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ABSTRACT

The present thesis is an attempt to investigate the dynamics in nano-domains
keeping in view the fast developments in nanotechnology. The recent advancements in
nano-regimes have made possible the developments of nano-devices and researchers
have observed that modeling dynamics of the nano-devices like nano-robots will be
challenging. The various forces, which are negligible in maco-sized devices, are going
to contribute significantly in nano-domains. The force attributable to thermal agitation
from surrounding medium will decide the controls and manipulation of nano-devices
like nano-robots. The corresponding motion to thermal agitation is termed as Brownian
motion. The thesis investigates the Brownian motion by modeling and simulation and

predicts the dynamics of nano-robots due to thermal agitation from surrounding

medium.

In order to model the dynamics owing to thermal agitation, a thorough literature
survey on Brownian motion theory is done. Based on the literature survey, it is observed
that Brownian motion models in available literature are based on the assumption of
rigid bodies. It is also noted from literature survey that nano-sized bodies
(nanoparticles) have very low spring constants implying that rigid body assumption is
not correct in nano-domains. Therefore, non-rigidity is a primary concern and Brownian

motion models are developed for non-rigid nanoparticles.

The modeling Brownian motion of non-rigid nanoparticles has been attempted
using Langevin model in two ways. The first method of impact transfer modeling is
akin to correlation technique, since correlation technique is used to analyze the
Langevin model. The second method of modeling used the concept of lumped-
parameter systems-modeling approach. The exhaustive possible interaction system-
models (in all 360) are developed, which are then subjected to testify various validity
criterions. Based on simulation and validity criterion, it is found that three Brownian
motion models of non-rigid nanoparticle are valid and among the three, one is better
and applicable in a wider range of size in nano-domains. The verification with

published results of the non-rigid nanoparticle model and failure of rigid body model to



match the published results confirmed the hypothesis of non-rigidity being a prime

concern in nano-domains.

The developed non-rigid models are applied to model directed diffusion mode by
altering the input as closely related to white noise. The models are further used to
predict the Brownian motion of nano-robot. The thesis concludes with facts
convincingly demonstrated by modeling and simulation in the present work with

presentation of future prospects on the present work.
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The whole burden of philosophy seems to consist in this, from
the phenomenon of motions to investigate the force of nature,
and from these forces to demonstrate the other phenomenon

S lssae Newtos

CHAPTER 1

DYNAMICS IN NANO-DOMAINS

1.1 INTRODUCTION

In near future, biological, medical and environmental technologies will become
dominating new frontiers of technology to maintain and improve human life. These
technologies will require new engineering techniques like microfabrication and new
materials. Newer or altogether different concepts of design and controls will be required
for these upcoming areas. These techniques will be indispensable for developing
adaptable man-machine interface, equipment and artificial organs for life support. The

most difficult and challenging field will be developing micromechanisms and

micromachines to perform and carry out various tasks.

Micromachines are defined as machines that are constructed from micrometer
sized mechanisms. Recently, the pursuance in research is to develop machines below
the microdomains and the technology development in the sub-micro or nanodomains is
a nagging problem for theoreticians and experimentalists. The smaller the machine
becomes, the more difficult is the control of movements and still more difficult is their
dynamic modeling [Mizoguchi 1992]. From micrometer to nanometer, there are hardly
any attempt to investigate the dynamics of mechanisms and machines. When we go
below the micro size and try to analyze or model the dynamic behavior of mechanical
systems at the nanometer level, we must account for the motion due to thermal
molecular agitation from the surrounding medium, which are quite pronounced in sub-
micrometer domains. This thesis attempts to study the influence of thermal agitation on
the dynamics of nanomachines. The nanomachines [Drexler 1992] are defined on the

lines of micromachines as machines constructed of nanometer-sized mechanisms.



One such mechanism of practical importance is a nano-robotic manipulator with
multi-degrees of freedom. With the advancement in nanotechnology, the realization of
nano-robots is becoming a reality. The nano-robot development and application will
bring the control issue in forefront and, therefore, the exploration of dynamics of nano-
robots is quintessential. Nanomachines such as nano-robots will work either in vacuum
or in an embedded environment of a fluid as mobile machines. For nanomachines
embedded in a fluid, the thermal agitation due to the medium influences the machine
movement substantially. The nanomachine itself can be regarded as a free-floating

nanoparticle in a fluid. This nanoparticle is thermally agitated by fluid particles in time

continuum.

The motion of small-size particles has interested many researchers and has been
analyzed with novel thoughts and abstract mathematics. The English botanist Robert
Brown discovered the small sized particle motion in 1827 as a physical phenomenon
and it was named after him as Brownian motion [Brown 1966). Albert Einstein derived

a mathematical description of the phenomenon from the laws of physics in 1905.

Further moving down the dimensions, the dynamic behaviour of the systems
starts showing quantum behaviour. The nanomachines are contiguous in size with
micromachines at one-end and quanturn domains at the other end. The genuine question
is "Which theory, whether classical or quantum, is to be used for the anmalysis of
nanomachines? What is the critical size of nanomachines for either of the theory to be

used?” or in other words, “If quantum dynamics is to be applied to small sized objects

then how small is small?”

12 HOW SMALL IS SMALL?

We know that an electron has a maximum size (diameter) of about 108 m, a
mass of 9.1x10™' kg and a negative charge of 1.602x10™" C. The nucleus of an atom
is composed of a variety of particles and has a positive charge equal in magnitude to the

aggregate charge of the attached electrons. The size and mass of a given nucleus depend

on e/ ? * on the number of attached @. The largest nuclei, typified by the Uranium nuclei,

pober

have diameters not exceeding 10™'* m and mass in the neighborhood of 10%* kg.



A criterion for small size, in the quantum sense, can be established by
considering the unusual circumstance that quantum theory frames its statement on
system's observable in probabilistic terms. This represents a radical departure from
classical methodology because it concedes that our knowledge of a system's state is
tempered by a degree of uncertainty. Traditional dynamics takes the view that numbers
defining position, momentum and so on can be computed to any degree of accuracy,
and can be measured to an accuracy limited only by the physical instruments employed.
However, quantum mechanics retreats from such positivist pronouncements and prefers
uncertain atmosphere. This concept has been formalized into so called principle of
limited certainty. The principle of limited certainty states that if the two observable
measured correspond to a pair of canonically conjugate coordinates, then there exists a
qualitative limitation on the accuracy to which the observable can be measured, namely

AxAp 2 h (1.

where Ax is uncertainty in position, Ap is uncertainty in momentum and

h(= 6.623x107*J s) is Planck’s constant. According to equation (1.1), the implication
is that if the momentum of a rectilinearly translating particle can be determined with the
ultimate precision of a vanishing deviation i.e. Ap — 0, then no information is
obtaimable about its position (Ax — ) and the converse is likewise true. The principle
of limited certainty confines itself to canoﬂjcally conjugate variables such as position-
momentum, angular displacement-angular momentum, and energy-time. It makes no
statement on other pairs of simultaneous measurement in the sense that no interaction is
involved if the observables are not canonically conjugate, which implies the possibility
of obtaining theoretically exact measurements. Equation (1.1) is usually adopted as a
quantitative gage for distinguishing between large and small in the systematic sense. In

fact, it is modified as Heisenberg's uncertainty principle, which is given as [Beiser 1987]
h
AxAp 2 — .
4r (1.2)

The judgment is made not based on spatial size alone but because of the product
of two conjugate coordinates uncertainties, which is called as action [Groesberg 1968].

As a typical example, consider the one electron atom in its lowest energy state, the
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electron's radial distance from the nucleus is roughly 0.5x107'° m and the linear
momentum is of the order of 107 kg m/s. The product of two conjugate coordinates
namely uncertainty in position and uncertainty in momentum given by equation (1.2) is

1x107** Js. In contrast, consider the situation typical of electronic devices such as

vacuum tubes. Here the distances of separation between electrons are of the order of

10~ mand potential of the order of 200 V. The momentum roughly calculable as the
energy divided by the speed of light is approximately 10" J s/m. The product of
uncertainty in position and uncertainty in momentum is therefore ~ 10% J s which is
hundred thousand times the Planck's constant. According to Groesberg, such systems
can be treated satisfactorily by means of the classical theories for particles. Thus, the
same sized electron qualifies as small when action is of the order of Planck’s constant

and large when action is substantially larger than Planck’s constant.

. . -9 =22
The nanomachines as nano-robots have size ~10™ m, mass ~10™ kg or more

and the velocities induced because of thermal agitation ~10' m/s. The product of
uncertainties as calculated from equation (1.2) for these values mass, size and velocity

is thousand times more (then) Plank’s constant, which obviously brings all the bodily

dynamics is, therefore, sufficient to model the motion of nano-robots but with the
inclusion of the irregular motion termed as Brownian motion because it is quite
appreciable in nanodomains. In a different perspective, if the same nano-robot is seen
under a high-resolution microscope, then apart from Brownian motion of whole system
as a nanoparticle, there can be possible Brownian motion of every link or each degree of
freedom. Brownian motion, therefore, is a significant issue in nanomachines. The

importance of Brownian motion is detailed in next section.

13 IMPORTANCE OF BROWNIAN MOTION

The Brownian motion is one of the most useful stochastic processes in applied
probability theory. The Brownian motion analysis and modeling has a long history
involving many a luminaries like Einstein, Perrin, Smoluchwski, Langevin and
Chandrasekhar to name a few [Karlin 1966]. Since its discovery, the process has been

used beneficially in diverse areas as statistical testing of goodness of fit, analyzing the
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price levels in stock markets, and quantum mechanics. The variations of Brownian

motion like geometric Brownian motion and integrated Brownian motion have been

useful in modeling random situations where one is interested in percentage change or

rate of change and not thifl)ﬁ)l_utg_c_l_lgnge of independently and identically distributed
varjables [Ross 1983].

The problems in science like colloidal statistics, theory of coagulation,
sedimentation problem etc. have been successfully investigated using Brownian motion
model. The Brownian motion applications span from stellar dynamics [Chandrasekhar
1943] at one end of dimension to motion of motor proteins in biophysics [Julicher 1995]
at the other extreme. It is worth noting that the theory has been used in Medical imaging
[Chen 1989]. Barraquand [Barraquand 1990] and Arakawa [Arakawa 1994] have
applied the theory in robotics for modeling terrain. The estimation of extreme floods
and droughts, stock markets [Grossman 1992, Smith 1994] and manufacturing systems
where queuing networks and routing problems are involved [Wien 1990] have been
investigated using Brownian motion models. The Decision making [Brekke 1994],
aerosol particles motion problem [Gordon 1989], membrane dynamics, biomolecular
motion [Saxton 1997] are some topics from physics and life science, which have been

explained by Brownian motion theory. .

" The Brownian motion theory has come a long way since its humble beginning in
the nineteenth century. This theory covers such a vast number of interesting aspects of
life without one being aware of its role. The examples cited are a mere speck of the
research that has been done to date. With random and unpredictable nature of events
that take place in this world, it is no wonder that researchers are yet to find perfect
solutions to unresolved problems. The literature contains mainly three approaches to

model the Brownian motion, which are briefly described next and the objectives of this

thesis are identified.

14 PROBLEM DESCRIPTION

There are three common approaches to obtain the Brownian motion models: (i)

Diffusion equation method, (ii) Langevin equation method, and (iii)) Geometric



approach using fractals concept. In diffusion equation method, different diffusion

equations relating variance in position with time are used to model different types of
observed diffusion modes [Saxton 1997]. This approach models almost all types of
Brownian motions, without considering the properties of the Brownian-particle.
Similarly, use of fractals to model Brownian motion is a geometric approach, which is
being used, in contemporary research. Strikingly, both the approaches do not consider
the Brownian particle properties. In the Langevin equation approach [Chandrasekhar

1943], correlation technique is used to obtain variance of physical variable of interest.

e

the damping from surrounding medium. In the entire available literature on Brownian

motion, the particle is assumed as rigid. The rigid body assumption implies that the

motion of the particle is not influenced by the deformations of the particles caused by

the applied forces.

It has been observed that in nano-domains, the bodies have low value of spring
constant [Wong 1997, Roukes 2000], which is closely related to Young’s modulus and
represents elasticity. This suggests that local deformations of a particle are of
appreciable magnitude and may affect overall motion [Singh 2003]. It is therefore not
correct to exclude the influence of local deformations on overall motion. Similarly, the
matter of nanoparticle has some damping (dissipative) property. The two properties of
matter, elasticity and dissipative nature, are assumed implicit or negligible in available
literature. This does not allow for critical observation of mechanism of transfer of
thermal impact from surrounding medium. The effects of inclusion of elasticity and
dissipative properties of matter in nanodomains are explored here. In order to study
these effects, a mathematical model of Brownian motion of non-rigid particle is based
on Liwmon considering elastic and dissipative properties of matter in addition
to mass of the particle and resistance from surrounding fluid accounted by damping
coefficient. The impact transfer mechanism is explored by alterations of rigid body
model and mathematical models for Brownian motion of nanoparticle have been
developed using system-modeling approach. Modeling of the input, closely related to

variation of Gaussian noise, is done as another approach to explore the problem.

—



The consideration of additional properties in the rigid body Brownian motion
model is relevant, as published experimental results do not match with results obtained
using available models. The present work impregnates the problem of understanding the

Brownian motion of non-rigid bodies in nano-domains from two different approaches:

e Modeling Brownian motion using impact transfer mechanism,

e Modeling Brownian motion using systems modeling approach,

The developed models are subjected to validation by simulation and verification
with published experimental results. The modeling of Brownian motion starts with
revisiting Einstein’s rigid body model in Chapter 3. The new model considers the
nanomachine links and elements as a nanosized body (nanoparticle) and the
nanoparticle is considered as non-rigid. Different models are developed in Chapter 3
considering nanoparticle as non-rigid using the concept of impact transfer. The various
models developed in Chapter 3 are validated by simulation in Chapter 4. A lumped
parameter systems modeling approach to develop further Brownian motion model is
done in chapter 5. The validation of models developed using systems modeling
approach and verification of valid models with published experimental results has been
done. It has been found that three models of Brownian motion of non-rigid nanoparticle
are valid. The three models are simulated for transient thermal noise input to develop
directed diffusion mode of Brownian motion in chapter 6. The application of models
developed for Brownian motion to predict the dynamics of single degree of freedom
robotic manipulator is done in Chapter 7. The last chapter gives the conclusions of

present thesis and the scope of future work has been highlighted.

The subject of dynamics is quite old and it is apt to trace the salient
developments and present status of the field in order to get an overall picture of
dynamics to be applied to nano-robots or nanomachines. This is done along with the

literature review on Brownian motion in the next chapter.



If at first, the idea is not absurd, then there is no hope for it

Allent Esstein

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

The literature review in this chapter is organized in two parts; one is on
Brownian motion and the second is a review of various analytical models available for
Brownian motion. The first part presents review on Brownian motion theory from its
humble beginning in nineteenth century to the renewed interests in the Brownian
motion model in nano-domains due to recent advances in nanotechnology. The later
part of the chapter includes historical notes and the various models available to explore

dynamic behavior of systems including models that analyze contribution of Brownian

motion to overall dynamic behaviour of the system.

The Brownian motion is described in the next section to get an overall picture of

status of Brownian motion theory as applied to nano-robots or nanomachines.

2.2 THE BROWNIAN MOTION

Many models and algorithmé have been continuously formulated for the
prediction of matters involving uncertainty. One of the uncertain situations is motion of
small-sized particles due to thermal agitation from surrounding medium. Robert Brown
(1773-1858), a Scottish botanist has made his name for a systematic observation of this
motion in his works related to botany during expeditions to New South Wales. In 1827,
he observed the zigzagging motions of pollen grains under the microscope and found
that small particles suspended in a fluid were in continuous motion and from his
experiments; he concluded that this motion was due to the activity of collisions with the

molecules of surrounding fluid. The incessant random motion of small-sized particles

was named after him as Brownian motion.



Robert Brown’s discovery [Brown 1966] did not receive much attention for a
long time, until before the turn of 20" century when A. Einstein gave a mathematical
formulation for the Brownian motion and since then Einstein’s model is the most
established rigid body model of Brownian motion [Einstein 1905]. Smoluchowski in
1907 [Smoluchowski 1907] and Langevin in 1908 [Langevin 1908] developed
independently quantitative theories for the description of Brownian motion. The
experimental work of Jean Perrin in 1908 brought it to the attention of physics world
that Brownian motion constituted a clear demonstration of the existence of molecules in
continuous motion. An English translation of his work appeared in 1990 [Perrin 1990].
Ito extended the mathematical formulation such that peculiarities in Brownian motion

find a simple explanation in terms of general framework of stochastic processes [Ito

1964].

According to quantitative theories, bodies of micro and sub-microscopic sizes
suspended in a liquid will perform irregular movement due to thermal agitation. The

review of the research work done on Brownian motion is presented in next section.

2.3 DEVELOPMENTS IN BROWNIAN MOTION THEORY

The historical development of science of Brownian motion can be classified in
four stages characterized by (i) discovery, observations and conflicts (1827-1905), (ii)
theoretical predictions (1905-1908), (iil) quantitative confirmations, modeling and
applications (1908-1990) and (iv) renewed interests of researchers in nanosciences in
recent times. The four stages represent important turning points in the development of
Brownian motion theory. In the first stage (1827-1905), the development was quite slow
and scientists were struggling hard to give an explanation of the Brownian motion based
on the then known physical laws. The second stage (1905-1908), though of short
duration, represents remarkable developments in the Brownian motion theory. The
observed phenomenon was put on firm quantitative formulation and various
mathematical models were presented in the span of three years. The period was a
turning point since it gave a basis to explain the phenomenon, which till that time was

an observation only. This stage was followed by fine-tuning the proposed models and



applying them to explain various problems in physics. The modeling of various aspects
of Brownian motion continued till the last decade of 20™ century and is pursued in
contemporary research. Haw has presented brief qualitative description of development
of Brownian motion theory unto the late 1980’s [Haw 2002]. The last one-decade also
witnessed tremendous advancements in nanotechnology [Fukuda 2003] and application
of Brownian motion theory in the nano-domains. The compilation of work on nano-
robots by Requicha explicitly mentions the role of Brownian motion in nanomachines
[Requicha 2003]. The application of Brownian motion theory in nano-domains is
considered as the fourth stage. Among other developments in this stage, one important

achievement is construction of working Brownian motor. The Brownian motor works

[

with the noise energy and in principles defies second law of thermodynamics.

Remarkably, the experimentalists in the first stage always argued about the

impossibility of realization of Brownian motor. The construction of working Brownian

motor was possible because of developments in nanotechnology. Thus, the last decade
———— e _”——W_ —— e ——— et At e

is considered as an important period in the development of Brownian motion theory and

has been presented as fourth stage. A detailed stage wise review of the work is

presented in following sub-section.

2.3.1 Stagel- Discovei'y, Observations and Conlflicts

A lot many discoveries in microworld followed - after the invention of
microscope in 1696. Almost a century after the invention of microscope, in 1827,
Robert Brown examined pollen grains of a plant specie Clarkia Pulchella, which had a
diameter of 0.3-1 um. The observations of Robert Brown gave detailed account of the
motion of pollens in a fluid. According to Haw, Adolph Brongniart in France made
similar observations in the same year 1827 [Haw 2002]. Both Brown and Brongniart at
first assumed a living origin for motion of pollens. Brown extended his observations to
numerous species belonging to different families of plants with live and dead pollens
and also observed motion of powdered coal and glass in a fluid. Brown concluded that
motion of particles occurred in every thing he picked, provided it was reducible to a

powder, sufficiently fine to suspend in water.
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Subsequent to the discovery of the motion of small-sized bodies, which in
meantime was named as Brownian motion, there was confusion among scientist as to
the cause of motion. The researchers argued in favor of external forces, such as
vibration, microscopic currents, thermal gradients, temperature variations and surface
tension as possible causes of Brown motion. According to Nye, even after seventy
years, it was claimed that motion was due to temperature difference [Nye 1973]. One
vital development in the period was that Brownian motion was brought out of the realm

of Biology and the quest to explain Brownian motion was pursued in physics.

Powles had given a brief account of developments on Brownian motion from its
observation in 1827 till Einstein’s mathematical formulation in 1905 [Powles1978].
According to Powles, the publication of Leon Guoy in late 1880 based on the series of
experiments carried out by Guoy himself demonstrated convincingly that Brownian
motion was not a result of external vibrations, temperature gradients or surface tension.
Rather, it was found to be a fundamental physical property of fluid to initiate such
motion. Guoy (1895) also tried to establish breakdown of second law of
thermodynamics in sub-micro domains. Although Guoy’s work was an important step
in the development of Brownian motion theory, the scientists were not convinced by the
propositions forwarded by Guoy. As mentioned by Powles, scientists like Ostwald
(1895) opposed vehemently the hypothesis of any theory breaking down the second law
of thermodynamics in sub-micro domains. The main argument of Ostwald to reject the
hypothesis was that the concept couldn’t be experimentally verified. The reason was
good enough at that time and remarkably it took a little more than a complete century to

develop Brownian motors to experimentally verify the proposition of Guoy.

At the beginning of 20t century, the confusion was so deep, that even when
Albert Einstein gave first mathematical formulation of Brownian motion, he was quite
coy about explicitly connecting his theoretical ideas with Brownian motion. The period
of three years after the first publication of Einstein model was important because three
theoretical models on Brownian motion were published in that period giving a
quantitative basis to the phenomenon. This is considered as second stage of Brownian

motion theory.

11
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2.3.2 Stage II - Theoretical Formulations

Tremendous amount of scientific activities in 19™ century led to a better
understanding of physical world, which became the foundation for propositions of
mathematical models of Brownian motion. In the year 1872, Ludwig Boltzman
published the Boltzrﬁan equation for gaseous system giving a mathematical formulation
of non-equilibﬁum aspect of statistical mechanics. The Boltzman equation based on

molecular-kinetic theory gave the forces govemning collisions between molecules in

rarified gas medium.

Einstein at the beginning of 20" century took the cue from the Boltzman’s work.
He reasoned that as heat is attributed to irregular motion of atoms, the thermal motion
of fluid molecule must be transmitted to a small-sized particle floating in the fluid. An
intuitive thought of observation of such motion occurred to Einstein without the
knowledge that Robert Brown had already observed the motion. Einstein obtained the
expression for motion of the particle in terms of expected values [Einstein 1905]. He
introduced a parameter diffusion coefficient and related the new parameter as time

function of expected value of displacement of small-sized particles.

M. Von Smoluchowski obtained almost same expression as Einstein for the time
dependence of displacement of Brownian particles, though with a different coefficient
[Smoluchowski 1907]. As compared to Einstein’s formulation, the quel developed by
Smoluchowski was quite complex and based on rigorous probabilistic theory.
Smoluchowski introduced the term probability after-effects and transition probability.
He gave one important argument against the molecular origins of irregular motion of

particles, that is, any molecular impact could never give a strong enough push to

generate the observed displacement.

This argument was proved to be erroneous by P. Langevin, who derived the time
dependence of displacement of Brownian particle in a spectacularly simple and direct
form [Langevin 1908]. The Langevin formulation modified the Newton’s force balance

equation, the first law of motion, by including a stochastic force term. The added

stochastic force represented the random impacts of surrounding medium molecules on

12



Brownian particle. Langevin concluded the need for exploration of resistive force,
which he assumed to follow Stokes law. The exploration of resistive force had been the
main subject of research in third stage of Brownian motion, where various models for

resistive force have been presented.

2.3.3 Stage III - Quantitative Confirmations, Modeling and Applications
According to Wiener, in Brownian motion, the random impacts from molecules
of surrounding medium causes a stochastic driving force responsible for fluctuating
motion of small-sized particle [Wiener 1923]. The resistance to Brownian motion also
was caused by the random impacts resulting into dissipation of energy of impacts.
Nyquist used the fluctuation and dissipation in Brownian motion to predict the
characteristics of noise intrinsic to the system [Nyquist1929]. Uhlenbeck also observed
that fluctuation and dissipation are two aspects of Brownian motion and are related to

each other [Uhlenbeck 1930]. The fluctuation-dissipation phenomenon was further used

to derive the resistance from the medium [Onsager 1931].

From fluctuation-dissipation concept, Wiener proposed that surrounding
medium is the source and sink of the motion [Wiener 1938]. Undoubtedly, therefore,
the focus of modeling was on the forces coming from the surrounding medium. The
friction force, for example, had been extensively investigated by a number of
researchers since Langevin formulation of Brownian motion. The friction force from
medium with Stokes approximation has been used at normal temperature and pressure
condition and was found to be in good agreement with experimental observations
[Uhlenbeck 1930]. There exists an instantaneous time correlation between force acting
on the Brownian particle and its velocity in Stokes approximation and is used in
contemporary research for viscous fluids. At low-pressure condition, Uhlenbeck
proposed that the friction is given by Doppler equation. Chandrasekhar has used the
Stokes approximation while applying Brownian motion theory to stellar dynamics,
sedimentation problem and coagulation theory [Chandrasekhar 1943]. He had reviewed
various aspects and applications of Brownian motion theory. His work was reprinted as
a classic in 1959 [Wax 1959]. Wang described some unresolved problems in the theory

of Brownian motion [Wang 1945].
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The Brownian motion is categorized by different modes given by Diffusion
equation for different parametric values. In diffusion mode termed as Wiener process
[Wiener 1949], the parameter mean in position is zero and variance in position is
constant. This is also known as Normal Diffusion mode and exactly resembles the
Einstein’s model. Wiener compared Brownian motion with a random walk event. He
had shown that random walk in the limiting case of step size and step time tending to
zero is like Brownian motion. The modeling of Brownian motion is based on the two
basic assumptions: (i) The driving force 15 C Gauss1an and (ii) its correlation in time 1s
instantaneous. Such pr&;gs;_s’for which the correlation of physmal variables is
instantaneous, are called Markovian process. Chandrasekhar proposed that stellar

dynamics is analogous to Brownian motion and applied the Brownian motion theory to

explain many stellar phenomenons [Chandrasekhar 1949].

The concept of fluctuation-dissipation was further established in different works.
Callen made a quantum formulation of fluctuation-dissipation theorem [Callen 1951].
Takahashi made a classical formulation of fluctuation-dissipation theory following the
Gibb’s formulation of entropy [Takahashi 1952]. Cox has treated Brownian motion
from the point of view of statistical theory of irreversible processes [Cox 1952]. The
treatment resembles the method of Callen in introducing statistical mechanics but

differs from Callen’s work, which adopts the general method of Gibb’s entropy

formulation.

Brownian motion by that time was studied mostly in quiescent fluids or under
uniform velocity. Taylor for the first time investigated the coupling effect of flow of
fluid and Brownian motion [Taylor 1953]. He had shown the enhancement of diffusion
in the direction of flow. In another type of application, Gross had studied the effect of
Brownian motion on radiation of the particles [Gross 1955]. Gross obtained a model of
spectral line of radiating particles assuming that the position of the particle remains
unchanged after impact. Sack had shown that generalized Liouville equation could be
simplified by a Fourier transformation with regard to velocities and could be used

effectively to model Brownian motion [Sack 1956].
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Landau introduced the Boussineq-Basset correction to the Stokes assumption of
friction force [Landau 1960]. The correction led to a non-instantaneous correlation
between force and velocity. The velocities and, thus, position of the particle were shown
to be correlated over large time. Kursnoglu, while doing research on plasma, formulated
Brownian motion model of electrons and ions in plasma across magnetic field with the
anisotropic friction assumption [Kursnoglu 1963]. He had shown that there was
enhancement in diffusion due to the anisotropic assumption of friction force.
Considerable parallel efforts were being made to obtain a Brownian motion model from
Liouville equation. The first rigorous analysis to obtain Brownian motion from
Liouville equation was by Lebowitz [Lebowitz 1963]. Subsequently, Resibois applied
expansion series for including higher order correlations in Liouville equation approach
and extended the work of Lebowitz [Resibois 1964]. Berne has assumed an exponential
decaying time correlation of driving force and has demonstrated that it is possible to
obtain higher diffusion coefficients in viscoelastic medium [Berne 1966]. Williamson
had derived the Brownian motion of a particle less massive than the fluid particles
[Williamson 1968]. He had used Ornstein-Uhlenbeck model and had shown that
variance in position of a less massive particle could be obtained without any additional
approximation to a good accuracy. Extending the work of Resibois, Fokker-Planck

equation was derived by Cukier for a heavy Brownian particle in a dense fluid from the

Liouville equation [Cuckier 1969].

Fox had analyzed the Brownian motion with non-Gaussian and non-Markovian
forces on arbitrary shaped Brownian particles [Fox 1970]. Stokes law for the friction
was generalized to arbitrary frequency, compressibility and viscoelasticity of the fluid
[Zwanzig 1970]. The persistence of comrelation had been studied by Case giving a
general form of friction term using relaxation concept [Case 1971]. In the theory of
relaxation, it is assumed that a physical system subjected to weak external force
resumes its equilibrium state exponentially. Montgomery had shown that approach of
kinetic theory developed by Boltzman in 1872 in general can be applied to Brownian

motion as other approaches do [Montgomery1971].
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Chow had shown that a more accurate diffusion coefficient value could be
obtained in comparison to other approximations by including an inertial term in
autocorrelation of stochastic force [Chow 1972]. Kato has studied the resistive forces in
polymeric solutions [Kato 1972]. In the pursuit to study the effect of flow conditions on
Brownian motion, the two-dimensional convection flow effects on Brownian motion
had been explored by McCarty [McCarty1973]. The enhancement in diffusion
coefficient due to oscillatory flows had been shown by Haugh [Haugh 1973]. Dufty has
extended the study on friction force modeling by investigating the decay of non-
instantaneous correlation in velocity and hence position [Dufty 1974]. The corrections
in friction term given by Dufty led to conclusion that correlation decays slower than and
not as fast as predicted by earlier work. Amold gave models for various modes of
diffusion and has defined Wiener process with drift, which has constant mean and
variance in position [Arnold 1974]. Szu had obtained elastic displacement space-time
correlation function for a Brownian particle using relaxation theory [Szu 1975].
Zwanzig has studied compressibility effects of the surrounding medium on Brownian
motion [Zwanzig 1975]. Jasnow had solved the Langevin equation introducing
stochastic resistance concept in place of deterministic Stokes approximation of
resistance [Jasnow 1975]. The stochastic model of fluid resistance was an attempt to
realize changing viscosity in binary or a mixture of fluids constituting the surrounding
medium. Harris had obtained the diffusion coefficient for a Brownian particle utilizing
non-equilibrium statistical mechanics concepts [Harris 1976]. Mehaffey obtained
Stokes-Einstein law giving diffusion coefficient of Brownian particle from solution of
Navier-Stokes equations with the boundary condition that fluid sticks to the sphere’s
surface [Mehaffy 1977]. Frisch had obtained Fokker-Planck equation from the solution
of the dynamic inverse of Liouville equation [Frisch 1979].

Another point of investigation in Brownian motion was consideration of
surrounding medium as inhomogeneous. Brownian particle travels through distinct
diffusion areas of various sizes and geometrical arrangements in heterogeneous
environment. Foister had worked effect of several types of flow on Brownian motion

[Foister 1980]. The main effect of the flow found by Foister was to change the time
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dependence of the variance of the position along the flow from linear to cubic. Foister
also presented a brief qualitative discussion on presence of boundary walls. Broeck had
investigated longitudinal diffusion in uniaxial flows [Broeck 1982]. Broeck considered
elastic properties in addition to the viscosity in modeling the surrounding medium. The
viscoelastic model represents Maxwellian fluids or Non-Newtonian fluids and are
characterized by two parameters namely; relaxation time and viscosity. Marshall had
discussed the relative merits of Boltzman entropy and Gibb’s entropy for describing
Brownian motion and concluded that Gibb’s entropy is a superior concept [Marshall
1982]. Marshall had also presented a historical development of the Boltzman work on
second law of thermodynamics. Fernandez de la Mora [Fernandez 1982] had
generalized the Brownian motion Fokker-Planck model from the particle suspended in a
rarified gas to the case of non-homogenous dense gas mixture. It was shown by
Fernandez that diffusion attributed to non-homogeneity of the gas-velocity field were

small in comparison to the shear force contribution to diffusion due to relative gas-

particle velocity.

