In 1980, optimization of engineering problems beyond linear programming was
often viewed as a curious novelty without much benefit. Now optimization
applications are essential in all areas of process systems engineering including design,
identification, control, estimation, scheduling and planning (Grossmann and Biegler,
2004). The optimization has become a major enabling area in process systems
engineering. It has evolved from a methodology of academic interest into a
technology that has and continues to make a significant impact in industry. One of the
major limitations of the NLP and MINLP methods is that they are not guaranteed to
find the global optimum for nonconvex problems (Biegler and Grossmann, 2004).
The deterministic methods for nonconvex continous optimization include, for instance
(1) Lipschitzian methods (Hansen et al., 1992); (2) branch and bound methods (Al-
Khayyal, 1992; Al-Khayyal and Falk, 1983); (3).cutting plane methods (Tuy, Thieu,
and Thai, 1985); (4) outer-approximation (OA) methods (Horst, Thoi, and De Vries,
1992); (5) primal dual methods (Floudas and Visweswaran, 1990); (6) reformulation
_ linearization methods (Sherali and Alameddine, 1992; Sherali and Tuncbilek,
1992); and (7) interval methods (Hansen, 1980).

Other global optimization approaches for addressing nonconvexities in NLP and

MINLP problems assumes special structure in the continuous terms (e.g. bilinear,

15

linear fractional, concave separable). When combined with global optimization
techniques for continuous variables (Falk & Soland, 1969; Quesada and Grossmann,
1995; Ryoo and Sahinidis, 1995; Zamora and Grossmann, 1999), they take the form
of spatial branch and bound methods (Soland, 1971). Adjiman et al. (1997, 2000)
proposed the SMIN-aBB and GMIN-aBB algorithms for twice differentiable
nonconvex MINLPs. All of these methods rely on a spatial branch and bound
procedure. The difference lies in how to perform the branching on the discrete and
continuous variables. These methods are rigorous and computationally expensive.
Also, special reformulation strategies such as the ones that are outlined in Smith and
Pantelides (1999) are needed in order to handle algebraic models in terms of basic
functional forms (bilinear, fractional, concave separable).

As mentioned earlier, most of the traditional optimization techniques based on
gradient methods have the possibility of getting trapped at local optimum depending
upon the degree of non-linearity and initial guess. Hence, these traditional
optimization techniques do not ensure global optimum and also have limited
applications. Now-a-days, non-traditional search and optimization methods (also
called Evolutionary Algorithms) that often rely on physical analogies in order to
generate trial poiﬁts that mimic the approach to an equilibrium condition, are
becoming popular. Examples include Simulated Annealing (SA) (Kirkpatrick et al.,
1983), Genetic Algorithms (GA) (Goldberg, 1989; Davis, 1991) and Differential
Evolution (DE) (Price and Storn, 1997), to name a few. These methods are relatively
simple and easy to use. Furthermore, these methods are not rigorous and often
produce good optimal solutions.r Evolutionary Algorithms (EAs) have been widely
used in science and engineering for solving complex problems. An important goal of

research on evolutionary algorithms is to understand the class of problems for which

16

EAs are most suited, and, in particular, the class of problems on which they out
perform other search algorithms.

Simulated Annealing (SA) is a probabilistic nontraditional optimization
technique, which resembles the thermodynamic process of cooling of molten metals
to achieve the minimum energy state. Rutenbar (1989) gave a detailed discussion of
the working principle of SA and its applications. Since its introduction SA has
diffused widely into many diverse applications.

Genetic Algorithms (GAs) are computerized search and optimization algorithms
based on the mechanics of natural genetics and natural selection. They mimic the
‘survival of the fittest’ principle of nature to make a search process. The key
parameters of control in GA are: N, the population size; p., the crossover probability;
and p,, the mutation probability (Goldberg, 1989; Deb, 1996). Since their inception,
GAs have evolved like the species they try to mimic and have been applied
successfully in many diverse fields.

Differential Evolution (DE), a recent optimization technique, is an exceptionally
simple evolution strategy, which is significantly faster & robust at numerical
optimization and is more likely to find a function’s true global optimum (Price and
Storn, 1997). Simple GA uses a binary coding for representing problem parameters
whereas DE uses real coding of floating point numbers. Among the DE’s advantages
are its simple structure, ease of use, speed and robustness. It can be used for
optimizing functions with real variables and many local optima.

There are many chemical processes which are highly nonlinear and complex with
reference to optimal operating conditions with many equality and inequality

constraints; such as optimization of a Thermal Cracker, optimal operation of

17

Alkylation Unit, optimal design of Ammonia Reactor, optimization of Reactor
Networks, optimal design of Heat Exchanger Networks, etc.

But application of Differential Evolution (DE) to chemical processes is scarce
(Wang and Chiou, 1997; Babu and Sastry, 1999; Lee et al., 1999; Chiou and Wang,
1999; Babu and Munawar, 2000; Babu and Munawar, 2001; Lu and Wang, 2001).
Babu and Sastry (1999) used it for the estimation of effective heat transfer parameters
in trickle bed reactors using radial temperature profile measurements. They concluded
that DE takes less computational time to converge as compared to existing techniques
without compromising on the accuracy of the parameter estimates. Earlier DE dealt
with a single strategy (Price and Storn, 1997). Later on ten different strategies have
been suggested by Price and Storn (2005). A strategy that works out to be the best for
a given problem may not work well when applied for a different problem. The
strategy to be adopted for each problem is to be determined separately by t1:ia1 &
error.

This study demonstrates the successful application of Differential Evolution (DE),
an improved version of GA, to benchmark test functions followed by the selected
chemical engineering problems (nonlinear chemical processes, process synthesis and
design problems, dynamic optimization problem). Also improvements on original DE

are explored. An extension of DE for multi-objective optimization is studied.

1.6. Objectives
With the above background and identified need, the objectives for the present

work are set as follows:

18

ii.

iil.

iv.

To identify and understand some of the highly non-linear chemical processes
with respect to optimal operating conditions with equality & inequality
constraints.

To apply Differential Evolution (DE) to all the identified and selected chemical
processes of varied nature.

To get more insight into the fundamental understanding of non-traditional
optimization algorithms (like GA and DE), particularly DE and finding out the
possibility of improving the performance of existing DE by proposing new
strategies or modifications in original DE.

To compare the performance of DE with other traditional/evolutionary
optimization methods for the selected problems.

To extend DE for solving multi-objective optimization problems.

1.7. Scope of Present Study

Keeping the objectives mentioned above in view, the present research work is

formulated to study the following aspects:

1.

2.

Problem formulation for selected non-linear chemical processes.

Study of DE in detail to understand the intricacies of the algorithm. And the
question that what makes DE so powerful is quite interesting and obvious to
explore.

Understanding the ten DE strategies.

Application of DE to the identified & selected non-linear chemical processes
(which represents various types of optimization problems such as Linear

- programming problems, Non-linear programming'p'roblems, Process synthesis

19

and design (mixed integer non-linear programming) problems, Dynamic
optimization problems etc.).

5. Seeking improvements on DE by finding better mutation and crossover
schemes or by hybridizing it with traditional methods.

6. Comparison of the performance of DE for a given problem with that of other
Traditional/Evolutionary optimization methods.

7. Extension of DE for solving multi-objective optimization problems.

1.8. Structure of the Thesis

The subsequent chapters of this thesis are arranged as follows:

Chapter-2 explains briefly about GA. Further the working principle of DE in
detail by applying it to a simple function. Also, the performance of GA is compared
with that of DE using a benchmark test function.

In Chapter-3, a modification in the original DE is proposed in order to enhance
its performance. Modified DE and original DE algorithms have been applied to
several benchmark test functions. Also the effect of DE and MDE parameters on their
performance is studied using two benchmark test functions. Selected nonlinear
chemical processes are explained. And MDE and DE are used to solve these selected
problems. The performance of DE is compared with that of the proposed MDE and -
other methods like GA, hill climbing method, direct search method, controlled
random search method, geometric programming, and oBB algorithm (by which the
particular problem has been solved in literature)

Chapter-4 deals with the application of DE and MDE to some process synthesis

and design problems (which are generally Mixed Integer Non-Linear Programming

20

problems) encountered in chemical engineering. Performance of DE is compared with
that of MDE, GA, ES, and MINLP Simplex Simulated Annealing (M-SIMPSA).

In Chapter-5, a new hybrid DE (HDE) algorithm proposed in the present study is
discussed. Further, the performance of HDE algorithm is evaluated by its application
to various chemical engineering problems and comparing its performance with that of
DE.

Two new strategies of DE proposed in the present study are discussed in detail in
Chapter-6. The control parameters of new strategies are tuned using two test
functions. Also, the two strategies have been applied to selected difficult nonlinear
chemical engineering problems and their performance is compared with that of DE
and MDE.

The extension of DE and MDE to solve Multi-Objective Optimization Problems
(MOOPs) is discussed in Chapter-7. Two novel techniques to solve MOOPs, Non-
dominated Sorting Differential Evolution (NSDE) and Modified Non-dominated
Sorting Differential Evolution (MNSDE), proposed in this study are described in
detail with the help of two benchmark test problems. Further the effect of control
parameters on the performance of NSDE and MNSDE is investigated.

Finally, in the Chapter-8, a brief summary of the present work is presented
followed by conclusions, major contributions, and future scope for research. Codes of

the selected problems from the present study are given in appendices.

21

CHAPTER

2

EVOLUTIONARY COMPUTATION METHODS

During the last two decades there has been a growing interest in optimization
algorithms, which are based on the principle of evolution (survival of the fittest). A
common term, accepted recently, refers to such techniques as Evolutionary
Algorithms (EA) or Evolutionary Computation methods (EC methods). The best-
known algorithms in this class include Genetic Algorithms, Evolutionary
Programming, Evolution Strategies, and Genetic Programming. There are many
hybrid systems, which incorporate various features of the above paradigms and
consequently are hard to classify, which can be referred just as EC methods
(Dasgupta and Michalewicz, 1997). Out of the three paradigms of EC, GA (proposed
by Holland, 1975) has been found to be the most popular algorithm. Differential
Evolution (Price and Storn, 1997), due to its robustness, speed and simplicity 1s
chosen for application in the present study. Also, a comparison made with GA using a
test function further substantiate the fact that DE is better than simple GA. Further,

other algorithms, proposed in the present study, i.e., Modified Differential Evolution

22

(MDE), Hybrid Differential Evolution (HDE), and two new strategies of differential
evolution are discussed in Chapter-3, 5, and 6 respectively. In this chapter first
genetic algorithm is explained briefly and then differential evolution is described in
detail. Further, a non-linear function is used to evaluate the performance of the two

evolutionary optimization techniques.

2.1. Genetic Algorithms (GAs)

GAs are computerized search and optimization algorithms based on the mechanics
of natural genetics and natural selection. They mimic the ‘survival of the fittest’
principle of nature to make search process. The key parameters of control are: N - the
population size, p. — the crossover probability and pm — the mutation probability -
(Goldberg, 1989). The operation of GAs begins with a population of random strings
representing design or decision variables. Thereafter, each string is evaluated. The
population is then operated by three main operators (1) reproduction, (2) crossover,
and (3) mutation in order to create a new population of points. The new population is
further evaluated and termination criterion is checked. If the termination criterion is
not met, the population is subjected to the above three operators iteratively and
evaluated. This procedure is continued until termination criterion is fulfilled.

The three operators mentioned above are simple and straightforward. The
reproduction operator selects good strings and the crossover operator recombines
good substrings from good strings together to hopefully create a better string. Even |
though none of these claims are guaranteed and/or tested while creating a string, it is
expected that if bad strings are created they will be eliminated by the reproduction
operation in the next generation and if the good strings are produced, they will be

increasingly emphasized to take part in the further generations. In finding a global

23

“

optimum usually both the convergence and divergence are equally important in any
population-based optimization algorithm. Divergence from the point of view of not to
miss any point in the search space via extensive global search and convergence from
the view point of getting closer to the global solution via extreme local search. In
general, crossover and mutation takes care of the above two important aspects of
divergence and convergence respectively.

2.1.1. Stepwise Procedure of GA

The various steps involved in GA are as follows:

Step-1. Choose the problem parameters, a selection operator, a crossover operator,
and a mutation operator. Choose the control parameters population size, N,
crossover probability, p., and mutation probability, pm. Initialize a random
population of strings of size ¢. Choose a maximum allowable generation'
number gen_max. Set gen = 0.

Step-2. Evaluate each string in the population.

Step-3. if gen>gen_max or other termination criterion is satisfied, Terminate and
print results.

Step-4. Perform reproduction on the population.

Step-5. Perform crossover on the randomly chosen pairs of strings.

Step-6. Perform mutation on every string.

Step-7. Evaluate strings in the new population. Set gen = gen + 1, and go to Step-3.

The algorithm is straightforward and is repeated application of three operators to a
population of points.

2.1.2. Applications of GA

Since their inception, GAs have been applied in many fields. The various

‘applications of GAs are: process design and optimization (Androulakis and

24

optimum usually both the convergence and divergence are equally important in any
population-based optimization algorithm. Divergence from the point of view of not to
miss any point in the search space via extensive global search and convergence from
the view point of getting closer to the global solution via extreme local search. In
general, crossover and mutation takes care of the above two important aspects of
divergence and convergence respectively.

2.1.1. Stepwise Procedure of GA

The various steps involved in GA are as follows:

Step-1. Choose the problem parameters, a selection operator, a crossover operator,
and a mutation operator. Choose the control parameters population size, N,
crossover probability, p., and mutation probability, pm. Initialize a random
population of strings of size ¢. Choose a maximum allowable generation.
number gen_max. Set gen = 0.

Step-2. Evaluate each string in the population.

Step-3. if gen>gen_max or other termination criterion is satisfied, Terminate and
print results.

Step-4. Perform reproduction on the population.

Step-5. Perform crossover on the randomly chosen pairs of strings.

Step-6. Perform mutation on every string.

Step-7. Evaluate strings in the new population. Set gen = gen + 1, and go to Step-3.

The algorithm is straightforward and is repeated application of three operators to a
population of points.

2.1.2. Applications of GA

Since their inception, GAs have been applied in many fields. The various

‘applications of GAs are: process design and optimization (Androulakis and

24

optimum usually both the convergence and divergence are equally important in any
population-based optimization algorithm. Divergence from the point of view of not to
miss any point in the search space via extensive global search and convergence from
the view point of getting closer to the global solution via extreme local search. In
general, crossover and mutation takes care of the above two important aspects of
divergence and convergence respectively.

2.1.1. Stepwise Procedure of GA

The various steps involved in GA are as follows:

Step-1. Choose the problem parameters, a selection operator, a crossover operator,
and a mutation operator. Choose the control parameters population size, N,
crossover probability, p., and mutation probability, pm. Initialize a random
population of strings of size ¢. Choose a maximum allowable generation‘
number gen_max. Set gen = 0.

Step-2. Evaluate each string in the population.

Step-3. if gen>gen_max or other termination criterion is satisfied, Terminate and
print results.

Step-4. Perform reproduction on the population.

Step-5. Perform crossover on the randomly chosen pairs of strings.

Step-6. Perform mutation on every string.

Step-7. Evaluate strings in the new population. Set gen = gen + 1, and go to Step-3.

The algorithm is straightforward and is repeated application of three operators to a
population of points.

2.1.2. Applications of GA

Since their inception, GAs have been applied in many fields. The various

‘applications of GAs are: process design and optimization (Androulakis and

24

L
IL
11

Venkatasubramanian, 1991), computer aided molecular design (Venkatasubramanian
et al., 1994), synthesis & optimization of non-ideal distillation systems (Fraga and
Matias, 1996), optimal design of ammonia synthesis reactor (Upreti and Deb, 1996),
molecular scale catalyst design (Mcleod et al., 1997), estimation of heat transfer
parameters in trickle bed reactors (Babu and Vivek, 1999), automated design of heat
exchangers using artificial intelligence based optimization (Babu and Mohiddin,

1999), optimal design of heat exchangers (Manish et al., 1999) etc. to name a few.

2.2. Differential Evolution (DE)

Price and Storn (1997) have given the working principle of Differential Evolution
(DE), which is an improved version of GA, along with its application to polynomial
fitting problems. They have also suggested some simple rules for choosing the key
parameters such as NP- the population size, CR- crossover constant and F- the weight
applied to random differential (scaling factor) of DE for any given application. In
their web site, Price and Storn (2005) have given the various recent applications of
DE along with the program codes in various computer languages (C, C++, Matlab,
Fortran90, Scilab, and Python). They also suggested ten different working strategies
of DE and some guidelines in applying these strategies for any given problem.
Different strategies can be adopted in DE algorithm depending upon the type of
problem for which DE is applied. The strategies can vary based on the vector to be
perturbed, number of difference vectors considered for perturbation, and finally the
type of crossover used. The following are the ten different working strategies
proposed by Price and Storn (2005):

DE/best/1/exp
DE/rand/1/exp
DE/rand-to-best/1/exp

25

IV.

VL
VIL
VIIL
IX.

DE/best/2/exp

DE/rand/2/exp
DE/best/1/bin
DE/rand/1/bin
DE/rand-to-best/1/bin
DE/best/2/bin
DE/rand/2/bin

The general convention used above is DE/x/y/z. DE stands for Differential
Evolution, x represents a string denoting the vector to be perturbed, y is the number of
difference vectors considered for perturbation of x, and z stands for the type of
crossover being used (exp: exponential; bin: binomial). Thus, the working algorithm
outlined by Price and Storn (1997) is the seventh strategy of DE, i.e., DE/rand/1/bin.
Hence the perturbation can be either in the best vector of the previous generation or in
any randomly chosen vector. Similarly for perturbation either single or two vector
differences can be used. For perturbation with a single vector difference, out of the
three distinct randomly chosen vectors, the weighted vector differential of any two
vectors is added to the third one. Similarly for perturbation with two vector
differences, five distinct vectors, other than the target vector are chosen randomly
from the current population. Out of these, the weighted vector difference of each pair
of any four vectors is added to the fifth one for perturbation. In exponential crossover,
the crossover is performed on the D (the dimension, i.e., number of variables to be
optimized) variables in one loop until it is within the CR bound. For discrete
optimization problems (such as Design of shell & tube heat exchanger), first time a
randomly picked number between 0 and 1 goes beyond the CR value, no crossover is
performed and the remaining D variables are left intact (Babu and Munawar, 2001).
In binomial crossover, the crossover is performed on each of the D variables

whenever a randomly picked number between 0 and 1 is within the CR value. So for

26

high values of CR, the exponential and binomial crossovers yield similar results. The
strategy to be adopted for each problem is to be determined separately by trial and
error. A strategy that works out to be the best for a given problem may not work well
when applied for a different problem. The algorithm of DE is given below:

o Choose a strategy
o Initialize the value of D, NP, CR, F & gen_max.
e Initialize all the vector population randomly in the given upper & lower bound.
Fori=1to NP
{Forj=1to D
Xi; = random Number}
o Evaluate the cost of each vector.
Repeat
Perform mutation, crossover, selection & evaluation of the objective function for a specified
number of generations.
(a). For each vector X; (target vector), select three distinct vectors Xa, X & X: (select five,
if two vector differences are to be used) randomly from the current population (primary
array) other than vector Xi.
(b). Perform crossover for each target vector with its noisy vector to create a trial vector.
(c). Perform selection for each target vector, Xi by comparing its cost with that of the trial
vector. Vector with lower cost is selected for next generation.

Till termination criteria do not meet.

e Print results.

Choosing the values of NP, F, and CR depends on the specific problem applied,
and is often difficult. Buf some general guidelines are available. Generally, NP
should be about 5 to 10 times the number of parameters in a vector. As for F, it lies in
the range of 0.4 to 1.0. Initially F = 0.5 can be tried and then F and/or NP is increased
if the population converges prematurely. A good first choice for CR is 0.1, but in
general CR should be as large as possible (Price and Storn, 1997). The best
combination of these key parameters of DE for each of the strategies mentioned
earlier is again different. Price and Storn (2005) have mentioned some simple rules

for choosing the best strategy as well as the corresponding key parameters. Among

27

DE’s advantages are its simple structure, ease of use, speed and robustness.

schematic diagram of working method of DE is shown in Fig. 2.1.

Choose target vector

By

Random choice of
two vectors

Cost value 265
Parameter | 0.01
Parameter 2 0.45
Parameter 3 0.39
Parameter 4 042
Parameter 5 0.27

l

O\

3
Third randomly chosen
vector. subject of mutation

!

v

Individual 1 | Individual 2 | Individual 3 | Individual4 Individual 5 | Individual 6
Cost value 3.23 276 2.56 3.46 2.04 234
Parameter | 0.65 0.0 0.06 0.01 0.02 0.01
Parameter 2 0.45 0.52 0.18 0.83 0.56 0.70
Parameter 3 0.39 0.51 0.67 0.14 0.76 0.55
Parameter 4 0.41 0.60 0.95 0.77 0.89 0.52
Parameter 5 0.27 0.88 0.05 0.38 0.09 0.88
CURRENT
POPULATION
+ —
Difference Weighted
Vector Difference
0.00 x F Vector
0.31 > 0.00
0.37 0.26 MUTATION:
.(())5](;, 0.29 Add difference vector
: -0.10 weighted with Fto
0.40 third randomly chosen
vector
+
* v
CROSSOVER: l;lyisy
. . tor
With Probability CR £
select parameter value ¢ 001
from noisy vector, 0.44
otherwise select value 0.84
from target vector 0.42
1.28
A
Trial EVALUATION OF
Vector | | COST FUNCTION:
Cost value 2.65 Evaluation of cost Control
parameter 1 | 001 | |function value for variables of DE
Parameter 2 0.45 trial vector takes it’s D 5
Parameter 3 0.39 place here NP 6
Parameter 4 0.42 F 0.80
i Parameter 5 0.27 CR 0.50
SELECTION:
Select target vector or trial POPULATION
vector. the fittest one survive| FOR NEXT
GENERATION

Individual 1 | Individual 2 Individual 3 | Individual 4

Individual 5 | Individual 6

Fig. 2.1. Schematic of working of DE

28

The

2.2.1. Working of DE

The working of each step of the above algorithm is described in detail with the
help of an example.

Consider the following function for minimization:
f(x)=x, —x, +2x +2x,x, +x;; 0<x<6;
Step-1. Initialize population between given upper and lower bound for all

parameters.

Step-2. Evaluate: Calculate objective function for initial population (Column-4 in

Table-2.1).
Table-2.1. Initial Population
S.No X) X cost
0 3.677337 0.222648 32.187374
1 2.338032 3.289922 36.188379
2 0.528440 5.870270 35.880912
3 1.187137 4.523740 30.686806
4 3.133475 4.677932 69.292287
5 3.216689 2.511420 43.863578
6 0.447552 1.098901 1.940472
7 4.642198 1.944511 67.632426
8 2.412028 0.662900 17.022193
9 5.517039 5.075050 143.072049
10 4.422031 4.354949 96.656809
11 3.360381 3.322859 55.995388
12 4.689647 2.206954 72.038578
13 4.020225 . 3.727019 76.475217
14 4.645876 2.039149 68.880441
15 4.023861 3.511431 73.484507
16 5.000684 5.525994 135.292475
17 3.093430 4.681739 68.434256
18 4.498183 2.810695 75.340828
19 5.460903 3.884746 118.738774

In Table-2.1, x; and x; are parameters and cost is objective function f{x).

Step-3. Mutation & Cross over:

In Table-2.2, i is population counter i = (0, 1, 2...... 19). See column-1.

29

a. Randomly choose three population points a, b, ¢ such that i # a # b # ¢ (see
column-2, 3 and 4 in Table-2.2).
b. Select randomly a parameter j for mutation, Column-5 in Table-2.2, (j =0,1).
c. Generate a random number [0, 1]. (Column-6, 7 in Table-2.2)
If this is less than CR (0.5), then mutate the parameter as shown in the equation
below:
trial[j] = X1[c][j] + F*(X1[a][j] - X1[bI[]): (Where F=0.8)
If the random number generated is not less than CR, then take the parameter as
shown in the equation below:
trial[/] = X1[{1{/); (Column-8, 9 in Table-2.2)
Check for bounds; if bounds are violated, then randomly generate the parameter
as shown below:
trial[/] = lower_limit + rand-no.[0,1]*(upper_limit — lower_limit);
(as shown in column-10, 11 in Table-2.2) (lower_limit = 0.0 and upper_limit = 6.0)
Repeat step-3 till all parameters are mutated. Here we have two parameters.
Step-4. Evaluation: Calculate the objective function value for vector obtained after
mutation and crossover (see column 12 in Table-2.2).
Step-5. Selection: Select the least cost vector for next generation (if problem is of
minimization. (See Column-2, 3 and 4 in Table-2.3).
Step-6. Repeat steps-3 to 5 for a specified number of generations or till some
termination criterion is met.
The optimum is at: x; = 0.0; and x; = 0.5; with f(x) = -0.25;
For the above problem, the termination criterion used is (Costmax — Costmin) <

1077, Costmax is maximum value of objective function and Costmin is minimum value

30

of objective function in a generation of population. The number of function

evaluations is found to be 1960 to obtain the optimum as stated above.

Table-2.2. Mutation and Crossover

ila|[b]|cli niall:)(.jll nl:alr(l)(,ill X X3 X X Cost
08 147 |1] 046021 |0.699338 | 2.855120 | 0.843512 23.843199
1 [14]15] 3 |1]0.894391 | 0.5914 | 1.684749 | 3.289922 25.980564
2146 16|0]| 0317437 0.260761 | 7.149422 | 8.389219 | 1.935486 | 1.109460 | 13.843822
3121 7] 6 |1]0381619]0.315992 | -2.84345 | 4.23951 | 4.197434 88.758375
4 1511 13]1]0.058299 | 0.882461 | 4.551009 | 3.877877 92.430927
s 119[15] 0| 1]0.659134 | 0.978825 | 4.826971 | 2.511420 79.467166
6 |15 10[14]11]0.115894 | 0.613161 | 4.327340 | 1.364335 54.084030
711 119] 3]0]0.086053 | 0.824881 | -1.31116 [4.047881 | 2.563926 48.805758
8 | 3 118]13]1]0.095357|0.457195 | 1.371389 [5.097455 40.000583
9 [19]16]17]0]0.006763 | 0.796946 | 3.461605 | 3.368741 58.729204
101611] 7 0] 0.214108 | 0.073992 | 5.954440 | 3.707019 131.046566
11115 2|9 [1]0.845929 | 0.354696 | 8.313375 | 3.322859 | 3.239810 53.481945
12216 [10]0]0.781496 | 0.255899 | 4.689647 | 8.172045 2.577234 | 76.912755
1319 [19[17]1]0.062814 | 0.146946 | 3.138339 | 5.633982 84.307141
14| 8|35 [1]0.564136 | 0.54419 | 4.196601 | 2.039149 58.653499
1517 | 11] 18] 1] 024459 | 0.716581 | 4.284621 | 3.897799 85.696813
16| 11| 14] 4 [1]0.005858 | 0.551914 | 2.105079 | 5.704900 61.827322
1718 [14] 7 | 1]0.604323 | 0.201341 | 2.855120 | 4.681739 63.129346
1819 [7 [13]1]0.889923 | 0.197326 | 4.720098 | 2.810695 80.901567
191019 6 |1]0.127835 | 0.064069 | -1.02421 | -2.78302 | 3.081357 3.496450 | 52.347228
Table-2.3. Next Generation Population

S. No. X X2 Cost

0 2.855120 0.843512 23.843199

1 1.684749 3.289922 25.980564

2 1.935486 1.109460 13.843822

3 1.187137 4.523740 30.686806

4 3.133475 4.677932 69.292287

5 3.216689 2.511420 43.863578

6 0.447552 1.098901 1.940472

7 2.563926 4.047881 48.805758

8 2.412028 0.662900 17.022193

9 3.461605 3.368741 58.729204

10 4422031 4.354949 96.656809

11 3.239810 3.322859 53.481945

12 4,689647 2.206954 72.038578

13 4.020225 3.727019 76.475217

14 4.196601 2.039149 58.653499

15 4.023861 3.511431 73.484507

16 2.105079 5.704900 61.827322 -

17 2.855120 4.681739 63.129346

18 4.498183 2.810695 75.340828

19 3.081357 3.496450 52.347228

31

2.2.2. Applications of DE

Differential Evolution (DE) is an improved version of simple GA. It is
exceptionally simple, significantly faster & robust at numerical optimization and is
more likely to find a function’s true global optimum (Babu and Gautam, 2001; Babu
and Munawar, 2000, 2001; Babu and Singh, 2000; Babu and Sastry, 1999; Rudolph,
1996; Zaharie, 2002). DE has been successfully applied in various fields. The various
applications of DE include: digital filter design (Storn, 1995), fuzzy decision making
problems of fuel ethanol production (Wang et al., 1998), Design of fuzzy logic
controller (Sastry et al., 1998), batch fermentation process (Chiou and Wang, 1999,
Wang and Cheng, 1999), multi sensor fusion (Joshi & Sanderson, 1999), dynamic
optimization of continuous polymer reactor (Lee et al., 1999), estimation of heat
transfer parameters in trickle bed reactor (Babu and Sastry, 1999), optimal design of
heat exchangers (Babu and Munawar, 2000; 2001), synthesis & optimization of heat
integrated distillation system (Babu and Singh, 2000), optimization of an alkylation
reaction (Babu and Chaturvedi, 2000), scenario- integrated optimization of dynamic
systems (Babu and Gautam, 2001), determining the number of components in
mixtures of linear models (Dollena et al., 2001), Identification of hysteretic systems
using the differential evotution algorithm (Kyprianou et al., 2001), dptimizz:tion of
Low Pressure Chemical Vapour Deposition Reactors Using Hybrid Differential
Evolution (Lu and Wang, 2001), hybrid differential evolution for problems of Kinetic
Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process
(Wang et al., 2001), Tight-Binding Calculations of Si-H Clusters (Chakrabortf et al.,
2001), Solving Problems Subject to Multiple Nonlinear Constraints (Lampinen,
2001), - Co-Evolutionary Hybrid Differential Evolution for Mixed-Integer

Optimization Problems (Lin et al., 2001), Optimal Control (Lopez et al., 2001),

32

Training of Artificial Neural Networks (Ilonen, 2003), Optimization of Pyrolysis of
Biomass (Babu and Chaurasia, 2003), etc. Recently, Onwubolu & Babu (2004)
compiled new techniques and their applications to various disciplines of engineering

and management.

2.3. Comparison of GA and DE

A comparison of simple GA and DE is presented in Table-2.4. Comparison is
made on the basis of type representation used for decision variables, crossover and
mutation operations and the sequence/order of operators used.

Table-2.4. Comparison of GA and DE

S. No. Simple GA DE
1. Coding Binary Coding Real coding
2. Key parameters N, p., and py, NP, CR,and F
3. Mutation By changing 1 to 0 and vice-versa. Addition as mutation operator
Between two randomly chosen | Between target & random noisy vector
4. Crossover . . .
strings to give trial-vector
. Good strings in a Probabilistic way to | Cost of trial & target vector is
5. Selection .
form mating pool. Compared
Selection Mutation
6.0rder of operation Crossover Crossover
Mutation Selection

2.4. Application of DE to a Test Function
In this section, a non-linear function with three local optima and single global
optimum is solved using DE. Differential evolution (DE) is used to find the optimal

solution of a non-linear function (Himmelblau function), given by:

2

= +x,-11] +(x, +x2 -7, o0sxs<6.

The results thus obtained are compared with that of GA (Deb, 1996). Earlier, GA was

applied by Deb (1996) to the same function and following results were obtained.

33

Table-2.5 shows the number of times (out of 100 experiments) that GAs are able
to converge to a solution within 1% of global minimum and the average number of
function evaluations required to achieve that solution.

Table-2.5. Results of GA

Pe Pm N gen_max NRCg, NFEG,
0.8 0.05 20 625 77 426
0.8 0.05 30 416 79 484
0.8 0.05 40 312 76 650

In the present study, DE (with all ten strategies) is applied to find the optimum
solution of Himmelblau function and the results are shown in Table-2.6 (key
parameters used are CR = 0.9, F=0.51, NP = 20, seed = 5, accuracy = 0.0001%).

Table-2.6. Results of DE with all ten strategies

S. No. Strategy Gnin NFE
1 DE/rand/1/bin 42 860
2 DE/best/1/bin 22 460
3 DE/best/2/bin 34 700
4 DE/rand/2/bin 54 1100
5 DE/rand-to-best/1/bin 31 640
6 DE/rand/1/exp 40 820
7 DE/best/1/exp 18 380
8 DE/best/2/exp 34 700
9 DE/rand/2/exp 49 1000

10. DE/rand-to-best/1/exp 29 600

Results of Table-2.6 indicate that the strategy no-2 & 7 are better than other
strategies because of less number of function evaluations. Also 'the accuracy has been
increased from 1% to 0.0001% still the numbers of function evaluations are less in
case of strategy no. 7 than GA with N = 20. Table-2.7 & Table-2.8 show the number
of times (out of 100 experiments) that strategy no.2 & 7 have been able to converge to
a solution within 1% of global minimum and the average number of function

evaluations required to achieve that solution (with key parameters) respectively.

34

Table-2.5 shows the number of times (out of 100 experiments) that GAs are able
to converge to a solution within 1% of global minimum and the average number of
function evaluations required to achieve that solution.

Table-2.5. Results of GA

hd Pe Pm N gen_max NRCg. NFEg,
0.8 0.05 20 625 77 426
0.8 0.05 30 416 79 484
0.8 0.05 40 312 76 650

In the present study, DE (with all ten strategies) is applied to find the optimum
solution of Himmelblau function and the results are shown in Table-2.6 (key
parameters used are CR = 0.9, F=0.51, NP = 20, seed = 5, accuracy = 0.0001%).

Table-2.6. Results of DE with all ten strategies

S. No. Strategy Gin NFE
1 DE/rand/1/bin 42 860
2 DE/best/1/bin 22 460
3 DE/best/2/bin 34 700
4 DE/rand/2/bin 54 1100
5 DE/rand-to-best/1/bin 31 640
6 DE/rand/1/exp 40 820
7 DE/best/1/exp 18 380
8 DE/best/2/exp 34 700
9 DE/rand/2/exp 49 1000

10. DE/rand-to-best/1/exp 29 600

Results of Table-2.6 indicate that the strategy no-2 & 7 are better than other
strategies because of less number of function evaluations. Also -the accuracy has been
increased from 1% to 0.0001% still the numbers of function evaluations are less in
case of strategy no. 7 than GA with N = 20. Table-2.7 & Table-2.8 show the number
of times (out of 100 experiments) that strategy no.2 & 7 have been able to converge to
a solution within 1% of global minimum and the average number of function

evaluations required to achieve that solution (with key parameters) respectively.

34

Table-2.7. Results of Strategy No.2 (DE/best/1/bin)

CR F NP gen_max NRCpe NFEpg NFEG,
0.9 0.51 20 625 100 257 426
0.9 0.51 30 416 100 400 484
0.9 0.51 40 312 100 515 650
Table-2.8. Results of Strategy No.7 (DE/best/1/exp)
CR F NP gen_max NRCpe NFEpg NFEg,
0.9 0.51 20 625 100 243 426
0.9 0.51 30 416 99 350 484
0.9 051 40 312 98 496 650

From Tables-2.7 & Table-2.8, it is evident that number of function evaluations is
less in strategy no. 2 & 7 than that of GA. The results of the Table-2.7 show that
NFEpe is less by 39.67%, 17.35%, and 20.77% than NFEga for NP = 20, 30, and 40
respectively. Also, the number of runs converged are 100 (out of 100 experiments),
i.e., 100% with DE/best/1/bin. But in the case of GA, it is between 76-79 (out of 100
experiments) for different value of population size. And, from Table-2.8, it is clear
that NFEpg is less by 42.96%, 27.69%, 23.69% than NFEga for NP = 20, 30, and 40
respectively. As the results of Table-2.7 & Table-2.8 show that strategy no. 7
(DE/best/1/exp) is best because of the least number of function evaluations. The
number of experiments converged are 100, 99, and 98 for NP = 20, 30, and 40
respectively.

Fig. 2.2 shows the NFEpg/NFEGa vs. NINP for GA and DE (strategy no. 2 (DE2)
& strategy no.7 (DE7)). It is clear that for the three population sizes considered, GA
took more number of function evaluations than that of two DE strategies even though

the accuracy of GA is low.

35

400

300 A

200 -

100

Average number of function evaluations

20 30 40

Population size

Fig. 2.2. Comparison of DE and GA

2.5. Conclusions

In this chapter, the optimization of a non-linear function (Himmelblau function)
using Differential Evolution (an evolutionary computation method) is presented. The
strategy no. 7 (that takes minimum number of function evaluations) is found to be the
best for the present problem. From the results, it is clear that NFEpg < NFEga and
NRCpe > NRCga. Hence it can be concluded that the performance of DE is better than
that of GA.

This successful application of DE over GA for the Himmelblau function indicates
that DE has great potential and can be applied to advantage in all the highly non-
linear & complex engineering problems. In the next chapter the performance of DE is
compared with that of Modified differential evolution (MDE), which is proposed in

this study, using several benchmark test functions and selected chemical engineering

processes.

36

CHAPTER

3

MDE AND ITS APPLICATION TO TEST
FUNCTIONS & SELECTED NON-LINEAR
CHEMICAL PROCESSES

3.1. Introduction

Differential Evolution (DE), one of the evolutionary algorithms, is a novel
optimization method capable of handling nondifferentiable, nonlinear and multimodal
objective functions. Previous studies have shown that differential evolution is an
efficient, effective and robust evolutionary optimization method. Still, DE takes large
computational time for optimizing the computationally expensivé objective functions.
And therefore, an attempt to speed up DE is considered necéssary. T};is chapter
introduces a modification to original DE that enhances the convergence rate without
compromising on solution quality. Our Modified Differential Evolution (MDE)
algorithm utilizes only one set of population as against two sets in original DE at any
given point of time in a generation. Such an improvement reduces the memory and
computational efforts. The proposed MDE is applied to benchmark test functions and

selected non-linear chemical engineering problems.

37

3.2. Background

When using any population based search algorithm in general and DE in
particular to optimize a function, an acceptable trade —off between convergence rate
(with reference to locating optimum) and robustness (with reference to not missing
the global optima) must generally be determined. Convergence rate implies a fast
convergence although it may be to a local optimum. On the other hand, robustness
guarantees a high probability of obtaining the global optimum. One simple method, to
increase the convergence rate is to reduce the population size but doing so means
population diversity is poor. When the population diversity is small, the candidate
individuals can be closely clustered. Therefore, the mutation and crossover operations
can no longer generate the next better individual. This fact leads to the premature
convergence and hence poor robustness due to the diminishing of the difference
vector.

A few attempts have already been made to achieve this trade off (Wang and
Chiou, 1997; Chiou and Wang, 1999; Fan and Lampinen, 2003; Tasoulis et al., 2004;
Bergey and Ragsdale, 2005). Wang and Chiou (1997) suggested adjustment of the
scaling factor F of the mutation operator and the number of individuals NP in DE. If
NP is increased while simultaneously slightly lowering its F value, DE becomes
increasingly robust. However, by doing so, much computation time should be
expended to evaluate the objective function. This fact is particularly relevant when
using DE to solve optimal control problems due to the large amount of CPU time
required for solving the differential equations.

Chiou and Wang (1999) embedded accelerated phase and migration phase into the
original algorithm of DE. These two phases are used to improve the convergence

speed without decreasing the diversity among individuals. Also, several altenate

38

strategies are compared. Fan and Lampinen (2003) proposed a trigonometric mutation
to enhance the convergence velocity of DE. They concluded that the convergence rate
of algorithm could be significantly increased within a given maximum CPU time.
Tasoulis et al. (2004) explored how differential evolution can be parallelized in a
virtual parallel environment so as to improve both the speed and the performance of
the method. Bergey and Ragsdale (2005) proposed a DE with greedy random strategy
for genetic recombination. They found that modified algorithm has higher
convergence velocity than original DE still maintaining the diversity.

This chapter discusses the attempt made in this study to increase the convergence
speed of DE without compromising with the robustness (possibility of obtaining the
global optimum). A Modified Differential Evolution (MDE) is proposed in the

present work to achieve this trade — off.

3.3. Modified Differential Evolution (MDE)

The principle of modified DE is same as DE. The schematic diagrams of DE &
MDE are shown in Figs. 3.1 & 3.2 respectively. The major difference between DE
and MDE is that MDE maintains only one array as is evident from both the figures.
The array is updated as and when a better solution is found. Also, these newly found
better solutions can take part in mutation and crossover operation in the current
generation itself as opposed to DE (where another array is maintained and these better
solutions take part in mutation and crossover operations in next generation). Updating
the single array continuously enhances the convergence speed leading to less function
evaluations as compared to DE. However, DE maintains two arrays consuming extra
memory and CPU-time (more function evaluations). The schematic diagram of MDE

algorithm (Fig. 3.2) clearly shows the use of single array in MDE instead of double

39

array in DE. This modification enables the algorithm to get a better trade-off between

the convergence rate and the robustness.

Population Size = NP

A

Target
Vector

(Xa - xb)

F(Xa - Xb)

<&
g

Noisy
Random
Vector

+
¢ =X+ F(Xa- Xv)

o CR Xi Trnal Vector

Crossover

Cost of
Xi > xl

[TTTTTTTT

Fig. 3.1. Schematic of DE

——————pCurrent Two randomly selected vectors
Vector for mutation
12 26 51 8 30 50 Current
Population
Vector Added weighted
Costs ¥ differential to a
domly selected
Crossover (CR) Xij g or ran)
X036 + F(X;r1.6 — X1r26) donor vector X,:6
Vector .
with
lowest Evaluate
cost 37 \ Trial
survives Vector

Fig. 3.2. Schematic of MDE

40

)

Thus it is possible to increase the convergence rate of the differential evolution
algorithm and thereby obtain an acceptable solution with a lower number of objective
function evaluations. Such an improvement can be advantageous in many real-world
problems where the evaluation of a candidate solution is a computationally expensive
operation and consequently finding the global optimum or a good sub-optimal
solution with the original differential evolution algorithm is too time-consuming, or
even impossible within the time available. The pseudo code of the proposed MDE is
given below:
Let P a population of size NP,

and x_ the j" individual of dimension D in population P,
and CR denotes the crossover probability
input D, NP> 4; F € (0, 1+); CR €0, 1], and initial

bounds: lower(x;); upper(x;); i=1,.....D

. g . -.l -‘NP
initialize P={ x ,......, x }as

For each individual je P

:r,j = lower(x;) + rand; [0, 1] x (upper(x;) - lower(x;)); i = 1,....... D
end For each
Evaluate P
while the stopping criterion is not satisfied do
forall j<NP
Randomly selectry, 2, r; € (1,....... NP),
J#EM #R #r3

randomly select irang € (1,........ D)

forall i<D,

(x5« Fx(xi —xp)
if (random[0,1)<CR A i=1i 4

othenvise

end forall

4]

i 1@< f(#)

J

Then, ; =x"; f(-:f'j)= f(f'),
end forall
end while

Print the results.
3.3.1. Effect of Control Parameters (CR and F)
To study the effect of control parameters (CR and F), two highly multimodal
multidimensional test functions are used. These are discussed briefly below:
Ackley’s function (Bick, 1996; Fan and Lampinen, 2003): This is a continuous,

highly nonlinear function that causes the search with moderate complications.

1 1
=-20-exp| - 0.2 ,— 2 | _exp| — 2.)| +20+¢€;
fi p[ngx,] exp[n;cos(X,)] +e

-20<x; £30,n=30.
The global minimum is: fi =0 withx;=0,7=1,2,,n.
Rastrigin’s function (Muhlenbein et al., 1991): This function is also considered

relatively difficult to minimize because the number of locally optimum points is high.
n

fo=2n+ Z (x,z — 2 cos(2x;)),
i=l

-5.12<x;£5.12,n=20.
The global minimum is: o=0withy=0,i=1,2,....,n

Fig. 3.3 and Fig. 3.4 show the effect of CR and F respectively on the performance
of MDE and DE using the two functions as mentioned above. Each point on the figure
represents the average of 100 experiments. It is evident from these figures that both
DE and MDE are affected in a similar way, i.e., the variation of function value with
CR and F is same qualitatively. It is important to note that variation of function value

with CR and F is different for the same problem but it is same for DE and MDE.

42

i £(@)< 1(7)

Then, xj =X'; f(?’)=f(?')'
end forall

end while

Print the results.

3.3.1. Effect of Control Parameters (CR and F)

To study the effect of control parameters (CR and F), two highly multimodal
multidimensional test functions are used. These are discussed briefly below:

Ackley's function (Bick, 1996; Fan and Lampinen, 2003): This is a continuous,

highly nonlinear function that causes the search with moderate complications.

f,=-20- exp[— 0.2 ’le,.z] - exp[—l-z cos(2mx;)] +20+e;
il =

-20<x; £30,n=30.
The global minimum is: f; =0 withx;=0,i=1,2,....,n.

Rastrigin’s function (Muhlenbein et al., 1991): This function is also considered
relatively difficult to minimize because the number of locally optimum points is high.
fo=2n+ Z":(x,z —2cos(2m;)),

i=l
-5.12<x,£5.12,n=20.
The global minimum is: f =0 withx;=0,i=1,2, ..., n.

Fig. 3.3 and Fig. 3.4 show the effect of CR and F respectively on the performance
of MDE and DE using the two functions as mentioned above. Each point on the figure
represents the average of 100 experiments. It is evident from these figures that both
DE and MDE are affected in a similar way, i.e., the variation of function value with
CR and F is same qualitatively. It is important to note that variation of function value

with CR and F is different for the same problem but it is same for DE and MDE.

42

Also, the variation of function value with CR and F is problem dependent, i.e.
different problems can have different trends of function value vs. CR/F. Therefore,
for comparison purposes, it is essential to keep the same setting of control parameters

for both DE and MDE although this setting can be different for different problems.

 ——Rastrigin(MDE) —3-Ackley(MDE) |
- —a— Ackley(DE) —%— Rastrigin(DE) |
80 = + 1

Function Value

0[13 ‘ . l il L1l O 1] v
0O 01 02 03 04 05 06 07 08 09 1

CR

Fig. 3.3. Effect of CR

—e—Rastrigin(DE) —=— Ackley(DE)
| —&— Rastriging(MDE) —— Ackley(MDE)

100 | P

80

Function Value

XXX =X =X K=K =KX XX

/ o

0O 02 04 06 08 1 12 14 16 18 2
F

Fig. 3.4. Effect of F

43

The MDE algorithm is demonstrated by applying them to several benchmark test
functions, and is further examined with selected chemical engineering problems. The
obtained numerical simulation results are providing empirical evidences on the
efficiency and effectiveness of the proposed modified differential evolution
algorithm.

In this chapter, performance of the algorithm, proposed in the present study
(Angira and Babu, 2005b; Babu and Angira, 2005b), i.e., MDE is compared with the
performance of DE by applying both these algorithms to some benchmark test
functions reported in literature (HIM: Himmelblau function; GP;: Goldstein and
Price function; ES,;: Easom function; Hj: Hartmann function; R;, Rs & Rio:
Rosenbrock function; Z,, Zs & Zo: Zakharov function, subscript 2, 3, 5, and 10
indicate dimensions of the problems chosen). Further the reliability & efficiency of
proposed algorithm (MDE) is evaluated on several selected non-linear chemical

processes and the performance of MDE is compared with that of DE.

3.4. Application to Benchmark Test Functions

To test the reliability & efficiency of proposed optimization technique viz., MDE
several multimodal test functions are used. Various researchers (Bilbro and Snyder,
1991; Cvijovic and Klinowsk, 1995; Siarry and Berthiau, 1997; Chelouah and Siarry,
2000) had already used some of these functions to test their optimization methods.
Recently, Teh and Rangaiah (2003) used these functions to check the reliability and
efficiency of TS-QN (a hybrid method of Tabu search and Quasi-Newton). The
selected functions are briefly described below and details of the global minimum are

summarized in Table-3.1.

44

The MDE algorithm is demonstrated by applying them to several benchmark test
functions, and is further examined with selected chemical engineering problems. The
obtained numerical simulation results are providing empirical evidences on the
efficiency and effectiveness of the proposed modified differential evolution
algorithm.

In this chapter, performance of the algorithm, proposed in the present study
(Angira and Babu, 2005b; Babu and Angira, 2005b), i.e., MDE is compared with the
performance of DE by applying both these algorithms to some benchmark test
functions reported in literature (HIM: Himmelblau function; GP,: Goldstein and
Price function; ES,: Easom function; Hj: Hartmann function; Ry, Rs & Ryo:
Rosenbrock function; Z,, Zs & Zio: Zakharov function, subscript 2, 3, 5, and 10
indicate dimensions of the problems chosen). Further the reliability & efficiency of
proposed algorithm (MDE) is evaluated on several selected non-linear chemical

processes and the performance of MDE is compared with that of DE.

3.4. Application to Benchmark Test Functions

To test the reliability & efficiency of proposed optimization technique viz., MDE
several multimodal test functions are used. Various researchers (Bilbro and Snyder,
1991; Cvijovic and Klinowsk, 1995; Siarry and Berthiau, 1997; Chelouah and Siarry,
2000) had already used some of these functions to test their optimization methods.
Recently, Teh and Rangaiah (2003) used these functions to check the reliability and
efficiency of TS-QN (a hybrid method of Tabu search and Quasi-Newton). The
selected functions are briefly described below and details of the global minimum are

summarized in Table-3.1.

44

Problem-1

Minimize HIM.

F(x,xy)=(x2 +x, — 1) +(x, +x3 =7)°

Subject to 0<x,, x,<6.

Problem-2
Minimize GP».
f(x)=[1+ (A1*A2)][30 + (A3*A4)]

Where Al = (x; +x2 +1)°;

A2 =(19 - 14x, +3x] — 14x; + 6x,x2 + 3x3);
A3 =(2x, - 3x2);

A4 = (18 — 32x +12x] + 48x; - 36x1x2 +27x3);

Subject to -22x),x252.

Problem-3

Minimize ES,.

£(x) = -cos(x)cos(ra)exp [-((x1 -m) + (x2-m)’]
Subject to -100<x;,x2<100.

Problem-4

Minimize Hs.

A s 3 7
Min f(x)==)_c; exp -Zaij(xj—pij)-

i=1 j=

Subject to 0<x<1,j=1,2,3;

3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
L_jod 100 350 | _[12] p = 0.4699 0.4387 0.7470
¥ 7130 10.0 300 | 703017 7Y 710.1091 0.8732 0.5547

0.} 10.0 35.0 3.2 0.0381 0.5743 0.8828

Problem-5, 6, and 7

Problem-5, 6, and 7 corresponds to dimension of 2, 5, and 10 respectively.

Minimize Rp.

45

D-1
S (0= 2 [100(x - xi.) 1+ [x, = 1)

Subject to -5 <x; <10 i=1,....,D.

Problem-8, 9, and 10

Problem-8, 9, and 10 corresponds to dimension of 2, 5, and 10 respectively.

Minimize Zp.

f(x)=(i <)+(i 0.5ix,]z + (ZDIZ 0.5ix. T

i=)

Subject to 5<x;<10,i=1,.....D.

Table 3.1. Details of global minimum

Function D Global minimum Remarks
HIM 2 Qatx={3,2} Three local minima
GP, 2 Jatx={0,-1} Four local minima
ES, 2 -1 atx= {n, ©} Several local minima
- 3 -3.86278 at x={0.114624, Four local minima
3 0.555649, 0.852547} ur local mi
0 at . .
Rp 2,5,and 10 x={l,...1) Several local minima
0at ..
Zp 2,5,and 10 x=10,...,0} Several local minima

3.4.1. Results and Discussion

Table-3.2 shows the results obtained using DE and MDE. Both the methods are
coded in C language using Borland C. The results are compared on the basis of
average CPU-time and success rate in locating the global optimum for the given

tolerance, in an overall ten executions implemented. The termination criterion used is
| OFcal — OF anat | < 1x10° for both DE & MDE for comparison purposes. It is clear
that MDE takes less CPU-time and hence number of function evaluations. Since

MDE uses only one array for population therefore it uses less computer memory as

compared to DE (which uses two arrays for population). All the executions are made

46

D-1
f(x)=Z[lOO(xf —x.,) 1+ [x, -11

Subject to -5 < x; <10; i=1,.....D.

Problem-8, 9, and 10

Problem-8, 9, and 10 corresponds to dimension of 2, 5, and 10 respectively.

Minimize Zp.

f(x)=(i x])+ (’zl:: 0.5ix,)2 + (,Z:' 0.5ix,)“

i=|

Subject to 5<x510,i=1,....,.D.

Table 3.1. Details of global minimum

Function D Global minimum Remarks

HIM 2 Oatx={3,2} Three local minima
GP, 2 Jatx={0,-1} Four local minima
ES, 2 -1 atx= {m, n} Several local minima
H 3 -3.86278 at x={0.114624, Four local minima

3 0.555649, 0.852547}
Rp 2,5,and 10 = {? at 1) Several local minima
0 at ..

Zp 2,5,and 10 x=1{0,....0} Several local minima

3.4.1. Results and Discussion

Table-3.2 shows the results obtained using DE and MDE. Both the methods are
coded in C language using Borland C. T he results are compared on the basis of
average CPU-time and success rate in locating the global optimum for the given
tolerance, in an overall ten executions implemented. The termination criterion used is
| OFcal — OF Anal | < 1x10° for both DE & MDE for comparison purposes. It is clear
that MDE takes less CPU-time and hence number of function evaluations. Since
MDE uses only one array for population therefore it uses less computer memory as

compared to DE (which uses two arrays for population). All the executions are made

46

on the same machine with the same platform. The strategy used is DE/rand/1/bin in
all the experiments.

Table-3.2. Results of DE and MDE

S. No. NFE (CPU-time) P?rcentage* SR (%)
DE MDE Time saving DE MDE
HIM 956 (0.000) 848 (0.000) Nil 100 100
ES, 3052 (0.094) 2512 (0.083) 11.7 100 100
GP, 1222 (0.020) 1024 (0.016) 20.0 100 100
R, 2056 (0.055) 2042 (0.055) Nil 100 100
Z, 716 (0.022) 704 (0.016) 27.27 100 100
H, 1704 (0.066) 1563 (0.055) 16.67 100 100
Rs 50020 (2.033) 49525 (2.015) 0.88 100 100
Zs 10370 (0.418) 9525 (0.374) 10.53 100 100
Rio 417510(26.962) | 417280 (26.758) 0.76 100 100
Zy 139530 (8.654) 136530 (8.159) 5.72 100 100

* % Time saving = 100 x [(CPU-time)pg — (CPU-time)ype}/(CPU-time)pe
There is saving in CPU-time in most of the test functions using MDE. The saving

is significant in ES,, GP3, Z3, H3, and Zs as compared to HIM, R;, Rs, and R¢ that
can be explained using error analysis. Error is the difference between average cost of
population and cost or objective function value corresponding to known global
optimum in a generation.

Fig. 3.5 shows the error variation of DE and MDE for the test function named
GP,. Error variation indicates that the error is more in case of MDE than DE till 3"
generation: After that it reduces at faster rate and becomes much less than that in DE
(at 22" generation, error using DE is 11.22 while using MDE it is 0.841). This
clearly explains the higher speed of MDE to attain global optimum.

Also, it is evident from Fig. 3.6, 3.7, 3.8, and 3.9 that there is continuous decrease
of error with generation using both DE and MDE. But error is reducing fast in case of
MDE as compared to DE. This explains the fact that MDE is able to locate global

optimum faster than DE.

47

It is to be noted that in case of test problem Ry (Fig. 3.10), error is nearly same as
that of DE indicating almost same computation time to reach to global optimum. The

results obtained (Table-3.2) substantiate it, since percent time saving is very less

(about 0.76% only).
| ——Error (DE)
—— Error (MDE)
2500 +
2000 H
§ 1500 -
i
1000 -
500 -
0 T T 1 1 i 1
1 6 11 16 21 26 31
No. of generations
Fig. 3.5. Error variation for GP,
~——Error (DE) —— Error (MDE)
3

e —— e

1 6 11 16 21 26 31
No. of generations

Fig. 3.6. Error variation for H;

48

—— Error (DE)
—— Error (MDE)

O 1 I J ' L 1) T
0 10 20 30 40 50 60 70 80 90

No. of generation

Fig. 3.7. Error variation for ES,

—Ermor(DE) ——Error(MDE)

32000

28000 -

24000 -

20000 -

Error

16000 H

12000 +

8000 -

4000 -

O T T T
2 4 6 8 10

No. of generations

Fig. 3.8. Error variation for Z, ((2 to 10) x 5 generations)

49

——Error (DE) —— Error (MDE)

140
120 -
100 -
. 80 -
2
w g0
40 A
20 -
0 1 1) T ¥ T
10 50 90 130 170 210 250
No. of generations
Fig. 3.9. Error variation for Z,o ((11 to 250) x 5 generations)
| — Error (DE) —— Exrror (MDE)
120 -
80 -
S
e
w
40 A
0 T T T T
32 132 232 332 432
No. of generations

Fig. 3.10. Error variation for Ryo

50

3.4.2. Conclusions

It is found that the two algorithms (viz., DE, MDE) are reliable in locating the
global optima of all the test problems. This is evident from success rate which is
100% for all the test problems using both DE and MDE. The performance of the
newly proposed algorithm in this study, i.e., MDE is found to be better than that of
DE. The results obtained by these methods (viz. DE, and MDE algorithm) are same
and matches with that reported in literature.

