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Abstract

Preparing an airline timetable is a complex scheduling problem of great
practical significance. At the same time, this is also a problem of high
computational complexity. The very large search space and the
numerous types of constraints make an exhaustive search for solution
infeasible. There are no algorithms fast enough for solving the problem;
we will show that no such algorithms are possible.

This problem forms part of the class of vehicle scheduling problems. It
is also representative of many types of operational planning problems
at the enterprise level in many industries. The economic value of
running airlines efficiently cannot be ignored, even if solving the
problem requires heavy computing effort. The fact that heavy
computing activity involving parallel search can be carried out
inexpensively using clusters of computers points to one approach to the
problem.

The most critical requirement of the solutions produced to this problem
is that the time tables produced should be feasible; that is, no hard
constraints should be violated in the time table.

Finding tl'ie ideal schedule is not the primary concern. Our objective is
to use computing resources to gain a return higher than the cost of that
effort. The higher the benefit we get, the better; but we don‘t

necessarily have to have the best.

The solution mechanism also should make it possible to use earlier time

- tables (apart from being able to start fresh runs) as a starting point

since their use usually simplifies the task substantially. Time table
preparation cannot be fully automated, as problem parameters are
changed several times by the managers as they see different versions
of the time table coming out of the planning process. Creation of a |
satisfactory time table is thus an iterative process involving many
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discussions and compromises among the different parties involved.
Very fast computing is necessary to enable human schedulers to try out
various alternative sets of parameters. For instance, they may try
increasing the number of aircrafts in the pool of resources, through
proposed leasing. This would be a step forward if the gains are higher
than the cost of leasing.

The domain knowledge to be incorporated in some manner in the
computational model is substantial. A number of constraints, ranging
from bilateral agreements between countries to airport constraints such
as permitted take off and landing hours, decide the feasibility of the
time tables considered.

We investigate the perturbation-based approach for solving the above-
mentioned airline time tabling problem. In this approach, we start with
a given schedule and modify it by applying various perturbation
operators. The model we use shares many characteristics of genetic
algorithms, involving exploration of multiple perturbations in parallel,
starting from a set of initial schedules.

We start with a formulation of the problem and then analyze its
computational complexity and the nature of its search space. The
analysis includes a formal proof for the NP-compIeteness of airline time
tabling problem.

A number of issues have to be addressed before using a perturbation-
model based approach to solving a problem. These include choice of
perturbation operators, size of. the population of candidate solutions,
and population management. We study these factors and their effect
on the efficiency of the computation. Other issues discussed and/or
reported in this thesis include a framework for characterizing
perfurbation models for this class of problems, formulation of notions
such as retention strategy and persistence factor and their systematip
investigation, proposal and investigation of a cooperative scheduling
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model among competing airlines and investigation of the use of
distributed computing model for speeding up computation.

The thesis also offers the formulation of a simplified version of the
airline time tabling problem as a benchmark for this class of problems
for further investigation, keeping in mind that we should not miss out
the essential features of the problem while simplifying it. Simple
models have been of great value in other areas of research, as in the
case of the drosophila model in biology. A number of aspects related to
computational models for the airline time tabling problem are also
addressed, including the design of a powerful load-model.
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Chapter 1. Introduction

Scheduling, broadly speaking, refers to the process of assigning
resources to various requirements. Requirements for scheduling arises
in many domains including:

a. educational institutions: classroom scheduling, examination
scheduling, faculty assignment, etc.

b. factories: job shop scheduling, maintenance scheduling, worker
scheduling, etc. ~

c. transportation: railway time tabling, city route planning, airline
time tabling, crew scheduling, tail-number assighment,

supply/distribution scheduling, etc.

d. resource management: nurse scheduling (rostering), shift
scheduling of workers, scheduling of critical and expensive
resources such as operation theatre, radio telescope, etc.

These are all problems of high practical significance with many person-
months invested on a regular bésis for working out the schedules. The
cost of using a poor schedule is extremely high in most of these
domains - measured in terms of monetary cost, inconvenience to
people concerned, wastage of resources (including human), and so on.
This realization has resulted in much attention being given to various
scheduling problems even in the early days of computing. However,
scheduling is known to be a corhplex problem in terms of modeling all
the domain parameters and constraints as well as in terms of

performance requirements.
[Fang, 1994] summarizes the reasons for the complexity of scheduling
problems into four categories:

1. Many scheduling problems are known to be NP-complete and
hence have no practically feasible algorithms.

13
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2. Heuristics do not guarantee optimal solutions. And most
heuristics do not even ensure near optimal solutions. Finding
effective heuristics is a difficult task.

3. There are plenty of problem dependent details, which need to be
incorporated into the solution method.

4. Real world problem instances contain many constraints, which are
hard to specify clearly or represent. Rule based systems have
been used to capture the insight of human scheduling experts.
This normally requires hundreds of rules. Purely algorithmic
formulations are unable to"cope with a high percentage of these

rules.

Various classes of scheduling problems have been addressed by
researchers over the years with techniques ranging from traditional OR
models to AI approaches. These problem classes include job-shop
scheduling, classroom time tabling, examination scheduling, gate
assignment at airports, many variants of vehicle routing and/or
scheduling, etc.

[Jain and Meeran, 1998] chara&erises the various solution approaches
along different dimensions: optimization vs approximation, and
constructive vs iterative. They observe that optimization methods are
effective only for trivial problem sizes and they are too brittle'with
respect to the domain constraints that can be handled. The major

approaches can be categorised as
1. mathematical formulations including mixed integer programming
(MIP), Lagrangian relaxation and goal programming.
2. branch and bound models

3. approximation models including priority dispatch rules, heuristics
focusing on bottlenecks, constraint satisfaction models, and

neural networks

14



A\

4. local search and meta-heuristics including iterative improvement,
simulated annhealing, genetic algorithms, and tabu search.

Though the discussion in the paper is specifically about job-shop
scheduling, the categories and issues are equally applicable to
scheduling problems in general. The authors observe that the only
practically useful approaches are approximation and local search
models. Even with them, many challenges are still remaining to obtain
satisfactory solution models for solving scheduling problems of real-life

magnitude and complexity.

Bulk of the work in solving scheduling problems have been either very
formal considering massively simplified problems, or specialized to
developing models which suits a particular problem without adequate
effort to understand the generality or characteristics of the approach
followed. This is particularly true of approximation models. For
example, thoﬁgh there have been substantial amount of research on

" using genetic algorithm (GA) model for solving scheduling problems,

there are still hardly any guidelines available on how to model a GA for
solving a given problem, or even to decide if GA will be suitable for
solving that problem. Most work, given the flexibility in the GA model,
resorts to designing specialized crossover opérators, chromosome
representations, parameter choices, etc which works best for the
selected problem. Thus scheduling continues to be a field open for
much original research in search of deeper insights into the suitability
of various solution models against the various characteristics of the

problem.

Airline time tabling is a strategically important and computationally
challenging problem in the category of scheduling problems. This
chapter outlines the motivation for selecting this problem for
investigation in this thesis, in terms of modeling and computational
challenges involved. The chapter also explains the problem domain in
some detalil, and then outlines the thesis plan.

15
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1.1 Computing Power and Computational Complexity

A look at the history of computing would easily show that the pace at
which the computing power (measured in, say, MIPS) has been
increasing over the years and the pace at which the cost of computing
has been decreasing, have been very high. Despite warnings of a slow
down in the growth of computing power on a single chip, the growth
has so far continued. In addition, there have been tremendous
developments in the area of parallel and distributed computing
[Sasikumar et al, 2000] over the last few decades. This enables the use
of multiple computind units (multiple CPUs in a single computer as in
the case of shared memory computing, or multiple computers
connected by a LAN/WAN as in the case of distributed computing) to

solve a given computing problem.

Low cost supercomputing is possible today with the ideas of cluster
computing becoming practical. The term cluster computing refers to
viewing a set of stand-alone computers interconnected by a good LAN -
the typical configuration often found in many offices and student labs -
as a parallel computing environment. Compared to a multiprocessor,
these kinds of environments are normally used for coarser grain
parallelism models due to the relatively low communication speed
among the processing units, compared to a multiprocessor machine.
Off-the-shelf packages are now freely available for setting up cluster
environments [Sterling et al, 1999]. Among the world’s fastest
computing setups today, many are cluster-computing environments.
Massive cluster computing environments deploying thousands of
PC/workstation class computers are achieving performance ratings

nearing Teraflops.

Thus harnessing a large amount of computing power is not a major
concern today, thereby enabling one to conquer more and more
complex problems. A good example for this is the Deep-Blue machine
from IBM performing at Grand Master level in chess. Its strength came

16



A

primarily from the ability to scan a very large segment of a vast search
space using plain brute force exploration - this segment was much
larger than what could be attempted using traditional single computer
setups. This approach opens up new possibilities for addressing
computationally challenging problems.

Many of these problems are believed to have only exponential
complexity algorithms (unless P = NP can be proved), and therefore, an
exhaustive enumeration of the search space is infeasible. With
exhaustive search, additional computing power may yield only
fractional improvements in performance, given the vastness of the
search space. However, there are non-systematic exploration methods
becoming highly practical, which may provide a mechanism for
exploiting such computing power effectively. These methods include
simulated anhealing, genetic algorithms, and perturbation models.

We could quantify the computing power available in terms of what we
call a MIPS-year. A MIPS-year is the computing effort put in by a one
MIPS (million instructions per second) computer working for one year
continuously. Assuming that a server of 20,000 MIPS costs around one
million Rs per year — considering depreciation, maintenance, etc. — we
can estimate a MIPS-year to cost about 50 Rs. If an airline’s profit
(=revenue - expenses) is, say, Rs 50 billion, and if we could offer an
improvement of say 5% in the profit by use of optimization techniques,
the savings is in the range of Rs 2.50 billion. It is not unreasonable to
expect a fraction of this — say Rs 0.20 billion - to be spent on obtaining
cofnputing resources for the optimization task. Based on our
computation, for this price, we can get computing power of a few
million MIPS - equivalent to a few teraflops - or alternatively a
specialized supercomputing setup with a capacity that is a fraction of a

teraflop.

One of the aims of the thesis is to show the significance of this finding
in that, applying a large computing power using suitable problem

17
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solving model can be a very cost effective way to achieve overall
improvement in profits. Use of distributed computing strengthens this
approach further by offering higher computing power, at much lower
cost than that of buying a specialized supercomputer.

1.2 Airline Time Tabling Problem

Airlines plan their schedule of operations a few months in advance and
prepare time tables outlining the routes, timing, frequency, type of
aircraft expected to be deployed, etc. The periodicfty of this time
tabling work may vary from airline to airline, ranging from 3 to 6
months. Preparation of airline time tables is a complex process
involving many constraints and parameters. At the same time, it is a
problem of high economic significance. With the cost of an aircraft
running into billions of Rupees, and with operating costs and profits of
individual flights being of the order of millions of Rupees, even small
improvements in operating efficiency translates to substantial savings
even in relatively small airlines.

A special attraction of this problem is that it is representative of a class
of problems — the ones central to the conduct of an enterprise,
involving a whole lot of information relevant to various departments of
the enterprise. These are not isolated, easily sovable problems. Finding
solutions to these problems make the very difference between making
a profit or a loss, running into billions of rupees. An important feature
of these probiems is that they involve large revenues and large
expenditures. A small percentage change in one of them can result in a
big change in the profit or loss, which is only the difference between

two large numbers.

As a matter of fact, the airline industry is a rich domain for resource
scheduling problems. There are a number of different types of
scheduling [Rushmeier et al, 1995] required in course of an airline’s

operation. These include:
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a. The time tabling problem mentioned above, wherein the schedule
of operations of the airlines, to be publicly announced, is
prepared well in advance.

b. Crew scheduling (also known as crew rostering) for assigning
specific crew members to duty on specific flights.

c. Tail number assignment, which assigns specific physical aircraft
to specific flights (the time table assigns only notional or logical
aircraft numbers to flights).

d. Gate assignment for assigning gates in an airport for arriving and
departing aircrafts.

e. Maintenance scheduling for various types of maintenance
requirements of an aircraft.

f. Dynamic scheduling, which is necessary to plan responses to
unexpected events that occur, such as technical faults, flight
operations being disrupted by weather, etc.

While these are all inter-related to some extent, for practical reasons,
airlines generally handle them as separate problems.

An aspect that makes airline time. tabling problem (ATP) complex is the
involvement of multiple departments in the process. Airline operations
involve many functional departments including marketing, operations,
maintenance/engineering, and crew management. The optimization
perspectives of these departments vary, and often may be in conflict
with one another. Engineering would prefer the aircraft to be on ground
long enough for it to conveniently schedule maintenance and regular
engineering checks, without undue pressure on the engineers and
resources. The marketing department would like to keep the ground
time to a minimum to increase revenue. Crews impose their own
constraints on the frequency and timing of flights. As discussed earlier,
assignment of a Speciﬂé crew and a specific aircraft identified by its. tail
number cannot be done when the time table is prepared. Since

19



availability of crew and the constraints in scheduling them for duty on
flights imposes constraints on the feasibility and viability of time table,
logical numbers for available teams are used during the time tabling
stages, as a via-media approach. Which actual team is identified for
handling a particular flight is decided only a few days before the flight,
mapping a logical crew number into an actual crew number. Similarly,
the identification of a specific aircraft (identified by its tail number)
against a logical aircraft number is done close to the actual time of the

flight.

Perhaps the most significant of all the difficulties in preparing an airline
time table is preparing a good demand model. For scheduling and time
tabling problems to be solved effectively, we require a model of the
expected demand (number and type of passengers and their
preferences). In general, for any given airline, there are a number of
competing airlines with significant overlap in operating regions.
Therefore, it is nearly impossible to estimate a realistic demand (i.e.,
available load in terms of numbers of available passengers to different
destinations, categorized by the class of travel) for every region for a
given airline. The passengers also can differ in their preferences. The
various relevant groups include business travelers, holiday travelers,
group travelers, short-trip travelers, long-trip travelers, etc. The
passenger profile can affect the preferred timing of flight, tolerance to
stop-overs and delays, type of aircraft used, etc.

The problem is also computationally very complex given the number of
parameters to be considered. For example, [Rushmeier et al, 1995]
reports that USAir's time tabling involved around 22500 flight legs,
about 400 aircrafts belonging to 14 different types and 140 airports.
Numeric models for this problem can run into millions of

variables/constraints.

Given all this background, one can seé that the airline time tabling .

problem is a high-value problem offering many challenges to the
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human schedule makers. In this thesis, we focus on this problem,
analyze this in detail from various perspectives, and develop a solution-
framework based on perturbation. The questions raised in this process
and our answers to them are discussed in Chapter 4 onwards.

1.3 The Problem Formulation

This section defines the problem of airline time tabling in detail,
identifying the major inputs and constraints. The information here has
been collected from close interaction with a specific airline, and
moderated based on the studies in literature [FSAS, 1999][Rushmeier
et al, 1995].

Task: Prepare a weekly time table for an international airline. Such a
time table lists all flight routes along with the arrival and departure
times at each station en-route and the type of aircraft to be used. The
objective is to maximize the net profit, satisfying all the hard-
constraints and as many of the soft constraints as possible.

Inputs: There are a number of inputs to the system as follows.

1. Airport information: name, time offset from GMT, curfew timings,
slot times, etc. Related information such as inter-port distances and
block-times (flying-times between two airports) is also required.

2. Aircraft information: name, type, seating capacities for different
classes of passengers, range (that is, the distance it can fly non-

stop), speed and fuel consumption per hour.

3. Route information: A route is a sequence of airports. A flight

operating on such a route stops for passenger pickup/offload at all
the airports in the route. For a given airline, there will be a set of
such routes. We assume that each scheduled flight operates along
one of these routes. In the simplest case, we can name each airport-

pair as a route.
Routes often represent a variety of constraints and thumb-rules
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evolved over years of field experience. In the case of airline time
tabling, routes codify information such as over-flying and
commercial rights in various countries, generally-expected load
across sectors, and refueling opportunities and fuel charges at
various airports. Such information is fairly static over a reasonably
long period of time and hence the resulting thumb rules need not be
discovered every time a time table is to be prepared. Use of
abstractions such as routes, provide a convenient mechanism to
exploit human expertise without losing the ability to make
modifications as and when required. In Chapter 3, we discuss the
rationale and significance of routes in more detail.

. Demand model: We assume this to be of the form, <from_loc,
to_loc, type, number, preferred day, preferred time> indicating the
number of passengers of the specified type wanting to travel from
“from_loc” to “to_loc”. Since we are operating on a weekly
schedule, the preferred day indicates if the specific passenger group
has a preference for a particular day of the week. The issue of
suitable demand models is discussed in detail in Chapter 4. The
input data also includes the expected revenue per passenger for
each class, for every pair of source-destination locations.

. Right to load/discharge passengers at any airport (to/from any other
airport): This is governed by the agreement between the countries
involved. We do not consider this as a separate input, merging it
with the demand model. We assume that the demand model lists
only those from-to combinations, where the airline has a right to
transport passengers from the “from” location to the “to” location.

. Various charges applicable: A variety of charges are paid by the
airlines to various agencies for operating-a flight. These include

landing charges (for each landing), parking charges (per hour),
‘over-flying charges (for countries that the aircraft flies over during a

flight), fuel charges, passenger amenities, etc. Many of these
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charges are also dependent on the type of aircraft used, and in some
cases also on the time of operation. Hence it is a complex task to
create accurate estimates for such charges.

Constraints: The major constraints that govern time table preparation
are listed below. Some of these result in additional data inputs to the
system, whereas some of the constraints are taken care of by suitable
assumptions on the inputs listed earlier.

1. Aircrafts should not land or takeoff at any airport during the curfew

timings, if any, specified for the airport.

. Aircraft cannot fly non-stop over distances greater than the specified

range. The range parameter in the aircraft data gives the desired
data. Compliance with this constraint must be ensured while making

schedule.

3. The schedule must be cyclic across the week. That is, the aircraft

position at the end of the week must match that at the beginning of
the week. This is basically to ensure that there is continuity between
time table for one week and the time table for the next. It is
important to note that there may be no time during the schedule-
period where all aircrafts are located at a common base. Indeed, at
any given time, one or more aircrafts may be in the air en-route on
a flight. Therefore, the system cannot start the schedule assuming a
common location for all the aircrafts at time=0. |

. Passengers should not be lifted/discharged at any place where the

airline has no right to do so. We assume that demand model lists
only valid location-pairs. If a larger common data source such as the
statistics from IATA (International Air Travel Authority) is used to
start with, pre-processing should produce a pruned demand-list
including only those location-pairs where the airline has the right to

load and discharge passengers.
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5. Passengers prefer routes with minimal stopovers. This is a soft-

constraint.

6. Aircrafts leaving the country will usually choose a return route to
return to the originating country, once it reaches its initial
destination. That is, after every return flight, the aircraft will be
within the originating country. In our model of the airline time
tabling problem, we assume that specific route-patterns as described
earlier will be given as input, capturing a variety of information on
what is allowed and what is not. To meet this constraint, we
stipulate that every route either starts within the country or
terminates within the country. Relaxing this requirement on the
route will relax this constraint as well.

7. Respect passenger preferences (for desired timings for
departure/arrival, for example) wherever available - another soft

constraint.

8. A specified minimum amount of time must be spent at each airport
en-route during a flight for cleaning, engineering checks and other
ground handling activities. In some cases, this may include some
types of maintenance checks also.

Assumptions

a) We assume that long-term maintenance is not an issue during
time tabling. We expect the aircraft count given as input to take
this into account and give the effective number of aircrafts that
will be available at any point in time. Thus we do not schedule a//
the physical aircrafts during the time tabling process. If the
airline has 10 aircrafts of a specific type, the engineering
department would not offer, say, more than 8 of them to be in
operation simultaneously, two being down for various reasons
including various types of maintenance. We use internal aircraft
identification such as v1, v2, ..., v8 to denote these and work with
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these “logical” aircrafts. The logical aircraft vl may correspond to
different physical aircrafts during different weeks. As mentioned
earlier, this problem of mapping from logical to physical aircrafts
is called the tail-number-assignment problem.

b) We have ignored crew constraints. As mentioned earlier, detailed
crew scheduling is not carried out during the time tabling process.
Some simplified model is normally used - for example, the
maximum number of crew sets assumed to be available - to
ensure that the schedules produced do not put undue demands

on crew scheduling.

1.4 Time Table Representation

We define a general structure for the time table for ease of discussion
in the subsequent chapters. We also use the following conventions for
referring to the major input items:

V = set of vehicles (in this case, the aircrafts), vi denotes a specific
vehicle.

L = set of locations (in this case, airports), | denotes a specific

location.
R = set of routes, r; denotes a specific route.

Time table = {<v, vehicleschedule> | v eV}
vehicleschedule denotes the schedule of one aircraft.

vehicleschedule = <Flightyy, Flightr2, Flightes,...>* r1,r2,r3,... e R;
a sequence of zero or more flights, one flight
corresponds to one route. More than one flight may

be based on one route’.

! For example, there may be five flights in a week on the route Mumbai-London- -

Newyork.
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Flight, = <E;,Ej,..,En> where r = <lp,ly,l2,...,1n> and
E; denotes the event? of flying from li-; to l;, non-stop.

1.5 Organisation of the Thesis

In this chapter we have introduced the significance of the airline time
tabling problem and described the problem in some detail. In the next
chapter (Chapter 2), we discuss literature related to this kind of
problems as well as those concerning possible solution strategies.
Chapter 3 discusses the airline time tabling problem in more detail,
examining the major issues in modeling it. Chapter 4 discusses one
specific aspect of airline time tabling, namely the formulation of a load
model. Chapter 5 proposes a simplified model of the airline time tabling
problem, examines the complexity of ATP and reports some studies
carried out to understand the nature of its search space. A number of

interesting results are reported.

Chapter 6 discusses the perturbation model based solution for ATP in
detail - examing the major ingfedients of such a model and the options
available. Chapter 7 analyses the model, and identifies the issues taken
up for exploration in this thesis, and proposes hypotheses related to
these. The experiments conducted using the model to study these
issues and the results obtained are presented in Chapter 8. The results
are shown graphically and observations are made regarding the
usability, effectiveness and efficiency of the model. Chapter 9 discusses
distributed computing techniques relevant for exploitation of parallelism
in speeding up the perturbation search. We conclude the thesis in
Chapter 10, discussing the study, summarizing the contributions of the

thesis and identifying possible further work in this area.

2 Information associated with an event includes arrival and departure times for the

two airports involved and the type of aircraft.
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Appendix A provides programming details about the implementation
listing the various modules. Appendix B provides sample data files and
outputs produced by the system. Specialised terms used in the thesis

are explained in a glossary.

1.6 Contributions of the Thesis

1. Empirical and analytic study of the airline time tabling problem.

2. Development of a general time tabling model for airline time tabling,
including a powerful load-model.

3. Creation of a perturbation model for a practically significant problem

in a form that can exploit the parallelism of a multi-computer
environment.

4, Study of various parameters relevant to the perturbation approach,
including perturbation operators, population size, and population
management strategy with respect to their effectiveness in solving
the airline time tabling problem.

5. Design of a benchmark scheduling problem based on airline time
tabling.

27



Chapter 2. Literature Review

Planning and scheduling problems have been topics of interest, for
analysis and formalisation, for many decades, even before the advent
of computers. Numerical models as practiced in the Operations
Research [Gillet, 1976][Wagner, 1982] field continue to be popular
tools for modeling scheduling problems. These models include linear
programming, non-linear programming, integer programming,
relaxation models and goal programming. Since most non-trivial
problems in the area of scheduling have been found to be
computationally intractable, a lot of work has also been reported using
heuristic techniques [Bodin et al, 1983]. The problems addressed span
a wide spectrum varying from traveling salesman problem to multi-
depot vehicle scheduling problems and classroom scheduling problems.

From the initial days itself, planning has been an integral topic in the Al
research parlance [Georgeff, 1988]. It was viewed as an important
application domain even in early Al textbooks [Nilsson, 1980][Rich and

Knight, 1982]. Planning [Allen et al, 1990] is concerned with the

general problem of deciding an appropriate sequence of actions to
achieve a given set of goals. The actions may include management of

resources. In these models, temporal issues such as specific time
periods for activities and dependencies of time periods on activity and
results were largely ignored. With the advent of Mark Fox’s ISIS [Fox,
1987] system, there has been ar enormous amount of interest
[Zwében and Fox, 1994] in scheduling problems from the Al
community. A number of technologies have been explored for an
equally vast range of scheduling problems.

Thus the field of interest to us contains two different perspectives - of
planning and scheduling - and two different technologies - numerical
and AI methods. Our problem is closer to the scheduling problems, -
than general purpose planning problems. Among the scheduling
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problems discussed in the literature, time tabling problems are of
particular interest to our work, since our task can be seen as a type of
time tabling.

Baker defines scheduling [Baker, 1974] as the “allocation of resources
over time to perform a collection of tasks”. Time tabling on the other
hand, refers to a set of events (examinations, classes, etc) being
arranged into a set of timeslots subject to domain constraints. We can
see that airline time tabling does not belong strictly to either of these
categories, but shares some aspects of both. So, in this chapter, we will
examine selected literature relevant to formulating and solving time
tabling and scheduling problems.

After discussing the general models and concerns, we will examine the
perturbation-based model in some detail, since this thesis focuses on
that model.

