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This thesis presents a comprehensive study of size-dependent vibration, response and 

stability analyses of microplates using size-dependent continuum mechanics. In this study, the 

detailed investigation of free vibration, buckling, dynamic instability, nonlinear free and forced 

vibrations, nonlinear dynamic response and post-buckling of microplates are performed. The 

various types of loadings such as non-uniform in-plane mechanical loads, transverse patch 

loads and localized thermal loads, are considered in the present investigation. The size-

dependent effects are included using the modified strain gradient theory (MSGT) and the field 

displacement equations are modelled using the third order shear deformation theory (TSDT) 

pertaining the von-Kármán nonlinearity. The investigation encompasses modelling of 

microplates with a range of material properties, including isotropic materials, functionally 

graded (FG) materials, and porous materials. The resting medium of the microplates is 

modelled using the Winkler-Pasternak elastic foundations. The impact of viscous damping on 

these microplates is also included in the investigation. 

The analytical expressions for in-plane pre-buckling stresses within the plate due to non-

uniform in-plane mechanical loadings / localized thermal loadings are obtained by solving the 

in-plane stress equilibrium equation in terms of the Airy’s stress function (𝛷). The governing 

partial differential equations (PDEs) of the microplate are derived using the Hamilton’s 

principle for dynamic problem and the principle of minimization of total potential energy for 

the static problem. The PDEs are reduced to approximate closed-form ordinary differential 

equations (ODEs) for dynamic problem and algebraic equations for static problem using the 

Galerkin’s weighted residual method. The mechanical/thermal buckling load and natural 

frequencies are calculated by solving the eigenvalue problem of these equations. The dynamic 

instability regions are plotted using the Bolotin’s method. The nonlinear free and forced 

vibrations behaviour are presented using the frequency-amplitude curves which are obtained 

using the incremental harmonic balance (IHB) method in conjunction with the pseudo arc-

length continuation technique. The post-buckling equilibrium path is obtained using the 

modified Newton-Raphson method and the nonlinear dynamic response is presented using the 

time history plots which are obtained using the implicit Newmark-β time integration technique. 

The validity of the developed semi-analytical methodology is established by comparison of the 

simpler version of the methodology used in this thesis with prior studies. 

An understanding of the impact of the various parameters on microplate behaviour such as 

mechanical/thermal buckling load, natural frequencies, dynamic instability regions, frequency-
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amplitude curves, nonlinear dynamic responses, and post-buckling behaviour is attained 

through extensive parametric analysis. The influence of various parameters such as size-

dependent theories, porosity coefficients and distributions, elastic foundation properties, plate 

dimensions, boundary conditions, and loading parameters on microplate’s behaviours is 

examined. The effect of aspect ratios, boundary conditions and elastic foundation parameters 

on the mode shape of the plate at the critical buckling load under in-plane mechanical/ thermal 

loading is also assessed. The influence of initial perturbations on the steady-state response 

under transverse periodic loading / in-plane periodic loading is explored using time history 

plots. The findings of this research provide a better understanding of the behaviour of 

microplates and can be used to improve the design guidelines for microplates and develop 

further advanced methodologies for the analyses of microplates.
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1 
    Introduction 

 
 

1.1 Preamble  

Advances in engineering have led to miniaturized structures with optimal properties 

specific to their application. Systems as small as a few micrometres can now be made because 

fabrication techniques have greatly improved. Bulk micromachining and surface 

micromachining are some of the prevalent fabrication techniques for small-scale structures 

(Gad-el-Hak 2006).  One of the most important applications of small-scale structures has been 

in Microelectromechanical systems (MEMS). These are devices and systems with critical 

dimensions measuring a few microns. The size chart depicted in Fig. 1.1 illustrates the relative 

positioning of MEMS structures in relation to the sizes of other well-known entities.  

 

Fig. 1.1: Size chart depicting scale of things in meters 

These MEMS are commonly configured as beams and plates, serving as integral components 

in actuators, tweezers, diaphragms, gears, cantilevers, and probes essential for scanning probe 

microscopy and highly sensitive sensors (Bashir et al. 2000). Devices employing MEMS 

technology are often referred to as micromachine devices. The contemporary landscape of 

micromachined devices encompasses an array of innovations, including gyroscopes, 

accelerometers, pressure sensors, high-performance mirror displays, micromotors, micro 

engines, RF switches, valves, pumps, thermally and chemically sensitive membranes, single-

chip microfluidic systems (used in applications such as chemical analysis or synthesis), and 

single-chip micro total-analysis systems, also known as lab-on-a-chip devices, among many 

others (Mukherjee and Aluru 2006). The MEMS technology enables the miniaturization of 

mechanical elements in devices and a high-order control of dimensions, which makes them 

highly sensitive to smaller displacements and forces. They provide a combination of high 
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fundamental frequency along with low force constant. Thereby, enabling high force and 

displacement sensitivity at ultralow-power. Hence, they have demonstrated remarkable 

efficiency in scanning surfaces, enabling tasks such as measuring surface roughness, critical 

dimensions, and 2-D depth profiling (Tortonese 1997). They find utility in examining cells and 

neurons, serving as lightweight sensors, facilitating precise control in manufacturing processes, 

enabling high-precision chemical synthesis and various other applications demanding 

exceptional sensitivity. The micromachined sensors (Yazdi et al. 1998), such as 

accelerometers, gyroscopes and pressure sensors have become an integral part of the 

automotives, biomedical applications, consumer electronics, industrial applications, military 

applications and most recently Internet of Things (IoT). In the automotive industry, they are 

used in vehicle stability systems, activating safety systems and electronic suspension. There 

are more than 50 MEMS sensors in a car. In the case of consumer electronics and IoT, they 

serve as necessary sensors in image stabilization, virtual reality, inertial mouse, and sports 

equipment. The microcantilevers serve as an integral part of atomic force microscopes, 

allowing them to detect pico-newton scale intermolecular forces and nanoscale displacements 

(Alunda and Lee 2020). This capability enables groundbreaking investigations into 

intermolecular interactions and the study of single living cells.  

 

Fig. 1.2: Applications of micromachined devices in various fields 

MEMS devices are also used in wireless communication devices, including mobile phones to 
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serve as excellent bandpass filters because of their large quality factors (Piekarski et al. 2001). 

The applications of microstructures in diverse fields are illustrated in Fig. 1.2. The large 

application set of micromachined devices has led to their large-scale commercialization and 

batch-processing technologies are employed to fabricate the microstructures, aiming to achieve 

cost optimization. Furthermore, utilizing these microstructures in high-stakes domains such as 

vehicle safety and military applications necessitates thorough analysis before proceeding with 

the final fabrication steps. 

Microstructures behave differently from macro structures due to prominent distinctions in 

internal material structure and associated inter-atomic spacing (Behera and Chakraverty 2017). 

Either experimental research or molecular dynamics (MD) simulation can be used to conduct 

an accurate study that takes these impacts into account (Rudd and Broughton 1998). The 

Classical Continuum Theory (CCT) has been unable to accurately model the microstructures 

as it ignores the changes in behaviour due to size reduction. The hardening of strain is a major 

factor in microscale structures. This is because, as the distance between the grain boundaries 

decreases due to a decrease in grain size, the geometrically necessary dislocations (GNDs) 

(Ashby 1970) pile up at the gradient boundaries due to blockages. Since these GNDs are 

associated with large plastic strain gradients (Hutchinson 2000), the piling up of GNDs (Fig. 

1.3) leads to strain hardening or an increase in yield stress. Although the true behaviour of 

micro-sized materials considering intermolecular spaces and voids, can only be predicted using 

molecular dynamic simulations, it is computationally exhausting. A study has shown that 

corrections from atomistic behaviour emerge at the truly molecular scale (Rudd and Broughton 

1998). Continuum theory with certain modifications to incorporate the effects due to small 

scale (Behera and Chakraverty 2017) such as surface effects, the internal structure of the 

material, and lattice spacing between the atoms is found to be adequate for most work in micro-

scale analysis. Consequently, several researchers have sought to alter the CCT to incorporate 

size-dependent effects. Strain gradient and couple stress theories have explored the effect of 

strain hardening, with strain gradients also factored in the strain energy density function. The 

couple stress theories consider the rotation of grains (couple stress) and the strain gradient 

theories consider both the rotation of grains and the accumulation of dislocations (strain 

gradients). The nonlocal effect becomes prominent in nanostructures (Li et al. 2019a). Thus, 

the nonlocal theories are used to analyse structures at the nano-scale. 
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Fig. 1.3: Schematic representation of accumulation of GNDs at grain boundaries along 

critical slip plane 

Micromachined devices, being exceptionally lightweight and slender, are susceptible to 

failures resulting from surface impacts or other thermal, electrical, and magnetic loads, whether 

they occur inadvertently or as a routine part of device operation. Such incidents can induce 

bending or buckling failures, potentially resulting in permanent damage to these devices. The 

alterations in the response attributes of microcantilevers, including deflection amplitude and 

quality factor, find valuable applications in diverse fields such as environmental monitoring 

(Vashist and Holthofer 2010) and the development of read-and-write storage devices (Severi 

et al. 2009). Consequently, a comprehensive investigation into these response characteristics 

holds paramount significance within the realm of microstructures. In the static mode of 

operation, the changes in response depend only on the surface stress variation. However, the 

potential for microstructure applications and their sensitivity are substantially enhanced when 

they are employed in the dynamic mode. In this configuration, an external actuation induces 

oscillations at the microstructure's resonant frequency. The alteration in resonance frequency 

resulting from shifts in environmental conditions, mass, or damping properties serves as a 

means to sense these changes. This principle is extensively used in the working of MEMS 

bandpass filters (Lin et al. 1998; Nguyen 1995), and microcantilevers for biosensors (Patkar et 

al. 2020).  The simple harmonic (SH) resonance is used in accelerometers and mass sensors 

(Aikele et al. 2001). In the case of SH resonance, an oscillator receives external excitation in 

the form of a periodic force. This results in a Duffing-type equation, with the oscillator's 

frequency matching the excitation frequency. Acceleration induces lateral deflection in the 

oscillator's mass, leading to strain changes within the resonator and a shift in the resonant 

frequency at peak amplitude. Similarly, in the context of a mass sensor, detecting a change in 
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mass is facilitated by observing shifts in the resonant frequency at peak amplitude. In SH 

resonance, the response at frequencies significantly different from the resonant frequency is 

minimal but not entirely absent. 

 
(a) Simple Harmonic Resonance 

 
(b) Parametric Resonance 

Fig. 1.4: Comparison of frequency-amplitude graph of microplates with and without 

nonlinearity under (a) simple harmonic resonance and (b) parametric resonance 

On the other hand, parametric resonance is employed in various modern oscillators. It exhibits 

distinct dynamics compared to SH oscillators. Under some combinations of in-plane loading 

magnitude, loading frequency, and the structure's natural frequency, parametric resonance 

induces large out-of-plane vibrations at the structure's natural frequency. The response remains 

zero for all other combinations of frequencies and loads. This leads to a sharp transition in 

amplitude as the forcing frequency moves from the trivial solution to the sub-harmonic non-

trivial solution. This transition point is dependent on various parameters such as mass and 

geometry, making it particularly valuable in enhancing the sensitivity of mass sensors (Turner 

and Zhang 2001), MEMS bandpass filters (Rhoads et al. 2005), and parametric amplifiers 

(Raskin et al. 2000). Mathieu-Hill's equation is employed to model parametric resonance 

(Cartmell 1990). In the linear parametric resonance region, the amplitude of response is 

theoretically infinite. The introduction of damping imposes a constraint on the minimum 

loading required for parametric response. However, it does not limit the amplitude to a finite 

value. In any practical system, the amplitude is finite and controlled by nonlinearities. 

Therefore, incorporating geometric nonlinearity is essential to determine the finite amplitude 

of the steady-state response in non-trivial solutions (Zhang et al. 2002). A comparison of the 

nature of frequency-amplitude curves of microplates with and without nonlinearity under SH 
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resonance and parametric resonance is shown in Fig. 1.4. 

The static and dynamic characteristics of microstructures are dependent upon a variety of 

parameters. Therefore, prior to embarking on the design and batch fabrication of these 

structures, it is imperative to conduct a comprehensive modelling and analysis of their 

properties. A thorough examination of how each parameter influences both static and dynamic 

behaviours is necessary. Design guidelines should then be formulated based on this analysis to 

guarantee the effective operation of the manufactured micromachined devices. 

1.2 Motivations 

Microstructure devices exhibit distinctive characteristics that vary according to their 

specific applications. These properties encompass factors such as resonant frequency, sensor 

bandwidth, sensitivity, frequency response, full-scale nonlinearities, and deflection. Microplate 

parameters such as thickness and support conditions play a key role in controlling these 

attributes.  The damping mass acting on the system also plays a key role in determining the 

sensor bandwidth. The microplates are fitted to the adjacent structures in different manners. 

Cantilever support was a popular arrangement (Roylance and Angell 1979). In current times, 

with prevalent surface micromachining fabrication technology, the sensors are placed in simply 

supported or clamped conditions along with interface circuits on a single chip. This 

arrangement is especially adopted in capacitive accelerometers (Peeters et al. 1992; Seidel et 

al. 1990).  These microstructures find critical utility as MEMS devices in essential systems like 

vehicle safety mechanisms and military operations. Consequently, conducting an exhaustive 

parametric analysis of these structures is imperative to facilitate their efficient design. 

The load acting on the edges or face of microplates is mostly non-uniform and localized due to 

irregular connections with neighbouring members, partially damaged boundaries during 

fabrication or connections between stiffened and unstiffened plates (Yazdi and Najafi 1997). 

Thus, the effect of non-uniform in-plane loadings needs to be included in the modelling. Since 

most micromachined devices operate under dynamic conditions such as vehicles, the analysis 

of their dynamic stability also becomes imperative. They also exploit simple harmonic 

resonance or parametric resonance phenomena, where they are exposed to periodic excitations, 

in their functionality. Therefore, the inclusion of geometric nonlinearity is mandatory to model 

vibration amplitudes accurately in the study of these structures. A comprehensive analysis 

encompassing the study of changes in width and onset points of various frequency regions, as 
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well as the nonlinear hardening characteristics of frequency-amplitude curves due to various 

parameters is needed. It is crucial to investigate how the point of jump in amplitude of response 

varies when excitation frequency is swept from low to high and vice versa, taking into account 

the step size of the frequency. Thus, a thorough examination of the initial amplitude of 

perturbation is necessary. Over the operational lifespan of microplate elements, they often 

experience significant thermal stresses that can induce buckling. Like other loads, these loads 

can also be localized. Therefore, a parametric investigation into buckling loads and post-

buckling equilibrium paths of microplates under localized heating is also a requisite component 

of the analysis. 

In response to these multifaceted requirements, this thesis is motivated to present an efficient 

and accurate methodology that encompasses comprehensive parametric analyses of 

microplates subjected to diverse types of loading scenarios. 

1.3 Aim of the Study 

The aim of this study is to establish an efficient and precise methodology for examining the 

nonlinear static and dynamic behaviours of microplates. These microplates are subjected to 

diverse loading conditions, including non-uniform in-plane mechanical loading, transverse 

patch mechanical loading, and localized heating. The study aims to assess the impact of various 

parameters on critical aspects such as buckling, post-buckling behaviour, dynamic instability 

zones, nonlinear vibrations, and nonlinear dynamic responses of microplates under the above 

diverse loading conditions. In pursuit of this objective, the next chapter will conduct a rigorous 

examination of the existing literature in this field. Simultaneously, it will delineate the precise 

objectives of the current study, aligning them with the overarching aim. 

1.4 Contribution of the Study 

This thesis represents a significant contribution to the field of microplate analysis, aiming to 

enhance comprehension of their static and dynamic behaviours. It offers parametric analyses 

on the static stability, nonlinear vibration, nonlinear dynamic response, and post-buckling 

behaviour of microplates under diverse load conditions, employing a semi-analytical approach. 

The key contributions of this research are outlined as follows: 
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• Analytical expressions for the partial differential equations of a microplate are given. 

The microplate is modelled with considerations of size-dependent effects are included 

in the modelling using the modified strain gradient theory (MSGT), shear deformation 

effects are included using the third order shear deformation theory (TSDT) and the 

geometric nonlinearity is included in the form of von-Kármán nonlinearity. 

• The ordinary differential equations (ODEs) of motion are obtained using the strong 

form analytical approximation method (Galerkin’s weighted residual method). Thus, 

the closed form results obtained are very close to the exact solutions. 

• The analytical expressions for the in-plane pre-buckling stresses due to non-uniform in-

plane mechanical loading and localized thermal loading are derived using Airy’s stress 

function. The transverse patch mechanical and localized thermal loadings are modelled 

using double Fourier series and expressed analytically in complete domain of plate’s 

surface. However, in-plane localized mechanical edge loading is modelled using single 

Fourier series and expressed analytically in full edge of the plate. 

• The dynamic instability regions are plotted considering damping and a parametric 

analyses on its depth are presented. 

• The non-linear vibrations due to both in-plane loadings and transverse loadings are 

studied using the frequency-amplitude curves. Both the stable and unstable regions, and 

the bifurcation points, in the presence of damping are plotted using the incremental 

harmonic balance (IHB) method in conjunction with the arc-length continuation 

method. 

• The nonlinear dynamic response is presented using the time-history plots. The effect of 

initial amplitude of perturbation on the steady state response is also studied using these 

plots.  

• A parametric analysis of the different zones of excitation frequencies and the amplitude 

of vibrations is presented considering various parameters such as porosity, elastic 

foundations, geometry of plate, damping, and loading parameters. 

• A parametric analyses of the buckling and post-buckling characteristics of microplate 

subjected to localized thermal loads is presented. 

1.5 Organization of the Thesis 

This thesis comprises eight distinct chapters, each contributing to a comprehensive exploration 



Chapter 1 
 

9 
 

of the subject matter. This is the first chapter, which introduces the reader to the problem 

statement and the aim of the research. The second chapter delves into an extensive review of 

pertinent literature, framing the study's objectives. Chapter three provides an in-depth 

exploration of the mathematical formulations and solution methodologies applied throughout 

the investigation. The fourth chapter presents results on dynamic instability and nonlinear 

vibration of isotropic microplate subjected to non-uniform in-plane mechanical loading. In the 

fifth chapter, the analysis of nonlinear vibration and nonlinear dynamic response of porous 

microplate resting on elastic foundation (PMREF) under non-uniform in-plane mechanical 

loading is presented. Chapter six delves into the study of nonlinear vibration and nonlinear 

dynamic response of microplates subjected to transverse patch mechanical loading. Moving 

forward to chapter seven, we present an investigation into the buckling and post-buckling 

analyses of PMREF subjected to localized thermal loading. This chapter also explores the 

influence of different parameters on the mode shape of the microplate at the buckling load. 

Finally, in chapter eight, we offer a synthesis of the key findings from all preceding chapters, 

drawing conclusions based on the present investigation and providing insights into potential 

future research directions. The references can be found at the end of the thesis, acknowledging 

the sources that contributed to this scholarly work. 
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    Literature Review 

 
 

2.1   Introduction 

Microstructures, characterized by their diminutive size and increasing applications in 

microelectromechanical systems (MEMS), nanotechnology, and biotechnology. The huge set 

of applications of these sensors has led to their large-scale commercialization. They are 

manufactured using batch manufacturing techniques and thus, detailed attention towards their 

design and analysis has attracted substantial research attention in recent years.  As the structures 

become smaller, classical continuum theories struggle to accurately describe their mechanical 

behaviour. Thus, various size-dependent continuum theories have been used to investigate the 

linear and nonlinear, static and dynamic behaviour of microstructures. This chapter conducts 

an extensive literature review focusing on the analyses of microstructures using size-dependent 

continuum theories. It aims to provide a comprehensive overview of the research landscape, 

highlighting seminal contributions and emerging trends in this field. The literature regarding 

the research tools used to analyse these structures, such as the size-dependent continuum 

theories, the modelling tools and the solution methodologies are also reviewed.  

In this literature review, we delve into the comprehensive body of research that has focused on 

the linear and nonlinear static and dynamic analyses of microplates using size-dependent 

continuum theories. The organization of this literature review is as follows: The literature 

review on the various size-dependent continuum theories and their origin is discussed in section 

2.2. In section 2.3, the literature on different two-dimensional plate theories used in modelling 

the field-displacement equations of microplates is discussed. Subsequently, in section 2.4, the 

analytical techniques and numerical methods used by various authors for deriving the 

governing equations and their solution methodology are explored. In the next section, the 

various types of microplates and their material properties analysed by the various researchers 

are looked upon. In section 2.6, the literature review of studies that focused on linear and 

nonlinear static analyses of microplates is presented. In linear analysis, studies that focused on 

bending and buckling behaviours are discussed. In nonlinear analysis, studies that focused on 

nonlinear bending and post-buckling analyses are presented. The literature review on studies 

that presented linear and nonlinear dynamic analyses of microplates is presented in section 2.7. 

In linear dynamic analysis, studies that presented the natural frequencies and linear dynamic 

instability regions of microplates are presented. Studied that analysed nonlinear free vibration 

behaviour, nonlinear forced vibration behaviour, and nonlinear dynamic responses of 
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microplates are reviewed under nonlinear dynamic analysis. The studied that focused upon 

localized loading are discussed in section 2.9. The research gaps identified from the literature 

review are listed in section 2.10. Lastly, the objectives of the current investigation, derived 

from these research gaps, are presented in section 2.11. 

2.2   Size-Dependent Continuum Theories  

The size-dependent effects in metals are experimentally observed by several 

researchers (Fleck et al. 1994; Nix 1989; Stelmashenko et al. 1993; Stölken and Evans 1998). 

The mechanical behaviour of microstructures departs significantly from classical continuum 

mechanics due to the influence of size-dependent effects.  The most accurate method of 

modelling these structures is using molecular dynamic (MD) simulations. However, this 

method is computationally very exhaustive. Thus, several theoretical frameworks have been 

developed to address this challenge by including necessary size-dependent modifications in the 

classical continuum theory. The pioneering work related to size-dependent continuum theories 

was presented by Dell’Isola (Dell’Isola et al. 2014, 2016) and Cosserat brothers (Cosserat and 

Cosserat 1909). In the present day, several such theories have been developed. These theories 

are classified into three major theories: The couple stress theories, the strain gradient theories 

and the nonlocal theories. The couple stress and strain gradient theories are major size-

dependent theories used to model microstructures. These are further discussed in the following 

subsections. 

2.2.1 Couple Stress Theories 

The classical couple stress theory was originally proposed by Toupin (1962) based on 

the conception that in addition to the forces driving translations on a material particle, a couple 

also exists to drive it to rotate. Thus, the higher-order deformation gradients are also included 

in the deformation metrics. The rotation gradients are the anti-symmetric parts of the strain 

gradients. Mindlin & Tiersten (1962) and Koiter (1964) further extended this theory providing 

valuable insights into the role of rotation gradients in microplate mechanics. Mindlin (1964) 

further demonstrated the surface effects inclusions into the couple stress equations. Yang et al. 

(2002) proposed a theory by modifying the classical couple stress theories (Koiter 1964; 

Mindlin, R.D., Tiersten 1962; Mindlin R.D. 1964) to include the small-scale effects and named 

it as the modified couple stress theory (MCST). In the classical couple stress theory, it was 

suggested that apart from the force required for a material to translate, a couple is required for 
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it to rotate. However, the couple was unconstrained in position as only conventional 

equilibrium relations were used. F. Yang et al. (2002) proposed an additional equilibrium 

relation that restricted the couple stress tensor to be symmetric. Due to this newly introduced 

symmetric curvature tensor, the number of material length scale parameters required was 

reduced from two to one. 

2.2.2 Strain Gradient Theories   

Toupin (1962) observed in his research that the rotation gradient used in the couple 

stress theories comprises of only eight components of the total eighteen second-order 

deformation gradients. The remaining ten components are parts of self-equilibrating forces on 

a particle. Although these forces do not contribute to the forces and couple, their contribution 

to the potential energy cannot be ignored. In their subsequent work, the authors (Toupin and 

Gazis 1965) exhibited that in-presence of self-equilibrating stresses, the free surface of a 

material in atom-lattice, either pulls in or pushes out. This behaviour can be portrayed using 

the second gradient of strain. Considering the above observations, Mindlin (1965) developed a 

generalized higher-order stress theory by including the effect of eighteen independent second-

order deformation gradient components to the strain energy density function. The number of 

material length scale parameters corresponding to the first-order strain gradients was five. 

Fleck & Hutchinson (1997) reformulated the higher-order elasticity theory given by Mindlin 

(Mindlin 1965)  and renamed it as the strain gradient theory. They divided the strain gradients 

into stretch gradients and rotation gradients. It was further modified by Lam (Lam et al. 2003) 

and renamed as the modified strain gradient theory(MSGT) where the second-order 

deformation gradient is further split into two parts, symmetric and anti-symmetric. Similarly, 

the curvature tensor is also split into anti-symmetric part and symmetric part. The symmetric 

second-order deformation gradient is further split into a trace part and a traceless part. The trace 

part is a function of the dilatation gradient and anti-symmetric part of the curvature tensor. The 

traceless part is also called the deviatoric stretch gradient tensor. The anti-symmetric part of 

the curvature tensor was neglected as it does not contribute to deformation energy as proposed 

by F. Yang et al. (2002). Thus, the number of material length scale parameters required was 

reduced from five to three.  
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2.2.3 Material Length Scale Parameters 

A major challenge while using size-dependent continuum theories is the determination 

of the size-dependent parameters. Several researchers (Fleck et al. 1994; Gao et al. 1999; Haque 

and Saif 2003; Hayashi et al. 2011; Lam et al. 2003; Liu et al. 2013; Stölken and Evans 1998; 

Yang et al. 2002) have used the experimental methods including the nano indentation 

techniques for the determination of material length scale parameters (MLSPs). (Park and Gao 

2006) suggested that the MLSP for epoxy microbeam is 17.6 μm. Chong et al. (2001) suggested 

that the MLSP is equal to 3 μm for copper wires subjected to torsion.  Song and Wei (2020) 

calibrated the material length scale (MLS) parameters of face-centred cubic, body-centred 

cubic and hexagonal close-packed metals by linking the strain gradient theory with the 

molecular Cauchy-Born rule method. Ghorbani et al. (2021) calibrated the MLS and nonlocal 

parameters of different types of CNTs by comparing the results of natural frequency with those 

of MD simulations. The dependence of MLS parameters on strain rate and temperature was 

shown by Voyiadjis and Almasri (2009). 

Critical Discussion 

The couple stress theories only consider the rotation of grains (couple stress). In 

contrast, the modified strain gradient theory considers both the rotation of grains and the 

formation of dislocations (strain gradients). The results of modified strain gradient theory 

match with those of couple stress theories at larger sizes where the effect of accumulation of 

dislocations or strain gradients relating to self-equilibrating stresses vanishes (Wang et al. 

2011). The nonlocal theories, such as the nonlocal elasticity theory (NET), are more suitable 

for nanostructures (Tien et al. 2023) because of the characteristic length scale involved with 

them. In the case of nanostructures, the length scales are in the range of a few nanometres. 

Thus, the effect of nonlocality becomes prominent (Li et al. 2019a). However, in the case of 

microstructures, the length scales are larger; thus, the effect of nonlocality becomes 

insignificant. The nonlocal strain gradient theory (NSGT) can also give results similar to 

MSGT as it is a combination of strain gradient and nonlocal theories. However, this theory is 

computationally expensive and challenging to implement for complex microstructures. Thus, 

Modified Strain Gradient Theory (MSGT) is used in this article as it provides accurate results 

and is computationally economical for microstructures. 
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2.3 Plate Theories 

The microstructures are available in different shapes, such as beams, columns, plates, 

or shells. When conducting analytical examinations of these members, it is necessary to 

categorize them based on their geometries. In the present investigation, the entire analysis 

centres around plate theories because the focus of this thesis is limited to plate structures. Plates 

inherently possess a three-dimensional (3D) nature. Therefore, to accurately estimate the stress 

distribution and displacement within this plate-like structural member, it becomes imperative 

to employ the principles of three-dimensional elasticity theory, as advocated by several 

researchers (Noor 1975; Srinivas and Rao 1970). The 3D elasticity theory was used by 

Salehipour and Shahsavar (2018) to model MSGT based microplates. 

However, it is worth noting that the thickness of the plate is significantly smaller in comparison 

to its other two dimensions. Consequently, plates can be effectively analysed as two-

dimensional (2D) plane stress problems, as discussed by Soldatos (1992). Furthermore, 

adopting a 2D analysis approach also offers the advantage of reducing computational time for 

problem-solving. The transverse strains are functionally represented in these 2D theories. 

Based on the function used to represent these transverse strains in the field displacement 

equations, these theories can be classified as classical, first order or higher order plate theories. 

Thai and Kim (2015) presented a review article discussing the various plate theories for 

analyses of FG plates. A review of the literature on these theories used for the analysis of 

microplates is discussed in the following subsections. 

2.3.1 Classical Plate Theory 

In 1850s, the German physicist Gustav Kirchhoff came up with the first plate theory 

based on the assumption that plates can deform without in-plane strains. Later, Love (1888) 

came up with the Kirchhoff-Love plate theory as an extension of the Euler-Bernoulli beam 

theory (Timoshenko 1953). This theory is commonly referred to as the classical plate theory 

(CPT). In this theory, it is assumed that the cross-sections of the plate remain plane after 

bending and also stay perpendicular to the reference plane, i.e. the middle surface of the plate. 

The shear deformation effect is considered negligible in this theory as the transverse 

displacements are assumed to be constant through the thickness. Therefore, this theory is only 

suitable for thin plates (width to thickness ratio > 50) as it cannot model the shear deformation 

effect present in the case of moderately thick and thick plates. The first MCST and CPT based 
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isotropic microplate was modelled by G. C. Tsiatas (2009) for its bending analysis. The free 

vibration analysis of thus MCST and CPT based microplate was performed by Yin et al. (2010). 

B. Wang et al. (2011) developed one of the earliest CPT based microplates where the size-

dependent effects were included using the MSGT. A comparison of the strain gradient and 

couple stress model was also demonstrated. In recent studies, numerous other authors have 

used the CPT to model thin microplates (Arefi and Rabczuk 2019; Mirsalehi et al. 2017; 

Nateghi and Salamat-talab 2013; Tsiatas and Yiotis 2015) to save computational costs 

associated with other higher order plate theories. 

2.3.2 First Order Shear Deformation Theory 

In order to include the effect of shear deformation in plate theories, Reissner (1945) and 

Mindlin (1951) came up with the Reissner-Mindlin plate theory or the first order shear 

deformation theory (FSDT). In this theory, the plane section remains plane after bending but 

do not remain perpendicular to the reference plane. The shear deformation effect is taken into 

consideration as the transverse displacements are assumed to show linear variation through the 

thickness. However, this leads to non-zero transverse shear strains at the top and bottom 

surfaces, which is incorrect. The shear correction factor is employed to counter the non-zero 

transverse stresses at the top and bottom surfaces in this theory. The initial isotropic microplate 

model employing the MCST and deriving field displacement equations through the FSDT was 

pioneered by Ma et al. (2011) and Ke et al. (2012b). Meanwhile, the earliest model for 

microplates incorporating strain gradient effects and adopting the FSDT to formulate field 

displacement equations was introduced by S. Sahmani & Ansari (2013). Later, several other 

researchers used the FSDT based field displacement equations to provide a more accurate 

modelling of the shear deformation effects present in the case of moderately thick microplates 

(Ansari et al. 2013; Emami and Alibeigloo 2016; Liu et al. 2014; Shenas and Malekzadeh 2016; 

Yang and Lim 2012). 

2.3.3 Higher Order Shear Deformation Theory 

Traditional plate theories, such as the Kirchhoff-Love theory and Reissner-Mindlin theory, 

have limitations in accurately modelling the variation of shear stresses through the plate 

thickness, which is an important element in modelling moderately thick and thick plates. The 

Reissner-Mindlin theory does include shear deformation but requires a shear correction factor. 

In order to address these limitations, higher-order shear deformation theories (HSDTs) have 
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been developed. These theories account for higher-order derivatives of the transverse 

displacement and provide a better approximation of the shear stress distribution within the 

plate. The most prevalent higher order theory is Reddy’s (Reddy 2006) third order shear 

deformation theory (TSDT). This theory assumes parabolic variation of the transverse shear 

strains. After deformation, the initially perpendicular plane sections no longer maintain their 

perpendicular orientation to the reference plane; instead, they assume a curved cubic shape. 

This assumption allows for a more realistic representation of the shear deformation behaviour. 

The first microplate model developed using the TSDT and MCST was given by Gao et al. 

(2013). Jung & Han (2015) presented an MCST and TSDT model of a FG microplate. S. 

Sahmani & Ansari (2013) presented the TSDT model of FG microplate where size-dependent 

effects were included using the strain gradient theory. Recently, microplate models using 

several other higher order shear deformation theories have been developed. Thai and Vo (2013) 

developed an MCST based microplate model using the sinusoidal HSDT (Touratier 1991). The 

simplified strain gradient based FG microplate was developed using the sinusoidal HSDT by 

Akgöz & Civalek (2015). The refined HSDT model for MCST based microplates was 

developed by partitioning the shear and bending components (Darijani and Mohammadabadi 

2014). The refined plate theory (Shimpi 2002) was used by He et al. (2015) to model MCST 

based FG microplates. Recently, several other authors have used the HSDTs to model 

microplates (Arefi and Rabczuk 2019; Karamanli and Vo 2020; Thai et al. 2020a). 

2.3.4 Plate Theories with Nonlinearity 

Microplates often experience large deflections due to their small size and low rigidity. 

Consequently, the inclusion of geometric nonlinearity becomes a compulsion to accurately 

predict their post-buckling behaviour and nonlinear response in both static and dynamic 

conditions. The Green-Lagrange strain tensor and the von-Kármán nonlinearity are  the two 

most common formulations for incorporating nonlinearity in the plate theories. The Green-

Lagrange strains include both material and geometric nonlinearity as it takes into account both 

linear and shear deformations. The Green-Lagrange strains are included in the 3D theory to 

model microplates. The von-Kármán nonlinearity, on the other hand, is constrained to 

geometric nonlinearity (Torabi et al. 2021). It deals with nonlinearities arising from large 

deformations and rotations that plate structures undergo while maintaining a small strain 

assumption. This makes the von-Kármán nonlinearity particularly suitable for analysing thin-

walled structures modelled using 2D plate theories. Several researchers have used the von-
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Kármán nonlinearity to model geometric nonlinearity in microplate models. Earlier several 

researchers (Ansari et al. 2015a; Farokhi et al. 2013; Şimşek 2014; Wang et al. 2013a, 2015a; 

b) used the von-Kármán nonlinearity along with beam models to analyse the nonlinear bending, 

vibration, and post-buckling behaviour of isotropic microbeams. Ke et al. (2012a) and 

Loghman et al. (2021) studied the nonlinear vibration characteristics of functionally graded 

(FG) and viscoelastic microbeams, respectively. Geometric nonlinearity was incorporated into 

microplate models based on CPT and MCST (Asghari 2012; Farokhi and Ghayesh 2015; Wang 

et al. 2013b, 2014). Similarly, geometric nonlinearity was integrated into microplate models 

based on FSDT and MCST (Ke et al. 2013, 2014; Reddy and Berry 2012). A microplate model 

based on TSDT and MCST was also developed to account for geometric nonlinearity (Ghayesh 

and Farokhi 2016). Reddy and Kim (2012) developed a plate theory model that took into 

consideration the geometric non-linearity, small-scale effects, and functionally graded 

behaviour of a plate using the principle of virtual displacements. The small-scale effects were 

included by MCST, geometric non-linearity by the von-Karman non-linear strains, and 

functionally graded behaviour by a power law. The existing plate theories could be obtained as 

special cases of the developed theory, which could further be used to construct finite element 

models of these plates. Ansari et al. (2015b) studied the nonlinear bending and post-buckling 

analyses of FG microplates. Zhang et al. (2015a) investigated the axisymmetric bending, 

buckling, and free vibration analyses of circular/annular microplates.  

Critical Discussion 

In literature, the formulation for microplates modelled with MCST in combination with 

CPT, FSDT and TSDT (Thai and Kim 2013; Tran et al. 2022; Trinh et al. 2017) is easily 

available. Similarly, there is enough work on modified strain gradient theory in combination 

with CPT and FSDT (Arefi and Zenkour 2017; Shenas and Malekzadeh 2016). However, due 

to the complex calculations involved in the formulation of microplate based on MSGT and the 

TSDT, very limited literature is available. While the MSGT captures the size-dependent effects 

more accurately, the TSDT is found to be more accurate in modelling shear deformation effects 

in moderately thick plates. Zhang et al. (2020) used the FEM based differential quadrature 

(DQ) method on MSGT and TSDT-based microplates for their static bending, free vibration 

and buckling analysis. The author found a single study in literature where an MSGT and TSDT 

based microplate was modelled with geometric nonlinearity inclusions. 
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2.4 Solution Methodologies for Governing Equations 

Governing equations are essential in understanding and predicting the behaviour of 

these two-dimensional structural elements under various loads and boundary conditions. These 

equations serve as the foundation for analysing plate deformations, stresses, and vibrations, 

making them crucial in engineering and scientific disciplines. In this section, we discuss the 

solution methodologies employed to derive the governing equations of microplates. In the first 

stage, the strain energy, kinetic energy and external work done are formulated using the 

kinematic equations from the plate theories and the size-dependent continuum theory. The 

governing partial differential equations (PDEs) of the various size-dependent microplate 

models are obtained using the energy conservation principles. In case of static analyses, the 

principle of minimization of total potential energy is used. According to this principle, the 

equilibrium state of the microplate corresponds to the configuration that minimizes its total 

potential energy. The variation of potential energy with respect to displacement parameters 

leads to the derivation of the governing PDEs or the Lagrange equations. Most researchers 

(Darijani and Mohammadabadi 2014; Karamanli and Vo 2020, 2021)  have used this principle 

to derive the governing PDEs of the microplate under static conditions. In dynamic problems, 

Hamilton’s variational principle (Reddy 2017), which is an extension of Lagrangian 

mechanics, is used to derive the governing PDEs of size-dependent microplate model. The 

dynamic equations of the system are obtained by varying the path or trajectory between the 

initial and final points and setting the action integral to be stationary. The actual motion of the 

plate corresponds to the path that minimized the action integral. The researchers (Ebrahimi et 

al. 2020; Nateghi and Salamat-talab 2013; Reddy and Kim 2012; Tsiatas and Yiotis 2015)  

used this principle to derive the governing PDEs of motion for the dynamic analyses of their 

size-dependent microplate models. 

Various numerical and analytical solution methodologies are available to solve these PDEs. 