The results stated above clearly show the potential of MDE and DE algorithms. In
the next section, applying DE & MDE to nonlinear and constrained problems

encountered in chemical engineering will test the performance of these algorithms.

3.5. Application to Selected Nen=Emer Chemical Processes

Realistic treatments of physical and engineering systems frequently involve
nonlinear models. Noﬁ-]inearities are introduced by process equipment design
relations, equilibrium relations and combined heat & mass balances. The design
variables may be continuous [non-linear programming (NLP) problems] or mixed
type consisting of floating and integer [mixed integer non-linear programming
(MINLP) problems]. Model nonlinearities give rise to nonconvexities, which in turn,
lead to multiple local optima. Gradient optimization techniques have only been able
to tackle special formulations, where continuity or convexity had to be imposed, or by
exploiting special mathematical structures. Stochastic algorithms, also known as
adaptive random search methods, have successfully tackled nonconvex problems,
mostly in the area of chemical engineering.

The optimization of non-linear constrained problems is relevant to chemical

engineering practice (Salcedo, 1992 Floudas, 1995). As discussed in section-3.4, DE

51

& MDE are found to give very good results for many benchmark test problems. In
this section, application of DE and MDE is discussed which are applied to solve the
selected linear and nonlinear chemical engineering problems; (1) optimization of
thermal cracker operation (2) optimal design of ammonia synthesis reactor (3) reactor
network design (4) isothermal CSTR design (5) optimal operation of alkylation unit
(6) fuel allocation in power plant (7) drying process (8) water pumping system (9)
liquid extraction problem, and (10) heat exchanger network design. Many of these
problems are difficult non-linear optimization problems, with equality and inequality
constraints. The performance of DE is compared with MDE and also with the
methods used to solve as mentioned in literature.

3.5.1. Optimization Of Thermal Cracker Operation

3.5.1.1. Cracking

Cracking is basically the heating of higher boiling petroleum fractions like heavy
fuel oil at high temperature (above decomposition temperature) and pressure to
produce lower boiling fractions such as ethylene, propylene, and gasoline etc. It is an
endothermic reaction.

Cracking of heavier fuel oils is carried out to produce mainly high quality (having
high octane number) petrol. Also, cracking is carried out to produce olefins which are
used as feed for petrochemical industry, to produce coke (by coking) and to reduce
the viscosity of fuel oil (by visbreaking). There are two types of cracking namely (i)
Thermal cracking and (ii) Catalytic cracking. Fig. 3.11 shows the further
classification of various cracking process that are used widely in chemical process
industries. The details on the above eight types of cracking processes are available in

literature (Hobson, 1975; Sourander et al, 1984; Gupta, 1994). Thermal cracking,

52

'

which is of interest in the present study (Babu and Angira, 2001b) is discussed below

in detail.
CRACKING
THERMAL CATALYTIC
(Depending upon pressure, temperature (Depending upon physical
and nature of feed) condition of the catalyst bed)

v Y
v v v v T

Dubbs{ |Pyrolysis|| Visbreaking|{Coking Fixed bed| | T.C.C{ | F.C.C.| |Hydro

T.C.C stands for Thermofer/moving bed Catalytic Cracking.
F.C.C stands for Fluidized-bed Catalytic Cracking.

Fig. 3.11. Classification of cracking process

3.5.1.2. Thermal Cracking

It is defined as thermal decomposition, under pressure, of large hydrocarbon
molecules to form smaller molecules. Lighter, more valuable hydrocarbons may thus
be obtained from such relatively low value stocks as heavy fuel/gas oils (boiling up to
540°C) and residues. This is conducted without any catalyst. Thermal cracking is .
normally carried out at temperatures varying from 450°C to 750°C and pressures
ranging from atmospheric to 1000 psig (Hobson, 1975). The important reactions
occurring are:
-Decomposition and destructive condensation.
-Hydrogenation and dehydrogenation.
-Polymerization.
-Cyclization.

The first two reactions are endothermic, while polymerization is exothermic. Coke

formation is an additional reaction which plays an important role in thermal cracking,

53

&

although the mechanism by which coke is formed is not entirely understood. It is
thought, however, that coke results from extensive degradation of relatively heavy
molecules to form increasing quantities of light hydrocarbon gases (dry gas) and
polycyclic compounds having low hydrogen to carbon ratios. The rate, at which
hydrocarbon cracks, is strongly dependent on temperature. Cracking reactions begin
at about 315-370°C, depending on the type of material being cracked (Hobson, 1975).
Depending upon the pressure and temperature employed for the cracking and the
characteristics of feed, there are various thermal cracking processes in which the
product yields and characteristics are different (Gupta, 1994). Mainly there are four
commercial processes employed for thermal cracking in oil refineries. They are:
-Dubbs thermal cracking process
-Pyrolysis.
-Visbreaking.
-Coking.
In the present study, the problem of optimization of thermal cracker (pyrolysis)
operation is discussed.
3.5.1.3. Pyrolysis
Pyrolysis is done mainly for the production of lighter products predominantly
unsaturated such as olefins (ethylene, propylene) and naphthene polymers, diolefins,
benzene & toluene etc (Sourander et al, 1984). It is carried out at high temperature
(650—700°C) and low pressure. Pyrolysis is also a reaction that occurs in one of the
zones of biomass gasification process. Babu and Chaurasia (2003a, 2003b, 2004a,
2004b, 2004c, 2004d) carried out extensive studies on various aspects of pyrolysis.
The main objective in thermal-cracker optimization is the estimation of the

optimal flow rates of different feeds (viz. Gas-oil, Propane, Ethane & Debutanized

54

natural gasoline) to the cracking furnace under the restriction on ethylene and
propylene production (Sourander et al, 1984). Thousands of combinations of feeds are
possible. Hence the optimization needs an efficient strategy in searching for the
global optimal solution.
3.5.1.4. Description of The Problem

This problem (Edgar & Himmelblau, 1989) deals with maximization of profit
while operating within furnace and down stream process equipment constraints. Fig.
3.12 lists various feeds & corresponding product distribution for a thermal cracker

which produces olefins.

DNG Gasoil Propane Ethane
l l l < J; Recycle
Fuel Thermal Cracker (Ethane)
(Propane)

Methane l l l l
Fuel oil

Ethylene Propylene Butadiene Gasoline

Fig. 3.12. Thermal cracker
Based on the plant data, eight products are produced in varying proportions

according to the matrix shown in Table-3.3. The capacity to run gas feeds through the
cracker is 200,000Ib (90718.48 kg)/stream hr (total flow based on an average
mixture). Ethane uses the equivalent of 1.1 Ib of capacity per pound of ethane (1.1
kg/kg); propane uses 0.9 1b of capacity per pound of propane (0.9 kg/kg); gas-oil uses
0.9 1b/Ib (0.9 kg/kg); and DNG has a ratio of 1.0. Down stream processing limits exist
of 50,000 lb (22679.62 kg)/stream hr on the ethylene and 20,000 1b (9071.848
kg)/stream 'h<r on the propylene. The fuel requirements to run the cracking system for

each feedstock type are shown in Table-3.4. Methane and fuel oil produced by the

55

cracker are recycled as fuel. All the ethane and propane produced is recycled as feed.
Heating values of fuels are given in Table-3.5. Assume an energy (fuel) cost of

$2.5/10° Btu (Rs. 113.74/10°J).

Table-3.3. Product matrix with yield structure: (wt. fraction)

Product Feed -
Ethane Propane Gas-oil DNG
Methane 0.07 0.25 0.10 0.15
Ethane 0.40 0.06 0.04 0.05
Ethylene 0.50 0.35 0.20 0.25
Propane 0.00 0.10 0.01 0.01
Propylene 0.01 0.15 0.15 0.18
Butadiene 0.01 0.02 0.04 0.05
Gasoline 0.01 0.07 0.25 0.30
Fuel Qil 0.00 0.00 0.21 0.01
Total 1.00 1.00 1.00 1.00
Table-3.4. Fuel requirements for each feedstock type
Feed Fuel requirement
ee (Btu/lb))
Ethane 8364 19454664
Propane 5016 11667216
Gas oil 3900 9071400
DNG 4553 10590278
Table-3.5. Heating value of Fuels
Fuels Heating Value
(Btu/lb) (J/kg)
Natural Gas 21520 50055520
Methane 21520 50055520
Fuel oil 18000 41868000
Table-3.6. Cost of feed, products and fuel
Cents/lb Rs/kg
Ethane 6.55 6.93
Feeds Propane 9.73 10.3
Gas-oil 12.50 13.23
DNG 10.14 10.73
Methane 5.38 (fuel value) 5.69
Ethylene 17.75 18.78
Propylene 13.79 14.59
Products [piofiene 26.64 28.19
Gasoline 9.93 10.51
Fuel-oil 4.50 (fuel value) 4.76

56

Because of heat losses and the energy requirements for pyrolysis, a fixed fuel
requirement of 20.0x10° Btu (2.11x10'° J)/stream hr. occurs. The price structure on
the feeds & products and fuel costs are (all values are in cents per pound) given in
Table-3.6.

The variables to be optimized are the amounts of the four feeds (viz. Gas-oil,
Propane, Ethane, and Debutanized Natural Gasoline (DNG)). This problem is solved
using Linear Programming Simplex method, DE, and MDE. The assumption used in
formulating the objective function and constraints are:

1. 20.0x10° Btu (2.1 1x10'® J)/hr fixed fuel requirement (methane) to compensate for
the heat-loss.

2. All propane and ethane are recycled with the feed, and all methane and fuel oil

will be recycled as fuel.
Objective function for the profit is given by:

f =2.84x, —0.22x, —3.33x, +1.09x, +9.39x; +9.51x,.
Where f = profit function (cents/ hr.)

x, = Fresh ethane feed (Ib/hr.)

x, = Fresh propane feed (1b/hr.)

x,= Gas-oil feed (Ib/hr.)

x,= DNG feed (Ib/hr.)

x5 = Ethane recycle (Ib/hr.)

x, = Propane recycle (Ib/hr.)

x, = Fuel added (Ib/hr.)

Constraints:

a). Cracker capacity of 200,000 Ib/hr (90718.48 kg/hr),

57

1.1x, +0.9x, + 0.9x; +1.0x, +1.1x; + 0.9x, < 200,000

b). Ethylene processing limitation of 50,0001b/hr (22679.62 kg/hr),

0.5x, +0.35x, +0.2x; +0.25x, +0.5x; +0.35x, < 50,000

¢). Propylene processing limitation of 20,0001b/hr (9071.848 kg/hr),

0.01x, +0.15x, +0.15x,0.18x, +0.01x, +0.15x, < 20,000.

d). Ethane recycle

0.4x, +0.06x, +0.04x, +0.05x, — 0.6x, +0.06x, =0.

e). Propane recycle

0.1x, +0.01x; +0.01x, —0.9x, = 0.

f). Heat Constraints

_ 6857.6x, +364x, +2032x, —1145x, - 6857.6x, +364x, +21,520x, = 20,000,000.

In the next section, the LP simplex method is briefly discussed.

3.5.1.5. L.P. Simplex Method

The standard LP form includes m simultaneous linear equations in n unknown
variébies (nz<n). We divide the n variables into two sets: (1) (n-m) variables, to which
we assign zero values; and (2) the remaining m variables, whose values are
determined by solving the resulting m equations. If the m equations yield a unique
solution, then the associated m variables are called basic variables and the remaining
(n-m) zero variables are referred to as nonbasic variables. In this case, the resulting
unique solution comprises of a basic solution. If all the variables assume nonnegative
values, then the basic solution is feasible. Otherwise, it is infeasible.

Based on the given definition, the maximum number of possible basic solutions

for m equations in # unknowns is:

n!
(n—m)tm!

58

Optimality condition:

The entering variable in a maximization (minimization) problem is the nonbasic
variable having the most negative (positive) coefficient in the Z-row i.e. objective
function row. Ties are broken arbitrarily. The optimum is reached at the iteration
where all the Z-row coefficients of the nonbasic variables are nonnegative
(nonpositive).

Feasibility condition:

For both the maximization and minimization problems, the leaving variable is the
basic variable associated with the smallest nonnegative ratio. In this case also, ties are
broken arbitrarily.

For LPs in which all the constraints are of the (<) type (with nonnegative right-
hand sides), the slacks offer a convenient starting basic feasible solution. A natural
question then arises: How can we find a starting basic solution for models that involve
(=) and (2) constraints? The most common procedure for starting LPs that do not have
convenient slacks is to use artificial variables. These are variables that assume the role
of slacks at the first iteration, only to be disposed of at a later iteration. Two methods
are proposed for effecting the solution of this problem (1) the Big M method and (2)
the Two Phase method. The details on the procedures and difference of these two
methods are discﬁssed in detail and documented in literature (Taha, 1997). However,
Big M method is used in the pfesent study for comparison purposes of results with the
original source (Edgar & Himmelblau, 1989).

The steps of Simplex method are (Taha, 1997):

Step 1. Convert the problem into standard L.P. form.
Step 2. Determine a starting basic feasible solution.
Step 3. Select an entering variable using the optimality condition. Stop if there is no

entering variable.

59

Step 4. Select a leaving variable using the feasibility conditions.
Step 5. Determine the new basic solution using the appropriate Gauss-Jordan
Computations. Go to Step 2.
3.5.1.6. Problem Reformulation
The problem is reformulated by eliminating the equality constraints. This

reformulation helped in reducing the number of constraints and decision variables.
The reformulated problem (containing four decision variables and three constraints
instead of seven variables & six constraints) is as follows:

Max. f=9.1x;+ 1.88x;- 2.5879x3 + 1.9886x,.
Constraints:
(a). Cracker capacity of 200,000 Ib/hr (90718.48 kg/hr),

16.5x; + 10.1x + 8.861x3 + 9.926x4< 1800000.
(b). Ethylene processing limitation of 50,0001b/hr (22679.62 kg/hr),

7.5x; + 4.0x; + 2.14x3 + 2.665x4< 450000.
(c). Propylene processing limitation of 20,0001b/hr (9071.848 kg/hr),

0.15x;+ 1.51x; + 1.3711x3 + 1.6426x4< 180000.
3.5.1.7. Results and Discussion

In the previous section, we have discussed the problem formulation and

reformulation of Thermal Cracker operation. Most of the engineering optimization
problems are constrained. The difficulty of using EAs in the constrained optimization
is that the evolutionary operators used to manipulate the individuals of the population
* often produce solution which are unfeasible. There are many methods to handle it.
The following subsection discusses the handling of constraint in the present study

followed by results and discussion.

60

3.5.1.7.1. Constraint Handling in EAs

Bound violations (whether upper or lower) may occur after mutation step of DE
and MDE. This can be repaired by one of the following methods: (1). If there is
bound violation for a parameter, then assign the upper or lower bound value if upper
or lower bound is violated (forced bound) (2). If there is bound violation for a
parameter, then that parameter is again generated randomly between given lower and

upper bound (without forcing) using the following equation:

.;:J = lower (x;) + rand; [0, 1] x (upper (x;) - lower (x;)), i=1...D

where D is the number of decision variables. In this thesis, the first situation is called
forced bound method (FBM) while second situation is called method without forcing
the bound (MWFB). The penalty function methods are one of the most popular
techniques in EAs to handle constraints. The techniques transform the constrained
problem into an unconstrained problem by penalizing unfeasible solutions. In
addition, the penalty function methods are easy to implement and considered
efficient. In the present study, an absolute value of constraint violation is multiplied
with a high penalty and added/subtracted to objective function depending upon the
type of problem, i.e., minimization/maximization. In case of more than one constraint,
all such absolute violations are first multiplied with high penalty and then added or
subtracted from objective function value (for minimization or maximization problem
respectively). This method is followed throughout the thesis unless mentioned
specifically.

3.5.1.7.2. Results of LP and DE

The reformulated problem is solved using DE, MDE & LP Simplex method and

Table-3.7 & Table-3.8 show the results obtained. Table-3.7 shows the results

obtained by both DE & LP Simplex method. It may be noted that the maximum

61

possible amount of ethylene is produced. As the ethylene production constraint is

relaxed, the objective function value increases (Fig. 3.13). Once the constraint is

raised above 90,909.09091b\hr (41235.673 kg/hr), the objective function remains

constant at 676018.1875 cents/hr (324488.73 Rs/hr).

Table-3.7. Results of LP Simplex and DE

Flow Rate (DE) FloS‘;fnl]'a;e (LP flf:(:l‘;arraz
Stream plex) Himmelblau, 1989)
(b\hr) | (kg/hr) | (b\ar) | (kg/hr) | (b/hr) | (kg/hr)
Fresh Ethane feed (X,) 60,000 27215.54 60,000 27215.54 60,000 27215.54
Fresh propane feed (Xx,) 0 0 0 0 0 0
Gas-oil feed (x,) 0 0 0 0 0 0
DNG feed (x,) 0 0 0 0 0 0
Ethane recycle (x5) 40,000 18143.7 40,000 18143.7 40,000 18143.7
Propane recycle (X,) 0 0 0 0 0 0
Fuel added (x;) 32795.54 | 14875.807 | 32795.54 | 14875.807 | 32,800 | 14877.83
Ethylene 50,000 22679.62 50,000 22679.62 50,000 | 22679.62
Propylene 1000 453.5924 1000 453.5924 1000 453.5924
Butadiene 1000 453.5924 1000 453.5924 1000 453.5924
Gasoline 1000 453.5924 1000 453.5924 1000 453.5924
Methane 7000 3175.15 7000 3175.15 7000 3175.15
Fuel oil 0 0 0 0 0 0
gtﬁz&‘;e) function 369560.0 | 177388.8 | 369560.0 | 177383.8 | 369560.0 | 177388.8
Table-3.8. Results of DE (all ten strategies)
S. No. Strategy NFE CPU- time NRC

1 DE/rand/1/bin 6268 0.28 100

2 DE/best/1/bin 3168 0.145 100

3 DE/best/2/bin 9076 0.418 100

4 DE/rand/2/bin 11696 0.539 100

5 DE/rand-to-best/1/bin 6052 0.28 100

6 DE/rand/1/exp 5252 0.22 100

7 DE/best/1/exp 2796 0.126 100

8 DE/best/2/exp 10132 0.44 100

9 DE/rand/2/exp 12600 0.55 100

10 DE/rand-to-best/1/exp 6536 0.275 100

62

1
{

© TOE+05 7 — e
6.5E+05 -
6.0E+05 -
5.5E+05 -
5.0E+05 -

4 5E+05 -

Profit (cents/hr.)

4.0E+05 -

<
3.5E+05 -

3.0E+05 T . . ; T
50000 60000 70000 80000 90000 100000 110000

Constraint (Ethylene processing, Ib/hr.)

Fig. 3.13. Variation of Profit with ethylene processing constraint

(11b = 0.454 kg; 1 cent/hr = 0.48 Rs/hr)

LP simplex solution has been crosschecked using a software package named
TORA, [Taha, 1997], and the same results are obtained as shown in Table-3.7. Table
3.8 presents the comparison, in terms of the number of objective function evaluations,
CPU-time and proportion of convergencies to the optimum, between the different DE
strategies. In this table, NFE, NRC and CPU-time represents, respectively the mean
number of objective function evaluations over all the 10 experiments, the percentage
of convergencies to the global optimum and the average CPU time per experiments
(key parameters used are: NP =40, CR=0.9, F = 0.6, accuracy = 0.0001%). From the
Table-3.8, it is evident that the strategy number 7 is the best strategy. It takes least

average CPU-time, maximum NRC and minimum NFE.

3.5.1.7.3. Results of DE & MDE

Results of reformulated problem using DE & MDE are shown in Table-3.9. In this

table, NFE, NRC and CPU-time represents, respectively the mean number of

63

objective function evaluations over all the 100 experiments, the percentage of

convergencies to the global optimum and the average CPU time per experiments (key

parameters use are: NP =40, CR = 0.8, F =0.5, accuracy = 0.0001%).

Table-3.9. Results of MDE and DE for Thermal cracker problem

DE* MDE"
FBM MWFB FBM MWFB
NFE 6978 21423 6496 18209
CPU-time (s) 0.2495 0.7681 0.2280 0.6632
NRC 100 100 100 100

“Strategy is DE/rand/1/bin

It is evident from above table that MDE out perform DE, i.e., faster than DE in
locating global optimum. Also, it is to be noted that NFE or CPU-time is more in case
of method without forcing the bound (in both DE & MDE) as compared to forced
bound method. This is because that optimum value of several decision variables is
lying on the boundary (i.e., on upper or lower limit of a decision variable).

3.5.1.8. Conclusions

In this section-3.5.1, the optimization of thermal cracker operation using DE,
MDE and LP Simplex method has been presented. The strategy that took minimum
CPU-time with highest NRC is strategy no. 7. The results obtained by all the threé
methods (MDE, DE & LP Simplex) are same and matches with that reported in
literature. Both DE & MDE are found to be reliable in locating the global optimum
with success rate (NRC) of 100%. MDE is found to be the better than DE in terms of
function evaluations/ CPU-time.

3.5.2. Optimal Design Of An Auto-Thermal Ammonia Synthesis Reactor

3.5.2.1. Introduction

Ammonia is one of the most important chemicals produced as it enjoys the wide

use in the manufacture of fertilizers. Hence modeling and simulation of ammonia

manufacturing process has received considerable attention among the process

64

industries. Simulation models for ammonia synthesis converters of different types
have been developed for design, optimization (Annable, 1952; Eymery, 1964; Dyson,
1965; Murase et al., 1970; Singh and Saraf, 1979; Upreti and Deb, 1997), and control
(Shah, 1967) purposes.

Annable (1952) compared the performance of an auto-thermal ammonia synthesis
reactor (Fig. 3.14) with the maximum yield that could be obtained if one had direct
control of the temperature profile. He found that conversion could be increased by
14%. Obviously, one does not have direct control of the temperature profile, but it
could be affected by the configuration of the heat transfer surface, viz., added
insulation and/or fins. Dyson (1965) considered the general problem of determining
the heat transfer coefficient vs. length function that would maximize the yield in an
autothermal reactor.

Murase et al. (1970) computed the optimum temperature trajectory along the
reactor length applying the Pontryagin’s maximum principle. Edgar and Himmelblau
(1989) used Lasdon’s generalized reduced-gradient method to arrive at an optimal
reactor length corresponding to a particular reactor top temperature of 694 K.
However they also ignored a term mentioned in Murase’s formulation, pertaining to
the cost of ammonia already present in the feed gas, in the objective function. Also
the expressions of the partial pressures of nitrogen, hydrogen and ammonia, used to
simulate the temperature and flow rate profiles across the length of the reactor, were
not correct.

Upreti and Deb (1997) used Murase’s formulation with correct objective function
and correct stoichiometric expressions of the partial pressures of N,, H>, and NH;.
They used simple GA in combination with Gear package of NAG library’s

subroutine, DO2EBF, for the optimization of ammonia synthesis reactor. They

65

obtained mass flow rate of nitrogen, feed gas temperature and reaction gas
temperature at every 0.01 m of 10 m reactor length. Also, there is a contradiction in
the temperatures & gas flow rate profiles obtained. They reported the profiles that
were not smooth as in earlier literature. Moreover, they reported reverse reaction
condition at the top temperature of 664 K, which was not found in literature earlier.
Hence, the present study (Babu and Angira, 2005a; Angira and Babu, 2005d) is
carried out in order to take care of the above deficiencies.

The three-coupled differential equations are solved using three different
techniques (to check if it was the limitation of numerical methods because of which
reverse reaction trend was not reported earlier), namely, Euler’s method, Runge-Kutta
method (fourth order) with fixed step size (Kreyszig, 1993), and NAG subroutine
(D02EJF) in MATLAB (version 5.1). The small step sizes of 0.01 and 0.001 are used
for above said numerical methods while Upreti and Deb (1997) used the step size of
0.01 only. In addition, a software package POLYMATH (Himmelblau, 1997)) was
also used for the same. Finally, Quasi-Newton method, Secant method and Genetic
Algorithm (GA) and Differential Evolution (DE) were used for optimization in
combination with above three numerical methods, and the results are compared.
3.5.2.2. Auto-Thermal Ammonia Synthesis Reactor

A typical auto-thermal ammonia synthesis reactor is shown in Fig. 3.14.
Typically, the ammonia manufacturing process consists of production of synthesis gas
from the petroleum feed stock, compression of the gas to the required pressure, and
the synthesis loop in which the conversion to ammonia takes place. The ammonia
converter is part of the synthesis loop, and its operation is quite crucial in the overall
control strategy of the plant. In the converter, the following catalytic reaction takes

plaée at elevated temperatures and pressures releasing a large amount of heat.

66

N>+ 3H, < 2NH;; AH=-220kCal. ... (3.1)

This heat has to be removed to obtain a reasonable conversion as well as to
protect the catalyst life. At the same time, the released heat energy is utilized to heat
the incoming feed-gas to proper reaction temperature.

The reaction zone (shaded portion of Fig. 3.14) contains the catalyst. A number
of cooling tubes are inserted vertically through the reaction zone. The feed gas comes
in from the lower part of the reactor and flows up through the top of the reactor. Then,
changing direction, it flows down through the reaction zone and heat exchanger to the
outlet. As with all reversible exothermic reactions, the temperature, at which the
reaction rate is maximum, decreases as the conversion increases. Even though one
would like to maximize the reaction rate at each instant, it is impossible to obtain the
ideal temperature profile by control of available design variables. The countercurrent
flow does, however, cause the temperature to decrease in the bottom part of the

reactor because of heat transfer between the reacting gas and feed gas.

1T u TOP

p Catalyst Zone

J P Cooling Zone

> Heat Exchanger
BOTTOM

Product Gas (NH3) ﬂ ﬁ Feed Gas (200-350 M)

Fig. 3.14. Auto-thermal ammonia synthesis reactor .

67

3.5.2.3. Problem Formulation

The Problem formulation is similar to that given in Murase et al. (1970) including
the modifications mentioned in Upreti and Deb (1997). Upreti and Deb (1997) in their
paper cited Edgar and Himmelblau (1989) for model equations, but the former did not
give them. Unfortunately, equations (c) and (d) on page 545 of the latter are incorrect

where “1.5” is given as the coefficient. In fact, it should be in the power of p, as

stated in equation (5) of this paper. The same error was found in Murase et al. (1970)
also. Hence, for the sake of clarity, it becomes important to give the correct model
equations. The correct model equations are presented in section-3.5.2.3.2.

Feed gas contains 21.75 mole% nitrogen, 65.25 mole% hydrogen, 5 mole%
ammonia, 4 mole% methane and 4 mole% argon. In a typical ammonia synthesis
reactor (Fig. 3.14), feed gas enters the reactor from the bottom. The yield of ammonia
depends on the temperature of feed gas at the top of the reactor (henceforth called top
temperature), the partial pressures of the reactants (nitrogen and hydrogen), and the
reactor length. The following assumptions are made in modeling the auto-thermal

ammonia synthesis reactor (Murase et al., 1970):

1. The rate expression is valid.

2. The model is one-dimensional, i.e., the temperature and concentration
gradients in the radial direction are neglected.

3. Heat & mass diffusion in the longitudinal direction are negligible.

4. The temperature of the gas flowing through the catalyst zone is equal to the
reacting gas and the catalyst particles.

5. The heat capacities of the reacting gas and the feed gas are constant.

6. The catalyst activity is uniform along the reactor and equal to unity.

68

7. Pressure drop across the reactor is negligible compared to the total pressure of

the system.

3.5.2.3.1. Objective function

'The objective function is.the economic return based on the difference between the
value of the product gas (heating value and the ammonia.value) and the value of feed
gas (as a source of heat only) less the amortization of reactor capital costs. Other
operating costs are omitted, as their contribution is not significant. As shown in

Upreti and Deb (1997), the final corrected objective function F = f (x, Ny, ,T,,Y;,) is:

F =1.33563x107 —1.70843x 10° N, +704.09(T, ~T,)-699.27(T;, - T,)-[3.45663x 107 +1.98865x 10°x]°*

It is clear from the above expression that the objective function depends on four

variables: the reactor length x, proportion of nitrogen N Ny> the reacting gas
temperature T, , and the feed gas temperature T, for a given top temperature Tp.

3.5.2.3.2. Constraints

As stated earlier, there are mistakes in modeling equations reported by Murase et
al. (1970), some of which (partial pressure equations) were corrected and reported by
Upreti and Deb (1997). However, the mistakes in material balance equation were not

reported. Hence for the sake of clarity, all the corrected modeling equations are

presented below:
(a) Energy-Balances
Feed Gas: Referring to Fig. 3.15, an energy balance on the feed stream yields the

following equation:

ary _ Us,_

dx WCp (Tg "Tf) (3.3)

69

Where

U = Qverall heat transfer coefficient, Kcal/m?.hr.K
S} = Surface area of cooling tubes per unit length of reactor, m
Tg = Temperature of reacting gas, K

w = Total mass flow rate, kg/hr

Cpr = Specific heat of feed gas, kcal’kg. K

X = Distance along axis, m
. Tube wall
/
Heat Flow ?
AXx
Catalyst Zone Cooling tube v
~ vt

Fig. 3.15. Energy and material balance on control volume

Reacting Gas: Similarly, for the reacting gas,

dT, _ -dN
Mg . S 1 1) AH)SIZ["’2] (3.4)
X wC, pg wC, rg dx
Where
AH = Heat of reaction, kcal/kg mole of N
S = Cross-sectional area of catalyst zone, m?
dN '
_Z" N2 _ Reaction rate, kg moles of N, /hr.m’
dx
Cpg =Heat capacity of reacting gas, kcal’kg. K

(b) Material balance
Considering the incremental distance in the catalyst zone (Fig. 3.15) and

performing a N, material balance yields:

70

dN Pr.Ph, |, Pun,
o fl ke Pk, "]": (3.5)
dx P NH, P,

Where,

f = Catalyst activity

PNy» PHy» PNHy = Partial pressure of N», H,, and NH;
ky, k, = Rate constants;

(~20800)

RT,)

k, =1.78954x10" exp (3.6)

(—47400)

\RTg /

(3.7)

k, =2.5714x10'® exp

In order to maintain the energy & material balance of reaction, the above three
coupled differential equations (Eqgs. 3.3, 3.4, and 3.5) must be satisfied. It turns out
that three of the above variables (Tr, Ty, Ny,) can be eliminated by satisfying
these energy & material balance equations. Thus, practically, there is only one design
variable for given top temperature. The partial pressures appearing in the differential

equations are computed as follows:

286 N
PN, = " (3.8)

259Ny +2Ny,
PH, =3PN, (3.9)

286(2.23N2 -2Ny,

ZeeR Ny, ~2 v (3.10)

PNH, = 0
o 2598Ny +2Ny,
2 r4

The boundary conditions are:
Tp=T, at x=0 (3.11)
Tg= Tf at x=0 (3‘12)

71

N&, =701.2 kmol/hr.m? at x=0 (3.13)

The three inequality constraints that limit the values of three of the design variables

are as given below:

0.0 < Ny, <3220 (3.14)
400 < T, <800 (3.15)
0.0<x<10.0 (3.16)

Since the reaction gas temperature (7,) depends on the nitrogen mass flow rate
(N,), feed gas temperature (T) and reactor length (x), explicit bounds on T, g are

not necessary. From the system model, we have three differential equations and four
variables, making the degrees of freedom equal to one. We specify the length of the
reactor, calculate the remaining variables using the system model and then pass these
variables to the optimization routine. The computation procedure for the optimization

carried out is shown in Fig. 3.16.

Reactor Length

!

Differential Equation
Solver

Optimization Routine

Fig. 3.16. Computation procedure

72

3.5.2.4. Results & Discussion
3.5.2.4.1. Temperature & Flow rate Profiles

First, the system equations (3.3, 3.4, and 3.5) were solved using Runge-Kutta
fixed step size method (RKFS) and Fig. 3.17 shows the profiles obtained. From the

graph it is clear that the profiles of N & Ty intersect at a reactor length of 4.935 m.
And the profiles of N & T, g intersect at a reactor length of 8.913 m. It is evident

from the graph that the profiles are smooth and there are no spikes as reported by
Upreti and Deb (1997). Therefore, in order to check if it is the limitation of RKFS
because of which spikes are not obtained, the other numerical methods viz. NAG
subroutine (DO2EJF) in MATLAB and Euler’s method (EULER), are also used for
simulating the results. Apart from above mentioned numerical methods, the

POLYMATH (a software package) is also used to simulate the results for profiles.

uy
o
o

o 2 4 6 8 10
Reactor Length (m)

Fig. 3.17. Profile obtained using RKFS (step size = 0.01)

Figs. 3.18, 3.19, and 3.20 show the profiles obtained using the methods mentioned

above. Fig. 3.21 shows the profiles obtained using DO2EJF with small step size of

0.001 to ensure that we may not miss spikes if any. The profiles obtained are quite

73

smooth, without any spikes and are similar to those obtained with RKFS. The profiles
are same qualitatively but they differ slightly quantitatively. To illustrate the exact
difference quantitatively, the above observations & comparison of various numerical
methods used for simulating the results are presented in Table-3.5.8 for the reactor
lengths of 10 m. Table-3.5.9 & Table-3.5.10 show the reactor length for which the

variables Ny, & T, and N & Ty intersect respectively.

800 4

700 ~

600

500 -

T, T,N,

-
(=1
o

0) 2) ; ' (Ii ' 8 l 10
Reactor Length (m)

Fig. 3.18. Profile obtained using EULER (step size = 0.01)

800

700 — N

600

500 ~

400 -]

T, Ty Ny

300 -

200

0 2 4 6 8 . 10
Reactor Length (m)

Fig. 3.19. Profile obtained using POLYMATH (step size = 0.01)

74

o 2 4 & 8 1
Reactor Length (m)
Fig. 3.20. Profile obtained using DO2EJF (step size = 0.01)
i — T
800- —T,
700 - _NN2
22“ 600-
= 5004
~" 400-
300-
200-

o 2 4 6 8 10

Reactor Length (m)

Fig. 3.21. Profile obtained using DO2EJF (step size = 0.001)

75

Table-3.10. Comparison of different numerical methods at x =10 m

Methods
—> RKFS* EULER? POLYMATH' DO2EJF*
Parameters
X 10.00 10.00 10.00 10.00
N N5 490.46 490.16 490.46 490.46
Tg 42225 42433 422.25 422.25
T r 183.37 187.96 183.38 183.39
3Step size = 0.01

Table-3.11. Reactor length at which variables N & T, intersect

Methods
. RKFS® EULER® POLYMATH® DO2EJF®
Parameters ¢
X 8.913 8.916 8.913 8.913
Ny,. Tg 490.46 490.44 490.46 490.46

Step size used is 0.001.

Table-3.12. Reactor length at which variables Ny & T intersect

Methods
- > RKFS® EULER® POLYMATH® DO2EJF®
Parameters ¢
X 4935 4,939 4934 4.934
Ny, Ty 501.47 501.39 501.49 501.49

Step size used is 0.001.

From Table-3.10, Table-3.11 and Table-3.12, it is evident that all the numerical
methods (stated above) are equally good barring a few of the following differences.
There is good agreement between RKFS & POLYMATH, which can be explained
with the fact that POLYMATH software is based on RKFS algorithm. DO02EJF also
gave the same results as those obtained by using RKFS & POLYMATH. EULER is
giving almost same results for step size of 0.001, but for step size of 0.01 the results -
are slightly different from RKFS, POLYMATH & DO2EJF. Even for step size of
prediction between EULER &

0.01, the difference in the

RKFS/POLYMATH/DO2EJF respectively, is insignificant at reactor length of 10m.

76

Similarly, the difference in prediction of intersections (Table-3.11 and 3.12) is also
negligible between EULER & RKFS/POLYMATH/DO2EJF method. Based on the
above observations, it can be substantiated that all the three methods are equally good
both qualitatively giving the same results and quantitatively with slight difference (for
step size of 0.01). Hence, any one of the above numerical methods can be used for the
solution of three coupled differential equations.

Upreti and Deb (1997) reported that the reverse reaction predominated the
forward reaction at the top temperature of 664 K. In the present study, all the six
methods quoted above were used to generate temperature & flow rate profiles at that
temperature. Surprisingly, there is no such trend observed in the profiles obtained (for
which Upreti and Deb (1997) gave a very good physical explanation] as can be seen

in Fig. 3.22 plotted using the results obtained with RKFS.

Tf
Ng
N
700 - 2
600 —
ZN
- 500 \
[=)
~]
|§°" 400
300
200 M I M T M T T T T 1
0 2 4 6 8 10

Reactor Length (m)

Fig. 3.22. Profile obtained using RKFS for top temperature of 664 K

To see the presence of any reverse reaction effect, the program is executed for

temperatures even below 664 K with interval of 10 K up to 600 K. But no such trend

77

2

is observed. Typical results obtained at top temperature of 640 K and 600 K are
shown in Figs. 3.23 & 3.24 respectively. As is evident from the figures there is no

reverse reaction effect even at a top temperature as low as 600 K.

700 —_— T

650 N,

o 600 —
=z ;
2» 550 - \

e 500+

450

400

0 2 4 6 8 10

Reactor Length (m)

Fig. 3.23. Profile obtained using RKFS for top temperature of 640 K

700

690 3

680 —N

670 2

660

650 —
~ 640

Z 630
< 620 -

& 610
I~ 600 .
590

I~ 560 :

570

560

550 -

540 -

530 4
520

¥ M J v I N DL v 1

0 2 4 6 8 10

Reactor Length (m)

Fig. 3.24. Profile obtained using RKFS for top temperature of 600 K

78

Also, Upreti and Deb (1997) reported that the three differential equations (3.3,
3.4, and 3.5) become unstable at the top temperature of 706 K. However, using the
above stated numerical methods, it is found that the equations are not unstable even at
a top temperature as high as 800 K. It may be noted that Upreti and Deb (1997) used
NAG library’s subroutine DO2EBF (which is now replaced by DO2EJF (NAG,
2004)).

The possibility of using wrong equation by Upreti and Deb (1997) is explored (i.e.
taking ‘1.5° as coefficient, as referred in the first paragraph of section-3.5.2.3 in this
chapter) and neither spikes nor reverse reaction effect were found even with this. So it
may be because of the problem in the software package that they reported the
reversible reaction effect. The numerical methods used in the present study include

the replaced NAG subroutine (DO2EJF) as well, which did not give the above reverse

reaction effect (Fig. 3.25).

250 - ' I v T N ! M 1 ! 1
0 2 4 6 8 10

Reactor Length (m)

Fig. 3.25. Profile obtained using DO2EJF for top temperature of 664

79

3.5.2.4.2. Optimization of Reactor Length
Fig. 3.26 shows the variation of objective function with reactor length (without

any constraint on 7). The value of objective function increases with reactor length.

From the Fig. 3.26, it is clear that POLYMATH, RKFS & DO2EJF show same
variation in objective function with reactor length though EULER (step size = 0.01)
shows slightly different variation (Fig. 3.27). Though to a naked eye, the profit
function (objective function) appears to be monotonously increasing, magnification of
highlighted part clearly indicates that there exists a single maximum as shown in Fig.
3.27.

The effect of top temperature on objective function for various reactor lengths is
shown in Fig. 3.28. Higher the top temperature, higher is the objective function
(profit). Also, after a reactor length of 7.0 m, the objective function almost becomes
constant for a given top temperature, as the decrease in its value with length is
insignificant. The maximum difference in objective function value for top

temperature of 706 & 666 K occurs at a reactor length of 1.47 m. This is about

36.42%. At a reactor length of 7 m & 10 m, this difference is about 7.5% & 7.35%

respectively which is almost constant.

Fig. 3.29 shows the optimum reactor length at various top temperatures using
EULER, RKFS & DO2EJF methods. The optimum reactor length varies with top
temperature while Upreti and Deb (1997) reported it to be almost constant. Murase et
al. (1970) also obtained qualitatively same varations but quantitatively different

(which could be due to incorrect partial pressure equations they used) as shown in

Fig. 3.29.

80

5500000 — Magniﬁed in

= - Fig. 3.27
8 5000000 -) o _
g 4500000
S’ 1
S 4000000 —— RKFS
5 3500000 EULER
Q] ;
D 00000 // POLYMATH
© 200000 - - - D0O2EJF
> l
© 2000000 - ,/
(O] 1/
‘Y 1500000 -/
o i
1000000 , ; . ; , , . . ' ,
0 2 4 6 8 10

Reactor Length (m)

Fig. 3.26. Variation of objective function with reactor length (various numerical methods)

5025000 —

5020000 -

[3]
(=]
-—
(31
(=3
(=1
o
1

5010000 -

Objective Function ($/year)

5005000 1 — RKFS
5000000-_ EULER
49950007 —— POLYMATH
4990000+ —— DO2EJF
"Y' 4985000 —/
4980000
& 7 8 9 10

Reactor Length (m)

Fig. 3.27. Magnification of highlighted part of Fig. 3.26

81

5500000

~~ A

" 5000000 -

©]

q>), 4500000 -

~— 4000000 - — 666K

C g

O 3500000 - 680K

H -

S 3000000 — 694K

3 |

Ll 2500000 - —_— 706K

()] J

.= 2000000 -

—

O -

O 1500000 -

O

QO 1000000 . ; : ' . : ,
0 2 4 6 8

Reactor Length (m)

Fig. 3.28. Objective function variation with reactor length at various top temperatures using RKFS

10

10.5 -
~
i—:, 10.0
p=]
-'5) 9.5 -]
c]
QO 9.0-
—l]
| -
8.5
% .
0] 8.0
GJ i
Y 7s-
£ o
E J
‘= 6.5
Q— T T] 1
O 600 650 700 750

Top Temperature (K)

Fig. 3.29. The variation of optimum reactor length with top temperature

82

1
800

@

It is evident from Figs. 3.26 and 3.27 that the objective function profile is smooth
and unimodal. Therefore, any simple gradient-based method can be used for
optimization as against the population based stochastic optimization technique such as
GA being used by Upreti and Deb (1997). In the present paper Quasi-Newton (QN)
and Secant methods are used. GA, DE and MDE are also applied for academic
interest only.

Table-3.13 and Table-3.14 show the results obtained from different methods &
the comparison with those obtained by Murase et al. (1970), Edgar and Himmelblau
(1989) & Upreti and Deb (1997) using Pontryagin’s maximum principle (PMP),
Lasdon’s generalized reduced-gradient method (LGRG) & Genetic Algorithm (GA)
respectively.

Table-3.13. Optimal Length and Profit obtained from various methods

Method SECANT GA . DE
etho RKFS* | EULER* | RKFS* | EULER* | RKFS* | EULER* | DO2EJF*
Optimal 6587 | 6.591 6.587 6.591 6.586 6.591 6.586
Length (m)
P’°f‘l(0$6’y’) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
* Step size = 0.001
Table-3.14. Comparison with literature values
LGRrG | D92EBF
Methods PMP (Edgar With
e e GA | EULER* | RKFS* | oo oo, RKFS* | RKFS*
Parameters (et“;l e | (Upreti | with with | 00 "ON | DOZEIF* | with | with
J, ’ and QN QN withDE | DE | MDE
1970) Iblau, Deb .
1989) %
1997)
Oljc‘i?r‘:)m 5.18 2.58 5.33 6.63 6.59 6.59 658 | 659 | 659
Objective
function Not 129 423 5.0 5.0 5.0 5.0 5.0 5.0
(million Reported
$/year)x10°
* Step size = 0.01

From Table-3.13 and Table-3.14, it is clear that irrespective of the optimization

technique (viz. GA, DE, MDE, SECANT, and QN) the optimum reactor length is

83

same, i.e., 6.59m. Also, by decreasing the step size from 0.01 to 0.001, the accuracy
does not vary but computational time increases. So a step size of 0.01 is sufficient to
get accurate optimum reactor length. From Table-3.14, we observe that an optimum
reactor length of 2.58 m is reported by Edgar and Himmelblau (1989) and 5.18 m by
Murase et al. (1970), both of which are wrong due to the errors in their problem
formulations as pointed out by Upreti and Deb (1997). An optimum reactor length of
5.33 m and the corresponding objective function value is 4.23x10° $/year, reported by
Upreti and Deb (1997) are also not correct as found in the present study. Among other
meihods, EULER method with a step size of 0.01 gives the same objective function
value as that of RKFS though the optimum reactor length is slightly different. But
with step size of 0.001 (see Table-3.13), the optimum reactor length obtained using
EULER method is almost the same as obtained by RKFS & DO2EJF methods. RKFS
is a widely accepted method for solution of ordinary differential equations. In
addition, backward differentiation formula (BDF) method (implemented in the NAG
subroutine DO2EJF) is a trusted method for solution of ODE. Hence, the correct
optimum reactor length can be considered as 6.59 m with an objective function value
of 5.00x10° $/year.
3.5.2.5. Conclusions

In this section, the problem of optimal design of an ammonia synthesis reactor has
been solved. Two numerical methods and NAG subroutine DO2EJF in MATLAB for
solving model equations, and QN, Secant, GA, DE & MDE for optimization, are
used. POLYMATH is also used for solving three ODEs. Results indicate that the
profiles of temperatures & flow rate are smooth and there is no reverse reaction effect
irrespective of numerical method used for the solution of differential equations. A

possible error in the integrator of the NAG subroutine used in the past study is

84

P>

identified. And the new NAG subroutine shows a unimodal characteristic of the
objective function, compared to a multimodal one found in the past study. The
optimum reactor length depends upon the top temperature. At the top temperature of
694 K, the reactor length of 6.59 m was found to give the optimum objective function
value of $ 5.0x10%year irrespective of the numerical methods and optimization
techniques used.
3.5.3. Reactor Network Design (RND) Problem

This problem arises from the area of chemical engineering, and represent difficult
non-linear optimization problem, with equality & inequality constraints. Comparison
is made with oBB algorithm (Adjiman et al., 1998a; 1998b), which can be used to
solve problems belonging to the broad class of twice-differentiable constrained NLPs.
The aBB algorithm is based on a branch-and-bound approach, where a lower bound
on the optimal solution is obtained at each node through the automatic generation of a
valid convex underestimating problem.
3.5.3.1. The Problem

This example, taken from Ryoo & Sahinidis (1995), is a reactor network design
problem, describing the system shown in Fig. 3.30. It involves the design of a
sequence of tvs;o CSTRs where the consecutive reaction 4 — B — C takes place. The
goal is to maximize the concentration of product B (x; = Cg;) in the exit stream. This
problem is known to have caused difficulties for other global optimization methods.
Min —x,
Subject to
x) +kxqxs =1

x3 +xl +k3x3x5 =1

85

‘@

.1‘4 -.‘K‘3 +.Y2 -—Xl +k4x4.’.’b =0

05 <4

X3+ x

(0,0,0,0,10%,10%) < (x1, X2, X3, X3, X5,) < (1, 1, 1, 1, 16, 16).

Where k, = 0.09755988
k= 0.99k,
k3 =0.0391908
k3 = 0.9k;
kl k3 k2 k4
A > B > A—» B—» C
A A,B,C A, B, C
— —p —
CA0=1 X1 =CA1 x2=CA2
x3 = Cpi x3=Cgm
Xs = Vi X6 =V,

Fig. 3.30. Schematic of reactor network design problem

The global optimum is: (x1, X2, X3, X3, Xs, Xe; f) = (0.771462, 0.516997, 0.204234,

0.388812, 3.036504, 5.096052; -0.388812).

Ryoo and Sahinidis (1995) solved the same problem using branch and reduce
method which is based on the branch and bound method. A number of variations of
the main algorithm were considered and the best one yielded a CPU of 21 s on a

SPARC 2. Maranas and Floudas (1997) used geometric programming approach and

problem gets converged to global optimum after 299 iterations and 20 s of CPU time.

86

@

Xy —X14X,—x; +kyxyx, =0
4 3 2 — X FRER T

x?‘s +.\'2’5 <4

(0,0,0,0,107%, 10%) < (x;, X2, X3, X3, X5, %6) < (1, 1, 1, 1, 16, 16).

Where ki =0.09755988
ky=0.99k,

k3 =0.0391908

k4 = 0.9/(3
k ky ky ks
A > B L ® A—» B—» C
A A B, C A B, C
—> —P —
Cpo=1 x1=Cal X2 = Caz
x3 = Cp x4 = Cry
X5 = V1 X6 = V2

Fig. 3.30. Schematic of reactor network design problem

The global optimum is: (xi, X2, X3, X3, X5, X6;) =(0.771462, 0.516997, 0.204234,

0.388812, 3.036504, 5.096052; -0.388812).

Ryoo and Sahinidis (1995) solved the same problem using branch and reduce
method which is based on the branch and bound method. A number of variations of
the main algorithm were considered and the best one yielded a CPU of 21 s on a
SPARC 2. Maranas and Floudas (1997) used geometric programming approach and

problem gets converged to global optimum after 299 iterations and 20 s of CPU time.

86

‘@

This example constitute a very difficult test problem as it possesses a local
minimum with an objective function value that is very close to that of the global
solution. The local solutions are with f=-0.375 and = -0.3881. Interestingly enough,
the two local solutions utilize only one of the two reactors whereas the global solution
makes use of both reactors.
3.5.3.2. Problem Reformulation

This problem can be reformulated by eliminating equality constraint as follows:

kz.t6(l+k3)+ kl (l +k2X6)

M =
aXf (1+k|xSX1+k2x6X1+k3.‘5Xl+k4x6)

Subject to

x?'s +x2'5 <4

(103, 10®) < (x5, x6) < (16, 16). Global optimum is same after reformulation. In the
present study (Angira and Babu, 2003), the reformulated problem is solved using
DE % .

Deans MDE algorithms.

3.5.3.3. Results and Discussion

Table-3.15 shows the results obtained using MDE (with/without forcing the
bound) and its comparison to DE and oBB algorithm. The key parameters used are
CR = 0.8, F = 0.5 and NP = 10D. NFE and NRC represent respectively, the mean
number of objective function evaluations and the percentage of runs converged to the
global optimum in all the 100 experiments (with different seed values).

Termination criterion used is either (1) the maximum number of generations is
reached (assumed 5000 generations), or (2) | fik.y = fibin | < 10°° where f is the value of

objective function for k-th generation. Convergence tolerance in the present case is
107 as compared to 107 used by Adjiman et al. (1998b). RND is a difficult problem

as mentioned already having two local optima near global optimum. Still MDE and

87

b

DE are able to locate the global optimum although the success rate (VRC) is 44 to
57% (Table-3.15). In this problem, NFE with forced bound method is 2.87% and
9.33% (for MDE and DE respectively) more than NFE for method without forcing the
bound (Table-3.15). It is important to note that in this problem, NRC with forced
bound method is just 8% and 10% respectively for MDE and DE as shown in Table-
3.15. It is because when the upper limit of variable is violated, the value of variable is
forced to the upper limit that resulted in convergence to non-optimal solution. This
happened as one of the local solutions near to global optimum is lying on the bound,
and hence trapped at local optimum.

The time taken by DE and MDE is less than that of aBB algorithm. Of course the
CPU-time cannot be compared directly because different computers are used.
However, a comparison can be made after considering a factor of 10 (high enough),
i.e., if the same problem would have been solved on HP9000/730 (66 MHz) using
DE, it might have taken ten times more of CPU-time than by Pentium-III, 500 MHz.

Even then the CPU-time is 92% less than that of «BB algorithm.

Table-3.15. Results of MDE” and its comparison with DE’ and aBB algorithms

Methods CPU-time NFE NRC
DE (FBM) 0.049** 1605 10
DE (MWFB) 0.041** 1468 57
MDE (FB) 0.041** 1289 08
MDE (MWFB) 0.034** 1253) 44
aBB Algorithm 5.5%s Not reported Not reported

* CPU-time obtained using HP9000/730 (66 MHz) with convergence tolerance of 0.001 (Adjiman et al., 1998b).
** CPU-time obtained using Pentium-111 (500 MHz) with convergence tolerance of 0.00001 (present study).
CPU-time, NFE, NRC for DE are average of 100 experiments with different seeds.

The performance of MDE, as is evident from results presented in Table-3.15, is

better than that of DE and aBB algorithm. The reliability of DE and MDE is same as

indicated by value of NRC, which is almost same for both the algorithms. RND is

88

9

ey

difficult problem as mentioned already having two local optima near global optimum
out of which one is within 0.2% of global optimum.' It is so close to global optimum
that a tolerance of more than 0.183% may lead to local optimum solution. Still MDE
and DE are able to locate the global optimum 44 to 57 times out of 100 experiments.
Fig. 3.31 shows the convergence history of RND problem. Each point on the
graph represents an average of 100 independent experiments. It is seen that error
variation is more in case of MDE algorithm (0.003% to 0.014%) than that of DE
(0.001% to 0.01%). This indicates that both MDE and DE are able to locate the
optimum within £0.014% of global optimum. Also DE is found to be slightly more
reliable as can be seen from success rate (NRC) values for the two algorithms (Table-

3.15), though MDE is faster than DE (CPU-time is less for MDE as compared to DE

as shown in Table-3.15):

——DE -®-MDE |

0.00028 7]
0.00026 - |
0.00024 -
0.00022 - ;
0.0002 - ;
0.00018 - ,
0.00016 -
0.00014 -
0.00012 -
0.0001 1 |
0.00008 -
0.00006 -
0.00004 -
0.00002 -
0

Error

0 200 400 600 800 1000 1200 1400 1600 1800 2000
No. of generations

Fig. 3.31. Convergence history of RND problem

89

2

3.5.3.4. Conclusions

Results indicate that the performance of DE is better than that of aBB algorithm.
Also the MDE algorithm is found to take less CPU-time than that of DE and BB
algorithms. Success rate is found to be slightly higher for DE than MDE algorithm.
The error variation is found to be more in case MDE algorithm than that of DE. Both
DE and MDE algorithms are able to locate the global optimum. The results obtained
using DE and MDE algorithms matches with that reported in literature.
3.5.4. Isothermal CSTR Design Problems

For a reaction scheme shown below, a problem of finding the best isothérmal
yield of a product C in a CSTR is chosen. This problem is taken from Rosenbrock
and Storey (1966). Later, Umeda and Ichikawa (1971) solved this problem using
modified complex method. In this reaction scheme, 4 is the feed material, B is a
transient intermediate, C is the required product, and D is an unwanted side product.

The reaction scheme is as follows:

k k

A—L1>B—4C
/5
D D

The rate constants are given by the equation,

ks >D

k; = C; exp {-E/R (1/T - 1/653)}
where C; are frequency factors, E; are activation energies (cal/mol), R is the gas
constant (1.9872 cal/mol/K), and T is absolute temperature in K. The values of C; and

E; for five rate constants are given in Table-3.16.

Table-3.16. Values of C; and E;

1 2 3 4 5
C 1.02 0.93 0.386 3.28 0.084
E; 16000 14000 15000 10000 15000

90

2

3.5.4.1. Mathematical formulation

The kinetic equations for the reaction scheme shown above are given as follows:

dx,
— =k, +k, +k;)x;;
r (I 2 3)1
dx,
= =kx —kyx,;
o 14 —HgX)
dx
—=k,x, —ksx;;
o 14Xy —Ks5X;

with the initial conditions x;(0) = 1, x, (0) = 0 and x3 (0) = 0; where x,, X2, and x; are
the concentration of material 4, B, and C respectively. For constant temperature 7, the
kinetic equations stated above can be integrated analytically to give the following

expression for C (f = x3).

~kst — ~(ky=ks)t - ~(k=ks)t
x3=f= kikge 1-e _|1=e ; Where k =k, +k, +k;;
k-k, k, —k; k -k,

Hence the maximizing function is given by

Max. x3 =f
Subject to the following constraints,
0<t<10; Reaction time (s)
200< T <2000; Reaction temperature (K)

In this problem, the best isothermal yield of C is found by maximizing this
expression with respect to the contact time (7) and the temperature (7). The results
reported in literature are shown in Table-3.17.

Table-3.17. Results reported in literature

Yield of C
Methods (;; _2) Temperature (7) Holding Time (¢)
Hill climbing
> 0.423 78. .
(Rosenbrock & Storey, 1966) 08 978.96 0.0781
Modified Complex method
(Umeda and Ichikawa, 1971) 0.42308 983.3 0.07572
Controlled Random Search (CRS) 04225 . —
(Goulcher and Long, 1978))

91

3

3.5.4.2. Results and Discussion

Rosenbrock and Storey (1966) used hill climbing method, Umeda and Ichikawa
(1971) used modified complex method, and Goulcher and Long (1978) solved this
problem using a Controlled Random Search (CRS) technique. None of them reported
the global optimum solution for this problem. Reported' values are shown in Table-
3.17. In the current study, DE and MDE are able to locate a better solution (possibly
the global optima) as DE and MDE proved to give global optimum for many test
problems, as well as chemical engineering problems in this study.