2.1 General Background

There is hardly any work seen in thé literature specifically addressing
airline time tabling problem. However, scheduling problems, in general,
have received a fair amount of attention in the literature [Zweben and
Fox, 1994] over the last few decades. Even before the advent of
computers, these have been problems of interest, given the cost
benefits that can be obtained from even small improvements in the
schedule employed. After computers have been deployed to solve
complex problems, the interest in these problems has increased
significantly [Arabeyre et al, 1969] [Foxley and Lockyer, 1968]. Many
algorithms for handling scheduling problems of realistic complexity
require exponential effort (that is, the time required to find an optimal
schedule grows exponentially with the number of aircraft, number of
locations, etc.), and hence not useful for solving real-life scheduling
problems. Most of the surveys on scheduling problems (For example,
[Bodin et al, 1983] for vehicle routing and scheduling, and [Jain and
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Meeran, 1998] for Job shop scheduling) focus only on approximation
models, with the view that algorithmic optimization models are
infeasible. Much of the work reported in the literature is, thus,
concerned with heuristic methods.

Some of the major scheduling problems addressed in the literature

include:

1) Job-shop scheduling: A set of jobs have to be assigned
processing stations and time-slots for completion. Each job needs
to go through a sequence of processes, and has associated dead-
lines and priority levels. [Zweben and Fox, 1994] [Jain and
Meeran, 1998]

2) Vehicle Routing and Scheduling problems: In these problems, a
set of vehicles have to be dispatched to a set of locations to
pickup/drop load subject to various constraints. [Cordeau et al,
1998][Bodin, 1990] [Bodin et al, 1983]

3) Crew scheduling and rostering [Arabeyre et al, 1969] [Caprara et
al, 1998] [Chu et al, 1995]

4) Classroom time tabling [Frangouli et al, 1995]
[Henz and Wurtz, 1995]

5) Examination time tabling [Carter, 1986]
[Carter and Laporte, 1996]

6) Gate assignment at airports: This addresses the problem of
choosing suitable gates at’large airports for arriving and
departing aircrafts considering physical compatibility, connecting
flights, etc. [Brazil and Swigger, 1988]

7) Railway scheduling [Brannlund et al, 1998]

[Chiang and Hau, 1995]

Given the difficulty of solving such problems optimally [Jain and
Meeran, 1998], there are two distinct approaches being followed:
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i) Exact solution to an approximation of the problem: Here, some of

the complex constraints which make the problem intractable are
dropped or simplified, and the resulting problem is solved using
exact solution methods such as linear programming, integer
programming, etc. The resulting solutions are, often, not
implementable in practice, because significant constraints are
ignored. Therefore, this approach is used either when the ignored
constraints are not very critical for implementing the schedule or for
getting a good base from which to start the manual or other
approaches to scheduling.

ii) Approximate solution to the exact problem: In this line of work, the

problem is attempted with all the constraints and specifications in
tact. Instead, optimization is compromised. The focus shifts to
obtaining as “good” a solution as possible, that is feasible to be
impvlerhented. Almost all the current work focuses on this category.

A variety of techniques have been reported for solving scheduling
problems. These can be categorized based on different criteria.
Considering the approach to schedule-development, we can broadly
categorise the work into two classes: constructive scheduling and
repair-based scheduling. We can also categorise the scheduling
literature based on the nature of the technique employed to solve the
problem. There are primarily three groups: Al approaches, OR
approaches and other approaches. We discuss these classes in some

detail below.

Attempts have been made by commercial outfits to develop intelligent
supporl:. environments for airline time tabling and associated tasks.
Oasis [OASIS, 1999] is a tool in this category. It provides a rich
interactive environment for airline staff to develop time tables, with the
system taking care of book keeping and data management. The system

"supports a wide range of constraints and provides interface to

recognized international standards for various data items (for example,
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IATA tables for estimating the demand). FSAS - Flight Schedule
Automation System - [FSAS, 1999] is another commercial product with
similar functionality. It may be noted that none of these systems
attempts automated schedule preparation!

2.1.1 Constructive and Repair-based Approaches

In constructive methods, the solution is constructed incrementally
whereas repair based approach starts with a complete, possibly
infeasible and/or poor schedule and tries to adjust the schedule to
correct constraint violations and/or to improve the quality of the
schedule. We illustrate these two approaches, considering the N-queens
problem.

A constructive approach would start with an empty board, pick up the
first queen and place it at some square, say, in the first row of the first
column. Then try to place the second queen in the first row of the
second column. A violation of constraint would be noticed, leading to
backtracking. We change the position of the second queen to second
row and then to third row where an acceptable (so far) placement
would be found. Then we consider the third queen, and so on. The
queens are being added one by one to an initially empty board. A
complete solution is available only when the program terminates with
no more queens remaining to be placed. A variety of search techniques
(including heuristic) [Korf, 1988] have been proposed for building a
solution optimally in an incremental manner.

A repair-based approach [Minton et al, 1990][Zweben et al, 1994]
would, perhaps, start with placing all the 8 queens randomly on the
board - typically one queen per column. As one would expect, this
would generally result in one or more queens attacking each other. An
iterative repair process is now used. It starts by identifying a queen
that is badly positioned and changes its position within the column. If
the new position improves the total number or gravity of constraint .
violations, the new position is accepted. This process is repeated till the
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solution in hand satisfies all constraints, or no further improvement is
possible.

The repair-based approach has the advantage that if some good earlier
solution is available, the scheduling can start from that. Particularly in
airlines, this is a desirable approach. It leads to better acceptance by
the staff, flying crew and passengers, as it avoids major changes from
one time table to next. It is not necessary to develop each time table
from scratch. One can use the time table deployed in a “similar” earlier
time period and start adjusting it to suit any changes in situation
compared to what was prevailing at the time of that time table. There
is also the strength that essentially at any time, the repair-cycle can be
interrupted and a solution is available. The more the time we give to
the system, the better the resulting solution would be. However, there
is no guarantee that a repair-based approach would give benefits
comparable to what the optimal solution would give.

In the early days, much of the work was based on constructive search
model. However, incremental construction approaches are being found
to be too time intensive to be of practical use for real-life problems.
Recent focus is, therefore, on iterative improvement methods [Dorn et
al, 1994]. Mark Fox has also reported such a shift away from purely
constructive heuristic search techniques in the case of the job-shop
scheduling problem [Fox, 1994]. Good performances are being reported
for iterative refinement methods for many problems [Minton et al,

1990][Sosic and Gu, 1991][Sosic and Gu, 1994].

2.2 AI Approaches

Scheduling problems have attracted some attention from Al from the
early days itself, as exemplified by systems such as Nudge [Goldstein
and Roberts, 1977]. It became a major area of research in Al, focusing
on practical scheduling problems, primarily due to the pioneering work
of Mark Fox [Fox and Smith, 1984] in the area of job-shop scheduling.
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This work led to an explosive growth in scheduling as an Al problem,
spawning work on many different scheduling problems using many
techniques.

Al approaches can be further divided into two classes based on the
other categorization dimension - constructive Al approaches and
repair-based Al approaches.

2.2.1 Constructive AI Methods

Constructive AI methods view time tabling as a state-space search
problem [Korf, 1987] [Korf, 1988] where a state is a partial schedule
where some flights have been scheduled for some aircrafts. A move is
any operator that can expand such a partial schedule. The schedule is
constructed incrementally as a sequence of partial schedules. The
flights in a state may not necessarily have been done in any particular
order. Partially specified flights are also possible in a partial schedule.
For example, a flight has been scheduled on a route, but the specific
aircraft type has not been fixed for the flight or the starting time has

not been fixed.

In using constructive approach for airline time tabling, we may start
with an empty schedule, that is, no flight has been formulated for any
aircraft. A move from a given state considers the various ways in which
the current state can be extended. Mostly this would be by adding a
new flight. It can also be by tightening the specification of any partially
specified flight in the current state. If a satisfactory move is found, the
current partial schedule is revised suitably (by adding the identified
new flight or tightening the selected partially specified flight) and a new
state is generated. Various choices for adding a flight (which route,
which aircraft, which day, what time, etc) lead to different extensions
of the current partial schedule. If a satisfactory move is not found from
the current state, the current branch is terminated, and the current

state defines a possible time table.
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The optimization problem is to identify the optimal time table among
the feasible ones. A variety of search techniques have been reported
for carrying out this procedure. The search space being too huge for
exhaustive search, heuristic techniques are generally used. Tabu search
[Glover, 1990], beam-search, iterative deepening, etc [Russel and
Norvig, 1994] have been tried. Evaluation functions can be defined to
be applicable to partial schedules as well, so that among the possible
extensions, only the most promising few are retained for further
exploration. Constraint programming models to constrain possible
options at any stage have also been explored [Hentenryck, 1996].

The constraints can be checked/ensured during selection of valid moves
and during the evaluation of the resulting state. Soft constraints are
normally handled by assigning penalties for violation during the

evaluation of the state.
2.2.2 Iterative Improvement Methods

In iterative improvement methods, each state represents a complete
schedule. The moves are perturbations to the schedule. We will use
the term perturbation-based approach for this model. The term repair-
based signifies that changes are made in the current time table only for
correcting constraint violations or inconsistencies. Since we are also
interested in optimization, we would like to incorporate changes in the
time table if that leads to an improvement in profit.

Taking a classroom-scheduling example, we can randomly generate an
assignment of classrooms, teachers and timeslots for every period of
interest. Such a random assignment may contain a number of
inconsistencies or violation of constraints, let alone have the solution
anywhere near being optimal. However, the schedule is complete. This
forms a state in this model. A move from a given state performs some
modification (perturbation) to the state, and thereby obtains a new
state. The moves are generally meant to improve the quality of the.
schedule as determined by an evaluation function. For example: change
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the teacher assigned to period A, change the time slot of subject B,
swap the slots assigned to teacher A with that of teacher B, etc. The
applicable modification procedures are called perturbation operators.

Perturbation operators can be simple or complex. They are generally
problem dependent — primarily due to efficiency considerations.
Though, it is conceivable to visualize a generic perturbation model
based on the structure of the state representation, these are likely to
be undirected and inefficient. Such a generalization is based on the
notion that given an adequately specific definition of the state

- structure, we can identify some generic ways for modifying the

structure. For example, if a vector of objects® is present in a state, the
operators can include addition of a new element to the vector or
deletion of an element from it. We can also modify an existing element,
which will translate to recursively modifying the components of the
element.

Note that though at the broad level we can visualize such perturbation
operations, this involves many complications in state representations of
real problems. For example, deleting an element from a vector may
require changes to be made in the other elements of the vector and in
some cases even in other parts of the state. For example, if a flight is
deleted from the schedule of one aircraft, the estimated load carried by
another flight of a different aircraft may increase. Consider morning
flights from location A to location B. If there are P passengers as
poténtial load for this segment, they will be divided among the
available flights servicing this segment. If there were two flights
operating in this segment, and one Is deleted the expected load for the
other flight would increase. Similarly, when a new flight is added, the

3 In the case of the Airlines Time tabling Problem (ATP), such an object could
represent a serles of flights taking an aircraft from a base to another location and

bringing it back to a base.
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estimated load for the existing flights may reduce. In addition, airlines
have the concept of connecting flights, where a passenger traveling
from A to C travels via one flight from A to an intermediate location B,
and then proceeds via a different flight from B to C. This also adds
complexity to propagation of changes in a schedule. We explore these
and other such issues in detail later on.

Having described the constructive and perturbation models under the
Al framework, let us examine the various techniques employed to
realize these models.

2.2.3 Solution Techniques

The major techniques deployed for solving scheduling problems
include:

1) heuristic search including hill climbing, branch and bound,
constraint-directed beam search [Fox, 1987], etc. alone or in
combinations.

2) constraint programming [Frahgouli et al, 1995] [Hentenryck, 1996]
including constraint logic programming [Cohen, 1990]

3) Genetic algorithms [Schoenauer and Michalewicz, 1997]

Heuristic search was the preferred model during the early days. The
first version of ISIS [Fox and Smith, 1984] [Fox, 1994] adopted such a
mechanism, using constraints primarily to prune the search tree early.
It was soon noticed that constraints are perhaps the most important
component of real-life scheduling problems, and hence it was
impérative to provide them a more constructive role in the schedule-
making process. Subsequent versions of ISIS incorporated these - the
approach has been called constraint-directed beam search.

ISIS went further to exploit the constraints, proposing specialized
scheduling architectures such as opportunistic scheduling. Using
domain knowledge, the scheduling was split into three types depending
on what forms a bottleneck during a given state in scheduling. The idea
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was to focus the scheduling process on the bottleneck component.
Thus, dynamically the system would move between order selection,
capacity based scheduling and resource scheduling.

ISIS also pioneered the idea of preparing a general framework for
solving job-shop scheduling problems. Constraints were given a clearer
structure including its relation to other constraints, alternatives, costs

and priority.

Despite the fair success of job-shop scheduling, the complexity of the
constructive model followed by ISIS was overwhelming. Lack of
adequate frameworks and inadequate understanding of the roles of the
different types of constraints in the scheduling process has led to
exploration of alternative models. Constraint programming and genetic
algorithms were two popular contenders that emerged in the process.

Constraint programming (CP) provided the advantage of focusing on
the most critical component of scheduling problems - the constraints. It
looked for ways to identify and categorise the different types of
constraints, and to provide a general representation and associated
inferencing models for them. The essential idea in a CP-based approach
is to view the problem as one of assigning values to a set of variables.
The set may be finite or infinite, statically known or dynamically
determined. The constraints are viewed as restrictions on the values
that given variables can take. The constraints can be unary (v1 should
be an odd number), binary (vi+v2 > 10), ternary, etc. Powerful
constraint propagation models can exploit these constraints to restrict

the values that the various variables can take.

In general, the propagation algorithms and value representation
mechanisms available today are not powerful enough to exploit the
constraints fully. For example, given vi+v2 < 10 where vl < 10, v2 <
12, we can easily eliminate 10 and 11 from the domain of v2. These
constraints, however, convey much more information. To apply further
pruning, we need to wait till more information Is known about either v1
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or v2. Therefore, CP based methods ultimately rely on search
techniques (including heuristic search) for deciding on values.

Many of the constraint programming frameworks [Hentenryck, 1994]
[Shulte et al, 1998] available today provide sophisticated constraint
representation models, propagation algorithms including simultaneous
equation solving and numerical algorithms, and powerful search
techniques. Scheduling and time tabling has been favourite domains for
trying out CP frameworks [Hentenryck, 1994][Frangouli, 1995].

Genetic Algorithms (GA), formulated by J Holland [Holland, 1975] is
an evolutionary approach to problem solving. Thé basic idea is to take a
population of potential solutions and let them evolve to “better”
solutions. New solutions are derived from those present using a few
types of predefined operations. These include crossover, which merges
parts of multiple solutions to generate a solution which incorporates
aspects from each of the solutions chosen, and mutation which is a
change carried out on a single solution at a time. The “poor” solutions —
as defined by an evaluation function - are discarded, and the better
ones are retained for the next round. The model, though simple, has
been found to be very effective in solving a variety of scheduling
problems [Fang, 1994].

Though relatively less understood theoretically compared to other
models, the empirical results are highly positive. One of the major
strengths of the approach is its generality. There are only a few domain
specific properties required for formulating a GA-based system for
solving a problem. These are:
a) A representation for the solution — GA imposes no constraint on
what this should be.

b) An evaluation function mapping a solution to a real number
characterizing the fitness of the solution.
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c) Crossover and mutation operators, which take the required
number of solutions and returns new solutions. Again, the details
of how this is done are of no concern to GA.

However, the success of the approach depends on a number of factors,
which are hard to determine analytically, and therefore, calls for a fair
amount of trial and error [Forrest and Mitchell, 1993][Park and Carter,
1995]. For example, the convergence of the process is dependent on
having proper crossover and mutation operators and good evaluation
function. Empirical guidelines are being explored for implementing GA
based solutions. One of the pioneers of genetic algorithms, DE Goldberg -
says “many of the first generation evolutionary and genetic algorithms
currently in use are incapable of solving hard problems quickly, reliably

and accurately” [Goldberg, 1998].

All these techniques have been applied alone or in combination. For
example, hill-climbing type of local searches are being used effectively
in conjunction with a GA model to improve performance. Similarly
many systems apply constraint propagation techniques in their model,
even though they may not be using a constraint programming
framework for the problem as a whole.

[Zweben et al, 1994] describes a system called GERRY based on
perturbation (iterative repair) model. It makes heavy use of a
constraint based representation of the domain. Schedule-IT is a system
for allocating drivers and vehicles for delivery of orders to customers
[Duncan, 1995]. The system is based on constraint-based approach,

and was built using ILOG Solver.

2.3 OR Approaches

The literature of Operations Research is rich with scheduling related
problems [Bodin et al, 1983][Bodin, 1990] [Rushmeier et al, 1995]
[Cordeau, 1998] [Brannlund et al,1998]. In particular, vehicle routing
and scheduling problems [Thangiah, 1991] [Magnanti, 1981] are a
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topic of considerable study in this area. Bodin [Bodin et al, 1983]
discusses a humber of variants of the vehicle routing/scheduling
problem including:

a) traveling salesman problem

b) Chinese postman problem

c) M-travelling salesman problem

d) single depot, multi vehicle, node routing problem
e) multiple depot, multi vehicle, node routing problem
) cépacitated Chinese postman problem, and so on

Recognising the computational complexity of real-life problems of this
category, most of the methods proposed are heuristic in nature. The
problems are categorized based on the nature of optimization and
constraints. For example, routing (without assigning times) and
scheduling are considered as separate problems; single depot and
multiple depots for the vehicles lead to another categorization; and
whether demands have time-windows or not is yet another dimension.
Even with such limitations, most of these are unable to incorporate the
many ad-hoc constraints that arise in the domain.

The approaches and heuristics for the various models are substantially
different from each other. A variety of models [Gray et al, 1997] have
been attempted including linear programming, integer programming,
mixed-integer programming, generalized goal programming [Ignizio,
1983] and Lagrangian relaxatioﬁ models. [Brannlund et al, 1998]

. describes a railway time tabling system based on integer programming

model. [Cordeau, 1998] surveys a number of routing models which
employs techniques such as dynamic programming, Lagrangian
relaxation and simulated annhealing.

Thus, though a rich literature is available, many admit that plain OR
solutions are not adequate for solving real-life scheduling problems.
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Another aspect contributing to this issue is the amount of expertise
required for formulating problems under an OR framework, and the
opaque nature of solution. Getting partial solution or explanation for
certain behaviour is almost always impossible in an OR framework
[Dhar and Ranganathan, 1990].

2.4 Hybrid Models

Recognising the search complexity of AI models and the OR approach’s
inability to reflect real-life problems adequately, some attempts have
been made to combine the strengths of both. There have also been
efforts to bridge the two approaches by encouraging each group to
benefit from the strengths of the other. For example, Grant makes
strong suggestions in this direction, particularly emphasizing that OR
approaches need to make use of domain knowledge and informed
search methods for being effective with real-life problems [Grant,
1986]. One simple approach is to use OR generated initial solutions as
good starting solutions in perturbation models.

A few studies have also adopted an expert system kind of approach for
solving scheduling problems — where one identifies a human expert’s
way of solving these problems and mimics that by codifying the expert
knowledge in rules or any other suitable framework. [Solotorevsky et
al, 1994] describes a specification language called RAPS for such a
scenario. When such rules are available and optimization is not a major
criterion, the approach is a viable option to examine. However, most
scheduling problems have an optimizing component and there is no
reason to expect that human expert’s solutions are even near-optimal.
Similarly, many constraints are too complex to be contained in a rule-

based model.

Many authors report low-quality results when restricting to a single
approach for sol\)ing practical problems. [Jain and Meeran, 1998] lists a
number of cases, where hybrid models have produced much better
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results than what has been accomplished with a single model. These
include memetic search [Corne et al, 1999] - a recently popularized
search model — which incorporates a local search over a genetic
algorithm based core model.

2.5 Comparing the Different Approaches

The above discussion covers a number of different approaches/models
for solving problems such as scheduling and time tabling. [ILOG, 1997]
is a whitepaper by ILOG Inc providing comparative study of four
different approaches for a variety of optimization problems. The paper
compares rulebased approach, constraint programming approach,
simulated annhealing and genetic algorithms. Rather than recommend
one specific approach, the paper concludes that each of the models
have their own strength areas and based on the formulated mode! of
the problem, an approach should be chosen. From the lot, genetic
algorithms and simulated annhealing are more general purpose and
fairly effective for a range of problems. Constraint programming,
despité being general, is not effective by itself to produce solutions
efficiently, and requires a powerful search model to accompany. [Jain
and Meeran, 1998] also has a similar message, observing that most of
the approaches in the literature from numeric models to approximation
models show problems with scalability and applicability to a general
class of problems. There seem to be a general bias now towards
iterative refinement models - with local search and genetic algorithms

in the lead.

Iterative refinement models offer the following advantages over
constructive approaches:

1. There are very few assumptions on the domain or the task. The
overall model is applicable, therefore, to a wide variety of tasks

and domains.
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2. The areas where domain specific information or knowledge is
required is well-defined in the overall model - the solution
representation, the evaluation function, etc. The rest of the
solution framework is independent of the problem.

3. Primarily due to the above characteristic, it is easier to modify the
problem specification by adding/deleting constraints and
parameters.

4. Since the model works with complete solutions at any time, one
can start with existing solutions (perhaps used earlier) and apply
iterative refinement. This is particularly useful, if the changes are
incremental — fresh effort starting from scratch is not required.

More and more of the work reported for general scheduling problems is
using iterative refinement or constraint models. This trend is
presumably because of the need to be flexible in specification of
constraints in real life scheduling problems. Based on the comparative
observations earlier, we have opted to use perturbation model as the
basis for studying ATP in this thesis. |

2.6 Problem Representation

In general, most of the attempts at solving scheduling problems have
been attempted as one of its kind type. Though, one can classify
problems broadly as time-tabling, vehicle routing/scheduling, etc.,
these do not seem to provide adequate generality at the problem
representation level to define the structure of a scheduling problem.
Hdwever, for automatic time tabling, scheduling, etc to move into wider
applications in main stream of information technology, powerful tools
and models are essential. A case in point is the advent of expert system
shells, which contributed significantly to the popularization of expert
systems in industry. A few research attempts have tried to develop
general models for specific classes of scheduling problems. School time
tabling and job-shop scheduling are some of these domains.
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A number of different types of scheduling problems have been
identified as of general interest. Job-shop scheduling for scheduling
jobs on machines on a factory floor is perhaps the most well-known.
[Fox 1987] and [Fox and Smith, 1984] report pioneering efforts in
formulating it as a general problem class. Another class that has been
fairly well understood is school time tabling. Most other scheduling
problems lack a model and framework. One of the reasons for this lack
of model is perhaps that the domain constraints play a more significant
role in deciding solution strategies than the general problem
parameters. Addition of certain types of constraints can make certain
techniques such as linear programming unsuitable. [Smith, 1992]
reports another interesting work attempting to formulate a general
scheduling framework for transportation problems. [Solotorevsky et al,
1994] proposes a rule based framework for specifying and solving a
range of resource allocation problems. The framework identifies the
major ingredients of such a problem as:

1. concepts including activities, resources and priorities
2. rules including the restricting rules and recommending rules

3. strategy for solving which includes forward allocation using
priorities and recommending rules, followed by consistency
checking for possible violations and taking corrective actions
based on what is called “local_change policy”.

The framework proposed (RAPS) provides for specifying these in a
higher-level framework, and allows use of different problem solving
strategies to be used against the same specification. The authors
themselves admit that their framework is not powerful for all problems

- “RAPS ... have less ambitious goals”.

The categories proposed in RAPS are not adequately defined for all
scheduling problems, and do not cover the range of parameters of
interest. Time is not given any special consideration, for example.
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Constraints are absorbed into the rules - and do not become visible for
different parts of the solution strategy to exploit them.

There have also been some work in identifying the different types of
constraints, which apply to scheduling problems. Trying to formalize the
various types of constraints will also help in mapping solution strategies
and problem models to characteristics of problems. [Fox, 1987]
attempts a classification of constraints in the domain of job-shop
scheduling problems, listing them as:

1. organizational goals (e.g. due date requirement, work in progress)
2. physical constraints (e.g. product size)

3. causal restrictions (e.g. operator precedence and resource
requirements)

4. resource availability constraints

5. preferences (of machines, operators, etc.)

While some of these categories are general in nature (resource
availability, for example), this categorisation is not directly applicable to
other domains such as airline time tabling. So far, there is little success
in formulating general models for such scheduling problems.

2.7 Perturbation Model in Detail

Since our focus in the thesis is on perturbation-based approach, we
now discuss this approach in more detail. The classic hill-climbing
[Russel and Norvig, 1994] [Rich and Knight, 1992] can be considered
as the core of the perturbation model. In hill-climbing, there is one
solution seed, which is continuously being modified based on local
information. From the given seed, variants are generated using pre-
defined operators. An‘iong the variants generated from a given seed,
the one resulting in most improvement in the solution quality is
accepted, and the search is continued with this as the seed. Variations

on this model are possible. For example, one may not generate all
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possible variants from a given seed, before choosing one to follow.
However, the basic idea is to explore within a close neighbourhood for a
better solution and move to that solution, if found.

Hill-climbing is, of course, subject to many drawbacks [Russel and
Norvig, 1994] including local maxima, plateaus and ridges. On a vast
search space, the search can also take very long. Perhaps the biggest
problem in searching non-monotonic vicious search spaces using local
information only is that local maxima would trap the search.