The analytical methods such as the Navier’s and Levy’s methods provide exact closed-form 

solutions. S. Sahmani & Ansari (2013) evaluated the free vibration response of FG HSDT and 

MSGT based microplates using Navier’s closed form solutions. Afshari & Adab (2020) used 

the Navier’s method to obtain the critical buckling load and natural frequencies of MCST and 

sinusoidal shear deformation theory based microplates reinforced with graphene nanoplatelets. 

Babu & Patel (2019b) used Levy’s analytical solution to study the static bending of strain 

gradient and CPT based microplates.  These methods provide the most accurate closed form 



Literature Review 

   

20  
 

solutions to the governing PDEs. However, formulations involving these methods are very 

complex and only possible for microplates with simple geometries, loading and boundary 

conditions. In the practical problems, several irregular geometries, loading, and boundary 

conditions exist. This, along with the mathematical complexity of the higher order microplate 

models makes it impossible to find their exact analytical solutions. Thus, the complex 

geometries and boundary conditions are often modelled using numerical techniques, 

particularly the finite element method (FEM). These techniques discretize the microplate into 

finite elements and transform the governing equations into a system of algebraic equations. 

This approach is most suitable for complex geometries of microplates.  Some authors used the 

FEM-based differential quadrature (DQ) method (Zhang et al. 2020) to solve the PDEs of size-

dependent microstructure models. Others used the isogeometric analysis to obtain the ODEs 

discretized based on Non-Uniform Rational B-Splines (NURBS) (Thai et al. 2018, 2019, 

2020b, 2017b). Various other researchers (Babu and Patel 2019b; Ebrahimi et al. 2020; 

Karamanli et al. 2021; Karamanli and Vo 2020; Mirsalehi et al. 2015, 2017; Nateghi and 

Salamat-talab 2013) used several other numerical approaches to analyse the mechanical 

behaviour of these small-scale plate structures subjected to irregular geometries, loadings and 

boundary conditions. However, a drawback of using these numerical approaches is that they 

are associated with convergence or discretization errors. 

Thus, the meshless analytical approximation solution methodologies have been used to provide 

a closed form solutions very close to the exact methods. Using these methodologies, the 

governing PDEs are converted to a set of algebraic equations for the static problem and a set 

of ordinary differential equations (ODEs) for the dynamic problem. The analytical 

approximation methods shall be categorized into strong form and weak form methods. A 

functional, which is an integral expression that implicitly incorporates the differential equations 

that characterise the system, is required in the weak form approaches. In this functional, the 

differential equation's differentiability is weakened. This functional is bilinear and symmetric 

in the case of linear and even order differential equations. The variation of this functional can 

be readily shown to be zero, and hence variational approaches like the Rayleigh-Ritz method 

perform exceptionally well for such equations. The functional, however, is not bilinear in the 

case of nonlinear differential equations. The process of weakening the differentiability and 

establishing the functional minima and maxima gets quite difficult in such equations. No 

variational principle could be developed in the situation of unstable thermal conductivity and 

viscous flow issues (Stolarski et al. 2018). The strong form methods have no such complexity 
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and work well for all types of differential equations. The inclusion of nonlinearity and strain 

gradients in microplate models leads to both nonlinear and odd-order differential equations. 

The strong form analytical approximation method, such as the Galerkin’s weighted residual 

method can provide closed form solutions to PDEs with strong nonlinearity considerations as 

well (Arpanahi et al. 2019, 2023; Sheng and Wang 2019; Sheykhi et al. 2023), with results 

very close to the exact solutions. However, this method is restrictive regarding the choice of 

approximating functions. In the case of weak form methods, the secondary variables associated 

with natural boundary conditions emerge explicitly in the integral while weakening the 

differentiability. Hence, the approximating functions are required to satisfy only essential 

boundary conditions, but in the case of strong form, they need to satisfy both the essential and 

natural boundary conditions. Thus, in the case of irregular geometries or boundary conditions, 

the choice of approximating functions in this method is complex. 

Critical Discussion 

In literature review of studies related to analyses of size dependent microplate models, 

it is observed that most studies used numerical approximation solution techniques to solve the 

PDEs. Some authors used the FEM-based differential quadrature (DQ) method. Others used 

the isogeometric analysis to obtain the ODEs discretized based on Non-Uniform Rational B-

Splines. The closed-form solution for linear PDEs of MSGT and HSDT-based microplates was 

found using Navier’s closed-form solution. The author found no study where the closed-form 

solution of PDEs of MSGT and TSDT based microplates with geometric nonlinearity 

consideration was available.  

2.5 Microplate Material Types 

The field of microplates has witnessed significant advancements in material types and 

properties, enabling a wide range of applications in microelectronics, sensing technology, 

optics, and more. Recent advancements in microplate technology have led to the development 

of various material types with unique properties and capabilities. This section provides an 

overview of different types of microplate materials, including isotropic microplates, 

functionally graded microplates, porous microplates and others, highlighting their applications 

and significance. 
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2.5.1 Isotropic Microplates 

Isotropic microplates are characterized by uniform material properties in all directions. 

They are often fabricated using standard microfabrication techniques, offering simplicity and 

ease of manufacturing. These microplates find applications in micro-optoelectronic devices, 

microfluidics, and microsensors due to their predictable and consistent behaviour. Their 

isotropic nature simplifies analytical modelling, making them suitable for a wide range of 

applications. Silicon (Si) (Gennissen et al. 1997; Rosler 1977) and its compounds, such as 

Silicon Dioxide (Liu et al. 1999) are one of the earliest used materials for microstructures 

fabricated using bulk micromachining. Germanium-based materials were earlier used in 

micromachined transducers. Nowadays, they are used for devices that require the use of low-

temperature processes (Franke et al. 2000). Recently, some metals such as Aluminium, 

Tungsten, Chromium and Nickel have been used in microstructures. Metal thin films made of 

alloys of these metallic elements exhibit shape-memory effects. This allows the use of these 

microplates as micro actuators in MEMS devices such as microvalves and micropumps (Hahm 

et al. 2000). Silicon Carbide and Diamond are used for MEMS applications in harsh 

environments such as micromachined AFM cantilever probe (Björkman et al. 1999). 

2.5.2 Functionally Graded Microplates 

Functionally graded materials (FGM) (Jha et al. 2013) have gained popularity because 

of their advantage of optimal properties from two different materials without the issue of the 

sudden change in properties, as in the case of laminated composites. Functionally graded 

microplates exhibit spatially varying material properties, allowing for tailored mechanical and 

thermal characteristics across their domains. These microplates are particularly useful in 

optimizing stress distributions, thermal management, and performance enhancements. 

Applications include MEMS actuators, sensors, and adaptive optics, where the ability to control 

material properties at the microscale is crucial for achieving desired functionalities. Nano-

electro-mechanical systems (NEMS) cantilevers of various geometries were fabricated from 

nanocomposite alloy films of Al-Mo. Room-temperature co-sputtering was used to synthesize 

these films (Lee et al. 2006). Functionally graded TiN layer was deposited on TiNi based shape 

memory alloys to improve their surface properties using the magnetron sputtering system (Fu 

et al. 2003). Functionally graded NiTi shape memory alloys were prepared using a heat 

treatment method to improve the controllability of actuator applications (Mahmud et al. 2008). 

Witvrouw and Mehta (2005) developed a multilayer poly-SiGe deposition process to prepare 
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high-quality functionally graded films with excellent mechanical and electrical properties that 

can be integrated with electronics. A review of various analytical and numerical methods used 

for the stress, buckling, and vibration analyses of FGM plates subjected to different cases of 

loading is discussed by Swaminathan et al. (2015). 

Recently functionally graded sandwich microplates (Trinh et al. 2017) have been developed. 

In these structures, microplates consist of multiple layers with distinct material properties. They 

are designed to optimize specific mechanical or thermal properties while maintaining a 

lightweight and compact structure. By varying the materials and layer configurations, these 

microplates can achieve enhanced stiffness, reduced thermal expansion, or improved damping 

characteristics. These sandwich microplates are used in organic solar cells to improve their 

efficiency (Li et al. 2019b).   

2.5.3 Porous Microplates 

Metal foam materials are increasingly being used in microstructures. Metal foams are 

created by introducing gas into a metallic melt and solidifying it (Kitazono et al. 2004; Miyoshi 

et al. 1998; Nakajima 2007). In microstructure applications, these porous metal foam materials 

provide various benefits. These include increased specific capacity and stability of lithium-ion 

batteries (Zhang et al. 2014) and improved control of the local chemical environment in gas 

sensors (Jing and Zhan 2008). Solar cell performance is enhanced  (Mohamad 2005) because 

of the high surface area and higher combustion efficiency of porous media (Mustafa et al. 

2022). Thus, it becomes necessary to model the reduction in stiffness of microplates brought 

on by the incorporation of porosity.  

The microplates in chips or organic solar cells are often placed on a flexible medium. The 

combination of porosity and elastic support in MEMS resonators can enhance their 

performance by reducing unwanted vibrations and improving sensitivity. Thus, the stiffness 

provided by the flexible foundation also needs to be modelled. In this regard, Winkler proposed 

the one-parameter elastic foundation, the simplest model. The foundation is modelled as a 

collection of independent springs with no coupling effects between them (Winkler 1867). The 

two-parameter elastic foundation model developed by Pasternak (1954) is still widely used to 

represent the mechanical interactions of soft plates with varying material property distributions, 

and it was improved upon by Pasternak's addition of a shear layer over the springs.  
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2.6 Static Analysis of Microplates 

Examining the mechanical characteristics is imperative for fine-tuning the design and 

enhancing the functionality of microplates. In this section, we embark on a thorough 

exploration of the extensive research dedicated to scrutinizing the linear and nonlinear static 

analyses of microplates. The linear static analysis of these structures encompasses a scrutiny 

of mechanical phenomena, including buckling and bending. Buckling is initiated by in-plane 

stresses, whereas bending is induced by external out-of-plane loads. The nonlinear analysis of 

these phenomena incorporates geometric nonlinearity to investigate the nonlinear bending and 

post-buckling reactions exhibited by microplates. The studies that focused on the nonlinear 

static analysis of these structures are discussed in the subsequent subsection. 

2.6.1 Linear Analysis 

2.6.1.1 Bending 

The linear stability analysis of the microplates under out-of-plane loading, i.e., bending 

analysis is studied using many analytical, numerical, and experimental methods by different 

researchers. These microplates have been modelled based on different plate theories and size-

dependent theories. The governing differential equations have been solved by implementing 

various solution methodologies. In this context, (Tsiatas 2009) developed a MCST and CPT 

based model to conduct bending analysis on isotropic microplates made with varying shapes. 

The governing equations were derived through the application of the minimum potential energy 

principle, and the solution to the boundary value problem was achieved using the method of 

fundamental solutions, a boundary-type meshless approach. Ma et al. (2011) performed the 

bending analysis of MCST and FSDT based simply supported microplates. The governing 

equations were obtained using the Hamilton’s variational principle and were analytically 

solved to obtain the closed-form solutions. Roque et al. (2013) modelled the MCST and FSDT 

based simply supported isotropic microplates and performed their static bending analysis using 

a meshless numerical method. This method used the radial basis functions method along with 

the collocation method. The results of the numerical method were found to be in close 

agreement with the analytical solutions. Zhou and Gao (2014) solved the static bending 

problem of MCST and FSDT based circular microplates under axisymmetric loading. The 

governing equations were derived using the Hamilton’s method and solved analytically using 

the Fourier-Bessel series. They concluded that the effect of size-dependent theory is enhanced 
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as the plate thickness decreases. The static bending analysis of MCST and FSDT based 

sigmoidal FG microplates was performed by Jung et al. (2014b). The microplates were 

assumed to be resting on Pasternak elastic medium. The governing equations derived using 

Hamilton’s method were analytically solved and subjected to parametric analyses. 

Alinaghizadeh et al. (2017) performed the bending analysis of MCST and FSDT based FG 

annular microplates. The power law function was used to model the functionally graded 

behaviour. The governing equations were derived using the principle of minimum potential 

energy and further solved using the generalized differential quadrature method. The parametric 

effect of geometric parameters, length-scale parameters and power-law index was also 

performed. He et al. (2017) studied the static bending analysis of MCST and FSDT based 

composite skew laminated plates. The governing equations were derived using the principle of 

minimum potential energy and the central deflection was obtained using the Rayleigh-Ritz 

method. The effect of the orientation of the lamina on the small-scale effects was also studied. 

Gao et al. (2013) used the TSDT along with the MCST for better capture of the shear 

deformation effects of microplate. The Hamilton-derived governing equations were 

analytically solved to study the static bending and free vibration behaviour of the microplate. 

The MCST and TSDT based model for FG microplates was developed by Thai and Kim (2013). 

The derived governing equations were analytically solved to study the bending and free 

vibration. The MCST and TSDT based microplate model for composite laminated microplates 

was first developed by Chen et al. (2012). 

Ashoori Movassagh and Mahmoodi (2013) presented the first MSGT and CPT based isotropic 

simply supported and clamped microplate models to present their static bending analysis. The 

governing PDEs were derived using the principle of minimum potential energy and further 

used the extended Kantovorich method to obtain the approximate closed-form solutions. Wang 

et al. (2016) extended the MSGT and CPT microplate model to study the effect of several other 

boundary conditions, including those with free edges. The extended Kantovorich method was 

used to obtain the solutions. Zhang et al. (2015b) developed an FG microplate model using the 

strain gradient elasticity and the refined shear deformation theory. The governing equations 

were derived using Hamilton’s principle and solved analytically using Navier’s method to 

estimate the bending, buckling and free vibration behaviour. The effect of the two parameter 

Winkler-Pasternak elastic foundations was also considered. A parametric analysis of the 

foundation parameters, and shear deformation effects was also performed. A similar study was 

performed by Akgöz and Civalek (2015) on MSGT based simply supported square microplates 
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using the sinusoidal shear deformation theory. The governing equations were solved 

analytically using Fourier series solution. The parametric change in shear deformation with the 

thickness of the microplate was also studied. 

Eshraghi et al. (2016) studied the static bending and free vibration analysis of MCST based 

circular and annular microplates under thermal loading. The shear deformation effects were 

modelled using a unified theory to present results from CPT, FSDT and TSDT using a single 

theory. The governing equations were solved using the differential quadrature method and the 

parametric effect of thermal magnitude, geometry and other parameters was considered. Arefi 

and Kiani (2020) studied the bending behaviour of the sandwich microplates with 

exponentially graded core with piezomagnetic face-sheets and modelled using MCST and 

FSDT. The microplate was assumed to be resting on Pasternak foundations. Farzam and 

Hassani (2019) examined the thermal bending and buckling behaviour of MSGT based FG 

microplates. The refined hyperbolic shear deformation theory was used to model the shear 

deformation effect and the problem was solved using the isogeometric analysis (IGA) with the 

help of Non-Uniform Rational B-Spline (NURBS) functions.  

2.6.1.2 Buckling 

Understanding the behaviour of microplates under mechanical loading, specifically 

their buckling phenomenon, is of paramount importance due to its implications on the 

reliability and performance of microscale devices. Buckling, in this context, refers to the 

sudden and often catastrophic deformation that occurs when a microplate undergoes in-plane 

compressive stresses beyond a critical limit. The buckling behaviour of microplates is a 

complex and multifaceted phenomenon influenced by numerous factors, including material 

properties, geometrical configurations, boundary conditions, and environmental conditions. In 

this context, several researchers have focused on analysing the buckling behaviour of 

microplates using various size-dependent and plate theories.  

Akgöz and Civalek (2013) developed a MCST and CPT based microplate model to analyse 

their buckling, bending and free vibration. The governing equations were derived via 

Hamilton’s principle and analytically solved using Navier’s method. The plate’s resting 

medium was modelled in the form of Winkler foundation. Ke et al. (2012c) studied the 

buckling, bending and free vibration of FG microplate modelled using the MCST and the 

FSDT. The governing equations were solved using the differential quadrature method. Annular 
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microplates with hinged-hinged and clamped-clamped microplates were analysed. Jung et al. 

(2014a) studied the buckling response of MCST and FSDT based sigmoidal FG microplate. 

The plate was assumed to be resting in a Pasternak elastic medium. The governing equations 

were derived using minimum potential energy and solved analytically using Navier’s approach. 

Jung and Han (2015) developed a TSDT and MCST based FG microplate model to study their 

buckling, bending and free vibration. The FG behaviour was included using the sigmoidal 

power law function. The governing equations were solved using the Navier’s approach. The 

effect of biaxial compression, and tension was also included. 

The critical buckling load of a MSGT and CPT based microplate model were obtained by 

Mohammadi and Fooladi Mahani (2015). The governing equations were solved analytically 

using the Levy’s method. The microplate was assumed to be simply supported on two opposite 

edges. Hosseini et al. (2016) performed the buckling analysis of an orthotropic multi-

microplate system under bi-axial compressive loads in a Pasternak medium. The microplate 

model was based on MSGT and CPT. They used various systems of boundary conditions and 

obtained the solutions using Navier’s method. They concluded that the increase in number of 

plates lessened the effect of the Pasternak foundation. Ansari et al. (2015c) developed a FSDT 

and MSGT based microplate model for circular/annular microplates. The governing equations 

were derived using Hamilton’s principle and the buckling, free vibration and bending results 

were obtained using the generalized differential quadrature (GDQ) method. In another study, 

Ansari et al. (2016) performed the buckling, free vibration and bending analysis of FG 

rectangular microplate models based on MSGT and FSDT. The solutions were obtained using 

the GDQ method. Zhang et al. (2015a) developed a TSDT and MSGT based microplate model 

for the buckling, free vibration and bending analysis of FG circular/annular microplates. The 

governing equations were solved using the GDQ method. 

In the case of thermal loads, in-plane stresses develop. These temperature induced stresses also 

lead to buckling at a certain temperature, known as the critical buckling temperature. Several 

researchers have studied the buckling of microplates due to these temperature-induced stresses. 

Ashoori and Sadough Vanini (2016a) developed a MCST and CPT bases FG microplate model 

for annular microplates. The governing equations were developed in curvilinear coordinates 

and later converted to polar coordinates. Various forms of thermal loads, including uniform 

temperature rise, linear temperature rise and heat conduction through the thickness were 

considered. The elastic foundations were also included in the model. Arshid et al. (2021) 
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performed thermal buckling analysis of FG graphene nanoplatelet (GNP) reinforced porous 

microplate resting on Pasternak foundation. The microplate model was based on MCST and 

FSDT. The effective properties were calculated using the Halpin-Tsai and extended rule of 

mixtures and the governing equations were solved using the GDQ method. Trinh et al. (2017) 

performed the thermal buckling analysis of an FG microplate modelled using MCST and a 

quasi-3D theory. A 2D model using the refined shear deformation theory is also developed. 

The difference between the results of 2D model and 3D model is presented. The temperature-

dependent material properties were considered in the modelling. Khorshidi et al. (2018) 

developed an exponential shear deformation theory (SDT)  and MCST based FG microplate 

model to study the thermal buckling behaviour of microplates. The microplates are often placed 

on elastic media and the governing ODEs were obtained using the Rayleigh-Ritz method. 

Farzam and Hassani (2018) studied thermal buckling and bending behaviour of MCST based 

microplates modelled using refined hyperbolic SDT and solved using isogeometric analysis 

(IGA). The thermal buckling problem of porous sandwich microplates under hygro and thermal 

loads was analytically solved by Sobhy (2020). The microplate was modelled using MCST and 

a four variable higher order shear deformation theory. Sobhy and Zenkour (2019) extended the 

above work for exponentially graded microplates resting on Winkler-Pasternak elastic 

foundation. Fang et al. (2023) studied the thermal buckling and vibration behaviour of MCST 

and TSDT based FG GNP reinforced porous microplates. The governing equations were 

derived using the Galerkin’s weak form and solved using the finite element method (FEM). 

The thermal buckling analyses of flexural microplates was studied by (Farahmand et al. 2011).  

The microplate was modelled using MSGT and FSDT. The governing equations were derived 

using Galerkin’s weak form method and solved using higher continuity p-version finite 

elements. The mode jumping on variation in aspect ratio of microplate was also discussed. The 

coupled temperature and displacement field equations of functionally graded (FG) microplate 

were solved using Navier’s analytical solutions by Emami and Alibeigloo (2016). The 

microplate model was developed using MSGT and FSDT. Ansari et al. (2013) performed the 

parametric thermal buckling analysis of MSGT and FSDT based FG microplates due to linear, 

non-linear and uniform temperature rises. The critical buckling temperature was evaluated for 

different boundary conditions using the GDQ method. Malekzadeh et al. (2018) performed the 

thermal buckling analysis of MSGT and FSDT based triangular microplates using Ritz method. 

The Chebyshev-Ritz method was used to solve the governing equations. The temperature 

dependent properties were considered and the nonlinear equations were solved using the direct 
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iterative technique. The effect of apex angle on the critical buckling temperature was assessed. 

Arefi et al. (2019) performed the thermal and mechanical buckling analysis of FG graphene 

nanoplatelet reinforced microplate modelled using MSGT and several HSDTs including the 

TSDT. The governing equations were analytically obtained. Various distributions of GNPs and 

their effect on the buckling load were considered. 

2.6.2 Nonlinear Analysis 

The microplates are extremely thin and small plates that often experience large 

deformations, leading to geometric nonlinearity. The linear analysis methods often fail to 

capture the mechanical behaviour exhibited by microplates when subjected to significant 

deformations or loads. As the plate bends and stretches, the assumptions of linear elasticity no 

longer hold. Nonlinear analysis accounts for the changing geometry and provides insights into 

the microplate's response to these deformations. Thus, nonlinear analysis of microplates is a 

critical aspect of research and engineering. The static nonlinear analysis of microplates includes 

the examination of nonlinear bending and post-buckling responses. The literature review of 

studies that focused on nonlinear bending and post-buckling of microplates is presented in the 

subsequent subsections. 

2.6.2.1 Nonlinear Bending 

In the presence of out-of-plane loads, the microplates undergo large deformations. 

Microplates may experience stretching, twisting, and warping that are not accounted for by 

linear theory. Nonlinear bending analysis considers these large displacements and provides a 

more realistic representation of the plate's response to applied loads. The inclusion of geometric 

nonlinearity is required in the plate models for their nonlinear bending analyses. In this context, 

Wang et al. (2014) performed the nonlinear bending analysis of MCST and CPT based circular 

microplate models with the inclusion of von Kármán geometric nonlinearity. The governing 

equations were reduced to nonlinear algebraic equations using the orthogonal collocation point 

method and the nonlinear bending curve was obtained numerically using the Newton-Raphson 

method. Parametric analysis of fixed, clamped and simply supported microplates was 

presented. 

Reddy and Berry (2012) presented a nonlinear formulation for modelling of FSDT and MCST 

based FG circular microplates. The FG behaviour was included using the power-law function. 

The nonlinearity was included in the form of von Kármán nonlinear strains. The nonlinear 
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bending results could be obtained using finite element models on this formulation. Thai and 

Choi (2013) presented a nonlinear MCST model for FG microplate. The CPT and FSDT plate 

theories were employed and the von Kármán geometric nonlinearity was included. The material 

properties were varied according to the power law. The buckling, bending and free vibration 

was computed using the Navier approach and the nonlinear bending solutions were obtained 

using the Bubnov-Galerking method. Reddy and Kim (2012) developed a MCST and TSDT 

based formulation including von Kármán geometric nonlinearity for FG microplates. This 

theory can be used to study the nonlinear bending behaviour of moderately thick microplates 

as it includes the parabolic variation of transverse stresses along with the geometric 

nonlinearity considerations. The FG behaviour with two materials was modelled using the 

power law function. 

2.6.2.2 Post-Buckling 

In the presence of in-plane compressive stresses, at a certain critical load, the 

microplates undergo loss of stability as it moves from stable equilibrium to neutral equilibrium, 

known as buckling. In the presence of a small perturbation, the microplate can undergo large 

lateral deformations. Post-buckling behaviour refers to the behaviour of a microplate after it 

has buckled. It involves the plate undergoing further deformation and displacement, but unlike 

the linear regime, this deformation is highly nonlinear due to the nonlinear geometric stiffness. 

Understanding the stability of microplates during post-buckling is essential. Engineers and 

researchers analyse the post-buckling behaviour to determine whether the deformed 

configuration is stable or whether further deformation may lead to structural failure. In this 

context, (Taati 2016) developed a MCST and CPT based FG microplate model to study their 

buckling and post-buckling behaviour. The simply supported and clamped-simply supported 

boundary conditions were considered along with biaxial compression, in-plane shear, and 

uniform transverse loads. The parametric results indicate that the aspect ratio of the microplate 

has a large effect on the post-buckling response. Ke et al. (2014) developed a nonlinear model 

of MCST and FSDT based rectangular FG microplates. In order to nullify the coupling of 

bending and stretching in FG plates, the physical neutral plane position was considered. The 

governing equations were derived using the principle of virtual work and further discretized 

using the GDQ method. The post-buckling response was obtained using the direct iterative 

method. Ansari et al. (2015b) also developed a nonlinear model of MCST and FSDT based 

rectangular FG microplates similar to that of Ke et al. (2014). The post-buckling response was 
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obtained in this study using the pseudo-arclength continuation technique. In this approach, an 

iterative solver is employed to introduce an extra constraint into the set of nonlinear equations. 

This constraint is used to locate a point along the specified pseudo-arclength. In another 

research Ansari et al. (2014a) studied the post-buckling behaviour of MCST and FSDT based 

FG microplates. The governing equations were derived using the Hamilton’s principle and 

further discretized using the GDQ method. The post-buckling response of microplates with 

various support conditions was numerically computed using the pseudo arc-length continuation 

technique. Further, the free vibration of microplates in the buckled configuration was 

computed. Malikan (2018) studied the post-buckling analysis of sandwich microplates using 

the MCST and FSDT based microplate model including the von Kármán nonlinearity. The 

analytical method was used to get the exact results for different boundary conditions. The 

research demonstrated that the highest and lowest critical load values are associated with the 

boundary conditions of the microplate. Wu et al. (2018) examined the post-buckling response 

of MCST and FSDT based microplate models. The resting medium was modelled with the help 

of a nonlinear elastic foundation. The derived governing PDEs were solved using the 

Galerkin’s method to obtain closed form solutions for the buckling load and post-buckling 

equilibrium path. The effect of in-plane boundary conditions on the buckling and post-buckling 

behaviours was discussed. Qiu et al. (2020) studied the post-buckling response of porous FG 

microplate modelled using MCST and TSDT. A power law function with the inclusions of 

porosity was used to model the material properties of the porous FG microplate. The NURBS 

based isogeometric method was used for the discretization to satisfy the continuity conditions. 

A comprehensive parametric analysis including the porosity and boundary conditions was 

performed. 

The in-plane compressive stresses also develop due to thermal loads. Thus, the thermal post-

buckling analyses of microplates has also been investigated by some researchers. Ashoori and 

Sadough Vanini (2016b) developed nonlinear models of MCST and CPT based 

perfect/imperfect circular FG microplates. The FG behaviour was included using the power 

law and Voigt’s rule. The Ritz finite element method is used to discretize the governing 

equations. The snap-through phenomenon in post-buckling in the case of concentrated or 

uniform lateral loads is also addressed. The post-buckling path is traced using the direct-

displacement scheme for bifurcation type instability and the Newton-Raphson method or stable 

responses. Zandekarimi et al. (2017) studied the post-buckling response of MCST and CPT 

based FG circular microplate including the von Kármán nonlinearity. The equations were 
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discretized using the GDQ method and the post-buckling path was traced using the direct 

iterative technique. Uniform temperature rise and clamped boundary conditions were 

considered for the analysis. The post-buckling strength of MSGT and TSDT based FG 

microplates, including the von Kármán nonlinearity under mechanical and thermal loads was 

studied by Thai et al. (2017c). The FG behaviour was modelled using the rule of mixtures and 

models with both temperature-dependent and temperature independent properties were 

analysed. The governing equations were discretized using the isogeometric analysis and the 

post-buckling path was obtained using the Newton-Raphson method. Zuo et al. (2021) 

examined the thermal post-buckling response of porous FG microplate modelled using MSCT 

and quasi 3D higher order theory. The microplate was assumed to have a central cutout of 

varying geometries. The porous and temperature-dependent properties were modelled using 

the refined power-law function along with the Touloukian scheme. The governing equations 

are discretized using the NURBS based isogeometric analysis. The results indicate that the 

central cutout causes a decrease in initial post-buckling strength. Ansari et al. (2014c) used a 

MSGT and FSDT based model to examine the thermal post-buckling behaviour of FG annular 

microplates. The governing equations for microplates with different boundary conditions were 

developed and discretized using the GDQ method. The post-buckling equilibrium path was 

plotted using the pseudo arc-length continuation method. 

2.7 Dynamic Analysis of Microplates 

The dynamic analysis of microplates involves the study of their vibrational and 

oscillatory behaviour, including natural frequencies, mode shapes, and responses to external 

forces. This analysis is essential for designing microsystems, predicting resonance-related 

issues, and understanding the dynamic characteristics of microplates in various applications. 

This section focuses on the research works that are aligned towards the dynamic analysis of 

microplates. In the first subsection, studies focusing on linear dynamic analysis, i.e., free 

vibration and linear dynamic instability region are discussed. In the next subsection, studies 

that focus on the nonlinear dynamic analysis of microplates i.e., analysing their nonlinear free 

vibration, nonlinear forced vibration and nonlinear dynamic responses are discussed. 

2.7.1 Linear Analysis 

Linear dynamic analysis of microplates encompasses the study of their vibrational 

behaviour, both in terms of free vibration (undriven oscillations) and linear dynamic instability 
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(buckling or vibrational instability under external forces). This analysis is essential for 

understanding how microplates respond to various mechanical and vibrational loads. In the 

following subsections, the various mathematical models, solution methodologies, microplate 

characteristics and key results presented by the various research works that discussed linear 

dynamic analysis of microplates are discussed. 

2.7.1.1 Free Vibration 

Free vibration analysis involves the study of how microplates vibrate naturally when 

they are not subjected to any external forces. This analysis helps identify natural frequencies 

and mode shapes, enabling engineers and researchers to tailor the characteristics of microplates 

to specific applications and performance requirements. In this context, Yin et al. (2010) and 

Jomehzadeh et al. (2011) studied the free vibration behaviours of MCST and CPT based 

microplate models, determining their fundamental frequency. Jomehzadeh et al. (2011) 

performed the analysis on rectangular and circular microplates with several boundary 

conditions. The governing equations were derived using the Hamilton’s principle and 

analytically solved using the Levy’s method. Akgöz and Civalek (2012) studied the free 

vibration of single layered graphene sheets modelled using MCST and CPT. The elastic 

medium was also included in the model using Winkler foundation. The results obtained using 

Navier’s analytical method indicate that the effect of size-dependent theory amplifies for higher 

modes of vibration. Askari and Tahani (2015) also studied the vibrational analysis of MCST 

and CPT based fully clamped rectangular microplates. The governing equations were solved 

analytically using the extended Kantorovich method. Asghari and Taati (2012) performed the 

free vibration analysis of MCST and CPT based FG microplates with random shapes. The 

boundary conditions were provided at the smooth parts and the sharp corners of the periphery. 

Ma et al. (2011) performed the free vibration analysis of MCST and FSDT based simply 

supported microplates. The governing equations were obtained using the Hamilton’s 

variational principle and were analytically solved to obtain the closed-form solutions. The 

results are compared with the classical plate theory. (Ke et al. 2012b) also modelled the MCST 

and FSDT based microplates with simply supported and clamped boundary conditions for their 

free vibration analysis. The governing equations were numerically solved using the p-version 

Ritz method. The natural frequencies of MCST and TSDT based simply supported microplates 

Gao et al. (2013), FG microplates (Thai and Kim 2013) and sandwich microplates (Chen et al. 

2012) were analytically solved. Eshraghi et al. (2015) derived governing equations of MCST 
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and TSDT based circular/annular microplate models using Hamilton’s principle and obtained 

the natural frequencies by solving the equations using the GDQ method.  Thai and Vo (2013) 

derived governing equations of MCST and sinusoidal shear deformation theory based FG 

microplate models and solved them analytically to study their free vibrations. (Darijani and 

Shahdadi 2015) used a HSDT with separate bending and shear components to accurately model 

the shear deformation effects while maintaining only four variables. The free vibration of an 

MCST based microplate was analytically solved using the proposed theory. (2015) also 

performed free vibration analysis of a MCST based microplate. The field displacement 

equations were modelled using a HSDT that accounts for parabolic variation of both normal 

and shear deformations. Fang et al. (2023) studied the buckling and vibration behaviour of 

MCST and TSDT based FG GNP reinforced porous microplates. The governing equations were 

discretized using the Galerkin’s weak form and finite element method (FEM). 

The effect of strain gradient was included in the free vibration analysis of FG quadrilateral 

microplates by Shenas and Malekzadeh (2016). The microplate model was based on MSGT 

and FSDT and modelled in a thermal environment. Sahmani and Ansari (2013) obtained 

analytical solutions of MSGT and TSDT based microplates to study their free vibration 

behaviour. Zhang et al. (2015b) analytically studied axisymmetric bending, buckling, and free 

vibration of circular and annular microplates modelled using the MSGT and the refined SDT. 

The microplates were modelled in a Winkler-Pasternak elastic foundations. The nonlinear free 

vibration response of functionally graded microplates with cracks was investigated by Nguyen 

et al. (2019). The microplate was modelled using MCST and the refined FSDT. The linear free 

vibrational frequency was obtained using the NURBS based isogeometric analysis. Thai et al. 

(2020b) investigated the free vibration analysis of functionally graded (FG) anisotropic 

microplates using the MSGT in conjunction with the exponential HSDT. The derived 

governing equations were discretized using isogeometric analysis. Parametric analysis of the 

natural frequencies obtained was also performed. Hung et al. (2022) modelled a MSGT and 

refined HSDT based metal foam microplate. The porosity of different kinds of distributions 

was included in the model. The governing equations were solved using the isogeometric 

analysis to obtain the free vibration results. 

2.7.1.2 Dynamic Instability 

Parametric resonance of microplates is a phenomenon that occurs when  thin, flexible 

plates or beams vibrate in response to an external periodic force or excitation whose frequency 
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is modulated or varies with time. In parametric resonance, under some combinations of the 

driving frequency of the external force, the load magnitude and natural frequencies of 

microstructure, the microstructure goes into resonance, causing the amplitude of vibration to 

grow significantly. This can lead to large deformations, instability, or even failure of the 

microplate. Understanding and predicting dynamic buckling instability in microplates is 

essential for the design and optimization of microdevices, sensors, and actuators. Researchers 

use various analytical and computational techniques, such as finite element analysis (FEA), to 

simulate and analyse the behaviour of microstructures under dynamic loading conditions. 

The dynamic stability of FGM microbeams was studied by Ke and Wang (2011). The 

microbeam was modelled using MCST and TBT and solved using the GDQ method. The 

boundaries of the instability region were computed using Bolotin’s method. The influence of 

various parameters such as the gradient-index, length scale parameter, and boundary conditions 

on the dynamic stability response was also investigated. Gholami et al. (2014) observed the 

influence of static load factor, axial wave number, length to thickness ratio on the dynamic 

instability region of an FGM microshell. The PDEs were solved using Navier’s method and 

the instability boundaries using Bolotin’s method. Sahmani et al. (2013) performed a 

parametric study on cylindrical microshells using the higher-order shear deformation shell 

theory to count for the shear deformation effect. The author found no study where the dynamic 

buckling instability region of microplates modelled using strain gradient or couple stress based 

theories was computed. 

2.7.2 Nonlinear Analysis 

Nonlinear dynamic analysis of microplates is a specialized field of study that focuses on 

understanding the mechanical behaviours exhibited by plates at the microscale under dynamic 

conditions. Unlike linear analysis, which assumes linear relationships between forces and 

displacements, nonlinear analysis takes into account the nonlinearities in the material 

properties, geometry, and boundary conditions of microplates. In practical situations, the 

inclusion nonlinearities in the plate models are essential to accurately predict their nonlinear 

behaviour. In the absence of nonlinearity, the structures undergo unbounded amplitudes when 

subjected to instabilities. However, this is not the case. The inclusion of nonlinearity can help 

predict the deformations under these instabilities. The nonlinear analysis is crucial for 

designing and optimizing microelectromechanical systems (MEMS), microsensors, and other 
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microscale devices where precise control and accurate predictions of mechanical responses are 

essential. In this section, the studies that focused upon the nonlinear dynamic analysis of 

microstructures are discussed. The studies that performed nonlinear free vibration analysis of 

microstructures are discussed in subsection 2.7.2.1. The studies that focused on nonlinear 

forced vibration analysis are discussed in 2.7.2.2. In subsection 2.7.2.3, the studies where the 

nonlinear dynamic response of structures is performed using time-history analysis are 

discussed. 

2.7.2.1 Nonlinear Free Vibration 

The number of studies pertinent to the analytical schemes for the investigation of the 

linear free vibration responses of the micro/nano- structures is considerable. In order to 

investigate the nonlinear behavior of free vibration micro/nano-structures, numerical methods 

were used by the researchers. 

The nonlinear free vibration of FSDT and MCST based FG microbeams was performed by Ke 

et al. (2012a). The governing equations were derived using Hamilton’s method and solved 

using an iterative differential quadrature method to obtain the nonlinear vibrational frequency 

versus amplitude curve. Wang et al. (2013b) studied the nonlinear free vibration analysis of 

circular microplates modelled using the MCST and CPT with clamped and simply supported 

conditions. The governing PDEs were reduced to ODEs using the Kantorovich method. The 

frequency versus amplitude curve is plotted using the numerical shooting method and a 

parametric study of the nonlinear free vibration is presented. Ke et al. (2013) examined the 

nonlinear free vibration of FG microplate models based on MCST and FSDT, including von 

Kármán nonlinearity. The nonlinear free vibrations for different boundary conditions were 

computed using a modified iterative method along with the differential quadrature method. 

Ansari et al. (2014b) studied the non-linear free vibration response of FSDT and MCST based 

microplate models. The frequency-amplitude curve was obtained by solving the nonlinear 

algebraic equations using the pseudo arc-length method. A parametric study of factors such as 

gradient index, length scale parameter, etc., was done on the nonlinear vibration response. Lou 

and He (2015) included the effect of elastic foundations for the computation of the nonlinear 

free vibrations of MCST and FSDT based FG microplates. The stretching-bending coupling 

was avoided by the assumption of a physical neutral surface. The PDEs were reduced to ODEs 

using the Galerkin’s method and closed form solutions of nonlinear free vibration were 

obtained using He’s variational method. Lou et al. (2016) extended the above work for 
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nonlinear vibrations and bending by modelling the microplate using MCST and a refined 

FSDT. 