A new concept of fractals was presented by Mandelbrot to model uncertainty in
nature [m contemporary research is also applying fractal concept
as a major approach to model Brownian motion. The fractal model uses the fractal
dimension to simulate the Brownian motion. In another development, Modak had
derived the relation representing fluctuation-dissipation theorem for a free Brownian
particle from first principles using a simple model for the collision of fluid molecules
with Brownian particle [Modak 1984]. Sparling had shown that relative importance of
fluid inertia, compressibility and viscoelasticity on Brownian motion depend on size of
Brownian particle [Sparling 1984]. The effect on diffusion due to spatially periodic
hydrodynamic flow has been studied by Sagues [Sagues 1986]. In the year 1986, a
review on Brownian motion theory was published [Kubo 1986]. Shariman had carried
out investigations in special types of flow like flow in Rayleigh-Benard convection cell
[Shariman 1987]. Rodriguez had shown that diffusion is enhanced for Maxwellian
fluids with Stokes approximation of friction [Ridriguez 1988]. He showed that the

diffusion is less in Ma}ﬂellian fluids in comparison to Newtonian fluid with Bossineq-
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Basset correction to friction term. Ryskin had shown that diffusion in a rotating fluid is
anisotropic and smaller than in a fluid at rest [Ryskin 1988]. Applied to ultracentrifuge,
it was shown that diffusion of biomolecules decreased by 50% in comparison to steady
flow conditions. On the observation of Brownian motion, Kruglak has presented a
simple laboratory experiment using video microscopy [Kruglak 1988]. Rull calculated
diffusion coefficient of a Brownian particle immersed in a Lennard-Jones fluid [Rull
1989]. He had shown that diffusion coefficient is independent of the mass when the
Brownian particle has the same volume, as the solvent particle and only a weak mass-

dependence appears when the volume of Brownian particle is increased.

The Brownian particle inertia has been included in standard methods using
Liouville equation [Sack 1956] and Langevin equation [Chandrasekhar 1943, Wang
1945]. Gross has discussed a number of possible types of collisions [Gross 1955]. He
categorized collisions on the basis of mass and size of surrounding medium particles

and the floating Brownian particle viz: (i) small collisions where surrounding medium

particle are much smaller than floating particle (ii) large collision where surrounding
medium particle are considerably larger than floating particle and (iii) very large

collisions where the surrounding medium particle are disproportionately larger than

floating particle.

The next important stage in Brownian motion is an overlap of conventional
modeling on Brownian motion and application of Brownian motion theory in nano-

domains. The review of work in this last stage is presented next.

2.3.4 Stage I[V-Brownian Motion in Nano-domains

Atomic_force_microscopy (AFM) technique for surface characterization at
atomic scales was developed in mid-eighties [Bining 1985], which has brought
revolutionary advancement in nanotechnology and has opened new frontiers in science.
In the AFM technique, an atomic tip is attached to a freely vibrating cantilever, which is
used to scan the surface and is also used as nano-robotic arm [Ratner 2003]. The
Brownian motion of freely vibrating cantilever near a clean solid surface under

ultrahigh vacuum conditions has been investigated by Dorofeyev [Dorofeyev 1999]. He
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used the concept of Brownian motion of a microparticle under the action of thermal
fluctuating electromagnetic field. The Brownian motion represents the uncontrollable
motion, which puts a limit on the spatial accuracy of manipulation. In the AFM
technique, the nano-robotic manipulations are done using macro-sized auxiliary
mechanisms. The realization of nanometer-sized nano-robots is hotly pursued in

contemporary research.

Recently, the demonstration of working nanomotors to be used as nanoactuators 5{

in nanomachines has brought possibility of making nano-robots a step closer to its
e

realization. The nanomotors are based on Brownian motion theory and are also called as
wtﬁyriﬁdfkr on the concept that it is possible to produce work from
unbiased microscopic fluctuations. The first explanation principle of Brownian motors,
now known as nanomotors, is credited to Smoluchowski [Smoluchowski 1907]. The
principle was revisited and further clarified by Feynman [Feynman 1963]. Magnasco
showed that Brownian particles subject to an external force having time correlation
could exhibit a non-zero drift speed [Magnasco 1993]. The work of Magnasco became
the foundation stone for realization of Brownian motors. Rousselet experimentally
showed a biased motion of Brownian particle [Rousselet 1994]. Austumian developed a
model on biased motion of Brownian particle [Austumian 1994]. The biased motion
also called as rectified or direction motion of Brownian particle was further studied in
the presence of periodic potential by Chauwin [Chauwin 1995]. Chen had shown that
directional motion depends not only on the length of asymmetric potential in a cycle but

also on the shape of potential function [Chen 1999].

Directional Brownian motion was used to analyze the motor protein motion by

Fox [Fox 2001]. Motor proteins are enzymes responsible for transport of biological
material in living organisms. Lyshevski discussed various key problems in modeling,
analysis, simulation and controls of nanobiomotors [Lyshevski 2001] and then in next
year developed various models on nanobiomotors [Lyshevski 2002]. Lee developed an
analytically solvable Brownian motor model [Lee 2003] while Wang discussed
mathematical theory and properties of nanomotors and presented a mathematical

framework for extracting motor potential profile from measured time series of motor
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position [Wang 2003]. Fennimore had reported fabrication and successful operation of a
fully synthetic nanometer scale electromechanical actuator [Fennimore 2003]. Girish

has presented a review on Brownian actuator models and related problems [Girish

2004].

The research on the conventional side of Brownian motion modeling also
continued simultaneously in Stage IV, where a lot of work started on modeling of
Brownian motion with fractal concept. Several methods were developed and presented
to estimate fractal dimension of Brownian motion [Zhang 1990]. Fractal dimension
provides a way to measure roughness of fractal curves representing Brownian motion
(Bransley 1993]. The fractals is a geometric model and is deficient in giving physical
interpretation to Brownian motion, but has been helpful in analyzing wider class of

stochastic problems in comparison to other approaches.

Birdsall had reviewed early attempts to incorporate Lorentz force in Brownian
motion model in environment inside magnetic fusion devices; semiconductors
processing chambers and planetary magnetosphere that show Brownian motion
coupling with magnetic fields [Birdsall 1991]. In the various models reviewed by
Birdsall, the coupling has been modeled by adding Lorentz force in the Brownian
motion model given by Uhlenbeck. Meanwhile, Verga investigated the Brownian
motion in a fixed area using method of functional integration [Verga 1991]. Before
Trefan, there were two distinct but related formalisms of Brownian motion: (i)
Langevin equation, which is stochastic and (ii) Fokker-Planck equation, which is
equation of evolution for the probability distribution that leads to deterministic partial
differential equation [Trefan 1992]. Both the formalisms are based on the assumption of
randomness at initial stages of development. Trefan had derived the traditional
description of Brownian motion relating chaos at the microscopic level to the statistical
behavior at the macroscopic level and that too without resorting to randomness
assumption. The input modeling had been done by Koyama considering generalized
Lorentzian spectrum in place of instantaneous Gaussian noise spectrum [Koyama
1992]. Koyama concluded that a randomly activated system in the steady state could be

modeled by spectrum termed as 1/f noise spectrum, where f is frequency in Hz.
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The contemporary research of Knobloch in the direction to explore coupling
between Brownian motion and flow condition had shown that diffusion enhances in
oscillatory flows and confirmed the results of Haugh published long back in 1973
[Knobloch 1992]. Clercx investigated Brownian motion in shear flow with a harmonic
potential present as an external force [Clercx 1992). He had shown that variance in
position is strongly influenced by backflow effects in the fluid resulting in non-
instantaneous correlation in velocity of the particle. Wang had shown the existence of a
non-instantaneous correlation of driving force for anomalous diffusion [Wang 1992].
Xiang investigated Brownian motion of charged particle in a stochastic magnetic field
[Xiang 1993]. Gillespie had given a continuous time random walk model, which was
called as Jump-Markov process and the predictions from his model have been found to
precisely duplicate the Langevin equation model [Gillespie 1993]. A simple model of
one-dimensional Brownian motion of single particle in a singular potential field had

been proposed by Ouyang [Ouyang 1994]. The model explores 1/f noise in place of

white noise as cause of Brownian motion.

Gillespie had given a numerical simulation algorithm that yields exact solution
of Brownian motion model [Gillespie 1996(i)]. In another work same year, Gillespie
gave a simple explanation of continuous Markov process clarifying the mathematical
connection between the two very different approaches to Brownian motion taken by
Einstein and Langevin [Gillespie 1996 (ii)]. Hernandez-Contreras modeled the
translational and rotational Browmian motion of a non-spherical particle with
surrounding medium composed of spherical particles [Hernandez 1996]. Raikher had
studied a two-dimensional rotational Brownian motion in Maxwellian fluid [Raikher
1996] and Katayama solved the stochastic equation to study Brownian motion under a
steady homogenous flow and presented the analysis of the effect of shear on Brownian

motion of free particle in more explicit and pedagogical way in comparison to earlier

works [Katayama 1996].

Chow had shown anomalous diffusion of microstructures on quenched surfaces
because of correlated non-Gaussian noise [Chow 1997]. The modeling of diffusion

coefficient has enabled analysis of some special modes of Brownian motion observed in
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bio-species [Saxton 1997]. The anomalous diffusion [Bouchard 1990, Fedder 1996] and
Corralled motion [Saxton 1990, Kusumi 1996] are such special modes, which have been
investigated extensively. Srokowski solved the Langevin equation with the stochastic
force having a correlation inversely proportion to time [Srokowski 1998]. Leggas
observed the Brownian motion of red blood cell (RBC) in flowing blood and found that
motion is anomalous mode of diffusion [Leggas 1999] while Lemons obtained an exact
solution to coupled Brownian motion model of a charged particle in a steady uniform

magnetic field [Lemons1999].

The Omstein-Uhlenbeck model of Brownian motion [Uhlenbeck 1930] has been
modified considering mean in position to be proportional to displacement and the
variance in position to be constant by Grimmett [2000]. In another research, a
viscoelastic model of surrounding medium is presented by Nemoto [Nemoto 2000] to
investigate bio-species motion using passive mechanical elements viz spring and
dashpot. The approach is quite simple and promising but needs further exploration as
concluded by the investigations of Nemoto. A three-dimensional non-Markovian
rotational Brownian motion model had been reported for axisymmetric particles moving
in Maxwell fluids by Volkov [Volkov 2001]. Mori had developed a projection operator
method for the statistical formulation of chaotic or turbulent transport and has
transformed the deterministic non-linear equation to a stochastic equation modeling
Brownian motion [Mori 2001]. Czopnik extended the work on Brownian motion in
magnetic field describing the stochastic process completely [Czopnik2001] while
Srokowski extended his earlier work using various types of colored noise expressed as
Kangaroo-process to explore generalized Langevin equation [Srokowski 2001]. Cao has
confirmed the earlier observations on Brownian motion in heterogeneous surrounding
medium comprising of many ingredients [Cao 2001] and Piasceski has extended the
study to investigate inhomogeneous medium with unequal temperature and density
[Piasceski 2002]. These studies have shown that Brownian motion is non-markovian in
an inhomogeneous environment. Lim studied some Gaussian-models for anomalous
diffusion [Lim 2002]. The study indicated that single parameter description commonly

used in earlier works on anomalous diffusion is insufficient to characterize the
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underlying mechanism. The recent work of Benesch improves on the theory of

Brownian motion in confinement [Benesch 2003].

The investigation of the motion of Brownian particles, which have the ability to
take up energy from the environment, to store it at an internal depot, and convert
internal energy into kinetic energy, had been done by Schweitzer [Schweitzer 1998].
The developed model adds an extra acceleration term in Langevin equation. Schweitzer
has discussed the model in context to biospecies where external supply of energy is
crucial to maintain metabolism. Deng has introduced the concept of active Brownian
particles, which refers to the particles that can store energy [Deng 2004]; the stored
energy can be used for active motion of the particle and has potential application to
motion of biological and social swarms. He had used stochastic averaging for quasi-

integrable Hamiltonian system representing stationary distribution for the motion of

active Brownian particles.

The work of Schweitzer and Deng suggests the storage of energy by Brownian
particle. Schweitzer model is simple to understand and is based on energy balance
equation. Deng had given a complicated mathematical model of active Brownian
particle motion. Neither of the work talks of storage of thermal energy. A review on
Brownian motors in the present chapter in Section 2.3.4 suggests that thermal energy

can be utilized effectively. A storage device can store thermal impact energy and can

utilize that in the motion.

Moreover, in nano-size regime, the surrounding particles become considerably
similar and comparable, in size to floating nanoparticle. It is possible to attain extremely
high fundamental frequencies while simultaneously preserving very small spring
constants in nano-domains [Roukes 2000]. It has been observed also that the

nanoparticles have low values of spring constant k [Wong 1997] and not infinite as in

- e ————

case of rigid body model of nanoparticle, which suggests that in nano-domains, local

deformations are of appreciable magnitude and must affect overall motion. Therefore,
the additional property like elasticity represented by spring constant should be included

in nanoparticle motion modeling. The analysis of motion assumes particle to be rigid in
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the entire literature available on Brownian motion. The rigid body assumption implies

that the motion of the body is not influenced by the deformations of the particles caused
by the applied forces, which is contrary to suggestions emerging in nano-domains. In
order to develop non-rigid models, impact transfer models have been developed
[Sharma 2004(i)] and general approach of systems-modeling has been used to develop
models for non-rigid nanoparticle Brownian motion [Sharma 2004 (ii)]. A modeling of
input in non-rigid models has been attempted [Sharma 2003 (ii)]. All these
developments are discussed in detail in this thesis. In order to attempt to model for

dynamics of nano-robotic manipulator attributable to thermal agitation, the major

approaches to dynamics are detailed next.

2.4 REVIEW OF DYNAMIC MODELING

The science of dynamics has its objective of study of motion of material bodies,
and its aim is to describe the facts concerning the motion [Kittel 1981]. The modeling of
dynamics has a long history of development dating back to the era of Greek and Roman
civilizations, which proposed theoretical hypotheses concerning the relationship

between force and motion.

The postulates in dynamics have been evolved through seventeenth to twentieth
century to take present days shape. Initial developments were in two distinct parts, one
was for describing terrestrial bodies such as projectile or a pendulum, and the other was
for dealing with celestial bodies, in particular the planets. Sir Issac Newton brought
these two apparently distinct approaches together, whose book Principia Philosophiae
(1686) is rightly acknowledged as the first complete formulation of classical theory of
dynamics. The theory today stands well developed to be applied to a very wide range of

physical situations. Some concepts have been clarified and others have been added with

the passage of time.

A new scientific thinking of relativity emerged in the first part of twentieth
century, which tried to discard Newton’s theory. The concepts of space-time
relationship were introduced. A new theory of gravitation put forward the involved

concepts of curved space. These were a shock to generation that had been schooled on
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the Euclidean space concept. Quantum theory was an additional blow to Newton’s
formulation. But, these new theories of relativity and quantum mechanics were found to

be supplementing Newton’s classical dynamic theory [Blinder 1974, Taylor 1976].

Newton’s formulation builds up with the definition of force. Force being a
vector quantity, the Newton’s approach to dynamics becomes cumbersome and difficult
to be applied to multi-degree of freedom dynamic systems. The other formulations like
Lagrange-Euler (1759) and Newton-Euler (1744) were developed which ensured the
analysis of complex dynamic system in an easier way. The Lagrange-Euler formulation
is a scalar approach to dynamics and builds upon two concepts namely, work and
equilibrium. Since dealing with scalar quantities is easier, the approach is well suited
for multi-degree of freedom systems where vector approach can be difficult. Bernoulli
(1749) proposed a principle that described the equilibrium of static system in terms of
work components, and D'alembert ( 1750) extended the principle to include dynamic
systems. Lagrange used these postulates as foundation to complete the energy based

formulation of dynamics [Goldstein 2002], which for an n degree of freedom system is

d(an) (oa
AEHE)- 2

where i = 1, 2..., and A = KE - PE is known as Lagrangian or Kinetic potential of the
system; KE is the kinetic energy and PE is the potential energy of the system; g; is the
i" generalized coordinate and 7, is the generalized force at i" degree of freedom.
Another useful model found in literature is Hamiltonian formulation and is presented in
Housner [Housner 1961]. The Hamiltonian approach considers some property of the
dynamic system over its entire motion to be maximum or minimum. This concept is a
further step over scalar dynamics of Lagrange-Euler. According to Groesberg, it is
possible to analyze dynamic systems using Hamiltonian approach where very little

information is available about the system and other approaches fail [Groesberg 1968].
The nano-dynamics 1s governed by classical model with substantial contribution

from stochastic forcing due to thermal agitation from surrounding medium [Fujimasa

1996]. The major approaches to model Brownian motion are briefed in next part.
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2.5 ANALYTICAL APPROACHES TO MODEL BROWNIAN MOTION
In a dilute solution; there is a process of diffusion' of solute, which is caused by
the Brownian motion of the suspended molecules. Another process proceeding in the

opposite direction of the diffusion also occurs and is known as Osmosis’.

A mathematical modeling of this phenomenon, based on the kinetic molecular
theory of heat, gives an expression for the diffusion coefficient. This coefficient was
found to be independent of the nature of the solution except for the viscosity of the

solvent and for the size of the solute molecules.

The unpredictable and irregular features of Brownian motion come under the
purview of broader area of stochastic processes [Karlin 1966]. There are three major
approaches to the problem emerging from literature review done in the present chapter
namely: (i) Langevin Equation (ii) Diffusion Equation and (iii) Geometric approach

using fractal concept.

In Langevin equation approach, the attention is focused on the actual random
variation in time of the displacement, or voltage or whichever variable of the system,
one is interested in. According to Wang, the method has been applied systematically to
a whole series of problems and is also khown as Fourier series method [Wang 1945]. In
modeling of Brownian motion, the spectrum can be found from Langevin equation. For
free particle, which is defined as, not bound by any extemél force, the Langevin
equation is given as [Papoulis 1991}

m% =—f+F(@)+F,(@1) (2.2)

where m is the mass of particle, fis the damping coefficient of the surrounding fluid

and v is the velocity of the particle, F (t) and F, (t) are external forces of stochastic and

deterministic nature, respectively.

! Diffusion: A process of interpenetration between two substances without chemical combination, by the
natural movement of the particles.

2 Osmosis: It is the passage of solvent from a less concentrated into a more concentrated solution through
a semi-permeable membrane i.e. permeable to the solvent but not to the solution.
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According to Ochi, a time domain solution of equation (2.2) using convolution

integrals is termed as correlation technique of solving stochastic differential equations

[Ochi 1990]. The correlation technique and the application of the technique to free

particle are detailed in Appendix I. The response to stochastic force can be obtained in
terms of variance in position, denoted by E {xz(t)}, using correlation technique, where

x(t) represents the position of the particle at time ¢.

In correlation technique, the first step is to obtain the autocorrelation of the
driving force by taking Fourier transform of the spectrum of the driving force. The
autocorrelation is the expected value of the product of a physical variable at two
instances of time. The expected value of the product at same time is known as variance
of the variable. Once the autocorrelation is obtained, the next step is to get cross-
correlation between the driving force and the position of the particle, which is obtained
by evaluating convolution integral between autocorrelation of driving force and the
impulse response of the dynamic system. Further convolution of cross-correlation with
impulse response of the system yields the autocorrelation of the position of the particle.
The variance in position can be obtained considering two instances of time in
autocorrelation of the position to be same time. For a free particle, the variance is given

as (Refer Appendix I for details)

Ef? ()= 2;3 (-e?)2Bt-1+e*") (2.3)
2T,
where a= ;zf (2.4)

with & =1.3807x102J/K as the Boltzman’s constant, § = f/m and T as absolute
temperature. The model given by equation (2.3) is called as Ornstein-Uhlenbeck model
and is the Brownian motion model of a rigid small-sized particle. Substituting ¢ >> 1/
in the eguation. (2.3) renders the exponential terms as negligible and the model reduce

to Einstein’s model [Einstein 1905], that is:

E{(t))= % @.5) <
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The Einstein’s model, equation (2.5), is a linear variation of variance in position
of Brownian particle with respect to time. The Omstein-Uhlenbeck model is the most
established rigid body model of Brownian motion and will be used for comparison with

non-rigid Brownian motion models developed in this work.

2.6 EPILOGUE

The present chapter reviewed the development of Brownian motion theory since
the observation of Brownian motion in 1827 with a view to identify the need for
investigation on Brownian motion in nano-domains. The recent advancement in
nanotechnology has revived interest in Brownian motion in nano-domains. The review
further contained citation of developments on nanodevices using Brownian motion. A

note on dynamics attributable to Brownian motion approached from classical dynamics

was elaborated.

The later part of the chapter contained a review of major approaches to model
Brownian motion and identification of non-rigidity as a matter of concern in nano-
domains. The properties like, elasticity and dissipation of surrounding medium have
been modeled and explored extensively by many researchers but the floating Brownian
particle is assumed rigid in available literature. Since the surrounding medium molecule
and nanoparticle are similar in nano-domains, it suggests that elasticity and dissipative
properties of nanoparticle should also be considered in motion analysis. As the
Langevin equation approach considers properties of particle and medium, it is used to

develop the new models of Brownian motion in nano-domains.

As the first approach to develop Brownian motion models of non-rigid
nanoparticle, an impact transfer model is obtained for Omstein-Uhlenbeck Brownian
motion model in next chapter. A few alterations of the Omstein-Uhlenbeck’s rigid body
model with inclusion of non-rigidity and dissipative properties are attempted to develop
the Brownian motion model of non-rigid nanoparticle in next chapter.
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Ignorance more frequently begets confidence than does knowledge:
it is those who know little, and not those who know much,
who so positively assert that this or that problem will never be solved by science

Clankes Derwin

CHAPTER 3

IMPACT PROCESS MODELING OF BROWNIAN MOTION
OF NANO-SIZED BODIES

3.1 INTRODUCTION

In the previous chapter, it was pointed out that non-rigidity of nanoparticle is a
matter of concern in nano-domains. The effect of inclusion of non-ngidity of
nanoparticle on Brownian motion needs to be explored. As the first approach to include
the non-rigidity of nanoparticle, the Brownian motion model is investigated from the
viewpoint of impact process. The models for impact process in rigid and non-rigid body
are developed in this chapter. The impact transfer in rigid body model is developed first.
The non-rigid model is developed by exploring possible variations of the impact process
in rigid body model required for including elastic and dissipative properties of

nanoparticle. The next section presents the non-rigid model of nanoparticle.

3.2 MODEL OF NANOPARTICLE

The Brownian motion of small-sized particle in a fluid is because of continuous
random impacts from the surrounding medium. It is assumed that impacts occur from
all directions and are impulsive in nature. The small-sized particle is non-rigid in nano-

domains. The model of nanoparticle is given in next section.

3.2.1 Non-Rigid Nanoparticle Model

In rigid body models, the nanoparticle is modeled as a sphere of radius r and
proof mass m and it is assumed to have no elasticity and dissipative properties. In
reality, the nanoparticle consisting of large number of atoms can be modeled as a
combination of number of spring-mass-dashpot systems oriented or attached randomly

in the spherical space as shown in Fig. 3.1(i).
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(i) Nanoparticle Consisting of Number of Spring-Mass-Dashpot Systems

o)k

Mass (m) Spring (k) Damper ()

(1) Three Lumped Parameters of a Nanoparticle

Fig. 3.1 Model of Nanoparticle and its Lumped Parameters

In a lumped parameter model, the proof mass of nanoparticle m is the lumped
mass of all mass elements (matter). Similarly, equivalent structural/hysteretic damping
is represented by the lumped coefficient ' and lumped spring constant is k as shown in
Fig. 3.1(ii). The damping coefficient of nanoparticle is represented by f’ because fis
widely used in literature to represent damping characteristics of surrounding medium.
The rigid body model of nanoparticle has only mass corresponding to a matter having
perfect rigidity (k =) and non-dissipative nature (f*=0). The simplified rigid body
model of nanoparticle has been analyzed widely in the available literature. In the
present work, the non-rigid model of nanoparticle that includes passive elements k and

£ accounting for elastic and dissipative behavior of matter, is considered.

3.2.2 Impact Transfer Process

Consider a non-rigid nanoparticle and assume it receives only one impact from
some random direction. The nanoparticle being non-rigid will be deformed i.e. the
nanoparticle will get compressed at the impact site. This is considered as local motion

of the nanoparticle. The nanoparticle will also move (get displaced) from its location.

This is considered as global motion of the nanoparticle. In the rigid body model, there is

no local motion. The non-rigid nanoparticle will experience resistance to both global

and local motions. The resistance to global motion is offered by the damping
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characteristics of the surrounding medium, while the resistance to local motion is due to
dissipative properties of nanoparticle. It is logical to assume that there is a coupling of
the resistance offered by the medium and nanoparticle to global and local motions of
nanoparticle. The resistance to global motion from surrounding medium has been

explored extensively and is briefly described in next section.

3.3 RESISTANCE TO GLOBAL MOTION OF NANOPARTICLE

The resistance force from the medium is the resisting force to global motion and
has been modeled for rigid Brownian particles in available literature. The Stokes
approximation of resistance force from the medium is the most established model under
normal temperature and pressure conditions. In Stokes approximation, the resisting
force is proportional to the velocity x of the particle and the proportionality constant,
called as damping coefficient f, is equal to 6mr7, where 7 is the viscosity of the
surrounding medium [Uhlenbeck 1930]. The formulation of f gets modified to 4mrn for

the assumption that there is no adhesion of surrounding medium molecules with
nanoparticle [Zwanzig 1970]. The consideration of time-dependent velocity correlations
also modifies Stokes model of resistance force to global motion. The time dependent
Stokes approximation is also known as Bossineq-Basset correction [Landau 1960]. The

resi;pance to global motion also depends on ﬂolgomditio___g_gzirequency of excitation,

and viscoelastic consideration of smrogdip_g‘r_l_l_egig_rg [Chow 1972].

The present thesis explores the non-rigidity of nanoparticle assuming the

surrounding medium being characterized by a viscous steady flow condition. The

resistance to local motion is presented next.

3.4 RESISTANCE TO LOCAL MOTION OF NANOPARTICLE

In the physical sense, the nanoparticle absorbs a part from the total energy of 0
impact given to nanoparticle, another part is dissipated and the remaining energy is\
utilized in causing a motion of the nanoparticle. The dissipation of energy characterizes

the resistance from nanoparticle to impact from surrounding medium. Whereas the
resistance to global motion comes from the surrounding medium, the resistance to local

»
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motion comes from the nanoparticle itself. A cue from resistance to global motion has
been taken to model resistance to local motion. Therefore, as f characterizes resistance

to global motion, the parameter f* is assumed to characterize the resistance from

nanoparticle to local motion.

The total resistance to motion is assumed to be characterized by a combination
of f and f'. The total resistance is represented by f, , which opposes the impacts.
The impacts are stochastic in nature and are defined by autocorrelation. The

autocorrelation of impact R, (t,,2,)has been obtained in case of rigid body model as

[Nyquist 1929]
R;?F(’l;tz)=2’<7f5(f) (3.1)
where &(z) is unit impulse at time 7 . In non-rigid nanoparticle since total resistance is

fo,» this suggests a modification of autocorrelation of impacts obtained by replacing f*
with f, in equation (3.1) as

Rer (6,,1,) = 2xT1,,6(c) (32)
The modified impacts can get transmitted to inertial element m of nanoparticle
in number of ways resulting in different models of impact transfer. The impact transfer

models for rigid and non-rigid nanoparticle are developed next.

3.5 MODEL OF IMPACT TRANSFER FOR RIGID NANOPARTICLE

A nanoparticle embedded in a viscous fluid is subjected to random impacts. Due
to these impacts, the nanoparticle performs global and local motion. The resulting

motion x(t) of the nanoparticle can be obtained using correlation technique. The motion
being stochastic in nature is expressed in terms of mean and variance of x(t). The

Langevin equation, equation (2.2), represents the model of a rigid nanoparticle

performing Brownian motion in a viscous fluid. Assuming deterministic forces
F,(t) =0, the equation (2.2) is

dv
m;——ﬂ”’(t) (3.3)

The substitution of velocity v = dx/dt in equation (3.3) and rearranging gives
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where S = f/m and n(t) =F (t)/ m is a stochastic process called white noise. The white
noise is the actual input from the surrounding medium to the nanoparticle. The

autocorrelation of F (t) for rigid nanoparticle is given by equation (3.1). The
autocorrelation of n(t) is obtained by dividing the autocorrelation of F () by the square
of constant quantity m [Papoulis 1991]. Therefore the autocorrelation of n(t) for rigid

nanoparticle is given as

Ry (0,12) =22 o) (3.6)
or R, (t.1,)=a 8(r) 3.7

where a = 2«Tf /m® . The autocorrelation and variance of the output x(r) for the rigid
nanoparticle model given by equation (3.5) in the time interval # andr, can be

obtained as (equations 1.25 and 1.26)

va(tl’tz)='2_%_3-(2ﬂtl _1+e'ﬂ‘|)(1_e-ﬂlz) — (38)
and E{x*(}= 2;, @a-1+e* )(1-e7) ~ (3.9

The detailed derivation of equations (3.8) and (3.9) are given in Appendix I. The
first step to obtain the variance equation (3.9) using correlation technique is to integrate
the equation (3.5). The integration of equation (3.5) gives

dx dx,
:17——07[—+,8(x—x0)=jn(t)dt oo (3.10)

where x, is the position of particle at £, = 0, dx,/dt is velocity of nanoparticle at
t, =0. In order to develop an impact transfer model of rigid nanoparticle Brownian

motion given by equation (3.10) following assumptions are made. The integral on right

hand side is denoted as
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w(t)= [n(e)dt (3.11)

where w(t) is the integrated white noise. The w(t) is the modification of n(¢) by the

integrator and can be obtained by performing the convolution integration of n(t) with

the impulse response of integrator. The impulse response of the integrator is unit step _

e L

given as

g(z)=U(r) (3.12)

The convolution of n(t) with g(z') to obtain w(t) is conventionally represented as
w(t)=n(r)* g(z) (3.13)
In order to represent convolution given by equation (3.13) in the impact transfer,

a block diagram is used as shown in Fig. 3.2.

) el MO

Fig 3.2 Integration of White Noise

Assuming x, =0 and velocity §5_stationary that 33 dx, /dt = v,, equation (3.10)
B

gets modified as

&

ii"__vo+ﬁx=w(t) O (3.19)
dt

Next, the rearrangement of equation (3. gives a first order differential

equation in terms of position of nanoparticle as

dx
— HAE= W)+, (3.15)

The right hand side of rearranged equation (3.15) is like augmenting w(t) with
v, - The augmented signal w(t)+ v, 1s called as modified white noise and is denoted by
y(t). The modified white noise is shown by adding v, to w(t) in Fig. 3.3.

|vo

n() g(o—" ¥

Fig 3.3 Modified White Noise
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Equation (3.14) can be written as

% + fr = y(t) (3.16)

It can be interpreted from equation (3.16) that the modified white noise y(z) is
forcing function to the system modeled by left-hand side of equation (3.16). The x(¢) is
the modification of the input signal y(t) by the system and can be obtained by doing

convolution integration of autocorrelation of input y(t) with impulse response of the

system. The convolution integration step gives the Omstein-Uhlenbeck model given in

equation (3.9). The impulse response h(z) of the system represented by equation (3.16)
is given as [Nagrath 1993]

he)=e"" (3.17)

The convolution of y(t) with h(r) to obtain x(t) is conventionally represented

as
x(t)= y()* h(z) (3.18)
In order to represent convolution given by equation (3.18) in the impact transfer,

the convolution is shown by a block with impulse response #(z) and is attached to Fig.

3.3 completing the impact transfer model in rigid body as shown in Fig. 3.4.

Vo

n(t) 20 w(?) y(t) h(s) x(t)»

Fig. 3.4 Impact Transfer Model for Rigid Nanoparticle

The irﬁpact transfer model in Fig. 3.4 is referred as Model 1 and represents the

Brownian motion of rigid nanoparticles. In order to develop impact transfer models of
Brownian motion of non-rigid nanoparticle, non-rigid sub-system is included in the
rigid body impact transfer models. The non-rigid sub-system model of nanoparticle is

given in next section.
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3.6 SUB-SYSTEM MODEL OF NON-RIGID NANOPARTICLE

It is assumed that the properties of nanoparticle are characterized by lumped
parameters. The mass, elasticity and dissipation properties of non-rigid nanoparticle are
characterized by parameters m, k and f"' respectively. In order to develop a model of

non-rigid nanoparticle, the non-rigidity properties k¥ and f' are assumed as a sub-

system of the elements k and f' with an impulse response A (r)

The choice of the sub-system is arbitrary since a priori knowledge on the
interaction among the parameters is not available. The concept required to be explored
for the first time and it was assumed to start with a fixed arrangement of elements.
Assuming that dissipation of energy from incoming signal to sub-system occurs first

through a resistor and remaining energy is stored in a capacitor, the sub-system is

shown in Fig. 3.5 with electrical analogous quantities resistance (f') and capacitance

(1/k) using force-voltage analogy.

—AN——

f

z 1k — z

—

Fig. 3.5 Non-Rigid Properties Sub-System for Non-Rigid Nanoparticle
This is the conventional resistance-capacitance circuit with input z, output z'.