Table-3.18. Computational Results using DE and MDE for Isothermal Reactor

Method CPU-time/ NRC/NFE Yield of C Temperature Holding

ethods FBM MWFB (f=x3) (D Time (1)
DE* 0.033/100/8600 | 0.032/100/7996 0.423084 983.2028 0.075901
MDE* 0.027/100/7351 | 0.029/100/7685 0.423084 - 983.2028 0.075901

*On Pentium-4/2.4GHz/256 MB (RAM)
$ Calculated value using T=983.3 K and 1= 0.07572 s

The computational results are shown in Table-3.18 where NFE, and CPU-time are
average of 100 experiments and NRC is percentage convergencies to global optimum
solution. The optimal result obtained by hill climbing method (Rosenbrock and
Storey, 1996) is x3 = 0.42308, T = 978.96 and ¢ = 0.0781 at the 146" iteration for the
initial point (T, £) = (1073.0, 0.5). They found that it was not always possible to obtain
the optimal point because of the existence of a ridge (Fig. 3.32). Fig. 3.32 shows the
variation of objective function with temperature and time. Umeda and Ichikawa
(1971) reported slightly higher value for temperature (983.3 K) and lesser value for
holding time (0.07572 s) as compared to Rosenbrock and Storey (1996) using hill
climbing method, although the value of the objective function is reported to be same
in both the cases, i.e., 0.42308. However, as shown in Table-3.5.16, DE and MDE are

able to find better value of optimum (f = x3 = 0.423084, with temperature, T =

92

*

983.2028, and the holding time, ¢ = 0.075901). DE takes 10.34% and 22.22% more
CPU-time than that of MDE in case of method without forcing the bound and forced

bound method respectively. Success rate (VRC) is 100% for both DE and MDE

algorithms.

Fig. 3.32. Variation of f with time and temperature (temperature range: 500-1000 K)

Fig. 3.33 shows the convergence history of isothermal CSTR design problem.
Each point on the graph represents the average value over 100 independent
experiments. Though from naked eye, objective function value appears to be same for
both DE and MDE after 60 generations but it is not so. After 82 generations the value
of the objective function is 0.423074 for DE and 0.423084 for MDE while DE
reaches a value of 0.423084 in 96™ generation. This shows that MDE algorithm is
able to locate global optimum faster than DE algorithm.
3.5.4.3. Conclusions

The problem of isothermal CSTR design is solved using DE and MDE in the
present section. Results indicate that the forced bound method takes gligh}ly less

(about 6.89%) CPU-time than the method without forcing the bound for MDE

93

algorithm while it is more (3.0%) for DE algorithm. Both MDE and DE algorithms
are found to be able to locate the global optimum with 100% success rate. The

performance of MDE is found to be the best in the problem studied.

0.44 | ——DE -=-MDE
.]
0.42 - R IR RIS e IR RN RANAINA RRNRORASATY
0.4 gﬂw
0.38
0.36
0.34 -
0.32
ooég —
“ 0.26
0.24 -
0.22
0.2
0.18 -
0.16 -
0.14 -
0.12 A
0.1 I T I 1 1 1 I T T
0 10 20 30 40 50 60 70 80 90 100
No. of generations

Fig. 3.33. Convergence history of isothermal CSTR design problem
3.5.5. Alkylation Process Optimization
3.5.5.1. Introduction
The alkylation process is an important unit that is used in refineries to upgrade
light olefins and isobutane into much more highly valued gasoline component. The

light olefins are produced mainly from catalytic crackers and also from cokers and vis

breakers. The primary alkylation reaction involves the reaction of isobutane with a '

light olefin, such as butylene, in the presence of strong acid catalyst to form the high
octane, trimethyl pentane isomer. The alkylate obtained is one of the best gasoline
blending components produced in the refinery because of its high octane, typically
96RON, and low vapor pressure which allows lower cost butane to be put into

gasoline. The high profitability of upgrading light olefins and isobutane in the

94

refinery from LPG value to gasoline value explains why it is a very popular process
alternative that is used at most locations that have catalytic crackers. Alkylation
technology has been used for a long time in the refining industry. A simplified

process flow diagram of an alkylation process is shown in Fig. 3.34.

>
1I\flo‘t]iutane |
axeup FRACTIONATOR
y»| REACTOR
Olefin feed
Alkylate Product
—>
Fresh Acid
—— Spent Acid

Fig. 3.34. Simplified alkylation process flow sheet

Alkyléltion process is common in the petroleum industry. The process model was
described and solved by Sauer et al. (1964) using successive linear programming. The
process model seeks to determine the optimum set of operating conditions for the
process, based on a mathematical model, which allowed maximization of profit.
Bracken and McCormick (1968) formulated the problem as a direct ﬁonlinear
programming model with mixed nonlinear inequality and equality constraints and a
nonlinear profit function to be maximized. They used Sequential Unconstrained
Minimization Technique (SUMT) for solving the same. Later, Dembo (1976)

transformed the 10 variable NLP which Bracken and McCormick (1968) derived, into

95

seven variable problem. All equality constraints are eliminated and the problem has
been formulated as a signomial optimization problem. This problem involves seven
nonlinear variables subject to twelve nonlinear and two linear inequality constraints.
Edger and Himmelblau (1989) used sequential quadratic programming to solve the
problem as formulated by Bracken and McCormick (1968). Maranas and Floudas
(1997) used generalized geometric programming to solve the seven variables problem
as formulated by Dembo (1976). Adjiman et. al. (1998a) used aBB algorithm (for
general twice —differentiable constraint NLPs) for solving this problem. In the present
study, the problem formulation is same as that of Maranas and Floudas (1997) and
Adjiman et. al. (1998a). The problem is briefly discussed below.
3.5.5.2. The Problem

As shown in Fig. 3.34, an olefin feed (100% butane), a pure isobutene recycle and
a 100% isobutene make-up stream are introduced in a reactor together with an acid
catalyst. The reactor product stream is then passed through a fractionator where the
isobutene and the alkylate product are separated. The spent acid is also removed from
the reactor. The variables are defined as shown in Table-3.19 along with the upper
and lowér bounds on each variable. The bounds represent economic, physical and

performance constraints.

Table-3.19. Variables and their bounds

Symbol Variable Lower Bound | Upper Bound
X Olefin feed rate (barrels/Day) 1500 . 2000
X, Acid addition rate (thousands of pounds per day) 1 120
X3 Alkylate yield (barrels/ day) 3000 3500
X, Acid strength (wt. %) 85 93
X5 Motor octane no. 90 95
X External Isobutane-to-olefin Ratio 3 12
X, F-4 performance no. 145 162

96

W

3.5.5.2.1. Profit Function

The objective is to improve the octane number of some olefin feed by reacting it
with isobutene in the presence of acid. The product of the reaction is distilled and the
un-reacted is recycled back to the reactor. The objective function was defined in terms
of alkylate product, or output value minus feed and recycle costs. Operating costs
were not reflected in the function. The total profit per day, to be maximized (Adjiman
et al., 1998a), is given as follows:

Max. Profit=1715x, + 0.035x,x, + 4.0565x; +10.0x, — 0.063x;.x;5
Subject to:
0.0059553571x2x, + 0.88392857x; —0.1175625x,x, — x, <0,
1.1088x, +0.1303533x,x, — 0.0066033x,x¢ — x; <0,
6.66173269x; +172.39878x5 — 56.596669x, —191.20592x4 —10000 <0,
1.08702x, +0.32175x, — 0.03762x2 — x5 + 56.85075 <0,
0.006198x,x,x; +2462.3121x, —25.125634x,x, — x3x, <0,
161.18996x,x, + 5000.0x,x, —489510.0x, — x3x,%; <0,
0.33x, — x5 +44.333333<0,
0.022556x5 — 0.007595x; —1.0<0,
0.00061x; —0.0005x, —1.0<0,
0.819672x, — x; +0.819672 <0,
24500.0x, — 250.0x,x, — x3x, <0,
1‘020.4082x 4%, +1.2244898x;x, —100000x, <0,
6.25x,x, + 6.25x; —7.625x3 —100000< 0,

97

The maximum profit as reported in Adjiman et. al. (1998a) is: $1772.77 per day,
and the optimal variable values are x,=1698.18, x,=53.66, x;=3031.3, x,=90.11,
x5=95.0, x,=10.50, x;=153.53.
3.5.5.3. Results and Discussion

Table-3.20 presents the comparison of results obtained in earlier studies and,
those obtained using DE in present study. The optimal solution obtained using DE is:
x; = 1698.256922; x, = 54.274463; x3 = 3031.357313; x4 = 90.190233; x5 = 95.0; x¢ =
10.504119; x; = 153.535355; and the value of objective function is 1766.36. This
solution satisfies all the inequality constraints to six decimal places while solution
reported by Maranas and Floudas (1997) and Adjiman et al. (1998a) violates the first,
third and sixth constraints. The values of first, third and sixth constraints are found to
be 0.016501, 4.752125, and 1727.867362 respectively instead of zero or less than
zero. Hence the global optimal solution is 1766.36 that satisfy all the constraints to six

decimal places (i.e., 0.0000001).

Table-3.20. Comparison of Various Methods

S.No. | Method Profit ($/day) CPU-time (s)
1 SUMT (Bracken and McCormick, 1968) 1769 Not reported
2 NPSOL (Edgar and Himmelblau, 1989; 2001) 1768.75 Not reported
3 GGP in GAMS (Maranas and Floudas, 1997) 1773 30%*
4 oBB algorithm (Adjiman et al., 1998a) 1772.77 13.6***
5 DE (Present study) 1766.36 5.12%

+ CPU-time on PC with Pentium PIII, 500 MHz/128 MB RAM/ 10 Gb HD

*» CPU-time on HP-730 workstation
#** HP9000/730, using scaled Gerschgorin theorem method

Table-3.21 shows the results obtained using DE and MDE in the present study
(Angira and Babu, 2005b) and their comparison in terms of number of objective

function evaluations, CPU-time and proportion of convergencies to the optimum. The

98

termination criterion used is an accuracy value of 1x10°. NFE, NRC and CPU-time in
Table-3.21 represents, respectively the mean number of objective function
evaluations over all the 100 experiments (with different seed values), the percentage
of convergences to the global optimum, and the average CPU time per experiment
(key parameters used are NP = 10D, CR = 0.8, F =0.5).

Table-3.21. Results of DE and MDE for Alkylation problem

Method® NFE NRC CPU-time (5)*
DE (MWFB) 114895 100 5.81
MDE (MWFB) 108103 100 5.67
DE (FBM) 100126 100 5.12
MDE (FBM) 92287 100 4.77

Penalty uscd is 10°
* CPU-time on PC with Pentium PIII, 500 MH2/128 MB RAM/ 10 Gb HD

Both DE and MDE are able to locate the better solution (possibly global
optimum) in all the experiments, as NRC is 100%. MDE takes 2.47% less CPU-time
than DE in case of method without forcing the bound, while it is 7.33% in case of
forced bound method. This is due to the fact that some of the optimum values of
decision variables are lying on the extreme, i.e., either on upper or on lower bound.

Fig. 3.35 shows the convergence history of alkylation problem using DE and
MDE. After 160" generation, the value of the objective function is 1734.814 using
MDE and 1719.956 using DE. This indicates that MDE is faster than DE and takes
less CPU-time to locate the global optimum solution.
3.5.5.4. Conclusions

The results obtained by the two methods (DE and MDE) satisfy the constraints to
six decimal places as against the results reported by Adjiman et. al. (1998a) and
Maranas and Floudas (1997). Both MDE and DE are able to find global optimum
with 100% success rate. Also, the MDE is found to take less CPU-time as compared

to DE indicating better performance of the algorithm than DE.

99

| —— MDE —-#--DE
3000 !

2800
| 2600 -
2400 -
2200 1
2000 A
1800 - . L N
1600 - | h

1400 -
1200 -
1000

Function Value

1 + i

40 70 100 130 160 190
No. of generations

Fig. 3.35. Convergence history of alkylation problem

3.5.6. Optimization of Drying Process (DP)
3.5.6.1. Introduction

In the optimization problem of a drying process for a through-circulation dryer
(Chung, 1972), the objective is to find the air flow rate and the bed thickness which
will maximize the production rate under certain constraints for a given material of
known particle characteristics drying at a given temperature. An increase of the
airflow rate increases the drying production rate at the expense of increased pressure
drop and power consumption. An increase of the bed thickness also increases the
pressure drop and the power consumption. Though an increase of the bed thickness
decreases the drying rate, the net result may be an increase in the production rate (per
pound of dry solid).

3.5.6.2. Problem Formulation

The problem formulation is similar to that discussed by Chung (1972) and Luss

and Jaakola (1973). The problem deals with the maximization of drying production

100

rate in a through-circulation dryer (Chung, 1972). The drying production rate, in
terms of the independent operating variables, is a non-linear objective function, and is
optimized under the nonlinear inequality constraint function using DE and MDE. We
use the data and corrected equations as in Chung [1972; 1973]. The problem is to find
the mass flow rate x;, and the bed thickness x; such that the drying production rate (P)

is maximized. Mathematically, it can be expressed as follows:

Maximize P
0.036 B
P =0.033x, |:1 - elo7.9.r,/.r;"' +0.095- B]
-4 041 _ =530/
where, B = 9.27x107" x, In l-e _
X, - e-l07.9.\':/x,

Subject to the following constraints:

(1) Power constraint

02-4.62x 10" %2 x,-1.055x 10% x;, 20

(2) Pressure drop constraint

4/12 -8.20 x 107 x,"%¥ x, - 2.25/12 2 0.

(3) Drying time ratio constraint

0.036

1—- el07.9x:/.\':""

0.64-109.6—%- [+o.095—3] >0
x,'

3.5.6.3. Results and Discussion

Chung [1973] solved the DP problem using differential algorithm and arrived at
the maximum drying production rate (P) of 172.5 Ib/ft*hr, with x; = 975.6 Ib/ft’hr, and
x; = 0.524 ft. Luss and Jaakola [1973] reported the maximum P of 172.49 Ib/ft?hr,
with mass flow rate of 976.76 lb/ft’hr & bed thickness of 0.5235 ft. Goulcher and
Long (1978) used CRS method to solve this problem and obtained maximum drying

production rate of 172.46 Ib/ft*hr.

101

In Table-3.22 and Table-3.23, NFE & NRC represent respectively, the mean
number of objective function evaluations and the percentage of experiments
converged to the global optimum in all the 100 experiments (with different seed
values). The key parameters used are F = 0.7, CR = 0.99. The stopping criteria
adopted for DE is to terminate the search process when one of the following

conditions is satisfied: (1) the maximum number of generations is reached (assumed
1000 generations. (2) | /X« - flﬁin | < 10™* where fis the value of objective function for

k-th generation.

Table-3.22 shows the results obtained using DE (FBM) in the present study (Babu
and Angira, 2002a) and its comparison with traditional direct search method and CRS
method. They cannot be compared on the basis of CPU-time sinc':e‘the computer used
is different in the each case. However the value of objective function, i.e., the
performance index is slightly better using DE as compared to direct search method
and controlled random search. But the NFE is slightly less in case of direct search
method (7.35% less than that of DE). Also, it is interesting to note here that the value
of F has a significant effect on convergence to optimal solution. It is found that DE
did not converge to the same optimal solution using different seeds for F values less
than 0.6. However, the CR (the crossover constant) has very little effect on optimal

solution.

Table-3.22. Comparison of DE with DSM and CRS methods (DP problem)

Method Performance Index (NFEICPU-time)
DE 172.49 1428/0.065° sec
DSM 172.47 1323/5* sec
CRS 172.46 Not reported/0.269” sec
S Pentium 111/500 MHz, and strategy is DE/rand/1/bin
*IBM 370/165
*CDC 7600

102

Results of MDE are compared with that of DE in Table-3.23. NRC is almost same
in both DE and MDE. This indicates that both the techniques are equally reliable.
Also a high value of NRC in case of without forcing the bound indicates superiority of
this method handling bound violation. The NFE using method without forcing the
bound is almost same as that with forced bound method for the two algorithms
(Table-3.23) while there is significant difference in NRC value. It is 85% and 58% for
method without forcing the bound and forced bound method respectively in case of
MDE algorithm. Although there is not much difference in NRC value for the two
algorithms using either forced bound method or method without forcing the bound.
MDE takes almost 10.0% less time than DE for both methods, i.e., method without
forcing the bound and forced bound method. Also, MDE takes less NFE as compared
to DSM (Table-3.22).

Table-3.23. Results of MDE and DE algorithms for DP problem

NRCINFE/CPU-time® NRCINFE/CPU-time®
DE 54/1415/0.065 79/1428/0.065
MDE 58/1238/0.059 85/1255/0.058

$ Pentium 111/500 MHz

Fig. 3.36 shows the convergence history of the dr.ying problem. Each point on the
graph represents the average of 100 independent experiments. Fig. 3.36 clearly
indicates that MDE algorithm is faster than DE. After 30 generations, the value of
objective function (Performance Index) is found to be 172.364 and 172.076 for MDE
and DE algorithms respectively. MDE algorithm took 50 generations as compared to
60 generations for DE to locate the global optimum solution.
3.5.6.4. Conclusions
In the present section, the problem of optimization of drying process for a through-

circulation dryer is solved using MDE and DE. Also the results are compared with

103

DSM and CRS methods. Results indicate that the DE and MDE are able to find a
slightly better objective function value than that of CRS and DSM. Method without
forcing the bound is found to give high success rate (VRC) as compared to forced
bound method, for both the algorithms, as the optimum solution does not lie on the
boundary (i.e., lower or upper limit). Although the NFE or CPU-time is same for both
forced bound method and method without forcing the bound. It is found that the
performance of MDE is better than that of DE and traditional direct search method in

finding the true global optima for nonconvex nonlinear problem.

—e— MDE —=—-DE

175
a3 BB
170 -

165 -
160
155 -
150 -

Function value

145

140 -

135 ‘
0 10 20 30 40 50 60

No. of generations

Fig. 3.36. Convergence history of drying process problem

3.5.7. Optimum Fuel Allocation in Power Plant (FAPP)
3.5.7.1. Introduction

This problem deals with a power plant with two boiler-turbine-generator
combinations (Fig. 3.37), each capable of using a mixture of two types of fuels (fuel
oil and fuel gas). Each of two boiler-turbine-generator combinations can be fired with
either fuel oil or fuel gas or any combination of the two fuel types. It is desired to

select the fuel mix for each generator so as to minimize the fuel oil utilization. In the

104

present section, the problem of optimum fuel allocation in power plants is solved

using DE and MDE evolutionary computation methods. Comparison is made with a

direct search procedure (which utilizes pseudo random numbers over a region) and

controlled random search method.

xih + (1-x3)f2
X1
p BTG 1]
f2
4 50 MW
BFG >
&1 &2
»| BTG 2
X2
xag1 T (1-x4)g2
Fig. 3.37. Schematic of two-boiler-turbine-generator power plant
3.5.7.2. The Problem

The problem of minimizing the purchase of fuel oil (FO) is considered. In a power

plant it is desired to produce an output of 50 MW from a two boiler-turbine-generator

combination (Fig. 3.37). It can use fuel pil or blast fumace gas (BFG) or any

combination of these. The maximum BFG that is available is specified. The fuel

consumption-load characteristics are nonlinear. By applying nonlinear curve-fitting

Hovanessian and Stout (1963) obtained the fuel requirements for the two generators

explicitly in terms of MW produced. For generator-1 the fuel requirements for fuel oil

in tons per hour is given by the equation (3.17):

fi =1.4609 + 0.15186x; + 0.00145x,>

and for BFG in fuel units per hour

f=1.5742 + 0.1631x, + 0.001358x,>

105

(3.17)

(3.18)

where x) is the output in MW of generator-1.

Similarly for generator-2 the fuel oil requirement is:

g1 = 0.8008 + 0.2031x; + 0.000916x,° (3.19)
and for BFG,
g2 =0.7266 + 0.2256x; + 0.000778x,° (3.20)

where x; is the output in MW of generator-2.
3.5.7.2.1. Problem Formulation
The following assumptions are made:

1. Only 10.0 units of BFG are available per hour.

2. Each generator may use any combination of fuel oil or BFG.

3. When a combination of fuel oil and BFG is used the effects are additive, i.e., if in
generator-1 we use fuel oil and BFG in 1/3 ratio to produce x; MW, then the total
fuel consumption consists of 0.25 £} tons of fuel oil per hour and 0.75 f; fuel units

of BFG per hour.

The problem is to produce 50 MW from the two generators in such a way that the
amount of fuel oil consumed is minimum. Mathematiceilly, the problem can be
formulated as follows:

Minimize C=x3fi +xs 81 (3.21)
where f; and g| are given by equations (3.17) and (3.19) respectively.
Subject to the following constraints:
(a) Operating range for the generator-1

18 <x; <30 (3.22)
(b) Requirement of 50 MW of Power

x2=50-x (3.23)

(c) Operating range of generator-2

106

14<x,<25 (3.24)
(d) Fraction of fuel oil used in generator-1

0<x<1 (3.25)
() Fraction of fuel oil used in generator-2

0<x<1 (3.26)
(f) Availability of blast furnace gas (BFG)

BFG=(1 -x3) 2+ (1 —x4) g2<10.0 (3.27)

where f; and g; are given by Equation (3.18) and (3.20) respectively.

Hence the problem is to choose the variables x), x3, and x; so that C as given by
equation (3.21) is minimized because the variable x; is eliminated by using equation
(3.23). There are five inequality constraints embodied in equation (3.22) and
equations (3.24) to (3.27). Also note that there is no lower limit restriction on
equation (3.27) since computationally BFG cannot become negative.

3.5.7.3. Results and Discussion

For FAPP problem, Hovanessian and Stout (1963) and Hovanessian and Pipes
(1969) obtained the minimum fuel oil consumption of 3.17 tons/hour by using
separable programming where the nonlinearities were approximated by linear sections
and the problem was solved by the standa;rd linear programming procedure. Luss and
Jaakola (1973) obtained the minimum fuel consumption of 3.05 tons/hour by using
the optimization procedure based on direct search and systematic search region
reduction. Goulcher and Long (1978) used CRS method to solve this problem and
obtained minimum fuel consumption of 3.065 tons/hour.

In Table-3.24 and Table-3.25, NFE & NRC represent respectively, the mean
number of objective function evaluations and the percentage of experiments

converged to the global optimum in all the 100 experiments (with different seed

107

values). The key parameters used are F = 0.7; CR = 0.99. The stopping criteria
adopted for DE is to terminate the search process when one of the following

conditions is satisfied: (1) the maximum number of generations is reached (assumed

1000 generations. (2) | fik. - fE, 1< 10~ where fis the value of objective function for

k-th generation.

Table-3.24. Comparison of DE with DSM and CRS methods (FAPP problem)

Methods Performance Index (NFE/CPU-time)
DE 3.0521 3418/0.11° sec
DSM 3.0526 2989/1* sec
CRS 3.065 Not reported/0.276" sec
$ Pentium 111/500 MHz, and strategy is DE/rand/1/bin
*IBM 370/165
“CDC 7600

Table-3.24 shows the results obtained using DE (FBM) in the present study (Babu
and Angira, 2002a) and its comparison with traditional direct search method and CRS
methods. They cannot be compared on the basis of CPU-time since the computer used
is different in the each case. However the value of objective function, i.e., the
performance index is slightly better using DE as compared to direct search and
controlled random search methods. But the NFE is slightly less in case of direct
search method (12.55 % less than that of DE).

Table-3.25. Results of MDE and DE algorithms for FAPP problem

-ti S
Methods NRC/NFEICPU-time
FBM MWFB
DE 96/3418/0.11 82/4198/0.140
MDE 97/3079/0.101 83/3830/0.126

$ Pentium 111/500 MHz

Results obtained using MDE algorithm are compared with that of DE in Table-
325 NRC is almost same in both DE and MDE algorithms. This indicates that both
the techniques are equally reliable. Also NRC is found to be more in case of forced

bound method as compared to method without forcing the bound in both the

‘.

108

values). The key parameters used are F = 0.7, CR = 0.99. The stopping criteria
adopted for DE is to terminate the search process when one of the following

conditions is satisfied: (1) the maximum number of generations is reached (assumed

1000 generations. (2) | ik - rEo< 10~ where f is the value of objective function for

k-th generation.

Table-3.24. Comparison of DE with DSM and CRS methods (FAPP problem)

Methods Performance Index (NFE/CPU-time)
DE 3.0521 3418/0.11° sec
DSM 3.0526 2989/1* sec
CRS 3.065 Not reported/0.276" sec
$ Pentium 111/500 MHz, and strategy is DE/rand/1/bin
*IBM 370/165
*CDC 7600

Table-3.24 shows the results obtained using DE (FBM) in the present study (Babu
and Angira, 2002a) and its comparison with traditional direct search method and CRS
methods. They cannot be compared on the basis of CPU-time since the computer used
is different in the each case. However the value of objective function, i.e., the
performance index is slightly better using DE as compared to direct search and
controlled random search methods. But the NFE is slightly less in case of direct
search method (12.55 % less than that of DE).

Table-3.25. Results of MDE and DE algorithms for FAPP problem

. S
Methods NRC/INFE/CPU-time
FBM MWFB
DE 96/3418/0.11 82/4198/0.140
MDE 97/3079/0.101 83/3830/0.126

S Pentium I11/500 MHz

Results obtained using MDE algorithm are compared with that of DE in Table-
3.95. NRC is almost same in both DE and MDE algorithms. This indicates that both
the techniques are equally reliable. Also NRC is found to be more in case of forced

bound method as compared to method without forcing the bound in both the

108

algorithms (DE and MDE). NRC using MDE is 83% for method without forcing the
bound and 97% for forced bound method. The NFE using method without forcing the
bound is slightly more than with forced bound method (Table-3.25) in case of both
the algorithms. MDE takes almost 27.85% less computational time than that using DE
(using MWEB).

Fig. 3.38 shows the convergence history of the fuel allocation problem. Each
point on the graph represents the average of 100 independent experiments. Fig. 3.38
clearly indicates that MDE algorithm is faster than DE. After 44 generations, the
value of objective function is found to be 3.070293 and 3.080094 for MDE and DE
algorithms respectively. MDE algorithm took 108 generations as compared to 124

generations for DE to locate the global optimum solution.

——MDE —a-DE

Function value

3.2 - T

31 - '*‘3&'3‘% .
.3 M grat i e S H R R R R R R R R B R R e
4 24 44 64 84 104 124

No. of generations

Fig. 3.38. Convergence history of FAPP problem

3.5.7.4. Conclusions

A slightly better value of objective function is found using DE and MDE

algorithms as compared to DSM and CRS. Also, results indicate that MDE algorithm

109

is able to locate the global optimum faster than DE. Forced bound method is found to
give high success rate (NRC) and less NFE, i.e., CPU-time as compared to without
forcing, for both the algorithms, as one of the variable occupies the boundary value
(i.e., lower limit). The performance of MDE is found to be better than that of DE.
3.5.8. Water Pumping System
3.5.8.1. Introduction

Optimization of fluid flow systems encompasses a wide-ranging scope of
problems. Many optimization problems exist in which the process model represent
flow through a single pipe, flow in parallel pipes, compressors, heat exchangers, and
so on. In the present section, DE and MDE algorithms are used to solve the classical
optimization problem of water pumping system. Comparison is made with Branch &
Reduce algorithm. The results indicate that performance of DE and MDE are better
than that of the Branch & Reduce algorithm.
3.5.8.2. The Problem

A water pumping system (Stoecker, 1971) consists of two parallel pumps drawing
water from a lower reservoir and delivering it to another that is 40 m higher, as shown
in Fig. 3.39. In addition to overcoming the pressure difference due to the elevation,
the friction in the pipe is 7.2w” kPa, where w is the combined flow rate in kilograms

per second. The pressure-flow-rate characteristics of the pumps are:

Pump 1: Ap (kPa) = 810 — 25w, —3.75w;]

Pump 2: Ap (kPa) = 900 - 65w, — 30w22

where w; and w; are the flow rates through pump-1 and pump-2, respectively.

The system can be represented by four simultaneous equations. The pressure

difference due to elevation and friction is:

110

(40 m)1000kg/m* J0.807 mvs*)

Ap =7.2w" + 1000 Pa/kPa (3.28)
Pump-1: Ap =810 — 25w, - 3.75w} (3.29)
Pump-2: Ap =900 - 65w, — 30w; (3.30)
Mass balance: W = W, + W, (3.31)

The objective here is to minimize Ap subject to the constraints (3.28), (3.29),

(3.30), and (3.31).

T =
R
w w
—
= X _—_Q
N
>
w
<o)

Fig. 3.39. Schematic of water pumping system

Hence the problem can be stated as follows:

. (40 m){1000kg/m’ f0.807 mvs?)
Min. Ap =T7.2w" +
1000 Pa/kPa

Subject to the following constraints:

Ap =810 — 25w, —3.75w;

111

Ap =900 — 65w, — 30w; .
w=w +w,,

Stoecker (1971) used the method of successive substitution for solving this
problem.

3.5.8.2.1. Problem Modification

Liebman et al. (1986) modified the above problem as given below:
Min. f=x,,
Subject to the following constraints:
x; = 250+30x, —6x]

x, =300+ 20x, —12x;

x, =150+ 0.5(x, +x,)’

0 < x < (9.422,5.903,267.42)

Ryoo and Sahinidis (1995) solved this problem using Branch and Reduce
algorithm. They used different strategies of Branch and Reduce algorithm. The
CPU-time reported by them ranges from a minimum of 0.3 s to a maximum of 150 s
for various strategies used by them on Sun SPARC station 2. However Ryoo and
Sahinidis (1995) did not mention about configuration of the system used but from site

hllp:/’/www.iinl'.dubna.su.-’unixinfo/sum’sunsl html, the available configuration for Sun

SPARC station 2 is: CPU - (1x 40MHz), RAM - 32MB and Hard Disk - 1.2Gb. The
termination criterion used was an accuracy () =10"°. The global optimum reported is
(x;) = (6.293429, 3.821839, 201.159334; 201.159334).

3.5.8.2.2. Problem Reformulation-1

In general, the equality constraints are difficult to deal with. And more so in the

case of evolutionary algorithms. So there is a need to transform equality constraints

112

into inequality constraints by some means or the other. Typically, they are handled by
either of the following two methods, viz., (1) eliminating the parameter and hence
reducing the dimensions of the problem (2) an equality constraint is formulated into
two inequalities by introducing deviation variables on problem parameter. In the
present study (Babu and Angira, 2003a), one variable is eliminated using method-1
while the other two equalities are transformed into inequalities using method-2.

Hence, the reformulated problem is as follows:

Min. f=x,=150 +0.5(x, + x,)’

Subject to the following constraints:

6x? = 30x, — 249.9999999 +150.0 +0.5(x, +x,)* 2 0.0
12x2 - 20x, — 299.9999999 +150.0 +0.5(x, +x,)’ 2 0.0
0<x<(9.422,5.903).

The global optimum obtained is: (x; /) = (6.293429, 3.821839; 201.159334).

3.5.8.3. Results and Discussion

Table-3.26 shows the results obtained by both DE and Branch & Reduce
algorithm (Ryoo and Sahinidis, 1995). It may be noted that the global optimum is
same as reported in Ryoo and Sahinidis (1995), i.e., f=201.159334 and the flow rates
through Pump-1 & Pump-2 are x; = 6.293430 and x; = 3.821839 respectively. With
two of the three strategies they used, the CPU-time is 0.3s and with the third it is 150s
(as shown in Table-3.26).

Table-3.27 and Table-3.28 presents the comparison, in terms of the number of
objective function evaluations, CPU-time and proportion of convergencies to the
optimum, between the different DE strategies. The termination criterion used is
accuracy of 10 and 107 respectively. In these tables, NFE, NRC and CPU-time

represents, respectively the mean number of objective function evaluations over all

113

the 10 experiments, the percentage of convergencies to the global optimum and the

average CPU time per experiment. The key parameters used are: NP = 20, CR = 0.5,

F=0.28.

Table-3.26. Comparison of DE with Branch & Reduce method
Parameters DE Branch & Reduce
(x)) 6.293430 6.293429
(x,) 3.821839 3.821839
(x3) =/ (i.e. same as the objective function) 201.159334 201.159334
CPU-time (s) 0.0714° (0.3 - 150s)°
Objective function (f) 201.159334 201.159334

* CPU-time on PC with Pentium PIII, 500 MHz/128 MB RAM/ 10 Gb HD using DE/rand-to-best/1/exp

$ CPU-time on Sun SPARC Station 2

Table-3.27. Results of DE with all ten strategies (accuracy (€)= 10

S. No. Strategy NFE CPU- time (s) NRC (%)
1 DE/rand/1/bin 3134 0.1319 100
2 DE/best/1/bin 2406 0.0879 100
3 DE/best/2/bin 4444 0.1758 100
4 DE/rand/2/bin 4644 0.1758 100
5 DE/rand-to-best/1/bin 2364 0.0879 100
6 DE/rand/1/exp 3214 0.1154 100
7 DE/best/1/exp 2372 0.0934 100
8 DE/best/2/exp 4506 0.1648 100
9 DE/rand/2/exp 4652 0.1868 100
10 DE/rand-to-best/1/exp 2162 0.0714 100

Table-3.28. Results of DE with all ten strategies [accuracy (€)= 107

S. No. Strategy NFE CPU- time (s) NRC (%)
1 DE/rand/1/bin 3524 0.1374 100
2 DE/best/1/bin 2624 0.1099 100
3 DE/best/2/bin 5016 0.1868 100
4 DE/rand/2/bin 5158 0.2033 100
5 DE/rand-to-best/1/bin 4146 0.1648 90
6 DE/rand/1/exp 3542 0.1319 100
7 DE/best/1/exp 2636 0.0989 100
8 DE/best/2/exp 5048 0.1923 100
9 DE/rand/2/exp 5206 0.1978 100
10 DE/rand-to-best/1/exp 2484 0.0989 100

114.

3.5.8.3.1. Problem Reformulation-2

In the problem reformulation-1, first equality is used as true objective function
while the other two equalities are converted into inequalities and treated as inequality
constraints. Here it is again reformulated as unconstraint optimization problem,

incorporating constraints into objective function, as follows:

Min. f=x,=150 + 0.5(x, + x, ¥ + R(h*> + g7)
Where

h = 6x% -30x, —250.0 +150.0 + 0.5(x, + x,)* = 0.0
2

é = 12x§ —20x, —300.0+150.0 + 0,.5(x| + xz)2 =0.0; and R (=10'°) is penalty on
constraint violation. 0 £ x £(9.422, 5.903).

The global optimum obtained is: (x; f) = (6.293429, 3.821839; 201.159334). The
problem is solved using DE and MDE (with or without forcing the bound). The key
parameters used are: NP =40, CR=0.8, F=0.5 and the termination criterion used is
£ = 10°. Total 100 experiments are carried out. Mean value of NFE, NRC and CPU-
time is shown in Table-3.29 and Table-3.30 for method without forcing the bound

and forced bound method respectively.

Table-3.29. Results of DE and MDE using MWFB

Methods NFE NRC (%) CPU-time (s)
DE 2014 100 0.061
MDE 1630 100 0.047
Table-3.30. Results of DE and MDE using FBM
Methods NFE NRC (%) CPU-time (s)
DE 2054 100 0.063
MDE 1651 100 0.047

115

It is interesting to note that from Table-3.29 and Table-3.30 that NRC and NFE
are almost same in both the cases, i.e., for method without forcing the bound and
forced bound method. However, CPU-time is less (about 25.4%) in case of MDE
algorithm than that of DE.
3.5.8.4. Conclusions

In this section, the problem of optimization of water pumping system using DE
and MDE algorithms has been solved. The time taken by DE is much less than that of
Branch & Reduce algorithm (Table-3.26). Of course the CPU-times cannot be
compared directly because different computers are used. From the above Table-3.27
and Table-3.28 it is evident that the strategy number-10 (DE/rand-to-best/1/exp) is the
best strategy. It takes least average CPU-time, maximum NRC and minimum NFE.
The results obtained by three methods (viz. MDE, DE and Branch & Reduce
algorithm) are same and matches with that reported in literature. Performance of
MDE is found to be better than DE and branch and reduce algorithm.

3.5.9. Liquid Extraction Problem
3.5.9.1. Introduction

Liquid-liquid extraction is a mass transfer operation in which a liquid solution (the
feed) is contacted with an immiscible or nearly immiscible liquid (solvent) that
exhibits preferential affinity or selectivity towards one or more of the components in
the feed. Two streams result from this contact: the extract, which is the solvent rich
solution containing the desired extracted solute, and the raffinate, the residual feed
solution containing little solute. Liquid-Liquid Extraction (LLE) is a péwerful
separation technique and in sifuatioﬁs where distillation is not feasible for reasons
such as a complex process sequence, high investment or operating costs, heat

sensitive materials, or low volatility, extraction is often the best technology to use.

116

LLE is carried out either (1) in a series of well-mixed vessels or stages (well
mixed tanks or plate columns or (2) in a continuous process such as spray columns,
packed columns, and rotating disk columns. This example illustrate the application of
Evolutionary Computation method such as DE and MDE to the optimization of a LLE
system represented by a plug flow model. Steady state continuous countercurrent
liquid extraction can be modeled in a variety of ways, the most common of which are
(1) a plug flow model and (2) an axial dispersion model. Jackson and Agnew (1980)
demonstrated the effectiveness of an on-line model based steady-state optimization
scheme in finding and holding the optimum operation conditions of a liquid extraction
pilot plant in which acetic acid was extracted from amyl alcohol using water as the
solvent. The equipment could be operated either manually or under computer control.
Under automatic operation, the computer could maintain the interface level, feed and
solvent flow rates, and the stirrer speed (Ns) to their respective set points. The latter
three set points could be changed by the optimization routine. The interface level was
controlled via the extract flow. The measured variables, for both control and
optimization purposes were the feed and solvent flow rates; the feed, raffinate and
extract concentrations; the stirrer speed; the interface position; and the feed
temperature. Further details are given in Jackson (1977).

The process operation was subject to upper and lower limits on feed and solvent
phase superficial velocities and the stirrer speed, and to minimum throughput and
flooding constraints. For use in an optimization scheme, a process model is required
to be able to predict the steady-state process output for a given set of inputs. These
predicted values can then be used to calculate the value of the performance function.
To be of use in an on-line scheme, the model must be amenable to solution without

excessive computational effort. They examined the accuracy of four models viz., a

117

p

model based on plug flow of both phases, one based on axial dispersion superimposed
on the flow of both phases, and two empirical models (one linear and one nonlinear)
for a continuous pilot-scale extraction column in which water was used to extract
acetic acid from amyl alcohol. The linear and non-linear models were direct
correlations of experimentally obtained mass transfer data.

Two empirical models were rejected, as they were not fitting the data. Both plug-
flow and axial-diffusion models enabled the correct optimum to be predicted in all
cases, the differences in performance when these models were used were negligible,
as there was little axial mixing of the phases in the Rotating Disc Contactor. Also, the
marginally superior performance of the axial diffusion model was offset by the
greater complexity of its solution compared to the plug flow model. Hence, the plug
flow model offered the best compromise between predictive ability and complexity
because of its greater simplicity. The same is used in the present study too. Once a
model is specified, it can be used to determine the maximum extraction rate. A typical
column is shown in Fig. 3.40 (where the internal rotating disc are not shown). The
process model, objective function, and the constraints, are described in the following
sections.
3.5.9.2. Process Model

Assuming that the concentrations are expressed on a solute free mole basis and
that the equilibrium relation between Y and X is a straight, i.e., the phases are

insoluble. The model is then given as below:

dx

= Nox (x-Y)=0 (3.32)
dYy

E_FENOX(X_Y)zo (3.33)
where,

118

Fg = extraction factor (mvy /v,)

m = distribution coefficient (m = 1.5)
Nox = number of transfer units
v,.v, = Superficial velocity in raffinate, extract phase
X = dimensionless raffinate phase concentration
Y = dimensionless extract phase concentration
Z = dimensionless contactor length
>
Extract (Yp)
Feed g O
(Xo) Solvent (1;)
<«
«4—
Raffinate (X))

Fig. 3.40. Schematic of extraction column

Fig. 3.40 shows the extraction column with boundary conditions Xp and Y. A
solution for Yy in terms of v, and vy can be obtained, given the values for m, Nox, and

the length of the column. Hartland and Mecklenburgh (1975) list the solution for the

119

plug flow model (and also the axial dispersion model) for a linear equilibrium

relationship, in terms of F:

Fell—exp{Noy (1- Fr))l]
Y. = 13 OX E)
° 1-F E eXP[N ox (l - Fg)] 39

For the plug flow and axial diffusion models, Jackson and Agnew (1980)

summarized a number of correlations for Noy given by an equation of the form:

b
Nox =a[ﬁi} (Ns) (3.35)

The correlations obtained by non-linear least-square regression were:

L0
Noy =1 7(_X) (Vs)*
Vy

for 2.08< Ny <4.25™ (3.36a)

0.24
v
Nox = 0-2(";\'_) (Ns)"”
Y

for 42< Ng <8.33s™ (3.36b)

0.18
Ny = 0.18(2‘-] (Vg)00
Yy

for 2.08< N < 4357 (3.36¢)
Vy

024
Vy 2.
Nox = 0-09[—4‘) (vs)

for 43<Ng <8.33s™ (3.36d)

In the present study (Babu and Angira, 2003b), equation (3.36b) is used with

Ng =833s7".

120

0.24
Ny = 4.81(£J (3.37)
vy
3.5.9.2.1. Objective function

We have used the same objective function as proposed in Jackson and Agnew
(1980), i.e., to maximize the total extraction rate for constant disk rotation speed
subject to the inequality constraints:
Maximize f=vy ¥y (3.38)
Inequality constraints:
Implicit constraints exist because of the use of dimensionless variables
X, sX<X,
Y, <Y<Y, (3.39)
Constraints on vy and vy would be upper and lower bounds such as:
0.05<vy <0.25
0.05 < vy <0.30 | (3.40)
and flooding constraint is:
vy+vy<0.20
3.5.9.3. Results and Discussion

Jackson and Agnew (1980) used a modified gradient-projection technique for
linearly constrained optimization problems developed by Jackson (1977). Edgar &
Himmelblau (1989) used GRG (generalized reduced gradient method) and obtained
the same optimum (0.15, 0.05) as Jackson and Agnew (1980). The value of objective
function is 0.225, i.e., the true optimum lay on the flooding constraint. In the present
section, DE and MDE, the evolutionary techniques, are applied. The stopping
criterion adopted is to terminate the search process when one of the following

conditions is satisfied: (1) the maximum number of generations is reached (assumed

121

2000 generations). (2) | f. - /% | < 107 where fis the value of objective function

for k-th generation.

Table-3.31 and Table-3.32 show the results obtained using MDE and DE (with or
without forcing the bound). NFE, NRC and CPU-time are the number of function
evaluations, number of experiments converged to global optimum and CPU-time in
second respectively. All values in Table-3.31 and Table-3.32 are average of
successful experiments only out of total 100 experiments. The key parameters used
are: NP = 10*D, CR=0.8, F=0.5.

Table-3.31. Results of DE and MDE for liquid extraction problem (MWFB)

Method NFE NRC (%) CPU-time (s)
DE 1496 82 0.054
MDE 1267 89 0.040

Table-3.32. Results of DE and MDE for liquid extraction problem (FBM)

Method NFE NRC (%) CPU-time (s)
DE 856 98 0.027
MDE 724 99 0.024

From Table-3.31 and Table-3.32, it is evident that in case of forced bound
method, NFE is less as compared to method without forcing the bound. Similarly,
NRC is also high in case of forced bound method. This is because of optimum being
found on extreme, i.e., on the bound. Also CPU-time is less (about 50%) in case of
forced bound method than that of method without forcing the bound using both DE
and MDE. However, MDE takes less CPU-time (about 26% and 11.1% respectively
for MWFB and FBM) as compared to DE.

3.5.9.4. Conclusions

In this section, the problem of optimization of liquid extraction process has been

presented and solved using DE and MDE algorithms. MDE is found to be better than

122

DE in terms of CPU-time required to reach the global optima. Also, NRC is high
using MDE as compared to DE for both, i.e., method without forcing the bound and
forced bound method. When comparing DE and MDE, the performance of MDE is
found to be better both in terms of NRC and NFE. *
3.5.10. Heat Exchanger Network Design (HEND)
3.5.10.1. Introduction

Heat integration brings about significant savings when the right balance between
capital investment and operating costs is found. Thus heat exchanger network
pr;)blems attracted attention for many years. In this section, DE and MDE have been
used to solve the.ric;l-'l-linear chemical engineering problem, i.e., heat exchanger
network design. This problem represents difficult non-linear optimization problem,
with equality and inequality constraints.

3.5.10.2. Problem Formulation

This problem addresses the design of a heat exchanger network as shown in Fig.
3.41. It has been taken from Floudas and Pardalos (1990). Also, it is solved by
Adjiman et. al. (1998b) using aBB algorithm. One cold stream must be heated from
100 to 500 °F using three hot streams with different inlet temperatures. The goal is to

minimize the overall heat exchange area.

Min. f= x, +x; +X3

Subject to the following constraints:
0.0025(x; +x5) — 1 =0

0.0025(- x5 + x5 +x7)—1=0

0.01(- xs+x5) —1=0

100x; — x;x¢ + 833.33252x,—83333.333 <0

X2X3 — X2x7 — 1250x4 + 1250x5 < 0

123

X3X5 — X3Xg — 2500\5 +1250000<0
100 < x; £ 10000
1000 <x,x3< 10000

10< X4, X5, Xp, X7, X8 <1000

J

300 400
100 X1 | X4 X2 X5

600

l

X3

500

!

Fig. 3.41. Schematic of heat exchanger network design problem

The global optimum is: (xi, X2, X3, X4, X5, X6, X7, X8; N =(579.19, 1360.13, 5109.92,

182.01, 295.60, 217.9, 286.40, 395.60; 7049.25).

The above problem can be reformulated by eliminating equality constraint as

given below:

Min f=x +x; +Xx;3

Subject to

100x, - x,(400 - x,)+833.33252x, -83333.333< 0
%y, — %, (400 — x5 + X4) =1250x, +1250x5 <0

x3%5 — X3 (100 + x5) — 2500x5 +1250000 < 0

100 < x, <10000

1000 < x,,x; <10000

10< x,,x; <1000; Global optimum is same after reformulation.

124

3.5.10.3. Results and Discussion

Table-3.33 shows the results obtained using DE (with/without forcing the bound)
and its comparison to MDE and aBB algorithm. The key parameters used are CR =
0.8, F=0.5 and NP = 10D. NFE, NRC, and CPU-time represent the mean value of the
100 experiments (with different seed values). Termination criterion used is either (1)

the maximum number of generations is reached (assumed 5000 generations), (2)
| 75— k| < 10° where f is the value of objective function for k-th generation.

Convergence tolerance in the present study (Angira and Babu, 2003) is 107 as
compared to 107 used by Adjiman et. al. (1998b).

Table-3.33. Comparison of DE with MDE and aBB algorithm (HEND problem)

Method CPU-time NFE NRC
DE (FBM) 1.513%* 38824 89
DE (MWEFB) 1.477%* 37810 100
MDE (FBM) 1.292%* 33146 88
MDE (MWFB) 1.236** 31877 100
oBB Algorithm 54.4*%s Not reported Not reported

* CPU-time obtained using HP9000/730 (66 MHz) with convergence tolerance of 0.001 (Adjiman et al., 1998b).
** CPU-time obtained using Pentium-III (560 MHz) with convergence tolerance of 0.00001 (present study).

Both MDE and DE algorithms are able to locate the global optimum although the
success rate is 88 to 100% (Table-3.33). MDE takes about 16.3% less CPU-time (in
method without forcing the bound) than that of DE. In this problem, CPU-time in
forced bound method is 4.53% and 2.44% (for MDE and DE respectively) more than
CPU-time for method without forcing the bound (Table-3.33). It is important to note
that NRC with forced bound method is just 88% and 89% respectively for MDE and
DE while it is 100% for both in case of method without forcing the bound. It is
because when the upper limit of variable is violated, the value of variable is forced to

the upper limit that resulted in convergence to non-optimal solution. The performance

125

of MDE, as is evident from results presented in Table-3.33, is better than that of DE
and aBB algorithm. The reliability of DE and MDE is same as indicated by NRC,
which is same for both the algorithms.

The CPU-time taken by DE and MDE algorithms is less than that of aBB
algorithm. Of course the CPU-time cannot be compared directly because different
computers are used. However, a comparison can be made after considering a factor of
10 (high enough), i.e., if the same problem would have been solved on HP9000/730
(66 MHz) using DE, it might have taken ten times more of CPU-time than at
Pentium-III, 500 MHz. Even then the CPU-time is about 77.3% less using MDE
. (MWFB) and about 72.85% less using DE (MWFB) than that of BB algorithm.

Fig. 3.42 shows the convergence history of HEND brob]em. Each point on the
graph represents an average of 100 independent experiments. It is seen that error
reduces faster in case of MDE algorithm than that of DE. But both MDE and DE

algorithms are able to locate the global optimum.

—e— MDE —a3— DE

200

180 -J;
160 1
140

100
80 -
60 |
40 |
. 0
0

Error

80 100 120 140 160 180 200 220 240
| No. of generations f

Fig. 3.42. Convergence history of HEND problem

126

The error obtained after 200 generations is 0.986 for MDE algorithm while it is 2.344
for DE. MDE is able to locate the global optimum for the HEND problem faster than
DE algorithm. Also MDE is found to be reliable as can be seen from success rate
(NRC) values for the two algorithms (Table-3.33).
3.5.10.4. Conclusions

Results indicate that the performance of DE is better than that of aBB algorithm.
Both DE and MDE algorithms are able to locate the global optimum with 100%
success rate (NRC). Also the MDE algorithm is found to take less CPU-time than DE
and oBB algorithms. Results indicate that MDE is reliable, efficient and hence a

better approach to the optimization of non-linear problems.

127

CHAPTER

4

APPLICATION OF MDE TO PROCESS
SYNTHESIS AND DESIGN

4.1. Introduction

Process synthesis can be defined as the selection, arrangement, and operation of
processing units so as to create an optimal scheme. In other words, it is an act of
determining the optimal interconnection of processing units as well as the optimal
type and design of units within a process system. The interconnection of processing
units is called the structure of the process system. When the performance of the
system is specified, the structure of the system and the performance of the processing
units are not determined uniquely. This task is combinatorial and open-ended in
nature and has received a great deal of attention over the past twenty-five years
(Nishida et al., 1981). Since the synthesis problem is open ended, it has lead to the
development of quite different approaches such as thermodynamic targets (Linnhoff,
1981), heuristic (Rudd et al, 1973; Douglas, 1988), evolutionary methods

(Stephanopoulos and Westerberg, 1976), and optimization techniques (Grossmann,

128

1985). The present study deals with the structural flow sheet optimization problem

that arises in the latter approach.

4.2. Background

The use of mathematical programming techniques for process synthesis has
received considerable attention over the last two decades. For example, nonlinear
programming (NLP) technique for heat exchanger networks (Floudas et al, 1986), and
mixed integer nonlinear programming (MINLP) models for structural flowsheet
optimization (Kocis and Grossmann, 1987, 1988, 1989; Floudas et al., 1989) to name
a few. The major reason for this increased interest lies in the fact that mathematical
programming techniques provide a systematic framework for process synthesis. Also,
there has been substantial progress in methods and software for solving optimization
problems, development of powerful modeling languages (General Algebraic
Modeling System, GAMS), and technological advances in computing.

In order to formulate the synthesis problem as a mathematical programming
problem, a superstructure is postulated which includes many alternate designs from
which the optimal process will be selected. Once the superstructure is specified, the
next task is to determine the optimal process flow sheet through structural and
parameter optimization of the superstructure (which requires the solution of a mixed
integer optimization problem).k In éarly 1980s, most of the process synthesis and
design problems have been formulated as Mixed-Integer Linear Programming (MILP)
problems. Although these formulations (e.g. Papoulias and Grossmann, 1983) have
proved to be quite powerful, they have the limitation that nonlinearities in the process
equations cannot be treated explicitly and approximated through the discretization.

The need for the explicit handling of the nonlinearities in the synthesis problem

129

\&

motivates the use of Mixed-Integer Nonlinear Programming (MINLP). MINLP
problems, however, are much more difficult to solve than MILP problems for which
Branch and Bound methods perform reasonably well.

A large number of process synthesis, design and control problems in chemical
engineering can be modeled as mixed integer nonlinear programming problems
(Grossmann and Sargent, 1979; Kocis and Grossmann, 1987, 1988, 1989; Floudas et
al., 1989; Salcedo, 1992; Ciric and Gu, 1994 etc.). They involve continuous (floating
point) and integer variables. A common feature of this class of mathematical problem
is the potential existence of nonconvexities due to the particular form of the objective
function and/or the set of constraints. Due to their combinatorial nature, these
problems are considered to be difficult.

The optimization of mixed integer nonlinear programming problems constitutes
an active area of research. So far various methods such as branch and bound
technique (Grossmann and Sargent, 1979), outer-approximation (OA)/equality-
relaxation algorithm (Kocis & Grossmann, 1987, 1988, 1989), variant of OA method
(Diwekar et al., 1992), adaptive random-search method (MSGA by Salcedo, 1992),
branch-and-reduce algorithm (Ryoo and Sahinidis, 1995), MINLP Simplex Simulated
Annealing Algorithm (M-SIMPSA by Cardoso et al., 1997), and genetic algorithm &
evolution strategies (Costa and Olivera, 2001) have been used for solving nonconvex
MINLP problems.

Gradient optimization techniques have only been able to tackle special
formulations, where continuity or convexity had to be imposed, or by exploiting
special mathematical structures. Stochastic algorithms, also known as adaptive
random search methods, have tackled MINLP problems, mostly in the area of

chemical engineering (Salcedo, 1992). These require neither the prior step of

130

identification or elimination of the sources of nonconvexities nor decomposition of
the problem into sub problems which have to be iteratively solved. However, various
problem-independent heuristics related to search interval compression and expansion
and to shifting strategies are required for their effectiveness (Salcedo, 1992). Also, for
large scale or very ill conditioned and highly constrained functions, these methods
require the application of successive relaxations which may substantially increase the
effort in identifying feasible regions and attaining the global optimum and hence
suited for small to medium scale problems. Cardoso et al., (1997) compared the
performance of the M-SIMPSA with MSGA (Slacedo, 1992). They concluded that for
small-scale problems and with penalizing scheme its performance is comparable to
MSGA algorithm, however, for large scale and /or ill conditioned problems, the M-
SIMPSA algorithm performed better. Costa and Olivera (2001) studied seven test
problems using GA & Evolution Strategies (ESs) and compared the results with M-
SIMPSA algorithm. They found that the performance of M-SIMPSA with penalty is
better than that of M-SIMPSA without penalty. Also the performance of M-SIMPSA
is comparable to GA. Evolution Strategies emerged as the best algorithms in most of
the problems studied. However, ESs exhibited difficulties in highly constrained
problems but in general, they are found most efficient in terms of function
evaluations. Also, all the algorithms (GA, ESs, and M-SIMPSA) are found to have
great difficulties with multi-product batch plant problem (Grossmann and Sargent,
1979), which is highly constrained; the global optimum corresponds to a point where
a very small variation in any of the continuous variables produces infeasibility.

In the present study (Babu and Angira, 2002b; Angira and Babu, 2005c), seven
test problems on process synthesis & design are solved using DE and MDE

algorithms. These problems are difficult non-convex optimization problems with

131

\R

continuous and discrete variables. Also the two approaches for handling binary
(discrete) variables are discussed and compared. The performance of MDE is

compared with that of DE, GA, ESs, and M-SIMPSA algorithms.

4.3. Problem Formulation
The chemical process synthesis problem involves selecting the optimal flowsheet
structure as well as the parameters which describe the operation of a desired process.
In order to define the search space of candidate flowsheet alternatives, a
superstructure is to be postulated based on preliminary screening. This superstructure
can then be modeled as a MINLP problem of the form:
F=min c"y+f(x),
Xy
Subject to. fi(x) =0,
g(x) <0,
Ax=a,
By+ Cx<d,
xeX={x]xeRx"<x<x"},

yeY={|ye{0,1}",Ey<e}.
where x is the vector of continuous variables specified in the compact set X, and y is
the vector of 0-1 variables which must satisfy linear integer constraints Ey < e. f{x),
h(x) = 0, and g(x) < O represent nonlinear functions involved in the objective
function, equations, and inequalities, respectively. Finally, Ax = a represents the
subset of linear equations, while By + Cx < d linear equalities or inequalities that

involve the continuous and binary variables.
In the context of the synthesis problem, the continuous variables x include flows,
pressures, temperatures, and sizes while the binary variables y denote the potential

existence of process units which are embedded in the superstructure. The equations

132

R

h(x) = 0 and Ax = a, correspond to material and energy balances and design
equations. Process specifications are represented by g(x) < 0 and by lower and upper
bounds on the variables in x. Logical constraints that must hold for a flow sheet
configuration to be selected from within the superstructure are represented by By +
Cx < d and Ey < e. The cost function involves fixed cost charges in the term ¢y for
the investment, while revenues, operating costs, and size-dependent costs for the

investment are included in the function f{x).

