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PREFACE

DurinG the past quarter of a century the subject of Probability
has acquired a new importance in science, partly because of the
more recent stress on statistical laws in mechanics and partly
because of the rapidly expanding use of statistical methods in
medical, biological, engineering, industrial, and social problems.

Writers have approached Probability from very diverse
angles but little attempt has been made at any sort of unifica-
tion. At times it is regarded as a branch of symbolic logic,
sometimes as a series of empirical conclusions based on experi-
mental practice. Certain writers see it as a branch of pure
mathematics, others as a description of a state of mind. To
some it is of philosophical, to others of scientific importance.

The authors have taken the view that Probability is an essen-
tial of scientific method, and that a probability estimate, how-
ever it is approached, has to be seen and interpreted as a guide
in scientific procedure. Thus these various treatments are in
reality partial aspects of the same topic, where in each case the
form of analysis has been decided by the particular scientific
purpose for which the treatment has been attempted.

The present book, claiming to be no more than an elementary
treatment, makes no effort to cover all these fields. The earlier
mathematical portions are restricted mainly to simple con-
siderations of Mathematical Probability and its linkage with
Statistics in a form suitable for non-mathematical students;
hence the inclusion of the material of Chapters III and IV. At
the same time the authors have striven to provide a detailed
criticism of the various self-contained theories of probability
that have been advanced from time to time. This has com-
pelled them to embark on certain considerations of scientific
method and, later in the book, on more advanced mathematical
problems in Probability, without, however, entering into fields
such as Statistics proper or other branches of physical science
farther than has been essential for this purpose.

While most of the examples are new, a number have been
selected from Whitworth’s Choice and Chance and these the
authors here gladly acknowledge. H L

L. R.
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CHAPTER 1
HISTORICAL INTRODUCTION

THE theory of probability arises from a number of different
sources. It already manifests itself in certain practices resem-
bling insurance which were known to antiquity; thus, the
Roman collegium or guild paid a sum of money to the surviving
relatives upon the death of a member, a custom which was
continued by the medieval guilds. In 324 B.c. a Greek named
Antimenes devised the first system of insurance mentioned in
history; he guaranteed owners against the loss of their slaves
for a premium of 8 per cent. per annum. The marine insurance
trade likewise originated in Greek times with the practice of
bottomry or sea-loans; when a merchant sent a cargo abroad
he received an agreed sum from a banker which he repaid with
interest if the cargo arrived safely, but retained if it failed to
do so. It seems clear that in such bargains the prevailing rate of
interest was high.

The early history of insurance does not appear yet to have
been thoroughly explored; that of banking and exchange is, on
the other hand, well documented. In the fifth century B.c.
banks had already been established in Athens. We know that
by the end of the thirteenth century the Italian and, more
especially, the Florentine merchants dominated the entire trade
of Europe, and that in 1350 they had banking establishments in
most of the European capitals; their power was such that they
were able to finance wars, control international exchanges, and
dictate monetary policy at large. It may be added that at this
time a regular rate of exchange began to be quoted in London
between English and Flemish currency.

Henceforward financial operations in Europe took on some-
thing of their present-day character, including the deliberate
policies of inflation and deflation with which we are only too
familiar. In this connexion we may note the steps taken by
Sir Thomas Gresham, in 1552-3, to restore fallen English credit
by pegging the exchange, selling foreign currency in Antwerp,
and placing restrictions upon the trade with Flanders. All these

operations involved actuarial problems in probability, however
4360 B



2 HISTORICAL INTRODUCTION Chap. 1
rudimentary. The methods of insurance, which date, as we
have seen, from very early Greek times, developed without any
aid from the actuarial principles with which they are nowadays
associated: these latter grew out of a different order of ideas,
which we have now to consider.

It is not until the Renaissance that the subject begins to
re-emerge in a new setting. During the sixteenth and seven-
teenth centuries a great deal of the leisure of the European
aristocracy was occupied with games of chance and gambling
in general. This class did not number among its members any
mathematicians capable of handling the problems that naturally
suggested themselves, but nevertheless it happened that from
time to time problems of chance were passed on to the mathe-
maticians of the period. Perhaps the only exception to this
rule was Cardan, himself an inveterate gambler (notorious for
his theft of Tartaglia’s solution of the cubic) who, somewhere
about 1550, wrote a small gambler’s manual; the book was not,
however, published until 1663. Galileo (1564-1642) had his
attention directed by an Italian nobleman to a problem in dice,
the solution of which is the first recorded result in the history of
mathematical probability.

The problem is as follows: Whereas when three dice are thrown the
numbers 9 and 10 can each be obtained in 6 ways (different from each
other), yet it is found from actual experience that 10 appears more often
than 9. How can this be accounted for? In his work (which did not
appear until 1718) Galileo makes an analysis of all possible cases and
shows that, of 216 possible ways of throwing three dice, 27 are favourable
to the 10 and 26 to the 9. Nowadays we should solve such a problem
by the method of Chapter VII; it represents the first successful attempt
to explain the frequency of appearance of certain groups of numbers by
an analysis of the possibilities that might arise.

Twelve years after Galileo’s death a correspondence began
between Pascal and Fermat which gave the first real impetus
to the theory. The Chevalier de Méré, a French gentleman
with mathematical interests, propounded certain questions to
Pascal, who communicated them to Fermat. Of these the most
important is the famous ‘Problem of Points’ which in varying
forms was to occupy a central place in the theory for the next
century and a half. It was first enunciated by Pascal in 1654, as
follows: Two players, with equal chances of winning a point, are
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playing a game for three points. If they wish to break off the
game before the end, how shall the stakes be divided? Pascal
solves this problem and later enunciates without proof the
results for a game for n+-1 points in the case where one player
has already n points and the other none, and where one player
has one point and the other none.

Fermat’s solution of the problem, given at the same time, is
for the case where one player requires 2 points and the other
3 points, to win; his method is essentially the same as that given
later in Chapter V. Pascal applies this method to a similar
problem in which there are three players. In the same year was
printed his Traité du triangle arithmétique, which is the earliest
treatise on the theory of combinations, and contains, among
other things, the familiar formula for the binomial coefficient
n(,. Pascal uses the results of this work to solve the problem
of points in the case where one player requires m points and the
other # points to win.

In all this we see that the setting of the problems is a
gambler’s one, although both Pascal and Fermat are interested
primarily in the mathematical analysis. In this connexion we
may note a distinction between the progress of the theory in
Catholic and Protestant countries; in the latter the interest was
concentrated on quite different topics—thus, Newton, who was
born the year Galileo died, seems hardly to have concerned
himself with questions of this nature. Almost the sole exception
was Huygens who in 1657 produced the first treatise on gaming
and dicing problems. This remained the best account of proba-
bility until the advent of James Bernoulli, Montmort, and De
Moivre, all citizens—at any rate by birth—of countries in which
gambling was not frowned upon, that is, in which the Catholic
feudal aristocracy was not yet restricted by the rising Puritan
class of burghers.

To us the interesting feature of the development of proba-
bility at this time is the fact that it began to be cultivated,
apparently on a different basis, in England and Holland. These
countries were Puritan because the burgher class, the towns-
men, had already succeeded in asserting themselves; they were
more interested in problems of trade exchange and questions
related to the growth of town population. Thus in 1662 we find
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Captain John Graunt devising a method for utilizing the weekly
returns of deaths in the City of London to determine the growth
of the capital, while in 1671 John De Witt published researches
on the mathematics of annuities, in Holland. Halley the
astronomer published a memoir in the Philosophical Transac-
tions for 1693 based on the tables of births and deaths for the
city of Breslau during the period 1687-91. He gives a table
showing the numbers of the population aged n years, and shows
how to find the value of an annuity on the life of a person of
given age. He constructs a table of annuities for every fifth year
of age up to 70 years; and he considers also the question of
annuities on joint lives.

From the end of the seventeenth century to the middle of the
eighteenth century was one of the most fertile periods in the
history of the purely mathematical theory. During this period
James Bernoulli (1654-1705), Montmort (1678-1719), and
De Moivre (1667-1754) between them developed the greater
part of the elementary theory as it is known to-day, illustrating
their work throughout by problems in games of chance, from
which it originated.

To James Bernoulli is due an extension of the problem of points;
he obtains, substantially by present-day methods, the probability of
throwing a given number with n dice; and he solves the problem of the
‘duration of play’, that is, of finding the probability that a player should
win all his opponent’s money, given the players’ initial capital and their
respective chances of winning a point. But his remarkable contribution
to the theory is the theorem known by his name (pp. 58-60), the second
part of which consists of an approximation to a probability by purely
algebraic methods.

The work of Montmort goes over the familiar ground of dice
and card problems; in addition it comprises valuable additions
to the theory of permutations and derangements, including the
solution of the ‘problem of treize’ (p. 97), and contains the
elements of finite differences and the theory of recurrence
relations. Many of these results were arrived at independently
by De Moivre to whom, moreover, are due the formulae for the
chance of throwing a given number with an n-faced die, and that
of an event succeeding consecutively a given number of times.
To De Moivre is due the idea of approximating to probability
formulae by means of logarithms; in this connexion he discusses
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the approximation to the value of the binomial coefficients
occurring in Bernoulli’s Theorem, and gives a formula which is
practically equivalent to Stirling’s Theorem (p. 67); it would
appear that this theorem had been discovered at about the same
time by Stirling himself.

We thus see that, in the effort to discover new mathematical
methods to handle problems in probability, there emerged a
great deal of work on permutations and combinations, finite
differences, recurring series, the idea of summation of infinite
series, and many new trigonometrical formulae. These were
still in the main a continuation of developments in the Latin
countries; the problems dealt with were those that arose from
the way of living of the aristocracy. But a new period was
setting in, one of criticism and examination preparatory to the
French Revolution of half a century later. We can observe the
beginnings of this phase in the controversies that arose between
Leibniz and James Bernoulli; the latter had attempted, by
inverting his theorem on the probability of occurrence of a
group of events, to determine the probability of the event
itself. Thus what later became a major issuc, the ‘probability of
causes’, was raised in mathematical and philosophical form for
the first time.

Meanwhile, under the influence of the work of English experi-
mentalists, mathematical physicists, and astronomers, the same
problem arose in a new form, one associated with what is called
the ‘theory of errors’, the reasons that can be adduced to
explain why sets of observations of the same measured quantity
are always, to some extent, discordant among themselves. This
was a problem of theoretical science, arising from the needs of
experimental practice, and it was one that was certain to
intrigue natural philosophers studying scientific laws from a
mechanistic standpoint.

From the scientific point of view Thomas Simpson, in his
Miscellaneous Tracts (1757), was the first to examine critically
the implications of taking the mean of a set of astronomical
observations of the same event. Thus this theory, now an
integral part of the subject of the significance of errors, owes
its origin to astronomical needs. Naturally, the French ex-
perimentalists were by now equally concerned with the same
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problem. In 1770 Lagrange published his memoir on the method
of taking the best value from among a series of observations.

This work, which had in part been anticipated by Simpson, discusses
the probability that the error of the mean of n observations should lie
within assigned limits, and determines the most probable error of the
mean. Again, if it is known that the errors in a set of observations
must be one of the numbers +4-1, 4-2,..., +m, and that the chances of
these errors are equal, or proportional to given quantities, Lagrange
shows how to determine the probability that the error of the mean
should have an assigned value or lie within given limits.

All these results are obtained by expansion of multinomial
expressions and other purely algebraic processes; but at the
same time a new conception was introduced by Simpson and
Lagrange which proved later to be exceedingly fertile in analysis
—the idea of an error curve. For reasons to be explained in this
book, ‘errors’ or divergences from the ‘true’ value necessarily
consist of a discontinuous set of data; but apart from the
calculus of finite differences, which was still a comparatively
new and little known subject, the whole field of mathematics
concerned itself with ‘continuous’ phenomena. Thus, in the
face of mathematical limitations, the facts regarding the nature
of error were altered to suit, and both Simpson and Lagrange
introduced the notion of continuous variation in error. The
analogy did not proceed very far; but nevertheless, the concept
of errors in a continuum x with a probability function ¢(x) had
now found its place.

In 1778 Daniel Bernoulli published a memoir on errors of observa-
tions, in which he remarks that the common method of treating dis-
cordant observations, by assuming that the true observation is the mean,
presupposes that they are of equal weight, whereas small errors are
surely more probable than large ones. Bernoulli therefore proposes to
measure the probability of an error x by the number /(r*—2z?), where
7 is a constant; then the best value x to be obtained from a set of
observations ,, ..., Z, will be that which makes the product
V{2 — (2 —x)}}f{r*— (x3—2)%}... & maximum. In effect Bernoulli thus
assumes the probability curve to be a circle and applies to it the method
of inverse probability (p. 164).

The idea of continuity in connexion with probability shows itself in
other researches of Daniel Bernoulli, in which his purpose is to demon-
strate the use of the differential calculus. For example, he discusses
the probable distribution of liquid in three urns, initially containing
different liquids, if for a time ¢ liquid is allowed to flow from the firat
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to the second, from the second to the third, and from the third to the
first. We may also note here the work of Buffon who in 1777 applied
the notion of probability to geometrical problems; thus, if a coin is
thrown on a table ruled in squares or equilateral triangles, it is required
to find the probability that it will fall clear of the bounding lines.
Buffon’s most famous problem (p. 86), requiring the use of integral
calculus for its solution, is found in the same work. It is of interest to
note that the result has several times been used to calculate experi-
mentally the value of 7 with, however, suspiciously good results.

The critical work of the French Encyclopédistes, to which we
have already alluded, did not proceed far, conducted as it was
by individuals who were for the most part non-mathematicians
and who failed therefore to distinguish between those considera-
tions which are mathematically and those which are socially
important. Even a distinguished mathematician like D’ Alem-
bert, who directed his criticism at the fundamental definitions
in probability theory, succeeded only in arriving at the most
preposterous conclusions. The Marquis de Condorcet dealt
with such questions as the probability of election of a candidate
by a given number of voters, and the probability of a tribunal
arriving at a true verdict in a trial. In view of his faith in the
necessary progress of the human race towards happiness and
perfectlon it is one of the ironies of history that he himself was
condemned by the revolutionary tribunal.

It is during this period that the problem of ‘inverse proba-
bility’, first considered by James Bernoulli, again shows itself,
in two posthumous memoirs by Bayes which appeared in the
Philosophical Transactions for 1764-5. Bayes gives, in geometri-
cal form, the theorem that, if an event has happened p times and
failed ¢ times, the probability that the chance of success will
lie between the values a and b (all values being equally likely) is

b 1
fxP(l—x)? dx / { zP(1—2x)? dxz. Bayes then proceeds to evaluate
a 0

these integrals by approximation. It would be interesting to
discover whether the investigations of Euler and Legendre on

1
the Beta function [P(1—=z)?dz, which began shortly after
0

1770, were suggested by the work of Bayes. For us, however, its
importance lies in the evidence it affords of the convergence of
the subject-matter treated in England towards that of France
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on the threshold of the Revolution: this, of course, is only a
slight aspect. Bayes, himself a clergyman living in the middle
of the eighteenth century, turned his attention to these ques-
tions, directly or indirectly, under the influence of a sceptic like
Hume (1711-76) or an idealist like Berkeley (1685-1753). These
latter were themselves working on the ideas of Locke (1632-
1704) and Hobbes (1588-1679). Hume, we know, made frequent
contact with, and was much influenced by French writers; thus
it was in this atmosphere that Bayes attempted to state in
symbolical form the relation between cause and effect as it
shows itself in probability. It is worth recollecting that, diverse
as their outlooks may be on other matters, Locke, Berkeley, and
Hume are at one in their distrust of mathematical reasoning
and tend to rely on probability rather than on certainty.

If any single person has to be accorded the merit of syn-
thesizing the development of the subject at this stage, that
person is Laplace (1749-1827) who, living and working through-
out the revolutionary period, drew together the theoretical and
philosophical conclusions which had emerged from the problems
of gaming on the one hand, and from the discussion of experi-
mental errors, on the other. In addition Laplace established the
connexion between these and the corresponding questions in
mortality and life tables which lie at the basis of insurance
statistics. It is here also that the first specific statement of the
Error Function is formulated; and although it was later dis-
covered independently by Gauss (1809) we can accept the view
that all the essentials of probability theory and most of the
deductions from it are contained in Laplace’s great synthesis.
From this time onwards it was inevitable that developments in
any one of the fields—philosophical, logical, mathematical and
experimental, industrial, financial, actuarial and statistical—
were bound to affect each other and to grow from the same
broad principles. One of these principles, established by La-
place, is the method of Least Squares, which he deduces from a
set of very general assumptions. He shows, in fact, that if we
suppose the mean of a set of observations to be the most prob-
able value, and positive errors to be as likely as negative ones,

the error function for the observations is of the form ;-/?— ez,
w
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Actually, the method of Least Squares had previously been
used in astronomy by Euler and Gauss, but Gauss was the first
who endeavoured to justify it by an appeal to probability
theory.

The beginning of the nineteenth century marked a change of
profound importance, if not in mathematical methods, at least
in the subjects to which these methods were applied. The
Industrial Revolution had already set in, with its modern
problems of factory production and increasing populations;
from these emerged a vast array of social problems which in
response to a slowly developing public conscience were becom-
ing the subject of closer and more refined statistical investiga-
tion. Thus 1801 saw the initiation of the English population
census. A short time later the growing Trades Union movement
began to maintain a continuous index of unemployment figures
among its members. Simultaneously, under the drive of indus-
trial needs, and with the funds allotted in universities and else-
where to experimental studies, scientific investigation proceeded
apace and with it a whole range of new problems emerged.

In a sense science was, however, largely in the engineering
phase, and while questions of experimental error were still dis-
cussed, the scientific outlook was highly mechanistic, with little
regard for any consideration of statistical qualities in Nature.
But the Industrial Revolution, which brought about an immense
increase in production, was one of the driving forces towards
foreign trade; here, then, on the side of insurance a new impetus
was given to the development of the subject, in a field where
mechanism had no place and average changes were the qualities
that required study. We therefore find during this period a
development of those methods of a statistical nature which are
required in commercial expansion and social investigation.

Nevertheless, experimental work was proceeding on chemical
and physical principles; in particular, interest was focused on
the characteristics of gases and gas mixtures, and the pressure
laws governing them (possibly under the influence of the new
uses for illumination to which inflammable gas was being put).
As early as 1660 Boyle had discovered his gas law from entirely
experimental considerations; the idea that a gas, impingeing
on an obstacle, consists of individual particles, and that
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the pressure it exerts results from this mutual impact, had
been noted many centuries before, and various unsuccessful
applications of the idea had already been made by Newton. In
1738 Daniel Bernoulli showed that Boyle’s Law follows from
the hypothesis that the gas consists of a large number of moving
particles, and that the pressure arises simply from that exerted
by the gas on the walls of the containing vessel. So the position
remained until the turn of the century when, as we have indi-
cated, attention was drawn to the properties of gas mixtures.
Thus, in 1802, Dalton enunciated his law for the pressure of
gas mixtures, basing it on the tacit assumption that the motion
of all the particles involved was uniform. By the middle of the
century Clausius (1847) and Joule and Kronig (1857) had shown
how to express the pressure in terms of the mean velocity of
the gas particles.

Meanwhile, the philosophic problems associated with proba-
bility, which had emerged from the writings of the Encyclo-
pédistes, were being examined and extended by De Morgan,
Venn, Boole, and others. The law of Laplace-Gauss was well
accepted as the necessary distribution function for a combina-
tion of ‘random’ factors. By 1860 Maxwell was therefore in a
position to apply these ideas to the random motions of gas
molecules, and from this there rapidly developed an elaborate
statistical theory of gases.

We should note that this marks a culminating point in the
theoretical development, in the sense that we have presented
a new class of problem in scientific method. For, by his
analysis, Maxwell showed how the characteristics of a large
mass and the laws exhibited by it in various circumstances are
related to the corresponding characteristics of particles at a
‘lower’ level. Although since that date many fruitful develop-
ments of Maxwell’s theory have occurred, the next stage in its
application was not until the beginning of the twentieth century,
when the experimental discovery of still more elementary forms
of matter (electrons, protons, neutrons) threw up a similar type
of problem for study: namely, how to express the character-
istics of the atom or molecule in terms of the more elementary
characteristics of the electron, proton, ete., on the assumption
that these show themselves as the result of statistical combina-
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tion. We may put it shortly by saying that the step from
Newtonian theory for the motion of a body to Maxwell’s theory
for the characteristics of a gas is similar in type to the step from
atomic characteristics to the quantum theory.

It remains to point out that there exist at the present day
groups of investigations of a statistical nature arising from
insurance, actuarial analysis; industrial statistics and their
application to production and distribution; the statistics of new
social problems and the statistical approach to questions in
purely scientific inquiry, including genetics, quantum mechanics
and mathematical logic, and these, admittedly requiring
specific treatment, are usually dealt with as if they were
separate and distinct fields. All these developments require a
new unification and synthesis, such as was performed by Laplace
in his day; the efforts that have been made to this end, merely
by the production of a theory of probability as an extended
branch of logic instead of as an actual and vital part of scientific
process, must, when seen in perspective with this historical
movement, fail in their function. That unification has yet to
be found.



CHAPTER II
THE SCOPE OF PROBABILITY

1. The meaning of chance

ALL events in the universe are interrelated and affect each other
to a greater or less degree; for example, the reader of this book
will be affected by all the factors which brought the book into
existence, and these range from the manufacture of paper and
ink on the one hand, to the history of the authors, their parents
and teachers, on the other. Thus all events have an enormous
number of causes, some more important than others. It follows
that, in any attempt to obtain information about them, some
selective principle is necessary in order to eliminate what we
suppose will turn out to be the less relevant facts in a particular
case; indeed, by the mere use of the word ‘event’, we are focus-
ing our attention on the thing that interests us, all other things
being for the moment irrelevant.

Science is concerned with particular kinds of events which
interest us. The procedure which characterizes scientific method
consists in isolating rational sequences of events, that is, events
which appear to form a logical chain when interpreted in the
light of certain fundamental assumptions. Thus, a ball is pro-
jected into the air with a specified speed: it rises to a certain
height and reaches the ground at a certain distance from the
point of projection. A scientific study of this projectile attempts
to connect this sequence of events so that one or more of them
follow as a logical conclusion from the others. For this purpose,
in the first place we ignore all other events except these, e.g.,
we ignore the temperature of the atmosphere, the possible
defects in the apparatus used for the projection, and the
personal views of the experimenter; and in the second we assume
the operation of some guiding principle, frequently described as
a ‘law of force’. Such a problem belongs to the science of
rational mechanics, which by postulating laws of force purports
to deduce mathematically the effect of a given system of forces
acting on a given system of bodies. In other words, one of the
aims of mechanics, as of any other branch of science, is pre-
diction. (What interests us, in a sequence of events, is the way
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in which they can be grouped together to facilitate prediction
and thus effect control over Nature.) The accuracy of the
prediction will consequently depend not only on the selection
of events, but also on the guiding principle which we were led
to make in formulating our science. We are not justified in the
first instance in assuming that this process will lead to results
which agree with observed facts; if, however, we wish to
sharpen the accuracy of our prediction, it is clear that we can
do so by making a study of those events which we rejected pre-
viously as being less relevant to the problem. This might also
necessitate a change in our guiding principle. This sharpening
process may be repeated again and again. At any stage we define
the difference between the event predicted and the actual observed
occurrence as a chance effect. While one field of science, which
we have called a rational system, occupies itself with predic-
tions which involuntarily exclude or ignore these chance
differences, another field takes them as its object of study,
under the name of ‘deviation’ or ‘experimental error’. It is
with this that the calculus of probability is concerned in its
application to experimental practice.

For certain purposes of analysis, a guiding principle is here
again frequently assumed, when ‘chance’ is conceived as itself
the result of a large number of equal elementary causes com-
bined together. In the examination of this theory, points are
often illustrated by models and analogies such as those dealing
with balls chosen from urns, each such choice being thus re-
garded as a simple, elementary event.

We must begin our study with a word of warning. The
abstract theory of probability, which seeks to comprehend those
facts which elude the ordinary rational systems, must itself
of necessity be a rational system, working by mathematical
methods and based on certain assumptions. So it frequently
happens that problems which appear to be about physically
real things, such as balls extracted from an urn or a coin tossed
in the air, have nothing specifically ‘real’ about them, in rela-
tion to balls and urns: they are simply abstractions fitted into
a picture to assist the mathematician. The justification for
using such abstractions in our problems cannot rest finally on
any theoretical basis alone, but in the last analysis has to be
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found from the experimenter before or after the abstractions
have been applied. In any case we must distinguish between the
mathematical problem of choosing a mathematical ball from a
mathematical urn—an imaginary problem—and the actual urn,
the balls contained in it, and the actual process of choice. The
former may guide us in analysing the latter.

An example will make the need for this distinction clear.
If 100 persons each have to choose a number between 0 and 9
inclusive, how often will the numbers 0, 1, 2,... be chosen?
The abstraction which a mathematician might make from this
problem would leave him with a purely mathematical question
concerning arrangements, the answer to which is, that each of
the numbers will ‘probably’ be chosen ten times. But this is
not the real question; what we want to know is how people
actually choose, and here we are faced by considerations of a
psychological and social nature. In point of factit has been found
by actual testing of a large number of individuals that 7 and 3
are much more frequently chosen than any other number; these
numbers both, of course, have a long historical and religious
tradition behind them. As we see from such an example, the
question whether the abstraction may be validly applied in a
given case is not to be begged. The mathematical problem deals
with the number of arrangements that can be conceived as
possible in the circumstances, the physical problem with the
groups of these which actually come into play. We can develop
a mathematical theory of arrangements but a separate justifica-
tion has to be found for it if it is to have practical applications.
Thus, the mathematician may postulate that ‘an event can
happen in two different ways’; whercas the physicist knows
that it does happen in one way only.

In the above problem we recognize two questions inherent in
the theory of probability: a mathematical question concerning
possible arrangements, and a physical question concerning
actual choice or action. There is also a third kind of problem
which we now consider. Most human beings, even if they are
not scientists, analyse events in a rational way, that is, they
recognize order and recurrence and are so led to develop a sense
of expectation as a subjective reaction. If we study a person
scientifically we may ask whether his expectation of an event
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is justifiable, that is, whether his past experience is sufficient to
produce the expectation that would correspond to the reality
which the future will bring forth. For instance, if one wakes up
in the morning and hears a cart rattling in the street, there
comes the thought, ‘I expect that is the milkman’, or else ‘It is
probably the milkman’. Obviously it is either the milkman or
it is not, and it is one’s past experience, in which one’s expecta-
tion has sometimes been verified and sometimes not, that deter-
mines the strength of the expectation. Whether that expecta-
tion will be verified or not will depend on how far our psycho-
logical reactions conform closely to the underlying processes of
the external world. We see, then, that such a question is not to
be decided by a study of all the possible arrangements which the
future may conceivably bring forth: we cannot thus be sure,
without elaborate investigation, that psychological expectation
is itself a sure guide to future occurrence.

To sum up: in our analysis of situations relevant to ‘proba-
bility’ we have discovered three possible fields of study, all in
some way interrelated and each a partial approach to the general
problem:

(1) a mathematical theory of arrangements;

(2) the frequency of actual occurrences;

(3) the psychological expectation of a participant.

Problem (2) is the one which arises in actual practice, when
in describing the course of past events we attempt to predict
the future: in this respect it does not differ from every other
experiment, which is always concerned with the past as a guide
to the future. Problem (1) is a mathematical discussion of
abstractions which may be useful in (2) if they are shown to be
relevant; while (3) represents the subjective state of a person
who posgibly makes a rough use of (1) and (2) when he is faced
with the events in (2).

In (1) the conception and practice of chance do not occur:
every problem must be precisely defined and has a precise
answer. For example, we may ask, out of a pack of 52 cards,
what proportion of all possible groups of 13 will contain 4 aces ?
Here no question of chance arises. Insuch a problem the exact
number of cards, and the kind of hand, are specified: there are
no ambiguities in the situation—the 52 cards and the 4 aces
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are isolated in an abstract way from all the rest of the universe:
in short, they are given. Any actual process of selection is
deemed irrelevant, and the answer is unique. Precisely the
same situation arises with a geometrical problem: thus, we are
given a triangle with certain properties and we proceed to
deduce certain consequences. On the other hand, chance, as we
have defined it, enters into (2), and again in (3), since the
individual concerned makes his own analysis which is necessarily
partial; but what is chance to him need not be chance to the
scientist engaged with problem (2).

Chance in Scientific Observation

A scientific observation depends not only on instruments but
on the circumstances in which they are used—for example, the
individual who performs the experiment, the temperature of
the laboratory, and so on. Hence the results depend, to some ex-
tent, on the differences between individuals. The object of all
scientific experiment is to obtain objective information about
the world: by objective information we mean information that
can be stated in a form independent of the particular experi-
menter and his idiosyncrasies. We call this information un-
variant to the individual.

Suppose that we wish to measure the length of a desk: what-
ever definition of ‘length’ we may adopt, if it is to be of any use
for scientific purposes it must be invariant to the observer. But
one observer applies a measuring rod to the desk and finds that
it records 25-1 inches, another finds instead the reading 25-2
inches, a third 24-9 inches, etc. What then is the length of the
desk ? At the end of such a series of observations a scientist has
in his possession a set of numbers, which represent all the
measurable information that he can obtain for his purpose. He
has then to say to which, if any, of his numbers the term ‘length’
will be applied; the differences between the selected number
(the ‘length’) and the rest he assigns to ‘chance’. They are
presumably due, among other things, to the observer who, so
far as an invariantive statement is concerned, is a chance one,
irrelevant to the issue. The chance differences are said to be
‘errors of observation’; but in effect such a term is simply a
means of grouping together all that remains after the rational
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abstraction, which has been called ‘length’, has been made. In
this way the idea of chance becomes identified with the cause
of so-called ‘experimental errors’: the one implies the other.
The definition of length really specifies the method of isolating
the experiment from the rest of the universe in an attempt to
obtain objective information and to build up a logic of science:
the ‘errors’ represent the real connexion (or part of it) between
the isolate and its residue with respect to the universe.

From the illustrations we have given it will be observed that
the difference between the mathematical and the physical
approach to a problem is that, whereas in the former the field
of discourse is defined in advance, in the latter the primary
object of our inquiry is to find it. A physicist who is studying
the properties of matter discovers that it can be broken down
into electrified particles; thus he has now found a field of
investigation. The mathematician can now begin his analysis
with the statement: Given two isolated electrified particles inter-
acting in a given way, can their future behaviour be predicted ?
Such behaviour can then suggest a new field of investigation
to the experimenter who, unlike the mathematician, is never
‘given’ two isolated electrified particles.

Thus in the one case a mathematical field is postulated and
we examine its logical implications: in the physical problem
the make-up of the world itself is the unknown, and the object
is to discover what in fact is its structure. In practice, however,
both physicists and mathematicians work hand-in-hand and
supplement each other, as shown in the above example. The
subject of probability, therefore, to be complete, has to play
its part in both ficlds; the mathematician has to forge an instru-
ment which the experimenter can use in practice.

2. On the definition of probability
Definition of Mathematical Probability

We propose in the first instance to define ‘probability’ in a
purely mathematical sense, that is, in connexion with problem
(1). The definition we give is the following:¥

‘If there is a group of N letters consisting of n, letters a,, n,
letters a,, ..., and n, letters a,, the probability of a letter specified

t See also Peano, Rend. Accad. Lince: (5), 21 (1912),, 429.
43260 )
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as belonging to the whole class a,, a,,..., @, being a letter
a,is n,/N.’

Having posed this definition we may legitimately ask whether
it may be applied in a particular problem, that is, whether the
definition of probability has any relevance to an actual experi-
mental case. For instance, if a penny is tossed, what is the
probability of a head? We can construct a model problem
which we imagine to be like it by making correspond the word
‘head’ to the letter a, and the word ‘tail’ to the letter a,, whence
we obtain a mathematical solution; we replace the real penny
and the action of tossing by two arrangements which we may
call either ‘head and tail’ or ‘e, and a,’: in this way the actual
penny no longer concerns the mathematician.

But this gives us no definition of probability of a physical
event, such as the tossing of a coin: our knowledge of such an
event implies knowledge of the circumstances in which the coin
is tossed. An experimenter who studies the problem might ask
himself how frequently the head appears: he might study the
detailed process of tossing but whether he is entitled to make a
precise prediction on that is another matter. An onlooker might,
if interrogated, reply that heads and tails are equally likely: his
answer emerges from a collective experience, a result of having
seen actual penniesspun. To bring the term ‘equally likely’ into a
mathematical definition would be to confuse (3) with (1), just as
to use the term ‘equally frequent’ would be to confuse (2) with (1).

Definition of Statistical Probability

We define a class of event by a distinguishing quality of that
class, e.g. the event known as traffic accidents; these grow in
number with time and will be referred to as a population of
traffic accidents. At any given moment the ratio of fatal cases
to the total number hds a certain value which itself in general
varies with time; this ratio we call the statistical probability of
fatal accidents. Its importance lies in the practical fact that
it is used either as a guide to prediction concerning the number
of such cases in the future, or as a factor in determining how
we can attempt to diminish them.

We note two points of difference between this definition and
the preceding. In the latter the population of events whose
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arrangements we considered was in general finite and deter-
mined, and the probability of any subclass was a matter for
deduction. In the case of statistical probability, both the popu-
lation and the subclass, although defined in Nature, are not
initially bounded in extent and, in fact, they grow with time.
The significance of the probability lies in its application to
future members of this growing class; thus the application is
essentially of an inductive nature. This is not to say that the
two methods of approach have nothing in common; when we
come to discuss what is called the significance of a statistical
probability it will be found that the mathematical definition
affords us an idealized standard against which the significance
may be measured. Statistical probability finds its application in
many branches of insurance, in the analysis of demographical
statistics, and plays a part in such natural phenomena as
meteorology, where the deductive methods of physical science
are not yet sufficiently precise to enable satisfactory predictions
to be otherwise made.

A priors Probability

There is a form of statistical probability which appears in
the literature of the subject under the name of a priori prob-
ability. Let us suppose, for example, that we are examining
the probability of an individual being killed by traffic in the
streets of a busy town. Although the actual data from which
the statistical probability curve could be drawn are not avail-
able, it is nevertheless possible from general considerations
based on our knowledge of the circumstances and the impres-
sions we have gained from others’ experience, to construct a
probability curve which will at any rate serve as a first approxi-
mation to the truth. Thus we know that between 8 a.m. and
10 a.m. many people are in the street on their way to work, and
that between 4 p.m. and 6 p.m. they are returning home.
Moreover, we may expect that the ordinary traffic of the day
is also augmented during those periods by the cars belonging
to business men. Accordingly, most people would agree in pro-
ducing a curve like that on the following page. From this we
can determine an a priori probability; its significance lies in the ..
fact that, if we wish to use it, it gives us a first criterion for
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judging whether a batch of fatal accidents occurring, say,
between 2 and 3 in the afternoon can be regarded as normal
or not. Thus it enables us to make a first rough estimate of the
probability of obtaining such a sample.

No of accidents

AM. P.M.

It is, of course, admitted that the details of the probability
curve in the figure will vary with the person who constructs it,
but there are cases in which no such differences arise. For
example, if & penny is tossed, all will agree that on the basis of
past experience the a priort probability of obtaining a head is }.
This does not rest solely on the mathematical ground that a
penny has a head and a tail, but on the additional fact that
pennies do indeed, on the average, fall with equal frequency on
head and on tail. If the general experience of tossing coins were
sufficiently exact and had shown that in fact heads appeared
51 times in a 100, the a priort probability would be accepted as
#). We shall see later, when dealing with Bernoulli’s Theorem
on the mathematical probability of obtaining certain propor-
tions in a given sample, that a knowledge of the proportions
in the original population is essential for the solution. There
we shall refer to it as the probability of an individual member
of that population; but in applying the conclusions to samples
drawn from it we must bear in mind that the probability in
question is merely a precise form of the a prior: probability
which we have been considering here.

Probability as a Branch of Logic
The subject of probability is approached by many writers from
a different angle, viz. as an extension of a branch of logic. A set
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of facts, called the ‘data’, are stated, and a proposition referring
to them is set alongside them; among the numerous relations
that might be stated between the proposition and the data we
consider one type in particular. While we usually assert that the
proposition is either a true or a false statement about the data
(it is certainly true if the data imply the proposition), an inter-
mediate state may be considered. A class of 30 children may be
the data and the proposition, ‘All these children have brown
eyes’. In this illustration the restricted form of the data tells us
nothing about the children’s eyes: the proposition is therefore
not implied by the data, but is nevertheless not inconsistent with
them. If further information were available it is possible that
the proposition might be true; but as it stands, it outstrips the
data. When such a situation arises it is said that the proposition
has a ‘probability relation’ with respect to the data; the probabi-
lity relation is then regarded as a member of a class of relations,
the extremes of which are ‘true’ and ‘false’. We may say that

‘A proposition is true’, or

‘A proposition has a probability’, or

‘A proposition is false’.

It will be noticed that this approach to probability suggests
that it is primarily psychological; if it were purely logical there
would be no escape from the position that the proposition is
either implied or not implied by the data. It is when the pro-
position and the data are not thus rigorously bound together
that the psychological attitude enters into the question. We
feel that although the implication is not logically complete,
nevertheless if further data were available the proposition would
be found to be true. Thus the probability relation implies that
when the proposition is used for enlarging the data it may be
found to be true; this views the probability relationship as a
step towards the accumulation of further data and the final
establishment of a truth or falsehood: otherwise it remains
artificially separated from its function.

Consider the above illustration: to say that there is a proba-

bility that the 30 children all have brown eyes is futile unless

we go on to discover whether they have, or what proportion of
them have brown eyes. When this step has been taken, the final
data imply the truth or falsehood of the original proposition.
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This interpretation of a probability relation gives it a value
in scientific method. If, however, we attempt to give it a value
in itself by isolating it from the necessary part that it should
play in scientific method, the subject may be indeed developed
further but necessarily not on the present lines. To appreciate
this fact we must return to the concept of expectation: given a
set of data and a proposition which outstrips them, each
individual, on the basis of his past experience, has a sense of
expectation that, if further data were accumulated, the proposi-
tion would be verified. A group of experimenters of wide experi-
ence in the particular field, i.e. on the basis of previous data
not here specified, would presumably agree that they strongly
suspected or rather expected the proposition to be true, or
thought it might be true. They may thus find themselves agree-
ing that a gradation in the sense of expectation is associated
in their minds with the possible truth of a proposition. To
proceed further along scientific lines some objective measure of
expectation must be found, otherwise the theory as so con-
stituted cannot come within the range of physical science. It
is possible that the expert psychologist might find such a
measure, by examining the reactions of the experimenters, but
not directly from the data. A statistician might find such a
measure, but he would derive it from the data alone, and not
from the experimenters’ sense of expectation.

An attempt to overcome the difficulty respecting the non-
metrical nature of probability when approached in this way
has been made by laying down the following axioms:¥

‘1. If we have two sets of data p and p’, and two propositions
g and ¢, and we consider the probabilities of ¢ given p, and of
¢’ given p’, then ... the probability of ¢ given p is either greater
than, equal to, or less than that of ¢’ given p’.

2. All propositions impossible on the data have the same
probability, which is not greater than any other probability;
and all propositions certain on the data have the same proba-
bility, which is not less than any other probability.’