The mathematical model for the sub-system in Fig. 3.5 is given as
1d? + z—', =z (3.19)
kdt f

The impulse response H(z') for the system given by equation (3.19) is [Nagrath 1993]
H(t)=a'e™" (3.20)

’

where o' =k/f’.The output z' is obtained by performing the convolution integral of
input with the impulse response H (r) conventionally given as

2'(t)= 2(t)* H ) 3.21)

36



The convolution in equation (3.21) is shown with the block diagram in Fig.3.6

as impact transfer in non-rigid sub-system.

2(t) e 2O

—__>.

Fig. 3.6 Impact Transfer Model for Non-Rigid Sub-System

The conjuncture is that this sub-system is included in the impact transfer model
of rigid body developed in section 3.5 to get a new Brownian motion model to describe
Brownian motion of the non-rigid nanoparticle. The exercise of its inclusion in the
impact transfer has been explored by considering various possibilities is next step. Thus,
a two-step modeling approach has been used for development of Brownian motion
models of non-rigid nanoparticle considering first the modeling of nanoparticle and then
that of impact transfer itself. The impact transfer models of non-rigid nanoparticle are

obtained in next section.

3.7 MODELS OF IMPACT TRANSFER FOR NON-RIGID
NANOPARTICLE

In the non-rigid model of nanoparticle, integrated white noise acts on the proof
mass through the sub-system shown in Fig. 3.5 containing transmitting elements f' and
k. The impact transfer model developed for rigid nanoparticle, earlier in this chapter, is

modified to include the non-rigid properties sub-system in four different possible ways.

To start with, it is contemplated that immediately after the integration of the
impact; a part of the impact energy gets dissipated because of presence of damping
property of nanoparticle. The remaining energy is absorbed as strain energy of spring
representing elastic property of nanoparticle. The energy stored in contemplated spring
element gets released at a frequency @ . The released energy is in the form of another
force signal Y(t) to be applied to further sub-system in impact process. The next sub-
system to which the force signal is applied is the rigid body model with impulse
response given by equation (3.17). The impact transfer model is shown in Fig. 3.7 and

is referred as Model 2. "
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n(?) 0] Y(0) x(?)

—8(x) > HE) ——™ W) [—

Fig. 3.7 Impact Transfer Model 2 for Brownian motion of Non-Rigid Nanoparticle

Alternate models for impact process are obtained by considering possible
variations. A possible alteration is that individual impacts first get modified by the non-
rigid sub-system and then gets integrated. It is like individual impact, first @ energQ\M
and then remaining part of energy gets absorbed in the nanoparticle. The synchronized
release of remaining energy in the form of a forcing signal z'(t) gets integrated next.

The integrated signal representing a force is applied to rigid model sub-system. This is
like integration is done after the hypothesized non-rigid sub-system with impulse

response H(t). This is shown in Fig. 3.8 and is called as Model 3.

n(t) Z(1) Y@ x(f)

—— H(1) —*8(%) = h(r) |

Fig. 3.8 Impact Transfer Model 3 for Brownian motion of Non-Rigid Nanoparticle
NERRENY)

The Model 2 and Model 3 presents possibilities of the placement of sub-system

r

on either side of integrator, but may be no integrator is present in the impact transfer in
Browniagl r_gl_gt’i‘(_)n. The non-existence of integration in impact transfer physically
implies that signal does not change its form from input to output and both represent
either-force (noise) or position. At least, there seems to be a need to explore the motion
because of impact transfer without integration. The impact process without integration

is shown in Fig. 3.9 and is referred as Model 4.

n(t) i z(t) x(t)
——-—.—E H (1;) ———— - h('[) —

Fig. 3.9 Impact Transfer Model 4 for Brownian motion of Non-Rigid Nanoparticle
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The last and fifth model of impact transfer in non-rigid nanoparticle, Model 5, is
obtained by considering presence of integration on both sides of non-rigid sub-system.
The double integration hypothesizes another model of impact process in non-rigid
nanoparticle. If the output signal is to be position of the particle, then as we move

backwards to the input signal (white noise) through elastic sub-systems, the double

“\, integration model should physically mean that input signal is a higher order
\

\

3
jerk(z -‘;——3{] The integration of Y(t) gives u(t), which is input to the rigid
t

A et

nanoparticle system. The Model 5 is shown in Fig. 3.10.

n(?) w(?)

——-g(t)

Y0

. (t )
1H (1) el - _._r(t)

&) h(7)

Fig. 3.10 Impact Transfer Model 5 for Brownian motion of Non-Rigid Nanoparticle

In order to compute the variance in position for impact transfer models, the
mathematical models of every sub-system in each model is developed. The

mathematical models relate the input and output of the sub-system with impulse

response and are represented as a differential equation. The mathematical models are

given in next section.

3.8 MATHEMATICAL MODELS FOR IMPACT TRANSFER MODELS
The rigid nanoparticle impact transfer model is obtained from mathematical

equations (3.10) through (3.18) where each equation correspond to a sub-system or

process depicted as blocks or variable. For reference and completeness sake, the

mathematical equations for each block representing a sub-system in impact transfer
models, Model 2 through to Model 5 are presented.
3.8.1 Mathematical Model for Model 2

From Fig. 3.7, it is observed that integrated white noise w(t) is input to non-
rigid sub-system. With w{t) as input and Y(f) as output in non-rigid sub-system,

equation (3.19) becomes
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P + 7 = w(t) (3.22)

The signal ' (t) is input to the rigid nanoparticle system with impulse response
h(z). For the rigid nanoparticle block shown with impulse response k(z) in Fig. 3.7
with input Y(¢) and output x(t), the differential equation is obtained by replacing

w(t)+v, by ¥ (¢) in equation (3.15) as

dx
=4 =) (3.23)
dt

Equations (3.22) and (3.23) are used to obtain variance in position for Model 2.

3.8.2 Mathematical Model for Model 3

From Fig. 3.8, it is observed that an individual impact of white noise is input to
non-rigid sub-system. The output from the non-rigid sub-system is z’(t). The
mathematical model for the non-rigid sub-system is obtained by replacing z(¢) by n(¢)

in equation (3.19), which gives

1dz(), 2() _
G =) (324)

The signal z'(¢) is first integrated and then is input to the rigid nanoparticle
system. With z'(f) as input and y'(t) as output of the integrator. equation (3.11)

becomes
y'(@)= [2(e)dr (3.25)
The »'(t) is input to rigid nanoparticle system with x(t) as output. The
mathematical model for rigid nanoparticle system is obtained by replacing w(t)+v,
with y’(t) in equation (3.15). The mathematical model obtained is given as
%*ﬂx:y'(’) (3.26)

Equation (3.24) to equation (3.26) are used to obtain the variance for Model 3.
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3.8.3 Mathematical Model for Model 4
From(Fig. 3.7 and Fig. 3.8, it is observed that in Model 4, there is no integration

of z'(t). In Model 4, z'(f) is a direct input to the rigid nanoparticle sub-system, which
otherwise is similar to Model 3. Therefore the mathematical model for Model 4 is
obtained from that given for Model 3 by omitting equation (3.25) and replacing y’(t) by
z'(t) in equation (3.26). The two equations giving mathematical model for impact

transfer model, Model 4, are

1d20), 2(0)
PRRRT =n(t) (3.27)
%  pr=2() (3.28)

Equation (3.27) and (3.28) are used to obtain the variance for Model 4.

3.8.4 Mathematical Model for Model 5
From Fig. 3.7 and Fig. 3.10, it is observed that in Model 5, there is an additional

integration of Y(t). The mathematical model for first integrator sub-system is same as

equation (3.22) as

L av(), 76) _
Tt 7 = wt) (3.29)

The integrated Y() represented by u'(t) is input to the rigid nanoparticle sub-
system. The mathematical model for additional integrator sub-system is obtained by
replacing n(f) and w(t) with Y(¢) and u'(¢) equation (3.11) as

w'(t)= [r(e)ar (3.30)

With u'(t) as input to rigid body sub-system, equation (3.15) becomes

%+ﬂx=u'(t) (3.31)

Equation (3.29) to equation (3.31) are used to obtain the variance for Model 5.

In order to obtain the variance models, the algorithm to develop variance models for

non-rigid nanoparticle is given in next section.
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3.8.3 Mathematical Model for Model 4
From(Fig. 3.7 and Fig. 3.8, it is observed that in Model 4, there is no integration

of z'(t). In Model 4, z'(t) is a direct input to the rigid nanoparticle sub-system, which
otherwise is similar to Model 3. Therefore the mathematical model for Model 4 is
obtained from that given for Model 3 by omitting equation (3.25) and replacing y'(t) by
z'(t) in equation (3.26). The two equations giving mathematical model for impact

transfer model, Model 4, are

1d2'(e)  2'(e)
=t =) (3.27)
% + pr=2() (3.28)

Equation (3.27) and (3.28) are used to obtain the variance for Model 4.

3.8.4 Mathematical Model for Model 5
From Fig. 3.7 and Fig. 3.10, it is observed that in Model 5, there is an additional

integration of Y(¢). The mathematical model for first integrator sub-system is same as

equation (3.22) as

1dY(]) Yl _
P + 7 =w(t) (3.29)

The integrated Y(¢) represented by u'(t) is input to the rigid nanoparticle sub-
system. The mathematical model for additional integrator sub-system is obtained by
replacing n(t) and w(t) with Y (t) and u'(t) equation (3.11) as

w'(f)= [¥(e)at (3.30)

With u'(t) as ‘input to rigid body sub-system, equation (3.15) becomes

%+ﬂx=u'(1) (3.31)

Equation (3.29) to equation (3.31) are used to obtain the variance for Model 5.
In order to obtain the variance models, the algorithm to develop variance models for

non-rigid nanoparticle is given in next section.
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3.9 DEVELOPMENT OF VARINCE MODELS FOR NON-RIGID
NANOPARTICLE

The mathematical models for variance of four impact transfer models developed
in the last section, is carried out in a systematic manner. The systematic procedure is

given in the form of an algorithm below. The variances of the models are obtained using

this algorithm.

Algorithm 1: Algorithm for Computing Variance

Let the autocorrelation of a physical variable z is denoted by R_(¢,,,), where
t,andt, are two instances of time (tl <t2). If input to a sub-system in the impact
transfer models is z and output is z', then autocorrelation of z* (R...(,,¢,)) is obtained

using following steps:

Step I Get autocorrelation of input signal R, (¢,,¢,) as follows

IF input is white noise AND nanoparticle is modeled as non-rigid, THEN

autocorrelation R_ (t,,,) obtained replacing f by f,, in equation (3.6)

R, (t.1,)= ————ZKT)f:’f(T) (3.32)

ELSE the autocorrelation R_(t,,?,) is the autocorrelation of output from

previous sub-system.

Step II Obtain impulse response A(t) of the sub-system as follows

GET the mathematical model of the sub-system.

TAKE the Laplace transform of the mathematical model. -
OBTAIN the transfer function from Laplace transform. o °Q (TE)
OBTAIN the impulse response of the sub-system by takaéuFourmEéé&@; (;f

-
transfer function.

Step III Compute cross-correlation between input and output as follows

42
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The cross correlation is obtained from equation (I.7), which for input z and

output z'(t) becomes

Resltty) = [Ro(t, —t)h(e)dr (3.33)

Step IV Compute autocorrelation of output of sub-system as follows

The autocorrelation is obtained from equation (I.9), which for output z'(¢)
becomes

Rotpt) = Rty ~ohede (:34)

Step V IF the sub-system is last one in the model, go to Step VI
ELSE go to Step I and repeat the steps for next sub-system.

Step VI Compute variance of output of model as follows

The variance of the output of the model E {xz(t)} is obtained using equation

(1.10), which for output x{r) is

Ex* @O} =R, (1) (3.35)
The above algorithm is applied for computation of variance in position of
nanoparticle to each Models 2 through 5. The detailed computations are given in next

section.

3.10 VARIANCE FOR DIFFERENT IMPACT TRANSFER MODELS

According to Step L the autocorrelation of the input to first sub-system of all
impact transfer models of non-rigid nanoparticle is white noise with autocorrelation
given by equation @ Moreover, according to Step II, we will require impulse
response of the three sub-systems in the models namely, non-rigid sub-system, rigid
body sub-system and the integrator sub-system. The impulse responses for the three
sub-systems are given by equation (3.20), equation (3.17) and equation (3.12)
respectively. These three impulse responses are used repeatedly in developing variance

models. The detailed derivation for every model is done next.
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3.10.1 Variance for Model 2
For Model 2 (refer Fig. 3.7), the first sub-system is the integrator with input n(t)

and output w(t) Using Step 1 to Step 4 of the Algorithm 1, the autocorrelation of w(t)
for rigid nanoparticle has been computed by Papoulis [1991] for ¢, <¢, as

2Tt
wa(tl’tz)= m‘zfl (336)

According to Step 1, for non-rigid nanoparticle, f, teplaces f in equation
(3.36), The replacement of f with f_ in equation (3.36) modifies the autocorrelation

of integrated white noise. The autocorrelation of output denoted as R, (t,,tz) from

first sub-system of Model 2, therefore, is given by

2kTf 1,
mz" (3.37)

Ry (tl’t2)=
From Fig. 3.7, it can be observed that the output from first sub-system with
autocorrelation Ry, (t,,¢,) is input to the second sub-system of the Model 2 with

impulse response H(t). For the second sub-system of Model 2, the mathematical model
for Step II, relating input and output is given by equation (3.22). From the Step III of
the Algorithm 1, the cross-correlation between the output ¥(¢) from second sub-system

and the modified input #(¢) is obtained as

Ry (t,,1,) = mme,,(zl -7,t,)H(zr)dr (3.38)

Substituting for H(7) from equation (3.20), R, (t,,¢,) from equation (3.37) and

replacing ¢; with ¢, —7 in equation (3.38) gives

ZKIf ! -a't
Ry (1, )= 'm—zeq I(t, ~7)a'e™" dr (3.39)
0
2kTf, a"" , ,
or Ryy (tl ,tz) = ___,;zf?; I(t,e"" - )dr (3.40)

0
The instance #; or t, are considered as fixed parameters in evaluating the
integration and 7 is considered as variable time. The integration of equation (3.40) by

parts gives
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P i 2K7f a [ :J- - dt_{ J‘ e g .[ (r)J' -ardr}:l (3.41)

2T ) a' 1—- -a't —ar|h 4 -at
or le(tl’t2)= 2q {tl( e, )"{Te s B je ; d‘f}] (3.42)
m o -a'|, ;-a

Further solving the integral in equation (3.42), the cross correlation R, (z,,¢,) is

obtained as

2cIf, a'| 1, te™ ™ te™™ 1(1-e™
)22 [t L L]

1 —a'l.
or Ryr(t,1,)= 2fo¢‘,(4 ——+ ) (3.44)
a

a
Now according to Step IV of the Algorithm 1, the autocorrelation of the output

Y(t) from the second sub-system of Model 2 can be obtained by performing
convolution integral between cross-correlation R, (t,,tz) and impulse response H(z).

The autocorrelation of Y(¢) denoted by R,, (t, ,tz) according to equation (3.34) is given

as

Ry (t,,t,)= J’R,w (t,,1, -7)H(z)dr (3.45)

Substituting for Ry (t,,t,) from equation (3.44), impulse response H(z) from

equation (3.20) in equation (3.45) gives

2«Tf, " -at .
n'(tvtz)—_f 4 "L,’*'e ; Ja'e"" dr (3.46)
m- a «a
2K‘Tf ' -a Y -a't
or Re(tnts)= =3 (ot ~14e" ) [ dr (347)
0
which on integration gives
2«1f,, ¢, ot ot
Rn(tl,t2)=——m2a”'" (at, -l+e ")(l—e =) (3.48)

According to Step V, since the sub-system is not the last one in the model (refer

Fig. 3.7), the process is to be repeated starting from Step 1. According to Step I, the
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signal Y(t) with autocorrelation given by equation (3.48) is input to the third sub-
system. The mathematical model for the third sub-system is given by equation (3.23).
The impulse response h(‘r) for the model given by equation (3.23) according to Step II
is given by equation (3.17). Therefore, according to Step III of the Algorithm 1, the
cross correlation between output signal x(f) and input signal Y (t) of the third sub-

system is given by equation (3.33) as
R;r(’n’z): IRw(tl —z‘,tz)h(z')dr,tl <k (3.49)

Substituting the expression for Rw(tl,tz) from equation (3.48) and impulse

response from equation (3.17), in equation (3.49) gives

—1)-1+e (et P dr  (3.50)

x}' tl’tZ
0

or xY(tl’tZ)_ _2;2’(%__( -t );[(a’(t, _T)—l"'e-a’("-r))e-ﬂt dt (3.51)

which on integration gives
2T [ o ) B
t,,)= i) gt -(1-e? | S 41 |+ E— (0 -1)|(3.52
x)’(l 2) ma ( { 1 ( (ﬂ ] a:_ﬂ( )( )

According to step IV of the Algorithm 1, the autocorrelation of the output x(t)
denoting the position of the particle can be obtained by substituting the expression of

cross correlation from equation (3.52) and the impulse response from equation (3.17) in

equation (3.34) as

Rxx(tptz)= IR.xY(tl7t2 ‘T)h(T)dr (353)
2T} ,
Ru(tlatz)— ':_'Z [at —(1 e P (%H)
or -a't 4 (354)
+ —ée;—ﬁ(e(a'_ﬂ)h — 1)] I(l _ e-a'(r,—r)k_ﬂ,dr
B 0

which on integration gives
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2«Tf.
R.tr(tl’tz)=7al; a,_ﬁ

1—e™P _ e " e(a'-ﬁ)r2 _
[( ; ) vt 1)}

From Step V of the Algorithm 1, since the third sub-system is the last sub-

[a',, (e (%l]ﬂe_(w _1)]

(3.55)

system of the Model 2, the process is forwarded to Step VI of the algorithm. According

to Step VI, the variance in position of nanoparticlé for Model 2 is obtained from the

autocorrelation in position given by equation (3.55) by substituting ¢, =¢, =¢ as

E{xz([)}= 2’:']7;:; [alt_(l_e'ﬂt(g_"-l_l]-'_ ﬂe-a'l (e(a‘-ﬂ) _l)]

maf 'f «-p (3.56)
(=) )

3.10.2 Variance for Model 3
For Model 3 (refer Fig. 3.8), the first sub-system is the non-rigid sub-system

with input n(f) and output z'(t). Using Step 1 to Step 4 of the Algorithm 1, the
autocorrelation R, , (t,,t,) of output n;,(t) with input F(¢) for rigid nanoparticle has
been computed by Papoulis [1991] as |
R, (t1,) = kTfoe 01— g2t ) (3.57)
For Model 3, the input to the non-rigid sub-system is #(t) instead of F ()
having autocorrelation given by equation (3.32) according to Step I of the Algorithm 1.
Comparing the autocorrelation of input F (t) in equation (3.1) and n(t) in case of
Model 3, it is observed that the autocorrelation of n(z) is obtained from that of F ()
replacing f by f,, and dividing by m’ . Therefore, the autocorrelation R, (t,,t,) of
output z'(t) from non-rigid sub-system in case of Model 3 is obtained from equation
(3.57) replacing f by f,, and dividing by m* and is obtained as

kIf ,ae” (ty-12)

R (tnt)=—— (1-e2) (3.58)
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According to Step V, since the first sub-system is not the last sub-system, the
algorithm is repeated from Step I for the next sub-system, which is an integrator.
According to Step I, the autocorrelation of input to integrator sub-system is the
autocorrelation of output from previous sub-system given by equation (3.58). The
impulse response for integrator, according to Step II is obtained from the mathematical
model of the integrator (refer equation (3.25)) and is given by equation (3.12). From

Step II1, the cross correlation between output y'(t) from integrator and input z' can be

obtained from equation (3.33) as
Ve

R..(t.t,)= ?Rz.,. (t, -7,2,)h(zr)d= (3.59)

Substituting autocorrelation of z' from equation (3.58), replacing #, with

t, —rand using impulse response g(7) of the integrator from equation (3.12), equation

(3.59) gives |
R,.(.1,)= KTf ,]( et )g-lo=ry(r) dr (3.60)
which on integration gives
Ryltoty) = e - )e(’(l—i—) (3.61)
m? a

The autocorrelation of the signal y'(t) can then be obtained using Step IV of the
Algorithm 1 as

)
R,v’_r'(tl’tz)= J.Ry'z‘ (tntz —T) h(T)dT (3.62)
0
Substituting the impulse response of the integrator and cross correlation R,.
from equation (3.61) in equation (3.62) gives

Rpltt) =T - fl- o) ttu)ar (a6

0

which can be arranged as

R, (t.t,)= Kif (1-en )j[(e'“'(""’)e'“" —e et ) U(r)de  (3.64)

0

Equation (3.64) on integration gives

48



R, (1) = -';%" (1- e Ye=le) = g=rn) 4 p¢m) (3.65)

Since the integrator is not the last sub-system in Model 3, the procedure is
repeated for the next sub-system. From Fig. 3.8, it can be observed that the signal y'(t)
is input to the third sub-system having impulse response given by equation (3.16). The
output from the system is x(t) which denotes the position of the particle. According to
Step I, the autocorrelation of input to third sub-system is given by equation (3.65). From
Step II, the impulse response corresponding to the mathematical model of the third sub-
system (refer equation (3.26)) is given by equation (3.17). According to Algorithm 1,

Step III, the cross correlation between y’(t) and x(t) is obtained using equation (3.34)

as
R (t:1,)= QIR),.),. (t, —7.t,) h(z)dr (3.66)

Substituting the expression for autocorrelation of y'(¢) from equation (3.65),
replacing parameter f; with ¢, —vand the impulse response from equation (3.17),

equation (3.66) can be written as

7., " . . . )
ny' (tl L ) — :;j;?, (l —e™ (1,—r))(e-a (tz-7-1,) _ e (1,-r+1) +2e° h‘_r))e_ﬁr dr (3.67)

0

Equation (3.67) on integration gives
T, A _1
Ryl Sl 22
a-p

ma
!e(za"‘ﬁ)‘l _1’ . L. o
_ (e—Zat,-m, _e—2at.+az: +2e-.at,)

2a'- B

(e‘“'(’l-’z) - e-a‘(lluz) 42N )
(3.68)

The autocorrelation of x(t) can be obtained using Step IV, equation (3.34) of the

Algorithm | as
R, (t,,12)= jR.\‘,\" (t,,1, —7) ) dr (3.69)

Substitution of expressions for cross correlation from equation (3.68), impulse
response h(r) from equation (3.17) and replacing parameter 7, with t, — 7 in equation

(3.69) gives
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kT [ (€M~ 1) e _alutinmr)) 4 et
R,“(tl’tz)_ 6[”22::'[_ a'_ﬂ (e —-e 1n+(r. +2e )

(2a’-p)
_ ge " - l)(e-Za'l.-a'(r,—r) _ e-2a't,+a'(l,~r) + 2e—2a'l, ):le-ﬂr dr

2a'-p

(3.70)

which on integration gives

R (tl 12)= K‘Tfaq [(e(a‘_ﬂ)h —]){(e_a.(‘l_‘z))e(a'-ﬁ)‘z -1 _e_a'(’l“z) e(a'—[))lz -1
xe \*19 mza' a'_ﬁ al_ﬂ ——a'.—ﬁ
. —_ "p’z (Za'—p)l, _ . ' (d'—ﬂ)l _
raemize] ; d R
ﬁ 2a “‘ﬁ a —ﬁ

3 e-Za'll-ba'lz l —_ el’(a'+ﬁ)lz + 26_2“'“ 1 —_ e'ﬁl }
o'+ B) B

Since the third sub-system is last sub-system in Model 3, therefore, according to

Step V, the process is forwarded to next step. In the next Step VI, the variance in

position, therefore, by substituting ¢, =, =¢ in equation (3.71) is

B ()= [(e“""’* R e )

m’a'| a'-p a'-p B
. . , (3.72)
(e(Za -B¥ _1){ st e(a -8k -1 o l_e-(a +B8) ot l_e—[k}
5 e . —e ———x—t2e
22'- B a'-p (@ +B) B

3.10.3 Variance for Model 4
The signal z’ in Model 4 (refer Fig. 3.9) with autocorrelation given by equation
(3.54) is fed to second sub-system with impulse response h(r). The second sub-system

®

have output x(t) and input z'. For the second sub-system, according to Step I, the

autocorrelation of inmput is given by equation (3.58). According to Step II and
mathematical model given by equation (3.28), the impulse response of the second sub-

system in Model 4 is given by equation (3.17). Applying Step III of the Algorithm 1,

the cross-correlation between output x(t) and input z' is

R (tt,)= [Ropt, —7.0,) () d= (3.73)
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Equation (3.73), on substitution of autocorrelation R,..(t,,?,) from equation

(3.58), impulse response h('r) from equation (3.17) and replacing parameter ¢, with

t,—7 gives
KIf . . Y
Rn' — 4605 (l_e-Zatz )Ie-a (r,—r) e—ﬂt’ dT (3.74)
m 0
which can be rearranged as
ICY:f a’l -2a' Y -aty  (a'-
R, =— e (1-e )oje hel@ Pk gz (3.75)

Equation (3.75) on integration gives

xT1 , e—ﬁl, _ e-a'l,
R.=—"8¢M|_g]|__— 3.76
= 2 ( ( al_ﬁ ] ( )

m

The autocorrelation of x(¢) from the Step IV of the Algorithm 1 can be obtained

as
Rn(tl’12)= ].R.‘z'(tntz ~7)h(r)dr B.77)

Substituting the expression for the cross correlation from equation (3.76), the
expression for impulse response and replacing #, with ¢, — 7 in equation (3.77) gives
KIf, (e —e™ \% .
R t ,t = ay ea (l;—r) l_e—Za (tz—t) e—ﬁr dr 3,78
.u( 1 2) mz ( a: _ ﬁ 6[ ( ) ( )
Equation (3.78) can be rearranged as

KIf (e? -e
R.\'x(tl’t2)= mzq( a"‘ﬂ

—at, \t

]

which on integration gives

KIf (e Pt —e™ Y e —eP1 o7 _goh
th(tl’t2)— mZ [ a'—,B J[ al+ﬂ - ar_ﬁ (3.80)

The variance in position can be obtained using Step V of the Algorithm 1 as:

o P _ gt (oot _ g a-p B _ g .
Ef? ()= —(———ﬂ—)?( (( )a'+,B ( )) (3.81)
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3.10.4 Variance for Model 5

A comparison of Model 2 and Model 5 shown in Fig.3.7 and Fig.3.10
respectively shows that in Model 5, an additional integration is performed on the signal
Y (t) The mathematical model to be used in Step II for the additional integration is

given by equation (3.30). According to Step III, the cross correlation between Y (t) and

output signal u'(t) is obtained using equation (3.33) as:
Ry = [Ry(t,-7,2,)UG)dr (3.82)

Substituting autocorrelation of signal Y (t) from equation (3.48), the impulse
response of the integrator from equation (3.12) and replacing parameter ¢ with ¢, —7 in
equation (3.82) gives

" 2xT]
Ru')’ = J- fa?

[]

= (a'(t, I Xl —e™")U(r)de (3.83)
m°a g

which can be rearranged as

R, = 2 d,f @ (- )j(a 't -7)-1+e""" )U(z') dr (3.84)
m-a 0
or R, = m—zja:-}(l —e™ " )'].(a't, —a't-1+e%e"" )U(r)dr (3.85)
0

Equation (3.85) is integrated to obtain

2«Tf,, WY at’ o 1
= 1 — e-a‘z 1 -t —
Rv')’ mza: ( ( 2 1 at (3'86)

The autocorrelation of the signal u'(t) can then be obtained using Step IV of the

Algorithm 1 as
2
Ru'u’(tl’t2)= _[Ru‘)’(tl’tz -T)U(T)df (3.87)
0

where U(7) is the impulse response of the integrator. Substituting cross correlation

R, from equation (3.86) and replacing parameter £ with ¢, -7 in equation (3.87) gives

., 2 -a’ ‘2
palt [s”_ : +i.) (SR VO AR

2 7 4
ma 0

'y’

2 a a
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which can be arranged as

R.,',,'=-%£?r—"f{a?‘z t— e_m'+—]j( "’”e“’)U(r) (3.89)

m°a 2 a 5

Equation (3.89) on integration gives

K1f,

uu' 2 13

— (@2 -20, —2e™" +2)at, -1 +e™") (3.90)

R

Since there is one more sub-system in the Model 5, according to Step IV of the
algorithm, the prcess is repeated from Step I for the next sub-system. According to Step
I, the autocorrelation of input u'(t) to the last sub-system is given by equation (3.90).
The mathematical model for the last sub-system is given by equation (3.31) and
according to Step II, the impulse response of the sub-system is given by equation (3.17).
The output from the sub-system is x(t), which denotes the position of the particle.

According to Step III of Algorithm 1, cross correlation between u'(t) and x(r) is

obtained from equation (3.34) as

R.(t:t;,)= T[Ru.“.(t, —7,t, ) h(z)dr (3.91)

Substituting the expression for-:utocorrelation of u'(f) from equation (3.90),

impulse response A(z) from equation (3.17) and replacing parameter #; with ¢ —z,
equation (3.91) gives * e

S
R, = j ':Zf 1 ( 2y, — 1) —2a'(t, —7)- 276 +2)(a:'t2 —1+e™" )e‘” " dr (3.92)

-0

which can be rearranged as

Tfe" (@, -1+ )I(az (t, — ) —2a'(t, -7)- 24 +2)e* dr (3.93)
0.' .

0

which on integration gives

T 1-eP e A
= £ (a't2—1+e {a"t,2 5 ~a S —2a S

' a'S ﬂ ﬁz
1-e” n,2e ™ a’ - 1-—e™
g 20— -2 _(1-e?)-2a1 3.94)
B e ' (
'ﬂl ' (a_ﬂ)’l —_— 'al
p @' A
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Now the autocorrelation in position can be obtained using Step IV of the
Algorithm 1 from equation (3.34) as

R (t,,t,)= ]'R,,,. (t,.t, —7)h(z)dz (3.95)

Substitution of expressions for cross correlation R, (t,,t,) from equation (3.94),

using impulse response h(r) and replacing parameter £, with z, —7 in equation (3.95)

gives
kT — P =By - _ B
R.u(tl’tz):_{;ﬂ alztlzl_ﬁ__aIZtlZ _e__zalztl e : +2a" 1 83
a B
~Ay 2 1- -8y -By 2a'
r202 8 (1-e™)-2a1 5201, L+ (1)
B B BB

(@=-Ah _mn _
—2e & - +21 i ] I(a'(tz —r)—l+e'“('2"))e'ﬂ'dz'
- 0
(3.96)
which can be rearranged and simplified as:
KT — _ﬁzl e—ﬂl ‘ﬁ| ) 1_ -ﬂl
er(tl’t2)= -{;ﬂq a:ztlz I-e —a'ztlz———Za'zt, e . +2a:___e3_
@ B B B B
-By 2 _ P -B ¢
vty S e )2, I 222 )
B B B B
) (-1 _ B ) . ,
_2¢n & - +21 ¢ ] I(a’tze'p' —are ™’ — e 1 e e PY )dr
a-p B 0
3.97)
which on integration gives
«Tf, 2,2 1-e™™ 2,2 €M . et al-e
Rx.\'(tl’tZ): a,:q [a L, -a’t —ﬂ -2a zt, ﬁz +2a ﬂ3
=P 2 -4
2 Ze a -p4 ’ l—e !
+2a't, _,B—_ZtlF(l—e A )—Zat, B
- ' R
-2a't —e——+2—a—(l--e"”’l ~2¢7h & 421z€
1 2 ’
B B a'- B
—e P e’ o l—e a8 _
a'tz I-e —a't2—+—2(1—e"”1 )— € +e %N _6_,___1
B B B B a' -
(3.98)
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According to Step V, the process is forwarded to Step VI. The variance in
position is obtained according to Step VI of the Algorithm 1 by substituting

t, =t, =tin equation (3.98) as

ﬂ‘ =B .y _ iy
£l ()} { 22 1 ,B —a'ztze?-Za'zt——;z +2a21 ;3
-B 2 B
+2a12 2 € _ztaz(l_e_p,)_za,tl—e

_ B -p ' ok . @By _
[oz't1 d —a'teﬁ +—a—(1—e“"’)—l _yerf 1]

B a'-p
(3.99)

In all, four new models for Wn have been developed in the present

chapter. A tabular summary of the equations giving autocorrelation and variance models

of Model 1 through to Model 5 is given in Table 3.1.