The nonlinear free vibration analysis of trapezoidal microplates in a thermal environment was 

studied by Shenas et al. (2022). The FG microplate was modelled using the four variable 

refined plate theory and the MSGT including von Kármán nonlinear strains. The FG behavior 

was modelled using Mori-Tanaka’s rule of mixture and the nonlinear vibrational frequency 

was obtained using a iterative procedure along with the Chebyshev-Ritz method. 

2.7.2.2 Nonlinear Forced Vibration 

Understanding the nonlinear forced vibration of microplates, both in the context of 

simple harmonic resonance and parametric resonance, is essential for the design and 

optimization of MEMS devices, sensors, and other microscale systems. Engineers and 

researchers have considered the intricate interplay between geometric nonlinearity and 

resonance conditions to predict and control the response of microplates under external 

excitations. A review of the literature that focused on nonlinear forced vibration behavior of 

microplates is presented in this subsection. 

In case of out-of-plane external periodic excitations, a duffing type equations is obtained which 

leads to a simple harmonic resonance condition. The static response of the microstructure under 

such loading and its variation with the frequency of the excitation has been presented by several 

authors using the frequency-amplitude curves. Loghman et al. (2021) analyzed the nonlinear 

vibration response of a viscoelastic microbeam modelled using the MCST and the classical 

beam theory. The viscoelastic behavior was modelled using the Kelvin-Voigt Model. The finite 

difference method (FDM) and the Galerkin’s method were used to discretize the governing 

equations. The Shooting method was coupled with the FDM to trace the frequency-amplitude 

curve. Ghayesh et al. (2013c) examined the nonlinear forced vibration of a microbeam 

modelled using the MCST and the classical beam theory with geometric nonlinearity 

considerations. The microplate was subjected to a harmonic transverse excitation. The 

governing PDEs were reduced to ODEs using the Galerkin’s method. The numerical solution 

of the nonlinear ODEs was obtained to plot the frequency-amplitude curve using the pseudo-

arclength continuation technique and the higher mode Galerkin’s discretization. The effect of 

damping was also traced as this method allowed to trace both the stable and unstable curves, 

including the bifurcation points. Farokhi et al. (2013) further extended the above study by 
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including the effect of initial curvature in the microbeams while computing their nonlinear 

frequency response under transverse excitations. Farokhi and Ghayesh (2015) extended the 

above study to the study of microplates. The microplate was modelled using the MCST and the 

CPT including the von Kármán geometric nonlinearity. Initial curvature was included in the 

transverse direction and the Lagrange’s equations were obtained. The frequency response was 

computed using the arc-length continuation technique and the effect of initial curvatures, 

forcing frequencies on the nonlinear steady-state response was analysed. Mirjavadi et al. (2019) 

studied the nonlinear free and forced vibration response of a microbeam reinforced with 

graphene nanoplatelets with uniform harmonic loading at its top surface. The material 

properties were computed using the Halpin-Tsai micromechanical model. The effect of 

geometric imperfections was included and the MCST and classical beam theory-based model 

was assumed to be resting on a nonlinear elastic foundation. The nonlinear frequency response 

of the microbeam was computed using the incremental harmonic balance (IHB) method. The 

nonlinear systems may consist of various types of nonlinearities. The classical perturbation 

systems, such as the multiple scales method, can only solve systems with weak nonlinearity 

(Bajkowski and Szemplińska-Stupnicka 1986). IHB serves as a systematic and reliable 

computer method for analysing strongly non-linear periodic vibrations of multiple DOF. 

Ghayesh (2019) analyzed the forced vibration response of a viscoelastic FG microcantilevers 

resting on elastic foundations. The microcantilever was modelled using the MCST and the 

classical beam theory. The frequency response was obtained using the Galerkin’s technique 

and analyzed comprehensively with inclusions of internal resonance. Saghir and Younis (2018) 

examined the forced vibration response of imperfect microplates. The microplate was modelled 

using the MCST and the CPT and the governing PDEs were solved using the Galerkin’s 

method. The forced frequency response of the plate under a harmonic AC voltage was 

computed and its variation with the initial curvatures was assessed. Ghayesh et al. (2020) 

analyzed the frequency response curves of imperfect MCST and CPT based microplates under 

transverse periodic excitations. The effect of initial curvatures and nonlinear viscoelastic 

damping was included. The viscoelasticity was modelled using Kelvin-Voigt based model. The 

frequency response curves illustrated a large impact of imperfection and damping on the 

bifurcation points and the large amplitude vibrations.  

Ghayesh et al. (2013a) studied the nonlinear forced vibration behavior of MCST and first order 

beam theory based microplate models in order to include the effect of shear deformation for 

moderately thin microbeams. The governing PDEs were discretized using the Galerkin’s 
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method and the frequency response was plotted using the arc-length continuation method. A 

parametric analysis of the frequency-response and force-response curves was presented. The 

arc-length continuation method utilized as the incremental method in IHB is a predictor-

corrector method in which tangent prediction calculates the predicted point by advancing a 

specified arc-length in the direction of the tangent (Wu et al. 2022). It can pass through the 

juncture and continue following the solution branch. This method may easily trace the snap 

back and snap through cases that cannot be traced using the Newton-Raphson iteration method. 

Additionally, the arc length method minimizes the required number of iterations to obtain the 

answer, hence reducing the computing cost. In order to model the shear deformation effects 

more accurately, Ghayesh et al. (2013b) developed a MCST and TSDT based nonlinear 

microplate model. The Lagrange’s PDEs were reduced to ODEs using an assumed-mode 

method. The frequency and force responses were plotted using a direct time integration 

technique and the arc-length continuation method. Time-history response and phase plots were 

also shown for a more comprehensive dynamic analysis. Das (2019) studied the effect of 

geometric nonlinearity on FG microbeam modelled with HSDT and MCST. The stable regions 

of the frequency-amplitude curve were solved by a mixed algorithm of iterative substitution 

method with successive relaxation and Broyden’s method. The beam was assumed to be 

supported on a three-parameter Winkler-Pasternak-type nonlinear elastic foundation and the 

influence of change in foundation parameters was observed. Liu et al. (2021) performed a 

parametric study on the non-linear vibration response of FG piezoelectric cylindrical shells. 

The shells were subjected to thermo-electro-mechanical load. The multi-mode Galerkin’s 

scheme was used in conjugation with the Pseudo-arc length continuation method to obtain the 

nonlinear internal resonances and bifurcations of the system. 

Timoshin et al. (2021) for the first time investigated the non-linear forced vibration response 

of microplate modelled using the MSGT and FSDT. The nonlinear forced vibration response 

was obtained using a finite element method based on rectangular hermitians. Various 

parametric studies were performed on the forced vibration response. 

2.7.2.3 Nonlinear Dynamic Response 

Analyzing the nonlinear steady-state and transient dynamic response of microplates 

using time history plots is a valuable approach to understanding their complex behaviors. Time 

history plots depict how the response of a microplate changes over time, providing insights 

into the plate's behavior under various conditions and loads. Researchers and engineers have 
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used these plots to make critical design decisions, optimize microscale systems, and ensure 

reliable operation. A few research works are available in the literature where the steady-state 

and transient dynamic response of microplates have been studied. In this context, Şimşek et al. 

(2015) investigated the nonlinear dynamic response of CPT and MCST based microplate 

models under a moving load. The governing equations were derived using Lagrange’s 

equations. A polynomial trial function was introduced to model the dynamic deflection, 

enabling calculating the microplate's dynamic responses. The time history plots were plotted 

solving the governing equations in time domain using the Newmark-β implicit direct time 

integration method. Şimşek and Aydın (2017) extended the above research to the study of 

nonlinear dynamic response of FG microplates modelled using MCST and FSDT under moving 

load. The effect of porosity was also included and neutral surface concept was used to 

accurately model for FG plate. The formulation for computing the time history response was 

the same as that in the previous research. The nonlinear dynamic response of MSGT and TSDT 

based microplates with von Kármán nonlinearity was first modelled by Thai et al. (2017a). The 

governing equations were obtained using the Hamilton’s principle and further discretized using 

the numerical NURBS based isogeometric analysis. The dynamic response was plotted under 

dynamic step loading and exponential blast loading using the Newmark-β time integration 

method. 

Critical Discussion 

In literature, several studies are available where the nonlinear forced vibration behavior 

of couple stress and strain gradient based microplates with simple harmonic resonance was 

studied. In these studies, analysis of microplates modelled using MCST and TSDT, MSGT and 

FSDT were available. No study is available, where the nonlinear forced vibration behavior of 

MSGT and TSDT based microplates were analyzed. More importantly, no study was available 

where the nonlinear forced vibration behavior of microplates under parametric resonance, i.e., 

nonlinear Mathieu-Hill equation was studied. A study was available where the transient 

response of MSGT and TSDT based microplates under step loading and exponential blast 

loading was studied using the numerical isogeometric analysis. However, no study was found 

where the nonlinear dynamic response of MSGT and TSDT based microplates was studied, 

such that the governing ODEs were in exact or approximate closed form solutions. 
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2.8 Non-Uniform Loading 

The loading applied on the microstructures is often localized or with a non-uniform load 

profile. The in-plane stresses developed are uniform for uniformly loaded plate and non-

uniform for localized or non-uniform heating or mechanical loading profile. Some researchers 

have worked upon the problem of non-uniform loading on plates. FEM has been used to avoid 

the hassle of computing the analytical expression of in-plane stresses for humped heating 

profile on rectangular plate (Ko 2004), tent-like temperature distribution (Lal and Singh 2010) 

and other arbitrarily varying heating profiles on composite plates (Chen et al. 1991; George et 

al. 2016). Dhotarad and Ganesan (1978) used the finite difference method to solve the problem 

of plates with various steady state temperature fields. Li et al. (2015) treated the continuous 

temperature distribution field as discrete temperature distribution elements to avoid analytical 

expressions. The discrete in-plane stress field was developed by the coupled thermal and 

elasticity field equations by Ren et al. (2023). Airy’ stress function was used to develop the 

analytical expressions for thermal stresses of functionally graded rectangular plates under 

localized rectangular heating by Morimoto et al. (2006). Kumar et al. (2017) derived analytical 

expressions of thermal stress due to doubly symmetric rectangular and circular localized 

heating profile on composite plate. Swaminathan et al. (2022) investigated the effect of 

localized edge loadings on the buckling and vibration behavior of porous plates. No study was 

found in the literature where the analysis of microplates under non-uniform loading was solved 

using continuum mechanics. 

2.9 Research Gaps 

Upon conducting an extensive study of the existing literature related to microplate’s behaviour, 

several critical gaps in the current body of research are identified. These are listed below. 

1. The exact or approximate closed form solutions of MSGT and TSDT based microplates 

with geometric nonlinearity inclusions are not available. 

2. The dynamic instability analysis of microplates under parametric resonance using non-

classical continuum mechanics based on couple stress and strain gradient theories 

remains unexplored. 

3. The analysis of nonlinear free and forced vibrations behaviour of microplates under 

transverse loading, modelled using MSGT and TSDT based microplates are not 

available. 
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4. The nonlinear forced vibration analysis of microplates under in-plane dynamic loading 

has not been examined using any strain gradient or couple stress theory. 

5. The steady-state nonlinear dynamic response of microplates based on MSGT and TSDT 

has not been examined under periodic loading. 

6. The effect of non-uniform or localized in-plane thermal and mechanical loadings has 

not been considered for analysis of microplates. 

2.10 Objectives 

The primary objective of the current research is to delve into the vibration, response and 

stability analyses of microplates using size-dependent continuum theory, when subjected to 

various forms of localized or non-uniform mechanical loading or thermal loadings. 

Considering the identified research gaps in the existing literature, the following research 

objectives are been formulated for the present study. 

1. To study the size-dependent buckling and linear dynamic instability region of 

microplates under localized under non-uniform in-plane loadings. 

2. To examine the size-dependent nonlinear forced vibration behaviour and nonlinear 

dynamic response of isotropic microplates and porous microplates resting on elastic 

foundations (PMREF) under non-uniform in-plane loading. 

3. To investigate the nonlinear free and forced vibrations, and nonlinear dynamic response 

of FG microplates and PMREF under transverse patch loading. 

4. To analyse the thermal buckling and post-buckling behaviours of microplates under 

localized thermal loading. 

 



3 
    Mathematical Formulation 

 
 

  3.1 Introduction     

Microstructures cannot be modelled using classical continuum theories due to the 

small-scale effects involved with them. The inclusion of accumulation of dislocations and 

rotation of grains in the form of strain gradients and couple stress in the continuum theories has 

allowed modelling of these structures. The microplate structures are modelled in two-

dimensional (2D) space as the thickness is very small in comparison to the other dimensions. 

The three-dimensional (3D) analysis is useful in the case of thick structures with complex 

geometry, where the transverse shear strains show large variations along the thickness. In 2D 

analysis, the shear deformation theories are used to model the transverse shear strains with a 

certain assumption of the variation of the transverse shear strains along the thickness. In this 

work, the modified strain gradient theory (MSGT) is used to model the small-scale effects of 

the microplate. The field displacement equations are modelled using the Reddy’s third order 

shear deformation theory (TSDT). The shear deformation effect is thus included with the 

assumption of parabolic variation of transverse shear strains along the thickness. The strain-

displacement equations are obtained with von-Kármán geometric nonlinearity considerations. 

Different analyses are performed on microplates subjected to localized and non-uniform 

periodic in-plane mechanical loadings, periodic transverse patch loading, and localized thermal 

loading. The Rayleigh’s damping model is considered to include the damping characteristics 

of the microplate. The governing partial differential equations (PDEs) are obtained using the 

Hamilton’s principle for the dynamic problem and the principle of minimum total potential 

energy for the static problem. The pre-buckling stresses due to non-uniform in-plane 

mechanical and localized thermal loads are also non-uniform.  The analytical expressions for 

these non-uniform stresses are obtained by satisfying the in-plane stress equilibrium equations 

and solving the strain compatibility condition presented in terms of the Airy’s stress function 

(φ). The nonlinear PDEs are further reduced to nonlinear ODEs for dynamic problem and 

nonlinear algebraic equations (AEs) for static problem using the strong form Galerkin’s 

weighted residual method. 

Various analyses of microplates are done using the ODEs/AEs. The natural frequency and 

buckling load are calculated by solving the eigenvalue problem. The dynamic instability 

regions are plotted using the Bolotin’s method. The nonlinear free and forced vibrations 

analyses are performed using the incremental harmonic balance (IHB) method in conjunction 
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with the arc-length continuation method. The nonlinear dynamic response is determined using 

the implicit Newmark-β time integration technique. The post-buckling equilibrium path is 

estimated using the modified Newton-Raphson method. 

3.2 Material Properties of Microplate         

The properties of microplate and loading considered for analysis in this study are: 

isotropic microplate subjected to non-uniform in-plane loading (Fig. 3.1), functionally graded 

(FG) microplate subjected to transverse patch loading, porous microplates resting on elastic 

foundation (PMREF) subjected to non-uniform in-plane loading, PMREF subjected to 

transverse patch loading, and, PMREF subjected to localized thermal loading. The schematic 

diagram of isotropic microplate subjected to non-uniform in-plane loading is presented in Fig. 

3.1. The functionally graded microplate subjected to transverse patch loading is shown in Fig. 

3.2. The PMREF subjected to non-uniform in-plane loading, transverse patch loading and 

localized thermal loading is presented in Fig. 3.3(a), Fig. 3.3(b), and Fig. 3.3(c) respectively. 

 

Fig. 3.1 Schematic representation of isotropic microplate subjected to non-uniform in-plane 

loading 

In Fig. 3.1, Fig. 3.2, and Fig. 3.3, the thickness, h, of the plate, is considered in the micrometre 

range. The edge dimensions, ‘a’ and ‘b’ are considered in certain multiples of the microplate’s 

thickness. The orthogonal cartesian coordinate system has its origin at the geometric centre of 

the plate. The material properties of the isotropic microplate (Fig. 3.1) viz. Young’s modulus 
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‘E’, Poisson’s ratio ‘ν’, and mass density ‘ρ’, remain constant throughout the plate, in all 

directions. The effective material properties of the functionally graded plate and porous 

microplate are estimated using the equations depicted in the following subsections. 

 

Fig. 3.2 Schematic representation of functionally graded microplate subjected to transverse 

patch loading 

 

 
(a) PMREF subjected to non-uniform in-plane loading 
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(b) PMREF subjected to transverse patch loading 

 
(c) PMREF subjected to localized thermal loading 

Fig. 3.3: Schematic representation of a porous microplate resting on elastic foundation 

(PMREF), subjected to (a) non-uniform in-plane loading, (b) transverse patch loading, and, 

(c) localized heating 

3.2.1 Material Properties of Functionally Graded (FG) Microplate 

Functionally graded materials (FGM) (Jha et al. 2013) consist of properties from two 

different materials, metal and ceramic, with effective material properties varying through 

thickness. The volume fraction of the metal, Vm, and ceramic phase Vc follow the power-law 

distribution as shown in Eq. (3.1) (Jha et al. 2013). The effective materials properties of the FG 

microplate (Fig. 3.2) along the thickness viz. Young’s modulus ‘E(z)’ and mass density ‘ρ(z)’, 

are related to the metal and ceramic properties as shown in Eq. (3.2) (Jha et al. 2013). The 

subscript ‘c’ denotes ceramic properties and ‘m’ denotes metal properties and ‘n’ is the power 

index. The Poisson’s ratio, ‘ν,’ is assumed to be constant throughout the thickness. 

𝑉𝑐(𝑧) = (
𝑧

ℎ
+

1

2
)

𝑛

 (3.1a) 
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𝑉𝑚(𝑧) = 1 − 𝑉𝑐(𝑧) (3.1b) 

𝐸(𝑧) = 𝐸𝑐𝑉𝑐(𝑧) + 𝐸𝑚𝑉𝑚(𝑧) (3.2a) 

𝜌(𝑧) = 𝜌𝑐𝑉𝑐(𝑧) + 𝜌𝑚𝑉𝑚(𝑧) (3.2b) 

3.2.2 Material Properties of PMREF 

 

(a) Symmetrically Distributed Porosity 

  

(b) Uniformly Distributed Porosity        

Fig. 3.4: Sectional view of the microplate with different types of porosity distributions 

The PMREF (Fig. 3.3) rests on Winkler and Pasternak elastic foundations. The Winkler elastic 

foundation parameter is denoted by 𝐾𝑤 and Pasternak elastic foundation parameter is denoted 

by 𝐾𝑝. It is a porous metal foam microplate with different porosity distributions through the 

thickness of the plate, such as (a) symmetrically graded and (b) uniformly graded. The sectional 

view of the microplate with different distributions of porosity is presented in Fig. 3.4.  The 

effective materials properties of the plate along the thickness ‘z’ viz. Young’s modulus ‘E(z)’ 

and mass density ‘ρ(z)’, for symmetric and uniform porosity distributions, are estimated using 

the relations given in Eq. (3.3a-b) and Eq. (3.4a-b), respectively. The Poisson’s ratio ‘ν’ 

remains constant throughout the thickness. 

𝐸(𝑧) = 𝐸𝑚𝑎𝑥[1 − 𝑒0𝜅] (3.3a) 

𝜌(𝑧) = 𝜌𝑚𝑎𝑥[1 − 𝑒𝑟𝜅] (3.3b) 

Where 𝑒0 and 𝑒𝑟 are the porosity coefficient and porosity density coefficient, respectively. 

𝐸𝑚𝑎𝑥 and 𝜌𝑚𝑎𝑥 are the maximum value of 𝐸(𝑧) and 𝜌(𝑧), as in the case of minimum 

porosity, with 𝑒0 = 0. The porosity density coefficient is related to the porosity coefficient 

by the relation given in Eq. (3.3c). 𝜅 is a function of thickness defined in Eq. (3.3d). 
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𝑒𝑟 = 1 − √1 − 𝑒0 (3.3c) 

𝜅 = cos (
𝜋𝑧

ℎ
) (3.3d) 

 𝐸(𝑧) = 𝐸𝑚𝑎𝑥[1 − 𝑒0𝜍] (3.4a) 

𝜌(𝑧) = 𝜌𝑚𝑎𝑥(1 − √1 − 𝑒0𝜍) (3.4b) 

Where 𝜍 is a function defined in Eq. (3.4c),  

𝜍 =
1

𝑒0
−

1

𝑒0
(

2

𝜋
√1 − 𝑒0 −

2

𝜋
+ 1)

2

 (3.4c) 

3.3 Strain Energy Density Function         

The strain energy density function is computed using various theories. In this work, the 

MSGT is considered. However, to demonstrate the superior capture of strain hardening effect 

in small-scale structures using the MSGT, a comparison with the Classical Continuum Theory 

(CCT) and the Modified Couple Stress Theory (MCST) is also made. The strain energy density 

function based on the three theories are discussed below. 

3.3.1 Classical Continuum Theory (CCT) 

𝑈 =
1

2
∫(𝜎𝑖𝑗

𝑐 𝜖𝑖𝑗) ⅆ𝐵

𝐵

 (3.5) 

In the CCT, the strain energy function only consists of the Cauchy stress tensor, 𝜎𝑖𝑗
𝑐 , and its 

conjugate εij, strain tensor, where i, j,k=(x, y, z). The strain energy, U, in volume B using this 

theory is given in the Eq. (3.5). 

3.3.2 Modified Couple Stress Theory (MCST) 

According to this model (Lam et al. 2003), the strain energy, U, in volume B is given 

by the following equation: 

𝑈 =
1

2
∫(𝜎𝑖𝑗

𝑐 𝜖𝑖𝑗 + r𝑖𝑗
𝑠 𝜒𝑖𝑗

𝑠 ) ⅆ𝐵

𝐵

 (3.6) 

In Eq. (3.6), 𝜎𝑖𝑗
𝑐

 is the Cauchy stress tensor, 𝜖𝑖𝑗 is the strain, r𝑖𝑗
𝑠

 is the symmetric couple stress 

tensor and 𝜒𝑖𝑗
𝑠  is the symmetric curvature tensor. These components are as defined in the 

following equations: 
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휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)  (3.7a) 

𝜒𝑖𝑗
𝑠 =

1

2
(휃𝑖,𝑗 + 휃𝑗,𝑖)  (3.7b) 

𝜎𝑖𝑗
𝑐 = 𝜆휀𝑚𝑚𝛿𝑖𝑗 + 2𝜇휀𝑖𝑗 where, m=(x, y, z) (3.7c) 

𝑟𝑖𝑗 = 2𝑙2𝜇𝜒𝑖𝑗
𝑠   (3.7d) 

휃𝑥 =
1

2
(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) (3.8a) 

휃𝑦 = −
1

2
(
𝜕𝑤

𝜕𝑥
−

𝜕𝑢

𝜕𝑧
) (3.8b) 

휃𝑧 =
1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) (3.8c) 

𝛿𝑖𝑗 = {
0   if 𝑖 ≠ 𝑗
1  if 𝑖 = 𝑗

 (3.9a) 

𝜆(𝑧) =
𝜈𝐸(𝑧)

(1 + 𝜈)(1 − 2𝜈)
 (3.9b) 

𝜇(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
 (3.9c) 

In the Eqs. (3.7a-d), ui is the displacement vector, 휃𝑖 is the rotation vector, δij is the Kronecker 

delta, λ and μ are Lame’s constants. The rotation vector, 휃 is defined in terms of displacement 

vectors as shown in Eq. (3.8), and ‘l’ is the length scale parameter that is obtained from 

calibrations experimentally. The Kronecker’s delta and Lame’s constants are defined in Eqs. 

(3.9a-c). 

3.3.3 Modified Strain Gradient Theory (MSGT) 

The strain energy, U, is given by Lam et al. (2003) in volume B as : 

𝑈 =
1

2
∫(𝜎𝑖𝑗

𝑐 𝜖𝑖𝑗 + r𝑖𝑗
𝑠 𝜒𝑖𝑗

𝑠 +𝐿𝑖𝜓𝑖 + τ𝑖𝑗𝑘
(1)

η𝑖𝑗𝑘
(1)

) ⅆ𝐵

𝐵

 (3.10) 

In the Eq. (3.10), η𝑖𝑗𝑘
(1) is the traceless part of the symmetric second-order deformation gradient 

also called the deviatoric stretch gradient tensor, and Li is the dilatation gradient tensor. Li, τ𝑖𝑗𝑘
(1)  

and r𝑖𝑗
𝑠  are the work-conjugate of ψi, η𝑖𝑗𝑘

(1)
 and χ𝑖𝑗

𝑠  respectively.   

𝜓𝑖 = 휀𝑚𝑚,𝑖 (3.11a) 
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η𝑖𝑗𝑘
(1)

=
1

3
(휀𝑗𝑘,𝑖 + 휀𝑘𝑖,𝑗 + 휀𝑖𝑗,𝑘) −

1

15
𝛿𝑖𝑗(휀𝑚𝑚,𝑘 + 2휀𝑚𝑘,𝑚)

−
1

15
𝛿𝑗𝑘(휀𝑚𝑚,𝑖 + 2휀𝑚𝑖,𝑚) −

1

15
𝛿𝑘𝑖(휀𝑚𝑚,𝑗 + 2휀𝑚𝑗,𝑚) 

(3.11b) 

 

𝐿𝑖 = 2𝜇𝑙0
2𝜓𝑖 (3.12a) 

𝜏𝑖𝑗𝑘
(1)

= 2𝜇𝑙1
2η𝑖𝑗𝑘

(1) (3.12b) 

𝑟𝑖𝑗
𝑠 = 2𝜇𝑙2

2𝜒𝑖𝑗
𝑠  (3.12c) 

The dilatation gradient tensor and the deviatoric stretch gradient tensor are defined in Eqs. 

(3.11a-b). The higher-order stress tensors are defined in Eqs. (3.12a-c), where l0, l1, and l2 are 

the material length scale parameters with respect to the dilatation gradient, deviatoric stretch 

gradient, and the symmetric part of the rotation gradient, respectively. 

3.4 Kinematics of Microplate         

3.4.1 Field Displacement Equations 

Reddy's third-order shear deformation theory (TSDT) (Reddy and Liu 1985) is used to 

represent the field displacement equations in this work. The shear deformation effects can be 

included in the model with the help of this theory. The transverse shear strain is assumed to 

vary in a parabolic manner, which automatically leads to zero transverse shear strains at the 

top and bottom surfaces. However, this plate theory is limited to moderately thick plates and 

thin plates. In the case of thick plates, three-dimensional (3D) mathematical modeling is the 

most accurate theory to study their mechanical behavior. The field displacement equations of 

TSDT are expressed as (Reddy and Liu 1985): 

𝑢 = 𝑢0 + 𝑧𝜑𝑥 + 𝑧3 (
4

3
ℎ2) [−𝜑𝑥 − 𝑤,𝑥

0 ] (3.13a) 

𝑣 = 𝑣0 + 𝑧𝜑𝑦 + 𝑧3 (
4

3
ℎ2) [−𝜑𝑦 − 𝑤,𝑦

0 ] (3.13b) 

𝑤 = 𝑤0 (3.13c) 

The terms u, v, and w in the Eqs. (3.13a-c) represent the displacement in x, y, and z directions 

of a point (x, y) that is ‘z’ distance away from the center surface of the plate. 𝑢0, 𝑣0and 𝑤0 are 

the displacement of the point on the middle surface, i.e. the reference plane along x, y, and z 

directions, respectively. 𝜑𝑥 and 𝜑𝑦 are the rotation of the mid-surface about the y-axis and x-
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axis respectively. The suffix (),x and (),y  denote differentiation with respect to x and y 

respectively. 

The above field displacement equations were further simplified by Soldatos (1991) as shown 

below.  

𝑢 = 𝑢0 − 𝑧𝑤,𝑥
0 + 𝑓(𝑧)𝜙𝑥

0 (3.14a) 

𝑣 = 𝑣0 − 𝑧𝑤,𝑦
0 + 𝑓(𝑧)𝜙𝑦

0 (3.14b) 

𝑤 = 𝑤0 (3.14c) 

Where, 𝜙𝑥
0  = 𝜑𝑥 + 𝑤,𝑥

0  , 𝜙𝑦
0 = 𝜑𝑦 + 𝑤,𝑦

0   and 𝑓(𝑧) = 𝑧 (1 −
4𝑧2

3ℎ2
) 

3.4.2 Strain-Displacement Equations 

The strain-displacement equations, as obtained using the field displacement equations 

(Eqs. 3.14a-c)  including the geometric non-linearity based on von Kármán, are (Reddy 2006): 

휀𝑥𝑥 = 휀𝑥𝑥
0 − 𝑧𝑤,𝑥𝑥 + 𝑓(𝑧)𝜙𝑥,𝑥

0  (3.15a) 

휀𝑦𝑦 = 휀𝑦𝑦
0 − 𝑧𝑤,𝑦𝑦 + 𝑓(𝑧)𝜙𝑦,𝑦

0  (3.15b) 

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 − 2𝑧𝑤,𝑥𝑦

0 + 𝑓(𝑧)𝜙𝑥,𝑦
0 + 𝑓(𝑧)𝜙𝑦,𝑥

0  (3.15c) 

𝛾𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 = 𝑓′(𝑧)𝜙𝑥
0 (3.15d) 

𝛾𝑦𝑧 = 𝑣,𝑧 + 𝑤,𝑦 = 𝑓′(𝑧)𝜙𝑦
0 (3.15e) 

The strains at the central reference middle surface of the plate are indicated in Eqs. (3.15a-e) 

by the symbols, 휀𝑥𝑥
0 , 휀𝑦𝑦

0  and 𝛾𝑥𝑦
0 . These are further related to displacements in the equations 

below (Reddy 2006). 

휀𝑥𝑥
0 = 𝑢,𝑥

0 +
1

2
(𝑤,𝑥

0 )
2
 (3.16a) 

휀𝑦𝑦
0 = 𝑣,𝑦

0 +
1

2
(𝑤,𝑦

0 )
2
 (3.16b) 

𝛾𝑥𝑦
0 = 𝑢,𝑥

0 + 𝑣,𝑦
0 + 𝑤,𝑥

0 𝑤,𝑦
0  (3.16c) 

3.5 Types of Loading 

In this study, analysis of microplates due to three types of loadings is considered: non-

uniform in-plane mechanical loading (Fig. 3.1 and Fig. 3.3(a)), transverse patch mechanical 

loading (Fig. 3.2 and Fig. 3.3(b)), and localized thermal loading (Fig. 3.3(c)). The function 
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depicting these loads over the entire domain of the microplate is depicted in the following 

subsections. 

3.5.1 Non-Uniform In-plane Loading 

 
(a) Uniform loading profile (Case I) 

 
(b) Parabolic loading profile 

(Case II) 

 
(c) Partial loading profile (Case III) 

Fig. 3.5. Different cases of in-plane harmonic loading profiles on two opposite edges of the 

microplate (a) uniform loading profile (b) parabolic loading profile (c) partial loading profile 

The in-plane harmonic mechanical loading is uniaxial and compressive, applied at two opposite 

edges of the microplate as shown in Fig. 3.1 and Fig 3.3(a). It is of the form �̅�𝑥 = 𝑁𝑠𝑡 +

𝑁𝑑𝑦𝑛cos (𝑝𝑡), where the static load, Nst = αNcr and dynamic load, Ndyn= βNcr, is applied on two 

opposite edges. Here, α is the static load factor, β is the dynamic load factor, and p is the in-

plane loading frequency. Three in-plane harmonic loading scenarios at the two opposite edges 

of the plate are considered. In the first case, the profile of harmonic loading is considered 

uniformly distributed (Fig. 3.5(a)). In the second case, the profile of harmonic loading is 

assumed to be parabolic (Fig. 3.5(b)) and in the third case the edges are considered to be 

partially loaded (Fig. 3.5(c)). The total load in all the cases is considered equal, and only the 

loading profile is varied. 
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The mathematical representations for the in-plane loads with various loading profiles over the 

entire length of the edge are presented in the equations below. In the equations below, �̅�0 is the 

magnitude of the load for uniform loading profile. 

(1) Uniform loading profile 

𝑁(𝑦) = �̅�0 (3.17a) 

(2) Parabolic loading profile 

𝑁(𝑦) =
3

2
�̅�0 (1 − 4

𝑦2

𝑏2
 )    (3.17b) 

(3) Localized loading profile 

The function for in-plane localized loading shown in Fig. 3.5(c), where ⅆ is the width of 

loading, with its centre lying at x=0 is: 

𝑁(𝑦) = 

0 −
𝑏

2
< 𝑦 < −

ⅆ

2
 (3.18a) 

�̅�0 
−

ⅆ

2
< 𝑦 <

ⅆ

2
 (3.18b) 

0 ⅆ

2
< 𝑦 <  

𝑏

2
 (3.18c) 

The generalized function for localized in-plane loading along the entire edge of the microplate 

is represented in terms of Fourier series as follows: 

𝑁(𝑦) = [
𝑎0

2
+ ∑ 𝑎𝑖

∞

𝑖=1

cos(𝛼𝑖𝑦) + ∑ 𝑏𝑖

∞

𝑖=1

sin(𝛽𝑖𝑦)] (3.19) 

𝑎0  =  
2

𝑏
∫ 𝑁(𝑦)ⅆ𝑦

𝑏
2

−
𝑏
2

 (3.20a) 

𝑎0 =
2

𝑏
[∫ 0 ⅆ𝑦

−𝑑/2

−𝑏/2

+ ∫ �̅�0 ⅆ𝑦
𝑑/2

−𝑑/2

+ ∫ 0 ⅆ𝑦
𝑏/2

𝑑/2

] (3.20b) 

𝑎0  =  
2

𝑏
∫ �̅�0 ⅆ𝑦

𝑑/2

−𝑑/2

 (3.20c) 

𝑎0 =
2�̅�0ⅆ

𝑏
 (3.20d) 

𝑎𝑖  =   
2

𝑏
∫ 𝑁(𝑦)cos𝛼𝑖𝑦ⅆ𝑦

𝑏

2

−
𝑏

2

 , where, 𝛼𝑖 =
2𝜋𝑟

𝑏
 (3.21a) 
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𝑎𝑖 =
2

𝑏
[∫ 0cos𝛼𝑖𝑦 ⅆ𝑦

−𝑑/2

−𝑏/2

+ ∫ �̅�0cos𝛼𝑖𝑦 ⅆ𝑦
𝑑/2

−𝑑/2

+ ∫ 0 cos𝛼𝑖𝑦ⅆ𝑦
𝑏/2

𝑑/2

] (3.21b) 

𝑎𝑖  =  
2

𝑏
∫ �̅�0cos𝛼𝑖𝑦 ⅆ𝑦

𝑑/2

−𝑑/2

 (3.21c) 

𝑎𝑖 =
2�̅�0

𝛼𝑖𝑏
[sin𝛼𝑖 (

ⅆ

2
) − sin𝛼𝑖 (−

ⅆ

2
)] (3.21d) 

𝑎𝑖 =
2�̅�0

𝜋𝑟
sin (

𝑟𝜋ⅆ

𝑏
) (3.21e) 

Similarly, 

𝑏𝑖  =  
2

𝑏
∫ 𝑁(𝑦)cos𝛽𝑖𝑦 ⅆ𝑦

𝑑/2

−𝑑/2

 (3.22a) 

𝑏𝑖 =
2�̅�0

𝛽𝑖𝑏
[cos𝛽𝑖 (

ⅆ

2
) −  cos𝛽𝑖 (−

ⅆ

2
)] (3.22b) 

𝑏𝑖 = 0 (3.22c) 

Thus, using Eq. (3.20d), Eq. (3.21e), and Eq. (3.22c) in Eq. (3.19), we get the generalized 

equation of the localized in-plane load as follows: 

𝑁(𝑦) = �̅�0 (
ⅆ

𝑏
+ ∑

2

𝜋

∞

𝑟=1

(
1

𝑟
sin

𝑟𝜋ⅆ

𝑏
cos

2𝑟𝜋𝑦

𝑏
)) 

   

(3.23a) 

The final form of localized in-plane load becomes, 

𝑁(𝑦) = �̅�0

𝑏

ⅆ
(

ⅆ

𝑏
+ ∑

2

𝜋

∞

𝑟=1

(
1

𝑟
sin

𝑟𝜋ⅆ

𝑏
cos

2𝑟𝜋𝑦

𝑏
)) 

   

(3.23b) 

where, 𝑏

𝑑
 is multiplied to keep the amount of total load the same as in the case of uniform 

loading profile. 

3.5.2 Transverse Patch Loading 

Transverse patch loading of the form 𝑓(𝑥, 𝑦) cos(𝜔𝑡) is applied on the microplate as 

shown in Fig. 3.2 and Fig. 3.3(b). The geometric center of the transverse patch loading of 

magnitude ‘f0’ is at (xc, yc) distance from the origin. The length and width of the transverse 

patch loading are denoted by ‘al’ and ‘bl’, respectively. The transverse patch loading is 
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modelled on the entire domain of the microplate’s surface using the double Fourier series 

expansions (Kumar et al. 2022), which is expanded in both x and y directions. 

 
(a) Generalized case of transverse patch loading in the x-direction 

 
(b) Generalized case of transverse patch loading in the y-direction 

Fig. 3.6. Generalized case of transverse patch loadings 

The Fourier series expansion of transverse patch loading in both x and y-directions is presented 

in this section. The domain of the unloaded part will be considered as zero. The general case 

of transverse patch loading functions is written as per Fig. 3.6(a). The generalized case along 

the x- and y-axes are calculated separately and then multiplied to obtain the final form of 

generalized patch loading. 