1 Jefireys, Scientific Inference, ch. ii. A very similar artifice is adopted by
F. P. Ramsey (Foundations of Mathematics, p. 168) but he retains a subjective
criterion for the strength of a belief, so that his symbols have an entirely
personal reference. See footnote, p. 27.
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Here by the phraseology used the sense of expectation has
been given a status that is invariant to the individual and
is attached to the objective situation; at the same time it is
implied that this psychological probability is measurable. To
circumvent such difficulties, what amounts to a verbal artifice
has been adopted. The gradations in psychological expectation
are identified with the real numbers, using instead of the word
‘truth’ the word oNE, and writing it as 1; and using instead of
the word ‘falsehood’ the word zZERO, and writing it as 0. By
the use of this verbal method with the foregoing axioms all
probabilities of this nature apparently become measurable by
numbers lying between 0 and 1: thereafter it is a simple matter
to derive the ordinary formulae for mathematical probability
by setting out a series of theorems, such as:

‘If several propositions are mutually contradictory on the
data, the number attached to the probability that some one
of them is true shall be the sum of those attached to the proba-
bilities that each separately is true.’

In this treatment the idea of psychological probability has
been transformed merely by use of an analogous terminology
into mathematical probability; the fact that psychological
probabilities have been stated as numbers, which are additive
and range between 0 and 1, would, if these statements were
true, imply an elaborately detailed knowledge of psychological
processes and their measurable qualities. In point of fact, of
course, no such data are available. It follows that, after these
assumptions have been made, the subsequent treatment of the
subject cannot differ in essentials from that of ordinary mathe-
matical probability; although the fact that it is artificially
based on psychological ideas may have the effect of confusing
the later interpretations. If it is necessary at all to emphasize
the gravity of the assumption that psychological probability
is measured by numbers lying between 0 and 1, it is, for
example, sufficient to point out that one could equally well
arrange that ‘truth’ should correspond to the colour blue, and
‘falsehood’ to red, all intermediate colours in the spectrum
being assumed to correspond, somehow or other, to intermediate
states of feeling. Such an arrangement would imply the
same type of fallacy even though, as it stands, it does not



24 THE SCOPE OF PROBABILITY Chap. II, § 2
immediately involve assumptions of measurability, but merely
those of correspondence.

At this point it is desirable to add that, in refuting a purely
psychological approach to probability, we are far from denying
that that line of development is necessary. We have already
said that the concept of probability itself marks a useful stage in
scientific method—‘useful’ in the sense that it suggests the
direction in which to seck and interpret data; it is the stage
intermediate between partial ignorance and experimentally
sufficient certainty.

The Principle of Insufficient Reason

In this connexion it is worth considering a method which
various writers have evolved in order to arrive at an estimate of
the a prior: probability. It is commonly stated that if there is
insufficient evidence to justify a probability assertion, the latter
can be established by referring it to the ‘principle of insufficient
reason’. Let us quote Jeffreyst on the subject:

‘How do we assess the probability of a proposition before we
have any means of knowing whether it is true or false? It has
often been said that assessing a probability implies some
knowledge, and that therefore we cannot assign a probability
when we are in complete ignorance. This opinion must be
directly contradicted. Complete ignorance is a state of know-
ledge . . . and the probabilities assigned upon it are perfectly
definite. If we have no means of choosing between alternatives,
the probabilities attached to those alternatives are equal.’

To adopt this standpoint is to deny the whole basis of science.
Science is based on knowledge, if only partial, and nothing
whatsoever can be built on ignorance: without data no conclu-
sion can be drawn. If the fundamental question of our subject
can be stated in the form, ‘Given certain data in a given situa-
tion, what precise deduction can be drawn from them?’ then
the problem of drawing a deduction from no data does not
fall within its scope. If we are in complete ignorance about an
event, then we are in complete ignorance of how to estimate its
probability. In this case the principle of insufficient reason
asserts that the probability of its happening is }, since the sum

t Scientific Inference, ch. ii.
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total of our relevant knowledge may be stated in two mutually
exclusive propositions which exhaust all the possibilities:

The event happens.

The event does not happen.

But we must not, however, confuse the nature of the event
and the data concerning it with these two verbal propositions.
By hypothesis, we know nothing about the event; the above
two propositions provide data for another problem, which may
be stated simply as:

‘Given that a certain statement belongs to a class of two
statements, what is the probability that it is the first of
these ?’

If the principle of insufficient reason is used in this way, it
tells us something about the arrangement of statements but
cannot provide us with any estimate of truth-probability of
their content.

It might be maintained that in practice the principle is used
in this way to assess the probability as } and to base action on
the assessment. As an unqualified statement this is definitely
untrue; when we are unable to estimate a probability, we may
as a matter of convenience assume a tentative value of }, but
only as a matter of convenience in practice. Every illustration
which can be produced, however, in which the principle appears
to provide us with an estimate of probability in the sense stated
above, turns out to be so constructed that by definition all
relevant information that any one would know or immediately
seek to discover is automatically excluded. Action is never
taken on the basis of no information, and judgement, when
it has to be applied, must be applied to some content of
fact.

As an illustration of an abstracted problem consider the
following:

AB is a line of unknown extent, XY is a segment of 4B, of
unknown extent and position. If P is a point situated in 4 B,
what is the probability, we ask, that P lies within the segment
XY ? On the basis of the above principle the answer would be 4.
There is in reality no such answer, for we have insufficient data
on which to make even an estimate of the probability, since the
points 4, B, X, Y are known only to exist on an infinite line.



26 THE SCOPE OF PROBABILITY Chap. 11, § 2
We can, however, state the three mutually exclusive proposi-
tions which together exhaust all the possibilities:

P lies to the left of X ;

Pliesin XY ;

P lies to the right of Y;
and the probability that a statement which is known to be one
of these three will be the second, is §. In actual fact, no rational
being would use such an estimate if, say, he were attempting
to recover an article lost in a street A B in which XY was a very
small section—even if it were the most brightly illuminated
section.

If indeed probability is to be used as a guide to action, as
it must be if it is to play its part in scientific method, then the
above illustration brings out the weakness of this approach. On
this basis, the probability of finding the article in X} would
be 4, whether the lamp is present or not; nevertheless, most
people would proceed straight to the lamp, since its presence
is more relevant to action than any abstract estimate of proba-
bility based on mere verbal propositions. 1t seems clear that
when a situation arises in which a priori probability can be
estimated only by means of the principle of insufficient reason,
this probability itself becomes insignificant as a guide to action,
and other factors become much more important.

Other Definitions of Probability

In the light of the above discussion, it is worth while examin-
ing the definitions that have been given by other writers, as a
preamble to their mathematical treatment of the subject.

James Bernoulli begins by defining probability as the measure
of the strength of our expectation of a future event: this is
clearly a case of (3), and Bernoulli’s treatment must, if con-
sistent, lead to a mathematical theory of psychology. In spite
of his initial definition, his analysis is carried through as if
based on the definition (1) and his treatment becomes that of
purely mathematical probability.

According to J. M. Keynes,t probability is not concerned with
events other than judgements or proposmlons thus his treat-
ment, although symbolical in form, is one of a non-measurable

t Treatise on Probability (1921).
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logic and rules out mathematics altogether in the accepted
sense.

J. 8. Mill,¥ quoting from Laplace, says: ‘Probability has
reference partly to our ignorance, partly to our knowledge. . . .
The theory of chances consists in reducing all events of the same
kind to a certain number of cases equally possible, that is, such
that we are equally undecided as to their existence; and deter-
mining the number of these cases which are favourable to the
event sought. The ratio of that number to the number of all
the possible cases is the measure of the probability. . . .

This is the definition to which Mill himself inclines, and is a
confusion of at least two of our three concepts of probability;
the confusion is complete when later Mill adds that ‘we must
remember that the probability of an event is not a quality of
the event itself, but a mere name for the degree of ground
which we, or some one else, have for expecting it. The proba-
bility of an event to one person is a different thing from the
probability of the same event to another, or to the same person
after he has acquired additional evidence. . . .’}

From what we have already said it should be clear that
Mill’s definition does not disentangle the various elements which
enter into probability. For he is obviously thinking of (1) when
the events are presumed, and of (2) when they are being formed
in experimental practice. We have seen how important it is
to distinguish between these two concepts; they are not inter-
changeable although they may be mutually helpful. To take
the statistical definition, viz. the actual ratio of favourable, to
the total number, of cases from a block of similar past events,
as identical with the mathematical definition of probability
would be to identify a number, which in general varies with the
growing population, with a unique mathematical value which
emerges from the definition of certain classes.

The various types of probability estimates may be illustrated
by the experiment of tossing a coin. We may say, as has already
been suggested, that the a prior: probability of a head appearing
is 4, a number drawn and posited from a wide but unspecified

1 A System of Logic, 8th edition, Book III.

1 Cf. Jeffreys, op. cit., p. 10: ‘A proposition . . . has one and only one prob-

ability. If any person assigns a different probability, he is simply wrong.’
See also footnote, p. 22.
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past experience. We may say that the mathematical proba-
bility is 4 on the grounds that there are only two possibilities,
head and tail, and that these are defined as having equal proba-
bility. Or we may actually perform an experiment; thus in the
following table we give the results of tossing such a coin 100
times, and the number of heads recorded after 10, 20, 30,...
tosses. It will be seen that the statistical probability ranges
from 0-46 to 0-65, and is therefore a function of the size of the
population.

No. of | No.of
heads tosses Ratio
(] 10 0-80
13 20 0-65
16 30 0-533
21 40 0-525
23 50 0-46
28 60 0-486
35 70 0-50
43 80 0-537
49 90 0-54
55 100 0-56

It is thus seen, even at this stage, that yet another problem
suggests itself as of importance in interpreting such data as
those given above. If we associate the mathematical definition
of the probability of obtaining a head (namely }) on any one
occasion, with the statistical probability as here defined, we
may inquire what is the mathematical probability that in the
first 100 tosses of a coin (probability of a head = }) fluctua-
tions from } of this magnitude will occur. We shall deal with
this question in Chapter V; but for the moment it is important
to recognize how mathematical probability may be used to
interpret a fluctuating statistical probability.

This fluctuation is, of course, necessarily associated, as in the
case of a coin, with the method of tossing. It is clear that with
a given coin which is tossed by some mechanical process
(beginning always with, say, the head upwards), it could be
arranged that the result of each toss is always head or always
tail; or, alternatively, that the ratio of the number of heads to
the number of tails takes a certain series of values within a
specified range.

The above example illustrates the fact, which we shall
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encounter frequently, that in any physical process to which
probability is to apply, there are three interlocked elements:

(1) a ‘population’ P, in the above case, of heads and tails;

(2) a process of selection S (here a mode of tossing);

(3) a sample 8 drawn from P by the application of S. This
process may be stated symbolically in the form ¢ = S(P).

In the previous examples where the coin has been tossed
100 times, it has been shown that, with the particular form of
S used in the experiment, the sample s drawn contains numbers
of heads in ratios lying between 0-46 and 0-65.

Some discussions of statistical probability, when they attempt
to link it up with mathematical probability, try to do so by
asserting that the ratio obtained by sampling a population can
be made to lie within increasingly narrower limits merely by
lengthening the process S. It seems clear, from what we have
said, that it is not simply the length but also the form of the
process that is of importance. The gap in the discussion will
not be bridged until it can be shown that there exists some
kind of process S which is capable of mathematical and
empirical definition, and of leading to such a result; any particu-
lar process of this type could then legitimately be called a
‘random’ one, and the class of such processes would in such
circumstances identify the mathematical with the statistical
definition. That all processes S do not fall within this category
is obvious from the fact that § can be deliberately designed so
as to violate the required condition.

The reader is advised to try this experiment himself, and to
note that the ratios he obtains are different from those given
above.

In his discussion of the subject, Coolidget attempts to sur-
mount the breach between the mathematical and the empirical
approach (i.e. between (1) and (2)) by the following ‘empirical
assumptions’ of the type to which we have referred.

‘1. If an event which can happen in two different ways be
repeated a great number of times under the same ecssential
conditions, the ratio of the number of times that it happens in
one way, to the total number of trials, will approach a definite
limit as the latter number increases indefinitely.

t An Introduction to Mathematical Probability (1925).
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2. If an event can happen in a certain number of ways, all
of which are equally likely, and if a certain number of these be
called favourable, then the ratio of favourable ways to the
total number is equal to the probability that the event will
turn out favourably.’

The first of these assumptions is devoid of mathematical
precision; first, because the question is begged by the phrase
‘the same essential conditions’. This is a phrase which com-
monly occurs in all branches of mathematical physics. It is
often posed as a fundamental proposition in scientific method
in the form, ‘The same experiment always produces the same
results when carried out under the same conditions’. For our
purpose it is important to note that no two experiments can be
the same; invariably they differ in time or place, and almost
invariably in experimenter and apparatus. This criticism
applies also to the phrase ‘the same conditions’: the test for
‘sameness’ in two cases is provided by the results, for these are
numbers which can be checked against each other. In the last
analysis the test whether these conditions have in fact been
fulfilled lies in the concurrence of certain intermediate and all
the final results. Thus the proposition quoted is meaningless;
it represents an effort to abolish a vital distinction between two
concepts which differ fundamentally and is simply a concession
to mathematical convenience.

So much for the criterion of sameness in the first empirical
assumption; in the second place, the assertion that the ratio
approaches a ‘definite limit’ cannot be justified by any mathe-
matical definition of a limit. It has to be dealt with in the
manner already indicated.

The second assumption is not an assumption at all, but a
definition, as is indicated by the phrase ‘equally likely’. This is
either an appeal to subjective psychology (under (3)) or a petitio
principit, in that the measure of the probability, as defined, will
by its consistency indicate a criterion for ‘equal likelihood’.

An interesting attempt has been made by Mises to erect a
theory of probability that would bridge the gap between the
classical mathematical and the statistical approach. The
former, as we have seen, is concerned with a given population
and confines its questions to those relating to the relative fre-
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quency of various arrangements of the elements of that popula-
tion. Mises’s theory is in the first place a statistical one. He
confines his attention to the infinite succession of unit samples
as they are drawn from an unknown population or as they
are created by the repetition of a particular action (e.g. the
tossing of a coin), and the questions that are raised concern
the nature of the predictions that can be made regarding the
occurrence or non-occurrence of a particular kind of sample in
the sequence.

Let the symbols 1 and 0 be used to represent ‘success’ and
‘failure’, or ‘black’ and ‘white’, the two possible outcomes of
an action. Then Mises is concerned with a collection of the type

1,0,0,1,1,1,1,0,1,0,0,0, 1, 0,...
and proposes to define its structure in such a way as to provide
a reasonable meaning to the phase ‘The probability of the
occurrence of 1°.

The nature of the definition of structure, however, must not
be such as to destroy the ‘random’ occurrence of the 1's with
respect to the 0’s; in other words, there must be present a per-
sistent disorder. This implies, of course, that by no detailéd
study of the system should it be possible, for example, for a
gambler to discover a pattern or law in the occurrence of the
symbols of such a form that he could arrange his gambling with
any certainty on the occurrence, say, of a 0 or a 1 at a series
of allotted positions.

To fulfil these requirements the sequence is restricted by the
following two conditions:

(1) If in the first n symbols, there occur m of the type 1,

then the sequence is such that

lim % = Pp.

n—sxo N
The probability of the occurrence of 1 in the sequence is defined
as p.

This statement may be put in a form more usual with the
treatment of sequences ; thus corresponding to any small num-
ber e it is possible to find a number of terms N, beginning from
the left, and a number p, such that for all values of n > N the
ratio m/n will continue to differ from p by less than e.
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(2) The second condition is the Principle of Disorder. It
demands further that the sequence shall be of such a nature
that by whatever system or law, related to the order of the
terms, a new sequence be formed from all or some of the terms
of the original, all such derived sequences shall separately
satisfy the previous condition with the same value of the prob-
ability p.

At this stage two points should be noted. Condition (1) at
first sight bears a very close similarity to assumption (1) of
Coolidge (p. 29).

Here we may remark, however, that whereas the latter took
the statement of convergence as an empirical assumption ap-
plicable to real statistical data, in the present case the condition
of convergence is merely a restrictive property of the collection
to be considered. The question whether sequences satisfying
such a condition do embrace actual statistical data empirically
derived remains open.

The second criticism may in a sense be much more serious.
The Principle of Disorder, applicable as it must be to every
systematically derived sequence, must impose very drastic re-
strictions on the original. It has been claimed, in fact, that if
conditions (1) and (2) are not actually inconsistent (in which
case the class of sequence defined would be empty), there can-
not be any wide range of types that satisfy both requirements
and that therefore the application to actual statistical data is
seriously restricted.

A sequence satisfying the foregoing two conditions is termed
by Mises a Collective, and the purpose of his investigation is
to show, if possible, that the fandamental theorems of mathe-
matical probability, viz. the Addition, Multiplication, and Ber-
noulli Theorems,t all hold for a Collective. It would then be
possible to state under what conditions these theorems might
be validly applied to the analysis of a statistical system.

In the pursuit of this objective great mathematical difficulties
have been experienced. To establish the multiplication theorem
a special definition has to be made to cover the case of two
Collectives that are mutually disorderly. In effect this is met
by the requirement that by no systematio transformation can

t Bee pp. 49, 51, 58.
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the one Collective be transformed into the other. On the other
hand, to establish Bernoulli’s Theorem Mises requires to apply
the Principle of Disorder already referred to, not only to
sequences transformed according to some law of position, i.e.
according to some specific function of », but also to all those
that can be derived by applying any regular rule to localized
qualities in the Collective, e.g. deriving a sequence by choosing
the numbers that are two places to the left of each 1.

We need not pursue this topic in greater detail. Serious
criticisms have been raised against the validity of the Mises
approach by Waismann, Kamke, Reichenbach, Popper, and
others. It is contended, for example, that condition (1) is in
itself meaningless ; that there can be no significance to the con-
vergence property without defining the law of the sequence, and
since the essence of the sequence is that it should be lawless
except for condition (1), there is an inherent contradiction in-
volved. Actually, of course, Mises’s first condition is really a
demand on the derived convergency sequence. Similar criti-
cisms have been levelled against the suggestions of Kamke and
Reichenbach, in their efforts to escape from the various logical
dilemmas aroused. The result is that the scope of the Collective
becomes so restricted that the class of illustration included
reduces almost to emptiness, it becomes increasingly difficult
to find actual illustrations that satisfy the requirements, and
the statistical value of the approach is thus seriously impaired.
The importance of the subject rests therefore rather on the
nature of the logical problems raised than on any adequate
bridge that may be built between statistical and mathematical
probability.

3. Mathematical determinism

Scientific investigation, when used as a guide to action, is
turned in the first instance towards making a prediction; it
seeks to state that if certain circumstances remain unchanged,
then an event will develop in a particular way. In mathematics
this process takes the form of strict logical deduction; in statisti-
cal work, on the other hand, the process is essentially one of
induction, and for that reason the final statement is accom-

panied with less assurance than the mathematician’s. The
4% D
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difference in outlook between the mathematician and the
empiricist is, however, more apparent than real; the former has
cast aside his doubts by postulating a given set of circumstances
and relying on mathematical logic: the latter, in making his
induction, is doubtful whether the ‘givenness’ can be carried
forward. Nevertheless, both scientists arrive at a unique and
precise conclusion. It is worth while examining how this can
occur, since our examination will bring out the part which
probability estimates play in the process.

The Typical Problem of Mathematics

Consider the problem of constructing a plane triangle from
the knowledge of two sides and the angle included between
them. If this knowledge is exact, the triangle can be uniquely
constructed, and all its characteristics, e.g. the length of the
remaining side and the angles adjacent to it, are uniquely
calculable.

This example can be taken as typical of a mathematical
problem: certain data are given and certain unique conclusions
follow logically. In addition to the ‘given’ facts, however, there
are always certain tacit assumptions implicit in the discussion
—in the above case, the assumptions of Euclidean geometry.

Suppose now that the initial data, for the construction of a
plane triangle, are two sides and an angle, which is not the
included angle. Then it is well known that in general there is
no longer a unique solution to the problem ; there are in fact two
triangles which satisfy the requirements stated. If we asked
whether our conditions ‘determined’ the triangle, the answer
would certainly be No. Suppose, however, that having dis-
covered the existence of the two solutions, we restate the
problem in the form: To construct the two triangles which
have two given sides and a given angle opposite to one of them.
The solution to our problem is now unique and has been con-
verted from an indeterminate problem into a determinate one
by couching the statement of the problem in appropriate
form.

We take another set of data: suppose that it is required to
construct the triangle 4 BC whose base 4B is given and whose
angle C is a right angle. There is, of course, no such unique
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triangle; any one of the triangles whose vertex C lies on the
circle whose diameter is 4 B satisfies the given conditions. Thus,
at first sight, the problem is necessarily indeterminate, with an
infinity of solutions. If, however, we restate the problem by
requiring the locus of the vertices of all triangles satisfying the
specified conditions, then the locus is unique, and the problem
has a unique, determinate solution.t In this, as in the pre-
ceding case, there are assumptions inherent in the analysis:
we have, for instance, implied that all the required triangles lie
in a plane; if we become aware of this restriction and remove it,
we obtain for the locus of vertices not a circle but a sphere.

These examples illustrate the general proposition that every
problem in geometry which starts from a set of data linked
together and worked on by a logical process, leads to a unique
result which can be regarded as the consequence of a logical
determinism.

Problems in classical mechanics are identical in form with
such geometrical problems. Once more we are given certain
entities—particles of matter, masses, electric charges, etc.—
which correspond to the points and lines of the geometrical
problem. In addition there are postulated fields of force or
interactions between the particles of matter. A typical problem
in mechanics may be posed thus: ‘A mass M (which we call
the sun) is situated in the neighbourhood of another mass m
(called the earth); given that the masses are moving with a
known speed and attract each other with a force equal to the
inverse square of the distance, what follows as regards their
paths?’ Here again the problem is in reality one of finding a
form of statement which, with the given data assembled in
mathematical symbols, leads to an inescapable conclusion.

Consider another example: A particle is projected in any given
direction with a given velocity. Given also that the earth’s
attraction imposes on it an acceleration § downwards, where
will the particle meet the horizontal plane through the point
of projection? In these circumstances the solution is logically
unique and determinate and is applied for the prediction of
physical events. This fact is sometimes referred to as mechanical

t Cf. Abel’s dictum: ‘On doit donner au probléme une forme telle qu'il soit
toujours possible de le résoudre.’



38 THE SCOPE OF PROBABILITY Chap. I, § 3

instead of logical determinism; but to justify such terminology
we should require evidence that what is given and what is
accepted as logical necessities are both necessities of natural
mechanical processes. For the moment the important fact for
us is that the conclusion is unique, and in the circumstances
inescapable. If instead the particle is projected in any direction
with a given velocity, it is not difficult to prove that there is no
unique solution to our problem. On the other hand, if we
require the maximum range described by the particle, then once
again the solution is unique and determinate.

In classical mechanics, as we have described it, every problem
can be posed in such a way that, with the given data and
the principles for their combination, its solution is unique
and precise, and no indeterminism need arise: the essence of
the procedure is deterministic. Now there are two classes of
investigation in which this procedure appears to be unsatis-
factory, and both arise from the application of the classical
method to problems of prediction. As we have seen, the process
of prediction is itself necessarily a logical one: if we have
appropriately phrased our problem in the light of the data and
adopted the correct, physical guiding principles, to obtain any-
thing but a unique solution is, in physical science, tantamount
to a failure of science. We therefore ask in what respects may
our assumptions and principles be invalid; in so far as they relate
to the question of prediction.

The Two Classes of Investigation

Let us examine the two classes of investigation referred to
above: both result from the problem of deciding what may be
considered as ‘given’ in the process of prediction in Nature.
For his own purposes, the mathematician may assume any set
of mutually consistent hypotheses; but in order to satisfy the
physicist, these must represent what is actually found in
Nature. Thus, in our example of the projected particle, we
assumed that the particle is projected with a given velocity in
a given direction. The particle may be given, but in practice
it is not a mathematical ‘point’ but a physical ‘piece of matter’
having size, shape, and weight. Again, the given velocity of
projection is, for physical purposes, the velocity as actually
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measured; and an elementary knowledge of experimental pro-
cesses tells us that it is impossible to say precisely what that is.
As far as the experimenter’s knowledge goes, it may be any-
thing between certain narrow limits, and a variation of even
a small amount in the velocity may make a considerable
difference in the range of the particle. The mathematician,
too, may make a tacit assumption that the particle is pro-
jected in vacuo: the physicist, who knows better, expects the
neglected resistance of the air to make a considerable difference
to the range.

There are innumerable other factors, which we need not
describe, that cause the actual problem to differ from the
mathematical one. Even the final verification to test the
mathematical prediction of the range is subject to the same sort
of impreeision as the measured ‘length’ of the desk (p. 16). What
does this imply? It mecans that in assuming a series of initial
factors as ‘given’, the mathematician has followed a mathe-
matically determinate scheme, and has thus tacitly supposed
that all the interconnexions of his abstract isolated problem
with the rest of the universe can be legitimately ignored. If he
proposes to apply such a process to the real world, every one of
the so-called ‘given’ elements in his problem must be intro-
duced not in the form of a discrete quantity, but as one which
may vary within a certain band of values, determined for him
by the experimenter. The process of prediction can still be
carried through and the answer obtained is unique; but it has
to be couched, not in the form, ‘the resulting range is precisely
so much’, but in the form, ‘the range must lie within a certain
band of variation’. We must realize that, in making a predic-
tion, the mathematician endeavours to anticipate the measure-
ment that will actually be found, and that he is concerned only
with such measurements: he never discusses the question, qua
mathematician, whether the process from which these measures
emerge is itself determinate apart from this. A prediction, let
us repeat, is an attempt to anticipate measurement; and to that
extent only is it an attempt to anticipate process.

It will be recognized that the above description of the mathe-
matically determinist process in physics always involves an
indeterminacy in a certain special sense: it arises from the gap
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between the actual process interrelated in Nature and the
partial measures of isolated phenomena obtained by the experi-
menters. It is bound up with the fact that science never studies
Nature as a whole but in fragments, tacitly assuming that ideal
apparatus can be designed that will be unaffected by the process
studied, and that processes can be discovered that are unaffected
by the apparatus used. To ignore these inescapable intercon-
nexions, implying that with greater refinement in apparatus
and experimental technique the mathematical hypotheses could
be made to approximate to any degree of closeness to the
physical process, is to be guilty of a methodological fallacy.

Thus the first type of indeterminacy has usually been ascribed
to experimental error, the cause of the error being assigned to
the so-called ‘laws of chance’. Whatever those laws might be,
the real implication was that the universe was ‘governed’ by
mechanical laws plus laws of chance; and that if only the latter
could be fully elucidated, the mathematician’s predictions
could be made to coincide absolutely with the experimenter’s
measurements. It is worth examining in detail why such a co-
incidence could never occur. Consider this typical illustration.
A measuring apparatus has on it a measuring scale subdivided
by fine lines: the measuring process consists in fitting a mark
between two such subdivisions. Thus in every measurement
there is implicit an actual experimental uncertainty, and in an
involved experiment, into which many such measurements may
enter, the total extent of such uncertainty may be large.

The second class of indeterminacy does not differ funda-
mentally from the first; the range of experimental uncertainty
may be much less important in magnitude but of much deeper
physical interest. In our example of the projected particle we
have seen that neither the initial position nor the initial velocity
can be exactly specified. When, however, the particle is one of
sub-atomic nature (e.g. an electron) the statement of the
initial conditions presents a special kind of difficulty. To find
its position and speed, it would have to be examined, say,
through a powerful microscope, and if it is to be visible it must
emit at least a quantum of light-energy. But this emission will
be accompanied by a rebound on the part of the electron, so
that the act of seeing it and measuring its position and speed
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can only occur physically when its speed and position are in
process of change and not otherwise. Here the process of
measurement, itself part of Nature, is intimately bound up with
and involved in the actual process studied. At the moment it
does not appear to be possible to isolate one from the other by
any extension of normal scientific method. From a study of
the theory and practice of such processes it is found that the
product of the uncertainties in the experimenter’s measure-
ment of position, and of velocity, is of the magnitude of Planck’s
constant, a certain well-known number. Thus, the physical
limitation involved in the attempt to specify the ‘given’ condi-
tions for sub-atomic particles leads us to the conclusion that
both the initial position and the initial speed cannot be inde-
pendently determined to any prescribed degree of accuracy,
even if the numerous factors already involved in the first class
of problem were not present.

Let us emphasize once more the distinction between the two
classes of problem. In the first class, despite the uncertainties
which arise from the entanglement of the abstracted problem
with the rest of the universe, the mathematical logic of the
abstract process can still be carried through; in the second class
the mathematician who has exposed one of the forms of entangle-
ment is faced with the fact that if he attempts to allow for it
initially, the mathematical logic he intended to use no longer
avails him. Two quantities which, for the purposes of his
logic, should be initially independent, are shown to be inter-
locked. Accordingly, he is now faced with a new class of
problem: given that the initial speed and position are inter-
related in the manner described, what are the guiding processes
to be assumed for such a group of entities, in order that a unique
answer may be obtained, and what will be the general nature of
that answer? It must be realized that we are still dealing with
a question of mathematical determinism; and although we may
find as a result of such an investigation that our prediction
asserts that after a certain interval of time the electrified
‘particle’ may be anywhere within a certain region, this does
not vitiate the fact that the process is still deterministic; the
problem has only to be correctly stated. The mathematical
process determines uniquely for us what can be derived from
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the given assumed circumstances. The so-called ‘uncertainty’
resides simply in the physical specification of the assumptions.

A stream of electrons presumably in parallel motion, when
striking a film, distribute themselves in the form of concentric
rings. The fact that this phenomenon may be described mathe-
matically as ‘the probability of an electron falling at any
distance from the centre of the film is some kind of function of
position’, implies not that there is a physical indeterminateness
in the fate of any individual electron, but that, in the circum-
stances, the probability distribution describes the behaviour
for the stream of electrons. If, therefore, we desire to restate
the deterministic conclusions concerning the group-distribution
in terms of the behaviour of an individual electron, we can only
do this by describing its behaviour in terms of probability. This
does not imply an uncertainty in its intrinsic behaviour, but a
lack of detailed knowledge for solving the new problem.



CHAPTER III
THE THEORY OF ARRANGEMENTS

SiNnce the mathematical theory of probability treats of the
relative frequency with which certain groups of objects may be
conceived as arranged within a population, one type of problem
which we have to consider, preparatory to the main investiga-
tion, is concerned with the number of ways in which various
sub-groups may be formed or partitioned from the members of
a larger group. Many of the theorems arising from this problem
are of an elementary nature and to these the present chapter is
devoted.

In dealing with objects in groups we are led to consider two
kinds of arrangement, according as the order of the objects in
the groups is or is not taken into account.

DEriNtTION. The number of different ways in which n objects
can be arranged in groups of r, regard being had to the order of
arrangement, is called the number of r-permutations of the n
objects.

Evidently, two permutations are identical when they contain
the same objects arranged in the same order.

If the n given objects are all different, the number of r-per-
mutations is denoted by the symbol P..

To find the number of r-permutations of n different objects

To form any one arrangement we may select any one of the
objects to be the first in the arrangement; such a selection can
be made in » ways. The second object in our arrangement may
be any one of the remaining n— 1; thus there are n(n—1) ways
of arranging the first two objects. Similarly, the selection of the
first three objects can be made in n(n—1)(n—2) ways. Thus, in
general, we can select r objects in n(n—1)(n—2)...(n—r+1)
ways; and therefore

P, = n(n—1)(n—2)...(n—7r41).

CoROLLARY. The number of n-permutations of n different
objects is "P. — n(n—1)n—2)..3.2.1.
The product n(n—1)(n—2)...3.2.1 is denoted by the symbol
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n!, called ‘factorial »’. To obtain consistency in our notation,
we make the convention that the symbols 1! and 0! are to be
interpreted as being equal to unity.

Ex. 1. How many different numbers can be formed by using four out
of the nine digits 1, 2, 3,..., 9?7

The required number is °P, = 9.8.7.6 = 3,024,

Ex. 2. How many different numbers, each of four digits, can be
formed from the ten digits 0, 1, 2,..., 91

The total number of 4-permutations of the digits is **F,, and from
this we must deduct the number of permutations in which 0 occupies
the first place, that is, °FP;. Hence the required number is

0P, 9P, — 4,536.

Ex. 3. Show that the number of ways in which n books can be
arranged on a shelf so that two particular books are not together is
(n—2)(n—-1)!.

To find the number of permutations of n objects which are not all
different

Let the n objects be represented by letters, and suppose that
p of them are a’s, ¢ of them b’s, r of them ¢’s, and so on.

If for & moment we suppose that the p letters a are changed
into letters which are different from each other and from the
rest, then by changing only the arrangement of these new
letters, we should have, instead of one permutation, p! different
permutations.

Hence, if P is the required number of permutations, the
number of permutations now obtainéd is P p!.

Similarly, if we suppose that the b’s are changed into g letters
different from each other and from the rest, the number of
permutations is now Ppl!q!. Proceeding in this manner, we
see that if all the letters are changed so that no two are alike,
the total number of permutations is Pplq!r!....

But in this case it is clear that the total number of permuta-
tions is n!. Hence Pp!q!r!... = n!, so that

This result is, apparently, due to Montmort (1708).
Ex. 1. The number of permutations of all the letters of the word

NPT | L
misdissippr is i = 34,650.
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Ex. 2. Find the number of r-permutations of n objects, when each
can be repeated any number of times.

Any one of the n objects can be selected first, and any one of the
objects is still available for selection; and so on. Hence the required

number is n.n.n. =n

Ex. 3. Show that the number of permutations of n objects all together,
in which r specified objects are to be in an assigned order, is n!/r!.
Ex. 4. Prove that "t'F, = "F,4r"F,_,.

DEFINITION. The number of different ways in which n objects
can be separated into groups of r, irrespective of the order of arrange-
ment, 18 called the number of r-combinations of the n objects.

When the objects are all different, the number of r-combina-
tions is denoted by "C,.

To find the number of r-combinations of n different objects.
It is clear that every such combination would give rise to r!

permutations, if the order of the objects were altered in all
possible ways. Hence we have

r1nC, == "P.

The same result may be obtained otherwise, as follows: Consider those
r-combinations which contain a particular object ; evidently the number
of such combinations is *~1C,_,. Thus, in the total number of 7-com-
binations every object occurs "~!C,_, times, and therefore the total
number of objects included is » "~'C,_,. But since r objects occur in

each combination, the total number must also be r *C,. We thus derive
the relation #C, = n"-1C,_,.

This holds for all the values of n and . Changing n into n—1 and 7 into
r—1, we have in succession

(r—1)"1C,_; = (n—1)""3C,_,,

(r—2)"2C,_4 = (n—2)"3C,_,,

"0, = n—r+1.

Multiplying together corresponding members of these equations and
cancelling the common factors, we obtain

*C, = n(n—1)(n—2)...(n—r+1)/rl.
Note that C. may be written as n!/rl(n—7)!.

COROLLARY 1. The number of r-combinations of n different
objects is equal to the number of (n—r)-combinations of the n
objects.

For "C,_, = n!/(n—r)!(n—n+7)! = aljri(n—r)! = C,.
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CoroLLARY 2. "C.+-"C,_; = "*1(C,.

We have
OG0,y = ”<n—'1)--r-§n—r+1) +n(n—l(:.;(;z)~!—r+2)
_ n(n—-—l).;gn——r+2) (n—r+147)
_ (atnin—1)..(n=r+2) _ g

r!

We leave as an exercise to the reader the proof of these results
from first principles.

Ex. 1. Find the number of diagonals of a polygon of n sides.
The number is
nCy—n = n(n—1)—n = n(n—3).

Ex. 2. In how many ways can & committee of 6 be formed from a
party of 6 ladies and 8 gentlemen, if the committee is to contain 2 ladies?

The number of ways of choosing the ladies is ®Cy; the number of ways
of choosing the gentlemen is #C,." Thus the number of possible ways is
6.4 8.7.6.6
1.2°1.2.3.4

Ex. 3. If the committee is to contain at most 2 ladies, then the
number of possible selections is

50y X 8C+5C, X 8Cy+8C = 7004280+ 28 = 1,008.

Ex. 4. Show that, in the n-combinations of 2n different objects, the
number of combinations in which a particular object occurs is equal to
the number in which it does not occur.

Ex. 6. Given n points in a plane such that no two of the lines joining
pairs of points are parallel and no three are concurrent save those which
pass through one of the given points, in how many points do the lines
intersect ?

For the further discussion of problems of arrangement a number
of preliminary theorems are required.

Use of Stirling’s Theorem

From the above examples it will be noted that the calculation
of »P, and "C,, when n and r are large, may be a tedious if not
a difficult process. For the purpose of approximate evaluation,
it is often convenient to replace the factorial expressions which
occur by other expressions to which they tend asymplotically.
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A formula due to Stirling (1718), which we shall establish later
(p. 65), tells us that

n! = “/(27’"’)““6—”(1 + iﬂé—fi -..)’

11 ,
where e = 1+ﬁ+§T°" = 2-71828....
Thus the relative error involved in taking only the first term
in the above formula is about -l—;—;',, i.e. 8/n per cent., approxi-

mately.

Ex. We have 5! = 120, while the Stirling formula gives 5! = 118-1.

Again, 10! = 3,628,800; Stirling’s formula gives 3,598,699.
The Binomial Theorem

Suppose that we are given n letters a,, a,,..., a,, and that we wish to
evaluate the product

(1+a,)(1+4+ay)...(1+a,).
The first term in the expanded form of this product, in which none of
the letters occurs, is 1; the next term, in which each letter occurs once,
is the sum of all the letters, denoted by 3 a,; the next term consists
of the sum of the products of all the letters taken two at a time, denoted
by 3 a,a,; and so on. The final term is simply the product of the n
letters altogether. Thus we have
(14a,)(1+ay)...(1+a,)
=14 Y a4+ Y a,a,+ 3 a,0;0;+...+a,a,..a,.
Now suppose that we write a; = a, = ... = a, = x; the product be-
comes (14z)" The term Y a, is evidently z"C,, the term Y a,a, is
z3"C,, and so on. Hence, substituting these results, we obtain
(142z)* = 147C, 2+ "Cy 2+ "Cy23+... +2™.

This expansion is known as the binomial theorem for a positive exponent n.
The Binomial Coefficients

We write the binomial expansion in the form

(1+2)* = cpt+cyx+cga? ... +c 2" +... 4 2™ (1)

The coefficient ¢, is equal to "C, = "C,_,, by Corollary 1 (p. 43). Thus
¢, = ¢,_,; that is, the coefficient of 2" is equal to the coefficient of .

Putting # = 1 in the identity (1) we obtain

Co+Ci+cyt...tc, = 2%
Putting x = —1, we have
Cg—Cy+Cy—C3+ ...+ (—1)"cy == 0.
From these results it follows that
Cotegtei+ oo =yt gt o5t = 27,
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Now put = 7, where 42 = —1, 43 = —¢, 48 = 1, and so on. Thus
Co+ 16y —cg—ics+Ce+... = (14+12)

Putting x = —1, we have
Co— 196, —Cq+1Cy+Cy—... = (1—1)"

By addition we obtain

Co—Ca+C—Cet... = H(1+4)"+(1—9)"}.
By subtraction,

ety g = (1P — (1)),

Ex. 1. By considering the product of (1+z)" and (14 1/z)*, show that
g+ cici+ ...+ = 2n!/(n!)s.
Ex. 2. Find the value of
ca—ci+ci—
Ex. 3. Prove that
¢;+2¢c4+ 3¢+ ... +-nc, = n271,
Greatest Term in the Expansion
In the expansion of (14 )", where n is a positive integer, and z is
positive, the ratio of the (r4 1)th term to the rth is evidently

n(n—1)..n—r+1) (r—1)! _n—r+1
! : n(n-—l)...(n—r+2)x =T~
This ratio can be written as (17'—:-—1 — l):c, and since ntl decreases as

r increases, the ratio itself decreases as r increases. If the ratio is less
than 1 for any value of », the (r+1)th term will be less than the rth.
Hence, in order that the rth term should be the greatest we must have

tz—t}z <1 and ﬁ;}iﬁx > 1
Thus r satisfies the inequalities
(n+ 1) (n+ 1)
e dteis ERL s +1L
When r = (—';ill)x, we have P :-+ lz = 1; in this case there is no one

greatest term in the expansion, but the rth and (r+-1)th terms are equal,
and are greater than any of the other terms.