Table 3.1 Summary of Equations giving Autocorrelation and Variance in Position of
_ . _sNon-Rigid Nanoparticle

ml Autocorrelation of Output x(t) | Variance of x(t)
Rvscd  [Model 1 | Equation (3.8) Equation (3.9)
© 7 [Model 2 [ Equation (3.55) Equation (3.56)
Model 3 | Equation (3.71) Equation (3.72)

Model 4 | Equation (3.80) Equation (3.81)

Model 5 | Equation (3.98) Equation (3.99)

3.11 EPILOGUE

In the first attempt to develop Brownian motion models of non-rigid
nanoparticle, the impact transfer in Brownian motion was explored and a few
possibilities were modeled. The impact transfer modeling is akin to the correlation
technique and since we are using correlation technique to develop variance models of

Brownian motion, we gave first consideration to impact transfer modeling. In order to
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develop impact transfer models of Brownian motion of non-rigid nanoparticle, the
nanoparticle was considered with elastic and dissipative properties in the first step. For
this, a concept of equivalent damping coefficient representing resistance to global and
local motion of non-rigid nanoparticle was introduced. In the next step, the Omstein-
Uhlenbeck model of Brownian motion of rigid nanoparticle was developed in the form
of impact transfer model and an interaction of elastic and dissipative properties of
nanoparticle was chosen as sub-system. The inclusion of sub-system in the Omstein-
Uhlenbeck model represented as impact transfer model presented various possibilities,

which was done leading to four new impacts transfer models.

Lastly, the model of variance in position of non-rigid nanoparticle was obtained
using an algorithm based on correlation technique. The method of modeling in the
present chapter is based on a realistic consideration that nanoparticle is elastic rather
than rigid. The developed models are testified for validity criterion by simulation in

next chapter.
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All the essential ideas in science were born in dramatic
conflict between reality and our attempts at understanding

Leopold lufeld
CHAPTER 4

IMPACT TRANSFER MODEL VALIDATION BY
SIMULATION

4.1 INTRODUCTION

The four models of Brownian motion of non-rigid nanoparticles developed in
the last chapter are subjected to a validity checks in the first part of this chapter. First,
two validity criterions are defined and two nanoparticles are chosen having sizes
corresponding to extremities in nano-domains. Next, the four models are simulated for
the two chosen nanoparticles over a wide range of parametric variation. The simulation
results are tested against the defined validity criterion. In the second part of the chapter,
based on the lessons learned from the simulation of four models, two more models of
impact transfer of Brownian motion of non-rigid nanoparticle are developed. These two
new models are simulated and tested against validity criterion as is done in first part of

the chapter.

42 VALIDITY CRITERION FOR MODELS OF BROWNIAN MOTION
OF NANOPARTICLE

Based on Omstein-Uhlenbeck model for Brownian motion of rigid nanoparticle,
referred in this WOMmodels of non-rigid Brownian motion have
been developed in previous chapter. The variances in position for five models are given
by equations (3.9), (3.56), (3.72), (3.81) and (3.99) (Refer Table 3.1) respectively and

are reproduced here for convenience. The variances for five models are given as

Model 1

Ef ()= 223 (-e?)pt-1+e7) (4.1)
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Model 2

Bl )= 208 - oo [ S ot | B e )

e ot (4.2)
A ola-pYy
[(1 e ) P ﬂ( 1)]
Model 3
kTS, [ (-7 —1)[ele-A¥ —1 . "
sl T[22 1 o). 122
20!'_'B e a'—ﬁ e (a'.*.ﬁ) +2e ﬂ }]
(4.3)
Model 4
£k 0)= (a (e - p) po e 'e—a?((e“"-e"”)z,lz-(e"‘ -e"")) (4.4)
Model 5
Efe? (t)} [ 2 21—%i—a'2t2%ﬂl—2a'2t%’;+2a’z l—ﬂe}"”
+20'%? eﬂ”' —2[%'2.(1—3-ﬁ)—2a't1_—%—i
2a te—-lj- + 2_a_’(1 —e# )— 2¢™™ A +2 1-e’”
yad i a-p " B
( - T .
Jde? et a1
R s e ey e =y

(4.5)
Model 1 is an established valid model of Brownian motion for rigid particles. In
order to explore the validity of the four non-rigid models, Model 2 to Model 5, two

validity criterions are defined in following sub-sections.

4.2.1 Validity Criterion 1
“The Brownian motion is a real physical process and, therefore, there should not

be any imaginary value of any variable associated with the process. One physical
variable of primary concern in Brownian motion is variance and this cannot be negative

for all parametric values. A negative variance implies an imaginary deviation in
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position, which is not [possible for a real physical process. Mathematically this criterion
is expressed as
E{x*()}> 0 for all parametric values (4.6)
4.2.2 Validity Criterion 2
Another important physical constraint is that the variance values should be finite for
finite parametric values in any real physical system. Thus boundedness of variance is
another validity criterion for Brownian motion of nanoparticle, rigid or non-rigid.
Mathematically, this is expressed as
Efx? (t)}:ﬁ oo for finite parametric values 4.7)
Keeping in view, the validity criterion given by equation (4.7), it is observed from the
equations (4.2) to (4.5) representing four non-rigid models, that denominator in the
equations at some places contains a difference of 2a’and £. In that case if 2a’ is
equal to S, then denominator is zero and the variance becomes infinite. Since, the
inﬁnite variance for a real physical process is incorrect, it implies that 2a’ can never

be equal to S . Therefore, an assumption is made given as

2a' = ¢pf (4.8)
where ¢ is a dimensionless quantity, which cannot be unity. Further, it is assumed that
@ =c'[r with ¢’ as a constant having the dimension of length. The assumption of
relating ‘@and B is helpful in simulation as this converts all &’ terms into f reducing
_ one variable. Moreover, a' and S have the same dimension. This assumption gives a

parametric relation on substitution of expression for a'and f in equation (4.8) as
[ =@nklo f (4.9)
The equation (4.8) clubs the parameters used in the development of non-rigid

Brownian motion model in nano-domains and needs to be verified. This assumption is

verified in the next section.

43 VERIFICATION OF PARAMETRIC RELATION FOR SIMULATION

The various parameters in equation (4.9) characterize properties of nanoparticle
(m,k, f ') and surrounding medium (f) The properties in sub-micron size domains are

of considerable interest in design of systems. There is little direct knowledge of the key

59



structural properties. The published results of one such property of importance namely
spring constant (k) are available [Wong 1997] for two materials namely, Silicon
Carbide (SiC) and Carbon. The spring constant k, which is directly related to Young’s
modulus, has been obtained as a function of characteristic dimension length / of Silicon
carbide rods and carbon tubes. The k values obtained by measuring bending force in
relation to displacement along the unpinned length of nanorods and are available in
Fig. 2(b) and 3(b) of Wong. The relations between characteristic dimensions of various
shapes are given in Welty [1984] according to which a spherical shape characterized by

radius, as in case of spherical nanoparticle, can be related to length of nanorods and

nanotubes as r = %I . Using this an equivalent spherical nanoparticle is hypothesized

corresponding to a nanorods and nanotubes of length . The relation of parameters given
by equation (4.8) can be used to obtain the values of k analytically for the equivalent
spherical nanoparticle. In order to compare the experimental observations of Wong with

the results from equation (4.9), simulation over wide a range of parametric value is carried
out. The spring constant is obtained by rearranging equation (4.9) giving

k=21 (4.10)
2m

Assuming " =@ f'/2, equation (4.10) gives

P (4.11)

m
For the simulation of equation (4.11), following parameters are used for Silicon
Carbide.

The density of Silicon Carbide is p =3200kg/m* and viscosity of surrounding
water at room temperature is 7=1.003x10™ Ns/m”. From these parameters, mass
(m = 4 p/3) and damping coefficient (f = 6zr7) are computed as function of . The
values of m and f are substituted in equation (4.11) and f" are varied between 1x10~°

to 7x10™° Ns/m in the step of 2x 10~ N's/m to obtain k as a function of /. The results
of simulations giving k are shown in Fig. 4.1(i). The experimental observations of
Wong are also superimposed. It has been found that for f*=298x10” Ns/m, the
variation in % with size matches with the experimental observations. Similarly, for the

second material carbon, using density of Carbon as 1600kg/m* the simulation results
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are shown in Fig. 4.1(ii). For a parametric value f” = 5.97 x10™® N s/m , the k variation

with / again matches with the reported experimental results, which are superimposed in
Fig. 4.1(i1).

15
xxxxx Experimental Observation [Wong 1997]
Assumed Model
g"° £*=7x10 Nsj
= {X Sim
=4
!
(&)
o z
£
= x0T
0 0 100 150 200 250 300 380 400 450 500
Length(m)
(i) Simulation for Silicon Carbide Nanorods
T
xxxxx Experimental Observation [Wong 1997]
251 o ——— Assumed Model
20}
\ S =7x10"° Ns/n

Spring Constant (N/m)
-bd
(3]

Py
o
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Length(nm )

(ii) Simulation for Carbon Nanotubes

Fig. 4.1 Variation of Spring Constant k£ with Length of Silicon Carbide Nanorods and

Carbon Nanotubes
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It is observed from the above simulation that the requirement of finite and
bounded variance leading to the assumption 2a'=g@f (equation (4.8)) suggests a
relation between four property parameters of concern in Brownian motion of non-rigid
nanoparticle given by equation (4.9). The verification of relation between parameters &
and f' with parameters of rigid body model f andm strongly justifies the exploration
of non-rigid models in nano-domains. This work has been published [Sharma 2003(i)]

and is used in simulation of the four-variance models of non-rigid nanoparticle.

The variance values of four non-rigid models devoid of positive scale multiplier
are simulated using respective mathematical equations of variance for the four models

in the next section.

44 SIMULATION OF IMPACT TRANSFER MODELS

From equations (4.2) to (4.5), it is noted that the various constants and
parameters required for simulation of four models are: x, T, f r, 7. m, B @, o',
S'.k. [, and t. The parameter f'is a function of 7 and 77; and m is a function of 7 and p.
The parameter f' is given by equation (4.9) and Bis related to fand m as S = f/m.
For simulation, time is incremented in steps of 1/ so that £ term assumes integer
values. The simulation of variance for four Brownian motion models of non-rigid
nanoparticle is done considering two nanoparticles. The two nanoparticle are chosen for
which the published experimental results are available. The first nanoparticle; namely
Silicon has the size near the lower end of nano-domains. By the lower end, it is meant
that further below the size quantum effects starts becoming appreciable. The second
nanoparticle is of Polystyrene and has size equivalent to size at the upper boundary of
nano-domains. At the upper boundary, the particle becomes micrometer size and nano-
effects like non-rigidity is not a matter of concern. In order to find the valid models
among the four non-rigid models, the simulation of variance in position with respect to

time is done for silicon nanoparticle first and polystyrene nanoparticle next.
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4.4.1 Simulation for Silicon Nanoparticle

Sasaki [2000] has published the observed variances for Brownian motion of Silicon
nanoparticle. The parameters required for simulation of models are taken as published

in work of Sasaki and are given as follows

Density (p) = 2300 kg/m’,
Temperature of surrounding (7) =273 K,
Radius of nanoparticle () = 40nm,

Viscosity of surrounding medium water (77) = 1.8x10~* N's/m?,

These parameters give the values of mass m and f' of nanoparticle, damping

coefficient of medium f; and &' and Bas

m =§7zr377p =6.16x107" kg

f =6my=1356x10"° Ns/m

2mk _ 2mkr

=6.51x107" ic,-N s/m
o f c

=

B L. 2.26x10° Hz
m

2T :
o2 2T +f )=1.98x10'6(1.356x10‘9+6.51x10'" f,)m%’
c

m m

where Boltzman’s constant is x =1.3807x107% J/K . The value of k is small in nano-
domains and is of the order of ~10' as given by Roukes [2000]. It is assumed that
k=23N/m, time is varied from 1/8 t010/8 and ¢’ is varied from

1x10™ to 100 m.

The variance value devoid of positive scale multiplier is time dependent part of

the expression of variance in each model and is called as function y . The simulation of
v is carried out in next section with ¢’ and ¢ as parameters. The simulation results of

function y are plotted on y-axis with time on x-axis.
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(a) Simulation of Model 2
For Model 2, the function is obtained from equation (4.2) as the time

dependent part devoid of positive scale multiplier given as
| , il B ( (a-py w\_ L [ asy
w=lat-(1-e ”'(—+1)+—,—(e )| (e ?)-E— (" ~1)|4.12)
== (2o 25 )- e -
The values of y are obtained using equation (4.12) for range of ¢’ stated above
and are shown in Fig.4.2. It is observed that the function value is infinite for
¢’ >1x10~° m in finite time ¢. The infinite values depicting singularity are shown as the

truncated plots in Fig. 4.2(iii).

The singularity and infinite variance for finite parauietric values are implausible
for a valid model and therefore the Model 2 fails to satisfy validity criterion 2. For

further confirmation of rejection of Model 2 another simulation is done with another set

of parameters for polystyrene nanoparticle in next section.
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Fig. 4.2 Simulation of Model 2 for Silicon Nanoparticle
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(b) Simulation of Model 3
For Model 3, the function wis obtained from equation (4.3) as the time

dependent part devoid of positive scale multiplier and is given as

@-p) _1 (le-p) _ ) 11— B (2a-8) _
W=(e l{e l(l—e'z‘“)+2e"”1 e }_e 1

a'-p | a'-p B 22"~ p
(4.13)
{ , e(a"-ﬁ)‘ -1 . 1- e-(a'*-l’)l L 1—e# }
e-3a: _ e-al : + 2e-2al
o'~ (o' +5) B

The values of y are simulated using equation (4.13) for range of ¢’ stated
above and are shown in Fig. 4.3. It is observed from simulation results that Model 3
predicts negative variance for parametric variation 1x10™° <¢’<7x10* m . The plots
of function y in this parametric range are shown in Fig. 4.3(i) and Fig. 4.3(ii). It is also
observed from simulation results that the function value is infinite for ¢’ >3.2x10° m.
The model prediction therefore neither test out the criterion of non-negativity of
variance and nor does the model predicts finite value of variance for finite parametric
values. Therefore, the Model 3 is a case for rejection according to both validity
criterions. For further confirmation of rejection of model another simulation is done for

polystyrene nanoparticle in next section.

10
1.SX1U i
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Fig.4.3 Simulation of Model 3 for Silicon Nanoparticle

(c) Simulation of Model 4
For Model 4, the function wis obtained from equation (4.4) as the time

dependent part devoid of positive scale multiplier and is given as
- a\(ar g\ — - a

yl=(e”—e ‘((e "—e ”)ﬁ%—(e”—e ‘)) 4.14)
The values of y are obtained using equation (4.12) for range of ¢’ stated above
and are shown in Fig. 4.4. It is observed from simulation results that Model 4 predicts
negative variance for all time in complete parametric range 1x 10" < ¢’ <100m. Since
the trend is same in complete parametric range, only the plots of function w in
parametric range 1x107° <c¢’<1x 10"*m are shown in Fig. 4.4. The negative function
value invalidates the Model 3 according to validity criterion 1 and therefore the Model 3
is a case for rejection. For further confirmation of rejection of model another simulation

is done for polystyrene nanoparticle in next section.
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t (/8 3)
Fig. 4.4 Simulation of Model 4 for Silicon Nanoparticle for 1x107™° <¢'<1x10®* m

in steps of 1x10~° m

(d) Simulation of Model 5
For Model 5, the function y is obtained from equation (4.5) as the time

dependent part devoid of positive scale multiplier and is given as

—e A 2 ' , ela-BY¥
!ﬂ=(a’2t2l++2ar’21 z —2ta—z—2a'tl+2i2(l—e'ﬁ)—2e"" Z
5 pp BB @5 415
1-e# ,1-2¢2 o s 1-e? AR |
+2 at +—2—(l—e )— +e -
B B B B a'-p

The values of y are obtained using equation (4.13) for specified range of ¢’ and
are shown in Fig. 4.5. It is observed from simulation results that the function values are
negative for 1x107 <c’'<5.1x10° m beyond which it becomes infinite. The plots
showing negative function value are shown in Fig.4.5(ii) and 4.5(iii). The model
prediction therefore neither tests out the criterion of non-negativity of variance nor does
the model predict finite value of variance for finite parametric values. Therefore, the
model is a case for rejection according to both validity criterions. For further
confirmation of rejection of model another simulation is done for polystyrene

nanoparticle in next section.
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Fig. 4.5 Simulation of Model 5 for Silicon Nanoparticle

From the simulation of the four Brownian motion models of non-rigid
nanoparticle, it is found that models predict either negative or infinite variance. It is
critical to observe at this stage that the four developed impact transfer models are
unable to capture the Brownian motion of non-rigid silicon nanoparticle and a vital link
seems to be missing in the impact transfer models. For confirmation of the negative

results, the impact transfer models are again simulated for another nanoparticle in next
sub-section.
4.4.2 Simulation for Polystyrene Nanoparticle

The proposed four Brownian motion models of non-rigid nanoparticle are
simulated for a polystyrene nanoparticle in this section. The Brownian motion of
Polystyrene nanoparticle is available as published result [Nakroshis 2003] as variance

plots. The values of various parameters are taken from the work Nakroshis are
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Density (p) = 1060 kg/m’
Temperature of surrounding (7) = 296.01+0.3 K
Radius of nano-particle () = 0.51£0.01 x4 m

Viscosity of surrounding medium (7)) = (936 + 15)x 10 N s/m?

These parameters give the values of mass m and f' of nanoparticle, damping

coefficient of medium £, and ' and Bas

m= gﬂr37]p =(5.88+0.35)x10™ kg

f =6mrn =(9.00+032)x10° Ns/m

= 2T~ (6.65+0.75)x 107 X N'sim
cf c

B =—f—=(1.53i-0.15)x107 Hz
m

o' e M;’f) =236x 10‘°((9.o £032)x107 +(6.650.75)x10™ ﬁj wts
” c

For the simulation of function y , the tolerance values on the parameters are
neglected and the value of k is assumed as k=2.3N/m, time is varied from
1/B to 10/ and ¢’ is varied from 1x10™° to 100 m, similar to as in case of silicon
nanoparticle. The simulation results for each model are given next.

(a) Simulation of Model 2
For Model 2, the function y is given by equation (4.12). The values of  are

simulated using equation (4.12) for the chosen range of ¢’. It is observed from

simulation results that Model 2 predicts function value to be infinite for

¢' >8.1x10~° m in finite time ¢ and this is shown as the truncated plots in Fig. 4.6.

The truncation depicts the singularity in function. The singularity and infinite
variance for finite parametric values are implausible. These results corroborate the
observations made for silicon nanoparticle in section 4.4.1(a) and hence the model is

rejected.
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Fig. 4.6 Simulation of Model 2 for Polystyrene Nanoparticle for
1x107 < ¢’ £9.1x107° m in Steps of 1x10” m
(b) Simulation of Model 3
For Model 3, the function i is given by equation (4.13) and the values of y are
simulated for chosen range of ¢’. It is observed from simulation results that Model 3
predicts negative function value for 1x107™"° <¢’<1x10™ m. Since the trend is same,
the simulated results are shown only for 1x107"° <¢'<1x10®° m in Fig.4.7. The

function values are infinite for ¢’ >1x10"°. The negative variance is not allowed
according to Criterion 1 and infinite values violate Criterion 2. The results match the

simulation results for silicon nanoparticle and hence the model is rejected.

(c) Simulation of Model 4
For Model 4, the function  is given by equation (4.14) and is simulated for the

chosen range of ¢'.
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Fig. 4.7 Simulation of Model 3 for Polystyrene Nanoparticle for

1x10™ < ¢’ <1x10® m in Steps of 1x10” m

-1

¢’ =1x10"m
1T 2 8 4 5 6 7 8 9 10

f (l/,B s)

Fig. 4.8 Simulation of Model 4 for Polystyrene Nanoparticle
for1x10™° <¢' <1x10™* m in Steps of 1x10®° m

It is observed from simulation results that Model 4 predicts negative function

value for complete parametric range 1x10™° <¢'<100m. Since the trend is same,
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only the plots of simulation results for 1x10™° < ¢’ <1x10~* m are given in Fig. 4.8.
The negative variance is not allowed according to Criterion 1. The results match the

simulation results for silicon nanoparticle and hence the model is rejected.

(d) Simulation of Model 5

For Model 5, the function y is given by equation (4.15) and is simulated for
chosen range of c¢’. It is observed from simulation results that Model § predicts
negative function value for parametric range 1x10™° <¢'<1x10 m and becomes
unbound for higher values of ¢’. Since the trend is same upto ¢’ <1x107* m, the plots

of simulation results are given in Fig. 4.9 for 1x10™° < ¢' < 1x10" m. The negative
variance is not allowed according to Criterion 1 and infinite values according to
Criterion 2. The results match the simulation results for silicon nanoparticle and hence

the model is rejected.

0.00%

¢’ =1x10""q

¢’ =1x10"°m

“-m-ééééé%éém
t (/8 s)

Fig. 4.9 Simulation of Model 5 for Polystyrene Nanoparticle for
1x107" < ¢"<1x10® m in Steps of 1x10~° m

The four Brownian motion models of non-rigid nanoparticle are simulated over
a wide range of parametric variation and for two test results available as published
experimental results in this section. It was observed that all four models are rejected

based on the simulation results not satisfying the validity criterion of positive and finite
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variance. Keeping in view that the models were developed with altered rigid
nanoparticle impact transfer model by inclusion of non-rigid sub-system, the rejection
suggests that there remains some physical aspect unmodeled in the impact transfer. The
attempt to capture the unmodeled aspect of Brownian motion of non-rigid nanoparticle

1s done in next section.

4.5 NEW IMPACT TRANSFER MODELS

The rejection of all four Brownian motion models of non-rigid nanoparticle was
discouraging but fortunately, the verification of parametric relation in Section 43
strongly suggests the validity of non-rigid nanoparticle model. A keen exploration
yielded that the choice of non-rigid sub-system shown in Fig. 3.6, Section 3.6, is only
one possibility among many other possible interactions. For example, the resistance and
capacitance in the non-rigid sub-system can be in parallel arrangement instead of series.
The modeling was the first attempt towards exploration of non-rigid nanoparticle and so
the choice was made arbitrarily. The initial confirmation that choice of non-rigidity in
nano-domains verifies observations (Refer Section 4.3), not explained otherwise,

prompts for exploration of other interactions among properties in a more general way.

In order to explore the interaction aﬁmong properties using impact transfer model,
another sub-system is included in the impact transfer model. The new sub-system in
place of actually integrating the output signal of f* and k subsystem in Model 2, does
the one-dimensional Fourier transform of the autocorrelation of this signal. This is
analogous to spectrum [Papoulis 1991]. If this analogous spectrum is substituted
directly in equation (3.37) replacing 2x7f, / m® , it keeps the integrated white noise
autocorrelation structure. This way of obtaining the autocorrelation is an assumption
made to generate a different model of input to rigid nanoparticle sub-system with
another sub-system introduced in series whose internal structure is unknown but
behavior is known. This sub-system is represented with a symbol . The two

different possible models using this approach are explored are given next.
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(1) Impact process also includes integration in usual sense apart from

[©0], This is shown in Fig. 4.10 and is referred as Model 6.

(11) Impact process may have no integration in and has only . This is
shown in Fig. 4.11 and is referred as Model 7.

® Y( Y(@) —
A v S P LA Yo O T P

Fig. 4.10 Impact Transfer Model 6 of Brownian motion of Non-Rigid Nanoparticle.

n(t) 2(0) 20 ] x0

- H((®) O  h(T)

Fig.4.11 Impact Transfer Model 7 of Brownian motion of Non-Rigid Body

For the two new impact transfer models, Model 6 and Model 7, the variance
models are obtained using the Algorithm 1 given in Chapter 3, Section 3.9. The

development of variance models is done in next section.

4.6 VARIANCE FOR NEW IMPACT TRANSFER MODELS

The autocorrelation of the input to impact transfer model of non-rigid

nanoparticle will be 2xTf,, /m” for Model 6 and Model 7 according to Step I of the

Algorithm 1 given in Section 3.9, Chapter 3. Moreover, according to Step II of the
algorithm, we will require impulse response of the non-rigid sub-system (Refer equation
(3.20)), impulse response of rigid nanoparticle sub-system (Refer equation (3.17)) and
impulse response of integrator (Refer equation (3.12)). The detailed derivation of

variance equation for the two new models is done next.

4.6.1 Variance for Model 6
A comparison of Model 2 and Model 6 (Refer Fig. 3.7 and Fig. 4.10) shows that

in Model 6, an additional integration is performed on the signal output from non-rigid
sub-system. The autocorrelation of ¥ (t) in Model 6 is same as that in Model 2 and is

given by equation (3.48). The input to new sub-system introduced to obtain Model 6
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requires the spectrum of the signal Y (t), which is obtained by inverting, taking one
dimensional Fourier transform, of the autocorrelation given by equation (3.48) as

[Papoulis 1991]

Sy (@)= ?R,,, (t,,t,) e’ dr (4.14)

Substituting expression for autocorrelation of Y(t) from equation (3.48) in

equation (4.14) gives

S,y(a)) Z:ZZ, T(l e"”’X -l-e "")e’j""dr (4.15)

Assuming the impact transfer models are casual, the negative time becomes

irrelevant and the limits of integration are changed to 0 to . For ¢ =¢, -7,

rearrangement and simplification of equation (4.15) gives

ZKfeq -jor -('+')r -j
@)= a'te " —a'te™ e T — e
Snl@)= I (4.16)

-at.e-(a +jo)y _ -(a +jo) —e r

te -Za'l,e-(a’+ja))r )d

Integrating equation (4.16) and taking only the real part from the integrated
results (since the process is a real physical phenomenon), the spectrum of Y (t) is

obtained as

Sy (a)) =— = (— a’t,e""" +e™ M —1—g 2 ) 4.17)

The autocorrelation of signal Y '(t) according to the modeled sub-system is
obtained by substituting expression from equation (4.17) as analogous spectrum
(2;c7f / m ) in equation (3.37), autocorrelation of Y (t) for 1)< t, is given as

2«Tf,

(e +0?) (ate ™ e —1-e™" )y (a18)

Rrr(’u’z)=

and the cross correlation between output signal x(¢) from rigid nanoparticle sub-system

and Y'(t) can be obtained from Step III of the Algorithm 1 as
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Rpltpts)= [Rey 5,83 )2 @.19)

Substituting for R,.,.(t, —7,t,) from equation (4.18) and impulse response from
equation (3.17) and replacing ¢; with #,-7 in equation (4.19) gives

ho 2«Tf,
R.rr'(tntz): I =

; mz(a,2 N wz) (“‘a'(tl —T)e-a'(n-r) +e v _q_ e—zar'(r,«r))(tl _ r)e"”'dz-

(4.20)
The simplification of terms in equation (4.20) gives
-at, 2~ h gl Al a't,e"’"‘ el PF 4 te™" el@=p)r
2xT; ¥ v (2 o e
Ry (tl’t2)= 2 Klzfaq 2 —tle-ﬁ{ _tle-z‘z:.e(za - +ate™" zel*P) dr
mi\a”+w” ), _a,e-a':,rze(a'-p)r _e-a'rlz_e(a’—ﬂ)r +Te-ﬁr +e-2a7,z_e(za'-p)¢
4.21)
The integration of each term in equation (4.21) is obtained respectively as
Term 1
o o a8k _
[ te et Ardr = oo S @2
o a'-f
Term 2
h @-p)  (a™-B)
. . 4 L
; a-p  (a'-p)
Term 3
h . , , (&= _
J'tle"’"e(" Frdr = te " e—,—l (4.24)
0 a'-p
Term 4
]
! g 1- e‘ﬁ‘l
[-tePrdr = (4.25)
0 B
Term 5
H (2a"-8)
, ,m2ah (2a‘-ﬂ)rd =—t -2a1, € -1
I te e T € T 7 (4.26)

0
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Term 6

4 (@-p (-8}
p . W | 1 —1
Ia't,e'“"re("'”)'dr =a't,e""-[ L _E — ] (4.27)
0 a-4 (a'-p)

Term 7

[ 2 (a"ﬂ)l (a"p)’l (a'_p)l -
—a'e e PY T = —gle™ he ‘ - (tle e | ]]:|

(- X ——

L N A el U P
R 126N B 2t (PN . 20l Bk _ 2}
| &= (@-B) (@-p)
Term 8
n (d'-ﬂ)ﬁ (“"ﬁ)’
. . vl '~
[~ e relerar = 'e'a"[ - zl] (4.29)
; a'-p  (a'-p)
Term 9
L t - 1_ =B
Jz'e""dr . e2 (4.30)
] BB
Term 10
n (2a’-8 )’l a'-gk
Je 2t gplta =AY g7 = 7 [tle - e —ZI:I (4.31)
; 20/~  (2a'-p)

Where from equation (4.21) and equations (4.22) through to (4.31), the cross

correlation between x{t) and Y’(¢) is obtained as

R (t y )_ 2’(2_7;] —a't ze_a,‘l e(“"ﬂ)'l -1 . _a."|:t‘e(a"‘ﬂ)‘|
xy'\'12 - 1 )
LA mz(a:z +a)2) o' —

e(a-_ﬂ)' _ l:l " e e(a"ﬂ)‘l -1 1l—e _ e-Za'l, e(2a'-ﬂ)1| -1

(@-B) a-p "B " g
., -af, tle(a'mﬂ)I e(a'—ﬂ)‘l -1 a' ~a' t|ze(a'_p)l' 2tle(“'-,8);'
+ate - -— - ' -
: a'-p (a —ﬁ)z a' - (a,_ﬂ)z
ze(a"ﬂ)'l -2 —at tle(ﬂ"ﬂ)’l e(a'-ﬂ)ﬁ -1 t,e_p"
= 7€ ] T 2 |~
(@'~ 58) a-p (-py] B
1 _e'ﬁl 2t tle(z""ﬂ)ﬁ e(za"ﬁ)’l -1
+ +e - - -
B’ 20'-B  (2a'-p)

(4.32)
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The autocorrelation in position x(t) from Step IV of Algorithm 1 is obtained as
R (t,1,)= IR.rY'(tntz _7)h(r)d7 (4.33)

Substituting the cross correlation from equation (4.32) and impulse response

from equation (3.17) in equation (4.33) gives

“ 2xT] (“"ﬂ)’l — Y (a*-B)
R.\'x(tl’tz)= J‘——_—'fq -at, 2e_'"' —_— ! +a'te ™ [—-——-—‘e,
_q,mz(a’z+a)2) a'-p a'-p
R L T R U o R it
- |the . -, -te ' —/—————
(@' - B) a'-p B 22~ f
(a'- -8k (a'-8), —- . 2 (a-ph (a-8),
+a't,e'°"|:t'e A zl]_a'e-m-[’ e 2'nf : (4.34)
a-p  (e-h) a-p (a'-p)
L2 -2 e e —1] te?
_— |- 1 - - - —_
@~ Y a-p @-py1 P
1—e™ & . (2a"-pk (2a’-B) -1
b e he - _2 ——- ()t
B 27/~ (22'-B)

Equation (4.34) on integration gives

2xT) GlaBh _ [y eletn s _
er(tl’t2)=_—’([q—' —a't,ze"" e,—'1+a't.e'“" tle, - € 21
mZ(a'Z +(02) ﬂ a _ﬁ (al_ﬁ)

. e‘“"ﬁ)l -1

-al

+te -1, —te

a-p B 22'-f
el Bk —1} ale=ah [z 2l Pl oy el Pk . 2¢Ph —32] (4.35)
(@-p) a-f (-B) (e'-B)
. [,le(ﬂ -8, e(a'-ﬂ)l - l] tle'ﬂl I — e'ﬁl
—-e " ’ - P 2 |~ + 2
a-g (@'-5) B B

ot t:e(za"ﬁ)ﬁ e(za"ﬂ)’l _ 1:” [l _ e‘/*: ]
e [2(1'—,3 (2a' - Y B

According to Step V, go to Step VI, since the sub-system is last sub-system of

the Model 6. The variance in position for Model 6 is obtained from Step VI of the
Algorithm 1 as
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2T} (a*-p} (@-py  la-B) _
E{xz(t)}= 3 Kzf“’ 5 —atte - 1 +a'te™® te' _£ 21
m‘la"* +o a' - a'-p (a’—ﬂ)
-at e(a'-ﬁ)l - l 1 - e-ﬁ' —2an, e(Za'-ﬁ)l "’l ‘" -at te(a'-ﬂ)’
+te —t —teh ——  +ale :
a'-p yij 2a'- B8 o' -
e(a'-ﬁ)l -1 o tze(a'-ﬂ)l zte(a'-ﬁ)l ze(a'—ﬂ)r -2 (436)

T 2 |~ ' 7, >+ T 3
(@'-5) a-p (@-p) (a'-B)

ur @By pla=B _ 1| oht -t
- ' - ' 2 - + 2
a-p @-py) B B

_207|ite(20'-ﬂ)l el -Ay _ 1] [1 —e P ]
+e ; - - >
22'-f  (2a'- B) B

4.6.2 Variance for Model 7
On comparing Model 7 with Model 3 (Ref. Fig. 4.11 and Fig. 3.8), it is observed

that the autocorrelation of z(¢) in Model 7 is same as that in Model 3 and is given by
equation (3.58). The spectrum S...(w) of z' is computed using one-dimensional

