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FOREWORD

During the war there was assembled at the University of Chicago
a group of scientists and engineers who undertook the many com-
plex problems associated with the planning and construction of
nuclear-chain reactors which could be employed to produce plu-
tonium and many other radioactive materials and radiations. This
task reached its climax in 1944 when the reactors at Hanford were
placed in operation. After this date most members of the group
at Chicago dispersed to undertake other tasks at other sites of
the Manhattan Project, most notably at Los Alamos. There re-
mained at Chicago, however, a small group which was concerned
with the “stand-by’’ problems associated with the operating reac-
tors and which devoted a fraction of its time to consideration of
the longer-range aspects of reactor development. This group,
which was centered for the most part on the fourth floor of Eckhart
Hall of the University and looked to Professor Wigner for leader-
ship, contained a number of men who intended to devote an
appreciable fraction of their future life to the problem of reactor
development. These individuals were interested in seeing estab-
lished a plan whereby the science and technology of reactors could
be projected continuously into the future once peacetime condi-
tions would make it possible to broaden the basis of development
to general as well as military problems.

It was agreed at this time that one of the first steps that should
be taken after the end of hostilities would be the establishment of a
training school at which the entire field of reactor science could be
reviewed systematically and presented to younger men who would
in their turn become the future leaders of the field. The group
disbanded in the fall of 1945 with the hope that the time to estab-
lish such a training program would not lie too far in the future.

During the winter of 194546 the Monsanto Chemical Company
accepted a contract to carry on the operation of Clinton Labora-
tories at Oak Ridge (now the Oak Ridge National Laboratory).
Dr. C. A. Thomas of that company approached Wigner with the
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vi FOREWORD

proposal that he spend a year at Oak Ridge on leave of absence
from Princeton University and attempt to continue at Oak Ridge
the work that had been started at Chicago during the latter period
of the war. Part of this program was to be devoted to detailed
planning of reactors, which would be constructed as soon as pos-
sible, and part would be devoted to a training program. Wigner
accepted this proposal and was joined by a number of his wartime
associates, most notably A. M. Weinberg, who is now Associate
Director of Oak Ridge National Laboratory, and Gale Young who
is now with Nuclear Development Associates in New York City.
In addition a number of other scientists and engineers too numerous
to mention who had had wartime experience agreed to participate
in the program. The undersigned was granted leave from the
Carnegie Institute of Technology and was appointed director of
the training aspect of the proposal. Fortunately, he was able to
procure the part-time services of many of the outstanding men
who were assembled at Oak Ridge in planning and carrying out a
fairly comprehensive series of lectures, which covered two academic
semesters extending from October 1946 to June 1947. The course
ranged over various topics extending from theoretical nuclear
physics and health physics to the engineering problems of reactor
design.

Students were recruited both from academic institutions and
from industrial laboratories. Approximately forty mature indi-
viduals were obtained to constitute the core of the student body.
These scientists and engineers had a median age of about thirty
and were recognized experts in other fields of science or engi-
neering. They spent about half their time taking formal courses
and the remaining half in the research laboratories on practical
problems of immediate interest to the atomic cnergy program.

A fraction of the lecture program was open to the regular em-
ployees of Clinton Laboratories who made excellent use of the
opportunities. In addition a contingent of officers and civilians
of the United States Navy, who were stationed in Oak Ridge to
investigate problems of specific interest to the Navy, employed
the training program to facilitate its own program.

The following pages of this book represent a declassified version
of the lectures given by Dr. H. 8oodak who was a member of the
Physics Division of Clinton Laboratories and who kindly devoted
a fraction of his time to the training program. These lectures



FOREWORD vii

were introductory in nature and were among the most popular
and valuable presented. They were organized for publication by
Dr. E. C. Campbell who left Princeton University to join the
student body of the training program. Like many of the other
trainees, Dr. Campbell elected to remain in the atomic energy
program after completing the educational period.

It should be emphasized, of course, that these pages represent
only a small, though very significant, part of the training program.
The greatest part of the work is still classified and probably will
remain so for some time to come.

On the purely personal side, I should like to take this oppor-
tunity to thank once again the large number of individuals from
all walks of Clinton Laboratories for the understanding and co-
operation which made the training program successful. I believe
I speak for them in thanking both the Manhattan District and
the Atomic Energy Commission for the opportunity to participate
in this work.

*

FREDERICK SEITZ
Pittsburgh, Pennsylvania
January 1950
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1. INTRODUCTION

It is the purpose of this course to consider the chain-reacting
pile in which fast neutrons are produced by fission. Some of these
neutrons, after being slowed down in a moderator, are captured by
other fissionable nuclei, producing more neutrons and thus per-
petuating the chain reaction. This is possible only in the case’
that not too many of the neutrons produced leak out of the pile
structure or are unproductively absorbed before they can produce
fission. A delicate balance must be reached in the neutron econ-
omy in which the rate of neutron loss is equal to the rate of neutron
production if the pile is to operate at a steady level of neutron
density.

This idea may be expressed in symbols in the following way: Let
L be the number of neutrons that leak out of a pile per second and
A the total number of neutrons absorbed per second in the pile.
Of these a certain portion A; will produce fissions, and in each
fission » neutrons will be emitted. The balance condition is then

Leakage + absorption = production
L+A=Ap (1-1)

We must investigate in detail what happens to the fast neutrons
given off in the act of fission, how they move about in space, and
how they are slowed down in matter. A fast neutron passing
through a moderator substance, such as graphite, will collide with
carbon nuclei. Its path will consist of many short zigzags of
various lengths. The segments of the path will be oriented more
or less at random, since the neutron may make either a glancing
collision with slight deflection or a head-on collision with large
deflection and maximum energy loss.

2. CROSS SECTIONS

It is customary to represent the probability of a particular proc-
ess (scattering, ahsorption, fission) that occurs when nuclear pro-
jectiles pass through matter by giving the effective target area of

1



2 ELEMENTARY PILE THEORY

the bombarded nucleus for that particular process. This quantity
is known as the cross section of the nucleus for that process and is
usually denoted by the symbol ¢. If nuclei are pictured as tiny
hard spheres of radius R, one might expect the effective target area
to be of the order of xR2. Since the radii of nuclei are known from
other evidence to be of the order of 107!? ¢m, it is not surprising
that certain cross sections for scattering of neutrons are of the
order of 10~2* cm?. This quantity is known as a “barn,” presum-
ably for the reason that it denotes simply that area a poor marks-
man would have difficulty in hitting.

The exact meaning of the cross section is as follows: if a beam of
I neutrons per sec per cm? passes through a region in which there
are N nuclei per cm?, each with a scattering cross section a,, then
the number of scattering processes that occurs per second per cubic
centimeter is IoNo,. This can be visualized in the impractical case
where Ip = 1 and N = 1. If 1 neutron per sec per cm? enters a
cubic centimeter in which there is just one nucleus, the probability
that it will be scattered is the ratio of the target area of the nucleus
o, to the whole area of the “beam,” namely, 1 cm2. This proba-
bility is therefore numerically equal to g,.

If the I-neutron beam enters a slab of moderator, the probability
of its being scattered in a thickness Ax we call £, Az. The proba-
bility that it will pass Az without being scattered is (1 — X, Ar),
and the probability that it will pass through n such thicknesses,
(1 — Z,Az)®. Let z be the total thickness of the moderator
traversed. Then, as n approaches infinity and Ax = z/n ap-
proaches zero, the probability that the neutron will pass unscat-
tered through a thickness z is just e~ ***, since

aly
lim (l - y) =e¢°
y—0

From the previous results it is clear that X, is reiated to the cross
section by Z, = No,. The fraction of the neutrons that will
penetrate unscattered to distance z is e™**. The mean free path
for scattering A, is defined as the average distance a neutron travels
before being scattered. This is given by

- 1
A. -f ze—z"z.dz " - (2“1)
° p



CROSS SECTIONS 3

In the integral e~ ** is the probability that the neutron will pene-
trate to z without being scattered and Z, dr is the probability that
it will be scattered in the next interval dz. The product is there-
fore the probability of being scattered between z and z + dz.
The integral then gives the mean free path for scattering, A,,
which is just equal to the reciprocal of Z,, the probability of being
scattered per centimeter of path.

The quantity Z, = No, is called the “macroscopic scattering
cross section’’ or the ‘‘scattering cross section per cubic centimeter.”
In a similar way one can define analogous quantities which refer to
other processes such as absorption, denoting them by \,, ¢4, and
Zs. The number of atoms per cubic centimeter, N is equal to the
number of moles of the substance per cubic centimeter times the
number of atoms per mole. Thus

density (g/cm?)
atomic weight (g/mole)
X Avogadro’s number (atoms/mole) (2-2)

In the case of graphite, one obtains

1.6
N = 1 X 6.02 X 102 = 8 X 10?2 atoms/cm?

Since the thermal-neutron scattering cross section g, is 4.8 barns
for graphite, the macroscopic cross section,

S, = No, =8 X 10?2 X 4.8 X 107%* = 0.38 cm™!

The scattering mean free path )\, is then 1/0.38 = 2.7 cm. The
circumstance that graphite is a useful moderator depends in part
on its extremely small cross section for absorption, which is only
one thousandth of its scattering cross section, that is, ¢, = 0.0048
barn. The mean frec path for absorption of thermal neutrons by
graphite is therefore about 2700 em.

In general, both ¢, and ¢, depend on the neutron energy, and
it i8 necessary to specify this energy in giving cross sections. The
absorption cross section is a more sensitive function of the neutron
energy than the scattering cross section. For many substances,
for example boron, g, is inversely proportional to the neutron
velocity v. Other substances show the phenomenon of “‘resonance”
in which ¢, attains very large values for neutron energies close to
a particular value.



4 ELEMENTARY PILE THEORY

8. SLOWING DOWN OF NEUTRONS

Consider a fast neutron (v~ 10° cm/sec) in a large block of
moderator, for example graphite. We must now examine the de-
tails of the elastic collision process by which the neutron is brought
from high to low energies. When the energy becomes so low that
it is comparable to the energy of the thermal motion of the graphite
atoms, it is clear that the neutron will be as likely to gain as to
lose energy. It will therefore retain an energy in the thermal region
until it is finally captured.

A straightforward application of the laws of conservation of
momentum and energy leads to a relation giving the fractional loss
of energy of the neutron in terms of the angle of deflection of the
neutron and the mass ratio of nucleus to neutron.

It is more convenient, however, to consider the collision from the
point of view of an observer who rides with the center of mass of

L (laboratory) C (center of mass)
system system
Before ®| w-v M
collision o ® =9
%= zﬁ: WM | v
,4..
3
m b
After 8 M
collision M
%
Fia. 1

the two particles. In this center of gravity system (denoted by C)
the total momentum (vector sum) of the particles before collision
is zero. From the law of conservation of momentum it follows that
after the collision the total momentum is again zero. This means
that the observer who rides with the center of gravity sees the two
particles depart in precisely opposite directions. Moreover, if it
is an elastic collision (kinetic energy conserved) their velocities
are unchanged from what they were before collision, since such a
change would mean a change in the total kinetic energy of the two
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particles. The total effect of the collision, as viewed in the C
system, i8 to change the directions of the velocities but not their
magnitudes. In the laboratory system (denoted by L), in which
the nucleus was originally at rest, the magnitudes of the velocities
are changed and their directions are not opposite. To determine
the new velocity of the neutron in the L system, we must transform
back from the C system to the L frame of reference.

Let the neutron move to the right with speed vy, energy E,,
and mass m. The nucleus has zero velocity and mass M. The
velocity of the center of mass

ve=(3i7)
c .M+mv°

In the C system the neutron moves to the right with a speed

ve= (i)
Yo c m+Mv°

and the nucleus moves to the left with a speed

Ve (i)
c m+Mv°

The total momentum is then zero, since

M M 0
™ M+m o M+m Yo
%= rs)
%(M:‘u)
1 4
(]
Fio. 2

After the collision the neutron flies off at an angle ¢ and the
nucleus at an angle of 180° + ¢ in the C system. In the L system
-’

the neutron leaves at an angle 6 and has a velocity v which is the
vector sum of the velocity of the neutron in the C system and the
velocity of the center of mass. Two special cases are of particular
interest. In the case of a glancing collision,

¢=0 v=y, and E = E,
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In the case of a head-on collision,

M-m M — m\?
¢ = 180°, vs( )vo and E==( Ey
M+m +

It is apparent that under this condition the neutron loses the
maximum amount of energy in a collision. In the case of carbon,

12 — 1\?
E=( )Eo = 0.72E,
12+ 1

Thus a neutron colliding with a carbon nucleus can lose up to
289, of its original energy. That is, a 1-Mev neutron can lose up
to 0.28 Mev and a l-ev neutron can lose up to 0.28 ev in such a
collision. The fact that the maximum fractional loss is constant
makes it convenient to use a logarithmic energy scale for calcula-
tions. From Figure 2 one can obtain, by applying the law of
cosines,

M \? m \?
el ()
o M4+ m + o M4+m

T . ? Veoss (3-1)
LA Yoy L Granpey heohe

and the ratio of the neutron energy after collision £ to its original
energy Ey is

E Im?2 & M2+ m®+ 2mM cos ¢
Eo %m&'oz 002 (AI + M)z

(3-2)

A -1\
on introducing the mass ratio A = M/m and r = (A n l)
this may be transformed into

E 147 1-r7r

E, 2+2

cos ¢ (3-3)

Again the smallest value of E occurs for ¢ = 180°, when cos ¢ =
—1 and E = rE,, whereas, for ¢ = 0, cos¢ = 1 and E = E,.
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The angle of deflection in the C system is related by Figure 2 to
the corresponding angle 6 in the L system according to

1
cos ¢ + —
¢ A
cotf = -
sIn ¢
Asing
1+ Acose A
cos f = —{/FZQ- A% + 24 cos ¢ l+Acosd 3-4)

It may be seen that, if A > 1, then ¢ = 6 approximately, and the
C and L systems are almost identical.