If z is negative, the terms of the expansion alternate in sign, but the
method used above still avails to determine the numerically greatest
term in the expansion.

Ex. Find the greatest term in the expansion of (14-z)'°, when = §.

The Multinomial Theorem
If nis a positive integer, the expression (z,4z,+...4+2,)* may
be expanded in a form analogous to that obtained for (1+xz)».
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Thus, to distribute the product of n factors
(ty+2o+... 2, )Xy 2o+ ...+ T, (2 F 2o+ 7))
we have to find the coefficient of any given term, for example
oy ... e,

where oy 4+ a5+ ... +a,, = n.

Evidently, the number of times that this particular term
arises in the product is the number of n-permutations of the

m letters, in which «, are alike, a, are alike . . ., and so on.
Hence by the theorem given above (p. 42) the coefficient of the
n!

given term is — .
oyt

Thus, finally, we obtain
(xy+xyt+.. 2, ) = 2

n!

——— x"‘l xz x‘;‘nm’

oyl ag! oyt
where a;, ay,..., a,,, take all positive integral values for which
oy tay ... 4o, = n.
This result is the multinomial theorem for a positive integral
index.
The Binomial Series
If n is not a positive integer, the series
n(n 1) 2 n(n—1)(n— 2)
i+ 31
does not terminate; we may show that it converges for all values of z
which are numerically less than unity. When n is a negative integer
the sum of the series, for such values of z, is equal to (1-+z)"; and when
n i8 a rational number the sum is equal to the principal value of (1+z)",

i.e. the real positive value of this expression.
Thus, if n = —m, where m is a positive integer, then

m(m+ 1-)x m(m+1)(m+2)
2! 3!
provided 2 < 1. In particular, we have
(I+z2)!t=l—z+42%—
(1—z) ! = 14z+2*+...,
(142)t = 1—2z+323—
To find "H,. The number "H, of homogeneous products of r
letters which can be formed from = given letters may be found
by a method which will be employed extensively later. Suppose

14nz+

(I4+2)™ = 1—mz +
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that the letters are a, b, ¢, .... If we form the product
(14azx+a*x?+-...4ar27)(14+- b +4-b%2+... 4 b"2") X
X (1+cx+c?x24-...4-c2")...
it is at once seen that the sum of the required homogeneous
products is the coefficient of 2" in this product. Hence the
number of such products is the coefficient of z” in the product
(14 z+22+...4a) (1t a+ad+...4+a)...
consisting of n identical factors.
If we suppose that x < 1, this is the coefficient of " in the
expansion of (1—z)-". Thus, by the previous result, we have
nH, — n(n+1)(n+;‘l')...(n+r—l) — mrag,




CHAPTER IV

ELEMENTARY THEOREMS ON MATHEMATICAL
PROBABILITY

Wz begin with a restatement of our definition in simplified
form:

If there is a class of N letters containing n letters a, then the
probability of a letter, specified as belonging to the class N, being
a letter a is n/N.

By ‘probability’ in this chapter it is understood we mean
mathematical probability.

Suppose, for example, that we have a group of symbols which
are separable into the numbers 1, 2,..., 9, the letters a, b, ¢, and
the letters «, B, y. A particular symbol is defined as being a
member of the whole class. We may then state, on the defini-
tion, that the probability that the symbol is a number is

9 3 - o s .
T3r3 =5 the probability that it is a Roman letter is
3 1 - s . 3 1
B=5 and the probability that it is a Greek letter is =5

It should be noticed that the probability that the symbol is
a,let;tera.ndnotanumberisEﬂ == -3-1--?1 = l+l = g Thus

156 156156 5 5 5
the probability that the symbol, defined as a member of the
whole class, should be a member of the class consisting of the
two subclasses of letters, is the sum of the probabilities that it
is a member of each of the two subclasses. This result is an
illustration of the following general theorem.

THEOREM. An object 18 defined as belonging to a class of N
objects which contains the subclasses of objects a,, a,, in number
ny, Ny, respectively, having no members in common. Then if 'the
probabilities that the object belongs to the subclasses a,, a, be
separately p, and p,, the probability that it belongs to the combined
group of objects a,+a, 18 p;+p,.

The proof of this theorem follows at once from the definition.
Evidently the result may be extended step by step to give the
probability that an object of the class N should belong to the
group a,--a,+-a,, or the group a,+a,+a;+a,; and so on.

00 E



50 ELEMENTARY THEOREMS Chap. IV

Ex. Suppose that we are given a book of N pages such that n, of the
pages each contain one printer’s error, n, contain two such errors,...,
and generally, n, contain r errors. Then

the probability that a page has r errors is n,/N;

the probability that a page hés at least r errors is (n,+n,,,4-...)/N;

the probability that a page has not less than r and not more than

8 errors i8 (n,+n,,;+...4n,)/N.

For it is clear that if a page has, say, r errors, it cannot have & errors,
where 7 and s are unequal; so that the classes of pages so defined have
no members in common, and our theorem can be applied.

It is obvious from our definition that mathematical proba-
bility is a number lying between 0 and 1 and that, since it is the
ratio of two integers, it must be a proper fraction. We shall have
occasion later to extend the definition.

When the probability p is equal to unity, its maximum value
is attained; in such a case the class to which the object belongs
is identical in extent with the subclass. It is desirable to avoid
referring to the case p = 1 as ‘certainty’ for this would seem to
imply a psychological state to which our numbers have not
necessarily any direct relevance. (One may be certain of the
truth of a falsehood.) Similarly, the case p = 0 is frequently
referred to as representing ‘falsehood’, and to this the same
criticism applies; in point of fact, p = 0 is excluded from our
consideration, for such a value of p would imply that the sub-
class is not a member of the whole class.

Mathematical Expectation

Let the letters a,, a,,... denote particular classes of events,
with which are associated numbers M,, My, .... Forexample, the
events might be the actual processes of measuring some object,
and M,, M,,... the magnitudes obtained. Then the probability
of occurrence of the event is also the probability of ooccurrence
of the magnitude.

If p, is the probability that the event a, will produce a magni-
tude M,, then its mathematical expectation is defined as p, M,.

Thus,a person tosses a coin; if it turns up heads he is to receive
a shilling—otherwise he receives nothing. Then the probability
of winning a shilling is } and the expectation is sixpence.

More generally, in the case of n independent events, for which
the probabilities that the events will produce magnitudes 3,
M,,..., M, are respectively p,, ps,..., Pn, the expectation E
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associated with some unspecified event of the set is

n
E=3pM,
v=
Ex. If n measurements, all equally probable, are made of the same
length, show that their mathematical expectation is the average value.

THEOREM. If p 18 the probability that a member of a class is
also a member of a given subclass, then 1—p 18 the probability that
it 18 not @ member of that subclass.

For if the class N can be divided into subclasses having » and
N —n members respectively, and p = n/N, then the probability
that an object is not a member of the class (n) is the proba-
bility that it is a member of the class (N—mn). This probability
is (N—n)/N = 1—p, which proves the proposition. For con-
venience we write ¢ = 1—p. If this relation is written in the
form p+-q = 1, it is equivalent to the assertion that ‘it is true
that an object is either a member of a particular subclass or

of the class of remaining objects’.

Ex. 1. The probability that a coin falls either on its head or its tail,
given that it falls flat, is 1. If the probability that it falls on its head
is 4, then the probability that it falls on its tail is also §. Thus, the proba-
bility that it falls on its head = 1—(the probability that it does not).

Ex. 2. In the example (p. 50), the probability that a page has
not more than r errors is 1—(n,+4n,,,+...)/N. The probability that it
has no errors is 1—(n,+ng+...)/N.

Ex. 3. Consider two dice each marked with the numbers 1 to 6. It
is given that each lies with a face upwards: what is the probability that
both faces show fours?

To find the total number of members of the class of pairs of faces,
one for each die, we observe that each of the faces of one die may be
grouped with each face of the other, thus giving 6 X 6 = 36 members
of the class. There is only one member of the class (4, 4); thus the
probability that both faces show fours is 4%. We notice that ¢ = $x $,
i.e. equals the probability that a face of one die is a four, multiplied
by the probability that a face of the other die is a four.

Ex. 4. In a certain examination, 10 of the 30 students receive over,
and 20 under, 50 per cent. of the total marks. It is known that two-
thirds of the candidates have written their papers in ink and the rest
in pencil. An examiner selects & name from the list of 30: what is the
probability that the candidate selected wrote his script in pencil and
received more than half marks?

These illustrations are typical of the following result:
THEOREM. If p, i3 the probability that an object belongs to the
subclass a, of the classes a,, a,,..., a,, and P, 1s the probebility of
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1t belonging to the subclass A, of the classes A4,, A,,..., A, (which
are exclusive to a,, a,,..., a,), then the probability that it belongs to
the combined class a, A, i3 p, P,.

Let us set out the classes in a scheme, as follows:

First class . . . . Gy,0,04,...,0,
Number of members . . My Mgy Mg,y M,
Probability . . . . D1 D2 P3sre-es Py
Second class . . . A A4, A,
Number of members . . N,N, N,,.. N,
Probability . . . . P,P,P,.. P,
— n — Mz

Thus p, = it and P, = Ay iy

Combined class . . . a,4,,a,4,,..,a 4,

Number of members . . n, N, n, N,,...,n, N,

Total number of members. (n,+n,+...4n,)(Ny+ N, +...+N,).
Hence the required probability is
ny Ny
(n1+n2+...+n,)(N,+N2+ Ny
This theorem, sometimes known as the Multiplication
Theorem, may be illustrated geometrically as follows.

=p B.

A B
H
6
2]
D C
P F
Fia. 1

Let ABCD be a square of unit side, and let DF, DG represent
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the lengths corresponding to the probabilities p, and P,. Then
if DC and DA be subdivided equally, each as many times
as there are members of the two classes a,, a,,..., a, and
A,, A,,..., 4,, and rectangles are formed by drawing parallels
to DC, DA through the extremities of these subdivisions, the
required probability will be the ratio of the number of rectangles
within DGHF to the number of rectangles in A BCD. Since
the area of the latter is unity, the ratio is p, P,. The probability
of such a combined class is referred to as that of a ‘double
event’. We note that, if p, and p, are the successive proba-
bilities of two individual events, the probability of the double
event not occurring is 1—p,; p,.

Ex. 1. In a certain book of N pages, no page contains more than
three errors; m, of the pages contain one error, ny contain two errors,
and n, three errors. Two copies of the book are opened at any two

given pages. Then the probability that both pages have two errors is
n3/N%; the probability that the total number of errors is 4 is

(nyng+ni+ngn,)/N? = (2n,ng+nl)/N*?;
the probability that the total number is 5 is
(nyng+mngng)/N2 = 2ngang/N?;

the probability that the total number is 6 is n3/N%; the probability that
the total number is at least 5 is n3/N%+4 2nyn,/N?; the probability
that the total number is not more than 4 is 1 —(n3+2nyn4)N®.
\/fx. 2. Tchebycheff’s Problem. Two integers lie within the
range 2 to N. What is the probability that they are prime to
one another?

Any number, when divided by a suspected prime factor r,
may have a remainder 0, 1,..., 7—1; hence the probability that

it is divisible by r is ; . Thus the probability that both the
integers are divisible by r is ;15, and, therefore, the probability

that both are not divisible by r is l",.la' It follows that the

probability that the two integers have no common prime factor
over the whole range is

= (=380

where p is the greatest prime in the given range 2 to N.
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If N (and therefore p) is large, we may approximate to x as

follows.
We suppose that z is approximately equal to the infinite

product L1 1 . 1
—‘2—-2 —'5—2 1_5‘2'... —;‘2‘“"

where r is always prime.
Then [ A A A -1
x 22 §é vas r2 ese

1 1 1
(v B e )
and since any number is either a prime or a product of primes,
it follows on multiplying out that

1_ n?
- +22+ + + = ?.T

z
Hence x = 8 _ §, approximately.
w* b

Tchebycheff’s problem is sometimes stated in the form: to
find the probability that the fraction m/n is in its lowest terms,
m and n being any two integers.

Note that this process does not give the value of the proba-
bility (which is necessarily a proper fraction) but only an
approximation to it.

In the following example the actual fraction is calculated for
the numbers between 2 and 20 and between 2 and 30.

Thus we find that the number of pairs of numbers between
2 and 20, with no common factors, is 108. The total number of
pairs is 1°C, = 171. Applying this result to find an approxima-
tion to 7, we have

—_—— = g, giving n? = 9-5, and = = 3:08.

For the range 2 to 30 we find that the number of prime pairs
is 248, while the total numbers of pairs is #C, = 406. These
data give

6 248 . _

1 See Hobson, Plane Trigonometry.
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Ex.3. An interesting application of elementary probability is
found in the work of Bunsen and Kirchhoff in connexion with the
discovery of the presence of iron in the sun. By comparing the
spectra of sunlight and incandescent iron vapour it was found
that, to the degree of accuracy given by the instruments, 60
bright lines coincided in the two spectra. Now the average
distance between the solar lines in Kirchhoff’s map was 2 mm.,
and coincidence for his instruments implied that a line from the
iron vapour must fall within § mm. on either side. Thus the
probability of casual coincidence for each of the 60 lines was
2.4/2 = 4. Accordingly, the probability of casual coincidence

for all 60 lines was 2—10, or one in a million million millions. It

should be noted that in this analysis iron is defined as that
substance which gives the above 60 lines in the spectrum.
Similar considerations with regard to the coincidence of the
spectra of solar, lunar, and planetary light can be used to
decide the probability that they are all of the same origin.

EXAMPLES ON CHAPTER 1V

[In the following examples it is to be assumed that when the phrase
‘a coin is tossed’ is used, it is implied that the probability of the appear-
ance of a head is . See also Chapter V.]

Ex. 1. What is the probability of a penny turning up heads at least
once in n throws?

The probability that it turns up tails every time is gl;‘ Hence the

probability that it shows heads at least once is 1— é]-;‘

Ex. 2. If m coins are tossed and all the heads are removed, and then
the remaining coins are tossed and the heads removed, and so on, what
is the probability that all the coins will be removed by or before n
tossings 1

We may imagine all the coins tossed n times; we thus require the
probability that each will turn up heads at least once in n tossings.

m
Hence the required probability is (l - él—,;) .

Ex. 3. (Pascal’s and Fermat’s problem.) Two players, with equal
probability of winning a point, agree to play a game for 6 points. If
the game must not be drawn, find their respective chances of winning
at any given stage of the game.
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Ex. 4. An urn contains b black and w white balls. If n balls are
extracted together, what is the probability that a of these are white?

The number of ways in which n balls can be extracted is *+*C,. The
number of sets of n balls which contain « white balls is

vC,.'Cpye

Ex. 5. A number is chosen from each of the two sets 1, 2, 3,..., 9;
1, 2, 3,..., 9. Show that the probability that the sum of the numbers
should be 10 is 4, and that their sum should be 8 is .

Ex. 6. If in selecting & number from the set 1, 2, 3,..., 9, 7 is chosen
twice as often as 3, 3 twice as often as 6 and 9, and 5 and 9 twice as
often as 1, 2, 4, 6, 8, what is the probability that the sum of two numbers
selected will be 10?

Ex. 7. A red card is removed from a pack of 52; 13 cards are then
drawn and found to be of the same colour. Show that the odds are
2 to 1 that the colour is black.

Ex. 8. A set consists of n counters. What is the probability that
a selected group of these of unspecified number consists of (1) an even
number of counters, (2) an odd number of counters ?

We have to find the total number of members of the groups that can
be formed of 2, 4, 6,... counters for the case (1) and of 1, 3, 5,... for the
case (2).

The total number of ways of forming groups of 2, 4, 6,... is respectively
nCy, *Cy, "C,... and for forming the groups 1, 3, 5,... is

»Cy, *Cy, *Cy,... .
Thus the number of members of the class of even groups is
80y +7Co+... = 2% 1—1 (p. 45)

and the number of members of the class of odd groups is

2C +"Cy+... = 2771,
while the total number of members of all classes is 27—1. Thus the
probability of the selected group being odd is greater than its being even.
/ The difference between the two probabilities decreases as n increages.
/ Ex. 9. From a pack of 52 cards an even number of cards is drawn.
Show that the probability that these consist half of red and half of
black is 521 5

<(26!)'"l}/(2 =1

The number of ways in which an even number of cards can be drawn is
830, 1 520, 4 ... 4520, = 261—1 (p. 45).
Of these, the number of groups consisting half of red and half of black
10242004, 49003, = (_26')'_1 (p. 46).
Hence the result.
Ex. 10. Using Stirling’s theorem, find an approximation to this
probability.
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Ex. 11. A pack of 52 cards is cut twice, a card drawn and replaced;
show that the probability of obtaining aces each time is 1/169.

Ex. 12. 4 and B stand in a line with 10 other persons. What is the
probability that there are 3 persons between 4 and B! What would
be the probability if they stood in a ring?

Ex. 13. Find the probability that a month contains portions of six
different weeks.

Ex. 14. Two identical urns contain respectively n and n’ balls; the
first urn contains a white balls and the second a’. If a ball is extracted
from one of the two urns, what is the probability that it is white ?

It must be noticed that the extraction of a white ball from the first
urn is the result of two circumstances: (1) the choice of this urn from
the two identical urns, (2) the extraction of a white ball from this urn,
supposing that it has actually been chosen. The probability of (1) is §,

that of (2) is %. Thus, the probability of extraction of a white ball
from the urn is % :—1; and similarly, the probability of extraction of a

white ball from the second urn is %:—:, Hence the required probability,

which is the sum of these two probabilities, is %(s + ?{')

Ex. 15. Each of two bags contains m shillings and n sixpences. If
a coin is drawn from each bag, show that the probability that both
coins are shillings is greater than that of drawing two shillings from
a bag containing all the coins.

Ex. 16. In a card game in which the dealer’s last card determines the
trump suit, find how many hands must be dealt in order that it is more
likely than not that at some stage the dealer will hold all the trumps.

Since the dealer always holds one of the trumps, the probability of

1

any one deal of the required type is o 1, say, where c is a large
1

'y (4

number.
The probability of not holding all the trumps is thus 1— -Z- After

z deals, this probability is
(1) = (-2
c c
= ¢~%/°, approximately.
For an even chance we require e~%/¢ = }.
This equation gives z = clog2 = 10, approximately.



CHAPTER V
BERNOULLI'S THEOREM

1. Bernoulli’s Theorem and its extensions

Ix dealing with a class of objects or events, we shall use the
term ‘population’ to describe the original class from which
the subclasses are to be formed.

Suppose that we are given a population of ten counters
divided into two subclasses which we represent by four black
counters b and six white counters w. What is the probability
that among three unspecified members of the population just
two are members of the subclass w?

We may proceed as follows. The probability that a member
of the population is a member of w is = §; hence the proba-
bility that two members, as a group, are members of w, is
$x3. To satisfy our conditions, the third member must not
belong to w; thus the probability required would appear to be
§x3x(1—§). But the order in which the three members have
been considered as belonging (or not) to the subclass w is not
exhausted by this particular process; it could be either the
second or the first member which is excluded from w. Thus the
total probability is

3xIXIX (1=, or 3CxIxIx(1—]) =
This simple problem is an illustration of the general result.

Bernoulli’s Theoremt

Let a population be divisible into subclasses b and w such that
the probability of any member of the population being also a
member of w is p. Then, of n objects defined only as members of
the population, the probability that r of these are also members of
w is "CLpr(1—p)rr.

For the probability of » members of the population being
members of w is, as we have seen, p”; the probability that the
remaining n—r members are not members of w is (1—p)*»-.
Thus the combined probability of the double event is p7(1—p)*-r,
But the » members of the group of = initially considered can be

t+ Ininterpreting the probability p in the following theorem, reference should
be made to the discussion on a priori probability on p. 19, '



Chap.V, §1 BERNOULLI'S THEOREM 69

exhaustively selected in »C, ways. Then, since the total proba-
bility required is the sum of the separate probabilities, it is

equal to G, pr(1—p)n—r.

Ex. 1. Thirteen cards are drawn one by one from an ordinary pack of 52,
each card being replaced immediately after drawing: to find the proba-
bility that exactly 3 red cards are so obtained.

There are initially 26 red and 26 black cards in the pack, so that the
probability p that a card should be red is §. In our theorem, as applied
to the present problem, the group of objects to be considered is in
number n = 13, and the sub-group is in number r = 3. Hence the

3 13-3
required probability is ‘-"C,,( ;) (l—%) = 143 143 1 approxi-

212 7 4,096 28’
mately.

Note, in contrast, that the probability of finding 3 red cards in a hand
of 13, as ordinarily dealt, is 28C, 26C,,/5C),.

Ex. 2. What is the number of red cards, in such an extraction, for
which the probability is greatest ?

13—r

We have to find the value of » which makes 3C, -]2;( 1 —%) have its
greatest value.

Evidently this is attained when r == 6 or 7.

Ex. 3. What is the probability that no more than three of the cards
should be red ?

This is the sum of the probabilities that the number of red cards
should be 0, 1, 2, or 3.

Ex. 4. Find the probability that the hand should contain at least
three red cards.

Ex. 5. What is the probability that, in 13 drawings, with replace-
ment, an ace should be obtained four times?

The original probability that a card should be an ace is 312 = —11—3
®
Hence the required probability is 13C, T:F(i—:) = 0-02, approximately.
It should be noticed that the fact that the four specified cards are to
be aces is quite irrelevant to the problem; the same probability would
be found for the occurrence of any four previously indicated cards.

From Bernoulli’s Theorem we at once derive the following:

THEOREM. If p 8 the initial probability that a member of a
population should belong to a specified subclass, the probability
that out of n members not more than r belong to this subclass is

"C(1—p)*+"C p(1—p)**+...+"Cp"(1—p)*
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With the same hypotheses we have:

THEOREM. The probability that not less than r members belong
to the specified subclass is

nqpr( 1 _p)n—r+ nC;'-i—l pr+l( 1 _p)n-—r-l_‘_ +n0"pn.

Ex. 1. Out of a population of pennies, of which half lie head up and
half tail up, a class of 2n members is defined. What is the probability
that these show heads in excess or defect of n, by a number ¢?

Evidently the required probability is

WO, _yp" (1 —p)rti4 .. 4+ 20C, , p" Y 1—p)"t, where p = }.
This type of problem is usually stated in the form: A penny is tossed
2n times. What is the probability that the deviation from n heads
should not exceed ¢? Note that in attempting to identify these two
problems we tacitly assume that the sample of 2n tossings is drawn
from a larger hypothetical population containing precisely the same
number of exposed heads as tails.

Ex. 2. With the same interpretation of the terms, show that, if a
penny is tossed n times, the probability of not more than r heads is

%(nq,+ﬂol+...+n0,).

Applications of Mathematical Probability

It will be observed that the language in which these theorems
have been developed and the form in which the examples have
been couched have been such as scrupulously to avoid all idea
of experiment. If we are to restrict our investigations in this
way we shall certainly avoid the error of confusing psychological
expectation with mathematical probability; but we shall also
lose the possibility of applying the theory to actual cases. What
we have to discover are the circumstances in which such applica-
tion is legitimate. It was pointed out previously that the study
of psychological probability ought logically to follow in the
wake of the mathematical investigation. At this stage, there-
fore, we propose to examine briefly the restrictions hitherto
imposed, and to see if they can be circumvented.

It must be understood, then, that when we say that ‘a card
is drawn from a pack’, we mean in fact that we are to discuss
certain properties of an entity defined only as a member of the
pack. In the same way, when we say that an individual tosses a
penny 7 times, we mean that n events are under consideration
and that each of them may belong to one of two classes, head
or tail: that is the defining property of the event. If the result
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is used in any particular case, the onus of justification is on the
user who asserts that this defining property is the only relevant
one in the circumstances in which he applies the result.

In this connexion we may remark that in certain circum-
stances it is possible to introduce into the defining properties
conditions relating to the mode of selection or arrangement
which enable the mathematical treatment to provide an answer
which is closer to the facts than the result arrived at on a
simple hypothesis. For example, suppose that there are ten
counters in a row: five black on the left and five white on
the right; if all that is asserted about a counter is that it belongs
to this group, then on our definition the probability of its being
white is 4. 1f, however, we assert that an individual has selected
a counter, then the fact that individuals more frequently choose
with their right hand than with their left, and thus more fre-
quently choose an object to the right of the centre of the group
than to the left, will vitiate our original calculations and we must
introduce a new factor which takes this human bias into account.

Now suppose it is known that the choice made by an indi-
vidual justifies our statement that the probabilities of choice
of the counters, from left to right, are proportional to the

numbers 1,1,1,1,2; 3,4,4,21.
(black) (white)

Then the problem may be recast in the form: Given a set of
20 counters of which 6 are black and 14 are white, the proba-
bility of a white counter is }§. Thus, by introducing ‘weighting’
factors to represent the bias in choice of the counters, we have
brought the original problem nearer to actuality. In the
mathematical problem, these weighting factors must be sup-
posed given; actually, they are given as a result of previous
experiment, so that in such a problem they become known a
priors.

Ex. A sniper finds that, on the average, he kills once in three shots.
He fires three times at an enemy; on the assumption that his a priori
probability of killing is §, what is the probability that he kills him?

Here we require the probability that at least one of the shots should
be a hit. Since p = {, the required probability is

0B 2GR+ 2C() = §3.
Alternatively, we may proceed as follows. The probability of not
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killing at the first attempt is %; thus, the probability of not killing in
all three attempts is (§)® = #. Hence the probability of a hit is

1—of = 38

We note that there is no contradiction between this result and the
statement that p = §, for the probability of killing with one shot only
is }: after that the probability increases.

Greatest Value of "C.p"(1—p)*—"

To determine the value of r for which the Bernoulli proba-
bility, B(n,r) = "C, p"(1—p)*~", has its greatest value, where r is
an integer, we cannot legitimately discuss the variation of B(n, )
as a continuous function of r; we are not seeking for a maxsmum
but for a greatest value (if it exists) in the range 0 < r < n.

Accordingly, we require to find the value of r such that

B(n’ r— 1) < B(n’ r) > B(n’ T+ l),
i.e. such that
"Cr—l p"'l(l __p)n—r+1 < "q.p'(l _p)n-r > r+1pr+l(1 _p)n—r—l.
Cancelling out positive factors in common it follows that
np+p =r = np—(1—p).

Since p and 1—p are fractions, we thus require that r should
be equal to np, if this number is integral, or to the smallest
integer greater than np, if np is not integral. We thus obtain
the following result.

The greatest value of Bernoulli’s probability B(n,r) is obtained
by taking r to be np, or the least integer greater than np if np is not
integral. '

Fx. How many aces are ‘most likely’ to be found in 13 successive
drawings, followed by replacements, from a pack of 52 cards?

First Generalization of Bernoulli’s Theorem

Let a population be divisible into subclasses w,, w,,..., w,, the
probabilities attached to the subclasses betng p,, py,..., p,. Then,
the probability that a group of n members of the population, other-
wise unspecified, should contain ry members of wy, r, of w,,..., and
Ty Of W, i n! L, ,

7yl 7! ...r,!pllp" e Pe

where v +rt ., = n.

For, the probability of r, members of the population being
members of w, is p}; of r, members belonging to w, is p}, and
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so on. Thus the probability of the combined event is p} p7 ...pJe.
But the required probability is the sum of the ways in which
this combination can be formed subject to the condition that
the total number of members is n. Hence we have to multiply
P} P} ... pi by the number of ways in which a term of this type
can arise by n-combinations of all such p’s; such a number is
identical with the coefficient of p} p} ... ps in the expansion of
(p1+p2+ ... +p,)" (p. 47), whence the result.

The original Bernoulli Theorem follows from this by putting
Pr=p,pp=1—p, =1 1=n—r

Ex. A pack of 10 cards consists of 3 aces, 2 kings, 2 queens, and
3 jacks. All that is known of them is that on eight successive occasions
the cards have been shuffled and the top card each time exposed. It is
required to find the probability that an ace will have been top card on
two occasions, a queen on three occasions, and a jack on three occasions.

If we denote by w,, wy, w,, and w, the respective subclasses defined by
the aces, kings, queens, and jacks, then in the previous notation we have

n =8, ry = 2, rg =10, ry = 3, 7y = 3,
=% Pi=1e P:i=1Te D=1
Hence the required probability is
__8 (i)’ (i)” (1)” (i)’ - 827 108864 1
210!3!3! \10 10 10 10 108 107 100°
approximately.

Alternative statement of Bernoulli’s Theorem. The probability
that an event with initial probability p occurs exactly r times
in n trials is the rth term in the expansion of (p-+¢)" in ascend-
ing powers of p, where ¢ = 1—p.

It follows that the sum of the probabilities for all values of r,
is unity.

Again, the average value of r in n trials is

n

z nC' prqn-r 7.

r=0
n
Now (p+o)" = 3 "C.p'g"".

Differentiating this identity with respect to p, and then putting
p+¢q = 1, we have

n

n = Eoncrrpr—lqn—r,

ra=

and thus np = i nC. pTqrT.r.
r=0
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But this is also an approximation to the most probable value
of r. It follows that to this degree of accuracy the average value
of r is the most probable value when all possibilities are taken
into consideration.

Case of Probability varying from one Trial to another

It has been assumed throughout the foregoing analysis that
the successive stages in the withdrawal of a sample from a
population are not accompanied by any change in the proba-
bilities of its subclasses; this is the case when, for example,
the population consists of a set of black and white balls, and
the ball is replaced after each withdrawal, or where the popula-
tion is generated by an operation, as in the tossing of a coin. If,
however, this is not done, the proportion of black to white balls is
altered at each stage of the process, and the initial probability of
a black or white ball becomes a function of the number of samples.

Ex. 1. If the probability of failing at the nth trial is 1/(1+n), what
is the probability of succeeding at least once in the first m trials?

Ex. 2. If the probability of failurc at the nth trial is 1/2%, find the
probability of succeeding at least once in three trials.

Second Generalization of Bernoulli's Theorem

Instead of referring to a population and the probability of
its subclass, we may speak of an event and the prebability of its
success in one or more trials (corresponding, for instance, to the
extraction of one or more white balls from an urn containing
black and white balls). Suppose then that we consider n inde-
pendent events whose probabilities of success are p,, p,..., D,;
thus the corresponding probabilities of failure are ¢ = 1—py,
gs = 1—p,,..., ¢, = 1—p,. Then the probability of obtaining
exactly r successes in the compound event is

2 PiPi P QiGmeres
the summation extending to all products of n different symbols,
each containing r p’s and n—r ¢’s. It will be noticed that this
is the coefficient of 7 in the product
(01 2+01)(P T+ Go)--(Pp 2+ )-

Hence,

The probability of obtaining r successes in a compound event,
consisting of n independent events, is equal to the coefficient of x*
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in (P 2+¢,)(P2a2+G5)...(Pn2+q,), where p,, q, are the respective
probabilities of success and failure in the sth event.

Ex. Given three urns, of which the first contains 3 white and 4 black
balls, the second contains 2 white and 3 black balls, and the third
contains 3 white and 5 black balls, what is the probability of obtaining
one white ball in extracting a ball from each urn?

Evidently the required probability is the coefficient of z in

Bz+$)Ez+E)Ex+4), ie 3

2. Bernoulli’s Theorem and the normal law
Stirling’s Theorem

We have already noted (p. 44) the use that an approximate
formula for n! may have in evaluating probabilities. In what
follows the use of such approximations is essential.

Yy

0 1 2 3 4
Fic. 2.

We begin by finding an approximation, for large values of

n, to logn! = logn-+log(n—1)+...4log 2.
Consider the curve representing the function
y = logz.
If ordinates be erected at x = 1, 2,..., n, then the sum of
the trapezia determined by successive pairs of ordinates will be

less than the total area between the curve, the nth ordinate, and
the z-axis.

4360 ¥
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Thus

flog:c dz > }(log 1 + log 2)+3(log 2 + log 3)+...
1

...+§(logﬁ:—l + logn),
ie. [xlogx—z]} > log 2 + log 3+...+logn—}logn,
or nlogn —n-+1 > log n!—log nt,
or lognne-"+1 > logn!n-t.
Since the logarithms are positive we have
nre~n+l > plp-t
or n! < nrile-nH,

It is clear that to obtain a closer approximation to n! we
require a more exact estimate of n!/n"+te-",

Write u,, = log(n!/n"+te-"). Then
_ (n+1)! nntie-n)
Uns1 U, = log {(n+ L)n+le-n-1" g

n+t
= 1+log(,n_::_l_) +

= 1—(n+log 1+

1 1 1 1
1= tD gt g gt )
1 1 3 1
T Tom T

1/1 1 1 1 .
"‘ﬁ(ﬁi*ﬁ+ﬁi_ﬁﬁ+"')’ approximately,

approximately,

T T 12n(n+1)’

1] _l]
- ﬁ[n-{-l n)
Accordingly we may write

un —4 A_+._.].'__

12n’
where 4 is an unspecified constant.
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Hence we derive
n! 12
i = et
where B is another unspecified constant.
To find its value we have only to use the above approxima-
tion for n! for a particular case, say » = 9. This gives
9!
B= ,
99,3 ¢-9
There is, however, a more general method of approach to the
evaluation of B. We begin with the well-known formula

. x? x2 a2
sinnx = nx (l—ﬁ)(l 2—2)(1-——3—2)

When z = }, we have

=3 -8

approximately.

2 1.3 3.5 5.7 _ 12.32.52.7%..  12,22,32.42,,

OF LT g g T ahgigr. . paieil
12
Thus 2 _ lim _[@nt1)1)2

m n—rwo (2n+ 1 )(n')“24"
Inserting our approximation for n!, we find that

1 2
B(2 1)2n+i ey O —
=lim[ (2n 1+ exp(—2n—Dexp (15

n—>o 24;1(2n+ l)[B'ﬂ’H'* eXP("’ n)EXp (_].—;—;L)}‘t

2
T

_ 1 _ _ 1 (2n+ 1)4n+2
'}Lnl erxp{ 4n 2+4n+"’6(2" "+ 1) _%} T Qdnpdn+2

_ 1 . . 2n+1 in+2 an 1\2

= g2 (“2;7) Bzezili‘l(“f ) (1+ 27,)

4

.EE.

Hence B = ,/(27) and, finally, we have the approximate formula,
for large values of n,

- J(2ﬂ)n"+*-exP( +12n)

= J(27)nntie—n 1+—-—— , approximately.
12n) P
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For comparison, it may be remarked that we have already

found that n! < nnten g,

Approximate Value of Bernoulli’s Probability (case p = })

Suppose that we are given a population of coins which shows
an equal number of heads and tails; we seek the probability
that in a large sample of 2n coins there shall be n+r heads and
n—r tails, that is, that the excess of the number of heads over
the number of tails is 2r. In this case, the probability p of a
head or tail is }, and Bernoulli’s probability gives us the
formula

P= 2‘nCn+r(%)n+r(l__%)n—r
_ (2n)! 1
T (nr)(n—r)! 220
Using Stirling’s formula we write
(2n)! = \/(27.2n)(2n)2ne-2n = 22n+1p2ntig-2nyy
(n47)! = J{2m(n+n)}(n-r)rire-n-r,

(n—r)! = J{2m(n—r)}(n—r)r-Te-niT,

so that
(47 (n—7)! = 2me=(n-r)rtrH(p—r)n-r+i

= 21re-2"(n2—r2)"+i(n_'t_r)r

n—r
r2\n+t n-r\r
= 2me—2Mpin+lf] — __ .
n? n—r
Hence
(2n)! 1

22n+1n2n+ie—2n r2 —-n—f n—r\r 1
T 2Vme-tnpinil ( _ﬁ) (;{-Fr') 22n

= o) (=)

It will appear from the more general investigation on p.71
e=rin,

1
Jam)®

that, when r/n is small, the approximate value of P is
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Accordingly, P = \/(:m)e*”/" is the approximate probability

that, in a sample of magnitude 2n, there will be a discrepancy
of r heads above (or below) n, provided 7/n is small in com-
parison with unity.

-4 3 -2 -1 0 1 2 3 4
Discrepancy r —»
Size of sample = 2n

Fia. 3.

In a sample of size 2n the probability that the number of

heads will lie between s and n—s is therefore approximately
r=g l

2. Y

The general variation of the term to be summed is shown in the
figure.
To estimate the value of P, we write

P =

er" wheres =0, 1, 2,..., s.

r = xVn,
and since the increment of r is unity,
r+41 = (x+43x)vn,
80 that 8z = 1/vn. Thus

z=8/vn oz 1 alyn
P = e = e~ dx, approximatel
i N N %, approximately,
Z = —8/Vn —slvn
9 8lva
=— | e*dx.
N
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x
The function ;/2.- f ¢#* dz is known as the Probability Integral
™

0
or the Error Function, and is denoted by Erf x (see Appendix).

Ex. 1. From a population containing equal numbers of boys and girls
a samplo of 1,800 is selected. Find the probability that the number of
girls will differ from the number of boys by more than 100.

We seek first the probability that this excess will not occur. We have
2n = 1,800, 8 = 50; then the probability that the number of girls is
between n+4-8 = 950 and n—s = 850 is

50/Y900 5[3

o e dx = —g; J e~%' dx.
0 0
From the table (p. 197) we find that Erf(5/3) = 0-9816.
Thus the probability that the difference is greater than this is
1—0:9816 = 0-0184, or 1:8 chances in 100.

Ex. 2. If we define a ‘fair sample’ of size 2n of a population of coins
as one whose discrepancy from n heads is exceeded only in 5 cases out
of 100, what is the discrepancy allowable in a fair sample ?

Here we have to find ¢ in terms of n from the definition that the
probability of a fair sample is 5/100 = 0-05.

s/vn

Thus Erf(s/vn) = -«—/21_7 f e dz = 0-05.

0

From the table we find that s/vn = 0-044.

Ex. 3. What should be the discrepancy such that as many cases have
less than this as greater?

Here we require Erf(s/vn) = 05,
whence 8/ vn = 0-48.

Thus, if 2n = 800, 8 = 9-8, i.e. the range (390, 410) should include
about half the number of cases.

Ex. 4. A penny is tossed 100 times, giving 45 heads and 55 tails.
On the assumption that this is a sample of a large population containing
equal numbers of heads and tails, find the percentage of cases in which
a deviation at least as large as this will be expected.

We have 2rn = 100, 8 = 5, so that the probability of such cases is

0:707
1— 2 f e~ dr = 1—-0-68262 = 0-31738.
~rr

Hence the percentage of cases is about 32.
The General Case

We pass now to the general case in which the probability of
a certain subclass of a given population is p. We have already
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shown (p. 62) that out of a sample of size n, the most probable
number of members of the subclass is np or the least integert
greater than np if np is not itself an integer. We now seek the
probability that in a large sample of size » the number r of
members of the subclass differs by an amount z from the most
probable number.
The probability of just » members occurring is

P= " __p1—pn.
t(n—r)!
Write r = pn+2,n—r = (1—p)n—=a. Since n is large, r is large
also, provided that x is small compared with np.
Using Stirling’s formula and expanding in descending powers

of n, we have
log P = logn!+(pn—+x)log p+{(1—p)n—a}log(l—p)—
—log(pn—+x)!—log{(1—p)n—uz}!
. o L x2 x(1—2p)
= —3}log 2mp(1—p)n 2n{p(l—p)+ p(l——p)}""

1
Thus P = m e T A ——
If |x| is much greater than |[1—2p|, we can neglect the term
(1—2p)x in comparison with 2%, in the exponent. We then
obtain the approximation

1
F V{2mp(1—p)n}
to the probability that a sample of large size n» will contain
[pn]+« members of the subclass whose probability is p, where
= |z > [1-2p|.