The generalized transverse loading along the x-direction is given as: 

𝑓(𝑥) = 0 −
𝑎

2
< 𝑥 < 𝑥𝑐 −

𝑎𝑙

2
 (3.24a) 

𝑓(𝑥) = 𝑓0 𝑥𝑐 −
𝑎𝑙

2
< 𝑥 < 𝑥𝑐 +

𝑎𝑙

2
 (3.24b) 

𝑓(𝑥) = 0 𝑥𝑐 +
𝑎𝑙

2
< 𝑥 <  

𝑎

2
 (3.24c) 

Where 𝑎𝑙 denotes the length of the patch loading area in the x-direction. The above transverse 

loading along the x-direction is expressed in the total length of the plate via the Fourier series: 
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𝑓(𝑥)  =  
𝑎0

2
+ ∑ 𝑎𝑖

∞

𝑖=1

cos𝛼𝑖𝑥 + ∑ 𝑏𝑖

∞

𝑖=1

sin𝛼𝑖𝑥 (3.25) 

where, 

𝑎0  =  
2

𝑎
∫ 𝑓0 ⅆ𝑦

𝑎/2

−𝑎/2

 (3.26a) 

 =  
2

𝑎
∫ 𝑓0 ⅆ𝑥

𝑥𝑐−
𝑎1
2

−𝑎/2

+  
2

𝑎
∫ 𝑓0 ⅆ𝑥

𝑥𝑐+
𝑎1
2

𝑥𝑐−
𝑎1
2

+  
2

𝑎
∫ 𝑓0 ⅆ𝑥

𝑎
2

𝑥𝑐+
𝑎1
2

 (3.26b) 

=  
2

𝑎
∫ 𝑓0 ⅆ𝑥

𝑥𝑐+
𝑎1
2

𝑥𝑐−
𝑎1
2

 (3.26c) 

=  
2

𝑎
𝑓0 [𝑥𝑐 +

𝑎𝑙

2
− 𝑥𝑐 +

𝑎𝑙

2
] 

 
(3.26d) 

 =  
2

𝑎
𝑓0𝑎𝑙 (3.26e) 

Again,   

𝑎𝑖  =  
2

𝑎
∫ 𝑓0cos𝛼𝑖𝑥 ⅆ𝑥

𝑎
2

−𝑎/2

 (3.27a) 

=  
2

𝑎
∫ 𝑓0cos𝛼𝑖𝑥 ⅆ𝑥

𝑥𝑐−
𝑎𝑙
2

−𝑎/2

+  
2

𝑎
∫ 𝑓0cos𝛼𝑖𝑥 ⅆ𝑥

𝑥𝑐+
𝑎𝑙
2

𝑥𝑐−
𝑎𝑙
2

+  
2

𝑎
∫ 𝑓0cos𝛼𝑖𝑥 ⅆ𝑥

𝑎
2

𝑥𝑐+
𝑎𝑙
2

 (3.27b) 

=  
2

𝑎
∫ 𝑓0cos𝛼𝑖𝑥 ⅆ𝑥

𝑥𝑐+
𝑎1
2

𝑥𝑐−
𝑎1
2

 

 

(3.27c) 

𝑎𝑖 =  
2𝑓0

𝑎𝛼𝑖
[sin𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  sin𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)] (3.27d) 

Similarly, 

𝑏𝑖 =  −
2𝑓0

𝑎𝛼𝑖
[cos𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  cos𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)] (3.28) 

Thus, using Eq. (3.25), Eq. (3.26), Eq. (3.27), and Eq. (3.28), we get 
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𝑓(𝑥) =  
𝑓0𝑎𝑙

𝑎
+ ∑

2𝑓0

𝑎𝛼𝑖
[sin𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  sin𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)]

∞

𝑖=1

cos𝛼𝑖𝑥

− ∑
2𝑓0

𝑎𝛼𝑖
[cos𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  cos𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)]

∞

𝑖=1

sin𝛼𝑖𝑥 

(3.29) 

Similarly, the generalized transverse loading along y-direction is given as: 

𝑓(𝑦) =  
𝑓0𝑏𝑙

𝑏
+ ∑

2𝑓0

𝑏𝜒𝑗
[sin𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  sin𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
)]

∞

𝑗=1

cos𝜒𝑗𝑦

− ∑
2𝑓0

𝑏𝜒𝑗
[cos𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  cos𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
)]

∞

𝑗=1

sin𝜒𝑗𝑦 

 

(3.30) 

where 𝑏𝑙 denotes the width of the patch loading area in the y-direction (Fig. 3.6(b))  

Thus, the final generalized patch loading on the total area of the plate in the transverse 

direction of the microplate is defined using Eq. (3.29) and Eq. (3.30) as follows: 

𝑓(𝑥, 𝑦) = (
𝑓0𝑎𝑙

𝑎
+ ∑

2𝑓0

𝑎𝛼𝑖
[sin𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  sin𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)]∞

𝑖=1 cos𝛼𝑖𝑥 −

∑
2𝑓0

𝑎𝛼𝑖
[cos𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  cos𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
)]∞

𝑖=1 sin𝛼𝑖𝑥) × (
𝑓0𝑏𝑙

𝑏
+

∑
2𝑓0

𝑏𝜒𝑗
[sin𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  sin𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
)]∞

𝑗=1 cos𝜒𝑗𝑦 −

∑
2𝑓0

𝑏𝜒𝑗
[cos𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  cos𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
)]∞

𝑗=1 sin𝜒𝑗𝑦)  

   (3.31) 

Since, 𝛼𝑖 =
2𝜋𝑖

𝑎
 and 𝜒𝑗 =

2𝜋𝑗

𝑏
 

The final expression for generalized transverse patch loading becomes, 

𝑓(𝑥, 𝑦) = (
𝑓0𝑎𝑏

𝑎𝑙𝑏𝑙
) ×

(

𝑎𝑙

𝑎
+ ∑

1

𝜋𝑖
 (sin𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  sin𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
))∞

𝑖=1 cos𝛼𝑖𝑥 

− ∑
1

𝜋𝑖
 (cos𝛼𝑖 (𝑥𝑐 +

𝑎𝑙

2
) −  cos 𝛼𝑖 (𝑥𝑐 −

𝑎𝑙

2
))∞

𝑖=1 sin𝛼𝑖𝑥
) ×

(

𝑏𝑙

𝑏
+ ∑

1

𝜋𝑗
 (sin𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  sin𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
))∞

𝑗=1 cos𝜒𝑖𝑦 

− ∑
1

𝜋𝑗
 (cos𝜒𝑗 (𝑦𝑐 +

𝑏𝑙

2
) −  cos 𝜒𝑗 (𝑦𝑐 −

𝑏𝑙

2
))∞

𝑗=1 sin𝜒𝑖𝑦
)  

   (3.32) 
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Where, ( 𝑎𝑏

𝑎𝑙𝑏𝑙
) is multiplied to keep the amount of total load the same, although the size of patch 

loading is varied by varying the values of 𝑎𝑙 and 𝑏𝑙. 

 
(a) Loading Case 1 

 
(b) Loading Cases 2 and 3 

 
(c) Loading Case 4 

Fig. 3.7. Different positions of transverse patch loading on the surface of microplate: (a) 

centre loading, (b) edge loading, and (c) corner loading 

In this study, four different cases of patch loadings with different loading positions are 

considered, as shown in Fig. 3.7 In the first case (Fig. 3.7(a)), loading is applied at the centre 

of the plate. In the second case (Fig. 3.7(b)), loading is applied near an edge. In the third case, 

if SCSC type microplate (one set of edges simply supported and other set clamped) is 

considered, loading is applied near clamped edge. In the fourth case (Fig. 3.7(c)), loading is 

applied at a corner. 

3.5.3 Localized Thermal Loading 

Localized thermal load is applied on microplate as shown in Fig. 3.3(c). The localized 

thermal load is considered rectangular in shape with its center coinciding with the center of the 
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plate, to maintain symmetry. The width of the loading is ‘a0’ and ‘b0’ in the x and y directions 

respectively. The thermal force resultants, 𝐍𝐓
𝐓 = {(𝑁𝑇)𝑥𝑥, (𝑁𝑇)𝑦𝑦, (𝑁𝑇)𝑥𝑦} and thermal 

moment resultants, 𝐌𝐓 = {(𝑀𝑇)𝑥𝑥, (𝑀𝑇)𝑦𝑦, (𝑀𝑇)𝑥𝑦} are generated due to heating of the plate. 

In this study, we are considering uniform temperature rise through the plate thickness and no 

exchange of heat with surroundings. Thus, thermal moment resultants are not present. The 

relation of thermal force resultants with the thermal expansion coefficients  (𝛂𝑻)𝐓 = {𝛼𝑥𝑥
𝑇 , 

𝛼𝑦𝑦
𝑇 , 𝛼𝑥𝑦

𝑇 } is: 

𝐍𝐓 = 𝐍𝑪 ⋅ T(𝑥, 𝑦) (3.33) 

In Eq. (3.33), 𝐍𝒄 = {𝑁𝑥𝑥
𝑐 , 𝑁𝑦𝑦

𝑐 , 𝑁𝑥𝑦
𝑐 } is defined as:  

𝐍𝒄 = ∫ �̅�𝑖𝑗

𝒉
𝟐⁄

−𝒉
𝟐⁄

𝛂𝑻ⅆ𝑧 (3.34) 

where, 𝐾𝑖𝑗 are the stiffness constants and defined in Eq. (3.42). 

In Eq. (3.33), T(𝑥, 𝑦) is the function expressing the temperature field over the entire domain of 

the plate. In case of partial rectangular heating considered in this study, T(𝑥, 𝑦) is considered 

symmetric about the origin for less complex analytical calculations. T(𝑥, 𝑦) is defined as: 

𝑇(𝑥, 𝑦) = {
𝑇𝑅       at   |𝑥| ≤ 𝑎0/2  and |𝑦| ≤ 𝑏0/2

0          at   𝑎0/2 < |𝑥| ≤ 𝑎/2   and 𝑏0/2 < |𝑦| ≤ 𝑏/2  (3.35) 

In Eq. (3.35), 𝑇𝑅 is the uniform temperature rise for thermal energy equal to that for fully heated 

plate. The double Fourier series expansion is used to model this load over the entire domain of 

the plate as follows:  

𝑇(𝑥, 𝑦) = ∑ ∑ 𝑓𝑖𝑗

∞

𝑗=1

∞

𝑖=1

cos( 휃𝑖𝑥) cos( 𝛽𝑗𝑦) (3.36) 

In Eq. (3.36), 𝑓𝑖𝑗 =
16𝑇𝑅

𝑎𝑏𝜃𝑖𝛽𝑗
sin(휃𝑖𝑎0/2) sin(𝛽𝑗𝑏0/2) and, 휃𝑖 =

(2𝑖−1)𝜋

𝑎
,   𝛽𝑗 =

(2𝑗−1)𝜋

𝑏
 

3.6 Estimation of Governing Partial Differential Equations of Motion 

The equations of motion of the microplates analysed in this study are derived using 

Hamilton's principle (Eq. (3.37)) in case of dynamic problem and using the principle of 

minimization of total potential energy (Eq. (3.38)) in case of static problem (Reddy 2017). 

(a) Hamilton’s principle 
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𝛿(1) (∫ (𝑈 + 𝐹 − 𝐺 − 𝑊 − 𝐶 − 𝑇)
𝑡2

𝑡1

) = 0 (3.37) 

(b) Minimization of the total potential energy 

𝛿𝛱 =  𝛿(1)(𝑈 + 𝐹 − 𝐺) = 0 (3.38) 

According to this principle, for the system to be in equilibrium, the variation (𝛿(1)) of the total 

potential energy with respect to the field variables should be zero. 

In the above equations, U is the strain energy (Sahmani and Ansari 2013), F is the strain energy 

of the foundation (Thai and Choi 2012), G is the geometric strain energy due to the in-plane 

mechanical load or thermal load, W is the external work done (Xu et al. 2021) by the transverse 

loads, C is the damping energy, and T is the kinetic energy (Kumar et al. 2021) in the time 

interval t0 to t1 whereas 𝛿(1)denotes the first variation. W and G are not taken together in the 

calculations. In case of in-plane mechanical loading and thermal loading, where in-plane 

stresses are developed due to loading, the geometric strain energy is considered and in case of 

transverse loading, external work done is considered. In the case of static problem, kinetic 

energy, T, and damping energy, C, are not present and the principle of minimization of total 

potential energy, 𝛱 = 𝑈 + 𝐹 − 𝐺,  is used. The first variations of ‘U’, ‘F’, ‘G’, ‘W’, ‘C’, and 

‘T’ are defined in the following subsection. 

3.6.1 Expressions of First Variation of Energy Functions 

3.6.1.1 First Variation of Strain Energy 

𝑈 = 𝑈𝜎 + 𝑈𝑟 + 𝑈𝐿 + 𝑈𝜏 (3.39a) 

𝑈𝜎 = 𝑈𝜎
𝑁 + 𝑈𝜎

𝑀 + 𝑈𝜎
𝑀a

+ 𝑈𝜎
𝑆  (3.39b) 

𝐍 = �̅�𝛆𝟎 + �̅�𝛏 + 𝐂𝛏𝒂 − 𝐍𝐓 (3.40a) 

𝐌𝒎 = �̅�𝛆𝟎 + �̅�𝛏 + �̅�𝛏𝒂 − 𝐌𝐓 (3.40b) 

𝐌𝒂 = 𝐂𝛆𝟎 + �̅�𝛏 + �̅�𝛏𝒂 (3.40c) 

𝐒 = �̅�𝛄 (3.40d) 

The strain energy, calculated based on MSGT, consists of energy due to the Cauchy 

strain tensor (𝑈𝜎), energy due to symmetric curvature gradient tensor (𝑈𝑟), energy due to 

dilatation gradient tensor (𝑈𝐿) and energy due to the deviatoric stretch gradient tensor (𝑈𝜏) as 

shown in Eq. (3.39a). The strain energy density function has five independent components due 
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to Uσ..The strain energy due to Cauchy strain tensor (𝑈𝜎) is composed of membrane energy 

(𝑈𝜎
𝑁) due to force resultants 𝐍𝑇={𝑁𝑥𝑥, 𝑁𝑦𝑦, 𝑁𝑥𝑦}, bending energy (𝑈𝜎

𝑀) due to moment 

resultants 𝐌𝑚𝑇={𝑀𝑥𝑥
𝑚 , 𝑀𝑦𝑦

𝑚 , 𝑀𝑥𝑦
𝑚 }, additional bending energy (𝑈𝜎

𝑀a
) due to additional moment 

resultants due to additional changes in curvatures 𝐌𝑎𝑇={𝑀𝑥𝑥
𝑎 , 𝑀𝑦𝑦

𝑎 , 𝑀𝑥𝑦
𝑎 } and shear energy 

(𝑈𝜎
𝑆) due to shear resultants 𝐒𝑇={𝑆𝑦𝑧, 𝑆𝑥𝑧} as shown in Eq. (3.39b). The above stress resultants 

are related to the membrane strains 𝛆𝟎𝑇={휀𝑥𝑥
0 , 휀𝑦𝑦

0 , 휀𝑥𝑦
0 }, bending strains 

𝛏𝑇={−𝑤,𝑥𝑥
0 , −𝑤,𝑦𝑦

0 , −2𝑤,𝑥𝑦
0 }, additional bending strains 𝛏𝒂𝑇= {𝜙𝑥,𝑥

0 , 𝜙𝑦,𝑦
0 , 𝜙𝑥,𝑦

0 + 𝜙𝑦,𝑥
0 } and 

shear strains 𝛄𝑇={𝛾𝑦𝑧, 𝛾𝑥𝑧}, through the constitutive relations (Eqs. (3.40a-d)).  

In the Eqs. 3.40(a-d) bold letters are used to denote matrices and vectors. The stiffness matrices 

�̅�, �̅�, 𝐂, �̅�, �̅�, �̅�, and �̅� are stated below: 

(�̅�𝑖𝑗 , �̅�𝑖𝑗, �̅�𝑖𝑗) = ∫ �̅�𝑖𝑗(1, 𝑧, 𝑧2)ⅆ𝑧

ℎ
2⁄

−ℎ
2⁄

 (i,j) = (1,2,6) (3.41a) 

(𝐶�̅�𝑗, �̅�𝑖𝑗, �̅�𝑖𝑗) = ∫ �̅�𝑖𝑗(1, 𝑧, 𝑓(𝑧))𝑓(𝑧)ⅆ𝑧

ℎ
2⁄

−ℎ
2⁄

 (i,j) = (1,2,6) (3.41b) 

(�̅�𝑖𝑗) = ∫ �̅�𝑖𝑗𝑓′(𝑧)𝑓′(𝑧)ⅆ𝑧

ℎ
2⁄

−ℎ
2⁄

 (i,j) = (4,5) (3.41c) 

where non-zero values of 𝐾𝑖𝑗 are given below,   

�̅�11 =  �̅�22 =
2𝜆𝜇

𝜈(𝜆 + 2𝜇)
  (3.42a) 

�̅�12 = �̅�21 =
2𝜆𝜇

𝜆 + 2𝜇
  (3.42b) 

�̅�66 =  �̅�44 =  �̅�55 = 𝜇  (3.42c) 

The strain energy density function consists of five independent components due to 𝑈𝑟 , three 

independent components due to 𝑈𝐿 and ten independent components due to 𝑈𝜏. The work-

conjugate of higher-order deformation gradient tensors in the components of 𝑈𝑟, 𝑈𝐿 and 𝑈𝜏 are 

denoted by 𝑌𝑚𝑛, 𝑃𝑚𝑛 and 𝑄𝑚𝑛 respectively. The work-conjugates of first-order deformation 

gradients, if any, in the components of 𝑈𝑟, 𝑈𝐿 and 𝑈𝜏 are denoted by 𝑌𝑚𝑛
̅̅ ̅̅ ̅, 𝑃𝑚𝑛

̅̅ ̅̅ ̅ and 𝑄𝑚𝑛
̅̅ ̅̅ ̅̅  

respectively. In these terms, the suffix ‘m’ denotes the index of the component (𝑚 = 1, 2, … . , 𝑘 

where 𝑘 = 5 for 𝑌𝑚𝑛 and 𝑌𝑚𝑛
̅̅ ̅̅ ̅, 𝑘 = 3 for 𝑃𝑚𝑛 and 𝑃𝑚𝑛

̅̅ ̅̅ ̅ and 𝑘 = 10 for 𝑄𝑚𝑛 and 𝑄𝑚𝑛
̅̅ ̅̅ ̅̅ ), from 

which it is derived, and the suffix ‘n’ represents the index of the displacement or rotation 
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component of which it is a gradient (n=1, 2, 3, 4, 5 where 1 → 𝑢0, 2 → 𝑣0, 3 → 𝑤0, 4 →

𝜙𝑥
0 and 5 → 𝜙𝑦

0).  

The non-zero work conjugates, 𝑌𝑚𝑛 and 𝑌𝑚𝑛
̅̅ ̅̅ ̅  of higher-order deformation gradients are defined 

in the following equations: 

𝑌13 = 𝑙2
2(2𝐼�̅�𝑤,𝑥𝑦

0 − 𝐿𝐿̅̅ ̅𝜙𝑦,𝑥
0 ) (3.43a) 

𝑌15 = 𝑙2
2 (−𝐿𝐿̅̅ ̅𝑤,𝑥𝑦

0 +
1

2
𝑀𝑀̅̅ ̅̅ ̅𝜙𝑦,𝑥

0 ) (3.43b) 

𝑌23 = 𝑙2
2(2𝐼�̅�𝑤,𝑥𝑦

0 − 𝐿𝐿̅̅ ̅𝜙𝑥,𝑦
0 ) (3.43c) 

𝑌24 = 𝑙2
2 (−𝐿𝐿̅̅ ̅𝑤,𝑥𝑦

0 +
1

2
𝑀𝑀̅̅ ̅̅ ̅𝜙𝑥,𝑦

0 ) (3.43d) 

𝑌33 = 𝑙2
2(𝐼�̅�(𝑤,𝑦𝑦

0 − 𝑤,𝑥𝑥
0 ) +

1

2
𝐿𝐿̅̅ ̅(𝜙𝑥,𝑥

0 − 𝜙𝑦,𝑦
0 )) (3.43e) 

𝑌34 = 𝑙2
2 (

1

2
𝐿𝐿̅̅ ̅(𝑤,𝑦𝑦

0 − 𝑤,𝑥𝑥
0 ) +

1

4
𝑀𝑀̅̅ ̅̅ ̅(𝜙𝑥,𝑥

0 − 𝜙𝑦,𝑦
0 )) (3.43f) 

𝑌35 = −𝑙2
2 (

1

2
𝐿𝐿̅̅ ̅(𝑤,𝑦𝑦

0 − 𝑤,𝑥𝑥
0 ) +

1

4
𝑀𝑀̅̅ ̅̅ ̅(𝜙𝑥,𝑥

0 − 𝜙𝑦,𝑦
0 )) (3.43g) 

𝑌41 = −
1

4
𝑙2

2(𝐼�̅�(𝑣,𝑥𝑦
0 − 𝑢,𝑦𝑦

0 ) + 𝐽�̅�(𝜙𝑦,𝑥𝑦
0 − 𝜙𝑥,𝑦𝑦

0 ) + 𝑄𝑄̅̅ ̅̅ 𝜙𝑥
0) (3.43h) 

𝑌42 =
1

4
𝑙2

2(𝐼�̅�(𝑣,𝑥𝑦
0 − 𝑢,𝑦𝑦

0 ) + 𝐽�̅�(𝜙𝑦,𝑥𝑦
0 − 𝜙𝑥,𝑦𝑦

0 ) + 𝑄𝑄̅̅ ̅̅ 𝜙𝑥
0) (3.43i) 

𝑌44 = −
1

4
𝑙2

2(𝐽�̅�(𝑣,𝑥𝑦
0 − 𝑢,𝑦𝑦

0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑦,𝑥𝑦
0 − 𝜙𝑥,𝑦𝑦

0 ) + 𝑄𝑄̅̅ ̅̅ 𝜙𝑥
0) (3.43j) 

𝑌45 =
1

4
𝑙2

2(𝐽�̅�(𝑣,𝑥𝑦
0 − 𝑢,𝑦𝑦

0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑦,𝑥𝑦
0 − 𝜙𝑥,𝑦𝑦

0 ) + 𝑄𝑄̅̅ ̅̅ 𝜙𝑥
0) (3.43k) 

𝑌44
̅̅ ̅̅ =

1

4
𝑙2

2(𝑁𝑁̅̅̅̅̅(𝑣,𝑥𝑦
0 − 𝑢,𝑦𝑦

0 ) + 𝑄𝑄̅̅ ̅̅ (𝜙𝑦,𝑥𝑦
0 − 𝜙𝑥,𝑦𝑦

0 ) + 𝑃𝑃̅̅ ̅̅ 𝜙𝑥
0) (3.43l) 

𝑌51 = −
1

4
𝑙2

2(𝐼�̅�(𝑣,𝑥𝑥
0 − 𝑢,𝑥𝑦

0 ) + 𝐽�̅�(𝜙𝑦,𝑥𝑥
0 − 𝜙𝑥,𝑥𝑦

0 ) − 𝑁𝑁̅̅̅̅̅𝜙𝑦
0) (3.43m) 

𝑌52 =
1

4
𝑙2

2(𝐼�̅�(𝑣,𝑥𝑥
0 − 𝑢,𝑥𝑦

0 ) + 𝐽�̅�(𝜙𝑦,𝑥𝑥
0 − 𝜙𝑥,𝑥𝑦

0 ) − 𝑁𝑁̅̅̅̅̅𝜙𝑦
0) (3.43n) 

𝑌54 = −
1

4
𝑙2

2(𝐽�̅�(𝑣,𝑥𝑥
0 − 𝑢,𝑥𝑦

0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑦,𝑥𝑥
0 − 𝜙𝑥,𝑥𝑦

0 ) − 𝑄𝑄̅̅ ̅̅ 𝜙𝑦
0) (3.43o) 

𝑌55 =
1

4
𝑙2

2(𝐽�̅�(𝑣,𝑥𝑥
0 − 𝑢,𝑥𝑦

0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑦,𝑥𝑥
0 − 𝜙𝑥,𝑥𝑦

0 ) − 𝑄𝑄̅̅ ̅̅ 𝜙𝑦
0) (3.43p) 

𝑌55
̅̅ ̅̅ =

1

4
𝑙2

2(−𝑁𝑁̅̅̅̅̅(𝑣,𝑥𝑥
0 − 𝑢,𝑥𝑦

0 ) − 𝑄𝑄̅̅ ̅̅ (𝜙𝑦,𝑥𝑥
0 − 𝜙𝑥,𝑥𝑦

0 ) + 𝑃𝑃̅̅ ̅̅ 𝜙𝑦
0) (3.43q) 

The non-zero work conjugates  𝑃𝑚𝑛 and 𝑃𝑚𝑛
̅̅ ̅̅ ̅, of higher-order deformation gradients are defined 
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in the following equations. 

𝑃11 = 2𝑙0
2 (𝐼�̅�(𝑢,𝑥𝑥

0 + 𝑣,𝑥𝑦
0 ) − 𝐼𝐼∗̅̅̅̅ (𝑤,𝑥𝑥𝑥

0 + 𝑤,𝑥𝑦𝑦
0 ) + 𝐽�̅�(𝜙𝑥,𝑥𝑥

0 + 𝜙𝑦,𝑥𝑦
0 )) (3.44a) 

𝑃12 = 2𝑙0
2 (𝐼�̅�(𝑢,𝑥𝑥

0 + 𝑣,𝑥𝑦
0 ) − 𝐼𝐼∗̅̅̅̅ (𝑤,𝑥𝑥𝑥

0 + 𝑤,𝑥𝑦𝑦
0 ) + 𝐽�̅�(𝜙𝑥,𝑥𝑥

0 + 𝜙𝑦,𝑥𝑦
0 )) (3.44b) 

𝑃13 = 2𝑙0
2 (−𝐼�̅�(𝑢,𝑥𝑥

0 + 𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(𝑤,𝑥𝑥𝑥

0 + 𝑤,𝑥𝑦𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝜙𝑥,𝑥𝑥

0 + 𝜙𝑦,𝑥𝑦
0 )) (3.44c) 

𝑃14 = 2𝑙0
2 (𝐽�̅�(𝑢,𝑥𝑥

0 + 𝑣,𝑥𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝑤,𝑥𝑥𝑥

0 + 𝑤,𝑥𝑦𝑦
0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑥,𝑥𝑥

0 + 𝜙𝑦,𝑥𝑦
0 )) (3.44d) 

𝑃15 = 2𝑙0
2 (𝐽�̅�(𝑢,𝑥𝑥

0 + 𝑣,𝑥𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝑤,𝑥𝑥𝑥

0 + 𝑤,𝑥𝑦𝑦
0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑥,𝑥𝑥

0 + 𝜙𝑦,𝑥𝑦
0 )) (3.44e) 

𝑃21 = 2𝑙0
2 (𝐼�̅�(𝑢,𝑥𝑦

0 + 𝑣,𝑦𝑦
0 ) − 𝐼𝐼∗̅̅̅̅ (𝑤,𝑥𝑥𝑦

0 + 𝑤,𝑦𝑦𝑦
0 ) + 𝐽�̅�(𝜙𝑥,𝑥𝑦

0 + 𝜙𝑦,𝑦𝑦
0 )) (3.44f) 

𝑃22 = 2𝑙0
2 (𝐼�̅�(𝑢,𝑥𝑦

0 + 𝑣,𝑦𝑦
0 ) − 𝐼𝐼∗̅̅̅̅ (𝑤,𝑥𝑥𝑦

0 + 𝑤,𝑦𝑦𝑦
0 ) + 𝐽�̅�(𝜙𝑥,𝑥𝑦

0 + 𝜙𝑦,𝑦𝑦
0 )) (3.44g) 

𝑃23 = 2𝑙0
2 (−𝐼�̅�(𝑢,𝑥𝑦

0 + 𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(𝑤,𝑥𝑥𝑦

0 + 𝑤,𝑦𝑦𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝜙𝑥,𝑥𝑦

0 + 𝜙𝑦,𝑦𝑦
0 )) (3.44h) 

𝑃24 = 2𝑙0
2 (𝐽�̅�(𝑢,𝑥𝑦

0 + 𝑣,𝑦𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝑤,𝑥𝑥𝑦

0 + 𝑤,𝑦𝑦𝑦
0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑥,𝑥𝑦

0 + 𝜙𝑦,𝑦𝑦
0 )) (3.44i) 

𝑃25 = 2𝑙0
2 (𝐽�̅�(𝑢,𝑥𝑦

0 + 𝑣,𝑦𝑦
0 ) − 𝐽𝐽∗̅̅̅̅ (𝑤,𝑥𝑥𝑦

0 + 𝑤,𝑦𝑦𝑦
0 ) + 𝐾𝐾̅̅ ̅̅ (𝜙𝑥,𝑥𝑦

0 + 𝜙𝑦,𝑦𝑦
0 )) (3.44j) 

𝑃33 = 2𝑙0
2 (𝐼�̅�(𝑤,𝑥𝑥

0 + 𝑤,𝑦𝑦
0 ) − 𝐿𝐿̅̅ ̅(𝜙𝑥,𝑥

0 + 𝜙𝑦,𝑦
0 )) (3.44k) 

𝑃34 = 2𝑙0
2 (−𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥

0 + 𝑤,𝑦𝑦
0 ) + 𝑀𝑀̅̅ ̅̅ ̅(𝜙𝑥,𝑥

0 + 𝜙𝑦,𝑦
0 )) (3.44l) 

𝑃35 = 2𝑙0
2 (−𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥

0 + 𝑤,𝑦𝑦
0 ) + 𝑀𝑀̅̅ ̅̅ ̅(𝜙𝑥,𝑥

0 + 𝜙𝑦,𝑦
0 )) (3.44m) 

The non-zero work conjugates 𝑄𝑚𝑛 and 𝑄𝑚𝑛
̅̅ ̅̅ ̅̅  , of higher-order deformation gradients are 

defined in the following equations. 

𝑄11 =
2

25
𝑙1

2 (𝐼�̅�(2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑥

0)) 
(3.45a) 

𝑄12 =
2

25
𝑙1

2 (𝐼�̅�(2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑥

0)) 
(3.45b) 

𝑄13 =
2

25
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45c) 
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𝑄14 =
2

25
𝑙1

2 (𝐽�̅�(2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45d) 

𝑄15 =
2

25
𝑙1

2 (𝐽�̅�(2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗∗̅̅ ̅̅ ̅(−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45e) 

𝑄14
̅̅ ̅̅̅ =

2

25
𝑙1

2 (𝑁𝑁̅̅̅̅̅(2𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−2𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (2𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 + 2𝜙𝑦,𝑥𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45f) 

𝑄21 =
2

25
𝑙1

2 (𝐼�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑦𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑦

0)) 
(3.45g) 

𝑄22 =
2

25
𝑙1

2 (𝐼�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑦𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑦

0)) 
(3.45h) 

𝑄23 =
2

25
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(3𝑤,𝑥𝑥𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45i) 

𝑄24 =
2

25
𝑙1

2 (𝐽�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑦𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45j) 

𝑄25 =
2

25
𝑙1

2 (𝐽�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑦𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45k) 

𝑄25
̅̅ ̅̅ ̅ =

2

25
𝑙1

2 (𝑁𝑁̅̅̅̅̅(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 + 2𝑣,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (3𝑤,𝑥𝑦𝑦

0 − 2𝑤,𝑦𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 + 2𝜙𝑦,𝑦𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45l) 

𝑄33 =
2

25
𝑙1

2 (𝐼�̅�(𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝐿𝐿̅̅ ̅(−2𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45m) 

𝑄34 =
2

25
𝑙1

2 (𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(−2𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45n) 

𝑄35 =
2

25
𝑙1

2 (𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(−2𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45o) 
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𝑄41 =
2

75
𝑙1

2 (𝐼�̅�(8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (−12𝑤,𝑥𝑦𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑦

0)) 
(3.45p) 

𝑄42 =
2

75
𝑙1

2 (𝐼�̅�(8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (−12𝑤,𝑥𝑦𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑦

0)) 
(3.45q) 

𝑄43 =
2

75
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(−12𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45r) 

𝑄44 =
2

75
𝑙1

2 (𝐽�̅�(8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (−12𝑤,𝑥𝑦𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45s) 

𝑄45 =
2

75
𝑙1

2 (𝐽�̅�(8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (−12𝑤,𝑥𝑦𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45t) 

𝑄45
̅̅ ̅̅ ̅ =

2

75
𝑙1

2 (𝑁𝑁̅̅̅̅̅(8𝑢,𝑥𝑦
0 + 4𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−12𝑤,𝑥𝑦𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (8𝜙𝑥,𝑥𝑦
0 + 4𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (−𝜙𝑦

0)) 
(3.45u) 

𝑄53 =
2

75
𝑙1

2 (𝐼�̅�(−4𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝐿𝐿̅̅ ̅(8𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45v) 

𝑄54 =
2

75
𝑙1

2 (𝐿𝐿̅̅ ̅(−4𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(8𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45w) 

𝑄55 =
2

75
𝑙1

2 (𝐿𝐿̅̅ ̅(−4𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(8𝜙𝑥,𝑥
0 − 2𝜙𝑦,𝑦

0 )) (3.45x) 

𝑄61 =
2

75
𝑙1

2 (𝐼�̅�(−3𝑢,𝑥𝑥
0 + 4𝑢,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑥

0)) 
(3.45y) 

𝑄62 =
2

75
𝑙1

2 (𝐼�̅�(−3𝑢,𝑥𝑥
0 + 4𝑣,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(−𝜙𝑥

0)) 
(3.45z) 

𝑄63 =
2

75
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (−3𝑢,𝑥𝑥
0 + 4𝑣,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45aa) 
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𝑄64 =
2

75
𝑙1

2 (𝐽�̅�(−3𝑢,𝑥𝑥
0 + 4𝑣,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45ab) 

𝑄65 =
2

75
𝑙1

2 (𝐽�̅�(−3𝑢,𝑥𝑥
0 + 4𝑣,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45ac) 

𝑄64
̅̅ ̅̅ ̅ =

2

75
𝑙1

2 (𝑁𝑁̅̅̅̅̅(−3𝑢,𝑥𝑥
0 + 4𝑣,𝑦𝑦

0 + 8𝑣,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (3𝑤,𝑥𝑥𝑥

0 − 12𝑤,𝑥𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 + 4𝜙𝑥,𝑦𝑦

0 + 8𝜙𝑦,𝑥𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (−𝜙𝑥

0)) 
(3.45ad) 

𝑄73 =
2

75
𝑙1

2 (𝐼�̅�(𝑤,𝑥𝑥
0 − 4𝑤,𝑦𝑦

0 ) + 𝐿𝐿̅̅ ̅(−2𝜙𝑥,𝑥
0 + 8𝜙𝑦,𝑦

0 )) (3.45ae) 

𝑄74 =
2

75
𝑙1

2 (𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥
0 − 4𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(−2𝜙𝑥,𝑥
0 + 8𝜙𝑦,𝑦

0 )) (3.45af) 

𝑄75 =
2

75
𝑙1

2 (𝐿𝐿̅̅ ̅(𝑤,𝑥𝑥
0 − 4𝑤,𝑦𝑦

0 ) + 𝑀𝑀̅̅ ̅̅ ̅(−2𝜙𝑥,𝑥
0 + 8𝜙𝑦,𝑦

0 )) (3.45ag) 

𝑄81 =
2

75
𝑙1

2 (𝐼�̅�(−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(4𝜙𝑥

0)) 
(3.45ah) 

𝑄82 =
2

75
𝑙1

2 (𝐼�̅�(−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽�̅�(−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(4𝜙𝑥

0)) 
(3.45ai) 

𝑄83 =
2

75
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (4𝜙𝑥

0)) 
(3.45aj) 

𝑄84 =
2

75
𝑙1

2 (𝐽�̅�(−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (4𝜙𝑥

0)) 
(3.45ak) 

𝑄85 =
2

75
𝑙1

2 (𝐽�̅�(−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (4𝜙𝑥

0)) 
(3.45al) 

𝑄84
̅̅ ̅̅ ̅ =

2

75
𝑙1

2 (𝑁𝑁̅̅̅̅̅(−3𝑢,𝑥𝑥
0 − 𝑢,𝑦𝑦

0 − 2𝑣,𝑥𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (3𝑤,𝑥𝑥𝑥

0 + 3𝑤,𝑥𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (−3𝜙𝑥,𝑥𝑥
0 − 𝜙𝑥,𝑦𝑦

0 − 2𝜙𝑦,𝑥𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (4𝜙𝑥

0)) 
(3.45am) 
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𝑄91 =
2

75
𝑙1

2 (𝐼�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(4𝜙𝑦

0)) 
(3.45an) 

𝑄92 =
2

75
𝑙1

2 (𝐼�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗̅̅̅̅ (3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽�̅�(−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁̅̅̅̅̅(4𝜙𝑦

0)) 
(3.45ao) 

𝑄93 =
2

75
𝑙1

2 (𝐼𝐼∗̅̅̅̅ (−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐼𝐼∗∗̅̅ ̅̅ ̅(3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐽𝐽∗̅̅̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (4𝜙𝑦

0)) 
(3.45ap) 

𝑄94 =
2

75
𝑙1

2 (𝐽�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (4𝜙𝑦

0)) 
(3.45aq) 

𝑄95 =
2

75
𝑙1

2 (𝐽�̅�(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝐽𝐽∗̅̅̅̅ (3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝐾𝐾̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑄𝑄̅̅ ̅̅ (4𝜙𝑦

0)) 
(3.45ar) 

𝑄95
̅̅ ̅̅ ̅ =

2

75
𝑙1

2 (𝑁𝑁̅̅̅̅̅(−2𝑢,𝑥𝑦
0 − 𝑣,𝑥𝑥

0 − 3𝑣,𝑦𝑦
0 ) + 𝑁𝑁∗̅̅ ̅̅ ̅̅ (3𝑤,𝑥𝑥𝑦

0 + 3𝑤,𝑦𝑦𝑦
0 )

+ 𝑄𝑄̅̅ ̅̅ (−2𝜙𝑥,𝑥𝑦
0 − 𝜙𝑦,𝑥𝑥

0 − 3𝜙𝑦,𝑦𝑦
0 ) + 𝑃𝑃̅̅ ̅̅ (4𝜙𝑦

0)) 
(3.45as) 

𝑄103 =
4

3
𝑙1

2 (−𝐼�̅�𝑤,𝑥𝑦
0 + 𝐿𝐿̅̅ ̅(2𝜙𝑥,𝑦

0 + 𝜙𝑦,𝑥
0 )) (3.45at) 

𝑄104 =
4

3
𝑙1

2 (−𝐿𝐿̅̅ ̅𝑤,𝑥𝑦
0 + 𝑀𝑀̅̅ ̅̅ ̅(2𝜙𝑥,𝑦

0 + 𝜙𝑦,𝑥
0 )) (3.45au) 

𝑄105 =
4

3
𝑙1

2 (−𝐿𝐿̅̅ ̅𝑤,𝑥𝑦
0 + 𝑀𝑀̅̅ ̅̅ ̅(2𝜙𝑥,𝑦

0 + 𝜙𝑦,𝑥
0 )) (3.45av) 

The functions 𝐼�̅�, 𝐽�̅�, 𝐾𝐾̅̅ ̅̅ , 𝐿𝐿̅̅ ̅, 𝑀𝑀̅̅ ̅̅ ̅, 𝑁𝑁̅̅̅̅̅, 𝑃𝑃̅̅ ̅̅ , 𝑄𝑄̅̅ ̅̅ , 𝐼𝐼∗̅̅̅̅ , 𝐼𝐼∗∗̅̅ ̅̅ ̅, 𝐽𝐽∗̅̅̅̅ , and 𝑁𝑁∗̅̅ ̅̅ ̅̅  used in the Eqs. (3.43), 

Eqs. (3.44), and Eqs. (3.45) are defined in the equations below. 