In order to get the average properties of neutrons slowing down
in a moderator it is necessary to know how the probability of
scattering in the C system depends on the angle ¢. The answer,
as given by both theory and experiment, is that for the neutron
energies that we shall consider (energies less than 10 Mev) and
for A small the scattering is to a good approximation spherically
symmetric in the C system,

This means that the differential cross section do, for neutrons
scattered into a solid angle dQ is ¢,/4r dQ where o, is a constant
and is the ordinary scattering cross section as defined previously.
Since the element of solid angle between ¢

and ¢ + do is E,

2r sin ¢ dp = —2x d(cos ¢) :.:E"’dg
all values of cos ¢ are equally probable. rE,
Owing to the fact that E/E, is a simple Fic. 3

linear function of cos ¢, it can be seen that all
values of E/E, from 1 to r are equally probable. The probability
P dE that a neutron will lose energy in one collision from an initial
energy K, to a final energy in the range K to E + dE is therefore
equal to dE divided by the whole interval Ey — rE, into which
it can go; that is,

dE
PdE = ——
Eo - rEo

We are now in a position to calculate a useful quantity called the
“average loss in the logarithm of the energy in one collision,”
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and usually denoted by ¢. The uiility of £ lies in the fact that it
is independent of the neutron energy. By definition

_ E
¢t =logEo — log E = log 792 (3-5)
"log 2. pap = [ og 22—
— 0 e s o 8 s
¢= 1) % E rEo E Eo—rE,
Let
=t
Then
1 r
¢t = flog:cd.z:
1—r 1
or
(=1 + —— l<)|.. r (3-6)
where

6
r=\——m—m-
A+1

A convenient approximate expression accurate to 1% for 4 > 10
is

2
A+3

For A=1 (r=0) and for A = ©» (r = 1) the funetion is
indeterminate. We can, however, define it to be equal to the limit
of the function for these two values. This procedure gives ¢ = 1
for A =1 and £ =0 for A = «. The first case corresponds to
the use of hydrogen as a moderator. The value & = 1 for this case
means that on the average the energy of a neutron colliding with
a hydrogen nucleus decreases by a factor ¢ in each collision; that is,
its energy after collision is only 379, of its original energy.

On the other hand, if A is very large, £ = 0. The ncutron loses
practically no energy in an elastic collision with a heavy nucleus,
for example U5,

Although the scattering is spherically symmetric in the C system,
it is in general not so0 in the L system. The divergence from spheri-
cal symmetry is measured by the average value of cos 6, where the

¢ = 3-7)
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average i8 taken over all possible collisions. One obtains, using
equation 34,

1
cosf = — fcosfdQ
4x

{
1 1+ 4 :
= F L 08¢ - gin ¢ d¢

_l ! 1_+Ax
2J_, V1 + A% + 24z
_ 2

6 =— 3-8
co8 ” (3-8)

When A is very large, cos 6 is very small, and the distribution in
angle of deflection is effectively isotropic. This agrees with the
previous result that, when A > 1, L and C systems are indis-
tinguishable. Neutrons colliding with heavy nuclei, therefore,
are as often scattered forward (positive cos 6) as backward (nega-
tive cos 8). In the case of hydrogen (4 = 1) cos 8 = 24, and the
scattering is preferentially forward in the L system although it
remains spherically symmetric in the C system.

If we know the value ¢ (equation 3-6) for a moderator we can
calculate very simply the average number of collisions a neutron
must make in slowing down from, for instance, an energy of 2 Mev
to thermal energy !30 ev. The number of collisions is the total
loss in the logarithm of the energy divided by the average loss £ in
one collision. This gives, for the average number of collisions,

log 2 X 10° — log oy log 6 X 107 B E
£ ¢ ¢

(3-9)

Sample values are given in Table 1.

TABLE 1
No. of Collisions,
Moderator A 4 2 Mev to Ex, = 18/¢
Hydrogen 1 1 18
Deuterium 2 0.725 25
Carbon 12 0.158 114
Beryllium 9 0.209 86
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4. SLOWING-DOWN DENSITY

Consider a block of moderator so large that we can neglect leak-
age of neutrons out of it. Imagine that in each cubic centimeter ¢
neutrons, each of energy FEy, are produced each second. We direct
our attention to the energy distribution of neutrons and assume a
uniform space distribution. Then, provided there is no absorption
in the moderator during the slowing-down process, ¢ neutrons per
sec per cm® will slow down past each energy level E. The quantity
g is known as the slowing-down density. If there is absorption in
slowing down, fewer neutrons will leave dE than will enter, and
¢ will be a function of the energy E. In general, ¢(&) is defined as
the number of neutrons per second per cubic centimeter that slow
down past the energy E.

Under steady-state conditions the number of neutrons that leave
the interval dE must equal the number entering. The number that
leave is just the number scattered out, namely, n(E) dF vZ, where
n(E) dE is the number of neutrons per cubic centimeter in the
energy interval E to E + dE, and =, is the probability per second
that a neutron is scattered. This equals the number that enter by
being scattered into dE from higher energies. Consider those
coming from an energy interval dE’, which is between energy £
and E/r. (Neutrons of energy higher than E/r cannot enter dE.)

£

r

E dE’

E

—————dE

Er

Fio. 4

The number of neutrons scattered into dE from higher energies is
then equal to an integral over dE’ of

the number of scattering collisions in dE’ (primes refer to
energy E')

= MEWE, dE’
times
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the probability that the energy loss will be such as to transfer
the neutron from dE’ to dE

dE
E' — E'r
The balance equation may then be written:

E/r
n(EWS, dE = f n(E") dE’ v'Z,’ “-1)
E

E' — E'r
The equation is satisfied by n(E)tZ, = ¢/E, where c is a constant,
as can be verified by direct substitution:

Err e dE’ c
f L L@, (4-2)
s BF —Er E

The value of ¢ can be found in terms of the slowing-down density
q(E).
We proceed to calculate an expression for g(E). The number of

neutrons (per second per cubic centimeter) slowing past E and
scattered from the energy interval dE’ is equal to

E
T
dE’ E’
}
7
Er
Fic. 5

(the number of scattering collisions in dE’)
= n(EWZE, dE’
times
the fraction of neutrons from dE’ that lose energy greater than
E’' — E and fall in the shaded region of the diagram (past E)
E - E'r
E' — E'r
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On integrating over E’ from E to E/r, one obtains

& f vz aw . D ET (4-3)
- nv s b e ——— —

1 E E' — E'r

and with the substitution of n(E’)¢'E,’ = ¢/E’ (equation 4-3) re-
duces to

q= c[l +-——r-—logr] “4-4)
1—-1r

The quantity in the brackets is just ¢ the average loss in log £
in one collision. As expected, ¢ is independent of the energy and
the constant ¢ = ¢/¢. The expression for the “flux” is

q 1
nEy = — - — (4-5)

s, E
A picture due to Fermi enables one to obtain this sume result in
a simpler but less rigorous way. One imagines the neutrons slow-
ing down in a continuous rather than in a discrete manner. We
begin by assuming a slowing-down density ¢. Then how lurge is
n(E) dE if q neutrons enter and leave dE each sccond”? The answer
depends on how long a time ¢ it takes on the average for a neutron
to pass through the interval. If each neutron lingers ¢ sec, then
the number of neutrons in the interval is just qt. However, t
may be expressed as the product of the average number of colli-

dE
sions the neutron makes in dF (equal to EI':) and the time in-

4

terval between successive collisions (equal to A\,/v). We then have

(B)dE = gt = q - LM (4-6)
nsn y =l = [ =
'l q it E v )
or since, A\, = 1/Z,,
(B = 2. 2 -7
nEy = — « — -7
EE‘ E

which is identical with equation 4-5. The quantity tZ, is called
the “slowing-down power” of a moderator. Since T, = N, is the
probability per centimeter for the neutron to make a collision, and
£ 18 the average loss in log E per collision, a simple interpretation
of the slowing-down power is that it equals the average loss in
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log E per centimeter of travel. A good moderator therefore has a
relatively large value for ¢2,.

It should be noted that the neutron “flux” n(E)v in the energy
range dE is inversely proportional to the energy E.

6. SLOWING DOWN WITH ABSORPTION

In the previous calculation no absorption of the neutrons slow-
ing down was allowed for, and as a consequence the slowing-down
density ¢ was a constant. Now we consider the case in which the -
moderator has an absorption cross section Z,, which in the general
case is a function of the energy. The slowing-down density ¢(E)

will decrease as E decreases. The decrease in q, dg = % -dE is
just equal to the number of neutrons per cubic centimeter per

second absorbed in dF, namely, n(E)vS, dE. We therefore have

n(EWZ, = % (5-1)
T dE
The previous result (equation 4-1) may be rewritten
gdE
n(EnZ,dE = - —
¢ E

It must now be modified so that the absorption of the moderator
is taken into account. This equation represents a balance be-
tween the number of neutrons (per second per cubic centimeter)
lost to dE by being scattered out and the gain due to those neutrons
scattered in from higher energies. In the situation now considered
the loss of neutrons in the range dE is by absorption as well as by
scattering. We may therefore write
q(E) dE

n(Ey(S, + Z,) dE = __G— z (5-2)

as the appropriate balance condition. After multiplying equa-

‘\
tion 5-2 on both sides with ;-——-3—: and combining with equation

- L ]

5-1 one obtains the simple differential equation for ¢q(E),
dgE) . oB)
dE Z.+ 2, ¢E

(5-3)
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which may be integrated between the limits E and Ej to give

q(Ee) 1 f'v Za dE

E) tJe .tz E

On solving for q(E), one obtains

E _1fFe_z. dE
Q( ) =e tJg Zat2s B (5__4)

q(Eo)

In the case where =, vanishes, equation 54 reduces to equation
4-7, which was derived for the case of no absorption. If Z, and
X, are known as functions of the energy E, then ¢(K) can be com-
puted. Since I, is usually a slowly varying function of the energy,
one can define a suitable average value <, and take it out of the
integral, thus obtaining

t (B x, dB
oB) _ - T

log

(5-5)

The meaning of this formula is readily seen if one also defines an
average value of £,. However, since Z, is in general a rapidly
varying function of the energy (especially in the case where there
is resonance absorption), this procedure is not followed in an actual
calculation. The integral of dE/E gives log Eo/E, and equation

5-5 reduces to

za Ey 1
% —~--log 5 T
q(E) v B 1+(IJ%
L2 e 7 (5-6)
q(Eo)
As was noted previously, £X, the slowing-down power is the average

£, K
is therefore the average distance traversed by the neutron in slow-
ing down from Ey to E. Then as before, the fraction of the num-
ber of neutrons that slow down past E i

q(E) - e.."i.x
q(Eo)

if Zo/Z,<K 1. The factor

(5-7)

1
—— i3 a measure of the self-
1+ 2,/2,

protection of the absorber. For a very dilute absorber the number
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of moderator atoms is 8o much greater than the number of absorb-
ing atoms that this factor is very close to 1.

So far only homogeneous mixtures of moderator and absorber
atoms have been considered. However, an additional degree of
freedom enters into the problem if it is possible to dispose the
absorber in lumps instead of spreading it out uniformly. The
advantage of doing so in a graphite-moderated natural uranium
pile is due to the fact that resonance neutrons are very strongly
absorbed in U238, By lumping the uranium it is possible to increase
the fraction of neutrons that escape this “resonance trap” and
that may be subsequently absorbed in U235 giving rise to fissions.
If a resonance neutron enters a U slug, it is absorbed in the outer
thin layer of U, which acts as a filter to exclude all such neutrons
from the inner portion of the slug. Higher-energy neutrons are
not appreciably slowed down by U. It is therefore apparent that
the resonance absorption per U atom is much smaller with lumping
than in the case of a homogeneous mixture.

Piles are characterized as being slow, fast, or intermediate piles,
according to whether the absorption of neutrons takes place when
the neutrons are slow, fast, or in the intermediate energy region.