This result is also valid for z = 0, for which the probability is
amaximum; that is,[pn]is the most probable number of members
of the subclass, and the probability that a sample of size n will
have just this number is

e~ 2np(1-p)

1
J2mp(1—p)n}’
Thus, the probability that a sample of size » will have a
number of members of the subclass lying in the range (pn—s,
pn-+-8) is the sum of the probabilities that the sample will have

1 This will be denoted by [np].
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precisely [pn]+s, [pn]+8—1,..., [pr]—s, members of the sub-
class. Thus the required probability is

< 1 _ o4 (1—2p)
2 ~/{2wp(1—p)n}exp{ Bnp(1—p) } '

Tr=—8

We notice that

8

2 — 9.
2, i

= Z g '~ B o)

Since the summation extends to equal numbers of positive
and negative terms, the second term in the brackets vanishes.
Thus the probability required is approximately

2 1 —x?
ex .
_z,«/{%p(l——p)n} P {2np(1—-p)}
Write y = z/,/{2np(1—2p)}; then since x increases by unity,

we have y+8y = (z+1)/y{2np(1—p)),

gy 1

Vi f{2mp(1—p)n}

The summation then takes the form

so that

8/¥i2np(1—p)} 5 8/v{2np(1—p)}
v =2 f eV’ dy, approximately.
—8/v{2np(1—p)}, 0

This result expresses the probability approximately in terms
of the error function.

Thus P = Erf[s/\{2np(1—p)}].

Ex. 1. If there are 32 females to 30 males in the general population,
what would be the most probable number, ceteris paribus, of women
students in & university population of 1,800?7 What is the probability
that the number of women students will be less than that number by 40 ?

The probability p of an individual being a female is p = 8} = 18,

We have n = 1,800, 8 = 40, so that

8//{2np(1—p)} = 40/30, approximately.
From the table we find that Erf(4/3) = 0-94. Hence the probability
that the women students exceed the men by less than 40 is very great.
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Ex. 2. Defining a fair sample as one whose discrepancy s from np is
in excess or in defect in only 10 per cent. of all cases, we have

Erfls//{2np(1—p)}] = O-1.
From the table, 8 = /{2np(1—p)} x 0-09.
Thus; if p = ¥, n = 5,000, we obtain
8 = J(10%. %5 .%) X 0-09 = 2-7.
Also np = 500. Thus a fair sample should, on this definition, have no
more than 503 or no less than 497 of members belonging to the subclass.

EXAMPLES ON CHAPTER V

Ex. 1. If a penny is tossed 3 times, what is the probability of obtain-
ing 2 heads?

Ex. 2. What is the probability of throwing an ace exactly once in
6 throws with a die?

Ex. 3. If m dice are thrown, show that the probability of obtaining
an even number of aces is ${1+ (§)™}.

Ex. 4. Drawings are made from a pack of 3 cards, of which 1 is red
and 2 are black, and each time the card drawn is returned to the pack.
If 10 such drawings are made, find the probability that n red cards will
be chosen (n = 0, 1,...,, 10), and show that it is most probable that
n = 3. =

Ex. 5. Find the probability that in 8 throws of a dic, the numbers
1, 3, 5 turn up 2, 3, 3 times respectively.

Ex. 6. A pack of 2n cards, n of which are red and n black, is divided
into two equal parts, and a card drawn from each. Find the probability
that the cards drawn are of the same colour, and compare with the
probability that two cards drawn from the original pack should be of
the same colour.

Ex. 7. A coin is tossed m-+n times (m > n). Show that the prob-
ability of at least m consecutive heads is (n+2)/2m+1,

The required probability is the sum of the probabilities that there
should appear exactly m, m+1, m+2,..., m+n consecutive heads. Now
a series of m consecutive heads may begin at the first, second,..., (n+41)th
throw; and since m > n, there cannot occur more than one such series.
The probabilities of the first and last of these cases are evidently 1/2m+1,
and of the others 1/2m+2, Thus the probability of a series of exactly
m consecutive heads is

2/2mH14 (n—1)/2%4 = (n-+3)/2m+2,

Similarly, the probability of a series of m+1 consecutive heads is
(n+-2)/2m+3, and so on, up to m+n—2. Finally, the probability of a
series of exactly m+n—1 consecutive heads is 1/2™+"-1, and of m+n
consecutive heads is 1/2m+%,

Hence the required probability is

n+3 n+2 1 1
om+8 + 2m+3 +et 2m+» om+n—1 + om+n’®
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The first n—1 terms of this expression form an arithmetico-geometric
series, the sum of which can be written down;t thus, we obtain for the
probability the value (n4-2)/2m+1,

Ex. 8 (Pascal’s problem). 4 and B play a game which must be either
lost or won. If the probability that 4 wins any game is p, what is the
probability that 4 wins m games before B wins n ?

Evidently, the probability that B wins any game is ¢ = 1—p. Now
the required probability is that of A winning at least m games out of
a series of m+n—1, that i, by Bernoulli’s Theorem,

m+n-100pm+n—l + m+ﬂ—lolpm+ﬂ-‘2q +
-+ m+n—108pm+n—3ql N m+n—-10m pmqn—l.

Ex. 9. A bag contains m white and n black balls. If the balls are
drawn out one by one, find the probability of drawing first & white and
then a black, and so on, alternately, until all the balls remaining are of
the same colour.

If m balls are drawn out at once, what is the probability that these
are white ?

Ex. 10. Four cards are drawn from a pack of 62; find the probability
that they are all of different suits, (@) when each card is returned to the
pack after the draw, (b) when it is not.

Ex. 11. Given n independent events A, 4,,..., 4,, whose respective
probabilities are p;, pg,..., Py, prove that the probability that at least
one of the events happens is 3 p,— 3 2,23+ 2 D103 Ps -+

Ex. 12. With the notation of the previous example, show that the
probability that the events 4,, A,,.., 4,, and no more, happen is
P1Ps oo P(1—=pp 1 )(1—=Dypyy)...(1—py,). Hence find

(i) the probability that r (and no more) of the events happen;

(ii) the probability that r at least of the events happen.

Ex. 13. Out of a family of n offspring consisting of two equally
probable types, r at least of one type are just as likely to occur as not:
find the value of r.

The number r is determined by the equation

1 1
("C'+”Cf+1+"'+“0n)—,, -1
n(n—1)....n—r+1)

r!

n(n 1)

ot =21,

If n is even, there is no solution; but if n is odd, say 2m+1, then
r=m-+1.

or 14+n4 ——

1 See Chrystal, Algebra, ch. xx, 13.



CHAPTER VI
EXTENSION TO CONTINUOUS DISTRIBUTIONS
Definition
Ler B P, PP,.. B_,B,.., P,_,P, represent a series of n
straight lines (or ‘elements’) to which the same measures of
length 8 have been attached. Suppose that they are joined end
to end and that they are divided, for our purpose, into two

classes: the first class L is to consist of those elements, ! in
number, lying to the left of F, and the second class R of those

Po P, B

R Pn
PL-1
Fia. 4.

lying to the right. Then the probability that one of the set of
elements shall be a member of L is I/n. We may arrive at this
result in a different manner by inquiring what is the probability
that a point selected anywhere in one of the elements, otherwise
unspecified, shall lie in the class L; since such a point must lie
in one of the elements, the required probability is I/n.

Now I _ 1 _ length of subclass I
n  nd length of class L+ R
This is true no matter how many members the class and the
subclass may contain, and however the successive elements are
orientated with respect to one another.

Now let us suppose that to the total length P, P, a measure
a has been attached and that to F,F, a measure b has been
attached, so that nd = a and I8 = b; if 8 is rational, then so are
a and b. Let us proceed to the limit, making » — o0 and 8 — 0.

It follows that, if Py PP, is any continuous curve such that
a, b are the measures adopted for the arc-lengths P, P, and
F, F, then the probability that a point known to lie on the
arc F, P, shall lie on the arc P, P, is b/a. The probability that it
shall lie on the arc B P, is 1—(b/a).

If b and a are incommensurable (e.g. if a = 2, b = ¥2) it
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might appear that by no process of subdivision, in which each
element has a rational measure, could an arc F, F, be obtained
as the limit of a number of elementary straight lines. But, in
fact, we may replace P by any rational point P of section in
the element F,_, B, since, on our definition of probability, it is
immaterial where B lies in that element; and as the number n
of subdivisions tends to infinity, the distance PF, can be made
to differ from zero by any assigned positive quantity. Thus the
original proposition ¢an be applied to irrational lengths of arc.

Analytically, if y = f(x) is the equation to a curve passing
through the points P,, P, (having abscissae * = a,,a,) and if

C]
Q.| P3/
ﬂpt/ \Qz S
(@) x
M‘ N1 Nz Mg
Fia. 5.

@,, @, are internal points of the range (with abscissae
z == by, b,), then the probability that a point known to lie on
the arc P, P, shall also lie on the arc @, @, is

fao funrrena
[ b

[as  [votrema
B ay

where s is the arc-length of the curve measured from some fixed
point.

If M, N, N, M, are the feet of the ordinates at the four points,
as shown, then the probability that a point known to lie in the
range M, M, shall also lie in the range N, N, is N; N,/ M, M,.

Ex. 1. As an illustration of the above results, consider a semicircle
of radius 7, bounded by & diameter M; M,. First let us find the expecta-
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tion of the height of the ordinate PN drawn from a point P known to
lie on the arc M; M, but otherwise unspecified. If C is the centre of
the semicircle and the angle PCN is 0, then the probability that P lies
on an elemental arc of measure rdf is rdf/mr, by definition. And since
PN = rsin6, the expected height of the ordinate is

m w
frsinﬂr—agz r f sinf df = &
. T T
0 0

M, M,

C N
Fic. 6.

Now let us find the expected height of the ordinate PN erected at
a point N known to lie in M, M, but otherwise unspecified. If CN = z,
then PN = ,/(r*—2?), and the expected height of the ordinate is

[or—an g =1 [ vr—at dz = g
—-r 1]

Note the difference between these two results: to what is it due?

Ex. 2. A line P@Q is bisected at R. Two points S, T' are known to
lie on PQ. Find the probability that (1) they are on opposite sides of
R, (2) they are on the same side of R, (3) they are both to the right of R.

Applications to Weighted Probabilities

Questions of geometrical probability arise in which, as in the
example previously considered (p. 61), some bias has to be
allowed for; thus, in the above formulation of our definition,
let us suppose quite generally that the element P, P, is ‘weighted’
with a number p,, that the element P, P, is weighted with p,,...,
and that P_, P, is weighted with p,, Then the probability that
an element of the class shall belong to L is now

1 n
> BB 3 PLE.
I=1 =1

Similarly, in the case of the continuous curve F, P,, if a point
P, whose position on the arc F, P, is defined by a measure s of
arc-length, is weighted by an amount p(s), where p(s) is some
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function of s, then the probability that P shall lie on the arc

FE is P, B
[2te)ds [ pte) as.
P, P,

Extension to Two Dimensions

Suppose that a plane is divided into rectangles by lines drawn
parallel to the coordinate axes Ox, Oy. Consider a polygon
ABCDEF bounded by sides of these rectangles, to each of
which a measure « of area has been attached, and suppose that
it contains a of these rectangles. Let PQRST be a polygon
lying within ABCDEF and bounded by sides of the same

Y
F
T
E
S
D
x
0
Fi1a. 7.

rectangles, of which it contains b, suppose. Then if a rectangle
is known to be one of the class a, the probability that it shall
also be one of the subclass b is

b ba area of polygon PQRST

@~ aa  area of polygon ABCDEF’

We may now pass, by a discussion analogous to the preceding,
to the following

TaEOREM. If S i8 a simple closed curve, of area a, containing
a simple closed curve S’ of area b, then the probability that a point
lying in the region enclosed by S shall also lie in the region
enclosed by S’ is bja.

For the procedure by which this result is established we may
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refer the reader to the usual method of obtaining the formula
for the area enclosed by a curve. By subdividing the area S
into & meshwork of elementary rectangles we thus obtain for
the required probability the formula

Lfdxdy/gdzdy,

in which the integrals are taken up to the boundaries S and §’.
Y

(o)
Fie. 8.

If the problem is one of weighted probability, we suppose
that to a point with coordinates (z,y) situated within S, the
weight attached is some function f(z, y) of its coordinates. Then
the probability required is

[[ vy dody [ [ fio,) dody.
8 s

Discrete and Continuous Entities

To illustrate the passage from a problem in probability deal-
ing with discrete entities to one concerning a continuous medium,
consider the following:

A population consists of elements forming two subclasses b
and w in the proportion of 1:7—1. The number of elements
in any sample of magnitude 7' is n. From this population is
drawn a sample of total magnitude ¢; we require to find the prob-
ability that in this sample there is no member of the subclass b.

If we assume that n¢/T is an integer, it follows that the
number of elements in the sample of magnitude ¢ is n¢/7. And
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since the proportion of b to the whole population is 1: 7, the
probability that an element in a sample of magnitude 7'
belongs to b is 1/n; thus the probability that it does not belong
to bis 1—1/n. If we now consider the sample ¢, containing nt/T
elements, the probability that none of them belongs to b is

(1-- 1)(1_1) (1__‘.)... to ™ factors — (1_1)"‘”,
n n n T n
_ (1_1)—71(—IIT)
n

If » is sufficiently large,t (1—- %) i approximately e, where

1 1
e= 145+ = 271828...

Hence the required probability is approximately e-#7.

If the original population be considered as a continuous one,
e.g. a volume of water or an interval of time or space, then the
number 7 of elements in the sample may be made arbitrarily
large, and whatever the value of ¢/7, provided it is rational, we
can always assume that nt/7 is arbitrarily large and integral.
Thus, we can assert the following:

THEOREM. If in any continuously varying process (varying
e.g. with respect to time, space, or volume) a certain characteristic
18 present to the extent of one in T units, then the probability that
the characteristic does not occur in a sample of t units is e ™7,

Ex. 1. It is known that 100 litres of water have been polluted with

10® bacteria. If 1 c.c. of water is drawn off, what is the probability
that the sample is not polluted ? X
10

Since 100 litres = 10% c.c., it follows that T =106 = 10-1. Also

t = 1; so that the required probability is
€10 = (-000045, approximately.

Ex. 2. An aircraft company carries on the average P passengers
M miles for every passenger killed. What is the probability of a pas-
senger completing a journey of m miles in safety ?

The fatal accidents occur once in PM passenger miles. Hence the
probability that an accident should not occur in m given passenger
miles is approximately e~™/M7F,

-n
t+ For example, if n = 1000, the error in replacing (l —-;Ll-) by e does not

affect the second decimal place.
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Ex. 3. Estimate from this result an apparently reasonable premium
to pay in order that, should a passenger be killed on such a flight, his
heir should receive £10,000.

Ex. 4. If during the week-end road traffic 100 cars per hour pass
along a certain road, each taking 1 minute to cover it, find the prob-
ability that at any given instant no car will be on this road.

Evidently no car must have entered the road during the previous
minute. But on the average a car enters every 38%¢ = 36 sec.

Thus the required probability is e=80/38 = ¢=5/3,

Ex. 5. In a completed book of 540 pages 624 typographical errors
occur. What is the probability that 4 specimen pages selected for
advertisement are free from errors?

Ex. 6. A series of cars of the same length and with the same speed
proceed along a certain road, one every T seconds; and another series
of cars identical in length and speed with the first, proceed along a road
meeting the first road at right angles, one car passing every T seconds.
If a car takes ¢ seconds to pass an observer, find the probability that
there should be no collisions in an interval of time ¢.

By ‘collision’ we mean in this case the situation of some portions of
two cars, at the cross-roads, at the same instant.

The required probability is evidently the sum of the following separate
probabilitics: -

(1) the probability that no car on the first road is passing the cross-
roads in the interval ¢, and that a car on the second road is passing
the cross-roads in that interval;

(2) the probability that no car on the second road is passing in the
interval and that a car on the first road is passing;

(3) the probability that no car passes the cross-roads on either road
during the interval.

Hence the probability is

c“/"(l _e—tlr)+e—C/r‘( 1 _,c—tlr) +e—t[re—-t/1" — —l/r+e—t[r'_ et r+1r),

Ex. 7. Criticize the following statements:

(1) The sun rises once per day; hence the probability that it will not
rise to-morrow is e,

(2) The probability that it will rise at least once is 1 —e=1.

The ‘Random Walk’ Problem

We begin with the simple case in one dimension. An indi-
vidual is constrained to move backwards and forwards in a
straight line, each step being of length [, it being at each stage
equally probable that the step will be taken forward or back-
ward. We inquire what is the probability that after » steps his
displacement will lie between a and a+da, where # is large.

Let a = ml; then clearly we have to calculate the probability

P that out of n steps }(n+m) will be forward and }(n—m)
4360 e}
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backward. The probability of each step being 4, by Bernoulli’s

Theorem
n! 1

~ )] [fn—m)]! 20’
—_ (_g)%e—m‘lzn’
mn

by applying Stirling’s approximation for large values of n.
Thus the probability that the displacement will lie between
a and a-+da is 1

P

_—__e-atml g

J(2mnl?) ¢ “
The mean square distance o? is then given byt

1%

2 2p-at2nl Jg — pl2
o N 27ml2):£ a’e da = nl

or o = Ivn, and the required probability is

~ 1 —-a20*

- 271’)e da.

We pass now to the two-dimensional case.

A man walks a distance 00, = I; from a point O in any
direction and then walks a distance O, O, = [, in any direction;
required the probability that the final point O, falls within
distances r, and r, of O, where 7, > 7.

Draw a circle of radius I, about O, cutting the circles of radii
r, and r, about O at P and Q. O, may fall anywhere on the
circle with centre O;, and it will satisfy the required conditions
if it falls on the arc PQ. Hence the required probability is

_PQ_ L PO,@Q
p - 'ﬁ'lz - ™
_ G UB—rBB—i
= "[coﬂ -—-—27;77 cos ———2—llr].

Ex. 1. If I, = I3 =1, the probability that the final position lies
between a distance r and r+dr from O is
2 _dr
7 (4B
Ex. 2. Two points P and Q are at distance /, apart. A man walks
from Q in a straight line to a point R which is then found to be a distance

1 See Chap. VIII.
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ly from P. What is the probability that the distance @R lies between Iy
and [, ?
What is the probability that QR lies between A and A+dA?

ILLUSTRATIVE EXAMPLES
Ex. 1. Two points are selected in a line AC of length e, so
as to lie on opposite sides of its mid-point O.
Find the probability that the distance between them is less
than la.
Let P and @ be the points and let OP = z, QO = y.
We thus require

4y < ia.
The conditions of the problem require further that z < }a,y < }a.
Yy
c B

N\
%

o N A
F1a. 9.

If we represent # and y by Cartesian coordinates, it is clear
that 2 and y may lie anywhere within the square shown, while
the values of x and y which satisfy the condition z+y < }a lie
in the shaded area.

Hence the required probability = z / @ _ 2

Ex. 2. A line of given length is divided into three parts.
Find the probability that these will form the sides of a triangle.
Let AB be the line, of length a, and let the three parts be

z, ¥, and a—(x+y).
Then we require z+y > a—(x+y),
z+a—(z+y) >y,
y+a—(x+y) > z.
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These conditions are equivalent to z+y > g, x < %, y< g. In

any case we have the condition z+y < a.

Hence, if we represent # and y by Cartesian coordinates, as
before and the lines BD, AE by z+y = a, z+y = a/2, re-
spectively, the required probability is evidently

area ACE _ _l_
area OBD ~ 4’
D
(o]
E
(o] A B
Fi1a. 10

Ex. 3. Find the probability that the roots of the equation
224-2pr+q =0, where —P<p< P and —@Q<g<@q,
should be real.

Let p and ¢ be represented by Cartesian coordinates, so that
they are restricted to lie in the rectangle shown. The condition

.

Fig. 11.
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for the reality of the roots is p? > ¢; thus p and ¢ must be such
that the point (p, g) lies on the lower side of the parabola y = z2.
There are two cases to distinguish, according as P2? < @ or

P
P? > Q. (i) If P? < Q, the shaded area = 2 J ydx +2PQ, the
integral being taken along the parabola.

) /p
.

Case @)
F1a. 12. -

3
Thus the area is —2-35-}- 2PQ, and the required probability is
therefore 1, P2
- + _G_Q

Q
(ii) If P? > @, the shaded area = 4PQ—2 f zdy

(22 2rq)foro

L]
—_ 4PQ._‘£Q,
and the probability is
g 1.2
(4PQ—{@4PQ = 1 2.

Ex. 4. If two points P, Q are taken in a circle, what is the
probability that the circle with centre P and radius PQ will
lie inside the original circle ?

Let the radius of the original circle be a (Fig. 13); then the
probability that P lies in an annulus of breadth dx at a distance
z from thecentre Ois o 7. 944y

“ma? T @
The second circle will lie inside the first if PQ < PN, where



86 EXTENSION TO CONTINUOUS DISTRIBUTIONS Chap. VI
PN = a—zx. Thus @ may lie anywhere within a circle with

centre P and radius a—z. Hence the required probability is
a

f m(a—x)? 2x dx

ma?  a?

a
=&27lf (ar—2ax2+23) dx
0

2[a*t 2a% at 1
_E[E—T"‘Z]:E‘

Y

\ .
\
x
0]
Fi1c. 13. Fia. 14.

Ex. 5. Buffon’s problem. A smooth table is ruled with
parallel lines at distance a apart. A needle of length I < a is
dropped on the table. What is the probability that it will cross
one of the lines?

Take one of the parallel lines for z-axis and any perpendicular
to it for y-axis (Fig. 14). The probability that the centre of the

needle has an ordinate lying between the limits ¥ and y+dy is
dy/a; and the probability that the inclination of the needle to Oy

should be between 6 and 0-+df is d_0 Hence the probability
m™

that the needle will cross Oz is
= c 5

’
am

where the double integral is E
taken over the range of values
of y and 6 for which the needle
will cross Oz. The possible values
of y are evidently given by
ly] < $lcosf, and @ lies in the
range —}7 < 0 < 4n. Thus, from Fig. 15, where DEA is
the curve y = }lcos@ and AB is of length }a, the required

D (o} A
Fia. 15.
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probability is area AED l 2l
area ABCD ~ jar  aw

Ex. 6. Consider the same problem in the case where I > a.

Ex. 7. A point P is chosen on a line 4B of length 2a. What is the
probability that AP.PB should exceed Aa%, where A is a given positive
number ?

Ex. 8. A point is chosen on each of two adjacent sides of a square.
Show that the average area of the triangle formed by the sides of the
square and the line joining the two points is one-eighth of the area of
the square.

Ex. 9. Three points are chosen on the circumference of a circle. What
is the probability that they lie on the same semicircle ?

Ex. 10. Find the probability that the equation
z¥H = (2n4-1)pr+2ng,
where n is a positive integer and 0 < p < P, —Q < ¢ < @,
should have three of its roots real.

D (‘/ D g/c
E _
o o}

\
8 A F
Cass (i) Case (ii)
Fi1a. 16. Fia. 17.

A

By plotting the curves y = 2?**+1, y = (2n41)px+ 2ng, it is
easily seen that the condition for reality of the roots is p2»+1 > g2n.
We now represent p and ¢ by Cartesian coordinates (z,y),
whence, as in Ex. 3, it follows from the diagrams shown

that the required probability is %FB' Thus two cases
arise. In Case (i), the area
P ooni1 dn _4n+l
= F; — 2n
OEF 2ofx " dz = o ,
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so that the probability is
2n+1
2n P n
an+1 @
Q g R
In Case (ii), the area OEF = 2PQ—2 f yntldy

an+1

_2_(_2_?’"{_ 1 ) 2n + 1
= 2PQ- dn+ 1 ¢
2% i 1 Q2n+ 1
an+1 P
Ex. 11. Find the probability that the solutions of the simul-
taneous differential equations

dx dy
Ez—i—bx—{—w =

and the probability is therefore 1 —

d
2(a——b)x+a:%+by =0,

where 0 < a < 4, 0 < b < B, represent decaying oscillations.
Eliminating y from the equations, we obtain for z the equation

d%x dr .,
W+2(2b_—a)2i?+b x = 0.

For a decaying oscillation we require @ > 2b and (2b—a)? < b2.
This latter condition is equivalent to (3b—a)(b—a) < 0, so
that either

(i) 3b<a,b>a, or (i) 3b>a,b<a.
B /M N

L

o] A
Fi6. 18
If we represent a and b by Cartesian coordinates (,y), their
total field of variation is the rectangle bounded by the axes and
z = A, y = B. For the conditions of the problem a and b
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must be represented by values of (z,y) which lie between
y =0 and y = }x (the line ON), and also between y = }x
and y = z (the lines OL, OM); it is clear that the condition (i)
cannot be fulfilled. If, for example, we suppose that B > 24,
the required probability is evidently 3(34%—1A42%)/AB = I‘;;B
Ex. 12. What is the probability that the second figure in a
table of square roots of z is n, if  ranges from 0 to 1 and is
tabulated at equal intervals?
Let the first figure for any x be m; then for success we require
0mn < vz < O0m(n+1)
n n+1
2L SR
or m+10\ 10V < m -+ 16

where m may be 0, 1,..., 9.
Thus out of the total range of # within which it falls, viz., 0-1,
the second figure in vz will be n if z falls in any one of the intervals
1 n-4-1\2 n\? 1
loo[("‘+"1o—) "("H'Tﬁ) ] = 1o,000 2021,
corresponding tom = 0, 1,..., 9. i
Hence the required probability is

1 m—z‘9
= 16.600 Z (20m+2n+-1).
’ m=0

Thus for n = 0, P = 0-0091 and for n = 9, P = 0-109.

Ex. 13. What is the probability that when log, z is tabulated
for x = 1to x = 0, at equal intervals of z, the second figure in
the table will be 27

EXAMPLES ON CHAPTER VI

Ex. 1. A dcfective measuring instrument slips one scale division each
time it is used. Find the probability that after being used 100 times it
will be no more than 6 divisions from the zero rcading.

Ex. 2. Trains leave a station at 3, 5, 8, 10, 13,... minutes past the
hour. Find the probability that a passenger arriving at the station has
to wait less than a minute for a train.

Ex. 3. A point P is chosen on a line AB. What is the probability
that AP: PB > A?

Ex. 4. Two points are taken in a circle. Find the probability that
the perpendicular from the centre on the line joining them does not
pass between them.
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Ex. 5. On a chess-board, the squares of which are of side a, there is
thrown a coin of diameter b, so as to lie entirely on the board, which
includes & border of width c¢. Find the probability that it will lie
entirely on one square (a > b > c).

Ex. 6. A floor is paved with tiles, each tile being a parallelogram
such that the distances between pairs of opposite sides are ¢ and b
respectively, the length of the diagonal being I. A stick of length ¢ falls
on the floor parallel to this diagonal. Show that the probability that

2
it will lie entirely on one tile is (l - ;) .

If a circle of diameter d is thrown on the floor, show that the prob-
ability that it will lie on one tile is (1-3)(1-%).

Ex. 7. A sheet of perforated zinc in the form of a square 22 cm. in
width is covered with ten rows and ten columns of holes each 1 cm.
in diameter, the centres in the rows and the columns being evenly spaced
at intervals of 2 em.

What is the probability that a particle of sand (considered as a point)
blown against the zinc sheet will pass through to the other side ?

What is the probability that a small shot of diameter } cm. fired
against the zinc without sufficient force to penetrate the metal will pass
through one of the holes ?

Ex. 8. A disk of wood of radius R and thickness d is cut so that it
finally consists of four blades or sectors, each of 30°, radiating from the
centre and evenly spaced. The disk is then set spinning with angular
velocity w about an axis through the centre at right angles to the disk;
a shot is fired with velocity V parallel to and at distance r < R from
the axis. Find the probability that the shot will pass without damaging
the blades of the disk.

Ex. 9. A point P lies inside a circle of diameter 4 B. What is the
probability

(1) that m > LAPB > o > }m,

(2) that §w# > LPAB > a > 0,
where a is a given angle?

Ex. 10. Three chords are drawn through the same point of a circle.
What is the probability that all three lines cut the same semicircle ?

Ex. 11. A particle oscillates harmonically with period T between two
points 4 and B distant 2a apart. What is the probability that during
a small interval of timo ¢ the particle will be found within a small
distance b of the point B?

Ex. 12. A raindrop falls steadily down a window-pane of total height
H. At every distance % a grease spot deflects it by an amount d to the
right or left. What is the probability that by the time it reaches the
bottom it will have been deflected from its original direction of descent
by an amount D?



CHAPTER VII
THE THEORY OF ARRANGEMENTS (2)

In the following theorems we are dealing with a series of pro-
blems that can perhaps be described best in this way. Let there
be a row of pigeon-holes into which it is proposed to place a set
of objects which may or may not differ from one another. The
result of the distribution may be that some pigeon-holes con-
tain objects and some do not. Thus the number of ways in
which a distribution can be effected will depend upon two
factors:

(1) Whether the order of the pigeon-holes, even including

blanks, is taken into account.

(2) Whether the order of the objects within the pigeon-holes

is taken into account.

The set of objects in a pigeon-hole will be called a group or a
parcel according as the order of the objects is or is not taken into
consideration. Unless otherwise stated, it is to be assumed
throughout that the order of the pigeon-holes is significant.

Suppose that we are given n different objects in a row and
that these are divided by r—1 partitions into groups which may
range in size from 0 to ». In how many ways can this division
be accomplished ? Altogether, counting objects and partitions,
we have n+r—1entities, and if these are permuted among them-
selves we shall obtain the required number N of distributions,
provided we make allowance for the fact that the interchange
of two partitions does not alter the result. Thus we have to
permute n+r—1 objects among themselves, r—1 of them being
alike; so that, by the theorem (p. 42),

N = (n4r—1)l/(r—1)! = r(r+1)...(r+n—1).
Hence

THEOREM I. The number of ways in which n different objects
can be arranged in r or fewer groups 18 r(r+1)...(r+n—1).

Ex. 1. Show that there are 6 ways of displaying 3 flags on 2 masts,
when all the flags must be displayed but both masts need not be used.

Ex. 2. Show by means of Stirling’s theerem that when n is large
compared with 7, the value of N in Theorem I is ,/(2mnntr—te=n/(r—1)1,
approximately. -
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Now let us impose the restriction that each of the r groups
must contain at least one object. To find the number of ways in
which the distribution can be made, we begin by selecting r of
the n objects and placing one in each of the r compartments;
since the objects are all different, this selection can be made in
»P. ways. For each such arrangement the problem now resolves
itself into the preceding, for there remain n—r objects to be
distributed into r or less groups. Hence the total number N of
ways is given by

N = "B, .r(r+1)...r+n—r—1) = nY(n—1)!/(n—r)!(r—1)!.
Thus,

THEOREM I1. The number of ways in which n different objects
can be arranged in exactly r groups is n!(n—1)!/(n—r){(r—1)L.
We note that when » = r, this reduces to n!, as expected.

Ex. 1. A builder has been asked to deliver 10 different consignments
of materials on 4 successive days, at certain specified times. If he omits
to record the details of the order in which the materials should be sent,
what is the probability that he executes the order correctly ?

Ex. 2. Applying Stirling’s theorem to the result of Theorem II when
n is large compared with r, show that the approximate value of N is

J@mnntr=te=n/(r 1)
as in Theorem I, Ex. 2.

Ex. 3. By estimating the approximations in Theorems I and II to
a higher degree of accuracy, determine the proportion of the total
number of ways which arise from the assumption that fewer than r
groups may be employed.

The last proposition can easily be generalized. If we wish to
arrange n different objects into » groups so that each group
contains at least s objects, we begin by selecting s objects and
placing s in each of the r groups. Since this selection can be
made in *F,, ways, we have the result:

TaEOREM III. The number of ways in which n different objects
can be arranged in r groups, each of which contains at least s
objects, is "B r(r+1)...(r+n—rs—1).

Now suppose that the n objects which we wish to arrange in
r different groups are identical. This means, of course, that we
are now dealing with parcels instead of groups. We begin by
placing the objects in a row—there will then be n—1 gaps
between them. If we indicate r—1 of these gaps we shall have



Chap. VII THE THEORY OF ARRANGEMENTS 93
separated the objects into parcels, each parcel containing at
least one object. Thus the number of ways of forming such
parcels is the number of ways of indicating r—1 gaps among
the n—1, i.e. »~1C,_;. Hence,

THEOREM IV. The number of ways in which n identical objects
can be arranged in r different parcelsis N = (n—1)!/(r—1)!(n—7r)!
Note that, by the methodt of Theorem XII, this number can
be obtained as the coefficient of z*-" in

(x0+x1+“_+zn—r)r — (l_xn-r+1)r/(1_x)r’
ie. in (1—z)". Thus the coefficient is »-1C,_,, as before.

Ex. 1. During a period of shortage, n tons of coal have to be dis-
tributed among r factories. What is the probability that a specified
factory is supplied with exactly m tons?

By Theorem 1V, the total number of ways in which the n tons can
be supplied is (n—1)!/(r—1)! (n—r)!.

If m tons are given to the specified factory, we have n—m tons left
to distribute among the remaining r—1 factories, and this distribution
can be effected in (n—m—1)!/(r—2)!(n—m—r+1)! ways. Hence the
(r—1)n—r)n—r—1)..(a—r—m-+2) .

(n—1)(n—2)...(n—m) + Thus, if
n = 10, r = 4, m = 3, the probability is 5/28.

Ex. 2. If nis large compared with 7, show that the number of arrange-
ments obtained in Theorem IV is approximately n™1/(r —1)!.

Ex. 3. Prove that the value of r for which N is greatest is the smallest
integer not less than in.

From the last theorem we can find the number of arrange-
ments into r or less parcels. For the number of such arrange-
ments is the number of ways in which n+7—1 objects can be
distributed into r parcels, each containing at least one, whence

THEOREM V. The number of ways in which n identical objects
can be arranged in r or fewer parcels is (n+r—1)!/(r—1)!n!.

CoroLLARY. The number of ways in which n identical objects
can be arranged in r parcels, none of which contains less than
q objects, ig M-Ta+r-1C .

For we place ¢ objects in each of the r parcels, leaving n—rg
objects to be arranged in r or less parcels.

Ex. 1. n nuts are thrown daily into a cage containing r squirrels. If
a squirrel to survive must have a ration of m nuts at least per day, and
if in the struggle some get more than their share and others less, find
the probability that a certain squirrel will survive.
t See p. 98.

required probability is
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Ex. 2. Suppose that n = 5, r = 2, ¢ = 1, and let the five objects be
denoted by letters a. Then the number of arrangements is evidently
a, a%; a?, a®; a®, a?; a*, a, i.e. four.

Given 7 different objects we inquire in how many ways they
can be distributed into 7 or less groups not necessarily using all
the n objects.

Suppose we select z of the objects—such a selection can be
made in "C, ways—and then distribute these objects among
themselves, as in Theorem I. In this way we obtain
*C,r(r+1)...(r+x—1) distributions; and since z may vary
from 0 to n, the required number of ways is

n

Z n! (r4z—1)!

=o:t:!(n——:z:)! (r—1)!

N =§0"01 rir+1)...(r+x—1) =

ool G (ra—1)!
- (r—)! & z!(n—2)! )

Now let us form the product of the two series

e =1+o+l + AT

(1—x)" = 14rx +r(r+l)x2+ where ¢ < 1.

The coefficient of 2 in this product is
1 r(r+1) r(r+1)...(r+n—1)
AT =ittt w2 T nl
1 [(r—=1)! r! (r+1)! ]
== [“"{J’ i T ey T
On comparing this expression with the above value of N we
obtain the theorem:

TueoreM VI. The number of ways in which n different objects
can be distributed into r or fewer groups, not necessarily using
all the m objects, is the coefficient of x™ in the expansion of
nle*(l—zx)".

Ex. Thus, if n = 2, r = 2, the number of arrangements is the coeffi-
cient of z? in 2¢%(1—z)%, i.e. in

2(1+z+ 423 +...)(14+ 22+ 322 4-...).
Hence the required number is 11. As a verification we find that the
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number of arrangements of two objects @ and b is given by the

scheme:
a,0; b,0; ab, 0; ba, 0; a,b;

0,a; 0,5; O0,ab; O0,ba; b,a.
To these must be added the arrangement (0, 0) in which neither object
is chosen. Thus the total is 11, as before.

TaEOREM VII. The number of ways in which n different objects
can be arranged in exactly r groups, not necessarily using all the
objects, 18 the coefficient of x»~" in the expansion of n!e*(1—x)—.

For we place one of the objects in each of the r groups, and
we have then to distribute the n—r remaining objects into 7 or
fewer groups, as in the last theorem. Hence also, when the
order of the groups among themselves is disregarded,

TrEOREM VIII. The number of ways in which n different
objects can be arranged in r indifferent groups, not necessarily
using all the objects, 18 the coefficient of x»~ in the expansion of

n! .
-r—lez(l ).

Suppose that we form n sets of letters from the set a,, a,,
as,..., a,; suppose that the letter @, occurs in n, of the sets, that
a, occurs in n, of the sets, while the number of sets containing
a, and a, is n,,.

Then the number of sets containing a, only is n,—n,,; the
number containing a, only is n,—n,,. Hence the number of
sets containing either a, or a, only is n,+n,—2n,,, and the
number containing at least one of a,, a, is

Ny+Ng— 20y +Nyg = Ny +Ny—Nyy.
It follows that the number of sets free from a, and a, is
n—(ny+ng)+ 0.

Let us consider now three letters a,, a,, ay; suppose that ng of
the sets contain a;, that m,s contain a,, as, that ng contain
as, a,, while 7,,5 contain a,, a,, a,.

From the preceding result it follows that the number of sets
containing at least one of a,, ag is n,+n3—n.,; and the number
containing at least one of a, a,, a, ag is n;3+n;3—n,,5. Hence
the number of sets containing at least one of a,, a,, a; is

Ny + (Ng+Rg—Mgg)— (Nyg+7y3—Nyg3)

= Ny +ny+ 13— By +7N23+7g1) + M.
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Reasoning inductively in this manner we obtain the following
general result:t
TaEOREM IX. If n sets of letters formed from a,, a,, a;,... are
such that the letter a; occurs in n, sets, the letters a;, a; occur in n;;
sets, the letters a,, a,, @, occur in nyy, sets, and so on, then the number
of sets free from a,, a,,..., a, i3

r r r
n— 3 n+ ; Nyy— ; Nyjxt - Rg o
i=1 =1 i3 F=1

CoROLLARY 1. If none of the sets is free from a,, a,,..., a,, then
n— 3 mit+ 3 ny— 2 Mgtk = 0.
CoROLLARY 2. By similar reasoning it may be shown that the
number of sets containing one only of the letters a,, a,, as... 18
2ni—2 3 3 X n—
If ny=mny=..= DN, say, and n, = ngy = ... = N,, and
g0 on, the number of sets free from the specified letters is
r r—-—l r(r—1)(r—2
SRR S L (SRS 4
where r is the number of letters in question, and N = n.

Ex. 1. If the n given sets are a,, a;, a5, @, Gy, Q3 a3, Q) Ay, G4, Ay Ap A,
a,a;05, a30,a5, @,05a, and the r specified letters are a,,a, a;, then
n=11,7r=3, In; =15 I ny; =T, nyy = 1. Thus the number of
sets free from a,, a,, a, is

11-154+7—1 =2,
as is immediately verified.