Fourier transform of autocorrelation as [Papoulis 1991]
(@)= [R.(t,1,)e7™ dr (4.37)

Substituting the autocorrelation from equation (3.72) in equation (4.37) gives

.o = Ny
S.o(tt,)=2 fﬁa fetrnlfi- e i dr (4.38)

Assuming the impact transfer models are casual, the negative time becomes
irrelevant and the limits of integration are changed to 0 to . For L, =t,—7,
integration of equation (4.38) gives
«Tf, eq (l_e-za?z)

Sy (@) = 4.
m* L+ (a1 k) ) (4.39)
Substituting &' =k/f" in equation (4.39) and simplifying gives
«Tf, a’ -2at,
S:':'(w) = m;" (a:z + wz J(l —€ )= @ o (SaY) (440)
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The autocorrelation of signal Z(t) according to the modeled sub-system in

Model 7 is obtained by substituting expression from equation (4.17) as analogous

/

spectrum (ZKTf / m ) in equation (3.37), autocorrelation 5% of Z (t) for )< t; is given as

Ry (t1:1,) = Ceutt (4.41)
Then cross correlation between output x(f) and Z(t) is related by impulse

response e~ and is obtained using Step III of the Algorithm 1 as

QK]];’ ' -2a’ -pr
Rﬂmm=fw{a+wy e Joy — e dr (4.42)

K'Y:f alZ oat _
or R, (,,t,) = m2;2 (a,z +m2}(l—e @ | g, —1+ e ) (4.43)

Then according to Step IV of the Algorithm 1, the autocorrelation of the output x(?) is

Ro(tits) = [Ry(tt, —7)e ™ de

e

mZﬂAZ

(4.44)

2«Tf, "
or R.“ (t‘,tz) = m2ﬂ3(a'ffzzxza'—ﬂ)(ﬂtl —l+e_ﬁl Xl—e-al) (445)

According to Step V, go to Step VI, since the sub-system is last sub-system of
the Model 7. The variance in position can be obtained according to Step VI of the

Algorithm 1 by substituting ¢, =¢, =¢in equation (4.45) as

2 ZKTfeqa" AV oa
E{I (t)}=m2ﬁ3(a’2+w2X2a'-ﬁ)(Bt t+e? fi-e?) (4.46)

Equation (4.46) gives variance in position for Model 7 shown in Fig. 4.11. Next,
in order to test the validity of the Model 6 given by equation (4.36) and Model 7 given
by equation (4.46), the two models are simulated for the Silicon and Polystyrene

nanoparticle over the entire range of ¢'and ¢ as was done earlier for other four models.
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The autocorrelation of signal Z (t) according to the modeled sub-system in

Model 7 is obtained by substituting expression from equation (4.17) as analogous
spectrum (2K7f / m ) in equation (3.37), autocorrelation of Z(t) for #1< £, is given as

Rz (t1:2) = Gt (4.41)

Then cross correlation between output x(f) and Z(f) is related by impulse

response e#* and is obtained using Step III of the Algorithm 1 as

R, (t,1,) = c]'d{“’( o ]( e\, - r)e P dr (4.42)

2m’ \a?+o?
xTf, a’ .
— —cah =5
or Ryt =5 (a" +wz}(l—e 2t g, ~1+e7) (4.43)

Then according to Step IV of the Algorithm 1, the autocorrelation of the output x(¢) is

R (t,,t,)= IR.a (-t — T)e P dr

7 (a +w? J(ﬂt —l+e™ )?( — e

mzﬁ_

(4.44)

2«Tf, "
or R (t,,t;)= m2ﬁ3(a'f{;q)2x2a' —ﬂ) (,Bt, ~1+e™ Xl -e'”") (4.45)

According to Step V, go to Step VI, since the sub-system is last sub-system of
the Model 7. The variance in position can be obtained according to Step VI of the

Algorithm 1 by substituting ¢, =, ={ in equation (4.45) as

2«Tf "
20 ey S ooy L LAt e B CED

Equation (4.46) gives variance in position for Model 7 shown in Fig. 4.11. Next,
in order to test the validity of the Model 6 given by equation (4.36) and Model 7 given
by equation (4.46), the two models are simulated for the Silicon and Polystyrene

nanoparticle over the entire range of ¢’and ¢ as was done earlier for other four modelg_
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47 SIMULATION OF NEW IMPACT TRANSFER MODELS
The simulation of the new models, Model 6 and Model 7, is done in same way

as in Section 4.4 i.e. the various constants and parameters required for simulation of two

new models are: x5, T, f, r, 7, m, B o, a', f'k, f,q and 7. For simulation, time is

incremented in steps of 1/ so that ff term assumes integer values. The simulation of

variance for two new Brownian motion models of non-rigid nanoparticle is done
considering same two nanoparticles, namely silicon and polystyrene, as in section 4.4.
The simulation of variance in position with respect to time is done for silicon

nanoparticle first and polystyrene nanoparticle.

4.7.1 Simulation for Silicon Nanoparticle

The silicon nanoparticle is characterized by parametric values given in sub-
section 4.4.1. The function values of two altered models namely Model 6 and Model 7
are simulated for the silicon nanoparticle in the following sub-sections.

(a) Simulation of Model 6
For Model 6, the function yis obtained from equation (4.36) as the time

dependent part devoid of positive scale multiplier and is given as

ol _q [0y sy _y
y=|-at’e” ———+a'te™| ——- .
a'-p a-f (@-p)
, pla-BY _ _ Bt . 2B _ [ tola-8¥
et g - ! ~t 1-e P WA 1 +a'te™ L
a'-p B 2a' - B a' -
e(ﬂ"ﬁ)‘ -1 ) tze(a'-ﬂ)' zte(a'-ﬁ)f ze(d'-ﬂ)' -2 (447)
- ' 2 -a ’ - ' 2 + ' 3
(@'-8) a-B (@-8) (z-5)
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The values of y are obtained using equation (4.47) for specified range of ¢’. It

is observed from simulation results that Model 6 predicts negative function value for

parametric variation 1x107'° <¢’<1x107 m. The plots of function y in the
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parametric range 1x10™° <¢’ <1x10° m are shown in Fig. 4.12(i) and Fig. 4.12(ii).

The simulation results predict infinite function values for ¢’ >1x10™° m.

The model prediction, therefore, neither test out the validity criterion of non-
negativity of variance and nor does the model predicts finite value of variance for finite
parametric values. Therefore the model is rejected according to both validity criterions.
For further confirmation of rejection of model another simulation is done with another

set of parameters given for polystyrene nanoparticle in next section.

oxld
oo
¢ = 1x107% =
A1
2
2}
>
g+ ¢'=1x10%m
[ =4
e
£
7
€

t(1/8 5)

(i) ¢ vstin Parameter Range:1x107"° < ¢’ <1x10™® m in Steps of 1x10” m

2 sx10

¢ =1.1x10"m

¢ =1x10"%m

% 3 4 5§ 6 7 8 9 10
t(/8 s)
(i) ¢ vstin Parameter Range:1x107 < ¢’ <1x10™ m in Steps of 1x107 m

Fig. 4.12  Simulation of Model 6 for Silicon Nanoparticle
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(b) Simulation of Model 7
For Model 7, the function yis obtained from equation (4.46) as the time
dependent part devoid of positive scale multiplier and is given as
Q= (ﬂt -1+ Xl —e'ﬂ') (4.48)
The values of  are obtained using equation (4.48) for specified range of ¢’ and
are shown in Fig. 4.13. It is observed from simulation results that Model 7 predicts
positive and finite function value for complete parametric range 1x10™° < ¢’ <100m.
The model predictions test out the validity criterion of non-negativity of variance and
finite value of variance. The model is a case for selection and considered for further

exploration for polystyrene nanoparticle in next section.

9
13

7

1x107% < ¢ <100m

Function

t/B )

Fig. 4.13  Simulation of Model 7 for Silicon Nanoparticle for 1x10™° < ¢’ <100m in
Steps of 1x10° m

4.7.2 Simulation for Polystyrene Nanoparticle
The polystyrene nanoparticle is characterized by parametric values given in sub-
section 4.4.2. The function values of two altered models namely Model 6 and Model 7

are simulated for the silicon nanoparticle in the following sub-sections.
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(a) Simulation of Model 6

Further simulation for Model 6 is done assuming polystyrene nanoparticle in
order to confirm the conclusions drawn in the previous sub-section. For Model 6, the
function  is obtained from equation (4.47) for parametric values given for polystyrene
nanoparticle. The values of y are obtained for specified range of ¢’. It is observed from
simulation results that Model 6 predicts negative function value for parametric range
1x107° <¢'<1x10° m. The plots of function value with respect to time in this
parametric range are shown in Fig. 4.14(i) and Fig. 4.14(ii). The function value
becomes unbound for higher values of ¢'. The negative variance is not allowed

according to Criterion 1 and infinite values according to Criterion 2. This confirms the

assessment in the case of silicon nanoparticle and hence the model is rejected.

x 16

0 d x =
¢ =1x% 10-10 0 ":j:::

4l ¢’ =1x10"%m

Function W

1 2 3 4 5 6 7 8 9 10

t(1/8 )

(i) ¢ vstin Parameter Range:1x107° < ¢’ <1x10™* m in Steps of 1x10° m
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(ii) ¢ vs?in Parameter Range:1x10™° <¢'<1x10™ m in Steps of 1x10™° m

Fig. 4.14 Simulation of Model 6 for Polystyrene Nanoparticle

(b) Simulation of Model 7
~ The simulation for Model 7 is done for polystyrene nanoparticle in order to

confirm the conclusions drawn in the previous sub-section. For Model 7, the function
wis obtained from equation (4.48) for parametric values given for polystyrene
nanoparticle. The values of y are obtained for specified range of ¢’. It is observed from
simulation results that Model 7 predicts once again positive and finite function value for
entire parametric range 1x 107 <¢'<100m. The plots of function value with respect
to time are shown in Fig. 4.15. The positive and finite variance is in accordance to
Criterion 1 and Criterion 2. This confirms the assessment of validity for Model 7 as in
the case of silicon nanoparticle. The model represents first published [Sharma 2004 (i)]

valid impact transfer model of Brownian motion of non-rigid nanoparticle
The simulation results of Model 6 did not tested with the validity criterion and

hence Model 6 was rejected. The simulation exercise in this section yielded that the

Model 7 is valid and test with the two validity criterions for two published observed
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results. This suggests that there, in fact, was unmodeled aspect in the four Brownian

motion models of non-rigid nanoparticle and the same can be captured in modeling by

introduction of sub-system as in Model 7.

9
gl

7}

11070 < ' <100 m

Function

tQ/8 s)
Fig. 4.15 Simulation of Model 7 for Silicon Nanoparticle for 1x10™° <¢'<100m in
Steps of 1x10™° m
In order to explore the possibility of similar sub-systems featuring the property

interaction in the Brownian motion model, the modeling is pursued further in next

chapter.

4.8 EPILOGUE

In the present chapter, an extensive simulation was carried out for different
possible valid models (four models developed in previous chapter and two new models
developed in present chapter) and function value plots were obtained. The simulation
was done over a large range of parametric values. The simulation results are shown in
Fig. 4.2 to Fig. 4.15. The proposed six models considered elasticity and dissipative

properties of the nanoparticle explicitly to explore Brownian motion in nano-domains.

Model 2 and Model 3 failed to test out validity criterion 2 and Criterion 1

respectively and suggests that the arrangement of elements representing additional
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properties, proposed in these models, is not correct. The failure of Model 5 and Model 6
against validity criterion 1, rules out double integration of forcing signal in impact
transfer in any manner. If the output signal is to be position of the particle, then as we
move backwards to the input signal (white noise) through elastic sub-systems, the
double integration model should physically mean that input signal is a higher order jerk
~d*x/dt® . The rejection of double integration models, Model 5 and Model 6, affirm
that thermal noise cannot produce a jerk. The rejection of Model 4 indicates that single
integration of forcing signal must take place. No integration in transfer mechanism
(Model 4) physically implies that signal does not change its form i.e. input and output
signals both represent position. The negation hypothesizes that the signal transformation
does take place and survival of single integration models, Model 7 confirms the notion
that thermal noise can produce a force at thermal equilibrium. The Model 7 is obtained
by hypothesizing a physical process, which limits the physical explanation cf the model.
Another limitation of all six models presented is that a fixed interaction of additional

elements ( /' and k) has been explored. This leaves a number of other possible and

contending interactions for probable models of impact process.

Another attempt to obtain valid Brownian motion models of non-rigid
nanoparticle is done in next chapter removing the above limitations. Since the non-rigid
nanoparticle involves two additional parameters ( f* and k) in addition to m and f; a
systems-modeling approach with four parameters (m, f, f' and k) will be more
appropriate. The exhaustive search for valid Brownian motion models of non-rigid
nanoparticle is done using systems modeling approach as a second method and is

presented in next chapter.
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It may be that hypothesis of nature merely reflects intellectual vanity.

Sasford Williom Grotalerg
CHAPTER 5

BROWNIAN MOTION MODELS OF NANOPARTICLE:
SYSTEMS MODELING APPROACH

5.1 INTRODUCTION

The assumed relation between various properties of nanoparticle was
verified by simulation in the previous chapter. This suggests that inclusion of elastic
and dissipative properties of nanoparticle in the Brownian motion model is a valid
proposition. The Brownian motion Model 7 was limited because one of the sub-
systems in the model was assumed to be having a fixed arrangement of elements
representing the elastic and dissipative properties of nanoparticle and the other sub-
system was assumed to be of unknown configuration. There can be many other
possible arrangements, which can be possible models of Brownian motion of non-
rigid nanoparticle. The present chapter attempts to characterize these fixed and
unknown physical processes and a Brownian motion model has been developed
removing the above two assumptions. In order to include elastic and dissipative
properties of the nanoparticle, all-possible models of lumped passive elements
corresponding to inertia, elasticity and dissipative properties are considered using
system-modeling approach. The models developed are subjected to various validity
constraints. The models testifying the constraints are simulated and verified with
available results in next chapter to get a model of Brownian motion of non-rigid

nanoparticle. The approach used for developing all possible system models is

explained in next section.

529 SYSTEMS MODEL FOR BROWNIAN MOTION OF RIGID
NANOPARTICLE

A system is a collection of components wherein individual components are
combined by connecting inter-relationships and that the system as a whole fulfils
some specific functions in response to varying inputs [Nagrath 1982]. The
methodology of describing systems and their behavior is called as systems approach.

Systems approach offers a strategy for solving complex engineering and social
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problems. In order to describe large scale, complex, interactive system, the systems
approach makes use of models that determines features and their possible
interactions, which describes the system. In certain situations where system exact
models are not available, we resort to certain idealizing assumptions and obtain

mathematical model from the idealized system models.

In Brownian motion, the system comprises"of the Brownian particle and the
surrounding medium interaction. The phenomenon is quite complex and is analyzed
in available literature under a number of idealizations like the surrounding medium
is assumed to be viscous and Brownian particle is assumed as a rigid spherical
particle of radius r and mass m. The damping from medium is assumed to follow
Stokes law and the resistance force to Brownian motion from the surrounding
medium due to damping is assumed to be proportional to velocity of the Brownian
particle. The damping force is characterized by a proportionality constant called

damping coefficient, which is given by f=6mn. The input energy for the

Brownian motion comes from the random impacts of surrounding medium
molecules and is assumed as white noise. The output from the system is the
information on position of the particle and is represented in terms of expected
values, as the system input is stochastic in nature. The most established Brownian
motion model, Ornstein-Uhlenbeck model, is obtained using correlation technique
under the above mentioned assumptions. The idealized model is characterized with
parameters f and m; white noise as input and x(#) as output. Thus, system is a single

input-single output system with two-parameter f'and m and can be represented by a

block-diagram and is shown Fig. 5.1.

Input System Output

(f,m)

Fig.5.1 Two-Parameter System Block Diagram for Rigid Nanoparticle Brownian
Motion

The Omstein-Uhlenbeck model was obtained using Langevin
equation (2.10). The Langevin equation is linear and it is assumed that the
parameters of the system do not change with time making system time invariant.
The assumption of white noise as input renders the system instantaneous and casual.

The model further assumes parameters f and m being lumped at one point in space.
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The lumped parameter assumption is valid in small sized domains even at high
frequencies because the wavelength of high frequency signals is considerably larger
than the size of the particle. Moreover, system is continuous time system because

the frequency of collision is quite high (~ 10 collisions/s).

A mechanical system can be represented by an electrical analogous system
using either Force-Voltage or Force-Current analogy. The driving energy in
Brownian motion being a force, the force-voltage analogy is considered appropriate.
The equivalent electrical analogous quantities, using Force-Voltage analogy for the
Brownian motion system parameters are: resistance R is analogous to f (R =f ),
inductance L is analogous to m (L = m), current i(t) is analogous to velocity
% (i() = x(¢)), charge g(t)=x(t), and voltage is analogous to force (V'(r)= F(r)).
Since the Brownian motion is mechanical in nature, the use of mechanical analogous

quantities is done in place of electrical parameters in rest of the thesis. For example,

an inductance of m and a resistance of for f’ is used in development of systems-

model for Brownian motion.

To develop a system model, we must know the relationship between
different parameters of the system. The series inductance-resistance circuit shown in
Fig. 5.2 is modeled by a second order linear differential equation, which can be
obtained applying Kirchoff’s law. The Brownian motion model represented by
Langevin equation (3.4) is also a second order linear differential equation same as
the circuit equation of inductance (m) and resistance (f) in series connected across a
stochastic voltage source F(¢r). The equivalent circuit, therefore, can be used to
represents a Brownian motion model. In the of rigid nanoparticle model of
Brownian motion, only significant parameters are m and f and hence circuit shown
in Fig 5.2 represents the systems model of rigid body Brownian motion.

i) =x(0)

R= L=m

V(e) = F(0)

Fig. 5.2 Equivalent Electric Circuit for Two Parameter Brownian motion Model of
Rigid Nanoparticle
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5.3 SYSTEMS MODEL FOR BROWNIAN MOTION OF NON-
RIGID NANOPARTICLE

Non-rigidity is the prime point chosen to be explored in nano-domains. In
order to develop Brownian motion model of a non-rigid nanoparticle, two more
properties of nanoparticle need to be included in the model. The two properties are:
elasticity of nanoparticle characterized by a lumped parameter & and dissipation by
nanoparticle characterized by a lumped damping coefficient f'. The parameter k
represents the energy storing property of the matter where as the f' represents the
loss of energy due to nanoparticle. The two corresponding electrical elements are
capacitor for storage and resistor for loss of energy. Using Force-Voltage analogy,

these two-parameter in equivalent electrical quantities can be represented as a
resistance R’ as R'= f' and a capacitance ¢ as ¢ =1/k . In all, therefore, there are
four parameters in non-rigid model of system namely:m, f, f',1/k. The block-
diagram of the four parameter systems is shown in Fig. 5.3 and the four parameters

based on Force-Voltage analogy are tabulated in Table 5.1.

Input System Output

(f>f,: m, l/k)

Fig. 5.3 Proposed Four Parameter System Block Diagram

Table 5.1 Four Analogous Parameters According to Force-Voltage Analogy

SNo. | Nanoparticle System Parameter Electrical System
Parameter
1. Mass of Nanoparticle, m Inductance, L

Reciprocal of Spring Constant of

2. Nanoparticle, 1/k Capacitance, ¢
Damping from Nanoparticle, f* Resistance, R’
4. Damping from Surrounding, f Resistance, R

As no information is available how these four elements interact with each
other to describe Brownian motion of non-rigid nanoparticle, we are left with no
choice other than to examine all possible interactions of the four parameters and
posteriori verify the obtained models against physical constraints, validity criterion

and available published results. The formulation of valid systems model
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representing interactions among various parameters is done in the present chapter

and follows next.

54 ALGORITHM FOR BUILDING ALL POSSIBLE FOUR-
PARAMETER MODELS OF NANOPARTICLE

In the model of the non-rigid nanoparticle Brownian motion, the four lumped

system parameters m, f, f',1/k interaction with each other is not clearly known or

defined. The different ways in which the four elements can interact gives rise to
different possible equivalent models of the nanoparticle system. Some of these
models may violate the physical constraints. First, all possible four parameter
models are developed and then these are filtered to get possible feasible models. An
algorithm is developed to generate all possible four-parameter models. The steps of
the algorithm to develop all possible four-parameter models are presented as an

algorithm next.

Algorithm 2: Algorithm to Develop Four-Parameter Models

To develop all four parameter models, force-voltage electrical analogy
discussed in section 5.2 is used. The four-parameters in systems model will
correspondingly have four electrical elements and are represented by analogous
mechanical quantities. In the first step, in order to develop all possible models, a box
is assumed to represent any of the four elements and distinct all four block models

are determined step-by step as follows.

Step I: Getting All Possible Two-Unit Models

First step is to develop all possible models with two blocks. To do this, one
box as a unit is considered first, and one box is added to it. The second unit can be
added in series in front of first unit or at the rear of first unit or in parallel to first
unit resulting in three distinct two-unit models. These three possible two-unit models

are shown in Fig. 5.4. This step is recursively applied to generate larger models.

[—— 1
—— - - - —— First Unit
econ . .
|| First Unit | Seeon Unit | First Unit | | I=——]
—— — Second
Unit

(i) (i) (iii)
Fig. 5.4 Three Possible Two-Unit Models
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In the system under consideration, there is no reason of preferential
placement of elements (m,f,f '1/k) in any particular box. Thus, all boxes
represented by different units are equivalent and labeling of the boxes as first and
second is removed. The label removal renders Fig. 5.4(i) and (ii) to be identical.
Thus, distinct possible two-unit models are only two as shown in Fig. 5.5. This step

is also used recursively to obtain distinct possible larger models.

L=

® (i)
Fig. 5.5 Two Distinct Two-Unit Models

Step II: Getting All Possible Three-Unit Models

The two-unit models in Fig. 5.5 are expanded by including one more unit.
One more unit can be added in series or in parallel to two-unit models giving three
unit models. For example, taking two-unit model in Fig. 5.5 (i) as a unit, third unit
can be added in series to it in front or in rear or in parallel, as was done in Step 1.
The resulting three three-unit models are shown in Fig. 5.6(i), (ii) and (iii),
respectively. Continuing the process similarly, for two unit models in Fig. 5.4(ii),
three more three-unit models are obtained and are shown in Fig. 5.6(iv) through (vi).

Hence, in all six three-unit models are obtained.

Third
Unit
== T — — T ] |,
[ H ] e H Lf N ﬂ
e == —] f S— ) S— I}
) (i) (iii)
== == Do
| | — — | I —
| ) [ +[ Jl
| | | ' | — |
L—1 L1 |
L |

(iv) ™ (i)

Fig. 5.6 Six Possible Three-Unit Models
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As in Step I, all boxes are equivalent and labeling of the boxes as third unit is
removed. From the label removal, Fig. 5.6(1) and (ii) becomes identical. Thus,

distinct possible three-unit models are only five as shown in Fig. 5.7.

o0 L T

@) (ii) (iii)

=

(iv) )

Fig. 5.7 Five Distinct Three-Unit Models

Step III: Getting All Possible Four-Unit Models from Three-Unit Models
Four-unit models are possible by adding one more unit to three-unit models
in Fig. 5.7 and by adding two unit models to two-unit models in Fig. 5.5. In this
step, first, adding one more unit to five three-unit models in Fig. 5.7 develops four-
unit models. The addition of the unit is done systematically, as per Step I, to get all
possible four-unit models. For example, considering the three-unit model in
Fig. 5.7(i) as one entity, one more unit can be added in front and rear in series, and
in parallel. This gives three models of four-units. The four-unit models, thus

obtained, are shown in Fig. 5.8(i), (ii) and (iii).

- T /37 7 r—— - | [Fourn |

;— I | ! | | lUnul

| [ Fourth Fournh | | l
[ = E

| | I !

L i, N e W

Fig. 5.8 (Contd.)
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Fig. 5.8 Fifteen Possible Four-Unit Models Obtained from Three-Unit Models

Repeating the procedure with remaining four three-unit models in Fig. 5.7
(11) through (v), twelve more four-unit models are obtained, which are shown in
Fig. 5.8 (iv) through (xv). In all, fifieen possible four-unit models are obtained from

five distinct three-unit models.

As in Step I, all boxes are equivalent and labeling of the box as fourth unit is
removed. From the label removal, Fig. 5.8(i) and (ii), Fig. 5.8(viii) and (x) becomes
correspondingly identical. Thus, distinct possible four-unit models are only thirteen

as shown in Fig. 5.9.

Step IV: Getting All Possible Four-Unit Models from Two-Unit Models

Next sets of four-unit models are obtained by adding two-unit models to two-
unit models shown in Fig. 5.5 in all possible ways i.e. in series or in parallel, as in
Step I. For example, to the two-unit model in Fig. 5.5(i), adding two-unit block in
Fig. 5.5(i), as third and fourth unit, gives three four-unit models as shown in

Fig. 5.10(i), (ii) and (iii).
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Fig. 5.9 Thirteen Distinct Four-Unit Models Obtained from Three-Unit Models

Similarly, to the two-unit model shown in Fig. 5.5(i), adding two-unit block
in Fig. 5.5(i1), as third and fourth unit, gives three more four-unit models as shown
in Fig. 5.10(iv) through (vi). Repeating the procedure with two-unit model shown in
Fig. 5.5(ii), six more four-unit models are obtained, which are shown in
Fig. 5.10(vii) through (xii). In all, twelve possible four-unit models are obtained
from two distinct two-unit models.

As in Step I, all boxes are equivalent and labeling of the box as third and
fourth unit is removed. From the label removal, Fig.5.10(1) and (ii) becomes
identical. Similarly Fig. 5.10(iv) and (viii), Fig. 5.10(v) and (vii), Fig. 5.10(vi) and
(ix), Fig. 5.10(x) and (xi) are also identical respectively. Thus, distinct possible four-

unit models obtained from two-unit models are only seven as shown in Fig. 5.11.
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Fig. 5.10 Twelve Possible Four-Unit Models Obtained from Two-Unit Models
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Fig. 5.11 Seven Distinct Four-Unit Models Obtained from Two-Unit Models
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Step V: Getting Distinct Four-Unit Models

Thirteen distinct Four-unit models have been obtained from three-unit
models (Fig. 5.9) and eight distinct Four-unit models are obtained from two-unit
models (Fig. 5.11). From Fig. 5.9 and Fig. 5.11, it is observed that Fig. 5.9(1) and
Fig. 5.11(i) are identical. Similarly, the models shown in Fig. 5.9(v), (vi), (ix), (xiv)
and Fig. 5.11(v), (iv), (iii), (vi), (viii) are correspondingly identical. From the twenty
four-unit models in Fig. 5.9 and 5.11, fifteen four-unit models are found to be
distinct representing fifteen unique series-parallel combination of four-units. These

fifteen models are shown in Fig. 5.12.

0000 [Hog) [Goo

6] (i) iii)
]
— L |
=g 5 J5eo
| S|
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(iv) v) (vi)
‘ @
(vii) (viii) (ix)
(%) (xi) (xii)
(xiii) (xiv) (xv)

Fig. 5.12 Fifteen Distinct Four-Unit Models
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Step VI: Getting All possible Interactions of Four Analogous Mechanical
Elements from Distinct Four-Unit Models

In the process to develop all possible system models, as equivalent electric
circuits, the next step is assigning of different mechanical analogous elements
(m; f,f',1/k) representing corresponding electrical elements (L,R,R',€) in the
different boxes of fifteen four-unit models. As there are no preferences either among
the units or elements for assignment, the first box of a four-unit model has four
choices among four equally likely elements to be filled with. Since the assignment
of one element excludes it from further consideration as assignment events being
mutually exclusive, the next box is left with the choice of assignment from
remaining three elements. After filling of second box, only two elements are left for
the third box and finally only one element is left for the last box. Each unique
assignment represents a possible interaction among elements of the system and,

hence, a possible model of the system.

Thus, factorial-four interactions of four elements are possible for each of the
fifteen distinct four unit models shown in Fig. 5.12. For example, factorial four or
twenty-four possible assignments of four elements to the first four-unit model in
Fig. 5.12(i) give twenty-four models. These twenty-four models are shown in
Fig. 5.13 as electrical circuits with analogous mechanical parameters and are
referred as Combination-1. The mechanical analogous parameters are used for

representing electrical circuit elements throughout the present work.

Repeating the above procedure for remaining fourteen four-unit models in
Fig. 5.12, in all fifteen combinations are obtained with 15x4!=360 possible four
parameter models named as Combination-1 through Combination-15. The fifteen

combinations each with twenty-four possible electrical analogous models are given

in Appendix II in Fig. II1 to Fig. IL15.
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Fig 5.13
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5.5 SELECTION OF KINEMATICALLY VALID-SYSTEMS

In the previous section, all possible models of four-parameter systems, which
may model Brownian motion of non-rigid nanoparticle, were developed. Some of
the models may not be valid, as they may not satisfy certain kinematical and other
constraints. These constraints are defined and are applied as selection criterion to the
360 possible combinations (see Appendix II). Selection of possible candidates for

modeling Brownian motion of nanoparticle is carried in this section.

The process of selection is step-by-step applied as follows. First, a kinematic
feature of the system of nanoparticle performing Brownian motion is identified and
defined as a constraint of the system. The constraint is applied to all possible models
in each of the fifteen combinations and the models, which satisfy the identified

feature, are selected and others filtered out.

5.5.1 Selection Criterion 1

The first filtering of 360 electrical analog models is done based on electrical
equivalence of two models. The electrical equivalence is defined as follows

Definition 5.1

Two electrical systems are considered to be electrically identical, if and only
if, the over all impedances of the two systems is same, and the current flow
through each element is not altered because of change of location of
electrical elements in the systems. Two systems that are not electrically

identical are called as electrically distinct.

The electrical equivalence as defined above is considered as Selection
Criterion 1 and is applied as first filter. Among 360 possible electrical analog
models in Appendix II, some models are electrically identical. For example, in
Fig. 5.13, model (ii) is electrically identical to model (i) and hence model (ii) is
filtered out. In fact, the remaining twenty-two models in Fig.5.13 are also
electrically identical to model (i) and get filtered out. Only one model (any of the
twenty four arrangements) is selected from combination-1 after applying Selection

Criterion 1. This model is shown in Fig. I1.16 in Appendix II.
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Similarly, for Combination-2 (Fig. I1.2): models (i)-(vi), models (vii)-(xii),
models (xiii)-(xviii), and models (xix)-(xxiv) are correspondingly identical, hence
only four distinct models are selected from Combination-2. These four models are

shown in Fig. I1.17 in Appendix IL

For Combination-3 (Fig. II.3): models (i)-(ii), models (iii)-(iv), models (v)-(vi),
models (vii)-(viii), models (ix)-(x), models (xi)-(xii), models (xiii)-(xiv), models
(xv)-(xvi), models (xvii)-(xviii), models (xix)-(xx), models (xxi)-(xxii), and models
(xxiii)-(xxiv) are correspondingly identical, hence in all twelve distinct models are

selected from Combination-3. These twelve models are shown in Fig. I1.18 in

Appendix II.

For Combination-4 (Fig. I1.4): models (i)-(ii), models (ii1)-(iv), models (v)-
(vi), models (vii)-(viii), models (ix)-(x), models (xi)-(xii), models (xiii)-(xiv),
models (xv)-(xvi), models (xvii)-(xviii), models (xix)-(xx), models (xxi)-(xxii), and
models (xxiii}-(xxiv) are correspondingly identical, hence in all twelve distinct

models are selected from Combination-4. These twelve models are shown in

Fig. I1.19 in Appendix II.

For Combination-5 (Fig. I.5): models (i), (ii), (xv) and (xvi), models (iii),
(iv), (ix) and (x), models (v), (vi), (xxiii) and (xxiv), models (vii), (viii), (xiii) and
(xiv), models (xi), (xii), (xix) and (xx), models (xvii), (xviii), (xxi) and (xxii), are
correspondingly identical, hence in all six distinct models are selected from

Combination-5. These six models are shown in Fig. I1.20 in Appendix II.

For Combination-6 (Fig. I1.6): models (i), (ii), (vii), and (viii), models (iii),
(iv), (xiii), (xiv), models (V), (vi) (xix), (xx), models (ix), (x), (xv), (xvi), models
(xi)-(xii), (xxi) and (xxii), models (xvii)-(xviii), (xxii1) and (xxiv) are
correspondingly identical, hence in all six distinct models are selected from

Combination-6. These six models are shown in Fig. 11.21 in Appendix II.