It is important to know in a particular case what fraction of
the neutrons are absorbed in the various energy intervals. This
depends on how the absorption cross section varies with the energy.
From equation 5-7 it can be seen that the important quantity
that determines in what energy region the neutrons are absorbed
is the ratio of the average macroscopic absorption cross section
of the fissionable material to the slowing-down power of the
moderator.  If this ratio is small (high slowing-down power) the
neutron will not have traveled very far before its energy is reduced
to a small value, and in this short distance there is not a very good
chance to be absorbed. In this case most of the neutrons may
reach thermal energies before being absorbed. At the other ex-
treme, if there is no moderator present, neutrons will be absorbed
at high energies if they are absorbed at all.

6. INTRODUCTION TO DIFFUSION THEORY

We now turn to the examination of the problem of the space
distribution of neutrons, which is important if we wish to compute
the leakage from a chain-reacting pile or its critical size.
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Suppose that we have to do with a substance characterized by a
macroscopic absorption cross section X,;, a macroscopic scattering
cross section Z,, and a multiplication constant k, where & is the
number of neutrons produced per neutron absorbed. Then in
one cubic centimeter of the material the number of neutrons ab-
sorbed per second will be nvY, whereas the number of neutrons
produced per second will be nv=,k. The quantity nv is customarily
called the “neutron flux.” It is obtained by taking the product of
n, the number of neutrons per cubic centimeter, and v their velocity.
It can be visualized best by noting that nv is simply the total
distance traversed by all the neutrons in a cubic centimeter in
one second. Since I, is the probability per centimeter for a neutron
to be absorbed, the product nvX, is just the number of neutrons
absorbed per second per cubic centimeter.

If we forget for the moment that these neutrons are born fast,
the balance equation 1-1 written for one cubic centimeter is

Xk = I, + L
or
—L+(k—-1DIm=0 (6-1)

The problem is now to obtain an expression for the leakage L per
unit volume as a function of nv and its spatial variation.

+2

Fi1a. 6

We can now calculate the number of neutrons that pass per
second from above through an element of surface area dS, whose
normal is in the z direction as shown in the diagram. The number
that arrive from the volume element dV is equal to:
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the number of scattering collisions per second in dV,
mwZ,dV
times
the chance that the scattered particle is headed in the right
direction to pass through dS,
| cos 6| dS
4xr?

times
the probability that the particle will travel a distance r with-
out being scattered,

e—'/xc

To find the total current J , dS from above, we integrate over the
total volume lying above &S, obtaining

J4dS =dS f noS,e” " ———dV
In polar coordinates, dV = 7° sin 8 d6 dr d¢, so that

| p2F pe pri2 on |cosa]| , .
Jy = —.f f f neZ,e”"M ———r?ginfdddrde (6-2)
ix Jy Jo Jo r?

Now we must make some assumption about the dependence of nv
on the coordinates r, y, and z; insert that form into the integral
(equation 6-2); and carry through the integration. Owing to
the term e~" ™ in the integrand, the major contribution to the
integral arises from values of nw in the region within a few mean
free paths of the origin. It seems reasonable, then, to expand
nv(z, y, z) in a Macl.aurin's series, giving

any aony any
we ) = mo () +u (3;)0* (%),
+ l { 2 (aznv) b (azrw) 42 (?_211:') +2 (aznv)
2!1 az’oy /o 822 /o ryaxdyo
+ 2rz (f_——z'w) + 2yz (az'w) } (6-3)
dxr 9z/¢ Ay 92/

through terms of the second order. The subscript 0 means that the
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derivatives are to be evaluated at the origin. We express z, y, and
z in terms of the polar coordinates r, 6, and ¢ by

r=rsinfcos¢
ly = rsin 0 sin ¢

z=rcosé

The integration can be performed by elementary methods, giving

7 mro+)\.(anv)
Ty T e\az/p

N A [(82nv) + (aznv) 42 (aznv) } (6-4)

16 l 612 0 af 0 azz 0
In a similar way the current density J_ due to particles passing
through dS from below (z negative) can be evaluated. Here the
integrand is the same except that the integration over ¢ is between

the limits /2 and =.
On carrying out the integration, we obtain

ny, A, (8rw)
Jo=—2-2("=
4 6 \az/y

+ A2 [ (62nv 4 <a2nv) 4o (aznv) } 6-5)
161 aIZ 0 Gy” 0 022 0

Terms in z, y, ry, rz, and yz do not contribute to either integral
because the integral over ¢ of these terms vanishes.
The net current density J in the +z direction is then

J=Jd_—J M (a"") (6-6)
- + 3 \ oz )
This is correct through terms of the second order.

The condition for the validity of equation 6-6 is that the third-
order and higher terms of equation 6-4 which would have given a
contribution to J should be small compared to the first-order term.

If the surface element dS is oriented so that its normal makes
angles a, 8, ¥ with the z, y, z axes instead of having its normal along
the z axis, the expression for the net current through dS is
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‘ s onv onv
JdS = — —gdS[(——) cosa+(——) cos B
0

or /o
any
+ (—-—) cos 7] 6-7)
dz 0

This expression can be put in an abbreviated form by using the

differential vector operator grad (sometimes denoted by V). The
vector grad (nv) has components dnv/dz, dnv/dy, and dnv/dz in
—

the z, y, and z directions, respectively. If dS is a vector having
the magnitude of the surface area and a direction normal to it,
then equation 6-7 can be written

A e A‘ —_ —_—
J-dS = — -3—dS - grad (nv) (6-7a)
or
J = - 3 grad (nv) (6-7b)

It must be noted in using the expressions for J ;. or J _ that they
contain second-order terms. The approximation of using only the
first two terms in the expression 6—1 is a good one only if the change
in the grad (nv) in moving a distance A\, in the medium is small
compared with grad (nv). This condition is usually not satisfied
in a region within a mean free path of the boundary between two
dissimilar media or close to a heavy absorber.

In deriving equation 6-6 we have assumed no correlation be-
tween the direction of neutron travel before and after collision.
In fact we have implicitly assumed that the scattering was spheri-

cally symmetric (cos 8 = 0) in the laboratory system. As was
pointed out previously in Section 3, this is true only for collisions
with heavy nuclei. For nuclei of mass A, cos 8 = 2/34. One can
correct for this preferential forward scattering by using, instead of
the scattering mean free path )A,, a new quantity called the trans-
port mean free path A, defined by

A,
N = ——— 6-8
‘ 1 — cosd ©-8)
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If the scattering is predominantly forward, then cos 6 is positive,
and the transport mean free path is longer than the mean free
path for scattering. This is understandable since it means that
on the average the neutron will travel further in a given number
of collisions if this type of correlation exists between the directions
of travel before and after collision.

Similarly, one may define a transport cross section ¢, and a
macroscopic transport cross section X, by

o = as(1 — cos 6) (6-8a)
and
Si=Z,(1 —cos8) (6-8b)

In the case of graphite, cos 8 = 254 = 25 X 12 = 0.056, and there-
fore the transport mean free path in graphite A\, = 2.70/1 — 0.056
= 2.86 cm.

We may then write the expression for the net current through
an area dS,

A
JdS = — —é(nv)'dS (6-9)

where the derivative (nv)’ is taken along a direction perpendicular
to dS and A, has been substituted for \,.

pd

dz

(5,3

b A

’ '

Fi0.7

Suppose now that the neutron flux nu(z, y, z) is known. We
wish to compute the number of neutrons that leak out of a volume
element dV = drdydz located at (z,y,z). Consider first the
leakage from the two faces of area dr dy perpendicular to the 2
direction. We have
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L. dV = (J;.{.d; - J‘) d:t dy

A ([/onv anv
S35, e
3 0z / 3 4ds az

In a similar way one can obtain, for the contribution to the leakage
of the faces perpendicular to the z and y directions,

A %nv
L.dV = — ——dV
3 az?
A O
L,dV = — ~'~~—-—dV
3 ay°

or, for the total leakage per unit volume,

Lom Lt Lot 1 k‘[62n0+627w+62m)
coom T v ar? | af  aF

3 ] (6-10)

It is usual to abbreviate this expression thus:
A
L= — —3— Any (6-11)
a2 a* a2
where the differential operator A = —; + — is the La-

T

placian in Cartesian coordinates.

nv m

z
Anv<0 Diffusion out
i v
Anv>0 Diffusion in
FiG. 8

2

From the sign of equation 6-11 it can be seen that there is a
net leakage out of a volume element if Anv is negative, for in this
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case L is positive. This corresponds to a convex neutron distribu-
tion as shown in the diagram. The neutrons diffuse from the place
where the neutron density is high toward the place where the
neutron density is low. Equation 6-11 may be obtained by taking
the divergence of the vector equation 6-7b, giving, as before,

. A A
L =divJ = — 3 div grad ne = — 3 Any

«

7. SOLUTIONS OF DIFFUSION EQUATIONS—
BOUNDARY CONDITIONS

Our balance equation 1-1 becomes now

A
- 3 Alne) + S, = @
Leakage + Absorption = Production

where Q is the number of neutrons produced per second per cubic
centimeter and may also be a function of the coordinates. Then
we have

% Ane — S, +Q =0 (7-1)
To avoid complications we shall assume that all neutrons have
thermal energies and that all our sources emit thermal neutrons
only. In the actual case thermal neutrons are produced only by
slowing down of fast neutrons. We shall first consider the special
case (Q = 0) in which there is no production of neutrons inside a
particular region. We may have, for example, a neutron source
outside a block of graphite and ask for the spatial dependence of
the neutron flux inside. The problem is similar in its mathematical
form to the problem of the temperature distribution inside a con-
ductor of heat with specified boundary conditions. In the case
of neutron diffusion the boundary conditions will determine which
solution or combinations of solutions of equation 7-1 will solve
the problem. With Q@ = 0 equation 7-1 may be written

Any — K?ny = 0 (7-1a)
where we have put
3z,

P pp——

A
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For convenience we list the solutions of the equation,
Au — ®u =0 (7-1b)

in the coordinate systems appropriate for the various shapes of
boundary. The solutions for o> > 0 are to be chosen for the
neutron flux inside a medium which cannot sustain a chain reac-
tion; solutions for a® < 0 are, as may be seen, appropriate for
substances in which a chain reaction may take place.

TABLE 2
Shape of Variables Solutions for Solutions for
Boundary a?>0 a’<0letf=ia
Vs, tax *ifx
e
Plane ///’ or Sinh ‘az %ﬂx
a=2 cosh " cos
Jx?
4
ﬁ erat floasn) | sz (d(8,7)
) K(ayr) Y,(8,r)
Cytindrical 5 R . where where
1 3
St T it al+al=at 312+l312=32
a 1 tar .L tifr
T €
Spherical 1 ,\sinh ar 1 _{sin Br
v o Xeoshar | & 7 X cos Br
A= o' T
artT T o

The functions Iy, Ko, Jo, and Y are zero-order Bessel functions *
which are defined and tabulated in Watson, Theory of Bessel Func-
tions. The general solution in cach case is obtained by taking a
linear combination of the functions given in the table. For exam-
ple, in the spherical case the general solution is

eﬂf
+B=—

r

e—ar
n = A

where A and B are arbitrary constants.

* Sec also Karman and Biot, Mathematical Methods in Engineering, Chapter
11, for excellent brief summary of properties of these functions.
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Case 1. For simplicity we take first the case of an infinite slab
of material with a source producing Qo neutrons per sec per cm?
spread uniformly over a plane boundary at z = 0. Owing to

Fic. 9

symmetry nv is independent of y and z, and A(nv) reduces to
d?
— (nv). The equation to be satisfied is

dz?
@ —Knp=0 (z>0) (7-2)
dr?
where we have put @ = 0 and have again introduced K? = 3X,/\,.
The general solution of this equation is

n = ae” 5 4 bek* (7-3)

where the arbitrary constants a and b are to be determined by the
boundary conditions. The first condition is that nv is everywhere
finite. This gives us b = 0, since otherwise nv — = as z — .
The other boundary condition is that the current density J at
z = 0 8 just ¥4Q,, since only half the neutrons produced at the
boundary travel to the right. This determines the constant a.
We have, using equation 6-6,

1 M[d A
J(0) = '2'Qo = — - [d_; ('w)]x_o" 3 Ka

3
from which

anm.qo
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The solution of the problem is then given by

3
20K

It may seem that the neutron flux inside the substance decreases

exponentially with the distance from the plane source. The flux

is, so to speak, attenuated so that it is reduced by a factor e in a

distance L = 1/K. This distance L is called the ‘‘diffusion length”’
and is defined by

PP=—=-=——= 7-5

K2 33, 3Z.Z% 3 (7-5)

Except for the factor 4/3 the diffusion length is a geometric mean

between the transport mean free path and the mean free path
for absorption. For graphite,

28())(21()0 R 1
L=vV— 22" < 50 cm; }\=5—0—0020ml

3

Case 2. In a similar way one can solve the problem of finding
the neutron distribution in an infinite medium with a single point

Qoe™¥* (7-4)

a

g

Fia. 10

source of strength @, neutrons per sec. Here nv is a function only
of the distance r from the source. In spherical coordinates, the
operator,

a’ 29

ar r ar

plus other terms which depend only on derivatives with respect
to the azimuthal and polar angles. If we assume spherical sym-
metry for the function ny, these terms give no contribution. We
must solve the equation,

125 (n) + gi (nr) - Kno =0 (r>0) (7-6)
dr rdr

A=

subject to the boundary conditions: (A) the total neutron current
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through a small sphere of radius a surrounding the source has a
limit Qo as the radius of the sphere approaches zero, and (B) the
function nv is everywhere finite.
The two solutions of this equation are
- e—Kr &nd - 8!\’r
r r
but the second function does not satisfy boundary condition B
for infinite r. We might be tempted also to reject the remaining
solution on the grounds that it becomes infinite for r = 0. This
procedure is incorrect because the source-free equation 7-6 does
not apply for r = 0 since there is a source at this point.
Boundary condition A can be written

. . A d
Qo = lim 4xa%J(a) = lim 4xa®| — — — (nv)
a—0 a—0 3 dr rama

and on substituting

e-—Kr
ne = C—-
r
we obtain .
. A( Ke‘h" C—Ka
Q = lim|-—-C{~- - — ) 4xd?
a—0 3 a a
42C) 4xCx
= lim [ ! (aK + l)e'K“] =t
a—0 3 3

The complete solution is, therefore,

4=\, r g

The meaning of the diffusion length L = 1/K can be seen if we

use the solution 7-7 for a point source (of thermal neutrons) in

an infinite medium. The mean square distance 2 from the point

source through which the neutrons diffuse (before being absorbed)
can be computed. We have
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where the integrals are evaluated by the general formula,

f e *'Ldx = n! L™ (nis any positive integer)
0

Thus the square of the diffusion length L is just one sixth of the
mean square (crow-flight) distance traversed by the neutron from
the position of the source (where the neutron becomes thermal)
to the point where it is absorbed.