4.4. Handling of Integer and Binary variables
4.4.1. Integer Variables

Original DE algorithm is only capable of handling continuous variables.
Extending it to optimize integer variables, however, is very easy and requires only
couple of simple modifications (Corne et al., 1999). First, integer values should be
used to evaluate the objective function, even though DE itself still works internally
with continuous floating- point values. Therefore:

X; for continuous variables
Yi=\nT (x;) forinteger variables

INT() is a function for converting a real value to an integer value by truncation.
Additionally, truncation is preformed here for evaluating trial vectors and for
handling boundary constraints. Truncated values are not assigned elsewhere. Hence,
DE works with a population of continuous variables regardless of the corresponding
object variable type which is also essential for maintaining diversity of the population
and the robustness of the algorithm.

Corne et al., (1999) also described the procedure to handle discrete variable as

integer variables. Here, instead of discrete value x; itself (i = 1...n), we may assign its

133

index i to x. Now the discrete variable can be handled as an integer variable that is
boundary constrained to range 1,, n. To evaluate the objective function, the
discrete value x; is used instead of index /.
4.4.2. Binary or discrete variables

In the present study, integer variables are handled in the same way as described
above however, two different procedures are used to handle binary (discrete)
variables. The first procedure is called Approach-1 and second procedure is called
Approach-2 in the present study. These are described below:
4.4.2.1. Approach-1

In this procedure, for the function evaluation, binary variables are handled as
follows:

0 if x; <0.5
Yi=

1 otherwise

Where x; is a continuous variable 0<x; <1. However boundary constraint is

handled in the same way as for continuous variables. The only difference is that lower

and upper bound are set to zero and one respectively.
4.4.2.2. Approach-2

It is a nonlinear transformation for modeling binary variables as continuous
variables proposed by Li (1992). A binary variable y € {0, 1} can be modeled as a

continuous variable x € [0, 1], simply by the addition of the following constraint in

the problem:

x(1-x)=0, 0<x<l
which forces x to take either O or 1. Hence with this transformation any MINLP

model can be converted into an equivalent NLP model. The function x(1-x) is a

non-convex nonlinear function. Li (1992) referred to this as the “binary condition” to

134

ve

model binary variables and found this procedure to be more convenient than current
approaches as branch-and-bound method and implicit enumeration method. The
resulting NLP was solved using a modified penalty function method, however only
local optimal solutions were found due to the addition of non-convexities. Also, the
use of standard NLP solver like SQP (sequential quadratic programming) and GRG
(generalized reduced gradient) is ruled out as they could be sensitive to initial guess
and hence get stuck at local optima. Ryoo and Sahinidis (1995) proposed a
specialized branch and reduce algorithm for the global optimization of NLPs and
MINLPs wherein they refer to the usage of such procedure for handling bin;ry and
discrete variables. Munawar and Gudi (2004) proposed hybrid-DE (a combination of
DE and GAMS) and used this binary condition to solve the benchmark test problems.
The hybrid-DE exhibited relatively superior rates of convergence to the global
optimum for the problems studied however the guarantee of global optimality still
remained an issue. The present study evaluates the application of DE and MDE

algorithms for solving the resulting nonconvex NLP problems to global optimality.

4.5. Test Problems on Process Synthesis and Design

To illustrate the applicability and efficiency of MDE and DE to the nonconvex
MINLP problems, seven test problems on process synthesis and design proposed by
different authors have been solved. These problems arise from the area of chemical
engineering, and represent difficult nonconvex optimization problems, with
continuous and discrete variables. Problem-2 and Problem-4, with equality constraints
are reformulated (as Problem-2" and Problem-4’) by eliminating the equality
constraints and incorporating them in inequality constraints and/or in objective

function thereby reducing the number of constraints and decision variables.

135

\¥

Comparisons are made with GA, ESs, and M-SIMPSA (a algorithm based on the
combination of the nonlinear simplex method of Nelder & Mead and Simulated

Annealing). Table-4.1 shows characteristics of the seven test problems considered in

the present study.
Table-4.1. Characteristics of the test problems
Problem No. of Variables No. of Constraints
Real Integer Binary Total Equality | Inequality
1 1 - 1 2 - 2
2 2 -- 1 3 1 1
2 1 1 2 - 1
3 2 --- 1 3 - 3
4 7 --- 2 9 6 4
4 4 --- 1 S 6
5 3 --- 4 7 - 9
6 3 2 - 5 - 3
7 7 3 --- 10 - 18

Problem-1: This example has a non-linear constraint and has been proposed by Kocis
& Grossmann (1988). It has also been solved by other authors (Floudas et al., 1989;
Ryoo and Sahinidis, 1995; Cardoso et al., 1997; and Costa and Olivera, 2001).
Minf(x, y)=2x+y

Subject to

1.25-x*-y<0

x+y<16

0<x<1.6

y € {0, 1}

The global optimum is (x, ; /) = (0.5, 1, 2).

Problem-2: This problem, with a non-linear constraint is proposed by Kocis &
Grossmann (1988) and is also studied by Salcedo (1992), Cardoso et al., (1997),
Costa and Olivera (2001).

Min f(x), X2, y) =-y + 2x1t X2

136

\P

Subject to

x; —2exp(-x;)=0

- +x+y<0

05<x <14

y € {0, 1}

The global optimum is (x), x2, y; f) = (1.375, 0.375, 1; 2.124).

Problem-2": Problem-2 can be reformulated, by eliminating the nonlinear equality
constraint, as follows:

Min f(x1,) = -y + 2x; — In (x)/2)

Subject to

x-In(x)/2)+y<0

05<x1<14

ye{0,1}

The global optimum is same as in Problem-2.

Problem-3: This problem was first studied by Floudas (1995) and is nonconvex
because of the first constraint. It has also been solved by Cardoso et al., (1997), and
Costa and Oliveira (2001).

Min f (x1, X2, ¥) = - 0.7y + 5(x) = 0.5) + 0.8

Subject to

-exp (11 —02) - 2250

x+1.1y<-1.0

x-y<0.2

02<x <1

-2.22554<x; £-1

137

\®

y € {0, 1}

The global optimum is (x;, x, y; f) = (0.94194, -2.1, 1; 1.07654).

Problem-4: It has been taken from Kocis & Grossmann (1989). fhe objective here is
to select one between two candidate reactors (as shown in Fig. 4.1) in order to
minimize the production cost. Also, it has been solved by Diwekar et al., (1992),
Diwekar and Rubin (1993), Cardoso et al., (2001), and Costa and Oliveira (2001).

Min f(x, Y1, Y2, Vi, V2) = 7.5y1 + 5.5y2 + Tv| + 6v; + 5x

Subject to

n+y=1

21 =0.9[1 —exp (-0.5v})] xi

23 =0.8[1 — exp (-0.4v)] x2

z1+2z=10

Xi+tx;=x

zZn + 2z, =10

v < 10y,

v2 £ 10y,

x1 <20y

x2 22032

X1, X3, 21,22, v, V220

i,y € {0, 1}

‘The binary variables y; and y» denote the existence (nonexistence) of of reactor 1
and 2 when their value is 1 (0). In the objective function, there are fixed charges for
purchasing reactor 1 (7.5) or reactor 2 (5.5), linear terms in v; and v, (reactor
volumes) and the purchase price for raw material x. The two nonlinear equations are

the input-output relations for the reactors which define the output flows (z; and z>) in

138

X2

terms of the input flows (x; ankd x») and the volumes. The raw matenal x is split into
the reactor input flows x; and x;; a total demand of 10 units must be met by the output
flows z;, z>. The next four inequalities are logical constraints which insure that if a
given reactor does not exist (e.g. y1 = 0), then the corresponding volume and feed
stream are zero. The last constraint requires that either reactor 1 or 2 be selected. The
suboptimal solution corresponding to (1, ¥2) = (0, 1) has an objective function value

of 107.376 at (x), x2) = (0.0, 15.0) and (v, v2) = (0.0, 4.479).

Vi Vi
X1 Z1

2 V2
X2 Z2

Fig. 4.1. Superstructure for two-reactor problem

The global optimum is: (x, y1, y2, v1, v2; f) = (13.36227, 1, 0, 3.514237, 0; 99.245209).

Problem-4: This can be reformulated without equality constraints as follows:

Min f(y,,V,,v2) =75y, +5.5(1 =y,)+ 7v, + 6v,
1-y, Y1

+50
0.8[1 - exp(~0.4v,)] ~ 0.9[1 - exp(-0.5v,)]

+50

Subject to

0.9[1 —exp (-0.5v))] =231 <0
0.8[1 —exp (-0.4v2)] - 2(1 =»1) <0
v < 10y,

v <10 (1))

139

(L2

Vi, V2 2 0

e {0, 1}

The global optimum is same as in Problem-4.

Problem-5: This problem was studied by Floudas et al. (1989), Salcedo (1992), Ryoo
and Sahinidis (1995), Cardoso et al. (1997), and Costa and Oliveira (2001). This
problem features nonlinearities in both continuous and binary variables and has seven

degrees of freedom.

Min (¥, X2, %5, 0,2y Y0) =01 = D7+ 02 -)2+ 05 = 1) = In g+ 1) +
(=17 + (2 -2)"+ (x-3)"

Subject to

NEytyytxtxtx3<s

y;z +,\c12 +x22 +)c32 <55

n+x <12

y2+x<1.8

y3+x3<2.5

yat+x <1.2

y +x < 1.64

yi2+x;7 <425

y22 + x32 <4.64

X1, x2,x320

The global optimum is (X1, X2, X3, }1, 2, ¥3, ya;) = (0.2, 1.28062, 1.95448, 1, 0, 0, 1,

3.557473).

140

Problem-6: It is a maximization problem taken from Wong (1990) and is also studied
by Cardoso et al. (1997), and Costa and Oliveira (2001).

Max f(xy, X2, X3, Y1, ¥2) = -5.357854x,% — 0.835689y1x3 — 37.29329y, + 40792.141.
Subject to

ay + @y + az1x2 — a1 x3 < 92

as + agyaxs + a2 + agy)’ —90 €20

ao + ajpxixs + anyix) +appax; -20<5

27 £x1,x2,x3545

y € {78, ..., 102}, integer

y2 € {33, ..., 45}, integer

where a; to a,, are constants the values of which are given in Table-4.2. The global
optimum (for any combination of x3, y2) is: (x1, x3, »1; /) = (27, 27, 78; 32217.4).

Table-4.2. Constants for Problem-6

a, = 85.334407 as = 80.51249 a, = 9.300961

a»=0.0056858 as=0.0071317 ao = 0.0047026
as = 0.0006262 a,=0.0029955 ay;, =0.0012547
a; = 0.0022053 ag=0.0021813 a2 =0.0019085

Problem-7: This is a multi-product batch plant problem with M serial processing
stages, where fixed amounts O from N products must be produced. Many researchers
(Grossmann and Sargent (1979), Kocis and Grossmann (1988), Salcedo (1992),

Cardoso (1997), and Costa and Oliviera (2001)) studied this problem.

M P
Min f =Y aN;V;

i=1

Subject to

141

where, for the specific problem considered, M = 3, N = 2, H = 6000, ¢ = 250, B =
0.6, Ni* =3, V' =250 and ¥;* = 2500. The values of Tu', Tu, B and B}" are given by:
7. = max L5/ Ny

71" = max &

B'=0i* TwH

B" = min (Q;, min; ¥;"/Sy)

The values of S;j and #; [i=1to 2 (rows); andj=1to0 3 (columns)] are given in Table-
4.3. The global optimum is: (N, N2, N3, Vi, V2, V3, Bi, B2, Th, T2;) = (1, 1, 1, 480,
720, 960, 240, 120, 20, 16; 38499.8).

Table-4.3. Values of S;; and t;; of Problem-7

Si.i L
3 4 8 20 8
4 6 3 16 4 4

4.6. Results and Discussion

For each problem ten experiments are carried out with different seed values. NFE,
NRC and CPU-time in the subsequent tables are the mean values of the ten
experiments. The stopping criteria adopted for MDE and DE is to terminate the search

process when one of the following conditions is satisfied: (1) the maximum number

142

of generations is reached (assumed 10,000 generations for Problem-7 & 5000
generations for other problems). (2) | fmax = fmin| < 107 where f is the value of

objective function for k-th generation.
4.6.1. Approach-1

Table-4.4 and Table-4.5 show the results obtained using DE and MDE
(with/without forcing the bound on variables) respectively using Approach-1. From
Table-4.4, it is clear that in all the seven problems, NFE for forced bound method is
less than that for method without forcing the bound but the difference is quite
significant for problems 3, 4, 5, 6, and 7. NFE for method without forcing the bound
is about 3.4 times for Problem-3, 2.03 times for Problem-4*, 1.12 times for Problem-

5, 6.15 times for Problem-6, and 1.94 times for Problem-7, more than that of forced

bound method.
Table-4.4. Results of DE using Approach-1
Problem No. FBﬁFE/NRC/CPU'"m;dWFB Key parameters (NP/CR/F)
1 802/90/0.022 812/100/0.0 20/0.8/0.5
2 610/100/0.011 626/100/0.011 20/0.8/0.5
3 801/10/0.011 2727/100/0.071 30/0.8/0.7
4 1080/100/0.040 2196/100/0.083 30/0.8/0.5
5 11739/100/0.610 13265/90/0.696 30/0.9/0.6
6 1045/100/0.039 6430/100/0.280 20/0.8/0.5
7 46090/100/3.225 89490/0**/6.291 100/0.8/0.5

** Converged to a non-optimal solution

It is important to note that NRC is not 100% for all the problems using either
forced bound method or method without forcing the bound. Excepting for Problem-7,
the NRC is almost 100% using method without forcing the bound. Similarly, for
forced bound method NRC is almost 100% excepting Problem-3. It is because when
upper limit of bound is violated, the value of variable is forced to the upper limit that
resulted in convergence to non-optimal solution. However, for problem-7, the NRC is

100% for forced bound method and 0.0% for method without forcing the bound, as

143

global optimum is located on the bound of decision variables. CPU-time is found to
be more in case of method without forcing the bound.

It is observed from Table-4.5 that NRC is 100% for all the problems excepting
Problem-7 using method without forcing the bound while NRC is zero and 80% for
Problem-3 & 5 respectively using forced bound method. NFE and hence CPU-time is
found to be more for method without forcing the bound as compared to forced bound
method. In all the seven problems, NFE for forced bound is less than that for without
forcing but the difference is quite significant for problems 3, 4*, 5, 6, and 7 than for
problems-1 & 2*. NFE for without forcing is about 1.86 times for Problem-3, 1.52
times for Problem-4*, 1.17 times for Problem-5, 6.35 times for Problem-6, and 1.96
times for Problem-7, more than that of forced bound method. This observation is
similar to that seen for results reported in Table-4.4 using DE.

Table-4.5. Results of MDE using Approach-1

Problem No. FBI\;v FE/NRC/CPU'"";;WFB Key parameters (NP/CR/F)
1 690/100/0.000 705/100/0.000 20/0.8/0.5
2 490/100/0.011 490/100/0.000 20/0.8/0.5
3 1062/0**/0.027 1974/100/0.055 30/0.8/0.5
4 1179/80/0.033 1797/100/0.055 30/0.8/0.5
5 10129/100/0.527 11914/100/0.621 30/0.9/0.6
6 865/100/0.030 5495/100/0.220 20/0.8/0.5
7 40550/100/2.846 79380/0**/5.544 100/0.8/0.5

** Converged to a non-optimal solution

4.6.1.1. Comparison of DE and MDE

Fig. 4.2 and Fig. 4.3 show the comparison of DE and MDE in terms of NFE and
NRC respectively using method without forcing the bound. As can be seen from Fig.
4.2. NFE using MDE is less as compared to DE in all the seven problems. NFE is
about 13.17%, 21.73%, 27.61%, 18.17%, 10.18%, 14.54%, and 1].3% more,
respectively for Problem-1, 2, 3, 4, 5, 6, and 7 in case of DE as compared to MDE.

NRC for MDE, as shown in Fig. 4.3, is 100% in all the problems except Problem-7

144

(for which NRC is zero). For DE too, it is 100% for all the problems except Problem-

5 (for which NRC is 90).

f '~ ODE 5 MDE

| 100000 j
90000 - —
80000 - — |
70000 - |
60000
50000 -
40000 -
30000 -
20000 -

10000 - HT‘
0 = 1 [_m i IIJI i l»; L
5 6

NFE

1 2" 3 4*
Problem No.

7

Fig. 4.2. NFE variation using DE and MDE (MWFB, Approach-1)

aDE BMDE

100

TTTT T 1T/ 1 B
o i 30 ! e W
98] B ':}”’,;; ' 5 ’: »{'.{
L & C b o 4
’ It ¥ o
96| [Y 1 o i
oy ' ,' e "‘: \ .5 '
1 & iy i |
3 iy
. i 3 ¥ : |
S i L - i !
1 i & 5) '
g % p p 4 ¥ 3 i ‘
7 & b 1
0 - f"" i i Ry |
9 i ';;. :' :
i B A N
81 I : i -
1w, , o i o
n '1?'. : }.,‘. ‘:‘
1 1 /’ X * 3
8 4 ‘riz £ 4 T !i‘L :Ml‘
t

1 2* 3 4* 5 6 7
Problem No.

Fig. 4.3. NRC variation using DE and MDE (MWFB, Approach-1)

145

M

Fig. 4.4 and Fig. 4.5 show the comparison of DE and MDE in terms of NFE and
NRC respectively using forced bound method. As can be seen from Fig. 4.4. NFE
using MDE is less as compared to DE for Problem-1, 2*, 5, 6, and 7. However, NFE
using DE is less for Problem-3 & 4*. NFE is about 13.97%, 19.67%, 13.71%,
17.22%, and 12.02% more, respectively for Problem-1, 2, 5, 6, and 7 in case of DE as
compared to MDE. As shown in Fig. 4.5, NRC for MDE is 100% in all the problems

except Problem-5 (for which NRC is 90). For DE too, it is 100% for all the problems

‘except Problem-1 & 3 (for which NRC is 90 & 10 respectively).

4.6.2. Approach-2

Table-4.6 and Table-4.7 show the results obtained using DE and MDE
(with/without forcing the bound on variables) respectively using Approach-2. It is
clear that in all the seven problems, NFE for forced bound method is significantly less
than that for without forcing. NFE for without forcing is about 49.5%, 50.9%, 70.9%,
79.9%, 69.7%, and 53.07% respectively for Problem-1, 2%, 3, 4*, 5, and 7, more than
that for forced bound method. It is important to note that NRC is not 100% for all the
problems using either forced bound method or without forcihg the method. It is
important to note that for Problem-7, the NRC is 100% using forced bound method
and 0.0% using without forcing method as found for Approach-1. CPU-time is found
to be more in case of without forcing the bound method.

Table-4.6. Results of DE using Approach-2

Problem No. FBMNFE/NRC/CPU tml::WFB Key parameters (NP/CR/F)
1 964/90/0.011 1910/60/0.055 20/0.8/0.5
2 654/100/0.011 1332/100/0.011 20/0.8/0.5
3 801/10/0.027 2754/100/0.083 30/0.8:0.7
4 1071/100/0.055 5328/100/0.187 30/0.8/0.5
5 16114/80/0.852 53158/90/3.016 30/0.9.0.6
7 57330/100/4.022 122170/0**/8.681 100/0.8/0.5

** Converged to a non-optimal solution

146

| . ODE [@MDE
. 50000 ,
45000 - | ulE
40000 - -
- 35000 - '
* 30000 -
g 25000 -
20000 -
15000 -
10000 -
5000 -
0 ===y e
1 2% 3 7
Problem No.

Fig. 4.4. NFE variation using DE and MDE (FBM, Approach-1)

ODE
~
100 —=—T— _ -
i . g !
N ";_‘i.i‘ | : i |
waint Rt Bl
o K 3 W - =t
80 - } i by ‘ r
" . 5 G ¢ nt
CCJR I I O 1 O I I N S
g 504 [& || 2 | R ? T
< i A { a2 K A
T s ‘ i he :
40 '1%:_(\ ".‘f i ' : v‘.‘ ‘;!{?7,
- v [v 3
30 "L;r v .;,.,. ' ' . i:‘?
:" . Y 13 e N 4
20 ’ }.J o l'" J‘f 1;' ti :;n t‘)ii\
: Iy r‘i" § - o
10 1 i | O] # i ¥
é* b A e 1 kS
R 0 20 - L& : ol N) iy |
]
2 3 4 5 6 a

Problem No.

-—

Fig. 4.5. NRC variation using DE and MDE (FBM, Approach-1)

147

Table-4.7. Results of MDE using Approach-2

Problem No. FBI\/IIV FE/NRC/CPU'tm];IWFB Key parameters (NP/CR/F)
1 742/60/0.011 1408/90/0.022 20/0.8/0.5
2 560/100/0.016 1218/100/0.055 20/0.8/0.5
3 882/20/0.030 3297/100/0.110 30/0.8/0.5
4 927/100/0.027 4602/100/0.176 30/0.8/0.5
5 13566/60/0.703 45801/90/2.511 30/0.9/0.6
7 52350/100/3.621 110970/0**/7.786 100/0.8/0.5

** Converged to a non-optimal solution

It is observed from Table-4.7 that NRC is not 100% for all the problems using
either forced bound method or method without forcing the bound but certainly it is
better or equal in case of method without forcing the bound for all the problems
excepting Problem-7 (where NRC is zero). NFE and hence CPU-time is found to be
twice or more for without forcing the bound method as compared to forced bound
method. To be precise, NFE for without forcing is about 47.3%, 54.0%, 73.25%,
79.9%, 70.4%, and 52.8% respectively for problems 1, 2%, 3, 4%, 5, and 7, more than
that of forced bound method. This observation is similar to that seen for results
reported in Table-4.6 using DE.
4.6.2.1. Comparison of DE and MDE

Fig. 4.6 and Fig. 4.7 show the comparison of DE and MDE in terms of NFE and
NRC respectively using method without forcing the bound and Approach-2. As can be
seen from Fig. 4.6, NFE using MDE is less as compared to using DE for all the
problems except Problem-3, where NFE using DE is less than that of MDE. NFE is
about 26.28%, 8.56%, 13.62%, 13.84%, and 9.17% more, respectively for problem-1,
2% 4* 5 and 7 in case of DE as compared to MDE. As shown in Fig. 4.7, NRC for
MDE and DE is same for all the problems except Problem-1 where NRC for DE is
60% as compared to 90% for MDE. It is to be noted that NRC is zero for Problem-7

using both DE and MDE.

148

‘ " ODE mMDE |
| 140000 = -

120000 +) i

% 100000 -

80000 - ’

NFE

60000 -
40000 -

20000 -

1 2* 3 4* 5 7
Problem No.

Fig. 4.6. NFE variation using DE and MDE (MWFB, Approach-2)

ODE ®&MDE

100 -
of LU 1L]
I R

60 {1 — % l‘ w b #
m 50] fl!,“ ."1 | ! \ ”f~
4 i 5 £ g o
40 -
30] {':;““ * w;‘:
201 | |- ‘
10 - . | B
0 i ’ fi: ' '},' ‘ "l' :

1 2* 3 4* 5 7
Problem No.

Fig. 4.7. NFE variation using DE and MDE (MWFB, Approach-2)

149

Fig. 4.8 and Fig. 4.9 show the comparison of DE and MDE in terms of NFE and
NRC respectively using forced bound method and Approach-2. As can be seen from
Fig. 4.8, NFE using MDE is less as compared to DE for all the problems except for
Problem-3 where NFE using DE is slightly less (about 9.0%) than that of MDE. NFE
is about 23.03%, 14.37%, 13.44%, 15.81%, and 8.68% more, respectively for
Problem-1, 2*, 4*, 5, and 7 in case of DE as compared to MDE. As shown in Fig. 4.9,
NRC for MDE and DE is 100% for Problem-2, 4*, and 7. For Problem-1 & 5, NRC is
higher for DE as compared to MDE but for Problem-3, NRC for DE is oh]y 10% as
compared to 20% for MDE. It is to be noted that NRC is not 100% for Problem-1, 3,
and 5 using both DE and MDE. As compared to without forcing, the NRC is less for
all the problems using forced bound method. The savings in NFE using MDE is
almost same in both the methods (forced bound method and method without forcing
the bound). This indicates that the method without forcing the bound is better than the
forced bound method.

4.6.3. Comparison of Approach-1 and Approach-2

Fig. 4.10 and Fig. 4.11 show the comparison of Approach-1 and Approach-2 for
DE in terms of NFE and NRC r_espectively using method without forcing the bound.
As can be seen from Fig. 4.10, NFE using Approéch—2 is significantly more as
compared to Approach-1 for all the problems except for Problem-3 where NFE using
is almost same (2727 using Approach-1 and 2754 using Approach-2 respectively) in
both the approaches. NFE is about 57.49%, 53.00%, 58.78%, 75.04%, and 26.75%
" more, respectively for Problem-1, 2*, 4%, 5, and 7 in case of Approach-2 as compared
to Approach-1. This is because of addition of constraints (as binary or discrete
variable is modeled as continuous variable) and addition of nonconvexities to the

problem in case of Approach-2.

150

. 'ODE @MDE !
' 70000 T e e =
60000 - -
. 50000 - N
» | o 400001
Ty
< 30000 -
20000 -
10000 -
0 —= —r——m . o :
1 2* 3 4* 5 7
Problem No.
Fig. 4.8. NFE variation using DE and MDE (FBM, Approach-2)
ODE EMDE
g 100
90 1 i
80 - -]
70 - .,vv:;. ,
60 — ?" ‘]
(&) : I3 {,’l -°
x 50 - g X LY :
= :’I lé
40 - "
vt i i
30 - B
20 | ! :
10 1 ' v'}A ‘ \
0 2 ‘ [t ' i ‘ ;t‘, ‘ 2
i 1 2* 3 4* 5 7
Problem No.

Fig. 4.9. NRC variation using DE and MDE (FBM, Approach-2)

151

: ' ODE (Approach-1) DE (Approach-2)

140000 e
~ 120000 1 -
100000 -

80000 H

NFE

60000 -

40000 - «
20000 -
0 A== — i T |_ 2 T

1 2* 3 4* 5 7
Problem No.

Fig. 4.10. NFE variation for DE using Approach-1 and Approach-2 (MWFB)

ODE (Approach-1) B DE (Approach-2)

100 _ =

90 N “ ; 4‘3{1'
o : oA

-1 ; : . " "‘,‘1.

80 ot L e i
i L B

70 - '{,* "
ik <

o L - [T .
= R B s Ve
O 50 5. ‘ 8 x|
o o : ¥
L . P
< 40 - 2 . L t
L A . ‘o 5{
30 | i
. :.'_ *u ‘ -}"‘,{‘ 11‘
i i g e R
20 A 3 ¥
‘ N : "\
10 7 N i ‘v" ' z'l."
' -’i‘i a3
i & % i

1 2* 3 4* 5 7
Problem No.

Fig. 4.11. NRC variation for DE using Approach-1 and Approach-2 (MWFB)

152

\9

_}J

As shown in Fig. 4.11, NRC for Approach-1 and 2 is same i.e. 100%, 100%,
100%, 90%, and zero respectively for the Problems-2*, 3, 4*, 5, and 7. For Problem-
1, NRC is 100% for Approach-1 as compared to 60% for Approach-2. It is to be noted
that NRC is zero for Problem-7 using both the approaches. Therefore, using DE, the
Approach-1 is found to be better than Approach-2 in terms of both NFE and NRC.

Fig. 4.12 and Fig. 4.13 show the comparison of Approach-1 and Approach-2 for
MDE in terms of NFE and NRC respectively using method without forcing the bound.
As can be seen from Fig. 4.12, NFE using Approach-2 is significantly more as
compared to Approach-1 for all the problems. NFE is about 50.0%, 59.77%, 40.13%,
60.95%, 74%, and 28.47% more, respectively for problem-1, 2*, 3, 4*, 5, and 7 in
case of Approach-2 as compared to Approach-1.

As shown in Fig. 4.13, NRC for Approach-1 and 2 is same i.e. 100%, 100%,
100%, and zero respectively for the problems-2*, 3, 4*, and 7. For Problem-1, NRC is
100% for Approach-1 as compared to 90% for Approach-2. It is to be noted that NRC
is zero for Problem-7 using both approaches. Therefore, using MDE, the Approach-1
is found to be better than Approach-2 in terms of both NFE and NRC. Also, it is
important to note that NRC using MDE is 100% for all the problems except for
Problem-7. But using DE it is 90% for problem-5 and zero for Problem-7. Hence,
MDE using Approach-1 seems to be a better strategy for solving such types of
problems.

Fig. 4.14 and Fig. 4.15 show the comparison of Approach-1 and Approach-2 for
DE in terms of NFE and NRC respectively using forced bound method. As can be
seen from Fig. 4.14, NFE using Approach-2 is more as compared to Approach-1 for
the Problem-1, 2, 5, and 7. For Problem-3 & 4*, where NFE is almost same (801 &

1080 using Approach-1 and 801 & 1071 using Approach-2 respectively) in both the

153

approaches using DE. NFE is about 16.80%, 6.73%, 27.15%, and 19.61% more,

respectively for Problem-1, 2%, 5, and 7 in case of Approach-2 as compared to

Approach-1.
t .
| O MDE (Approach-1) & MDE (Approach-2)
120000
100000 +
80000 - — |
w 60000
% pr—
40000 A
20000 -
0 o — 1 T 1 |—— :
1 2" 3 4* 5 7
Problem No.

Fig. 4.12. NFE variation for MDE using Approach-1 and Approach-2 (MWFB)

OMDE (Approach-1) 8 MDE (Approach-2)
100 ;
01| | o 7 |
| Py e ’jf ¥ 'n
70 | & N E i
. X ﬁ’ I \ ';': N
8 o : i
% 50 A b ‘ ’ 2 , I
ot Ao "4 . . ; E
40 L # - , i
if 4 I . o :
i ;.~ i ('
304 | [; ; | |
o f) 1
20 7 ‘:."! ' i .
104 | | : ; ; E
0) ’ ,-x:; ‘lr}f‘ .‘.ll . 1(.";1 '
1 2" 3 4* 5 7

Problem No.

Fig. 4.13. NRC variation for MDE using Approach-1 and Approach-2 (MWFB)

154

\0

NFE

70000

fr 0ODE (Approach-1) DE (Approach-2) i

60000 -

50000 -

40000 -

30000 H

20000 -

10000 -

3 4* 5 7
Problem No.

Fig. 4.14. NFE variation for DE using Approach-1 and Approach-2 (FBM)

NRC

O DE (Approach-1) EDE (Approach-2)

100

90 A
80 -
70
60 A
50 A
40 -
30
20 A
10 1

S e

‘} € <

2*

3 4* 5 7
Problem No.

Fig. 4.15. NRC variation for DE using Approach-1 and Approach-2 (FBM)

155

N

As shown in Fig. 4.15, NRC for Approach-1 and 2 is same i.e. 90%, 100%, 10%,
100%, and 100% respectively for the Problems-1, 2*, 3, 4*, and 7. For Problem-5,
NRC is 100% for Approach-1 as compared to 80% for Approach-2.

Fig. 4.16 and Fig. 4.17 show the comparison of Approach-1 and Approach-2 for
MDE in terms of NFE and NRC respectively using forced bound method. As can be
seen from Fig. 4.16, NFE using Approach-2 is more as compared to Approach-1 for
all the problems except for Problem-3 & 4* (where NFE is about 16.95% & 21.37%
more using Approach-1 than that of Approach-2, respectively for Problem-3 & 4%).
NFE is about 7.0%, 12.50%, 25.33%, and 22.54% more, respectively for problem-1,
2* 5. and 7 in case of Approach-2 as compared to Approach-1.

As shown in Fig. 4.17, NRC for Approach-1 and 2 is same i.e. 100%, 100%, and
100%, respectively for the Problems-2*, 4*, and 7. For Problem-1, 3, and 5, NRC for
Approach-1 is higher as compared to Approach-2. Therefore, using MDE, the
Approach-1 is found to be better than Approach-2 in terms of both NFE and NRC.
This indicates that nonconvexity (induced due to modeling of binary variable as
continuous variable) affects the NRC (Fig. 4.11, 4.13, 4.15, and 4.17). Also, it is
important to note that NRC using MDE is higher than that of using DE (Fig. 4.15 &
Fig. 4.17). Therefore, MDE using Approach-1 seems to be a better strategy for
solving such types of problems.

4.6.4. Comparison of MDE, GA, M-SIMPSA, and ES (u+ A)

In the present study (Angira and Babu, 2005¢c), DE and MDE are used to solve
process synthesis and design problems and their performance is compared. Further,
the performance of MDE is evaluated and compared with that of GA, M-SIMPSA,

and ES (u + A) algorithms. Table-4.8 shows the comparison of MDE with GA, M-

156

SIMPSA, M-SIMPSA-pen, and ES (u + A). The NFE in MDE is about 82% less than

of that in GA for all the problems (The range is 82.0% to 98.16% to be precise).

—

| DOMDE (Approach-1) [@MDE (Approach-2)

60000 1- . i

(.4

50000 -
40000 - —
&' 30000 -
20000 -

10000 -

1 2" 3 4* 5 7
Problem No.

Fig. 4.16. NFE variation for MDE using Approach-1 and Approach-2 (FBM)

OO MDE (Approach-1) MDE (Approach-2)

100 =
90 - ¢ S
1w
80 -
70 A |
60 | . | -
50 | '
40 A i
30 - "
L 20 ;
- 10 A

0 2 E i _
1 2* 3 4* 5 7
Problem No.

NRC

Fig. 4.17. NRC variation for MDE using Approach-1 and Approach-2 (FBM)

157

A4

Similarly, the NFE in MDE is about 81% to 96.0% less than that of M-SIMPSA for
various test problems. While comparing ES (x + 1) and MDE it is found that for
Problem-1 & 2 NFE for MDE is about 53.56% and 78.27% less that that of ES (x4 +
A) but for Problem-3, 5, and 6, NFE for ES (u + 4) is, respectively, about 11.48%,
43.68%, and 53.85% less than that of MDE. It is important to note that ES (u + 4) is
found to converge to a non-optimal solution for Problem-4* & 7, whereas MDE is
able to locate the global optimum for all the problems solved in the present study.

Table-4.8. Comparison of MDE, GA, ES, M-SIMPSA & M-SIMPSA-pen

P’;‘;‘f“‘ NFE/NRC
GA M-SIMPSA M-SIMPSA-pen ES MDE
1 6787/100 607/99 16282/100 1518/100 705/100
2 13939/100 10582/83 14440/100 2255/100 490/100
3 107046/90 #10 38042/100 1749/100 1974/100
4 22489/100 14738/100 42295/100 **/0 1797/100
5 102778/60 22309/60 63751/97 6710/100 | 11914/100
6 37167/100 127410/87 33956/95 2536/100 5495/100
7 225176/0 #/0 257536/92 /0 40550/100

Execution halted
** Converged to a non-optimal solution

It may be noted that GA could not converge to global optimum, while execution
was reported to be halted in M-SIMPSA for Problem-7. However, for Problem-7,
NRC is 100% only for MDE, and 92% for MIMPSA-pen, while GA, M-SIMPSA, and
ES (u+1) were not able to converge to global optimum. The performance of ES
(u+A) and MDE is found to be comparable in terms of function evaluations but MDE
has the advantage over ES in terms of convergence to optimal solution. The
performance of MDE is found to be better than that of GA & M-SIMPSA in
optimizing the mixed integer nonlinear programming problems considered in the
present study. Also, results clearly show the potential of ES (u#+2) and MDE for

solving such process synthesis problems. We have already seen that MDE is better

158

»

than DE in terms of functions evaluations (NFE) and convergence to optimal solution
(NRC).
4.7. Conclusions

Seven test problems on process synthesis and design from chemical engineering
have been solved using DE and MDE in the present work. Performance of various
algorithms (e.g. GA, M-SIMPSA, M-SIMPSA-pen, ES (u+1), DE, and MDE) is
compared in terms of NFE and NRC. Also, the two approaches for handling binary
variables along with two methods for handling bound violations are studied and
compared. Results indicate that the method without forcing the bound is robust
however the CPU-time is more as compared to the forced bound method. It is
important to note that for problems where global optimum is located on the bound of
decision variables forced bound method is found to outperform the method without
forcing the bound (e.g. Problem-7) whereas for problems where local optimum is
located on the bound of decision variables the method without forcing the bound is
found to be robust (e.g. Problem-3). Also, the Approach-1 for handling binary
variables is found to be better than that of Approach-2. This is because of addition of
constraints (as binary or discrete variable is modeled as continuous variable) and
addition of nonconvexities to the problem in case of Approach-2. It is found that NFE
is the least and NRC is highest in MDE as compared to GA & M-SIMPSA-pen. The
NRC in M-SIMPSA is better than that of GA, M-SIMPSA, and ES (z+A1). The ES
(z+1) and MDE are comparable in terms of NFE (rather ES (u+4) perform slightly
better than MDE) but MDE is found to be robust than ES (u+A) being higher NRC for

Problem-4*and 7 (Table-4.8). The performance of MDE is found to be the best

among the methods compared for all the problems studied.

159

»

A

CHAPTER

S

HDE AND ITS APPLICATION TO TEST
FUNCTIONS & SELECTED NON-LINEAR
CHEMICAL PROCESSES

5.1. Introduction

For an efficient global optimization method, two aspects that are important are (i)
a good search strategy and (ii) fast convergence. Population based algorithms are
good in first aspect, while gradient based methods show better performance in second
aspect, i.e., finding optimum in convex region. Search space for general optimization
problem can be divided into several convéx regions and each region has a local
optima. Classical gradient-based optimization methods show better performance than
evolutionary algorithms (EAs) in finding the minimum of a convex region. However,
they are not good at finding the global optima of the problem with multiple local

optima. This drawback could be overcome by using EA in combination with classical

gradient method.

In the present chapter an accelerated hybrid evolutionary algorithm is proposed

exploiting the best characteristics of both evolutionary and gradient search methods

160

\»

e

for finding global optimum. This new method is a hybrid of DE and quasi-Newton
(QN) method (Hybrid Differential Evolution). The performance of the algorithm,
proposed in the present study, i.e., Hybrid Differential Evolution (HDE) is compared
with the performance of DE by applying these two algorithms to some benchmark test
functions reported in literature (e.g. HIM: Himmelblau function; GP,: Goldstein and
Price function; ES,: Easom function; H3: Hartmann function; R, and Rs: Rosenbrock
function; Z; and Zs: Zakharov function, subscript 2, 3, and 5 indicate dimensions of
the problems chosen), and further the performance is evaluated on selected nonlinear
chemical engineering processes also. Most of these test functions and chemical
engineering problems already have been used for evaluation of performance of MDE

in Chapter-3.

52. HDE Algorithm

The pseudo code of HDE algorithm proposed and used in the present study is as
follows:

e Input the value of D, NP, CR, F, strategy number (‘strategy”e{1, 2, 3,......, 10}) & gen_max
and lower & upper bounds of variables (X'/, X‘/").

o Initialize all the vector population randomly in the given upper & lower bound.
count = 0; (count is generation counter)

for i < NP and for jS D Xi.j,munl:O = Xflo + ra"dj[o’l] * (X(jhi) - Xfl'lO))
End for.

Calculate cost.
End for.
¢ Find out the vector with the lowest cost.

Assign bestit; = best = X, cunt and frin = f (Xi,coum)
e Repeat:

1. Perform mutation & crossover.

161

-

y

For each target vector (X ; ,,,,). select three distinct vectors (select five, if two vector

differences are to be used) randomly from the current population (primary array) other
than target vector. Randomly select 1, 12, 13, e {1,2.3......, NP},

except: rl#r2#r3%i; je{2...,D} randomly selected for eachi.

if strategy = 1 i.e. DE/rand/1/bin

fork <D
U countrt = X3, j.coum +F* (X, jocount = Xr2, j.counl) if (rand; [0, 1< CR
ork=D0) U; ouns1 =X, jconnt Otherwise
If bounds are violated:
U) coumnr = X + rand [0,1]* (x4 — x ()

. lo (hi))
lf (Uj.toxml+l < xj or Xj.coum+l > Xj

=U Otherwise

U J.count+l J.count+\

End for.

End if

. (Till 10* strategy)

Select;

be'?‘ti = Uj.counl+l lf f(Uj.counHl)S fmin

_ Ui,romll+l lf f (U i,count+l)S f (Xi‘coum)
count+l =

Where Selectis: X; ‘
X otherwise

i.count

End For.
bestit; = best;.

Find maximum and minimum value of 'f. count = count+1;
Call QN to improve upon bestit;.
Terminate if |OFca — OF ana |[< 106. (As per desired accuracy)

Till termination criteria do not meet.

Print results.

162

e

In HDE algorithm, the initial steps of initialization, mutation and crossover are the
same as that of DE. The difference lies in selection step where best population vector
is passed to QN subroutine as an initial guess. QN subroutine further improves the
quality of solution and we know that it is able to locate the optimum of convex region
efficiently. This optimum would be the global optimum if initial guess were in the
region of global optimum. In this way the algorithm runs till termination criterion is
met. The performance of this proposed HDE algorithm is compared with that of DE
for benchmark test functions and chemical engineering processes in subsequent

sections.

5.3. Test Functions

Several multimodal benchmark test functions are used to test the reliability and
efficiency of proposed HDE algorithm. The selected test functions are already
discussed in detail in section-3.5 of Chapter-3.

5.3.1. Results and Discussion

A computer code is developed using MATLAB for HDE algorithm based on the
pseudo code given in previous section-5.2. The reliability and efficiency of HDE is
tested for several multimodal benchmark test functions (given in section-3.5 of
Chapter-3) and compared the performance with that of DE. Each selected function is
solved 10 times, each time with a different random number state. The reliability and
efficiency of these methods is evaluated based ;)n the following criteria: (a) Success
rate (SR) of finding the global minimum (b) average number of objective functiqn
evaluations or CPU-time in seconds (c) Average absolute deviation of the best

objective function value in each experiment from the true minimum. These criterions

163

are chosen for comparison purposes. Also, the criterion for convergence is chosen to
be the same as used by the other authors for comparison purposes.

The AAD is defined as the average of |OF ¢y — OF ana| where OF, is the objective
function value at the best point found in each successful experiment and OF s,y is the
known global minimum. The minimization is considered successful if |OFcy “OF ana |
< (]04 OF anal +10'6) is fulfilled. All selected mathematical functions are solved by
both HDE and DE algorithms. Table 5.1 shows the results obtained by both DE and
HDE algorithms. The Average Absolute Deviation (AAD) and CPU-time are
evaluated based on the successful experiments .only. It may be noted that the global
optimum obtained with HDE is same as reported in literature (Teh and Rangaiah,
2003; Chelouah and Siarry, 2000) for all the test functions. It presents the
comparison, in terms of CPU-time in seconds and AAD that represent the average
value per experiment over all the 10 experiments. The termination criterion used is
either |OF¢; —OFana | < (10'4 OF anal +10'6) or Maximum number of generation
(TMAX = 500). The key parameters used are NP = 10D, CR = 0.5, F = 0.8. The
strategy used is DE/rand/1/bin in all the experiments. All the experiments are carried
out on Matlab-5.1 installed on PII/500 MHz/128 MB RAM. The quasi-Newton
method used in HDE is the MATLAB subroutine EO4JAF.

Table-5.1. Comparison of DE with HDE

TEST CPU-time AAD SR (%)
FUNCTIONS DE HDE DE HDE DE HDE
HIM 1.338 0.061 4.2E-07 7.3E-16 100 100
GP, 1.358 0.077 1.4E-04 4.2E-14 100 100
ES, 2.064 0.506 3.7E-05 1.7E-15 100 100
H, 2.084 0.141 2.6E-04 2.1E-07 100 100
R. 3.164 0.062 6.4E-07 1.4E-15 100 100
Z, 1.312 0.058 5.5E-07 5.2E-17 100 100
Rs 78.800° 2.08 0.027° 1.4E-15 0 100
Zs 41.013 0.285 6.9E-07 1.8E-15 100 100

" Values corresponding to zero success rate

164

=

The results in Table 5.1 show that the reliability of HDE and DE is comparable,
the success rate being 100% in both DE and HDE for each test function excluding
one, i.e., Rs. In case of test function Rs using DE, the success rate was found to be
zero, which is due to limited TMAX, 500 in present study. After 500 generations
AAD is found to be 0.027, which indicates that it requires more TMAX, i.e., greater
than 500 generations to reach to the true minimum. Hence, it is the limitation on
TMAX, which caused zero success rates. The AAD values for HDE are much less
than the AAD values for DE. This indicates that HDE is able to locate global
minimum more accurately. Moreover, CPU-time is much less than that for DE in each
of the test functions indicating high efficiency and speed of HDE as compared to DE.
Also, it is interesting to note that the performance of HDE is significantly better for
higher dimension problems (Rs and Zs).

Fig. 5.1 shows the variation of Absolute Deviation (AD = |OF¢s —OF anal]) using
DE and HDE algorithms for test function named GP,, for ten experiments. Variation
in Fig. 5.1 clearly indicates that in each experiment, the accuracy of solution obtained
is high in HDE over that obtained with DE. Also, there is no single experiment where
AD is found to Be more using DE than HDE, which implies that HDE performed
better than DE.

Table 5.2 and Table-5.3 summarize results obtained using DE, HDE along with
those reported by Teh and Rangaiah (2003) using TS-QN and GA-QN, and those of
Chelouah and Siarry (2000) for Enhanced Continuous Tabu Search (ECTS). In ECTS,
tabu search was implemented for both d.iversiﬁcation and intensification. The GA
program in GA-QN is based on floating-point encoding, selection via stochastic

universal sampling, modified arithmetic crossover and non-uniform mutation. The

165

quasi-Newton method in GA-QN is same as that in TS-QN (i.e., IMSL subroutine,

DBCONF).
o | ¢AD(HDE) = AD(DE)
: 1.00E-02 === g
I - » :’ I
1.00E-04 " H a t a a 5 2 ‘

3 « v
1.00E-06 - Lo
1.00E-08

2 1.00E-10 A
1.00E-12
1.00E-14

.
1.00E-16
1.00E-18 1

.

1.00E-20 .
*
1 cOOE"22 i ¥ T i] Ll i {]
0 1 2 3 4 5 6 7 8 9 10
Experiment No.
Fig. 5.1. AD variation for GP;, function using for DE and HDE
Table-5.2. Comparison of AAD for various algorithms
Test Average Absolute Deviation (AAD)
Functions DE HDE " ECTS TS-QN GA-QN
HIM 4.2E-07 7.3E-16 -=- — -
GP, 1.4E-04 4.2E-14 0.002 7.61e-10 3.58e-12
ES, 3.7E-05 1.7E-15 0.01 1.07e-6 1.07e-6
H; 2.6E-04 2.1E-07 0.09 2.50e-6 2.57e-6
R, 6.4E-07 1.4E-15 0.02 2.19¢-8 5.35e-11
Z, 5.5E-07 5.2E-17 2e-7 1.76e-8 5.00e-11
Rs 0.027° 1.4E-15 0.08 3.09e-10 3.06e-12
Zs 6.9E-07 1.8E-15 de-6 3.91e-9 1.40e-10

Success rate is zero

Table-5.3. Comparison of Success Rate (SR) for various algorithms

Test Success Rate (%)
Functions DE HDE ECTS TS-QN GA-QN
HIM 100 100 - - -
GP, 100 100 100 99 100
ES, 100 100 100 85 100
H, 100 100 100 100 100
R, 100 100 100 100 100
Z, 100 100 100 100 100
Rs 0 100 100 79 79
Zs 100 100 100 100 100

166

&

A

The results in Table-5.2 show that DE gives more accurate solution than ECTS
and solution quality is comparable to that obtained from TS-QN. The HDE gives the
more accurate solution than all other algorithms. ECTS gives the poor accuracy
among all the algorithms shown in Table-5.2. The comparison of various algorithms
according to success rate is shown in Table-5.3. The HDE and ECTS have the same
or highest success rate, i.e., 100% and hence more reliable than the other algorithms.
The reliability of GA-QN and DE are comparable. Strictly, TS-QN seems to be the
least reliable one. In general, all the algorithms have good reliability. The results
stated above clearly show the potential of HDE. In the next section, applying HDE
and DE to selected nonlinear problems encountered in chemical engineering will

evaluate the performance of these algorithms on real world problems.
5.4. Selected Non-linear Chemical Processes

There are many chemical processes which are nonlinear and complex with
reference to optimal operating conditions with many equality and inequality
constraints. Non-linearities are introduced by process equipment design relations, by
equilibrium relations and by combined heat and mass balances. In this section the
following processes are considered for evaluating the performance of HDE and its
comparison with DE: (1) water pumping system, (2) heat exchanger network design,
(3) three stage compressor with inter-cooling, and (4) drying problem. Since, QN
subroutine (EO4JAF) as available in MATLAB, can be used for unconstraint
optimization method therefore the problems are either nonlinear unconstraint
optimization problem or are reformulated as unconstraint optimization problem. The
termination criterion used is |OF cal =OF anal | < (10™ OF ppal +107). All the experiments

are done on Matlab-5.1 installed on PIII/S00 MHz/128 MB RAM.

167

5.4.1. Water Pumping System

In the present study (Babu and Angira, 2004) modified problem as discussed in
section-3.5.8 of Chapter-3, is taken as case study. First equality is used as true
objective function while the other two equalities are treated as constraints. The
unconstraint optimization problem, incorporating coﬁstraints into objective function,

is formulated as follows:

Min. f=x,=150 + 0.5(x, + x,* + R(h* + g°)
Subject to
(0,0) < x < (9.422, 5.903);

Where

h = 6x2 —30x, —250.0+150.0+0.5(x; + x,)* = 0.0,

g = 1252 —20x, ~300.0 +150.0+0.5(x; +x,)* =0.0. and R (=10') is penalty on

constraint violation. The global optimum obtained is: (x; f) = (6.293429, 3.821839;
201.159334).
5.4.1.1. Results and Discussion

Table 5.4 shows the results obtained by both DE and HDE. It may be noted that
the global optimum is same as reported in literature (Stoecker, 1971; Leibman et al.,
1986; Ryoo and Sahinidis, 1995), i.e., / = 201.159334 and the flow rates through
Pump-1 & Pump-2 are x; = 6.293430 & x; = 3.821839 respectively.

Table-5.4 presents the comparison, in terms of CPU-time in seconds and Average
Absolute Deviation (AAD). In this table, CPU-time and AAD represents the average
value per experiment over all the 10 experiments and key parameters used are NP =
10*D, CR = 0.5, F = 0.8. The strategy used is DE/rand/ 1/bin in all the experiments. It

is clear from AAD values shown in Table-5.4 that HDE is able to locate the global

168

VV‘

Ak

optimum with a high accuracy as compared to DE. Also the CPU-time taken by HDE

is very much less, i.e., only about 3% of that taken by DE. The success rate is 100%

in both the algorithms.

Table-5.4. Comparison of DE with HDE for WPS Problem

Methods (CPU-time) AAD SR (%)
DE 2.992 9.2E-03 100
HDE 0.088 6.1E-08 100

Fig. 5.2 shows the variation of Absolute Deviation (AD = |OF., —“OF anall) for DE

and HDE for WPS problem. Fig. 5.2 clearly indicates that in each experiment, the

accuracy of solution obtained using HDE is higher than that of obtained with DE. It

fluctuates in between 0.005 to 0.018 for DE while for HDE it is 6.0864x10® for all

experiments. Also, there is no single experiment where AD is found to be more using

DE than HDE, which implies that HDE performed better than DE in locating

optimum with high accuracy.

+ AD(HDE) @ AD(DE)
1.00E-01 Jl
1.00E-02 " " @ T
4] fie) N
1.00E-03 A
1.00E-04 -
(]
<
1.00E-05 A
1.00E-06 -
1.00E-07 3 o o . . .
1.00E-08 - - ‘ ' |
1 2 3 4 5 6 7 8 9 10
! Experiment No.

Fig. 5.2. AD variation for WPS problem using DE and HDE

169

5.4.2. Heat Exchanger Network Design (HEND)

This problem has already been discussed in Chapter-3. The problem formulation
is same as that given in Ryoo and Sahinidis (1995) and is different from that
described in Chapter-3. The objective is to minimize the area of the heat exchanger
network as shown in Chapter-3 (Fig. 3.5.23).

Min. f= x; +x; + x5

Subject to the following constraints:

100000(x, —100)-120x, (300 - x,)=0.0;

100000(x5 — x,)~ 80x, (400 — x5)=0.0;

100000(500 — x5) — 40x, (600 — 500)= 0.0 ;

(0,0,0,100,100) < x < (15834, 36250,10000, 300, 400)

The global optimum is: x = (579.306743, 1359.9712666, 5109.971263,
182.017600, 295.601150) with f = 7049.249.
5.4.2.1. Problem Reformulation

In this problem, as can be seen above, we have five variables and three equality
constraints. By éliminating three variables namely x3, x4, and xs only two independent
variables (x; and x;) are left to be determined. Substituting the value of x; from first
constraint into second, further substituting xs from second constraint into third leads
to evaluation of x3 in terms of x) and x,. In this way the number of constraints as well
as number of variables are reduced.

The reformulated problem is as follows:

Min. f= x; + x; + X3.

Subject to the following boundary constraints:

(100,100)< x < (10000,10000);

170

A4y

2

3200x, + 3.84x,x, +100*(36x, +10°)
(100 +0.12x, {100 + 0.08x,)

Where x; =12500 — 25[

5.4.2.2. Results and Discussion

Results obtained using both DE and HDE algorithms are shown in Table 5.5. It
may be noted that the global optimum is same as reported in literature (Ryoo and
Sahinidis, 1995; Adjiman et al.,, 1998b;) and Chapter-3 of present study, i.e., f =
7049.249; with areas of heat exchangers, x; = 579.306743, x> = 1359.9712666, and x;
=5109.971263 respectively.

Table-5.5. Comparison of DE with HDE for HEND problem

Methods CPU-time AAD SR (%)
DE 0.253 0.3038 100
HDE 0.06 2.7248x10° 100

Table-5.5 presents the comparison, in terms of CPU-time in seconds and Average
Absolute Deviation (AAD). In this table, CPU-time and AAD represents the average
value per experiment over all the 10 experiments and key parameters used are NP =
10*D, CR = 0.8, F = 0.5. The strategy used is DE/rand/1/bin in all the experiments. It
is clear from AAD values shown in Table-5.5 that HDE is able to locate the global
optimum with a high accuracy as compared to DE. Also the CPU-time taken by DE is
very large, i.e., about 4.21 times more than that taken by HDE. However the success
rate is 100% in both the algorithms.

Fig. 5.3 shows the variation of AD using DE and HDE for HEND problem. Fig.
5.3 clearly indicates that in each experiment, the accuracy of solution (AD) obtained
using HDE is much higher than that of obtained using DE. It ranges in between
0.0102 to 0.6404 for DE while for HDE it is 2.7248x10™ for all the ten experiments.

Also, there is no single experiment where AD is found to be more using DE than

171

HDE, which implies that HDE performed better than DE in locating optimum with

high accuracy.

| | ¢ AD(HDE) 3 AD(DE)’

1.00E+00 - — ————— o e e
pi] 2 [
a by | u |
v 3 o ‘
1.00E-01 - 9
a
Q |
< 1.00E-02 ? a
1.00E-03 A
¢ ¢
1.00E‘04 T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Experiment Number

Fig. 5.3. AD variation for HEND problem using DE and HDE
o 5.4.3. Three Stage Compressor with Inter-cooling

This problem involves the determination of Minimum Work of Compression
(MWC) for ideal compressible adiabatic flow (Fig. 5.4) using two different
optimization techniques, i.e., DE and HDE. Most real flows lie somewhere between
adiabatic and isothermal flow. For adiabatic flow, the case considered here, one
couldn’t establish a priori the relationship between pressure and density of the gas
because the temperature is unknown as a function of pressure or density; hence the
relation between pressure and density is derived using the mechanical energy balance.

Ao |

Ty I b | T T3 g Ty Ts

bi p2 P2 p3 l p3 y 2
v

Fig. 5.4. Three stage compressor with inter-cooling.

172

If the gas is assumed to be ideal, and k& = C,/C. is assumed to be constant in the
range of interest from p; to p,, one can make use of the well-known relation given

below:
pV* = Constant

for calculating the theoretical work per mole (or mass) of gas compressed for a single-

stage compressor (McCabe et al., 1993)

(~-/|,k)
W =_,§£ [&) _1.0
k=11\p

where T, is the inlet temperature and R the ideal gas constant. For a three-stage

compressor with inter-cooling back to T; between stages as shown in Fig. 5.4, the

work of compression from p; to p4 is:

e k—_T;' (e](k'%)+ (2 } "-}f;)+ (.](k-}/k)_lo

P P2 P3

5.4.3.1. Problem Formulation

The objective is to determine the optimal inter-stage pressures p, and p; to

minimize the work of compression (W) keeping p; and pa fixed. Therefore, the

objective function is given by:

g 228 () 2 ()

k-1|\ p, 2 D3

Subject to the following boundary constraints:

(100,100)< p,, p, <(1000,1000)

173

f."\

5.4.3.2. Results and Discussion

Let the gas be air so that k = 1.4, p; = 100 kPa, and ps = 1000 kPa. Edgar and
Himmelblau (2001) solved this problem using BFGS algorithm and obtained a value
of inter-stage pressures p, = 215.44 and p; = 464.17. Results of MWC problem using
DE and HDE are shown in Table-5.6 and Fig. 5.5. Table-5.5 shows the results
obtained using DE and HDE algorithms. Comparison is made in terms of CPU-time,
AAD, and success rate. It is clear from Table-5.6 that DE takes almost three fold

more CPU-time as compared to HDE. Also, the AAD value indicates that HDE is

" able to locate the optimum solution with high accuracy as compared to DE. The

success rate is found to be 100% in both the algorithms.