For Combination-7 (Fig. IL.7): models (i), (ii), (vii), and (viii), models (iii),
(iv), (xiii), (xiv), models (v), (vi) (xix), (xx), models (ix), (x), (xv), (xvi), models

(xi), (xii), (xxi) and (xxii), models (xvii), (xviil), (xxiii)) and (xxiv) are
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correspondingly identical, hence in all six distinct models are selected from

Combination-7. These six models are shown in Fig. I.22 in Appendix II.

For Combination-8 (Fig. I1.8): models (i)-(ii), models (iii)-(iv), models (v)-(vi),
models (vii)-(viii), models (ix)-(x), models (xi)-(xii), models (xiii)-(xiv), models
(xv)-(xvi), models (xvii)-(xviii), models (xix)-(xx), models (xxi)-(xxii), and models
(xxiii)-(xxiv) are correspondingly identical, hence in all twelve distinct models are
selected from Combination-8. These twelve models are shown in Fig. I1.23 in

Appendix II

For twenty-four models in Combination-9 (Fig. I.9), models (1), (i1), (vii)
and (viii) are found to be electrically identical and give only one selected model.
Also, models (iii), (iv), (xiii) and (xiv), models (v), (vi), (xix) and (xx), models (ix),
(x), (xv) and (xvi), models (xi), (xii), (xxi) and (xxii), models (xvii), (xviii), (xxiii)
and (xxiv) are correspondingly electrically identical. Thus in all from combination-

9, only six models are distinct. These six models are shown in Fig. I1.24 in

Appendix II.

For Combination-10 (Fig. II.10): models (i)-(ii), models (iii)-(iv), models
(v)-(vi), models (vii)-(viii), models (ix)-(x), models (xi)-(xi1), models (xiii)-(xiv),
models (xv)-(xvi), models (xvii)-(xviii), models (xix)-(xx), models (xxi)-(xxii), and
models (xxiii)-(xxiv) are correspondingly identical, hence in all twelve distinct

models are selected from Combination-10. These twelve models are shown in

Fig. I1.25 in Appendix IL.

For Combination-11 (Fig. II.11): models (i)-(vi), models (vii)-(xii), models
(xiii)-(xviii), and models (xix)-(xxiv) are correspondingly identical, hence only four
distinct models are selected from Combination-11. These four models are shown in

Fig. 11.26 in Appendix I

For Combination-12 (Fig. I1.12): models (i)-(vi), models (vii)-(xii), models
(xiii)-(xviii), and models (xix)-(xxiv) are correspondingly identical, hence only four
distinct models are selected from Combination-12. These four models are shown in

Fig. I1.27 in Appendix II.
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For Combination-13 (Fig. I1.13): all twenty-four models identical, hence in
all only one distinct model is selected from Combination-13 and is shown in

Fig. 11.28 in Appendix II.

For Combination-14 (Fig. IL.14): models (i), (ii), (vii), (viii), (xvii), (xviil),
(xxiii) and (xxiv), models (iii), (iv), (xi), (xii), (xiii), (xiv), (xxi) and (xxii), models
V), (vi), (ix), (x), (xv), (xvi), (xix) and (xx), are correspondingly identical, hence in
all three distinct models are selected from Combination-14. These three models are

shown in Fig. 11.29 in Appendix IL

For Combination-15 (Fig. I1.15): models (i), (vi), (viii), (), (xv), (xvii), (xx)
and (xxiii), models (ii), (iv), (vii), (xii), (xiii), (xviii), (xxii) and (xxiv), models (iii),
(), (ix), (xi), (xiv), (xvi), (xix) and (xxi), are correspondingly identical, hence in all
three distinct models are selected from Combination-15. These three models are

shown in Fig. I1.30 in Appendix II.

Hence, the total number of electrically distinct models after applying
Selection Criterion 1 is ninety-two. These electrically distinct models are further

subjected to other criterions in next section.

5.5.2 Selection Criterion 2

In a mechanical system, if mass is moving with a velocity X then resistive
force due to damping is proportional to x, that is, for m and f elements both should
have same velocity. Hence, in the electrical analog of mechanical system, the model
should have R and L (f and m) elements so arranged that they should have same
current (velocity). The models, which do not satisfy this condition, are rejected. This

is considered as Selection Criterion 2

For combination-1, after applying Selection Criterion 1, only one electrically
distinct model was selected having all four elements in series (see Fig. 11.16). In this
series model same current flows through all elements. This satisfies the Selection
Criterion-2 and, therefore, may be a possible system model. Thus, criterion-2 does

not reject the model.

For Combination-2, four models satisfy Selection Criterion 1 (see Fig. IL.17).

Except for the model in Fig. I1.17(iii) and (iv), none other model have f and m
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element in series. These two models in Fig. IL.17(iii) and (iv), therefore, satisfy

Selection Criterion 2 and are carried for further investigation.

For Combination-3, out of twelve models satisfying Selection criterion 1 (see
Fig. I1.18), only two models in Fig. I1.18(viii) and (xi) satisfy Selection Criterion 2

and are carried further for investigation.

For Combination-4, there are twelve electrically distinct models satisfying
Selection Criterion 1 (see Fig. I1.19). Except for two models in Fig. I1.19(viii) and
(xi), none other model satisfy Selection Criterion-2. Thus out of twelve models, ten

are rejected and two in Fig. I1.19(viii) and (x1) are carried for further investigation.

For Combination-5, there are six models satisfying Selection Criterion-1 (see
Fig. 11.20). Except for model in Fig. I1.20(vi), other five models do not satisfy the

Selection Criterion-2. The model in Fig. I1.20(vi) is carried for further investigation.

For combination-6 (see Fig. I.21), one out of six model, namely model in

Fig. I1.21(i), satisfy Selection Criterion 2 and is carried for further investigation.

For combination-7 (see Fig. I1.22), one out of six models namely model in

Fig. I1.22(i), satisfy Selection Criterion 2 and is carried for further investigation.

For combination-8 (see Fig. I1.23), none among twelve electrically distinct

models, satisfy the Selection Criterion 2 and hence all twelve models gets rejected.

For Combination-9, there are six possible electrically distinct models of
elements (See Fig. I1.24). Except for the model corresponding to Fig. 11.24 (i), none
other model satisfy Selection Criterion 2. The model in Fig. I1.24(1) satisfies the

Selection Criterion 2 and is carried further for investigation.

For Combination-10, there are twelve models satisfying Selection Criterion 1
(see Fig. 11.25). Among the twelve models, none of the model satisfy Selection

Criterion 2. So all are rejected and filtered out of further investigation.

For combination-11, none among four electrically distinct models (see

Fig. I1.26), satisfy Selection Criterion 2 and hence all four models get rejected.
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For Combination-12, among four models satisfying Selection Criterion 1

(see Fig. I1.27), none satisfy Selection Criterion 2, therefore, all are rejected.

For Combination-13, the only model satisfying Selection Criterion 1 (see
Fig. I1.28) does not satisfy Selection Criterion 2 and hence, is rejected for further

investigation.

For Combination-14, there are three models satisfying Selection Criterion 1
(see Fig. I1.23). Except for model in Fig. I1.29(ii), other two models do not satisfy
Selection Criterion 2 and hence, are rejected. The model in Fig. I1.29(ii) satisfying

Selection Criterion 2 is carried further for investigation.

For combination-15 (see Fig.I1.30), among three models, none satisfies

selection criterion-2 and hence are rejected.

The number of rejected model based on their inability to satisfy Selection
Criterion 2 totals to 80. Thus, from ninety-two models satisfying Section criterion 1,
eighty models get rejected according to Selection Criterion 2. The remaining twelve

models are shown in Fig. 5.14 and are subjected to last selection criterion.

-5.5.3 Selection Criterion-3

The twelve models shown in Fig. 5.14 are tested for their possibility to
represent Brownian motion of a free namoparticle. A free particle cannot be
harmonically bound about a global equilibrium position, because by definition, such
particles are not free to move in space whereas the nanoparticle under consideration
is a free particle. Thus models, which give a harmonic term in the mathematical
model, are rejected. The mathematical model representing the electrical analog
model is derived for each of the remaining twelve possible models using Kirchoff’s

law and the third criterion is applied to check the suitability of the models to

represent Brownian motion.
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Fig. 5.14 Possible System Models Satisfying Selection Criterion-1 and 2

To obtain the mathematical model, a free noise generator with force F(¢) is
applied to each of the model to complete the electrical analog circuit. The

mathematical model in the form of a second order differential equation for the
position variable x, representing mechanical analog of charge flowing through the
mass m representing mechanical analog of inductance is obtained. The velocity

%, =dx, /dt is mechanical analog of current flowing through inductance. The
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second order differential equation in x, is equivalent to Langevin equation model of
free nanoparticle.

(a) Mathematical Model for Model in Fig. 5.14(i)

The electrical analog circuit corresponding to model in Fig. 5.14(i) is shown
with voltage source in Fig. 5.15 as possible Model L.

m ff lk

ST WMWY
N
D,

X

Fig. 5.15 Possible Model I

Applying Kirchoff’s law to the circuit gives the following equation
F=m%+5q(f+f’)+k [x.ar (5.1)

Equation (5.1) on simplification gives
d*x dx
F=m—2+(f+f')—+k, +C 5.2

where C is constant of integration. Equation (5.2) is a second order differential
equation for a harmonically bound system as it contains a term kx, corresponding to
a harmonic force. The Langevin model of Brownian motion of free particle does not
contain this spring force. Therefore, equation (5.2) does not model a free particle
performing Brownian motion and does not satisfy Selection Criterion 3. Hence,

model in Fig. 5.14(i) is rejected as a possible system model.

(b) Mathematical Model for Model in Fig. 5.14(ii)(a)
In Fig. 5.14(ii)(a) a free noise generator with voltage F(t) is added as shown

in Fig. 5.16. Keeping the notation of current x, through inductance, the current in
the main branch as x, and considering current %, through f', the model obtained

is shown in Fig. 5.16 as possible Model II

"o’o‘o’(ms—wvwv_| I_T
m f 1k +—
VWAAMW
X, f'

X

Fig. 5.16 Possible Model II
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Applying Kirchoff’s law to the circuit gives the following equation

dk !
F=m-d7'+x,f+k_£x,dz (5.3)
which on simplification gives
d’x dx
F= Ly f—L 4k, +C 5.4
" s a ! >-4)

where C is constant of integration. Equation (5.4) contains term of harmonic force

and therefore this model also does not satisfy Selection Criterion 3 and hence

rejected.

(c) Mathematical Model for Model in Fig. 5.14(ii)(b)
In Fig. 5.14(ii)(b) a free noise generator with voltage F(¢) is added as shown

in Fig. 5.17. Keeping the notation of current X, through inductance, the current in
the main branch as x, and considering current X, through capacitance 1/k, the

model obtained is shown in Fig. 5.7 as possible Model I1I.
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Fig. 5.17 Possible Model Il
Applying Kirchoff’s Voltage law to the circuit gives the following equation

d

x dx
F=m—+(f+f)— 5.
el U (5-5)

Equation (5.5) is the required mathematical model, which does not contain

any term proportional to displacement x, and therefore models a free particle and is

further selected as a possible model according to Selection Criterion 3.

(d) Mathematical Model for Model in Fig. 5.14(iii)(a)
In Fig. 5.14(iii)(a) and a free noise generator with voltage F(r) is added as

shown in Fig. 5.18. Keeping the notation of current x, through inductance, the
current in the main branch x, and considering current x, through capacitance 1/k,

the model obtained is shown in Fig. 5.18 as possible Model IV.
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Fig. 5.18 Possible Model IV

Applying Kirchoff’s law to the circuit gives the following equation

: d(m%+x,f)

dx
FemEias f+|5+— ' 5.6
m o xf+| % I r S/ (5.6)
Equation (5.6) on simplification gives
d’x dx, mf'd’x, f'd’x
F=m=—2t+(f+f)—=L+ 12—l 5.7
me U ) T T A G-

From equation (5.7), a mathematical model in the form of second order
differential equation can be obtained, which will be equivalent to Langevin
equation. In order to get the second order differential equation as mathematical

model, equation (5.7) on integration gives

dx mf' d*x, " dx
Fdt=m—L + L+ —14C 5.8
J m—t U S S s e (5-8)

where C is constant of integration. Equation (5.8) contains harmonic term and

therefore the model does not satisfy Selection Criterion-3 and hence is rejected.

(e) Mathematical Model for Model in Fig. 5.14(iii)(b)
In Fig. 5.14(iii)(b) a free noise generator with voltage F(?) is added as shown

in Fig. 5.19. Keeping the notation of current x, through inductance, the current in
the main branch x, and considering current %, through resistance f’, the model

obtained is shown in Fig. 5.19 as possible Model V.

Xy
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Fig. 5.19 Possible Model V
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Applying Kirchoff’s law to the circuit gives the following equation

L P A L S A
F=m o +(f+ 7 ] 7 +k(l+f,)xl (5.9

Equation (5.9) contains a harmonic force terms proportional to
displacements and so does not satisfy Selection Criterion 3 and therefore this model
is also rejected.

(f) Mathematical Model for Model in Fig. 5.14(iv)(a)
In Fig. 5.14(iv)(a) a free noise generator with voltage F(f) is added as shown

in Fig. 5.20. Keeping the notation of current through inductance as X, and

considering the current in the main branch X, current x, through f‘, the model

obtained is shown in Fig. 5.20 as possible Model V1.
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Fig. 5.20 Possible Model VI

Applying Kirchoff’s law to the circuit gives the following equation

et (5.10)

dt

1 d’x, dx ), d’x
—Lfe+m—r
K\ ar T ad dr )f "

d*x
F=—m—1+f—>+
( 4 dr’

From equation (5.10), a mathematical model in the form of second order
differential equation can be obtained, which will be equivalent to Langevin

equation. In order to get the second order differential equation as mathematical

model, equation (5.10) on integration gives

" d’x dx dx
det:%(mTzl+f_(i-tL+).cl)+m7tI+ﬁl+c (5.11)

where C is constant of integration. Equation (5.11) contains harmonic term in x,

and therefore the model does not satisfy selection criterion-3 and hence, Model V1 is

rejected.
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(g) Mathematical Model for Model in Fig. 5.14(iv) (b)
In Fig. 5.14(iv)(b) a free noise generator with voltage F(¢) is added as shown

in Fig. 5.21. Keeping the notation of current X, through inductance, the current in
the main branch as x, and considering current x, through f', the model obtained

is shown in Fig. 5.21 as possible Model VII.

1/k

Fig. 5.21 Possible Model VII

Applying Kirchoff’s law to the circuit gives the following equation

3 2
1dF _mdx (m_fldx [, ]% (5.12)
kdt k dt f' k) adt f') dt

From equation (5.12), a mathematical model in the form of second order

differential equation can be obtained, which will be equivalent to Langevin
equation. In order to get the second order differential equation as mathematical

model, equation (5.12) on integration gives

F mdzx, m f
P +(f k]d (1+ }r+C (5.13)

where C is constant of integration. Equation (5.13) contains harmonic term in x,
and therefore the model does not satisfy selection criterion-3 and hence, Model VII

is rejected.

(h) Mathematical Model for Model in Fig. 5.14(v)
In Fig. 5.14(v) and a free noise generator with voltage F(¢) is added as shown

in Fig. 5.22. Keeping the notation of current x, through inductance, the current in
the main branch x, and considering current x, and x, through resistance f', and
capacitance 1/k respectively, the model obtained is shown in Fig. 5.22 as Model

possible VIII.

114



Fig 5.22 Possible Model VIII

Applying Kirchoff’s law to the circuit gives the following equation

d*x, _dx
+ ——
dr? s dt

Equation (5.14) is the required mathematical model, which does not contain

F=m (5.14)

any term proportional to displacement x;, and therefore models a free particle and is
further selected as a possible model according to Selection Criterion 3.
(j) Mathematical Model for Model in Fig. 5.14(vi)

In Fig. 5.14(vi) a free noise generator with voltage F(r) is added as shown in
Fig. 5.23. Keeping the notation of current %, through inductance, and considering
the current in the branches as %, and X, , the model obtained is shown in Fig. 5.23

as possible Model IX.

Fig. 5.23 Possible Model IX

Applying Kirchoff’s law to the circuit gives the following five equations

mf’ d’x, (F )dle nax, _ [ dF
W a4 -m|l—=-(f+f) L= .
k dtf’ (k ") ar (r f)dt k dt (5-15)

Equation (5.15) on integration yields second order differential equation given as

mf'dle i_ Ex_l_ ' =£ —
T?J{k m)dt (f+f')x +C o F [Fdt  (5.16)
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where C is constant of integration. Equation (5.16) contains terms representing
harmonic force, which bounds the particle and does not satisfies the Selection

Criterion 3. Hence, Model IX also gets rejected.

(k) Mathematical Model for Model in Fig. 5.14(vii)
In Fig. 5.14(vii) a free noise generator with voltage F(f) is added as shown in
Fig. 5.24. Keeping the notation of current X, through inductance, and considering

the current in the branches as x, and x, , the new possible model obtained is

shown in Fig. 5.24 as Model X.

Fig. 5.24 Possible Model X

Applying Kirchoff’s law to the circuit gives the following equation
F+%Z—f=%ﬂ%+(%+m)%+(f+f')% (5.17)
From equation (5.17), a mathematical model in the form of second order
differential equation can be obtained, which will be equivalent to Langevin
equation. In order to get the second order differential equation as mathematical

model, equation (5.17) on integration gives

[Fdt +—fk—F =’"Tf'%+(%+m)%+(f+f')x, +C  (5.18)
where C is constant of integration. Equation (5.18) contains terms representing
forces proportional to displacement. But the presence of terms representing forces
proportional to x harmonically bounds the particle and does not satisfies the

Selection Criterion 3. Hence, Model X also gets rejected.

(1) Mathematical Model for Model in Fig. 5.14(viii)

As for previous case, the electrical analog circuit with voltage F() put across

the system model, shown in Fig. 5.14(viii), is shown in Fig. 5.25. Considering
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current in different branches as X, and X;, the model is shown in Fig. 5.25 as

possible Model XI.
i‘Z
| Vk
m f -
XJ f '

jl :
Fig. 5.25 Possible Model XI

Applying Kirchoff’s law to the circuit gives the equation

dx
dl|F-x f-m—L
( xf mdt

1
+— 5.19
] k dt (5.19)

X, =#(F—x,f—mﬁ
7 dt

Equation (5.19) on simplification gives

2 2 3
dx _ 1 F_fﬁ_md_’z‘n c1aE_ 4 al _md—f' (5.20)
dt [ d d ) k\ld T ar " a

From equation (5.20), a mathematical model in the form of second order

differential equation can be obtained, which will be equivalent to Langevin
equation. In order to get the second order differential equation as mathematical
model, equation (5.20) on integration gives

d’x,
dr’

x,=%(Ft-ﬁ,—m%) %[F—f%—m )+c (5.21)

where C is constant of integration. Equation (5.21) contains terms representing

harmonic force and, therefore, does not satisfy the Selection Criterion-3. Hence,
Model XI also gets rejected.

(m) Mathematical Model for Model in Fig. 5.14(ix)
In Fig. 5.14(ix) a free noise generator with voltage F{(z) is added as shown in

Fig. 5.26. Keeping the notation of current x, through inductance, the current in the
main branch %, and considering current %, through resistance f' and capacitance

1/k , the model obtained is shown in Fig. 5.26 as possible Model XII.
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Fig. 5.26 Possible Model XII

Applying Kirchoff’s law to the circuit gives the following equation
d’x,
dr’

Equation (5.22) does not contain any term proportional to displacement x,

F=m

dx
+ fd—t' (5.22)

and therefore models a free particle and is further selected as a possible model

according to Selection Criterion 3.

The number of rejected models on the basis of their inability to satisfy
criterion-3 is nine and only three models remain for further analysis. The summary
of selection of three models from all possible 360 models is given in Table 5.2. The
three models satisfying Selection Criterion 1, Criterion 2 and Criterion 3 are

mentioned as valid models in column 7 of Table 5.2.

5.6 SELECTED SYSTEM MODELS

The three models surviving three selection criterions are shown in Fig. 5.27
and are denoted as Model 8, Model 9 and Model 10, respectively for further analysis
(Model 1 through Model 7 were analyzed in Chapter 3 and Chapter 4). The
numbering of valid models is in continuity to seven models developed in previous
chapter.

The mathematical models for the three models developed in the previous

section in equations (5.5), (5.14), and (5.22) and are written again for convenience

Model 8

d’x, ndx,
Flt)=m—3 +Hr+ )2t (5.23)
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Table 5.2 Possible Models of Four Parameter System

Possible Distinct Possible No. of Distinct| No. of Models Rejected No. of
S.No. | Arrangement of I\:ss(; | Models based on Valid
Four-Units 00elS | criterion1 | Criterion 2 | Criterion3 | Models
(€9) (©))] 3) Q) &) (6) )
1. | OCHHF 24 1 - 1 -
2. QEE} 24 4 2 I I
3. 1%:_}]43 24 12 10 2 i
4. {HJ_%:} 24 12 10 2 ;
6. {E{;;_}g_ 24 6 5 I ;
7. =5 24 6 5 1 -
J’Q':
8. [-.:: 24 12 12 - -
9. D—D%} 24 6 5 1 ]
10. oy 24 12 12 - .
|
11. 24 4 4 = -
12. ‘D{é} 24 4 4 . i
—
—
13. % 24 1 1 - 3
o]
Total 360 92 80 9 3
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Fig. 5.27 Equivalent Electric Analog Circuits for Three Valid Models

Model 9
d*x dx
Ft)=m—L4+ =L 5.24
© dr? s dt (5.24)
Model 10
d*x dx
Flt)=m—L4 r=1 5.25
0 dt? 4 dt (5-23)
Equations (5.23)~(5.25) can be written as a single equation in a general form as
d*x _dx
+ p—=
R n(t) (5.26)

where x, are replaced by x, n(t)=F(¢)/m is the scaled thermal noise impulse input,

and S for the three models are, respectively

Model 8
p= U:’nf ) (5.27)
Model 9
B= % (5.28)
Model 10
B= % (5.29)

The expected value of variance in output x(¢) for scaled thermal noise

impulse input n(z) in Equation (5.26) with autocorrelation @ 6(r) has been derived
for a rigid particle Model 1 (Ref. Equation 3.7) and reproduced below for

convenience as
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Eb?@ﬁ:i%;@-eﬁﬂéﬁz-1+eﬁﬁ (5.30)
2xT}

where a=— (5.31)
m

In rigid nano-particle model, the damping from nano-particle is assumed
insignificant and is contribution from medium alone. In contrast, non-rigid model of
nano-particle considers damping from medium as well as from nano-particle to
contribute to total damping. The total damping from medium and nano-particle is

denoted by f,, and replaces f in equation (5.31) for non-rigid model. For the three
valid models (Refer Fig.5.27) of possible models, the values of f, have been

obtained from electric circuits shown in Fig. (5.27) as

Model 8
(f + f')(f]
Ja = = 2 (5.32)
f+1y +(wm—£)
@
Model 9
(mk + 7 ymf & —(mkﬁ”z ¥ k_ff(f_-*f)]
S = = (5.33)

(mk + ') +(a) TS ))

Model 10

) (s smiy s 1)+(ms - L om-£ ]
(s +(am-X]

where o is the frequency in radians per second. Substitution of f, from equations.

S (5.34)

(5.32) to (5.34) in equation (5.31) gives three values of ¢ for the three models
respectively, which along with the value of § are used to obtain variance expressions

for the three models.

5.7 FORMULATION OF VARIANCE EXPRESSION

A typical type of fundamental time domain noise source is a Gaussian white
noise with zero mean and variance £ {F 2 (t)} The thermal noise is one type of white

noise, which has been considered in derivation of equation (5.30). The variance for
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rigid nano-particle is given by equation (5.30). In order to obtain variance for the
three selected non-rigid models, the expression for B is substituted in equation (5.30)
from equations (5.27) to (5.29) and « for the three non-rigid models from equation

(5.31) with substitution of f,, from equations. (5.32) to (5.34). The expressions for

variance for the three non-rigid models obtained are

Model 8
k).
R L)
+ 2
! (f+ry+ [ m-g) (5.35)
20+ Sy, 5
m
Model 9 \
(mk+ﬁ")mflk—[ mkff'2 +__k2ﬂ'£_)l;+f')]
ER ()= KT'" — LPQ (5.36)
(mk + ') +(co mf’ ———k(f;f )]
Model 10
(ff+m ka+f’)+(wmf’—ﬁX(om——li)
ER ()= K;m ° ° g (s37)

(f+ 1) +(wm—5)2

@

where P={1—e""’"}andQ { 211t 1+ —fl/m}

The variance models given by equations (5.35) to (5.37) are simulated to

validate the three models in next section.

58 SIMULATION OF THREE NON-RIGID MODELS

The three models are subjected to two validity criterions of non-negativity
and finiteness of variance defined in Chapter 4 in sections 4.2.1 and 4.2.2. In order
to validate the models, the simulation over a large parametric range is carried out for
two nanoparticles namely, silicon and polystyrene. The two naoparticles are chosen
because the variance plots for the two are available as published experimental results

in the work of Sasaki [2000] and Nakroshis [2003], respectively. The parametric
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values for the two nanoparticles are given in section 4.4.1 and 4.4.2 and are written

for convenience in table 5.3.

Table 5.3 Parametric Values for Silicon and Polystyrene Nanoparticle Given in
Published Experimental Results

Silicon Polystyrene
Parameter
[Sasaki 2000] [Nakroshis 2003]

Density (p) 2300 kg/m’ 1060 kg/m’
Temperature of Surrounding 273K 296.01£0.3 K
Radius of Nanoparticle (7) 40 nm 0.51+0.01zm

VlSCOSlt'y of surrounding 1.8x107 N s/m> (936 + 15)>< 10~ N s/m?
medium water (77)

From these parameters mass m and f' of nanoparticle and damping
coefficient f of medium are computed and are tabulated in Table 5.4 for the two

nanoparticles.

Table 5.4 Parametric Values Deduced for Brownian motion of Non-Rigid

Nanoparticle
Parameter Silicon Polystyrene
m 6.16x107"° kg (5.88+£0.35)x107" kg
[ 6.51x10"7k/c' Ns/m | (6.65+0.75)x10™k/c’ N's/m
f 1.356x10®° Ns/m (9.00%0.32)x10® N's/m

The value of spring constant is assumed as £ = 2.3 N/m, time is varied from
1/p to 10/B in steps of 1/Bs and ¢’ is varied from 1x10™ to 100 m in various

step size in different range. The three models of non-rigid nanoparticles are

simulated for y values with respect to time for the three models as was done for
impact transfer models in Chapter 4. The function y is obtained in next section for
the three models.

5.8.1 Time Dependent Functions Corresponding to Variance of Three Models

In order to test the validity of the three models, two validity criterions are

defined in section 4.2.1 and 4.2.2 and are applied to the three models, Model 8
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through Model 10. According to the two criterions, the variance values of the
models should be positive and finite. With the aim to test the positivity and

finiteness of the variances of the three models, a function y is defined in Chapter 4
in section 4.3 as the time dependent part of the variance value devoid of positive

scale multiplier. The function y is simulated in place of variance value because this
reduces the computations giving the trend sought for validation. The function y is

obtained for the three models next.

(a) Function y for Model 8
For Model 8, the function  is obtained from equation (5.35) as the time

dependent part devoid of positive scale multiplier and is given as

= {1 — e U im }{——2(f + /)t 14U Yim } (5.38)
m

(b) Function ¥ for Model 9
For Model 9, the function y is obtained from equation (5.36) as the time

dependent part devoid of positive scale multiplier and is given as

p={-e’im }{Z—f’ ~1+e” "} (5.39)

m
(c) Function y for Model 10
For Model 10, the function i is obtained from equation (5.37) as the time

dependent part devoid of positive scale multiplier and is given as

p={l-e/m }{Z—f’—ne‘f ""} (5.40)

m

It is observed from equation (5.39) and equation (5.40) that the function
y for the Model 9 and Model 10 are identical. The functions given by equation

(5.38) to equation (5.39) are simulated for the two nanoparticles with y plotted on
y-axis and time on x-axis. The simulation for silicon nanoparticle is done first in
next section.
5.8.2 Simulation of Function y for Silicon Nanoparticle

For simulation of  considering silicon nanoparticle, the parametric values

are taken from Table 5.3 and Table 5.4. The simulation results for the three models

are given in the following section.
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(a) Simulation of Function y for Model 8

The values of y are obtained using equation (5.38) for specified range of ¢
and are shown in Fig. 5.28. It is observed from simulation results that Model 8
predicts positive and finite values of function y in the entire range of parametric
variation and is invariant to ¢’. The positivity and fininess is in accordance to

validity Criterion 1 and Criterion 2 given in Chapter 4, Section 4.2.

(b) Simulation of Function  for Model 9 and Model 10
The values of  are obtained using equation (5.39) for specified range of ¢’

and are shown in corresponding plots in Fig. 5.29. It is observed from simulation
results that Model 9 and Model 10 predicts positive and finite values of function in
the entire range of parametric variation and is invariant to ¢’. The positivity and

finiteness is in accordance to validity Criterion 1 and Criterion 2 given in Chapter 4.
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Fig. 5.28 Simulation of y v/s Time for Silicon Nanoparticle using Model 8
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Fig. 5.29 Simulation of y v/s Time for Silicon Nanoparticle using Model 9 and
Model 10

5.8.3 Simulation of Function i for Polystyrene Nanoparticle
For simulation of i considering polystyrene nanoparticle, the parametric

values are taken from Table 5.3 and Table 5.4. For the three models, the simulation
results are given in the following section.
(a) Simulation of Function y for Model 8

The values of y are obtained using equation (5 38) for different range of ¢’

and are shown in corresponding plots in Fig. 5.30. It is observed from simulation
results that Model 8 predicts positive and finite values of function value in the entire

range of parametric variation.

Comparing the simulation results for polystyrene nanoparticle with that of
silicon nanoparticle (Refer Fig.5.28), it is observed that for polystyrene

nanoparticle, the function y varies in certain range of ¢’. The variation in y for
polystyrene is because the f' values for polystyrene are one thousand times greater
than that for silicon nanoparticle. Thus, a change in f' corresponding to a change in

¢' causes a significant change in the value of  in case of polystyrene nanoparticle.

Moreover, the initial increase in y with increasing ¢’ is because of larger
increase in linear term 2(f + f')/m in comparison to exponential term in

equation (5.95). This happens for values of ¢’ for which f'> f, after which the
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trend turns around. At very large values of ¢', the parameter f' becomes
insignificant in comparison to f and therefore a change in f ' hardly contributes to
a change of y showing invariance with ¢'. Thus, the linear term with time in

equation (5.95) increases with c'.

A few plots depicting increase in y value are shown in Fig. 5.26(1) and the
invariance of y with ¢’ is shown in Fig. 5.26(ii). The simulated results predicting
positive and finite function values are in accordance to validity Criterion 1 and
Criterion 2. The model represents a valid Brownian motion model of non-rigid

nanoparticle.

(b) Simulation of Function y for Model 9 and Model 10

The values of y are obtained using equation (5.39) for different range of ¢’
and are shown in in Fig. 5.31. It is observed from simulation results that Model 9
and Model 10 predicts positive and finite values of function value in the entire range
of parametric variation and is invariant to ¢’. The absence of ¢’ dependent terms in
equation (5.39) gives the invariant values of y . The positive and finite y is in
accordance to validity Criterion 1 and Criterion 2. The models represent a valid

Brownian motion model of non-rigid nanoparticle
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(i) Simulation in Parameter Range:1x10™° <c’ <1x10® m in Steps of 1x10™ m
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Fig. 5.30 Function y v/s Time for Polystyrene Nanoparticle using Model 8
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Fig. 5.31 Simulation of y v/s Time for Polystyrene Nanoparticle using Model 9
and Model 10

59 VERIFICATION OF MODELS WITH EXPERIMENTAL RESULTS

The three models have been simulated for two nanoparticles to establish their

validity according to Criterion 1 and Criterion 2 in the previous section. All the three
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models were found to satisfy the two criterions. These three models are now
simulated for Brownian motion to test them against the two published experimental
results in the field of engineering sciences, corresponding to Brownian motion of
nanoparticle at the extremities of nano-domains. In order to test the three models
with published results, the three models are simulated to obtain variance in position
in next section. The variance in position x (m?) is plotted on y-axis and time in

seconds on x-axis with ¢’ as a parameter.