𝐼�̅� = ∫ 𝜇
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46a) 

𝐽�̅� = ∫ 𝜇𝑓(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46b) 

𝐾𝐾̅̅ ̅̅ = ∫ 𝜇𝑓(𝑧)2
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46c) 



Mathematical Formulation 

   

68  
 

𝐿𝐿̅̅ ̅ = ∫ 𝜇𝑓′(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46d) 

𝑀𝑀̅̅ ̅̅ ̅ = ∫ 𝜇(𝑓′(𝑧))
2

ℎ/2

−ℎ/2

ⅆ𝑧 (3.46e) 

𝑁𝑁̅̅̅̅̅ = ∫ 𝜇𝑓′′(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46f) 

𝑃𝑃̅̅ ̅̅ = ∫ 𝜇(𝑓′′(𝑧))
2

ℎ/2

−ℎ/2

ⅆ𝑧 (3.46g) 

𝑄𝑄̅̅ ̅̅ = ∫ 𝜇𝑓(𝑧)𝑓′′(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46h) 

𝐼𝐼∗̅̅̅̅ = ∫ 𝜇𝑧
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46i) 

𝐼𝐼∗∗̅̅ ̅̅ ̅ = ∫ 𝜇𝑧2
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46j) 

𝐽𝐽∗̅̅̅̅ = ∫ 𝜇𝑧𝑓(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46k) 

𝑁𝑁∗̅̅ ̅̅ ̅̅ = ∫ 𝜇𝑧𝑓′′(𝑧)
ℎ/2

−ℎ/2

ⅆ𝑧 (3.46l) 

The first variation of components of strain energy ‘U’ in the region ‘B’ are provided below. 

The first variation of components of strain energy due to Cauchy strain are:  

𝛿(1)𝑈𝜎 =
1

2
∫(𝜎𝑥𝑥𝛿(1)𝜖𝑥𝑥 + 𝜎𝑦𝑦𝛿(1)𝜖𝑦𝑦 + 𝜎𝑥𝑦𝛿(1)𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛿(1)𝛾𝑥𝑧

𝐵

+ 𝜎𝑦𝑧𝛿(1)𝛾𝑦𝑧) ⅆ𝐵 

(3.47) 

𝛿(1)𝑈𝜎
𝑁 =

1

2
∫ ∫ (𝑁𝑥𝑥(𝛿(1)𝑢,𝑥

0 + 𝑤,𝑥𝑥
0 𝛿(1)𝑤0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑁𝑦𝑦(𝛿(1)𝑣,𝑦
0 + 𝑤,𝑦𝑦

0 𝛿(1)𝑤0)

+ 𝑁𝑥𝑦(𝛿(1)𝑢,𝑦
0 + 𝛿(1)𝑣,𝑥

0 + 𝑤,𝑥
0𝛿(1)𝑤,𝑦

0 + 𝑤,𝑦
0 𝛿(1)𝑤,𝑥

0)) ⅆ𝑥 ⅆ𝑦 

(3.47a) 

𝛿(1)𝑈𝜎
𝑀 =

1

2
∫ ∫ (𝑀𝑥𝑥(−𝛿(1)𝑤,𝑥𝑥

0 ) + 𝑀𝑦𝑦(−𝛿(1)𝑤,𝑦𝑦
0 )

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑀𝑥𝑦(−2𝛿(1)𝑤,𝑥𝑦
0 )) ⅆ𝑥 ⅆ𝑦 

(3.47b) 
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𝛿(1)𝑈𝜎
𝑀a

=
1

2
∫ ∫ (𝑀𝑥𝑥

𝑎 (𝛿(1)𝜙𝑥,𝑥
0 ) + 𝑀𝑦𝑦

𝑎 (𝛿(1)𝜙𝑦,𝑦
0 )

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑀𝑥𝑦
𝑎 (𝛿(1)𝜙𝑥,𝑦

0 + 𝛿(1)𝜙𝑦,𝑥
0 )) ⅆ𝑥 ⅆ𝑦 

(3.47c) 

𝛿(1)𝑈𝜎
𝑆 =

1

2
∫ ∫ (𝑆𝑦𝑧(𝛿(1)𝛾𝑦𝑧) + 𝑆𝑥𝑧(𝛿(1)𝛾𝑥𝑧))

𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.47d) 

The first variation of components of strain energy due to symmetric curvature gradient tensor 

(𝑈𝑟) are 

𝛿(1)𝑈𝑟 =
1

2
∫(𝑟𝑥𝑥𝛿(1)𝜒𝑥𝑥

𝑠 + 𝑟𝑦𝑦𝛿(1)𝜒𝑦𝑦
𝑠 + 2𝑟𝑥𝑦𝛿(1)𝜒𝑥𝑦

𝑠 + 2𝑟𝑦𝑧𝛿(1)𝜒𝑦𝑧
𝑠

𝐵

+ 2𝑟𝑥𝑧𝛿(1)𝜒𝑥𝑧
𝑠 ) ⅆ𝐵 

(3.48) 

The independent components of Eq. (3.48) are defined in Eqs. (3.48a-e).  

1

2
∫ 𝑟𝑥𝑥𝛿(1)𝜒𝑥𝑥

𝑠 ⅆ𝐵

𝐵

=
1

2
∫ ∫ (𝑌13,𝑥𝑦𝛿(1)𝑤0 + 𝑌15,𝑥𝛿(1)𝜙𝑦

0)
𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.48a) 

1

2
∫ 𝑟𝑦𝑦𝛿(1)𝜒𝑦𝑦

𝑠 ⅆ𝐵

𝐵

=
1

2
∫ ∫ (𝑌23,𝑥𝑦𝛿(1)𝑤0 + 𝑌24,𝑦𝛿(1)𝜙𝑥

0)
𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.48b) 

1

2
∫ 2𝑟𝑥𝑦𝛿(1)𝜒𝑥𝑦

𝑠 ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑌33,𝑦𝑦𝛿(1)𝑤0 − 𝑌33,𝑥𝑥𝛿(1)𝑤0) + 𝑌34,𝑥𝛿(1)𝜙𝑥

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑌35,𝑦𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.48c) 

1

2
∫ 2𝑟𝑦𝑧𝛿(1)𝜒𝑦𝑧

𝑠 ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑌41,𝑦𝑦𝛿(1)𝑢0 + 𝑌42,𝑥𝑦𝛿(1)𝑣0) + 𝑌45,𝑥𝑦𝛿(1)𝜙𝑦

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑌44, 𝑦𝑦𝛿(1)𝜙𝑥
0 + 𝑌44

̅̅ ̅̅ 𝛿(1)𝜙𝑥
0) ⅆ𝑥 ⅆ𝑦 

(3.48d) 

1

2
∫ 2𝑟𝑥𝑧𝛿(1)𝜒𝑥𝑧

𝑠 ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑌51,𝑥𝑦𝛿(1)𝑢0 + 𝑌52,𝑥𝑥𝛿(1)𝑣0) + 𝑌54,𝑥𝑦𝛿(1)𝜙𝑥

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑌55,𝑥𝑥𝛿(1)𝜙𝑦
0 + 𝑌55

̅̅ ̅̅ 𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.48e) 
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The first variation of components of strain energy due to dilatation gradient 

tensor (𝑈𝐿)  
 

𝑈𝐿 =
1

2
∫(𝐿𝑥𝛿(1)𝜓𝑥 + 𝐿𝑦𝛿(1)𝜓𝑦 + 𝐿𝑧𝛿(1)𝜓𝑧) ⅆ𝐵

𝐵

 (3.49) 

The independent components of Eq. (3.49) are defined in Eqs. (3.49a-c).  

1

2
∫ 𝐿𝑥𝛿(1)𝜓𝑥 ⅆ𝐵

𝐵

=
1

2
∫ ∫ (𝑃11,𝑥𝑥𝛿(1)𝑢0 + 𝑃12,𝑥𝑦𝛿(1)𝑣0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (𝑃13,𝑥𝑥𝑥𝛿(1)𝑤0 + 𝑃13,𝑥𝑦𝑦𝛿(1)𝑤0) + 𝑃14,𝑥𝑥𝛿(1)𝜙𝑥
0

+ 𝑃15,𝑥𝑦𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.49a) 

1

2
∫ 𝐿𝑦𝛿(1)𝜓𝑦 ⅆ𝐵

𝐵

=
1

2
∫ ∫ (𝑃21,𝑥𝑦𝛿(1)𝑢0 + 𝑃22,𝑦𝑦𝛿(1)𝑣0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (𝑃23,𝑥𝑥𝑦𝛿(1)𝑤0 + 𝑃23,𝑦𝑦𝑦𝛿(1)𝑤0) + 𝑃24,𝑥𝑦𝛿(1)𝜙𝑥
0

+ 𝑃25,𝑦𝑦𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.49b) 

1

2
∫ 𝐿𝑧𝛿(1)𝜓𝑧 ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑃33,𝑥𝑥𝛿(1)𝑤0 + 𝑃33,𝑦𝑦𝛿(1)𝑤0) + 𝑃34,𝑥𝛿(1)𝜙𝑥

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑃35,𝑦𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.49c) 

The first variation of components of strain energy due to the deviatoric stretch 

gradient tensor (𝑈𝜏) are 
 

𝛿(1)𝑈𝜏 =
1

2
∫(𝜏𝑥𝑥𝑥

(1)
𝛿(1)휂𝑥𝑥𝑥

(1)
+ 𝜏𝑦𝑦𝑦

(1)
𝛿(1)휂𝑦𝑦𝑦

(1)
+ 𝜏𝑧𝑧𝑧

(1)
𝛿(1)휂𝑧𝑧𝑧

(1)
+ 3𝜏𝑥𝑥𝑦

(1)
𝛿(1)휂𝑥𝑥𝑦

(1)

𝐵

+ 3𝜏𝑥𝑥𝑧
(1)

𝛿(1)휂𝑥𝑥𝑧
(1)

+ 3𝜏𝑦𝑦𝑥
(1)

𝛿(1)휂𝑦𝑦𝑥
(1)

+ 3𝜏𝑦𝑦𝑧
(1)

𝛿(1)휂𝑦𝑦𝑧
(1)

+ 3𝜏𝑧𝑧𝑥
(1)

𝛿(1)휂𝑧𝑧𝑥
(1)

+ 3𝜏𝑧𝑧𝑦
(1)

𝛿(1)휂𝑧𝑧𝑦
(1)

+ 6𝜏𝑥𝑦𝑧
(1)

𝛿(1)휂𝑥𝑦𝑧
(1)

) ⅆ𝐵 

(3.50) 

The independent components of Eq. (3.50) are defined in following equations:  
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1

2
∫ 𝜏𝑥𝑥𝑥

(1)
𝛿(1)휂𝑥𝑥𝑥

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((2𝑄11,𝑥𝑥𝛿(1)𝑢0 − 𝑄11,𝑦𝑦𝛿(1)𝑢0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

− 2𝑄12,𝑥𝑦𝛿(1)𝑣0 + (−2𝑄13,𝑥𝑥𝑥𝛿(1)𝑤0 + 3𝑄13,𝑥𝑦𝑦𝛿(1)𝑤0)

+ (2𝑄14,𝑥𝑥𝛿(1)𝜙𝑥
0 − 𝑄14,𝑦𝑦𝛿(1)𝜙𝑥

0) + 2𝑄15,𝑥𝑦𝛿(1)𝜙𝑦
0

− 𝑄14
̅̅ ̅̅̅𝛿(1)𝜙𝑥

0) ⅆ𝑥 ⅆ𝑦 

(3.50a) 

1

2
∫ 𝜏𝑦𝑦𝑦

(1)
𝛿(1)휂𝑦𝑦𝑦

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ (−2𝑄21,𝑥𝑦𝛿(1)𝑢0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (−𝑄22,𝑥𝑥𝛿(1)𝑣0 + 2𝑄22,𝑦𝑦𝛿(1)𝑣0)

+ (3𝑄23,𝑥𝑥𝑦𝛿(1)𝑤0 − 2𝑄23,𝑦𝑦𝑦𝛿(1)𝑤0) − 2𝑄24,𝑥𝑦𝛿(1)𝜙𝑥
0

+ (−𝑄25,𝑥𝑥𝛿(1)𝜙𝑦
0 + 2𝑄25,𝑦𝑦𝛿(1)𝜙𝑦

0) − 𝑄25
̅̅ ̅̅ ̅𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.50b) 

1

2
∫ 𝜏𝑧𝑧𝑧

(1)
𝛿(1)휂𝑧𝑧𝑧

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑄33,𝑥𝑥𝛿(1)𝑤0 + 𝑄33,𝑦𝑦𝛿(1)𝑤0) − 2𝑄34,𝑥𝛿(1)𝜙𝑥

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

− 2𝑄35,𝑦𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.50c) 

1

2
∫ 3𝜏𝑥𝑥𝑦

(1)
𝛿(1)휂𝑥𝑥𝑦

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ (8𝑄41,𝑥𝑦𝛿(1)𝑢0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (4𝑄42,𝑥𝑥𝛿(1)𝑣0 − 3𝑄42,𝑦𝑦𝛿(1)𝑣0)

+ (−12𝑄43,𝑥𝑥𝑦𝛿(1)𝑤0 + 3𝑄43,𝑦𝑦𝑦𝛿(1)𝑤0) + 8𝑄44,𝑥𝑦𝛿(1)𝜙𝑥
0

+ (4𝑄45,𝑥𝑥𝛿(1)𝜙𝑦
0 − 3𝑄45,𝑦𝑦𝛿(1)𝜙𝑦

0) − 𝑄45
̅̅ ̅̅ ̅𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.50d) 
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1

2
∫ 3𝜏𝑥𝑥𝑧

(1)
𝛿(1)휂𝑥𝑥𝑧

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((−4𝑄53,𝑥𝑥𝛿(1)𝑤0 + 𝑄53,𝑦𝑦𝛿(1)𝑤0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 8𝑄54,𝑥𝛿(1)𝜙𝑥
0 − 2𝑄55,𝑦𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.50e) 

1

2
∫ 3𝜏𝑦𝑦𝑥

(1)
𝛿(1)휂𝑦𝑦𝑥

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((−3𝑄61,𝑥𝑥𝛿(1)𝑢0 + 4𝑄61,𝑦𝑦𝛿(1)𝑢0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 8𝑄62,𝑥𝑦𝛿(1)𝑣0 + (3𝑄63,𝑥𝑥𝑥𝛿(1)𝑤0 − 12𝑄63,𝑥𝑦𝑦𝛿(1)𝑤0)

+ (−3𝑄64,𝑥𝑥𝛿(1)𝜙𝑥
0 + 4𝑄64,𝑦𝑦𝛿(1)𝜙𝑥

0) + 8𝑄65,𝑥𝑦𝛿(1)𝜙𝑦
0

− 𝑄64
̅̅ ̅̅ ̅𝛿(1)𝜙𝑥

0) ⅆ𝑥 ⅆ𝑦 

(3.50f) 

1

2
∫ 3𝜏𝑦𝑦𝑧

(1)
𝛿(1)휂𝑦𝑦𝑧

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((𝑄73,𝑥𝑥𝛿(1)𝑤0 − 4𝑄73,𝑦𝑦𝛿(1)𝑤0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

− 2𝑄74,𝑥𝛿(1)𝜙𝑥
0 + 8𝑄75,𝑦𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.50g) 

1

2
∫ 3𝜏𝑧𝑧𝑥

(1)
𝛿(1)휂𝑧𝑧𝑥

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ ((−3𝑄81,𝑥𝑥𝛿(1)𝑢0 − 𝑄81,𝑦𝑦𝛿(1)𝑢0)

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

− 2𝑄82,𝑥𝑦𝛿(1)𝑣0 + (3𝑄83,𝑥𝑥𝑥𝛿(1)𝑤0 + 3𝑄83,𝑥𝑦𝑦𝛿(1)𝑤0)

+ (−3𝑄84,𝑥𝑥𝛿(1)𝜙𝑥
0 − 𝑄84,𝑦𝑦𝛿(1)𝜙𝑥

0) − 2𝑄85,𝑥𝑦𝛿(1)𝜙𝑦
0

− 𝑄84
̅̅ ̅̅ ̅𝛿(1)𝜙𝑥

0) ⅆ𝑥 ⅆ𝑦 

(3.50h) 



Chapter 3 
 

73 
 

1

2
∫ 3𝜏𝑧𝑧𝑦

(1)
𝛿(1)휂𝑧𝑧𝑦

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ (−2𝑄91,𝑥𝑦𝛿(1)𝑢0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (−𝑄92,𝑥𝑥𝛿(1)𝑣0 − 3𝑄92,𝑦𝑦𝛿(1)𝑣0)

+ (3𝑄93,𝑥𝑥𝑦𝛿(1)𝑤0 + 3𝑄93,𝑦𝑦𝑦𝛿(1)𝑤0) − 2𝑄94,𝑥𝑦𝛿(1)𝜙𝑥
0

+ (−𝑄95,𝑥𝑥𝛿(1)𝜙𝑦
0 − 3𝑄95,𝑦𝑦𝛿(1)𝜙𝑦

0) + 4𝑄95
̅̅ ̅̅ ̅𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.50i) 

1

2
∫ 3𝜏𝑥𝑦𝑧

(1)
𝛿(1)휂𝑥𝑦𝑧

(1)
ⅆ𝐵

𝐵

=
1

2
∫ ∫ (−𝑄103,𝑥𝑦𝛿(1)𝑤0 + 𝑄104,𝑦𝛿(1)𝜙𝑥

0
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑄105,𝑥𝛿(1)𝜙𝑦
0) ⅆ𝑥 ⅆ𝑦 

(3.50j) 

3.6.1.2 First Variation of Strain Energy due to Foundation 

The expression for the foundation strain energy ‘F’ in the region ‘B’ due to Winkler 

and Pasternak elastic foundation parameters, 𝐾𝑤 and 𝐾𝑝 is given in Eq. (3.51a), and its first 

variation is provided in Eq. (3.51b). 

𝐹 =
1

2
∫ ∫ [𝐾𝑤

1

2
(𝑤0)2 + 𝐾𝑝

1

2
{(𝑤0

,𝑥)
2

+ (𝑤0
,𝑦)

2
}]

𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.51a) 

𝛿(1)𝐹 =
1

2
∫ ∫ ((𝐾𝑤𝑤0 − 𝐾𝑝(𝑤,𝑥𝑥

0 + 𝑤,𝑦𝑦
0 )) 𝛿(1)𝑤0)

𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.51b) 

3.6.1.3 First Variation of Geometric Strain Energy 

The expression for the geometric strain energy ‘G’ because of in-plane pre-buckling 

stresses is given in Eq. (3.52a) and its first variation is given in Eq. (3.52b) and Eq. (3.52c). 

𝐺 =
1

2
∫ ∫ (

1

2
𝑛𝑥𝑥(𝑤,𝑥

0)
2

+
1

2
𝑛𝑦𝑦(𝑤,𝑦

0 )
2

+ 𝑛𝑥𝑦(𝑤,𝑥
0𝑤,𝑦

0 ))
𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.52a) 

𝛿(1)𝐺 =
1

2
∫ ∫ (𝑛𝑥𝑥𝑤,𝑥

0 𝛿(1)𝑤,𝑥
0 + 𝑛𝑦𝑦𝑤,𝑦

0 𝛿(1)𝑤,𝑦
0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑛𝑥𝑦(𝑤,𝑥
0𝛿(1)𝑤,𝑦

0 + 𝑤,𝑦
0 𝛿(1)𝑤,𝑥

0)) ⅆ𝑥 ⅆ𝑦 

(3.52b) 
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𝛿(1)𝐺 =
1

2
∫ ∫ (((𝑛𝑥𝑥𝑤,𝑥

0)
,𝑥

+ (𝑛𝑦𝑦𝑤,𝑦
0 )

,𝑦
+ (𝑛𝑥𝑦𝑤,𝑥

0 )
,𝑦

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ (𝑛𝑥𝑦𝑤,𝑦
0 )

,𝑥
) 𝛿(1)𝑤0) ⅆ𝑥 ⅆ𝑦 

(3.52c) 

In the above equation, 𝑛𝑖𝑗, where i,j=(x,y), denote the in-plane pre-buckling stress resultants.  

3.6.1.4 First Variation of External Work Done 

The expression for the first variation of work done due to the transverse patch loading 

applied on the microplate is provided in Eq. (3.53). 

𝛿̅𝑊 =
1

2
∫ ∫ (𝑓(𝑥, 𝑦)𝛿̅𝑤0)

𝑏/2

−𝑏/2

ⅆ𝑥
𝑎/2

−𝑎/2

ⅆ𝑦 (3.53) 

3.6.1.5 First Variation of Damping Energy 

The expression for the damping energy ‘C’ in the region ‘B’ is given in Eq. (3.54a), and 

its first variation is provided in Eq. (3.54b). 

𝐶 =
1

2
∫ ∫ (𝑐𝑑1𝑢0̇ ⋅ 𝑢0 + 𝑐𝑑2𝑣0̇ ⋅ 𝑣0 + 𝑐𝑑3𝑤0̇ ⋅ 𝑤0 + 𝑐𝑑4𝜙𝑥

0̇ ⋅ 𝜙𝑥
0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑐𝑑5𝜙𝑦
0̇ ⋅ 𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.54a) 

𝛿(1)𝐶 =
1

2
∫ ∫ (𝑐𝑑1𝑢0̇𝛿(1)𝑢0 + 𝑐𝑑2𝑣0̇𝛿(1)𝑣0 + 𝑐𝑑3𝑤0̇ 𝛿(1)𝑤0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝑐𝑑4𝜙𝑥
0̇ 𝛿(1)𝜙𝑥

0 + 𝑐𝑑5𝜙𝑦
0̇𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.54b) 

The terms, 𝑐𝑑1, 𝑐𝑑2, 𝑐𝑑3, 𝑐𝑑4, and 𝑐𝑑5 are obtained from the damping coefficient matrix 

computed using Rayleigh’s damping method. In the above equations and anywhere else in the 

thesis, the accent "( )̇ " indicates differentiation with respect to time ‘t’ and "( )̈ " indicates 

double differentiation with respect to time ‘t’. 

3.6.1.6 First Variation of Kinetic Energy 

The expression for the Kinetic energy ‘T’ in the region ‘B’ is given in Eq. (3.55a), and 

its first variation is provided in Eq. (3.55b) and Eq. (3.55c). 
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𝑇 =
1

2
∫ (𝜌 {

1

2
(�̇�)2 +

1

2
(�̇�)2 +

1

2
(�̇�)2}) ⅆ𝐵

𝐵

 (3.55a) 

𝛿(1)𝑇 =
1

2
∫(𝜌{�̇�𝛿(1)�̇� + �̇�𝛿(1)�̇� + �̇�𝛿(1)�̇�}) ⅆ𝐵

𝐵

 (3.55b) 

𝛿(1)𝑇 =
1

2
∫ ∫ (𝜌𝑔𝑢0̈𝛿(1)𝑢0 + 𝜌𝑔𝑣0̈𝛿(1)𝑣0 + 𝜌𝑔𝑤0̈ 𝛿(1)𝑤0

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2

+ 𝜌ℎ𝜙𝑥
0̈𝛿(1)𝜙𝑥

0 + 𝜌ℎ𝜙𝑦
0̈𝛿(1)𝜙𝑦

0) ⅆ𝑥 ⅆ𝑦 

(3.55c) 

The inertia terms 𝜌𝑔 and  𝜌ℎ are defined in the following equations   

𝜌𝑔 = ∫ 𝜌ⅆ𝑧

ℎ
2⁄

−ℎ
2⁄

 (3.55d) 

 𝜌ℎ = ∫ 𝜌𝑧2ⅆ𝑧 

ℎ
2⁄

−ℎ
2⁄

 (3.55e) 

3.6.2 Partial Differential Equations of Motion 

In dynamic problem, on substituting the formulations of strain energy, foundation strain 

energy, geometric strain energy, external work done, damping energy and kinetic energy’s first 

variation in Hamilton’s variational equation, and setting the coefficients of 𝛿(1)𝑢0, 𝛿(1)𝑣0, 

𝛿(1)𝑤0, 𝛿(1)𝜙𝑥
0  and 𝛿(1)𝜙𝑥

0 to zero, we get five governing partial differential equations. These 

are illustrated below. 

𝑁𝑥𝑥,𝑥 + N𝑥𝑦,𝑦 − 𝑌41,𝑦𝑦 − 𝑌51,𝑥𝑦 − 𝑃11,𝑥𝑥 − 𝑃21,𝑥𝑦 − 2𝑄11,𝑥𝑥 + 𝑄11,𝑦𝑦 + 2𝑄21,𝑥𝑦

− 8𝑄41,𝑥𝑦 + 3𝑄61,𝑥𝑥 − 4𝑄61,𝑦𝑦 + 3𝑄81,𝑥𝑥 + 𝑄81,𝑦𝑦 + 2𝑄91,𝑥𝑦

= 𝜌𝑔𝑢0̈ + 𝑐𝑑1𝑢0̇ 

    
(3.56a) 

𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 − 𝑌42,𝑥𝑦 − 𝑌52,𝑥𝑥 − 𝑃12,𝑥𝑦 − 𝑃22,𝑦𝑦 + 𝑄12,𝑥𝑦 + 𝑄22,𝑥𝑥 − 2𝑄22,𝑦𝑦 −

4𝑄42,𝑥𝑥 + 3𝑄42,𝑦𝑦 − 8𝑄62,𝑥𝑦 + 2𝑄82,𝑥𝑦 + 𝑄92,𝑥𝑥 + 3𝑄92,𝑦𝑦 = 𝜌𝑔𝑣0̈+𝑐𝑑2𝑣0̇ 
    
(3.56b) 

𝑀𝑥𝑥,𝑥𝑥
𝑚 + 2𝑀𝑥𝑦,𝑥𝑦

𝑚 + 𝑀𝑦𝑦,𝑦𝑦
𝑚 + (𝑁

^

𝑥𝑥𝑤,𝑥 + 𝑁
^

𝑥𝑦𝑤,𝑦)
,𝑥

+ (𝑁
^

𝑥𝑦𝑤,𝑥 + 𝑁
^

𝑦𝑦𝑤,𝑦)
,𝑦

− 𝑌13,𝑥𝑦 − 𝑌23,𝑥𝑦 − 𝑌33,𝑦𝑦 + 𝑌33,𝑥𝑥 + 𝑃13,𝑥𝑥𝑥 + 𝑃13,𝑥𝑦𝑦 + 𝑃23,𝑥𝑥𝑦

+ 𝑃23,𝑦𝑦𝑦 − 𝑃33,𝑥𝑥 − 𝑃33,𝑦𝑦 − 2𝑄13,𝑥𝑥𝑥 + 3𝑄13,𝑥𝑦𝑦 + 3𝑄23,𝑥𝑥𝑦

− 2𝑄23,𝑦𝑦𝑦 − 𝑄33,𝑥𝑥 − 𝑄33,𝑦𝑦 − 12𝑄43,𝑥𝑥𝑦 + 3𝑄43,𝑦𝑦𝑦 + 4𝑄53,𝑥𝑥

− 𝑄53,𝑦𝑦 + 3𝑄63,𝑥𝑥𝑥 − 12𝑄63,𝑥𝑦𝑦 − 𝑄73,𝑥𝑥 + 4𝑄73,𝑦𝑦 + 3𝑄83,𝑥𝑥𝑥

+ 3𝑄83,𝑥𝑦𝑦 + 3𝑄93,𝑥𝑥𝑦 + 3𝑄93,𝑦𝑦𝑦 + 𝑄103,𝑥𝑦 − 𝐾𝑤𝑤0

+ 𝐾𝑝(𝑤,𝑥𝑥
0 + 𝑤,𝑦𝑦

0 ) + 𝑓(𝑥, 𝑦) = 𝜌𝑔𝑤0̈ + 𝑐𝑑3𝑤0̇  

    
(3.56c) 

𝑀𝑥𝑥,𝑥
𝑎 + 𝑀𝑥𝑦,𝑦

𝑎 − 𝑆𝑥𝑧
𝑎 + 𝑌24,𝑦 + 𝑌34,𝑥 − 𝑌54,𝑥𝑦 − 𝑌44,𝑦𝑦 − 𝑌44

̅̅ ̅̅ − 𝑃14,𝑥𝑥 − 𝑃24,𝑥𝑦 +

𝑃34,𝑥 − 2𝑄14,𝑥𝑥 + 𝑄14,𝑦𝑦 + 𝑄14
̅̅ ̅̅̅ + 2𝑄24,𝑥𝑦 − 2𝑄34,𝑥 − 8𝑄44,𝑥𝑦 + 8𝑄54,𝑥 +

    
(3.56d) 
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3𝑄64,𝑥𝑥 − 4𝑄64,𝑦𝑦 + 𝑄64
̅̅ ̅̅ ̅ − 2𝑄74,𝑥 + 3𝑄84,𝑥𝑥 + 𝑄84,𝑦𝑦 − 4𝑄84

̅̅ ̅̅ ̅ + 2𝑄94,𝑥𝑦 +

𝑄104,𝑦 = 𝜌ℎ𝜙𝑥
0̈ +𝑐𝑑4𝜙𝑥

0̇  
𝑀𝑥𝑦,𝑥

𝑎 + 𝑀𝑦𝑦,𝑦
𝑎 − 𝑆𝑦𝑧

𝑎 + 𝑌15,𝑥 + 𝑌35,𝑦 − 𝑌45,𝑥𝑦 − 𝑌55,𝑥𝑥 − 𝑌55
̅̅ ̅̅ − 𝑃15,𝑥𝑦 − 𝑃25,𝑦𝑦 +

𝑃35,𝑦 + 2𝑄15,𝑥𝑦 − 2𝑄25,𝑦𝑦 + 𝑄25
̅̅ ̅̅ ̅ + 𝑄25,𝑥𝑥 − 2𝑄35,𝑦 − 4𝑄45,𝑥𝑥 + 3𝑄45,𝑦𝑦 −

2𝑄55,𝑦 − 8𝑄65,𝑥𝑦 + 𝑄45
̅̅ ̅̅ ̅ + 8𝑄75,𝑦 + 2𝑄85,𝑥𝑦 + 𝑄95,𝑥𝑥 − 4𝑄95

̅̅ ̅̅ ̅ + 3𝑄95,𝑦𝑦 +

𝑄105,𝑥 = 𝜌ℎ𝜙𝑦
0̈+𝑐𝑑5𝜙𝑦

0̇ 

    
(3.56e) 

In Eq. (3.56c), 𝑁
^

𝑖𝑗 = [𝑁𝑖𝑗 − 𝑛𝑖𝑗], where i, j = (x, y) and 𝑛𝑖𝑗 are the in-plane pre-buckling stress 

resultants due to the applied localized in-plane loading or localized thermal loads, and 𝑁𝑖𝑗 are 

the stress resultants.  

Note: 

• In the present investigation, dynamic or static problems are solved under the presence 

of either in-plane localized mechanical/thermal loading or transverse patch loading. 

Any combination of loads are not considered in the present study. 

• In case of transverse patch loadings, the in-plane pre-buckling stress resultants are not 

present (𝑛𝑖𝑗 = 0). Thus in Eq. (3.56c), 𝑁
^

𝑖𝑗 = 𝑁𝑖𝑗.  

• In the case of in-plane loading/thermal loading, transverse loading is absent. Thus, 

𝑓(𝑥, 𝑦) = 0.  

• In case elastic foundation is not considered, 𝐾𝑤 = 𝐾𝑝 = 0. 

• In case of static problems, principle of minimization of total potential energy is used. 

The governing PDEs are obtained by taking the functional derivative of the total 

potential energy with respect to each field variable and setting it equal to zero. The 

equations obtained are same as Eqs. (3.56a-e) The terms due to kinetic energy and 

damping energy are not present. Thus, 𝜌𝑔𝑢0̈ = 𝑐𝑑1𝑢0̇ = 𝜌𝑔𝑣0̈ = 𝑐𝑑2𝑣0̇ = 𝜌𝑔𝑤0̈ =

𝑐𝑑3𝑤0̇ = 𝜌ℎ𝜙𝑥
0̈ = 𝑐𝑑4𝜙𝑥

0̇ = 𝜌ℎ𝜙𝑦
0̈ = 𝑐𝑑5𝜙𝑦

0̇ = 0.  

3.7 Boundary Conditions of Microplate 

In the present investigation, four different types of boundary conditions i.e., CCCC, 

CSCS, SCSC, and SSSS, are considered. In the above notation of boundary conditions, the four 

letters represent the restraint applied at the edges of the microplate in the counterclockwise 

direction, beginning from the left edge. The letter ‘S’ denotes a simply supported edge, while 

the letter ‘C’ denotes clamped edge. The boundary conditions to be satisfied at the edges of the 

plate for different conditions are denoted by the following equations: 
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(a) Simply supported (S) at 𝑥 = − 𝑎
2⁄  and 𝑎 2⁄  

i. In case of in-plane mechanical loading, 

�̂�𝑥𝑥 = 𝑁0
̅̅̅̅ (𝑡, 𝑦), 𝑀𝑥𝑥

𝑎 = 𝑀𝑥𝑥 = 𝑣0 = 𝑤0 = 𝜙𝑦
0 = 0 (3.57a) 

Where, 𝑁0
̅̅̅̅ (𝑡, 𝑦) denotes the in-plane edge loading expression. 

ii. In case of transverse loading 

𝑀𝑥𝑥
𝑎 = 𝑀𝑥𝑥 = 𝑣0 = 𝑤0 = 𝜙𝑦

0 = 0 (3.57b) 

iii. In case of thermal loading 

𝑀𝑥𝑥
𝑎 = 𝑀𝑥𝑥 = 𝑢0 = 𝑣0 = 𝑤0 = 𝜙𝑦

0 = 0 (3.57c) 

(b)  Simply supported (S) at 𝑦 = − 𝑏
2⁄  and  𝑏 2⁄  

i. In case of in-plane mechanical loading, 

𝑁
^

𝑦𝑦 = 0, 𝑀𝑦𝑦
𝑎 = 𝑀𝑦𝑦 = 𝑢0 = 𝑤0 = 𝜙𝑥

0 = 0 (3.58a) 

ii. In case on transverse loading 

𝑀𝑦𝑦
𝑎 = 𝑀𝑦𝑦 = 𝑢0 = 𝑤0 = 𝜙𝑥

0 = 0 (3.58b) 

iii. In case of thermal loading 

𝑀𝑦𝑦
𝑎 = 𝑀𝑦𝑦 = 𝑢0 = 𝑣0 = 𝑤0 = 𝜙𝑥

0 = 0 (3.58c) 

(c) Clamped (C) at 𝑥 = − 𝑎
2⁄  and 𝑎 2⁄  

i. In case of in-plane mechanical loading, 

�̂�𝑥𝑥 = 𝑁0
̅̅̅̅ (𝑡, 𝑦), 𝑣0 = 𝑤0 = 𝜙𝑥

0 = 𝜙𝑦
0 = 0 (3.59a) 

ii. In case of transverse loading 

𝑣0 = 𝑤0 = 𝜙𝑥
0 = 𝜙𝑦

0 = 0 (3.59b) 

iii. In case of thermal loading 

𝑢0 = 𝑣0 = 𝑤0 = 𝜙𝑥
0 = 𝜙𝑦

0 = 0 (3.59c) 

(d) Clamped (C) at 𝑦 = − 𝑏
2⁄  and  𝑏 2⁄  

i. In case of in-plane mechanical loading, 

𝑁
^

𝑦𝑦 = 0, 𝑢𝑜 = 𝑤𝑜 = 𝜙𝑥
0 = 𝜙𝑦

0 = 0 (3.60a) 

Where, 𝑁0
̅̅̅̅  denotes the magnitude of in-plane loading at ‘y’ distance from the origin at time ‘t’ 
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ii. In case on transverse loading 

𝑢𝑜 = 𝑤𝑜 = 𝜙𝑥
0 = 𝜙𝑦

0 = 0 (3.60b) 

iii. In case of thermal loading 

𝑢0 = 𝑣0 = 𝑤0 = 𝜙𝑥
0 = 𝜙𝑦

0 = 0 (3.60c) 

3.8 Analytical Expressions for In-plane Pre-buckling Stresses 

The analytical expressions for in-plane pre-buckling stresses due to in-plane 

mechanical load or thermal loads are obtained by satisfying the in-plane stress equilibrium 

equation and solving the strain compatibility condition in terms of the Airy’s stress function 

(𝜙). The methodology to deduce these expressions are discussed in the following sub-sections. 

3.8.1 Pre-buckling Stresses due to Localized Thermal Loading 

The analytical expressions for pre-buckling internal thermal stress resultants, 𝑛𝑖𝑗, due 

to localized heating on an isotropic plate are computed by solving the thermoelastic problem 

discussed in this section. In pre-buckling condition for isotropic plate 𝛏 and 𝛏𝒂 are null. Thus, 

Eq. (3.40a) and Eq. (3.40b) can be written as:   

𝐍 = 𝐀𝛆𝟎 − 𝐍𝐓 (3.62a) 

𝐌𝒎 = 𝐁𝛆𝟎 − 𝐌𝐓 (3.62b) 

The influence of thermal stresses is only considered on the classical stress components.  

The pre-buckling strains due to partial thermal load are related to the thermal stress resultants 

using Eq. (3.62a) as:  

휀𝑥𝑥
0 =

1

𝐸
{(𝑁𝑇)𝑥𝑥 + 𝑛𝑥𝑥} −

𝜈

𝐸
{(𝑁𝑇)𝑦𝑦 + 𝑛𝑦𝑦} (3.63a) 

휀𝑦𝑦
0 = −

𝜈

𝐸
{(𝑁𝑇)𝑥𝑥 + 𝑛𝑥𝑥} +

1

𝐸
{(𝑁𝑇)𝑦𝑦 + 𝑛𝑦𝑦} (3.63b) 

𝛾𝑥𝑦
0 =

2(1 + 𝜈)

𝐸
{(𝑁𝑇)𝑥𝑦 + 𝑛𝑥𝑦} (3.63c) 

The internal thermal stress resultants are assumed in terms of Airy’s stress function (φ) as: 

𝑛𝑥𝑥 =
𝜕2𝛷

𝜕𝑦2
,  𝑛𝑦𝑦 =

𝜕2𝛷

𝜕𝑥2
,  𝑛𝑥𝑦 = −

𝜕2𝛷

𝜕𝑥𝜕𝑦
 (3.64) 

The above expressions of stress resultants in terms of Airy’s stress function automatically 
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satisfy the equilibrium equations. Hence, to obtain explicit expressions of internal stress 

resultants (𝑛𝑥𝑥, 𝑛𝑦𝑦, and 𝑛𝑥𝑦) strain compatibility conditions need to be solved. 