Ex. 2. At a school of 1,000 children, groups were examined for defec-
tive teeth, vision, and hearing, and the following results tabulated:

Numbers examined for:

Teeth . 180 | Eyes and teeth . 90 | Eyes, teeth, and hearing 40
Eyes . 700 | Eyes and hearing . 170
Hearing . 220 | Teeth and hearing . 80

The records of these cases were accidentally destroyed and it was not
known how many of the children had actually been examined. What
is the probability that a particular child was not examined ?
By Theorem 1X, the number of children not examined is
1,000— 1,100+ 340— 40 = 200.
Hence the required probability is 200/1,000 = 0-2.

t An equivalent theorem is given by Poincaré, Calcul des Probabilités; a
particular form will be found in Whitworth, Chotce and Chance, Chap. II.
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Ex. 3. A certain factory produces and tests 7,000 motor-cars per
year. The possible defects are catalogued as follows:

B = bodywork, C = chassis, ¥ = engine, I = instruments.

Thus BCE denotes a case of compound defect in ‘ bodywork, chassig, and
engine’. A year’s record of defects is shown in the accompanying table:

B = 120 BC = 50 BCE = 24 BCEI = 2

C = 150 BE = 40 BCI = 15
E = 185 BI = 23 BEI = b
I = 200 CE = 55 CIE =10
Cl =35
EI = 28

Find the percentage of cars which pass all four tests at the first trial.

Ex 4.t The number of ways in which a row of n objects can
be deranged, so that no object remains in its proper place, is the
greatest integer contained in n!/e.

For the total number of arrangements of the objects is
N = n!. Of these, the number of arrangements in which at
least one object is in its proper place is N, = (n—1)!; the
number for which at least two objects are m their proper places
is N, = (n—2)!, and so on.

Hence, by Theorem IX, the number of arrangements free
from all these restrictions (i.e. for which all the objects are
deranged) is

nl— T (n— nqﬁm D n—oy—...

1 1 1
L T P T il
""(l H+2!'"inJ
This number is certainly an integer; the last term is +1, so
that if the series of terms in the brackets is replaced by e-1, we

merely add a fraction to the required number; whence the result.

Ex. 5. Two shuffled packs of 52 cards are dealt by two players, each
dealing a card simultaneously. Show that the probability that all the
52 pairs of cards so dealt will be different is approximately 1/e.

We may take one of the packs as specifying the order, which may be
one of 52! arrangements. Then the number of ways in which the second
pack may be arranged so that no card is in its proper place is 52!/e,
approximately. Hence the required probability is 1/e, approximately.

The probability that identical cards will be dealt on at least ~ne
occasion is therefore 1—(1/e).

t This proposition is a variant of one due to Montmort (1708).
‘m n
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Ex. 6. A man writes a number (not less than nine) of letters and
their corresponding envelopes. If the letters are inserted in the en-
velopes irrespective of the addresses, show that the probability that all
the letters will go wrong is approximately 1/e.

THEOREM X. The number of ways in which n different objects
can be arranged in r or fewer parcels 13 r™.

For each of the objects can be assigned to any one of the
r parcels in » ways, and this gives r” arrangements in all.

THEOREM XI. The number of ways in which n different objects
can be arranged tn exactly r parcels 18 the coefficient of x™ in the
expansion of n!(e*—1).

For, by the last theorem, the number of arrangements in
which blanks are admissible is 7». The number of arrangements
in which one assigned blank is admissible is (r—1)", and so on.
Hence, by Theorem IX, the number of arrangements in which
no blanks are admissible is

r r(r— 12

—1
™ — =1 D rr—1)

(r—2)h . S

RS\ P
Hence, by the exponential theorem, the coefficient of z" in
this expansion is

™ r (=D r(r—1)(r—2)"

n! 1! n! 2! n! B
whence the above result.

TaEOREM XII. The number of ways in which n identical objects
can be distributed into r parcels such that no parcel contains less
than q objects or more than g+t—1, 18 the coefficient of "~ in
the expansion of (1—a')y(1—z)~".

It is clear that the required number is the coefficient of 2" in
the product of the r factors

(9428 .. 2H-1) (a0 g0 L 2TH-1)
that is, in 27 (142 +224-...4-2¢-1),
or in 27 (1—2°)/(1—z).
Hence the number sought is the coefficient of "¢ in
(1—2)y(1—2a)~".

Now (e*—1) = e
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Ex. 1. A die whose faces are numbered from 1 to 6 is thrown four
times; in how many ways can the number 8 be obtained in the four
throws ?

In this case we require the coefficient of x® in the product

(2l 4%+ ...+ 2%)8,
i.e. the coefficient of x4 in the product (1+x+x24...+x5)4,

To find this coefficient we write the latter expression as (1 —8)4/(1 —x)4
and, supposing that x < 1, we expand (1—=x)"* as a binomial series.
Thus we require the coefficient of z* in

(1 —428+...)(1 + 42+ 1022 + 2023+ 3524+ ...),
i.e. 35.

Note that the total number of possible combinations of the numbers
1 to 6, in four throws, is the sum of all the coefficients in (x -+ ...+ z%)4,
and this is obtained by putting £ = 1; the number is therefore 6¢.

Ex. 2. The probability that a die which is thrown four times gives
a total of 8 is %—f— = 5335—’ = 31_6’ approximately.

IEx. 3. Show that the probability that the number m will be obtained
by throwing a die r times is the coefficient of x" in the expansion of
(1 —a®)(1—x)~"/6".

Ex. 4. Given the two sets of numbers 1, 2, 3, 4, 5; 1, 3, 5, 7, 9, find
the probability that the sum of two numbers selected, one from each
group, is 8.

The number of possible pairs of numbers is 52 = 25; of these the
number of pairs whose sum is 8 is evidently 3; thus the probability
is 3/25.

Ex. 5. Given the three sets of numbers 1, 2, 3, 4, 5; 1, 3, 5, 7, 9;
2, 4, 6, 8, 10, find the probability that the sum of three numbers selected,
one from each set, should be 16.

The number of sets whose sum is 16 is the coefficient of x® in the
product (z+x*+...+ab)(x 423 +...+ 2®) 224244 ... +-210), i.e. the coeffi-
cient of 22 in (1+x+...+z4)(1 +2%+...42®)%, which is 12.

Hence the probability is 12/125.

Ex. 6. A set of 10 cards is marked with the numbers 2, 4,..., 20.
In how many ways can a total of 36 be found in a hand of 4 cards?

EXAMPLES ON CHAPTER VII

Ex. 1. Four men arrange to meet at the ‘White Hart’ tavern in
a certain town. It happens that there are four taverns with that name;
show that the probability that all the men choose different taverns
is .

Ex. 2. If n people seat themselves at a round table, show that the
probability that two individuals are neighbours is 2/(n—1),

Ex. 3. A pack of 52 cards is dealt out to four players; show, by
Stirling’s Theorem, that the probability that the whole of one particular
suit is dealt to one particular player is approximately 156/10%4,
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Ex. 4. Show that the probability of obtaining 14 is the same with
3 dice as with 5.

Ex. 5. A die is thrown 10 times; prove that the probability that every
face appears at least once is 38,045/139,968.

Ex. 6. A set of r consecutive numbers is selected from the numbers
1, 2,..., n; if a second set of s consecutive numbers is selected, what is the
probability that it has no number in common with the first ?

Ex. 7. Find the probability of throwing not more than 8 with 3 dice.

Ex. 8. Show that therc is a greater probability of obtaining 9 in a
single throw with 3 dice than with 2.

Ex. 9. There are n houses in each of which the population may vary
from 1 to n. What is the probability that the average population per
house is 4?

Ex. 10. Show that the most probable sum to be obtained by throwing
2n dice is 7n, and that with 2n+41 dice both 7»4+3 and 7n-+4 are
equally likely.

Ex. 11. Find the number of positive integral solutions of the equation

rx+y+z+u = 12,
if the unknowns are to lie between 1 and 6.

Ex. 12. Given m kinds of objects and n of each kind, show that the
probability that m—r selected objects will be all different is

mn+rC' nm-r /mn+rCm.

Ex. 13. If a coin is tossed 2n times, prove that

(i) the probability that the numbers of heads and tails obtained are
equal for the first time at the 2nth throw is 27C,/4"(2n—1);

(ii) the probability that in 2n throws the numbers of heads and tails
are never equal is 27C, 4",

(iii) the probability that the numbers of hecads and tails have been
equal once and only once is ?*C, /4",

Ex. 14. Prove that the number of ways of obtaining the sum r with

n dice is P10, =10, T1C, 10,10, ...

Ex. 15. If a coin is tossed n times, show that the probability that
there will not be a consecutive heads is the coefficient of 2" in the

. 1 14422 4... 4202
expansion °f§7' e S—
Ex. 16. If m objects be distributed among a men and b women, show

that the probability that the number received by the men is odd, is
{3b+a)y*—}(d—a)}/(b+a)™ (b > a)
Ex. 17. Among a batch of 240 eggs, 12 are bad. The eggs are sent
in cartons of a dozen to 20 different customers. Find the probability that
(i) a particular customer will receive two or more bad eggs,
(ii) two particular customers will receive two or more bad eggs,
(iii) all the bad eggs are delivered to three customers.
Ex. 18. In a street of 100 houses 25 are known to have defective
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drains, 75 have broken windows, and 15 have both defective drains and
broken windows. Show that the probability that a given house is sound
in windows and drains is 3/20.

Ex. 19. D, and D, are two diseases such that the probability of any
one infected with D, acquiring D, from an infected individual is p,, and
the probability of any one infected with D, acquiring D, from an
infected individual is p,. Suppose that the diseases cannot be acquired
save by mutual contagion, and that n; and n, people infected with D,
and D, respectively come to live in & town of n inhabitants, mixing
freely with them. What is the probability that an inhabitant will be
free from both or either of the discases?

Ex. 20. A billposter has 100 placards to post in sets of 3 or 4. If the
placards contain 10 different types of 10 each, find the probability that
a given set of 3 will have 2 alike.



CHAPTER VIII
THE EMPIRICAL THEORY OF DISTRIBUTIONS

1. Hypothetical populations and typical constants

So far we have been concerned with probability as a mathe-
matical subject of study, the category (1) of Chapter II. In
this section we turn to the consideration of category (2), which
concerns itself in the first place with enumerating the frequency
of occurrence of actual events in a physical problem. Once
again let us emphasize the difference between (1) and (2): in
the analysis so far developed (1) has dealt with the enumeration
of all possible arrangements that can be conceived to occur in
any given situation; on the other hand, (2) is concerned with the
actual events as they have occurred in circumstances akin to
those in which the results are to be applied. The crucial question
which has to be faced, in the use of mathematical probability in
the theory of statistics, is how the mathematical theorems of
(1) can legitimately be combined with the empirical data of (2)
to enable predictions to be made about forthcoming events of
the type (2).

We begin with a discussion of Histograms, a pictorial arrange-
ment of physical data in a form suitable for mathematical
analysis.

Let us suppose that 100 leaves are stripped from a tree and
their mean widths measured; it is then found that these lie

Wdth No. of
in inches | leaves

1-0to 1'1 8
1-1to 12 10
1-2to 1-3 15
1:3to 14 20
1'4to 156 18
1-5to 1-6 11

1-6 to 1-7 7
17 t0 1-8 6
1-8to 1-9 3
19 to 20 2

between 1 and 2 inches in the proportions shown in the table.
To represent our data graphically we set off unit length on the
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z-axis, divided into tenths, and at the mid-point of each interval
we erect an ordinate proportional to the number of leaves to
be found in that interval. By drawing a system of horizontal
and vertical lines as shown, we obtain a step-curve, called a
‘histogram’.

It is clear that, by reducing the ordinates in a certain ratio,
the histogram can immediately be converted into a mathe-
matical probability diagram; since there are 100 members of the
population considered, the proportions belonging to the sub-
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width of leaf
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classes (1,1-1), (1-1,1-2),... are respectively 8/100, 10/100, etc.
These proportions represent, in the mathematical sense, the
probability of occurrence of the subclasses among the popula-
tion of 100 leaves.

Once more we stress the distinction between mathematical
and empirical probability by asking two questions:

(i) What is the mathematical probability that a leaf known
to be a member of this population of 100 leaves has a width
lying between 1-2 and 1-3 inches? The answer is 15/100.

(ii) What is the ‘probability’ that yet another leaf known to
have been stripped from the tree containing the original 100
has a width lying between 1-2 and 1-3 inches? So far we have
attached no significance whatever to this interpretation of
probability. Before any step can be taken enabling us to give
a sensible answer to this question, we require some information
concerning the nature of the larger population from which the
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population of 100 leaves has been drawn, or—as is sometimes
stated—we require to know whether the latter is a ‘fair sample’
of the original population. The answer to the question, there-
fore, cannot be divorced from the assumed criterion of the
‘fairness’ of the sample.
Probability Curves

The simple laws of mathematical probability given in Chapter
IV can be illustrated from the above diagram. For example,
the probability that a leaf defined as a member of the popula-
tion of 100 has a width lying between 1-1 and 1-4 inches is
lOﬁ:11050+29 = sum of the probabilities that its width lies in
the ranges (1-1,1-2), (1-2,1:3), (1-3,1-4). The probability that
the width lies somewhere in the range (1, 2) is obviously unity.
The probability that the leaf has a width lying in the range
(1-1, 1-4) is the area between the probability diagram, the z-axis,
and the ordinates at 1-1, 1-4.

Frequency and Probability Curves

If through ABC...J we draw a continuous curve such that
the area under each element of curve is equal to the area of
the corresponding rectangle in the histogram, the curve so
obtained is called the ‘frequency curve’; if the ordinates of this
curve be reduced in the ratio 1: 100, as in the formation of the
probability diagram, we derive a probability curve. For this
curve also we can state that the probability of a leaf having a
width lying in the range (1-2,1-6), say, is measured by the
area under the curve; that is, if ¥ = p(x) is the equation of the
curve, the required probability is

18
P = f p(x) de.
1’2
It should be noted that we are not justified in stating
that the probability that a leaf has a width lying in the range
(1-28,1-63) is:f sp(x) dzx. It may be convenient (as we shall
23

find) for the purpose of mathematical treatment to assume
that the probability of an individual specimen having a width

b
lying in the range (a,b) is P = [ p(x) dz; but we should have
a
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to justify such an assumption or, alternatively, to find some
measure for the extent of the error involved in making it.

Ex. 1. In the examination of 148 pods of large yellow broom, the
frequency of seeds in a pod was found to be as follows:

No.ofseeds 01 234 5 678 9101112 13 14 15 16 17 18 19
No.ofpods 00126121277 1416161411 9 8 6 4 2 1

Construct the histogram and the frequency curve for this population.

Ex. 2. A second batch of such pods was measured and the frequency
of their lengths obtained, as follows:

Length Frequency
2-2-2.8 0
2-8-3-4 1
3-4-4-0 3
4-0-4-6 20-5
4-6-5-2 11
5-2-5-8 235
5-8-6-4 10-5
6-4-7-0 35

Construct the frequency curve.

Probability as a Continuous Function

If we are to justify the above-mentioned assumption that
a probability may be regarded as a continuous function of a
variable in experimental practice, we are faced with what at
first appears to be a difficult problem concerning the continuity
of natural phenomena. We have remarked that all observations
are obtained, at some stage or other, by the use of a measuring
scale; and if the process of measurement is examined, it is
found to consist in an attempt to make two marks on the scale
coincide with two marks on the object measured. But whereas
it is possible to make one mark on the scale coincide, to our
satisfaction, with a mark on the object, the other mark in
general falls somewhere between two adjacent marks on the
scale. Even when the accuracy of the measurement is increased
by the use of a vernier, say, invariably the reading of the scale
division involves an estimate which is equivalent to stating that
the mark does not fall between two scale divisions, but on one or
other of them. There always exists a finite ‘jump’ corresponding
to the least interval which can be measured by means of the scale.

The same kind of restriction is implicit in any tabulated set
of numbers, such as a table of logarithms or trigonometric
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functions; in fact, by no set of numbers or measurements can we
represent fully a continuous function. Two leaves out of a
batch of 10,000 will be classed as of equal width if with our
measuring rod we cannot detect any difference in their widths;
nevertheless the difference, if any, between two widths, that
might be detected by a more accurate process, may correspond
to a finite jump which we ignore in the measurement. While,
therefore, it is clear that all measurements obtained from
Nature must show discontinuity and all frequency curves con-
structed from them ought strictly to be histograms, it would be
unreasonable to assert that for our purpose we must regard the
growth of leaves, say, necessarily as a discontinuous process.
An apparent discontinuity arises from limitations in our method
of measurement, but it is unnecessary to import these into our
analysis. From our standpoint the distinction between con-
tinuity and discontinuity in these cases amounts to little more
than stating that we take the area between the histogram and
the 2-axis to be equivalent to the area under a continuous curve
passing through the vertices of the histogram, it being supposed
that the error so committed is small. Ifit is a great convenience
for us to deal with a continuous curve rather than with a histo-
gram, the loss in accuracy, even if it were perceptible, would be
more than compensated for by the gain in power.

The Meaning of ‘ Population’

Here the empirical data have been used for constructing a
histogram which in its continuous form represents the mathe-
matical probability curve. In passing from the former to the
latter we are in effect constructing a hypothetical population on
the basis of the experimental sample. It is customary to repre-
sent such a continuous curve in mathematical form and then to
assume, either explicitly or implicitly, that the form so obtained
has a validity for a range of the variable much beyond that
found in the given sample. This process is tantamount to
extrapolating the population by means of a mathematical
expression.

In discussing the validity of an application of mathematical
probability or statistical theory to scientific experiment, there
are several questions that merit examination. Let us contrast,
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in the first instance, the conduct of a physical experiment with
the collection of botanical data, e.g. for determining the size of
leaves on a particular type of tree. In his experiment the
physicist is able to exercise a considerable degree of control
over the situation; he can plan and lay out the environment;
he can, in general, eliminate what are called ‘systematic errors’
or even periodic fluctuations. The consequences are twofold.
In the first place he can state from the beginning that the
quantity he is measuring will lie within a prescribed and com-
paratively narrow range; he will know, for example, that the
expansion of a metal rod in certain circumstances cannot be
more than 0-5 cm. or less than 0-2 cm. This he knows on the
basis of his past experience of scientific inquiry, and it would
be extraordinarily rare for an experiment to be conducted
without some such preliminary knowledge.f In the second
place, the actual experiment which he performs narrows this
range still further; the observations obtained show that the
‘true readings’ are grouped within a much smaller band of
values. Moreover, because of the fact that the experiment has
been carefully performed and the measurements made after a
series of delicate adjustments, the scientist is perfectly well
aware that to multiply the number of readings merely to satisfy
the demands of the statistician cannot possibly increase his
accuracy—they may succeed only in encouraging him to incor-
porate a number of less accurate observations in his results.
When we consider the collection of botanical data the condi-
tions are seen to be very different. The botanist has to take the
material with which Nature provides him, largely in circum-
stances over which he has no control. His data may therefore
range over wide regions; he can, like the physicist, state in
advance upper and lower limits within which his measurements
will lie, but the narrow band will be much less accurately de-
fined: the more observations he can collect, the greater will be
his knowledge of the features he is studying. Whereas the
physicist can proceed on the experimental assumption that
there is a definite expansion of the rod to which his measure-
ments are approximations, the botanist cannot assert that there

1 The far-reaching effects of any exception to this rule can be seen from the
consequences of the Michelson-Morley experiment.
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is a definite size of leaf, the ‘true’ size, to which his collection
approximates. One of the purposes of his experiment is in fact
to discover whether he can usefully apply such a fiction to his
subject-matter.

In the light of the above facts concerning experimental
practice in physics, it must be admitted that in many cases
there is no justification for the assertion that the limited set of
data obtained by an experimenter are a sample of a hypothetical
population or a much wider collection.t The position is different
when we are dealing with biological phenomena of the type
mentioned, for here the actual collection of data has to be seen
as a step towards the building up of the hypothetical population,
with its special conception of a ‘true’ value. This makes the
application of statistical theory to physical experiment a much
more delicate and uncertain procedure than to biological,
meteorological, or economic phenomena.

The type of collection or hypothetical population which we
have had in mind is a static unchanging one. But such is by
no means the only possible type. In the paper referred to above,
Campbell illustrates the difficulty of assigning two different
samples to different collections by considering the rainfall
records of 1901-20. ‘Was the climate between 1901 and 1910’,
he asks, ‘different from that between 1911 and 1920? If this
problem is statistical, the records for 1901-10 and for 1911-20
must be samples of two possibly different collections. But
what are the remainders of these cdllections? Not the records
for other years; for, if the climate may be changing, other years
are not comparable. But meteorological records must be records
for some defined period. If the records for 1901-10 are a mere
sample of the records for some longer period, and not the whole
collection relevant to the problem, what is this longer period?’

The answer to these conundrums surely lies in the fact that
the climate of a country is itself a varying phenomenon and
therefore the two records for 1901-10 and 1911-20 must be
regarded as successive samples of a varying hypothetical popu-
lation. Whether these samples provide data adequate for the
drawing of valid conclusions about climatic changes as a whole
is another matter. All we wish to point out is, that unless the

t Cf. N. Campbell, Proc. Phys. Soc. 47 (1935), 800.
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records in question be regarded as successive samples of a
varying population, inconsistences of the type indicated by
Campbell are bound to arise.

But we must not over-estimate the importance of such matters
in experimental practice; we shall certainly do so if we imagine
that all experiment is necessarily individual. When scientific
method demands that a particular conclusion shall be accepted
only if it is accorded general assent, this should mean not only
that the experiment which led to it is ‘accepted’ as from one
research worker and that it can be imagined repeated if neces-
gary, but that it is in fact repeated by a number of other
workers. Thus, many measurements have been made of the
velocity of light, by different observers working under diverse
conditions or by the same observer using a variety of methods.
For the final conclusion to be acceptable, the collection of
data has to be regarded as a ‘fair sample’ of what scientists
who perform the experiment are likely to find. On the
other hand, the search for a true scientific entity would be
fruitless unless all the numbers obtained could be regarded as
clustering-about some so-called ‘true value’. The set of observa-
tions so found therefore embody a series of diverse conditions
of experiment which are necessarily unspecifiable in detail; and
in essential contrast with the case of the individual experi-
menter, the larger the amount of such observations, the greater
the precision with which the true value can be stated. For
this reason it is of vital importance that the mass of data found
by different observers should form a coherent collection; they
have to be unified, and the unifying process which attempts to
cancel out the numerous irrelevant circumstances is essentially
a statistical one. As we have remarked, each experimenter
will be able to state at the beginning that the quantity he pro-
poses to measure will lie within a prescribed, comparatively
narrow range; the fact that this range is practically identical
for all the observers is merely evidence that they all begin with
the same basic knowledge of the problem. The narrower range
which emerges in each experiment will reflect among other
things the diverse conditions of the individual experiment, and
it is these ranges that have to be dealt with in a statistical
manner. In disagreement, therefore, with the point of view
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put by Campbell,} we hold that a statistical approach to
observational data derived from different observers (or from
the same observer working under different conditions) is in-
escapable and is in fact fundamental in the development of
science itself.

Following up this idea, we shall seek to discover what are
the most suitable probability functions which can be utilized
in practical cases, as they occur. We are then justified in assum-
ing that the probability of occurrence of a variable in the range
(a, B) is not only to be obtained by computing the area between
the histogram and the z-axis, for that range, but by evaluating

f p(x) dx, where y = p(x) is now a continuous curve passing
[« 2

through or near the vertices of the histogram.

Typical Constants

For experimental purposes, and particularly for the construc-
tion of hypothetical populations, it is inconvenient to handle
a mass of detailed data. It is therefore necessary to examine
whether certain characteristics of the data may suffice for the
purpose in view. We pose the general problem as follows:
Given a set of numbers a,, a,,..., a,,, can we find a single number
which can be regarded as a measure typical of the set? Thus,
a,, a,,... may be the numbers obtained in measuring a desk (as
in Chapter II), and we may inquire, can we find a single number
which can be regarded as typical and which can be referred to,
for our purposes, as the length?

If we desire to specify the set a,, a,,... even more precisely
than is possible by using a single number, a second problem
arises, namely, how closely are the members of the set packed
or distributed about the ‘typical’ member? We shall, of course,
have to make precise the meaning of the word ‘typical’ in the
given context. That this second problem is closely connected
with the concept of frequency is seen if we state it in this way:
How frequently do the measured members of the set fall into
the successive ranges of, say, 0-1, measured from a ‘typical’
member? These two questions require to be answered very
precisely before further steps can be taken to handle a set of

t Loc. cit. 808.
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data adequately in terms of what may be called its typical
constants.

What characteristic shall we expect our first typical constant
to possess? If it were a large positive number, the differences
between it and the actual readings would be large also; similarly
if it were large and negative. There should be a typical constant
lying somewhere between these two extremes, such that the
sum of the differences, taken positively, has a smallest value;
it would be a number about which the set as & whole is most
closely packed, in accordance with the requirements we have
already indicated. This suggests either that the sum of the
absolute values of the differences between it and the actual
readings should be a minimum, or that the sum of the even
powers of these differences should be a minimum. Each of
these suggestions would give us a typical constant upon which
to base our discussion.

Let us illustrate by a problem. Consider the set of numbers
2, 7, 5, 15, 10, 4; take any number x and write down the
differences z—2, x—17, etc., some of which may be positive
and some negative. The sum of the squares of these differences

18 (x—2)2+(x—T7)%+...4 (x—4)? = y, say.
If we plot the values of y against x we obtain a parabola whose
.. . 24-74...+4

minimum ordinate occurs at z = — = the average

of the given numbers.

This minimum ordinate thus represents the least value of
the sum of the squares of the deviations of x from the given
numbers; it is attained when x has the ‘average value’. If we
define the typical constant in this case as that value of x which
makes the sum of the squares a minimum, then we find it by
taking the average of the given numbers.

The proposition is true in general. Thus, let a,, a,,..., a,, be a
set of numbers, of which x is the typical value. The sum of the
squares of the deviations is

Yy = (x—a,)*+(x—ay)*+... 4+ (z—a,)%
This attains its minimum value when dy/dx = 0, i.e. when

(x—a))+(x—ay)+...4-(x—a,) = 0,
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so that the required value of z is (2,+a,+...+a,)/n, the average
value.

The minimum value divided by = is called the square of the
standard deviation o: or if a is the average value of a,, a,,..., a,,
we have

o = J{(a—a,)*+ (a—ay)?+...+(a—a,)?}/vn.

[Note upon ‘average’ and ‘mean’

If a train travelling between two stations changes its speed
steadily from 40 to 50 miles per hour, its average speed is 45
miles per hour. If the passengers in the train have heights
varying from 5 ft. 5 in. to 6 ft. 1 in., they may have an average
height of, say, 5 ft. 8 in. In the first case it is legitimate to
assume that at some point in the journey the train has actually
been travelling at 45 miles per hour; in the second it does not
follow that any one of the passengers has a height of 5 ft. 8 in.
—if we refer to it as a height, it is a fictitious one.

It is usual to apply the terms ‘average’ and (arithmetic)
‘mean’ indiscriminately to these two cases; but since a real dis-
tinction exists between them it would perhaps be worth while,
for the sake of clarity, to say that the mean speed of the train
is 45 miles per hour, while the average height of the passengers
is 5 ft. 8 in. A member of the class would then occupy the
position of the mean, but there need be no member of the class
which possesses the ‘average’ characteristic.]

We remark that ¢ and a are both ‘typical’ constants, although
the former has been found in the attempt to discover the latter.
Since o2 is the mean value of the squares of the deviations of
each member of a,, a,,..., a, from its average, o (the ‘root
mean square’) gives us an overall measure of the deviation of
the set from the average @, without reference to sign.

There are two other features of the set which are sometimes
found useful. Suppose that a frequency diagram has been con-
structed in which the ordinates represent the number of read-
ings lying in successive intervals. The interval in which the
ordinate attains its maximum clearly corresponds to the most
frequent or ‘most fashionable’ value of x among the set. This
value is called the mode; in general it is not identical with the
average or mean, but it will be if the frequency curve is sym-



Chap. VIII,§1 HYPOTHETICAL POPULATIONS 113
metrical about the mean value. A frequency curve may have
more than one mode; but we are here concerned only with
cases in which a single mode exists.

Again, we may arrange our data in ascending order of
magnitude and divide them into two sections half-way, so
that as many measurements lie above this division as below
it. This position is called the median and is such that the
probability of any member of the set lying below (or above)
it is §.

Measure of the significance of o

The magnitude of o alone may not, of course, provide us
with all the information we may desire, even when it is asso-
ciated with the average value a. As a next step we may inquire
how many of our readings lie within the range (—o, o) about a,
and how many outside; or, as we may ask, what is the proba-
bility that a member of the set deviates from a by more than o ?

o a o
F1c. 20

The answer to this question may be found at once from a know-
ledge of the average, the standard deviation, and a histogram
or a graph of the frequency curve. In the frequency diagram
we erect ordinates at the points # = @, * = a-o; the number
of observations which fall within the range indicated, divided
by the total number, is a measure of the probability of the sub-
class whose deviations from the average are less in absolute
value than the standard deviation. In accordance, therefore,
with our definition, this determines the probability that any
individual observation, as a member of the hypothetical popula-

tion specified by the continuous curve, has a deviation less
43260 T
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than o; if this probability is ‘high’, the set is ‘closely packed’
about the average. We note that ‘high’ is here a matter of
judgement.

If p(x) is the probability function in the given case, then the

required probability is evidently afr ap(x) dz. Tt is usual to take

the origin of coordinates at x = a, since many frequency curves
are symmetrical about the ordinate erected there. If P(x) is the
transformed probability function, the probability is now

jc" P(z) dx.

An alternative constant associated with the distribution is
suggested by the question: for what deviation from the average
is it equally probable that an observation will fall within, as
without, the range? Analytically, we inquire for what devia-
tion A is A

f P(z)dz = }.
—A

In any given case, the value of A can be determined by actual
enumeration or, if the hypothetical frequency curve has been
constructed, by any method for evaluating areas. The value of
A so defined is called the ‘probable error’ (a misnomer if by
that term we are led to conceive of it as the most probable
error). If a deviation from the average is indeed to be regarded
as an ‘error’, as though the average were the ‘truth’, then
every error has its appropriate probability. In the case where
the deviation is 4o we take the probability to measure the
extent to which the observations are packed about the average;
in the case where the error is A, the probability is 4.

Thus we have been led to a succession of typical constants in
the attempt to specify a distribution. These are

(1) the average a;

(2) the standard deviation o about the average;

(3) the probability p that an observation has a deviation
from the average of less than the standard deviation;

(4) the probable error.

Which of the constants will suffice in any given case depends
on their magnitude, our judgement of what their magnitude
1 See note on ‘average’ and ‘mean’, p. 112.
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implies, and the purpose for which the data are to be used. If
the standard deviation is small, then the average itself may
suffice; if the probability p is great (i.e. in the neighbourhood
of 1), then a and o may suffice. If not, the ‘probable error’ gives
us some further indication of the extent to which the distribu-
tion curve is dispersed about the average. We shall analyse
these circumstances in greater detail when we come to study
particular forms of probability curves.

Definition of Weights
If 2, z,,..., z, are a set of observations such that x; occurs p,

times, z, occurs p, times, ..., and x,, p, times, then the total
number of observations present is

Pr+Pet P, = 2P
The sum of the observations is
P12+ Pa et +Pp Ty = 3 P
Thus the average a = Y px/ > p.

The numbers p,, p,,..., p, are called the weights of the observa-
tions z,, z,,..., ,. It is clear from the formula that all the
weights may be multiplied by the same arbitrary constant
without affecting the value of the average. If at points whose
abscissae are * = z,, &,,..., &, ordinates of lengths p,, p,,..., p,
are erected, the diagram so obtained is a histogram, as we have
already seen.

Typical constants for a continuous distribution

All the constants so far defined are relevant to actual experi-
mental data. We have seen that when we proceed to replace
the histogram by a continuous probability curve we are in
effect postulating a hypothetical population. We proceed
now, therefore, to the derivation of analogous constants for the
latter. Let the equation of the hypothetical probability curve
be y = p(x); we now seek a typical constant a by forming the
sum of the squares of the deviations of = from this constant.
Thus, since a deviation z—a in the interval dx occurs p(z)
times, the sum of the squares of the deviations is represented by

I= f(x-—a)zp(x) dz, where « and B specify the range of the
probability curve. We wish to find the value of a, if any, for
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which this integral is & minimum. We have

B
I = f (x—a)?p(z) dx

B g B
= fxzp(x) dz ——2afxp(x) dx +a2fp(x) dz.

Now I will be a maximum or minimum with respect to a if
dl/da = 0, that is, if

B - ——..B
—2 f zp(x) dx +2a J' p(x) de = 0.

B8 B
Thus a= f xp(x) dx / f p(x) dz,
giving a value for a which obviously corresponds to the average
of a set of observations when the number of such observations
is finite.
That the value of @ so found makes I a minimum follows

1

2 B
from the fact that Z—a—é =2 f p(x) dx, which is necessarily posi-

tive since p(x) is everywhere positive.

We have thus obtained an extended concept of an average;
by analogy, the standard deviation o for the hypothetical
population is defined by the relation

o? = f(x——a)zp(x) dx/fp(x) dx

B B
= “ z%p(z) dx —2a f zp(x) dx +a? fp(x) d:r}/fp(x) dz

a a

B
== fxzp(x) dx/j p(z) dx ——(f:cp(x) dx/fp(a;) dx)z,

in virtue of the expression found for a.

By calculating o in any given case we can once again estimate
the probability that any number in the range («,8) will differ
from the average by less than o.

Ex. Suppose that a hypothetical population ranges in magnitude
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from 0 to 2 with a frequency which between 0 and 1 is given by
p(x) = z, and between 1 and 2 by p(z) = 2—z.

2 1 2
Then Jmp(x) de = f:z’ dx + fx(?——-x) dxr = 1.
0 0 i

2
Also f plz)de = 1.
(1]

Hence the average a = 1.
The standard deviation o is given by

2 2
ot = fx’p(x) dw/fp(x) de —a? = §.
0 0
1
O == 76-.

The probability that a member of the set between 0 and 2 will differ
from the average by an amount 1/+6 is

Hence

a+o 1 1"‘./13
j p(x) da = f xdx + 2—x)dr = 2\%f_l
a-o 1

1=

Tchebycheff’s Theorem
Let x,, z,,...,2, be a set of » numbers; their mean Z and
standard deviation ¢ are then given by

nE = ?a:,,, 1)
not = S (z,— )2 @)
1

If A is any positive proper fraction it follows that not more
than A%z of the z’s can deviate by more than oA from & For
suppose that A%z of them deviated to this extent at least from
&; then the sum of the squares of their deviations would exceed

2
A2 C\_’) = no?,

which is a contradiction of (2).
It follows that whatever the nature of the distribution, the
proportion of z’s deviating from the mean by more than

20 is less than },
3o s » %)
40 ”» 2 1%
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These figures provide an upper limit to the probability that
a member of a set deviates from the mean by more than a given
multiple of the standard deviation. For any given distribution
this probability is, of course, easily calculated.

2. The Gaussian Law

In discussing the specification of typical constants we pro-
ceeded from the assumption, unwarranted except for its general
plausibility, that one of these constants is such that the sum
of the squares of the deviations of observations from it should
be a minimum. We propose in this section to carry the problem
of typical constants a stage further, by an elementary study of
a number of hypothetical populations.

Let y = ¢(x) be the equation to a probability curve giving the
probability of an observation of measure z; we shall suppose that
all the measurements which might be made in the given case,
by a particular process, conform to this law of probability. Let
Z,, Ty,..., &, be a set of n of these measurements. Suppose that
we move the origin of coordinates to a point on the z-axis, distant
a from the present origin, where a is to be specified; the equation
of the probability curve is now y = ¢(£), where ¢ = x—a, and
the deviations of the given observations from a are

tL=2,—a,t=2,—aq, .. ¢ =2,—0a.

The probabilities that deviations &, &,,..., £, will separately
occur are ¢(¢;), #(&,),..., $(£,). Hence the compound probability
that out of all the possible deviations that might occur when
n observations are made, precisely this combination arises, is

the product P = $(£)$(E:)--$(E0).

We shall define the typical constant a to be such as to make
the probability of precisely ¢(£,)d(¢,)...4(£,) occurring, greater
than that for any other value of the constant.} That P attains
its greatest value for some value of a does not necessarily mean
that it attains a mathematical maximum, if we restrict a to lie
in the range of the observations z,, ,,..., ,. We may suppose
that a and §,, &,,..., §, vary continuously over this range,
but even then P is not necessarily a continuous function of a.

t This principle, in extended form, is applied in Chapter IX for the determi-
nation of hypothetical populations in general.
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(We have already seen that a probability curve, for a set of
given observations, is not necessarily continuous.) Accordingly
we make the following additional assumptions:

(1) P, regarded as a function of £, &,,..., £, and a, is continu-
ous and differentiable over the whole range.

(2) There is a single greatest value of P in the range which is
also a maximum of the function.

(3) The value of @ which makes P a maximum is the average
value already determined.

We shall have to examine whether these assumptions can be
fulfilled; certainly they impose restrictions on the nature of the
probability function which will be reflected in the form eventu-
ally found for it. Whether they are such as to make the results
inapplicable in practice is at the moment an open question.

Differentiating the function P logarithmically, we obtain the
first condition for a maximum,

$E) e $(E) dE,
#&) da T g @ W
But since ¢, = z,—a, §{, = 2,—a, ..., £, = x,—a, we have
dy _dé _ _db_
da  da 7 da )
H ?_(é ¢’ (52) ¢ (gn) = 0. D]
enee #6) T o) Tt e @
Since, by hypothesis, a is the average of z,, ,,..., x,,
Sitéet .t = 0. 3)

Combining (2) and (3) we have

(e )+ (5 e+ ey ) = o

where A is any constant. Since £, £,,..., £, are subject only to
the relation (3), it follows from this equation that

L) _ 146 _ 146G,
£ &) & #(E) £ BlEn)
These equations are all particular cases of the equation
$E) _
ae — %

the integral of which is $(£) = AeX'2. Apart from the con-
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stants A and A4, this determines the general form of the
probability function which we have been led to by our
assumptions.

It remains to determine whether we can choose A so as to
make P a maximum and not a minimum. Since P will be a
maximum when log P is a maximum, P must satisfy the
further condition that

2
(—z-z—z(log P) < 0, for the specified value of a.

Now this requires that

n ’
$(&)9"(¢,)—¢ (57)2}
ACTZA S I 4 L1 G )
Z { (&)
where H(€) = AeM2, $'(§) = Ap(€),
$"() = A6d'(€)+24(£).

Thus the condition reduces to

Sa<o,

r=1
so that A must be negative. We then write

(§) = Ae ¢,

Since ¢(£) is a probability function its total integral over the
range of variation of £ must be unity. Evidently our assump-
tions have led us to a function which does not vanish outside a
finite range for £, but which admits the possibility of observa-
tions differing from the average by any number, however great.
Clearly this result is a violation of the most elementary practice
in observational work and is thus a measure of the extent to
which assumptions (1) and (2) lead to hypothetical populations
that are not consistent with practice. We shall discuss these
limitations later; for the moment we use the fact that the range
of the variable ¢ must be taken as extending from — oo to
+ 0. Hence we have

fAe-"'f' dé =1,

from which it follows that 4 = h/vx (p. 123).
Thus $(£) = (h/vm)e~7€", the Gaussian error law.
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Alternative Derivation of the Gaussian Law

Another method of obtaining the Gaussian error law rests
on assumptions of a different character. Let us seek a proba-
bility distribution in two dimensions which is a function of
the radius vector only; that is, if x and y are the Cartesian co-
ordinates, the required function is of the form ¢(r), where
72 = x4y

2
Y\ Y ,
\ X
\ [ d e
\ -
A\) -
\ 4
\ Pe-
\ .
1 C - |a b
\ i
\ Ped
\‘ "a'
B X
(o] A B
Fia. 21

Let P be a point (x,y) distant r from the origin O, and
situated at the centre of a small square abdc of side « which is
formed by drawing parallels to the axes through the points
ABCD.