5.9.1 Brownian Motion of Silicon Nanoparticle

The variance in angular position with respect to time E {Gz(t)} of Silicon
nanoparticle has been used to obtain the viscosity of super cooled water [Sasaki
2000]. The variance in angular position is related to variance in position E {x2 (t)} as:
E {xz(t)}= I*E {62 (t)}, where / is the distance of nanoparticle from the substrate used
for observation and is given as / =30 g m in Sasaki [2000]. The various parametric
values in the experiment by Sasaki are given in Table 5.3. Using the parameters
from Table 5.3 and Table 5.4, the variances in position E {xz(t)} with respect to time

are calculated from the three models (equations (5.35) to (5.37)) for @ =60 GHz,

1x10™* <¢'<1x10® m, k =300 N/m and results are shown in Fig. 5.32. The value
of w is chosen as 60 GHz, which is one-tenth of the frequency at which quantum
effects cannot be neglected [Engberg 1995].

The published experimental results from Sasaki and predicted variance by
rigid body model are also superimposed in Fig. 5.28. It is observed from Fig. 5.28(i)
to Fig. 5.28(iii) that the results obtained from rigid body model are substantially
different from experimental observation. The rigid body model predicts variance
values, which are substantially larger than observed values given by Sasaki. The
results predicted by the three non-rigid nanoparticle models matches quite precisely
with experimental observations. It is observed that the published experimental
results match for ¢’ =5x107m, ¢ =7.5x10"m, 1<¢’'<1x10? for the three

models, Model 8, Model 9 and Model 10, respectively.
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Fig. 5.32 Comparison of Variance in Position of Silicon Nanoparticle for
Experimental observation [Sasaki 2000], Rigid Body Model and Developed Models

5.9.2 Brownian Motion of Polystyrene Nanoparticle

The variance in position with respect to time for polystyrene nanoparticle is
available as published experimental results with the values of various parameters for
the nanoparticle and its environment as given in Table 5.3. From these parameters,
the mass and damping coefficient of nanoparticle and damping coefficient of
medium is obtained and is given in Table 5.4. In order to get variance of polystyrene
nanoparticle analytically from the three models, the simulation of variance with
respect to time for the three models has been done by varying ¢’ and t. The
additional parameters required for non-rigid considerations of nanoparticle

arew, k and f* . Considering the value of @ =60 GHz , k =2.3N/m, the simulation

is done by varying constant ¢' from 1x10"° to 100min various steps size, and

incrementing ¢ in steps of 1 s from 0 to 10's.

The variances obtained using the equations (5.35) to (5.37) corresponding to
the three models are shown for a range of ¢’ values in Fig. 5.33. It is observed from
the results obtained that the variance for all the three models varies linearly with

time, as was expected, because the results are obtained for ¢>>1/4. At larger
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times, the time dependent part in the three models becomes linear as the exponential
terms becomes negligible. This implies that for the chosen parameters diffusion

constant, characterized by the slope of variance, is constant for any given value of ¢’.

It is also observed from Fig. 5.33(i) and (i) that for Model 8 and Model 9,
diffusion constant value increases with increasing ¢’ while a turn around of trend is
shown by Model 10, Fig. 5.33 (iii). Also, the diffusion constant value obtained from
Model 10 is more sensitive to parameter ¢’ at its lower values. The reported
experimental value of diffusion constant for polystyrene nanoparticle
[Nakroshis 2003] is of the order of 107> m®/s. The diffusion constants obtained
from Model 8 and Model 9 are of the order of 107°m’/s and 107'° m?/s,
respectively while diffusion constant from Model 10 is of the order of 107> m?/s.
The magnitude of diffusion constant values predicted by Model 8 and Model 9 are
substantially lower than ihe reported values, indicating that Model 8 and Model 9
are not able to accurately predict Brownian motion for non-rigid polystyrene
nanoparticle. In order to confirm further, the simulation was done over an extended
range of ¢’ from 1x10™ to 100 m in steps of 1x10™" m for Model 8 and Model 9
and by varying of @ from 50 MHz to 500 GHz in the steps of 10 MHz . It was found
that diffusion constant obtained from Model 8 and Model 9 remained much lesser
than observed values for any value of ¢’ or @. Since the diffusion constant obtained
from Model 8 and Model 9 are found to be far from reported experimental results,
these two models do not verify with the experimental results.

The published experimental results [Nakroshis 2003], diffusion constant
predicted by rigid body model, and results obtained from Model 10 are together
plotted in Fig. 5.34, for comparison. It is seen from Fig. 5.34 that the diffusion
constant obtained from rigid body model of nanoparticle is lower than the reported
experimental values. It is also observed that diffusion constant obtained from
Model 10 has large variations depending on the values of the parameter ¢’ and lies
on either side of reported experimental results. It is observed that diffusion constant

obtained from Model 10 matches the reported experimental values for
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8.33x10™° > ¢’ 28.51x10™° m, which gives the corresponding range of f' values

as 1.84x107° > f'>1.80x10* N s/m.
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Fig. 5.33 Variance in Position of Polystyrene Nanoparticle for Developed Models

In the above exercise of verification, it is observed that variance predicted by
rigid body model never matches with published results. For silicon nanoparticle,
rigid body model predicts variance lower than observed values and in case of
polystyrene nanoparticle; the predictions from rigid body model are substantially
larger than observed values. On the other hand, the simulated results from Brownian
motion models considering non-rigidity of nanoparticle verify with published
experimental results. Among the three valid models, Model 8 and Model 9 matched
with published results for silicon only. The silicon nanoparticle is of 40 nm radius
and lies at the lower domains of nano-regimes. The Model 8 and Model 9 are unable
to predict the observed values for a wide simulated range of parameters. It is
observed that Model 10 verifies with both the published results at the two
extremities of nano-domains. Therefore, Model 10 is a better model with wider
range of application in comparison to Model 8 and Model 9. The verification shows

that inclusions of additional properties in rigid body model do not contradict the

observed motion but affirm it more precisely.
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Fig. 5.34 Comparison of Variance in Position of Polystyrene Nanoparticle for
Experimental observation [Nakroshis 2003], Rigid Body Model and Model 10

5.10 COMPARISON OF -SYSTEMS MODEL WITH IMPACT

TRANSFER MODEL

In the last section, it is convincingly shown by simulation that the developed
Brownian motion models of non-rigid nanoparticles match the experimental
observations. It is also observed that Model 10 is valid for a wider range of sizes and
at this stage is a better model. The development of Model 10 is done in the present
chapter in order to explore the possibility of sub-systems in impact transfer Model 7
developed in Chapter 4. Whereas Model 7 was developed hypothesizing sub-
systems of unmodeled features of the Brownian motion and fixed property

interaction in the model, the Model 10 is developed removing both the limitations of

Model 7.

In order to compare impact transfer Model 7 (Refer Fig. 4.11) with system
Model 10 (refer Fig. 5.27(iii)), Model 7 is represented as a system model in Fig.

5.35 by adding the nodes with potentials F, and F, and a free noise generator with

voltage F(t) in Fig. 4.11 as shown in Fig. 5.35.
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Comparing electric analog circuit of Model 7 in Fig. 5.35 with that of
Model 8, Model 9 and Model 10 in Fig. 5.27, it is observed that capacitance is in
parallel with resistance f and inductance m in all four models. Another feature,
which is consistent in all four models, Model 7 through Model 10, is that resistance f

and inductance m are in series.

In Model 7, sub-system was used as a feature to alter the nature of input
to resistance f (Refer Fig.5.35). The alternate input to resistance f keeping
inductance m in series can also be obtained by changing the potential across the two
nodes F, and F, , which has been achieved in Model 8, Model 9 and Model 10 by
changing the interaction of resistance f' with other parameters. For example in
Model 10, resistance f' is in series with capacitance and this interaction models

Brownian motion in wider range in nano-domains. The work done in this chapter is

summarized in next section.

5.11 EPILOGUE

In the present chapter, a search for possible Brownian motion model of non-
rigid nanoparticle is carried out using systems modeling approach. In order to do the
search, first, a four-parameter systems model is introduced for Brownian motion of
non-rigid nanoparticle. In the next step, all possible interaction models of four-
parameter are developed using a systematic procedure described in the form of an
algorithm. It was found that there are 360 interactions possible. This is followed by
identifying a few features of the Brownian motion and defining the identified
features as selection criterion. In all three selection criterion are defined and all 360
possible models are subjected to testify the selection criterion. The possible models
not satisfying the selection criterion are filtered out. It is found that only three

models survive the systematic filtering, which is summarized in Table 5.2. The
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variance models are formulated for the three surviving system models and are given
in equations (5.35) to (5.37). The three systems models are shown in Fig. 5.27 and
are called as Model 8, Model 9 and Model 10 for further investigation.

The three models are subjected to validity test against the criterion of
positive and finite variance defined in Chapter 4. The selected three models are
found to testify against the two validity criterions. The three models are further
verified with published experimental results. The two published results are
considered at the two extremes of size in nano-domains. The first belongs to
Brownian motion of Silicon nanoparticle at the lower end of nano-domains and the
second result belongs to polystyrene nanoparticle of size at the upper boundary of
nano-domains. Among the three models, two models namely, Model 8 and Model 9
are found to verify with only one published result whereas Model 10 verifies with
both observations. This suggests that Model 10 is a better model of Brownian
motion of non-rigid nanoparticle. It is also observed that rigid body model do not
match with observations and predicts lower variance in case of silicon nanoparticle
and a higher variance in case of polystyrene nanoparticle in comparison to observed
values. The rigid body model, therefore, does not model Brownian motion in nano-
domains. A better choice, therefore, is Model 10 for predicting Brownian motion of
nano-sized bodies. The verification of the Brownian motion models of non-rigid
nanoparticle with published results is noteworthy, as the same results cannot be
explained using a rigid body model. The verification justifies the idea mooted and

explored in the present thesis.

It is further observed that three Models predict a linear variation of variance
at t>>1/p. The linear variation in variance models normal diffusion mode of
Brownian motion of nanoparticle. The modes like directed diffusion showing non-
linear variation of variance are generic to many physical phenomenon. In order to
model the directed diffusion mode, the three models are simulated for an altered

input closely related to white noise input in next chapter.
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One must have faith that the incomprehensible can be
cleared up otherwise he will not ponder over it

Jolanss Wollgesglon Goctle

CHAPTER 6

APPLICATION OF NON-RIGID NANOPARTICLE TO
MODEL DIRECTED-DIFFUSION MODE

6.1 INTRODUCTION

In the previous chapter, the three non-rigid nanoparticle models have been
developed and verified with published experimental results. The three models predict
linear variation of variance at large times corresponding to normal diffusion mode. For
the non-linear variation of variance at large times, directed diffusion models are used,
which are developed using Diffusion equation approach. As a first application of the
three Brownian motion models of non-rigid nanoparticle developed using Langevin
approach in previous chapter, the three models for Brownian motion of non-rigid
nanoparticle directed-diffusion are developed and simulated in this chapter. To model
directed-diffusion mode, an alteration of input is proposed and explored in the present

chapter. The altered input model is presented in next section.

6.2 INPUT MODELING

The input used in correlation technique is thermal noise n(t). A typical type of
fundamental time domain noise source is a Gaussian white noise with zero mean. The
thermal noise is a special case of white noise with instantaneous correlation. Transient
thermal impulse is proposed as input to develop models for directed diffusion mode
having non-linear variance at large times. This is a variation of thermal impulse and is
applied as input to models developed namely Model 8, Model 9 and Model 10. The

behavior of the three models with transient thermal noise as input is studied.

The thermal impulse assumes an instantaneous correlation with no time
dependence between the expected value of the impulse force at two instances. The two

consecutive impacts in thermal impulse take place instantaneously with impact energy
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transfer to nanoparticle in zero time in thermal impulse. The consideration of the two
consecutive impacts in time continuum with no correlation models an idealized
situation. A more realistic situation is a thermal impulse with an exponential model of
correlation of input. This is the transient thermal noise, which models a non-
instantaneous correlation exponential in nature. The exponent is assumed to depend on

the elastic and dissipative properties of the matter.

The proposition of time dependent correlation counters the argument that there is no
correlation between two consecutive events in time continuum. The autocorrelations for

thermal impulse is given by equation (3.7) as
R,,(t1,) = 8(r) (6.1)

For Transient Thermal Noise, the autocorrelation is modeled as

a(l—e'”") for 1, >1,

6.
a(l—-e'z‘f“) for 1, <1, ©2)

Rnn(tl’tz) ={

where £ is the parameter modeled as equal to ;_k—' taking into account the non-rigid

parameters influencing the input.

The variance for rigid body model, Model 1, and three non-rigid nanoparticle
models, Model 8, Model 9 and Model 10, have been obtained for thermal impulse as
input and are given by equations (4.1), (5.35), (5.36) and (5.37). The variance
expressions for the three non-rigid models for transient thermal noise input are

formulated in next section.

6.3 VARIANCE FOR TRANSIENT THERMAL NOISE INPUT
Using Algorithm 1 for computing variance (Refer Chapter 3, Section 3.9),

according to Step I, the autocorrelation of input is required and is modeled as given by
equation (6.2). In the next step, the impulse response of the mathematical model of the
Brownian motion is obtained. The mathematical model in the case of thermal impulse
input is given by equation (3.15), which is obtained by the integration of Langevin
equation (3.5) (Refer Chapter 3, Section 3.5). In order to obtain equation (3.15) from
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equation (3.5), the velocity is considered stationary [Papoulis 1991]. In the present case,
since the input is transient thermal noise, the velocity cannot be considered stationary.
The non-stationary aspect of velocity can be accounted by considering mathematical
model given by equation (3.5) directly instead of equation (3.15). The impulse response
of the system given by equation (3.5) is given as [Nagrath 1993]

pr

h(r)= 1"; (6.3)

According to Step III of the Algorithm 1, the cross correlation of position of

nanoparticle x(r) and input (¢) is obtained as

Ro(ots)= Ry~ 7,0, e 6.4)

Substituting R, (¢,,¢,) from equation (6.2) and replacing ¢, with ¢, -7 and

inserting impulse response in equation (6.4), gives

R, (t.1,)= Ta(l —e"“’"”(l'—;i}dr (6.5)

Integration of equation (6.5), gives

R, (t.t,)= %{ﬂtl ~1+e™?n -21"5-(1 —e )4 {(xL;ﬁ)}{eﬂ HET }} (6.6)

The autocorrelation in position of the nanoparticle for transient thermal noise as

with thermal impulse input is obtained considering Step IV of the Algorithm 1 as
R (t.,)= R, (.2, —7)h(e)dT (6.7)

Substituting R, (t,,tz) from equation (6.5), impulse response from equation
(6.3) and replacing ¢, with ¢, —7 and inserting impulse response in equation (6.7) and

gives

R.u(tl’tz)=%{ﬂ(2 _1+e-ﬂfz }{ﬁtl —l+e'ﬁ" _%(1_8-251.)*_{(26%}8)_} -8By _e~2¢:, }}
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The variance in position E {xz(t)} is obtained using Step V of the Algorithm 1

and equation (6.8) as

E{xz(t)}= %{ﬁt— 1 +e""}{ﬂt ~1+e* —%(l-e‘”’ﬁ{@—ﬁ_—ﬁ—j}{e’”’ —e‘z‘f’}}

(6.9)
Substitution of f, from equations (5.32) to (5.34) in equation (5.31) gives three

values of & for the three non-rigid nanoparticle models, respectively, which along with
the values of S from equations (5.27) to (5.29) and equation (6.8) are used to obtain

variance expressions for the three models.

6.3.1 Variance from Model 8 with Transient Thermal Noise Input

The f,, from equation (5.32) for Model 8 is given as

()
fu=

_ : (6.10)
f+f +(a)m—£)
®

Equation (6.10) on substitution in equation (5.31) replacing f gives a for Model 8 as

o= 2xT (f * f'(g]z
" (e (om-E)

@

(6.11)

Substitution of @ from equation (6.11) and S from equation (5.27) in equation (6.9)

gives the variance for Model 8 with transient thermal noise as input
2 ¢ 2 ' '
Eh )= 2 (f:ff)(k/ﬁ’) 2 {(f+f)’_1+e-(f+r)r/m}{(f+f)i
F+)Y G +rY +M-Kfo)f L m m

o Pl e}

(6.12)
6.3.2 Variance from Model 9 with Transient Thermal Noise Input

The f,, from equation (5.33) for Model 9 is given as
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k’ﬁ'(f+f'))
wz

(mk+ﬁ")mf7c—[mlgj”2 +

k(f+f'))’ ©1)

Jo =

(7

(mk + ff)? +((omf'—

Equation (6.13) on substitution in equation (5.31) replacing f gives a for Model 9 as

(ke + ff’)mfk—(m 2 +w)
—— = (6.14)
(mk + ")’ +(a, mfr_k(f;-f ))

Substitution of a from equation (6.14) and S from equation (5.28) in equation (6.9)

gives the variance for Model 9 with transient thermal noise as input

2o 26Tm? (mk+ﬁ")(mf'k)—(mlgj7”2—lgfi"(f-i-f’)/coz)} .
0= { (mk + 7' +(@mf" - k(f + )/ @) Pronies

m 26m (2& - fjm)m

where P" = (ﬂ ~1+e/m ——f—(l —e)4 (——f )(e"” _e ¥ )]

andQ" = (ﬁ—l+e'(f )’/”')

m
6.3.3 Variance from Model 10 with Transient Thermal Noise Input

The f,, from equation (5.34) for Model 10 is given as
(ff’+mk)(f+f')+(w mf'—ﬁIa)m -5)
@ @
N2 k :
(F+r)V+ (w m— —)
@
Equation (6.16) on substitution in equation (5.31) replacing f gives a for Model 10 as

o RN 4 (wmf Im——]

" (f+rV+ ( m—;)

Substitution of @ from equation (6.17) and S from equation (5.29) in equation (6.9)

S = (6.16)

(6.17)

gives the variance for Model 10 with transient thermal noise as input
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>

Efe ()= 2’}TZ” {W'+Mk)(f(; f};(fgm'_fkkfg(“”"‘k /o) }P" 0" (6.18)

Equations (6.12), (6.15) and (6.18) are the variance expressions for transient
thermal noise as input corresponding to three models, respectively. These variances t

are simulated to explore the response in next section.

6.4 SIMULATION OF VARIANCE FOR TRANSIENT THERMAL
NOISE INPUT

The simulation for three variance models developed in previous section is done
for ¢ >>1/f assuming the material of nano-particle as silicon with parameters given in
Table 5.3 and 5.4. The value of k is assumed as 2.3 N/m, ¢’ is varied from
1x107"° —100m. The frequency @ is taken as 60 GHz, which is one-tenth of the
frequency where quantum effects cannot be neglected. The simulation results of

variance values are plotted on y-axis with time on x-axis.

(a) Simulation of Variance from Model 8 for Transient Thermal Noise Input

The variance in position of nanoparticle is obtained using equation (6.12) and is
shown in Fig. 6.1. It is observed from simulation results that variance increases non-
linearly with time. The non-linear variance has been referred as Non-Brownian motion
by [Sasaki 2001] and models directed-diffusion mode of Brownian motion.

1 x 107
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(i) Variance for the Range 1x10™° <¢'<1x10° m in Steps of 1x10” m
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Fig. 6.1 Variance of Silicon Nanoparticle for Model 8 with Transient Thermal

(b) Simulation of variance from Model 9 for Transient Thermal Noise Input
The variance in position of nanoparticle obtained using equation (6.15) is shown

in Fig. 6.2. It is observed from simulation results that variance increases non-linearly
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with time. The non-linear variation of variance models directed diffusion mode of

Brownian motion.
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Fig. 6.2 Variance of Silicon Nanoparticle for Model 9 with Transient Thermal Noise
Input
(¢) Simulation of Variance from Model 10 for Transient Thermal Noise Input
The variance in position of nanoparticle is obtained using equation (6.18) and is
shown in Fig. 6.3. It is observed from simulation results that variance increase non-
linearly with time. The non-linear variation of variance models directed diffusion mode

of Brownian motion.
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A comparison of the simulation results in Fig. 6.1 to Fig. 6.3 shows that Model 9

and Model 10 behaves in a similar manner in the range of parametric variations but the
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magnitude of variance in case of Model 10 is substantially larger than that in case of

Model 9. Model 8 shows a turn around behaviour in the parametric range of

5x107° < ¢’ <100. The magnitude of variance as predicted by Model 8 is larger than
Model 9 but is substantially lower than Model 10. The important observation is that
variance variation is non-linear with respect to time in all the three models with
transient thermal noise input. This suggests that input with non-instantaneous
correlation models directed diffusion mode of Brownian motion [Sharma 2003 (ii)]. The

response of the four models with the two inputs is summarized in Table 6.1.

6.5 EPILOGUE

The present chapter starts with observation that the three Brownian motion
models of non-rigid nanoparticle model the normal mode of diffusion characterized by
linear variation of variance at large times. It is observed that input considered in the
three models is having instantaneous autocorrelation, which is an idealizing assumption.
In order to model another mode of diffusion namely, directed diffusion characterized by
non-linear variation of variance at large times, an alteration of input is proposed. The
altered model of input has non-instantaneous autocorrelation characterized by an
exponential function in time. The exponential function also contains non-rigid
nanoparticle parameters £ and f’'. The Chapter further contains the development of
variance models using transient thermal noise input. The simulation of variance of the
three models with transient thermal noise input predicts a non-linear variation of
variance with time. The non-linear variation models the directed diffusion mode of
Brownian motion. The consideration of transient thermal noise inputs with inclusion of
non-rigid parameters therefore suggests an extended application of the present thesis to
model different types of diffusion modes and can be further explored.

In another application, the three models are used to predict the Brownian motion
of a single degree of freedom nanorobot. The nanorobotic manipulator will perform the
Brownian motion, which needs to be analyzed for control and manipulation in nano-
domains. The three verified models are considered along with the rigid body model to

predict the Brownian motion of a single degree of freedom nanorobotic link in the next

Chapter.
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Every fruitful hypothesis initiates an amazingly
eruptive flow of unforeseen discoveries

Leon Brillowis

CHAPTER 7

BROWNIAN MOTION APPLICATION FOR NANO-ROBOT
DYNAMICS

7.1 INTRODUCTION

The three non-rigid nanoparticle Brownian motion models, Model 8, Model 9
and Model 10 applied to predict the dynamics of a single degree of freedom nanorobotic
manipulator in this Chapter. The Chapter starts with a brief introduction to micro and
nanorobots and a classification of robotic manipulators followed by review on state of
art in nanomanipulation. The model predicting dynamics of nanomanipulator is
developed next and the developed models are used to predict the response of a single
degree of freedom nanorobotic manipulator due to thermal agitation resulting in

Brownian motion. The classification of robots based on size is given in next section.

7.2  ROBOTIC MANIPULATORS-OVING DOWN THE SIZE

Word “robot” comes from robota meaning forced labor or worker. A robot
according to Robot Industries Association, USA is a reprogrammable, multifunctional
manipulator designed to move material, parts, tools, or specialized devices through
various programmed motions for the performance of a variety of tasks [Mittal 2003].
Nano-robots extend robot capabilities to the nanoscale. One or more of the features
desired in a nano-robot are reprogrammable behavior, adaptability to environment and
remote controllability. According to Fatikow [1997], the robots can be classified

according to size as miniature, micro and nano-robots.

The size of a miniature robot is few cubic centimeters and it is fabricated by
assembling conventional miniature components. The size of a microrobot is few
hundred cubic micrometers and is fabricated using microfabrication technologies like

bulk machining or surface micromachining. The nano-robots have the sizes of few
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hundred cubic nanometers and the advancing nanotechnology is used for fabrication of

nano-robots.

The small sized robots are also classified based on the size of different
components of the robots. Based on the sizes of components, the robots are categorized
in three categories. In first category, only the actuators for operation of the robot are
miniaturized. For example, the nanoscale motion for gripping is given by a miniaturized
piezoelectric component, whereas the positioning of the piezoelectric component is
done using macro-actuators. In second category, the positioning actuators are also

miniaturized. The third category has the miniaturization of power supply as well.

Another classification of small sized robots is based on the functionality like
performing task in biotechnology area, microsurgery, and process industry or in
microassembly. Small sized manipulators falling under either of these categories
encounters difficulties such as handling of micro components as bulk material, damages

during transportation, sensitivity to dust particles, humidity, temperature, and vibration.

The smallest among the various categories namely nanorobot is in research stage
and is pursued by many researchers. Robots do the nanomanipulations at present with
macro-sized mechanism attached to miniaturized actuator for manipulation. The state of

art of nanomanipulation and status of research on nanorobots is presented in next

section.

7.3 STATE OF ART IN NANOMANIPULATION

The possibility of nanorobots was first proposed by Richard Feynman in his talk
"There's Plenty of Room at the Bottom," in 1959, who stated that machines could make
smaller machines, and those smaller machines could make smaller machines up to a
point where the machines would be in the molecular scale [Feynman 1992]. Feynman’s
nanorobots became a hot topic two decades ago when dramatic development in
technology made the ideas of nanorobots feasible. Bining [Biningl985] invented
Scanning Tunneling Microscopy (STM) as a new technique to study the surface

structure with atomic scale resolution.
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This invention was quickly followed by the development of a whole family of
related techniques, which, together with STM, may be classified in the general category
of Scanning Probe Microscopy (SPM) techniques. Of these later techniques, the most
important is Atomic Force Microscopy (AFM) [Ferrari 2001]. All types of SPM
instruments are based on the idea that if one rubs a finger along a surface, it is easy to
distinguish velvet from steel or wood from tar. The different surfaces exert different
forces on the finger, as one drags it on the different surfaces and finger acts as a force-
sensor. This idea is implemented in scanning force microscopy where a probe also
called as tip scans the surface. For example, in AFM, the force exerted on the probe tip
is measured using optical feedback lever and electronics. SPM instruments have been
used successfully to manipulate the individual molecule beads on the molecular abacus
[Ratner 2003]. The AFM tip has been used as a robotic hand to precisely position nano

objects and assemble them under computer control.

Scanning probe nanomanipulation are inherently very elegant but suffer from
two limitations- these are expensive and are significantly slow. According to Ratner,
although great advances have been made in building machines that use hundreds or
even thousands of probe tips at the same time, but making nanostructures by
manipulating atoms with SPM instruments is still very much like making automobiles

by hand.

In order to overcome the difficulties with macro-sized nanomanipulators,
Drexler [Drexler1992] proposed nanorobot as a molecular machine performing self-
assembly and hypothesized bottom-up technique for microfabrication. Freitas
[Freitas1998] discussed the communication methodology between nanorobots and
macro-world. In another work, Freitas discussed the working of nanorobot in blood
streams as a medical application [Freitas2000]. The potential use of biological
nanomotors is pursued in contemporary research to be used in nanorobots. Lyshevski
has discussed various key problems in modeling, analysis, simulation and controls of
biological nanomotors [Lyshevski 2001]. Recent demonstration of working nanomotors
that can be used as nanoactuators in nanomachines, has brought possibility of making

nanorobots a step closer to its realization. Fennimore [Fennimore 2003] had reported
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fabrication and successful operation of a fully synthetic nanometer scale

electromechanical actuator.

Apart from nanoactuators, the nanorobot construction requires nanolinks and
assembly techniques. Fukuda [Fukuda 2003] has demonstrated the technology for
separating and assembling of Carbon Nanotubes (CNT). The CNTs are cylindrical
graphene sheets of sp>-bonded carbon atoms and were discovered by Richard Smalley
in 1985. The CNT shape themselves into chemically stable tubes with one atom thick
walls [Weber 1999]. These miniscule vessels are 100 times stronger than steel and can
form hollow beam (Refer Fig. 7.1) that could potentially encapsulate power sources and

drive mechanisms at molecular level making a link of nanorobot [Qian 2002].

Fig. 7.1 Single Walled Carbon Nanotube (Reprint from [Qian 2002])

Requicha [Requicha 2003] in his survey on nanorobots has observed that the
technology for realization of nanorobots and the related problems in utilization of nano-
robots is advancing at very fast pace in last decade. Among other observations of
Requicha, it has been pointed that the motion due to thermal agitation of the nano-robot
is significant and will be a vital issue in the control of nano-robot. The motion due to
thermal agitation 1s negligible if the nano-robot is operated at very low temperatures but
this involves complex technology, high cost and is clearly impractical. For room
temperature nanomanipulation using nano-robots, CNT acting as nano-links of a nano-
robot will be affected by thermal agitation and will perform Brownian motion. The
investigation of Brownian motion of nanolink is vital for understanding the dynamics of

nano-robot and its control. The Brownian motion models developed in the previous
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Chapter are used to predict the motion attributable to thermal agitation. This is done in

the next section.

7.4 DYNAMIC MODELING OF BROWNIAN MOTION IN NANO-
ROBOTS

The nano-link will be experiencing a continuous motion due to thermal impacts
from surrounding medium. These are pronounced in nano-domains as discussed in
earlier part of the thesis. The Brownian motion caused by thermal agitation may make
the process of control of motion of nano-robot impossible. This difficulty does not arise
in control of macro manipulators, as thermal agitation forces are negligible in
comparison to inertial forces. It is imperative to study the motion due to thermal
agitation for controlling the motion of nano-robot. As in case of nanoparticle, the nano-
robot’s dynamics is modeled using classical Newonian equations and including the
stochastic force of thermal agitation. This formulation is identical to Langevin model
and, therefore, the models of Brownian motion obtained in previous chapters can be

applied to predict the dynamics of nanorobot.

The non-rigid nanoparticle Brownian motion models developed are utilized to
develop the dynamic model of a single degree of freedom (1-DOF) nano-robot. The
classical model of the robot is presented first followed by formulation of Langevin

model for 1-DOF nano-robot using the non-rigid nanoparticle Brownian motion models.

7.4.1 Classical dynamic Model of a 1-DOF Manipulator
The classical dynamic model has been developed in various texts on Robotics

using either Newtonian or Lagrangian approach [Mittal 2004]. The lagrangian function

is defined as
A=KE-PE 7.1
where KE is kinetic energy of the manipulator and PE is potential energy of the system.

The equation of motion according to Lagrange-Euler model is given as

Sy (7.2)
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where g,,q, andz, are generalized position, velocity and force for i" degree of
freedom. Using equation (7.2), the scalar dynamic model of 1-DOF manipulator is
obtained as

DG +v(6,6)+GO)+h=1 (7.3)
where D is manipulator inertia tensor; V(&,é) are terms related to Centrifugal and
Coriolis forces; gravity force is G(@) and 4 denotes the friction term. The joint
position is denoted by @ and joint velocity is denoted by 6. The generalized force at

the joint is 7.

7.4.2 Langevin Equation for 1-DOF Nano-Robot

The gravity force is negligible in nano-domains and is dropped from equation
(7.3). The dynamic model of the 1-DOF manipulator is obtained from equation (7.3)
and is given as [Mittal 2004]

2
”’—;’—é th=1 (7.4)

where m,, is the mass and / is the length of nanolink, respectively. In order to explore
the motion due to thermal agitation, the generalized force is modeled as stochastic
torque 7, due to thermal agitation in equation (7.4). Considering the friction term as the
resistive force from surrounding medium characterized by the friction coefficient 677
to be acting at center of gravity of the nano-link, the resistive force due to medium is

given by the Stokes law as 6znx,,, where X is the velocity of the center of gravity of

the link. Considering link to be uniform, the x_ is related to joint variable @ as
Xy = -:l):é and, therefore, using the resistive torque is obtained as 371 216 . Substituting
the resistive torque in equation (7.4) gives

1? .. .
ﬁ"g'—e +3dn6 =1, (1.5)
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In order to get the format similar to Langevin model, equation (7.5) on substitution of

2
4= %70 and 0 = % and rearrangement is written as

d*0 F'do _r,

=t

a’ Md M (7.6)

where M =m_I*/3 and F'=3n’7n. Equation (7.6) is identical to Langevin equation
(3.4) for a free nanoparticle given below for comparison with equation (7.6).

2

£1dt_;t + ,—{2-% = % (7.7)

Comparing the two equations, velocity of equivalent nanoparticle 6 is v, mass

of equivalent nanoparticle M is m,!?/3 and damping coefficient F' is 3 5. Since

equation (7.6) is analogous to equation equation (7.7), the variance in position obtained

from equation (7.7) and given in equation (3.9) can be used to obtain the variance

model for the equation (7.6) modeling 1-DOF nano-robot. The variance for the non-

rigid nanoparticles given by equation (5.35) through (5.37) are used similarly to obtain

non-rigid Brownian motion models of 1-DOF nano-robot in next section.

7.5 VARIANCE FOR 1-DOF NANO-ROBOT

The vanance models for rigid nanoparticle (Model 1) and non-rigid
nanoparticles (Model 8 through Model 10) has been obtained and given by equation
(3.9), equations (5.35) through (5.37), respectively. Since the 1-DOF nano-robot model
of Brownian motion is equivalent to the Langevin model of free nanoparticle as shown
in previous section, the variance for 1-DOF is obtained by substituting analogous
parameters of 1-DOF nano-robot model in respective variance models of rigid and non-

rigid nanoparticle. The variance expressions are obtained in next section.