Using multiple seeds provides significant improvement in overcoming
these limitations. The seeds are randomly generated and hence can
explore different regions of the search space. Multi-seeded hill-climbing
is the basis of perturbation models. Genetic algorithms also fall under
the same model. GAs move away from pure hill climbing by using the
crossover technique to hop around different areas of the search space
by combihing characteristics of multiple parent solutions. They also do
not explore the complete neighbourhood of a solution. GAs have a high
stochastic component, making the search non-systematic.

The general structure of a perturbation based solution strategy is as

follows:
1. Generate a population, S, of N solutions

2. repeat

3. pool = S, the current population
4. for each element s in the pool

5 ‘Select a perturbation operator

6 Perturb s to obtain s’
7. Add s’ to pool

8. Evaluate all the elements in pool

9 Retain N elements considering primarily the cost

10. S = pool
11. until termination condition met
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The basic issues in this strategy are
1. Representation of a solution
2. Generation of the initial population
3. Deciding suitable perturbation operators
4. Population management
5. The termination criteria

We will discuss these issues in detail along with the relevant tradeoffs
and options in Chapter 7. The performance of a perturbation model
depends on goodA choices of all these as well as a reasonable population )
size. There have been studies [Fogel, 2000] - empirical and analytical -
to understand the impact of these and other parameters on the
performance of the algorithm. However, the answers are all partial.
[Fogel, 2000], however, analytically substantiates that it is not possible
to have a general purpose GA model that will yield good performance
for all problems. Empirical studies have been reported for some
scheduling problems including examination time tabling, job shop
scheduling, etc using GAs.

The major drawback of models such as GA is its purely empirical
nature. While the approach has been shown to work well, for a number
of practical problems, there is yet no satisfactory insight into its
effectiveness. Most of the applications have developed specialized
operators, chromosomes (i.e. solution representation), etc and have
also adopted other techniques such as local search as supplements.
Thése make it difficult to know the extent of contribution by the GA
approach per se. These also make it difficult to generalize the approach

or model to other problems.

The main theoretical result available so far is the schema-based
building block hypothesis [Goldberg, 1989][Fogel, 2000]. This is
applicable where chromosomes are represented as bit strings, and the
classical crossover and mutation are used as the only operators. A
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schema is a bit pattern over the chromosome. For example, if the
chromosome is 6 bits long, 11*011, *****( gand 1****]1 gre some of
the schemas. A 1 or 0 in the schema matches with the respective
symbol in a chromosome, and a * matches either (wild-char). Thus a
schema containing atleast one star, matches multiple chromosomes. In
a population of size N, each individual chromosome will represent one
or more schema. Similarly, any given schema may be represented by
zero or more individuals in the population. Assume that the optimal
solution can be described as a schema in the above notation. The task
of the GA can be visualized as locating the right individual(s), which
characterizes the best schema.

The building block hypothesis postulates that GA encourages the
growth of good schema provided they are short. By favouring better
chromosomes to survive, we are encouraging good schema to have
larger and larger representation in the population. With finite
population sizes, such an approach can result in premature saturation
with the entire population becoming representatives of a schema
representing a local optima. Mutation as an operator is meant to

- protect against this, since it introduces random shifts in select

chromosomes. Crossover facilitates exchange of ideas among the
population members, by supporting merging of chromosomes
representing two or more different solutions. This is a powerful
operator in the traditional GA model. For crossover to be effective, the
optimal schema should consist of relatively independent segments
which can be independently diséovered and integrated. For example, if
the optimal schema is 11**01*, and f is a profit function (i.e., goal is to

maximize f) then the following relations must hold:
f(11**01*) > f11%***x) > ] (alalalasatabad)

If partially acquiring the schema components worsens the evaluation,
then such partial solutions may not survive, making effective crossover
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of such partial solutions towards obtaining the optimal solution unlikely.
The field of deceptive functions studies this phenomenon in detail.

The analytical studies of such models are still active areas of research.
An important aspect of this study is an analysis of the fitness
landscapes, their categorization and their impacts on the GA
performance. [Mitchell et al, 1991] describes a hand-crafted function -
named the Royal Road function - for studying these kinds of issues.

In this thesis, we do not restrict our attention to GA type of
perturbation. However, thanks to the close similarity in the approach,
many of the issues and techniqﬁes will be common to GA and the
general perturbation based models.
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Chapter 3. Model for Airline Time Tabling

In Chapter 1, we defined the airline time tabling problem (ATP) and
specified its overall structure. In this chapter, we look at some of the
unique characteristics of this problem and examine ways to handle
them in modeling ATP.

3.1 Basic Entities and Characteristics

The basic components in an ATP are aircrafts, airports and passengers.
A significant indirect entity is the route denoting any valid flying
pattern.

Each type of aircraft has a number of associated parameters and
constraints. These include the range (the maximum distance the
aircraft can fly non-stop), the seating-capacity (further broken down
into capacity for different passenger classes), fuel consumption per
hour, maintenance requirements, speed of flying, etc. A soft constraint
is the preference of certain aircraft to be flown in certain sectors (often

a marketing consideration).

Airports have similarly a number of direct and indirect constraints. The
direct constraints include curfew timings during which no aircraft will be
allowed to take-off or land at that airport, slot-timing - the assigned
time for specific airlines to land/take-off, and night-navigation facility -
without which flights cannot operate at that airport during night.
Indirect constraints arise partly fi‘om the charges applicable. Landing,
takeoff, parking, ground support, etc are all charged at every airport.
The charges can depend on the type of aircraft and sometimes on the
time of the event. For example, landing at night may be costlier than
landing during day, at some airports. Parking beyond a permissible

‘period can attract surcharges as well.
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Profit, defined as revenue minus costs, is the primary target for an
airlines’ operation. However, unlike in the case of most other
scheduling problems, estimating the revenue is complex for airline time
tabling. The main reason is the complexity of estimating the number of
passengers in the various flights in the schedule. The way a scheduling
system considers passenger related inputs, is called its load model. We
discuss this in depth in the next chapter. ~

Mostly the flight patterns of airlines can be divided into two models:
hub and spoke model and point-to-point model. Many airlines use a
combination of these in their schedule. In hub and spoke model, a few
airports are selected as hub locations, and flights are run from other
airports to and from these hubs. Direct flights among the various
airports are minimized. To go from A to B, you may need to go from A
to a hub location H and then catch another flight from H to B. The
number of hubs one visits en-route can be zero or more (zero being
when there is a direct flight). Point to point models chart routes based
on traffic pattern and operate direct flights between most locations.
Multi-hop flights are common in this model when catering to low-
demand sectors. The intermediate points here should not be confused
with a hub; they are only a mechanism to share the load on different
sectors, and not intended to be transition points.

In the case of hub and spoke model, route patterns will be of the form
H-A-H where A is any airport and H a hub. For the point to point model,
any pair of airports A-B can be considered as a route. Even in the point
to point case, every combination of airports is not necessarily operated
directly by an airline. Some are operated as connecting flights, where
two flights A-B and B-C are scheduled such a way that some one
wanting to go to C from A, can take the first flight, alight at B, change
over to the second flight and go to C. The flight departure times are
synchronized keeping this in mind. Some flights are also operated as
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multi-hop routes (e.g. The route A-B-C can take care of demands
across sectors AB, BC and AC).

Using this idea, we can integrate both the flight patterns - hub and
spoke, as well as point to point - using the concept of routes. The set
of routes given as input will be dependent on the model followed by the
airline. The notion of routes is general enough to support both the
models.

Routes specify such flying patterns in use, taking into account by
revenue considerations, international agreements, etc. Though, it is '
conceivable to throw open every bossible airport combination as a
possible route and let the system decide which are worthwhile to
operate on, this is too resource consuming to do in practice. The
constraints governing the routes are often outside the system purview,
e.g., bi-lateral agreements. In addition, these routes are normally fixed
by an airline and need not be “invented” every-time the scheduling
system is run. Thus, we find the concept of routes as an appropriate
way to model these constraints and requirements.

Also note that, such a mechanism allows the human scheduler to guide
the system, if required. By providing more patterns or removing select
patterns, the system’s exploration can be controlled subStantially.
Though this option should be exercised with care, it does offer a good
deal of control for the human scheduler, when required.

3.2 Other Constraints .

Theré are a number of constraints that govern the feasibility and
viability of a time table. These have been briefly described in Chapter 1.

Some of these are indirect constraints, in the sense that, we can take
care of these constraints by suitable assumptions or restrictions on the
inputs used in the system. For example, if we have no right to pickup
passengers from airport X, the demand table (load model) can be

53



pruned of entries listing passenger load from X. We can, then, ignore
such constraints during the scheduling process.

Some constraints are preferential. They need not be enforced every
time and the system should exercise flexibility to over-rule these
constraints, if required. An example of this kind of constraint would be
the timing preference of passengers on various sectors.

Other constraints have to be satisfied by any valid schedule. Examples
are minimum waiting time at each stopover and aircraft range
constraints on the non-stop flying time.

Constraints on crew are hard to incorporate directly in time tabling.
Normally crew planning is done after the time table is finalized.
Mapping available crew to a time table is itself a complex scheduling
problem [Caprara et al, 1988] [Chu et al, 1995]. On the other hand, it
is not possible to neglect crew restrictions completely during the time
table preparation. Doing so may produce time tables making infeasible
demands on the crew, making the cost calculations meaningless.

The overall cost of the séhedule is dependent on the crew available.
Airlines have agreements indicating the maximum period of time that a
crew will work continuously and a minimum rest period whenever this
limit is reached or exceeded. Consider a schedule with only one flight a
week from A to B, and assume that the flying time from Ato B is
around the scheduled duty-time limit for crew. In such a case, the crew
that went to B on the onward flight, cannot take up the assignment of
the return flight, if the return flight leaves soon from B. Either two sets
of crew would be required for operating this route with one set
positioned at B or the return flight should be delayed sufficiently to
allow the crew of the onward-flight adequate rest time. However, if you
add one more flight, the same two crew sets can operate that
additional flight as well, reducing the incremental cost substantially.
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Exploiting all these kinds of constraints completely during the time
tabling process, make the time tabling process unreasonably complex.
Therefore, some broad indicative parameters (e.g. number of crew
sets) only are considered during the time tabling process.

3.3 Load Model

The load model is, perhaps, the most important component of airline
time tabling. At the same time, it is the most difficult information to
obtain and formulate. A number of issues govern the formulation of a
load model. We discuss the formulation of a load-model in detail in the
next chapter.

3.4 Revenue and Cost Computation

The cost and revenue parameters in airline time tabling are quite
involved. Costs are incurred on a multitude of aspects ranging from
crew and fuel, to landing and parking at various airports. In order to
make a general model for airline time tabling, we need to organize
these costs, so that addition of new types of costs becomes possible
without substantial changes to the system.

The costs of airline operétions can be broadly classified into two types:
the charges associated with being at an airport and the charges
associated with flying time. We will term these as event charges and
link charges. Event charges include airport charges, landing charges,
parking charges, and surcharges related to these. Link charges are
charges during a non-stop flight from one airport to another. These

include fuel charges and charges for passenger amenities.

This gives us a simple representation that is general enough to handle
all kinds of charges applicable. In our model, there are two files
corresponding to these charges: event_charge.ini and link_charge.ini.

The event charge specification has the form:

<location,aircraft-type,arrival-time,departure-time,charge,description>
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This indicates that “charge” amount is payable every time an aircraft of
the type specified is at the specified airport, satisfying the
arrival/departure time constraints. The arrival and departure times
allow for conditions such as “> 10:00 hrs”, so that we can specify
different charges depending on the time of arrival (if required). The
description field is primarily to capture the type of charge for internal
record keeping and reference (e.g. landing charge). This model allows
for easy modification of charges, and can also incorporate new types of
charges easily. The main types of charges included at present are the
airport charges and landing charges, both of which depend on the
aircraft type and the airport.

The link charges can be of two further types in terms of how they are
calculated. Some of the charges are dependent on the number of
passengers present and the others are dependent on the distance
traveled'(or alternately the time taken for the flight). Charges for .
passenger amenities belong to the former set and the fuel charges is of
the later type. The link charge specification has the form:

<location1, location2, aircraft type, charge-type, charge, description>

Location1 and location2 indicate that the charge is applicable while
flying from location1 to location2. Charge type is one of ‘per pax’, ‘per

km’, ‘per hour’, and *fixed’.

We find this structure adequate to capture all the types of charges we
have come across in this problem domain.

3.5 Representing Constraints

Constraints are represented in the system depending on the category
to which the constraint belongs (see Section 3.2 of this chapter):

e Indirect constraints are handled by assuming that the data files
are suitably filtered before running the time tabling system.
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e Preference constraints are applied during the evaluation of the
schedule and appropriate penalty factors are assigned. Certain
changes of preference constraints (addition or modification) wiil
require changes to be made in the program. Note that deletion of
constraints is not a problem, since we can set the appropriate
penalty factor to zero.

e Other constraints are enforced at the time of generating solutions
and also while making modifications to the solution. These
constraints are attached with the classes representing the
relevant entities (e.g. aircrafts, airports, etc), and all relevant
methods enforce and verify adherence to the applicable
constraints.

3.6 Soft Constraints and Perturbation Model

In most Optimization models, the hard constraints are handled by
enforcing them during the construction of the solution or by imposing a
very high penalty factor. Soft Constraints, on the other hand, are
handled by incorporating additional terms in the evaluation function.
Each constraint violation is assigned a penalty and each type of
constraint is given a weight; the weighted sum of all these penalties
forms a part of the evaluation function. The difficulty in this approach is
in deciding relative weightages among the various soft constraints,
making them comparable to the other terms in the evaluation function
(for example, compare satisfying passenger time preference with
reducing the number of stopovei's in a route). The problem is more
complex in constructive scheduling models, since deciding these factors
in a partial schéduie do not, in general, reflect the scenario that arises

when the schedule is completed.

Perturbation models, and iterative improvement models in general,
provide a more useful approach to address this problem. Particularly, in.
domains such as time tabling, many of the soft constraints can be
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modeled differently, in a more effective way. Mostly soft constraints in
the airline time tabling domain, has a direct/indirect impact on the
passenger traffic and the revenue. The fact that we always deal with a
full schedule enables this to be exploited effectively in our approach.

For example, let us consider the soft constraint of minimizing the
number of stopovers en route. What is the rationale to have more
stopovers? The airlines can cater to load to/fro the intermediate
locations in addition to the load between the end-points. A direct flight
from A to C can cater to the load from A to C only;.but if the flight is-
routed via B, then it can also cater to the A to B and B to C loads. This
may help me to increase the load factor on the flight. What is the
rationale to reduce stop over? Passengers prefer to spend less time in
travel. Also aircrafts take longer to finish the flight whereas it could
have been deployed on another sector.

All these can be directly modeled in perturbation models. Firstly, the
incorporation of additional load that the multi-hop flight brings will be
visible when computing the estimate of the load on the flight. Aircraft
taking longer to finish a flight is bad only if there are other good
opportunities available for it to do. This will be visible when comparing
this schedule with other schedules in the population. Note that a direct
estimate of this opportunity cost is very involved to compute.

The human preference factor can be handied by a heuristic function
which converts the estimated number of passengers available for the A-
C sector into a number likely to board the specific flight under
cohsideration. Anyway, we need such a function to take care of load
drop off due to timing preferences at arrival and departure (see next
Chapter), type of aircraft, etc. This function can also build in a factor to
reduce the number suitably based on the number of stopovers.

Similar approaches can be formulated for most soft constraints in'a
multi-seeded iterative refinement model, such as the one we are
employing. This strength primarily comes from two factors. Firstly we
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are always dealing with a full schedule and hence opportunities and
alternatives for passengers are easy to see. Secondly development of
the solution progress by comparing the various solutions with one
another, enabling opportunity costs to be modeled easily in an indirect

manner.

3.7 Analysis of the Model

The cost representation model is at present a direct representation of
the file structure mentioned earlier. To reduce heavy disk I/0, the files
are read into an internal buffer and accessed. No other optimizations
have been incorporated. The access to these structures, in general, can
be significantly speeded up, reducing the net run time significantly
(though at the constant term level only). Possible optimization

measures include:
1. Indexing of the entries based on airport to reduce search time.

2. Use of better structures for holding the data.

3. Pre-processing of the general table to a more efficient format.
This can be done as a separate stand-alone phase.

The model is, otherwise, general enough to represent real-life airline

time-tabling problems.

In the implementation, we have incorporated directly only some of the
constraints since the focus is on studying the problem in general, rather
than catering to a specific airline’s requirement. The model can easily

absorb further constraints.

For implementation, we have followed an object-oriented model. Most
of the entities discussed here, are represented directly by classes. All

hard constraints are handled by the classes (see Appendix A)
corresponding to the entities on which the constraint applies. Addition

of new hard constraints may necessitate changes in the code
corresponding to the relevant entities; however the interface projected
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by the various classes would remain the same, and hence other classes
need not be affected.

When the system is considered for use in real applications, the use of a
database to hold most of the data can also be considered. For example,
it is expensive to use text-files to represent large statistical databases
such as those obtained from IATA. The availability of commercial
database systems providing general information such as travel times, is
another factor in this direction of thinking. Our representation does
enable a database structure to be incorporated easily.
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Chapter 4. Load Model for Airline Time Tabling

Once a flight is planned, we need to know how occupied that flight is
likely to be, and what kind of revenue it is likely to generate.
Passengers and cargo* are the only profit-enhancing elements because
they pay; everything else increases the cost of implementing the
schedule. The load model is the description and distribution of
passengers (and cargo, in the general case) who need to travel from
place to place. In this chapter, we discuss the issues in formulating '
such a load model, discuss and anaI)r'Se our proposed load model.

4.1 Parameters Affecting the Load Model

The basic requirement in formulating a load model is to find out how
many passengers are interested in traveling from a given location A to
another location B in a week. A major difficulty in obtaining this
information accurately is the likely presence of competitor airlines
covering the same sector. It is not easy to estimate how many of the
potential passengers will use our flight vis-a-vis the other airlines’
flights.

Passengers choose flights based on flight-specific parameters such as

the number of stops en-route, departure time at source and arrival
time at destination, in addition to the cost of ticket. There is also, often

a loyalty factor, further complicated by schemes such as frequent flier
schemes.

Number of passengers carried by an airline in the previous year, is
often used as a base for demand profile. However, this is obviously
biased by the flight pattern in force at that time. For example, if the

4 In this thesis, we have considered only passenger load models and have not

considered cargo.
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airline did not operate a flight in the sector A-B in the previous year,
and is considering a flight in that sector now, there is no reliable
demand information one can gather. Even more significantly, the airline
may have had a flight from A to B, say at morning 9.00 o’clock. The
number and type of passengers on this flight do not necessarily give us
a complete picture of the potential load in the sector. Given the many
types of passengers and their constraints/preferences, the load carried
may change if you change the flight timing. Thus, the available data
cannot be easily extrapolated to predict the load if the flight time is .
changed to, say, 6.00pm.

Thus, one will not have a truly reliable demand profile for airline time
tabling. Previous years’ load pattern, modified by inputs from
marketing experts and field staff, is often used for this purpose. The
input from the marketing department plays a crucial role in the
formulation of demand model. Their surveys, intuition, study of
competitor airlines and so on should contribute to the final design of
the load model.

Impact of timing is @ major concern in airline time tabling. For example,
a business traveler will prefer to spend as little time in travel as
possible and will have less flexibility in changing flights. Their preferred
timing would be to arrive at the destination in the late evening to have
a night's sleep before getting to work or arrive early in the morning to
have a full day ahead of them at the destination. Family and tourist
passengers prefer to optimize use of holidays and weekends in
choosing flights. For example, for Air India and Indian Airlines, one of
the major sources of passenger traffic is Gulf countries. The passengers
are primarily those who have gone for work there and coming to India
on leave or returning after holidays. They prefer flights matching the
weekly-holiday and working hours pattern that are prevalent in Gulf, so
as to lose minimum amount of time from the few days they get as

holidays.
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Apart from the preference, there is a related, but different aspect to
timing. Suppose the indicated preference for a group of X passengers is
8 am. And we, unable to schedule a flight sharp at 8 am, schedule a
flight at 9 am. What fraction of X will make use of this flight? We
require an estimate of this drop-off factor with time along with the
load-model in order to estimate the revenue for a given schedule.
However, this also tends to be a difficult problem to solve. The drop-off
may be determined by the arrival time at the destination, the type of
passengers, as well as the nature of the next alternative. As yet
another variation, suppose we schedule a flight at 7 am and another at
9 am, how will the X passengers be distributed among these
alternatives: '(a) take 7 am flight, (b) take the 9 am flight, and (c) take

neither?

An ideal load model would list the number of passengers likely in a
given sector, separated into various classes such as business traveler,
families, personal travelers, etc. and for each of these classes we could
associate a set of rules indicating their preferences when faced with a
choice of flights, starting times, etc.

However, in reality this level of detail is not available. The classification
of passengers recorded by the airlines is based on the charging
scheme: first class, business class and economy class. Scheduling team
has an intuitive understanding of the type of load across different
ssectors, which can be tapped as additional knowledge to get some feel
for the information we require. For example, the staff may point out
that preferred time for gulf flights to Indian destinations is Thursday
night, since Friday is a holiday there and most of the passengers are
those returning home for vacation. They also think in terms of
parameters such as estimated percentage of market share that their

own airline has on a given route.
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4.2 Proposed Model

Keeping these considerations in mind, we have formulated the load
model as a set of tuples of the form:

<start-location, destination-location, class-of-passengers,
number of passengers, day-preference, time-preference>

Day-preference is assumed to be a flag indicating if weekend is
preferred or weekday is preferred or there is no preference to the day
of travel. Similarly time-preference indicates a preferred time or -1 to
indicate that anytime is acceptable. The model can be revised easily to
provide finer or coarser granularity for indicating preferénce. We expect
the bulk of the data in the model to come from some statistical sources
such as IATA data, suitably enhanced and moderated by human

experts.

For load drop-off with time, we define a user-specifiable parameter
called load_drop_off_time. The interpretation used is that no part of the
indicated load will be lost, if the deviation of the actual flight from the
preferred time is less than /oad_drop_off_time. Positive and negative
deviations are considered alike. Note that this model of the load-drop is
not integral to our system - it can be changed without affecting other

parts of the system.

Given a time table and a load model, the revenue is estimated by first
estimating the number of passengers in each flight, and then
computing the revenue using the sector-revenue mapping. For
estimating the load, the entries in the load model are examined one by
one. For each load (for example, Mumbai-Frankfurt 200 passengers on
weekend with no time preference), all applicable flight instances are
identified from the schedule (all flights which covers Mumbai-Frankfurt
and operating on weekend). These instances are then sorted based on
some suitable priority scheme. A simple priority scheme may be
increasing number of stopovers. More complex sorting functions can be
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incorporated taking into account the type of passenger, etc. The
available passengers are then loaded among these options subject to
seat availability and other resource constraints. Passengers in one
single load-model entry may be distributed among multiple flight
instances (for example, 120 passengers on a Saturday flight and 80 on
a Sunday flight).

This algorithm for estimating the load is only one possible approach.
Given the granularity of load model, multiple estimates are possible
using different algorithms. This is an inherent uncertainty in the
domain. Taking into account the role of competing airlines and the
unpredictable changes they make in their own schedules, the load
estimate is bound to have a fair degree of variance.
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Chapter 5. Airline Time Tabling Problem: An
Analysis

In Chapters 1 and 3, we characterized the airline time tabling problem
(ATP), specifying the general problem and the variety of constraints
which comes into play. As we mentioned, the problem is of enormous
practical importance. However, the typical ATP is heavily dependent on
the airline concerned, government policies and so on. We need to
formulate a problem based on the real-life scenario that can be
academically studied and used by other researchers interested in this
domain. In this chapter, we first formulate a simplified airline time
tabling problem, named STP. This is described verbally and formulated

mathematically.

As we saw in Chapter 2, scheduling is generally considered to be a hard
problem. Many Al papers consider almost all cases of scheduling to be
NP-complete in complexity. We study the STP analytically and prove
that it is indeed NP-complete. We also justify that practical realizations
of ATP are harder than STP. We believe this is an important result to
formally understand the nature of this class of problems.

Another concern we have is to get a feel for the search space of this
kind of problems. What is the cost distribution over a large set of
solutions? How many (locally) optimal solutions can one expect to find?
Are they related? And so on. We carry out an empirical study of the STP

and report some results from this point of view.

Section 1 describes the STP and formulates a mathematical
representation for it. Section 2 reports on the empirical study and the
results obtained. Section 3 discusses the analytical study of the
problem and Section 4 presents the proof of NP-completeness of STP.
Section 5 presents some thoughts on the computational complexity.of
STP. Section 6 examines multi-variate optimization problems in general
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and shows that it is NP-complete. While this is generally expected given
the many problem domains of this class which have been shown to be
NP-complete, we provide a formal statement of this along with
associated proof.

5.1 STP: Simplified Airline Time Tabling Problem

The following assumptions describe the STP, which is a model problem.
Just as the drosophila is a model insect for the biologists, the STP
provides us with a simple and yet realistic model for studying airline .
time tabling problem within reasonable time and resource bounds.

1. There are 4 airports, named Alpha, Beta, Gamma and Delta.

2. There are 3 aircrafts of approximately similar nature. Two are of
type AC250 and one of type AC200. AC250 carries a maximum of
250 passengers, and AC200 a maximum of 200. All the aircrafts are
equal in all other respects.