Case 3. Next we consider the neutron distribution in a flat
slab of material which is infinite in extent in the y and z directions
but has a finite thickness ¢ in the r direction. The planes z = 0
and & = { are the bounduries of the slab. The equation to be

—]
—
— nv
—

I,

>~ -

Tl
é/'Z{‘/é/é‘ ak

Fia. 11

solved 18 again equation 7 2, but the boundary conditions are
changed. Suppose that the net neutron current density in the
positive r direction at r = 0 is given and is equal to Iy. The
boundary condition imposed at r = 0 is then J(0) = I,. At the
boundary r = t which separates the substance from empty space
an approrimate boundary condition is that the neutron flux has
the value zero at the boundary. A more exact treatment is based
on the following consideration: all the neutrons which diffuse past
the boundary r = t are lost to the medium since they cannot be
scattered back. The empty space plays, therefore, the role of a
perfect absorber. The boundary condition C is that the neutron
current density J, in the —r direction vanishes at the boundary.
Then,
ny X;

d
N (nv)]‘ -0 (7-8)
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from which we obtain

ny 2
d(nv) 3"
d.l' Xl

If we suppose that nv inside the medium may be represented in the
vicinity of z = ¢t (for z < t) by a linear function which vanishes
forx =t + d (at a distance d beyond the boundary) we have

r—t
nr(r) = ne(l) [I - TJ (7-9)
from which we obtain |
ny
dn)|
dl' Temt
whence

It follows then that the boundary condition C is equivalent to the
following: The neutron flux inside a medium with a plane boundary
(with vacuum) varies in such a way that its lincar extrapolation
from the boundary vanishes at a distance d = 23\, beyond the
boundary. This distance is called the augmentation or extrapola-
tion distance. A more accurate formulation of the problem accord-
ing to transport theory leads to

d = 0.71\ (7-11)

It should be noted that equation 7-9 does not really represent the
neutron flux beyond the boundary. The pseudo- boundary condi-
tion nv = 0 can be used for this problem if we also introduce a
fictitious boundary of the medium at r = ' = ( + d. Since the
diffusion equation 7-1 itself is not accurate for the neutron flux
within a few mean free paths of the boundary, the neutron flux
calculated from the equation will not be precise. It happens,
however, that the calculation of the critical size of a bare pile by
setting the neutron flux equal to zero at a distance d = 0.71\,
beyond the boundary i8 a very good approximation. It will be
convenient in what follows to use the boundary condition ny = 0.
When this condition is used, it is to be understood that the dimen-
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sions are to be later corrected for the augmentation distance by
equation 7-11.

The solution in case 3 is now straightforward. It is just the
linear combination of exponentials (equation 7-3) with the arbi-
trary constants a and b chosen to satisfy the boundary conditions.
This gives

Al d A
Iy =J(0) = —E[d:(nv)] = —E(—GK-I'bK)
0

n(t') = ae "K'+ be® =0

where ¢’ is now the augmented thickness. We then obtain, by

solving the second equation for b,
b= __ae-2KI'

and, on substituting b into the first,

rKa e 3, 1
Io=——g—-(l + e Y or at;‘—l—ﬁ———l+e_2w
Then equation 7-3 becomes
nw = ae” R 4 beK® = q(e™K* — ¢ KA KT
= ae~F[KC¢—9 _ g~KC=2)

= 2a¢~ " sinh K({' — z)

ef — e~ ¢
where the hyperbolic sine function sinh 2 = ———— has been
introduced. The complete solution is therefore
31, -
= —--— sinh K(¢' — 1) (7-12)

- MK cosh Kt

As ! — o this solution approaches equation 74 with I, = Q/2.

Case 4. The solution of the neutron diffusion problem in a
medium consisting of flat slabs of different materials can be carried
through by the methods of case 3. The only new feature relates
to the boundary conditions at the plane separating two dissimilar
media. Here we must require that the neutron flux ny(r) and the
current density J(r) be continuous at such a boundary. That
these conditions are physically reasonable can be seen immediately.
If the neutron current were not continuous, it would mean that
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neutrons would be absorbed or created at the infinitesimally thin
interface; a discontinuity of the neutron flux, on the other hand,
if it existed at all, would be quickly ironed out by diffusion from
the side of large flux to the side of small flux. We can write, then,
the boundary conditions in the form evaluated at each boundary:

) nop = noyp
. At Air ,
(i) = —=(nn)' = — — (nen) (7-13)
3 3
Suppose that the problem to be solved is to find the neutron flux

inside a series of n plane slabs of any thickness, given that the net
current density at x = 0 is /,. The method of treating this prob-

K\ KA Ko A KA,

lem will be presented, but the solution will not be carried through
in detail. In each of the n slabs (labeled 1, 2, etc.) we will have a
solution of the type 7-3,

ny, = ae” " + bie"”

with two arbitrary constants. There will be altogether 2n arbi-
trary constants (a;b,, azb,, etc.) to be determined by the boundary
conditions. We need, therefore, 2n independent equations to deter-
mine the constants. Since there are two boundary conditions (of
types i and ii) at each of the n — 1 inside boundaries and one
boundary condition at each of the outside faces, we have the re-
quired number of linear equations. The complete solution giving
the neutron flux at every point inside the medium is then reduced
to the solution of 2n linear equations in 2n unknowns.
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8. THE ALBEDO

Not all the neutrons that are incident on a block of graphite,
for example, remain in the graphite. Some are scattered back and
leave the graphite at the same face by which they entered. The
ratio of the back current J, to the forward current J_ is called
the albedo A or reflection coefficient of the medium. By defini-
tion then,

nvo+x;( )' 1-‘*-2x (nv’)
— — nv — —
J, 4 6 ° 3" \'no/y
A = - = = (8—1)
J_ nyy N 2 ny’
— = =)y 1 —-=\|—
4 6 3 nv/o

where the expressions for J ;. and J_ are obtained from equation
6-5 by using only the first two terms and substituting A, for A,.
The albedo is then a funetion of the transport mean free path and
of the logarithmic derivative of the neutron flux.

In the one-dimensional case with an infinitely thick slab the
neutron flux,

ne ~ e R+

and, therefore, the logarithmic derivative is

no'
()
ne/g
- K
4=—3 (8-2)
1+ ‘g’A‘I\
In the case of graphite the albedo of an infinitely thick slab may be
computed using the values A, = 2.86, K = 0.02. Then
1 — 0.0375

T 1400375

giving

This means that 939, of the neutrons entering a large (infinite)
block of graphite are reflected, and only 79, are absorbed in the
graphite.

For a slab of finite thickness ¢, nv is given by equation 7-12.

nv = Csinh K(t — z); (n)' = —KC cosh K(t — z)
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Substitution in equation 8-1 leads to

1 — #\/K coth Kt
1 + #\K coth K¢

As Kt — o, coth Kt — 1, and, therefore, equation 8-3 reduces
again to equation 8-2 for infinite thickness.

From equation 8-3 it can be seen that for the albedo of a medium
to be high the quantity K, should be small. Stated differently,
this means that the transport mean free path should be small com-
pared with the diffusion length of the medium.

The albedo as defined previously is a property of both the
nuclear constants of a material and its shape. This can be most
readily seen for the case of a reflector (hole) having spherical sym-
metry. The neutron flux for r > R as given by equation 7-7 is

(8-3)

A= 2 1 (8—4)
L+ B (14 )
*3 ‘( *tr

as an expression for the albedo.
The fact that the albedo of a spherical hole is less than the albedo
of a flat slab can be explained in the following way: Neutrons that
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diffuse through the medium from the hole have a smaller proba-
bility of being scattered back to the hole the farther they diffuse
into the medium, since the probability of getting back (even with-
out absorption) is roughly proportional to the solid angle subtended
by the hole at the neutron position.

The albedo of a medium is intimately related to the number of
times on the average that a neutron crosses a given plane in the
medium. In diffusing past a boundary a neutron must cross the
boundary an odd number of times. Let the probability that the
neutron crosses the boundary 1, 3, 5 - - - times be p(1), p(3), p(56)

Then it can be shown, if the albedo is A, that

p(l)=1-—4
p@3) = A(1 — A)
p(5) = A*(1 — A)

or, in general,
p(2i +1) = A1 — A) for any ¢
Then the sum of the probabilities is just

Spn)=1—A+ A1 — 4) + A% — A) +---
n odd

=(1-A0+A+A424+ 434+

where the geometrical series has been summed for 4 < 1.
The average number of crossings 7 is given by

i =Y np(n) = p(1) + 3p(3) + 5p(5) +---
odd

=1 A+ 340 — A) + 5420 — A) +---
= (1 —A1+34+54%2+.-.)=1+4+24 +242 +243 ..

24 1+ A
1-4 1-4
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For graphite (infinite thickness)

14 0.93
A =093 and +

A= = 27
1—093

Thus a neutron diffusing in a thick slab of graphite is expected to
cross a given boundary plane on the average 27 times.

9. SPACE DISTRIBUTION OF SLOWING-DOWN DENSITY

In Sections 4 and 5 the slowing down of neutrons was treated
insofar as their loss of energy was concerned, but the spatial dis-
tribution of the neutrons as they slowed down was ignored in the
discussion. Actually the slowing-down density ¢ is a function of
the coordinates x, y, z, as well as of the energy £. That this is a
very important consideration for chain reactors arises from the
circumstance that, if a neutron diffuses too far from its birth as a
fast neutron, it may not become thermal (and therefore susceptible
of absorption to produce new fissions) before it has left the pile.

The production term Q(E), where Ej is the original energy of a
neutron emitted in the act of fission, is proportional to the thermal
neutron flux ny,. We assume that, for every neutron absorbed,
k neutrons are produced on the average. Since the number of
neutrons absorbed per second per cubic centimeter is nv, g, the
number of neutrons produced per second per cubic centimeter is
just nepZ.k. If we had a uniform spatial distribution of the ther-
mal neutron flux and no absorption in slowing down, all these
neutrons would reach thermal velocities. Then we could have
Q(En) = Q(E). That this equation is not valid for a real pile
is due to (1) absorption in slowing down and (2) leakage in slow-
ing down. A discussion of cause 1 has been given in Section 5;
in this section we shall discuss cause 2.

In a chain-reacting pile the thermal neutron flux, as may be
seen presently, is not a constant, but has a higher value at the center
than at the edges of the pile. Since there will be a continuous out-
ward streaming of neutrons from the center to the edge where they
escape, the multiplicative properties of the chain reactor must be
such as to compensate for this loss as well as the loss due to non-
productive absorption in the pile itself. The loss will occur also
for fast neutrons, particularly for those produced near the edge
of the pile. However, since the thermal neutron flux is low at the
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edge, the production of fast neutrons is also low there. In any
case, both the fast and slow flux will be low at the pile boundary.
In general, if we examine the space distribution of neutrons of
various energies coming from a point source, we shall find that,
the lower the neutron energy, the greater will they be spread out
in space. A precise formulation of this appears later in the discus-
sion. It can be seen that each point source of fast neutrons (from
fission) gives rise to a diffuse or distributed source of thermal
neutrons. In a steady state the number of neutrons in the energy

I I Iq(E+dE)
———E+dE
E
q(E)

n(E)dE
E

Fia. 14
range F to E + dE that leak out of a cubic centimeter in one
A
second is — —3—‘ An(E)v dE. If we neglect the absorption in slowing

down, this is balanced by Q(F) dE, the excess of the number enter-
ing over the number leaving the energy range of dE. We have,
therefore,

Q(E) dE = o(E + dE) — o(E) = %dE

where ¢(E) is again the slowing-down density. Then we can write

9q

A
- g‘ An(E) dE = dE (9-1)

and, on substituting n(E)v = ¢/t3,E (equation 4-7) into this
equation, we obtain

Mo r ¥l (9-2)
3es.E | GE

This equation can be written in a simplified fashion if we introduce
a quantity r such that

A

dr = 3 dE (9-3)
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Then equation 9-2 becomes

dq
Aq+37—-=0 (94)

Note that ¢ is a function of the coordinates and of the energy,
which enters into the equation through r. On integrating equa-
tion 9-3 we choose the constant of integration so that for thermal
energies 7 = 0. Then r(E;,) = 0. This gives us as the defining
equation for 7(E):

- fx AN dE [t 1 dE 05)
T 2a 3¢S, B Jia382.3, E

The quantity r, which plays a central role in the slowing-down
theory, is called the “Fermi age” or just ‘“‘age” because, although
it has nothing to do with time, it appears in equation 9-- in a way
analogous to the appearance of time in the equation for the diffu-
sion of heat.