Table-5.6. Comparison of DE with HDE for MWC problem

Methods CPU-time AAD SR (%)
DE 0.319 3.5587x107 100
HDE 0.109 1.0309x10°® 100

+ AD(HDE) = AD(DE)

8.00E-05
7.00E-05 -
6.00E-05 i a
5.00E-05 -
4.00E-05 - o

AD
b

3.00E-05 A o 4

2.00E-05 H

1.00E-05 - 7

3
. : |
1.00E-08 , * . * * + * :
1 2 3 4 5 6 7 8 9 10.
Experiment No.

Fig. 5.5. AD variation for MWC problem using DE and HDE

174

vy

Fig. 5.5 shows the variation of AD using DE and HDE for MWC problem. Fig.
5.5 clearly indicates that in each experiment, the accuracy of solution (AD) obtained
using HDE is higher than that of obtained using DE. Using DE, the variation in AD
values is quite high as compared to variation in AD values using HDE. For DE, it
ranges from 5.16x10™ to 7.41x10° while for HDE it is from 5.36x107 to 3.44x10 in
all the ten experiments. Also, there is no single experiment where AD is found to be
more using DE than HDE, which implies that HDE performed better than DE in
locating optimum with high accuracy.

5.4.4. Drying Problem
The problem has already been discussed in detail in Chapter-3. Edgar and
Himmelblau (2001) gave a different formulation from that described in Chapter-3.

The problem (as described in Edgar and Himmelblau, 2001) is briefly stated below:

Max. /= 0.0064x, |l - exp{- 0.184xx;)
Subject to the following constraints:

(3000 + x, Jx2x, =1.2x10";

exp(O.l 84x2x,)= 4.1
Solution reported is: x = (31766, 0.342) with f=153.71.
5.4.4.1. Results and Discussion

Table-5.7 shows the results obtained using DE and HDE algorithms. Comparison
is made in terms of CPU-time, AAD, and success rate. It is clear from Table-5.7 that
CPU-time taken by HDE is 56% less than that of DE. Also, the AAD value indicates
that solution with high accuracy is obtained using HDE algorithm as compared to DE.
It is also important to note that success rate is 90% for DE while HDE algorithm is

able to locate the optimum solution with 100% success rate.

175

Table-5.7. Comparison of DE with HDE for drying problem

Methods CPU-time AAD SR (%)
DE 2.833 0.02403 90
HDE 1.234 0.00351 100

Fig. 5.6 shows the variation of AD using DE and HDE for drying problem. Fig.

5.6 clearly indicates that in each experiment, the accuracy of solution (AD) obtained

using HDE is higher than that of obtained using DE excepting one. For DE, it ranges

from the minimum of 0.0018 to the maximum of 0.1567 while for HDE it is from the

minimum of 0.0014 to the maximum of 0.0048 in all the ten experiments.

+ AD(HDE) w AD(DE)

1.80E-01
1.60E-01
1.40E-01
1.20E-01
1.00E-01
8.00E-02
6.00E-02 -
4.00E-02 -
2.00E-02 A
0.00E+00 $

1 1 1

AD

1

Experiment No.

Fig. 5.6. AD variation for drying problem using DE and HDE

5.5. Conclusions

In this chapter a hybrid differential evolution (HDE) algorithm is proposed and

tested on several benchmark test functions and further evaluated for selected

nonlinear chemical engineering problems. A comparison of HDE with DE is made in

176

terms of CPU-time, AAD, and success rate. It is found that the two algorithms (viz.,
DE and HDE) are reliable in locating the global optima of the problems studied. The
HDE took less CPU-time as compared to DE. Also, HDE located the global optimum
with high accuracy (very low AAD values) as compared to DE. Overall, the
performance of HDE is found to be better than that of DE. For high dimension

problems, the performance of HDE is significantly better than that of DE. HDE is also

compared with other algorithms reported in literature such as ECTS, TS-QN, and GA.

177

CHAPTER

6

NEW STRATEGIES OF DE AND THEIR
APPLICATION TO SELECTED NON-LINEAR
CHEMICAL PROCESSES

6.1. Introduction

As already mentioned in Chapter-3, DE is an efficient, effective and robust
evolutionary optimization method. What really works behind the speed and
robustness of DE is its mutation scheme which is extremely simple yet very powerful
(Corne et al., 1999). An efficient mutation scheme for real parameter optimization
should have the following features: (1) use a zero mean distribution for generating
mutation vectors (2) dynamically scale the distribution to suite each parameter, and
(3) correlate mutations to ensure rotational invariance. Given all these demands and
the indescribable variety of fitness landscapes, how can a mutation scheme be devised
that will satisfy these criteria? For over thirty years, the answer provided by Evolution
Strategies is ‘self-adaptation’. The mutation scheme of DE is self-adaptive. Not only
is the DE mutation scheme capable of dynamically scaling individual step sizes, it is

also impervious to the effects of coordinate system rotation (Rudolph, 1992). Hence,

178

%

one can say that DE meets the necessary condition for optimal mutation. Still, there is
a need to reduce the computational time for optimizing the computationally expensive
objective functions. And therefore, an attempt to further speed up DE is considered
necessary. This chapter introduces a modification to the mutation scheme of original
DE that enhances the convergence rate without compromising on solution quality.
Two new strategies are proposed and their performance is evaluated by comparing
with that of DE using two test functions and selected nonlinear chemical engineering

problems.

6.2. New Strategies of DE

Two new strategies (NS-1 and NS-2) are proposed and applied to two test
functions and selected nonlinear chemical processes. The new strategies proposed in
the present study differ from DE/rand/1/bin and DE/rand/2/bin strategies, the way the
mutation and recombination is performed. The concept is quite simple and easy to
understand. As we know the convergence speed of DE/best/l/exp strategy is highest
among all the ten strategies (as seen in section-3.5.1.7 of Chapter-3) while
DE/rand/1/bin and DE/rand/2/bin are robust due to their highly stochastic nature
(because the search is not biased as in DE/best/1/bin or DE/best/l/exp strategies.
Therefore, in order to take the advantage of both the speed and robustness, two new
strategies are proposed.

In original DE’s mutation scheme, the parameters in trial vector come from either
random noisy vector (produced after perturbation) or from target vector depending
upon the crossover constant. In the NS-1, instead of target vector, the parameter in
trial vector comes from noisy vector, which is produced from perturbation of best

vector found in each generation. In other words, we can say that we are taking

179

advantage of two existing strategies (DE/rand/1/bin and DE/best/1/bin) in one in
order to increase the convergence rate while maintaining the robustness of the
algorithm as shown in pseudo code.

In NS-2, the parameter in trial vector comes either from noisy vector, which is
produced from perturbation of randomly chosen vector or from perturbation of best
vector found in each generation. The perturbation of randomly chosen vector is done
using two vector differentials with scaling factor of F and (1-F). This is different from
DE/rand/2/bin strategy where two vector differentials are scaled with F only rather
than F and (1-F) as in present study. In NS-2, we are taking the advantage of both the
DE/rand/2/bin and DE/best/1/bin strategies of DE in order to reduce the
computational efforts without affecting the robustness. The pseudo codes for mutation
and recombination in DE/rand/I1/bin, NS-1 and NS-2 are given below:

(i). For DE/rand/1/bin
§f(randj [0.1]) <CR vk =D)
tiial[/] = x[c] [i] +F*(x[a] [j]-x[b] [j]):
e{se trialfj] = x[i] [j];

J=(+1)%D;
/* % = modulo; index j runs from 0 to D-1 */
}

(ii). For NS-1
{

If (rand; [0,1]) <CR vk =D)
{
trial[jj =x[c] [i] +F*(x[a] [j]x[b] [j]):
}
else trial[j] =bestit[j] +F*(x[a] [j]-x[b] [j]):
Jj=G+1)%D;
/

(iii). For NS-2
{
If (rand; [0,1])<CR vk = D)
{

trial[jj =x[c] [j] +F*(x[a] [j]-x[b] [i])*+(1-F)*(x[d] [j]-x[e] [i]):

180

/
else trial[j] =bestit[j] +F*(x[a] [j]-x[b] [j]);
j=@G+1)%D;
/

The term rand;[0,1] represents a uniformly distributed random variable that
ranges from zero to one. The subscript j indicates that a new random value is
generated for each value of j; that is, for each object variable. The vector bestit/j] is
the best vector of the previous generation and the indices @, b, ¢, d, e € {1,2,...., NP}
are randomly chosen population indices that are mutually different and also different
from i. DE algorithm employs both mutation and recombination to create one child or

trial vector trialfj], for each parent vector x/[i/[j] as shown in pseudo code for

DE/rand/1/bin, NS-1 and NS-2.

6.3. Test Functions

Two test functions that are known to be densely multimodal are chosen to
demonstrate and test the reliability & efficiency of proposed new strategies of DE
viz., NS-1 and NS-2. The first test function is so called Ackley’s function, and can be
found in Bick (1996) and Fan and Lampinen (2003). This is a continuous, highly
nonlinear function that causes the search with moderate complications.

Ackley’s function:

l n 1 n
f, ==-20- eXp[— 0-2"; ;.‘cf J - exp(; ; cos(2m,)] +20+e;

-20<yx; <30, n=130.

The global minimum is: fi =0 withx;=0,i=1,2, ..., n.
The second test function is commonly called Rastrigin’s function, and can be found in

Mubhlenbein et al. (1991). This function is also considered to be relatively difficult to

181

minimize because the number of local optimum solutions is high. These two test
functions are defined as follows:

Rastrigin’s function:

/s _2n+Z(- 2cos(2mx;)),

-5.12<x;<5.12,n=20.
The global minimum is: ;=0 withx;=0,i=1,2, ..., n.
6.3.1. Results and Discussion

First the control parameters (CR and F) are tuned for the new strategies using the
above mentioned test functions. For tuning the control parameters (CR and F),
following setting is maintained: gen_max = 250 and 400 respectively for Ackley and
Rastrigin’s function, number of independent experiments (NRUN) = 20, and NP =
10*D. After tuning the control parameters, the performance of both the strategies is
compared with that of DE/rand/1/bin.

6.3.1.1. New Strategy-1

Fig. 6.1 shows the variation of CR vs. function value for different values of F (0.1
< F < 1.0). Each point on the figure represents the average value of twenty
experiments. It is easy to determine the best control parameters from this figure. Best
control parameters are those that lead to lowest function value as the maximum
number of generations is fixed.

As is evident from the Fig. 6.1, for Ackley function, the best control parameters
are found to be F = 0.4 with CR = 0.5. Some other combinations that lead to
acceptable low function value (6 x 10°%) are, e.g. F=0.3 with CR=0.7 and, F=0.5

with CR = 0.3. As shown in Fig. 6.2, for Rastrigin’s function, the best control

182

parameters are found to be CR = 0.7 and F = 0.4. The other possible good

combination of control parameters is F = 0.3 with CR = 0.9.

——F=01-8F=02
——-F=06 —+—F=07—F=08 —F=09

F=03 ~-F=04 —>F=0.5

F=1.0

20

Function Value

02 03 04 05 06 07 0.8
CR

0.1

- — ———— e ——

i
0.9

Fig. 6.1. Effect of CR and F on Ackley’s function using NS-1

——F=0.1 —a—F=0.2 F=0.3 —F=0.4
——F=0.6 —+—F=0.7 —F=0.8 —F=0.9

—x—F=0.5
F=1.0

60 -

Function Value

0 - e
0.1 02 03 04 05 0.6

CR

0.7 08 09

Fig. 6.2. Effect of CR and F on Rastrigin’s function using NS-1

183

Table-6.1 shows the various possible combinations of best control parameters for
the two test functions. It is clear that the choice of best control parameter is more in
case of Ackley function as compared to Rastrigin’s function. However, it is to be
noted that the choice of best parameter is problem dependent.

Table-6.1. Control parameters for two test functions

Ackley Rastrigin
Function Function
Value F CR Value F CR
0.000003 0.3 0.7 0.048764 03 0.9
0.000001 04 0.5 0 0.4 0.7
0.000006 0.5 0.3 0.292681 0.5 0.5

From the discussion, it is found that a value of F varying from 0.3 to 0.5 is
suitable to start with. However, the CR value is to be adjusted depending upon the
type of problem at hand. For the Rastrigin’s function CR is to be chosen 0.7 or more
but for Ackley’s function a value less than 0.5 may be suitable as shown in Table-6.1.
Also, it is clear that for each value of F in Table-6.1, CR value is found to be higher
for Rastrigin’s function than that for Ackley’s function to obtain best function value.
It is to be noted that at CR = 0.0, the NS-1 reduces to DE/best/1/bin and at CR =1.0 it
reduces to DE/rand/1/bin. Hence we can adjust the speed and robustness depending
on the nature of problem at hand. Therefore the possible best control parameters for
NS-1 are 0.3 < F <0.5 and CR depends upon the nonlinearity of the problem.

Let us take the control parameters for NS-1 to be CR = 0.65, F = 0.4. Fig. 6.3 and
Fig. 6.4 show the convergence history for Ackley and Rastrigin’s function
respectively using NS-1 (CR = 0.65 and F = 0.4). Each point on the figure represents

the average value over hundred experiments.

184

. ——NS-1 + - DE
20 - e e o — r i
e
18 - l
16 - C
14 - N
) .
> i H
c - i
:g 10 | |
g 8] B
3 Pl
[TH 6 - I i
4 . |
‘8
2 B
B
'S S o o ?“ \BE"' il 7 e, Y -
0 T T T T N S v AL Y AL v 5—.—'3!—3
0 30 60 90 120 150 180 210 240 270 300 330 360
No. of generations
Fig. 6.3. Convergence history for Ackley’s function using DE and NS-1
—e— NS-1 -a-DE
120
v
100 1
\\.
4 80 1 ¢
©
> !
5 601 |
©
5
i 40 -
20 1
d -5
™
0 . S
0 30 60 90 120 150 180 210 240 270 300
No. of generations a

Fig. 6.4. Convergence history for Rastrigin’s function using DE and NS-1

185

6.3.1.2. New Strategy-2

Figs. 6.5 and 6.6 show the effect of CR & F on Ackley’s function and Rastrigin’s
function respectively. Each point on the figures shows the average value of twenty
experiments. As shown in Fig. 6.5 for Ackley’s function, at CR = 0.4, the function
value is least with F=0.1, F=0.2, F=0.3,and F=0.4. Also,at CR=03 and F =
0.4 & 0.5 too the function value is comparable to that obtained using F=0.1, 0.2, 0.3,

and 0.4. Therefore the good combination seems to be CR = 0.4 and F = 0.1or 0.2 or

0.3 0r0.4.

“+F=10 —= F=09 -2-F=07 —*F=05 |
—%—F=04 —e—F=03 —+F=02 ——F=0.1

N
o

B G S
o N A O @

Funciidn Value. |

o N b OO @

Fig. 6.5. Effect of CR and F on Ackley’s function using NS-2

As shown in Fig. 6.6 for Rastrigin’s function, at CR = 0.5, the function value is
least with F = 0.1. However, for F = 0.2, and F = 0.3 too the function value is
comparable to that obtained using F = 0.1. Therefore, the best control parameters are
'CR = 0.5 and F = 0.1. From the discussion, it is found that a value of F varying from

0.1 to 0.4 is suitable to start with. However, a CR value of 0.4 to 0.5 is found to be

suitable to start with.

186

AN

o O
o O

[8)] D ~
o o o
| | |

AT

N
o
L

Function Value

W
o
L

10 - N\
—— \..,\{‘ A/,/

lnad 1 J

0 01 02 03 04 05 06 07 08 09 1
CR

Fig. 6.6. Effect of CR and F on Rastrigin’s Function using NS-2

It is to be noted that at CR = 0, it behaves like DE/best/1/bin strategy and at CR =
1.0, it reduces to DE/rand/2/bin strategy. Therefore, one can adjust CR to exploit the
speed/robustness depending upon the problem encountered. Let us take the control
parameters for NS-2 to be CR = 0.45 and F = 0.1 in the present study.

Fig. 6.7 and Fig. 6.8 show the convergence history of Ackley and Rastrigin’s
functions respectively. It is clear that for Ackley’s function NS-2 is found to be
slightly better than DE as it takes less CPU-time as compared to DE. However, the
opposite is true for DE for Rastrigin’s function. This clearly indicates that more
experiments are further required to evaluate the performance of NS-2. In the next
section, these two new strategies are applied to selected nonlinear chemical

engineering problems.

187

)

"——NS-2 -a DE|

18 — .
i 17 “ l !
' 16 7]) 1
15 - .
L 14 4 =
2 13 5
s 11 - N
> 10 N :
S |
5 81 |
e 7
6
4 -
3
% -
0 . ?“ﬁ—-z——a——a a & 4 -8--§—8—3-U
0 60 120 180 240 300 360
No. of generations
Fig. 6.7. Convergence history of Ackley function using DE and NS-2
—+—NS-2 —w-DE
120
@
100 |
0 \
S
©
> ;
c
2
i3]
£ l
= |
L
|
= i
0 , J\:’\'Z‘:f.rﬁ‘ﬁ‘&fﬁ“:-t‘t-ﬁ-‘.'%%:—;fa-m.‘—:‘rt :
0 50 100 150 200 250 300

No. of generations

Fig. 6.8. Convergence history of Rastrigin's function using DE and NS-2

188

6.4. Selected Non-linear Chemical Processes

In the present section, three problems have been chosen to evaluate the
performance of new strategies. Out of which two problems are the same as mentioned
in Chapter-3. These two problems are (1) multi-product batch plant design, and (2)
reactor network design. These two problems represent the difficult nonlinear
problems. Third problem is dynamic optimization of a batch reactor where objective
function evaluation is costly. Also, the performance of the proposed new strategies is
compared with that of DE and MDE.

6.4.1. Multi-Product Batch Plant (MPBP)

This problem has already been discussed in section-4.5 of Chapter-4. DE and
MDE were found to give local solution using method without forcing the bound. In
this section new strategies are used to solve this problem and results obtained are
compared with those reported in Chapter-4 using DE and MDE.
6.4.1.1. Results and Discussion

Table-6.2, Table-6.3 and Table-6.4 show the results obtained using NS-1 and NS-
2 with forced bound method and method without forcing the bound respectively using
Approach-1. For each algorithm ten experiments are carried out with different seed
values. NFE, NRC and CPU-time in the subsequent tables are the mean values of the
ten experiments. The stopping criteria adopted for NS-1 and NS-2 is same as that
used for MDE and DE in Chapter-4. All the experiments are carried out on Pentium-
I1I, 500 GHz, and 128 RAM computer.

Table-6.2. Comparison of NS-1 and NS-2 MPBP problem (FBM)

Methods CPU-time (s) NFE NRC (%)
NS-1 1.70 23640 i 70
NS-2 1.53 19060 70

DE 3.23 46090 100
MDE 2.846 40550 100

189

¥

From Table-6.2, it is clear that NFE (and hence CPU-time) for NS-2 is least.
However the NRC is 70% instead of 100 for DE and MDE. There is a saving of 10%
CPU-time using NS-2 as compared to NS-1. NS-2 is found to be computationally
inexpensive among all the algorithms compared in Table-6.2. NFE for NS-2 is about
19.37%, 58.65%, and 53.0% less than that of obtained using NS-1, DE, and MDE
respectively.

Table-6.3 shows the results obtained when CR value is increased to 0.8 for NS-1
and to 0.6 for NS-2 in order to increase the robustness. It is found that NRC is 100 %
for both NS-1 and NS-2. Also it is to be noted that CPU-time is still less for NS-1 and
NS-2 as compared to DE and MDE although it is slightly more than that at CR = 0.65.

Table-6.3. Comparison of NS-1 & NS-2 MPBP problem at higher CR (FBM)

Method CPU-time (s) NFE NRC (%)
NS-1 1.8623 25950 100
NS-2 2.0164 25070 100

DE 3.23 46090 100
MDE 2.846 40550 100

Table-6.4. Comparison of NS-1 and NS-2 MPBP problem (MWFB)

Method CPU-time (s) NFE NRC (%)
NS-1 2.86 39810 0
NS-2 2.76 34010 0

DE 6.29 89490 0
MDE 5.54 79380 0

From Table-6.4, it is clear that NFE (and hence CPU-time) for NS-2 is least. In
case of method without forcing the bound too, the NS-2 seems to be computationally
efficient among all the methods compared. It is to be noted that the saving in CPU-
time using NS-2 as compared to NS-1 is only 3.5% in case of method without forcing
the bound instead of 10% in case of forced bound method. It is to be noted that none

of the methods is able to locate the global optimum using method without forcing the

_bound even at high CR value. This is due to the fact that the global optimum is

190

located on the extreme (lower or upper bound) of the several decision variables. Also,
the global optimum corresponds to a point where a very small variation in any of the
continuous variables produces infeasibility.

6.4.2. Reactor Network Design (RND)

This problem has already been discussed in section-3.4 of Chapter-3. DE and
MDE are found to show poor convergencies to global optimum as it has two local
optima near to global optimum solution. In this section the same problem is solved
using two new strategies and results are compared with that of obtained using DE and
MDE algorithms.
6.4.2.1. Results and Discussion

Table-6.5 shows the results obtained using NS-1 & NS-2 and its comparison to
DE & MDE algorithms. NFE & NRC represent respectively, the mean number of
objective function evaluations and the percentage of experiments converged to the
global optimum in all the 100 experiments (with different seed values).

Table-6.5. Comparison of NS-1, NS-2, DE, and MDE for RND problem

Method CPU-time (s) NFE NRC (%) Key Parameters
(CR/F)

DE 0.041 1468 57 0.8/0.5
MDE 0.034 1253 44 0.8/0.5
NS-1 0.044 1559 65 0.65/0.4
NS-2 0.156 4048 100 0.45/0.1

All the experiments are carried out on a Pentium-III/500 GHz/128 RAM
computer. RND is a difficult problem as mentioned already having two local optima
near global optimum. Still NS-1 and NS-2 are able to locate the global optimum
althéugh the success rate (VRC) is 65 to 100% as shown in Table-6.5. In this problem,
NFE using MDE is less by about 14.65%, 19.63%, and 69.05% than that obtained
using DE, NS-l, and NS-2 respectively. It is important to note that in this problem,

NRC using NS-2 is 100% as compared to 44%, 57%, and 65% using MDE, DE, and

191

NS-1 respectively as shown in Table-6.5. This clearly indicates the robustness of NS-
2 strategy.

Fig. 6.9 shows the convergence history of RND problem. Each point on the graph
represents an average of 100 independent experiments. It is clear from the Fig. 6.9
that error variation is least using NS-2 (0.005% to 0.0%) among all the methods
compared. It is seen that error variation is more in case of MDE algorithm (0.003% to
0.014%) than DE (0.001% to 0.01%) while it is highest for NS-1 (0.005% to 0.02%).
This indicates that NS-2 is best among all the methods as it is able to locate the global
optimum solution with high accuracy (Fig. 6.9) and high success rate (NRC being
100% as shown in Table-6.5). Also, NS-2 is found to be computationally costly as

compared to NS-1, DE, and MDE.

——NS-2 —a-NS-1 -a—MDE —*DE
0.00030001
0.00025001 %/
0.00020001 4 | a . 1‘ 1
5 l2 7 a7 i
£ 0.00015001 - L A d I [\
i 5 Al L) T e
1AV, % '-. " K '}]"'\’i"A‘Jfé“
0.00010001 - XTALR G |k £ [1LA™
! l?u ‘ﬂ | %" AA‘ 3 4]
I AL AA““.A‘ ;A.‘
0.00005001 - piraal W Yo TR
T ! %,0 J X ‘.:.
$ a8 3 Q'fi‘ 99l V :
0.00000001 ; . . Sal B Ay
0 400 800 1200 1600 2000,
No. of generations ;

Fig. 6.9. Convergence history of RND problem
In order to enhance the robustness of the NS-1, DE, and MDE algorithms CR
value is increased. And it is found that CR alone is not affecting the NRC. An increase

in F value significantly affects the NRC. For NS-1, keeping the CR value at 0.65 and

192

increasing F to 0.7 gave a NRC value of 97%. Further,' increasing the value of Ft0 0.9
leads to 100% NRC.

Table-6.6 shows the comparison of NS-1, DE, and MDE algorithm for the
increased values of CR and F. Also, it has been found out that at CR = 1.0 and F =
0.9, DE is able to achieve 100% NRC although the computation time is more than that
shown in Table-6.5. MDE seems to be computationally efficient. It is to be noted that
at CR = 0.7 and F = 0.7, DE takes more CPU-time as compared to NS-1 but at CR =
1.0 and F = 0.9, computational time is same in both the strategies. Further, the CPU-

time, NFE, and NRC are not significantly affected in case of NS-1 as compared to

DE.
Table-6.6. Comparison of NS-1, DE, and MDE for RND problem
Method CPU-time (s) NFE NRC (%) Key Parameters

(CR/F)

DE 0.069 2472 94 0.7/0.7

DE 0.060 2074 100 1.0/0.9

NS-1 0.061 2136 100 0.7/0.7

NS-1 0.059 2074 100 1.0/0.9

MDE 0.052 1860 99 1.0/0.9

6.4.3. Dynamic Optimization of a Batch Reactor

In this problem, we consider the consecutive reaction: A4 b, p—% 5C taking

place in a batch reactor (Ray, 1981). The objective is to obtain the optimal reactor
temperature progression, which maximizes the intermediate product B for a fixed

batch time. The dynamics are given by the following design equations:

dC,
dt

!
‘Ct” =k, C2 —kyCy

Where k, = 4000 * exp(— Z;OO)

193

k, = 620000 * exp(— 57(300]

and 298 < T <398; with the initial conditions C,4 (0) = 1.0, Cg (0) = 0.0, and the
objective function is J = Maximize Cz. We need to find out optimal temperature
profile, which gives maximum intermediate product concentration. This problem has
been solved by Renfro et al. (1987) using piecewise constant controls. Dadebo and
Mcauley (1995) used dynamic programming for solving this problem and reported
results for different number of stages.

In this problem our parameters are temperatures at different time intervals. With
these temperatures we need to find out the optimal final concentration of B (by
solving the above model equations along with NS-1 and NS-2).
6.4.3.1. Results and Discussion

In this problem, the objective is to find out optimal temperature profile, which
gives maximum intermediate product concentration. This problem has been solved by
Renfro et al. (1987) using piecewise constant controls. They reported a value of 0.61
for the objective function. Logsdon and Biegler (1989) obtained a value of 0.610767.
Dadebo and Mcauley (1995) used dynamic programming for solving this problem.
They reported results for different number of stages. Dadebo and Mcauley (1995)
reported a yield of 0.610070 for ten stages which is same as shown in Table-6.7 for
NS-1 and NS-2.

Table-6.7. Comparison of NS-1, NS-2, and DE for Batch Reactor problem

Method Yield Optimal Initial CPU-time (s) NRC (%)
Temperature T (0)

DE 0.610079 361.4 166.00 100
MDE 0.610079 361.4 140.00 100
NS-1 0.610079 3614 69.18 100
NS-2 0.610079 361.4 84.31 100

194

In the Table-6.7, CPU-time is average of twenty experiments. It is evident that
NS-1 takes about 17.95%, 50.0%, and 58.32% of CPU-time less than that of NS-2,
MDE, and DE respectively. Also, it is to be noted that time saving is highly desirable
in this type of problems, as the saving is of is significant amount (from 15.0s to more
than a minute or s.o) as compared to other problems where the saving is of order of
1.0s or less. NS-1 seems to be computationally efficient method among all the
methods compared for the present problem. Also, it is to be noted that NRC is 100%
in all the methods.

Fig. 6.10 shows the optimal temperature profile obtained using NS-1, NS-2 and
MDE for 10 intervals of total time (i.e. for 10 stages). All the profiles are exactly

same. NS-1 is able to find the optimal temperature profile faster than NS-2, DE, and

MDE algorithm.

—NS-1 -—NS-2 — MDE

365

360 -
355 A
350 A

Temperature
w
NS
8}

330 | —i—‘—__ﬂ_;

325 ' ; ' y l T T T '
o 01 02 03 04 05 06 07 08 09 1!

Time

Fig. 6.10. Optimal temperature profile

195

6.5. Conclusions

In the present chapter, two new strategies are proposed and their performance is
evaluated using two test functions and three nonlinear chemical engineering
problems. Proposed strategies are tuned hopefully to their best control parameters.
Using these tuned control parameters the three selected nonlinear chemical
engineering problems have been solved. It is found that like DE and MDE, NS-1 and
NS-2 also take less computation time for forced bound method as compared to
method without forcing the bound. Also, none of the algorithms is able to locate the
global optimum using the method without forcing the bound for the MPBP problem.
NS-1 is found to be computationally efficient for the dynamic optimization of a batch
reactor and RND problem as compared to NS-2. NS-2 is found to take least CPU-time
for MPBP problem while MDE is found computationally efficient for RND problem.
For RND problem NS-2 is found to be robust as compared to other methods. Overall,
the proposed strategies (NS-1 and NS-2) are found to be competitive with DE and

MDE algorithms.

196

CHAPTER

7

AN EXTENSION OF DE AND MDE FOR
MULTI-OBJECTIVE OPTIMIZATION

Most of the real world optimization problems have more than one objective to be
optimized, and hence they are called Multi-Objective Optimization Problems
(MOOPs). Evolutionary algorithms are gaining popularity for solving MOOPs due to
their inherent advantages. In this chapter, DE and MDE are extended for solving
MOOPs and we call these extended algorithm as Non-dominated Sorting Differential
Evolution (NSDE) and Modified Non-dominated Sorting Differential Evolution
(MNSDE). The proposed algorithms are tested on two different benchmark test

problems. Also, the effect of various key parameters on the performance of NSDE

"~ and MNSDE is studied.

7.1. Introduction
The field of search and optimization has changed over the last few years by the

introduction of a number of non-classical, unorthodox and stochastic search and

197

optimization algorithms. Ideally, multi-objective optimization problems require
multiple trade-off solutions (a set of Pareto optimal solutions) to be found. The
presence of multiple conflicting objectives makes the problem interesting to solve.
Due to multiple conflicting objectives, no single solution can be termed as an
optimum solution. Therefore, the resulting multi-objective optimization problem
resorts to a number of trade—off optimal solutions. Classical optimization methods can
at best find one solution in a single run, on the other hand evolutionary algorithms can
find multiple optimal solutions in a single run due to their population based search
approach.

Many .engineering applications involve multiple criteria, and recently, the
exploration of Evolutionary Multi-objective Optimization (EMO) techniques has
increased (Coello, 1999). The ideal approach for a multi-objective problem is the one
that optimizes all conflicting objectives simultaneously. Evolutionary algorithms
inherently explore a set of possible solutions simultaneously. This characteristic
enables the search for an entire set of Pareto optimal solutions in a single run.
Additionally, evolutionary algorithms are less susceptible to problem dependent
c;haracteristics,‘ such as the shape of the Pareto front (convex, concave, or even
discontinuous), and the mathematical properties of the search space, whereas these
issues are of concemns for mathematical programming techniques for mathematical
tractability.

Schaffer (1985) proposed first practical approach to multi-criteria optimization
using EAs, Vector Evaluated Genetic Algorithm (VEGA). After that there have been
several other versions of evolutionary algorithms that attempt to generate multiple
non-dominated solutions such as (Kursawe, 1991; Hajela and Lin, 1992). The concept

of pareto-based fitness assignment was first proposed by Goldberg (1989), as a means

198

of assigning equal probability of reproduction to all non-dominated individuals in the
population. Fonseca and Fleming (1993) have proposed a multi-objective genetic
algorithm (MOGA). Srinivas and Deb (1995) proposed NSGA, where a sorting and
fitness assignment procedure based on Goldberg’s version of Pareto ranking is
implemented. Horn et al. (1994) proposed Niched Pareto Genetic Algorithm (NPGA)
using a tournament selection method based on Pareto dominance. Knowles and Corne
(2000) proposed a simple evolution strategy (ES), (1+1)-ES, known as the Pareto
Archived Evolution Strategy (PAES) that keeps a record of limited non-dominated
individuals. The more recent algorithms include the (Strength Pareto Evolutionary
Algorithm) SPEA (Zitzler and Thiele, 1999), NSGA-II (Deb et al., 2002), Pareto-
frontier Differential Evolution (Abbass et al., 2001), and Multi-Objective Differential
Evolution (Xue et al., 2003; Babu and Jehan, 2003; Babu et al., 2005a, 2005b).
Previously, a few researchers (Abbass et al., 2001; Xue et al., 2003; Babu et al.,
2005a, 2005b) studied the extension of differential evolution to multi-objective
optimization problem in continuous domain, but using different approach from that
described in this chapter. In the present study (Angira and Babu, 2005a), NSDE, a
simple extension of DE (where same mutation & crossover scheme is used as in DE,
however the selection criterion is modified as it is being used for solving MOOPs)
and MNSDE, an extension of MDE are proposed and tested on the two test problems.

One test problem is Schaffer’s function and the other is cantilever design problem.

7.2. Multi Objective Optimization Problems (MOOPs)

As the name suggests, a multi objective optimization 'problem deals with more
than one objective function. In most practical decision-making problems multiple

objectives or multiple criteria are evident. Multi-Objective optimization is sometimes

199

referred to as vector optimization, because a vector of objectives, instead of a single
objective, is optimized. General form of the multi-objective optimization problem

(MOOP) is given as follows (Deb, 2001).

Minimize / Maximize Jm(x) m=1,2,...., M,
Subject to g (x) i=12,....,J

hy (x) k=1,2,....,.K;
P <y <V 1=1,2,...... n.

A solution x is a vector of n decision variables: x = (x;, x;...x,,)T. The last set of
constraints are called variable bounds, restricting each decision variable x; to take a
value with a lower limit x'" and an upper x’ bound. These bounds constitute a
decision variable space D, or simply the decision space. Associated with the problem
is J inequality and K equality constraints. The terms g; (x) and Ay (x) are called
constraint functions. The inequality constraints are treated as ‘greater-than-equal-to’
types although a ‘less-than-equal-to’ type inequality constraint must be converted into
a ‘greater-than-equal-to’ type constraint by multiplying the constraint by -1. A
solution x that does not satisfy all of the (J + K) constraints and all of the 2» variable
bounds stated above is called an infeasible solution. On the other hand, if any solution
x satisfies all constraints and variable bounds, it is known as a feasible solution.
Therefore, we realize that in the presence of constraints, the entire decision variable
space D need not be feasible. The set of all feasible solutions is called the feasible
region, of S.

7.2.1. Pareto Optimal Solutions
A multi-objective optimization problem and its global optimal solution(s) can be
defined in many ways. A solution is Pareto-optimal if it is dominated by no other

feasible solution, which means that there exists no other solution that is superior at

200

least in case of one objective function value and equal or superior with respect to the

other objective functions values (Deb, 2001).

7.3. Non-dominated Sorting Differential Evolution (NSDE)

NSDE algorithm is a simple extension of DE for solving multi-objective
optimization problems. The working of NSDE and DE is similar except the selection
operation that is modified in order to solve the multi-objective optimization problems.
The detail of the NSDE algorithm is as follows:

First of all set the set the key parameters, i.e., CR - crossover constant, F - scaling
factor, NP - population size, Max_gen — maximum number of generations of NSDE
algorithm. And then randomly initialize the population points within the bounds of
decision variables. After initialization of population, randomly choose three mutually
different vectors for mutation and crossover operation (as is done in DE algorithm) to
generate trial vector. Evaluate the trial and target vector and perform a dominance
check. If trial vector dominates the target vector, the trial vector is copied into the
population for next generation otherwise target vector is copied into population for
next generation. This process of mutation, crossover, and dominance check is
repeated for specified number of generations. Evaluate and then sort this final
population to obtain the non-dominated solutions. Sorting can be done using any of
the standard approaches reported in Deb (2001). In the present study, naive and slow
approach is used. In this approach, each solution i/ is compared with every other
solution in the population to check if it is dominated by any solution in the
population. If no solution is found to dominate solution 7, it is member of the non-

dominated set otherwise it does not belong the non-dominated set. This is how any

201

other solution in the population can be checked to see if it belongs to the non-

dominated set.

The stopping criteria for the algorithm can be any one of the following conditions:
(a). There is no new solution added to the non-dominated front for a specified
number of generations.
(b).Till the specified number of generations.
However, in this study, the second condition is used as termination criterion. The

pseudo code of NSDE algorithm used in the present study is given below:

Set the values of NSDE parameters D, NP, CR and Max_gen (maximum generations).
_ Initialize all the vectors of the population randomly within the bounds.
fori=1to NP
forj=1toD
Xi; =Lower bound+ random number *(upper bound - lower bound);
End for
End for
Perform mutation, crossover, selection and evaluation of the objective function for trial and target
vector for a specified number of generations.
While (gen < Max_gen)
{fori=1to NP /** first for loop***/
] For each vector X; (target vector), select three distinct vectors X, X and Xc
randomly from the current population other than the vector X;
do
{ r1=random number* NP
r2 = random number * NP
r3 = random number * NP
} While (r1=i) OR (r2=i) OR (r3=i) OR (r1=r2) OR (r2=r3) OR (r1=r3)
Perform mutation and crossover for each target vector X; and create a trial vector, X;.
For binomial crossover: '
{ p = random number
Jrang = int (rand([0,1]* D)+1
forn=1toD
{ if(p<CROrn= jrana)
X1i = Xai+ F (Xoi-Xei)

i)

b else X=Xy
}

Perform selection for each target vector, X, by comparing its function value with that of
the trial vector, X.; . If X.; dominates X; then select X, otherwise select X, for the next
generation population.
If (X.; dominates X
Put X into next generation population
else Put X; into next generation population
} /** End of first for loop***/
} /** End of while loop***/
Evaluate the objective functions for each vector.

fori=1to NP

Cij = functy(). j=1,.., no of objectives

Remove all the dominated solutions using any one of the approaches proposed by

Deb, (2001). In the present study, the naive and slow approach is used.

Print the results (after the stopping criteria is met).
7.3.1. Test Problems
The algorithm is tested on the following two test problems (Deb, 2001). The first
problem is of one dimension while the other is of two dimensions.
Schaffer’s function
Minimize fx)=x
Minimize g (x) = (x-2)
where -1000<x <1000
Cantilever Design Problem
A cantileyer design problem with two decision variables is considered, i.e.,
diameter (d) and length (/). The beam has to carry an end weight load P. the
objectives are minimization of weight (f;) and minimization of end deflection (f3).
The first objective will resort to an optimum solution having the smaller dimensions
of d and 1, so that the overall weight of the beam is minimum. Since the dimensions

are small, the beam will not be adequately rigid and the end deflection of the beam

203

will be large. On the other hand, if the beam is minimized for end deflection, the
dimensions of the beam are expected to be large, thereby making the weight of the
beam large.

Minimize fiand f

2 64P
, and fz(d’1)=5=3E7zd4

where fi(d,l)= pd

Subjectto O <SS

32PI
wd?

o .. is calculated using O max = and the following parameters are used p =

max

7800kg/m’, P=1kN, E =207GPa, S, =300Mpa, &,,, = Smm;

7.3.2. Results and Discussion
7.3.2.1. Schaffer’s function

Various experiments have been carried out in order to test the proposed algorithm
by studying the effect of Max_gen and F & CR for Schaffer’s function.
7.3.2.1.1. Effect of Max_gen

The Pareto optimal front obtained using NSDE algorithm is shown in Fig. 7.1.
The key parameters used are NP = 40, CR = 0.5, F = 0.2, and maximum number of
generations (Max_gen) = 300 for a seed value of 10. It can be seen that maximum
value of fis 4.0 and maximum value of g is 4.0. All other values of fand g will lie
within these values for Pareto optimal solution. Fig. 7.2 shows the effect of Max_gen
on the number of solutions in final Pareto set (VPS) taking NP = 100. It is clear that
wfth increase in Max_gen, NPS also increases and after Max_gen = 200, there is no
significant increase in NPS. Therefore, an appropriate value of Max_gen seems to be

about 200 giving NPS = 99% of initial population, i.e., NP. When ten runs with

204

different seed values are carried out, the value of NPS was found to vary from 95 to

100% with an average of 98%.

100

90

80 -

70 -

NPS

60 -

50

40 1 o

30 x ‘ ‘ ‘
0 50 100 150 200 250 300 !
Max_gen ‘

—

Fig. 7.2. Effect of Max_gen on NPS

205

)

When an execution is done with NP = 400, Max_gen = 300, and other parameters
same as mentioned earlier, NPS is found to be 379 (Fig. 7.3) and at Max_gen = 200,
NPS is found to be 375. This further establishes the fact that an appropriate value of
Max_gen is 200 giving NPS about 94 to 100% of NP. However, an appropriate value
of Max_gen may vary from problem to problem. Higher population size leads to a

better Pareto front in terms of number of choices for the optimal solutions (Fig. 7.3).

0 . .'. OO0 Etutes cenm ammnn
0 0.5 1 15 2 25 3 35 4

f

Fig. 7.3. Pareto optimal front for Schaffer’s function (VP = 400)
7.3.2.1.2. Effect of CRand F
The effect of CR and F is studied using the following settings: NP = 100;
Max_gen = 300, CR = 0.5 if F is varied, and F = 0.5 if CR is varied. Fig. 7.4 shows
the Pareto front when F is fixed at 0.5 and CR is varied in steps of 0.1. It is observed
that CR has no effect on NPS and pareto front. In all the experiments with CR varying
from 0.1 to 1.0, NPS is found to be 99% of NP and exactly same Pareto front is

obtained (Fig. 7.4a). However for a different seed value, the distribution of solutions

on the Pareto front is different (Fig. 7.4b) but NPS is nearly same (98). Also, it is

206

found that F does have little effect on NPS (95 to 99) but the distribution (spread) of
solutions on Pareto front is different for different values of F (Fig. 7.5a, 7.5b) for
same seed value. It is important to note that spread is different not only for different

values of F but also for different seed values.

L J “..“
0 0.5 1 1.5 2 2.5 3 3.5 4

(a) Seed = 10.

«»
S
0 “.“‘M—mo—«.

i 0 0.5 1 1.5 f 2 25 3 3.5 4

—

{b) Seed = 23.

Fig. 7.4. Pareto optimal front for Schaffer’s function for different seed values

207

|

()
1

.

®e
*» ““’“"
T - ; : : S 40400040

0 0.5 1 1.5 2 2.5 3 3.5 4

f

R

(a) Seed=10,F=1.2

35

2.5 -

8 2

1.5 1

0.5 1

(b) Seed=10, F=0.2.

Fig. 7.5. Pareto optimal front for Schaffer’s function for different F values

208

4 g-———— ——eme— — |
3.5 ‘ i
3 |
3 T ‘ i
l !
2.5 . i
o 2 ‘\
1.5 1 \’
IS
1 A ‘uy
L 3 TR
0.5 1 * .oy
0 baa R I 0040 _onn040-
0 0.5 1 1.5 2 2.5 3 3.5 4
[
(a) Seed =10, F=1.2
4
3.5
318
L 3
2.5 - \
% 9 *
1.5 - ‘0\
1 1 ¢ . - |
1 "OQ. |
0.5 e |
0 . . . Mitad *0 40 & nomnsne
0 0.5 1 1.5 2 2.5 3 3.5 4
f

(b) Seed =10, F=0.2.

Fig. 7.5. Pareto optimal front for Schaffer’s function for different F values

208

7.3.2.2. Cantilever design problem
7.3.2.2.1. Effect of Max_gen

The Pareto optimal front is shown in Fig. 7.6 for the following setting of

parameters: population size (VP) = 100, CR = 0.5, F=0.5, seed = 11, and Max_gen =

500.
2.5 - - .
|
24 |
3 .
Ei5- .
; 3
Q
g K
a s
0.5 - *
\’M
0 $4040 ¢ oo * o
0 0.5 1 1.5 2 2.5 3 3.5
Weight (kg)

Fig. 7.6. Pareto optimal front for cantilever design problem

It can be seen that the maximum value of weight (kg) is 3.04 and the maximum
value of Deflection (mm) is 2.06 as compared to the literature values of 3.06 & 2.04
respectively. All other values of weight and deflection will lie within these values of
Pareto optimal solution. Fig. 7.7 shows the effect of Max_gen on the number of
solutions in final Pareto set (NVPS). It is clear that with increase in Max_gen, NPS also
increases and after Max_gen = 300, there is no significant increase in NPS but a good
shape of Pareto optimal front is found after 500 generations. Therefore, an appropriate
value of Max_gen seems to be about 500 giving NPS = 58% of NP. When ten runs

with different seed values are carried out, the value of NPS was found to vary from 50

209

£

to 58% with an average of 54%. When an experiment is done with NP = 400 and
keeping other parameters same as mentioned earlier, NPS is found to be 34.5% as
against 54% for NP = 100. At Max_gen = 700 and 1000, NPS is found to be 39% and
45% respectively. This indicates that increase in NP does not lead to a corresponding
increase in NPS if number of Max_gen is held constant. This is not similar to that
found for Schaffer’s function. Higher population size needs higher number of
generations to get a better Pareto front in terms of both quantity (NPS) and quality

(spread & shape, i.e., global Pareto front).

70
60 - . . +
. + *
50
*
o 01, ¢
)
= 304 °
201
4
10
0 T T T T
0 200 400 600 800 1000
Max_gen
Fig. 7.7. Effect of Max_gen on NPS (cantilever design problem)
7.3.2.2.2. Effect of CR &F

First the effect of F is studied using CR = 0.5, NP = 100, Max_gen = 500, seed =
10. Fig. 7.8 shows the Pareto optimal solution obtained for two different values of F*
(0.1 and 0.5). It is clear that the value of F not only affects the NPS but also the

distribution (spread) of Pareto optimal solutions on Pareto front. It is found that the

values of NPS are 47 and 58 for F = 0.1 and 0.5 respectively. NPS is found to vary

210

from 47 to 58% as shown in Fig. 7.9. As is evident from Fig. 7.9, F = 0.5 seems to be

good giving highest NPS and good distribution of solutions on Pareto front (Fig.

7.8b).
Y —— B ——
]
2 $
_ |
£
- 1.5-
= |
= .
= .
9 .
= 1 A
%]
a
| \
0.5 .
S
oo *
0 em 4 000 o
0 0.5 1 1.5 2 2.5 3
Weight (kg)
(a). F=0.1
2.5
27 t
2 %
L J
é 1.5 n *
S K
—— L
) L)
n *
’0
0.5 1 .,
\,““’
O e ® Gon . s o
0 0.5 1 1.5 2 2.5 3
| Weight (kg) |
(b). F=0.5

Fig. 7.8. Pareto optimal front for different F values (cantilever design problem)

211

NPS
.

42 L
40 T T T T T T T T T T .
01 02 03 04 05 06 07 08 09 1 L1 12

Scaling Factor (F)

Fig. 7.9. Effect of scaling factor (F) on NVPS (cantilever design problem)

The change in maximum and minimum values of objective functions with F is
shown in Table-7.1. This gives information about how sensitive the extreme values of
objective functions are as value of F changes. And the variation is significant in the
values of Weight (max) & Deflection (max) for F= 0.5 and 0.8.

Table-7.1. Variation of objective function values (min & max) with F

F Weight (kg) Deflection (mm)
Min Max Min Max
0.1 0.4412 2.8218 0.0500 2.0285
0.5 0.4426 2.7471 0.0526 2.0169
0.8 0.4668 2.9966 0.0499 1.8470
1.2 0.4672 2.9657 0.0490 1.9456

To study the effect of CR, the parameter setting is as follows: F = 0.5, NP = 100,
Max_gen = 500, seed = 10. The CR is changed in steps of 0.1 from 0.1 to 1.0. Fig.
7.10a, 7.10b, and 7.10c show the Pareto optimal solutions for CR = 0.1, 0.5, and 1.0
respectively. Fig. 7.11 shows the variation of NPS with CR. It is clear from Fig. 7.10
that higher value of CR (= 1.0) results in good shape, i.e., global Pareto front. As

shown in Fig. 7.10a, some of the solutions are not lying on the Pareto front for lower

212

3

value of CR i.e. 0.1 & 0.5. Also, NPS increases with CR (Fig. 7.11). This indicates

that for a given Max_gen, a higher value of CR = 1.0 works better.

B Y - -
. 21 ¢ B
E * ¥
E 15{ ¥
c . i
2 »

E N |
3 * i
Q 0.5' “‘
See
0 . A X R TPV
0 0.5 1 1.5 2 2.5 3 3.5
Weight (kg)
(). CR=0.1
2.5
z 2 1]

E 3
= 151 A
2
i\

[-*)
2 \,
0.5 1 *
0 . M’.’m’.’ *e0e0e |
0 0.5 1 1.5 2 2.5 3
Weight (kg)
(b).CR=0.5
2.5
2 .

= |

E 1.5 " ‘

£ >

s 1 *

s \ Y

a 0.5 0\ |

0 WMo t0e 2 o ! :
0 0.5 1 1.5 2 25 3 35
Weight (kg) |

(c). CR=1.0.

Fig. 7.10. Pareto optimal fronts for different CR values (cantilever design problem)

213

4

6 |
60 . MR A
55
50 . ?
i
0] o |
35 -
30 1
25 -
20 . . . S . .]
01 02 03 04 05 06 07 08 09 1

NPS

CR

Fig. 7.11. Effect of CR on NPS (cantilever design problem)

The change in maximum and minimum values of objective functions with F is
shown in Table-7.2. This is clear from Table-7.2 that extreme values of the objective

functions change with CR. However the variation is small as compared to effect of F

(Table-7.1).

Table-7.2. Variation of objective function values (min & max) with CR

CR Weight (kg) Deflection (mm)

Min Max Min Max
0.1 0.4465 2.9703 0.0447 2.0723
0.5 0.4430 2.7960 0.0531 2.0095
1.0 0.4451 2.9103 0.0469 1.9982

7.3.3. Conclusions

Two problems, one standard test problem and cantilever design problem are
solved using proposed NSDE algorithm. The results indicate that NSDE is able to
locate the global Pareto front for two test problems studied. The effects of various
parameters of NSDE, i.e., Max_gen, CR, and F are discussed & analyzed. It is found

that for both the test problems an increase in Max_gen increases the NPS up to a

214

certain value, and after that there is no significance increase in NPS. This certain
value is problem dependent and is found to be different for the two problems studied.
For Schaffer’s function it is about 200, while for cantilever design problem it is about
500. The effect of CR is significant in case of cantilever design problem while it does
not affect the Schaffer’s function. A high value of CR (= 1) is found suitable for both
the problems. It is important to note that F not only affects the NPS but also the
distribution of solutions in Pareto front for both the problems. A value of F (= 0.5) is

found suitable for both the problems.

7.4. Modified Non-Dominated Sorting Differential Evolution

(MNSDE)

As we have seen already in Chapter-3 and Chapter-4 that MDE took less
computational time due to the use of single array of population. In this chapter, MDE
is extended for solving multi-objective optimization problems and the extended
algorithm is called as MNSDE (Modified Non-dominated Sorting Differential
Evolution). MNSDE is similar to NSDE except for the selection criterion. Also,
MNSDE maintains only one set of population as against two sets in NSDE. The

. selection criterion used in MNSDE is different from that of NSDE and is as follows:

After mutation & crossover the trial solution is generated. Selection is made
between this trial solution and target solution. If trial solution dominates the target
solution, then the target solution is replaced by the trial solution in the population of
current generation itself otherwise the target solution is kept as it is. The remaining
procedure is same as that of NSDE. The use of single array of population in MNSDE
as against two in NSDE ma); lead to reduction in memory and computational efforts

required as is found for MDE.

215

7.4.1. Results & Discussion

7.4.1.1. Schaffer’s function

Many experiments have been carried out in order to test the proposed algorithm
by studying the effect of Max_gen and F & CR for Schaffer’s function. Fig. 7.12
shows the Pareto front using the two techniques, i.e., NSDE, and MNSDE.
Parameters used are same in both the techniques except for the Max_gen. For
MNSDE, Max_gen is 100, while it is 200 for NSDE. This is done in order to examine
the effect of use of single array instead of double in NSDE. It is clear that both
MNSDE & NSDE are able locate global Pareto optimal front but with different
spread. It is to be noted that even though the Max_gen used in MNSDE is half of that

used in NSDE, it is able to locate the global Pareto front.

44 o}
g
3+]
1 !
] = MNSDE
0o 2] " . NSDE
7 ta
14 '-.
..l
'o..-.. |
0-— ¢ n'-uooum
T 4) v 1 | 1 -
0 1 2 3 4
[

Fig. 7.12. Pareto front using MNSDE & NSDE (Schaffer’s function)

216

7.4.1.1.1. Effect of Max_gen on MNSDE & its Comparison with NSDE

Fig. 7.13 shows the effect of Max_gen on MNSDE and its comparison with that
of NSDE. From Fig. 7.13, it is clear that effect of Max_gen is same on the two
techniques. Key parameters used are F = 0.5, CR = 0.5, NP = 100. However, there is
no significant change in NPS after Max_gen = 100 for MNSDE while same trend is
observed for NSDE but after Max_gen = 200. Also maximum NPS obtained using

NSDE is 99 as compared to 96 using MNSDE.

 NPS(NSDE) |
@ NPS (MNSDE)
100
B m B 8 4 3 3
90 -
¢
80 -
o 707
= o
60
50 -
401 o
30 L) 1] L L) T !
0 50 100 150 200 250 300;
Max_gen i

Fig. 7.13. Effect of Max_gen on NPS using MNSDE & NSDE (Schaffer’s function)

7.4.1.1.2. Effect of CR on MNSDE & its Comparison with NSDE

Fig. 7.14 shows the effect of CR on the performance of MNSDE. Fig. 7.15 shows
the effect of seed and its comparison with NSDE. Keeping F = 0.5, NP = 100, and
seed = 10, the CR value is changed from 0.1 to 1.0 in steps of 0.1. The parameters
used are same for MNSDE & NSDE except Max_gen =200 & 300 respectively. The

effect of ¢hange in CR value on MNSDE is similar to that found for NSDE, i.e., there

217

is no effect on NPS and Pareto front obtained (Fig.7.14). Also, different seed values
give different spread of Pareto front (Fig. 7.15a & 7.15b). However as compared to
NSDE, the spread is different.

Table-7.3 shows the effect of seed value of on maximum objective function value.
It is observed that for the two seed value maximum objective function values are
almost same as was expected. It is also seen that NPS is slightly affected (95 & 98) in
case of MNSDE but it is nearly same (98 & 99) for NSDE.

Table-7.3. Comparison of maximum function values for two different seeds

Seed NPS f(max) £ (max)
(NSDE/MNSDE MNSDE NSDE MNSDE NSDE
10 99/98 3.9290 3.9949 3.9972 4.0137
23 98/95 4.0016 4.0086 3.9928 3.9981
¢ CR=0.1 aCR=0.3 ACR=05
XCR=0.7 xCR=0.9 eCR=1.0
4 l
3.5 ‘
3§
25| ¥ |
% |
o 2 " :
. r
n
- !
1 - » b
. |
05 7 .. i R
" I
it B .
0 , . . , ,
0 0.5 1 1.5 2 2.5 3 3.5 4
] _

Fig. 7.14. Effect of CR using MNSDE (Schaffer's function)

218

4.0

35
3.0%
1%
2.5
: "% = MNSDE
2.0 « NSDE
1.5 1 %‘%
1.0 -
1 b
0.5 “"l‘
0.0- — — "'Ulm?_w
0.0 05 1.5 20 25 30 35 40
f
(a). Seed =10
4
3- %
[5}
2 = MNSDE
7- « NSDE
1_ *,
a
%man
0+ N SCrmmrn wr
0 2 3 4
f
(b). Seed =23

Fig. 7.15. Effect of seed for Schaffer’s function using MNSDE and NSDE

219

7.4.1.1.3. Effect of F on MNSDE & its Comparison with NSDE

It is found that F not only affects NPS, but also the spread as found in NSDE too.
The variation of NPS with F is shown in Fig. 7.16 for both MNSDE & NSDE. It is
clear that the effect of F on MNSDE is more significant than that on NSDE for the
same seed value. In case of MNSDE, NPS varies from 88 to 99, while for NSDE it
varies from 95 to 99. Fig. 7.17 shows the comparison of MNSDE & NSDE for F =

0.2. Both the techniques are able to find out global Pareto front but spread is different.

100+
99 e = = = = » =
98 [] . ° .
97 e] .
96 s o =m
95 . » °
94
93"
92 = NSDE

91 1
90- * MNSDE

89-

88+)

87 v T v T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2

F

NPS

Fig. 7.16. Effect of F on NPS for Schaffer’s function (MNSDE and NSDE)

1
4-
31 = MNSDE
i * NSDE
% 2])
y ?
14 \'q.
| X,
, *"'Q.n
0- tm&nmg.gg
T d T v T v T ' V
0 1 2 3 4

f

Fig. 7.17. Comparison of MNSDE and NSDE at seed =10 and F = 0.2

220

7.4.1.2. Cantilever design Problem

Various experiments have been carried out in order to test the proposed algorithm
by studying the effect of Max_gen and F & CR for Schaffer’s function.
7.4.1.2.1. Effect of Max_gen on MNSDE & its Comparison with NSDE

Fig. 7.18 shows the effect of Max_gen on the performance of MNSDE and its
comparison with that of NSDE. The key parameters used are F = 0.5, CR = 0.5, NP
=100. It is seen from Fig. 7.18 that there is not significant difference in NPS till
Max_gen = 500 for the two techniques. And after Max_gen = 500, NPS in case of
NSDE becomes almost constant with further increase in Max_gen. But in the case of
MNSDE, it increases even after Max_gen = 500 and becomes nearly constant after
Max_gen = 900. NPS is more in the case of MNSDE than for NSDE for higher values
of Max_gen (>500). This is different from what is observed in the result with

Schaffer’ function.