3. The schedule period is restricted to one day with the flights
operating from 4am to 10pm only.

4. The load-table is divided into 4 time points: 6am, 9am, 2pm and
6pm. Airport to airport demand is given for each time point for every
pair of airports. We stipulate that the load drop-off is a sharp cut at
2 hours. That is, passengers desirous of traveling by 6am flight will
not travel by a flight before 4am or after 8am, and do not mind any

flight within this period.

5. The cost factors included are fuel charges per hour of flying, landing
charges at each airport, and revenue per passenger for each sector.
The revenue is assumed to be independent of the starting time of
flight; it is a function of only the source-destination pair. Passenger-
dependent charges should be deducted from revenue figures to

make it more realistic.
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6. All pairs of airports are considered as valid routes. These are
enumerated and provided as routes.

7. There are no other constraints such as curfew time and landing time
restrictions. Every aircraft need to stay for a minimum of 30 min at
an airport from an arrival to the next departure. It may stay longer,
as a part of the schedule.

The task is to generate a 4am to 10pm time table for each of the
aircrafts given.
We denote the aircrafts (using “logical” names) as V; to Vs, airports as

L; to L4, time by an integer T denoting the number of minutes from 4
am (0 <T < 1080).

o LT(Li,Lj, T) is a function returning the number of passengers who
can board a flight from Li to Lj at time T. Note that this may
depend on time preference of the passengers concerned as well
as the timing of any other flights covering sector Li-Lj around
time T.

e RV(LiLj) is the revenue for a ticket from Li to Lj.

e FT(Li,Lj) is the flying time from Li to Lj. We assume that this is
independent of aircraft type.

o CFT(Li,Lj) is the consolidated flying time from Li to Lj, taking into
account the minimum ground time at Lj. Hence CFT(Li,Lj) =
FT(Li,Lj)+30 in our model.

e FC, a constant, is the fuel éharge per hour of flying. This also is

assumed to be independent of aircraft type, in our current
implementation; the dependency can be introduced easily, if

required.

e LC(Li) is the landing charge at airport Li.
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e PR(Li,Lj,Vk,Tm) is the profit’ in operating a flight from Li to Lj
using the aircraft Vk at time Tm. This is computed as
PR (Li,Lj,Vk,Tm) = RV(Li,Lj) * LT(Li,Lj,Tm) -
FT(Li,Lj)* FC - LC(Lj).

e The time table, TT, is a set of flights, where a flight F, is defined
as a tuple <Li,Lj,Vk,Tm> as defined for PR above.

e For any two flights operated by a given aircraft Vk, F1 =
<Li1,Lj1,Vk,Tm1> and F2 = <Li2,Lj2,Vk,Tm2>, assuming Tm1
<= Tm2 without loss of generality, the following must hold
a) (Tmi+ CFT(Li1,Ljl) <= Tm2): an aircraft cannot be
committed to two things at one time.

b) if there is no other flight F3 = <_,_,Vk,Tm3> where Tm1l <
Tm3 < Tm2, then Lj1 = Li2. Flights must be continuous in
airports, i.e., Beta-Alpha flight cannot directly follow a Beta-
Gamma flight.

c) Tml1l >= 0 and Tm2+CFT(Li2,Lj2) < 1080 : A/l flights operate
within the 18 hour period from 4am to 10pm.

e The objective function is now to maximize the net profit:

2 PR(Li,Lj,Vk,Tm) for all flights F = <Li,Lj,Vk,Tm> in TT

5.2 Empirical Study of STP

Search space of a scheduling problem describes how the profitability of
a schedule varies as changes are incorporated in it. Given a point
representing a particular scheddle in the search space, we can visualize
various types of changes that can be tried on that schedule. We can
delete a flight, insert a new flight, change the aircraft of a flight, delay

5 Note that the profit here is rbughly the operating profit, and hence the calculation
does not take into account fixed costs such as depreciation, lease charges, salaries,
etc., and hence in absolute figures our profit values may appear to be high.
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or advance a flight, etc. Each change results in a different schedule -
some of which may be infeasible (such schedules can be represented
with a profit of negative infinity). Some changes may increase the
profitability and some may decrease it - the amount of
increase/decrease depends on the specific change as well as the
schedule in which the change is made. Adding a Delhi-Mumbai flight in
an empty schedule and doing the same in a schedule which already has
ten Delhi-Mumbai flights will bring in different amount of returns. The
questions we wanted to address here are relating to the nature of the
search space of the airline time tabling problem.

1. What does the distribution of profit versus number of solutions
with that profit look like?

2. Are low-profit solutions more likely than good solutions?

3. How many very good solutions exist?

4. What is the general nature of the search space? Is it multi-
modal or uni-modal? Is it vicious or benign?

A search space is vicious if it allows abrupt transitions in quality of
solutions for small changes in the schedule. Formally, in a benign space
one expects the difference in cost of two nearby schedules to be mostly
proportional to the “distance” (we discuss the notion of distance later in
this chapter) between the schedules. In a vicious space, this is not the
case. Small changes such as addition/deletion of a flight can result in

non-proportional changes in the cost of a schedule.

An exhaustive search of the space would provide clear answers to these
questions. But that is too time consuming except for very trivial
problems. Therefore, we resorted to a sampling approach. About
500,000 time tables were generated in a purely random manner and
the profit frequency was plotted. The following were the typical graphs

obtained.
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Percentage of solns out of 0.5 million

The first one (see Figure 5.1) gives the actual number of solutions in
various profit-brackets among the 500,000 solutions generated. The
second graph (see Figure 5.2) shows the percentage of solutions with
profit exceeding a given value (cumulative percentage of solutions).
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Figure 5.1 Profit distribution of solutions in a random sample of 0.5
million solutions.

Observations

1) The cost-frequency follows a near-Normal distribution with medium
cost solutions being most likely and predominant, compared to very
bad or very good solutions. Therefore, a purely random selection of
solutions can be expected to give you only an average-quality
solution, which can be quite poor compared to the best solution
possible. Note that in the graph, the average solution earns only
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about 50% of the profit® of what is the best reported as per this
study. The best here is what was found using only the random
sampling. The actual best solution for the problem may be better
than this. Thus, the study to find better approaches to lead us
closer to the actual best solution(s) is important.
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Figure 5.2 Percentage cumulative distribution of solutions against
profit.

2) The variation in profit among the different possible time tables can
be quite substantial. In this simple case itself, it ranges from 0.6 to
14.7 million Rs in profit.

3) The frequency graph was further analysed, in view of the observed

similarity to Normal distribution. The graph was compared to the
graph corresponding to Normal distribution with the same mean and

° Note that fixed costs are not counted in the profit calculation. Therefore, the ratio
between profit of the best solution and the profit of the average solution will be much

more, if fixed costs are also included.
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Percentage of solutions

variance as that of this data. Figure 5.3 plots the generated normal
distribution curve as well as the observed curve.

The diamond-marked line is the original graph and the plain-line is the
normal-distribution with mean=8.23 and standard deviation=1.54 (as
obtained from the déta). Except for the tapering-off effect at the
extreme points, the similarity is quite high. In problems of this nature,
it is not possible to get infinite profit or infinite loss — and hence our
frequency curve will have a finite cutoff point at either side.
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‘Figure 5.3 Distribution of solutions in the sample against profit and
comparison against normal curve based on the same data.

Figure 5.4 shows the same distribution graph for a different dataset of
the same class. The similarity of the curve to the curve observed from
the earlier data set, goes to show that the behaviour is not unique to a

particular dataset.
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Number of solutions out of 0.5 million

These observations play a useful role in explaining some of the
behaviours in our later studies (see Chapter 7).
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Figure 5.4 Profit distribution of random samples for dataset SIM1

5.3 ‘Nature of Search Space

The complexity of search for the optimal solution in a search space is
obviously dependent on the nature of the search space. In the extreme
case, a uni-modal space as exemplified by functions like f(x) = x? is
easy to search for optima. Even simple hill-climbing will not fail to
reach the optima. When the space is multi-modal, with the different
peaks having different profit values, the search need to be more
sophisticated to ensure that it is not trapped in the smaller peaks. For
real-life search problems, the search space will also be more complex
containing plateaus, ridges and discontinuities, thus requiring more and
more sophistication from the search algorithms.

In order to characterize the search space of any problem, we require. a
function to map a given solution to a point in the (typically) multi-
dimensional space. This, in turn, requires a clear definition and
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characterization of the various dimensions. A variety of models to
define a search space is possible. For example, we could define the
various pairs of airports as different dimensions and plot the number of
flights on that sector as the coordinate along that dimension. Instead of
the number of flights, we can use profit, total number of passengers
carried, total revenue earned, etc as well. Instead of airport-pairs, we
can use coarser granularity sectors (For example, India-Europe and
India-Gulf), aircrafts, etc as the base for dimensions. Each choice gives
a different characterization of the search space.

One primary consideration in defining a search space is the objective
function (in our case, this will be the estimated profit). If two schedules
give two different values to the objective function, they must map to
two different points on the search space. In other words, given a point
in the search space, it must correspond to a unique value for the
objectivé function. Note that there may be more than one schedule
corresponding to a given point; but they all must have the same value
for the objective function.

Thus to characterize the search space for ATP, we require a mapping
function from schedules to points in the search space, and thence to
values of the chosen objective function. For a problem like airline time
tabling, such mapping is very difficult to define, compared to other
scheduling problems. For example, in school time tabling, one has a
fixed-size matrix —- classrooms vs the periods --, which defines the
schedule structure. Making each cell, representing the state of a given
classroom in a given time slot, into a dimension gives you one fairly
good mapping. The range of values can then be the set of various

teacher-subject combinations.

In the case of ATP, neither the total number of flights nor the number
of flights by each aircraft is known a priori. Thus, there are no fixed size
structures to define dimensions. Therefore, one needs to look for
suitable aggregation operators that can transform schedules to a form
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with some regularity. Examples in the ATP domain are the total number
of flights, number of flights by a specific aircraft, number of flights in a
particular sector, number of flights in a given time interval, the specific

timing of a flight, etc.

There is no universally good aggregation operator that satisfies the
requirements of a search space characterization given earlier. For any
of the operators listed above, it is possible to find two schedules which
maps to a common point on the search space, but has different value
for the objective function. Therefore, we need to make further
assumptions about the profit function and the domain, in order to
choose useful aggregation operators for analysis. This should allow us
to treat certain differences as insignificant enabling clustering of
schedules. For example, if the only difference between two STP
schedules is that one has an Alpha-Beta flight at 9.00am, and the other
has the same flight at 9.30am, the schedules are equivalent as per our

STP definition.

If we choose to ignore passenger time preferences, counting the
number of flights in various sectors (India-Gulf, India-US, etc) will give
us a realistic sense of similarity. However, this is not realistic for our
simplified ATP, for example, since the main concern here is the time of
flight. Having 3 Beta-Delta flights, two in the morning and one in the
evening is very different from having 3 such flights all during the noon
time. Therefore, sector-wise aggregation is not a realistic yardstick for

all ATPs.

Despite these concerns, We conducted some empirical studies of the
search space. In order to study the nature of search space - benign or
vicious — we examined some of the best solutions obtained in
experimental runs, and compared them. There were two questions we

asked:

76



a) Do the best schedules produced in multiple runs under identical

configuration differ in cost? If so, what kind of distribution do we

see?

b) When they produce solutions with same cost, are the schedules

identical? If not, what is the nature of difference?

Note that we are using a stochastic model for schedule generation - so
identical input conditions need not follow identical path resulting in

identical schedule. Choices during the time table preparation process,
where available, are made stochastically.

An analysis of the best schedules obtained over 10 different runs of the
full scheduling model (dataset: ACT2) - not the simplified model - is
shown below. Numbers along a column shows the sector-wise count of
flights in the best schedule of one run. Columns are ordered left to right
in decreasing order of total profit for ease of comparison. The first row

gives a sequence number to the various runs (run 1 to run 9) and the

second row shows the profit of the best solution reached during a run.

The remaining rows show the number of flights in the specified sector

in that solution. For example, the best solution of run 3 had a profit of
198.9 million Rupees (per week) and it had 2 flights in the sector
Frankfurt-India and 39 flights in the Gulf-India sector. For this dataset,
we have performed a sector-wise aggregation disregarding the time.

Run-number |2 4 5 |3 10 |6 8 7 1 9
Profit (in 201.9 [ 201.3 [ 200.2 | 198.9 | 198.7 | 198.0 | 196.8 | 195.8 | 194.6 | 1935
million Rs)

BangkokIndia |1 1 2 1 2 1 1 1 1 1
BangkokTokyo |2 2 1 1 1 1 1 1 1 2
FrankfurtIndia |2 3 3. |2 2 2 3 3 5 2
GenevaRome 1 1 1 1 1 1 1 1 1 |1
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GulfGulf 6 5 6 6 6 7 7 7 5 6
GulfIndia 39 |37 |37 |39 |36 (39 |36 (40 (37 |34
Hongkonglndia | 1 1 1 2 1 1 1 2 1 1
Hongkong- 1 1 2 2 2 1 2 2 2 1
Osaka
IndiaBangkok |2 2 1 1 1 1 1 1 1 2
IndiaFrankfurt |2 3 3 2 3 2 2 3 3 2
IndiaGulf -39 |37 |37 |39 36 |39 (36 (40 |37 |34
indiaHongkong | 1 1 2 2 2 1 2 2 2 1
Indialndia 25 |32 |30 |27 |32 |27 |31 |30 |28 |24
Indialondon 7 7 7 6 6 7 7 6 6 5
IndiaParis 1 |1 (1 1 (1 |1 |2 |1 |2 |2
IndiaRome 1 1 1 (1 1 1 1 1 1 1
IndiaSingapore | 4 3 4 3 4 3 3 3 3 3
IndiaTokyo 1 1 1 1 1 1 1 1 2 1
LondonIndia 5 5 5 5 5 5 5 5 5 5
London- 4 5 4 4 3 5 |4 3 3 3
Newyork
Newyork- 3 3 3 3 3 3 3 3 3 3
London
Osaka- 1 1 1 2 1 1 1 2 1 1
Hongkong
ParisFrankfurt |0 |1 [0 [0 |0 |1 |1 [0 (2 |1

'| ParisIndia 1 0 1 1 1 0 1 1 0 1
RomeGeneva 1 1 1 1 1 1 1 1 1 1
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Romelndia 1 1 1 1 1 1 1 1 1 1
Singaporelndia | 4 3 4 4 5 3 3 3 3 3
TokyoBangkok |1 1 2 1 2 1 1 1 1 1
Tokyolndia 1 1 0 1 0 1 1 1 1 1

The particular dataset used for this experiment, had no significant
passenger time or date preferences in the demand table, and hence the
choice of a schedule would essentially mean selecting good routes with
adequate frequency. The table shows that there is no substantial
difference or trend among the route-frequencies chosen among the 10
schedules. However, the profit estimated for these 10 schedules do
differ by as much as 4% (minimum profit is 193.5 million per week and
maximum is 201.9 million per week) - a significant variation’,
amounting to about Rs 416 million per year!

We also notice that the best solutions are all fairly close in terms of the
distribution of flights. All solutions have identified the important sectors
and approximate frequencies required for them. The differences are in
further optimizations; which are understandably hard to get to during a

stochastic exploration.

We also analysed a sample of the STP (dataset: SIM1) similarly. In this
experiment also, we ignored the time difference and did sector-wise
aggregration. The table obtaineq is shown below. The columns have
been sorted in decreasing order of profit for easier comparison. The
run-number gives a sequence number to the different runs of the

program over this dataset.

7 If we assume a fixed cost of 100 million Rupees, these numbers become 93.5 and
101.9 million Rs respectively. The 4% figure then changes to over 8%.
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Run- 1 6 10 |2 7 9 5 3 4 8
number

Profit (in | 118 | 118 {118 [116 | 1156 | 115 | 114 |113 [11.1 [11.0
Rs million)

Alpha- 2 2 2 3 1 2 2 2 2 3
Delta
Alpha- 1 1 1 0 0 0 0 1 2 1
Gamma
Alpha- 0 0 0 1 2 1 2 0 1 1
Beta
Delta- (2 |2 |2 [1 |2 |1 |1 {2 |2 |2
Alpha
Delta- 2 2 2 2 2 2 2 2 2 1
Gamma
Delta- 3 3 3 4 3 4 4 3 2 4
Beta

Gamma- |1 1 1 1 0 0 0 1 1 1
Alpha

Gamma- 2 2 2 2 2 2 2 2 2 1
Delta

Gamma- |2 2 2 1 2 2 1 2 2 1
Beta

Beta- 0 0 0 2 (1 2 2 0 2 2
Alpha
Beta- 4 4 4 3 5 4 4 4 2 3
Delta

Here, the maximum profit observed was 11.8 million Rupees per day. It
was noticed that the best solution reported in many runs had this
profit. Note that in the earlier case, identical cost was rarely reported in

more than one run.
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A few solutions with identical profit were examined manually for
similarity. They were found to be identical in some cases, and
equivalent sector-wise in other cases. Thus the profit equivalence was
not incidental — but arose due to the same demands being serviced
through similar flights.

The sector-wise analysis here does not show any noticeable trends.
Unlike in the earlier case, the best solutions obtained in different runs
do not share any major common set of flights. Note, in particular, that
sharing the same sector-wise distribution does not imply a good
solution; an example is run number 3. It has the same sector signature
as the best solution, but has a poorer profit figure. Timing of the flights
makes a significant difference in this dataset.

Considering these observations we hypothesise that:

a) The nature of the solution-space is likely to depend heavily on
the constraints in force. If the passenger p‘references are
significantly time dependent, the solution-space is likely to
contain many local maxima spread out in .the search space.
Otherwise, high-quality solutions seem to be comparatively
concentrated in a region. Within this region, there are local
optima - but the solutions share a major part of the solution

structure.

b) Using single perturbation operators, it is difficult to escape
from local optima towards the end of the run. Examining the
solutions corresponding to the various local maxima shows that a
cluster of perturbations would be required to transform one of
these solutions to another. Making one perturbation at a time
leads to poorer solutions at intermediate stages and hence the
intermediate solutions are rejected without being given a chance
to explore further perturbations. This is one issue of concern in

using perturbation models.
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Subsequent experiments (reported in Chapter 8) concur with these
observations. The search space is not totally vicious - abrupt and large
magnitude variations are not seen mostly. An analysis of changes in
profit caused by a single application of the perturbation operator
showed that more than 80% of the time, the resulting change in profit
was less than 3%. This was true irrespective of the profit value of the
current solution. As the profit of the source solution increases, more
and more of the perturbations lead to a decrease in the profit value;
the absolute change satisfying the observation above. In a highly
vicious space, a much sharper change in profit would be expected.

The number of different local maxima, very likely, depends on the
problem instance. Tighter passenger time preferences, abnormal
revenue or cost variation on particular sectors (a particular route has a
disproportionately large fare, for example), etc are likely to be
significant factors determining the shape of the search space. They
contribute to increasing the number of local maxima and the relative
difference between the various local maxima.

5.4 Complexity of STP

For complexity analysis, particularly checking for NP-completeness, it is
necessary to cast the problem as a decision problem. The normal
practice [Baase, 1988] is to use a threshold number and cast the
problem as is there a time table with profit greater than K?. We assume

that the problem is stated in this way for this section.

5.4.1 What is NP-completeness?

Based on the run-time complexity, algorithms can be classified as
polynomial (where the worst-case complexity is a polynomial function
of the problem parameters) and non-polynomial (all other cases).
Problems with a polynomial complexity algorithm, are said to belong to
P-class. Among the non-polynomial, we have the unsolvable problems
such as the halting problem, and a great many problems with
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exponential complexity ranging from a" to n", where a is a constant and
n is a measure of the input size.

Among these is a class called NP; the abbreviation stands for “non-
deterministic polynomial”. Problems in this class are cast as a yes-no
decision type. For example, does the given graph have a Hamiltonian
path? Is there an assignment of truth values to the variables in a
Boolean expression in conjunctive normal form (CNF) that makes the

expression true? And so on.

Such problems belong to NP if a given candidate can be verified to be a
solution (or not) in polynomial time. For example, given an assignment
of truth values, test whether the CNF expression evaluates to true. The
solution to these problems can be cast as a series of decisions. For
example, pick true/false as the value for each variable in turn. In the
Hamiltonian path problem, choose the next vertex to visit. Viewing the
solution this way, the NP requirement can be explained also as follows:
If an oracle were available to make the right choice at each decision
point (note the non-determinism here), the solution can be found in
polynomial time. This explains the name NP. NP is a superset of P.

Identifying the complexity class of problems is a rich field and of
considerable practical interest. P-class problems are amenable to
solving in real-time for fairly large problem sizes, where as exponential
class problems suggest looking for heuristic or approximation models.
In the NP sphere, there is an interesting class of problems, called NP-
complete problems. The interest stems from the following observation

about them. |
1. The problems are all of high practical significance and hence

“finding good algorithms is of high importance.

2. They span a variety of domains from logic and graph theory to

resource scheduling.
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3. No polynomial time algorithms are known for any of these
problems; but there is no lower bound proved so far, to eliminate
polynomial solution.

4. These problems are interlinked by polynomial time reductions, so
that if any problem in the set is found to have a polynomial time
solution, all problems can be solved in polynomial time.

What is a polynomial-time reduction? Reducing a problem X to another
problem Y (e.g., Boolean satisfiability to knapsack problem) involves
the following steps.

1. devising a transformation, t1, of any valid input to X to some
valid input to Y,

2. devising a transformation, t2, of valid outputs of Y to valid
outputs of X, possibly under assumptions permitted by the
requirements of X (For example, boolean satisfiability enables
you to assume that all the variables are boolean valued), and

3. proving that the sequence, transformation of the given input by
t1, solving Y using the transformed inputs and transforming the
resulting output by t2, produces the same output as solving X
using the original input.

If the two transformations, t1 and t2, can be done in polynomial time in
the amount of input to X, then the reduction is said to be polynomial
time reduction. If there is a polynomial time reduction from X to Y, and
if it is known that X has no polynomial time solution, then we can
conclude that Y cannot have a polynomial time solution. Otherwise,
transformation t1, followed by solving the resulting Y problem followed
by the reverse transformation t2, would amount to a polynomial time
solution for X. This is the basic idea behind proofs of NP-completeness.

As of now, no one has been able to find a polynomial time solution to
any of the problems in this set, nor has any one ruled out a polynomial
solution, leaving this as, perhaps, the biggest open problem in

84



computer science. It is generally believed, however, that NP complete
problems do not have polynomial solutions. Thus if a problem is proved
to be NP-complete, it is considered to be computationally intractable.

To show that a problem X is NP-complete, we need to show that it is in
NP and that for some problem Y which is known to be NP-complete,
there is a polynomial time reduction which transforms Y to X [Baase,

1988].
5.4.2 ATPisin NP

First of all, let us check if ATP belongs to the class NP of complexity.
Given the formulation in Section 1 of this chapter, we can see that
verification of whether the net profit in a time table exceeds K or not,
requires a one-time loop through all the flights, summing up the PR
values for each flight and at the end checking if it exceeds K. This is of
linear complexity in the size of the time table. Therefore, the ATP
problem, being verifiable in polynomial time, belongs to the class NP.

It is also easy to see that there is a straight-forward algorithm for
devising the time table, which is of exponential complexity. A broad
outline of this algorithm would be as follows:
Main()

Set profit = - infinity; Set bestTT = null;

Set TT to be empty
expand(TT)
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Expand(CurTT)

For each vehicle Vk

Li = last_location of Vk according to CurTT

For each applicable route R from Li
Construct a flight from Li via R, and add to CurTT,;
If no new flight is possible, output CurTT and return;
Let newTT be the resulting state.
Evaluate newTT. If newTT is better than what has

been found so far, revise profit and bestTT

E;<pand(newTT) .

Return;

If F is the maximum number of flights that an aircraft can operate
during the time interval of interest, the depth of recursion is bounded
by |V|*F. At each level, there are |V|*|R| possibilities (options are to
select a vehicle and select a route). If all vehicles are identical, we can
ignore the vehicle selection dimension, and force a specific order for
selecting vehicles. First expand V1 to maximum, and then V2 and so
on. But, in general, the different aircrafts are not identical; as
mentioned earlier, there are a number of parameters associated with
different types of aircraft. Therefore, to be safe, we must try all
possible orderings of vehicles (v1-v2-v3, v1-v3-v2, v2-v1-v3, etc) and
hence choice of vehicle has to be retained as a branch point in the

search.

The number of routes possible at any point in the algorithm is normally
much less than the total number of routes available (|R]), since the
routes are normally severely restricted by the current location. If delays
are allowed in the schedule (For example, wait for an hour before the
next flight), then that also adds to the possibilities at a level. Thus we
get the number of states to be explored as of the order of |R|V"™" A
typical figure for this, based on the simplified problem, comes to 9 40 _
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obviously too large a number for exhaustive enume\ration. For large
airlines with hundreds of aircrafts and routes, the search space is mind-

bogglingly large.
5.4.3 Knapsack Problem is Polynomial Reducible to ATP

We will now try to show that a known NP-complete problem is
polynomial reducible to a simplified version of ATP. This simplified
version is not the STP mentioned earlier in this chapter, but another

simplification as explained below.