}

7

To

[
|
|
|
i

0 1
Ey E—> E,
Fia. 15

Equation 9-5 can be integrated if we define suitable average
values \; and Z,. Then

¢z,

M [log E/E
r(E)zg‘[Og / u.]

As we saw in deriving equation 5-7, the quantity in brackets is
just the average (zigzag) distance X traveled by the neutron in
A
slowing down from E to Ey. Then 7 can be written 7(E) = -:-; X.
It can be seen that »(E) has the dimensions of length squared and
is essentially proportional to the logarithm of the neutron energy.

If an appreciable fraction of neutrons are absorbed in slowing
- down, equation 9-1 is no longer correct. We must add a term
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—n(E)vZ, dE to account for the absorption in the energy interval
(E,E + dE). We then have

L‘A(E)—- (EYZ +ﬂ 0 9-6
3nvnv., 3E (9-6)

where ¢’(E) is the slowing-down density in the case with absorp-
tion. On substituting

"(E) = n(E)v¢Z,E and d A dE
= n(E)tZ,E  an = -—
1 "3 E
as before we obtain
ar -+ ¥
1 )\¢ g Jar

T032q

If we multiply this equation by e+-‘: ™ ¥ and then write

032,

ak) = g®et kR ©-7
we then obtain Aq 4+ (d¢/37) = 0 which is the same as equation
9-4. The meaning of the substitution 9-7 can be scen if we solve
for ¢'(E) and express the integral in terms of E rather than r.
The resulting expression,

_ [0 z. dE
q'(E) = q(E)e JE & E (9-8)
1
is identical, except for a factor —-- ——— inside the integral,
dud ()] ud g

with the more rigorous expression 5—~4, due to E. P. Wigner.
It is apparent, thercfore, that the effect of absorption in slowing
down on the slowing-down density q is to multiply it by

Ro ¥, dE

p(EK) = c"f" €, B (9-9)

a factor that depends only on the energy and does not alter the
spatial dependence of q. The quantity p(E.,) represents the
probability that a neutron will reach thermal energies before being
captured and is called the “resonance escape probability.”

To solve equation 94 for ¢(z, y, 2z, r) we try a solution of the
type:

g = eﬂ+ﬁs+v¢+ev
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On substituting it into the equation, we find that it is a solution
provided that BHP+P+e=0

The solution may be written
q= eﬂ+ﬁv+wl.e~(¢’+ﬂ'+7’)r (9__10)

where a, 8, v are arbitrary. Since equation 9—4 is a linear equation,
any linear combination of such solutions is also a solution. It is
possible to find a linear combination that will satisfy particular
boundary conditions by using the method of the Fourier integral.

In particular, if we have a point source at (r,y,2) = (0,0, 0)
emitting Qo neutrons per second all of energy Ky (corresponding
to r = 7¢) the boundary condition is

o(x,y,2,70) = Qo b(x,y,2)
where &(z, y, z) is the “delta function” which is zero everywhere
except at the origin and f 8(r, y, z) dV = 1if the region of integra-

tion contains the origin.

It can be shown that with this boundary condition the solution
of equation 9—4, obtained by the superposition (actually integra-
tion over a, 8, v) of solutions of the type 9-10, is

__z’+v’+l’
LI R T (@
Q(zt ¥,3,1)= QO [dx(ro — T)lh = [dx(ro — f)]” e 4 ) (9 11)
where 2 = 22 + ¢ + 2%

For each energy (corresponding to a particular value of 7), q(r)
is a Gauss error curve, the width and height of which depend on

7 (or on the energy.) The width to the 1/¢ value is 2Vry — 7.
q

High E, 1 near 1,

Low E, r near 0

Fi1o. 16

In Figure 16 this function is sketched for various values of the
energy. It can be seen that for high energies ¢(r) is high and
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narrow, whereas for low energies g(r) is low and broad. This corre-
sponds to our physical picture in the following way: neutrons that
have made very few collisions and have lost very little of their
initial energy are found almost entirely in the vicinity of the origin;
those that have lost a large amount of energy are distributed over
a wide region, since they have made on the average many more
collisions and have traveled further.

The meaning of 7 is clarified if we calculate the mean square
(crow-flight) distance from the source for neutrons entering the
thermal energy region for which » = 0. We obtain

» o
[raaerav f e dmr? dr
= 6ry (9-12)

f qu(r) dV f e dro-dwr?dr
0

where 7 is the age of fission neutrons. The age of fission neutrons
can be measured experimentally in various substances by using
as a detector a cadmium-covered indium foil, which becomes
radioactive (54-min beta decay) when neutrons of the indium
resonance energy (1.4 ev) strike the foil. The activity of the foil
as a function of position gives the neutron distribution and from
this can be obtained by use of equation 9-12.

Jquation 9—4 and the results based on it involve an assumption
that the slowing down of neutrons is a continuous rather than a
discrete process. Although the description is therefore not exact,
it is adequate for those moderators, like graphite, for which §
is small. For neutrons slowing down in water the distribution is
far from Gaussian, since in a single collision with a hydrogen atom
a neutron may lose a large fraction of its initial energy. In this
case the continuous slowing-down picture is not good.

r? =

10. THE PILE EQUATIONS—SOLUTIONS

In a chain-reacting pile operating at a constant level of neutron
density there must be a balance between production of neutrons
on the one hand and leakage plus absorption on the other. This
condition must be satisfied for every volume element of the pile
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and for each energy range dE. We have in effect an infinite number
of equations to be solved, which may be written

A
Z an(E)r — n(EWZa + Q(E) = 0 for all E from (10-1)
3 Eo to Ep

It is important to distinguish between the slowing-down density
¢(E) and Q(E) dE, the number of neutrons (per second per cm?®)
which compensate for the leakage and absorption in the energy
range dE. As was shown previously in deriving equation 10-1,

QE)dE = dq = ;;—:dE In evaluating Q(E,) it must be noted

that when the neutrons reach thermal energies they cannot slow
down any further. In this case, therefore, the number of neutrons
becoming thermal per second per cubic centimeter is just equal
to the slowing-down density evaluated at an energy slightly higher
than thermal.

Q(Ewn) = g(En) (10-2)

With absorption in slowing down we should substitute for this
expression, using equation 9-9

QEn) = q¢'(En) = ¢(En)p(Ew) (10-2a)

when p is again the resonance escape probability.

It i8 customary to group together all those neutrons in the ther-
mal energy region even though they have slightly different energies.
We can then write a separate equation for the thermal neutron
flux nvg,.

A
?‘;- Anv — WopZay + Q(En) = 0 (10-3)

For the fast neutron flux we use equation 94,
9q
M+ —=0 (9-4)
or

which is equivalent to equation 10-1 but i8 written in terms of
the slowing-down density ¢(E, z, y, 2).

We do not yet know Q(E) = q(E,) which must be inserted in
equation 10-3. This must appear as a solution of equation 9-—4.
We can, however, obtain g(Ej) in the following way. If the cross
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section for fission Z; and the total absorption cross section =,
of the material in the pile and », the average number of neutrons
given off per fission, are known, it is possible to calculate the multi-
plication constant k., defined as number of fission neutrons pro-
duced per thermal neutron absorbed. The usual definition of the
multiplication constant is slightly different from this and appears
in what follows. If we start with one thermal neutron absorbed,
the probability that it will produce a fission process is evidently
Zs/Z4s. We then have v-X;/X, fast neutrons produced per thermal
neutron absorbed. Therefore,

ke = (Z4/Za)v

We may write then as an expression for the slowing-down density
at fission energies Ey (age, 7):

q(ro) = q(Eo) = nvnZ, ke (104)

‘We now wish to find the solutions of the steady pile equations
which we rewrite below:

A

T;f Antep — nopZy, + Q=0 (10-3)
9q
dar

These are to be solved subject to the conditions:

[ nvg, = 0 at the boundary (10-5)
lq(E) =0
q(Eq) = q(r0) = nonnZ,, -k (104)

Suppose that
q(E) = nep I, ka-f(7)

where f(r) is a function of r on which we impose the condition
f(ro) = 1 so that equation 10— is satisfied for r = 7o. On sub-
stituting this expression in equation 9—4 we obtain, after dividing
by nvaZ, kS,

Anvp, f'(7) =0

g f(7)

Since the first term is a function only of z, y, and z and the second

(10-6)
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term a function only of 7, it is satisfied only if each term is a con-
stant. We write, therefore,

Amra _ s (10-7)

LT

and )
= —a 10-8
() (10-8)

where A is a constant. On integrating equation 10-8 from 7 to
rp we obtain
Jn) = f(f())eA("’"' = ety (10-9)

since f(rg) = 1. Then on putting f back in the expression for
¢(E) we have

(E) = nopZ, ke (10-10)
Then the thermal neutron production term becomes
QEn) = ¢(En)-p = nenZ, kn-pe'™ (10-11)

where + = 0 corresponds to E = E,.

The product ky-p = k is what has usually been called the
multiplication constant and means the number of thermal neu-
trons produced per thermal neutron absorbed under the assumption
that there is no leakage of fast neutrons while slowing down. The
actual number of thermal neutrons produced per thermal neutron
absorbed is k. -pe’® where the factor ¢ is the fraction of fast
neutrons that escape leakage.

This expression is now inserted in equation 10-3. After equa-
tion 10-7 is used, this becomes

X‘h rod
-g- Anvy, — nopZ,,, + nvnZ, ket =0 (10-12)
In this equation the function nv, is a factor of each term. If we

A
divide by nv,=,,, and insert L? = @

(equation 7-5), we obtain,
b 119
after rearranging terms,

k— (1 —L*A)e ™ =0 (10-13)
This transcendental equation for A is called the critical equa-

tion. The quantity A is a function only of the pile constants k,
L2, 7q, each of which is, in principle, calculable from fundamental
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nuclear constants. To remind ourselves that it is a property of
the pile material and independent of the shape and size of the pile,
we call it A,, where the subscript m refers to material of the pile.
It is defined simply as the solution of equation 10-13.

If the multiplication constant k is greater than one, equation
10-13 has one real negative solution, as can be seen by elementary
reasoning.

There remains the problem of finding solutions of the equation

Anvy = Anvg (10-7),

subject to the boundary condition that nv,, = 0 at the (augmented)
boundary of the pile. We notice that this is essentially the same
equation for which solutions (a® < 0) were given in the table of
Section 7, page 23.

For a particular size and shape of pile the solution of equation
10-7 which goes to zero at the boundary will correspond to a certain
value A.  This quantity depends only on the shape and size of the
pile. We label it A;, where the subseript ¢ stands for geometry.

The condition that a pile is just eritical is then

Ag = Ap

In this case only is ney, a solution of the steady-state pile equations.
The distinction between A, and A,, is made so that we may later
treat in a general manner the kinetics of the pile.  When the power
level of a pile is rising, we say that the pile is supercritical, and then
| A¢| < | Am|. If the power level is falling, the pile is suberitical
and | A;| > | A,| The quantity —a,, sometimes called the
buckling, gives essentially the curvature of the neutron flux dis-
tribution. If the curvature is too large (— A, > —A,,) correspond-
ing to too small a pile, the pile will be suberitical.

In the next section the quantity A, is given explicitly for various
simple shapes of pile as a function of the pile dimensions.

11. CRITICAL PILE DIMENSIONS FOR
SIMPLE PILE SHAPES

In this section we list the solutions of the equation,

Any = Anv (10-7)
subject to
n =0
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at the boundary. The solutions are taken directly from the table
of Section 7. The critical dimensions for piles of simple shapes are
also given.

1. Slab Pile—infinite in y and z dimensions—thickness ¢ in z
direction

Boundary: Planes r = +}¢
Equation: ‘—1—2—'-"—} = Agny
dr? y
~r ”2
Solution: nv = A cos — ; A, = — —
t e
" . L
Critical size: A; = A,, — {, = —\-/—:_—_—;:
Critical volume: Vo~
11. Spherical Pile—radius R
Boundary: Sphere of radius R
d’ne 2dnv
Equation: Y + S = Agnv
Solution: nv = ésin .. Ay = — -'—2
N R?