+ NPS iMNSDE)
a NPS (NSDE)
80 '
70 . i
* |
60 - o a B ¥
ha) v
*
50 - .
i A
% 40 - e !
301 °¢
L 4
204 %
g |
10 4 _ !
i 0 ' l ' l I ‘ ' ‘ ! .
* 0O 100 200 300 400 500 600 700 800 900 1000.
Max_gen

]

Fig. 7.18. Effect of Max_gen on NPS for cantitever design problem (MNSDE and NSDE)

221

7.4.1.2.2. Effect of F on MNSDE & its Comparison with NSDE

Fig. 7.19 shows the effect of F on NPS using MNSDE and its comparison with
that using NSDE. From Fig. 7.19 it is seen that for MNSDE, NPS is high for lower
value of F while a value of F = 0.5 gives highest NPS for NSDE. This is in agreement
with what is observed in Schaffer’s function. It is interesting to note that at F' = 0.5,
NPS is same for both the techniques. Hence this value can be used for further
comparison of Pareto front obtained in the two algorithms. It is found that F not only
affects the NPS but also the spread of Pareto front. Also, the spread of Pareto front is
different for different seed value. Fig. 7.20 shows the Pareto front obtained using the
two algorithms for F = 0.5. Although the spread is different yet both the algorithms

are able to locate the global Pareto front.

+ NPS (MNSDE)
a NPS(NSDE)
65
*
60 ¢
*
]
a L J
55 1 *
‘,f .
o]
2 Q . ¢
50 1 |
B |
2 o |
by} '
. ;
45 - '
N
40 i - '
0.1 0.3 0.5 0.7 0.9 1.1 !
F

Fig. 7.19. Effect of F on NPS for cantilever design Problem using MNSDE and NSDE (CR =0.5)

222

204 ¢
a

154
E : : = MNSDE
E @
.g 1.04 0‘ + NSDE
a 0.5- b\hm

0.04 h...dm" ‘O mepED mm

0.5 10 15 20 25 30
Weight (kg)

Fig. 7.20. Pareto front for cantilever design problem using MNSDE and NSDE

7.4.1.2.3. Effect of CR on MNSDE & its Comparison with NSDE
The effect of CR on NPS (for both MNSDE & NSDE) for cantilever design
problem is significant as compared to Schaffer’s function. The variation of NPS with
CR is shown in Fig. 7.21. Best value of CR seems to be 0.7 for MNSDE and 1.0 for
NSDE. However, the value of NPS is nearly same for CR = 0.9 & 1.0 for both the

algorithms.

Fig. 7.22 shows the Pareto fronts for different CR values using MNSDE. It is
evident that as CR value is increased for given F' & Max_gen, the shape of the Pareto
front gets improved. In other words, it is closest to global Pareto front for CR = 1.0
(Fig. 7.22c) rather than for lower CR values (Fig. 7.22a & 7.22b). This is similar to
what is observed with the results using NSDE. The effect of CR value on the
maximum value of objective function and NPS is shown in Table-7.4. Also a

comparison is made with the results obtained using NSDE.

223

+ NPS (MNSDE)
a NPS(NSDE)

70— |
. 651 .
i *
. . ;
60 1 o :
3 . KA : ;
55 - * L
a :
n 3 i
a. 50 - . . i
<
45 -
40 - 2
35 1
¥
30 f Ll i 1 T 1 1
0.1 02 03 04 05 06 07 08 1
CR
Fig. 7.21. Effect of CR on NPS for cantilever design problem (MNSDE and NSDE)
Table-7.4. Effect of CR on maximum value* of objective functions
CR NPS Weight (max) Deflection (max)
(NSDE/MNSDE) MNSDE NSDE MNSDE NSDE
0.1 33/32 2.6789 2.9703 2.0929 2.0723
0.5 58/58 2.9683 2.7960 2.0173 2.0095
1.0 62/63 2.9591 29103 1.8434 1.9982

*Literature values for maximum Deflection = 2.04, and maximum Weight = 3.06

It is clear from Table-7.4 that for both MNSDE and NSDE, the NPS increases
with CR and also the NPS value is same. At CR value of 0.5, NPS is almost double
the value at CR = 0.1. Further increase in CR dose not increases NPS significantly. At

CR = 0.5, the MNSDE is closer to literature value for maximum deflection and weight

rather than NSDE.

224

T T
)’ |
: 21 * !
¥
i _E, 1.5 1 *)
[
| o
' 8 1 $
3 .
e -
0.5 ¢
: \0..
0 . had haad 0_ LX)
0 0.5 1 15 2 25 3
Weight (kg)
(a). CR=0.1
25
2 .
£ $
E 157
c .
2
5 X
o 1
a 0~
0.5 - Q..
nd W
0 . ' _ NN 404 900 -
0 0.5 1 15 2 25 3 35
Weight (kg)
(b). CR=05 -
2
1.8 - :
16 4 R
E 1.4 h
E 121 ;3
§ 1l 3
& 081 3
8 06 \.
0.4 \
! 0.2 gy
n 0 . . Tt s
0 0.5 1 15 2 25 3 35 |
i
Weight (kg) !
(c).CR=1.0

Fig. 7.22. Effect of CR on shape of Pareto front for cantilever design problem (MNSDE)

225

7.4.2. Conclusions

The two test problems are solved using MNSDE and results are also compared
with those obtained using NSDE. The effect of various parameters (Max_gen, CR,
and F) is discussed and analyzed. It is observed that NPS increases with Max_gen up
to a certain value which is problem dependent. For Schaffer’s function, it is about 100
while for cantilever design problem it is about 900.The effect of CR is significant in
case of cantilever design problem. A high value of CR (= 0.7) is found suitable. It is
important to note that scaling factor not only affects the NPS but also the shape and

spread of Pareto optimal front.

7.5. Overall Conclusions

7.5.1. Schaffer’s function

The effect of Max_gen is same for both the algorithms. CR does not affect the
NPS as well as shape & spread of Pareto front for given value of F, Max_gen and
seed. This is found for both the algorithms. Effect of F on NPS is more pronounced in
MNSDE as compared to NSDE. However for both the algorithms, the spread of
Pareto front is different for different values of F for same seed value.
7.5.2. Cantilever Design Problem

In both the algorithms, NPS increases with Max_gen till a certa'in value. But this
certain value is problem dependent. Also, in the two algorithms, F not only affects the
spread but also the NPS. Lower value of F (0.1, 0.2, and 0.3) is found to give higher
NPS for MNSDE while for NSDE, best value is 0.5. It is found that the parameter CR
not only affects the NPS but also the shape and spread of Pareto front, for the two

algorithms. Use of high CR value (= 1.0) is found to beneficial in the two algorithms.

226

It is important to note that even though all controlling parameters are same still the
spread of Pareto front can be different in the two algorithms.

Based on the above discussion, it is recommended to use a high CR value for both
NSDE & MNSDE and lower value of F for MNSDE and a value of 0.5 for NSDE.

Max_gen is found to be problem dependent.

227

CHAPTER

8

CONCLUDING REMARKS

This study demonstrates the successful application of an evolutionary
computation method, i.e., Differential Evolution (DE) to benchmark test functions
followed by the various types of optimization problems e.g. linear programming
problem, non-linear programming problems, mixed integer non-linear programming
problems (process synthesis and design), dynamic optimization problem ge.nerally
encountered in chemical engineering. Also, the DE is extended to solve multi-
objective optimization. In this chapter first a brief summary of the present work is
presented followed by conclusions, major contributions, and future scope for

research.

8.1. Summary

8.1.1. Introduction
In 1980, optimization of engineering problems beyond linear programming was

often viewed as a curious novelty without much benefit. Now optimization has

228

[

become a major enabling area in process systems engineering. The optimization
applications are essential in all areas of process systems engineering including design,
identification, control, estimation, scheduling and planning. It has evolved from a
methodology of academic interest into a technology that has made, and continues to
make, significant impact in the industry.

As we know, most of the traditional optimization techniques based on gradient
methods have the possibility of getting trapped at local optimum depending upon the
degree of non-linearity and the value of initial guess. Hence, these traditional
optimization techniques do not ensure global optimum and also have limited
applications. Now-a-days, non-traditional search and optimization methods (also
called Evolutionary Algorithms) that often rely on physical analogies in order to
generate trial points that mimic the approach to an equilibrium condition, are
becoming popular. Evolutionary Algorithms (EAs) have been widely used in science
and engineering for solving complex problems. An important goal of research on
evolutionary algorithms is to understand the class of problems for which EAs are
most suited, and, in particular, the class of problems on which they out perform other
search algorithms. In the present study, DE, an evolutionary optimization technique
(which is simple, fast, and robust) is chosen for application to chemical engineering
problems. Further the modifications of original DE are proposed and implemented.
Modifications lead to the improvement in the performance of DE.

8.1.2. Comparison of DE with GA

-A comparison of GA and DE is made on the basis of type of representation used
for decision variables, crossover and mutation operations, and the sequence/order of
operators used. Further the application of DE to Himmelblau function showed that

performance of DE is much better than that of GA. And DE has great potential and

229

can be applied to advantage in all the highly non-linear and complex engineering
problems.
8.1.3. Modified Differential Evolution (MDE)

Application of DE to various test functions and selected chemical processes
further proves the fact that DE is fast and robust. When applied to the problem of
optimal design of ammonia synthesis reactor, the new optimum reactor length and
hence objective function value (profit) is obtained. Also, the results indicate that the
profiles of temperatures and flow rate are smooth and there is no reverse reaction
effect as reported in Upreti and Deb (1997).

DE takes large computational time for problems involving computationally
expensive objective functions. In order to reduce the computational efforts, a
modified DE (MDE) and two new strategies are proposed and tested on several
benchmark test functions followed by nonlinear chemical processes. Also seven test
problems on process synthesis and design have been solved using DE and MDE in the
present work. Performance of various algorithms (e.g. GA, M-SIMPSA, M-SIMPSA-
pen, ES (u+4), DE, and MDE) is compared in terms of number of function
evaluations (speed) and number of experiments cbnverged to global optimum
(robustness). Also, the two approaches for handling binary/discrete variables along
with two methods for handling bound violations are studied and compared. It is
important to note that for problems where global optimum is located on the bound of
decision variables, forced bound method outperform the method without forcing the
bound (e.g. Problem-7 in Chapter-4). However for problems where local optimum is
located on the bound of decision variables, the method without forcing the bound is
found to be robust (e.g. Problem-3 in Chapter-4). Also, the Approach-1 for handling

binary variables is found to be better than that of Approach-2. ThlSlS because of

230

addition of constraints (binary or discrete variable is modeled as continuous variable)
and addftion of nonconvexities to the problem in case of Approach-2. MDE
outperform all other algorithms for process synthesis and design problems.

8.1.4. Hybrid Differential Evolution (HDE)

Search space for general optimization problem can be divided into several convex
regions and each region has a local optima. Classical gradient-based optimization
methods show better performance than evolutionary algorithms (EAs) in finding the
minimum of a convex region. However, they are not good at finding the global
optima of the problem with multiple local optima. This drawback could be overcome
by using EA in combination with classical gradient method. Hence a hybrid
differential evolution (HDE) algorithm is proposed and tested on several benchmark
test functions and further evaluated for selected nonlinear chemical engineering
problems. This new method is a hybrid of DE and quasi-Newton method. A
comparison of HDE with DE is made in terms of CPU-time, AAD, and success rate.
It is found .that the two algorithms (viz., DE and HDE) are reliable in locating the
global optima of the problems studied. The HDE took less CPU-time as compared to
DE. Also, HDE located the global optimum with high accuracy (very low AAD
values) as compared to DE. Overall, the performance of HDE is found to be better
than that of DE. Especially, for high dimension problems, the performance of HDE is
significantly betfer than that of DE. HDE is also compared with other algorithms
reported in literature such as ECTS, TS-QN, and GA.

8.1.5. New Strategies of DE

In the present work, two new strategies have been proposed and their performance

is evaluated using two test functions and three nonlinear chemical engineering

problems. Proposed strategies are tuned hopefully to their best control parameters.

231

Using these tuned control parameters, three selected nonlinear chemical engineering
problems are solved. It is found that like DE and MDE, NS-1 and NS-2 also take less
computational time for forced bound method as compared to method without forcing
the bound. Also, none of the methods is able to locate the global optimum using
method without forcing the bound for the MPBP problem. NS-1 is found to be
computationally efficient for the dynamic optimization of a batch reactor and RND
problem as compared to NS-2. NS-2 is found to take least CPU-time for MPBP
problem while MDE is found computationally efficient for RND problem. For RND
problem NS-2 is found to be robust over a wide range of key parameters as compared
to other methods (DE, MDE, and NS-1). Overall, the proposed strategies (NS-1 and
NS-2) are found to be competitive with DE and MDE algorithms.
8.1.6. Extension of DE and MDE for MOOPs

DE and MDE are extended for solving multi-objective optimization problems.
The extended algorithms are named as NSDE and MNSDE. Two problems, one
standard test problem and cantilever design problem are solved using the proposed
algorithms. The results indicate that NSDE is able to locate the global Pareto front for
two test problems studied. The effects of key parameters of NSDE and MNSDE, i.e.,
Max_gen, CR, and F are discussed and analyzed. It is found that for both the test
problems an increase in Max_gen increases the NPS up to a certain value, and after
that there is no significance increase in NPS. This certain value is problem dependent
and is found to be different for the two problems studied. For Schaffer’s function it is
about 200, while for cantilever design problem it is about 500 in case of NSDE while
it is 100 and 900 respectively for Schaffer’s function and cantilever design problem
using MNSDE. The effect of CR is significant in case of cantilever design problem

while it does not affect the Schaffer’s function. A high value of CR (= 1) is found

232

Using these tuned control parameters, three selected nonlinear chemical engineering
problems are solved. It is found that like DE and MDE, NS-1 and NS-2 also take less
computational time for forced bound method as compared to method without forcing
the bound. Also, none of the methods is able to locate the global optimum using
method without forcing the bound for the MPBP problem. NS-1 is found to be
computationally efficient for the dynamic optimization of a batch reactor and RND
problem as compared to NS-2. NS-2 is found to take least CPU-time for MPBP
problem while MDE is found computationally efficient for RND problem. For RND
problem NS-2 is found to be robust over a wide range of key parameters as compared
to other methods (DE, MDE, and NS-1). Overall, the proposed strategies (NS-1 and
NS-2) are found to be competitive with DE and MDE algorithms.
8.1.6. Extension of DE and MDE for MOOPs

DE and MDE are extended for solving multi-objective optimization problems.
The extended algorithms are named as NSDE and MNSDE. Two problems, one
standard test problem and cantilever design problem are solved using the proposed
algorithms. The results indicate that NSDE is able to locate the global Pareto front for
two test problems studied. The effects of key parameters of NSDE and MNSDE, i.e.,
Max_gen, CR, and F are discussed and analyzed. It is found that for both the test
problems an increase in Max_gen increases the NPS up to a certain value, and after
that there is no significance increase in NPS. This certain value is problem dependent
and is found to be different for the two problems studied. For Schaffer’s function it is
about 200, while for cantilever design problem it is about 500 in case of NSDE while
it is 100 and 900 respectively for Schaffer’s function and cantilever design problem
using MNSDE. The effect of CR is significant in case of cantilever design problem

while it does not affect the Schaffer’s function. A high value of CR (= 1) is found

232

suitable for both the problems. It is important to note that £ not only affects the NPS
but also the distribution of solutions in Pareto front for both the problems. It is
recommended to use a high CR value for both NSDE & MNSDE and lower value of
F for MNSDE and a value of 0.5 for NSDE. Max_gen is found to be problem

dependent.

8.2. Conclusions

Based on the above discussion the following conclusions are drawn:

1. Performance of DE is found to be better than simple GA.

2. DE is successfully applied to various benchmark test functions and nonlinear
chemical engineering problems.

3. In case of optimal design of ammonia synthesis reactor, new value of
optimum reactor length and profit function is found. Also, a possible error in
the NAG routine is found.

4. A Modification in original DE (MDE) is proposed and tested on several test
functions and nonlinear chemical processes. It is found that the performance
of MDE is better than that of DE.

5. Further the MDE is tested on several test problems on process synthesis and
design. The performance of MDE is compared with various other evolutionary
methods such as Genetic algorithm, Evolution strategies, MINLP Simplex
simulated annealing (M-SIMPSA) with or without penalty. It is found that
performance of MDE is better than that of other methods.

6. A hybrid differential evolution (HDE) is proposed and tested on several

benchmark test functions followed by nonlinear chemical processes. HDE is

233

8.3.

found to take less computational time. Also, it is able to locate the global

optimum with a high accuracy better than DE.

. Also, two new strategies (NS-1 and NS-2) are proposed and tested on several

benchmark test functions and difficult non-linear chemical engineering
problems. NS-2 is found to be robust over the large range of key parameters.
NS-1 shows a significant saving in computational time for problems having

computationally expensive objective function.

. Further a simple extension of DE and MDE algorithms for solving multi-

objective optimization problems is proposed and tested on two benchmark test

functions. Key parameters are tuned for these two test problems.

. The proposed new evolutionary algorithms (MDE and HDE), new strategies

of DE (NS-1 and NS-2), and new evolutionary multi-objective optimization
algorithms (NSDE and MNSDE) are very useful in solving highly complex
real world single and multi-objective optimiza.tion problems. And the
performance of all these newly developed algorithms in this study is found to
outperform the existing evolutionary algorithms.

A}

Major Contributions

. Application of DE to various types of chemical engineering problems, i.e.,

linear programming problem, nonlinear programming problems, mixed integer

nonlinear programming problems, dynamic optimization problem etc.

. A new approach for handling binary variable is proposed and tested.

. New results are obtained for Ammonia synthesis reactor problem. A possible

error in the old NAG routine is identified.

234

.

8.4.

A modified differential evolution (MDE) is proposed and evaluated for
various types of problems encountered in chemical engineering.

A better solution (possibly global optimum) is obtained for isothermal CSTR
design, Alkylation process optimization, and Fuel allocation in power plant
problems.

A hybrid DE is proposed and evaluated.

Two new strategies are proposed and evaluated their performances on difficult
nonlinear problems.

An extension of DE and MDE for solving the multi-objective optimization
problems and tuning of key parameters of NSDE and MNSDE using two test

problems.

Future Scope for Research

. The idea of MDE can be extended to other DE strategies.

Application of DE and MDE to complex problems involving CFD
simulations.

Application of HDE and two new strategies to other branches of engineering
and comparison of MDE and HDE.

An improvement in MDE, HDE, and two new strategies to further meet the
demand of reducing the computational efforts particularly for the problems
involving time consuming simulation for evaluation of objective function.
Extensive analysis, the comparison of performance with other techniques, and
application of NSDE and MNSDE not only to chemical engineeﬁng problems

but also to other branches of engineering.

235

8

8.4.

A modified differential evolution (MDE) is proposed and evaluated for
various types of problems encountered in chemical engineering.

A better solution (possibly global optimum) is obtained for isothermal CSTR
design, Alkylation process optimization, and Fuel allocation in power plant
problems.

A hybrid DE is proposed and evaluated.

Two new strategies are proposed and evaluated their performances on difficult
nonlinear problems.

An extension of DE and MDE for solving the multi-objective optimization
problems and tuning of key parameters of NSDE and MNSDE using two test

problems.

Future Scope for Research

The idea of MDE can be extended to other DE strategies.

Application of DE and MDE to complex problems involving CFD
simulations.

Application of HDE and two new strategies to other branches of engineering
and comparison of MDE and HDE.

An improvement in MDE, HDE, and two new strategies to further meet the
demand of reducing the computational efforts particularly for the problems
involving time consuming simulation for evaluation of objective function.
Extensive analysis, the comparison of performance with other techniques, and
application of NSDE and MNSDE not only to chemical engineeﬁng problems

but also to other branches of engineering.

235

REFERENCES

Abbass, H. A., Sarkar, R., and Newton, C. (2001). PDE: A Pareto-frontier differential
evolution approach for multi-objective optimization problems. Proceedings of
IEEE congress on Evolutionary Computation, 971-978.

Adjiman, C. S., Dallwig, S., Floudas, C. A., and Neumaier, A. (1998a). A global
optimization method, aBB, for general twice-differentiable constrained NLPs — L.
Theoretical advances. Computers & Chemical Engineering, 22 (9), 1137-1158.

Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (1998b). A global optimization
method, oBB, for general twice-differentiable constrained NLPs - IL
Implementation and computational results. Computers & Chemical Engineering,
22 (9), 1159-1179.

Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (2000). Global optimization of
mixed integer nonlinear problems. AIChE Journal, 46 (9), 1769-1797. ’

Adjiman, C. S., Androulakis, I. P., and Floudas, C. A. (1997). Global optimization of
MINLP problems in process synthesis and design. Computers & Chemical
Engineering, 21 (Suppl.), S445-5450.

Al-Khayyal, F. A. (1992). Generalized bilinear programming. Part 1. Models,

applications and linear programming relaxation. _Europeah Journal of Operations
Research, 60, 306 — 314.

236

Al-Khayyal, F. A. and Falk, J. E. (1983). Jointly constrained biconvex programming.
Mathematics of Operations Research, 8,273 - 286.

Androulakis, I. P. and Venkatasubramanian, V. (1991). A genetic algorithm
framework for process design and optimization. Computers & Chemical
Engineering, 15(4), 217-228.

Angira, R. and Babu, B. V. (2005a). Non-dominated Sorting Differential Evolution
(NSDE): An Extension of Differential Evolution for Multi-objective
Optimization. Accepted and to be presented at the 2" Indian International
Conference on Artificial Intelligence (IICAI-2005), December 20-22, Pune, India.

Angira, R. and Babu, B. V. (2005b). Optimization of Non-linear chemical processes
using Modified Differential Evolution (MDE). Accepted and to be presented at
the 2" Indian International Conference on Artificial Intelligence (IICAI-05),
Pune, India, December 20-22.

Ahgira, R. and Babu, B. V. (2005¢c). Process Synthesis and Design using Modified
Differential Evolution (MDE). To be presented at International Symposium &
58th Annual Session of IIChE (CHEMCON-2005), December 14 — 17, New
Delhi.

Angira, R. and Babu, B. V. (2005d). Simulation and Optimal Design of Ammonia
Synthesis Reactor. Communicated. Chemical Engineering Research and Design.

Angira, R. and Babu, B. V. (2003). Evolutionary computation for global optimization
of non-linear chemical engineering processes. Proceedings of International
symposium on process systems engineering & control (ISPSEC '03)-for
productivity enhancement through design and optimization, 87-91, IIT-Bombay,
Mumbai, India.

Annable, D. (1952). Application of the Temkin Kinetic Equation to Ammonia
Synthesis in Large — Scale Reactors. Chemical Engineering Science, 1(4), 145.

Babu, B. V. (2004). Process Plant Simulation. Oxford University Press, India.

Babu, B. V. and Anbarasu, B. (2005). Multi-Objective Differential Evolution
(MODE): An Evolutionary Algorithm for Multi-Objective Optimization Problems
(MOOPs). To be presented at The Third International Conference on
Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-2005), -
Singapore, December 13-16, 2005.

237

Babu, B. V. and Angira, R. (2001a). Optimization of non-linear functions using
evolutionary computation. Proceedings of 12th ISME conference, pp. 153-157,
Jan, 10-12, Chennai, India.

Babu, B. V. and Angira, R. (2001b). Optimization of thermal cracker operation using
differential evolution. Proceedings of International symposium & 54th annual
Session of IChE (CHEMCON-2001), December 19-22, Chennai, India.

Babu, B. V. and Angira, R. (2002a). Optimization of Non-Linear Chemical Processes
Using Evolutionary Algorithm. Proceedings of International Symposium & 55t
Annual session of IIChE (CHEMCON-2002), December 19-22, OU, Hyderabad,
India. '

Babu, B. V. and Angira, R. (2002b). A Differential Evolution Approach for Global
Optimization of MINLP Problems. Proceedings of 4™ Asia Pacific Conference on
Simulated Evolution and Learning (SEAL-2002), Singapore, November 18-22,
Vol. 2, pp. 880-884.

Babu, B. V. and Angira, R. (2003a). Optimization of Water Purﬁping System Using
Differential Evolution Strategies. Proceedings of The Second International
Conference on Computational Intelligence, Robotics, and Autonomous Systems
(CIRAS-2003), Singapore, December 15-18, 2003.

Babu, B. V. and Angira, R. (2003b). New Strategies of Differential Evolution for
Optimization of Extraction Process. Proceedings of International symposium &
S6th annual session of IIChE (CHEMCON-2003), December 19-22,
Bhubhaneswar, India.

Babu, B. V. and Angira, R. (2004). Optimization Using Hybrid Differential Evolution
Algorithms. Proceedings of International Symposium & 57th Annual Session of
IIChE (CHEMCON-2004), December 27-30, Mumbai.

Babu, B. V. and Angira, R. (2005a). Optimal Design of an Auto-thermal Ammonia
Synthesis Reactor. Computers & Chemical Engineering, 29 (5), 1041-1045.

Babu, B. V. and Angira, R. (2005b). Modified Differential Evolution (MDE) for
Optimization of Non-Linear Chemical Processes Using", Communicated.
Computers & Chemical Engineering.

Babu, B. V. and Chaturvedi, G. (2000). Evolutionary computation strategy for
optimization of an alkylation reaction. Proceedings of International symposium &

53rd Annual Session of IChE (CHEMCON-2000), Calcutta, India.

238

Babu, B. V. and Chaurasia, A. S. (2003a). Optimization of pyrolysis of biomass using
differential evolution approach. Proceedings of Second International Conference
on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-
2003), Singapore.

Babu, B. V. and Chaurasia, A. S. (2003b). Modeling, Simulation, and Estimation of
Optimum Parameters in Pyrolysis of Biomass. Energy Conversion and
Management, 44 (13), 2135-2158.

Babu, B. V. and Chaurasia, A. S. (2004a). Parametric Study of Thermal and
Thermodynamic Properties on Pyrolysis of Biomass in Thermally Thick Regime.
Energy Conversion and Management, 45 (1), 53-72.

Babu, B. V. and Chaurasia, A. S. (2004b). Dominant Design Variables in Pyrolysis of
Biomass Particles of Different Geometries in Thermally Thick Regime. Chemical
Engineering Science, 59 (3), 611-622.

Babu, B. V. and Chaurasia, A. S. (2004c). Heat Transfer and Kinetics in the Pyrolysis
of Shrinking Biomass Particle. Chemical Engineering Science, 59 (10), 1999-
2012.

Babu, B. V. and Gautam, K. (2001). Evolutionary computation for scenario-integrated
optimization of dynamic systems. Proceedings of International symposium & 54th
annual session of IIChE (CHEMCON-2001), Chennai, India.

Babu, B. V. and Jehan, M. M. L. (2003). Differential Evolution for Multi-Objective
Optimization. Proceedings of International Conference on Evolutionary
Computation (CEC-2003), Canberra, Australia, December 8-12, 2003, 2696-2703.

Babu, B. V. and Mohiddin, S. B. (1999). Automated Design of Heat Exchangers
Using Artificial Intelligence based optimization. Proceedings of 52" Annual
session of IIChE (CHEMCON-99), Chandigarh, India, December 20 — 23, 1999.

Babu, B. V. and Munawar, S. A. (2000). Differential Evolution for the Optimal
Design of Heat Exchangers. Proceedings of All-India seminar on Chemical
Engineering Progress on Resource Development: A Vision 2010 and Beyond, IE
(I), Bhubaneswar, India, March 11, 2000.

Babu, B. V. and Munawar, S. A. (2001). Optimal design of shell & tube heat
exchanger by different strategies of differential evolution. PreJournal.com-The
Faculty Lounge, Article No. 003873, posted on website Journal

_ hup:/heww.prejournal.cont.

239

Babu, B. V. and Sastry, K. K. N. (1999). Estimation of Heat-Transfer Parameters in a
Trickle-Bed Reactor using Differential Evolution and Orthogonal Collocation.
Computers & Chemical Engineering, 23, 327 — 339.

Babu, B. V. and Singh, R. P. (2000). Synthesis & optimization of heat integrated
distillation systems using differential evolution. Proceedings of all-India seminar
on chemical engineering progress on resource development: a vision 2010 &
beyond, IE (1), Bhubaneswar, India.

Babu, B. V. and Vivek, N. (1999). Genetic algorithms for estimating heat transfer
parameters in trickle bed reactors. Proceedings of 52" Annual session of IChE
(CHEMCON-99), Chandigarh, India, December 20 — 23, 1999.

Babu, B. V., Chakole, P. G., and Mubeen, J. H. S. (2005a). Multiobjective
Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor.
Chemical Engineering Science, 60 (17), 4824-4839.

Babu, B. V., Mubeen, J. H. S., and Chakole, P. G. (2005b). Multiobjective
Optimization Using Differential Evolution. TechGenesis-The Journal of
Information Technology, 2 (2), 4-12.

Bick, T. (1996), Evolutionary Algorithms in Theory and Practice, Oxford University
Press, Inc., Oxford, 1996.

Bergey, P. K. and Ragsdale, C. (2005). Modified differential evolution: a greedy
random strategy for genetic recombination. Omega, 33, 255 — 265.

Biegler, L. T. and Grossmann, L. E. (2004). Retrospective on optimization. Computers
& Chemical Engineering, 28, 1169-1192.

Bilbro, G. L. and Snyder, W. E. (1991). Optimization of function with many minima.
IEEE Transaction on System, Man, and Cybernetics, 21 (4), 840 — 849.

Box, G. E. P. (1957). Evolutionary Operation: a method of increasing industrial
productivity. Applied Statistics, 6, 81 — 101.

Bracken, J. and McCormick, G. P. (1968). Selected Applzcatzons of Nonlinear
Programming. New York, John Wiley & Sons, Inc.

Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S., and Barbosa, D. (1997). A
simulated annealing approach to the solution of MINLP problems. Computers &
Chemical Engineering, 21, 1349-1364.

Chakraborti, N., Misra, K., Bhatt, B., Barman, N. and Prasad, R. (2001). Tight-
Binding Calculations of Si-H Clusters Using Genetic Algorithms and Related

240

Techniques: Studies Using Differential Evolution. Journal of Phase Equilibria
22(5), 525 - 530.

Chelouah, R. and Siarry, P. (2000). Tabu search applied to global optimization.

. European Journal of Operational Research, 123, 256 - 270.

Chiou, J. P. and Wang, F.S. (1999). Hybrid method of evolutionary algorithms for
static and dynamic optimization problems with application to a fed-batch
fermentation process. Computers & Chemical Engineering, 23, 1277-1291.

Chung, S. F. (1972). Mathematical model and optimization of drying process for a
through-circulation dryer. Canadian Journal of Chemical Engineering, 50, 657 -
662.

Chung, S. F. (1973). Letter to the Editor. Canadian Journal of Chemical Engineering,
51,262 '

Ciric, A. R. and Gu, D. (1994). Synthesis of Nonequilibrium Reactive distillation
processes by MINLP optimization. American Institute of Chemical Engineers
Journal, 40, 1479 — 1487.

Coello, C. A. (1999). A Comprehensive Survey of Evolutionary- Based Multi
objective Optimization Techniques. International Journal of Knowledge and
Information Systems, 1 (3), 269-308.

Cordoso, J. C., Davin, A., Floquet, P., Pibouleau, L., & Domenech, S. (1997).
Synthesis of optimal reactor networks using mathematical programming and
simulated annealing. Computers & Chemical Engineering, 21, S47-852.

Come, D., Dorigo, M., and Glover, F. (1999). New Ideas in optimization. McGraw-
Hill, Berkshire, England (U. K.).

Costa, L. & Oliviera, P. (2001). Evolutionary algorithms approach to the solution of
mixed integer no-linear programming problems. Computers & Chemical
Engineering, 25, 257-266.

Cvijovic’, D. and Klinowski, J. (1995). Taboo search: an approach to the multiple
minima problem. Science, 267, 664 - 666.

Dadebo, S. A. and K. B. Mcauley (1995). Dynamic Optimization of Constrained
Chemical Engineering problems Using Dynamic Programming. Computers & .
Chemical Engineering, 19, 513-525.

Dasgupta, D. and Michalewicz, Z. (1997). Evolutionary algorithms in Engineering
Applications, 3 - 23, Springer-Verlag, Berlin, Germany.

&

241

Davis, L. (1991). Handbook of genetic algorithms. New York, Van Nostrand
Reinhold.

De Jong, K. A. (1992). Are genetic algorithms function optimizers? Proceedings of
the Second International conference on Parallel Problem Solving from Nature.
Deb, K. (1996). Optimization for engineering design: Algorithms and examples. New

Delhi, Prentice-Hall.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John
Wiley & Sons.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multi
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6 (2), 182-197.

Dembo, R. S. (1976). A set of geometric programming test problems and their
solutions. Math. Programming, 10, 193-213.

Diwekar, U. M. and Rubin, E. S. (1993). Efficient handling of the implicit constraints
problem for the ASPEN MINLP Synthesizer. Industrial & Engineering Chemistry
Research, 32,2006-2011. .

Diwekar, U. M., Grossmann, I. E., and Rubin, E. S. (1992). An MINLP Process
Synthesizer for a Sequential Modular Simulator. Industrial & Engineering
Chemistry Research, 31,313-322.

Dollena S. H., Allen, D. M., and Stromberg, A. J. (2001). Determining the number of
components in mixtures of linear models. Computational Statistics & Data
Analysis, 38, 15 — 48.

Dorigo, M., Maniezzo, A., and Colorni, A. (1996). The Ant system: Optimization by -
a colony of cooperating agents. IEEE transaction on System, Man, and
Cybernetics: Part B, 26 (1),29 - 41.

Douglas, J. M. (1985). A hierarchical decision procedure for process synthesis.
AIChE Journal, 31,353-362.

Dyson, D.C. (1965). Optimal Design of Reactors for Single Exothermic keversible
Reactions, Ph.D. Thesis, London University. .

Edgar, T. F. and Himmelblau, D.M. (1989). Optimization of Chemical Processes,
McGraw-Hill, Inc., Singapore, pp. 534 — 539.

Edgar, T. F. and Himmelblau, D.M. (2001). Optimization of Chemical Processes,
McGraw-Hill, Inc., Singapore.

242

Eymery, J. (1964). Dynamic Behavior of an Ammonia Synthesis Reactor. D. Sc.
Thesis, M.I.T.

Falk, J. E. and Soland, R. M. (1969). An algorithm for separable nonconvex
programming problems. Management Science, 15, 550 — 569.

Fan, H. Y. and Lampinen, J. (2003). A Trigonometric Mutation Operation to
Differential Evolution. Journal of Global Optimization, 27, 105-129.

Floudas, C. A. and Pardalos, P.M. (1990). A collection of test problems for
constrained Global optimization algorithms. Lecture Notes in Computer Science,
vol. 455. Springer, Berlin, Germany.

Floudas, C. A. and Visweswaran, V. (1990). A global optimization algorithm (GOP)
for certain classes of nonconvex NLPs — I theory. Computers & Chemical
Engineering, 14,1397 — 1417.

Floudas, C. A., Aggarwal, A., and Ciric, A. R. (1989). Global optimum search for
nonconvex NLP and MINLP problems. Computers & Chemical Engineering, 13,
1117 -1132.

Floudas, C. A., Ciric, A. R., and Grossmann, 1. E. (1986). Automatic synthesis of
optimum heat exchanger network configurations. American Institute of Chemical
Engineers Journal, 32,276-290.

Floudas, C.A. (1995). Nonlinear and mixed-integer optimization. Oxford University
Press, New York.

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. IEEE Press, Piscataway, NJ.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons, New York.

Fonseca C. M. and Fleming, P. J. (1993). Genetic algorithms for multi objective
optimization: formulation, discussion, and generalization. Genetic Algorithms:
Proceeding of the Fifth International Conference, Forrest S. ed., 416-423.

Fraga, E.S. and Matias, T. R. S. (1996). Synthesis and optimization of a non-ideal
distillation system using a parallel genetic algorithm. Computers & Chemical
Engineering, 20, pp. S79-S84.

Fraser, A. S. (1957). Simulation of genetic systems by automatic digital computers.
Australian Journal of Biological Science, 10, 484 — 491.

Glover, F. (1989). Tabu Search Part I. ORS4 Journal on Computmg,l 190 - 206.

243

Glover, F. (1997). A template for Scatter Search and Path Relinking. In: Hao, J. K,,
Lutton, E., Ronald, E., Schoenauer, M. and Snyers, D. (eds.), Lecture Notes in
Computer Science, 1363, 1 —53.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning, Reading, MA: Addison-Wesley.

Goulcher, R. and Long, J. J. C. (1978). The solution of steady-state chemical
engineering optimization problems using a random search algorithm. Computers
& Chemical Engineering, 2(1), 33 — 36.

Grossmann, I. E. (1985). Mixed-Integer Programming approach for the synthesis of
integrated process flowsheets. Computers & Chemical Engineering, 9, 463.

Grossmann, I. E. and Biegler, L. T. (2004). Part II. Future perspective on
optimization. Computers & Chemical Engineering, 28, 1193-1218.

Grossmann, 1. E. and Sargent, R. W. H. (1979). Optimum design of multipurpose
chemical plants. Industrial & Engineering Chemistry Process Design
Development, 18, 343.

Gupta, O. P. (1994). Elements of Fuels, Furnaces and Refractories. Khanna
Publishers, New Delhi, 161-168. '

Hajela, P., and Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal
design. Structural Optimization, 4, 99-107.

Hansen, E. R. (1980). Global optimization using interval analysis: The multi-
dimensional case. Numerische Mathematik, 34, 247 — 270.

Hansen, P., Jaumard, B., and Lu, S. (1992). Global optimization of univariate
Lipschitz functions: New algorithms and computational comparison.
Mathematical Programming, 60, 161 — 220.

Hartland, S. and Mecklenburgh, J. C. (1975). The Theory of Backmixing. Wiley, New
York.

Himmelblau, D.M. (1997). Basic Principles and Calculations in Chemical
Engineering. 6" Ed, PHL

Hobson, G. D. (1975). Modern Petroleum Technology. 4™ Ed,, Applied Science

_Publisher, Essex, Great Britain.
Holland, J. H. (1975). Adaptations in natural and artificial systems. Ann Arbor:

University of Michigan Press.

244

Hom, J., Nafpliotis, N., and Goldberg, D.E. (1994). A niched Pareto genetic
algorithm for multi objective optimization. Proceedings of the First IEEE
Conference on Evolutionary Computation, 82 — 87.

Horst, R., Thoi, N. V., and De Vries, J. (1992). A new simplicial cover technique in
constrained global optimization. Journal of Global Optimization, 2, 1 - 19.

Hovanessian, S. A. and Stout, T. M. (1963). Optimum fuel allocation in power plants.
IEEE Transaction of Power Apparatus System, 82, 329.

Hovanessian, S. A. and Pipes, L. A. (1969). Digital computer methods in engineering.
McGraw-Hill, New York.

Ilonen, J., Kamarainen, J. K., Lampinen, J. (2003). Differential Evolution Training
Algorithm for Feed-Forward Neural Networks. Neural Processing Letters 7, 1,93
—-105.

Jackson, P. J. (1977). Ph.D. Thesis, Monish University, Victoria, Australia.

Jackson, P. J. and Agnew, J. B. (1980). A Model-Based scheme for the on-line
optimization of a liquid extraction process. Computers & Chemical Engineering,
4,241.

Joshi, R. & Sanderson, A. C. (1999). Minimal representation multi-sensor fusion
using differential evolution. IEEE Transactions on Systems, Man and Cybernetics,
Part A 29 (1), 63-76.

Kirkpatrick, S., Gelatt, C. D. & Vechhi, M. P. (1983). Optimization by Simulated
Annealing. Science, 220 (4568), 671-680.

Knowles, J., and Corne, D. (2000). Approximating the nondominated front using the
pareto archived evolution strategy. Evolutionary computation, 8, 142-172.

Kocis, G. R. and Grossmann, 1. E. (1987). Relaxation strategy for the structural
optimization of process flow sheets. Industrial & Engineering Chemistry
Research, 26, 1869-1880.

Kocis, G. R. and Grossmann, 1. E. (1988). Global optimization of nonconvex mixed-
integer nonlinear programming (MINLP) problems in process synthesis.
Industrial & Engineering Chemistry Research, 27, 1407-1421.

Kocis, G. R. and Grossmann, I. E. (1989). A modeling and decomposition strategy for
the MINLP optimization of process flowsheets. Computers & Chemical
Engineering, 13, 797-819.)

Kreyszi'g, E. (1993). Advanced Engineering Mathematics. 7™ Ed, John Wiley & Sons,

Inc., Singapore.

245

Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In
Schwefel H.P. and Manner, R. eds., Parallel problem solving from nature, First
workshop proceedings, Vol. 496 of Lecture notes in computer science, 193-197.

Kyprianou, A., Worden, K. and Panet, M. (2001). Identification of hysteretic systems
using the differential evolution algorithm. Journal of Sound and Vibration, 248
(2), 289 -314.

Lampinen, J. (2001). Solving Problems Subject to Multiple Nonlinear Constraints by
the Differential Evolution. In: Radek MatouSek and Pavel OSmera (eds.).
Proceedings of MENDEL 2001, 7th International Conference on Soft Computing,
Bmo, Czech Republic. Brno University of Technology, Faculty of Mechanical
Engineering, Institute of Automation and Computer Science, Brmo (Czech
Republic), pp. 50-57.

Lee, M. H., Han, C., and Chang, K. S. (1999). Dynamic optimization of a continuous
polymer reactor using a modified differential evolution, Industrial & Engineering
Chemistry Research, 38, 4825-4831.

Leibman, J., Lasdon, L., Schrage, L., and Waren, A. (1986). Modeling and
optimization with GINO. The Scientific Press, Palo Alto, CA.

Li, H. L. (1992). An approximate method for local optima for nonlinear mixed integer
programming problems. Computers & Operation Research, 19 (5), 435 — 444.
Lin, Y. C, Hwang, K. S., and Wang, F. S. (2001). Co-Evolutionary Hybrid
Differential Evolution for Mixed-Integer Optimization Problems. Engineering

Optimization, 33 (6), 663 — 682.

Linnhoff, B. (1981). In Foundations of Computer Aided Chemical Process Design:
Mah, R. S. H., Seider, W. D.; Eds.; Engineering Foundation, New York, Vol. II,
537-572.

Logsdon, J. S. and Biegler, L. T. (1989). Accurate solution of differential algebraic
equations. Industrial & Engineering Chemistry Research, 28, 1628-1639.

Lopez, C. I. L., Van, W. L. G,, and Van, S. G. (2001). Parameter Control Strategy in
Differential Evolution Algorithm for Optimal Control. In: M.H. Hamza (ed.)
(2001). Proceedings of the IASTED International Conference Artificial
Intelligence and Soft Computing (ASC 2001), May 21-24, 2001, Cancun , Mexico,
pp. 211-216. ACTA Press, Calgary (Canada).

246

Lu, J.C. and Wang, F.S. (2001). Optimization of Low Pressure Chemical Vapor
Deposition Reactors Using Hybrid Differential Evolution. Canadian Journal of
Chemical Engineering, 79 (2), 246-254.

Luss, R. and Jaakola, T. H. I. (1973). Optimization by direct search and systematic
reduction of the size of search region. American Institute of Chemical Engineers
Journal, 19, 760 — 766.

Manish, C.T., Yan Fu, and Urmila, M. D. (1999). Optimal design of heat exchangers:
A genetic algorithm framework. Industrial & Engineering Chemistry Research,
38, 456- 467.

Maranas, C. D. and Floudas, C. A. (1997). Global optimization in generalized
geometric programming. Computers & Chemical Engineering, 21 (4), 351-370.
McCabe, W. L., Smith, J. C., and Harriott, P. (1993). Unit Operations of Chemical

Engineering. 5™ ed. McGraw-Hill, New York.

McLeod, A.S., Johnston, M. E., and Gladden, L. F. (1997). Development of a genetic
algorithm for molecular scale catalyst design. Journal of Catalysis, 167, 279-285.

Muhlenbein, H., Schomisch, M. and Born, J. (1991). The parallel genetic algorithm as
function optimizer. Parallel Computing, 17, 619-632.

Munawar, S. A. and Gudi, R. (2004). A Nonlinear transformation based MINLP
Saolution Method. Proceedings of International Symposium & 357th Annual
Session of IIChE (CHEMCON-2004), December 27-30, Mumbai.

Murase, A., Roberts, H.L., and Converse, A.O. (1970). Optimal Thermal Design of an
Auto thermal Ammonia Synthesis Reactor. Industrial & Engineering Chemistry
Process Design Development, 9 (4), 503- 513.

NAG, Web site of Numerical Algorithm Group as on July, 2004.
http://www.nag.com/numeric/FL/manual/html/genint/FLwithdrawn.asp

Nishida, N., Stephanopoulos, G., and Westerberg, A. W. (1981). Journal Review:

Process synthesis. American Institute of Chemical Engineers Journal, 27, 321.
Norman, M. G. and Moscato, P. (1991). A competitive and cooperative Approach to
complex combinatorial search. Proceedings of the 20" Informatics and
Operations Research Meeting, Buenos Aires (20" JAIIO), pp. 3.15 - 3.29.
Onwubolu, G. C. and Babu, B. V. (2004). New Optimization Techniques in
Engineering. Springer-Verlag, Heidelberg, Germany. |
Papoulias, S. and Grossmann, 1. E. (1983). A structural optimization approach in

process synthesis, Parts I - IIl. Computers & Chemical Engineering, 7, 695 - 734.

247

Price, K., and Storn, R. (1997). Differential Evolution-a simple evolution strategy for
fast optimization. Dr. Dobb's Journal, 22, 18-24 and 78.

Price, K., and Storn, R. (2005). Home page of differential evolution as on August 25.
URL: http://www.ICSL.Berkeley.edu/~storn/code.html

Quesada, I. and Grossmann, L. E. (1995). A global optimization algorithm for linear
fractional and bilinear programs. Journal of Global Optimization, 6, 39 - 76.

Ray, T. (1991). An approach to the synthesis of life. Artificial Life II Ed. Langton, C.
G., Taylor, C., Farmer, J. D., and Rasmussen, S. (Reading, MA: Addison-Wesley)
pp- 371-408.

Ray, W. H. (1981). Advanced Process control, McGraw-Hill, New York.

Rechenb'erg, I. (1973). Evolutionsstrategie: Optimirerung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann — Holzboog, Stuttgart.

Renfro, J. G., Morshedi, A. M. and Osbjornsen, O.A. (1987). Simultaneous
optimization and solution of systems described by differential/algebraic equations.
Computer and Chemical Engineering, 11, 503-517.

Rosenbrock, H.H., and Storey, C. (1966). Computational Techniques for Chemical
Engineers. Pergamon Press, London.

Rudd, D. F., Powers, G. J., Siirola, J. J. (1973). Process Synthesis. Prentice-Hall:
Englewood Cliffs, NJ.

Rudolph, G. (1992). On correlated mutations in evolutionary strategies. In Ménner,
R., Manderick, B. (eds.), Parallel Problem solving from Nature II, Elsevier
Science Press, 105 - 114.

Rudolph, G. (1996). Convergence of evolutionary algorithms in general search space.
Proceedings of 1996 IEEE International Conference on Evolutionary
Computation, IEEE Press: New York; 50-54. '

Rutenbar, R. A. (1989). Simulated annealing algorithms: An overview. IEEE Circuits
& Devices Magazine, 100, 19-26.

~ Ryoo, H. S. and Sahinidis, N. V. (1995). Global optimization of nonconvex NLPs and
MINLPs with Applications in Process Design. Computers & Chemical
Engineering, 19(5), 551-566.

Salcedo, R.L. (1992). Solving Nonconvex Nonlinear Programming Problems with

Adaptive Random Search. Industrial & Engineering Chemistry Research, 31, 262.

248

,/“.

Sastry, K. K. N, Behra, L., and Nagrath, I. J. (1998). Differential evolution based
fuzzy logic controller for nonlinear process control. Fundamenta Informaticae:
Special Issue on Soft Computation.

Sauer, R. N., Coville, A. R., and Burwick, C. W. (1964). Computer Points Way to
More Profits. Hydrocarbon Processing Petroleum Refiner, 43, 84.

Schaffer, J. D. (1985). Multiple objective optimization with vector evaluated genetic
algorithm. Proceeding of the First International Conference on Genetic
Algorithms, 93-100.

Schwefel, H. P. (1981). Numerical Optimization of computer models. New York:
John Wiley & Sons.

Schwefel, H. P. (1995). Evolution and Optimum seeking. New York: John Wiley &
Sons.

Shah, M. J. (1967). Control Simulation in Ammonia Production. Industrial &
Engineering Chemistry, 59, 72.

Sherali, H. D. and Alameddine, A. (1992). A new reformulation — linearization
technique for bilinear programming problems. Journal of Global Optimization, 2,
379 - 410.

Sherali, H. D. and Tuncbilek, C. H. (1992). A global optimization algorithm for
polynomial programming problems using a reformulation - linearization
technique. Journal of Global Optimizatz’oni, 2,101 -112.

Siarry, P. and Berthiau, G. (1997). Fitting of tabu search to optimize functions of
continuous variables. International Journal for Numerical Methods in
Engineering, 40, 2449 - 2457.

Singh, C. P .P. and Saraf, D. N. (1979). Simulation of Ammonia Synthesis Reactors.
Industrial & Engineering Chemistry Process Design Development, 18 (3), 364 —
370.

Smith, E. M. B. and Pantelides, C. C. (1999). A symbolic reformulation/spatial
branch and bound algorithm for the global optimization of nonconvex MINLPs.
Computers & Chemical Engineering, 23,457 —478.

Soland, R. M. (1971). An algorithm for separable nonconvex programming problems. -
1. Nonconvex constraints. Management Science, 17,759 — 773. |

Sourander, M. L., Kolari, M., Cugini, J. C., Poje, J. B., and White, D. C. (1984).
Control and Optimization ‘of Olefin-Cracking Heaters. Hydrocarbon Processing.
63. (June, 1984).

249

¥

Spears, W. M., De Jong, K. A., Béck, T., Fogel, D. B,, and de Garis, H. (1993). An
Overview of Evolutionary Computation. Machine Learning: ECML-93, European
Conference on Machine Learning, Lecture Notes in Artificial Intelligence, No.
667, Ed. Brazdil, P.B., pp442-459.

Srinivas, N. and Deb, K. (1995). Multi-objective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2 (3), 221-248.

Stephanopoulos, G. and Westerberg, A. W. (1976). Studies in process synthesis: Part
II. Evolutionary synthesis of optimal process flowsheets. Chemical Engineering
Science, 31, 195-204.

Stoecker, W. F. (1971). Design of Thermal Systems. 3" ed., McGraw-Hill
International edition, Singapore, pp 117-121.

Storn, R. (1995). Differential Evolution design of an IIR-filter with requirements for
magnitude and group delay. International Computer Science Institute, TR-95-026.

Taha, H. A. (1997). Operations Research — An Introduction”. Prentice-Hall, New
Delhi, 67-89.

Tasoulis, D. K., Pavlidis, N. G., Plagianakos, V. P., and Vrahatis, M. N. (2004).
Parallel Differential Evolution. Proceedings of Congress on Evolutionary
Computation (CEC - 2004). Available at
http://www.math.upatras.gr/~dtas/papers/TasoulisPPV2004.pdf.

Tuy, H., Thieu, T. V., and Thai, N. Q. (1985). A conical algorithm for globally

minimizing a concave function over a closed convex set. Mathematics of
Operations Research, 10, 498 — 514.

Umeda, T. and Ichikawa, A. (1971). A modified complex method for optimization.
Industrial & Engineering Chemistry Process Design Development, 10, 229-236.
Upreti, S.R. and Deb, K. (1997). Optimal Design of an Ammonia Synthesis Reactor

using Genetic Algorithms. Computers & Chemical Engineering, 21, 87-92. .
Venkatasubramanian, V., Chan, K., and Caruthers, J.M. (1994). Complxter-aided
molecular design using genetic algorithms. Computers & Chemical Engineering,
18, 833-844. |
Wang, F. S. & Cheng, W. M. (1999). Simultaneous optimization of feeding rate and
operation parameters for fed-batch fermentation processes. Biotechnology
Progress, 15(5), 949-952. |

250

Wang, F. S. and Chiou, J. P. (1997). Optimal control and optimal time location
problems of differential- algebraic systems by differential evolution. /ndustrial &
Engineering Chemistry Research, 36, 5348-5357.

Wang, F. S., Jing, C. H., and Tsao, G. T. (1998). Fuzzy-decision-making problems of
fuel ethanol production using genetically engineered yeast. Industrial &
Engineering Chemistry Research, 37 (8), 3434-3443.

Wang, F. S., Su, T. L., and Jang, H. J. (2001). Hybrid Differential Evolution for

Problems of Kinetic Parameter Estimation and Dynamic Optimization of an

2]

Ethanol Fermentation Process. Industrial and Engineering Chemistry Research,
40(13), 2876 — 2885.

Xue, F., Sanderson, A. C., Graves, R. J. (2003). Pareto-based multi-objective
differential evolution. Proceedings of the Congress on Evolutionary Computation
(CEC’2003), Vol. 2, Canberra, Australia, IEEE Press, 862 — 869.

Zaharie, D. (2002). Critical Values for the Control Parameters of Differential
Evolution Algorithms. In: Matousek, Radek and OSmera, Pavel (eds.).
Proceedings of MENDEL 2002, 8th International Mendel Conference on Soft
Computing, June 5 — 7, Bmo, Czech Republic, pp. 62 — 67.

Zamora, J. M. and Grossmann, I. E. (1999). A branch and bound algorithm for
problems with concave univariate. Journal of Global Optimization, 14,217 — 249.

Zelinka, 1. and Lampinen, J. (2000). SOMA - Self —Organizing Migrating Algorithm.
6" International Conference on soft computing, Mendel 2000, Brmo, Czech
Republic, ISBN 80-214-1609-2.

Zitzler, E., and Thiele, L. (1999). Multi-objective evolutionary algorithms: A
comparative case study and the strength Pareto approach. /[EEE Transactions on

Evolutionary Computation, 3,257-271.

251

LiIST OF PUBLICATIONS

Research Publications in International Journals:

1.

Babu, B. V. and Angira, R., “Optimal design of an auto-thermal ammonia
synthesis reactor”, Computers & Chemical Engineering, Vol. 29 (No. J), pp.
1041-1045, 2005.

Babu, B. V. and Angira, R., "Modified Differential Evolution (MDE) for
Optimization of Non-Linear Chemical Processes”, Accepted. Computers &
Chemical Engineering, 2005.

Research Papers Communicated to International Journals:

3. Angira, R. and Babu, B. V,, *Simulation and Optimal Design of Ammonia

Synthesis Reactor”, Communicated. Chemical Engineering Research and Design,
2005.

Research Publications in National Conferences / Proceedings:

4. Babu, B. V. and Angira, R., “Optimization of Non-linear functions using

Evolutionary Computation”. Proceedings of 1 2" ISME Conference, Chennai,
India, Jan 10-12, 153-157, 2001.

Research Publications in International Conferences / Proceedings:

5. Babu, B. V. and Angira, R., “Optimization of thermal cracker'operation using

Differential Evolution”. Proceedings of International Symposium & 54th Annual
Session of IIChE (CHEMCON-2001), Chennai, December 19-22, 2001.

Babu, B. V. and Angira, R., “A Differential Evolution Approach for Global
Optimization of MINLP Problems”. Proceedings of 4th Asia-Pacific Conference
on Simulated Evolution And Learning (SEAL'02), Singapore, November 18-22,
Vol. 2, pp 866-870, 2002.

Babu, B. V. and Angira, R., "Optimization of Non-Linear Chemical Processes
Using Evolutionary Algorithm". Proceedings of International Symposium & 55th
Annual Session of IIChE (CHEMCON-2002), OU, Hyderabad, December 19-22,

2002.

252

10.

11.

12.

13.

14.

Babu, B. V. and Angira, R., "Optimization of Water Pumping System Using
Differential Evolution Strategies". Proceedings of The Second International
Conference on Computational Intelligence, Robotics, and Autonomous Systems
(CIRAS-2003), Singapore, December 15-18, 2003.