The probability that a point will lie in the annulus defined
by two circles with centre at O and radii r, r+dr is ¢(r)dr.
Thus the probability that a point (x,y) will lie in the interval
AB is ¢(x)x; similarly, the probability that it will lie in the
interval CD is ¢(y)a.

We now assume that the probability that a point will lie
inside the square abdc is the compound probability arising from
these two independent events, i.e. ¢(x)¢(y)a?. This result must
remain unaltered if the axes OX, OY are rotated into the
positions OX’, 0Y’. If we construct a small square of side a,
as in the previous case, we thus obtain

$(@)p(y)a® = $(2)b(y)a
If the axes OX’, OY’ are so chosen that OX’ passes through
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P(z,y), we have =’ = ,/(x2+y?), y’' = 0. Thus the equation to
be satisfied by the funetion is
$(x)b(y) = ${(@*+y*)}$(0).
Assuming that ¢ is differentiable and differentiating first
with respect to x and then with respect to y, we have

$'(x)p(y) = N + 2)qﬁ{\/(91:2—1—3/2)}?5(0),

(@) (y) = \/(x,;-;~§5¢{~/(w2+y2)}¢(0)

Hence y¢'(z)b(y) = 2$(x)¢'(y), or
¢'(x) _ ¢'(y)

zp(z)  yd(y)’

Since x and y are independent variables, this equality can hold
only if both terms are constant; thus

$@ _ 4. $E) _

xd(x) ' y¢(y)
Hence log d(x) = 2 _|_ B,
or $(z) = Cev=,

where C and D are arbitrary constants. We have thus deter-
mined the nature of the function ¢. We have still to insert the
condition that the total area between the probability curve and
the axis of X is unity.

Before doing so let us notice one consequence of our assump-
tion that the probability of a point P falling inside the square
abdc is equal to ¢(x)p(y)a2. It is clear that no probability
function which was zero outside a circle of finite radius R could -
satisfy this condition, since there exist points lying outside
this circle which have z- or y-coordinates of magnitude less
than R; thus we should require the product of two finite
quantities to be zero. It follows that our assumption cannot
apply to a continuous function ¢(r) which vanishes for values
of r > R. In fact ¢(x) must be finite for all finite values of z, as
follows also from the result

$(z) = CeD=".
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By choosing D to be negative we can, however, make ¢(x)
decrease rapidly as = increases. We write

$(z) = Ce,

where C and & are unspecified real numbers. We now apply the
condition that the area between the probability curve and the
z-axis is unity; since the range of x is (— o0, 00) we thus obtain

fq&(x) dr = 1.

Hence
1=0C f e dy = 20 f vt g = 20 f e dz,

where we have written hx = 2.

It can be shown that
co '
J.e od dz = ? .
ONm k
Thus 5= 1, or C= "
Finally, therefore, we have
$o) = I g,
Consider the expression
f %re_hiz'xz dx — hg2~/ﬂ J. e-—l'zz dz’
-0 0

where hx = z. Now
£ r 0@ F
fe""z’dz = J'ze“'zdz = [—32—] +!fe—=’dz=_“/;_',
o ° 0

Thus [ #2(e) dz = .2_;‘_,

- 00

1]

We have seen that if we have a set of observations such that
z is the difference of an observation from the average, and
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if ¢(x) is the frequency with which z occurs in the set, then

j' x%¢(x) dz is an approximation to o2, the square of the standard

devmtlon It follows that

o= _h—z’ or h= —172, approximately.
g
The probability function then takes the form
#e) =

where o is the standard deviation of the hypothetical population.

The Error Function B
The Gaussian probability curve, given by y = :/—e“""', is
™

shown roughly in the accompanying diagram.

Y

Fia. 22

It has a maximum at 2 = 0, of amount k/vm, and points
of inflexion, found by writing d%/dx? = 0, at the points
xz = +1/hv2. We have already shown above that 1/AvV2 = o,
a quantity which, for the Gaussian law, corresponds to the
standard deviation o for a finite set of observations.

It is clear that the greater the value of 4, the more closely
does the curve lie to the z-axis; thus it is suggested that the
constant & is associated with the precision of any set of data
which might conform to the Gaussian law.
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The probability that a variable will have a deviation between

z and x+dzx is ’J,i e~"=* dz; thus the probability that a deviation
m

b
will lie in the range (a,b) is -\;"— f e *'z" dx. The probability that
™

a
a variable will have a deviation between —1/hv2 and 1/hv2,

the positions of the inflexions, is
1 1
" mv2 0 V2
p=— " e dy = — | e*dt, wheret = hx.
N N
1 o
“hve
Evaluation of the Error Function

Because of its importance for probabilities whose frequencies
x

are given by the Gaussian law, the error function 2 f e~ dx has
T
0
been studied in detail and tabulated (see Appendix). Various
methods have been adopted for this purpose. We notice, in the
first place, that a particular value of the function is known,

for foe'z’ dz = }~m. Thus, as in Chapter V, if we write
0 , ?
Erf(z) = — f e dz,
N
0

then Erf(o0) =1, and Erf(0) = 0.

When « is small we may approximate to the value of Erf(z) as

follows.
We have

xT r
4 48
fe-"dx:j[l—x2+%—%+...] dx
0 0
2 ab z?

'5"'5.2!”7.3!"‘“"“

= r—
Since the series is an alternating one, the sum to two successive
terms gives an upper and lower limit to its sum. Thus, if we
reject the terms beyond 27, the result will be deficient by an
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9
amount less than —~—. If this is to be less than unity in the

9.4!
fourth decimal place, we require
9 W < 104, or =z < 2.10-2 approximately.
For large values of x we proceed differently. Integrating by
parts, we have

@ 0 ©
J‘e“z'dx= f e de =2 —e-x' %fl == dx
x p x2
4 x T
1 . 1 31, .
=% "o +2—f—4 - dr.

Continuing this process, we obtain
r e 1 1.3.5
-~z _
xf erdy = 5 { x2+(2x2)2 (2x2)3+ }
Since the function e~ is decreasing in the range (x, o) it is clear
that the error involved in stopping at the fourth term is less

24 8 24x7 ]

x
the last term retained. A similar result is obtained at any stage
of the expansion. -

The Probable Error

We define the probable error for a Gaussian distribution in
analogy with that of a finite set of observations by stating that
it is a deviation the probability of whose occurrence is . Thus,
if r is the probable error, then

L3

N
As in previous examples, we express this integral in terms of
Erfz. Writing b = 1/0v2, we require the value of r which

makes riove

f e*dz =1,

than e-* f 1.3. 5—dx numerically, i.e. less than e-* 1.3.5

e-Me dy = }.

mr
[
where hx = z. Thus Erf(r/ov2) = 0-5.
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From the table we find that

r/oN2 = 0-477,
and r = 0-67450.

As we have seen, the probable error gives the upper and lower
limits for the deviation of a variable such that the probability
of the deviation lying within those limits is equal to the proba-
bility for which it lies outside. Or we may say: the odds in
favour of the deviation lying within the range 4+-rare 1: 1. We
may inquire what are the odds in favour of the deviation lying
in the ranges 4-2r, 4 3r....

Thus, the probability that the deviation will lie in the
range +2r is

2r/ov2
2
— e dz, or Erf(2r/ov2).
N
0
Since 7/av2 = 0-477, the probability is Erf(0-954) = 0-83, from
the tables.
Hence the odds in favour of this range are

0-83:1—0-83 = 9: 2, approximately.
Ex. 1. Show that the approximate odds in favour of a
deviation lying in the range
+3r are 21:1;
+4r are 142:1;
+5r are 1,310:1;
+6r are 19,200:1;
"+ 7r are 420,000:1;
4 8r are 17x108:1;
+9r are 108:1,

Ex. 2. What is the probability that a deviation will lie in the

range +o?
o

The required probability is 2 J‘ exp(—x?/2¢%) dx = Erf L

o 3
]
From the table, Erf (1/42) = 0-682.
Thus the odds in favour are 0682:1—0-682 = 17:8,
approximately.
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Show that, for a range -+ 20, the probability is 0-954,
=+ 30, the probability is 0-997,
-+ 40, the probability is 0-99994.

Applications of the Normal Law
If the probabilities of the occurrence of z and y, two numbers
in the range — o0 < (z,y) < 400 are respectively

%exp( —h2x?) and 7"; exp(—k2y?),

z and y being chosen independently, we require the probability
that f(x, ¥) lies in the range

r < flx,y) < ptdp.
The compound probability P is clearly

i3 exp(—h%?). % exp(—k%*?) dxdy,

N
integrated over the range of # and y specified by the above
inequality.
Consider as an illustration the case
f@.9) = z+y,
ie. p < 2+y < ptdp.
b © ;44‘—8;1.—-1
Then P = — f exp(—hx?) dx f exp(—k%?®) dy.
™
Now by the mean ordinate rule for integration we may write
p+dp—zx
[ exp(—kty®) dy
p—z
= }[exp{—k*(n+ dp—2)*}+ exp{—k*u—2)%}]5p

= exp{—k*(u—2x)* dp.
e |
Hence P = — f exp{—h%r?—k*(u—x)% dxdp.

Now

kzﬂ )3 hek2
2

R4 kA (p—z)? = (h'+ka)(x—h’+k el
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Hence

__ hk3u h2k? s gl _ K \?
P = - exp( h’+k’”) f exp{—(h +k)(z e }dx

Bk S p( hk? )

= JOEEE) V= h2+kz"
or P = ——-5;1. exp(—1%u?),
N
1
where = zﬁ--|--k—2.

Following preciscly the same line of development it is easily
verified that if f(z,y) = ax+by then the probability that
ax-+by is chosen in the range (u, p-+06u) is

P= —E-BXP(—LW) S,

N
h 1 a? = b2

Once again this is easily generalized to the following proposi-
tion:

If z,, z,,..., x, be a set of n independently chosen numbers in the
range (00, — o0 ), and if the probabilities with which x,, x,, x,,... are
chosen are
hl h hz h2 2 hn h2 22
%exp( izd), :/;GXP(— 3%3), e '\'/;GXP(— »Zn)s
then the probability that

a0, 2,4y e+ ... 40, 2,
shall lie in the range (u, p-+8u) 18
l—sﬁexp(”lzl"z)’
N

1 a} af a?
where -l—a— ’-z—%+’—l‘-g+...+7;$:
Accuracy of the Arithmetic Mean

Let a =a,=..=a, = l/n,
then the probability of (z,+x,+...+2,)/n lying in the range

s w+0p) i
Ui by i LY

4260 K
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1 171 1 1
Whel‘e l_2= ’~z—2[—?+’—'2+...+}712;].
If all the quantities 4, have equal values, then
1_»nl 1 o l— i
n

Accordingly the required probability is
%exp(—-nh*p’) du.

The fact that all the quantities &, are equal implies that all
the measures z,,..., z,, are equally precise, i.e. they each belong
to groups having the same standard deviation

o= 1
=7
Now from the composite law of error of the arithmetic mean,

_lal‘ 12,2
P_:,;exp( 2u?),

and therefore the standard deviation for the arithmetic mean is
1 1 o

Thus the accuracy of the arithmetic mean of n observations is Vn
times that of a single observation of the system, if all are equally
good and if the deviations of the observations and of the means

satisfy the Gaussian law.

Ex. Consider the probability that (x®+y?)! lies between pand p+8u
when z and y are selected in the range (—, ) according to the Gaussian
law, with equal precision constants. Here

P = [[ 2 oxp(—mar-+yn) asay,

the integral extending over the region defined by
p+dp = (@ +y) > p
Thus 2n Bn+dp
P= %' f df f rexp(—h¥) dr = [—exp(— A+
0 I
= exp(— h*u?)—exp{—h3(n+08p)%} = 2h% p exp(—hipu?).
Hence, also, the probability of 4/(x*+y3) lying between p, and p, is

Hs
| exp(—htut)2ht du = exp(—h¥pd)— exp(—Atud).

"
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The Random Walk

On p. 81 we dealt with the problem of the Random Walk in
two dimensions where the length of each walk was specified
but the direction undetermined, all directions having an equal
probability. We turn now to an examination of the comple-
mentary problem, in which the directions are specified but the
distances traversed in each direction are undetermined except
that they are each drawn, as it were, from stocks distributed
about the mean, according to the Gaussian law. We consider,
therefore, the simple case of two component translations z and y
at right angles.

An individual walks a distance z from a point O, then turning
at right angles walks a distance y. If the probability that z lies

between x and z+48x is Vh-exp(——hzoﬁ) dx and that y lies
™

between y and y+dy is :/’-:;exp(—k2 ?)8y, it is required to
-determine the probability that the individual is finally to be
found at a distance between p and p-+8u from O.
Since x and y are not selected with equal precision, but according to
the laws (h/v7)exp(—h%x?) and (k/vVm)exp(— k2y?), then
u Vilu+8p)* -2}
P = %’5 J exp(—h2x?) dr X exp(—k%y?) dy.
- Vi -xt}
The limits of integration are determined from the fact that
B < V@ 4y < ptdp,
ie. Jpt—2?) < y < Jl(p+8u)2—2?].

Now 8t —at] = (a2 — 2+ 2 8 +8u%)
= J(u? ——:C’)[l-{- F's

_ #3#
= V== iy

on retaining terms of the first order in §u.

Thus the integral on the right becomes, since the two limits are close
together, s

[exp{— kA ((u+8u)*— ") + exp{— Kt~ a5 E5E

x?)

- ﬁexp{—k*tp'-x')}.
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Accordingly,
k k’ R

Let z = usin@; then

P= "".’f_sfi f oxp{— (h3sin®0 -+ kcosB)u?} db

i

3

cos 20) df.

-7
Now if A* = }u?(k*— h’) then

P4

f exp(—Acos 20)df = %f exp(—Acos¢)ddp, where ¢ = 26,

—in

2j! 1 /\cos¢+——cos’¢— )qu

I

i
Zf l+~cos’¢+——cos‘¢+ ) dé
0

2 4 U
= "[H%'z"'(zl')' ,;4"'(311)2 2-"” ]
= wJo(Ai) = mh[uy/(h*—k?)/v2].

Thus, finally, since u is regarded as positive,

P = 2uhk exp{—}(h* +k*)u*}Jy[uy/(h*—k?)/V2] Bp.
We note that if » = k, then A = 0, and
P = 2uh?exp(—pu2h?) du.

This problem finds an interesting application in the determination
of persistent periodicities in observations. (See J. Bartels, Terrestrial
Magnetism, etc., vol. 40, no. 1, 1935.)

Ex. 1. Particles are distributed in a plane X,Y in such a
manner that their z- and y-coordinates belong to Gaussian sets
of standard deviation o.

Show that the probability that the distance from O of any
one of them lies (a) between 0 and o is (vVe—1)/ve, (b) between
ao and Bo is e~F"2—e-2"2, where a < B.

Ex. 2. If in the foregoing example the ‘probable distance R’
from O be defined as that for which it is equally probable that
the particle will lie within it as without, show that

R? = olog, 4.
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Show further that the region of greatest density of particles is
in the neighbourhood of r = ¢.

The Gaussian Law and Experiment

At this stage it is worth while reviewing again the position of
the Gaussian law with regard to experimental observation.
The law has been derived by us on assumptions which cannot
be held to apply rigorously in practice (p. 120); moreover, like
the Bernoulli law, the Gaussian law indicates what frequency
curve will be found on these assumptions when all possible
arrangements of the elements considered have been included.
Now it is always possible to assume that any frequency curve
obtained in practice represents a sample of a super-population;
it can be regarded as a selected and not an exhaustive collection
of the possible arrangements. This has to be borne in mind if
we are not to apply the Gaussian law uncritically. But there
is another and, in a sense, more fundamental objection: it may
not be true—and there is no reason to suppose it even approxi-
mately true—that all the arrangements of data which might be
chosen from the population necessarily show that the hypo-
thetical population conforms to a Gaussian distribution.

When a set of data does not so conform, one is tempted to
assert that this circumstance arises from the fact that the data
represent only a sample; but it may be that the original popula-
tion is not Gaussian. The position is clearly seen from the
investigation on p. 156; it is there shown that if a population has
its frequency expressible as a function () of a variable ¢
representing some characteristic, and if in sampling the popula-
tion at what is presumed to be a value ¢, we draw in sets of
data in the neighbourhood of ¢, with a probability of choice
p(x) at t+x, then the final sampling distribution is given by

u(t) = [ v(t+2)p(x) da,

the integral extending over the range of the sampling. It is
clear that the form of a sample depends on the conjunction of
the distribution in the population and the law of choice over the
range specified. As we shall prove, when the population and
the law of choice are Gaussian, so is the sample; but if either the
population or the law of choice be not Gaussian, the sample
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is not Gaussian. It follows that to apply conclusions drawn
from a Gaussian distribution to the interpretation of any group
of samples may involve us in serious error.

Here again we must not attempt to escape from this impasse
by asserting that, in the last resort, the Gaussian law gives an
idealized distribution by which to interpret any given set of
data. There is no escaping the plain issue that every such
interpretation must stand side by side with the assumption that
the original population is Gaussian.

The Significance of Deviations

In connexion with the above remarks we may consider
generally the problem of significance as it arises in statistical
theory. Broadly speaking, we may say that the significance
of a statistical constant is usually estimated by comparing it
with the corresponding constant which would be found under
so-called ‘conditions of randomness’; that is, by calculating
the probability that a constant of this magnitude would be
found under conditions in which all possible arrangements could
occur. Thus, let us suppose that certain data are presumed
to be measurements carried out under the same physical condi-
tions on the same object, and that the deviations from the
average have been found and the standard deviation o calcu-
lated for these observations. So far we have made no assump-
tion regarding the nature of any distribution law to which the
measurements are presumed to conform. Now suppose that one
of them in particular appears to differ very considerably from
the others, showing a deviation 4o, say—the deviation having
been found by including this observation. A good experimenter
may justifiably have his suspicions aroused as to the accuracy
of the observation: how is he to decide whether it should be
included or not? If he is a sensible experimenter he will know
whether any suspicion arising in the course of his work attaches
itself to this particular observation—no statistician could
possibly tell him that—and in so far as he relegates his judge-
ment on this matter to the statistician he is surrendering his
function as an experimenter. All that the statistician can tell
him is how far the set of measurements are consistent with
some assumed law of distribution, for there is no meaning in
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the bald statement, ‘the numbers are consistent among them-
selves’. Thus, what the statistician does is to seek the proba-
bility that a deviation from the average as large as 4o will be
found from the same number of data drawn ‘at random’ from an
original population, the structure of which he proceeds to specify.

The experimenter has no such knowledge of this structure:
one of the purposes of his experiment is to find it. As we have
seen, the odds against a deviation of 40, on the Gaussian law,
are about 105: 6 or 10%: 1, approximately. And if the experi-
menter is overwhelmed by this fact he accepts without further
question the significance of the odds. Thus, the significance of
the observation is referred by this process to the significance of
a probability arising from an assumed population and, accord-
ingly, the experimenter may decide to reject this observation.
The statistician does not in fact do precisely this; he states
that when the odds are, say, 25:1 against, he will advise
rejection. The justification of this judgement is stated to be
based on experience; but if it is, it can only be the experience
of the experimenter reinterpreted by the statistician.

3. Other forms of hypothetical populations

In general we may say that when from a set of data, restricted
in extent, a frequency or probability curve is constructed and
its equation expressed by a mathematical formula, we have
thereby invented a hypothetical population of which our data
may be regarded as samples. There is clearly a considerable
latitude in specifying this formula; the mathematician knows
that through a finite number of points will pass an infinity of
curves, 8o that other conditions describing the nature of the
formula to be used must be given before we can assert that the
final result represents the hypothetical population which satisfies
our requirements. This problem of constructing the hypo-
thetical population is simply & restatement of the above-
mentioned problem of determining the original population when
the data and the method by which they were selected are
known; if, of course, no method of selection is specified, then
all sorts of formulae can be found. A given type of formula for
the population implies some kind of selective process, even if
it is not explicitly stated.
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In the notation of the previous section, the sample u(t) of a
population v(¢) defined in the range (—o0,o0) is given by the
equation

ut) = [ v(t+2)p(a) dz. (1)
Now assume that v(f) can be expanded in a Taylor series

2
v(t+x) = v(t)+a2v' () +"2£!v”(t)+.-.. . (@)

If we introduce the constantst m,, m,,..., m, defined by the
relations

my = f xp(z) dz, my= 5 f x%p(x) dz, vees

f 2p(z) d, 3)

we may write (1) in the form

ult) = v(t)+-my v (O)+my 0" (B + ... (4)
That is, the sample can be expressed in terms of the proba-
bility function for the hypothetical population, its derivatives,
and the moment coefficients of the probability function of
selection.

We observe that if the function p(z) is a symmetrical (i.e. an
even) function, then the coefficient m, is zero for all odd values
of r. In this case the sample u(t) will be expressible in terms of
v(t) and its even derivatives.

Ex. If p(z) = ;%—_e‘""', show that
1
Mar = grpa ™2 T (g

It is a simple matter to invert equation (4), supposing that
the operation of inversion is permissible. For we have, by suc-
cessive approximation,

v(t) = u(t)—myv'(t)—myv"(t)+...,

or v(t) = w(t)—myu'(t)—my{u”(t)—m, u” ()} +... . (5)

+ These are numerical multiples of the ‘moments’ of p(r) as usually
defined.
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This formula expresses v(f) in terms of the simple function
u(?) and its successive derivatives.

Ex. Show that, if p(x) = —}Le"'"',

o(t) = u(t) = 5, 0" () + gV (O + o

32h‘

If the hypothetical populatxon is itself Gaussian, i.e. if v(t) is
of the form :%-r e~" then irrespective of the method of selection,
it follows from the foregoing that we should be able to expand
a. given sample function in a series of terms consisting of
numerical multiples of e~*'" and its successive derivatives. We
may invert this process; in fact formula (1) shows that if a
sample of a continuous variable is assumed to be Gaussian, then
the hypothetical population can be expressed as a series of
linear combinations of e~*** and its derivatives. In both cases
the coefficients in the expansion are definite numerical multiples
of the moment coefficients of the probability distribution used
in the process of selecting the sample from the hypothetical
population. It remains, therefore, to examine the procedure
to be followed in order to expand a given function in the
manner described.

The Hermite Polynomials

Consider the function y = e-#* (in which, for simplicity, we
have written A = 1/v2 and omitted the factor 1/,/(27)). The
first derivative of y with regard to z is

Z—g = —re ¥,
The second derivative is
Z—;—zyz = ——d—(xe 1) = (x2—1)e- 1
and in general the nth derivative is
+"‘“’”"2‘;2)‘”"3%-‘—...}e-w. (6)
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The expression
n(n—1) n{n—1)(n—2)(n—3)
L gn-2
2 T 2.4

which occurs in (6) is called the Hermite polynomial of order
n, and is denoted by H,(z). It is easily shown that H, (x)
satisfies the differential equation

xn--‘_,

" —

d’H,,(’:c) dH (x)
dxz n + Hn(x) = 0 (7)
and the recurrence relation
H, ,  (x)—zH,(x)+nH,_i(x) = 0. (8)
For since y = e,
Z—'Z = —ze 7" = —zy.

Differentiating this result » times, we have

d”"'l:l/ + dny + dn—ly

dzn+1 " T dgn dan-1 =9

which, since Z—:—f-: = (—1)"H,(x)y, is equivalent to (8).

We have also

drty
s BRORE

dxn+2

or g—;{f]n(x)y}—}—w%{lin(x)y}.{_(n_;_ 1)H,(z)y = 0.

Hence
d?H,(z) 2dH,(x) dy dzy dH (x)
YT, H,(z) 5 +x— ="y +

+an(x) + (n+1)H, (z)y = 0.

If we insert the values of dy/dx and d2y/dx? and divide by y, this
becomes

d’H,,(a:) dH,,(:c)
dx?

+ @ 1) o)+ P

—zzﬂn(z)'}'(n"}'l)ﬂn(z) =0,

which reduces to (7).
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By means of (8) we can compute H, (x) for successive values
of n, since Hy(z) and H,(x) are both known.

It follows from the expression for d*y/dxz” that the curves
der .
= =)
are all symmetrical, while the curves

dor+1

Y= gn (@)

are skew (see Figs. 23, 24).
Yy

ys=xe~

Fia. 23
It is clear that y = ze~t*" can represent a probability curve, since
@®
—fzr e [ p—ba® __
f.’ce Pdr = [—e'®) " = L
0
The mode or maximum value of y occurs when x = 1 and-is thus e~%,

Y

x

g=(‘_x2)e'x%

Fic. 24

The importance of the Hermite polynomials, from our point
of view, lies in the fact that any given frequency function f(x)
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which satisfies certain very general conditions} may be ex-
panded in a series of the form
fx) = aye=1="+a, e-17 H\ () +a, e 1= Hy(z) +-... (9)
where a,, a,,... are constants.
To obtain the coefficient @,, multiply both sides of this
identity by H,(z). Integrating, we have
[f@H,@ =S o [ ewH@H,@de.  (10)
—a0 =

-

Now

dnr-1
dzn-1

o] -

8—38

e H_(2)H,(x) dz — [(_ 1)"H, (z)

L2

dnr-1
— — ! () —— (et
L (— 1) Hp(2) 5 (e4) dx,
on integration by parts,
= f e ¥ H’ (x)H,_,(x) dz,

in virtue of the fact that the integrated part vanishes at both
limits. Proceeding thus, we obtain, if n > m,
e H (x)H,(r) de = j eV HM (2)H, (%) dz.  (11)

— @

88

Now, if n = m, we have
H™M@x) =mn! and Hy(z) = L.

Thus the integral reduces ton! | e-#" do = n!,/(2m).
If, instead, n > m, integration of (11) gives us

[ eV H @) Hy (@) de = [ e HE (@), () de. (12)
But since H,() is a polynomial of degree m, H{™*1(x) is zero;
thus the left-hand side of (12) is also zero.

Returning now to (10), we see that if ¢ 5% n, the coefficient

+ It is sufficient that f(z), f'(z), and f*(x) should be finite and continuous in
(—~ o, o) and that f(x) and its derivatives should vanish at z = + .
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of a; vanishes, by (12), while if ¢ = =, it is equal to n!,/(2n).
Hence we obtain from (10),

j? fl@)H, (x) dx = a, n!/(2m),

. 1T
giving a, = 7—"—;7(—27) J‘ f(x)H, () dz.

It will be observed that the method of determining a, follows
closely that of obtaining the coefficients in a Fourier expansion.

Thus, when the sample is expressed as a series of derivatives
of e—#*', the hypothetical population will itself be expressible
in this form. The cases we have dealt with above are the com-
paratively simple ones in which one function or the other is
Gaussian.

Standard Deviation for Bernoullian Populations

In this case the standard deviation o from the average is
given by (p. 62)

N

o® = ) "C,p'g"~"(np—r)?

r=0
= n’p? 3 "Cp'q""—2np 3 "Cp'q""r+ 3 "C, prgn T
From the identity @
(p+o)* =2 "Cp'q™,
we find as on p. 63 that
np(p+g)"t = 3 "Cp'q*r, (2)
giving np =3 "C,p'q"~"r.
Differentiating (2) with respect to p,
n(p+g)*+n(n—1)p(p+q)*-* = 3 "C.plgn-rt (3)
Hence, substituting from (2) and (3) in (1) we obtain
o = n?p?—2nPp*+np+n(n—1)p® = np(l—p) = npq. (4)
If we use this value of o to specify a Gaussian population,
Y= _;_re—hz
1 1

then h= A Tenp(=p)) (p. 72).

’
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Bernoulli’s Limit Theorem

We have seen that the mean value of the deviation |[r—np| is
equal to 4/(npq); since this expression tends to infinity with =,
it follows that when the number of trials is increased indefinitely,
the probability of obtaining a deviation which is less than any
assigned number lends to zero.

At the same time we observe that the mean value of is

- p
n
equal to J 1__’7_3 , and that this expression tends to zero as » tends
to infinity. We thus obtain the following fundamental result:
THEOREM. When the number n of trials is increased indefinitely,

the probability that will remain less than any assigned

r

Py —p

number approaches unity.
This theorem is due to Bernoulli, but it should be noted that

the information it provides falls far short of what we should have
liked to obtain. All we can infer is that the probability of obtain-

ing at most a given deviation ;rl —p| is less than any given

small number, provided that » is sufficiently large—an assertion
which differs essentially from the ‘first empirical assumption’
quoted on p. 29, from which the conception of probability has
been removed.

Poisson Distributions
Bernoulli’s formula states that the probability of exactly
r successes in n trials is
P =rCp(1—p,
where p is the probability of an individual event. In this

formula write p = €/n, so that ¢ = np is, as we have seen,
approximately the most probable number of successes.

Then
= n( "r (.f)r(]_ — s)n.r
n n

— n(n— 1),.,.-(!n—r+ l)(i)r(l _:‘,,)n/(l_ i)"




Chap.VIII,§3 HYPOTHETICAL POPULATIONS 143

= f_'(l__e)nn(n—l)...(n—r+1) (l—i)'

r! n n’ n

-3

We shall now suppose that the events under consideration
are rare, that is, p is small compared with unity. Hence, in
order that the most probable number of successes may be

appreciable, n must be large, since p = ¢/n. In these circum-
n

stances l—-i = e~¢, approximately.
1 2 r—1\ ..
Now the product (1——)(1—--)...(1-———) lies between
n n n

unity and 1— rir—1 , and thus tends to unity if »(r—1) is small

compared with 2n, which will be the case if 72/2n is small, since
r/n is still smaller.

Also (l — ;L) (l— n) » > e~<r/n — 1, approximately, if n is

large compared with r.

It follows that, provided 72/2n is small compared with unity
and p is small, the value of P is approximately e-¢¢"/r!. In other
words, if we select from a large population in which the proba-
bility p of success is small, then the probability of r successes in n
trials is given by P = e=¢jr! = e~ (np)'/r!
provided that 7%/2» in small.

This result is known as Poisson’s law of distribution, appli-
cable to the case of rare events.

Standard Deviation for Poisson’s Law
The Poisson Law does not represent a true probability dis-

tribution, since the sum
LI

€ € €n . €
e-f(1+l_!+2_!+...+m) = e~ 2;

is not equal to unity. If, however, n is large,

€. .
7 is approxi-
e

mately equal to g, by which it may be replaced.
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To this degree of approximation the average value a of r is

2t € s €
a=e* S XTr=e¢e"¢ —_— == €,

Z 7! z (r—1)!

r=0 r=0

Thus the approximate value of the standard deviation o is
given by

@ er
o2 =¢¢ z — (r—e)?,
7!

r=0

or o= e“{‘2 PIEEED '(;::JT)‘HF 2. (7—:5})'1}

= e~¢{e% —2e%c+ (e €2)ec}
= €.

Hence o = ve.

@ n
Ex. 1. Show that the error involved in writing Z '—E;: for Z ;—; is less
r=0 r=0
than
eﬂpﬂ+l(l __p)—l
J2m(n+1)}

Ex. 2. The Telephone Problem. The telephone service in operation
presents an enormous number of practical problems in probability.
These are, however, necessarily so technical that a simple case only is
given in illustration. Suppose that there are n available lines and that,
on the average, € of these are in operation at any given moment. Using
Poisson’s law we find that the probability that at any time exactly r
lines are in request is

e~%e"[r!.

Now, if the average time of duration of a call is T', the probability
that a call on any particular line will begin in a time dt of this interval
is dt/T. Hence, the probability that a call will begin in an interval dt
on any of the e lines which are, on the average, in operation is edt/T'.

It follows that the probability that in the interval dt exactly r lines
are in use and an additional line is required is

e’ edt

Clearly, if r > n, the additional line will not be available and the call

will be lost. Thus the probability of a call being lost on this occasion is
@

E_d_te—l _€:
T z r’

”n
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Since the probability of a call arriving in the interval dt is e dt/T, we
conclude that. the probable proportion of lost calls is

Ex. 3. From a given population of N numbers x,, x,,..., ry, a sample
of magnitude n is selected. Denoting its mean by M,, show that the
mean of all the ¥C, such means m, is equal to the mean M of the original
population.

Ex. 4. Prove that the standard deviation o, of the m,’s is given by

or = 3 (M- m)2NC,

WS AN

T nN? T aN¥N—1)

Ex. 5. Deduce that the standard deviation o of the z’s is given by

N-—-1 . .

o = n(N 172 o2, so that, for large values of N, o, is approximately

equal to o/vn. (Cf. the result on p. 130, on an entirely different assump-
tion.)

Ex. 6. Given n readings x,, ,,..., ¥, with mean m, we call the quanti-

ties v; -- m—ux; the respective residuals. Supposing that M is the true

value of m for all possible readings, we call the quantities e; = M —ux, the

T x;.

n—1

PR R
n n n
Assuming now that the €’s are normally distributed, with precision
constant k, deduce from the result of p. 129 that the precision constant

. . 1 —
k’ for the v’s is given by = %—’Fl—, and hence that the standard

corresponding errors. Establish the formula v, =

deviation for the €’s is {3 ¢}/(n—1)}.

4260 L



CHAPTER IX

THE USE OF PROBABILITY IN SCIENTIFIC
INDUCTION

1. The general problem

ALy scientific conclusions are arrived at by a combination of
inductive and deductive processes. The experimenter provides
the data, the mathematician accepts them and offers a hypo-
thesis which links them together, and then by mathematically
deductive reasoning draws certain conclusions from them. From
the point of view of mathematical technique a deduction has
been made; from that of scientific method, in stating a hypo-
thesis which outruns the experimental data alone, an induction
is involved. The mathematician has deduced certain conse-
quences, and, offering them to the experimenter as possible
truths, demands their physical verification or disproof. The
experimenter deduces by his particular method that they are
true in his particular circumstances; and together they pass to
the inductive stage that the hypothesis outstripping even these
new facts is still true in the sense that it is a valid guide to the
next step.

Thus we discover three elements in any scientific problem:

(1) A set of data, given as the result of experiment: we refer
to these as the ‘sample’.

(2) A wider field (‘the population’) of possible data from
which (1) has been selected.t

(3) A hypothesis or hypothetical law tentatively presumed
to govern the structure of (2).

Stated in this way, the problem appears in a form detached
from the experimental methods which are necessary to collect
the data and from the use to which (3) is to be put. For
example, on account of the imperfections of their apparatus
the experimenters may incorporate in a reading at time ¢,
say, readings over a time ¢4¢". Or the data may be such as
to require classification as of length I when in fact the actual

1 In this connexion see the limitations of this principle in many cases of
physical science (Ch. VIII).
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lengths vary about /. It follows that there is apparently a
fourth factor in the situation which requires to be considered
if (1), (2), and (3) are to appear as steps in the scientific pro-
cess, namely,

(4) The process of selecting or ‘sampling’ the data.

The way in which these four elements are associated can
be shown in mathematical form. Let us imagine an original
population to consist entirely of elements having a common
characteristic measured by the variable ¢; and suppose that
this characteristic occurs at values f,, t,,... with frequencies
V(¢y), V(¢),..., where for the moment ¢,, ¢,,... are integers. The
total size of the population is thus

V) +V )+ 4V (t).

In a problem of scientific induction we do not know the form
of V(t); we can only speculate on it by means of (1) and (3).
Suppose, however, that a set of data U(¢) has been collected,
covering the whole range of ¢: thus, U(t,) is the frequency with
which the data are collected at what the experimenter believes
to be the value £.. We have used the word ‘believes’ designedly
because what the experimenter does in practice is to sweep into
his reading at, say, #, a number of readings at ¢t,+1, ¢,--2, etc.;
this inclusion of false data is not within his coutrol, for he acts
on the assumption that he is obtaining correct data at the given
value of ¢.

We shall suppose that the false data are swept into the true
readings according to some particular law; thus, let the un-
known law which describes the proportions of readings at
neighbouring positions included in the reading at ¢ be p(s),
where s is the interval between the readings at ¢ and ¢+s.
Since V(t+s) is the number of readings which occur at {4,
the number of these which are accepted as being at ¢ is
V(t+s)p(s).

It follows that the frequency U(t) of the samples found at ¢
is the sum of all terms of the type V(t+s)p(s), where s takes all
possible values about the position ¢. It is clear that a good
experimenter will have so designed his experiment that very
few, and small, values of 8 occur; mathematically this implies
simply that p(s) is always zero beyond a particular range of s.
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With this understanding we can write
Ult)= X V(+s)p(e). (1)

8= —00
Ex. 1. Suppose that the sample is obtained by including with half
the values which actually occur at ¢, a quarter of those which occur on
both sides. Then the function p(s) is defined by the properties
p0)=13  p(l)=p(—1)=1% and p(s) =0
for all other values of s. It follows from (1) that
U(t) = V(t—Dp(— 1)+ V({0)p(0)+ V(e+1)p(1),
i.e. 2U(t) = V({)+3[V(—1)+V(+1)].
Thus, if, for example, V(f) = t(10—t), then
2U(t) = 20t—262—1.
Ex. 2. If V(t) is given by the table
14 ’ 0 . 1 5 ‘ (] ‘ 7
ve)|1]3 11713

213 l 4
7011]14

calculate the nature of the sample U(t) for values of ¢ from ¢ = 1 to

t = 6, using the method of selection in Ex. 1.

The above examples illustrate the simple problem of deducing
the sample when the structure of the original population and the
mode of selection are specified.

We are now in a position to restate our previous remarks in
symbolical form. We are confronted with the following pro-
blem: If a sample distribution U(¢) has been found and a
method of selection p(s) postulated, what can be deduced about
the original population V(#)?

If the operator E is defined by the relation

Ef(t) = ft+1),
so that Esf(t) = f(t+s),
then (1) becomes

UE) = 3 Vit+a)pe) = 3 BV()pe)

= i E*p(s)|V(0).

If the infinite series within the brackets has the formal sum
#(E), then we obtaint
U(t) = $(E)V(2),

1 Cf. Chapter 11, p. 29.
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whence, by the method of operators, the particular solution

of this equation is Vit) = o E)U(2). 2)
Now  Bf) = -+ 1) —fO+1(0) = A+,

= (A+1)f(),

in the notation of differences.

Suppose that ¢~1(E) = ¢-1(1+A) can be expanded in ascend-
ing powers of A, in the form

Ag+A, A+ A,A%+....

Then the function V() which represents the original population
is expressed in terms of the sample U(t) and its differences.
We note that if U(t) can be represented as a polynomial in ¢,
then all its differences beyond a certain power are zero and
V(¢) is expressed in finite terms.

Ex. 3. Consider the equation given in Ex. 1 above. Wwe have

20() = B+ B+ v = T2 )
Thus . 4E 4(14-A)
YO = G YO = @rap Y0

= (14+A)1+3A)2U()
= (1+A)1—A+3A%..)U(¢)
= (1—}A2.)U@).
If, for example, U(t) = 9—¢? in the range (—3, 3), then
V(t) = 9—t243.
Ex. 4. Suppose that p(s) = e~2 (s > 0) and that p(s) = 0 (s < 0).

Then U = i (Z)vi = L5 ve.
(1}

Hence V() = '%E U@t) = Uty — el U(t+1).

We return now to consider the general solution of equation
(1). This consists of the particular solution (2) and a ‘com-
plementary function’, the solution of

H(E)V(t) = O.

This function is to some extent arbitrary in character, as is
seen by the following examples.

Ex. 1. Suppose that U(t) = 156—¢2, and that the sample is
obtained from the population V(¢) by the law

U@t) = Ve+1)+ve—-1)],
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where the range of values of ¢ required for the evaluation of
U(t) is given by —2 i<

We have to solve the equation

(E24+-1)V(t—1) = 2(15—+2).
We thus obtain for the general solution
V(t) = 16 —t*+ A cos }wt+ Bsin §=t,
where 4 and B are arbitrary constants or functions of period
unity.