4 4=t 130
Critical volume: Vg = = Ry = d = -
3 3(—am)"  (—AwM

III. Cylindrical Pile—radius R, height H
Boundary: Circular cylinder r = R,  planesz = +3H
ny  1omw 3
Equation: ilind + it

P )

= A,nv

Solution:

rz 2.4057 »  (2.405)%
e B n(F) s - (H )
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Critical dimensions having least volume:

B¢ = An = o 2405VE 2495
r\/g ° V —An V —4mn
Ho = Ry = 1.847R,
2405 u V3 5441
V-t V-5,
148.2

Least critical volume: V4 = xR?Hg = ———
0T ThHo (—Am)*

IV. Rectangular Block Pile—slides a, b, and ¢ in z, y, z directions
Boundary: Planesz = +}a, y=x3b, z= 3¢

3y  Fm  *nw

Equation: Py o7 o Agny

Solution:

nvnAcosﬁcos:qcost—z' A,=—(ﬁ+f+f)
a b ¢’ 2 p2 0 2

Critical dimensions for least volume:
Ay, = A, —

V3 5.44

G=b=c= T Voo

Least. criti . 161

t critical volume: Vg, = a¢° = (—A———;—)”

Suppose, for example, that the value of A,, obtained by solving the
critical equation 10-13 is

Am = —107* cm 2

Then the critical dimensions will be

Fora Volume
Slab pile { = 314 cm
Spherical pile Ry = 314 cm 1.0 X 10® cm?®
Cylinder pile of Ry = 294 cm 1.48 X 10® cm?® (14 % greater than
least volume Hy = 544 cm sphere)
Cube pile ag = 544 cm 1.61 X 10® cm® (249 greater than

sphere)
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The relative sizes of these various shapes are shown in the scale
drawing of Figure 17.
Sphere Cylinder Cube

Slab

The three important functions used in the description of piles are
sketched in Figure 18. These are:
cos (x/2)u where u = 2r/tforslab or u = 2z/H for
cylinder
(1/xu) sin ru where u = r/R for sphere
Jo(2.405u) where u = r/R for cylinder

01 02 03 04 05 06 0 08 09

e o

Fio. 18
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It i8 to be noted that the curves representing these three functions
differ very little in shape; in certain rough calculations one may
use the cosine function instead of the other two without introduc-
ing too large an error.

12. THE NEUTRON CYCLE

In a critical pile neutron production is just balanced by absorp-
tion and leakage. Suppose that we throw N fission neutrons
(energy E,) into such a pile and follow them through one life*
cycle. These neutrons will slow down. Some will leak from the
pile as fast neutrons, whereas others will be absorbed at energies
greater than thermal. The remainder will become thermal neu-
trons inside the pile.

The number of neutrons reaching the energy E + dE inside the
pile is

Np(Eo, E + dE)el'°__'(B+m'f

whereas the number of neutrons reaching energy E is given by
Np(Eq, E)elro="®M

The difference, which represents the loss in the energy interval dE
due to absorption and leakage is

oz riints dp (Eo, E
[ 8 B ) ]

~ d
+ Np(Eo, E)e™ ™™ (-—A ;(5) dE)

where the first term represents the number of the original N neu-
trons that are absorbed in dE and the second, the number that leak
from the pile while in the energy range dE.

The number which reach thermal energies is Ne™p(Eo, Ewn).

1
Of these the fraction 1% are absorbed as thermal neutrons,

2

1— LA
as thermal neutrons. This can be seen from the following simple
argument.

whereas the remainder, the fraction , leak from the pile
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For any unit volume of the pile (and therefore for the pile as a
whole) the ratio of thermal leakage to thermal absorption is

A
L T3 s
- = = — = —L% (12-1)
A w3, 3%,

Therefore, the fraction of the thermal neutrons absorbed will be
A _ 1 _ 1
L+A 1+L/A 1-L%A
whereas the fraction that leaks out will be
L L/A —12a

L+A 1+L/A 1-1%a
We know therefore how many of the original N neutrons are
absorbed in the pile and at which energies. The number
et p(Eo, En)
S 1- 1%

are absorbed at thermal energies and the number

1o vcna 420, B)

N ——dE
Ew dl’J

are absorbed at energies above thermal.
Let us define k(E) as the average number of fission neutrons
produced per neutron absorbed at energy E. Then
Z/(E)
Z4(E)
We call k the value of k(E) for thermal energies.
The neutron cycle is now complete. The final result is as follows:
Starting with N fission neutrons, we obtain, after one cycle,
N [e'“p(EO’ Elh)klh +f‘.el'._,(x)]‘ dP(F EO)
1 — L’A Ewn dE

k(E) = v(E)

— k(E) dE]

neutrons. This can also be written as
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e pinkon T —

[T + a1 — i) |
where 79 — 7(E) is the average “age” from fission energy to the
energy at which the neutrons are absorbed (while slowing down)
k(F) is an average multiplication constant for the neutrons ab-
sorbed above thermal energies, and p,, = p(Ey, E).

If the pile is to be critical, the same number of fission neutrons
must be present at the end of the cycle as at the beginning. Thus
the critical equation for the general case is

e Pthku;
1— LA

A thermal pile, that is, a pile in which fissions are caused only
by the absorption of thermal neutrons, can be realized in two ways:
either ps, = 1 (neutrons are absorbed only at thermal energies)
or else piy < 1 but k(E) vanishes. The latter corresponds closely
to the case of the natural uranium piles where there is consider-
able resonance absorption (not leading to fission) by U3 at energies
above thermal.

In such a thermal pile the critical equation is then

+ BN — pk(E) = (12-2)

ke'o*
— 12-3
T [ (12-3)
or
k— (1 =LA ™ =0 (12-4)
where we define
S/(Ew)
k=MWA—*%55Wm (12-5)
The multiplication constant k can also be written as
k= fopw (12-6)

where

absorption cross section of fissionable material at Eq

absorption cross section of all pile material at Eq,
- ZM(Ew)
2¢(Elh)
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is the fraction of thermal neutrons absorbed that are absorbed in
fissionable material and

fission cross section of fissionable material at E)

b 4
absorption cross section of fissionable material at Eq

E/" (E zA)
T3 ‘"(Em)

is the number of fission neutrons produced for each thermal neutron
absorbed in fissionable material.

In a nonthermal pile, p;s = 0. In such a pile no neutrons will
reach thermal energies; this condition may be brought about by
making the concentration of fissionable material high or the con-
centration of moderator low, or both. Then the critical equation

may be written —— s
Y k(E)elro-r(b)lA = 1 (12_7)

For any of these cases, thermal, nonthermal, or mixed (semi-

thermal) the critical size of the bare pile is obtained by setting
= A, where A,, is the real root of the critical equation 12-2,

12—, or 12-7 and A, is the geometrical Laplacian, determined
(Section 11) by the size and shape of the pile.

If the pile is not of the critical size, A = A, will be greater or
smaller than A,,, and the number of neutrons at the end of a cycle
will be different from the number at the beginning. This means
that the neutron density in the pile will change with time. If ¥
is the fractional increase in the number of neutrons per cycle, we
then have, for the mixed noncritical pile,

4 Pthkth
1— L%A
If ¥ > 0, the pile is supercritical, and the neutron density will rise;

if ¥ <0, the pile is suberitical, and the neutron density will fall.
For a thermal pile vy is given by

+ e‘""‘”"‘(l _ pm)k(fﬂ) 1+ (12-8)

en‘
= p —— 12-9
Y=t T ( )
where
pmk — (1 — 128)e""* (12-10)

is called the reactivity of the pile. The reactivity of the pile is
an important quantity in the later discussion of pile kinetics.
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In the foregoing discussion of the neutron cycle we assumed that
all fission neutrons came off with the same energy Eo. The intro-
duction of the observed continuous fission spectrum into the picture
requires that the quantities ¢ and 7o — r(£) in equations 12-2,
12-7, and 12-8 represent averages over the fission spectrum.

13. PILE WITH REFLECTOR—GROUP THEORIES

So far only the case of the bare homogeneous pile has been con-
sidered. However, a considerable practical advantage results
from surrounding a pile with a reflector having a high albedo.
Since the leakage of both fast and slow neutrons may be thereby
reduced, such a pile will have a smaller critical volume. Indeed,
if a very good reflector is used, it is possible that the total size of
critical pile plus reflector is smaller than that of the bare pile
alone. Thus with a reflector one can achieve a considerable saving
in the initial charge of fissionable material for a pile.

Another advantage results from the flattening of the neutron
distribution in a pile with reflector. In a bare pile the fissionable
material at the edge of the pile is used with a very low efficiency
since the neutron flux is very low there. With a reflector the
neutron flux is made more uniform over the pile, and therefore the
average flux can be considerably greater than in a pile without
reflector. If the limit to the power level is determined by the tem-
perature at the center of the pile, for example, a higher power level
may thus be reached in the pile with reflector. It is possible to
achieve this end also by a nonuniform distribution of the fission-
able material in the pile.

Unfortunately, it has not been found possible to give a precise
solution for the pile equations for the pile plus reflector, in the
interesting case where the properties of the reflector differ from
those of the reactor. It is necessary to use approximate methods
to solve such problems.

A general class of such approximate methods is called the multi-
group method, in which the various groups of neutrons in the pile
and reflector are sorted according to their average energy; the
materials in pile and reflector are assigned average properties for
each of these different neutron groups. Such a method is very
useful for computing the effects of control rods which absorb ther-
mal neutrons strongly but have little effect on fast neutrons.
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An equation of the type 10-1 is written for the neutron flux of
each energy group. The equations are coupled together owing to
the fact that the fast neutrons slow down; the disappearance of a
neutron from a certain group is accompanied by its appearance
in a group of lower energy. As before, the equations for the lowest
and highest energy groups are coupled together by the fission
process.

The simplest theory of this type is the one-group theory, in which
we imagine that all absorption and production occurs at one neutron
energy. This is not too bad an approximation for a fast pile, for
example, in which absorption and production take place close to
fission energies. It would be an accurate representation of what
happens in a thermal pile only if fission neutrons were born as
thermals instead of as fast neutrons. To illustrate the method we
shall apply it to the case of slab and spherical piles with reflectors;
in the next section the two-group theory is considered. It is to be
noted that the critical size of the bare pile is not given correctly
by either of these approximate formulations. It is convenient,
however, to “adjust”’ the pile constants in such a way that the
correct critical size is given by the one- and two-group approxi-
mations.

We begin with equation 6-1 which we write in terms of the
neutron flux ¢ = nv. This quantity satisfies the relations,

AL
g + 2% — kZ.% = 0 (13-1)
inside the reactor, characterized by the constants A\, £,°, and k, and
1
- _31. Ad + e =0 (13-2)

inside the reflector, characterized by the constants A/}, =,', k = 0
(no production). These can be put in the form,

[M + Ko?¢ = 0 in reactor (13-3)
A¢p — K,%¢ = 0 in reflector (13-4)
where ' o
32, k-1
P (k-1 - 13-5
Ko = (k- 1) N I3 (13-5)

koo 3% 1
1 - —— =

13-6
N (13-6)



PILE WITH REFLECTOR—GROUP THEORIES 53
These are to be solved subject to the boundary conditions:
I. ¢ = 0 at the outer boundary of the reflector
II. ¢ and %‘ ¢’ are continuous at the boundary between reactor

and reflector.

As an example consider a slab pile of half-thickness a covered
(both sides) by a reflector of thickness {. The solutions of equa-
tions 13-3 and 134 are:

x=0 x=q xma+t
Fic. 19

¢o=cosKor (|r]|<a) (13-7)
¢ =Csinh [K;¢+a—2)]@<|z|<a+1 (13-8)

where boundary condition I has been satisfied by choosing the
sinh function, which vanishes at the boundary of the reflector.
Condition II applied at z = a gives

MK tan Kga = A'K; coth K;t (13-9)

This is a transcendental equation for the critical half-thickness
of the pile as a function of the thickness of reflector. If ¢t — 0,
coth Kt — o, Koa = 7/2; the critical half-thickness is of the
same form as was previously obtained for the bare pile in Section
11, namely, ag = x/2Ko. They are not identical since Ko, as
defined by equation 13-5, is not identical with V' —A,, defined as
the solution of equation 10-13.

The reflector savings S = a9 — a is the amount by which the
critical half-thickness is decrcased (owing to the reflector) from
what it would be for a bare pile. Evidently, S depends on the
reflector thickness as well as the constants of pile and reflector.
From equation 13-9 we have directly
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1 k3 AglKl
S=ag —a-—-— [-— - tan"‘( — coth K,t)] (13-10)
Ko L2 MK,

In the limiting case for small reflector thickness (K;¢ « 1) equa-

tion 13-10 becomes
0
S==ao--a=z‘»‘-t (13-11)
At
If the reflector is such an efficient scatterer that its transport
mean free path is smaller than that of the pile, the reflector sav-
ings will be greater than the reflector thickness. This means that
the total size of pile plus reflector will be less than that of the
bare pile alone.