The strain compatibility condition for a plate is: 

𝜕2휀𝑥𝑥
0

𝜕𝑦2
+

𝜕2휀𝑦𝑦
0

𝜕𝑥2
=

𝜕2𝛾𝑥𝑦
0

𝜕𝑥𝜕𝑦
 (3.65) 

The internal thermal stress resultants in terms of Airy’s stress function (φ) (Eq. (3.64)) are 

included in Eqs. (3.63a-c) and used in Eq. (3.65) to obtain the following equilibrium equation: 

𝜕4𝛷

𝜕𝑥4
+ 2

𝜕4𝛷

𝜕𝑥2𝜕𝑦2
+

𝜕4𝛷

𝜕𝑦4

= 2(1 + 𝜈)
𝜕2(𝑁𝑇)𝑥𝑦

𝜕𝑥𝜕𝑦
+ 𝜈 (

𝜕2(𝑁𝑇)𝑥𝑥

𝜕𝑥2
+

𝜕2(𝑁𝑇)𝑦𝑦

𝜕𝑦2
)

− (
𝜕2(𝑁𝑇)𝑦𝑦

𝜕𝑥2
+

𝜕2(𝑁𝑇)𝑥𝑥

𝜕𝑦2
) 

(3.66) 

The component of (𝑁𝑇)𝑥𝑦 is absent in Eq. (3.66) as α𝑥𝑦
𝑇 =0 for an isotropic plate. The internal 

thermal stress resultants are then computed by addressing the in-plane stress equilibrium 

equation in Eq.(3.66). As Eq. (3.66) is a non-homogeneous partial differential equation, its 

solution (𝛷) consists of complimentary solution (𝛷CS)  and the particular integral (𝛷PI), 𝛷 =

𝛷CS + 𝛷PI. The complimentary solution is assumed in terms of trigonometric series as 

(Morimoto et al. 2006), 

𝛷CS(𝑥, 𝑦) = ∑ 𝑟𝑖
∞
𝑖=1 (𝑦) cos( 휃𝑖𝑥) + ∑ 𝑠𝑗

∞
𝑗=1 (𝑥) cos( 𝛽𝑗𝑦)  (3.67) 

In the above equation, 휃𝑖 =
(2𝑖−1)𝜋

𝑎
, and  𝛽𝑗 =

(2𝑗−1)𝜋

𝑏
. On substituting Eq. (3.67) in Eq. (3.66), 

we get two ordinary differential equations from coefficients of cos( 휃𝑖𝑥) and cos( 𝛽𝑗𝑦) 

respectively. These are: 

ⅆ4𝑟𝑖(𝑦)

ⅆ𝑦4
− 2휃𝑖

2 ⅆ2𝑟𝑖(𝑦)

ⅆ𝑦2
+ 휃𝑖

4𝑟𝑖(𝑦) = 0 (3.68a) 

ⅆ4𝑠𝑗(𝑥)

ⅆ𝑥4
− 2𝛽𝑗

2 ⅆ2𝑠𝑗(𝑥)

ⅆ𝑥2
+ 𝛽𝑗

4𝑠𝑗(𝑥) = 0 (3.68b) 

If  𝑟𝑖(𝑦) = 𝑒𝑘1𝑦 and 𝑠𝑗(𝑥) = 𝑒𝑘2𝑦 in Eq. (3.68a) and Eq. (3.68b), 𝑘1 = ±휃𝑖, ±휃𝑖 and 𝑘2 =

±𝛽𝑗, ±𝛽𝑗. Considering symmetry about the coordinate axes, 𝑟𝑖(𝑦) = 𝑟𝑖(−𝑦) and 𝑠𝑗(𝑥) =

𝑠𝑗(−𝑥). Thus, the solution for Eqs. (3.68a-b) are: 
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𝑟𝑖(𝑦) = 𝑅𝑖1 cosh( 휃𝑖𝑦) + 𝑅𝑖2𝑦 sinh(휃𝑖𝑦) (3.69a) 

𝑠𝑗(𝑥) = 𝑆𝑗1 cosh( 𝛽𝑗𝑥) + 𝑆𝑗2𝑥 sinh(𝛽𝑗𝑥) (3.69b) 

On substituting Eqs. (3.69a-b) in Eq. (3.67), we get 

𝛷CS(𝑥, 𝑦) = ∑{𝑅𝑖1 cosh( 휃𝑖𝑦) + 𝑅𝑖2𝑦 sinh(휃𝑖𝑦)}

∞

𝑖=1

cos( 휃𝑖𝑥)  

+ ∑{𝑆𝑗1 cosh( 𝛽𝑗𝑥) + 𝑆𝑗2𝑥 sinh(𝛽𝑗𝑥)}

∞

𝑗=1

cos( 𝛽𝑗𝑦)  

(3.70) 

The particular integral for Eq. (3.66) is: 

𝛷PI(𝑥, 𝑦)

= − ∑ ∑
(−𝜈𝑁𝑥𝑥

𝑐 + 𝑁𝑦𝑦
𝑐 )휃𝑖

2 + (−𝜈𝑁𝑦𝑦
𝑐 + 𝑁𝑥𝑥

𝑐 )𝛽𝑗
2

휃𝑖
4 + 2휃𝑖

2𝛽𝑗
2 + 𝛽𝑗

4

∞

𝑗=1

∞

𝑖=1

𝑓𝑖𝑗 cos( 휃𝑖𝑥) cos( 𝛽𝑗𝑦) 
(3.71) 

Thus, on including the solution of 𝛷 in Eq. (3.64), we get the internal thermal stress resultants 

as follows: 

𝑛𝑥𝑥 = ∑ cos( 휃𝑖𝑥){𝑅𝑖1cosh(휃𝑖𝑦)휃𝑖
2 + 𝑅𝑖2(2휃𝑖cosh(휃𝑖𝑦) +∞

𝑖=1

휃𝑖
2𝑦 sinh(휃𝑖𝑦))} − ∑ cos( 𝛽𝑗𝑦){𝑆𝑗1cosh(𝛽𝑗𝑥) + 𝑆𝑗2𝑥 sinh(𝛽𝑗𝑥)}𝛽𝑗

2∞
𝑗=1 −

∑ ∑
(−𝜈𝑁𝑥𝑥

𝑐 +𝑁𝑦𝑦
𝑐 )𝜃𝑖

2+(−𝜈𝑁𝑦𝑦
𝑐 +𝑁𝑥𝑥

𝑐 )𝛽𝑗
2

𝜃𝑖
4+2𝜃𝑖

2𝛽𝑗
2+𝛽𝑗

4
∞
𝑗=1

∞
𝑖=1 𝑓𝑖𝑗 cos(휃𝑖𝑥) cos(𝛽𝑗𝑦) 𝛽𝑗

2  

(3.72a) 

𝑛𝑦𝑦 = − ∑ cos( 휃𝑖𝑥){𝑅𝑖1cosh(휃𝑖𝑦) + 𝑅𝑖2𝑦 sinh(휃𝑖𝑦)}휃𝑖
2∞

𝑖=1 +

∑ cos( 𝛽𝑗𝑦){𝑆𝑗1cosh(𝛽𝑗𝑥)𝛽𝑗
2 + 𝑆𝑗2(2𝛽𝑗cosh(𝛽𝑗𝑥) + 𝛽𝑗

2𝑥 sinh(𝛽𝑗𝑥))}∞
𝑗=1 −

∑ ∑
(−𝜈𝑁𝑥𝑥

𝑐 +𝑁𝑦𝑦
𝑐 )𝜃𝑖

2+(−𝜈𝑁𝑦𝑦
𝑐 +𝑁𝑥𝑥

𝑐 )𝛽𝑗
2

𝜃𝑖
4+2𝜃𝑖

2𝛽𝑗
2+𝛽𝑗

4
∞
𝑗=1

∞
𝑖=1 𝑓𝑖𝑗 cos(휃𝑖𝑥) cos(𝛽𝑗𝑦) 휃𝑖

2  

(3.72b) 

(𝑛)𝑥𝑦 = ∑ sin( 휃𝑖𝑥)휃𝑖{𝑅𝑖1sinh(휃𝑖𝑦)휃𝑖 + 𝑅𝑖2(sinh(휃𝑖𝑦) +∞
𝑖=1

휃𝑖𝑦 cosh(휃𝑖𝑦))}  + ∑ sin( 𝛽𝑗𝑦)𝛽𝑗{𝑆𝑗1sinh(𝛽𝑗𝑥)𝛽𝑗 + 𝑆𝑗2(sinh(𝛽𝑗𝑥) +∞
𝑗=1

𝛽𝑗𝑥 cosh(𝛽𝑗𝑥))} −

∑ ∑
(−𝜈𝑁𝑥𝑥

𝑐 +𝑁𝑦𝑦
𝑐 )𝜃𝑖

2+(−𝜈𝑁𝑦𝑦
𝑐 +𝑁𝑥𝑥

𝑐 )𝛽𝑗
2

𝜃𝑖
4+2𝜃𝑖

2𝛽𝑗
2+𝛽𝑗

4
∞
𝑗=1

∞
𝑖=1 𝑓𝑖𝑗 sin(휃𝑖𝑥) sin(𝛽𝑗𝑦) 𝛽𝑗휃𝑖  

(3.72c) 

On integrating the expressions in Eqs. (3.63a-c), we get the in-plane deformations 𝑢(𝑥, 𝑦) and 

𝑣(𝑥, 𝑦) as, 
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𝑢(𝑥, 𝑦) =

− ∑ [
𝑅𝑖1 sin(휃𝑖𝑥) cosh(휃𝑖𝑦)

𝜃𝑖

𝐸
(𝜈 + 1) +

𝑅𝑖2 {2 sin(휃𝑖𝑥) cosh(휃𝑖𝑦))
1

𝐸
+ 𝑦 sinh(휃𝑖𝑦) sin(휃𝑖𝑥)

𝜃𝑖

𝐸
(𝜈 + 1)}

]∞
𝑖=1 +

∑ [
𝑆𝑗1 cos(𝛽𝑗𝑦) sinh(𝛽𝑗𝑥)

𝛽𝑗

𝐸
(𝜈 + 1) +

𝑆𝑗2 {cos(𝛽𝑗𝑦) sinh(𝛽𝑗𝑥)
1

𝐸
(𝜈 − 1) + 𝑥 cos(𝛽𝑗𝑦) cosh(𝛽𝑗𝑥)

𝛽𝑗

𝐸
(𝜈 + 1)}

] +∞
𝑗=1

∑ ∑
{(1−𝜈2)𝜃𝑖

2+2(𝜈+1)𝛽𝑗
2}𝑁𝑥𝑥

𝑐 −{1+2𝜈+𝜈2}𝛽𝑗
2𝑁𝑦𝑦

𝑐

𝜃𝑖
4+2𝜃𝑖

2𝛽𝑗
2+𝛽𝑗

4 𝑓𝑖𝑗
𝜃𝑖

𝐸
sin(휃𝑖𝑥) cos(𝛽𝑗𝑦)∞

𝑗=1
∞
𝑖=1   

 

(3.73a) 

𝑣(𝑥, 𝑦) =

∑ [
𝑅𝑖1 cos(휃𝑖𝑥) sinh(휃𝑖𝑦)

𝜃𝑖

𝐸
(𝜈 + 1) +

𝑅𝑖2 {cos(휃𝑖𝑥) sinh(휃𝑖𝑦))
1

𝐸
(𝜈 − 1) + 𝑦 cosh(휃𝑖𝑦) cos(휃𝑖𝑥)

𝜃𝑖

𝐸
(𝜈 + 1)}

]∞
𝑖=1 −

∑ [
𝑆𝑗1 sin(𝛽𝑗𝑦) cosh(𝛽𝑗𝑥)

𝛽𝑗

𝐸
(𝜈 + 1) +

𝑆𝑗2 {2 sin(𝛽𝑗𝑦) cosh(𝛽𝑗𝑥)
1

𝐸
+ 𝑥 sin(𝛽𝑗𝑦) sinh(𝛽𝑗𝑥)

𝛽𝑗

𝐸
(𝜈 + 1)}

] −∞
𝑗=1

∑ ∑
{(1−𝜈2)𝛽𝑗

2+2(𝜈+1)𝜃𝑖
2}𝑁𝑦𝑦

𝑐 −{1+2𝜈+𝜈2}𝜃𝑖
2𝑁𝑥𝑥

𝑐

𝜃𝑖
4+2𝜃𝑖

2𝛽𝑗
2+𝛽𝑗

4 𝑓𝑖𝑗
𝛽𝑗

𝐸
sin(𝛽𝑗𝑦) cos(휃𝑖𝑥)∞

𝑗=1
∞
𝑖=1   

(3.73b) 

In Eqs. (3.73a-b), the coefficients (𝑅𝑖1, 𝑅𝑖2, 𝑆𝑗1, 𝑆𝑗2) are calculated by considering the 

constraints of immovable in-plane displacement boundary conditions, 𝑢 = 0 and 𝑣 = 0 at 𝑥 =

±
𝑎

2
 and 𝑦 = ±

𝑏

2
. This results in the following four equations which are simultaneously solved 

to obtain the unknown coefficients. 

𝑅𝑖2 = −
cosh (휃𝑖

𝑏
2)

휃𝑖

𝐸
(𝜈 + 1)

{(2 cosh (휃𝑖
𝑏
2)

1
𝐸) + (

𝑏
2 sinh (휃𝑖

𝑏
2)

휃𝑖

𝐸
(𝜈 + 1))}

𝑅𝑖1 (3.74a) 

𝑆𝑗2 = −
cosh (𝛽𝑗

𝑎
2)

𝛽𝑗

𝐸
(𝜈 + 1)

{(2 cosh (𝛽𝑗
𝑎
2)

1
𝐸) + (

𝑎
2 sinh (𝛽𝑗

𝑎
2)

𝛽𝑗

𝐸
(𝜈 + 1))}

𝑆𝑗1 (3.74b) 
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4

𝑏
sin (휃𝑖

𝑎

2
) sin (𝛽𝑗

𝑏

2
)

𝛽𝑗

휃𝑖
2 + 𝛽𝑗

2 [cosh (휃𝑖

𝑏

2
) {𝑅𝑖1

휃𝑖

𝐸
(𝜈 + 1)

+ 𝑅𝑖2

2

𝐸
(1 −

휃𝑖
2(𝜈 + 1)

휃𝑖
2 + 𝛽𝑗

2 )} + 𝑅𝑖2

휃𝑖

𝐸
(𝜈 + 1)

𝑏

2
sinh (휃𝑖

𝑏

2
)]

− 𝑆𝑗1 sinh (𝛽𝑗

𝑎

2
)

𝛽𝑗

𝐸
(𝜈 + 1) − 𝑆𝑗2 {sinh (𝛽𝑗

𝑎

2
)

(𝜈 − 1)

𝐸
+

𝑎

2
cosh (𝛽𝑗

𝑎

2
)

𝛽𝑗

𝐸
(𝜈 + 1)}

+ ∑ ∑ 𝑓𝑖𝑗 sin (휃𝑖

𝑎

2
)

휃𝑖

𝐸

{(1 − 𝜈2)휃𝑖
2 + 2(𝜈 + 1)𝛽𝑗

2}𝑁𝑥𝑥
𝑐 − {1 + 2𝜈 + 𝜈2}𝛽𝑗

2𝑁𝑦𝑦
𝑐

휃𝑖
4 + 2휃𝑖

2𝛽𝑗
2 + 𝛽𝑗

4

∞

𝑗=1

∞

𝑖=1

 

(3.74c) 

4

𝑎
sin (𝛽𝑗

𝑏

2
) sin (휃𝑖

𝑎

2
)

휃𝑖

휃𝑖
2 + 𝛽𝑗

2 [cosh (𝛽𝑗

𝑎

2
) {𝑆𝑗1

𝛽𝑗

𝐸
(𝜈 + 1)

+ 𝑆𝑗2

2

𝐸
(1 −

𝛽𝑗
2(𝜈 + 1)

휃𝑖
2 + 𝛽𝑗

2 )} + 𝑆𝑗2

𝛽𝑗

𝐸
(𝜈 + 1)

𝑎

2
sinh (𝛽𝑗

𝑎

2
)]

− 𝑅𝑖1 sinh (휃𝑖

𝑏

2
)

휃𝑖

𝐸
(𝜈 + 1) − 𝑅𝑖2 {sinh (휃𝑖

𝑏

2
)

(𝜈 − 1)

𝐸
+

𝑏

2
cosh (휃𝑖

𝑏

2
)

휃𝑖

𝐸
(𝜈 + 1)}

+ ∑ ∑ 𝑓𝑖𝑗 sin (𝛽𝑗

𝑏

2
)

𝛽𝑗

𝐸

{(1 − 𝜈2)𝛽𝑗
2 + 2(𝜈 + 1)휃𝑖

2}𝑁𝑦𝑦
𝑐 − {1 + 2𝜈 + 𝜈2}휃𝑖

2𝑁𝑥𝑥
𝑐

휃𝑖
4 + 2휃𝑖

2𝛽𝑗
2 + 𝛽𝑗

4

∞

𝑗=1

∞

𝑖=1

 

(3.74d) 

3.8.2 Pre-buckling Stresses due to Non-uniform In-plane Mechanical Loading 

The analytical expressions for pre-buckling stresses resultants (𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜏𝑥𝑦) for an 

isotropic plate due to non-uniform in-plane uniaxial compressive loading are determined in this 

section using a similar methodology used for thermal loading. The equilibrium equation is 

homogeneous in this problem and expressed as: 

𝜕4𝛷

𝜕𝑥4
+ 2

𝜕4𝛷

𝜕𝑥2𝜕𝑦2
+

𝜕4𝛷

𝜕𝑦4
= 0 (3.75) 

In this, problem, the in-plane stress boundary conditions at all edges of the plate are used to 

develop the analytical expressions of the pre-buckling stresses. These conditions are: 

𝑛𝑥𝑥 (±
𝑎

2
, 𝑦) = 𝑁(𝑦), 𝑛𝑥𝑦 (±

𝑎

2
, 𝑦) = 0,  𝑛𝑥𝑦 (𝑥, ±

𝑏

2
) = 0, 𝑛𝑦𝑦 (𝑥, ±

𝑏

2
) = 0                      (3.76) 

In Eq. (3.76), 𝑁(𝑦) denotes the generalized function representing different load distributions 

at the edge of the plate discussed earlier in section 3.5.1. The complimentary solution is same 

as that for thermal loading (𝛷CS(𝑥, 𝑦)), given in Eq. (3.70). However, to include the boundary 

condition of 𝑛𝑥𝑥 (±
𝑎

2
, 𝑦) = 𝑁(𝑦), a particular integral (𝛷PI(𝑥, 𝑦)) is included as given below. 
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𝛷PI(𝑥, 𝑦) =  𝑅0𝑦2 (3.77) 

Thus, the solution, 𝜙(x, 𝑦) = 𝛷CS(𝑥, 𝑦) + 𝛷PI(𝑥, 𝑦) is: 

𝜙 (𝑥, 𝑦) = ∑{𝑅𝑖1 cosh( 휃𝑖𝑦) + 𝑅𝑖2𝑦 sinh(휃𝑖𝑦)}

∞

𝑖=1

cos( 휃𝑖𝑥)  

+ ∑{𝑆𝑗1 cosh( 𝛽𝑗𝑥) + 𝑆𝑗2𝑥 sinh(𝛽𝑗𝑥)}

∞

𝑗=1

cos( 𝛽𝑗𝑦)  + 𝑅0𝑦2 

                      

(3.78) 

where,  휃𝑖 =
(2𝑖−1)𝜋

𝑎
, and  𝛽𝑗 =

(2𝑗−1)𝜋

𝑏
. Thus, using Eq. 3.78 in Eq. (3.64), we get the in-plane 

stress resultants as follows: 

𝑛𝑥𝑥 = ∑ cos( 휃𝑖𝑥){𝑅𝑖1cosh(휃𝑖𝑦)휃𝑖
2 + 𝑅𝑖2(2휃𝑖cosh(휃𝑖𝑦) + 휃𝑖

2𝑦 sinh(휃𝑖𝑦))}

∞

𝑖=1

− ∑ cos( 𝛽𝑗𝑦){𝑆𝑗1cosh(𝛽𝑗𝑥) + 𝑆𝑗2𝑥 sinh(𝛽𝑗𝑥)}𝛽𝑗
2

∞

𝑗=1

+ 2𝑅0 

(3.79) 

𝑛𝑦𝑦 = − ∑ cos( 휃𝑖𝑥){𝑅𝑖1cosh(휃𝑖𝑦) + 𝑅𝑖2𝑦 sinh(휃𝑖𝑦)}휃𝑖
2

∞

𝑖=1

+ ∑ cos( 𝛽𝑗𝑦){𝑆𝑗1cosh(𝛽𝑗𝑥)𝛽𝑗
2

∞

𝑗=1

+ 𝑆𝑗2(2𝛽𝑗cosh(𝛽𝑗𝑥) + 𝛽𝑗
2𝑥 sinh(𝛽𝑗𝑥))} 

(3.80) 

𝑛𝑥𝑦 = ∑ sin( 휃𝑖𝑥)휃𝑖{𝑅𝑖1sinh(휃𝑖𝑦)휃𝑖

∞

𝑖=1

+ 𝑅𝑖2(sinh(휃𝑖𝑦)

+ 휃𝑖𝑦 cosh(휃𝑖𝑦))}  + ∑ sin( 𝛽𝑗𝑦)𝛽𝑗{𝑆𝑗1sinh(𝛽𝑗𝑥)𝛽𝑗

∞

𝑗=1

+ 𝑆𝑗2(sinh(𝛽𝑗𝑥) + 𝛽𝑗𝑥 cosh(𝛽𝑗𝑥))} 

(3.81) 

 In order to obtain the coefficients, 𝑅𝑖1, 𝑅𝑖2, 𝑆𝑗1, 𝑆𝑗2 in expressions 휂𝑥𝑥(𝑥, 𝑦), 휂𝑦𝑦(𝑥, 𝑦) and 

휂𝑥𝑦(𝑥, 𝑦), the in-plane stress boundary conditions in Eq. (3.76) are used. Thus, we get four 

equations, which can be simultaneously solved to obtain the unknown coefficients. 

𝑅𝑖1 =  −
𝑅𝑖2

휃𝑖
(

𝑏

2
휃𝑖 cot ℎ

휃𝑖𝑏

2
+ 1) (3.82) 
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𝑆𝑗1 = −
𝑆𝑖2

𝛽𝑗
(

𝑎

2
𝛽𝑗 cot ℎ

𝛽𝑗𝑎

2
+ 1) (3.83) 

𝑅𝑖2 = 𝑆𝑗2𝛽𝑗cos
𝛽𝑗𝑏

2
((1 −

𝑎

2
𝛽𝑗 cot ℎ

𝛽𝑗𝑎

2
) 𝐼1 + 𝛽𝑗𝐼2) × 

(
2/𝑎

(−휃𝑖
2 𝑏

2 cot ℎ
휃𝑖𝑏
2 − 휃𝑖) cos ℎ

𝛽𝑗𝑏
2 + 휃𝑖

2 𝑏
2 𝑠𝑖𝑛 ℎ

휃𝑖𝑏
2

) 
(3.84) 

𝑆𝑗2 = (
2

𝑏
cos

𝛽𝑗𝑏

2

𝛽𝑗
2 𝑎

2
𝑠𝑖𝑛 ℎ

𝛽𝑗𝑎

2
−(𝛽𝑗+

𝑎

2
𝛽𝑗

2 cot ℎ
𝛽𝑗𝑎

2
) cos ℎ

𝛽𝑗𝑎

2

)× 

(−𝐼0 + 휃𝑖𝑅𝑖2cos
휃𝑖𝑎

2
) ∑ ((1 −

𝑏

2
휃𝑖 cot ℎ

휃𝑖𝑏

2
) 𝐼3 + 휃𝑖𝐼4)

∞

𝑛=1

 

(3.85) 

 

                                                                                                                                           

Here,  𝐼0 =  ∫ 𝑁(𝑦) cos(𝛽𝑗𝑦) ⅆ𝑦
𝑏/2

−𝑏/2
,  

𝐼1 =  ∫ cos ℎ(𝛽𝑗𝑥) cos(휃𝑖𝑥) ⅆ𝑥
𝑎/2

−𝑎/2

 

𝐼2 =  ∫ 𝑥 sin ℎ(𝛽𝑗𝑥) cos(휃𝑖𝑥) ⅆ𝑥
𝑎/2

−𝑎/2

 𝐼3 =  ∫ cos ℎ(휃𝑖𝑦) cos(𝛽𝑗𝑦) ⅆ𝑦
𝑏/2

−𝑏/2

 

𝐼4 =  ∫ 𝑦 sin ℎ(휃𝑖𝑦) cos(𝛽𝑗𝑦) ⅆ𝑦
𝑏/2

−𝑏/2

 
 

3.9 Methodology for Solving Partial Differential Equations 

The Galerkin's weighted residual method is used to convert the governing PDEs of 

motion (Eqs. (3.56(a-e)) into ODEs. It is a strong form method, where the basis function for 

each displacement field is assumed such that it fulfils the essential and natural boundary 

condition requirements. These basis functions also serve as the weighted functions to calculate 

the weighted integral residue of each governing PDE. The weighted residual in this method is 

expressed as: 

∬J𝑖(𝑢𝑜 ,  𝑣𝑜 ,  𝑤𝑜 , 𝜙𝑥
0, 𝜙𝑦

0) 𝛩𝑖
𝑚𝑛(𝑥, 𝑦)𝑗ⅆ𝑥ⅆ𝑦 = 0

𝐴

for  𝑖 = 1, 2, 3, 4, 5 and  𝑗

= 1, 2, . . . 𝑀∗ × 𝑁∗ 
(3.86) 

In Eq. (3.86), J𝑖 represents the PDEs and 𝛩𝑖
𝑚𝑛(𝑥, 𝑦)𝑗 represents the assumed basis functions. 

The overall number of terms along 𝑦 and 𝑥 directions are represented using symbols 𝑁∗ 

and  𝑀∗ respectively. Hence, the total number of terms can be represented as 5 × 𝑁∗ × 𝑀∗. 
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The basis functions considered in this study for different boundary conditions based on loading 

conditions are demonstrated in the following subsection. 

3.9.1 Basis functions for displacement fields 

The basis functions, 𝛩1
𝑚𝑛(𝑥, 𝑦), 𝛩2

𝑚𝑛(𝑥, 𝑦), 𝛩3
𝑚𝑛(𝑥, 𝑦), 𝛩4

𝑚𝑛(𝑥, 𝑦) and 𝛩5
𝑚𝑛(𝑥, 𝑦), are 

assumed to satisfy the boundary conditions in the field displacement equations expressed 

below. 

𝑢0 = ∑ ∑ 𝑈𝑚𝑛
∗ (𝑡)𝛩1

𝑚𝑛(𝑥, 𝑦)

𝑁∗

𝑛=1

𝑀∗

𝑚=1

    (3.87a) 

𝑣0 = ∑ ∑ 𝑉𝑚𝑛
∗ (𝑡)𝛩2

𝑚𝑛(𝑥, 𝑦)

𝑁∗

𝑛=1

𝑀∗

𝑚=1

    (3.87b) 

𝑤0 = ∑ ∑ 𝑊𝑚𝑛
∗ (𝑡)𝛩3

𝑚𝑛(𝑥, 𝑦)

𝑁∗

𝑛=1

𝑀∗

𝑚=1

    (3.87c) 

𝜙𝑥
0 = ∑ ∑ 𝐾𝑚𝑛

∗ (𝑡)𝛩4
𝑚𝑛(𝑥, 𝑦)

𝑁∗

𝑛=1

𝑀∗

𝑚=1

    (3.87d) 

𝜙𝑦
0 = ∑ ∑ 𝐿𝑚𝑛

∗ (𝑡)𝛩5
𝑚𝑛(𝑥, 𝑦)

𝑁∗

𝑛=1

𝑀∗

𝑚=1

    (3.87e) 

In the Eqs. (3.87a-e), 𝑈𝑚𝑛
∗ (𝑡), 𝑉𝑚𝑛

∗ (𝑡), 𝑊𝑚𝑛
∗ (𝑡), 𝐾𝑚𝑛

∗ (𝑡) and 𝐿𝑚𝑛
∗ (𝑡) are unknown coefficients 

independent of spatial coordinates. The index of the mode along the y and x directions is 

represented by the subscripts n and m, respectively. The basis functions assumed to satisfy the 

boundary conditions for mechanical loading condition and thermal loading condition are 

discussed below. 

a) For Mechanical Loads 

The basis functions adopted to satisfy the boundary conditions for microplate with mechanical 

loading are expressed as: 

𝛩1
𝑚𝑛(𝑥, 𝑦) = sin (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) (3.88a) 

𝛩2
𝑚𝑛(𝑥, 𝑦) = cos (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) (3.88b) 
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𝛩3
𝑚𝑛(𝑥, 𝑦) = 𝑋𝑚(𝑥)𝑌𝑛(𝑦) (3.88c) 

𝛩4
𝑚𝑛(𝑥, 𝑦) = sin (

𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) (3.88d) 

𝛩5
𝑚𝑛(𝑥, 𝑦) = cos (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) (3.88e) 

 

The basis function, 𝛩3
𝑚𝑛(𝑥, 𝑦), corresponding to out-of-plane deflection, 𝑤0 comprises of 

eigen functions 𝑋𝑚(𝑥)  and 𝑌𝑛(𝑦) opted to satisfy the out-of-plane boundary conditions. The 

Eigen function 𝑋𝑚(𝑥)  takes care of the edges at x = -a/2 and x = a/2, while the eigen function 

𝑌𝑛(𝑦) takes care of the edges y = -b/2 and y = b/2. The Eigen beam function corresponding to 

simply supported and clamped beam conditions are expressed as (Warburton 1954): 

i. Beam function of simply supported (S) at x = -a/2 and x = a/2 (i.e., along two opposite 

edges) 

𝑋𝑚(𝑥) = cos
𝑚𝜋𝑥

𝑎
                                           (𝑚 = 1,2,3. … . ) 

 

(3.89) 

ii. Beam function of clamped support (C) at x = -a/2 and x = a/2 (i.e., along two opposite 

edges) 

𝑋𝑚(𝑥) = cos 𝜉𝑚
𝑥

𝑎
+

sin
𝜉𝑚

2

sinℎ
𝜉𝑚

2

cosℎ 𝜉𝑚
𝑥

𝑎
        (𝑓𝑜𝑟 𝑚 = 2,4,6. . . . . )  

 

(3.90a) 

where, 𝜉𝑚 represents the roots of the equation: 

tan
𝜉𝑚

2
+ tanℎ

𝜉𝑚

2
= 0 

 

(3.90b) 

and 

𝑋𝑚(𝑥) = sin 𝜉𝑚

𝑥

𝑎
−

sin
𝜉𝑚

2

sinℎ
𝜉𝑚

2

sinℎ 𝜉𝑚

𝑥

𝑎
   ( 𝑓𝑜𝑟 𝑚 = 3,5,7. . . . . ) 

 

(3.90c) 

where, 𝜉𝑚  are taken as roots of the equation: 

tan
𝜉𝑚

2
− tanℎ

𝜉𝑚

2
= 0 

  

(3.90d) 

The beam function for edges y = -b/2 and y = b/2, 𝑌𝑛(𝑦) can be obtained by replacing 

‘𝑥’, ‘𝑎’ and ‘𝑚’ by ‘𝑦’, ‘𝑏 ‘and ‘𝑛’ respectively in Eq. (3.89) and Eqs. (3.90). 



Chapter 3 
 

87 
 

b) For Thermal Loads 

The basis functions adopted to satisfy the boundary conditions for microplate with thermal 

loading are expressed as: 

𝛩1
𝑚𝑛(𝑥, 𝑦) = sin (

2𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) (3.91a) 

𝛩2
𝑚𝑛(𝑥, 𝑦) = cos (

𝑚𝜋𝑥

𝑎
) sin (

2𝑛𝜋𝑦

𝑏
) (3.91b) 

𝛩3
𝑚𝑛(𝑥, 𝑦) = 𝑋𝑚(𝑥)𝑌𝑛(𝑦) (3.91c) 

𝛩4
𝑚𝑛(𝑥, 𝑦) = sin (

2𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
) (3.91d) 

𝛩5
𝑚𝑛(𝑥, 𝑦) = cos (

𝑚𝜋𝑥

𝑎
) sin (

2𝑛𝜋𝑦

𝑏
) (3.91e) 

The eigen functions 𝑋𝑚(𝑥)  and 𝑌𝑛(𝑦) opted to satisfy the out-of-plane boundary conditions 

are same as those considered for mechanical loading in Eq. (3.89) and Eqs. (3.90) for both 

simply supported and clamped conditions. 

3.9.2 Governing Ordinary Differential Equations 

𝐌�̈� + 𝐂�̇� + (𝐊L + 𝐊NL − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos 𝑝𝑡)𝐊G)𝛅 = 𝟎 (3.92a) 

𝐌�̈� + 𝐂�̇� + (𝐊L + 𝐊NL)𝛅 = 𝐅𝐜𝐨𝐬(𝜔𝑁𝐿𝑡) (3.92b) 

(𝐊L + 𝐊NL − (∆𝑇)𝐊G)𝛅 = 𝟎 (3.92c) 

The matrix form of the non-linear ODEs generated using Galerkin’s method for 

periodic in-plane loading, periodic transverse loading, and thermal loading are presented in Eq. 

(3.92a), Eq. (3.92b), and Eq. (3.92c) respectively. In Eq. (3.92a), the applied load Nxx is made 

up of the static part (Nst) and dynamic part (Ndyncos(pt)), where p is the excitation frequency. 

In Eq. (3.92b), the applied transverse force vector is denoted by F, and 𝜔𝑁𝐿 is the forcing 

frequency. The symbols M, C, 𝐊NL, and 𝐊L, denote the mass, Rayleigh’s damping, non-linear 

stiffness, and linear stiffness matrices in Eq. (3.92). The symbol δ denotes the displacement 

vector and the accent "( )̇ " indicates differentiation with respect to time ‘t’ and "( )̈ " 

indicates double differentiation with respect to time ‘t’. The components of damping matrix 

are calculated using the Rayleigh’s method discussed in the next section. 
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3.10 Rayleigh’s Damping Matrix 

The Rayleigh’s linear damping matrix (C) (Thorby 2008) is considered for analysis of 

microplate in this study. The expression for Rayleigh’s damping matrix 𝐂, is given in below. 

𝐂 = �̅�𝐌 + �̅�𝐊L (3.93a) 

In Eq. (3.93a), M denotes the mass matrix and 𝐊L denotes the linear stiffness matrix. The mass 

and linear stiffness proportionality constants, �̅� and �̅� are determined using the equation below, 

�̅�𝐈 + �̅�[𝜔𝑖
2] = 2[𝜔𝑖휁𝑖] (𝑖=1,2) (3.93b) 

In the Eq. (3.93b) above, 𝐈 stands for the elementary matrix, [𝜔𝑖
2] is a scaling matrix comprising 

the two lowest natural frequencies considered in this study, 𝑖 represents the index of the mode 

shape and 휁𝑖 stands for the damping ratios for the modes corresponding to the natural 

frequencies considered. 

3.11 Solution Methodologies for Various Analyses 

3.11.1 Free Vibration and Buckling 

𝐌�̈� + (𝐊L − (𝑁cr)𝐊G)𝛅 = 𝟎 (3.94a) 

𝐌�̈� + (𝐊L)𝛅 = 𝐅𝐜𝐨𝐬(𝜔𝑁𝐿𝑡) (3.94b) 

(𝐊L − (∆𝑇cr)𝐊G)𝛅 = 𝟎 (3.94c) 

In order to obtain the natural frequency and buckling loads, the non-linear stiffness is 

neglected from Eqs. (3.92a-c) to achieve the linear ODEs shown in Eqs. (3.94a-c). The 

buckling load, 𝑁cr is derived by finding the eigenvalue from Eq. (3.94a) while disregarding 𝐌 

matrix. The natural frequencies are computed by finding the eigenvalue in Eq. (3.94a) and Eq. 

(3.94b) without considering, 𝐊G, and 𝐅. The buckling temperature difference, ∆𝑇cr, is obtained 

by finding the eigenvalue in Eq. (3.94c). 

3.11.2 Dynamic Instability                

𝐌�̈� + 𝐂�̇� + (𝐊L − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos 𝑝𝑡)𝐊G)𝛅 = 𝟎 (3.95) 

𝛿(𝑡) = ∑ (𝑎𝑘sin
𝑘𝑝𝑡

2
+ 𝑏𝑘cos

𝑘𝑝𝑡

2
)

∞

𝑘=1,3,5

 (3.96) 
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The non-linear stiffness is neglected in Eq. (3.92a) to achieve the Mathieu-Hill ODE 

shown in Eq. (3.95), which has periodic solutions for periods T and 2T. The dynamic instability 

boundaries of the system are plotted using Bolotin’s method on Eq. (3.95). In this method, a 

Fourier series solution of the form of Eq. (3.96) for period 2T is assumed. 

|𝐊∗ ± 0.5𝑁𝑑𝑦𝑛𝐊𝐆 −0.25𝐌𝑝2| = 0 (3.97) 

|
𝐊∗ + 0.5𝑁𝑑𝑦𝑛𝐊𝐆 − 0.25𝐌𝑝2 0.5𝐂𝑝

−0.5𝑪𝑝 𝐊∗ − 0.5𝑁𝑑𝑦𝑛𝐊𝐆 − 0.25𝑀𝑝2| = 0 (3.98) 

where, 𝐊∗ = 𝐊𝐋 − 𝑁𝑠𝑡𝐊𝐆  

On equating the sine and cosine terms and searching for a non-trivial solution, when using Eq. 

(3.96) in Eq (3.95), we get the upper and lower boundaries of the first-order approximation of 

the principal dynamic instability region in the form of a homogeneous algebraic equation as 

shown in Eq. (3.97). If damping is also considered, the dynamic instability boundaries are 

found by Eq. (3.98). 

3.11.3 Nonlinear Vibration 

The Incremental Harmonic Balance (IHB) method is used in this study to compute the 

nonlinear vibration response (frequency-amplitude curve). It was first proposed by Lau and 

Cheung (Lau and Cheung 1981) and has since been used to study a wide range of nonlinear 

equations. This method is a combination of the incremental method and the harmonic balance 

method. The solution is assumed in the form of trigonometric Fourier series. The harmonic 

balance method (Galerkin averaging method) is used to obtain the algebraic homogeneous 

equations by nullifying the average of virtual work per period.  The homogeneous algebraic 

equations are then solved using the incremental (arc-length method) method. The nonlinear 

stiffness terms, 𝐊NL in Eq. (3.92a) and Eq. (3.92b) are expressed as a sum of nonlinear cubic 

stiffness, 𝐊NL3, and the nonlinear quadratic stiffness, 𝐊NL2, as shown in the equations below 

(Amabili 2008; Yadav et al. 2021).  