7.5.1 Rigid Body Model of Nano-Robot

The variance model for the rigid nanoparticle, which is Model 1 is given by

equation (3.9). written for convenience as

E{x*(1)} = —2%;(2ﬁ:-1+e-f")(1 —e?") (7.8)
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In order to get parameter analogous to ¢ in equation (7.8) denoted by «a”, the

autocorrelation of generalized torque is required. The autocorrelation of thermal noise

considering impulse force is Zﬂzf (Refer equation (3.6)). For the worst case, the effect
m

of thermal impacts is modeled to act at the distal end of the link so that corresponding
generalized torque is the distance / multiplied by the stochastic input n(t). The
autocorrelation of torque is obtained by multiplying the autocorrelation of force by / 2

[Papoulis 1991] and is given as
_2«TIf1?

(X
1] ”12

R (7.9)

Substituting F* in place of fand M in place of m in equation (7.9) the parameter a’ is
given as
. 2kTF'"
a = IYE

The parameter f in equation (7.8) is replaced by analogous parameter S’ for 1-DOF

(7.10)

nano-robot as
B =F'IM (7.11)
The variance in angular position of the 1-DOF nanorobot according to rigid body

model, therefore, is given as
E{Hz(t)}zz—;%—(Zﬁ't—1+e'mX1—e"7’) (1.12)

Equation (7.12) gives the rigid body dynamic model of Brownian motion of 1-DOF

nano-robot nanolink.

The three non-rigid models developed in Chapter 5 are used to model the
dynamics of the 1-DOF nanorobot Brownian motion equivalent to non-rigid

nanoparticle in the next sub-section.

7.5.2 Non-Rigid Model of Nano-Robot

The Brownian motion models of non-rigid nanoparticle developed in previous chapters

suggests that in nano-domains, non-rigid models will predict the dynamics more

156



precisely. Accordingly, the three non-rigid nanoparticle models namely, Model 8,
Model 9 and model 10 are used to model the dynamics of 1-DOF nano-robot. The

variance in angular position of the 1-DOF is obtained for the three models next.

(a) Variance in 8 from Model 8

The variance of non-rigid nanoparticle from Model 8 is given by equation (5.35)

written for clarity and convenience sake as

“(S+S)

st )

, kY
(f+1) +(wm—5) (7.13)
2(f+f')t _1+e-(f;f')r
m

The variance for 1-DOF nano-robot from equation (7.13) is obtained by replacing
analogous parameters M and F' in place of m and /' and multiplying by P to account

for generalized torque autocorrelation as explained in previous section. The variance is

given as

k 2
2 (Fas) [Z)
E{gz(,)}=ﬂ{l_e " ,
F' \2 . 2
( +f) (Fr+fo)- +(C{)M _g) (7.14)

' ' (Faf)
{M_He—r }
M

(b) Variance in 6 from Model 9
The variance of non-rigid nanoparticle from Model 9 is given by equation (5.36)

written for clarity and convenience sake as
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(mk+ﬁ”)mf’k—(mlgff’2+£2f]"(f2—+f,))

@

(mk+ f') + (a) mf" - —k(f; f'))z

kTm

E{xz(t)}= f3 <

LPO (7.15)

m

where P = {l—e'/‘/'"} and Q={_2£_1+e-fr/m}

The variance for 1-DOF nano-robot from equation (7.15) is obtained by replacing

analogous parameters M and F' in place of m and f and multiplying by P to account

for generalized torque autocorrelation as explained in previous section. The variance is

given as
(Mk‘*‘F'f')Mf'k—(MkF'f" _M;_fl)
xkTMI? .
£ 0} F? KF + )Y
o+ FTY +(0)Mf '_—w—] (7.16)

(c) Variance in € from Model 10
The variance of non-rigid nanoparticle from Model 10 is given by equation

(5.37) written for clarity and convenience sake as

"+m +f')+|om L wm—ﬁ
e

The variance for 1-DOF nano-robot from equation (7.17) is obtained by replacing

PQ(7.17)

analogous parameters M and F' in place of m and f* and multiplying by P to account
for generalized torque autocorrelation as explained in previous section. The variance is

given as
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where P={1—e'/‘/"'} and Q={2_-f£_1+e-[l/m}
m

The variance for 1-DOF nano-robot from equation (7.15) is obtained by replacing
analogous parameters M and F' in place of m and f and multiplying by P to account

for generalized torque autocorrelation as explained in previous section. The variance is

given as
(Mk + Ff M f'k—(MkF’f’z TS '(F;Jrf ) )
xkTMI? o
£ ()}- F? KF'+ )Y
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(c) Variance in € from Model 10
The variance of non-rigid nanoparticle from Model 10 is given by equation

(5.37) written for clarity and convenience sake as

"+m + )+l om '__ff a,m_f
-z Ur smdr s £)+(wmg :ZX £
(f+f')2+(wm—;)

The variance for 1-DOF nano-robot from equation (7.17) is obtained by replacing

PQ(7.17)

analogous parameters M and F' in place of m and f and multiplying by 2 to account
for generalized torque autocorrelation as explained in previous section. The variance is

given as
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The variance in angular position for three non-rigid nanoparticle models and
rigid body model are simulated considering the material of nano-link as Carbon in next

section.

7.6 SIMULATION OF BROWNIAN MOTION OF NANOROBOT

The rigid and non-rigid models of 1-DOF nano-robot developed in previous
section are used to simulate the response of the nano-robot made of CNT. The various
parameters related to CNT nanolink are taken from Wong [1997] and are

Density (p) = 1800 kg/m’

Temperature of surrounding (7) = 296.01K

Length of nano-tube (/) = 500 nm

Inner Diameter of nanotube (d;) = 35.3 nm

Outer Diameter of nanotube (d,) = 45.3 nm

Viscosity of surrounding medium water (77) = 1.003x10~* Ns/m’
The non-rigid parameter k is assumed equal to 2.3 N/m as in simulation of Silicon
nanoparticle (Refer Chapter 5, Section 5.8). The parameter ¢’ is varied from 1x10™ to
100 m in various step size in different range. These parameters give the values of mass
m,; of nano-link, mass of equivalent nanoparticle M, damping coefficient of medium f

damping coefficient of equivalent medium F' and damping coefficient of equivalent

nanoparticle f* as:

d -d)1 -
m, =£(_o_4_')—£ =5.69x107"° kg

2
m,l

M= =4.74%107 kg m®
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The simulation of variance attributable to thermal agitation from the rigid body model is

done next.

7.6.1 Simulation for Rigid Body Model

The variance obtained using equation (7.12) for above parameters is shown in
Fig. 7.2. It is observed from Fig. 7.2 that rigid body model predicts positive and finite
values of variance in angular position of the 1-DOF nano-robot. The rigid body model

does not depend on the parametric variation and is invariant to ¢.

x 102!
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o

1x107° < ' <100

Vanance in 8 rad?
n © IS »

-
T

t(ms)

Fig. 7.2 Variance in Angular Position of 1-DOF Nano-robot using Rigid Body Model

The simulation of variance attributable to thermal agitation from the three non-rigid

models is done next.
7.6.2 Simulation of Non-Rigid Model

For simulation of variance using three non-rigid models, the parametric values
are given at the beginning of the section. The simulation results for the three models are

given in the following section.
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(a) Variance using Model 8

The variance obtained using equation (7.14) for is shown in Fig. 7.3. It is

observed from Fig. 7.3 that variance increases with increasing ¢’ upto a value of

¢' =1x10™* m after which there is no significant change in variance for a change of ¢’.
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(i) Variance for:1x10™° < ¢’ <1x10~m in Steps of 1x10~° m

x 10°
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t(ms)
(i) Variance for:1x 10 < ¢’ <1x10™ min steps of 1x10~° m

Fig. 7.3 Variance in Angular Position of 1-DOF Nano-Robot v/s Time using Model 8

161



Moreover, comparing Fig. 7.2 and Fig. 7.3, it is observed that variance predicted

by Model 8 is substantially greater than that predicted by the rigid body model.

(b) Variance using Model 9
The variance obtained using equation (7.15) is shown in Fig. 7.4. It is observed
from simulation that variance is invariant to a change in ¢’. This is because there is no

significant change in f, for any change of ¢'. Comparing Fig. 7.2 and Fig. 7.4, it is

observed that variance predicted by Model 9 is substantially lower than that predicted

by the rigid body model.
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Fig. 7.4 Variance in Angular Position of 1-DOF Nano-Robot v/s Time using Model 9

(c) Variance using Model 10
The variance obtained using equation (7.18) is shown in Fig. 7.5. It is observed

from simulation that variance is invariant to a change in ¢’. This is because there is no
significant change in f, for a change of ¢’. Thus, for the trend of invariant variance,
Model 10 behaves similar to Model 9 but the absolute value of variance at different
times predicted by Model 10 is substantially greater than Mode 9. Further comparing
Fig. 7.2 and Fig. 7.5, it is observed that variance predicted by Model 10 is same as that
predicted by the rigid body model.
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From the results predicted by different models, it is observed that for the

specified range of parametric values, the variance in angular position varies in the range
of 107 —10°m% Model 9 and Model 10 predicts that variance is insensitive to
variation of ¢’. Model 8 shows some increase in variance for increase in ¢’ upto a

value of ¢’ =1x10~" m. Moreover, the variation in variance from Model 8 is greater
than other two Models. Model 9 predicts the least variance whereas Model 10 compares

with rigid Body Model.

At this stage, it is noted that in order to verify the predictions from Model 8,

Model 9 and Model 10, experimental observation are required.
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Fig. 7.5 Variance in Angular Position of Nanolink v/s Time using Model 10

7.7 EPILOGUE

In the present Chapter, an attempt is made to apply the developed models of
Brownian motion of non-rigid nanoparticle to predict the Brownian motion of a single
degree of freedom nanorobotic manipulator. The Brownian motion will be vital issue in

controls of nanorobotic manipulator. In order to understand the nanomanipulation, a
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review of state of art on nanomanipulation is presented. This is followed by the
presentation of dynamic model of macro robotic manipulator using Lagrange-Euler
model. The thermal agitation force are included in the macro model of robotic
manipulator and an assumption of movement neglecting gravity led to the formulation
of dynamic model of single degree of freedom nanomanipulator as equivalent to the
model of a free floating nanoparticle. The work on Brownian motion in the present
thesis therefore becomes relevant not only for free floating nanoparticles, which models
autonomous nanorobotic manipulators working in a fluid like bloodstream, but also
models individual links of nanorobotic manipulators as equivalent free floating
nanoparticles. Correspondingly, the three verified non-rigid models with the two types
of inputs discussed in previous chapters along with the rigid body model are used to
predict the dynamics of nano-link attributable to the thermal agitation. It is found that
Model 10 predicts the dynamic behavior of nanolink comparable to that predicted by
rigid body model. The experiments should be carried out in order to verify the
predictions from the three models developed in the present chapter. The next Chapter

gives the conclusion and further work to the thesis.
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Our language is wise; there is a difference between
“I am convinced” and “I have been convinced”.

Kenct Capee

CHAPTER 8

CONCLUSIONS

8.1 INTRODUCTION

In the thesis, the problem of dynamics in nano-size regimes has been investigated.
It was identified that when we go below the micro size and try to analyze or model the
dynamic behavior of mechanical systems at the nanometer level, we must account for the
motion due to thermal molecular agitation from the surrounding medium, which are quite

pronounced in sub-micrometer domains.

Literature review pointed that in dynamics attributable to thermal agitation, non-
rigidity will have significant influence on the dynamics in nano-domains. The literature
was found to be devoid of any non-rigid Brownian motion model. The Brownian motion
models for non-rigid nanoparticle have been developed in this thesis using impact
transfer methodology and systems approach. The models were simulated for a wide range
of parameters and valid models for non-rigid nanoparticle performing Brownian motion
have been found. These models have been verified with published experimental results.
The developed models of Brownian motion of non-rigid nanoparticle have been applied
to the problems of directed-diffusion and also to predict the dynamics of a single degree

of freedom nano-robot.

The work done is summarized and the investigation in the thesis led to some
inferences, which are elaborated in the next section and the scope of further work at the
end brings a finale to the present work with compelling conviction that every end is the

commencement of a new beginning.
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8.2 INFERENCES

For nanomachines embedded in a fluid, the thermal agitation due to the medium
influences the machine’s movement substantially. The nanomachine itself can be
regarded as a free-floating nanoparticle in a fluid. The work in this dissertation involved
development of different models for Brownian motion of non-rigid nanoparticle, their

validation through simulations and verification with published experimental results.

8.2.1 Non-Rigidity of Nanoparticle Influences Brownian Motion

The entire available literature on Brownian motion was based on the assumption
that the nanoparticle is rigid. The rigid body assumption implies that the motion of the
particle is not influenced by the deformations of the nanoparticle caused by the applied

impacts from the medium.

It was also noted that in nano-domains, the bodies have low value of spring
constant k as observed by Wong [Wong 1997] and Roukes [Roukes 2000], while the
rigid body has a value of k as infinity. This implied that rigid body assumption in nano-
domains is incorrect and therefore the influence of local deformations on dynamics needs
to be investigated. Another observation from literature review is Deng’s [Deng 2003]
suggestion of storing metabolic energyl by nanoparticle, which supports the view of
introducing non-rigidity in nano-domains because non-rigid elements only can store
energy. It is concluded that for Brownian motion, therefore, additional properties like
non-rigidity characterized by spring element and dissipation characterized by a damping

element must be included to get a clear and precise picture of dynamics in nano-domains.

8.2.2 An Impact Transfer Model for Non-rigid Nanoparticle

To develop Brownian motion model of non-rigid nanoparticle, the impact transfer
in Brownian motion was explored first and different possibilities of impact transfer were
modeled. The non-rigid nanoparticle is characterized by its elastic and dissipative
properties. The damping from the medium and from the non-rigid nanoparticle was
considered as equivalent damping coefficient-representing resistance to global and local

motion of non-rigid nanoparticle. Using the Omstein-Uhlenbeck model of Brownian
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motion of rigid nanoparticle as impact transfer model, the interaction of elastic and

dissipative properties of nanoparticle (f' and k) is introduced as a sub-system. The sub-

system was included in the Omstein-Uhlenbeck model in six possible ways. These six
models were named as Model 2 through Model 7, with Model 1 used for the rigid body
model. Extensive simulation of variance in position from six models carried out over a
wide range of parametric values were subjected to two identified validity criterions of
non-negativity and finiteness of variance. It was found that the five of the six impact
transfer models did not satisfy the two criterions. The rejection of the five models led to

following assertions

e Rejection of single integration models namely, Model 2 and Model 3
suggested the need of exploration of alternate possible model for elastic and
dissipative properties.

o Failure of Model 4 with no integration implies that input and output represents
two different physical quantities and, therefore, input has to be a higher order
derivative of output, which is position of the nanoparticle.

¢ Rejection of double integration models, Model 5 and Model 6 implied that

thermal noise could not result in jerks on the nanoparticle.

Model 7 was found to be valid and affirmed the proposition of introduction of
additional elastic parameters of nanoparticle in rigid body Brownian motion model.
These results for impact transfer in non-rigid nanoparticle have been published [Sharma
2004(i)].

8.2.3 Relation Between Rigid and Non-Rigid Parameters

It was seen in the six mathematical models of variances of impact transfer in non-
rigid nanoparticle that denominator at contained a term (2a' - ,B). It means that if 22’ is
equal to S, then denominator is zero and the variance will becomes infinite. Since, the
infinite variance for a real physical process is not possible, it implies that 2a’ should
never be equal to S . Therefore, it was assumed that 2a' = @f , where @ is a constant that

cannot be unity. The assumption on substitution of a’'and f in parametric form results
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into relation k = @ff’/2m . This assumed relation was simulated for parametric values of
two materials namely, silicon Carbide and Carbon, for which the published experimental
results for non-rigid parameter k as a function of size are available. It was found that
simulation results match with published experimental results. These results have been

published [Sharma 2003(1)].

8.2.4 Brownian Motion Model of Non-Rigid Nanoparticle using Systems Approach
The Model 7, which was obtained by hypothesizing a particular interaction of

properties of nanoparticle in impact transfer, has the major drawback that a physical
explanation of the model cannot be found. Another limitation is that a fixed interaction of
non-rigid properties has been assumed while there can be a number of other possible and
contending interactions possible to model the impact transfer process. To overcome this,
it was decided to adapt a systems-modeling approach to get a model for Brownian motion

of non-rigid nanoparticle.

The non-rigid nanoparticle Brownian motion was represented as a four-parameter
system model (m,f,f’,k) and all possible models of interactions of these four
parameters were found. An algorithm was developed to systematically develop all
possible interactions. It was found that a total of three hundred and sixty possible
interaction models are possible. The characteristic features for the Brownian motion were
identified and were used as the three selection criterions for these models. The interaction
possibilities that were unable to meet the three selection criterions were rejected. Only
three models satisfied the selection criterions. The three selected Brownian motion
models of the non-rigid nanoparticle were simulated for two different materials namely,
Silicon and Polystyrene. The silicon and polystyrene nanoparticles were used as the sizes

of these two nanoparticles in the published results were at the lower and upper boundaries

of nano-domains.

The simulation results of the three models, named as Model 8, Model 9, and

Model 10, were subjected to verification with published experimental results for these
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two materials. It is found that results obtained from Model 10 confirmed with both the
published results, while the results from Model 8 and Model 9 matched for Silicon
"nanoparticle and did not maich the polystyrene nanoparticle. It may be possible to draw
an inference at .this stage that Model 10 is better than Model 8 and Model 9 as it is valid
for a wider range in nano-domains whereas Models 8 and Model 9 have limitations and
are valid in the lower end of nano-domains. This work has been accepted for publication

[Sharma 2004(ii)].

8.2.5 Application to Model Directed Diffusion Mode of Brownian Motion

It was observed that variation of variance for the three models, Model 8, Model 9
and Model 10, is linear for large times indicating their applicability to normal diffusion
mode of Brownian motion of nanoparticle. As an extended application of the models, the
three non-rigid models were applied to model the directed-diffusion mode of Brownian
motion of nanoparticle. The directed-diffusion mode is characterized by a non-linear
variation of variance. In order to model the directed-diffusion mode using the three
models, an input was modeled as transient thermal noise instead of white noise. The

transient thermal noise autocorrelation model considered non-rigid parameters apart from

rigid nanoparticle parameters.

The three-variance models were developed using system model, Model 8, Model
9 and Model 10, for the transient thermal noise and were simulated over wide parametric
range. It was found that all three models show non-linear variation of variance even at
large times for the transient thermal noise input. Since in case of the rigid nanoparticle,
the transient thermal noise with non-rigid parameters cannot be considered, the Model 1
can be applied for normal diffusion mode only. It was, therefore, noted that non-rigid
nanoparticle Brownian motion model can be used to model Directed diffusion mode and
all three models predicts identically on the aspect. This work has been published [Sharma
2003(ii1)]

8.2.6 Prediction of Dynamics a 1-DOF Nano-Robot

The three Brownian motion models of non-rigid nanoparticle have been applied to

predict the dynamics of a 1-DOF nano-robot, attributable to thermal agitation from
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surrounding medium. The Brownian motion models for the one-degree of freedom nano-
robot have been developed using the three developed models for Brownian motion of
non-rigid nanoparticle and Lagrange-Euler approach. The three élynamic models for the
single degree of freedom nano-robot were simulated over a wide range of parameters for
Carbon nanotubes to obtain the variance. The variance obtained from the three models
was compared with the variance obtained using the rigid body model as benchmark. It
has been found that Model 8 and Model 9 predict variance in angular position of nano-
robot away from the rigid body model while the predictions of variance in angular
position of the nanrobot from Model 10 were identical to the rigid body model
predictions. In the absence of any published theoretical or experimental observations for

motion of nano-robots, no conclusions can be drawn.

8.3 FUTURE PERSPECTIVES

The thesis explored the dynamics of non-rigid nanoparticles and developed some
models for Brownian motion of non-rigid nanoparticle and applied these models to
directed diffusion and nano-robots. It was not possible to consider and include all aspects
of the problem as well as the findings of this thesis, which have opened up several new
horizons in the understanding of nanotechnology. These need to be explored further and
could be independent thesis topics. Some of the possible areas where explorations are

required are elaborated below.

The dynamic response to thermal agitation has been investigated in present thesis.
The dynamics in nano-domains for the contribution from other forces viz. Vander-Waal’s
forces, Electrostatic forces and Adhesive forces, which become significant in nano-
domains needs to be explored. The investigation of each of these forces is a

comprehensive exercise and will help in understanding and applying nanotechnology.

In the present work, it was assumed that the damping coefficient is characterized
by the Stokes law and the elasticity of surrounding medium was not considered because

the point of investigation was nanoparticle and not the medium. The surrounding medium
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may not be always viscous and other types of medium including elasticity of medium can

be further explored.

In the present work, a lumped-parameter model og non-rigid nanoparticle has
been assumed. The models of non-rigid nanoparticle Brownian motion need to be
extended to distributed parameters. The Brownian motion models of distributed
parameter non-rigid nanoparticles may be able to give better results. The distributed

parameter analysis is involved and complex and is a complete investigation in itself.

For simulation of variance, variation of non-rigid parameters ¢’ was carried over
a large range while & was assumed constant. The work can be further extended for
investigating the effect of variation of other non-rigid parameters like @ and & on

variance values. This will be a complementary work to the present thesis.

The two additional parameters representing non-rigid behavior of nanoparticle
introduced in the present thesis were shown to be related and the relation was verified by
simulation. An experimental confirmation of the relation between the parameters
(m,f.f'.k) would be step forward in understanding dynamics of nanoparticle. This
would require adequate facility and an experimental setup for observation of variance in
position of a nanoparticle. Once the experimental setup is available, variations like effect
of variation in size, material etc. of nanoparticle on variance can be explored. For
example, using the observed variance of two nanoparticles of same size and same
material, an inverse problem can be formulated to obtain the parameters from the non-

rigid models.

In case of dynamic modeling of nano-robot, the exploration can be further
pursued with a multi-degree of freedom nano-robot. The exploration of multi-degree of
freedom nanorobotic manipulator will introduce non-linear coupled terms in the
mathematical model of variance. The extraction of extra joints torques attributable to
these additional terms will be an involved and comprehensive exercise in solving non-

linear stochastic models.
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The application of Brownian motion models to nano-robots can be also
investigated from the control point of view. The positioning inaccuracies that can result
due to Brownian motion of nano-robot need special control measures. From the models
developed, the variance in position is available. To control such nano-robots, a stochastic

or neuro-fuzzy control scheme can be developed and and used.

To summarize, it has been convincingly established using the modeling and
simulation tools that the non-rigidity of a nanoparticle is relevant both in terms of
explaining a few hitherto unresolved issues in nano-domain and from future application
point of view of nanotechnology. The new vistas opened up will lead to betterment of

human life using the nanoscience and nanotechnology.
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APPENDIX —I

CORRELATION TECHNIQUE AND ITS APPLICATION TO
RIGID NANOPARTICLE

This appendix contains correlation techniques details, which has been used in
the thesis as the prime tool to develop variance models of Brownian motion considering
non-rigidity of nanoparticles. The six impact transfer models in Chapter 3 and Chapter 4
and the three systems model in Chapter 5 have been expressed in terms of variances.
The variance for all models are obtained using time domain analysis called as
correlation technique and is detailed next section. The technique is further applied to

obtain variance for a rigid nanoparticle.

I.1  CORRELATION TECHNIQUE
In order to analyze a linear system with real impulse response function h(r), a
real process y(t) as input and x(t) as real output, the functional relation between y(t),

h(z) and x(t) is given by convolution integral as [Papoulis 1991]

x(t)= jy(t - 7)h(r)dr (I.1)

The input-output relation can be considered as signal processing by the system.
A signal whose value cannot be predicted precisely but is known in terms of
probabilistic description, such as mean value, mean squared value and so on, is a
random signal. Stochastic signal is a dynamic random signal. In case of stochastic
signals we use autocorrelation as a measure of input and output signals [Lathi 2000].
Autocorrelations are nothing but the expected value of a physical variable at two

different times. Taking expected values on both sides of equation

(I1.1), the convolution integral for stochastic signals, gives

E((0} = TG - Dhle)ar 12)
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where E{x(t)} is the response of the system to stochastic input and is known as expected

value of the output x(¢). The convolution integral in equation (I.2) is conventionally
represented as

Ex(t)} = E{y()}* n(t) (13)

The relation between the expected values of input and output can be represented

by a block diagram as shown in Figure I.1.

E{y(n} he) E{x(1)}

Fig. I.1 Expected Value of Response E {x(t)} for a System with Impulse Response
h(r) and Input with expected value E ()

For deterministic signals, the product of output and input signals at time
instances ¢, and ¢, (¢, > t,) tespectively is given by the convolution integral of input

with impulse response as

)= [l - (14)

where y(f, —7) is the value of input at time #, —~7 and {r,) is the value of input at

time ¢,. For stochastic signals, taking expected values on both sides in equation (1.4)

gives
Bl )= TEG, - )yl i(ele L5)
or Ry 612)= TR, (6 5.0, e e L6)

where ny(t,,tz) is the cross-correlation between x and y and Rw(f; ~17,t,) is the

autocorrelation of input. Using the convolution integral notation, the equation (L.6) is

written as
ny(tntz):R)y(tl —T’tz)*h(tl) (1.7)
From the cross correlation R (f,1,), the autocorrelation R (t,,t,) of output

x(t) using convolution integral can be obtained as
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R.u(tntz)= TR.w(tntz _T)h(f)df (1.8)

or R.u(tntz)= R, (tntz ‘T)*h(tz) (1.9)
Equation (I.7) and (1.9) are combined to obtain autocorrelation of output

R, (1,,1,) and the overall block diagram is shown in Figure 1.2.

‘ny(ll’ tz) l R,u-(’l’ tZ)

h(t,) ——

R, 1)

- h()

Fig. L2 Autocorrelation of Response R_(t,,t,) of System with Impulse Response
h(r) and Input with autocorrelation R, (1,,1,) for (1, > 1,)

It has been shown that precedence of t, ort, does not affect the final result and
a similar response is obtained for (1, <1,), which is diagrammatically shown in Figure

1.3 [Papoulis 1991].

R, (4, 1) R (4, 1) - R (4, 1)

h(t;) h(r)

Fig. 1.3  Autocorrelation of Response R_(z, ,,) of System with Impulse Response
h(r) and Input with autocorrelation R, (t,,2,) for @ < t,)
The variance of the output of the model & {x2 (t)} is obtained using equation 1.9)
by substituting ¢, =¢, =¢ as
E{x*(1)} = R, (1,1) (1.10)

The correlation technique is applied to a free particle in order to get the variance

of output for given autocorrelation of input and known impulse response of the system

in next section.

12 MOTION OF FREE PARTICLE

The basic model of variance of small sized particle given by Einstein for

Brownian motion of a free particle is derived using correlation technique. In order to
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obtain the variance in position of the small sized particle, the stochastic differential
equation defining the dynamics of small sized particle, also called as Langevin

equation, is considered. The Langevin equation for no external force is given as

dv

—+ fv=nlt I.11

—+ B =nl) (1.11)
where v is the velocity of small sized particle, £ is system parameter and is defined as

the ratio of damping coefficient f from surrounding medium and mass m of the small
sized particle (8 = f/m) and n(t) is white noise input. The substitution of velocity

v=dx/dt in equation (I.11) gives

d*x _dx
B =t I.12
dt? g dt () (L12)
Integrating equation (1.12) gives
dx dx,
—_—— - X, )= |n\that 1.13
a7 dr :B(x 0) j ()d (1.13)

where x, is the position of particle at t =0, dx,/dt is velocity of nanoparticle at

t =0. Assuming conditions at =0 as v, =dx, /dt and x, =0, equation (I.13) gives
-d—x+ﬁx=w(t)+vo (1.14)
dt

where w(t) is the integrated white noise J. n(t)dt . In order to obtain the autocorrelation

of input wft)+v, in equation (I.13), the autocorrelation of v, is obtained first. The

autocorrelation of v, denoted as R, (t = 0) is inverse Fourier transform of the spectrum

of v, and is given as [Papoulis 1991]

R (1=0)= i [s, @k do (L15)

where Sw(w) is the spectrum of v, and is obtained by dividing spectrum of n(t) by

transfer function of the Langevin equation (I.11) as
S,@) _ «a

Sw(a))z - 2
Jo+p @ +B

(1.16)
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where the spectrum S, =2«Tf /m*=a; x is Boltzman constant, T is absolute
temperature of system, f is damping coefficient of surrounding medium and m is the

mass of small sized particle. Substituting S, (a)) from equation (I.16) in equation (1.15)

and integrating gives
a
R (t=0)=— 1.17
or Ep = — 118
)=z (L18)

where E {voz }= R_(z = 0) is the variance of v,. Furthermore, the random variable vo is
independent of the process w(t) for ¢t > 0. Considering y(t) = w+v, in equation (1.14),

the autocorrelation of y(t) denoted as R, (t,,,) is obtained as

R, (6,1) = E()y(0)} = B we) b B’} (119)
where E{w(, Ywft,)} is the autocorrelation of w(t) and is obtained by integrating

autocorrelation of n(f) as wt) is integration of n(t). The autocorrelation of n(t) is

given as
R, (t,,t,)=a 5(r) (1.20)
The autocorrelation of wit) denoted by R, (#,,t,) is obtained by integrating
equation (1.20) as

at,; t, >,

Rwa"a)={ (121)

at; t, <t,
Substituting values from equation (1.18) and equation (1.21) in equation (1.19)

gives the autocorrelation of y(?) as

a
a,+—; 1, >1,

R, (1) = N (1.22)
a, +— t, <1,
2p
Using the correlation technique described in Section .1, the cross correlation
between input and output of system defined by equation (I.14) is obtained using
convolution integral given by equation (1.6). Substituting for R,(, ;) from equation
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(1.22) for ¢, < t; and the impulse response 4(7) from equation (I.14) as e”? in equation

(1.6), the cross correlation x(#) and y(¢) is obtained as

= ¥ —- l -pr
R,o,(t,,tz)—_a[(a(t, z‘)+2ﬂ)e dr (1.23)

For finite time and since the Brownian motion system under consideration is
casual, the limits of integration get changed to 0 to ¢,. Equation (1.23) on integration

with changed limits gives

R, (t,1;) =20‘7(2ﬁt, “1+e?) (124)

The autocorrelation of output x(¢) for ¢; < t, is obtained using equation (1.8),

(1.24) and impulse response e™*" as

2

R_(t,t,) = %_ (2p, -1+ )]e'”’dr (1.25)

-

Integrating for finite time and casual system, the integration limits get changed

to 0 to ¢,. Equation (I.24) on integration with changed limits gives

R (1) = 2%;(2&, “1+ef)(1-ern) (1.26)

So variance of x(t) is obtained using equation (I.10) by substituting ¢, =¢, =¢ in
equation (1.26) as

E{x*()} = -2‘;3 {ep-1+e*)1-e*)} (1.27)

Equation (1.27) is the Omstein-Uhlenbeck Brownian motion model of a rigid
particle. For £~>1/f, the exponential terms in equation (1.26) becomes negligible and the

equation reduces to

Ef ()= % =2 (1.28)

where diffusion coefficient A =a/ 2% . Equation (1.27) is the Einstein’s model for

Brownian motion of rigid particle.

The correlation technique detailed in this appendix and applied to rigid particle
to obtain the variance model is used in the thesis for obtaining variance models for non-

rigid nanoparticle.
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APPENDIX II

POSSIBLE INTERACTION MODELS IN NON-RIGID
BROWNIAN MOTION SYSTEM

This appendix contains different possible interaction models of four-parameters
(4-P) developed in Chapter 5 to model the Brownian motion system of non-rigid
nanoparticle. The four parameters (m, £ f l/k)-s (L,R,R', E) as defined in Chapter 5
represent lumped properties of non-rigid nanoparticle and surrounding medium. The
360 possible interaction models are obtained as described in the algorithm to obtain

possible models in Section 5.4.

II.1 ALL POSSIBLE ELECTRICAL ANALOG MODELS

This section gives all 360 possible models of interaction among four-parameters.
These electrical analog models are grouped in fifteen categories denoted as
Combination-1 to Combination-15 corresponding to fifteen unique four-parameter
models in Fig. 5.8 with twenty-four models in each combination. These fifteen

combinations are shown in Fig. II.1 to Fig. IL.15.
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Fig. I1.15 Combination 15: Twenty-Four 4-P Models Corresponding to Model given in
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I1.2 Possible Electrical Analog Models After Applying Selection Criterionl

The reduced set of ninety-two electrical analog models which satisfy the
Selection Criterion 1 of being electrically distinct from total of 360 models are given in
this section. These electrical analog models are again grouped in fifteen categories
corresponding to Combination-1 to Combination-15 and are shown in Fig. I1.16 to I1.30.
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Criterion 1
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