A similar calculation can be made for the more practical case
of a spherical reactor of radius R covered by a reflector shell of
thickness {. The transcendental equation corresponding to equa-
tion 13-9 is then

1 At MK i
cot KR = ——{ 1 — —— ) — coth Kyt (13-12)

Kok A ACK,

and the critical radius of the bare pile is Ry = x/Ky. The reflector
savings in this case S = Ry — R(!) can be computed by solving
the equation numerically for given values of the pile constants.

This procedure is carried through for both the spherical and slab
pile having the dimensions given in Section 11. We imagine the
pile to be moderated by graphite and to be surrounded by a water
reflector. Let us assume the following round number for the
Laplacian:

A= —10""= —K?

Ko = 102 em™!

In addition the following constants are used:
1
A;o =27 cm, K‘ = ‘2"§ cm_', Agl = 0.4 cm

The results in Figure 20 show the reflector savings as a function
of the reflector thickness in the two cases. The general character
of both curves is similar; the reflector savings ‘‘saturate’” between
18 and 20 em for reflector thickness greater than 10 em. Accord-
ing to the curve, then, a spherical graphite-moderated pile that
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has a critical radius of 314 cm with no reflector could be made
critical with a 10-cm water reflector if the radius were 294 cm.

20
Sphere >/’
»{
/ Slab
15 /
§10
)
5
0
0 2 4 6 8 10 12 14
t, cm
Fi16. 20

The reflector savings for an infinite water reflector (thickness
greater than 10 cm) are found to be

For a sphere 19.7 cm
For a slab 18.8 cm
For an infinite circular cylinder 19.7 cm

The numerical values are not to be taken too seriously; the general
shape of the curves, however, is not very different from what would
be given by a more exact theory. It is found that reflector savings
calculated on the basis of one-group theory are too low; the more
exact two-group calculation gives a larger reflector savings since
the albedo of the reflector for fast ncutrons exceeds that for ther-
mal neutrons.

In the case that the transport mean free path is the same for
reactor and reflector (\* = A,!) the equations 13-12 for the sphere
and 13-9 for the slab are of the same form; the reflector savings in
the hali-thickness of the slab and in the radius of the sphere are
therefore equal.
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14. TWO-GROUP THEORY

Since the pertinent nuclear properties of materials in pile and
reflector are in general very different for fast and for slow neutrons,
the one-group calculation of the preceding section cannot give very
precise results. The next order of approximation is to consider
separately the fast and thermal neutron fluxes, ¢; and ¢;. Al-
though the fast neutrons have a large range of energies, we make
the approximation of lumping them all in one group and attribute
to the substances in which they diffuse appropriate average
properties.

Inside a reactor ¢, and ¢; satisfy the equations:

A

.31‘34,, — Zuts + kZobh = 0 (14-1)
A <« «

_5_' Mlll - ‘-’ou¢"l + ‘-’u/¢f =0 (11_2)

These are of the same general type as our original equations in
that the three terms of each equation stand for leakage, absorp-
tion, and production, respectively. We have introduced a fictitious
fast-absorption cross section I, which takes into account not the
true fast absorption (which we neglect) but the loss of neutrons
from the fast group which occurs when fast neutrons in slowing
down enter the thermal group. The term Z, ¢, represents the
source (number becoming thermal per cubic centimeter per second)
of thermal neutrons, therefore, as well as a loss to the fast group.
The source of fast (fission) neutrons, on the other hand, is propor-
tional to the thermal flux, and is equal to KZ,,¢n if K = Kapn
thermal neutrons are produced for each thermal neutron absorbed
and P = 1.

Inside the reflector ¢; and ¢, satisfy similar equations except
that, since we assume there is no fissionable material in the reflector,
the multiplication factor k is zero. In general, the other constants
in the equation will have in the reflector a different set of values.

It is necessary to choose values of Z, and A, which give the
same mean square slowing-down distance 67, as in the exact theory.
This can be achieved in the following way: we try to solve equa-
tion 14-1, assuming a point source of (fission) neutrons at r = 0.
Let K/ = 3Z,,/\;. The equation may then be written
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Ady — K2 =0 (r>0) (14-3)
and the solution is (see Section 7)
e ks
¢/ = A -;‘— (14—4)

For 7 we obtain, as in Section 7,

o e—-K,r
f ¢, dV f r? 4xr? dr
= i M

6
=— (4
K, (14-5)

= e~ K,’
¢ dV f xr? dr
0 r

1
We therefore choose K/> = — so that equation 14-5 agrees with
70

equation 9-12. The approximnation consists of substituting a func-
—r2/4rg
e

1
tion — e~ X+ for the more exact Gauss error function

r V 41‘1‘0
Another way of looking at the problem is to consider the details
of the slowing-down process. The average number of collisions

E
made by a neutron is slowing down from Eg to EyisN = -£— log E—°~
th

On the average, then, one “absorption” process will occur for each
N collisions. The ratio of the fictitious absorption cross section

I,, to the average scattering cross section %, is therefore

I
S, N og E0
og —
En
from which we obtain _
5, = = (14-6)
log@
Eun
Then
K = 32, 3 1 (14-7)
As Ey, 1
Aslog —
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if \s is defined as a proper average transport mean free path for
fast neutrons.
We now seek solutions of equations 14-1 and 14-2 which satisfy
the conditions,
{ Ady = Ady
Adn = Adin

where A is the same constant in both equations. On substitution
in equations 14-1 and 14-2, we obtain the two simultaneous linear
equations:

(14-8)

A
("'3!' A - Ea/) 73 + kzau¢lh =0 (14—9)
Aa <
Ecﬁ/ + '_3—” A - g | OA = 0 (14—10)

which have a nontrivial solution only if the determinant of the
coefficients vanishes, that is, if

Y] s Y[ - - v
“3“ A - ~ay "3"' A - “~an ] T k‘-’au‘-’a, =0 (l“l“ll)

After dividing by Z,,Z,, and introducing L? = \u/3%,, and
o = As/3Z,,, we obtain

k— (1 —L*A)(1 —104) =0 (14-12)

This is the critical equation of the two-group theory. It is analo-
gous to equation 10-13 and reduces to this equation if we set
e" "™ =1 — 79A, an approximation which is good if rgA « 1,
that is, if the mean square slowing-down distance is small compared
with the cross-sectional area of the critical pile. It is different
from equation 10-13 in that it is a quadratic equation in A instead
of a transcendental equation.

For the case that the condition r9A <<'1 is not satisfied, the
critical size of the bare pile as given by equation 14-12 is too small
(A too large); one may, however, introduce a modified age 7o’ into
the theory which does give the correct critical size with equation
14-12.

In the limit a8 the number of groups is increased indefinitely, the
critical equation for the multigroup theory goes into the form
10-13 of the continuous theory. This is shown as follows. The
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critical equation for n groups (in addition to the thermal group)
may be written in analogy with equation 14-12 as

k— (1 —L*A)(1 —11A)(1 —724) -+~ (1 — 1,4) =0 (14-12q)

where 7, 73 - - - are to be interpreted as the partial “ages” of the
neutrons in the various groups. Clearly, then, as a neutron slows
down continuously from fission to thermal energies, it will pass
through all these groups, and we will have

ro=ntrntrnton=n
To evaluate the product,
Ja= (1 —71A)(1 — 728)(1 — 74) -+ (1 — 1,4)

ag n — o, we take the logarithm of both sides and obtain
logfa = 2 log (1 — 7,A)
1

As n — o and each of the r; becomes small, we can use the
approximation log (1 — r) = —r. Then

n n
logfo = lim logfa = lim 2 (—7,A) = —A D 7, = —Arg
"o L =1

frg — e—wo.\

And equation 14-12a assumes the form of the critical equation of
the continuous theory, namely,

k—(1 =1 =0

The critical equation can be written

A2 (1—{-1):\ F—loo (14-13)
T0 L2 L21’o

and the two solutions are
A 1(1+1) lvf(l+l)’+4k—-l
! —5 r: L? 2 Y\r, L? L?rg

A l(l+l)+l\[(1+l)’+4k—l
2o\ LY 2 L3 Lro

To

(14-14)
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if £ > 1, the two solutions are of opposite sign. The negative root
A, is given approximately by

A k-1 (14-15)
' L+ 1o
and the positive root by .
1
Ag~—+ — 14-15a
1Yt L ( )

if K — 1 is small. For each of the two possible values of A the
ratio ¢n/¢y is determined by equations 14-9 and 14-10. We call
8; the ratio corresponding to A4, and s; the ratio corresponding to
Ag. Then, if we define K,? = 1/, the expressions for s; and s,
are

)‘, A] - Kfz X] Az - Kﬂ.’

" An  kKi? " An kKi?
If A, <0 and Az > 0, then s; > 0 and s; < 0. The general
solution of equations 14-1 and 14-2 for the fast and the thermal
neutron flux is a linear combination of terms corresponding to the
two values A;, A; given by equation 14-14.
In the case of a slab pile then we have the solutions inside the
reactor,

(14-16)

[ &7 = cos uyz + C cosh ppr (14-17)
lém = 8 cos uz + Csy cosh pyr

where the positive quantities u,2 = —A,, u,? = A, have been
introduced. The equations for the fast and for the thermal flux
inside a reflector may be written in the same form as equations
14-1 and 14-2 except that & = 0. The critical equation is then
the same as equation 14-12 with & = 0. We have, thereiore,

(1 —L?A)(1 —1A) =0 (14-18)

where the primes indicate that the quantities refer to the reflector.
The solutions of equation 1418 are

’ 1 2
Al = ;‘; = K/
o (14-19)

1
Azl = _I:_;_z_ = Kﬁ:z
In this case the ratio of the thermal to fast flux corresponding to
the two values of A is
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T _.___L...._z" ’ i A K,?
1= - e s
A—;h_l. Al’ hand Edul A‘h’ KI 2 - Kth 2
(14-20)
ro = ®©

The last condition means simply that in the reflector the fast flux
corresponding to the second solution vanishes. The solution in the
reflector of thickness ¢ which vanishes at the outer boundary
z = #+(a + ) is then
¢/
o’

AsinhK/(a+t —|z]) (14-21)
rA sinh K/ (a + ¢t — ] z I)
+ Bsinh Kp'(a +t — | z|) (14-22)

Four boundary conditions remain to be satisfied at the inter-
face between reactor and reflector at x = +a. These express the
continuity of the fast and thermal flux and the continuity of the
fast and thermal net current. The four equations resulting from
these four boundary conditions are in general incompatible since
we have only three arbitrary constants A, B, C; only for a particular
value of the reactor half-thickness a do these equations have a solu-
tion. In this way the critical size of the reactor a is determined
as an implicit function of the reflector thickness ¢, which is also a
parameter in the equations. At this point one must resort to
rather tedious numerical caleulations to obtain a as a function of ¢.
This has been done for certain problems of practical importance
and is to be found in the project literature. The results which have
been so caleulated for particular pile and reflector combinations
show that with the two-group theory the calculated reflector sav-
ings are usually several per cent larger than with the simpler
one-group theory.

15. PILE CONTROL

In a practical case the dimensions of a pile are always greater
than the critical dimensions in order to allow some latitude of
control. In thermal piles control rods, made of material having a
large absorption cross section for thermal neutrons (Cd, Boron
steel), are used for this purpose. Essentially, then, instead of
changing the pile dimensions one changes the effective pile con-
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stants k, L? and 7o by the introduction or removal of foreign
materials in the pile structure.

Another way of looking at this question is to consider that the
control rods introduce modifications in the boundary conditions
which the neutron flux must satisfy. For example, if the control
rods are “black’” to thermal neutrons, the neutron flux must ap-
proach zero at the (extrapolated) boundary of the control rod.

It is convenient to introduce again the quantity p (equation
12-10) called the reactivity defined in the continuous theory by

p=k— (1 —L3A) e ™ (15-1)
or, in the one-group theory by the analogous expression,
p=k— (1 — L) (15-1a)

If p = 0, the pile is just critical since equation 10-13 is then satis-
fied. If p is positive, the neutron flux will increase with time; if
p i8 negative, it will decrease.

The pile and control rods must be designed to allow and control
considerable excess reactivity. As the fissionable material in a
pile is used up, the pile reactivity will decrease for two reasons:
(1) There are fewer fissionable atoms left to absorb neutrons, and
(2) the fission fragments produced in the act of fission absorb
neutrons. Thus, the productive absorption will decrease and
unproductive absorption will increase. To keep the pile operating
after a considerable depletion of the fissionable material and
accumulation of fission product poisons requires that enough excess
reactivity should have been built into the pile that by withdrawal
of the control rods eritical conditions (p = 0) can be re-established.