           𝐌�̈� + 𝐂�̇� + (𝐊L + 𝐊NL2 + 𝐊NL3 − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos 𝑝𝑡)𝐊G)𝛅 = 𝟎 (3.99a) 

𝐌�̈� + 𝐂�̇� + (𝐊L + 𝐊NL2 + 𝐊NL3)𝛅 = 𝐅cos(𝜔𝑁𝐿𝑡) (3.99b) 

𝜔2𝐌𝛅′′ + 𝜔𝐂𝛅′ + [(𝐊𝐋 + 𝐊𝐍𝐋𝟐 + 𝐊𝐍𝐋𝟑) − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos(τ))𝐊𝐆]𝛅 = 0 (3.100a) 

𝜔2𝐌𝛅′′ + 𝜔𝐂𝛅′ + [(𝐊𝐋 + 𝐊𝐍𝐋𝟐 + 𝐊𝐍𝐋𝟑)]𝛅 = 𝐅cos(τ) (3.100b) 

In this approach, for solving the problem, a parameter 𝜏 = 𝑝𝑡 is added and inserted into Eq. 

(3.99a) and, 𝜏 = 𝜔𝑁𝐿𝑡  is inserted in Eq. (3.99b), giving us Eq (3.100a) and Eq. (3.100b) for 
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in-plane load and transverse loads respectively. In the above equations, prime (′) and double 

prime (′′), denote the differentiations and double differentiations with respect to ‘𝜏’ 

respectively. Adding the appropriate increments results in the neighbouring state, as 

indicated in the following equation. 

𝛅𝐣 = 𝛅𝐣𝟎 + 𝚫𝛅  and  𝑝 = 𝑝0 + 𝛥𝑝 , for in-plane loading (3.101a) 

𝛅𝐣 = 𝛅𝐣𝟎 + 𝚫𝛅  and  𝜔𝑁𝐿 = 𝜔𝑁𝐿0
+ 𝛥𝜔𝑁𝐿 , for transverse loading (3.101b) 

Replacing Eq. (3.101a) and Eq. (3.101b) into Eq. (3.100a) and Eq. (3.100b) respectively and 

ignoring the small terms leads to Eqs. (3.102a) and Eqs. (3.103a) for in-plane load and 

transverse load respectively. 

a) For In-plane loading: 

𝑝0
2𝐌𝜟𝛅′′ + 𝑝0𝐂𝜟𝛅′

+ [(𝐊𝐋 + 2𝐊𝐍𝐋𝟐 + 3𝐊𝐍𝐋𝟑) − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos(τ))𝐊𝐆]𝜟𝛅

− [𝐑𝐞 − 2𝑝0𝐌𝛅𝟎′′𝛥𝑝 − 𝐂𝛅𝟎′𝛥𝑝] = 0 

(3.102a) 

𝐑𝐞 = −(𝑝0
2𝐌𝛅𝟎′′ + 𝑝0𝐂𝛅𝟎′ + [𝐊𝐋 + 𝐊𝐍𝐋𝟐 + 𝐊𝐍𝐋𝟑]

− [𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos τ]𝐊𝐆)𝜹𝟎 
(3.102b) 

b) For Transverse Loading:  

𝜔𝑁𝐿0
2𝐌𝜟𝛅′′ + 𝜔𝑁𝐿0

𝐂𝜟𝛅′ + [(𝐊𝐋 + 𝟐𝐊𝐍𝐋𝟐 + 𝟑𝐊𝐍𝐋𝟑)]𝜟𝛅

− [𝐑𝐞 − 2𝜔𝑁𝐿0
𝐌𝛅𝟎′′𝛥𝜔𝑁𝐿 − 𝐂𝛅𝟎′𝛥𝜔𝑁𝐿] = 𝟎 

(3.103a) 

𝐑𝐞 = 𝐅cos(τ) − (𝜔𝑁𝐿0
2𝐌𝛅𝟎′′ + 𝜔𝑁𝐿0

𝐂𝛅𝟎′ + [𝐊𝐋 + 𝐊𝐍𝐋𝟐 + 𝐊𝐍𝐋𝟑])𝜹𝟎 (3.103b) 

Here, Re (Eq. (3.102b) and Eq. (3.103b) represent the residue, which approaches to a negligible 

value as the solution gets closer to the precise value. The approximate steady-state response of 

the system is assumed as a truncated Fourier series, as shown in the equations below. 

a) For In-plane loading: 

𝛅𝐣𝟎 = ∑ 𝑎𝑗𝑘 cos
2𝑘 − 1

2
𝜏 +

𝑛𝑐

𝑘=1

∑ 𝑏𝑗𝑘 sin
2𝑘 − 1

2
𝜏

𝑛𝑠

𝑘=1

= 𝐓𝐀 (3.104a) 

𝚫𝛅𝐣 = ∑ 𝛥𝑎𝑗𝑘 cos
2𝑘 − 1

2
𝜏 +

𝑛𝑐

𝑘=1

∑ 𝛥𝑏𝑗𝑘 sin
2𝑘 − 1

2
𝜏

𝑛𝑠

𝑘=1

= 𝐓𝚫𝐀 (3.104b) 

where, 

𝐓 = {cos
𝜏

2
, cos

3𝜏

2
, … cos

(2𝑛𝑐 − 1)𝜏

2
, sin

𝜏

2
, sin

3𝜏

2
, … sin 

(2𝑛𝑠 − 1)𝜏

2
} 

(3.104c) 

b) For Transverse Loading: 
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𝛅𝐣𝟎 = 𝑎𝑗0 + ∑ 𝑎𝑗𝑘 cos((2𝑘 − 1)𝜏) +

𝑛𝑐

𝑘=1

∑ 𝑏𝑗𝑘 sin((2𝑘 − 1)𝜏)

𝑛𝑠

𝑘=1

= 𝐓𝐀 (3.105a) 

𝚫𝛅𝐣 = 𝛥𝑎𝑗0 + ∑ 𝛥𝑎𝑗𝑘 cos((2𝑘 − 1)𝜏) +

𝑛𝑐

𝑘=1

∑ 𝛥𝑏𝑗𝑘 sin((2𝑘 − 1)𝜏)

𝑛𝑠

𝑘=1

= 𝐓𝚫𝐀 (3.105b) 

where, 
𝐓 = {1, cos(𝜏), cos(2𝜏), … cos(𝑛𝑐𝜏) , sin(𝜏), sin(2𝜏), … sin (𝑛𝑠𝜏)} (3.105c) 

By inserting Eqs. (3.104) and Eqs. (3.105) into Eq. (3.102a) and Eq. (3.103a) respectively, and 

using the Galerkin’s method, a system of homogeneous algebraic equations is created, as 

shown in the equation below.  

𝐊𝐦𝐜𝛥𝐴 = 𝐑 − 𝐑𝐦𝐜𝛥𝑝 , for in-plane loading problem (3.106a) 

𝐊𝐦𝐜𝛥𝐴 = 𝐑 − 𝐑𝐦𝐜𝛥𝜔𝑁𝐿 , for transverse loading problem (3.106b) 

The components of Eq. (3.106a) for in-plane loading problem are: 

𝐀 = {𝑎𝑗1, 𝑎𝑗2, ⋯ 𝑎𝑗𝑛𝑐, 𝑏𝑗1, 𝑏𝑗2, ⋯ 𝑏𝑗𝑛𝑠} (3.107a) 

𝜟𝐀 = {𝛥𝑎𝑗1, 𝛥𝑎𝑗2, ⋯ 𝛥𝑎𝑗𝑛𝑐, 𝛥𝑏𝑗1, 𝛥𝑏𝑗2, ⋯ 𝛥𝑏𝑗𝑛𝑠} (3.107b) 

𝐊𝐦𝐜 = 𝑝0
2�̄� + 𝑝0�̄� + (�̄�𝐋 + 2�̄�𝐍𝐋𝟐 + 3�̄�𝐍𝐋𝟑) (3.107c) 

𝐑 = {�̄�𝑥 − 𝑝0
2�̄� − 𝑝0�̄� + (�̄�L + �̄�𝐍𝐋𝟐 + �̄�𝐍𝐋𝟑)} 𝐀 (3.107d) 

𝐑𝐦𝐜 = (2𝑝0�̄� + �̄�)𝐀 (3.107e) 

The components of Eq. (3.106b) for transverse loading problem are: 

𝐀 = {𝑎𝑗0, 𝑎𝑗1, 𝑎𝑗2, ⋯ 𝑎𝑗𝑛𝑐 , 𝑏𝑗1, 𝑏𝑗2, ⋯ 𝑏𝑗𝑛𝑐} (3.108a) 

𝜟𝐀 = {𝛥𝑎𝑗0, 𝛥𝑎𝑗1, 𝛥𝑎𝑗2, ⋯ 𝛥𝑎𝑗𝑛𝑐 , 𝛥𝑏𝑗1, 𝛥𝑏𝑗2, ⋯ 𝛥𝑏𝑗𝑛𝑐} (3.108b) 

𝐊𝐦𝐜 = 𝜔𝑁𝐿0
2�̄� + 𝜔𝑁𝐿0

�̄� + (�̄�𝐋 + 2�̄�𝐍𝐋𝟐 + 3�̄�𝐍𝐋𝟑) (3.108c) 

𝐑 = {�̄� − 𝜔𝑁𝐿0
2�̄� − 𝜔𝑁𝐿0

�̄� − (�̄�L + �̄�𝐍𝐋𝟐 + �̄�𝐍𝐋𝟑)}𝐀 (3.108d) 

𝐑𝐦𝐜 = (2𝜔𝑁𝐿0
�̄� + �̄�)𝐀 (3.108e) 

The bar ( ̄ ) in Eqs. (3.107c-e) and Eqs. (3.108c-e) denotes the orthogonalized matrices 

(Amabili 2008). The orthogonalized matrices �̄�, �̄�, �̄�𝐋, �̄�𝐍𝐋𝟐, �̄�𝐍𝐋𝟑, �̄�𝐱 and �̄� are defined in the 

equations below. 

�̄� = ∫ 𝐒𝐓𝐌𝐒′′d𝜏
2π

0

 (3.109a) 

�̄� = ∫ 𝐒𝐓𝐂𝐒′d𝜏
2π

0

 (3.109b) 

(�̄�L, �̄�𝐍𝐋𝟐, �̄�𝐍𝐋𝟑) = ∫ 𝐒𝐓(𝐊𝐋, 𝐊𝐍𝐋𝟐, 𝐊𝐍𝐋𝟑)𝐒d𝜏
2π

0

 (3.109c) 
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�̄� = ∫ 𝐒𝐓𝐅 cos((2𝑚 − 1)𝜏) d𝜏
2π

0

 (3.109d) 

�̄�𝑥 = ∫ 𝐒𝐓(𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos(τ))𝐒d𝜏
2π

0

 (3.109e) 

In Eqs. (3.109a-e), 𝐒 is defined as 

𝐒 = [
𝐓

⋱
𝐓

] (3.110) 

In this study, only smooth nonlinearities (quadratic and cubic) exist. The contribution of higher 

harmonics is very minimal in these systems (Lee et al. 1997). Therefore, the system can be 

easily assumed solely in terms of the fundamental harmonics of the Fourier series (Cheung et 

al. 1990), making this method computationally very effective. This method is, however, 

avoided for systems with non-smooth nonlinearities, such as free play or hysteresis 

nonlinearities (Liu et al. 2015). In such systems, the contribution of higher harmonics is 

significant, which leads to substantial computational costs.  It is also not suitable for systems 

with strong mode coupling. 

3.11.4 Nonlinear Dynamic Response 

In this section, the nonlinear dynamic response of the microplate under in-plane or 

transverse periodic loading is obtained using the implicit time-dependent Newmark-β direct 

time integration method (Subbaraj and Dokainish 1989). In the implicit method, the solution 

at a time step requires the solving of equilibrium conditions at that time step. The nonlinear 

equilibrium ODE for in-plane/transverse periodic loading is given in Eq. (3.99a) and Eq. 

(3.99b). The acceleration in each time step is considered as the average of the accelerations at 

both the ends of the time step. The dynamic equilibrium equation considered at each time step 

is, 

 

                       𝐌�̈�𝒊+𝟏 + 𝐂�̇�𝒊+𝟏 + 𝐊(𝛅𝒊, �̅�𝑥)𝛅𝒊+𝟏 = 𝐅 

                                

(3.111) 

where, 𝐌�̈�𝒊+𝟏, 𝐂�̇�𝒊+𝟏, 𝐊(𝛅𝒊, 𝑁𝑥)𝛅𝒊+𝟏  and F represent the inertial force, the damping force, the 

elastic internal resisting force, and force vector, respectively. In the case of plate exposed to 

in-plane loading only, the force vector F is assumed to be absent. If the plate is exposed to only 

transverse load then �̅�𝑥(in-plane loading) is assumed to be zero in Eq. (3.111). Here, further 

discussion is chosen for only in-plane loading.  In Eq. (3.111), 𝛅𝒊+𝟏 represents the column 
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vector with unknown coefficients 𝑈𝑚𝑛
∗ (𝑡), 𝑉𝑚𝑛

∗ (𝑡), 𝑊𝑚𝑛
∗ (𝑡), 𝐾𝑚𝑛

∗ (𝑡) and 𝐿𝑚𝑛
∗ (𝑡) at time step 

𝑡𝑖+1. The stiffness matrix 𝐊(𝛅𝒊, �̅�𝑥) of the restoring force, as given in Eq. (3.111), is 

represented as, 

𝐊(𝛅𝒊, �̅�𝑥) = 𝐊L + 𝐊NL(𝛅𝒊) − (𝑁𝑠𝑡 + 𝑁𝑑𝑦𝑛 cos 𝑝𝑡)𝐊G   (3.112) 

The restoring force for nonlinear systems is determined based on the history of displacement 

as follows: 

𝐊(𝛅𝒊, �̅�𝑥)𝛅𝒊+𝟏 = 𝐊(𝛅𝒊, �̅�𝑥)𝛅𝒊 + 𝐊T(𝛅𝒊, �̅�𝑥)Δ𝛅𝒊 (3.113) 

Here, 𝐊T(𝛅𝒊, �̅�𝑥)Δ𝛅𝒊 is an incremental restoring force for time increment 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖. The 

governing equation is obtained by substituting Eq. (3.113) in Eqs. (3.111) and (3.112) at the 

time step 𝑡𝑖+1 and is written as, 

                    𝐌�̈�𝒊+𝟏 + 𝐂�̇�𝒊+𝟏 + 𝐊T(𝛅𝒊, �̅�𝑥)Δ𝛅𝒊 = −  𝐊(𝛅𝒊, �̅�𝑥)𝛅𝒊 (3.114) 

The governing equation is then given in incremental form by expressing the acceleration, �̈�𝒊+𝟏 

at time step 𝑡𝑖+1, the velocity, �̇�𝒊+𝟏 at the time step, 𝑡𝑖+1, and the incremental displacement Δ𝛅𝒊. 

The examination of the microplate's dynamic response with damping owing to periodic in-

plane/transverse loading is performed by solving the incremental version of the governing 

equation at each time step. To get the dynamic response of the microplate without damping, 

the damping matrix C is omitted. 

3.11.5 Post-buckling Response 

The post-buckling response of microplate due to thermal loading is calculated by 

solving Eq. (3.94c) using the modified Newton Raphson incremental iterative method. It is a 

load control method as the load incremental parameter Δ𝑇 is kept constant during iterations. A 

constant approximation of the stiffness matrix is considered at the end of each iteration in the 

modified Newton Raphson method. This leads to a lower convergence rate but the time 

consumed in each iteration is significantly reduced. The converged value of the displacements 

are obtained at each step, returning the deflection corresponding to each load increment. 



 

 
 

  



4 
     Nonlinear Vibration and Dynamic Instability of Microplate 

under In-Plane Mechanical Loading: Results and Discussion 

 
 

4.1 Introduction         

In this chapter, the results of non-linear vibration and dynamic instability analyses of a 

damped square microplate subjected to non-uniform in-plane harmonic loading are presented. 

Dynamic instability refers to an erratic or unpredictable state that a structure can experience. 

This state arises when the structure is exposed to periodic loading within its plane, leading to 

conditions of parametric resonance. Parametric resonance occurs due to a specific combination 

of loading frequency and amplitude with the natural frequency of the structure. Moreover, 

nonlinear vibration behaviour illustrates the forced vibration response of a structure subjected 

to harmonic excitation under external loading. This behaviour is graphically depicted as a 

frequency-amplitude curve. The subsequent sections elaborate on both dynamic instability and 

the responses of nonlinear vibration. A comparative study between different theories, such as 

MSGT, MCST, and the CCT, for the study of vibrational and instability characteristics of the 

damped microplates, is performed. The effect of change in the size of the plate, modal damping 

ratios, ζ1 and ζ2, and the static load factor, α, is also presented. Investigations on the influence 

of four different boundary conditions as shown in section 3.7 and three different cases of in-

plane harmonic loadings as shown in section 3.5.1 are also presented. The in-plane harmonic 

edge loading of the form �̅�𝑥=Nst + Ndyn cos(pt), where Nst = αNcr and Ndyn= βNcr, is applied on 

two opposite edges. Here α is the static load factor, and β is the dynamic load factor. In this 

chapter, the validation study of free vibration, buckling, the non-uniform loading modelling, 

and nonlinear free vibration is presented in section 4.2. The convergence study of the 

Galerkin’s methodology used is presented in section 4.3. Section 4.4 shows a comparative 

study on the free vibration and buckling analysis using different size-dependent theories. The 

results of dynamic instability and nonlinear vibration are represented in section 4.5. 

4.2 Validation Study        

The accuracy of the methodology adopted in this study is verified by comparing the 

frequency and buckling load obtained by using the methodology in this work with that of 

Mirsalehi et al. (2017). They determined the free vibration and critical buckling load of the 

plate based on the MSGT and the split finite strip method. The properties of the square 

microplate taken from Mirsalehi et al. (2017), and the support and loading conditions it is 

subjected to are as follows: 
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E = 380 GPa; ρ = 3800 kg/m3; μ = 0.3; l0 = l1 = l2 = l = 17.6 μm ; a = 100×h;  

Support conditions: SSSS; Loading: in-plane uniform harmonic load on two opposite edges 

Table 4.1 Comparison of frequency and buckling load of an SSSS square microplate with 

different l/h ratios 

l/h 

Vibration frequency (Hz) Buckling load (N/m) 

Mirsalehi et al. 

(2017) 

Present 

study 

Mirsalehi et al. 

(2017) 

Present 

study 

0 54020.00 54016.32 2417.90 2417.87 

0.5 117240.00 117237.18 11389.40 11389.35 

1 215000.00 214999.14 38303.80 38303.77 

1.5 316790.00 316748.95 83161.20 83161.15 

2 419690.00 419637.28 145961.60 145961.48 

The comparison of frequency and critical buckling load for different l/h ratios is shown in Table 

4.1. It can be seen that the results obtained are in close proximity to those obtained by Mirsalehi 

et al. (2017). Thus, the validity of the MSGT methodology adopted in this paper is verified. 

 
(a) Longitudinal stress distribution at x/a = 0.5 
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(b) Longitudinal stress distribution at x/a 

= 0.25 

 
(c) Longitudinal stress distribution at 

x/a = 0 

Fig. 4.1 Comparison of in-plane longitudinal stress distribution within simply supported 

isotropic square microplate (b/h=20; a/b=1) using Airy’s stress approach and finite element 

(FE) method along (a) x/a = 0.5 (b) x/a = 0.25 and (c) x/a = 0 

The reliability of the in-plane stresses obtained using Airy’s stress function is validated by 

comparing the results with the finite element (FE) results obtained using the ABAQUS 

framework. The distribution of in-plane normal stresses along x/a =0.5, x/a =0.25 and x/a=0 of 

a simply supported square isotropic microplate (b/h=20; a=b) are computed using the present 

methodology and compared with ABAQUS results in Fig. 4.1(a), Fig. 4.1(b) and Fig. 4.1(c) 

respectively. The material properties of the microplate used are: E = 1.44 GPa, μ = 0.38, and ρ 

= 1220 kg/m3. In-plane non-uniform loading of Case-II with parabolic loading profile (Fig. 

3.5(b)) and magnitude unity is applied at a set of opposite edges of the plate. It can be seen 

from Fig. 4.1 that the results obtained using the Airy’s stress approach are in close agreement 

with those obtained from ABAQUS.  

The longitudinal (𝜎𝑥𝑥), transverse (𝜎𝑦𝑦), and shear stress ( 𝜏𝑥𝑦) contours are also plotted within 

the domain of the microplate subjected to Case-II type loading (Fig. 3.5(b)) with unit 

magnitude using Airy’s stress approach and finite element method (ABAQUS) in Fig. 4.2. It 

is evident that the results are very similar to those obtained from ABAQUS. Hence Airy’s stress 

method can be considered a reliable method to model in-plane stresses in this problem. 
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(a)Ariy’s stress Method (𝜎𝑥𝑥) 
 

(b) ABAQUS CAE (𝜎𝑥𝑥) 

 
(c) Ariy’s stress Method (𝜎𝑦𝑦) 

 
(d) ABAQUS CAE (𝜎𝑦𝑦) 

 
(e) Ariy’s stress Method ( 𝜏𝑥𝑦)  

(f) ABAQUS CAE ( 𝜏𝑥𝑦) 

Fig. 4.2 Comparison of in-plane longitudinal, transverse, and shear stress contours on simply 

supported isotropic square microplate (b/h=20; a/b=1) obtained using Airy’s stress approach 

and finite element (FE) method 
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Fig. 4.3. Validation study and convergence analysis of free vibration response of a microplate 

considering the different number of constant terms corresponding to displacement fields 

The methodology used to obtain the frequency-amplitude curve is validated by comparing it to 

the published results of Gholami and Ansari (2016). The free vibration response obtained from 

1, 4, and 6 terms of constants for each displacement field in the present methodology are 

compared with those given by Gholami and Ansari (2016) (Fig. 4.3). The following microplate 

properties and parameters are used for this validation and convergence analysis: E = 348.43 

GPa; ρ = 2370 kg/m3; μ = 0.24; l0 = l1 = l2 = l = 15 μm; a = 12 × h; a =b; h/l=3; support 

conditions: SSSS. The non-dimensional frequency ratio used in Fig. 4.3 consists of the natural 

frequency considering nonlinearity (𝜔𝑁𝐿) and the fundamental linear natural frequency (𝜔𝐿). 

It can be seen from Fig. 4.3 that the results by Gholami & Ansari are in close agreement with 

the 1-term solution of this study. However, the curves for the 4-terms solution and 6-terms 

solution converge completely.  

4.3 Convergence Study 

For this study, an isotropic epoxy microbeam is considered with the following 

properties: Young’s modulus, E = 1.44 GPa, Poisson’s ratio, μ = 0.38, mass density, ρ = 1220 

kg/m3 and the material length scale parameter (MLSP), l = 17.6 μm (Karamanli and Vo 2020). 

The thickness of the plate, h is considered equal to l and the plate is considered square in shape, 
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with edge length, a = 100 × h. The boundary conditions are assumed to be SSSS (all edges 

simply-supported) and in-plane uniform harmonic edge loading is considered with static load 

factor, α = 0. The modal damping ratios ζ1 and ζ2 for the first and second modes are taken as 

3% and 1.5% respectively. All the above conditions are considered all through this study unless 

explicitly mentioned 

 

Fig. 4.4 Convergence analysis of nonlinear vibration response of a damped microplate 

(β=0.2) considering the different number of constant terms corresponding to displacement 

fields 

Convergence analysis is also performed on the forced vibration response to decide the optimum 

number of terms in each displacement field, which provides accuracy and saves computational 

costs. It can be seen from Fig. 4.4 that the curve for the 4-terms solution and 6-terms solution 

converge entirely. Hence, four constants for each displacement field (𝑢0, 𝑣0, 𝑤0𝜙𝑥
0 and 𝜙𝑦

0), 

are considered throughout this study (i.e., 4-terms solution). These constants are:  𝑈11
∗ , 𝑈31

∗ ,

𝑈13
∗ ,  𝑈33

∗ ,  𝑉11
∗ , 𝑉31

∗ ,  𝑉13
∗ ,  𝑉33

∗ , 𝑊11
∗ ,  𝑊31

∗ ,  𝑊13
∗ ,  𝑊33

∗ ,  𝐾11
∗ , 𝐾31

∗ , 𝐾13
∗ ,  𝐾33

∗ , 𝐿11
∗ , 𝐿31

∗ , 𝐿13
∗ ,  𝐿33

∗ .  

4.4 Effect of Different Theories on Buckling Load and Frequency 

The size effect on the buckling load and frequency in the case of non-macroscopic 

structures is shown in Fig. 4.5(a) and Fig. 4.5(b), respectively. In the above figures, the 

buckling load ratio, kNcr (
𝑁𝑐𝑟

(ℎ/𝑙)
) and frequency ratio, kfreq (

𝑓𝑟𝑒𝑞

(ℎ/𝑙)
) are plotted against thickness by 
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MLSP ratio (h/l) for MSGT, MCST, and the CCT. Since l is constant for a material and a = 

100h, the size of the plate increases by increasing the h/l ratio. It is evident from Fig. 4.5(a) 

that for smaller h/l, the critical buckling load ratio is higher for MSGT and least for CCT. This 

is because of hardening due to strain gradients in MSGT. kNcr for MCST is lower than MSGT 

due to negligence of dilatant gradient and deviatoric stretch gradient tensors in this theory. kNcr 

for CCT remains constant, exhibiting the absence of influence of small-scale effects in this 

theory. The results of MCST converge with those of CCT at h/l above 7.5, showing that small-

scale effects become insignificant on buckling load in MCST above h/l=7.5. In the case of 

MSGT, the small-scale effects become insignificant on buckling load for h/l greater than 15. 

Similar trends are found in Fig. 4.5(b), where the frequency ratio is found to be maximum in 

the case of MSGT and least in the case of CCT. The effect of strain gradients was found to 

vanish for higher h/l ratios. Thus, the resonant frequency increases with an increase in size, 

when the effect of strain gradients or small-scale disappear. However, in the small-scale region, 

where strain gradients are evident, the resonance frequency increases as the plate size 

decreases. The sensitivity required is dependent on the resonance bandwidth for a microplate. 

Thus, depending on the resonance bandwidth required for an application, the size of the plate 

is reduced in the small-scale region to get a greater resonant frequency. 

 

(a) 

 

(b) 

 

Fig. 4.5 Comparison of size-effect on (a) buckling load ratio, kNcr [Ncr/(h/l)] and (b) 

frequency ratio, kfreq [freq/(h/l)] for MSGT, MCST, and the CCT 
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4.5 Non-Linear Vibration and Dynamic Instability Region 

The influence of various factors on the dynamic instability and non-linear vibration 

behavior of a square microplate is discussed in this section. Bolotin’s method is used to plot 

the boundaries of the dynamic instability regions, and a combination of the IHB method and 

arc length method is used to plot the frequency-amplitude curve for both damped and 

undamped cases.  

  

Fig. 4.6 (a) Principal instability zone, and (b) non-linear vibration response at β=0.3 for a 

damped epoxy microplate (a/h=20; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 

The advantage of using the arc-length method is that it gives us both the stable and unstable 

branches of the frequency-amplitude curve (Fig. 4.6(b)). The curve comprises three bifurcation 

points, ‘A’, ‘B’, and ‘C’ as shown in the figure. ‘A’ denotes a supercritical pitchfork bifurcation 
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point, ‘B’ denotes a subcritical bifurcation point and ‘C’ is a saddle node bifurcation point. 

Based on these bifurcation points, the curve can be divided into four regions as indicated in 

Fig. 4.6(b). Region ‘I’ consists of one stable solution, region ‘II’ consists of one stable and one 

unstable solution, region ‘III’ consists of two stable and one unstable solution, and region ‘IV’ 

consists of one stable solution. The steady-state amplitude attained by a plate when subjected 

to parametric excitation with forcing frequency in the regions ‘I’, ‘II’, and ‘IV’ is independent 

of the amplitude of initial displacement due to the presence of only one stable solution.  

 

Fig. 4.7 (a) principal instability zone, (b) width of dynamic instability region, (c) non-linear 

vibration response, and (d) width of dynamic instability region considering non-linearities at 

β=0.2 for a damped (ζ1=4% and ζ2=2%) and an undamped isotropic epoxy microplate 

(a/h=100; h/l=1; MSGT; SSSS) 

The results in this section are presented with the help of a series of four plots, as shown in Fig. 

4.7. The dynamic instability region is shown with the dynamic load factor (β) vs. dimensionless 

forcing frequency (p/ω) plot in Fig. 4.7(a). The dynamic load factor, β vs. width of dynamic 

instability region (wDIRL) plot (Fig. 4.7(b)) assists the β vs. (p/ω) plot in expressing the change 
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in the width of the dynamic instability region with the dynamic load factor. The third plot (Fig. 

4.7 (c).) is the dimensionless amplitude (w/h) vs. dimensionless forcing frequency (p/ω) which 

expresses the non-linear vibration response of the plate at a particular dynamic load factor, β. 

The last plot in the series (Fig. 4.7(d)) traces the dimensionless amplitude (w/h) against the 

width of the non-linear dynamic instability region (wDIRNL), i.e., width of the dynamic 

instability region after considering non-linear stiffness at a particular dimensionless amplitude 

(w/h) and dynamic load factor (β). The dynamic instability and non-linear vibration behavior 

of a damped and undamped epoxy microplate are shown in Fig. 4.7. It can be seen from Fig. 

4.7(a) that, while the origin of instability for an undamped microplate starts from p/ω =2 and 

β = 0, the origin of instability for a damped microplate moves a bit in the upward direction, not 

beginning from β = 0. Thus, showing that a certain amount of load is needed for a damped plate 

to display dynamic instability behavior.  

It can also be seen from Fig. 4.7(b) that the wDIRL increases with the increase in β due to a 

decrease in stiffness. The wDIRL is less for the damped microplate for smaller values of β 

because of the increase in stiffness due to damping, while it coincides with the wDIRL of the 

undamped plate at higher values of β. The non-linear vibration response is found at β = 0.2, 

and it can be seen from Fig. 4.7(c) that the roots of the response (frequency-amplitude) curve 

coincide with the dynamic instability plot (Fig. 4.7(a)) at β = 0.2. However, due to the onset of 

non-linearities in Fig. 4.7(c), the stiffness increases with increasing amplitude (w). Thus, the 

response curve shifts towards the right as non-linear stiffness increases with increasing 

amplitude, showing hardening behavior. The peak amplitude is infinite in the case of an 

undamped microplate, while it is finite for a damped microplate. It can also be seen from Fig. 

4.7(d) that the wDIRNL decreases on the increase in amplitude due to the increase in non-linear 

stiffness. It is zero at the finite peak amplitude for the damped microplate and approaches zero 

at higher amplitudes (infinite) in the case of an undamped microplate. 
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4.5.1 Effect of Different Strain Gradient Theories  

 

Fig. 4.8 Effect of different strain gradient theories on (a) principal instability zone, (b) width 

of dynamic instability region, (c) non-linear vibration response, and (d) width of dynamic 

instability region considering non-linearities at β=0.6 for a damped isotropic epoxy 

microplate (a/h=100; h/l=2; ζ1=3% & ζ2=1.5%; SSSS) 

The difference in dynamic instability and non-linear vibration behavior using the different 

strain gradient theories is highlighted in Fig. 4.8. The buckling load calculated from CCT is the 

least, therefore to show fair comparison, the buckling load of CCT is used in the loading 

function for all methods. The dimensionless natural frequency (p/ω) is calculated using ω 

calculated from CCT. It can be seen from Fig. 4.8(a). that the origin of instability shifts towards 

the right in the order CCT<MCST<MSGT. This occurs because of underestimation of stiffness 

in microplate using MCST due to negligence of dilatant gradient and deviatoric stretch gradient 

tensors. The results are further underestimated in CCT due to the absence of all the strain 

gradients and the symmetric curvature tensor. Due to the increase in stiffness, the minimum 

dynamic load factor required for the onset of instability also increases for MCST and further 
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for MSGT, despite similar modal damping ratios. Following similar trends, the wDIRL also 

decreases in the same order. The non-linear vibration in Fig. 4.8(c). also shows similar behavior 

with minimum peak amplitude for MSGT and maximum peak amplitude for CCT, showcasing 

the higher hardening effect in MCST and MSGT. Similarly, the wDIRNL is also maximum for 

CCT and least for MSGT. The nature of wDIRNL is highly nonlinear as the amplitude of the 

microplate increase for all the theories.  

4.5.2 Effect of Damping Coefficient 

 

Fig. 4.9. Effect of damping factor on (a) principal instability zone, (b) width of dynamic 

instability region, (c) non-linear vibration response, and (d) width of dynamic instability 

region considering non-linearities at β=0.2 for an isotropic epoxy microplate (a/h=100; h/l=1; 

MSGT; SSSS) 

The effect of change in modal damping ratios on dynamic instability and non-linear vibration 

behavior of microplate is assessed in Fig. 4.9. In the above system of Rayleigh Damping, the 

mass and stiffness proportional constants are calculated with the help of modal damping ratios, 

ζ1 and ζ2. It is found in Fig. 4.9(a). that on increasing the modal damping ratio, the minimum 

dynamic load required for the onset of instability increases. The wDIRL also decreases for 
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higher modal damping ratios due to an increase in stiffness, and an increase in damping. The 

peak amplitude and wDIRNL also decrease in the frequency-amplitude curve on an increase in 

modal damping ratios as evident from Fig. 4.9(c) and Fig. 4.9(d). Thus, it can be concluded 

that apart from fundamental frequency, damping is also an important factor in determining the 

sensor bandwidth, especially for lower magnitudes of dynamic load. Thus, to maintain larger 

bandwidths, the damping on the system also needs to be controlled. 

4.5.3 Effect of Preloading 

 

Fig. 4.10 Effect of preloading on (a) principal instability zone, and (b) width of dynamic 

instability region for an isotropic epoxy microplate (a/h=100; h/l=1; ζ1=3% & ζ2=1.5%; 

MSGT; SSSS) 

The effect of the static load factor (i.e., preloading) on the dynamic instability region is shown 

in Fig. 4.10. The dimensionless natural frequency (p/ω) is calculated using ω calculated for no 

preloading. The point of origin of instability shifts towards the left in Fig. 4.10(a) due to the 

drop in stiffness on increasing the static factor. Since the preload is compressive in nature, its 

addition leads to a drop in stiffness. Following similar grounds, the width of the dynamic 

instability region also increases with the increase in the static load factor. A representation of 

the width of the dynamic instability region at β=0.2 and varying the static load factor is shown 
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in Fig. 4.11. It can be seen that with an increase in the static load factor, the wDIRL increases. 

The curve is non-linear in nature, and the rate of increase surges with an increase in α. A 

reduction in wDIRL is found on increasing the modal damping ratios. However, the difference 

between wDIRL for different damping factors diminishes with an increase in the static load 

factor. Thus, it can be concluded that it is essential to consider preloads for accurate prediction 

of resonant bandwidths of the microplate. The impact on bandwidth is more significant in less 

damp systems. Preloads are generally present in any system, and their neglection would lead 

to an overestimation of the stiffness and origin of resonance bandwidth. 

 

Fig. 4.11. Width of dynamic instability region at β=0.2 vs static load factor for different 

modal damping ratios for an isotropic epoxy microplate (a/h=100; h/l=1; ζ1=3% & ζ2=1.5%; 

MSGT; SSSS) 

4.5.4 Effect of Boundary Conditions 

The microplates are subjected to various support conditions in practice. The dynamic 

instability and non-linear vibration behavior of some of the common boundary conditions are 

plotted in Fig. 4.12. Four different boundary conditions, namely, SSSS (all edges simply 

supported), SCSC (loaded edges simply supported and non-loaded edges clamped), CSCS 

(loaded edges clamped and non-loaded edges simply-supported), and CCCC (all edges 

clamped). The critical buckling load calculated for SSSS is minimum, therefore, to show fair 

comparison, it is used in the loading function for all methods. The dimensionless natural 

frequency (p/ω) is also calculated using ω calculated for the SSSS boundary condition. It is 

observed from Fig. 4.12(a). that the origin of instability shifts towards the right in the order 
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SSSS→CSCS=SCSC→CCCC. The minimum dynamic load for the onset of instability is also 

minimum for SSSS and follows the order SSSS<SCSC<CSCS<CCCC. Thus, it can be 

concluded that the CCCC boundary condition provides the most stiffness to the plate and the 

SSSS boundary condition provides the least stiffness. The wDIRL shown in Fig. 4.12(b) also 

follows a similar trend and is found to be maximum for SSSS and minimum for CCCC support 

conditions.  

 

Fig. 4.12. Effect of boundary conditions on (a) principal instability zone, (b) width of 

dynamic instability region, (c) non-linear vibration response, and (d) width of dynamic 

instability region considering non-linearities at β=0.5 for an isotropic epoxy microplate 

(a/h=100; h/l=1; ζ1=3% & ζ2=1.5%; MSGT) 

Microplate with SCSC boundary condition is found to have lower wDIRL than with CSCS 

boundary condition. Similarly, from Fig. 4.12(c) and Fig. 4.12(d). it is observed that peak 

amplitude and wDIRNL also follow a similar trend and the CCCC support condition provides 

the maximum stiffness. Thus, it can be concluded that restraints at the boundary conditions not 

only provide stiffness to the plate but also promote the hardening behavior of the plate. If the 
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size of the plate cannot be reformed, providing restraints at the boundaries may assist in 

enhancing the resonance frequency of the microplate. 

4.5.5 Effect of Different Loading Conditions 

 

Fig. 4.13. Effect of different loading conditions on (a) principal instability zone, (b) width of 

dynamic instability region, (c) non-linear vibration response, and (d) width of dynamic 

instability region considering non-linearities at β=0.6 for an isotropic epoxy microplate 

(a/h=100; h/l=1; ζ1=3% & ζ2=1.5%; MSGT; SSSS) 

The loading on the microplate is not always uniform in nature. It might be localized due to 

localized contact points with the loading device or due to damaged edges. Therefore, a 

comparison of the effect of uniform, parabolic, and partially loaded edges on dynamic 

instability and non-linear vibration behavior of microplate is investigated. The magnitude of 

load in all the cases is equal to the magnitude of load in the uniform load case. The buckling 

load calculated for the partially loaded edge is minimum, therefore, it is used in the loading 

function for all methods. The change in loading only affects the geometric stiffness, therefore, 

there is no change in the origin of instability, as shown in Fig. 4.13(a). The wDIRL in Fig. 
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4.13(b) is maximum for partial edge loading and minimum for uniform loading. This is because 

the geometric stiffness provided is more by partially loaded edges and least for uniformly 

loaded edges. Since the loading is compressive in nature, higher geometric stiffness leads to 

lower overall stiffness. Hence, the peak amplitude and wDIRNL are also maximum for partially 

loaded microplates and minimum for uniformly loaded plates (Fig. 4.13(c) and Fig. 4.13(d)). 

It can be concluded that the resonance frequency bandwidth varies with the profile of loading 

considered. The bandwidth would increase for loading profiles where more load is concentrated 

at the centre of edge.