We will take the knapsack problem —- currently known to be an NP-
complete problem -- as the candidate problem here. Suppose we have
a knapsack of capacity C (integer > 0) and N objects with sizes S; to Sy
and profits P; to Py. S; and P; are integers > 0. The decision problem
asks: Given a number k, is there a subset of the objects that fits into
the knapsack and has a total profit of at least k? We need to define an
ATP using these parameters, so that the solution of that ATP can be
transformed to obtain a solution to this problem.

Consider a simpler version of the ATP with a few additional constraints.
The number of airports is N+1 and are labeled 0 to N. Airport
numbered 0 is the base airport. The only valid routes are <0,I,0> for
all I: 1..N. That is, aircraft leaves base 0, visits one other airport I, and
returns to base immediately. We also assume that there is only one

aircraft.

Let S; be the time taken for a flight to airport I (including return), and P,
the profit estimated to be made by the flight. C is the schedule period,
the time within which all flights have to operate. We are also assuming
that there are no time constraints for the passengers; the passengers
are available in equal numbers irrespective of the time of the flight.
Curfew timings etc are also not applicable. And we ask the question: is
there a combination of flights, which can be completed in time C and

generates a profit of at least k?
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Note that the transformation involved is straight-forward. The inputs to
be produced for this restricted ATP are the routes, the profits and
travel-time. Each of these takes only O(N) time to generate because
each airport gives rise to one and only one route, profit and travel-time
entry. Note that one of the end points of all legs is the base location.
Thus the problem transformation is of polynomial complexity in time.

Let the knap-sack problem above have a solution L representing the set
of objects picked. Then,

L = {r,rz.., ik} k<=N, r: 1..N. eg: {1,4,6,7,8}

Ziiny Si<=C, Zainy Pi>=k
This is also a solution for the simplified ATP mentioned above. r; (for i in
1..k) indicates a flight from location numbered zero (that is, the base)
to location numbered r; and return to base. The time taken by the k
flights is X in 1) S; this is at most C. The total profit is 3 1y Pi, which is
at least k. Therefore, if there is a solution to the knap-sack problem as
per its original formulation, then the transformed ATP problem also has
a corresponding solution. The same reasoning can be used in reverse to
show that if the transformed ATP has a solution, there is a uniquely
defined corresponding solution for the knapsack problem.

Therefore, the knapsack problem is no harder than the ATP problem (if
it was, we could use the transformation to ATP and solve it as an ATP).
Since the knap-sack is an NP-complete problem, this classifies ATP also

as an NP-complete problem.

5.5 Computational Complexity

What is the computational complexity of solving ATP, specifically using
a perturbation model? Is it possible to estimate some bound on the
number of iterations or run-time?

As mentioned earlier, most problems of this nature have been proved
to be of exponential complexity in the worst case and have been shown
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to be NP-complete. In the last section, we proved ATP also to be NP-
complete. However, worst case is not necessarily a useful guide in
practice. Thus the question is what kind of complexity does one expect
on practical problems?

The complexity of our perturbation algorithm can be defined as the
complexity of one iteration * number of iterations. One iteration
consists of evaluating the individuals currently present in the
population, selecting n of them (< N, the population size) for
perturbation, generating the perturbed solutions, and discarding a fixed
fraction of the resultant set of solutions. Complexity of one iteration is
estimated as follows.

Evaluating an individual: (a) Estimate the load by checking which
entries from the table can be met by different flights in the schedule.
This is O(L*|V|*F) where L is the number of entries in the load table,
|[V| is the number of aircrafts and F is the maximum number of flights
that can be operated by an aircraft during the schedule period. (b)
Evaluate the profit of the schedule by computing the revenue and cost
of each flight = O(|V|*F). ‘

Generating new solutions: Generation of a solution is by perturbing
one or more chosen time tables. Details of the perturbation operators
are discussed in Chapfer 7. The primary operations are delétion of a
flight and insertion of a flight. Delétion requires choosing a flight from
the current time table. If a random selection is used, the complexity of
this process would be O(1); if a roulette wheel is used, the complexity
will be O(|V|*F). Insertion also requires identifying the point of
insertion and then choosing a route for the new flight. Insertion points
are normally randomly selected or identified by the preceding deletion
operator. Thus the insertion complexity would be O(|R]); but in
practice, the number of useful routes at any point will be less than

O(|VI*F).
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Thus, total complexity of generating n new solutions = O(n*|V|*F). The
set of solutions need to be sorted. If the existing solutions are always
kept sorted, the incremental sorting can often be done by simple
insertion sort as and when new solutions are generated. Thus the cost
of sorting is negligible compared to the cost of generating a new
solution.

Thus the overall complexity of one generation is
O(n*L*|V|*F)+O0(n*|V|*F) = O(L*n*V*F). The size of the load table is
determined largely by the number of locations. “n” is normally a
fraction of the population size N. Thus, the iteration time is proportional
to a polynomial function of the number of locations, number of aircrafts
and the population size. The run-times we have observed during the
studies reported later in the thesis, show a near linear growth with
population size, as implied by the above estimate.

The difficult factor in the complexity estimate is the number of
iterations. This is often a matter of subjective judgement. Given the
stochastic nature of the problem, this cannot be a definite number.
Often, we consider the point of convergence of the solutions in a
population as determining the number of iterations required. As will be
seen in the experiments later on in Chapter 8, this number also varies

significantly from run to run.

Some empirical research has shown that the effort required to find a
solution for classic problems such as graph colouring shows a distinct
pattern of easy-hard-easy. For example, measuring the complexity of a
graph in terms of its connection density (number of edges/number of
vertices), the following behaviour has been observed [Cheeseman et al,
1991]. For low values of this paraméter, it is easy to find a satisfiable
colouring. As the parameter increases, the difficulty of the task
increases, showing a sharp increase within a small value-range of the
connectivity parameter. The difficulty then reaches a peak and starts
dropping in a similar manner. For large values of connectivity, the
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graph is impossible to colour and failure can be reported easily, for
example, by finding a vertex with more adjacent vertices than the
number of available colours. '

Similar “phase transition” behaviour has been found for a number of
other exponential complexity problems such as traveling sales person,
constraint satisfaction and satisfiability [Mammen and Hogg, 1997]. It
is possible that bigger problems such as scheduling may also show such
behaviour - however, hardly any results are so far known. One major
issue in such an approach is to identify the base parameter, which
determines the complexity.

Given that measures such as worst-case complexity are not reliable
indicators of complexity on practically significant problems, and the
infeasibility of obtaining information such as average-case complexity,
attention has been turned to empirical analysis of algorithms. [Hooker,
1994] advocates this approach vehemently as the only practical
approach to understand these algorithms. Stochastic and heuristic
algorithms make the traditional analysis of complexity irrelevant, giving
greater credibility to Hooker’s claim for empirical studies of algorithms.

5.6 The Multivariate Optimisation Problem is NP-
complete

In this section, we prove that Multivariate Optimisation (MVO) Problem,
in general, is NP-complete. We formulate MVO as follows:

Is there a point, P in a given multivariate space, which offers a value
for an evaluation function, g, that is higher than a specified threshold.
In other words, the problem is to say if there is a P such that g(P) >
threshold.

Consider the space of all points defined by a set of n variables (Vi, Va2,
Vs, ..., Va), where each of the variables is constrained to take either 0 or

1 as its value. And consider a function in the form:
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f(P) = C1*C2*Cs ... *Cy

Where each C; is a clause, that is a well formed expression combining a

subset of 2n literals® defined over the n variables, using the “+”
operator signifying Boolean addition. Here we use a Boolean function f
as the basis for computing the evaluation function g(p). Let there be a
numerical value associated with the literals 11, 12, I3, etc. This value

n(li) is “1” iff li is true, and “0” otherwise. With each clause Ci associate

a numerical value n(Ci). This value is the sum of the numerical values

associated with each of the literals in that clause Ci. Thus, g(p) = n(C1)
* n(C2) * ... * n(Ck), where “*" denotes arithmetic multiplication. Then,

we have the following relation between f(P) and g(P).

g(P) is 0 if and only if f(P) evaluates to FALSE.
The MVO, in this version, is to answer the following question:

Is there a point in the given space which gives a value to g(P)
that is greater than 0?

Now, let us consider the clause satisfiability problem from complexity
theory. This problem is to find an assignment to the n Boolean
variables involved in a given set of k clauses, such that every one of
the clauses is true for that assignment. We note two points:

1) The MVO problem defined above is in NP, because given a point
p, we can compute in polynomial time if g(p) is “1” or not.

2) The MVO is NP-complete, because the CSAT problem is NP-
complete, and any given CSAT problem in n variables can be
mapped onto an MVO problem, by using the product of the
numerical values of its clauses as the evaluation function. Any
point that constitutes an answer to the MVO problem will
automatically be the answer to the CSAT problem as well.

8 A literal is either a Boolean variable, or its complement.
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The evaluation function defined above creates a truly vicious space, in
which the evaluation function can report totally independent values for
a point and its neighbour (i.e. another point which differs from the first
one only in the value of one of the n variables). The classic proof of the
CSAT problem being NP-complete is, in fact, based on this
independence.

We note that the evaluation function defined above is the product of
numerical values of its clauses. It is this multiplicative product
operator, which introduces the vicious property of the space here. On
the other hand, consider other evaluation functions that involve no
product of clauses. Consider only those functions which use arithmetic
+ and - operators, and no multiplication or division operators. Then the
value of the evaluation function g() for an immediate neighbor of P

would be related to g(P).
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Chapter 6. Implementing the Perturbation
Model

In this chapter, we discuss the perturbation model implemented for the
problem as discussed in chapter 3 (in other words, we are not
restricting to the STP).

6.1 Representing a Time table

Please recall the time table representation outlined in Chapter 1. We
use that model to define the types of perturbations. Pictorially, the
model is shown in Figure 6.1.

Schedule Flights

e WESE

vents

o> N
Vehicle

T ) / Schedules
\—/ ese

Figure 6.1 Pictorial representation of a time table

The outer structure is called a "Schedule” which represents a complete
time table. It, in turn, has a list of aircrafts and a “vehicleschedule” for
each aircraft. Each vehicleschedule consists of a sequence of flights. A
flight has an associated route, starting from departure from the first
location in the route to arrival at the last location of the route. Each leg
of flight is called an event.

An event, thus, consists of:
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e the source location

e the destination location

e departure time from the source location

¢ arrival time at the destination location

e load in the aircraft at the time of arrival at source
e any loading from the source location

e any unloading at the destination

For example, an Alpha-Beta-Delta flight may be represented as two
events as follows:

Eventl: [vehicle:ai300-1; sourcel:Alpha; destl:Beta; routeid:rl;
Ddate:1pm; Adate: 2pm; arrival_load: nil; loading: ((economy Alpha
Beta 100) (economy Alpha Delta 100)); unloading: ((economy Alpha
Beta 100))]

Aircraft labeled ai300-1 leaves Alpha at 1.00pm carrying 100 economy

class passengers destined to Beta and another 100 to Delta, reaches
Beta at 2.00pm, unloads the 100 passengers destined to Beta, ....

Event2: [vehicle:ai300-1; sourcel:Beta; desti:Delta; routeid:ri;
Ddate:2.30pm; Adate: 4.30pm; arrival_load: ((economy Alpha Delta
100)); loading: ((economy Beta Delta 100)); unloading: ((economy
Beta Delta 100) (economy Alpha Delta 100))]

.. leaves Beta at 2.30pm loading 100 passengers destined to Delta,
reaches Delta at 4.30pm and unloads the 200 passengers on board

destined to Delta.

6.2 Datafiles

The various inputs required and the way they are specified to the

system are as follows.
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a) File: config
Specifies a number of parameters to configure the system for a
particular run of the system. The parameters include

vi.

Vii.

viii.

iX.

xi.

Xii.

datadir (the directory containing the actual data ﬁlés)
population size

initfile (whether the population is to be initialized randomly
or read from a file)

niter (number of generations for which the program should
be run) "

persistence factor (explained later)

crossover (what fraction of the new solutions are to be
generated by crossover; the balance will be by mutation)

repeat_from, n_repeat: used for running the program
multiple times. Specifies the program to run with runid
varying from repeat_from to n_repeat.

rm_duplicate: duplicate solutions to be retained or not.

del_stop, ins_prob: probabilities controlling the behaviour
of the mutation operator (explained later).

strategy (retention strategy to be used)

record_file (name of file in which to record log of the run,
used for collecting data for our studies)

Npop: the number of islands to be used (see Chapter 9).

b) File: routes.in
Contains the routes used. Example: 211 Beta Delta. This specifies a

route named r1 consisting of two airports, which is a point-to-
point connection from Beta to Delta.
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c) File: revenue.in
Specifies the passenger revenue, for each source-destination pair
and type of passenger. Eg: Alpha Delta eco_pass 5700.

d) File: event_charge.ini
Specifies the various charges applicable to an event (See Chapter
3 for the types of charges and their representation.). Eg: Beta****
20000 landing. Indicating that 20000 Rs are payable as landing

charges for each flight landing at airport Beta.

e) File: item_store.ini
Load-table as discussed in Chapter 4. Eg: Alpha Delta eco_pass -1 840
100. About 100 passengers are estimated to want to fly from
Alpha to Delta at 840 minutes® time in economy class on any day.

f) File: location.ini
List of locations and their relevant attributes. Eg: BetaBt01*.The

fields are the full name, abbreviated name for use in compact
displays, GMT-offset, base flag, and types of aircrafts allowed at
that airport. The GMT-offset is used to produce display in local
time when flights spanning time zones are involved, and to map
airport specific constraints (often specified in local time) to the
internal time scale. Base flag indicates if the airport is a base
location — the primary significance is the presence of maintenance
personnel at such locations. If a location is base, aircrafts spend a
little longer there between landing and takeoff, compared to
other locations. The example lists a location Beta, whose short
name is Bt, time offset is zero, is a base location and allows all

aircrafts to land/take off.

9 pata files and internal data structures represent time as number of minutes elapsed

from the start of the time table.
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g) File: item.ini
List of passenger types.

h) File: link_charge.ini
Charges on a link basis (from-to pair). Eg: * **bo747 time 94000 fuel.
An aircraft of type bo747 spends Rs 94,000 per hour as fuel
charges for all flights. Section 3.4 explains the rationale of this
notation.

i) File: masterdata.ini
This specifies general data for an airline. The data include types
of aircrafts (details to be given in vehicle.ini), minimum turn
around time at an airport, schedule period and
load_drop_off_time.

j) File: vehicle.ini
Information on each aircraft available including type, range,
speed, seating capacity, etc. Eg: ab310:1 ab310 200 854 7520 480 45000.
There should be one entry for each individual aircraft available for
time tabling.
The system is invoked with the configuration file as a command line

parameter. The other data files are to be located in the datadir
specified in the config file, and will be loaded automatically at the start

of the run.

A sample config file is shown below:

p_factor 0.5
datadir ../SIM1
record_file dsp2c
populationsize 100
strategy  three

initfile random
del_stop 0.3
ins_prob 0.2
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crossover 0.4
rm_duplicate no

niter 2000
n_repeat 20
repeat_from 0
Npop 1

The system generates a log file noting the major events in the run for
analysis and verification. It also produces a statistics log file for each
run (specialized using the runid, and the logfile option in the config file)
recording the cost of the best solution at each iteration. Most of the
analysis we have done is based on this output.

At the end of each run, it saves all the schedules in the current
population into separate files. |

6.3 Perturbation Model

The perturbation model for solving a problem consists of 5 main
components:

1) Initialization of the population
2) Evaluation of an individual solution
3) Perturbation operators
4) Population management
5) Termination mechanism
These are now described in detéil.

Initialisation: We use a multi-seed population for perturbation. This is
the primary protection mechanism to reduce the probability of getting
stuck in local optima. This also allows us to combine partial solutions
from multiple individuals, borrowing elements from multiple solutions.
The initial population of N elements is initialized randomly. The number
N is specified in the configuration file mentioned in the last section. N
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Evaluating a Time table: Evaluating the schedule is estimating the
amount of profit that the time table will bring when deployed.

Deploying a schedule here means applying the demand model we have
for the problem and estimating the number of passengers in each leg of
the various flights in the time table. Then we compute the revenue
based on this estimated loading, and subtract the cost. We get the
profit. The higher the profit, the better the schedule.

The demand tuples in the load-model are examined and for each
demand tuple, all flights that can cater to that demand are identified
from the schedule. The flights can be ordered based on any domain
specific preferences if required. In our case, since we are using a
simple load-cut-off model, no sorting is done. The passengers in the
demand tuple are assigned to the selected flight subject to capacity
constraints. If there is more load remaining, the next flight is selected
from the list.

A demand tuple <sourceloc, destinationloc, type, count, pref-day, pref-
time> is applicable to a flight if

1. in the flight route, sourceloc and destinationloc are no more than
1 stop-away from each other

2. the preferred day pref-day, if specified in the demand, matches
the day of flight

3. the preferred time pref-time, if specified in the demand, is within
Dt units of the actual departure time from flight. Dt, the
load_drop_off_time is specified in the master data file.

The number of passengers that can be accommodated in the selected
flight is the minimum of the spare capacity for type class in the flight
from sourceloc to destinationloc, and count. The current demand-table
entry is then updated, removing the passengers loaded into flights thus
selected. This process is repeated for all demand table entries. Any ’
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demand table entries remaining at the end of this process are those
that cannot be catered to by the current schedule.

The revenue and cost is then computed by scanning the event-charge
and link-charge files and computing all applicable costs taking into
account the number of passengers, flying time, etc.

The computation can be enhanced by adding pseudo costs, for
constraints whose violation cannot be represented directly as Rupee

value.

Perturbation Operators: Perturbation operators are, perhaps, the
most critical component of a perturbation-based approach. The function
of these operators is to transform existing solutions through well-
defined steps to different solutions, normally making revisions to some
selected parts of the solution. In general, a wide range of such
transformations is possible. For example, in our case, the
transformations can range from delaying or advancing the departure
time of a flight to adding/deleting one or more flights. As discussed in
Chapter 2, a number of issues have to be kept in mind, while choosing

perturbation operators.

The operators are of two types: crossover operators and mutation
operators (following GA terminology). Crossover combines features
from two or more existing schedules and creates one or more new
schedules. Mutation makes some madification on a single schedule. We
implemented different types of operators. These are discussed, along
with the rationale for selecting them, in the next Chapter. Issues such
as relative frequency of applying the different types of operators are
also discussed.

Population management: The third aspect to be handled is
management of population across generations. Population management
covers a variety of issues including selection of schedules for
perturbation, selection of schedules to be discarded/retained from
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iteration to iteration and ensuring mechanisms for creating/maintaining
diversity. Considering the various issues mentioned earlier, we
implemented a few different strategies for selecting the individuals to
be retained from one generation to the next. As a default, we use the
“retain best-half” strategy (named s1). In this, after generating
additional N schedules from the existing population of size N, the
resulting population is sorted in descending order of profit, and the best
N are retained. Other strategies and their rationale are explained in the
next Chapter. Other issues in population management and our
approach to them are also discussed in Chapter 7.

Termination: Termination of the program is currently done based on
the number of iterations. This is primarily to help experimentation. In
practical contexts, we may use termination based on no-progress for a
number of iterations or reaching some particular threshold for the value
of evaluation function (in our case, the profit).

6.4 The Implementation

The system was implemented using Java [Horstmann, 200]. It can run
on Windows or Unix platforms. There is no significant graphical UI
component, making the system portable across platforms.

In order to support distributed programming ideas (subject of Chapter
9), the system has been implemented using a master-slave
architecture. The master and slave components can run on any
machine independently. In the sequential model, the master primarily
keéps track of the various active slaves and displays their status
(current generation number, best broﬁt so far, generation number
when the profit improved last, etc). It has more functionality in the
context of the distributed system model described in Chapter 9.

The slave is essentially responsible for running the ATP model. On
invocation, it establishes connection with the specified master,
initializes the population as per the configuration file directives and runs
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the system one iteration at a time till the specified iteration count is
over or the master instructs it to stop the execution. Each slave
maintains its own log file and a record of the best solution found so far.

The major classes in the implementation, and their functionality are
described in Appendix A. Overall about 4500 lines of Java code has
been implemented. Over a thousand configurations have been run
spanning 4 - 5 data sets.

6.5 Other Relevant Issues

We now examine some domain specific issues that an implementation
for ATP has to address.

6.5.1 Where Are the Aircrafts Initially?

For a problem of this type, there is no time-point in the schedule where
all aircrafts are available at a single location. Therefore, it is not
possible to view this as a single depot vehicle-scheduling problem
[Bodin et al, 1983]. Indeed, it is a multi-depot problem with the
additional complication of not knowing how many aircrafts are available
at each depot. This makes it difficult to start with a known initial
position in generating schedules.

We solve this problem by assuming a location named “*dummy” at
which all aircrafts are positioned at time 0. The location dummy is
defined in the model in such a way that there is zero distance from
dummy to any location and hence any aircraft can reach wherever it is
required without loss of time. This also makes it easy to handle deletion
of flights by not having to handle empty schedules for any aircraft as a
special case. Since the dummy event need not (and should not) be
deleted, that event will always be there in any valid schedule.

6.5.2 Slot and Curfew Timings

A second problem is handling of slot and curfew timings. These imply
that some intentional delays may be introduced in the time table for
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some aircrafts, so that they do not land during curfew and non-slot
timings at any airport. In order to simplify the studies, we have ignored
the possibility of parking aircrafts at airports except at start of any
flight. Thus if a scheduled flight is likely to land at an airport during any
non-permissible timing, the next valid timeslot is computed and the
difference in time is propagated to the start of the flight. This, in effect,
forces the flight to start sufficiently late so as to reach the constrained
airport at the desired time.

Thus whenever a flight is generated, it is ensured that there is no
violation of slot and curfew times, if any. In other words, this constraint
is treated as a hard constraint.
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Chapter 7. Analysis of the Model and
Questions

A number of questions arise in formulating and evaluating a
perturbation-based approach for solving a complex problem like ATP.
Many of these relate to the formalisation of the problem as a
perturbation model, implications of the various issues and parameters
on the quality of solution and impacts of the various alternatives in
implementation, on the execution speed, and so on. In this chapter, we
formulate some of these questions, consider the issues involved in
answering them and hypothesise answers for them. In Chapter 8, we
perform detailed empirical measurements and analysis to evaluate

these hypotheses.
The questions we pose are the following:

1. Perturbation operators play an important role in a perturbation
model. However, random changes °(perturbations) in a feasible
schedule may result in infeasible schedules. What are the issues to
be considered and what options are available for identifying useful
perturbation operators? How does the selection of such operators
affect the system performance in terms of run-time and quality of
solution obtained?

2. What is the desirable population size to be used? What is the
significance of large and small population sizes? Does it depend on
the data set used? What parameters affect the choice of a
population size?

3. As we move from one generation to another, what should be the
strategy to carry forward the population? In a broader context, what

10 Such as replace one aircraft by another, change the route of a flight, etc.
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are the issues and options for population management? What are
the effects of various options here?

4. What kind of convergence behaviour is obtained? How does
convergence depend on the various parameters used for the model?
What is the effect of local optima on convergence?

These questions are discussed one by one in detail in the rest of this
chapter.

7.1 Perturbation Operators

As mentioned in Section 6.3, there are two types of perturbation -
operators possible - we will call them crossover operators and mutation
operators as per the GA terminology. From an analytical perspective,
crossover operator provides for better exploitation of currently available
solutions and mutation provides for exploration of new avenues in the
search space.

Exploitation is concerned with making use of the solutions we have at
any time and finding how best they can be exploited. Thus we combine
parts of known good solutions expecting to get better solutions. No new
avenues are explored here. Whatever structure the resulting solution
possesses, will be borrowed from one of the parents. This generally
leads to faster convergence, since new options are not open for trying.
Also if most of the elements in the population converge to one solution,
crossover becomes unable to produce a solution different from its
parents. In almost all cases of crossover operators reported in the
Iiteréture, the offspring from crossover of two very similar parents is
not much better than the parents.

Exploration provides for moving around in the search space looking for
unseen peaks. Mutation operators, which make random changes to a
given schedule, address this objective. Exploration is essential to
reduce the impact of local optima and prematufe convergence.
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A balanced mix of exploration and exploitation is essential for good
search performance by perturbation-based models. Full exploration
with zero exploitation results in random movement in the search space
and therefore, poor search performance. Note that the Darwinian
selection process of favouring better solutions to survive into the next
generation also provides for exploitation.

7.1.1 Crossover

The basic premise of crossover is to borrow features from the parent
solutions and to use them to produce offspring solutions. In case of
linear arrays or bit-strings, the common practice is to split both the
parent solutions into two (or more) parts each, and to generate a child
solution by interleaving the parts from the two parents alternatively or

stochastically.

Since the time table structure is complex and inter-dependent, it is
difficult to visualize many usable crossover operators. If the crossover
leads to solutions violating any hard-constraint, such solutions have to
be discarded. This is very expensive without a clear control over the
percentage of such bad solutions likely to be generated. Most parts of
an airline time table are interdependent for reasons such as sharing
overlapping target-load (for example, a passenger group with the
choice of using any one of two flights), using a common aircraft, etc.
The wide variety of compatibility constraints makes this problem
harder. For example, consider a simple crossover where for a given
aircraft, flights are borrowed partially from one schedule and the rest
frorh the other. This is very likely to lead to discontinuous flights (flight
from A to B followed directly by a flight from C to D), and thus to
infeasible solutions.