Babu, B. V. and Angira, R, "New Strategies of Differential Evolution for
Optimization of Extraction Process". Proceedings of International Symposium &
56th Annual Session of IIChE (CHEMCON-2003), Bhubaneswar, December 19-
22,2003.

Angira, R. and Babu, B. V., "Evolutionary Computation for Global Optimization
of Non-Linear Chemical Engineering Processes". Proceedings of International
Symposium on Process Systems Engineering and Control (ISPSEC '03)- For
Productivity Enhancement through Design and Optimization, 1IT-Bombay,
Mumbeai, January 3-4, 2003, Paper No. FMAZ2, pp 87-91.

Babu, B. V. and Angira, R., “Optimization Using Hybrid Differential Evolution
Algorithms”. Proceedings of International Symposium & 57th Annual Session of
IIChE (CHEMCON-2004), Mumbai, December 27-30, 2004.

Angira, R. and Babu, B. V., "Optimization of Non-Linear Chemical Processes
Using Modified Differential Evolutlon (MDE)", To be presented at The 2" Indian
International Conference on Artificial Intelligence (IICAI-2005), Pune, India,
December 20-22, 2005.

Angira, R. and Babu, B. V., "Non-dominated Sorting Differential Evolution
(NSDE): An Extension of leferentnal Evolution for Multi-objective
Optimization”, To be presented at The 2" Indian International Conference on
Artificial Intelligence (IICAI-2005), Pune, India, December 20-22, 2005.

Angira, R. and Babu, B. V., "Process Synthesis and Design Using Modified
Differential Evolution (MDE)", To be presented at International Symposium &
58th Annual Session of IICHE in association with International Partners
(CHEMCON-2005), New Delhi, December 14-17, 2005.

253

N

BIOGRAPHIES

Biography of Guide

Dr. B. V. Babu is Professor & Head of Chemical Engineering Department apart
from being Assistant Dean of Engineering Services Division (ESD) at Birla Institute
of Technology and Science (BITS), Pilani. He is also the Programme Coordinator for
the Off-Campus Programmes on Marine Engineering and Nautical Sciences, and BS
(Process Engineering) of Distance Learning Programmes Division (DLPD) at BITS-
Pilani. He did his PhD from IIT-Bombay. His biography is included in 2005 & 2006
editions of Marquis Who’s Who in the World, and Thirty-Third Edition of the
Dictionary of International Biography in September 2006.

He has 20 years of Teaching, Research, Consultancy, and Administrative
experience. He guided 2 PhD students, 25 ME Dissertation students and 24 Thesis
students and around 160 Project students. He is currently guiding 7 PhD candidates,
3 Dissertation students and 10 Project students. He currently has 3 research projects
from UGC & DST.

His research interests include Evolutionary Computation (Population-based search
algorithms for optimization of highly complex and non-linear engineering problems),
Environmental Engineering, Biomass Gasification, Energy Integration, Artificial
Neural Networks, Nano Technology, and Modeling & Simulation.

He is the recipient of National Technology Day (1 1™ May, 2003) Award given by
CSIR, obtained in recognition of the research work done in the area of ‘A New
Concept in Differential Evolution (DE) — Nested DE’. He is the Life member of
Indian Institute of Chemical Engineers (IIChE), Life member of Indian Society for
Technical Education (ISTE), Life member of Institution of Engineers (IE), Fellow of
International Congress of Chemistry and Environment (ICCE), Life member of Indian
Environmental Association (IEA), Life member of Society of Operations
Management (SOM), and Associate Member of Intermational Society for Structural
and Multidisciplinary Optimization (ISSMO). Nine of his technical papers have been"
included as successful applications of Differential Evolution (a populations based
search algorithm) on the Homepage of Differential Evolution
(http://www.icsi.berkeley.edu/~storm/code.html#appl).

He has around 102 research publications (International & National Journals &
Conference Proceedings) to his credit. He completed three consultancy projects
successfully and currently he is a Technical Consultant for Maharashtra Electricity
Regulatory Commission (MERC), Mumbai and offering Advisory Services in the
“Study relating to Bagasse Based Co-generation”. He also has been invited as a
consultant by a Bahrain (Middle East) based company for making a complex of
chemical factories. He is a Panel Expert for www.chemicalhousc.com the most
vibrant and active site for the Chemical Industry on the net which specializes in
exchange of Information in a structured way among the chemical world in more than
a Hundred Countries and a Million core chemical manufacturers traders scientists etc.

254

He has published four books (1) “Process Plant Simulation”, EDD, BITS-Pilani,
2002, (2)“New Optimization Techniques in Engineering”, Springer-Verlag, Germany.,
2004, and (3)"Process Plant Simulation”, Oxford University Press, India, 2004, (4)
Energy Management Systems, EDD, BITS-Pilani, 2005. In addition he has written
several chapters in various books and lecture notes of different intensive courses.

He was the Invited Chief Guest and delivered the Keynote addresses at one
international conference (Desert Technology - 7) and three national seminars. He
organized many Seminars & Conferences, and member of various academic and
administrative committees at BITS-Pilani. He also chaired 10 Technical Sessions at
various International & National Conferences. He delivered 23 invited lectures at
various IITs and Univeristies. He is the Coordinator for PETROTECH Society at
BITS-Pilani.

He is Editorial Board Member of two International Journals ‘Energy Education
Science & Technology’ and ‘Research Journal of Chemistry and Environment’. He is
the referee & expert reviewer of 15 International Journals, and on the Programme
Committees as an expert reviewer at 12 International Conferences (SEAL-2002 at
Singapore; GECCO-2003 at Chicago, USA; CIRAS-2003 at Singapore; GECCO-
2004 at Seattle, USA; SCI-2004 at Florida, USA; CCCT-2004 at Texas, USA; CIS-
2004 at Singapore; ICARA-2004 at New Zealand; GECCO-2005 at Washington DC,
USA; MEI-2005 at Austin, USA; Heat-SET-2005 at Grenoble, France; WMSCI-2005
at Florida, USA). He reviewed three books of McGraw Hill, Oxford University
Press, and Tata McGraw Hill publishers. He is PhD Examiner for one candidate and
PhD Thesis Reviewer for 3 Candidates.

He is also the Organizing Committee Member (Publicity Chair), and Session
Organizer for the Special Session on “Evolutionary Computation™ at The Second
International Conference on “Computational Intelligence, Robotics, and Autonomous
Systems (CIRAS-2003)”, National University of Singapore, Singapore, December 15-
17, 2003. He is the Session Chair and organized an Invited Session on “Engineering
Applications of Evolutionary Computation Techniques” at “The Eighth World Multi-
Conference on Systemics, Cybernetics, and Informatics (SCI-2004)”, Orlando,
Florida, USA, July 18-21, 2004.

Biography of Candidate

Rakesh Angira completed his B. E. in Chemical engineering from C. R. State
College of Engineering, Murthal, Sonepat (Haryana), India in 1994. After working for
four years in industries, he joined academics and completed his M. E. in Chemical
Engineering in 1999 from Birla Institute of Technology & Science (BITS), Pilani,
India. Since then he joined as a faculty in Chemical Engineering Group, BITS, Pilani.

His research interests apart from Evolutionary Computation include simulation &
optimization, process synthesis and design, optimal control, multi-objective
optimization, and membrane separation processes. He has published one paper in
International Journal of Computers & Chemical Engineering and eleven International
and national conference papers. Also, two papers have been communicated to
International Journals. He has been a program coordinator for B. S. (Process
Engineering) program of DLP division. He is Associate member of Indian Institute of
Chemical Engineers (IIChE). He is co-author of the course material prepared for
Seminar cum Intensive Course (SIC-2001) on Novel separation techniques and their
application to chemical industries held at BITS, Pilani during March 21 - 23, 2001.

255

APPENDIX I

Code of Himmelblau function of Chapter — 2 is given in this Appendix.

Code of Himmelblau function using DE and ten strategies (Chapter-2)

#define NP maxpop
#define D maxdim
#define gen_max genmax
#define F factor
#define CR cross
#dcfine inibound_| inib_]
#define inibound_h inib_h
/*----Constant for rnd_uni()--------=---=--- */
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define [Q2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMMI1/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPS1)
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
#include<memory.h>
int strategy,genmax,maxdim,maxpop;
float inib_l,inib_h,factor,cross,cost[50],x1[50]{10],x2[50][10];
float rnd_uni(long *);
void assignd(int D, float a[], float b[]);
float evaluate(float [],long *);
float evaluate(float tmp[],long *nfe)
{ float cost;
(*nfe)++;
cost=pow((pow(tmp[0},2)+tmp[1]-11),2)+pow((tmp[0]+pow(tmp[1],2)-7),2);
return cost;
]

]
float rnd_uni(long *idum)
]

1
long j: long k;
static long idum2=123456789;
static long iy=0;static long iv[NTAB]J: float temp;
if(*idum<=0)
i

' if(-(*idum)<1l) *idum=1; else *idum=-(*idum); idum2=(*idum),

for(j=NTAB+7;j>=0;j--)
t

t
k=(*idum)/1Ql;

256

idum=I1A1(*idum-k*IQ1)-k*IR]];
if(*idum<0) *idum+=IMI;
if(<NTAB) iv[j]=*idum:
]

i,y=iv[0]:

]
k=(*idum)IQl:
idum=1A1(*idum-k*IQ1)-k*IR1I;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=1A2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[j]-idum2; iv[j]=*idum;
iftiy<l) iy+=IMMI;
if((temp=AM*iy)>RNMX) retum RNMX;
else return temp;
t
]
void assignd(int D,float a[], float b[])
{

int j;

for(j=0;j<D;j++)

[}

t

afj]=b[j};

|

}

void main(int argc, char *argv([])

{
int i,j,k,a,b,c,d,e,count=0,imin,seed;
long nfe;
float cost_trial,trial[3],costmin,bestit[3],best[3],cmax;
clock_t start, end;

FILE *fpir_ptr;

if(argc!=2)

{
printf("\n Usage: De<input-file>\n");
exit(1);

}

I* Read iput data */
fpin_ptr = fopen(argv[1],"r");
if(fpin_ptr==NULL)

{

printf("\n Cannot open input file\n");
exit(1);

}
fscanf(fpin_ptr,"%d",&strategy);
fscanf(fpin_ptr,"%d",&genmax);
fscanf(fpin_ptr,"%d",&maxdim);
fscanf(fpin_ptr,"%d" ,&maxpop);
fscanf(fpin_ptr,"%f",&inib_l);
fscanf(fpin_ptr,"%f",&inib_h);
fscanf(fpin_ptr,"%f" & factor);
fscanf(fpin_ptr,"%f",&cross);
fscanf(fpin_ptr,"%d",&seed);
fclose(fpin_ptr);

long md_uni_init=-(long)seed; nfe=0;
start = clock():

for (i=0;i<NP:i++)

I

1

for (j=0;j<D;j++) /* rand()/32768.0*/

x1[i](j]=inibound_l + md_uni(&md_uni_init)*(inibound_h-inibound_I):
cost[i}= evaluate(x1[i], &nfe);

/* printf("x1=%f x2=%f cost=%f ",xI[i]{0],x1[i][1].cost[i]);
getch();*/

costmin=cost[0];

257

imin=0;
for(i=1:;1<NP;i++)
!
if(cost[i]<costmin)
1
1
costmin=cost{i];
imin=i;
1]
]

assignd(D,best,x 1 [imin]);
i assignd(D,bestit,x | [imin]);
/*printf("\nbest=%f\n",best);*/

while (count<gen_max)

count++;
imin=0;
for (i=0;i<NP;i++)
[]
]
do a=int (rnd_uni(&md_uni_init)*NP); whilc (a==i);
/*printf("a=%d “,a),*/
do b=int (md_uni(&md_uni_inity*NP); while (b==i [b==a):
/*printf("\nb=%d ",b);*/
do c=int (rnd_uni(&md_uni_init)*NP); while (c==i [[c==a || c==b);
/*printf("\n c=%d",c); */
do d=int (rnd_uni(&md_uni_init)*NP); while (d==i || d==a || d==b || d==c);
do e=int (rmd_uni(&md_uni_init)*NP); while (e==i | e==a || e==b || e==c || e==d);
[¥ e de/rand/1/bin */
if (strategy==1)

j=int (md_uni(&md_uni_init)*D);
M*printf(" j=%d");
getch(); */

for (k=1;k<=D;k++)
) { if ((rnd_uni(&md_uni_init))<CR [k==D)

t{rial[i]=xl[cllj]+l’*(xl[a][j]-xl[b][i]);
<}else trial(jl=x1[i](j};
Fprintf("r1=%f trial[%d]=%f , ".rlj.trial(j]);
getch();*/

j=(j+1)%D;

}

1* : DE/best/1/bin */

else if (strategy==2)
]
\

j=int (rnd_uni(&rnd_uni_init)*D);
for (k=1;k<=D;k++)

{
if ((md_uni(&md_uni_init))<CR || k==D)

{
trial[j]=bestit[j]+F*(x1[a](j]-x 1 [b[i])
~ else trial[jJ=x 1 [i](l;

j=(+1)%D;
1]
]

(¥ emmmmeemcaeene de/best/2/bin *
else if (strategy==3)
)
]

assignd(D,trial x1[i});
j=int (md_uni(&md_uni_init)*D);

258

for (k=1:k<=D:k++)
1

if ((md_uni(&md_uni_init))<CR || k==D)
trial[j]=belslil[j]+F‘(x 1{a](j)+x1[b][)-x1[c]D]-x1[dILD):

élse trial[j]=x1{il[]:
j=(+1)%D:

]
]

e de/rand/2/bin */
else if (strategy==4)
[]

assignd(D,trial x1[i]);
j=int (md_uni(&md_uni_init)*D);
for (k=1;k<=D:k++)

{
if ((rd_uni(&md_uni_init))<CR [k==D)

|
trial[j)=x I’[e][j]+F‘(xl ()1 +x1[b](]-x 1 [c]Li)-x 1 {d] 3D

else trial[j]=x1[i](];
=(+1)%D;

)
}
L — de/rand-to-best/1/bin *
else if (strategy==5)
{
assignd(D,trial,x1[i]);
j=int (rmd_uni(&md_uni_init)*D);
for (k=1;k<=D;k++)
f if ((md_uni(&md_uni_init))<CR || k==D)
{
trial[j]=trial[j]+F*(bestit[j]-trial j])+F*(x 1 [a](]-x1[bILD:
}
else trial(j]=x1[i][j];
J=(+1)%D;
}
R de/rand/1/exp - *
else if (strategy==0)
{
j=int (md_uni(&rnd_uni_init)*D);
k=0;
do
{
trial[j]=x1[c](]+F*(x1[a]j]-x 1[b](i]);
j=(+1)%D;
k++;
}
while((rd_uni(&md_uni_init))<CR && k<D);
|
L S de/best/1/exp. *

else if (strategy==7)
]

l j=int (md_uni(&md_uni_init)*D);

k=0;
do
‘trial[j]=bestit[j]+F"‘(x 1[a)j]-x1[bILD):

j=(+1)%D;
k++;

|
while((rnd_uni(&md_uni_init))<CR && k<D);

259

else if (strategy==8)

'
assignd(D.trial x1[i]):
j=int (md_uni(&rnd_uni_init)*D);
k=0;

do

d
b trial[j]=bestit[j]+F*(x 1[a)(j]+x 1 [b](j}-x 1 {c][]-x [d]}]);

j=(i+1)%D;
k++;

}
while((rmd_uni(&rnd_uni_init))<CR && k<D):

e de/rand/2/exp */
clse if (strategy==9) ‘
{
assignd(D,trial, x 1{i]):
j=int (rmd_uni(&md_uni_init)*D);
k=0;
do

trial[j]=x1[e]j}+F*(x1 [a][j}+x1[b](i]-x 1 [c]i]-x 1 [d]Li]):

j=(+1)%D;
k++;

}
while((md_uni(&rmd_uni_init))<CR && k<D);

}
[*eeeeveemennnmman-de/rand-to-best/ 1/exp */
else

N {
assignd(D,trial,x1[i]);
j=int (md_uni(&rnd_uni_init)*D);
k=0,
do

{
trial[j]=trial[j}+F*(bestit[j]-trial [j])+F*(x1 [a] (j]-x 1 [bILi]);

j=G+1)%D;
k++;

} .
while((rnd_uni(&md_uni_init))<CR && k<D);
]
1]
cost_trial=evaluate(trial, &nfe);
/* printf("\ntrialcost=%f , cost[%d]=%f " cost_trial,i,cost[i]);
getch();*/
if (cost_trial<=cost[i])
{
for (j=0;j<Dyj++)
x2[i](j)=trial[j];
cost[i]=cost_trial;
if(cost_trial<costmin)
{
e costmin=cost_trial;
imin=i;
assignd(D,best.trial);

]
i

)
else for (j=0;j<Dsj++)
x2(i]hJ=x1[i](];
/* printf("x1=%f x2=%f "x2[i][0],x2[i][1]);
getch(); */

assignd(D,bestit.best):
for (1=0:i<NP;i++)
'

for j=0:<D;j++)
x1[i1G]=x2(i]():

1
cmax=cost[0]:

for (i=1:1<NP;i++)
! if(cost[i]>cmax)

b }

cmax=cost[i];

if((cmax-0.0)<=0.000001)
break;

end of while loop */

for(i=0;i<NP;i++)
]

t
printf("x1=%f x2=%f “xI[i][0].xI[i][1])
printf("cost[%d]=%f ",icost[i]);

i
printf{"\ncmax=%f\n",cmax);
printf("\ncount=%d\n",count);
printf("\ncostmin=%f\n" costmin);
printf("\n NFE=%Id\n",nfe);
end = clock();
printf("The time was: %f\n", (end - start) / CLK_TCK),

end of main() */
while (count<gen_max)

for (i=0;i<NP;i++)

{

)
)

do a=rnd_uni()*NP; while (a==i);

do b=md_uni()*NP; while (b==i || b==a);

do c=rnd_uni()*NP; while (c==i || c==a || c==b);
j=md_uni()*D;

for (k=1;k<=D;k++)

{
if (md_uni() < CR || k==D)
{
trial[j}=x1[c](i]+F*(x1[a](i]-x1 [b]0i]):
}
else trial[j]=x1[i][j];
J=(+1yD;
)

score=evaluate(trial);
if (score<=cost[i])

for (j=0;j<D;j++)
x2[i](j]=trial(j);

cost[i]=score;

}
else for (j=0;j<Dy++)
x2[i]li)=x1[i)0];

for (i=0;i<NP;i++)
]

1
1

count++;

¥

for (j=0;j<Dsj++)
x1[i]0]=x2[i0]:

261

APPENDIX II

Code of selected problems from Chapter — 3 are given in this Appendix.

Code of Himmelblau function using MDE (Chapter-3)

#dcfine gen_max 1000

#define D 2

#define NP D*10

#define F 0.8 /*0.64 &0.51%

#dcfine CR 0.5

#define Lo 0.0

#define Hi 6.0

/*----Constant for rnd_uni()--------------- */

#define IM1 2147483563

#define IM2 2147483399

#define AM (1.0/IMI)

#define IMMI1 (IM1-1)

#define IA1 40014

#define [A2 40692

#define IQ1 53668

#define IQ2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS1 1.2e-7

#define RNMX (1.0-EPSI)

#include<stdlib.h>

#include<stdio.h>

#include<time.h>

#include<math.h>

#include<conio.h>

#include<memory.h>

float evaluate(double [], long *);

float evaluate(double tmp({], long *nfe)

{ double z,z1,22,x1,x2; /*** x1=tmp([0], x2=tmp{1]**/

(*nfe)++;

x 1=tmp[0];x2=tmp[1];
z=(pow(((x 1 *x1)*+x2-11).2))+H(pow((x1+(x2*x2)-7),2));
return z;
]
;loat mmd_uni(long *);
float md_uni(long *idum)

{

long j; long k;

static long idum2=123456789;

static long iy=0:static long iv[NTAB]J; float temp;

if(*idum<=0)

]
if(-(*idum)<1l) *idum=1; else *idum=-(*idum); idum2=(*idum).
for(j=NTAB+7:j>=0:j--)

!

k=(*idumy/IQl;
idum=1A1(*idum-k*1Q1)-k*IR1;
if(*idum<0) *idum+=IMI;
if(<NTAB) iv[j]=*idum;

262

costmax=cost[0];
for(i=1;i<NP;i++)
! if{costmax<cost[i])
costmax=cost[i]:

count++;
if(fabs(costmin-(0.0))<1e-6)
break;
W } /***¥end of while loop******>****/

end = clock();

for(j=0;j<Dij++)
printf(" x1=%f “.x1[mini][j])
printf("cost[%d]=%f " mini,cost[mini]):

printf("NFE=%Id genmax=%d\n",nfe,count);
printf("The time was: %f\n", (end - start) / CLK_TCK);
printf{"cost=%f" evaluate(x1[0],&nfe)).
printf{"costmin=%f",costmin),
printf{"costmax=%f"costmax);
l /##t**‘ttend Ofmain() ********###/

Code of thermal cracker problem using DE (Chapter-3)

#define gen_max 1500
#define D 4
#define NP 40
#define F 0.5 /* F=0.5 & CR=0.8*/
#define CR 0.8
- #define inibound_| 0
#define inibound_h 90000
/*-—-Constant for md_uni()--------===----=- *
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IAl 40014
#define IA2 40692
#define IQ1 53668
#define 1Q2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMMI/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPSI)
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
) ginclude<memory.h>
- void assignd(double a[], double b[]):
void assignd(double a[], double b[})
[}
1
int j;
for(j=0;j<D;j++)

{
?U]=b[i] ;

264

'
costmax=cost[0];
for(i=1;i<NP;i++)
! if{costmax<cost[i])
costmax=cost[i]:

count++,
if(fabs(costmin-(0.0))<1e-6)
break;
: /ttt#end of Whlle loop****¥$#¥$‘*/

end = clock();

for(j=0:j<D;j++)
printf(" x1=%f " x1[mini][j])
printf("cost[%d]=%f *,mini,cost[mini]);

printf("NFE=%Id genmax=%d\n",nfe,count);
printf("The time was: %f\n", (end - start)/ CLK_TCK):
printf("cost=%f" evaluate(x 1[0],&nfe});
primf{"costmin=%f",costmin),
printf("costmax=%f",costmax);
] [exsxxxx20nd of main() ERRRRRERERR]

Code of thermal cracker problem using DE (Chapter-3)

#define gen_max 1500
#define D 4
#define NP 40
#define F 0.5 /* F=0.5 & CR=0.8%/
#define CR 0.8
#define inibound_l 0
#define inibound_h 90000
/*----Constant for rnd_uni()-------=------=-- *
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define IQ2 52774
#define IR1 12211
#define IR2 3791
#dcfine NTAB 32
#define NDIV (1+IMMI/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPS1)
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
#include<memory.h>
void assignd(double a[], double b[]):
void assignd(double a[], double b[])
[}
]
intj:
for(j=0;j<D:j++)

{
?[j]=b[i];

264

[¥:4

Ths3=(0.15*x 1[i][0])+(1.51*x1[i]{1]*+(1.3711*x1[i][2)+(1.6426*x] neh:
if(1hs3>180000.0)
! pen=(lhs3*100):
cost[i]=evaluate(x 1[i},pen,&nfe):
continue;

}
if{lhs1<=1800000 && lhs2<=450000.0 && lhs3<=180000.0)
1

\
cost{i]=evaluate(x1[i],pen,&nfe).
\
: [
costmax=cost[0];
imin=0;
for(i=1;i<NP;i++)
!
if(cost[i]>costmax)
{
costmax=cost[i];
imin=i;
}

1

'

assignd(best,X 1{imin]);

assignd(bestit,x I [imin]);
while (count<gen_max)

for (i=0;i<NP;i++)
{
do a=int ((md_uni(&rnd_uni_init))*NP); while (==i);
do b=int (md_uni(&md_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&md_uni_init)*NP); while (c==i || c==a | c==b);
do d=int (rnd_uni(&rmd_uni_init)*NP); while (d==i || d==a | d==b || d==¢);
do e=int (rnd_uni(&md_uni_init)*NP); while (e==i || e==a || e==b [| e==c || e==d);
£ R de/rand/1/bin */
if (strategy==1)
{

j=int (md_uni(&md_uni_init)*D);
for (k=1;k<=D;k++)
{ if ((d_uni(&md_uni_init))<CR || k=D)
trial[j}=x1[c]j]+F*(x1[a](j}-x 1 [bID]);
el}se trial(jl=x1{il[j};
if(trial[j}<0.0) trial[j]=0.0;
j=(+1)%D;
}
/* } DE/best/1/bin *

else if (strategy==2)
1

t
j=int (rnd_uni(&rmd_uni_init)*D);

for (k=1;k<=D:k++)
f
l if ((rmd_uni(&md_uni_init))<CR || k==D)
trial[j}=bestit[j}+F*(x1[a]{j]-x 1 [b](]);

}
else trial|j]=x1[i](]

266

Ths3=(0.15*x I{i]J(OD+(1.51*x1[))[1])+(1.371 1 *x1[i)[2])+(1.6426*x I [i][3]):
if(1hs3>180000.0)
! pen=(lhs3*100);
cost[i]=evaluate(x1[i],pen.&nfe);
continue;

if(lhs1<=1800000 && lhs2<=450000.0 && 1hs3<=180000.0)
[}
)
cost[i]=cvaluate(x 1{i],pen,&nfe);
1
!

1
i

costmax=cost[0];
imin=0;
for(i=1;i<NP;i++)
{
if{cost[i]>costmax)
{
costmax=cost[i];
imin=i;
)

]
1)
assignd(best,x 1[imin]);
assignd(bestit,x1{imin]);
while (count<gen_max)
{
for (i=0;i<NP;i++)
{
do a=int ((rnd_uni(&rd_uni_init))*NP); while (a==i);
do b=int (md_uni(&md_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&rnd_uni_init)*NP); while (c==i || c==a || c==b);
do d=int (md_uni(&md_uni_init)*NP); while (d==i || d==a || d==b || d==c);
do e=int (md_uni(&md_uni_init}*NP); while (e==i || e==a || e==b || e==c || e==d);
| SO— --de/rand/1/bin */
if (strategy==1)
{

j=int (md_uni(&md_uni_inity*D);
for (k=1;k<=D;k++)
! if ((md_uni(&md_uni_init))<CR [k==D)
‘ trial[j]=x1[c](j}+F*(x1[a][j]-x 1 [b](i]);
else trial[j]=x1[i][j;
if{trial[j]<0.0) trial[j]=0.0;
j=(+1)%D;
}
/* DE/best/1/bin */

else if (strategy==2)
]

1
j=int (rd_uni(&rnd_uni_init)*D);

for (k=1;k<=D:k++)
! if (md_uni(&rnd_uni_init))<CR || k==D)
trial[j]=bestit[j}+F*(x I [a][j]-x 1 [b]Lj]);
llsetrial[j]=xl[i][i]: :

266

else if (strategy==0)
j=int (md_uni(&md_uni_init)*D);

k=0;

do
trial[jJ=x 1 {c](]+F*(x 1 [a][j}-x 1 [b](j]):
if(trial[j]<0.0) trial[j]=0.0;
j=(+1)%D;
k++;

]
while((md_uni(&md_uni_init))<CR && k<D);

L de/best/1/exp---=-=-=---ovoecmmuauen */
else if (strategy==7)
{
j=int (md_uni(&rnd_uni_init)*D);
k=0;
do
{
trial[j]=bestit[j}+F*(x1[a][j]-x 1 [b][j]):
if(trial[j]<0.0) trial[j]=0.0;
j=(+1)%D;
k++;
}
while((rnd_uni(&md_uni_init))<CR && k<D),
}
L S de/best/2/exp---=--------esmmemennn */
else if (strategy==8)
{
assignd(trial,x1{i]);
j=int (md_uni(&rnd_uni_init)*D);
k=0;
do
{
trial[j]=bestit[j]+F*(x1[a](j]+x 1 [b](j]-x 1 [c][]-x1 [d161%
if(trial[j]<0.0) trial[j]=0.0;
=(+1)%D;
k++;

!
while((rnd_uni(&rnd_uni_init))<CR && k<D,

else if (strategy==9)
[

assignd(trial, x 1[i]):
j=int (md_uni(&md_uni_init)*D);

k=0;
do
{
trialj]=x1{e] i +F*(x1 (] (i]+x1 [b](i]-x [e][j]-x [d][i]):
if(trial[j]<0.0) trial[j]=0.0;
j=(+1)%D;
k++;

1
]
while((md_uni(&rnd_uni_init))<CR && k<D);

R de/rand-to-best/1/exp *

268

else if (strategy==0)
1

\
j=int (md_uni(&md_uni_init)*D);

k=0;

do
trial(j]=x1{c](j}+F*(x I [a]j])-x1[b]D):
if(trial(j]<0.0) trial[j]=0.0;
J=(+1)%D;
k++;

f
while((md_uni(&md_uni_init))<CR && k<D):

else if (strategy==7)
1

\
j=int (rd_uni(&rnd_uni_init)*D);

k=0;
do
{
trial[j]=bestit[jl+F*(x1[a](j]-x 1 [b](])
if(trial[j]<0.0) triai[j}=0.0;
J=(+1)%D;
k++;

}
while((rnd_uni(&md_uni_init))<CR && k<D);
}

Y, 1.7 117715 4» St

else if (strategy==8)
{

assignd(trial x1[i]);
j=int (md_uni(&md_uni_init)*D);

k=0,
do
{
trial[j}=bestit[j]+F*(x1[a]j]+x 1 [b][j]-x (c]l1-x1{d]LD:
if(trial[j]<0.0) trial[j]=0.0;
j=(+1)%D;
k++;

}
while((md_uni(&rnd_uni_init))<CR && k<D);

else if (strategy==9)
I

assignd(trial x I[i]):
j=int (md_uni(&rmd_uni_init)*D);

k=0,
do
trialfjJ=x 1 [e](i}+F*(x 1 {1+ [b[j]-x | [eILi]-x HAIEiD):
if(trial(j]<0.0) trial[j]=0.0;
j=(+1)%D:
k++;

1
i
while((md_uni(&rnd_uni_init))<CR && k<D),

L defrand-to-best/1/exp *

268

cost_trial=evaluate(trial,pen,&nfe):
if (cost_trial>=cost(i])
1
t
for (j=0;j<Dsj++)
x2[i][j]=trial[j]:
cost[i]=cost_trial;
if(cost_trial>costmax)

costmax=cost_trial;

imin=i;
o~ assignd(best,trial);
|
|
else for (j=0;)<Dy++)
x2[i]G1=x1[i]0]:
continuge;
!
if(lhs1<=1800000 && Ihs2<=450000.0 && lhs3<=(180000.0))
i
1
cost_trial=evaluate(trial,pen,&nfe);
if(cost_trial>=cost[i])
]
\
for (j=0j<Dyj++)
x2[i](j]=trial[j);
cost[i]=cost_trial;
if{cost_trial>costmax)
{
costmax=cost_trial;
imin=i;
assignd(best,trial);
}
) s
. else for (j=0;j<D;j++))
' x2[i][=x (10
continue;
}
} [reresxxnxrond of for looptuuunn*a/
assignd(bestit,best);
for(i=0;i<NP;i++)
{
for (j=0;j<D;j++)
x1[iG}=x2[i]0)s
}
costmax=cost[0];
for(i=1;i<NP;i++)
| if(costmax<cost[i])
costmax=cost[i];
]
'
costmin=cost[0];
for(i=1;i<NP;i++)
! if(costmin>cost[i])
costmin=cost[i];
1]
|

if((costmax-costmin)<0.000001)
break:

count++;
J /ersxrnarsxend of while loop*******xx*s/

end = clock();

for(i=0;i<NP:i++)

270

cost_trial=evaluate(trial,pen.&nfe):
if (cost_trial>=cost[i])
]
)
for (j=0;j<D;j++)
x2[i](j]=trial(j):
cost[i]=cost_trial;
if(cost_trial>costmax)

]
1

costmax=cost_trial:
imin=i;
assignd(best,trial);
1
[

)
else for (j=0;j<Dyj++)
, x2[i]0]=x1[]0]:
continuc;

!

if(lhs1<=1800000 && lhs2<=450000.0 && lhs3<=(180000.0))
1

1
cost_trial=evaluate(trial,pen,&nfc);

if(cost_trial>=cost[i])
{
for (j=0;j<D;j++)
x2[i][j])=trial[j]:
cost[i]=cost_trial;
if(cost_trial>costmax)

{
costmax=cost_trial;
imin=i;
assignd(best,trial);
)

)
else for (j=0;j<Dsj++)
. x2[i][j)=x I GilG;
continue;

}

} /#*t*#t##t*end Of fOr]oop***********##/
assignd(bestit,best);
for(i=0;i<NP;i++)
{
for (j=0;j<D;j++)
x1[i]01=x2[i][j];
[}

costmax=cost[0];
for(i=1;i<NP;i++)
{ if(costmax<cost[i])
costmax=cost[i];
[}
]
costmin=cost[0];
for(i=1;i<NP;i++)
| if{costmin>cost[i])
costmin=cost[i];
H
if((costmax-costmin)<0.000001)
break:

count++;
! eexkxekaskond of while loop***********/

end = clock();

for(i=0;i<NP:i++)

270

W

printf("x1=%{ x2=%f x3=%f xd4=%f "x1{iJ[0].x1{i][1].xI[i][2].xI(i)(3]:
printf("cost[%d]=%f ",i,cost[i]).

printf("ths1=%f |hs2=%f Ihs3=%f \n ",lhsl,lIhs2,lhs3):
printf("NFE=%Id\n"nfe);

printf("The time was: %f\n", (end - start) / CLK_TCK);
printf("would you like to exit? press Y for exit");
ch=getch():

if(ch=="y"|lch=="Y") { printf("exited"); exit(1);}

fout=fopen("\\out100.xIs","a+");
/* fprintf(fout,"\nThe out put is\n:");
for(i=0;i<NP;i++)
| 1f(1%10==0)
{
fprintf{fout, "x1=%f x2=%f x3=%f x4=%f " x1[iJ{0].x I[i][1].x1[i][2].x1[i]{3]):
fprintf(fout, "cost{%d]=%f \n",i,cost[i]) '
1
f
i
fprintf(fout, "%d %ld " strategy,nfe);
fprintf(fout, "%f ", (end - start) / CLK_TCK);
fprintf(fout, "%d %d %f %f\n" count,seed,F,CR);

fclose(fout);
} /“““#“**** end of main() ****##*##t###*##/

Code of thermal cracker problem using MDE (Chapter - 3)

#define gen_max 5000
#define D 4
#define NP 40
#define F 0.8 /* F=0.5 & CR=0.8*/
#define CR 0.5
#define inibound_10
#define inibound_h 90000
/*----Constant for rmd_uni()------===--==--=- *
#define IM1 2147483563
#define IM2 2147483399
#idefine AM (1.0/IM1)
#define IMMI1 (IM1-1)
#define [A1 40014
#define [A2 40692
#define IQ1 53668
#define Q2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMMI/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPSI) -
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
#include<memory.h>
void assignd(double a[]. double b[}):
void assignd(double a[], double b[])
{
intj:
for(j=0;j<Dij++)

{
?Li]=bU]:

271

float evaluate(double (], long *).
float evaluate(double tmp[], long *nfe)
' double cost,lhs],lhs2,lhs3; (*nfe)++;

Ihs1=(16.5*tmp[0])+(10.1*tmp[1])+(8.861 *tmp[2])+(9.926*tmp[3]);
Ihs2=(7.5*tmp[0])+(4.0*tmp[1])+(2.14*tmp[2])+(2.665*tmp[3]);
Ths3=(0.15*tmp(0])+(1.51*tmp[1])*+(1.371 1 *tmp[2])+(1.6426*tmp(3]);
if(1hs1<=1800000 && lhs2<=450000.0 && lhs3<=180000.0)
]

]
cost=(tmp[0]*9.1)+(tmp[1]*16.92/9.0)-(tmp[2]*23.2911/9)+(tmp[3]*17.8974/9),
]
]
clse cost=(tmp[0]*9.1)+(tmp[1]*16.92/9.0)-(tmp[2]*23.2911/9)+(tmp[3]*17.8974/9)-(Ihs | +Ihs2+lhs3)* 1¢G;

return cost;
[}

H
float rnd_uni(long *);

float md_uni(long *idum)
[}
t
long j; long k;
static long idum2=123456789;
static long iy=0;static long iv[NTAB]; float temp;
if(*idum<=0)
{
if(-(*idum)<1) *idum=1; else *idum=-(*idum); idum2=(*idum),
for(j=NTAB+7,j>=0;j--)

{
k=(*idum)/1Q1;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IMI,
if((<NTAB) iv[j]=*idum;

}

iy=iv[0];

}

k=(*idum)/1Ql;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=IA2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[j]-idum2; iv[j]=*idum;
ifliy<1) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

void main()

]

I int i,j,k.a,b.c.d,e,good,count,seed,imin; long nfe;
double x1[NP][D],cost[NP],trial[D];
double cost_trial,costmin,costmax,bestit[D],best[D];
clock_t start, end; FILE *fout; char ch;

/" printf("\nseed="); scanf("%d" ,&seed),

/1 printf("\nstrategy="); scanf("%d",&strategy);
for(d=1;d<=100;d++)
'

. seed=rand()%9999; nfe=0; count=0;
long rnd_uni_init= -(long)seed; start = clock()
for (i=0:i<NP;i++)
]
1
for (j=0;j<Dyj++)

x1{i][j]=inibound_I + rnd_uni(&rnd_uni_init)*(inibound_h-inibound_1);

272

cost[i]=evaluate(x 1[i].&nfe):
]
[
costmax=cost[0];
imin=0;
for(i=1:i<NP;i++)

)
]

if(cost[i]>costmax)

costmax=cost[i];
imin=i;
i
i
assignd(best,x 1 [imin]);
assignd(bestit,x 1[imin]);
while (count<gen_max)
{
for (i=0;i<NP;i++)
{
do a=int ((rnd_uni(&md_uni_init))*NP); while (a==i);
do b=int (md_uni(&rnd_uni_init)*NP); while (b==i || b==a);
do c=int (rnd_uni(&rnd_uni_init)*NP); while (c==i || c==a || c==b);
/" do d=int (md_uni(&md_uni_init)*NP); while (d==i || d==a || d==b || d==c);

1/ do e=int (rd_uni(&md_uni_init)*NP); while (e==i || e==a || e==b || e==c || e==d);

j=int (rnd_uni(&md_uni_init)*D);
for (k=1;k<=D;k++)
{

if ((md_uni(&md_uni_init))<CR || k==D)
| trial[j]=x1[c][]+F*(x1[a][j]-x 1 [b][iD:

el}se trialjl=x1[i](j];

if(trial[j}<0.0) trial[j]=0.0+md_uni(&md_uni_init)*90000.0;

j=(+1)%D;

cost_trial=evaluate(trial &nfe);

if(cost_trial>=cost[i])
{
for (j=0;j<Dsj++)
x1[i][j}=trial(j];
cost[i]=cost_trial;
if(cost_trial>costmax)

{

costmax=cost_trial;
imin=i;
assignd(best,trial);
1
i
H
/1 else for (j=0;j<D:j++)
1/ x2[1[1=x1[110]:

y Jexxxxxxrxsend of for |oopnu**un*u/

assignd(bestit,best);
/* for(i=0;i<NP;i++)
{

]
for (j=0:j<D;jf+)
xI[ijG}=x2[i]0]:
]
*/ !
costmax=cost[0];
for(i=1;i<NP;i++)
{ if(costmax<cost[i])
costmax=cost[i};

}

273

costmin=cost[0]:
for(i=1;i<NP.i++)
! if(costmin>cost[i])
costmin=cost[i];
‘
count~+;

if((costmax-costmin)<0.000001)
break;

: /##*tﬁt#t*‘end ofwhile loop**#**##ﬁ*t*/
end = clock();
for(i=0;i<NP;i++)
{
printf("x1=%f x2=%f x3=%f x4=%f * x1{i](0)x 1(iI[1].x 1[I 2}.x 1 [i][3D):
printf("cost{%d]=%f ",i,cost[i]):
)

/1 printf("lhs1=%f Ths2=%f lhs3=%f \n ",lhsli,lhs2,lhs3);
printf("NFE=%ld\n" nfe);

printf("The time was: %f\n", (end - start) / CLK_TCK):
printf("would you like to exit? press Y for exit");
ch=getch();

iftch=="y'|lch=="Y") { printf("exited"); exit(1);}

fout=fopen("\outMDE10.xIs","a+");
/* fprintf{fout,"\nThe out put is\n:");
for(i=0;i<NP;i++)

{ if{i%10==0)

fprintf{fout, "x1=%f x2=%f x3=%f x4=%f * x1[i][0],x 1 [i][1],x1(i][2].x 1 (i][3]);
fprintf(fout, "cost{%d]=%f \n",i,cost[i]);
}
VY

fprintf{fout, “%Id ",nfe);

fprintf{fout, "%f ", (end - start) / CLK_TCK);

fprintf{fout, "%d %d %f %f\n",count,seed,F,CR);

fclose(fout);

} /***ﬁ*#***###t end of main() *##********###*/

}

Code of Runge Kutta method for Ammonia Synthesis problem (Chapter - 3)

#include<stdlib.h>
#include<stdio.h> /* Please check the f1 & 2 values*/
#include<math.h>
#include<conio.h>

#define f1 1.78954e4
#define f2 2.5714el6
#define R 1.987
#define hh 0.0001
#define N20 701.2
#define To 694.0
#define Cpf0.707
#define Cpg 0.719
#define dH 26600.0
#define E1 20800.0
#define E2 47400.0
#define S1 10.0
#define S2 0.78
#define U 500.0
#define W 26400.0

double RKM(double rl);
FILE* galog:

274

e
e e e

- ——see N i et

void main()
t double rl=10.0,profit;

profit=RKM(rl): printf("profit=%If\n" profit):
b

double RKM(double rl)

'

]

double x,h, Tg,Tf,N2,Tfo,Tgo.cost,N20,pN2,pNH3,pH2, Tempg[1000], Temp{[1000]:
double K1,K2,k1,k2 k3,k4,11,12,13,14,m1,m2,m3,m4, NN2[1000],L[1000]:

intij: x=0.0; Tg=To; Tf=To; N2=N20=N2o; Tfo=Tgo=To; long nstep;

/*printf("Reactor Length=");
scanf("%If" &rl).*/

nstep= long(rl/hh);

nstep= nstep+1; printf("nstecp=%Id" nstep); getch().

h=hh;

for(i=0;i<nstep;i++)
kI=h*(-(U*S1%(Tg-TH/(W*Cpf)));

K1=fl*exp(-E1/(R*Tg));

K2=f2*exp(-E2/(R*Tg));

pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3.0*pN2; pNH3=(286.0*(2.23*N2o-

2.0*N2)/(2.598*N20+2.0*N2));
ml=-h*((K1*pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
11=h*((-U*S1*(Tg-TH/(W*Cpg))*+(dH*S2*(-m1/h)/(W*Cpg)));

/* printf{"k1=%f m1=%f11=%f\n"k1,ml,l1); getch(); */
Tg=Tg+(11/2.0); Tf=Tf+(k1/2.0); N2=N2+(m1/2.0);

k2=h*(-(U*S1*(Tg-TH/(W*Cpf)));

K1=f1*exp(-E1/(R*Tg));

K2=f2*exp(-E2/(R*Tg));

pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.0*(2.23*N20-2.0*N2)/(2.598*N20+2.0*N2));
m2=-h*((K1*pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
12=h*((-U*S1*(Tg-TH/(W*Cpg))+(dH*S2*(-m2/h)/(W*Cpg)));

/* printf("k2=%If m2=%If 12=%If \n"k2,m2,2); getch(); */

Tg=Tg+(12/2.0); Tf=Tf+(k2/2.0); N2=N2+(m2/2.0);

k3=h*(-(U*S1*(Tg-TH/(W*Cpf)));

K1=f1*exp(-E1/(R*Tg));

K2=f2*exp(-E2/(R*Tg)),

pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.0%(2.23*N20-2.0*N2)/(2.598*N20+2.0*N2));
m3=-h*((K 1 *pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
13=h*((-U*S1*(Tg-Tf/(W*Cpg))+(dH*S2*(-m3/h)/(W*Cpg))),

7 printf("k3=%f m3=%f 13=%f \n",k3,m3,13); *
Tg=Tg+3; TE=Tf+k3; N2=N2+m3;

kd=h*(-(U*S1*(Tg-TH/A(W*Cpf)));

K 1=f1*exp(-E1/(R*Tg));

K2=f2*exp(-E2/(R*Tg));

pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.0*(2.23*N20-2.0*N2)/(2.598*N20+2.0*N2));
md=-h*((K1*pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));

/* ma=h*(((-4.5*K1*286.0*N2*N2)/((2.598*N20+2.0*N2)*(2.23*N20-2.0*N2)))+(K2*(2.23*N2o-

2*¥N2)/(4.5%N2))):*/

14=h*((-U*S1*(Tg-TH/(W*Cpg))+(dH*S2*(-m4/h)/(W*Cpg))):

/* printf("kd=%f md=%f [4=%f \n"kd,m44); */
Tf=Tfo+(k1+(2*k2)+(2*k3)+k4)/6.0;
Tg=Tgo+(11+(2*12)+(2*13)+14)/6.0;

N2=N20+(ml+(2*m2)+(2*m3)+m4)/6.0;
x=x+h; if(Tf<400.0) break;

275

Tgo=Tg: Tfo=Tf, N20=N2:
if ((galog = fopen("D:\de2.xls","a+"))==NULL)
I
1
exit(1):
]
!
fprintfigalog,"x=%If TE=%If Tg=%If N2=%lf\n"x,Tfo,Tgo,N20)
fclose(galog);
]

]

/*Tempg(j)=Tg: Tempf[j]=Tf; NN2[j]=N2; L[j]=x:

printf("x[%d]=%If Tf[%d]=%If Tg[%d]=%If N2[%d]=%If\n"j,L[j] . Tempf]j]j. Tempg[ilj,.NN2[j]);
*/

cost=(13356300.0)-(17084.3*N2)+(704.09*(Tg-To))-(699.27*(Tf-To))-sqrt((34566300.0)+(1983650000.0*x)):
printf("x=%If , Tg=%f Tf=%f N2=%f\n"x,Tg,TN2);

printf{"cost=%lIf\n",cost).

return(cost);

\
)

Code of Ammonia Synthesis problem using DE (Chapter — 3)

#dcfine gen_max 100

#define D |

#define NP 10

#define F 0.5

#defineCR0.9 /*0.6%

#define inibound_{ 0 /* Please Check f1 & f2 values*/
#define inibound_h 10

/*----Constant for md_uni()---==------------ */
#define IM1 2147483563
#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IM1-1)

#define IA1 40014

#define 1A2 40692

#define IQ1 53668

#define 1Q2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMMI/NTAB)
#define EPS1 1.2e-7

#define RNMX (1.0-EPS1)

[¥ammeee Parameter's Value for solving ODE's_----------- */
#define f1 1.78954c4
#define 2 2.5714el16
#definc R 1.987
#define hh 0.01
#define N20 701.2
#define To 694.0
#define Cpf 0.707
#define Cpg 0.719
#define dH 26600.0
#define E1 20800.0
#define E2 47400.0
#define S1 10.0
#define S2 0.78
#define U 500.0
#define W 26400.0

#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>

276

#includc<conio.h.>
static double Tg,Tf,N2,x;
void assignd(double a[]. double b[]):
void assignd(double a[}, double b[])
s
. int j;

for(j=0;j<D;j++)

{
?[i]=bLi];

float rnd_uni(long *);

float rnd_uni(long *idum)
{
long j; long k:
static long idum2=123456789,
static long iy=0;static long iv[NTAB]J; float temp;
if(*idum<=0) .
{
if(-(*idum)<1) *idum=1; else *idum=-(*idum); idum2=(*idum);
for(j=NTAB+7;j>=0;j--)

{
k=(*idum)/IQI;
idum=IA1(*idum-k*IQ1)-k*IR;
if(*idum<0) *idum+=IMI;
if<xNTAB) iv[j]=*idum;

}
iy=iv[0];

)

k=(*idum)/IQ1;
idum=[A1(*idum-k*IQI)-k*IR1;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=]A2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[j]-idum2; iv{j]="idum;
ifiy<l) iy+=IMM1;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

)
J
double RKM(double rl);
double RKM(double rl)
]
cliouble h,Tfo,Tgo,cost,N20,pN2,pNH3,pH2; long nstep;
double K1,K2,k1,k2,k3 k4,11,12,13,14,m1,m2,m3,m4:
int i,j; x=0.0; Tg=To; Tf=To; N2=N20=N2o; Tfo=Tgo=To;

/*printf("Reactor Length=");
scanf("%lIf",&rl);*/

nstep= long(rl/hh); /*printf{"nstep=%Id" nstep); getch(); */

h=hh;

for(i=0;i<nstep;i++)

k1=h*(-(U*S1*(Tg-TH/(W*Cpf));
K 1=f1*exp(-E1/(R*Tg));
K2=f2*exp(-E2/(R*Tg));

277

pN2=(286.0*N2/(2.598*N20+2.0*N2)), pH2=3.0*pN2: pNH3=(286.0*(2.23*N2o-
2.0*N2)/(2.598*N20+2.0*N2)),
mi=-h*((K1*pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
1=h*((-U*S1*(Tg-TH/(W*Cpg))+(dH*S2*(-m1/h)/(W*Cpg)));

/* printf("k1=%f ml=%f11=%f\n"kl.m1l1). getch(): */
Tg=Tg+(11/2.0); TF=T(k1/2.0); N2=N2+(m1/2.0);

k2=h*(-(U*S1*(Tg-TOAW*Cpf)));
K1=fl*exp(-E1/(R*Tg));
K2=2*exp(-E2/(R*Tg));
pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.0%(2.23*N20-2.0*N2)/(2.598*N20+2.0*N2)).
m2=-h*((K 1 *pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5)))):
12=h*((-U*S1*(Tg-TH/(W*Cpg))+(dH*S2*(-m2/h)/(W*Cpg)));

/* printf("k2=%If m2=%If 12=%If \n"k2,m2,12). getch(); */

Tg=Tg+(12/2.0): T{=Tf+(k2/2.0); N2=N2+(m2/2.0);

k3=h*(-(U*S1*(Tg-TH/(W*CpD)):
Ki=f1*exp(-E1/(R*Tg));
K2=f2*exp(-E2/(R*Tg));
pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.0*(2.23*N20-2.0*N2)/(2.598*N20+2.0*N2));
=-h*((K I *pN2*pow(pH2,1.5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
13=h*((-U*S1*(Tg-TH/(W*Cpg))+(dH*S2*(-m3/h)(W*Cpg)));

/* printf("k3=%f m3=%f 13=%f \n"k3,m3,13); */
Tg=Tg+I3; Tf=Tf+k3; N2=N2+m3;

k4=h*(-(U*S1*(Tg-TH/(W*Cpf));
K1=f1*exp(-E1/(R*Tg));
K2=2*exp(-E2/(R*Tg));
pN2=(286.0*N2/(2.598*N20+2.0*N2)); pH2=3*pN2; pNH3=(286.O*(2.23*N20-2.0“N2)/(2.598*N20+2.0*N2));
=-h*((K1*pN2*pow(pH2,1 .5)/pNH3)-(K2*pNH3/(pow(pH2,1.5))));
* md=h*(((-4.5*K 1*286.0*N2*N2)/((2.598*N20+2.0*N2)*(2.23 *N20-2.0*N2)))+(K2*(2.23*N2o-
2*N2)/(4.5*N2)));*/
14=h*((-U*S1 “‘(Tg-TD/(W"Cpg))+(dH*SZ*(-m4/h)/(W‘Cpg)));

/* printf("kd4=%f md=%f 14=%f \n"k4,m44), */

Tf=Tfo+(k 1+(2*k2)+(2*k3)+k4)/6.0;

Tg=Tgo+(11+(2*12)+(2*13)+14)/6.0;

N2=N20+(m1+(2*m2)+(2*m3)+m4)/6.0;

x=x+h; if(Tf<=400.0) break;

Tgo=Tg: Tfo=Tf; N20=N2;

|

cost=(13356300.0)-(17084.3 *N2)+(704.09*(Tg-To))-(699.27*(Tf-To))-sqrt((34566300.0)+(1983650000.0*x));
return(cost).