Now V(¢) must remain positive over the whole range of ¢
required, namely —3 < ¢ <{ 3. We shall see that this condi-
tion may be secured by taking A = 0; for in that case, V(¢) will
remain positive in the required range, provided that B satisfies
the condition 1< B<T.

Hence there is an infinity of solutions to our equation satisfying
the given conditions for U(¢).

Ex. 2. That a hypothetical population cannot always be
found may be seen from the following example. Suppose instead
that U(f) = 16—¢%, and that the law of selection is the same
as before. Since U(t) must be positive, we require —4 < ¢ < 4.
The general solution of the equation for V(t) is found to be

V(t) = 17—t*+ A cos nt+ Bsin int.

With our law of selection V(¢) must certainly be positive in
the range —5 <t < 5. But, substituting £ =5 and t = —5
in the solution, this necessitates B >.8 and B << —8, which is
impossible. It follows that, with the given law of selection, no
population can be found to yield the given sample.

Ex. 3. If 3U(t) = V(t—1)+V(t)+ V(¢+1), then

2
3U(t) = (—E—iEEiﬂlV(t).
The complementary function is evidently *
V(t) = Aw!+ Bwt, (1)
where A and B are arbitrary and w,, w, are the roots of the equation
ES+E+1=0,

i.e. the complex cube roots of unity.
If we write w,; = cos§w+isin §m, wy; = cos §r—isingmw, (1) may be
expressed in the form
V(t) = Acos(§at+a),

where 4 and « are arbitrary constants.
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The particular solution is given by
3E 3(1+A)
YO = grEri Y = ararr a1
V() = (1+A)1+A+3A%7 U()
= (1+A)(1—-A—3}A2+A2..) U(t)
= (1-3A%) U(t) (2)
if higher differences of U(t) may be neglected.
To this order of approximation, the general solution of the equation is
V(t) = A cos(§mt+a)+ U(t)— AU(2). (3)
It is clear that the determination of the hypothetical popula-
tion (3) above is equivalent to the process of graduating or
‘smoothing’ the errors introduced by the selective process, as
is explained in a later section. Our sample U(t) has been
formed by taking the mean of three adjacent ordinates of the
histogram V(¢), and our solution (3) represents analytically a
reversal of this process. If we confine our attention to the
particular solution, for which A = 0, we note that when U(¢) is
a linear function of ¢, A2U(t) is zero, so that V(t) = U(t). When
U(t) is a quadratic function of ¢, V(t) and U(t) differ only by a
constant.

U(),
so that

Ex. 4. Find the original population V(¢), given that each reading
shown for U(¢) is the true reading at ¢ plus #th of the true reading
at t+ 1.

t ' 0 ’ 1 l 2 ’ 3 4 b 6 7 8 9
Ut) | 13 | 228 | 31.2 | 356 ’ 38-6 ' 39-5 l 382 I 34-8 ' 30 ' 211
We have to solve the equation
U() = V(t)+&V(e+1).
For the readings shown this gives the solution
V(t) = 36— (t—5)2.

Bernoullian Law of Selection
Consider first the case in which p(s) = 2C,,, p**}(1—p)'-*,

where p is a given positive fraction. The equation (1), p. 148,
then becomes

U(t) = (1—p)?V (t—1)+2p(1—p)V (&) +p*V (¢+1).

We have thus applied a Bernoulli process of selection to the
set of three consecutive ordinates of the histogram V({) in
order to obtain the sample U(t); and if } << p < £, the ordinate
at t is swept into the readings with a greater probability than
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either of the adjacent ordinates. If we put ¢ = 1—p, the
equation may be written symbolically as

U(t) = (¢* E+2qp+p2E)V (2),

or Ult) = @.’%Uf V(o).
Thus the particular solution is given by
E
V(i) = ——— U(t) = {14+-AN14+pA}-2U(¢
() = g U0 = (1 A)(1424)20()

= (14+-A)[1—2pA+ 3p2At— ... 4 (— 1)-Yppn-1An-1] U (z)
— 1+’2:1(—1)"p"‘1[(n+ 1)p—n]ArU().

Suppose generally that p(s) is defined by the formula

_’p(s) — nC’8+mps+mqn—m—a,
where n and m are given numbers. There will now be n-1
terms on the right-hand side of (1), which becomes

n—m
Ul) = 2 "Comp*mg"m=V(t+s),

s=—m

or, symbolically, Uty = gp g'j‘nQ)” V().
Hence the particular solution is

V() = Em(1+pA)U(t) = (1+pA)"U(t+m).
The general solution is thus

—1\¢..
V) = (l+pA)‘"U(t+m)+(£I—)-l) A+ 4,4+ + A4, -1},

where 4,, A4,,... are arbitrary constants or functions of period
unity.

Bayes’s Theorem

Bayes’s theorem, which by its misapplication has attained
a certain notoriety in the history of probability, follows at
once from the foregoing discussion. In Fig. 25 the population
V(t), from which the sample U(t) is drawn, may be regarded
as contributing its quota to the sample at ¢ in the proportions
indicated. As we have seen, the total sample is

UM = 3 Vit+apte)
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The contribution to this total at any position distant & from ¢
is V(t+s)p(s). Thus, given a full knowledge of the population
V(t) and the process p(s) of selection, we can say that a member

of the sample at t has a probability _gjt_‘tﬁlf’_(ﬁ)_ that it has come
2 Vit+s)ps)
from the position t+s, in the V(t) diagram.
vit) "
vit-y o)
o V) Vitr2)
p(»;' ! }'\ I P,",”pjtz)
‘f'p(o)
uw !
!
]
Fia. 25 .

This, in effect, is Bayes’s theorem. The frequency function
U (¢) enables us to specify the probability that a member of the
sample will lie at ¢; this is the initial probability conditioned
only by the statement that the individual is a member of U(¢).
At this stage the theorem enters to tell us the probable source
of this value of ¢ when further information is available—the
information being that the distribution U(t) has been derived
from the source V(t) by a certain process p(s).

Ex. 1. Three boxes contain balls as shown:

Bozx 1 Bozx 2 Boz 3

1 black 1 black 1 black
1 white 3 yellow 4 green

It is known that a fourth box has dropped into it a ball from
Box 1, two balls from Box 2, and one from Box 3. What is the
probability that a ball in this box, known to be black, came
from Box 2?
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Without the information that it is black, the probability

2
difference is made in this probability by the additional informa-
tion that the ball is black. Actually, the additional fact con-
verts the problem into a new one; and the comparison of the
answers to the two problems, a step usually associated with
Bayes’s theorem, has nothing to do with the question.

In order to calculate the required probability we have to
construct the functions V(¢) and p(s), the variable ¢ being the
suffix attached to each of the three boxes. Thus, V(1), V(2),
and V(3) are the numbers of balls in Box 4 which come from
Bozxes 1, 2, and 3, respectively. The probabilities of a black
ball in the three cases are

p(l) =14, p2)=1}, and p(3) =}, respectively.
Hence S V(E+s)p(s) =1.4+2.3+1.1 = ¢

The contribution V(2)p(2) is 2.}. Thus the required proba-
bility is 4/¢ = &.

The distinction between the two problems is now clear: the
probability of a ball drawn from Box 4 having come from Box 2
is 4, while if a ball is drawn from Box 4 and found to be black,
the probability that it came from Box 2 is J.

Ex. 2. Given n, urns 4, each containing v, white balls, n,
urns A, each containing v, white balls,... and n, urns 4, each
containing v, white balls: one of the.urns is chosen and a ball
extracted, which turns out to be white. What is the probability
that it came from one of the n, urns 4,?

We may suppose the balls placed together in one urn, pro-
vided it is always possible to specify the urns from which they
came: we do not thus alter the probability of extracting a white
ball. The total number of white balls is n,v;+n,vy4...+n,v,,
of which n,v, come from the urns 4,. If now a white ball is
extracted, the probability that it is from one of the set 4, is

Ny [(ny v +Ngva .1 0,).

In applications of Bayes’s theorem, it must be understood
that the structure of the original population is precisely de-
limited: what we ask is whether, when a particular event among
a series occurs, its source can be traced to this or that element

that it came from Box 2 is clearly T—F%—F_l = l We ask, what
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of the structure. When the problem is stated in this way,
Bayes’s theorem gives a definite answer. If, however, we
attempt to recast the problem by raising a query about the
structure of the population, then we are faced with the solu-
tion of an equation (p. 148) to which a unique answer cannot
necessarily be given, since an element of arbitrariness is
present.

Ex. 3. An urn contains a black and white balls, in unknown
proportions: a ball is extracted » times and each time replaced
in the urn. If v of the balls extracted are white, what is the
probability that « of the balls in the urn are white?

The required probability is that of a subclass of the subclass
of urns in the population of urns containing a black and white
balls, which contain precisely o white balls. Thus we must
imagine the urn in question to come from a population of urns,
each of which contains a black and white balls, the population
covering all possible compositions. In this population, the first
subclass consists of urns containing no white balls, the second
consists of urns containing one white ball, and so on. Then the
probability that, if an urn containing ¢ white balls is selected,
v white balls will be obtained in n extractions, is by Bernpulli’s

theorem, \ S\ v
g =3
a a

Now suppose that the probabilities of choosing the first, second,
third,... subclasses of urn are p,, p;, P,,..., respectively. Then,
by Bayes’s theorem, the probability that the urn chosen is one
containing « white balls is

Lol (=3
[T el e
o(@a—a)"¥p,

= (Pa—1)*p,+2"(a—2)* " py+...+ (a—1)’1np__}

It will be noted, therefore, that the solution of the problem
depends on a knowledge of the probabilities p,, p,,... about
which we have no information whatever. If we make the
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assumption that all types of urn have equal probability, then

Py = Py = ... = P,_,, and the probability sought is
o(@a—a)v/{1¥(@a—1)**42"(a—2)" ¥ +...+4(a—1)*1*7},

It is readily shown that this is a maximum for the value of «

such that g- = ;z: that is, the most probable composition of the

urn is that which gives for the required probability the value i .

Extension to Functions of a Continuous Variable

Let V(¢) be a function of a continuous variable ¢ which is
defined in the range (—o0,00) and which gives the proba-
bility V(¢) of the occurrence of the variable in the interval d¢
about the position ¢. Suppose that a new population is con-
structed from the distribution according to the following law:
at a distance z from the position ¢, the ordinate V({+z) is to
be swept in with a probability p(z) and allocated to the position
t, the value of x extending over the range a << z < b. If U(t) is
the probability, in the new population, of a value ¢ occurring
in an interval dt about ¢, then the contribution to U(t) at the
position ¢ is given by

V(t+2)p(=).

Thus the probability U(t) is given by

b
U@) = f V(t+z)p(x) de.

It should be noticed that if the original probability function
V(t) has a finite range, then the function V(¢+z), for values of
z which take it beyond this range, is, of course, zero and makes
no contribution to the integral. Thus U(¢) has exactly the same
range as the original function V().

Ex. 1. An interesting application of the previous results has
been made by Eddington.} Suppose that the probability
function u(¢) for the sample is given, and that the law of

selection is Gaussian, i.e.
_h 2
p(x) = —exp(—h%?).

1 Eddington, Monthly Notices, R.A.S. 73, 359.
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Then the probability function v(f) of the original population
is given by the equation

u(t) = :/’-1;-7 J‘ v(t+x)exp(—h%x?) dz.

Now write

o(t+x) = v(t)+xd” 22 d*v

2' de?

d  x2d?
=(l+ atsign™ "')v(t)

= exp(xgt)v(t), symbolically.

+

Thus u(t) = [% j? exp(a:gi -—hzxz) dx] v(t).

The integral is an operator as regards ¢, but a definite integral
as regards .

o

Now f exp(—axr—bx?) dxr = J gexp(az/‘ib);

then writing a = ——%, b = h?, we have

u(t) = %‘A/%exp(;—;/4h2)} v(?).

v(t) = exp(—i;/ﬂﬂ)u(t)

1 d2 2 J4
={1 @It (4h2) ar "’}”(t)

u“’(t) _

Hence

= u(t)— 4_hzu”(t) + m‘{)’g

When £k is large, it is sufficient to consider the first few terms of
this expression. Since u(t) is an empirical probability function,

it is better to express v(¢) in terms of u(f) and its successive
differences rather than its differential coefficients.

Now  w'(f) = A’u(t)—A?u(t)-}--i—;A‘u(t)——
and wv(t) = Atu(t)+....
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Hence

v(t)=u<t)—m{A2 A3+—A4}u<t)+2(4h2)2 Atu(t)...+

= lt)— g3 A%(t) 433 A% (t)_._.(l_l_ 2)A4 u(t)+

‘!:h2 4h?\12 8k

A comparison between the result just obtained and Bayes’s
theorem is inevitable. There, the passage back from the
function U(t) to V(t) was not necessarily possible for any given
function U(t) nor, when possible, was it necessarily unique;
we saw that this circumstance was associated with the fact
that the range of U(t) was not in general that of V(t), and that
this depended entirely on the law of selection p(x). In our
example, however, the variable ¢ is continuous and the two
ranges are identical; the passage back, when it can be achieved,
is unique—no arbitrariness is involved. In that case, Bayes’s
theorem, as stated above, gives the probability U(¢) that a
certain variable ¢, derived from a function V() calculated by
the process defined by p(z), came from the range (a,b). This
is the inverse form of Bayes’s theorem as usually applied to
determine the ‘probability of causes’, and the application is
legitimate if we bear in mind that the method of selection p(x)
is assumed to be given; it cannot be chosen arbitrarily.

From a knowledge of U(t) both V(¢) and p(x) cannot be deter-
mined separately; and it is by ignoring this vital fact and by
tacitly assuming that p(x) is some such function as unity or
%exp(——hzxz), that writers have been led to conclude that
Bayes’s theorem may be used to trace back, with a certain
degree of probability, the antecedent events which have given
rise to the function U(t). This procedure, as we have seen, is
wholly fallacious.

In the foregoing example it is assumed that the law of selec-
tion is the normal error law. If this law is not obeyed in the
case to which it is applied, the result will be invalid in practice.

Ex. 2. Let us now suppose that the functions »(x) and p(x) are
both Gaussian, so that

v(x) = %exp(—h%’), and p(z) = % exp(—h'23),
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where & and A’ are known constants. Then u(t) is given by

u(t) = ’—';l:-: J‘ exp{—h2(t+z)*—h'?%x?} dx

W Y T ht \2
——;GXP(_—EW) J exp{ (h2+1 )(a:—l—m) }dx,

-— 00

by completing the square in the exponent.

2
By changing the variable to z = x4 hzﬁ— 5 Ve reduce the
integral to the form
© , V
[ exp{—@+H2):3 dz = m

on evaluation.
It follows that

u(t) = W exp| — hzh’i-t
NmyJ(h24-R'2) h*+h'?

Hence the function u(t) also follows a Gaussian law

u(t) = ;/h;exp(——h"ztz),

hh'?
oWy
If the standard deviations of v(x) and p(x) are o and o,

where h"% =

. 1 ' -
respectively, so that ¢ = e O = 42 the standard de

viation o” of u(?) is therefore given by 0”2 = o%+-¢'2.

Evidently the theorem we have obtained can be inverted;
for if u(¢) and p(x) are both Gaussian functions, similar reason-
ing shows that »(z) must also be Ganssian. Thus, in conclusion,
we have the result:

If the distribution of the original population and the probability
of sampling follow the Gaussian law, then the sample also follows
the Gaussian law; and if the sample and the probability of sampling
Jollow the Gaussian law, so does the original population.

Ex. 3. This result may be extended to a series of samples,
each of which is drawn from the preceding one. Thus, suppose
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that »(¢) is a Gaussian population and that exp (—A2%¢?) is the
probability of the sampling. Then a sample %,(t) of the popula-
tion is given by

uy(t) =
Then, by the above theorem, «,(¢) is of the form A4 exp(—hA?¢?),
where 1 1 1

Bt

v(t+z)exp(—h%x?) dz.

8§38

If now a sample u,(t) is drawn from the sample u,(t), its
magnitude is given by

uy(t) = f u,(t+2x)exp(—h'%x?) dz,

and the corresponding constant h, satisfies the relation
1 1 1
B Rt

Similarly for a sample u,(t) drawn from wu,(t), and so on.
Hence the constant 4, specifying the nth sample in this succes-
gion is given by 1 1 1

A
Adding the n equations so obtained, we have
1 1 =
In terms of the standard deviations this becomest
o2 = o?+fno's
Two-dimensional Distributions
Suppose, for instance, that a sample U(z,y) is obtained by

taking the mean of the values of the population V(z,y) at the
four points (x4 1,y+1). We then have the equation

4U(x,y) = V(z+1,y+1)+V(z—1,y+ 1)+
+V(x—ls y— 1)+ V(x"'l, Yy— l)'
+ Cf. p. 130,



Chap.1X,§1 THE GENERAL PROBLEM 161
If we write
EV(z,y) = V(z+1,y)
and FV(z,y) = V(z,y+1),
we obtain
4U(z,y) = (EF+E-'F+E-*F '+ EF-Y)V(x,y)
= (E4+EY)WF+F )V (x,y)
_EHNFED

EF
The particular solution of this equation is
4EF
Viz,y) = (B (FF1) Ulz,y)
(1+A)(1+A") Uz, y),

T 1F AT A1+ 3(2A FA"2)

where the operators A and A’ refer to « and y respectively.
Thus
Viz,y) = (1+A)(1+A")(1—-A+3A%—..) X
X(1—A'+3A%—..)U(x,y)

(1—3A24 )1 —3A2+ . )U(z,y)

= U(z,y)—HA*+A?)U(z, y)+1A%°AU (2, y)....
To this must be added the complementary function
A sin }mx+ Bcos ymx+ Csin 3y D cos 3ny.

Ex. A certain substance is being deposited on the inside of a tube
6 cm. in length, and measurements of the extent of the deposit are taken
at intervals of one second at distances of 1 em. along the tube. The
following are the results obtained (in grammes):

Il

Values of t
0 1 2 3 4

0-35 | 045 | 0:55 | 065 | 0-75
085 | 0-85 | 1-056 | 1-25 | 1-45
1-15 | 145 | 176 | 206 | 235
1-85 | 2256 | 265 | 3-05 | 3456
276 | 3:26 | 3756 | 425 | 475
385 | 445 | 506 | 565 | 625

Values of
D G WD

Assuming that the readings at (x,?) were really the average of those at
z and z+1, taken at times ¢ and ¢+ 1 respectively, correct the above
data so as to give the true values at (z,1?).

4260 M
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If the true value is V(x,?) and the sample is U(x, t), then
Uz, t) = H{V(x,t)+ V(z+1,¢+1)}

= HEF+1)V(z,t).
Hence

2
V(Z, t) = E—I;—-’_—i U(x, t)

2
T (I+A)1+4%)+1
= {1+ HA+A"+AA)U(z, )
= (1—HA+A+AA)+HA+ A+ ALY — ..} Uz, 1),

and the problem is reduced to that of constructing a twofold difference
table from the one given.

Uz, t)

Two-dimensional Continuous Distributions

Suppose that the given sample u(z, y) is a continuous function
of two independent variables z, y, and that it is derived from
a population v(x,y) which is also a continuous function of the
same variables. Let the selective process p(£,7) by which
u(z, y) is obtained from v(x,y) be such that the probability of
choosing a sample in a region of area déd» surrounding the
point (z+§£,y+7) is p(é, 1) dédn. Then the law connecting
sample and population is evidently

uezy) = [ [ vat&y+a)p ) dédy.

|
8§38

Let us apply this result to the case in which the law of
selection is Gaussian, so that, for instance,
hk
BE, 1) =~ exp(—h¥g— k).
We then have
hk [ ] -]
uy) =7 [ [ vletéy+mexp—hg—itq dedn

If we denote the operators 8/0¢, 8/on by D and D’ respectively,

Wwe may write e
o@+&,y+1) = v(z, 1)+ ED+D (e, 1) + EPE T oia, ).

= exp(¢D+7D'Wu(z,y)-
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Hence, symbolically,

uwy) =2 [ [ exp@D+nD)ete, expi— (i +ktq?) dedn

— @ —ao
L ]

J' exp(éD— h3¢2)exp(nD’ —k2n?(z, y) dédn

~— 00 =00

_hk

™

=2 [ expep—wg dt | exptrD'—ia®) dn ofe. ).

Now i f exp(ED—h2E?) df = exp(DY/4hY)

and ;’”; f exp(nD’ —k®n?) dn = exp(D'*/4k2),

sothat  u(z,y) = exp(DY4h+D'Y4k)(z, y).

Thus  oley) = oxp{—5(5r+ 3 Jum o)

or  o(y) = [1— 2+2, (4’12)21)4 ]x
x[ D (4,:2)21)4 ...]u(x,y).

Ex. Suppose that u(r, y) is the mean value over a square of side 27
about the point (z,y); then
T

T
u(z,y) = ;%,,—;f fv(x+§,y+n)dfdn

-T -T

= ;l—z J. J- exp(§D+nD’)v(x,y) dédy, as before,
T

T
-—T— f exp(¢D) d¢ f exp(nD’) dy v(z,y)

1 [exp(7TD)— exp(—TD) exp(T'D’)—exp(— TD)
= Evg D D’ v(z :'/)
_ _l_smh TDsinh TD’ @)
=m oo =Y
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Hence TD D'
U= Y) = SR TD sinh TD & Y)
= (1+3T2D 4 ..) "Y1+ } D" + ...\ Yu(z, y)

0*u  O% .
= u(z,y)— }T!(a_x’.‘i + a—;—:) approximately,

if higher derivatives of u(x,y) may be neglected.

2. The determination of a population from a given set
of samples

On the Determination of Hypothetical Populations

The crucial problem with which this chapter has been con-
cerned is how to make the fullest use of samples of a population
for the drawing of conclusions regarding its structure; we are
in fact trying to arrive at a mathematical method that will
assist us in learning from experience. The general principle,
already adopted in Chapter VIII, which we use for this purpose
may be stated as follows:

(1) We assume a class of hypothetical populations capable of
providing the samples found.

(2) This capacity involves the further assumption of a method
of selecting the samples.

(3) We can then write down the probability that from any
one of the class of populations, with this method of selection,
precisely the given set of samples will be obtained. The proba-
bility will in general vary for different members of the class of
populations; we then determine the member for which this
probability is greatest, and choose it as the ‘most likely’ for
the given set of samples in contrast to the ‘most probable’
sample.

The term ‘most likely’ is used here because now we are
actually concerned with a new type of problem; we are not
in fact discussing the question of the probability of occurrence
of a particular population among a given class: the probability
is now attached to the samples, not to the population. Thus,
the ‘most likely’ population is defined as that member of a
given class which yields the given samples with the greatest
probability.

Suppose, for instance, that x,, x,,..., x, are the measured
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observations of a number x; then the deviations of the observa-
tions from x are respectively r—z,, x—=,,..., z—z,,.

If p(e) is the probability that the method of observation gives
a deviation of magnitude ¢, the probabilities of obtaining the
stated deviations are respectively

PE—2y), plE—2y), ..., plr—z,)
Hence the probability of obtaining a combination of deviations
X—2,, £—2x,,..., T—2, simultaneously is the product

p(x—xl)p(x_x2)p(x—xn)

We propose to assume that the best approximation to x
derivable from these samples is that value which makes the
given combination of deviations the most probable that would
occur in a sample of n observations. In effect we inquire, what
process of selection applied to the readings x will give precisely
this combination with the greatest probability? We are now in
a position to apply this principle to a series of cases; we illus-
trate first with a case in which the samples have been obtained
by a Bernoulli law of selection.

The Method of Maximum Likelihood

Suppose that the members of a population of given number
N possess a certain characteristic in the unknown proportion
p:1. If a series of samples n,, n,,... in number drawn from it is
found to contain the characteristic in the proportions r,/n,,
7g/My..., what information can be deduced with regard to the
value of p? This is to raise a problem in induction if it is
implied that the population has to be specified by means of
the samples; and like all such problems it can be reduced to
a deductive one by making an appropriate assumption. We
postulate a class of population, capable of yielding the given
samples, for which the probability of drawing the samples is
calculable; we then inquire which member of this class will
with the greatest probability furnish precisely the samples that
have been found.

Thus, if a penny is tossed 100 times and found to give 50
heads, any probability p of obtaining a head, other than the
value p = }, would give a smaller probability for the observed
occurrence than if p were actually }.
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If we apply these considerations to a class of Bernoulli distri-
butions defined by the probability law »C, p"(1—p)*»-*, where
n is the size of the sample and » members possess the required
quality, then the problem resolves itself into finding the value
of p for which this probability is greatest. Since p does not occur
in the coefficient *C,, we have simply to maximize p7(1—p)*-7,
that is, to choose p so that r/p = (n—r)/(1—p), or r = np.

The expression p"(1—p)"~7 is called by R. A. Fisher the ‘likeli-
hood’: it is not in itself a probability, as we have seen, but an
instrument for selecting the ‘most likely’ population from
among a given class.

Ex. 1. An urn contains N black and white balls, pN of which
are white. From it are drawn =, balls, each being replaced before
another is drawn, and r, of these are found to be white. A second
such extraction of n, balls is made, and among them are r, white
balls. What is the most likely value of p?

The probability of obtaining the sample in question is

mC, (1= p)i=ri X 12y, (1 — )
Thus to find the value of p for which this probability is greatest
we have to maximize the expression pri+7(l—p)m+7-71-1 In
analogy with the preceding case this gives r, 7, == (n,+n,)p.

Ex. 2. Suppose that the n, balls are marked as they are
drawn and that in fact no ball is drawn twice. If these n, balls
are now removed, the probability of obtaining a white ball at
the second extraction is

Py = (pN—r)/(N--ny),
and that of obtaining the given samples is proportional to
pr(1=p)mpi(1—py)" ",

that is, to

pr(1—p)n(pN—r)*(N—ny+r;—pN)",
The value of p for which this is a maximum is given by the
equation

n_ MmN Nr,  Nny—ry) —

p 1l—p pN—r, N-—n+r,—pN
It will be noticed that, if N is large, the value of p is given by

Ty _Mm—1 Ty M7y
=== =0,
p 1-p p 1-p

so that r,+4r, = (n,+mn,)p, as before.
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Ex. 3. If N = 14, n; = 5,7, = 2, ny = 2, r, = 1, then in Ex. 1 we
have p = 3/7 = 0-429. In Ex. 2, the most likely value of p is found by
maximizing the expression

P(1=p)(Tp—1)(11—14p).
Thus p is the root of the cubic
343p®—469p%+164p—11 = 0

lying between % and 1, i.e. p = 0-404.

The method of maximum likelihood is applicable to hypo-
thetical populations defined by more than one characteristic.
For example, suppose that an urn contains balls of ¢ different
colours whose relative frequencies are p,, p,,..., p. If a sample
of n balls is extracted and found to contain 7, balls of the first
type, r, of the second, and so on, we may inquire what values
of p,, p,,... make this sample the most probable. The proba-
bility of obtaining the sample is, by Bernoulli’s Theorem,

7’1‘7‘ 1. pl p Pf‘» (l)
where Pr+pyt o p = @)
and 419441 = n. 3)

If P is a maximum, so is log P; whence, if 8p,, 8p,,... denote
variations in p,, p,..., we have the condition

Nsp,+28p,+... + L 8p, = 0, 4
» 101+102 P2 2P (4)
where, by (2), 8p,+8p,+...4+8p, = 0. (5)

Combining (4) and (5) we see that the conditions for a maxi-
mum are

Py P2 PrtDettp y ).

It follows that

PL="i/n, Py =15/, ..., p=r/n
Ex. An urn contains black, white, and yellow balls in unknown pro-
portions p;: pg: ps;. Six balls are extracted, replaced, and six others

Black [ White | Yellow
1 l 2 3
3 l 2 1

extracted. If the numbers of black, white, and yellow balls obtained in
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the two extractions are as shown, the values of p,, p,, p; for which the
probability of obtaining this pair of samples is greatest are
P1=pP3=ps =%
The probability of drawing these samples will then be
6! 1 ]’

P = [2!3!53 :

Black White | Yellow
2 2 2
2 2 2

If, instead, the two extractions had given rise to the second set of
numbers shown, the values of p,, p,;, ps obtained by maximizing the
probability of obtaining the samples would have been as before, but
the probability of drawing the samples would be

, 6! 172
= [aysl
and this is less than P, In fact we have

P’[P = 24/(31) = 4/9.

When we have determined the population for which a given
sample is the most probable, it does not follow that even that
sample is a very ‘probable’ one; its probability will depend on
the number of types that might be drawn from such a hypo-
thetical population, and on the relative frequency of occurrence
of each type. Let us illustrate with a simple problem.

An urn contains black and white balls in an unknown pro-
portion p:1. A certain number 7 is extracted, with replacement
immediately after each extraction, and it is found that r of these
are white. A second sample is obtained in the same manner.
Let us suppose that in all 12 balls have been drawn and 6 of
them found to be white; then the second sample consisted of
12—n balls, 6 —r of which were white.

Since the ratio of the number of white balls extracted to the
total number is 4, it follows from the previous discussion (p. 166)
that the ‘most likely’ value of p for the hypothetical population
is .

Consider now the probability of drawing just such a pair of
samples from a population for which p is actually equal to $.
The probability of drawing the first sample is *C,(})", and, since
the balls are then returned to the urn, the probability of
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drawing the second is 2-7Cy_.(4)'2-». Hence the probability
of obtaining the pair of extractions is

P = nCr 12—n06_r/212,
and this will of course vary with » and . It is not difficult to
determine the values of n and r for which P is a maximum;

since n and 7 can vary independently within the given limits,
Wwe require

n-—lqm-nCs_’_ < n0r12—m06_r > 1H-10'_11—1JC'6

—-rs

and nq_l 12—7«07_r < nq‘lz—nos__r > nqﬂlz—nos_r.
From these conditions it follows that
13r 13r n n

——l<n<—, and =—1<r<-.
6 h 6’ 2T STS3

In virtue of the restrictions placed upon 7, the second condi-
tion is a consequence of the first. We thus obtain the solution
r=>5,n=10,0or r = 1, n = 2, and with either of these pairs
of values P = 504/212 = P,, say.

In the accompanying table we give the proportions of white balls
obtained in twelve pairs of extractions, with the corresponding values

of P and P/F,. Thus, although F, is itself small, it is 504 times as great
as the probability of obtaining the first pair of extractions shown.

First drawing | Second drawing |P X 2'*| P/P,
6:6 0:6 1 0-002
5:5 1:7 7 0-014
4:4 2:8 28 0-056
5:6 1:6 36 0-072
4:56 2:7 105 0-21
1:4 5:8 224 0-448
2:6 4:6 225 0-45
2:3 4:9 378 0-756
3:6 3:6 400 0-8
2:4 4:8 420 0-84
0:1 6:11 462 0-924
1:2 5:10 504 1

The Method of Least Squares

The second law of selection to which we shall apply the fore-
going principle is the Gaussian. It is worth while remarking
that the method which we develop in part covers what is vari-
ously called curve fitting, smoothing of data, and graduation.
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Each of these processes, whether it be the determination of a
smooth curve that lies evenly among a set of points, or the
smoothing out of an irregular curve, or the specification of an
algebraic expression to cover a set of data, is in effect the deter-
mination of a hypothetical population, since each is merely a
step towards specifying values of a variable at positions other
than those immediately supplied by the data.

If the assumed hypothetical population is Gaussian, then in
the notation of p. 165, p(e) = \—’;; exp(—h2e?), so that the proba-

bility of obtaining the given sample is

2 — R (— h — B(— b —h(—2. )2
vﬂexp{ h2(x xl)z}:/;exp{ h3(x x2)}...7;exp{ W (x—=,)%

= ;}t;—zexp!—hzyg(x—x,)’}.

For a given process of selection, % is a known constant; the pro-
blem, as before, is to find « so that the probability is a maxi-

n
mum. This is equivalent to determining x so that 3 (z—=z,)? is
r=1

a minimum and, as we have seen, gives as the value of x the
mean of x,, Z,,..., #,. This method of determining the best
value of an observation by assuming that the sum of the squares
of the deviations from it shall be a minimum is called the
Method of Least Squares. Some writers prefer to begin with
this method as the initial assumption, without directly implying
the use of a Gaussian law.

Determination of the Precision Constant
The probability that the set of readings z,, z,,...,z, will

oceur is B
“rexp(— 3 (e, —a)1,

where a is the mean of the readings.

Using the same principle as before, the value of 4 to be chosen
is that which makes the above probability a maximum. Thus
h is determined by the equation

3 fmexp[—1* 3 (& —a)]) = o,
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% =24 Y (x,—a)

Hence h? =

go that

n 1
2y (x,—a)} 2%
where o’ is the standard deviation for the given set of readings.
It follows that our choice of 4 is such as to make the standard
deviation for the set x,, ,,..., x, coincide with that of the
assumed hypothetical population.

Curve Fitting

Now suppose that Y = f(z, a) represents a possible series of
hypothetical populations, obtained by varying a, from one of
which the given sample is presumed to have been drawn. As
before, we shall assume that the probability of committing an

error of magnitude ¢ is #exp(—hzez), and that the precision
NT

constant h is the same for each measurement irrespective of
its position in the range. Suppose that readings y;, ¥s..., ¥,
are taken at the positionst x,, ,,..., z,, and that 1}, Y,,..., ¥,
are the corresponding values of the hypothetical population.
This assumes that the z’s are accurate. Then the probability of
drawing this sample from the population whose parameter is a is

] h r

T exp{— k(Y —3)%) I exp(—h(¥y— ).
. h" . 132 < _— 2
= smexp( =13 G—y, ),

where Y, ,,..., ¥, depend on the parameter a.

We propose to choose as the hypothetical population among
the set f(x,a) the one that makes the occurrence of this set of
readings the most probable. We have thus to make Y (¥,—y,)?
a minimum, i.e. we have to choose a so that Y [f(z,a)—y,]?
is a minimum. Hence a must satisfy the equation

P
2a Z [f(xr!a)_yr]z =0,

and thus, on the foregoing assumptions, the hypothetical popu-
lation is determined.

t If the readings are weighted, i.e. if several readings occur at the same
position, the 2’s are not all different.
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z 1 2 3 4 5
y| —08]09]|31|53]68
The values of y shown are subject to accidental errors. Given that
the population Y from which they are extracted is one of the system
Y = 2x+a, determine the best value of a.
We have to choose a so that the expression
(2:84a)*+ (31402 +(29+a)+ (27 +a)*+(3-2+a)?
14-7

is & minimum, whence a = — - = —2-94,

Ex. 2. Find the best values of a and m if the values Y are given by
the function ¥ = mx+a.

Ex. 3. If it is desired to represent the following values of y approxi-

mately by a function of the form y = a-{-bxr+cx?, determine the best
values of a, b, and c.
z 0 1 2 3 | 4 b 6 7 8 9 10
y | 798 , 11-51 | 1402 | 1546 | 16:01 | 15-51 ‘ 13'98l 11-52 ( 802|331 | —2
Here a, b, and ¢ have to be chosen to make the sum of the squares of
the deviation from y a minimum.

NoTe. Suppose that we wish to fit a Gaussian law of the form
y = exp(a+bx+cx?) to a distribution curve. We might proceed by
taking logarithms and determining the best values of a, b, ¢ (as in the
above example) for the readings. Such a method, although convenient
in practice, is not strictly justifiable, since, if the errors in y are dis-
tributed according to a Gaussian law, those of logy are not.

Ex. 4. Find the values of a and b for which the parent population
Yy = ax+bsinz would give the pairs of values

z | 02 0-8 14 2:0

y | 0202 | 0-882 | 1-821 | 3-421
as the most probable, assuming that the deviations follow the Gaus-
sian law.

Ex. 1.

The Line of Regression
Suppose that g, Tgyeny Ty

yl’yz""’yﬂ
are n pairs of data related in the sense that changes in the
values of the z’s are accompanied by changes in the y’s.
Assuming that there are no errors in the 2’s, we wish to deter-
mine to what extent the numbers (z,y) may be considered as
derivable from the hypothetical population

y = Az+ B,
assuming that the deviations follow the Gaussian law.
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We have thus to minimize the expression

3 a4 By,
This means that 4 and B must satisfy the equations
2z (Az,+B—y,) = 0,
, > (Az,+B—y,) = 0,
that Is AZw+B3 5 =3y, M
A3z +nB =73y, (2)
It is convenient to replace x and y by their deviations from

the corresponding means X, Y; writing x = X+£, y = Y+,

we have
>z, =nkX, Sy, =nY,

Sat=3 (X460 =X 43 &
and zxryrZZ(X+§r)(Y+7’r)=nXY+ Zfrﬂr-
Thus (1) and (2) become
AX2 o)+ BX = XY 4 S &, (3)

AX +B=1Y7, (4)
where o, is the standard deviation of the «’s from X.
Solving (3) and (4) for A and B we obtain

1
A = — z fr"lr = zzg'é;lr’

Hence the hypothetical population is given by the curve

y—Y = %52;7' (z—X).

This curve is called the ‘line of regression’ for the given data,
and can be written as

’ (5)

where o, and o, are the standard deviations of the 2’s and y’s
from their respective means and

r = _______2 & qr .
JZ E37?)
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Correlation

We are now in a position to examine the problem of ‘corre-
lation’. Suppose that the two sets of data as in the preceding
paragraph have been found. If the points (z,,y,) are plotted
on a diagram and form a ‘good’ curve or lie very nearly on a
straight line, then the principles of curve fitting for the selection
of a hypothetical population can be applied at once because the
necessary specification of the population is not difficult to make.
When, however, the points (z,, y,) are so scattered as to render
this impossible, we are at liberty to make any reasonable
assumption in terms of which to interpret the data.

Two methods of procedure are usually adopted. We begin
with the assumption that the 2’s and y’s are attempted measures
of points on some straight line but that the z’s are measured
without error. Then it follows from the previous section that
the hypothetical population is given by

y—Y rm-—X
o, T o,

where X, Y are the means of the 2’s and y’s, o,, o, are the

corresponding standard deviations, and

o S(X—a)T—y)
’\/{z (X"—xr)2 Z (Y_yr)z}

The curve so obtained represents a special member of an
assumed class of hypothetical population, called the ‘line of
regression’ of y on z, for it measures the extent to which a
variation in z effects a change in y; in fact, when x changes by
o, y[o, changes by r.

We could, however, have approached the same problem by
choosing a second class of hypothetical population on the
assumption that the y’s were correct values and that the z’s
involved errors. It is easy to see that the member of the
population then selected would be

H

This represents the line of regression of = on y; when y changes
by o,, /o, changes by r. Thus r is a measure common to both
the hypothetical populations; it is called the ‘coefficient of
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linear correlation’ and is taken to be & measure of the extent to
which the sets of numbers 2 and y are interlinked.

It is clear that if the two lines of regression are coincident,
then r2 = 1, and if they are at right angles, » = 0. In the case
r = 1, there is maximum correlation and x and y are linearly
related over the whole range. When r = 0 the variation in z
has no influence on the variation in y. Thus r is a number whose
absolute magnitude lies between 0 and 1. We note that r may,
however, be negative, in which case an increase in x is accom-
panied by a decrease in y, and vice versa.

Ex. Two sets of numbers are chosen in the intervals (0,4), (5,9),

(10, 14),...,(30, 34), with the following results:
1(6|12(16| 20| 25| 32

3{6)13 |16 | 22| 28] 31

x
Y

We thus obtain
X =186, Y =17, S(X—a)(Y—y) = 679,
3 (X —x)* = 694, > (Y—y)* = 6786,
so that r is given by

r = «/-(m = 81 = 0-99, approximately.

Generally, if we have two sets of numbers x4, ,,..., z, and y,, ¥a,..., ¥n
such that z, and y, lie in the interval (¢,%,,,), and if the differences
t,—t,,, are small and equal for all values of r, then x, and y, will cor-
relate almost exactly linearly.