Apart from the sharing of the load table, schedules of two aircrafts can
be considered fairly independent. Based on this observation, we have

formulated one type of crossover operator, which is based on swapping
of schedules assigned to different aircrafts. Consider two schedules S1
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and S2, and an aircraft v. We replace the vehicleschedule that S1
currently contains for this aircraft v, with v’s vehicleschedule in S2.
Since vehicle v was able to execute the full movement sequence as part
of S2, it can do so, in S1 as well. Therefore, this does not introduce any

Figure 7.1: Crossover of Schedules S1 and S2-

incompatibility or hard-constraint violation. This process is repeated for
every vehicle. In effect, the resulting solution is a random interleaving
of the vehicle schedules of S1 and S2 (for example, see Figure 7.1). We
generate only one new child from a randomly selected pair S1 and S2.

7.1.2 Mutation

Mutation, though comparatively easier to visualize than crossover,
produces its own problems. The typical operations one can consider for
local modification of a time table are: change the vehicle (aircraft) of a
flight, delete a random flight, insert a new flight at a random point in a
vehicle schedule, etc. Changing a vehicle for an arbitrary flight is not
possible, since compatibility has to be checked and also the flight must
fit with the other commitments of the target aircraft. These are quite
complex to enforce. Similarly while adding/deleting a flight also, we
have to ensure that continuity of movement is maintained. Since the
route .patterns impose fairly significant movement constraints, this
becomes difficult to enforce and will invalidate most options generated

for mutation.

We have implemented mutation by choosing a random flight of a
random aircraft from the schedule and deleting all further flights of that
aircraft starting from that flight. Through a process similar to the
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random initialization mentioned earlier, the vacant time of that aircraft
is filled by adding fresh flights, as much as possible. Around this basic
structure, a few variations have also been tried including:

1. Instead of selecting a flight randomly for deletion, bias the
selection towards low-profitability flights. A roulette wheel of
the profits of the various flights in a vehicleschedule is
constructed and then a flight is selected based on it as the
starting point for deletion.

2. Instead of deleting all flights from the point of deletion, delete
all flights till the aircraft comes to the same base as before the -
selected flight. This will ensure continuity of movement and
will reduce the “damage” done by mutation.

3. Stochastically determine the extent of deletion - a balance
between the shortest segment that can be deleted and
deleting all the flights till the end. The config file parameter
(see Section 6.2) “del_stop” controls this behaviour.

4. Insert new flights at the point of deletion, rather than doing so
only at the end. The config file parameter (see Section 6.2)
“ins_prob” controls how often insertion will be attempted
during mutation. So far, whenever we deleted a sequence of
one or more flights, the gap was filled by advancing the timing
of the subsequent flights of that aircraft, and new flights were
added only at the end of the set of flights scheduled for that
aircraft. In this variation, we attempt to insert one or more
new flights in the gap created by deletion. Please note that the
duration of flights inserted in place need not be equal in
duration to the flights deleted. The timing of all flights are
freshly computed every time a change is made in the schedule
(internal optimizations minimise the resulting overhead by
modifying only those flights which are likely to be affected). .
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Studies (for example, [Mitchell et al, 1991]) show that, for general
genetic algorithm approaches, crossover is critical for efficient
convergence to a solution as it paves for the combining of
chromosomes from better individuals in the population. Mutation, in
many GA approaches, plays a subsidiary role focusing on providing
genetic diversity in the population and preventing premature
convergence. However, this notion is being questioned [Spears, 1993],
particularly as most of the GA approaches move away from binary
string representation to problem specific data structures for
representing chromosomes. There are contradictory results from
researchers supporting and opposing the dominant role of crossover.

However, in a domain such as scheduling the argument favouring
crossover is not likely to hold good. The main reason is that, for
crossover to achieve the intended effect, the different parts of the
chromosome must be largely independent. This is not the case, when
the chromosome represents a complex structure such as a schedule. It
is also necessary that most of the solutions generated by crossover do
not violate hard constraints, as this will make the resulting solutions
poor!! in quality. The strong inter-dependence of the schedule structure
makes this a difficult requirement to satisfy. Therefore, one expects a
much less significant impact for crossover in the performance.

Thus, mutation plays a much more significant role here, than is
normally implemented in traditional GA models. Also, in a perturbation
model, mutation (i.e., perturbation) is the major player and hence is

expected to contribute better.

What are the requirements that a good mutation operator must satisfy?

11 violation of hard constraints is fatal for a candidate schedule, while violation of soft

constraints attracts only penalties.
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1. One may be the ability to reach far and wide in the search
space. An ideal mutation function should be capable of
transforming any given solution to any other solution through
a series of changes. Without this property, certain parts of the
search space may become inaccessible, given an initial set of
solutions.

2. Second characteristic would be the feasibility of the resulting
schedule. If the mutated (perturbed) schedule is likely to be
infeasible - violating any hard constraint — then either the
schedule has to be discarded or it has to be repaired. Both
these options negatively impact the efficiency of mutation.

3. The third aspect would be the ease of implementing the
mutation operation, and its runtime complexity.

Considering these three aspects, we would expect the four variations of
mutation proposed earlier to have quite similar behaviour, in general.
Restricted deletion tends to make less drastic changes to the schedule
and hence should perform better. All of the operators are implemented
so that hard constraints are not violated in the resulting variations.

The reachability in the search space has two dimensions.

First dimension is of connectivity. Is it possible to transform any given
schedule to any other schedule via a series of mutation operators? Our
formulation of mutation operator ensures that this is satisfied.

Consider two schedules S1 and S2. Based on our structure for
representing schedule, both will have the same set of aircrafts.
Therefore, difference between S1 and S2 can be transformed to
differences between the vehicleschedules of the corresponding aircrafts.
The vehicleschedules being a sequence of flights, we can transform any
vehicleschedule V1 to another vehicleschedule V2, by examining the
various flights in V1 one by one. To start with, set current flights in V1

and V2 to be their respective first flights.
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e If the current flight in V1 is identical to the current flight in V2,
then move to next flight in both V1 and V2.

e Else identify a subsequence of flights to be deleted from V1
starting at the current flight (in our case, this will be till we
reach a base location).

e Now if V2 reaches the same base location somewhere in its
schedule, replace the deleted segment by the set of flights in
V2 from current to the base location. The number of matching
flights between V1 and V2 increases.

e If V2 does not go by that same base location at aIl,‘Athe
marked segment is deleted. This brings another flight at the
same point for comparison against V2. Note that whenever
deletion of flights takes place from the schedule of an aircraft,
new flights are added at the end of its schedule. Eventually we
expect a similar route as followed in V2 to appear in V1,
increasing the amount of matching flights.

For example, consider V1 as (2,1,4,8,6) and V2 as (1,4,10,4,11),
where the numbers indicate the route-id. Id 4 may represent Mumbai-
Amsterdam-Paris, for example. The numbers chosen here are arbitrary
and has no mapping to any dataset used; it is only to illustrate the
transformation process. The aim is to transform V1 to V2. Here is one
possible sequence as per the algorithm given above:
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V1 (bold parts indicate the Comments

extent of match)

(2,1,4,8,6) Mismatch at 2. Delete 2. Assume 10
got added.

(1,4,8,6,10) 8 mismatches. Delete 8 and 6.
Assume another 4 and 8 got added
at the end.

(1,4,10,4,8) 8 mismatches. Delete 8. Assume 11
got added. '

(1,4,10,4,11) Full match.

Thus, a series of mutations - perhaps a long one - can transform any
given schedule to another. Note that the arrival-departure timings are

computed by the system, and hence need not be matched in the
transformation stage.

The second dimension is the path of such transfbrmation. This is an
issue because, if during the transformation, we need to go through
lower profit states, the path is very unlikely to be taken - since given
the higher profit of the parent state, the children will be removed in
preference to the parent. Given two schedules, we expect the different
operator variations given earlier to differ in terms of the average length
of the path required to transform one to the other. For example, in our
conriectivity proof, we used the possibility of replacing a flight sequence
by another; this is possible if insert_flight option (option 4) is used. If
this provision is not used, the number of moves required for a
transformation may increase in some cases. We expect this aspect to
result in differences in performance among the various options listed
above.
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We carry out empirical study to test the performance of these
variations on a number of datasets; results are reported in Chapter 8.

7.2 Impact of Population Size

A population of size one reduces the perturbation model to a standard
hill-climbing algorithm with the consequent high risk of losing the best
solution as well as of getting stuck in a local maximum. On the other
hand, if an infinite population size is used, the optimal solution will be
present in the initial population itself. For finite population sizes, the
performance must obviously be something in between.

Do the convergence and/or the quality of final solution reached, show a
monotonically increasing dependence on the population size? Or will it
taper off after a certain population size is reached?

For very small population sizes, the chances of all chromosomes
converging to a common solution — perhaps prematurely - is high and
hence convergence will be fast, but the quality is likely to suffer.
Assuming a randomly selected initial population, a larger population
size offers a wider coverage of the search space, and therefore, better
chance of getting to the optimal solution. However, we would like to
keep the population size small to reduce the run-time. Therefore, we
would like to avoid very large population sizes.

We measure the average solution quality reached after a fixed number
of iterations for a variety of population sizes and report in Chapter 8.

One related issue is the comparison of higher population size vs larger
number of iterations. Both these options are equivalent in the sense of
providing for wider exploration of the search space. Both higher
population size and higher number of generations increase the number
of schedules tried during a run. So, it would be interesting to know how
do these two parameters interact? Do increasing population size and
increasing the number of gen’eratiohs produce similar effect on the
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solution quality? We return to this interesting issue in Section 7.4 of
this chapter.

7.3 Population Management Strategy

Given a set of schedules - representing a random collection of points in
the search space - in each generation, we generate fresh schedules
using the available operators. In order to keep the number of solutions
bounded, as new schedules are generated, we need to discard some of
the schedules from the resulting pool. There are a number of factors
that affects the choice of a suitable strategy for this population .
management. These factors include:

1. Ensuring that the best solution(s) found are not lost; since the
search is stochastic, we are not guaranteed to rediscover them
within our time limit.

2. Providing higher chance for better solutions to survive -
essence of a Darwinian style of evolution.

3. Providing adequate opportunity for new solutions to be derived
from the better solutions that we have (exploitation).

4. Providing adequate freedom for new areas in the search space
to be explored (exploration).

A suitable strategy needs to balance/address all these concerns.

Early models of GA experimented with replacing the entire existing pool
by the generated solutions. This was found to be a poor strategy since,
if the children happened to be poorer than the parents, good solutions
are lost from further explorations. Therefore, almost all perturbation
and GA models use an elitist strategy, where the best few schedules
are carried forward to next generation. In addition, a fraction of the
current population is retained, and the rest are discarded. There are

two questions here: (a) what should be this fraction of the current

population to be retained? and (b) how should we select the schedules
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to be retained. We call the fraction of schedules to be retained as the
persistence factor and will be denoted by p. Thus p denotes the
fraction of schedules retained from one generation to the following
generation. We will denote p as a percentage. As p increases from 0%
(nothing carried forward) to 100% (nothing new generated) what can

one expect?

At p=0, we have a purely random search through the search space,
generating completely new random schedules at each generation.
Therefore, we will ignore the case of p=0. Similarly trivial is the case of
p = 100, where the search stagnates after the first generation. As p
increases from 0 towards 100, more and more solutions are retained
and two trends can be noticed:

1. There will be more solutions from which parents can be
selected for crossover and mutation, during perturbation.
Hence, the scope for crossover and mutation increases,
resulting in better search.

2. The number of new schedules to be created reduces, thereby
reducing the extent of search.

These are two opposing effects on the average solution quality from
generation to generation. At the two extremes, one or the other of
these two trends dominates, affecting the progression of quality
negatively. Thus one expects a plot of solution quality against p value
to show a peak somewhere in the middle and flatten out at low and

high values of p.

The second question is how should this p-fraction of the solutions be
selected? The simplest strategy perhaps is to retain the best p% and
discard the rest. We will denote this as strategy s1. One problem with
this strategy is very early convergence. As one or two solutions
approach a local maximum, they will begin to dominate the population.
Due to the larger profit value, they get higher chances of being selected
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for mutation and crossover. The resulting offsprings are likely to be
located close to the parents in the search space. Solutions on that local

maxima fill up the pool fairly quickly.

Therefore, sustaining some part of the currently not-so-good solutions
may be useful, as it may lead to a different (and possibly better) peak.
We test this out as strategy s3. In s3, we keep the best p/2 %, and
then choose another p/2 % elements randomly from the rest of the
pool irrespective of their profit value. A variation of this strategy, under
the name s2, is also implemented where we keep the best p/2, select
p/4 from the next p/2 (randomly), and the remaining p/4 will be the .
best of what remains. These bias the selection towards the better
solution, ensures that the current best solution is not lost and still
provides a chance for other solutions to survive for a while.

Statistics suggests use of mean and standard deviation as another
perspective relevant to this kind of problem. A simple idea here would
be to discard those solutions which lie beyond the point, mean — k*g,
where o is the standard deviation and k is some constant. Normally
preferred values of k are 1 or 2. We implemented this strategy as s4 for
different values of k.

One can also consider introduction of fresh solutions into an existing
pool, to reduce chances of premature convergence. This has been
implemented as strategy s5, where after retaining a fraction p of the
current population, a fraction q is created as fresh random solutions,
and added to the pool. For retaining the fraction p, strategy s3 is used.
Thé balance (1-p-q) fraction is generated using the mutation and

crossover operators as before.

We can reason about the performance of these strategies as follows.
The essence of perturbation model is a proper blend of exploration and
exploitation. The strategy most likely to yield divic!ends is one that can
provide that balance. sl is simple and ensures exploitation - but
provides little support for exploration. When population size is large,
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even retaining only the best few can provide some spread of solutions;
however the spread is likely to be very small. As the solutions
converge, even this possibility reduces to zero. s3 provides adequate
exploitation retaining p/2 best solutions. In addition, by providing a
random subset of the remaining solutions to survive into the next
generation, adequate scope for exploration is provided. Hence we
expect s3 to perform better than s1. s2 should, by the same rationale,
produce a result similar to s3.

S4 is more difficult to rationalize. As we saw earlier in Chapter 5, the
solutions for ATP follow a Normal-like distribution in the space. Average
and standard deviation are obviously a function of the values present in
the population at a given time and the spread of these values. We
experiment with a range of k from 0.25 to 2.0 to explore the variations.
Strategy s5 also seems difficult to analyse without some performance

results.

Section 8.6 presents experimental results on the effectiveness of all
these strategies.

7.3.1 Handling Duplicate Solutions in the Population

Another aspect of population management is handling of duplicates
generated in the stochastic exploration process. Since the search is
stochastic, it is not possible to guarantee that duplicates will not be
generated. Duplicates can occur in two forms: identical solutions and
solutions with same profit. Since, the profit uniquely determines the
quality of the solution, identical profit can be considered as a duplicate
solution as far as selection for survival is concerned. Retaining or
eliminating duplicates need to consider the following issues:

a) Checking if a solution is identical to one of the existing
solutions is expensive. This can be optimized to some extent, by
first checking if the profit matches and then only going for a

detailed comparison.
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b) Solutions with the same profit may or may not be identical. If
they are not identical, discarding such solutions based on profit-
match, may throw away better candidate solutions. On the other
hand, since our measure of quality is the profit, we may take the
view that if there are two different solutions with the same profit,
we may accept any one of them.

c) Keeping true duplicates reduces the effective population size
and may also contribute to premature convergence by
encouraging further duplicate solutions to be generated from
them.

d) If we discard duplicates, we will either need to generate
additional variants to meet the desired population size, or accept

a reduced population size.

We also study the effect of retaining or discarding duplicates on the
solution quality; results are reported in Section 8.6.1 .

7.4 Convergence of Solutions

As the generations progress, how does the solution behave? Does the
entire population converge to a single (local) optimum? Or does the
population retain adequate divergence? How do the various parameters

discussed earlier influence convergence?

When crossover is the primary perturbation operator, convergence is
often found in most cases. When mutation plays the dominant role, one
expects this not to be the case. Probabilistically, as per the mutation
operator defined earlier, a very large number of new schedules are
possible from a given schedule via mutation.

Please recall that mutation selects a vehicle schedule, and then a flight
and deletes a set of flights around this selected flight. Considering the
deletion itself, there are |V| * F possible deletions from a given
schedule (F being the average number of flights by an aircraft). In all
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cases following a deletion, one or more flights are added. Considering a
single flight being added, there are |R| options possible, where R is the
set of routes. Thus, the number of possible schedules that can result
from a single mutation on a given schedule are of the order of
IVI*F*|R|. Thus, we do not expect complete convergence of a
population to a single value to happen, frequently.

There are many options for mutation to generate a spectrum of
perturbed solutions. However, recall the profit distribution we have
observed in Chapter 5. As the profit of the current solution increases,
the probability of mutation generating better solutions decreases
exponentially, irrespective of the number of options available. This is
further compounded, if the mutation operators are restricted in the
region it can reach from a given solution. Thus, as the number of

generations increases, new mutated solutions that survive to next
generation may be largely replicas of existing ones and therefore, we
may observe convergence of the population even in cases where
mutation is the dominant operator.

We hypothesized the relevance of population size on the solution
quality, earlier in this Chapter. We also know that a number of
generations are required to reach good solutions. What is the relation
between population size and the number of generations required to
reach a given quality of solution?

Note that as more generations are created, mutation gets more
opportunity to explore more options. Similarly as population size
incréases, more area of the search space can be sampled. Therefore, at
some level, we expect the quality of solution to increase with increase
in population size, as well as with increase in the number of
generations.

But does increasing generation count produce the same effect as higher
population size? For answering this, one need to look again at the
solution-quality distribution graph discussed in Section 5.2. Observe
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that most solutions in the search space are of medium quality.
Therefore, most of the solutions initially created randomly are likely to
be of this class. The probability of getting a higher quality solution
through mutation of a solution here is proportional to the fraction of the
area under the curve to its right.

However, as the generations progress, due to natural selection process,
the average solution quality in the population would increase, moving
the point further and further to the right. The probability of producing
better solutions decreases as a result.

Whereas, choosing a larger population allows a wider coverage of the
search space to start with and hence directly yields a higher chance of
finding better solutions.

Thus one expects that running a model for a larger number of
generations is not likely to be a cost-effective alternative to using a
larger population size.

7.5 Cooperative Time Tabling Across Airlines

The presence of competitors aiming for a common pool of passengers
introduces a substantial element of uncertainty in one’s planning of
time tables. Incomplete knowledge of the competing airlines’ strategy
further complicates demand estimates. Whatever optimisation is done
by one airline would not be fully effective unless it is coordinated with
the schedules of other airlines. One interesting direction of thought
here is to consider the various competing airlines joining together to
prépare a single common schedule, pooling all their resources and
addressing the net demand estimated -- a combination of competition
and cooperation to be called cooptition. Considering the various
subjective and objective constraints (including available aircrafts,
carrying capacity, operating locations, etc), the flights in the resulting
schedule can be divided among the various participating airlines. Such
an approach makes the pay off in automated scheduling system much
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more worthwhile and makes the quest for the optimal schedule more
appealing. This sketch may make the whole problem seem simple. Let
us dwell on this in a bit more detail.

Imagine two major airlines flying in a common region and working
together to prepare a jointly optimized schedule as mentioned above.
How do they divide the flights in the schedule among them? As one
approach, they could put together a set of “bids” for buying each flight
from the pool. The bidder quoting the highest amount would win the
bid and operate the flight. The payments to be made can be netted out
and the balance could be paid by one airline to the other. The bid
prepared by an airline will be dependant on its investment in that
sector, resource availability, utilization of resources such as crew and
how they integrate with the rest of the operations of the airline, etc.

The airlines may also agree in advance tb have certain sectors to be
reserved for each one, to be serviced only by specific types of aircrafts,
etc. This kind of arrangement may reflect the respective airlines’
linkages with other connected sectors/airlines, perceived market value
in that sector, etc.

One can expand this model to more than two airlines. It is also possible
for one or two major players to setup the basic cooperation framework
and invite others to join in the cooptition process.

Although a flight-wise or sector-wise distribution is more amenable to a
process like bidding, this introduces problems of logistics in the
schedule. The flights gathered by an airline, may be spread across any
arbitrary subset of aircrafts in the pooled schedule. To ensure usability
of the schedule, it would be desirable to distribute the schedule among
the airlines based on aircraft. This also is not, by itself, a satisfactory
solution since optimisation process normally does not attempt to
distribute profit evenly among the aircrafts. This may result in net profit
from all the flights operated by an aircraft 'varyinQ significantly from
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aircraft to aircraft. For example, compare an aircraft operating in the
US sector with one in the Gulf sector.

Major practical hurdles make it difficult for airlines to accept this
cooptition model readily. The issues go beyond market factors and
organizational issues to the realms of management sciences and
economics. It is a major scholastic challenge to show that compared to
existing schedules, there exist coordinated schedules, which benefit
everyone concerned including the airlines passengers. The fundamental
principle here is that certain types of competition cause losses to all
concerned and we are beginning to see technological support to .
activities turning such competition to a mutually advantageous
cooptition.

At one level, it is easy to argue how a coordinated schedule would
produce better results than two individual schedules. There are two
obvious scenarios. Consider a medium demand sector with, say, about
300 passengers estimated. Divided across two airlines, one estimates a
load of 150-200 at most. For typical aircraft capacities, one would
schedule a low capacity aircraft or allow under-loaded flights or decide
to abandon this sector. In a coordinated schedule, there is scope for a
flight with normal size aircraft. This could be operated by one of the
airlines as agreed before.

Another case is where there is a large enough load for both. What time
do they choose to fly this load? Rather than make two flights at nearby
timing, targeting peak load, one -could stagger the flight sufficiently to

ha\)e no load-drop-off at all, leaving.a higher load factor for the airlines

and more freedom and convenience to the passengers.

7.6 Transferability of the Principles

One question that an analysis, as portrayed so far, brings up in one’s
mind is “how generalisable are these analyses?”. As mentioned in
Chapter 2, there is increasing understanding among practitioners that a

124



universally successful optimisation method is unlikely. Fairly general
frameworks such as iterative refinement, genetic algorithm,
perturbation models, etc. have a wide range of applicability primarily
due to their relatively low dependence on domain specific details such
as type of objective function and nature of constraints. However,
success of these techniques, wherever reported, is largely due to clever
and careful choice of the many parameters and operators on a domain-
to-domain basis. This approach has resulted in these techniques being
portrayed as empirical and ad hoc.

In between the search for a well understood, completely general-
purpose approach and ad hoc results in solving a specific instance —-
both of which has little useful lessons to contribute —- we have adopted
a middle path, namely, to develop a framework for a problem class of
airline time tabling — not generalising to arbitrary scheduling, or further
still, optimisation problems, and not specialising to a particular type or
instance of airline. This is more likely to lead to useful results applicable
to an important class of problems. This approach also enables us to
study effect of various aspects of this problem class on the framework.

Thus our observations and analysis of the perturbation framework in
the context of airline time tabling will be applicable to any airline time
tabling problem. We have made no serious assumptions regarding the
nature of the airlines operations in our problem definitions. Further, we
expect much of the results to be significant in the next higher class of
problems, that is, vehicle scheduling problems, since we have modeled

airline time tabling as a vehicle scheduling problem.
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Chapter 8. Results and Analysis

This chapter reports the various studies carried out and analyses the
results obtained. Unless otherwise specified, the master component
doing coordination and user interface was run on an IBM Pentium II
processor with 128 MB memory running Windows NT. The slave,
running the perturbation model, was setup on Pentium III, 800 Mhz
system with 128 MB memory running Linux. The Java version used was
1.3.

‘8.1 Datasets Used

Two types of data sets were used for the analysis reported here. One
type is based on the simplified model (STP) described in Chapter 5.
These have been named as SIM1 to SIM4:

o SIM1: Low passenger demand. Total number of passengers in the
dataset= 4600

e SIM2: Low passenger demand and non-uniform demand across
city pairs. Eg: Alpha-Gamma and Delta-Alpha sector demands are
only in the morning. Certain sectors are given very low passenger
demands. Total number of passengers= 5700

e SIM3: Moderate demand numbers. Total number of passengers in
the dataset= 9200

e SIM4: A variation of SIM3. Total passengers in the dataset= 7750

The second type is based on an airline of realistic complexity (about the

size of Air India).
e ACT1: Total passengers in the dataset= 29832.

e ACT2: Total passengers in the dataset= 29932, a variant of
ACTL1.
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8.2 Variation in Performance Across Iterations

We performed a number of runs (iterations) of the program to analyse

the degree of variation observed from iteration to iteration.

Table 8.1 gives the best profit'? (in million Rs) recorded after 0, 100

and 1000 iterations for 10 different runs using the SIM4 dataset.

Mutation with variation 1 (As explained in the previous chapter, this

refers to making a biased selection of a flight for one aircraft and

deleting all flights from that point onwards.), and crossover was in

force.
Run Initial | Profit after 100 | Profit after 1000
No profit generations generations
1 9.065 13.935 13.935
2 11.230 13.215 13.800
3 9.820 13.700 13.800
4 9.615 13.160 13.340
5 9.220 13.885 14.425
6 9.560 13.455 13.670
7 10.020 13.585 14.140
8 9.445 13.085 13.860
9 10.200 12.825 13.765
10 9.635 13.740 13.900

Table 8.1: Behaviour of profit (in million Rs) against iterations for SIM4

dataset

12 Note that since fixed costs are not counted, this does not mean actual profit. It is

just revenue minus running cost.
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Profit In Million Rupees

Figure 8.1 shows similar information graphically over 50 runs of the
problem, with a different configuration. The population size used was
50. The plot shows the profit of the best initial schedule, of the best
schedule at the end of 100 generations, and of the best schedule after
2500 generations. The mean final profit was 14.3 million Rs and the
standard deviation was 0.33 million.
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Figure 8.1 Profit improvement with generations for dataset SIM4 - for
multiple runs.