Another effect depends on the circumstance that the pile con-
stants and therefore A,, depend on the temperature of the pile
structure. There are several temperature effects which depend
principally on (1) the variation of absorption and scattering cross
sections of the substances in the pile with neutron energy and
(2) the variation of the physical constants (dimensions, density)
of the pile with temperature. The reactivity may either increase
or decrease with temperature according to the pile design. A pile
with a negative temperature coefficient of reactivity is desirable
since then a small perturbation which increases the temperature
will result in a lowering of the reactivity and, therefore, a return
to the original temperature. Such a pile is stable, whereas one
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with a positive temperature coefficient is unstable. In all piles,
then, the temperature coefficient is an important factor in deter-
mining the stability. In high-temperature piles the importance
is even greater since a relatively large reactivity difference exists
between the hot and cold pile.

In an experimental pile it is necessary and desirable to have
excess reactivity so that the introduction of neutron absorbers for
the production of radioisotopes, for example, will not cause the
pile to shut down.

In addition to these relatively large effects which change the
reactivity of a pile and for which a coarse control mechanism must
be provided, there are smaller short-time fluctuations in reactivity
which must be controlled if the pile is to operate at a steady power
level. For example, a change in the temperature of the coolant
may slightly change the pile reactivity.

In general, the excess reactivity built into a pile may be several
times the reactivity associated with delayed neutrons (see Sec-
tion 16).

In general, thermal piles are easiest to control since there exist
materials with large absorption cross sections for thermal neutrons.
The problem of control of fast piles is more difficult since absorption
cross sections for fast neutrons are invariably much smaller.

In order to understand the effect on the neutron flux of a change
of pile reactivity we must examine the solutions of the time-
dependent pile equations. This is done in the next section.

16. TIME-DEPENDENT PILE EQUATIONS

In deriving the pile equations in Section 10 we made the assump-
tion that there was an exact balance between leakage and absorp-
tion on the one hand and production on the other. We must now
treat the case in which such a balance is not maintained; if more
neutrons are produced in the pile than are lost through leakage and
absorption, we should expect that the neutron flux would increase
with time. In fact, if these considerations are applied to a cubic
centimeter of the pile, we have

Production — (leakage + absorption) = rate of change of thermal
neutron density or in
symbols
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kg ) an
Q- (— 3 Any + nZ, ) = " (16-1)
or
Mo Z. + Q on (16-2)
3 ny NV2g a

For the sake of simplicity let us treat first pile kinetics according to
the one-group theory. Then we put

Q = nvZk (16-3)
introduce
K’—sz"(k 1)—’“1 (16-4)
M B

the neutron lifetime ! = \,/v = 1/vZ,, and divide the equation
by v. Equation 16-2 then transforms into

A+ Kin = =20 (16-5)
n n=——
L% o
To separate the equation let
n(z, y, 2,t) = nolz, y, 2)/(t) (16-6)

After substituting the expression in equation 16-5 and dividing
by nof, we obtain

A Il 1d

I R | (16-7)
ng L? f(t) dt

Since the left side is a function only of zyz and the right side only

: l
of t, each side must be a constant which we call — A.
Then

1df
-—=A (16-8)
fdt
on integrating from ¢ = 0 to ¢, we obtain
f~eM (16-9)

where A is determined by the equation,

a z
—3 +K = A (16-10)
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obtained by introducing A into equation 16-7. If we put

A
e _a (16-11)
ng

then
2

A= T (A+K? = }l-[lc — (1 - L)) = (16-12)

~i®

by equation 15-1a, and n = nge®?"

The interpretation of equation 16-12 is straightforward. The
term —L2A according to equation 12-1 is the ratio of leakage to
absorption, that is, the number of thermal neutrons that leak from
the pile per thermal neutron absorbed in the pile. Since k neutrons
are produced by the fission process per neutron absorbed and one
neutron has to be used to maintain the chain reaction, the quantity
p = k — (1 — L?A) is the net increase (or decrease) in the number
of neutrons per neutron absorbed. On the average, then, every
! sec (where [ is the mean neutron lifetime) there is an increase (or
decrease) of pn neutrons per cm®. The rate of change of n is

an p
therefore e ;n, which may be integrated immediately to give

(p/Ut

n = nge®"”, an expression identical to that just derived.

The quantity T = -1; = £ is called the *‘pile period.” It may be
A »p
very long if p is very small compared to I. In a thermal pile
l = 1/vZ, may be of the order of 1073 sec, whereas in a fast pile
it is many orders of magnitude smaller.

It appears, then, that, if this discussion presented the whole
story, it might be very difficult to control even a thermal pile.
For example, to cite an extreme case, if the value of k for a critical
thermal pile is increased by 0.1 so that p = 0.1, by pulling out a
control rod suddenly, the pnle a.ctwnty would in one second rise
by a factor e/ = 01107 = 10*%. This catastrophic result
is to be understood as a waming that large sudden changes in
pile reactivity cannot be made. Actually, all piles are provided
with special safety controls which would insure against such a
catastrophe. It is clear that piles with high excess reactivity might
be very dangerous to operate. A pile with a period of }{o0 sec
would be almost certainly impossible to control by ordinary control
rods; a pile with T = }{ sec could be so controlled. This means
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that control rods should be extracted at such a rate that the excess
reactivity is never larger than 19,. As may be seen presently,
some of these conclusions must be modified when the part played
in pile control by the delayed neutrons is considered.

The fortunate circumstance which aids in the control of piles is
that in addition to the prompt neutrons a small fraction (0.76%)
of the neutrons emitted in a fission process are delayed. Six
groups with half-lives ranging from 0.05 to 55 sec have been found
and two periods have been identified as being emitted from certain
of the fission fragments following a beta decay.

It is found that a certain number v, (v prompt) neutrons come off
immediately after the fission process (within, say, 107!? sec),
whereas a smaller number »; (v delayed) are emitted much later.
Each group of delayed neutrons is given off with the characteristic
radioactive period of the beta decay which it follows. Thus the
total number of neutrons emitted per fission » is equal to the sum of
vp and »4. The energy of the delayed neutron groups is somewhat
lower than the average energy of the prompt neutrons. It is
evident that only in the nonsteady state is the distinction between
prompt and delayed neutrons of importance.

Data on the delayed neutrons from the fission of U2 are given
in Table 3.

TABLE 3
Half-life Decay Constant Per Cent Identification
rig (sec) | Ai = 0.693 sec—1 | _Of Fission of Neutron
14 Neutrons 8¢ Emitter
0.05 14 0.020 | .....
0.43 1.61 0.084 | .....
1.52 0.456 0.24 | .....
4.51 0.154 021 | .....
22.0 0.0315 0.17 X1
55.6 0.0125 0.026 Kr®

Total 8 = 0.76%

The effect of the delayed neutrons is to increase the effective mean
life of neutrons considerably, provided that the change of reactivity
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is not so large (as it is in the catastrophic example just given)
that the pile is supercritical on the prompt neutrons alone. If 8
is the fraction of neutrons emitted that are delayed and I; is the
average time of delay, then the effective mean life of a neutron is
ly~ 1+ Bla. Using the approximate values 8 = 1/100, Iz ~

10 sec, we find
lyg~ 1073 + v ~ vy sec

17. PILE KINETICS—TRANSIENT BEHAVIOR '

In the last section the transient behavior of a pile was worked
out on the one-group theory without considering directly the effect
of the delayed neutrons. In this section the general treatment will
be given of the kinetics of a bare homogeneous pile with delayed
neutrons, using the more exact treatment of Section 10.

We denote the decay constants of the various groups of delayed
neutrons by A;, Ay --- or, in general, by \;, and the number of
delayed neutron emitters per fission by »8;. Then, if » is the total
number of neutrons emitted per fission, » Z Bi=vB =y i8

3

the number of delayed neutrons per fission and (1 — S)» is the
number of prompt neutrons emitted per fission. Similarly, we
can split up the multiplication constant,

k = kd + kp
where

>
kq = 3:%,‘3' (17-1)

and

k= 21— p)
P z. 4

The time-dependent pile equation for the thermal flux may be
written by analogy with equation 16-1:

A on
= Anvg — nonZe + (nonZakp + AC)E™ = ” 17-2)

3
Here ¢ is the number of fission fragments per cubic centimeter
that emit delayed neutrons. For simplicity we shall treat the
case of only one delayed neutron emitter and indicate later how
all the six groups may be treated simultaneously. Let A be the
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decay constant (probability per second for emission) for the delayed
neutron emitter. Then each second Ac¢ delayed neutrons are
emitted per cubic centimeter. The source term in equation 17-2
is therefore (nvnZ,,kp + Ac)e™.

The concentration of these fission fragments ¢ at any instant
depends on how many fissions occurred shortly before this instant.
For the rate of change of ¢ we write

O mZkg — A (17-3)
— = n — Xc -
Ot ahd

where the first term is the number produced and the second term
is the number that decay per second per cubic centimeter. Using
I, = 1/vZ, and kg = Bk, we have

ac nfk
— = — — \¢ (17-4)
al i
In the equilibrium case dc/dt = 0, and therefore
npk
c= —B—-— (17-5)
LA

is the concentration of delayed emitters after the pile has been
running steadily for a long time and the production and decay
rates are exactly balanced.

It is necessary to solve the simultaneous differential equations
17-2 and 174. For the time dependence, we assume

[n = noeAI

lc——'coe‘“

Then dn/dt = An, and 3¢/d! = Ac. On substitution of these rela-
tions into equations 17-2 and 17-4, we obtain

(17-6)

kA
and »
V! [ nSk J
— Any — noZ Zo(l — Bk + — oA = 7
3 A nZ, + | noZ,( ﬂ)+l,A+)\e An  (17-8)

where Anv/nv has been put equal to the constant A and the expres-
sion 17-5 for Ac has been introduced. If we now multiply the equa-~
tion by e "**, divide by nvZ, = n/l, and use L? = 3\,/Z,, we
obtain
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- A -
e"ML2A - 1)+ k—Bk+ ﬁk—_'—_—i = Ale™™ (17-9)

We define the reactivity as before by
p=k — (1 — L?A)e~™ (15-1)
Then equation 17-9 becomes

A
+ Bk ——— = Alye™™* 17-10
p B A+ A 4 ( ).
This is a quadratic equation for A which may be written
k
A= o/ (17-11)
_P e_'oA + __.E__..
k A+

In the case where several neutron groups characterized by 8;, \,,
are considered equation 17-11 is replaced by

A= p/k (17-11a)

lp -roA
k +2\+)\

With all six delayed ncutron groups equation 17-11a is of order
6 4+ 1 in A and has therefore 7 roots ApA; -+ Ag. The general
solution will be expressible as a sum of exponentials of the form
Za.e™. The equation 17-11 can be written

AL+ AN+ B —p/k) —p/kKA =0

l
where [ is an abbreviation for -fe"“‘. Since the last term is

negative, the two roots are of opposite signs. Let A, > 0 and
Az < 0. The solutions are

Ay = _M+$\/(B+D‘__)+_%ﬁ (17-12)

2l k
B+D—p/k) 1 ( p)’ 4lp)
Agms — — ————— — (17-13
3 2 2 B+ I\ 5 + p ( )

1
The quantity % —f = ; (p — ka) is proportional to the reactivity
in excess of that which is permissible if the pile is to be controlled
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by the delayed neutrons and is equal to 1/k times the amount of
reactivity by which the pile is off prompt-critical. Suppose that
the reactivity is small enough so that the pile is not critical on the
prompt neutrons alone. Then 8 > p/k, and, since I\ is small,
equations 17-12 and 17-13 can be approximated by

k

A~ L (17-14)
1+ B — p/k
A
— p/k
A~ =B (17-15)
The general solution,

n = a;e + age” (17-16)

then consists of two terms; the first represents a slow rise and the
second a transient effect which quickly damps out.
As an example we assume the numerical values:

i- =0005 B=001, \=qysec™!, I=10"%s0c
Then
A~ 0.1 sec"'
Ag ~ -5 S‘(?C__l

The arbitrary constants are determined by the initial conditions
at ¢ = 0 which we take to be

oc
n(0) = ng = constant; -55(0) =0 (17-17)
and by equations 17-2, 5,

on o/k
—(0) = — 17-18
Py (0) Mo ( )
since the fact that some neutrons are delayed does not affect the
initial slope. Then the constants a, and a; of equation 17-16 are
determined by
a+a;=mn (17-19)

Moy + Agag = ‘%’ (17-20)
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of which the solutions are
Az - p/ kl . B

= =~ 17-21
VY VL ET (2D
p/kl — Ay p/k
aGg=-—""n= — no (17-22)
Az — Ay B — p/k

Collecting all these results together, we can write, for the general
solution,

Ol e i e
Inserting the numerical values, we obtain
a; ~ 2ng
a2~ —Nny

so that for this case the solution is (approximately)
n = ng(2e™! — =%

which is sketched in Figure 21.

8
7 //
6 v
5
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£4
s L~
3
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2//‘
1
0
01 2 3 4 56 7 8 9 1011 12 13 14
Time, sec
Fig. 21

It may be seen that the neutron density rises by a factor of 2 in
the first half-second. In a sense the pile does not know initially
that it must wait for the delayed neutrons. The neutron density
levels off somewhat, and the slow rise characteristic of the delayed
neutrons sets in. In the case that p/k > 8, the initial steep rise
would be continued, for then the pile would be supercritical on
the prompt neutrons alone.
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