/*printf("cost=%If\n",cost); */

]

void main()

{
int ij,k.a.b,c.good,count=0,seed,imin; long nfe=0;
double x I[NP][D],x2[NP][D],cost[NP],trial[D],rl,best[D],bestit[D]:
double cost_trial,costmax,costmin,pen; clock_t start, end;

printf("\nsced=");

278

scanf("%d",&seed);
long md_uni_init= -(long)seed: start = clock():
for (i=0;1<NP;i++)
for (j=0;j<D:j++)
1

1
x1[i][j]=inibound_l + md_uni(&md_uni_init)*(inibound_h-inibound_l):

/* printf("x=%f\n" x1[i][0]): *
rl=x1[i][0]:

costi]=RKM(rl): x1[i][0]=x:

/* printf("cost[%d]=%If\n" i,cost[i]); */

costmax=cost[0];
imin=0;
for(i=1;i<NP;i++)

if{cost[i]>costmax)

costmax=cost[i];
imin=i;
)
!

assignd(best,x1[imin]);
assignd(bestit,x 1[imin]);

while (count<gen_max)

{
count++;

imin=0;
for (i=0;i<NP;i++)
{
do a=int (rd_uni(&rmnd_uni_init)*NP); while (a==i);
/*printf("a=%d ",a);*/
do b=int (rnd_uni(&md_uni_init)*NP); while (b==i || b==a);
printf("\nb=%d ",b);*/
do c=int (rmd_uni(&md_uni_init)*NP); while (c==i || c==a || c==b};
r*printf("\n c=%d",c); */

1 J— de/rand/1/bin *

j=int (md_uni(&rnd_uni_init)*D);
Fprimf(" j=%d"j);
getch(): ¥/

for (k=1;k<=D:k++)

!
if ((md_uni(&md_uni_init))<CR || k==D)
{
trial[jl=x1{c](j]+F*(x1[a]{j]-x1[b](i]);

}
else trial[j]=(x I [i][j]+x1[i+1][j])/2.0;

279

if(trial[j]<0.0) trial[j]=0.0:
if{trial[j]>10.0) trial[j]=10.0;

/*printf("r1=%f trial[%d)}=%f. ".rlj.trial[j]):
getch();*/
=+ 1D)%D;

rl=trial[0];
cost_trial=RKM(rl); trial[0]=x;

/* printf("\ntrialcost=%f , cost[%d]=%f ",cost_trial,i.cost[i]);
getch();*/

if (cost_trial>=cost[i])
{
for (j=0;j<D;j++)
x2(i][j]=trial[j];
cost[i]=cost_trial;
if(cost_trial>costmax)

{
costmax=cost_trial;
imin=i;
assignd(best,trial);
}

}
else for (j=0;j<D;j++)
x2[i]G1=x1{il);

/* printf("x1=%f x2=%f "x2[i][0],x2[i][1]);
getch(); */

} /#-eeeeemeeeeeeer——-end of FOR loop after while--e-v---- */

assignd(bestit,best);
for (i=0;i<NP;i++)

for (j=0;j<D;j++)
x1[1)G)=x2[i10];

costmax=cost{0];

imin=0;

for(i=1;i<NP;i++)

{
if(cost[i}>costmax)
{
costmax=cost[i];
imin=i;
}

}

costmin=cost[0];
imin=0;
for(i=1;i<NP;i++)

if(cost[i}<costmin)
I

1
costmin=cost[i];
imin=i;
]

}

if((costmax-costmin)<0.00001)

280

break;

W ASSSREEESY end of while loop */

end = clock();
printf("The time was: %f\n", (end - start) / CLK_TCK):
for(i=0;i<NP;i++)
]

t
printf("x1=%f " x1[i][0]):
printf("cost[%d]=%f ",i,cost[i]):

]
printf("\ncmax=%f\n",costmax);
printf("\ncount=%d\n" count):
printf("bestx=%f" best[0]);
printf("\n NFE=%ld\n",nfe):

HEACTE R end of main() */

Code of drying process problem using DE of Chapter-3

#dcfine gen_max 1000
#dcfine D 2

#define NP 20

t#define F 0.7

#define CR 0.99
#dcfine inibound_1 0
#define inibound_h 1

/*----Constant for md_uni()-------------- */
#define IM1 2147483563
#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IMI-1)

#define [A1 40014

#define [A2 40692

#define IQ1 53668

#define 1Q2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMMI1/NTAB)
#define EPS1 1.2e-7

#define RNMX (1.0-EPS1)

#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>

double evaluate(double [],long *);
double evaluate(double tmp(],long *nfe)
| double cost,pl,p2,p3; (*nfe)++; /**** mp[0]=x1, tmp[1]=x2;*****¥/

pl=(1-exp(-1 07.9*tmp{1)/pow((tmp[0]*1000.0),0.41)));
p2=(9.27*pow((tmp[0}*1 000.0),0.41)/(10000.0*tmp([1]));
p3=(1-exp(-5.39*tmp[11/pow((tmp[0]*1000.0),0.41)));

cost=(0.033*tmp[0]*1000.0)/((0.036/p1)+0.095+(p2*log(p1/p3))):
return(cost);

} /***#***t***##* end Ofevalua[e() *****t************/
float rnd_uni(long *);

float rnd_uni(long *idum)

{
long j; long k;

281

static long idum2=123456789;

static long iy=0;static long iv[NTAB]J; float temp;

if(*idum<=0)

:
if(-(*idum)<1) *idum=1: else *idum=-(*idum): idum2=(*idum):
for(j=NTAB+7,j>=0;j--)
q{

1

k=(*idum)/IQl;
idum=IA1(*idum-k*1Q1)-k*IR1;
if(*idum<0) *idum+=IMl;
if(j<NTAB) iv[j]=*idum;

i'y=iv[0];

}
k=(*idum)/IQl;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=I1A2*(idum2-k*IQ2)-k*IR2;
if(idum2<0) idum2+=]M2;
J=iy/NDIV; iy=iv[j]-idum2; iv[j]=*idum;
if(iy<l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;
)
void main()
{
int i,j,k,a,b,c,good,count=0,seed; long nfe=0;
double x1[NP][D],x2[NP][D],cost[NP],trial[D],cost_trial,costmax,costmin;
clock_t start, end; double pen,lhs!,lhs2,lhs3,p1,p2,p3,p4;
printf{"\nseed=");
scanf("%d",&seed);
long md_uni_init= -(long)seed; start = clock();

for (i=0;i<NP;i++)
{

for (j=0;j<D;j++)
{
x1[i][j]=inibound_| + rnd_uni(&md_uni_init)*(inibound_h-inibound_l);

}
pen=0.0;

1hs1=0.2-(4.62*x1[i][1]*pow((x1[i][0]*1000),2.85)y*pow(10,-10))-(1.055*x1[i][0]*1000.0/10000.0);
if(lhs1<0.0)
{
pen=-lhs1*1e8;
cost{i]=evaluate(x1[i], &nfe);
cost[i]=cost[i]-pen;
continue;

lhs’2=(4.0/ 12.0)-(8-2*pow(10,-7)*pow((x1[i][0]*1000),1.85)*x I [i][1])-(2.25/12);
if(1hs2<0.0)
{ pen=-lths2*1e8;
cost[i]=evaluate(x 1[i], &nfe);
cost[i]=cost[i]-pen;
continue;

!
pl=(1-exp(-107.9*x1[i}[1}/pow((x 1[i][0]*1000.0),0.41)));
p2=(9.27*pow((x 1[i][0]*1000.0),0.41)/(10000.0*x 1 [i]{1]);
p3=(1-exp(-5.39*x I [i][1)/pow((x1[i}[0]*1000.0),0.41)});
p4=(109.6*x1[iJ[1)/pow((x 1[i][0]*1000),0.41));
Ihs3=(2.0*0.32)-(p4*((0.036/p1)+0.095+(p2*log(p1/p3))):

if{1hs3<0.0)
{

282

pen=-lhs3*]¢8;
cost[i]=evaluate(x1[i], &nfe):
cost[i]=cost[i]-pen;

continue;

i
if(lhs1>=0.0 && lhs2>=0.0 && lhs3>=0.0)
costfi)=evaluate(x1[i], &nfe);

costmax=cost[0];
for(i=1;i<NP;i++)
]
L]
if(costmax<cost[i])
costmax=cost[i];
]

]
while (count<gen_max)

for (i=0;i<NP;i++)
{
do a=int ((rd_uni(&md_uni_init))*NP); while (a==i);
do b=int (md_uni(&md_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&rd_uni_init)*NP); while (c==i || c==a || c==b);
j=int (md_uni(&rnd_uni_init)*D);
for (k=1;k<=D;k++)

{
ifirnd_uni(&md_uni_init)<CR || k==D)
{
trialfj)=x1[c](j}+F*(x1[a](j]-x 1[b0]);
else trial[j]=x1[i]{j];
N if(trial(j]>1.0) trial[j]=1.0;
/1 if(trial[j]<0.0) trial[j]=0.0000001;
if(trial[j]<0.0 || trial(j]>1.0) trial[j]}=0.0000001+md_uni(&md_uni_init);
j=0+1)%D;
}
pen=0.0;
Ihs1=0.2-(4.62*trial[1]*pow((trial[0]*1000),2.85)*pow(10,-10))-(1.055*trial[0]* 1 000*pow(10,-4));
if(lhs1<0.0)
{

pen=-lhs1*1e8;
cost_trial=evaluate(trial, &nfe);
cost_trial=cost_trial-pen;
if(cost_trial>=cost[i])

for (j=0;j<D;j++)

x2[i](jl=trial[j];

cost[i]=cost_trial;
if(cost_trial>costmax)

{
X

costmax=cost_trial;
/* imin=i;
assignd(best,trial); */

}

}
else for (j=0;j<D;j++)
x2[i)G}=x1(i]0):

continue;

H o .
1hs2=(4.0/12.0)~(8.2*pow(10,-7)*pow((trial[0]*1000),1.85)*trial[1])-(2.25/12.0):
if(1hs2<0.0)
]
1
pen=-lhs2*1e8§;
cost_trial=evaluate(trial, &nfe);
cost_trial=cost_trial-pen;
if(cost_trial>=cost[i])

{

283

for (j=0:j<D;j++)

x2[i][j]=trial(j];

cost[i]=cost_trial;
if(cost_trial>costmax)

costmax=cost_trial;

]
'

;lsc for (j=0:;j<Dyj++)
x2[i)i]=x1{i10)s

continue;

}
pl=(1-exp(-107.9*trial[}/pow((trial[0]*1000.0),0.41)));
p2=(9.27*pow((trial[0]*1000.0),0.41)/(1 0000.0*trial[1]));
p3=(1-exp(-5.39*trial[1)/pow((trial[0]*1000.0),0.41)));
p4=(109.6*trial[1)/pow((trial[0]*1000.0),0.41));

Ihs3=(2.0*0.32)-(p4*((0.036/p1)+0.095+(p2*log(p!/p3))));
if(1hs3<0.0)
{
pen=-lhs3*1c8;
cost_trial=evaluate(trial, &nfe);
cost_trial=cost_trial-pen;
if(cost_trial>=cost[i])

for (j=0;j<D;j++)

x2[i][j}=trial(j];

cost[i]=cost_trial;
if(cost_trial>costmax)

{
costmax=cost_trial;
/* imin=i;
assignd(best,trial); */
}

)
else for (j=0;j<Dsj++)
x2(i)()=x1[i0)

continue;

}
if(lhs1>=0.0 && 1hs2>=0.0 && Ihs3>=0.0)
cost_trial=evaluate(trial, &nfe);

if(cost_trial>=cost[i])
{
for (j=0;j<D;j++)
x2[i]{j]=trial[j];
cost[i]=cost_trial;
if(cost_trial>costmax)

{
costmax=cost_trial;
/* imin=i;
assignd(best,trial); */
}

} A
else for (j=0;j<D;j++)
x2[i}[]=x1[il0}:

} /***#***#****t end Of for loop ********#*******/
for (i=0:i<NP;i++)
1
1
for (j=03j<D;j++)
x1{i]0}=x2[i]0]-
]
1]
costmax=cost[0];
for(i=1;i<NP;i++)
{ if(costmax<cost[i])
costmax=cost[i];

284

]
1
costmin=cost[0];
for(i=1:1<NP;i++)
t if{costmin>cost[i])
costmin=cost[i];

if((costmax-costmin)<0.0001)
break;
count++;

: /##‘i“*#**##* end Of\Vhilc lOOp *#****i*#*#tt***/

end = clock();
for(i=0;i<NP:i++)
[}
[}

for(j=0;<Dsj++)

1if(j==0)
printf{"u[%d]=%If"j,(x1[i][j]*1000));
clse

printf{"u[%d]=%If"j.x 1 [i](j]);
)
printf("cost[%d]=%If ".i,cost[i]);
)
]
printf{"NFE=%Ild\n",nfe);
printf{"The time was: %f\n", (end - start) / CLK_TCK);
printf{"costmax=%lf\n",costmax);
printf("Ihs1=%If, 1hs2=%lf Ihs3=%lIf\n",lhs1,lhs2,lhs3);
: /******#****** end Ofmain() /

Code of Heat Exchanger Network Design problem using DE (Chapter-3)

#define gen_max 2000
#defineD S
#define NP 50
#define F 0.5 /*0.64 & 0.51%/
#define CR 0.8
#define inibound_| 10
#define inibound_h 10000
/*----Constant for md_uni()----------------- *
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define Q2 52774
#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMM1/NTAB)
#define EPS1 1:2e-7
#define RNMX (1.0-EPSI)
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
#include<memory.h>
float evaluate(double [], double pen, long *);
float evaluate(double tmp[], double pen, long *nfe)
| double cost;
(*nfe)++;
cost=tmp[0]+tmp[1 J+tmp[2]+pen:

285

g

rcturn cost;

}
void assignd(double a[], double b[])
{
int j:
for(j=0:j<D;j++)
]

{am=bm:

]
float md_uni(long *).
float rnd_uni(long *idum)

{
long j; long k;
static long idum2=123456789;
static long iy=0;static long iv[NTAB]: float temp;
if(*idum<=0)

if(-(*idum)<!l) *idum=1l; clse *idum=-(*idum); idum2=¢*idum);
for(j=NTAB+7,j>=0;j--)

{
k=(*idum)/1Q;
idum=IA1(*idum-k*IQI)-k*IR1;
if(*idum<0) *idum+=IMI;
ifi<NTAB) iv[jl=*idum;

}
iy=iv[0];

}

k=(*idum)/IQl;
*idum=IA 1 *(*idum-k*IQI1)-k*IR1;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=IA2*(idum2-k*1Q2)-k*IR2;
if{idum2<0) idum2+=IM2;
j=iyNDIV; iy=iv[j]-idum2; iv[j}=*idum;
ifliyc]l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

}

void main()

int i,j,k,a,b,c,good,count=0,seed,imin; long nfe=0;

double x I[NP]{D],x2[NP][D],cost[NP],Ihs4,lhs5,lhs6,trial[D];

double cost_trial,cost4,pen,costmin,costmax,best[D],bestit[D];

clock_t start, end;
printf("\nseed=");
scanf{"%d",&seed);
long md_uni_init= -(long)seed; start= clock();
for (i=0;i<NP;i++)
[

for(j=0;j<Dij++)
x1{i](j]=inibound_} + md_uni(&md_uni_init)*(inibound_h-inibound_l);
!
if(x1[i}[0}<100.0 || x1[i)[0]>10000.0) x1[]{0]=100.0+rnd_uni(&rnd_uni_init)*100600.0;
if(x1[iJ[1]<1000.0 || x1{i](1}>10000.0) x1 [i)[1]=1000.0+rnd_uni(&rnd_uni_init)*10000.0;

if(x1(i)(2]<1000.0 | x1[{2]>10000.0) x1[i][2]=1000.0+rmd_uni(&md_uni_init)*10000.0;
for(j=3:j<D;j++)
1

ilf(x] (i10]>1000.0 || x1[i]{j]<10.0) x{i]{j]=10.0+rnd_uni(&rnd_uni_init)*1000.0;

)
/# if(x1[i)[0]>10000.0) x1[i][0]=10000.0;
if(x1[i][0]<100.0) x1[i][0]=100.0;
if(x1[i][1]>10000.0) x1[i][1]=10000.0;
if(x1[i][1]<1000.0) x1[i][1]=1000.0;

286

¢

if(x1{i][2]>10000.0) x1[i][2]=10000.0:

if(x1[i][2]<1000.0) x1[i][2]=1000.0;
for(j=3;j<Dy++)

=it‘(.v(l[i][_|]>1000.0) x1[i][j}=1000.0:
if(x1[i][j]<10.0) x1[i][j]=10.0;
;p:;=0.0;

Ihsd=(100*x 1 [i][0])-(x 1 [i]}[0]*(400-x 1 [i][3]))+(833.33252*x1[i][3])-(83333.333);
if(1hs4>0.0)
' pen=(lhs4*1e7);
cost[i]=evaluate(x1[i],pen,&nfe);
continue;

ThsS=(x 1 [i][1]*x 1 [i][3])-(x 1[i])[1]*(400-x 1 [i)[4]+x I (i][3]))-(1250*x 1 [i][3D)+(1250*x 1 [i][4]):
if(lhs5>0.0)
{ . pen=(lhs5*1e7);
cost[i]=cvaluate(x 1[i],pen,&nfe);
continuc;

§
Ihs6=(x 1 [i][2]*x 1 [i][4])-(x 1 [i][2]*(100+x [i][4]))-(2500*x 1 [i][4])+1250000.0;
if(1hs6>0.0)
{ pen=(lhs6*1e7);
cost[i]=evaluate(x1[i],pen,&nfe);
continue;

)
if(lhs4<=0.0 && lhs5<=0.0 && lhs6<=0.0)

cost[i]=evaluate(x1[i],pen,&nfe);

}
costmin=cost[0];
imin=0;
for(i=1;i<NP;i++)
{
if(cost[i]<costmin)
costmin=cost[i];
imin=i;
}
)

assignd(best,x1[imin]);
assignd(bestit,x 1[imin]);
while (count<gen_max)

]

]
for (i=0;i<NP;i++)

[

1
do a=int ((rd_uni(&rnd_uni_init))*NP); while (a==i); .
do b=int (rnd_uni(&md_uni_init)*NP); while (b==i || b==a);

" do c=int (rnd_uni(&rnd_uni_init)*NP); while (c==i || c==a || c==b);
j=int (rnd_uni(&rnd_uni_init)*D); /*F=md_uni(&rnd_uni_init);*/
for(k=1;k<=D;k++)

{

iftrnd_uni(&md_uni_init)<CR || k==D)
{
trial[j]=x1[c][j]+F*(x1{a](j]-x 1 [b]GD:
]
else trial[j]=x1[i][j]:
j=(+1)%D;
}
if(trial[0]<100.0 || trial[0]>10000.0) trial[0]=100.0+rnd_uni(&rnd_uni_init)*10000.0;
if(trial[1]<1000.0 || trial[1]>10000.0) trial[1]=1000.0+rnd_uni(&rnd_uni_init)*10000.0;
if(trial[2)<1000.0 || trial{2]>10000.0) trial(2]=1000.0+md_uni(&md_uni_init)*10000.0;
for(j=3,j<D;j++)
)

287

z

-~

if(trial(j}>1000.0 || trial[j]<10.0) trial[j]=10.0+rnd_uni(&md_uni_init)*1000.0;
]

)
/* if(trial[0]>10000.0) trial[0]=10000.0;
iftrial[0]<100.0) trial[0]=100.0;
iftrial[1]>10000.0) trial[1)=10000.0;
ifttrial[1]<1000.0) trial{1]=1000.0;
if(trial[2]>10000.0) trial[2]=10000.0;
if(trial[2]<1000.0) trial[2]=1000.0;

for(j=3:j<D;j++)
]

]
if(trial[j}>1000.0) trial(j]=1000.0;
if(trial(j]<10.0) trial[j]=10.0;
1
pen=0.0;
1hs4=(100*trial[0])-(trial[0]*(400.0-trial[3]))+(833.33252*trial[3])-(83333.333);
if(I1hs4>0.0)
! pen=(lhs4*1e7),
cost_trial=evaluate(trial ,pen,&nfe);

if (cost_trial<=cost[i])

for (j=0;j<D;j++)

x2[i][j)=trial[j];

cost[i]=cost_trial;
if{cost_trial<costmin)

{
costmin=cost_trial;
imin=i,
assignd(best,trial);
)

élse for (j=0;j<D;j++)
x2[i][1=x1[i]0):

continuc;

}
Ths5=(trial[1]*trial[3])-(trial[1]1*(400.0+trial[3]-trial[4]))-(1250*trial[3])+(1 250*trial[4]);
if{ths5>0.0)
{ pen=(lhs5*1e7);
cost_trial=evaluate(trial ,pen,&nfe);

if (cost_trial<=cost[i])

]

\
for (j=0;j<D;j++)
x2[i][j]=trial[j];
cost[i]=cost_trial;

if{cost_trial<costmin)
{

costmin=cost_trial;
imin=i;
assignd(best,trial);

}
else for (j=0;j<D;j++)
x2[i][]=x1[i0);

continue;

!
Ihs6=(trial[2] *trial[4])-(trial[2]*(100+trial[4]))-(2500*trial[4])+1250000.0:
if(1hs6>0.0)
{ pen=(lhs6*1€7);
cost_trial=evaluate(trial,pen,&nfe);

if (cost_trial<=cost[i])
]
]

for (j=0;j<D;j++)
x2[i][j]=trial[j];

288

e

cost[i]=cost_trial;
if(cost_trial<costmin)
'
]
costmin=cost_trial:
imin=i;
assignd(best,trial);
|
H
else for (j=0;j<Dyj++)
x2(i)1=x1[i10):

continue;

)
]
if(lhsd<=0.0 && 1hs5<=0.0 && lhs6<=0.0)
f
]
cost_trial=evaluate(trial,pen,&nfe);
/* printf{"cost_trial=%f\n",cost_trial); */
if (cost_trial<=cost[i])
]
]
for (j=0;)<Dyj++) -
x2[i][j]=trial[j];
cost[i]=cost_trial;
if{cost_trial<costmin)

{
costmin=cost_trial;
imin=i;
assignd(best,trial);
}

}
else for (j=0;j<D;j++)
x2[i]G1=x1{i1G%

continue;

} frxwxsxxxrxtend of for loop /
assignd(bestit,best);
for(i=0;i<NP;i++)

for (j=0;j<D;j++)
} x1[i]]=x2[i101;

costmin=cost[0];
for(i=1;i<NP;i++)
{
if(costmin>cost{i])
costmin=cost[i];
}
costmax=cost[0];
for(i=1;i<NP;i-++)
{ if(costmax<cost[i])
costmax=cost[i];
}
if((costmax-costmin)<0.006001)
break;
count++;
’ ,*t#************end Of\Vhile loop*#***t#*****i****/
end = clock();
for(i=0;i<NP;i++)
]
t
printf("x1=%f x2=%f x3=%f x4=%f x5=%f " x1[iJ[0]x1[i][1].x1[i][2]x 1 [i]{3].xI[i][4]):
printf("cost[%d]=%f ",i.cost[i]);

]
[}
printf("lhs4=%f lhs5=%f ths6=%f \n " Ths4,ths5,lhs6);
printf("NFE=%Ild\n",nfe);
printf("The time was: %f\n", (end - start) / CLK_TCK);

printf("costmin=%f costmax=%f\n",costmin,costmax);
} /**###tt**##end ofmain() **#****##***t#/

289

APPENDIX III

Code for Problem-1 of Chapter — 4 is given in this appendix.

Code for Problem-1 of Chapter-4

#define gen_max 5000

#define D 2

#define NP 20

#define F 0.5

#defineCR 0.8 /*0.7%

#define inibound_1 0.0

#define inibound_h 1.0

/*----Constant for md_uni()------=-=--=-==n=z2=- */

#define IM1 2147483563

#define IM2 2147483399

#define AM (1.0/IM1)

#define IMM1 (IM1-1)

#define IA1 40014

#define [A2 40692

#define [Ql 53668

#define 1Q2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS1 1.2e-7

#define RNMX (1.0-EPSI)

#include<stdlib.h>

#include<stdio.h>

#include<time.h>

#include<math.h>

#include<conio.h>

double evaluate(double [],long *);

double evaluate(double tmp(],long *nfe)

{ double cost,lhsl,lhs2,lhs3; (*nfe)++;

lhs1=(1.25-(tmp[0])*tmp[0]*1.6*1. 6)-(tmp[|])),
lhs2=(tmp[0]*1.6+(tmp[1]));
Ihs3=tmp[1]1*(tmp[1]-1.0);
if{lhs1<=0.0) 1hs1=0.0;
if(Ihs2<=1.6) 1hs2=0.0;

cost=(2*tmp[0]*1.6+(tmp[1]))+(fabs(lhs1)+lhs2+fabs(ihs3))*10;

return(cost);
) JRRERRRRERRRRER ond] of evaluate() -)
float md_uni(long *);
float rnd_uni(long *idum)

{
long j; long k;
static long idum2=123456789;
static long iy=0:static long iv[NTAB]; float temp;
if(*idum<=0)

if(-(*idum)<1) *idum=1; else *idum=-(*idum): idum2=(*idum);

for(j=NTAB+7;j>=0;j--)
]

1

k=(*idum)/1Ql;

idum=1A1(*idum-k*IQ1)-k*IR1;
if(*idum<0) . *idum+=IMI;

290

ifG<NTAB) iv[j]=*idum;

\

!

iy=iv[0];
[
k=(*idum)/IQI;
*idum=IA 1 *(*idum-k*I1Q1)-k*IR1;
if(*idum<0) *idum+=IM1;
k=idum2/1Q2;
idum2=IA2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV: iy=iv[j]-idum2; iv[j]=*idum;
iftiy<l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

void main()

)
t

int i j,k,a,b,c,good,count=0,seed; long nfe=0;
double x1[NP][D],cost[NP],trial[D],cost_trial,costmax,costmin;
clock_t start, end;

printf("\nsced=");

scanf("%d",&seed);

long rmd_uni_init= -(long)seed; start = clock();

for (i=0;i<NP;i++)
{
for (j=0;j<Dyj++)

x1[i][j]=inibound_| + rnd_uni(&rnd_uni_init)*(inibound_h-inibound_l);
N if(x1[i][1]>=0.5) x1[i][1}=1.0; else x1[i][1]=0.0;

cost[i}=evaluate(x I[i], &nfe);

}
costmin=cost[0];
for(i=1;i<NP;i++)

{
if(costmin>cost[i])
costmin=cost[i];
}
while (count<gen_max)

{
i=int (rnd_uni(&rnd_uni_init)*NP);
do a=int ((rmd_uni(&md_uni_init))*NP); while (a==i);
do b=int (rnd_uni(&rnd_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&md_uni_init)*NP); while (c==i || c==a || c==b);
j=int (md_uni(&rnd_uni_init)*D),
for (k=1;k<=D;k++)
{
if(rmd_uni(&md_uni_init)<CR || k==D)
{

i

trial(j]=x1[c][j]+F*(x 1 [a)(j}-x i [b[j]);
else trialj)=x1[i][j];

if(trial(0]<0.0 || trial(0]>1.6)
trial{0]=rnd_uni(&md_uni_init);
if(trial[1]<0.0 || trial[1]>1.0)
trial[1]= md_uni(&md_uni_init);
/1 if(trial[11>=0.5) trial[1]=1.0; else trial[1]=0.0;

’

j=(+1)%D:

cost_trial=evaluate(trial, &nfe);
if(cost_trial<cost[i])

{

291

(o

-\

for (j=0:)<D;j++)
x1[i][j]=trial[j];
cost[i]=cost_trial;
if(cost_trial<costmin)

]

\
costmin=cost_trial;

/* imin=i;

assignd(best,trial); */

i

d
costmax=cost[0];
for(i=1;i<NP;i++)
{ if(costmax<cost[i])
costmax=cost[i]:

!
costmin=cost[0];
for(i=1;i<NP;i++)
{ if{costmin>cost[i])
costmin=cost[i];

}
count++;
if((costmax-costmin)<0.00001)
break;

} /*“**tt#****t end OrWhlle Ioop whkkkkikkekknikE/

end = clock();
for(i=0;i<NP;i++)

{

for(j=0;j<D;j++)

if(j==0)
printf("u{%d]=%If"j,(x1[i][j]*1.6));
else printf("u[%d]=%If"j.(x I [{]]))
printf("cost[%d]=%lIf ",i,cost(i]);

}
printf("NFE=%ld\n",nfe);

printf{("The time was: %f\n", (end - start) / CLK_TCK);

} [RERRRE R LR KKK end of main()

292

APPENDIX IV

Code for test function (ES;) of Chapter — 5 is given in this appendix.

MATLAB code for test function named ES; using HDE (Chapter - 5)

clear
stime=cputime;
rand('state’,1);
global xgn
global nfe
xqn=[0 0}:nfe=0.0;
D=2,
NP=D*10;
F=0.8;
CR=0.5;
TMAX=500;
OFopt=0.0;
lo=[-5 -51;
hi=[10 10];
t=0;
for i=1:NP
for j=1:D
x_de(ij)=lo(j)+rand(l Y*(hi()-1o(j));
temp(j)=x_de(ij);
end
cost(i)=prod I (temp);nfe=nfe+1;
end
while (t<TMAX)
for i=1:NP
rl=i;
while (r1==i)
rl=int]16(1+rand(1)*(NP));
rl=double(rl);
end
r2=i;
while ((r2==i)|(r2==rl))
r2=int16(1-+rand(1)*(NP));
r2=double(r2);
end
r3=i;
while ((r3==i)}(r3==r1)|(r3==r2))
r3=int16(1+rand(1)*(NP));
r3=double(r3);
end
j=int|6(l+rand(1)*D),
j=double(j};
for k=1:D
if ((rand(1)<CR)|(k==D})
temp(j)=x_de(r3 j)+F*(x_de(rl j)-x_de(r2,)):
else temp(j)=x_de(i,j);
end
if ((temp(j)<lo(j)) | (temp(j)>hi(j)))
temp(j)=lo(j)+rand(1)*Chi(j)-lo(j)):
end
j=mod(j,D)*+1;
end
score=prod (temp);nfe=nfe+1;
" if (score<=cost(i))
cost(i)=score:

293

for j=1:D
x_del(ij)=temp()):
end
else forj=1:D
x_del(ij)=x_de(ij):
end
end
end % end of for loop after while
x_de=x_del;

mini=l;
for i=2:NP
if cost(i)<=cost(mini)
mini=i;
end
end
for j=1:D
best(j)=x_de(mini,j);
end
x=best; bl=lo; bu=hi; ibound=0;
[x.f,bl,bu,ifail] = e04jaf(x,bl,bu,ibound);
cost(mini)=f;
Xqn=x;

s

for j=1:D
x_de(mini,j)=xqn(j);
end

t=t+1;
if (abs(OF opt-cost(mini))<abs(1e-4*OFopt+le-6))
break
end

end % end of while loop
disp(['iteration number =" int2str(t)])

- disp(['x[1] = ' num2str(x_de(mini,1),12) ' x[2] = ' num2str(x_de(mini,2),10) '

num2str(cost(mini),12)])
etime=cputime;
time=(etime-stime)

nfe
AAD=abs(cost(mini)-OFopt)

294

cost

APPENDIX V

Codes for Multi-Product Batch Plant design of Chapter — 6 using NS-1 and NS-2 are
given in this appendix.

Code for MPBP problem using NS-1 (Chapter - 6)

#include<stdlib.h>
#include<stdio.h>
#include<time.h>
#include<math.h>
#include<conio.h>
#define gen_max 10000
#define D 10
#define NP 100
#define F 0.4
#define CR 0.65
#define N 2
#define M 3
#define H 6000.0
#define alpha 250.0
#dcfine beta 0.6
/*----Constant for md_uni()--=---------====--%/
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMMI1 (IM1-1)
#define A1 40014
#define IA2 40692
#define 1QI 53668
#define 1Q2 52774
#define IR1 12211
#define IR2 3791
* #define NTAB 32
#define NDIV (1+IMMI/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPSI)
double evaluate(double [],long *);
double evaluate(double tmp[],long *nfe)
{ double cost,cost],Q[2]; (*nfe)++;
double Ihs1,lhs2,lhs3,lhs4,lhs5,lhs6,lhs7,lhs8,1hs9,lhs10,lhs11,lhs12,lhs13;
Q[0]=40000.0;Q[1}=20000.0;

tmp[o]=ﬂoor((mp[0]); tmp[1]=floor(tmp[1]); tmp[2]=floor(tmp[2]);

Ihs 1 =(Q[0]*(tmp([6]*20.0)/(H*(tmp[8]*625.0)))+(Q[1 J*(tmp[7]*16.0)/(H*(tmp[9]*1250.0/3.0)))-1.0;
Ihs2=((tmp[3]*2500)/(tmp[8]*625))-2.0;
Ihs3=((tmp[4]*2500)/(tmp[8]*625))-3.0;
Ihs4=((tmp[5]*2500)/(tmp[8]*625))-4.0;
Ihs5=((tmp[3]*2500)/(tmp[9]*1250.0/3))-4.0;
Ihs6=((tmp[4]*2500)/(tmp[9]*1250.0/3))-6.0:
Ihs7=((tmp[5]1*2500)/(tmp[9]*1250.0/3))-8.0;
Ihs8=(tmp[0]*(tmp[6]*20))-8.0;

Ihs9=(tmp[1]*tmp[6]*20)-20.0;
1hs10=(tmp[2]*(tmp[6]*20))-8.0;

Ihs1 1=(tmp[0]*(tmp[7]*16))-16.0;
Ihs12=(tmp[1]*(tmp[7]*16))-4.0;
Ihs13=(tmp[2]*(tmp[7]*16))-4.0;
if(lhst<=0.0) Ihs1=0.0;

295

7

if(1hs2>=0.0) 1hs2=0.0;
if(lhs3>=0.0) 1hs3=0.0;
if(lhs4>=0.0) lhs4=0.0;
if(1hs5>=0.0) 1hs5=0.0;
if(1hs6>=0.0) 1hs6=0.0:
if(ths7>=0.0) 1hs7=0.0.
if(1hs8>=0.0) 1hs8=0.0;
if(1hs9>=0.0) 1hs9=0.0;
if(lhs10>=0.0) 1hs10=0.0;
if(ths11>=0.0) lhs11=0.0;
if(1hs12>=0.0) lhs12=0.0;
if(1hs13>=0.0) l1hs13=0.0;

cost1=(tmp[0])*pow((tmp[3]*2500.0), beta)+(tmp[1]*pow((tmp[4]*2500), beta)+(tmp[2])*pow((tmp[5]*2500),

beta));

cost=cost] *alpha+(fabs(Ihs1)+fabs(Ihs2)+fabs(Ihs3)+fabs(lhs4)+fabs(lhs5)+fabs(lhs6)+fabs(lhs7)+fabs(lhs8)+fabs

(1hs9)+fabs(lhs10)+fabs(lhs] 1)+fabs(lhs1 2)+fabs(lhs13))*1eS;
return(cost);

} /tttt*tii###*#* end of evaluate() sk ok kR kR kR

void assignd(double a[], double b[])
{

int j;
for(j=0;j<D;j++)

{

afj]=bli);

}
double rd_uni(long *);
double md_uni(long *idum)

{
long j; long k;
static long idum2=123456789;

static long iy=0;static long iv[NTAB]; double temp;

if(*idum<=0)

if(-(*idum)<1) *idum=1; else *idum=-(*idum),

for(j=NTAB+7;j>=0;j--)

{
k=(*idum)/IQ1;
idum=1A1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IM1;
ifisNTAB) iv[j}=*idum;

)
iy=iv[0];

)

k=(*idum)/IQ1;
idum=I1A1(*idum-k*IQ1)-k*IR;
if(*idum<0) *idum+=IM1;
k=idum2/1Q2;
idum2=1A2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[j]-idum2; iv[j}=*idum;
ifliy<l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

i

void main()

int i,j.k,a,b,c,seed,imin; long nfe=0,count=0;
double x1 [NP][D],xZ[NP][D],cos([NP],trial[D],cost_trial;
double costmin,costmax,best[D}].bestit[D];

clock_t start, end;
printf{"\nseed=");

296

idum2=(*idum);

scanf("%d" ,&seed);
long rnd_uni_init= -(long)secd: start = clock();

for (i=0;i<NP;i++)
‘ for (j=0;j<D:j++)
i

if(j==0 "j::] lh==2)
x1[i][j]= 1.0+rnd_uni(&md_uni_init)*(3.0-1.0):

ifj==3 I j==4 1 j==5)
x1[i][j]=0.1 + md_uni(&md_uni_init)*(1.0-0.1);

ifj==0 || j==7)
x1[i)[j]=1.0/3 + rd_uni(&md_uni_init)*(1.0-(1.0/3));

x1[i][j]=(400.0*x 1[i][6)/(625.0%3)) + md_uni(&md_uni_init)*(1.0-(400.0*x1[i][6)/(625.0*3)));

if(j==9)
x1[i][j]=16.0*x1{i][7)/125.0 + md_uni(&rmd_uni_init)*(1.0-(16.0*x1[i]{7}/125.0));
H
cost[i]=cvaluate(x 1[i], &nfe);

]

costmin=cost[0];
imin=0;
for(i=1;i<NP;i++)

if(cost[i]<costmin)
costmin=cost[i};
imin=i;

}

assignd(best,x 1{imin]);

assignd(bestit,x1{imin]);
while (count<gen_max)
for(i=0;i<NP;i++)
{
do a=int ((rnd_uni(&rmd_uni_init))*NP); while (a==i);
do b=int (rnd_uni(&rnd_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&rnd_uni_init)*NP); while (c==i || c==a | c==b);
j=int (md_uni(&md_uni_init)*D);
for (k=1;k<=D;k++)
if(md_uni(&md_uni_init)<CR || k==D)
trial(j]=x1[c][j}+F*(x1[a]i]-x 1 [b](i]);
else trial[j]=bestit[j]+F*(x1[a][j}-x 1 [b][j])
if9==0 li==1llj==2)

if{trial[j)<1.0 | trial[j}>3.0)
trial[j]=1.0+md_uni(&rmd_uni_init)*(3.0-1.0);

}
if(j==3 || j==4 [j==5)

if(trial[j]<0.1 || trial[j]>1.0)
trial[j]=(0.1+md_uni(&rnd_uni_init)*(1.0-0.1));

\
|
ifj==6 Il j==7)

iftrial(j]<(1.0/3.0) || trial[j]>1.0)
trial[j}=(1.0/3)+md_uni(&rd_uni_init)*(1.0-(1.0/3));

!
ifj==8)
iftrial[j]<(400.0*trial[j-2]/(625.0*3))trial[j}>1.0)

297

trial(j}=((460.0*trial[j-2}/(625.0*3))+md_uni(&md_uni_init)*(.0-(400.0*trial(}-
2)/(625.0*3))));

J
if(j==9)

{
iftrial{j]<(16.0*trial[j-2)/125.0) || trial[j}>1.0)
trial[j]=((16.0*trial[j-2)/125.0)+rmd_uni(&rmd_uni_init)*(1.0-(16.0*trial{j-

2)/125.0))):

}
J=(+1)%D;
H
cost_trial=evaluate(trial, &nfe);
if(cost_trial<=cost[i])
{
for (j=0;j<D;j++)
x2[i](j}=trial[j]:
cost[i]=cost_trial;
if(cost_trial<costmin)

]
1

costmin=cost_trial;
imin=i;
assignd(best,trial);

}

}
else for(j=0;j<D;j++)
x2[i][]=x1[i](j];
’ /*#**#ﬁt#t**** end of for loop #***#**#*##****#*/
assignd(bestit,best);
for(i=0;i<NP;i++)
for(j=0;j<Dyj++)
x1(iG1=x2[i]0%
costmax=cost[0];
for(i=1;i<NP;i++)
{ if(costmax<cost[i])
costrnax=cost[i];

costmin=cost[0];
for(i=1;i<NP;i++)
{ if(costmin>cost[i])
costmin=cost[i];
}
count++;

if((costmax-costmin)<0.00001)
break;

} /#**##t**i**## end OfWhlle lOOp sk kR Rk AR]

end = clock();
for(i=0;i<NP;i++)
[

1
for(j=03j<Dij++)
{ if==3 || j==4 1l j==5)

printf("u[%d]=%If " (X1 [i][j]*2500)):;
if(j==6)

printf("u[%d]=%If "3:(x1[1][5]*20));
ifj==7)

printf("u[%d]=%lf "Gx1[0T*16));
if(j==8)

printf("u[%d}=%If jx1[i](1*625));
if(j==9)

printf("u{%d]=%If " (<1 [T*1250/3.0));

ifj==0j==11j==2)
printf("u[%d]=%}f "J.(x1[1GD):

}
printf("cost{%d]=%If v, i,cost[i]);

]

printf("NFE=%ld\n",nfe); ‘

printf("The time was: %f\n", {double)(end - start) / CLK_TCK);
printf("costmax is=%lf",costmax);

298

(7

/1 printf("Ihs1=%If Ths2=%If Ihs3=%If lhsd=%lf lhs5=%If lhs6=%If" lhs1,lhs2,lhs3,lhs4,lhs5,Ihs6);
11 printf("lhs7=%If 1hs8=%If lhs9=%If Ihs10=%lIf Ihs1 1=%If hs]12=%If",Ihs7,lhs8,Ihs9,lhs10,lhs11,lhs12);
/1 printf("lhs13=%If",lhs13);

printf("\ncostmin=%If seed=%d\n",costmin,seed);
: /ﬁi**tt*#**!*t end ofmain() t**t*#“***ﬁ**##‘*/

Code for MPBP problem using NS-2 (Chapter - 6)

#include<stdlib.h>

#include<stdio.h>

#include<time.h>

#include<math.h>

#include<conio.h>

#define gen_max 10000

#define D 10

#define NP 100

#define F 0.1

#define CR 0.45

#define N 2

#define M 3

#define H 6000.0

#define alpha 250.0

#define beta 0.6

/*----Constant for md_uni()------------------ */
#define IM1 2147483563

#define IM2 2147483399

#define AM (1.0/IM1)

#define IMMI (IM1-1)

#define IA1 40014

#define 1A2 40692

#define IQ1 53668

#define 1Q2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMM1/NTAB)

#define EPS1 1.2e-7

#define RNMX (1.0-EPS1)

double evaluate(double [],long *);
double evaluate(double tmp[],long *nfe)
{ double cost,cost],Q[2]; (*nfe)++;
double Ihsl,lhs2,lhs3,lhs4,lhs5,1hs6,lhs7,Ihs8,lhs9,ths10,lhs11,lhs12,lhs13;
Q[0]=40000.0;Q[1]=20000.0;

tmp[0]=floor(tmp[0]); tmp[1]=floor(tmp[1]); tmp[2]=floor(tmp[2]);
Ths1=(Q[0]*(tmp[6]*20.0)/(H*(tmp[8]*625.0)))+(Q[11*(tmp[7]*16.0)/(H*(tmp[9]*1250.0/3.0)))-1.0;
Ihs2=((tmp[3]*2500)/(tmp[8]*625))-2.0;
Ihs3=((tmp[4]*2500)/(tmp[8]*625))-3.0;
Thsd=((tmp[5]*2500)/(tmp[8]*625))-4.0;
IhsS=((tmp[3]*2500)/(tmp[9]*1250.0/3))-4.0;
Ihs6=((tmp[4]*2500)/(tmp[9]*1250.0/3))-6.0;
Ihs7=((tmp[5]*2500)/(tmp[9]*1250.0/3))-8.0;
lhs8=(tmp[0]*(tmp[6]*20))-8.0;
ths9=(tmp[1]*tmp[6]*20)-20.0;
Ths10=(tmp[2]*(tmp[6]*20))-8.0;
lhs1 1=(tmp[0]*(tmp[7]*16))-16.0;
hs12=(tmp[1]*(tmp[7]*16))-4.0;
Ths13=(tmp{2]*(tmp[7]*16))-4.0;
if(lhs1<=0.0) lhs1=0.0;
if(lhs2>=0.0) lhs2=0.0;
if(lhs3>=0.0) 1hs3=0.0;
if(lhs4>=0.0) 1hs4=0.0;
if(1hs5>=0.0) 1hs5=0.0;
if(lhs6>=0.0) 1hs6=0.0;
if{lhs7>=0.0) lhs7=0.0;

299

if(1hs8>=0.0) 1hs8=0.0:
if(1hs9>=0.0) 1hs9=0.0;
if(lhs10>=0.0) lhs10=0.0:
if(lhs11>=0.0) lhs11=0.0;
if(lhs12>=0.0) l1hs12=0.0:
if(1hs13>=0.0) ths13=0.0;

cost1=(tmp[0])*pow((tmp[3]*2500.0), beta)+(tmp[1]*pow((tmp[4]*2500), beta)+(tmp[2])*pow((tmp([5]*2500),
beta));
cost=cost | *alpha+(fabs(lhs!)+fabs(lhs2)+fabs(lhs3 y*+fabs(Ihs4)+fabs(lhs5)+fabs(lhs6)+fabs(lhs7)+fabs(lhs8)+fabs
(1hs9)+fabs(lhs10)+fabs(ihs1 1)+fabs(lhs12)+fabs(lhs13))*ie5;
return{cost);
: /t*tﬁ##*#t#‘### end of evaluate() “‘****#**#######/

void assignd(double a[], double b[])
]
intj;
for(j=0;j<D;j++)
{
afj]=b(j]:
!
i
double rnd_uni(long *);
double rnd_uni(long *idum)
{
long j; long k;
static long idum2=123456789;
static long iy=0;static long ivfNTAB); double temp;
if(*idum<=0)
{
if(-(*idum)<1) *idum=1; else *idum=-(*idum); idum2=(*idum);
for(j=NTAB+7;j>=0;j--)

{
k=(*idum)/1Q1;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IMI;
if((<NTAB) iv[j]=*idum;

}

iy=iv[0];
}
k=(*idum)/IQl;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IM1;
k=idum2/1Q2;
idum2=I1A2*(idum2-k*IQ2)-k*IR2:
if{idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[jl-idum2; iv[j]=*idum;
ifliy<l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;

i

void main()

]

. int ij.k,a,b,c.d,e,seed,imin; long nfe=0,count=0;
double x1[NP][D},x2[NP][D],cost[NP]trial[D],cost_trial;
double costmin,costmax,best[D],bestit[D];
clock_t start, end;

printf("\nseed="):

scanf("%d",&seed);

long rnd_uni_init= -(long)seed; start = clock();

for (i=0:i<NP:i++)

]

1

for (j=0;j<D:j++)
ifj=0 lj==1 lj==2)
x1{i][j]= 1.0+rnd_uni(&md_uni_init)*(3.0-1.0);

if==3 || j==4 | j==3)
x1[i][j]=0.1 + md_uni(&md_uni_init)*(1.0-0.1);

300

s

if==6 || j==7)
x1[i)[j]=1.0/3 + rd_uni(&rnd_uni_init)*(1.0-(1 .0/3));
if(j==8)
x1[i][j]=(400.0*x1[i][6)/(625.0*3)) + rmd_uni(&md_uni_init)*(] .0-(400.0*x 1[1][6])/(625.0*3)));
if(j==9)
x1[i][j]=16.0*x1[i][7}/125.0 + md_uni(&md_uni_init)*(1.0-(16.0*x1[i]{7]/125.0)):

!
cost[i]=evaluate(x1{i], &nfe);

[
costmin=cost{0]:

imin=0;

for(i=1;i<NP;i++)

if(cost[i]<costmin)

costmin=cost[i];
imin=i;

assignd(best,x 1 [imin]);
assignd(bestit,x1[imin]);

while (count<gen_max)

{
for(i=0;i<NP;i++)
{
do a=int ((md_uni(&md_uni_init))*NP); while (a==i);
do b=int (rmd_uni(&md_uni_init)*NP); while (b==i || b==a);
do c=int (md_uni(&md_uni_init)*NP); while (c==i || c==a || c==b);
do d=int (md_uni(&rnd_uni_init)*NP); while (d==i || d==a|| d==b || d==c),
do e=int (rd_uni(&rnd_uni_init)*NP); while (e==i || e==a || e==b || e==c¢ || e==d):
j=int (md_uni(&md_uni_init)*D);
for (k=1;k<=D;k++)
{
if(rnd_uni(&rmd_uni_init)}<CR || k==D)
trial[j]=x1{c]]+F*(x1[a](j]-x ! [b]GD*(1-F)*(x 1{d][i]-x1[e} (1)
else trial[j]=bestit[j]+F*(x1[d][j]-x 1 [e](i]):
ifj==0 |ji==1 l1j==2)
if{trial[j]<1.0 || trial[j]>3.0)
trial{j]=1.0+md_uni(&md_uni_init)*(3.0-1.0);
}
ifj==3 || j==4 || j==5)
if{trial[j]<0.1 || trial[j]>1.0)
trial[j]=(0.1+rnd_uni(&rnd_uni_init)*(1.0-0.1));
}
ifG==6 11 j==7)
if(trial[j]<(1.0/3.0) || trial[j]>1.0)
trial{j]=(1.0/3)+md_uni(&rnd_uni_init)*(1.0-(1.0/3));
]
if(j==8)
if(trial[j]<(400.0*trial(j-2]/(625.0*3))|jtrial[j]>1.0)
. trial[j]=((400.0*trial[j-2]/(625.0*3))+rnd_uni(&md_uni_init)*(1.0-(400.0*trial[j-
2]/(625.0*3)))); \
ifj==9)
{
‘ if(trial[j]<(16.0*trial[j-2}/125.0) || trial[j]>1.0)
trial[j]=((16.0*trial[j-2]/125.0)+md_uni(&md_uni_init)*(1.0-(16.0*trial[j-
2)/125.0))); o
!

j=(+1)%D;

-

301

cost_trial=cvaluate(trial, &nfe);
if(cost_trial<=cost[i])
{
for (j=0;j<D;j++)
x2[i]{j]=trial(j]:
cost[i]=cost_trial;
if(cost_trial<costmin)

{
costrmin=cost_trial;
imin=i;
assignd(best,trial);
H

!
else for(j=0;j<D:j++)
x2[ilG]=x1[i]0];
: /**‘*t‘#*t#**# end of for loop ***##‘*t‘*#**#*#*l
assignd(bestit,best);
for(i=0;i<NP;i++)
for(j=0;j<D3j++)
x1[i]01=x2i]0]s
costmax=cost[0];
for(i=1;i<NP;i++)
{ if{costmax<cost[i])
costmax=cost[i];

costmin=cost[0];
for(i=1;i<NP;i++)
{ if{costmin>costfi])
costmin=cost[i];
}
count++;

if{(costmax-costmin)<0.00001)
break;

} /#*t*****t*#** end ofwhlle loop *****************/

end = clock();
for(i=0;i<NP;i++)

{
for(j=0;j<D;j++)
{ifG==3 || j==4 || j==5)

printf("u[%d]=%lIf " j,(x1[i][j]*2500));
if{j==6)

printf("u{%d]=%If " 5 x1[i]G]*20));
ifG==7)

printf("u[%d]=%If " (X 1[G]*16)):
if(j==8)

printf("u[%d]=%If " (x1[i][5]*625));
if(j==9)

printf("u[%d)=%If "3, (x 1[i)(j]*1250/3.0));

ifj==0 || j==1 | j==2)
printf("u[%d]=%If " j,(x1[0D):

]
’printf("cost[%d]=%lf " i,cost[i]);

)
printf("NFE=%ld\n",nfe); i
printf("The time was: %f\n", (double)(end - start) / CLK_TCK);
printf("“costmax is=%If",costmax);
1 printf("ths1=%If lhs2=%If Ihs3=%lIf lhs4=%lf 1hs5=%If Ihs6=%If" lhs]1,lhs2,lhs3,lhs4,lhs5,lhs6);
11 printf("lhs7=%If Ths8=%If 1hs9=%If Ihs10=%If ths11=%If lhs12=%If",Ihs7,1hs8,1hs9,lhs10,lhs11,lhs12);
1/ printf("Ihs13=%If",lhs13);
printf("\ncostmin=%If seed=%d\n",costmin.seed):
) Jerxxxrsnsxstk ond of main() ARk RRRR KRR

302

|

APPENDIX VI

Codes for Schaffer’s function of Chapter — 7 using NSDE and MNSDE are given in.
this appendix.

Code of Schaffer’s function using NSDE (Chapter —7)

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>

#define NP 400

#define D 1

#define F 0.2

#define CR 0.5

#define gen_max 200
#define UL 1000

#define LL -1000
/*----Constant for rnd_uni()----=---------- */
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/IM1)
#define IMM1 (IM1-1)
#define IA1 40014

#define IA2 40692

#define IQ1 53668

#define IQ2 52774

#define IR1 12211

#define IR2 3791

#define NTAB 32

#define NDIV (1+IMMI1/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPS1)
double costf{double x[]);
double costg(double x[]);
double rd_uni(long *);
double rmd_uni(long *idum)

{
long j; long k;
static long idum2=123456789;
static long iy=0;static long iv[NTAB]; double temp;
if(*idum<=0)

if(-(*idum)<l) *idum=1; else *idum=-(*idum); idum2=(*idum); '
for(j=NTAB+7:j>=0:j--)

{
k=(*idum)/IQ1;
idum=IA1(*idum-k*IQ1)-k*IR1;
if(*idum<0) *idum+=IM1;
if(<NTAB) iv[j]=*idum;

i’y=iv[0];

H

k=(*idum)/1Q1;
idum=1A1(*idum-k*IQ1)-k*IR1:
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=I1A2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;

303

j=iy/NDIV; iy=iv[j]-idum2; iv[j]=*idum;
if(iy<l) iy+=IMMI;
if((tlemp=AM*iy)>RNMX) return RNMX;
else return temp;
i

void main()

FILE *fp;
fp=fopen("schaffer-NSDE.xls","a+"),
long gen=0; int ij,a,b,c,k=0,x=0,count=0,secd;
double oldpop[NP][D],cost1[NP],cost2[NP],nondom[NP][D],sclected[NP][D];
double trial[D},costtrialf,costtrialg,costtargetg,costtargetf;
printf("\nseed="),
scanf("%d" &seed);
long md_uni_init= -(long)seed;
fprintf(fp,"NP = %d F=%f CR=%f Max_gen=%d sced = %d\n",NP,F,CR,gen_max,sced);
for(i=0;i<NP;i++)
for(j=0;j<D;j++)
oldpop(i][j]=LL +(rnd_uni(&rnd_uni_init))*(UL-LL);
for(gen=0:gen<gen_max;gen++)
{
for(i=0;i<NP;i++)
{
do a=(int) ((md_uni(&rnd_uni_init))*NP); while (a==i);
do b=(int) (md_uni(&md_uni_init)*NP); while (b==i || b==a);
do c=(int) (md_uni(&rnd_uni_init)*NP); while (c==i || c==a || c==b);
j=(int) rmd_uni(&rnd_uni_init)*D;
for(k=1;k<=D;k++)

ifirnd_uni(&md_uni_init)<CR || k==D)
trial[j]=oldpop(c][j]+F*(oldpop[b](j]-oldpop[a](j});
else trial[j]=oldpop[il[j];

if{trial[j]>UL | trial(j]<LL)
trial[j]J=LL+ md_uni(&md_uni_init)*(UL-LL);
j=(+1)%D;

costtrialf=costf(trial);
costtrialg=costg(trial);
costtargetf=costf(oldpop[i]);
costtargetg=costg(oldpop(i]);
if(costtrialf<costtargetf && costtrialg<costtargetg)
for(j=0;j<D;j++)
nondom[i][j]=trial[j];
else

{
for(j=0;j<D;j++)
nondom([i][j]=oldpopl[i][j];

} // end of second for loop
for(i=0;i<NP;i++)

for(j=0;j<D;j++)
oldpop[i]{jJ=nondom{i][j};

]
[
} /1 end of first for loop
for(i=0;i<NP;i++)
{ costl[i]=costf{oldpop(i]);

]
for(i=0:i<NP:i++)
{ cost2[i]=costg(oldpop[i]);
]
for(i=0;i<NP;i++)

for(j=0;j<NP;j++)

{
if (i==))

304

if(costl[j]<cost![i]&&cost2[j]<cost2[i])

J=itl;

]
oldpop[i][0]=-1000G00;
break;

:
k=0;
for(j=0;j<NP;j++)
{

if(oldpop[j][0]!=-1000000)
{

selected[k][0]=oldpop[j][0]:
k++; count++;

!
for(i=0;i<k;i++)
{
printf("final values of x[%d] %If\n"k,selected[i][0]);

for(i=0;i<k;i++)
{
fprintf(fp,"final values of x[%d] %If %If
%If\n" k,selected[i][0],costf(selected(i]),costg(sclected(i]));
}
} // End of Main()
double costf(double x[])

{

double f;
f=x[0]*x[0];
return f;

}
double costg(double x[])

{

double g;
g=((x[0]-2.0)*(x[0]-2.0));
return g;

Code for Schaffer’s function using MNSDE (Chapter — 7)

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<conio.h>
#define NP 100

#define D |

#define F 0.5

#define CR 1.0

#dcfine gen_max 200
#define UL 1000

#define LL -1000
/*----Constant for rnd_uni()----==--=------ *
#define IM1 2147483563
#define IM2 2147483399
#define AM (1.0/1IM1)
#define IMMI (IMi-1)
#define IA1 40014
#define IA2 40692
#define IQ1 53668
#define 1Q2 52774

305

P §t

#define IR1 12211
#define IR2 3791
#define NTAB 32
#define NDIV (1+IMMI1/NTAB)
#define EPS1 1.2e-7
#define RNMX (1.0-EPSI)
double costf(double x[]);
double costg(double x[]);
double rnd_uni(long *);
double md_uni(long *idum)
]
1
long j: long k;
static long idum2=123456789;
static long iy=0;static long iv[NTAB]; double temp;
if(*idum<=0)
)

if(-(*idum)<l) *idum=1; else *idum=-(*idum); idum2=(*idum);
for(j=NTAB+7;j>=0;j--)
{
k=(*idum)/1Q1;
idum=IA1(*idum-k*IQ1)-k*IR|;
if(*idum<0) *idum+=IM1I;
if<NTAB) iv[jl=*idum;
}
iy=iv[0];
}
k=(*idum)/1Ql;
idum=IA1(*idum-k*IQ1)-k*IR 1;
if(*idum<0) *idum+=IMI;
k=idum2/1Q2;
idum2=1A2*(idum2-k*1Q2)-k*IR2;
if(idum2<0) idum2+=IM2;
j=iy/NDIV; iy=iv[j]-idum2; iv[j]=*idum;
iftiy<1l) iy+=IMMI;
if((temp=AM*iy)>RNMX) return RNMX;
else return temp;
)
void main()
{
FILE *fp;
fp=fopen("MNSDE-CR-schaffer.xIs","at+");
long gen=0; int i,j,a,b,c,k=0,x=0,count=0,seed;
double oldpop[NP][D],cost1[NP],cost2[NP],selected[NP][D];
double trial[D],costtrialf,costtrialg,costtargetg,costtargetf;
printf("\nseed=");
scanf("%d",&seed);
long md_uni_init= -(long)seed;
fprintf(fp,"NP = %d F=%f CR=%f Max_gen=%d seed = %d\n",NP,F,CR,gen_max,seed);
for(i=0;i<NP;i++) '
for(j=0;j<D;j++)
oldpopli][j]=LL +(md_uni(&md_uni_init))*(UL-LL);
for(gen=0;gen<gen_max;gen++) /(First for loop

for(i=0;i<NP;i++) // Second for loop

{
do a=(int) ((md_uni(&md_uni_init))*NP); while (a==i);
do b=(int) (md_uni(&rmd_uni_init)*NP); while (b==i || b==a);
do c=(int) (md_uni(&md_uni_init)*NP); while (c==i || c==a || c==b):
j=(int) rnd_uni(&md_uni_init)*D;

for(k=1;k<=D;k++)

i

" iftrnd_uni(&md_uni_ini)<CR || k==D)
trial[j]=oldpop[c](j]+F*(oldpop[b][j]-oldpop(a](i]):
else trial[j]=oldpopl[il[j];

ifttrial[jJ>UL | trial[j]<LL)
trial[jJ=LL+ rmd_uni(&rd_uni_init)*(UL-LL);

306

j=(+1)%D:

[]

]
costtrialf=costf(trial);
costtrialg=costg(trial);
costtargetf=costf{oldpop[i]):
costtargetg=costg(oldpop[i]):

if(costtrialf<costtargetf && costtrialg<costtargetg)
for(j=0,j<D;j++)
oldpop[i][j)=trial{j]:
} // end of second for loop
! 1/ end of first for loop
for(i=0;i<NP;i++)
{ costl[i]=costf{oldpop(i]);

)
for(i=0;i<NP;i++)
{ cost2[i]=costg(oldpopl[i]);
!
for(i=0;i<NP;i++)
{
for(j=0;j<NP;j++)
{ if (i-——jz
J=iFl
)
if(cost1[j]<cost1[i]&&cost2[j]<cost2[i])
oldpop[i]{0]=-1000000;
break;
}
}
)

k=0;
for(j=0;j<NP;j++)
{

if{oldpop[j][0]'=-1000000)
{

selected[k][0]=oldpop[j]1(0];
k++; count++;

}

for(i=0;i<k;i++)

{

printf("final values of x[%d] %lf\n" k,selected[i][0]);
/fprintf(fp,"final values of x[%d] %If\n" k,selected[i][0]);
}

for(i=0;i<k;i++)
fprintf(fp,"final values of x[%d] %lIf %If
%1f\n" k,selected[i){0],costf(selected[i]),costg(selected[i]));
y // End of Main()
double costf(double x[])
{
double f;
f=x[0]*x[0]:
return f;
1] .
'
double costg(double x[])
i
double g;
g=((x[0]-2.0)*(x[0]-2.0));
return g;

307