8.2.1 Observations

From Table 8.1 and Figure 8.1 (Similar behaviours were observed many
times with other data sets and different parameter settings during the
experiments. The table and the graph are shown as representative
examples.), the following observations can be made:
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1. There is significant tendency for the system to get trapped in
local optima. Very rarely have two different runs produced
identical schedules - even in terms of profit. In the graph,
compared to the overall best value obtained (14.880 million), in a
significant number of runs, the best value obtained is as much as
10% lower than thi's. The fairly high figure of 0.33 million for
standard deviation also projects a similar picture.

2. Tracing the variation of best profit over the generations, shows
very long flat regions. Case 3 in the table shows that for over 900
generations, the profit increased by only 0.1 million Rs. This
shows that the operators are not effective enough to distribute
search across the search space regularly. Particularly so when the
search gets trapped near a local optimum. This is consistent with

our analytical observations in Chapter 7.

3. Also note that the convergence is quite fast. Irrespective of the
initial starting value, the system reaches almost its final value
(within 1 to 5 percent) in about 100 generations with a
population size as low as 10-50. After that it seems to get
attracted more and more to a local optima and unable to escape
from there. This seems to happen even when the local optima is
of quite poor quality compared to the best solution known.

We take a look at another dataset with only the mutation operator
enabled, for the full-data set (ACT2). The program was run for 1000
generations, with a population size of 100. Figure 8.2 shows the profit
of the best solution after 100, 500 and 1000 generations in each run.

Similar behaviour as before can be observed here also. Convergence
here requires about 500 iterations, beyond that there is very little
increase in the quality of the solution.
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Figure 8.2 Profit improvement with generations for different runs of the
dataset ACT2

The iteration labeled 19 shows a particularly bad case of local optima,
where the resulting profit is about 187 million against the best solution
known of 200 million. While such pathological cases are rare, they do
occur. This, incidentally, is the reason for opting to use average final
profit across a number of runs as the yardstick for analysis in our
further studies.

8.3 Impact of Perturbation Operators

As mentioned in an earlier section, we have primarily concentrated on
mutation operator as the primary perturbation operator. We did
implement one type of crossover as outlined in Section 7.1.1 . In this
section, we first report results of studies comparing the performance of
the “SIM1” dataset on various types/combinations of operators. All runs
used a population size of 50. The plot in Figure 8.3 shows the average
profit at the start and the average profit reached at the end of 500
generations for the following operator combinations:
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Figure 8.3 Average Profit after 500 generations under various operator
variations (dataset: SIM1)

O1. Mutation with one roulette wheel for selecting the aircraft, and a
second roulette wheel for the flight to be deleted. Roulette wheel
enables a biased selection to be carried out. The bias in both the
roulette wheels here are towards selecting the one with the lowest
profit. In case of aircraft selection, the net profit of all flights operated
by that aircraft is considered.

02. Mutation with roulette wheel only for selecting aircraft, with flight
selection being random.

03. Mutation with roulette wheel only for flight selection, with random

aircraft selection.

O4. Mutation with no roulette wheel; selection of aircraft and flight are

both random.

05. Both roulette wheels enabled, disable random insertion of flights at

deleted points.
06. Crossover only

O7. Mutation (best of 01-04) and crossover at 0.5:0.5 ratio
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08. Mutation (best of 01-04) and crossover at 0.2:0.8 ratio
Observations

The graph shows no major variation among these operators, except for
a clear verdict against crossover as the main media for perturbation.
We have tried only one crossover operator, which replaces all the
flights assigned to one aircraft in a given schedule by flights assigned to
the same aircraft in another schedule. It is conceivable that better
crossover operators could be invented; but this is only possible work for
the future. Our finding is that inventing effective crossover operator is
difficult.

For our model, mutation plays a very essential and dominant role. Early
perturbation models based on the popular genetic algorithm approach
relied heavily on crossover as the primary vehicle for solution
improvement. This was verified and reported in many studies leading to
an overwhelming support for crossover and with mutation being used
with a very low probability (often less than 1%) mainly to prevent
premature convergence and to provide some genetic diversity.

However, analysis shows that this observation does not apply when the
solution representation is not in the binary string format._ Crossover is
quite complex to define in most non-binary formats; many studies have
used specially devised crossover operations to overcome the difficulties.
Mixing parts of two or more solutions to produce a feasible solution is
difficult when the solution parts are heavily inter-dependent, as is the

case in our problem.

Thus, the crossovers in most such domains tend to be fairly weak,
leading to its relatively poor performance. We see that phenomenon
here. However, a properly utilized crossover does contribute to
reaching the solution faster. See Figure 8.4.
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Figure 8.4 Number of generations used before reaching the final profit
value for different operator variations. (dataset SIM1)

This graph shows the average of the number-of-generations after which
no profit improvement was noticed during the same study. Note that as
reported in an earlier section, the convergence is fast in general -
taking only about 200-250 iterations in most cases. In the case of
option O6 (only crossover), the convergence happens very early. This is
no surprise, since our crossover is incapable of producing any new flight
schedules for a given aircraft. Therefore, the best options from the
initial random schedules generated are quickly identified and retained.

The important point to notice is the in-between values reached for
options 7 and 8. The difference here is the partial presence of
crossover. Note from the previous graph that the solution quality
reached in these cases is quite comparable to that in other options 1 to
5. However, the solution is reached in significantly smaller number of
generations.

We repeated the study with the full-data set, ACT1. The result is shown
in Figure 8.5.
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Figure 8.5 Final profit (in million Rupees per week) against operator
variations (dataset: ACT1)

In this, we have focused on a subset of the operator schemes only. The
graph shows poor performance for O5 where insert-flights have been
disabled. Clearly the ability to insert flights enhances the power of the
mutation operator significantly. This trend was not visible in the simple
datasets; perhaps because the flight options there are very limited and
therefore, the insert may not make as much an impact as in the case of
the full dataset. Another factor contributing to this discrepancy is the
comparatively similar duration of flights in the STP case, compared to
the wide variation in flight duration (India-Gulf flight vs India-US flight)
in the case of full data.

The relative insignificance of crossover is consistently reported in this
graph as well. Crossover ranging from 0% to 50% (schema 07 and 08)
produces no noticeable difference in the final profit reached. However,
as in the case of the earlier dataset, we observed that the final profit
value was reached in 10-15% less number of generations when

crossover is present.
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Profit in million Rs

We have not answered the question of increasing population size vs
increasing the number of generations. We take up this question after
discussing the other issues.

8.4 Quality of Solution Against Population Size

This study analyses the quality of the best solution reached after a
given number of iterations, using different population sizes. The study
was conducted for different datasets. For the dataset SIM4, the
population size was varied from 10 to 1000 in the sequence, 10, 25,
50, 80, 100, 200, 300, 500, 800 and 1000. The plot is given in Figure
8.6.
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Figure 8.6 Average profit (in million Rupees per day) after 100 and
1000 generations against population size. (dataset SIM4).

The plot shows a visible increase in the average solution quality as
population size increases. Compared to the average for a population
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size of 10 (approx 13.8 million Rupees), the average for population size
1000 (approx 14.8 million Rupees) shows a 7% improvement in profit,
which is quite substantial in these domains. (Also note that as
mentioned earlier, since the fixed cost is not taken into account in our
computations, the percentage gain here is a substantial
underestimate.) The payoff relation against population size is not
linear, though. As population size increases, the rate of improvement
decreases. The uneven decrease seen in the graph is likely to be noise
due to the stochastic nature of perturbation-based approaches.
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Figure 8.7 Standard deviation of profit of solutions, at various stages in
a run, against population size. (dataset: SIM4)-

It should also be noted that the standard deviation for the above series
is substantial (shown in Figure 8.7) for small population sizes. Thus the
variability of the best solution reached at the end of a given number of
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iterations is high for small population sizes and stabilizes as the
population size exceeds 100.

Thus the probability of getting high quality solutions in a given run
increases as population size increases. A very large population size
does not result in proportionately large improvement in solution quality.
But, very small population sizes do tend to produce significantly poor
quality solutions. Thus, a medium population size should be chosen to
contain the high variance in solution-quality, as well as to ensure a
fairly good probability of a good solution, and balance it against the
high running time resulting from high population size.

One natural question here, is what should this medium population size
be? In the SIM4 dataset, this can be seen to be about 100-200. We

carried out similar experiments with a variation of the STP (SIM1) and
the full problem (ACT2). The plots of average profit are given in Figure
8.8.

Note that this plot is also consistent with the observations made earlier.
The quality improvement at the end of 1000 generations, as population

size is changed from 10 to 200 is approximately 2.5%. A population
size of about 200 seems to work well for this full problem.

The results from the dataset SIM1 (See Figure 8.9) again agree with
the earlier resuit. There are a few important observations worth making

here:
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Figure 8.8 Average profit (after 100 and 1000 generations) against
population size for dataset ACT2.
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Figure 8.9 Average profit after 100 and 1000 generations, against
population size for dataset SIM1. :
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1. The percentage improvement of quality achieved against
population size is more significant at smaller number of
generations. In the case of ‘ACT2’ dataset, the difference is about
7% at 100 generations which reduces to about 2.5% at 1000
generations. The difference was found to be almost this value at
500 generations as well. Thus, a larger number of generations
partially compensates for smaller population size. However, the
substantial difference even after convergence shows the
significance of using sufficiently large population size.

2. The incremental improvement in quality decreases as the
population size is gradually increased. Larger population size
demands very high memory usage having to store and
manipulate that many solutions at a time. For example, our
machine could not sustain a population size over 200 for the
‘ACT2’ dataset. Therefore, it is important to choose a reasonable
population size in actual runs.

3. While very low population sizes such as 10-50 produces visibly
poor quality solutions, a dataset-independent ‘recommended
population size’ is difficult to formulate. Based on our studies so
far, a population of size around 200 seem to indicate an
acceptable compromise between increase in quality of solutions
and increase in run-time and memory. If larger population sizes
are sustainable, it seems worthwhile to try, particularly for large
or constrained datasets (ACT series and SIM1, for example).

8.5 Quality of Solution Against Persistence Factor

Recall that persistence factor, denoted by parameter p, measures the
percentage of solutions retained from one generation to the next. For
the data set “SIM4”, the graph in Figure 8.10 shows the average profit
reached after 100 generations, and average profit reached after 500

iterations, for different p-values, ranging from 0 to 100.
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Figure 8.10 Average profit after 100 and 500 generations, against
different P-values. Dataset: SIM4

Each p-value setting was repeated for 25 runs. The standard deviations
of the values were small enough to consider the average as meaningful.
Value of p was varied from 1% to 95% with more finer-grained
coverage in the initial part of the spectrum.

The plot shows no significant trend in the performance for values of p
up to about 50%. Subsequently, the quality of the solution deteriorates
significantly. Thus, contrary to our expectation, there was no significant
loss of performance for small values of p. Plotting a trendline (using a
third degree polynomial) shows some variations; but these do not seem
to be significant enough for detailed investigation with this dataset.

We performed similar studies with a few other datasets as well. First we
show the results with SIM1 dataset with a population size of 20 (See

Figure 8.11).

140




Average Profit in Million Rs

115

"

10.5

10

85

]
)
<>
$
é%
j

6.7.8'9 10 11 12 13 14 15 16 17 18 19 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
P-value

[=¥at-100 ——at-500 —Trendiine (polygonal) for at-500 |

Figure 8.11 Average profit (after 100 and 500 generations) against p-
value for dataset SIM1. Retention strategy: s1, Crossover: disabled.

We also tried out this dataset with a different population size
(pop=100). As population size increases, the expected quality of
solution increases (as was observed in the previous section). Apart
from that, there was no major difference from the graph above.

The last graph (Figure 8.12) we present in this thread is for the full
dataset ‘ACT2’. This one clearly shows the behaviour we had
hypothesized - there is a very clear improvement in solution quallity for
medium values of p, and visible degradation as we move to both
smaller and larger values of p. The degradation is more pronounced for

values of p close to 100%.
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Figure 8.12 Average Profit against P-value (after 100 and 1000
generations) for dataset ACT2.

The experiments seem to indicate a choice of p-value around 20-30%
to be best suited. This range is found to be good for all the three sets

examined so far.

Why did the STP datasets not show the expected degradation in
solution quality as p values decrease towards zero? Further
investigations were carried out to answer this question. We tried more
variations on one of the STP datasets, namely ‘SIM1’. We tried a
different retention strategy (see next section) and different operator
combination. These two graphs are next shown (See Figure 8.13 and

Figure 8.14).
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Figure 8.13 Average profit against P-value for dataset SIM1 with
retention strategy: s3 and crossover enabled.

These graphs show that the expected behaviour does show up in some
cases. For example, when using crossover and mutation, with strategy
s3, the behaviour is clearly visible.

In some of the previous experiments also, we have seen the behaviour
varying depending on the configuration or the dataset used. As
observed by Fogel [Fogel, 2000], there is significant variation on how a
particular parameter affects the performance depending on the nature
of the dataset. A dataset with difficult-to-find peak or richer constraints
may produce different kinds of behaviour against a parameter variation

than a dataset without such characteristics.
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Figure 8.14 Average profit (after 100 and 500 generations) against P-
value for dataset SIM1 under retention strategy s3, crossover disabled.

8.6 Impact of Retention Strategy

The five strategies listed in Section 7.3 were implemented for various
datasets and the average profit was measured. Figure 8.15 shows
results of one Study comparing strategies s1, s3 and s5 for the dataset
‘SIM1’ against various values of the persistence factor p. As mentioned
earlier, p denotes the fraction of schedules retained from one

generation to the next.

The graph clearly shows s3 to be the best for most values of p, for this

configuration. For very low and very high p-values, s1 shows a better
behavior. Since we have already observed that desirable p-value range
is 20-40 percent, we need not be concerned with the behaviour for

extreme values of p.
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Figure 8.15 Quality of solution against P-value for different retention
strategies for dataset SIM1 with population size 50

S5 consistently performs worse than all the strategies. Introducing new
solutions during a run contributes negatively to the progress, with the
system taking longer to reach the target! This is to be expected in a
sense, since a random solution generated at any time is likely to be
normally distributed around the overall average. But, as we observed
earlier, the average profit of the population steadily increases with the
generation count. Thus except dufing the initial generations, the new
solutions introduced are likely to be of much poorer quality compared
to the current population average, resulting in immediate rejection. The
only impact is one of reducing the effective population size!

Next, we present the results (Figure 8.16) for a different dataset, SIM4.
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Figure 8.16 Average final cost for various retention strategies with
dataset SIM4.

This shows that the difference between s2 and s3 is not very
significant, in general. The other observations made earlier are
consistent with this study also. In this study, we have included the
strategy s4 also. Please recall that strategy s4 discards solutions based
on the mean and standard deviation of the current solution set. That is,
in each iteration, solutions with profit < p-ko are removed from the
population. “k” is @ constant in a run. We tried different values of k
from 0.2 to 2.0. This is shown in the graph as sigxxx where xxx
denotes the k value. Larger k indicates that less number of solutions
are discarded. We notice that for all values of k tried, the solution
quality is poorer than what is obtained with S2 or S3. The next dataset
(Figure 8.17) shows this much more clearly, substantiating the
observation. All other observations hold for this dataset as well.
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Strategies s2 and s3 are clearly superior strategies among those
considered. Graphs in Figure 8.11 and Figure 8.14 shown earlier also
provide a comparative study of the retention strategies, and report
consistent results. Note that the average profit reached in Figure 8.14,

which used strategy s3, is better than the average profit reached in
Figure 8.11, which used strategy s1.
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Figure 8.17 Average final profit against various retention strategies for
dataset SIM3.

The studies show the following:

o Retention strategies allowing some poor solutions to stay on
perform better on average, compared to those retaining only the

best.
e Statistical techniques based on mean and standard deviation are
not effective. This is partly due to the fact that poor solutions are

not given any chance at all. These techniques also suffer from
problems such as biasing of the average by extreme solutions.
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¢ Genetic diversity cannot be effectively created, by inserting new
random solutions in the population, once the initial iterations are
passed.

8.6.1 Handling Duplicate Solutions in the Population

Some trials were carried out for measuring the effect of removing and
retaining duplicate solutions in a population; the issues affecting this
have been discussed in Section 7.3.1 . Table 8.2 summarises the study
showing the measurements of average profit, standard deviation of
profit, and average number of generations (NGen) required for various
datasets. Final profit is averaged over 25 runs under identical
conditions. The standard deviation is shown as a measure of the
variability of the final profit across different runs. In each run, we
observe the number of generations, beyond which the profit showed no
improvement. This generation count averaged is shown as NGen.

Dataset Duplicates? | Average | Standard | NGen
Profit Deviation
SIM2; Retain 12.64 0.35 174
popsize=100 | pemove 12.93 0.20 194
SIM2; Retain 12.87 0.21 220
popsize=200 | pamove 12.99 0.19 227
SIM1; Retain 11.25 0.18 297
popsize=100 | pamove 11.53 0.11 387
(no crossover)
SIM1; Retain 11.29 0.21 437
popsize=100; | pemove 11.59 0.09 468
crossover.

Table 8.2: Comparative Study of Removing and Retaining Duplicates
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These show that removing duplicates produces significant
improvements in the solution quality. In all the cases tried, the
standard deviation shows a tendency to drop. The average number of
generations required, NGen, showed no identifiable trend. We can view
duplicate solution removal as equivalent to an effective increase in
population size - the resulting observations are consistent with this

model.

Checking for duplication at the solution-cost level is very cheap to
perform. Since population can be maintained as sorted from iteration to
iteration, the duplicate checking is at most O(POPSIZE) complexity ~-
which can be further optimized to O(log POPSIZE) if required. And the
studies show that the payoff is worth the cost in terms of the
probability of potentially different solutions being discarded.

8.7 Generation Count Versus Population Size

The question we raised in this context is the relation between using
larger population size and running the system for a larger number of
generations. As observed in section 8.2, the solutions have been
observed to converge to local optima very early in the run. In addition,
we have let some of the runs go over 10,000 generations, and a similar
behaviour was observed. The best solution remained unchanged after
about 500™ generation all the way till 10,000 in most cases. Thus, it is
obvious that using larger number of generatio'ns does not help
significantly to improve the final solution quality obtained.

However, we have seen in section 8.4, that with increasing population
size, there is a distinct improvement in the solution quality. Therefore,
empirically we see that increasing the generation count does not
compensate for reduced population size — which is what we
hypothesized in Chapter 7. Figure 8.6 and Figure 8.9 illustrate this
point clearly — one can observe that larger population size reaches
better profit value than what is possible to reach by increasing the
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number of iterations from 100 to 1000. Considering the earlier
observation of early convergence in most runs, beyond 1000 iterations,
one hardly observes any improvement in solution quality for this
dataset.

The following table shows the average of final profit reached at the end
of 500, 1000, 2000, and 3000 generations for various population sizes
for the dataset SIM2. The average is taken over 20 runs in each case.
The number in the bracket in each cell is an estimate (in thousands) of
the number of schedules explored during a run of that configuration.
This is obtained as the product of number of generations and
population size.

Popsize/Ge | 500 1000 2000 3000
nerations

10 11.6 (5) 11.9 (10) 12.0(20) 12.23(30)
50 12,2(25) 12.4(50) 12.6(100) 12.63(150)
100 12.6(50) 12.73(100) |12.8(200) 12.86(300)
200 12.84(100) [ 12.93(200) |12.98(400) | 13.03(600)

This table shows increase in profit value with both increasing
generations and increasing population size. However, the profit
increase is not purely due to the increased number of schedules being
explored as can be seen with the three cells corresponding to
exploration of 100 thousand schedules. They correspond to
configurations (popsize x number of generations) of 50x2000,
100x1000, and 200x500. The profit value increases within this group as
population size increases, despite a decrease in the number of
generations. This table, thus, reinforces our observation that returns
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from a larger population size is more than the returns from a
proportional increase in the number of.generations.

8.8 A Consolidated Study

In this section, we take up a new different dataset belonging to the
class of STP and review the performance varying all the significant
parameters we have observed so far. This dataset named “SIM2” has,
apart from reduced demand figures, has temporally non-uniform
demands across all city-pairs. For example, all load in Alpha-Gamma
segment is in the morning; Delta-Gamma is in the evening; and so on.
Sector Alpha-Gamma has very low revenue. The idea is to explore the
evolution of time tables that recognize these patterns. Please note that
the program used here does not allow any kind of manual direction of
the time table based on any of these constraints. Initial time tables are
still generated randomly and explored using the mechanisms already

outlined.
The settings tried out were:
1. Retention strategies s1 and s3.

2. Population sizes 50, 100, 200, and 500 for both these strategies.

3. Perturbation operators a: only mutation, b: 50% mutation and
50% crossover, c: 80% mutation and 20% crossover, d: only
mutation without insert_flight

We observed results consistent with the observations made so far. For
example:

The solution quality was found to increase with increasing
population size for both the retention strategies s1 and s3.

50% mutation performs worse than 80% mutation.

When insert_flight is disabled, the solution quality degrades and
the number of generations required substantially increases.
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e We also observe that, as remarked earlier, for large population
size, it is not necessary to have any specialized retention strategy
to provide exploration (When population is 500, the best strategy
seems to be s1, where as for other values of population size s3
does better).

We also examined some of the best solutions generated by the various
configurations. The best one had the profit of 13.4 million Rs. More
than one run had produced time tables with this same cost. On
analysis, it was found that all these solutions are identical and had the
following sector-wise distribution of flights:

Beta-Delta 6 (i.e, 6 flights from Beta to Delta)
Delta-Beta 6

Delta-Alpha 1

Alpha-Delta 2

Delta-Gamma 2

Gamma-Delta 2

The next best set of solutions had a profit of 13.38 million Rs and had
the following breakup.

Beta-Delta 5
Delta-Beta 5
Delta-Alpha 1
Alpha-Delta 2
Delta-Gamma 2
Gamma-Delta 2

Beta-Alpha 2

Alpha-Beta 2 \

These operated the relatively less populated Alpha-Beta segment
instead of adding an extra flight to the Beta-Delta sector. Note that
converting this to the best solution would require deletion of 4 flights
and addition of two. What was more involved was that the two Beta-
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Alpha flights were spread out in time (and not consecutive). Thus a
series of mutations will be required to transform this solution to the one
with profit of 13.4 million Rs, very likely the intermediate solutions will
be less attractive than both these solutions. These prevent the current
mutation operator from reaching to the 13.4 million Rs state from the

current local optima.

8.9 Scheduling for “Cooptition”

As mentioned in Section 7.5, getting airlines to coordinate among
themselves to work for an integrated schedule is much more than a
case of running the scheduling system on the pooled data. However, we
tried out some experiments to study the effect of such pooling. The
study was done with dataset SIM1. Consider two airlines Al and A2,
operating a common set of routes with identical privileges and facilities.
Consider two scenarios. In one, both A1 and A2 will proceed to make
their own time tables independently. For this scenario, we assume that
they estimate their load table to be half of the net load available. Let
the load table of dataset SIM1 represent this individual estimate. We
took one set of runs with the dataset as it is, representing this scenario.

The second scenario is where Al and A2 decide to pool their resources
and work on a cooperation model. Together they target the entire load.
So we doubled each of the passenger estimates in the demand table of
the SIM1 dataset. To represent pooling of resources, we also doubled
the number of aircrafts available for scheduling (ie, sum of aircrafts of
A1 and of A2). All other data were left unaffected. The observations are

summarized below.

For SIM1, the original run gave an average profit of 11.6 million Rs,
with a population size of 100 and number of generations of 2000. Thus
the net profit by both Al and A2 would be 23.2 million Rs. The
coordinated schedule gave an average profit of 27.9 million Rs, with
same run configuration. This is nearly 20% more than the total profit in
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the first scenario. This illustrates the technical feasibility of the
cooptition model.

N
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Chapter 9. Use of Parallelism for Performance

Perturbation based solution strategies are very compute-intensive
requiring a number of iterations of generations with a fairly large
population of solutions. Single machines can generally afford neither
the memory nor the computation power to handie realistic values for
these parameters. So it is natural to turn to parallelism as a possible

approach.

Perturbation model, by its nature, contains relatively few and well-
defined points of interaction, and are, therefore, amenable to exploit a
parallel or distributed architecture.

9.1 Parallel GA in the Literature

There has been a lot of work in exploiting parallelism in genetic
algorithm implementations. [Cantu-Paz, 1995] is a good survey of the
approaches and provides a comparison of the various approaches
reported. The major approaches [Schoenauer and Michaelewiz, 1997]

include:

a) Simple master-slave model where the GA per se is handled by
the master, and the evaluation of solutions is done in parallel on
other computing units. This is attractive when evaluation of
solutions is a complex process which is often the case in practical
GA models. In our case also, making a random time table or
doing a perturbation on it is much faster than estimating the
expected load on all the flights in a time table against the given
load table. In many practical problems evaluation of a solution
may involve running a time consuming process such as

simulation.
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b) Massively distributed model where each computing unit hosts a
part of the population with restricted crossover scheme (e.qg.,
neighbours only), and

c) Island model which is similar to (b) but individuals migrate to
other islands periodically.