The method we have used to find the coefficient of linear
correlation is capable of immediate extension. Thus, for
parabolic correlation, we wish to find the value of A for which
the hypothetical population

Y = AX'?, where X' = Y—y

"y

X —-_a_:, Y =
Oy o
best fits the given numbers (Xy, Y3),..., (X,, ¥}).
We have therefore to choose A so that 3 (Y,—AX%)?is a
minimum,

Hence 3 X2¥; o3 (X—2){(¥Y—y,)
S X3 oy S (X—2, )
2 (X—z) 3 (X—z,)(Y—y,)
‘/”x/{z (Y_yr)a} 2 (X_ r)‘ )
The interpretation of A in this case is, of course, quite different
from that for r in the previous case.

v
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The Method of Maximum Correlation

Let (z,, z,,...,,) and (y;,¥,,...,¥,) be two sets of observations
obtained by two different experimenters to represent varia-
tions in the same phenomena at positions z which are accurately
given. If the experiments have been carefully performed and
the differences between corresponding pairs (z,,y,) of observa-
tions are due only to accidental errors, it follows that the two
sets will be highly correlated; in other words, the line of regres-
sion of z on y or of ¥ on z will be very near the line y = .
We wish to determine from these observations a third set
(24, 29,...,2,) Which correlates most highly with the given sets;
that is to say, if »,, and r,, are the correlation coefficients
between the z’s and the 2’s and between the y’s and the 2’s,
respectively, then the z’s are to be chosen so as to make some
symmetric function F(r,,,7,,) a maximum. Each such function
defines a class of populations. Consider in particular

F =ry,+r,
Let X, Y, and Z be the means of the three sets of observa-
tions, and §,, 7,, and {, the deviations of z,, y,, and z, each from

its mean; then
Z fa Z Ns = Z L, =0,

— mea — zfaga P Z"),C. .
NOX:DXET) JZaETE T JEZ%D
To simplify the notation we write.
& —b, & _o,
waT I3 e

Then the above relations may be replaced by
Sa,=3b, =3¢, =0,
Sal=3b=3ci=1,
Tay = Z a, b, Tas = 2 @y Cyy Ty = E by Cy.
Now if the function F is to be & maximum we require
8F = 8rpy+8ry, = 0, (1
where 8, = Y a,8¢c, and &ry, = 3 b,8c, (2)
Substituting from (2) in (1) we thus require
z (at+bs)80: = 0. (3)
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From the restrictive conditions on ¢, we have

Scdc,=0 and 3 8¢, = 0. (4)
Hence, from (3) and (4) we obtain

> (@, +b,+Ac,+p) 8¢, = 0,

where A and u are constants to be determined.
Equating the coefficients of 8¢, to zero we have

Ay-+by+Ac,t+p =0 (8=1,2,.,n). (5)
Summing the s relations (5) we obtain
Sa,+ > b+AYc,+su =0,

whence we deduce that p = 0.
Multiplying (5) by ¢, and summing, we have

Toet7y+A = 0.
Accordingly (5) takes the form
yt-by = (T try)e, (8= 1,2,..,n). (6)
Multiplying (8) by a, and b, respectively and summing, we
obtain 141, = (e 7y } 1)
147,y = (Feut-7,2)7.
From (7) it follows that 7, = r,, (8)

Equations (6), (7), and (8) serve to determine 7,,, 7,,, and c,.
Thus from (7) and (8) we have
Yoz = Ty = \/{‘}(l'l'rzu)}’ (9)
and from (6) ¢y = (ag+b,)/\{2(1474,)} (10)
Since r,,, i8 positive in the case with which we are concerned,
and is moreover less than unity, it follows from (10) that c, is
slightly greater than the mean of a, and b,.
Returning now to our original notation we have still to
determine z,.
We have 2y = 2+, = Z+vyc,, (11)
where y = /(X {?) and Z are unknown.
We propose to determine the latter by the method of least
squares. We have thus to make
2 {(za"' ,)’-{-(z,——y,)’},

43260 N
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ie. z {(Z+Yca_x—£o)2+ (Z’{")'ca— Y— 7]0)2}’
a minimum for variations in Z and y.

We thus obtain the equations

Z = }X+7Y) (12)
and 2y z c = E €scot Z s Ce»
or 2y = 1 (2 ED+V(Z 71D} by (8).

In terms of the standard deviations this result may be
written as Y = }Vnr,(o,+0,). (13)
Hence

Z, = Z+yc,
_ (a5+b,)
= §(X+ Y)+’}‘/nrzz(°'z+"y)\7{2(—l+;;)}

= X+ D)+ +”")[¢(z IR gn?)]

= %(X'*' Y)+i(az+au)(§s/ a:+ 773/01/)' (14)
Thus all the constants in the calculation of the set (Z,) have
been determined.
For the application of this method to the general case of
m given sets of observations and for more general forms of the
function F, reference may be made to a recent paper.t

Linear Correlation in General

Suppose that Zys Tgseees Tpys

Y. Y20 Yn
is a given system of data. We may inquire which member of
the class of hypothetical populations x cos a-ysin« = p, where
« and p are variable, will provide this system of data with the
greatest probability.

Let us suppose that (X,, ¥,) is the point on this line to which
(x,,y,) is an empirical approximation, and that the errors in the
placing of z, and y, occur independently with frequencies deter-
mined by the same Gaussian law. Thus the probability of an
error X,—z, is proportional to exp{—h*X,—xz,)?} and that of
an error ¥,—y, is proportional to exp{—A?¥,—y,)?}. The proba-

t H. Levy and J. C. Gascoigne, Proc. Phys. Soc. 48 (1935).
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bility of obtaining the whole set of data is therefore propor-
tional to

exp{—h2(X,—2,)2lexp{—h(¥;—§)Y .. exp{—hH( X, — 2, X
X exp{—RH(¥,—1,)%} = exp(—H? 3 [(X,—)*+(E—y,)]).

If this is to be a maximum we require that

z [(Xr— r)2+(Yr—yr)2]
shall be a minimum.

Geometrically, this expression represents the sum of the
squares of the distances of the points (x,,y,) from the corre-
sponding points (X,, Y,) on the line

zcosatysine = p. (1)

Now unless (X,, Y,) is the foot of the perpendicular from
(#,,v,) on (1), the given expression will certainly not attain
its least value. Since the perpendicular from (z,,y,) on (1) is
of length z,cosa+y,sina—p, we have to determine o and p
so that > (x,cos a+y,sin a—p)?
is a minimum. We thus require

> (x,co8a+y,sina—p) = 0 (2)
and > (x, cos a+y, sina—p)(w, sin a—y, cosa) = 0. (3)
Equation (2) may be written in the form

&cos a-+t+ z—y's;in a—p = 0,
n n

which shows that the mean position (X, Y) of the points
(x,,vy,) lies on (1). Writing, as before, z, = X+¢,, ¥, = Y+1,,
so that 3 £, = 3 7, = 0, equations (2) and (3) become

X cosa+ Ysina = p, (4)
> (£, cos a4, sina)(£, sin a—7, cos a+ X sina— ¥ cosa) = 0,
or (cos?a—sin®a) 3 £, 7, = sinacosa Yy (£2—17?), (6)
whence tan 2a = 2%_{_'—:’];—). (6)
Thus the required hypothetical population is given by
(x—X)cosa+(y— Y)sina = 0, (7

where a is determined by (6).
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Eliminating « between (6) and (7), we find that (7) is one of
the pair of lines whose equation is

(x-X)(y_ Y) — Z fr Nr (8)
(e—X)P—(y—Y)? X (E—n})

It will be observed that these lines are the bisectors of the
angles between the regression lines of z on y, and of y on z;
one of them determines the most probable and the other the
least probable of hypothetical populations represented by lines
passing through (X, Y). The required line is the bisector of
the acute angle between the regression lines.

When ¢, = g,, it follows from (8) that the line (7) has the

equation y—Y = 4+ (z—X).

The Gaussian Law for Two Variables: Correlation

We can approach the problem of correlation in the following
way.

Let 5,, 7, be the deviations of two sets of quantities from their
respective means, and suppose 7, and 7, are each determined
from elements €,, ¢, themselves also deviations from their
means, and distributed about these means according to the
Gaussian law. Suppose

n = “‘1+b€2, or 17 Any+ B,

mp = ae;+Pey € = Rn;+ 87,
Then the probability of the occurrence of the €’s simultane-
ously within the ranges (e, €,+8¢;) and (e,, e, 8¢,) is

P oxp(—hied) de, 22 exp(—nzed) de,
N N

hl hzexp( hl el——-kg Eg) d€1 dez.

If for the €’s we substitute their values in terms of the 7’s as.
above, the result will give the probability of the occurrence of
the two characteristics 7, and 7, in the ranges (7, ,+87,),
(m2, M2 +87y), viz.
exp{— (Anf+2uny nz+vn3)}8n, 8,

an extension of the Gaussian law.

We are now in a position to generalize and interpret this
expression.
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As before, let 7, and 7, be the deviations of two measurable
characteristics each from its mean. The problem is to represent
the linkage that shows itself, if at all, between the quantities
7, and n,. Let them be determined by the corresponding devia-
tions of a number of contributory elements, e,,e¢,,...,¢, each
from its mean. Then

M = &6+ e+ ap, €,

ne = bye;+byegt...4b,, €,
Let us assume that each of the ¢, contributions conforms to
the Gaussian law of error with precision constant k,; then the

compound probability that the €’s lie respectively and simul-
taneously in the ranges

(€1, €1+8¢€;), (€3, €2+ 8¢3), ..., (€ €,utB€,),
is R = A exp(— Y €2h?)de, de,.. de,,
since they vary independently.
In this expression substitute for ¢, and e, in terms of 7,
and 7,; then the compound probability that », and 7, lie in

the range (n;,1;,+87%,) and (7,, 1,+87,), respectively, as well
as that the remaining ¢’s should lie in the ranges

(€3, €3+ 3¢3), ..., (€ €qtBep),
is of the form
Q = Be~Udn, 87,8¢;...8¢,,

where U is the sum of

(i) a quadratic function of 7, and 7,
(ii) a quadrati¢ function of e,..., ¢,
(iii) a function linear in 7y, 7,, €3,..., €.

If Q be integrated with respect to the ¢’s from + o0 to —oo
the result will give the probability of the occurrence of the two
characteristics 7, and », in the ranges (7, 7,--8%;), (13, 72+ 875).
Finally we obtain

P= C’exp{—&(C’l 73+2C ny 12+ O, ’73)} 81, 87,,

clearly an extension of the Gaussian law of error. If %, and
ne Were quantities that could be chosen independently with
standard deviations o, and o, respectively, then we should have
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as the probability of the occurrence of 7, and 7, in the given

range
P = 1 ex( 7)1 ’12)

270, 0y 202 20%

The presence of the term 1, 7, in the quadratic expression brings
out the linkage between the two quantities.
Write

Cini+-2C, e+ Coni = G "71"*“‘"“’71 ’72]+0217§

—C _Ch],.
1’71+C’72 + 2= |

2 C
= 02 ’72+C "h] +[01—771;2:|"7%~

2
Now write ——gl? 1 C,— 9‘3 1

c, o U0, T ¥
C
and o= — 12
V(G Gy)
Thus -l-é = Cy(1—r?); _1_ = Cy(1—72).
0’1 02

Moreover, since P is to be a probability, when integrated
with respect to %, and 7, from + o0 to —o0, it has the value

unity.
Hence ® o
1=C f f e=U dn, dn,.
This integral is evaluated below with the result
1= 20 27Coy 0q/(1—72).

V(G C—CYy)
Accordingly the law of error takes the form

1 1 1 (n} 2rmymy "72)}
2may 09 (1“72)*exp‘ (1—7'2)( 010 +°2

1 In this connexion we may note Mehler’s series for the correlation function

1 l_2 2
(- ,,)_;exp( (= :zf/’—w))

3
= exp{—i(z‘+y‘)}{1+rm(z)ﬂ.(y)+ T @)+,
where H,(x) is the Hermite polynomial (see p. 138).
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It is clear that when there is no correlation (r = 0), i.e. when
the term 7, 7, is absent, o; and o, become simply the standard
deviations of the #,’s and 7,’s in that case. That they still
bear this interpretation even in the case of linkage may be seen
from the following considerations.

Write exp{—3}(C, z2+2C,, zy+ C, ?)}.

Then from the integrals evaluated below we have for the
second moment of z

F 7 27C, C
h= ] ] =ty = o togn = o
r 2mxC, C
h= [ [ wdely = (g6 Gy = o
Similarly, e
T 7 —27C,
J = f f zxydxdy:mz—cl%—)i:m,oz.

The integrals I; and I, are the squares of the standard devia-
tions of the n’s while J is the sum of the products %, 7,.
J J
0r0y  A(LE)
or for computational purposes we write

- 2 M2 .
NOXDEH
It remains to evaluate the integrals referred to above.
Consider

Accordingly, r=

@

A= f J' exp{— }(ax®— 2hxy+ by?)} dxdy.

- —@©

. h\t A,
Now axt—2hxy+-by® = a z—=y) +-9*
where A = ab—h2
¢ N
—a2?) de = .
Also J; exp(—a?x?) dx a

Thus
Z exp{— }(az?— 2hay+ by?)} dz = J%’exp(—%%yz).
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Hence ®
2w 1A
4= /= —_——y?
Ja fBXP( 2ay)dy

J2n N 2 27
VAT ~/ ab hz)'

By differentiating under the integral sign, with respect to
a, h, and b, we obtain

© @ 2mb
[ [ a*exp{—}(az®—2hay+by?)} dady = (d?)._:r_h_éji
b 27h

[ ovexp{—aot—dhay-+by?) dady = T

8

2ma
2exp{— }(ax?— 2 = 7
) l y2exp{— }ax?— 2hay+by?)} dedy = (@b —hE)i"

8=y 8%
8

Tests of Significance for Small Samples

One of the most important contributions which statistical
analysis has made to experimental practice lies in what are
called ‘tests of significance’. Suppose that a series of measure-
ments is made of a quantity which in ‘normal’ circumstances
would have the value m. From a study of the observations, can
we say that these are themselves normal measures of m? If
not, can some measure be found to estimate the degree of non-
normality? For example, a collection of trees is sprayed with
an insecticide, and after a lapse of time the number of insects
upon them is counted. A corresponding series of unsprayed
trees (controls), of equal number, is also counted for insects. We
may ask whether the difference between the average number of
insects per tree in the two series is sufficiently great for us to
assert that the effect of spraying has been significant. From
the point of view of probability we may regard the problem in
this light: we may say that there are n numbers z,, x,,..., 2,
whose average is Z; m is the mean to be anticipated if n were of
infinite extent and if no factor had operated to disturb the
equilibrium of the series. In asking, therefore, what is the
significance of £—m, we are really inquiring with what proba-
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bility one might expect a deviation of & from m to have as large
a magnitude as this, under so-called ‘random’ conditions, i.e.
when the numbers z,, z,,..., z, are chosen about m according
to a ‘random’ law—for present purposes the Gaussian.

Once that probability has been found, it will be possible to
express in any given case the significance of the deviation in
terms of the probability that it will arise at random. If it is
very probable that a deviation of this amount will occur in a
random sample of n, then there is little experimental signifi-
cance in the deviation found; and conversely. It should be
remarked that, in expressing the significance of the deviation
in this way in terms of probability, we are really referring it to
the significance of the probability—a matter which, as we have
previously remarked, is to be decided finally by the experi-
menter himself. It is clear that a corresponding investigation
of significance can be made for the probability of occurrence
of a deviation in any other typical constant from that of an
assumed infinite population.

Let there be a population, in number N, distributed according
to the normal law ¥ .

_ (x—m)

V= o~ ) W
where o is the standard deviation of the population and m is its
mean.

Suppose that a sample » in number is drawn from it, having
magnitudes z,, Z,,..., Z,. We can write down the probability
that the members of the sample should lie between z; and
x,+dz,, x, and z,+-dx,,..., z, and z, +dz,. Thisis

N (x,—m)®\ N (xg—m)?
P =@ ‘”‘P("*w )UJ(2w)exP(_ 202 ) *
(xn_"m')2
X m/(z")exp(—- 202

) dzx, dzx,...dx,,

. Nn 1
je. P= lEp exp(—— 358 > (x,—-m)’) dx, dzx,...dx,,.
Thus

P— Aexp(—%[ s (x,—i)2+n(i—m)2]) de, dzy..dz,, (2)

where 4 is a constant and £ = Y z,/n.
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We now represent the sample by a point P in space of n
dimensions having coordinates (z,, %,,...,%,). Then

Ty =Ty = ..=1T,

is the line which is equally inclined to the coordinate axes.
The perpendicular distance of P from this line is given by

PM? = (2,—£)4 (x— %)% 4+...+(x,—F)?,

where M is the point (&, &,..., Z).

Thus PM = s+n, where s is the standard deviation of the
sample. Hence, given & and, therefore, M, for a fixed s, the point
P must lie on a sphere of (n—1) dimensions with centre at M
and radius svn.

An element of volume in this space may thus be expressed in
terms of the variation of #, namely dZ, and the variation d(s*-1)
in surface area. Thus the volume element can be written as

Cs"—2dsdz,

where C is some constant.

We now see that this representation of our sample, together
with the symmetrical nature of the expressions for z and s,
enables us to replace (2) by the formula

P = (Csn-2 exp(-—é;—z[z (:c,——a'c)2+n(:i:—m)2]) dsdz. (3)

This represents the probability that & sample will be drawn from
the population, having a mean lying between & and £4-dz, and
a standard deviation between s and s+4ds. It follows that,
given the standard deviation s, the law of distribution of
samples of the means is represented by the normal curve

n .
z = zoexp(——é-a—z(x—m)z) (4)
distributed about the same position as (1), but with standard

deviation o/vn.
In the same way, if we regard & as fixed, the law of distribu-

tion of the standard deviation of samples is given by

2
y=%ﬂ4uﬂ—gﬁ (5)
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The constant y, may be found as follows:
Let © 2
ns
Ip = js”exp(—-z—og) d8
0

2

a? v d ns
—_ p-1_" —_—
= f 8 dsexp( 202) ds
0

2
= %(P—I)Ip—z:

upon integration by parts. Hence we obtain

o2\ Hn-2)
I, ,= (_1.&_) (n—38)(n—>5)...1 I,

o2\ in-2)
or I, , = (—7;) (n—38)(n—>5)..21,

according as » is even or odd.
2
Evidently we have I, = A/ (-21;—)0, and I, = %. Since the

area under the curve (5) represents the total frequency N of the
population, we obtain

_ N A/2 n\i®-D ns?
Y= m=3)n—5)..3.1 ;(a"z) d exP(“é?)

when 7 is even, and (6)
_ N n\i®-0 ns?
y= (n-3)(n-5)...4.2(§) y e"p(—%"z)

when » is odd.

In a similar manner we obtain the value of the constant z,
in (4). Denoting by x the distance of the mean of the sample
from the mean of the original population, we have

7 2
N =2, f exp(—-—:-z—e) dz,

- a0

ie. N = 22, A/ (—2%)0.

Thus (4) can be written as

n N
z= 5 }-exp(-—gé). (7
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Now introduce the variable { defined by

{ = xls. (8)
The probability of obtaining a value of s lying between s and
8-+ds is, by (5).

8+ds 2
s"~2exp — ) ds
202 v ns?
P =2 = -"s”‘aexp(-—éﬁ) ds

2
f an—2? exp(—-%) ds

. ,
The probability of obtaining a value of z lying between z and
z+dzx is, by (7),

z= % c-l;exp( nxz) A/-—- -exp( ?{2)8 di.

This is also the probability of obtaining a value of { between {
and {4-d{ for a given value of s.

Hence, the probability of obtaining a value of { between
and {-+d{, while x lies between x and x-4dx and s between s

and s+-ds, is
£2
)3 dr

8P=%‘;s"*’exp( 202)(13)/ —exp(

— n Yo n— =
= o, lexp( (1+§2))dsdl;

It follows that the probability of obtaining a value of { between
{ and {+d{ for any value of 8 is

P = ;g“!s"—lexp(-———(l—}-?))dsdl

Hence, by (6), we obtain the results

. }n——2'n—- 5.3 2—in
P = s g g1l (nodd) )
_ln—2n—4 4.2 . '
P = sn3n 531 (1403~ d{ (neven)

We note the very remarkable fact that the formula (9) does not
involve the unknown constant o: hence its practical importance.

Now write { = tané.
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Then, from (9), the probability of obtaining a value of { lying
between {, and —{,, say, is

1n—2n—4 53 0"
= h—an—2 O 9o n-20 4
27&—-37&—-5'"4'2 cos )

tan-‘(—(;)

] 9 4 9 tan-'({,)
or P — _t. t-w_,,é._ cos""zgdo,

an—3n—5 3 1
t o (—§,)

according as » is odd or even.

For further information on this subject, reference should be
made to ‘Student’, Biometrika (1908), and R. A. Fisher, Bio-
metrika (1914-15).

Using the above results we can construct a twofold table
from which the significance of a variation of { between +{,;

(i.e. of gc_—_g_m) can be determined for a given value of n. For
use in practice, Fisher has found it convenient to replace
{byt={vn = gﬁl;—'ﬁ vn. The values of ¢, P, and » are given in

Table IV ‘of Fisher’s Statistical Methods for Research Workers,
where it is to be noted that the n there used is less by unity
than that taken above, and that m is assumed to be zero.

Other Tests for Significance

In the investigation given on p. 169 we have measured the
significance of a pair of extractions by comparing the proba-
bility of obtaining such a pair with that of obtaining the ‘most
likely’ pair. However, this is by no means the only method of
estimating significance: consider, for example, the following
problem.t

Suppose that we have a population of black and white balls
in an unknown proportion p:1, and that we draw from it two
samples, each consisting of 6 balls, which together contain
8 black balls. Thus, if the first sample contains r black balls,

Black White
r 6—r
8—1r r—2

t Irwin, Metron, 13 (1935), 73.
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the second will contain 8—r black balls. The probability of
obtaining such a pair of samples is
G (1—p)*" Gy, p*"(1—p) -2,
where r may assume all integral values from 2 to 6.
In the accompanying scheme we give the values assumed by
the function P(T) — 60'603_1-

as r varies from 2 to 6.

r P(r)
2 | 15
T3 120
4 | 225
5 120
6 15

It follows that the probability of obtaining a table for which
r = 2 iS 6
15/ S P(r) = 15/495 = 1/33.
r=2

The probability of obtaining an equally probable or less prob-
able table is 30/495 = 2/33.

The same method may be employed when the two samples
extracted are not of equal size. Thus, suppose that the first
sample contains a fixed number a+b of balls, and that the
second contains a fixed number c+4d, while the two samples
together always contain a--c black balls. In the table shown,

Black | White
at+b—r r
c—b4r | b+d—r

the number r evidently cannot exceed the lesser of a+b and
c+d. The probability of obtaining such a table is

a+b( e+d(y ,_ [atbierdC

Consider, for instance, the following data, which give the
number of cases of measles prevented and not prevented by the
use of serum in each of two different schools.
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Prevented | Not prevented

School 1 26 2
School 11 61 2
Totals 87 4

The possible tables which may be enumerated are represented
by the scheme

28—r| r

69+r|4—17r

in which » may assume the values 0, 1, 2, 3, 4. We now calculate
the corresponding values of the function

P(r) = B0, ,
These are shown in the accompanying table,

P(r)
595,665
1,111,908
4 738,234

206,388

20,475

=1l ]=]=]~ ]

from which it follows that
4
S P(r) = 2,672,670.
r=0
Hence, the probability of abtaining a table as improbable as
or less probable than the observed one (for which r = 2) is

P(0)+ P(2)+ P(3)+ P(4) _ 1,560,762
4 ¢
3P0 2,672,670
r=0

As a further illustration of how the significance of samples
drawn from a population can be reduced to a comparison of
relative probabilities we examine the following problem.}

Two populations each possess a certain quality in unknown
proportions p, and p,. Samples of magnitude N are drawn from
each and found to contain x, and =, respectively of the quality
in question. We inquire what is the significance relative to the

1 See Jeffreys, Proc. Camb. Phil. Soc. 31 (1935), 203.

= 0-584.
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possible values of p, and p, to be attached to the difference
x,—x, found from the two samples. It is clear that the question
becomes important only when z,—z, is small compared with N.

Accordingly we examine the respective probabilities that
samples z, and z, will be drawn from the two populations on
the assumptions

(1) that p; # p,,

(2) that p, = p,.
In the case (1) the probability of z, and #, successes in N trials
each is, by Bernoulli’s Theorem,

A = NC, p3(1—p))V -1 X NC,, pP(1—pr)V
N1z
xl'xz (N—z)) | (N —a,)!
Now, prior to the drawing of the sample, p, and p, may have
any values in the range
0 < (pp2) <1

all, it will be assumed, with equal probability.
Hence, on this basis the probability of drawing two samples

z, and z, is

PR(1—p) ¥ pR(1—py) Vo,

11
ffA dp, dp,.
m!n!
Now f 4 Pr—pI* =

Hence
1 1
[ P2 —p)¥-= dpy [ pg(1—po)N-= dp,
0 (1}
2 2! (N—2))! (N—a)! |
AR NIVAR I
In the case (2), where p, = p,, the probability of drawing

samples z; and z, is
= NG, pP(1—py)V =1 X NC, pfr(1—py )V

(N ')2 Ty 4Ta(] — 2N-x1—Ts
= aTel (N—a) T = P11 =P) '
Again p may be assumed to range with equal probability
between 0 and 1.
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Hence the probability of drawing the two samples in this

case 18 1
f Bdp,.
0

Now
1
_ (T +29)! (2N — 2, —1,)!
1122 (] — N-21-x3 —
Jf’f F(l—p, PN -0E (eN-+1)! :

In A and B the coefficients not involving p, and p, are identical.
Hence we obtain the result:
Probability of (x,,z,) arising when p;, = p,
Probability of (z,,x,) arising when p, 5 p,
_ (@t x)! 2N —z,—)! {(N+D1)12
- (2N+1)! @y @l (N —2))! (N —2,)!"
Assuming that N, z;, and x, are all large numbers, by using
Stirling’s theorem we can approximate to this ratio; it becomes
g expf— o Hlroea )
Vi@ +a,) (2N —a,—2,)} (@ +22) (2N — 2, —2,) )
The problem of discriminating between the values of p for the

two populations arises only when JV_% is small. For, by the

method of Maximum Likelihood, x,/N and z,/N are the values
of p, and p, for which z, and z, are the most probable samples.
Accordingly let us write

(2, | 25\ _
§(w+,w)*1“

and _t__ = Sp

Then, finally, we may say that the relative likelihood equals

Probability of drawing (z,,%,) when the populations areidentical
Probability of drawing (z,, z,) when the populations are different
N ]5 { N 3p? } L
= | ———— | ex ——exp(— L2&p?),
[41710(1—10) P\~ ap(i—p) = VP P
e N
4p(1—p)

If d, the actual difference between the two successful drawings
4260 n

where
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x, and z,, is constant for a population of increasing size, then
clearly L28p? does not depend on N and the exponential term
remains constant.

Thus, for a given difference z,—x, between the two readings,
the relative likelihood that the two populations do not differ
increases directly with L, i.e. with Nt. When p = 4, L = Nt.

Ex. 1. For a given difforence z;—=, in the samples of given size N,

find the probability p for which the relative likelihood, that the popula-
tions are identical, is a maximum.

Ex. 2. Suppose that two samples, 100 cach in number, are drawn
from two bags containing black and white balls with the following
results:

Total | Black | White

First sample 100 41 59
Second sample | 100 49 51
We have
- =1 (i‘.ﬂ:‘“’) -0
N = 100, p=3 100 = 0-45,
49—41
8}7 = W = 0:08,
100
= Ix045x 055~ 100 epprox.
Thus L = 10.
Hence

Probability of identity _ 10

Probability of difference  var
i.e. it is approximately three times more probable that the two popula-
tions are identical than that they are different.

exp(—100x 0-082) = %’%exp(— 0-64),

EXAMPLES ON CHAPTER IX

Ex. 1. The probability of landing a shot within the annulus of radii
r and r+dr on a target is 5—: exp(—h??) dr. A thousand shots are fired
at the target and 500 are found to lie within 1 ft. of the centre. What
is the number of shots expected to lie within 3 in. of the centre, and
what is the least distance from the centre within which one shot is likely
to be found ?

Taking the unit of length as 1 ft., we have, by hypothesis,

1

2h
—h3rz —
N f € dr LB
0
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or Erfh = 0-5.
Thus h = 0-48.
Hence .the number of shots likely to be found within 3 in. of the

centre is oh t

1,00 A

o= fe dr.
The least distance » from the centre within which one shot is likely to
be found is given by r
1,000A J' M gy — 1.
v

Ex. 2. The Method of Least Squares. On p. 169 we have derived this
method from the normal law; the same result may, however, be obtained,
without such an assumption, by introducing the concept of weight.
Suppose that z, y, 2... are n numbers and that L, = a;x+b,y+c¢ z2+...,
Ly = ayx+byy+cyztees ey Ly = aygx4-byy+csz4-... are 8 (> n) linear
functions of z, y... with given coefficients, for which we have the esti-
mated values %;, %,,..., 4,. Then for the expression

L == A Ly+A; Ly+ ...+, Ly,
where the A’s are constant, we shall have the estimate
Ay Ay Upt e F A Uy
If we choose the X’s so that
Aja + A a,+ ...+ A a, = 0, A b+ Al + . A b, - 0, ete.,

then L will reduce to x, in which case A, u,+A,uy+...+ A, u, is an
estimated value for x.

We now define the weight W of L, for any set of values of A}, A,,...,
by the expression

1
= AN

Further, we assume that the best estimate for x is that for which W is
a maximum. This gives us the condition A, dA; +A, dAy+... +A, dA, = 0.

If we solve the equation so obtained, using the method of undeter-
mined multipliers, weo find for x the value that would have been derived
from the Method of Least Squares as formerly explained.

For further details, as well as for justification of the present assump-
tions, the reader may consult Whittaker and Robinson, The Calculus
of Observations, § 115.

Ex. 3. The speed of a train is recorded every second by an instrument
which in reality gives the average reading over the previous T seconds.
If the recorded speed u(t) is found to follow the formula

u(t) = atd+bt+-c,
determine the true speed v(t).
4260 02



196 PROBABILITY IN SCIENTIFIC INDUCTION Chap.IX,§2
Here

e"Pu(t) dx, where D = é.,

——s

0
u(t) = %f v(t+x) de = 7

dt
Ir Zr
1 ezl’]o 1 -
= 7|5 _T'v(t) = —Tﬁ[l—e To(2)
1 . TD* T3D3
= '1-—'5(71)———27— +T—...)l’(l)
TD T2D?
= (1—"5"*'__6“‘ ——...)v(t).
Hence
TD T2D?
v(t) = (] —“‘2- 6 ——...)_‘u(t)
TD T2D?
T , ™™
= u(t)-[-—iu (t)+—l—2u (t)...
2
= u(t—i- %') — %u”(t), approximately.
Hence

2
»(t) = (tt”+bt+c+—§(2at-+b)+—f—2 2a

2
== at*+ (b +-aT)t+g%L+227—1+c‘

Ex. 4. Show that, if u(t) is the recorded measurement at time , where
in fact it is the average over a period 27 lying evenly about time ¢, then
the true measurement v(t) is given by

() = u(t)— 3 T2u"(t) 4535 Tulv(t)...
= u(t)— 3 T2A%u(t) + § T2A%u(t) + 535 A%u(2)... .

0 o0 0 0 0o o0 Ex. 5. Inasquare lake depth sound-
T T T T ings are taken from a boat at a series of
o- 1-5 1.8 1.8 1.6 -lo points forming the corners of the 25
squares into which the surface of the
lake is divided. The errors in placing
the boat in each position for sounding
are given by the law Ae~", where r is
0}- 1'8 22 20 17 |0 theaccidental deviation from the truo
position. If the figures in the diagram
0j- 1.6 20 22 17 -0 arethe readings obtained, find the true
distribution of depth.

0]- 18 21 19 16 -0
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Ex. 6. Show that, if different sets of observations each satisfy a

h
Gaussian law of the form Py e~W*7, where the h’s may adopt any values
occurring with a probability given by —3; e~"% then the law of distribu-

. s A
tion of the z’s is of the form e T

- NPT 2)3
Ex. 7. For a probability distribution of the type Jl

1
P (._“IJE———{-;\—ZV)” find the

mean value of x and 22.
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x
2
— 2|
Erfa:_v”fe dt.
0

Erfz z Erfz x Erfz
0-02256 1.02 085084 | 2-02 099572
0-04511 1.04 085865 | 2-04 099609
008762 1.06 086614 | 2:06 0-99642
0-09008 1-08 087333 | 208 099673
0-11246 1-10 0-88021 2:10 099702
0-13476 1-12 0-88679 | 2-12 099728
0-15695 1-14 0-80308 | 2-14 099753
017901 1-16 089910 | 2-16 099775
0-20093 1-18 090484 | 218 099795
0-22270 1-20 0-91031 220 099814
02 1-22 091553 | 2-22 0-99831
0-26570 1-24 092051 224 0-99846
0-28690 1-26 092524 | 226 0-99861
0-30788 1.28 092973 | 2:28 0-99874
0-32863 1-30 0-93401 2:30 0-99886
0-34913 1-32 093807 2:32 0-99897
0-36936 1-34 0-94191 2-34 0-99906
0-38933 1-36 094556 | 2-36 0-99915
0-40901 1-38 0-94902 | 238 0-99924
0-42839 1-40 095229 | 240 0-99931
044747 1-42 095538 | 2-42 099938
0-46623 1-44 0-95830 | 2-44 0-99944
0-48466 1-46 0-96105 | 2-46 0-99950
0-50275 1-48 096365 | 2-48 0-99955
0-520650 1-50 096611 2:50 0-99959
0-53790 1:52 0-96841 2-52 099963
0-55494 1-54 097059 2:54 0-99967
057162 1-56 097263 | 2-56 0-99971
0-58792 1-58 097455 | 2-58 099974
0-60386 1-60 0-97635 2-60 099976
0-61941 1:62 097804 | 2-62 0-99979
0-63459 1-64 0-97962 | 2-64 099981
0-64938 1-66 098110 | 2-66 0-99983
066378 1-68 098249 | 2:68 0-99985
0-67780 1-70 098379 | 270 0-99987
0-69143 172 098500 | 2-72 0-99988
0-70468 174 098613 | 274 0-99989
071754 176 098719 | 276 0-99991
0-73001 178 0-98817 2-78 099992
074210 1-80 098909 | 280 099992
0-75381 1-82 0-98994 | 2-82 0-99993
0-76514 1-84 0-99074 | 284 0-99994
0-77610 1-86 0-99147 2-86 0-99995
0-78669 1-88 0-99216 | 288 0-99995
0-79691 1-90 099279 | 290 099996
0-806877 1-92 0-99338 2.92 0-99996
0-81627 194 0-99392 294 0-99997
0-82542 1-96 099443 | 296 0-99997
0-83423 1-98 099489 | 298 0-99997
0-84270 2-00 099532 | 3-00 0-99998

3123 | 0-999990
3-459 | 0999999
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Addition theorem for probabilities,
49.

A priori probability, 19-20.

Arithmetic mean, accuracy of,
129-30.

Arrangements,
41-4, 91-8.

Average, 112-17.

theory of, 14-16,

Banking, 1.

Bartels, 132.

Bayes, 7-8.

Bayes’s theorem, 152-6, 158.

Berkeley, 8.

Bernoulli, Daniel, 8, 10.

Bernoulli, James, 3, 4, 5, 7, 26.

Bernoulli’s limit theorem, 142.

Bernoulli’s theorem, 4, 5, 58, 62-4,
68-72.

Beta function, 7.

Binomial coefficients, 45-6.

— series, 47.

— theorem, 45-6.

Roole, 10.

Boyle, 9.

Buffon, 7, 86.

Bunsen, 55.

Campbell, 108, 110.

Cardan, 2.

Chance in scientific observation, 16.

— meaning of, 12-13.

Clausius, 10.

Collective, 32-3.

Combinations, 43—4.

Condorcet, 7.

Continuous distributions, 75-80, 115,
156-60, 162—4.

Correlation, 174-5, 178-80.

— coefficient of, 174, 182.

Curve fitting, 171.

Dalton, 10.

Determinism, mathematical, 33-40.
Deviations, significance of, 134-5.
Differences, finite, 4-5.

Disorder, principle of, 32-3.

Eddington, 156.
Error curve, 6.

Error function, 8, 70, 124-6.
Errors, theory of, 5~-6.
Euler, 7.

Exchange, 1, 3.
Expectation, 15, 50.

Fermat, 2-3.
Fisher, 166, 189.
Frequency, 15, 102.

Galileo, 2-3.

Gambling, 2-3.

Gascoigne, 178.

Gauss, 8, 10.

Gaussian law, 12, 118-24, 133.
— — and experiment, 133-4.
— — for two variables, 180--3.
Graunt, 4.

Gresham, 1.

Halley, 4.

Hermite polynomials, 137-40.
Histograms, 102.

Hobbes, 8.

Homogeneous products, 47-8.
Hume, 8.

Huygens, 3.

Insufficient reason, principle of, 24-6.
Insurance, 1, 2, 11.
Irwin, 189.

Jeffroys, 22, 24, 27, 191.
Joule, 10.

Kamke, 33.
Keynes, 26.
Kirchhoff, 55.
Kronig, 10.

Lagrange, 6.

Laplace, 8, 10, 11, 27.

Least squares, method
169-70.

Legendre, 7.

Leibniz, 5.

Levy, 178.

Line of regression, 172-3.

Locke, 8.

of, 8, 9,
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Mathematical probability, definition
of, 17

Maximum correlation, method of,
176-8.

Maximum likelihood, method of,
165-8.

Maxwell, 10-11.

Mean, 112.

Median, 113.

Mehler’s series, 182.

de Méré, 2.

Michelson-Morley experiment, 107.

Mill, 27.

Mises, 30-3.

Mode, 112.

de Moivre, 3—-4.

Montmort, 3, 4, 42, 97.

de Morgan, 10.

Multinomial theorem, 46-7.

Multiplication theorem for probabili-
ties, 51-3.

Newton, 3, 10.
Normal law, applications of, 128-9.

Pascal, 2-3.

Peano, 17.

Permutations, 4-5, 41-2.

Play, duration of, 4.

Poincaré, 96.

Points, problem of, 2—4.

Poisson distributions, 142.

Popper, 33.

Population, 29, 68, 70, 79, 106, 146.
— Bernoullian, 141.

— hypothetical, 102, 135, 164.
Precision constant, 170.
Probability, a priort, 19.

— as a branch of logic, 11, 20-4.
— definition of mathematical, 170.
— definition of statistical, 18.

INDEX

Probability, inverse, 6.

— of causes, 5.

— other definitions of, 26-33.
Probability curves, 104,
Probable error, 104.

Quantum mechangcs, 11.

Ramsey, 22.
Random walk, 81-2, 131.
Reichenbach, 33.

Sample, 29, 68-73, 79, 146.

Scientific induction, 33, 146.

Series, recurring, 5.

Significance, tests of, 168-9, 184-94.

Simpson, 5-6.

Standard deviation, 112.

— — for Bernoulli’s law, 141.

— — for Poisson’s law, 143.

Statistical probatkility, definition of,
18.

Statistics, 11.

Stirling’s theorem, 5, 44, 65-7.

‘Student’, 189.

Tartaglia, 2.

Tchebycheff’s problem, 53-4.

— theorem, 117.

Telephone problem, 144.

‘Treize’, problem of, 4.

Typical constants, 110-14.

— — for a continuous distribution,
115-17.

Venn, 10.

‘Waismann, 33.
Weights, 61, 77, 115.
Whitworth, 96.

de Witt, 4.
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