In cases of options (b) and (c), there are two further categories:
synchronous and asynchronous. If the generations on the different
processors proceed with full synchronization (all processors are
guaranteed to be in the same generation at any point in time), then the
model is synchronous. This may however, demand substantial
communication overhead and load balancing efforts, to ensure that the
slowest machine do not slow down the whole system. Asynchronous
models do not suffer from this; however, the overall view of the system
and performance analysis is now more complex.

Given that the sequential GA itself is relatively little understood
computationally, the understanding of the effectiveness of the various
options in parallel/distributed GA is even less. A number of questions
[Schoenauer and Michaelewiz, 1997] are still open: ‘

a. How do the parallel GA differ frém sequential GA?

b. What are the expected speed improvements?

c. What are the expected improvements in the quality of the

solution?

d. What are the theoretical models underlying parallel GA?
The master-slave approach is most similar to sequential (panmictic)
GA, in that, apart from the evaluations of the individuals happening
concurrently, all other frameworks of a standard GA will continue to
apply. Therefore, one expects the analytical behaviour of sequential GA

to carry forward to these. For the other two models, there are changes
in the structure. Unlike sequential GA, the parent selection is restricted
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to a subset of the total population. Therefore, convergence results, etc
that has been done for sequential GA may not apply any more.

The different approaches have reported mixed results in terms of the
overall gains - thus leaving the field still quite open.

9.2 Parallelism in Perturbation Models

Our solution approach differs from the GA models in a significant way -
the lack of emphasis on crossover. The exploitation of parallelism has
largely focused on using crossover to remove complete isolation of the
different sub-populations on the different processors. Mutation does not
exploit or benefit from the presence of other individuals in a population
- except for the pressure of Darwinian selection.

Therefore, the models (and also the constraints) of GA explored for
parallelism is unlikely to be very relevant in our model.

There are a few directions, which may provide opportunities to exploit
parallelism for perturbation models. Note that our studies so far show
that larger population size leads to better quality solutions (on the
average). However, single machines may have neither the memory nor
the CPU power to process large population sizes. And larger population
size means larger running time as well. So the primary focus is to see if
the population can be divided across different processors so that
effectively a Iafge population size can be achieved, with each processor
handling a relatively small population size.

9.3 Our Approach

We have implemented the island model with a central controller whose
job is to monitor the progress of the different islands and exchange
members if needed.

Each island registers itself with the master on startup, and informs it of
the best solution it has got after every generation. The generations:
among the islands are not synchronized. The master maintains the best

157



few solutions it has received so far from all the islands put together.
When an island consistently reports poor solutions, the master pulis out
a random solution from this central pool and asks the island to
incorporate it in its pool. This would be better than all the solutions
present in the island and therefore, will force exploration from this seed
primarily. It is also possible to restart such islands lagging very much
behind the others, knowing that we already have better solutions.

9.4 Observations and Analysis

For the purpose of analysis, we simulated parallelism using a multi-
island model in the synchronous mode on a single processor machine,
with the system cycling through the various islands one by one, in each
generation. There is no exchange of solutions among the different
islands. Thus the different islands evolve their own population
independently. The best solutions are recorded in every generation. The
results for two different datasets, SIM1 and SIM2, both from the
simplified airline time tabling problem class, are given in Table 9.1.

The table shows the size of population and number of islands used for
the various studies. For each combination, 20 runs were taken. The
entries in the other columns are averages across 20 runs. The average
and standard deviation of the final profit at the end of 1000 generations
and the number of generations taken to reach the final profit figure

have been tabulated.
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50 [4 |11492 197 322 13015 193 439 |
1002 |11403 178 339 - 13116 201 323
2001 |11419 235 187 12907 222 222

Table 9.1: Comparative Performance of Various Island Distributions

The expression Popsize*Islandcount has been kept as a constant here
(at value = 200). The average profit found is quite similar among the
different configurations, showing marginally better results for more
distributed cases. This is good news for the following reason. Recall
that as population size increases, the average solution quality shows a
monotonically increasing trend. On the other hand, large population
sizes are hard to sustain on a single machine.

What the numbers here shows is that you can take a large population
size, and safely distribute that population across muitiple machines,
exploiting as many machines as available. There is relatively little
communication or dependency, in this simple model of distributed
computing. At every iteration, the best solution of each island is
communicated to the user process (coordinating process) for record.

This offers a significant way to exploit parallel processing (even more,
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distributed computing on a cluster) in a meaningful way - where
parallelism allows us to use a larger population size, which we have
seen to improve the solution quality.

This study is not meant as an exhaustive analysis of parallelism models
- but to explore the possibility of effective usage of parallelism. We
have formﬁlated a simple model that is of much value for effective
usage of perturbation based models.
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Chapter 10. Conclusion

Perturbation model is indeed quite effective in solving problems such as
the ATP effectively. The ability to provide an anytime solution with the
promise of more improvement with more time, the ability to start with
existing schedules, and the ability to incorporate essentially any kind of
constraints in the domain are some of the major advantages in utilizing
an iterative improvement approach such as this. In the literature, in
general, a trend towards using such iterative improvement methods -
of which perturbation model is one example - is visible for complex
problems such as scheduling; our studies and observations reinforce
that view. In addition, we have the advantage of using the power of
distributed computing environments very easily without having to
substantially rework the system, or invent specialized algorithms for
parallelism. Perturbation based approaches are inherently parallel and
well suited to cluster computing kind of environment.

As part of this work, we carried out extensive analysis of the ATP
problem and the perturbation model using empirical models as well as
formal methods. We presented a proof for NP-completeness of the ATP
showing formally the complexity of the problem. This problem, thus,
gets added to the computationally challenging list of scheduling
problems. We have not seen any work in the literature on the topic of
airline time tabling, though a lot of work has been done in related areas
such as crew scheduling and gate assignment. Similarly, there are a
number of studies being done on classroom and examination time
tabling. Airline time tabling is a much more complex problem than
these, primarily due to the fact that the number of flights and their
durations can have very wide variations. For example, a Mumbai-
London-Newyork flight takes nearly 18 hours, where as a Mumbai-Gulf
flight takes hardly 3-4 hours. Thus, the number of flights completed by
different aircrafts during the given time period, can vary significantly.
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There are also major differences between profitability of different
flights; the link between percentage occupancy of seats and profitability
of flights is non-linear.

This makes it difficult to adapt any of the models proposed for
classroom or examination time tabling problems. Given that there is
hardly any research work reported in the literature on this particular
problem, this thesis is a useful contribution to the field of scheduling -
offering another complex problem for further studies.

Empirically we surveyed the search space for a problem of this nature
and hypothesised certain properties based on this. Our finding that
profit of solutions appear to be normally distributed provided a base to
explain some of the observations made during the studies. We believe
this observation has much further significance - another topic for
possible further investigation. There is no mention of this type of
analysis in the literature, to the best of our knowledge.

Our implementation handles a very realistic version of the problem for
our study. Based on this implementation, we reported a number of
results in terms of the suitability of the approach and the related
issues. The focus of the thesis has been to gain insights into this
problem and the perturbation model as a viable solution approach to
such complex problems.

10.1 Processing Power Versus Quality of Schedule

A 2000-generation run of a STP*? data with a population size of 100
takes about 30 min on a Pentium III 800 MHz system, but a similar
configuration for the ACT1 and ACT2 datasets takes about 15 hours.

We have observed that use of a sufficiently large population size is
important, and that population size cannot be compensated by a

13 Simplified Airline Time tabling Problem described in Section 5.1
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proportional increase in number of generations. While larger and larger
population sizes do not yield proportional increase in quality of
schedules produced, we have noticed that quantified utility of the
solution obtained does improve with population size (see Figure 8.6,
Figure 8.8 and Figure 8.9), whereas the increase in quality with larger
generation count is much slower, with larger plateaus of local maxima.
For example, in a 20000 generation run of ACT1 dataset, the best
solution (profit in million Rs) after each set of 500 generations followed
the sequence: 161, 161, 162, 162, 162, 167, 168, 168, 168, 168, 168,
168, 168, 169, 169, 169, 169, 170, 170 showing slow growth. This run
took about 3 days of run-time!

In practice, an ATP-like dataset would use a 500 element population
with about a 10000 generation run. With the hardware configuration
that we used, this would take 3-5 days. With implementation
optimizations such as pre-compilation and better data structures this
time may reduce by 50%. As mentioned in Section 1.2, for a large
airline, the data can be 10-100 times larger than ATP and hence we are
facing fairly large run time in real-life scenarios. For optimal use of
computer aided scheduling technology, it would be valuable to obtain a
response time of 10-15 minutes. This would enable the scheduling
experts to experiment with various combinations and alternatives,
before choosing a schedule.

Profit improvements of over 5-10% have been observed with use of
larger population sizes and 2-5% by using large number of generations.
These could translate to a few billions of Rupees per year for even a
modest international airline. High performance multiprocessor machines
today cost about a million rupees - a worthwhile investment for almost
any airline, based on the above observations. High performance cluster
computing environments are also becoming highly available. These are
“software based supercomputers” exploiting a distributed memory
architecture and standard COTS desktop and workstation computers.
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These would cost typically an order of magnitude less than specialised
supercomputers and hence tilt the balance even more in favour of
investing in a high performance computing environment.

Given the lack of vector computing operations in perturbation model, a
conventional super computer such as CRAY built over high-speed vector
computing philosophy is not likely to be a worthwhile investment. The
costs are also likely to be higher in comparison to the cluster computing

machines mentioned above.

10.2 Summary of Major Results

The major observations based on the analysis and studies carried out in
this thesis, can be summarized as follows.

a) Perturbation based approach to solving complex scheduling problems
is viable and practical. It offers significant advantages over other
competihg models to be given serious consideration as the practical
solution.

b) The search space of these problems is moderately vicious. Our
sampling analysis reported in Chapter 5 and the other studies, increase
our confidence in this hypothesis. The sampling analysis of the search
space is unique, as far as we know.

c) The population size is an important factor determining the run-time
and the quality of solution. The value should not be too small or too
large. We have found that a population size of a few hundreds is ideal
for the problem sizes studied. Larger values would be required for
constraint rich and large datasets. It should be selected based on
preliminary studies. We also observe that running a smaller population
for a larger number of iterations is much less effective than a larger

population running for a smaller number of generations.

d) Population management consisting of determining persistence factor,
duplicate removal and retention strategy also influences the quality of
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the solution arrived at in a given time. Retention strategies, which
exploit available good solutions as well as encourage some amount of
random exploration, are found to do better. Strategies s2 and s3 do
better in most cases compared to the other strategies tried. Persistence
factor shows the best behaviour - in terms of quality of solution
obtained - for values in the range of 20-50 percent.

e) Despite many studies to the contrary, crossover is seen not to play a
critical role in perturbation-based models of this nature. Mutation is
alone adequate as the operator. Crossover, if present, can be used to
speed up convergence.

f) Largely, perturbation based approaches are not critically dependent
on specific problem parameters. One can easily add or delete additional
parameters or constraints without having to review the model. The
tolerance to variations in parameter values is quite good for practical
usage. The selection pressure imposed by the evaluation function
seems to be the primary driving force in perturbation model.

g) Operators should be carefully chosen keeping in mind their ability to
guarantee wide enough reach in the solution space, low probability of
generating invalid solutions, and ease of implementation. Depending on
the nature of datasets, small differences in the operator functionality
can make significant improvements in performance. We believe that
probabilistic reachability — the probability of reaching a given state from
any other state, within a finite number of iterations - is an important
factor for investigation, and may:-provide valuable insights into operator
seléction for iterative improvement models. It also seems to be the
case that if this property can be assured, it may not be nécessary to
invent too many specialized operators for specific problems. Note that
we have been able to obtain good results, with the simple mutation
operator for all the datasets we tried.
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h) We proposed a benchmark problem (STP) in this category and a
number of datasets (SIM1, SIM2, SIM3 and SIM4) for that problem, for
facilitating further research in this area.

i) Our experiments with parallelism have demonstrated that a cost
effective approach to utilize higher computing power to get better
quality solutions, by expanding the population size, is very practical.
This approach can be effectively used with low cost solutions such as
cluster computing, since the coordination and synchronization
overheads are very small. This is unlike the other parallel computing
models - such as using vector computers -, where the payoff is
dependent on a number of parameters such as memory bandwidth and
is bounded by the hardware constraints of the setup. Cluster computing
costs very little to develop and deploy, and shows high degree of

scalability.

j) We have proposed and investigated the problem of cooptitive
scheduling where a number of airlines pool their resources together
against a combined load model to prepare an integrated time table and
then distribute the flights among themselves for actual operation. This
is a strategically important problem, where practical viability has been
demonstrated by our work.

k) We have built up a framework to characterize perturbation type
approaches through a set of parameters including population size,
persistence factor, retention strategy, crossover-mutation ratio, etc.
The formulation of the concepts of retention strategy and persistence
factor is unique and novel as far as we know. We also present a serious
and systematic study of their impact on the solution quality.

10.3 Future Work

Perturbation models are being accepted as a reliable and effective
solution method for solving complex optimization problems including
real-life scheduling problems. However, almost every particular
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application of this model for solving a problem is being hand-crafted
with substantial tuning and refinement for achieving good performance.
The inherently stochastic nature of the model and the fact that a
number of aspects are left open to the implementer, have made this
field a predominantly empirical one. Despite the substantial amount of
work done using Genetic algorithms and general iterative refinement
models, practical guidelines for effective exploitation of perturbation
approach are still evolving. This thesis has explored a particular
problem - a practically significant and computationally complex one -
for study using the perturbation approach. A number of interesting
results have been obtained, many of which have significance in dealing
with other problems of this class.

At the same time, we have identified a number of further questions and
issues emerge out of the study. These would help us develop further
the empirical analysis of the perturbation model, along the lines
proposed by Hooker [Hooker, 1994]. Such an attempt should probe
further the factors of the problem domain that control the convergence
rate, optimal population size to be used, choice of retention strategy,
etc.

We have explored the exploitation of parallel environment for
perturbation models. With the substantial excitement over cluster and
grid computing [Foster and Kesselman, 1999] [Sterling, 2001], massive
computational power can be made available without much extra cost
for solving such computationally complex problems. The model that we
have explored suffers comparatively little communication overhead,
and performs quite well. Experimenting with massive computing power
through grid and cluster computing to solve problems of this type
would be valuable.

In the previous section itself, we have highlighted some of the areas of
further work — to better exploit some of the observations we had during

this study and to better understand their significance.
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Appendix A: Implementation Details

The major classes in the implementation and their functionality are as

follows. Each major entity (aircraft, for example) and group of entities
(vehicleschedule, for example) in the problem domain has been
implemented as a class, which provides methods to support their

relevant functionality.

Class-name Short description

Invocation class for the slave. Manages
Client.java interaction with the master, and starts up

Main.

Keeps track of configuration information (from
Config.java the config file) such as mode of initialization,

number of iterations, etc

DemandType.java

Represents one entry of demand model, and
supports associated functionalities.

DistMatrix.java

Handles the inter-location distances

Event.java

An event is one non-stop flight from one
airport to another. An instance of this class
represents an event.

Filebuf.java

Used for charge-data files. The class loads and
keeps the file contents internally and
computes charges as per the defined format.

Flight.java

This class represents a flight, which is a
sequence of events corresponding to a given

route.

Global.java

Keeps track of data and methods which need
to be accessed by many different parts of the
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system: vehicle-list, location-list, random
number generator, etc.

Infile.java Class for reading text files

Represents one type of passenger. One
Item.java .

instance for each type.
ItemListType.java List of passenger types

ItemScenario.java

Represents a demand scenario, associated
with a given time table. Structurally similar to
the load table input. After loading the time
table, this is updated to reflect the unmet
demands.

ItemStore.java

Part of ItemScenario. Keeps demand from a
given location.

LoadType.java

Represents one demand entry <from, to, pax
type, number, pref time, pref day> as given in
the load model.

Location.java

Represents one location

LocationListType.ja | List of locations
va
Used for generating log of run. Manages the
Jjava
Log-jav log file.
Main.java Main class - invoked by slave.

MainSeq.java

Auxiliary class used for the search space study
- generates a given number of random
schedule instances.

Outfile.java

File for writing text files.

Perturb.java

Represents a population of N solutions, and is

concerned with the management of the
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population.

Roulette.java

Implements Roulette wheel model of selection
in a general form.

Route.java

Represents a route

Routes.java

Represents the full set of routes available.
Supports retrieving routes as per specified
criteria such start-from A, end at B, etc.

Scenario.java

Represents one solution (schedule) along with
the load-table.

Schedule.java

Represents a time table as a set of vehicle
schedules.

Server.java

The main class for the master component

ServerRecord.java

Class handling recording of information on
each slave.

ServerUl.java

Handles the User interface - display and
interaction with user — of master.

Represents a time interval. Handles conversion

Timel-java from minutes to hr:min format and back.
Trace.java Recording trace of a run.

Ul.java Slave’s user interface.

Vehicle.java Represents a vehicle

VehicleListType.jav

a

Represents the list of vehicles

VehicleSchedule.jav

a

Represents a vehicle schedule, as a set of
flights.
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Appendix B: Samples of Datasets and Output

B.1 Sample Dataset (SIM1)

Master data
validvehicletypes 5 bo747 ab310 ab300 combi d400

transit_time 30
max_time 1080
load_drop_off_time 120
end

Locations

dummy dum 0 0 *
Beta bom 0 1 *
Delta del 0 1 *
Gamma cal 0 1 *
Alpha mds 0 1 *

Vehicles

ab310:1 ab310 200 854 7520 480 45000
ab300:1 ab300 250 851 5500 480 45000
ab300:2 ab300 250 851 5500 480 45000

Distances

Beta Alpha 90
Beta Gamma 120
Beta Delta 110
Alpha Gamma 150
Alpha Delta 150
Alpha Beta 90
Gamma Delta 120
Gamma Beta 120
Gamma Alpha 150
Delta Beta 110
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Delta Alpha 150

Delta Gamma 120
Routes

2 r1 Beta Delta

2 r3 Beta Alpha

2 r4 Beta Gamma

2 r9 Gamma Delta

2 r10 Gamma Beta

2 r12 Gamma Alpha

2 ri3 Delta Beta

2 r15 Delta Alpha

2 r16 Delta Gamma

2 r18 Alpha Gamma

2 r19 Alpha Delta

2 r20 Alpha Beta

3 r21 Alpha Beta Delta
3 r22 Delta Beta Alpha
0

Event charges
Beta * * * * 10000 landing

Gamma * * * * 10000 landing
Delta * * * * 10000 landing

Alpha * * * * 10000 landing
Demand table

Alpha Delta eco_pass -1 120 200
Alpha Delta eco_pass -1 840 200
Alpha Gamma eco_pass -1 120 50
Alpha Gamma eco_pass -1 300 100
Alpha Gamma eco_pass -1 600 50
Alpha Gamma eco_pass -1 840 100
Alpha Beta eco_pass -1 120 100
Alpha Beta eco_pass -1 600 100
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Delta Alpha eco_pass -1 300 150
Delta Alpha eco_pass -1 840 150
Delta Gamma eco_pass -1 300 150
Delta Gamma eco_pass -1 600 150
Delta Beta eco_pass -1 120 200
Delta Beta eco_pass -1 300 200
Delta Beta eco_pass -1 600 200
Delta Beta eco_pass -1 840 200

Gamma Alpha eco_pass -1 120 50 |

Gamma Alpha eco_pass -1 300 50

Gamma Alpha eco_pass -1 600 100

Gamma Delta eco_pass -1 120 200
Gamma Delta eco_pass -1 300 100
Gamma Beta eco_pass -1 120 150
Gamma Beta eco_pass -1 600 100
Gamma Beta eco_pass -1 840 100
Beta Alpha eco_pass -1 300 100
Beta Alpha eco_pass -1 600 100
Beta Alpha eco_pass -1 840 100
Beta Delta eco_pass -1 120 500
Beta Delta eco_pass -1 840 500
Beta Gamma eco_pass -1 120 50
Beta Gamma eco_pass -1 600 50
Beta Gamma eco_pass -1 840 50

Link Charges
* ¥ ¥ ho747 time 94000 fuel

* * * ho747 time 94000 general
* * * ah310 time 45000 fuel
* * * 3h310 time 45000 general
* * * gh300 time 45000 fuel
* * * ah300 time 45000 general
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Revenue
Alpha Delta eco_pass 6500

Alpha Gamma eco_pass 6500
Alpha Beta eco_pass 3000
Delta Alpha eco_pass 6500

Delta Gamma eco_pass 5500
Delta Beta eco_pass 3500

Gamma Alpha eco_pass 6500
Gamma Delta eco_pass 5500
Gamma Beta eco_pass 5000
Beta Alpha eco_pass 3000
Beta Delta eco_pass 3500
Beta Gamma eco_pass 5000

B.2 Sample Schedule Generated

Aircraft: ab310:1

Route From time To time
ro Gamma 30 Delta 150
ris Delta 180 Alpha 330
ri8 Alpha 360 Gamma | 510
ri2 Gamma 540 Alpha 690
rio Alpha 720 Delta 870
ris Delta 900 Alpha 1050
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Aircraft: ab300:2

Route From time To time
ri Beta 90 Delta 200
rié Delta 230 Gamma | 350
r9 Gamma | 380 Delta 500
rié Delta 530 Gamma | 650
ri0 Gamma | 680 Beta 800
ri Beta 830 Delta 940
Aircraft: ab300:1

Route From time To Time
rio Gamma |30 Beta 150
ri Beta 180 Delta 290
ri3 Delta 320 Beta 430
ri Beta 460 Delta 570
ri3 Delta 630 Beta 740
ri Beta 770 Delta 880
ri3 Delta 910 Beta 1020
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Glossary

These are specialized terms used in this thesis. The terms are
alphabetically ordered for ease of reference.

ATP: The airline time tabling problem in general, as described in
Chapter 1.

Average Profit: For each setting of the parameter values, the program
is run many times (typically 20) independently. In each run, the best
solution reached at the end of the run and the corresponding profit
value are recorded. Since perturbation model is stochastic in nature,
this profit value may vary from run to run. (See 130 also) Therefore, to
cancel the stochastic effects, the average of these best profit values
across the different runs are used in our study for analysis and
comparison. This is referred to as “average profit” in this thesis.

Benign search space: A smooth search space, where the difference
between the quality of a solution and that of its neighbours does not

show sudden jumps or falls.

Block-time: non-stop flying time between two airports. Block-times
are normally given separately for different types of aircrafts.

Chromosome: (borrowed from the genetic algorithm literature) The
data structure used to represent a solution, or a partial solution.

Crossover: change in a schedule created by combining parts of more
than one schedule (normally two).

Curfew time (at an airport): During these periods, no aircraft is
allowed to land or takeoff at that airport.

Feasible schedule: A schedule that can be implemented technically,
that is, no hard constraints are violated.

Generation: One iteration of perturbations over the current
population. A new set of candidate schedules are created from the
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current set of candidate schedules using available perturbation
operators, and a subset of these two sets together is selected to be the
population for the next generation.

Hop: A non-stop flight segment.

Mutation: A unit change created in a schedule in an attempt to create

a better (alternative) schedule.

Optimal schedule: A schedule that is feasible and has the best profit
among all schedules possible with the given data and constraints.

Perturbation: A change made to a given schedule. Normally these are
small changes. For an airline time table, such a change can be addition
of a flight, removal of a flight, or change of a flight parameter such as
route, departure time, aircraft used, etc for a flight.

Persistence factor: The fraction of solutions retained from one
generation to the next generation, expressed as a percentage.

Population: A set of solutions used for exploration.
Range of an aircraft: The distance that the aircraft can fly non-stop.

Roulette wheel: Derived from the rotating wheel used in gambling,
this is a device for implementing weighted random selection from a
given set of options. For example, consider 4 individuals a;, az, as, as,
of age 10, 30, 50, and 80 respectively and we want to randomly select
one of these, favouring the older ones (i.e. the older you are, the more

- likely you are of being selected). We can allocate them space on a

wheel proportional to the age. Space allocated to a; will be agei/ Z; age;
of the 360° available.

In the example, this will be 21, 63, 105,
and 170, giving an allocation of the wheel

oal
ma2
oa3
Oad

as shown. The wheel is now rotated and .
allowed to rest naturally and the area
corresponding to the topmost point is
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noted. It can be observed that since nearly half the circle is occupied by
a4, and every point on the circle is equally likely to be at the top at
rest, a4 will get selected nearly 50% of the time.

This model is used in parent selection in GA and perturbation models
and wherever a biased (weighted) selection is required.

Search space: The set of all possible schedules.

Sector: A pair of locations covered by a flight, possibly with stop-overs
en-route. Consists of one or more hops.

Slot-time at an airport: Normally applicable in very busy airports,
any landing or takeoff at such an airport by a specific airline must be at
this specified time.

STP: Simplified version of the airline time tabling problem. The
simplifications are defined in Section 1 of Chapter 5. Just as the
drosophilé is a model insect for the biologists, the STP provides us with
a simple and yet realistic model for studying airline time tabling
problem within reasonable time and resource bounds. .

Vicious search space: Search space, in which the difference between
quality of two neighbouring solutions can be unpredictably large.
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