 

 
 

 

  



5 
     Nonlinear Vibration and Dynamic Response of Microplate 
under In-Plane Mechanical Loading: Results and Discussion 

 
 

5.1 Introduction         

This chapter presents the combined nonlinear vibration and nonlinear response of a 

damped porous microplate under nonuniform periodic parametric excitation to understand the 

complete nonlinear dynamic behaviour of the plate (Fig. 3.3(a)). The plate is supported by a 

Winkler-Pasternak elastic foundation. The effect of elastic foundation parameters and aspect 

ratio on mode shape is presented. The steady-state amplitude's dependence on the initial 

amplitude of perturbation in different zones of excitation frequency is investigated with the 

help of time history response curves obtained with the use of the Newmark-β method.  A 

parametric study to examine the effect of porosity coefficient, type of porosity, Winkler-

Pasternak elastic foundation parameters, different size-dependent theories, size of the plate, 

thickness of plate, load concentration, loading profile, and modal damping ratios on the 

nonlinear dynamic behaviour of the porous microplate resting on elastic foundations (PMREF) 

is presented. The applied loading is of the form shown in section 3.5.1. In this regard, the 

validation study of the methodology is presented in section 5.2. The parametric study of the 

mode shape at critical buckling load is presented in section 5.3. Section 5.4 presents the 

convergence study to determine the optimum number of independent terms to model the field 

displacement variables. The parametric results for the nonlinear dynamic analyses are 

presented in section 5.5. 

5.2 Validation Study 

This section validates the methodology adopted in this study by comparing the results 

with previous results reported by different studies. The accuracy of the effect of the Winkler-

Pasternak elastic foundation on the frequency of simply supported square plate is validated by 

comparing the results with Baferani et al. (2011), as reported in Table 5.1. They analytically 

performed the vibration analysis of a thick plate resting on elastic foundations modelled using 

the TSDT. The mechanical and geometric properties of the plate are E = 380 GPa, ρ = 3800 

kg/m3, ν = 0.3, a /b = 1, and all edges are simply supported (SSSS). 

Since the macro-scale plate is considered, CCT is used to obtain the results. It is observed from 

Table 5.1 that the dimensionless frequency, �̂� = 𝜔ℎ√
𝜌

𝐸
, obtained from the present study for 
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different equivalent Winkler and Pasternak elastic foundation parameters, 𝐾𝑤
̅̅ ̅̅  and 𝐾𝑝

̅̅̅̅ , and a/h 

values match very accurately with that obtained by Baferani et al. (2011). Here, 𝜔 stands for 

the linear fundamental frequency of the plate. The expression for equivalent Winkler and 

Pasternak elastic foundation parameters, 𝐾𝑤 ̅̅ ̅̅ ̅and 𝐾𝑝
̅̅̅̅ , is given in Eq. (5.1a) and Eq. (5.1b) 

respectively. 

𝐾𝑤
̅̅ ̅̅ =

𝐾𝑤𝑎4

𝐷
 (5.1a) 

𝐾𝑝
̅̅̅̅ =

𝐾𝑝𝑎2

𝐷
 (5.1b) 

where,                                          𝐷 =
𝐸ℎ3

12(1−𝜈2)
 (5.1c) 

Table 5.1 Comparison of dimensionless frequency of a simply supported square thick plate 

resting on an elastic foundation with different values of 𝐾𝑤
̅̅ ̅̅ , 𝐾𝑝

̅̅̅̅  and a/h ratios 

𝑲𝒘
̅̅ ̅̅  𝑲𝒑

̅̅ ̅̅  a/h 

Dimensionless 

frequency 
a/h 

Dimensionless frequency 

Present 

study 

Baferani et 

al. (2011) 
Present study 

Baferani et al. 

(2011) 

0 
0 

10 

0.1143 0.1134 

20 

0.0292 0.0291 

100 0.1611 0.1599 0.0407 0.0406 

100 
0 0.1171 0.1162 0.0299 0.0298 

100 0.1631 0.1619 0.0412 0.0411 

The dimensionless frequency, �̂� = 𝜔ℎ√
𝜌

𝐸
 and dimensionless buckling load, 𝑁𝑐�̂� =

𝑁𝑐𝑟𝑎2

𝐸ℎ3 , 

obtained from this study are compared with those given by Hung et al. (2022). It is found that 

the results obtained from both are very close. They studied the metal foam porous microplate's 

free vibration and critical buckling load modelled with the help of MSGT and HSDT. The 

results are compared for different values of l/h ratios and types of porosity. The material and 

geometric properties of the plate are: E = 200 GPa, ρ = 7850 kg/m3, ν = 0.33, e0=0.2, l0= l1= 

l2=15μm, a/h=10, a = b, Support Conditions: all edges are simply supported (SSSS). The 

formulation for porosity and MSGT is validated by the close results observed between the 

present study and Hung et al. (2022) in Table 5.2. Thus, the accuracy of the formulation for 

porosity and modified strain gradient theory in the present study is validated. 
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Table 5.2 Validation study of dimensionless buckling load and dimensionless frequency of 

an SSSS square porous metal foam microplate on varying the l/h ratios 

Type l/h 

Dimensionless critical 

buckling load 
Dimensionless frequency 

Present 

Study Hung et al. (2022) 

Present 

Study Hung et al. (2022) 

Symmetric 

0.1 3.6579 3.6551 0.0622 0.0617 

0.2 4.9824 4.9697 0.0726 0.072 

0.5 14.2513 13.859 0.1232 0.1215 

1 47.3515 46.2271 0.2245 0.2212 

Uniform 

0.1 3.4716 3.4694 0.0606 0.0601 

0.2 4.7842 4.7734 0.0711 0.0706 

0.5 13.9566 14.153 0.1215 0.1203 

1 46.6882 46.9191 0.2222 0.2196 

The in-plane stress resultants are computed analytically in this study using Airy’s stress 

function. The authenticity of these stress resultants is established by matching the stresses 

computed from them (𝜎𝑖𝑗 =
𝑛𝑖𝑗

ℎ
) with stresses obtained using the finite element method 

(ABAQUS). The normal stresses (𝜎𝑥𝑥, 𝜎𝑦𝑦), and shear stress (𝜏𝑥𝑦) contours of a simply 

supported (SSSS) porous microplate resting on an elastic foundation (PMREF) are plotted in 

Fig. 5.1 using the proposed methodology and ABAQUS. The parameters of the PMREF used 

are E = 200 GPa, ρ = 7850 kg/m3, ν = 0.33, a/h=10, a=b, e0=0.2, symmetric porosity. 

  A partial loading profile (d=0.25b) of Case-III having unit magnitude is adopted in this 

validation study. The results are incredibly comparable to those obtained by ABAQUS, as 

shown in Fig. 5.1. As a result, the analytical approach adopted in this study can be regarded as 

a dependable methodology for modelling the in-plane pre-buckling stresses. 
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(a)Ariy’s stress Method (𝜎𝑥𝑥) 

 
(b) ABAQUS CAE (𝜎𝑥𝑥) 

 
(c) Ariy’s stress Method (𝜎𝑦𝑦) 

 
(d) ABAQUS CAE (𝜎𝑦𝑦) 

 
(e) Ariy’s stress Method ( 𝜏𝑥𝑦) 

 
(f) ABAQUS CAE ( 𝜏𝑥𝑦) 

Fig. 5.1. In-plane pre-buckling normal and shear stresses contours computed using Airy’s 

stress method and ABAQUS for simply supported isotropic square plate (b/h=10; a/b=1)  
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5.3 Parametric Study of Buckling Mode Shape 

The mode shape at buckling load (i.e., buckling mode shape) for PMREF with different aspect 

ratios is presented in Fig. 5.2. The square PMREF is buckled in the first mode (m=1, n=1), and 

the index of the mode shape changes as the aspect ratio increases. This is because, as the aspect 

ratio increases, the stiffness along one direction is less than the other. This leads to more 

concentrated stresses across the shorter width in the case of higher aspect ratio plates. Now, as 

the mode number increases, the number of nodal lines that run across the width of the plate 

increases. Thus, the vibration in higher modes leads to more localized bending stresses along 

these nodal lines. These increased localized bending stresses, along with the lower stiffness in 

one direction for higher aspect ratio plates, lead them to buckle more readily in higher aspect 

ratio plates. The mode numbers at the buckling load for PMREF with a/b=2, a/b=4, and a/b=6, 

are obtained as (m=2, n=1), (m=4, n=1), and (m=7, n=1), respectively.  

(a)  

(b)  
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(c)  

(d)  

Fig. 5.2 Mode shape at buckling load for PMREF (e0=0.2; Symmetric Porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 

𝐾𝑝
̅̅̅̅ = 10; partial load (d=0.5b); a/h=10; h/l=2; MSGT; SSSS) with different aspect ratios, (a) 

a/b=1, (b) a/b=2, (c) a/b=4, (d) a/b=6 

 

Fig. 5.3 Variation of buckling load for different mode shapes on varying the Winkler and 

Pasternak elastic foundation parameters for a PMREF (e0=0.2; symmetric porosity; partial 

load (d=0.5b); a/h=10; a/b=1; h/l=2; MSGT; SSSS) 
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The variation of critical load for a square PMREF at different indexed mode shapes with respect 

to equivalent Winkler and Pasternak elastic foundation parameters is presented in Fig. 5.3. It 

is observed that the PMREF buckled in the first mode (m=1, n=1) for low values of elastic 

foundation parameters. However, the corresponding indexed buckling mode shapes changed 

as these parameters increased. The change of mode happens prior on increasing the value of 

𝐾𝑝
̅̅̅̅ , than the value of 𝐾𝑤

̅̅ ̅̅ . When 𝐾𝑤
̅̅ ̅̅  is not present, the mode of buckling shifts from (m=1, n=1) 

to (m=2, n=1) near 𝐾𝑝
̅̅̅̅ = 100, and from (m=2, n=1) to (m=3, n=1) near 𝐾𝑝

̅̅̅̅ = 1000. On the 

other hand, when 𝐾𝑝
̅̅̅̅  is not present, the mode of buckling shifts from (m=1, n=1) to (m=2, n=1) 

near 𝐾𝑤
̅̅ ̅̅ = 1000. If both 𝐾𝑤

̅̅ ̅̅  and 𝐾𝑝
̅̅̅̅  are increased linearly, the shift from (m=1, n=1) to (m=2, 

n=1) takes place near 𝐾𝑤
̅̅ ̅̅ = 𝐾𝑝

̅̅̅̅ = 50, and the shift from (m=2, n=1) to (m=3, n=1) takes place 

near 𝐾𝑤
̅̅ ̅̅ = 𝐾𝑝

̅̅̅̅ = 900.   

5.4 Convergence Study 

 

Fig. 5.4 Convergence study of a damped PMREF's (β =0.6) nonlinear forced vibration 

response taking into account the various number of terms corresponding to each displacement 

field 

In this investigation, the frequency vs amplitude is plotted for nonlinear forced vibration 

responses with the Incremental Harmonic Balance (IHB) method. The incremental part in IHB 

is tended to by the arc-length method. The convergence study is performed in Fig. 5.4 for the 

forced vibration response of the PMREF in this work to determine the optimal number of terms 

for each displacement field to provide accurate results while maintaining computing efficiency. 
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The convergence of solution is observed in Fig. 5.4 for 4-terms and 6-terms in the displacement 

field. Therefore, 4-terms are considered for each displacement field (𝑢0, 𝑣0, 𝑤0, 𝜙𝑥
0 and 𝜙𝑦

0) all 

through this study. The four constants for each displacement field are:  𝑈11
∗ , 𝑈31

∗ ,

𝑈13
∗ ,  𝑈33

∗ ,  𝑉11
∗ , 𝑉31

∗ ,  𝑉13
∗ ,  𝑉33

∗ ,  𝑊11
∗ ,  𝑊31

∗ ,  𝑊13
∗ ,  𝑊33

∗ ,  𝐾11
∗ , 𝐾31

∗ , 𝐾13
∗ ,  𝐾33

∗ , 𝐿11
∗ , 𝐿31

∗ , 𝐿13
∗ ,  𝐿33

∗ . 

The parameters of the PMREF used in this study are E = 200 GPa, ν = 0.33, and ρ = 7850 

kg/m3, a/h=10, a=b, Theory: MSGT, l0 = l1 = l2 = l = 15 μm, h/l=2, e0=0.2, Symmetric Porosity, 

𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10, Loading: Partial (d=0.5b), modal damping ratios: ζ1=4% & ζ2=2%. 

Support conditions: All edges are simply supported (SSSS). All these parameters are used 

throughout this study unless explicitly mentioned. 

5.5 Nonlinear Dynamic Analysis Results 

 

Fig. 5.5 Non-linear vibration response using frequency-amplitude curve at β=0.6 for a 

damped PMREF (e0=0.2; Symmetric Porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; Partial load (d=0.5b); 

a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 

The nonlinear vibration of the PMREF is depicted in Fig. 5.5 by the frequency-

amplitude curve. The curve is plotted between w/h and p/ω, where w is the steady state 

amplitude, p is the frequency of the applied harmonic loading, and 𝜔 stands for the linear 

fundamental frequency. The harmonic load, 𝑁𝑑𝑦𝑛 applied on the plate is of the form 𝑁𝑑𝑦𝑛 =
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𝛽𝑁𝑐𝑟, where 𝛽 is the dynamic load factor and 𝑁𝑐𝑟 is the buckling load of the plate. The use of 

the arc-length technique in IHB provides the frequency-amplitude curve’s unstable branch also, 

along with the stable branch. The diagram shows that the curve has three bifurcation points 

labeled I, II, and III. Points I and II are pitchfork-type bifurcation points. While I is a 

supercritical type, II is a subcritical type of pitchfork bifurcation. The bifurcation point III is a 

saddle-node type point. Four zones may be identified on the curve of forcing frequency based 

on these bifurcation points, as shown in Fig. 5.5. Region 'A'  and ‘D’ consist of a singular stable 

solution. On the other hand, region 'B' is comprised of one stable and unstable curve each, and 

region 'C' is comprised of one unstable and two stable curves. 

The existence of a single stable solution in regions ‘A’, ‘B’, and ‘D’, makes the steady-state 

amplitude in these regions independent of the initial perturbation amplitude. The availability 

of two stable solutions in region ‘C’ makes the steady state amplitude attained by forcing 

frequencies in this region depend on the initial amplitude. Regarding the stability of response, 

region ‘B’ is found to be most critical as it leads to high steady-state amplitude for any value 

of initial displacement amplitude. Region ‘C’ also shows high amplitude values in Fig. 5.5, but 

only for large perturbation amplitudes. Regions ‘A’ and ‘D’ of forcing frequency are most 

stable where the steady state amplitude decays to zero for any initial amplitude value. 

In this section, the nonlinear dynamic behaviour of the PMREF is analyzed with the help of a 

frequency-amplitude plot and the time-history response plot. The effect of various parameters 

such as porosity coefficient, type of porosity, Winkler-Pasternak elastic foundation parameters, 

size-dependent theories, the concentration of loading, loading profile, and modal damping ratio 

are examined in the subsections below. The effect of these parameters on the geometric 

nonlinearity, regions of stability, and overall stiffness is studied with the nonlinear vibration 

(amplitude vs. frequency plots) and the nonlinear dynamic response (amplitude vs. time plots). 

The effect of amplitude of initial perturbation, ‘w0’, in different regions of forcing frequency 

is also studied from the time-history analysis. 

5.5.1 Porosity Coefficient 

The impact of change in porosity coefficient on the nonlinear dynamic behaviour of the 

PMREF is illustrated in Fig. 5.6. The critical buckling load for e0=0.6 is minimum, thus 

adopted as the magnitude of loading, Ncr, for all curves. The excitation frequency ratio (p/ω) 

and dimensionless time ratio (t/T) are made non-dimensional using ‘ω’ and ‘T’ of e0=0.6. Here, 
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‘T’ represents the time period of a plate, which is related to ‘ω’ as 𝑇 = 2𝜋/𝜔. It is noticed from 

Fig. 5.6(a) that the lowest frequency of region ‘B’ moves towards a lower excitation frequency 

ratio but no shift in the right origin of region ‘B’ on increasing the porosity coefficient, 

depicting a decrease in linear stiffness for more porous plates. The width of the region of 

stability ‘B’ and ‘C’ also increases on increasing the porosity coefficient. The increase in 

porosity coefficient indicates the increase in pores in the material, which in turn results in the 

reduction of material property parameters such as Young’s modulus and shear modulus. The 

reduction of these parameters reduces both the linear and nonlinear stiffness of the PMREF.  

 

Fig. 5.6 Effect of porosity coefficient on (a) nonlinear vibration response and (b) nonlinear 

dynamic response (p/ω=2 and w0=0.2h), at β=0.6 for a damped PMREF (symmetric porosity; 

𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; partial load (d=0.5b); a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 

The effect of geometric nonlinearities on nonlinear stiffness is more evident in less porous 

PMREF. This is illustrated by the increasing difference in steady-state amplitudes of more 

porous and less porous plates on increasing the forcing frequency. The forcing frequency for 

all three curves in the time-history response lies in the region ‘B’ with a very low amplitude of 

initial perturbation, w0. It is observed that the amplitude of the time-history plot increases for 

all three curves to reach the steady-state amplitude as depicted by their upper stable curves 
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(Fig. 5.6(b)). The steady-state amplitude is maximum for the most porous plate and minimum 

for the least porous plate. 

5.5.2 Type of Porosity 

 

Fig. 5.7 Effect of type of porosity on (a) nonlinear vibration response, and (b) nonlinear 

dynamic response (p/ω=2.4 and w0=1.2h), at β=0.6 for a damped PMREF (𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ =

10; partial load (d=0.5b); a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 

The effect of the type of porosity for different porosity coefficients on the nonlinear dynamic 

behaviour of the PMREF is illustrated in Fig. 5.7. The magnitude of loading, Ncr, ‘ω’ for 

dimensionless excitation frequency ratio (p/ω) and ‘T’ for dimensionless time ratio (t/T) are 

taken equal to the buckling load, fundamental natural frequency and fundamental time period 

of PMREF with uniform porosity distribution and e0=0.6. It is observed from Fig. 5.7(a) that 

for a particular coefficient of porosity, region ‘B’ shifts towards a lower excitation frequency 

ratio when the distribution of porosity is changed from symmetric to uniform. Thus, indicating 

a reduction in linear stiffness. This is because uniform porosity distribution tends to have a 

more pronounced effect on reducing Young's modulus because it leads to more uniform stress 
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distribution, reduced effective contact area, increased void interactions, and enhanced stress 

concentration compared to symmetric porosity distribution. These factors collectively 

contribute to a higher decrease in the material's stiffness. It can also be seen that the difference 

in stiffness between a uniform distribution and symmetric porosity distribution is more evident 

for higher values of the porosity coefficient. Following similar trends, it is also observed that 

the width of regions ‘B’ and ‘C’ is also more for uniform porosity distribution. However, no 

significant difference is found in the hardening behaviour, indicating significantly less effect 

on nonlinear stiffness. The time-history plot is plotted for all the porosity distributions with 

different porosity coefficients corresponding to the forcing frequency in region ‘C’. The initial 

amplitude is chosen near the upper stability curve for all the time-history plots. Thus, the 

steady-state amplitude for all the time-history plots attained is equal to the amplitude 

corresponding to their upper stable curve and becomes constant. 

5.5.3 Elastic Foundation 

The effect of Winkler-Pasternak elastic foundation parameters on the nonlinear dynamic 

behaviour of the PMREF is presented in Fig. 5.8. The magnitude of loading, Ncr, ‘ω’ for 

dimensionless excitation frequency ratio (p/ω) and ‘T’ for dimensionless time ratio (t/T) are 

taken equal to the buckling load, fundamental natural frequency and fundamental time period 

of PMREF with 𝐾𝑤
̅̅ ̅̅ = 0, 𝐾𝑝

̅̅̅̅ = 0. It can be noted from Fig. 5.8(a) that the lowest frequency of 

region ‘B’ moves towards a higher excitation frequency ratio, and the width of regions ‘B’ and 

‘C’ decreases on increasing the equivalent elastic foundation parameters 𝐾𝑤
̅̅ ̅̅  and 𝐾𝑝

̅̅̅̅ . However, 

it is seen that the effect of the Winkler parameter on the enhancement of stiffness is negligible 

in comparison with the Pasternak parameter. This is because, while the Winkler foundation is 

a model of an array of vertical springs, the Pasternak parameter models the horizontal stiffness 

provided by the foundation. Since plates are subjected to bending in most cases, the resistance 

to horizontal displacements provides a greater resistance to bending. The Pasternak parameter 

also resists the transverse shear deformations, which are detrimental in the case of these plates. 

The hardening nature of the frequency-amplitude curve is lesser for higher values of elastic 

foundation parameters, as shown by the diminishing difference between steady-state 

amplitudes of the upper stable curve on increasing excitation frequency in region ‘C’. This 

indicates that the effect of geometric nonlinearity gets suppressed as the elastic foundation 

parameters become more prominent. The time-history response is plotted in Fig. 5.8(b) for the 

excitation frequency of all models in the region ‘A’ corresponding to a low initial amplitude. 
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It is observed that the steady-state amplitude for all models decays to zero. The decay for high 

elastic foundation parameters with greater stiffness occurs earlier than other weaker PMREFs. 

 

Fig. 5.8 Effect of Winkler-Pasternak elastic foundation parameters on (a)nonlinear vibration 

response, and (b)nonlinear dynamic response (p/ω=1.5 and w0=0.2h), at β=0.6 for a damped 

PMREF (e0=0.2; symmetric porosity; Partial load (d=0.5b); a/h=10; h/l=2; ζ1=4% & ζ2=2%; 

MSGT; SSSS) 

5.5.4 Theory 

The nonlinear vibration and dynamic responses of PMREF modelled by employing 

MSGT, MCST, and CCT are presented in Fig. 5.9(a) and Fig. 5.9(b), respectively. The 

magnitude of loading, Ncr, ‘ω’ for dimensionless excitation frequency ratio (p/ω), and ‘T’ for 

dimensionless time ratio (t/T) are taken equal to the buckling load, fundamental natural 

frequency, and fundamental period of PMREF based on CCT. The origin of region ‘B’ shifts 

towards a higher excitation frequency ratio on the inclusion of the effect of rotation gradients 

in the MCST model. The shift is more significant in magnitude due to the MSGT model 

indicating a more significant contribution in stiffness of the dilatant and deviatoric stretch 
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gradients in MSGT. The width of regions ‘B’ and ‘C’ is also less for the MSGT model and 

maximum for the CCT model due to the addition of linear stiffness from the hardening of strain 

gradients in MSGT and MCST models. However, the hardening nature of the upper stable 

curve in regions ‘B’ and ‘C’ is less for MCST and even lesser in the MSGT model. This is 

because the effect of geometric nonlinearities gets inferior in the presence of stiffer strain 

gradient models of MCST and MSGT. The forcing frequency used to obtain the time history 

response plot lies in region ‘B’ for the MSGT model and region ‘C’ for MCST and CCT 

models. The initial displacement amplitude is chosen near the upper stable curves of CCT and 

MCST models. It is observed from Fig. 5.9(b) that the steady state amplitude attained by MCST 

and CCT does not decay to zero as the initial amplitude nears the upper stable curve. However, 

in the case of MSGT, although the initial amplitude is not near the upper stable curve, the 

steady state amplitude still does not decay to zero because of this model's excitation frequency 

lying in the region ‘B’. 

 

Fig. 5.9 Impact of various small-scale theories on (a) Nonlinear vibration response, and (b) 

Nonlinear dynamic response (p/ω=3.5 and w0=1.6h), at β=0.7 for a damped PMREF (e0=0.2; 

Symmetric Porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; Partial load (d=0.5b); a/h=10; h/l=2; ζ1=4% & 

ζ2=2%; SSSS) 
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5.5.5 Length to Thickness ratio (a/h) of the Plate 

 

Fig. 5.10 Effect of length to thickness ratio (a/h) on (a) nonlinear vibration response, and (b) 

nonlinear dynamic response (p/ω=3.3 and w0=1.6h), at β=0.7 for a damped PMREF (e0=0.2; 

symmetric porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; partial load (d=0.5b); a=600μm; h/l=2; ζ1=4% & 

ζ2=2%; MSGT; SSSS) 

The effect of variation in length to thickness ratio (a/h ratio) of the PMREF on the 

nonlinear vibration and dynamic response is presented in Fig. 5.10 to study the effect of shear 

deformation. The edge length 'a' is kept constant at 600 μm, and the thickness of the plate is 

changed. The value of l is also changed accordingly to maintain an h/l ratio of 2. The 

nondimensional amplitude (w/h) is calculated using h of the PMREF with a/h=20 i.e., 30μm. 

The magnitude of loading, Ncr, 'ω' for dimensionless excitation frequency ratio (p/ω) and 'T' 

for dimensionless time ratio (t/T) is taken equal to the buckling load, fundamental natural 

frequency and fundamental period of PMREF with a/h=30. It can be seen that the origin of 

region 'B' shifts towards the right, and the widths of regions' B' and 'C' also decrease with an 

increase in the thickness of the plate. This is because the shear deformation effects become 

more prominent with an increase in the thickness of the plate. The hardening nature of the 
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curves also decreases with an increase in thickness as the impact of geometric nonlinearity gets 

suppressed due to the addition of the shear deformation effect. The forcing frequency for Fig. 

5.10(b) lies in region 'C' for all three curves, and the amplitude of initial perturbation is near 

the upper stable curves of a/h=30 and a/h=25, while away from the upper stable curve of 

PMREF with a/h=20. Therefore, the steady-state amplitude for the PMREF with a/h=30 and 

a/h=25 becomes equal to amplitude obtained from their upper stable curves, and it decays to 

zero for a/h=20, exhibiting the dependence of initial perturbation on the steady-state amplitude. 

 

5.5.6 Size of the Plate (h/l ratio) 

 

Fig. 5.11 Effect of thickness to MLSP ratio (h/l) on (a) nonlinear vibration response and (b) 

nonlinear dynamic response (p/ω=2.2 and w0=1.3h), at β=0.8 for a damped PMREF (e0=0.2; 

symmetric porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; partial load (d=0.5b); a/h=10; h=15μm; ζ1=4% & 

ζ2=2%; MSGT; SSSS) 

The effect of the size of the plate on the nonlinear vibration and nonlinear dynamic response is 

presented in Fig. 5.11. The influence of  h/l is studied by keeping the thickness of the plate 
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constant to ignore the effects due to shear deformation. The magnitude of loading, Ncr, 'ω' for 

dimensionless excitation frequency ratio (p/ω), and 'T' for dimensionless time ratio (t/T) is 

taken equal to the buckling load, fundamental natural frequency, and fundamental period of 

PMREF with h/l=5. The regions' B' and 'C' shift towards the right and show a decrease in width 

as the thickness of the plate gets closer to the MLSP (Fig. 5.11(a)). This is because the size-

dependent effects get intensified as the size of the plate decreases. The nonlinear hardening 

nature is also suppressed in the presence of these amplified size-dependent effects. The forcing 

frequency for the time history response (Fig. 5.11(b)) is taken in region 'B' for PMREF with 

h/l=5 and h/l=3, and in the region 'A' for h/l=2. Thus, the steady-state amplitude is null in the 

case of PMREF with h/l=2 and equal to the amplitude from the upper stable curves of the other 

two plates with no dependence on the initial perturbation.  

5.5.7 Load Concentration 

 

 

Fig. 5.12 Impact of load concentration on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response (p/ω=3 and w0=0.2h), at β=0.4 for a damped PMREF (e0=0.2; symmetric 

porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; partial load; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 
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Fig. 5.12 depicts the influence of the concentration of load, ‘d’, in the partial load profile on 

the nonlinear dynamic behaviour of the PMREF. The buckling load (Ncr) due to d=0.1b loading 

concentration is chosen as a reference. The loading concentration does not affect the linear 

stiffness and nonlinear stiffness of the PMREF. Thus, the origin of region ‘B’ and the hardening 

nature of the curve remains unaffected by loading concentration. It is, however, observed that 

the steady-state amplitude of the upper stable curve, width of region ‘B’ and region ‘C’, 

increases with the concentration of load. This is because of the greater impact of higher 

concentrations of load on the linear geometric stiffness due to the in-plane load of the PMREF. 

The excitation frequency considered for the time-history response (Fig. 5.12(b)) falls in region 

‘C’ for all the loading concentrations. A very small initial amplitude of perturbation has been 

considered. Thus, the steady-state amplitude for the lower stable curve is adopted for all the 

loading concentrations, where the response decays completely. Since the linear stiffness in all 

the cases is unaffected, the decay takes place concurrently for all cases of concentrations.  

5.5.8 Load Profile 

 

Fig. 5.13 Impact of loading profile on (a) nonlinear vibration response, and (b) nonlinear 

dynamic response (p/ω=2 and w0=1.5h), at β=0.4 for a damped PMREF (e0=0.2; symmetric 

porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS) 



Chapter 5 
 

131 
 

The impact of the loading profile of in-plane harmonic load on the nonlinear dynamic 

behaviour of the PMREF is depicted in Fig. 5.13. The magnitude of loading, Ncr, is taken equal 

to the buckling load due to partial loading profile (d=0.5b). The loading profile has no effect 

on the linear stiffness and nonlinear stiffness of the PMREF. Thus, the origin of region ‘B’ and 

the hardening nature of the curve remains unaffected by the loading profile. The width of region 

‘B’ and region ‘C’ is most for the partial loading profile and least for the uniform loading 

profile. This implies that the uniform loading profile has the least impact on the geometric 

linear stiffness due to in-plane load, followed by parabolic and partial loading profiles. The 

time history response is plotted for excitation frequency in the region ‘B’ for all the loading 

profiles and large initial amplitude of perturbation (Fig. 5.13(b)). It is observed that the 

response decays from a large initial amplitude of vibration to its steady state amplitude, shown 

by the stable curve in region ‘B’. The steady-state amplitude is highest for the partial loading 

profile and least for the uniform loading profile, following their order of contribution to 

geometric stiffness. 

5.5.9 Damping 
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Fig. 5.14. Effect of modal damping ratios on (a) nonlinear vibration response, and (b) 

nonlinear dynamic response (p/ω=2.5 and w0=1.5h), at β=0.3 for a damped PMREF (e0=0.2; 

symmetric porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; partial load(d=0.5b); a/h=10; h/l=2; MSGT; SSSS) 

The influence of modal damping ratios on the nonlinear dynamic behaviour of the PMREF is 

presented in Fig. 5.14. It is observed from Fig. 5.14(a) that an increase in modal damping ratios 

leads to major mitigation of the width of region ‘C’. The width of region ‘B’ is also lessened 

but only marginally. The forcing frequency for the time history response falls in region ‘D’ for 

a system with ζ1=6% & ζ2=3% and in region ‘C’ for the other two damping systems. The initial 

amplitude is taken close to the upper stable curves. Thus, the time history response reaches the 

steady-state response for ζ1=4% & ζ2=2%, and ζ1=5% & ζ2=2.5%. It decays completely for the 

ζ1=6% & ζ2=3% systems as it falls in the region ‘D’. It is also observed that the steady-state 

response is reached earlier for a higher modal damping ratio system. 

 

 



6 
     Nonlinear Dynamic Analyses of Microplate 

under Transverse Loading: Results and Discussion 

 
 

6.1 Introduction 

In this chapter, the nonlinear dynamic analyses of microplates under periodic transverse 

patch loadings are studied. The transverse patch loading is considered of the form illustrated in 

Fig. 3.7. This chapter is divided into three major sections. In section 6.2, the validation and 

convergence study of the methodology adopted in this chapter is shown. In section 6.3, the 

parametric analysis of nonlinear free and forced vibration behaviour of functionally graded 

(FG) microplate subjected to periodic transverse patch loading is presented. In section 6.4, the 

nonlinear dynamic analyses of porous microplate resting on elastic foundation (PMREF) 

subjected to periodic transverse patch loading is presented. The frequency-amplitude plots are 

used to illustrate the nonlinear vibration and time history plots are used to present the nonlinear 

dynamic response of the PMREF. The effect of different parameters on the nonlinear vibration 

and the initial amplitude on the dynamic response is studied. 

6.2 Validation and Convergence study 

By comparing the natural frequency obtained using the methods discussed in this 

research with that of Mirsalehi et al. (2017), the validity of the mathematical tools for arriving 

at ODEs utilized in this work is demonstrated. Mirsalehi et al. (2017) calculated the plate's 

natural frequencies using MSGT and the split finite strip method. The square microplate’s 

properties used in this reference study are the same as those used in this study. The plate's edge 

length has been taken to be a hundred times its thickness. Table 6.1 compares the fundamental 

natural frequency in MHz (Ω) for various power-law indices and l/h ratios. As can be seen, the 

results obtained are very similar to those obtained by Mirsalehi et al. 2017. Thus, it is confirmed 

that the method used in this study is accurate. 

The non-dimensional linear deflection (
10𝐸ℎ3𝑤𝑙𝑚𝑎𝑥

𝑓0𝑎4 ) obtained from the present study is 

compared with the non-dimensional linear deflection computed by Torabi et al. (2021) using 

the three-dimensional (3D) theory and the plate theory using the FSDT (Table 6.2). The linear 

deflection is denoted by 𝑤𝑙𝑚𝑎𝑥. The small-scale effects are modelled using the MCST. The 

microplate utilized for this comparison in Table 6.2 has the following properties: E = 14.4 GPa; 

ν = 0.38; ρ = 12200 kg/m3; l0 = l = 17.6 μm, l1 = l2 =0;  a =b; Support conditions: All edges 
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simply supported (SSSS). It can be observed from Table 6.2, that the results of the present 

study are quite close to those by  Torabi et al. 2021 for moderately thin (a/h=20) and moderately 

thick (a/h=10) plates. The results are closer to 3D results than those given by FSDT plate 

theory, indicating more accurate modeling of the transverse shear strains than the FSDT. 

However, for thick plates (a/h=5), the plate theories show significant divergence in results from 

the 3D theory. Thus indicating that plate theories are not suitable for such plates. 

Table 6.1 Comparison of frequency of an SSSS microplate with varying power-law index 

and l/h ratios 

n l/h 

Vibration frequency (MHz) 
Mirsalehi et al. 

(2017) This study 

0 

0 0.05402 0.05402 
0.5 0.11724 0.11724 
1 0.21500 0.21500 

1.5 0.31679 0.31675 
2 0.41969 0.41964 

1 

0 0.04121 0.04121 
0.5 0.09584 0.09584 
1 0.17790 0.17788 

1.5 0.26284 0.26284 
2 0.34856 0.34851 

5 

0 0.03553 0.03553 
0.5 0.07630 0.07630 
1 0.13964 0.13964 

1.5 0.20566 0.20565 
2 0.27242 0.27241 

10 

0 0.03440 0.03440 
0.5 0.07051 0.07051 
1 0.12781 0.12780 

1.5 0.18781 0.18781 
2 0.24857 0.24859 

Comparing the dimensionless frequency, �̂� = 𝜔ℎ√
𝜌

𝐸
 with Hung et al. (2022) validates the 

accuracy of the formulation for porosity and modified strain gradient theory in the present 

work.  Utilizing the MSGT, they investigated the free vibration of the metal foam porous 

microplate and refined the higher-order shear deformation plate theory. The findings for 

various l/h ratios and types of porosity are compared in Table 6.3. These are the plate 

characteristics utilized in this table: 

E = 200 GPa, ρ = 7850 kg/m3, μ = 0.33, e0=0.2, l0= l1= l2=15μm, a/h=10, a = b, Support 
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Conditions: Simply Supported. 

Table 6.2 Comparison of non-dimensional linear deflection (10𝐸ℎ3𝑤𝑙𝑚𝑎𝑥

𝑓0𝑎4 ) of a SSSS 

microplate with 3D theory and 2D (FSDT) for different a/h and l/h ratios 

l/h 

a/h 
20 10 5 

3D 
model 
(Tora
bi et 
al. 

2021) 

2D 
HSDT 
Model 
(Presen

t 
Study) 

2D 
FSDT 
Model 
(Torab
i et al. 
2021)  

3D 
model 
(Tora
bi et 
al. 

2021) 

2D 
HSDT 
Model 
(Presen

t 
Study) 

2D 
(FSDT) 
Model 
(Torab
i et al. 
2021) 

3D 
model 
(Tora
bi et 
al. 

2021) 

2D 
HSDT 
Model 

(Presen
t 

Study) 

2D 
(FSDT) 
Model 

(Torabi 
et al. 
2021) 

0 0.422 0.422 0.421 0.446 0.440 0.44 0.546 0.512 0.512 
0.2 0.363 0.367 0.367 0.377 0.381 0.383 0.437 0.436 0.446 
0.4 0.26 0.264 0.265 0.27 0.271 0.276 0.314 0.302 0.324 
0.6 0.178 0.179 0.178 0.186 0.184 0.191 0.228 0.200 0.226 
0.8 0.124 0.124 0.123 0.132 0.126 0.134 0.173 0.136 0.162 
1 0.09 0.09 0.091 0.098 0.090 0.0972 0.141 0.096 0.123 

Table 6.3 Validation study of the dimensionless frequency of an SSSS square porous metal 

foam microplate on varying the l/h ratios 

Type l/h 

Dimensionless frequency 

Present 
Study 

Hung et al. 
(2022) 

Symmetric 

0.1 0.0622 0.0617 
0.2 0.0726 0.072 
0.5 0.1232 0.1215 
1 0.2245 0.2212 

Uniform 

0.1 0.0606 0.0601 
0.2 0.0711 0.0706 
0.5 0.1215 0.1203 
1 0.2222 0.2196 

The similarity between the results of this investigation and those of Hung et al. (2022) validates 

the formulation for porosity and MSGT. 

The frequency-amplitude curve is plotted using the IHB method, where the arc-length method 

acts as the incremental method. The validation of this methodology is already shown in Fig. 

4.3 of chapter 4 by comparing the nonlinear free vibration response (i.e., backbone curve).  
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6.3 Nonlinear Free and Forced Vibration of FG Microplate 

The non-linear vibration results of a damped square functionally graded (FG) 

microplate (Fig. 3.2) are presented in this section. Study of the effects of five various transverse 

patch loading concentrations, four different positions as shown in section 3.5.2 (Fig. 3.7), and 

three different boundary conditions (CCCC, SCSC, and SSSS), depicted in section 3.7, is 

performed. For this study, a FG microplate, with Alumina and Aluminum as the constituent 

materials, is considered (Mirsalehi et al. 2017). The properties of the plate are as follows: Ec = 

380 GPa, ρc = 3800 kg/m3, Em = 70 GPa , ρm = 2707 kg/m3 and ν = 0.3, power-law index, n=1 

and the thickness, h = 35.2 μm. It is known that material length scale parameters (MLSP) have 

been calibrated by comparing vibration or bending results from nonclassical continuum theory 

with those obtained from experimental methods such as micro/nano indentation tests or 

molecular dynamic simulations. In the case of functionally graded materials, no such 

experimental or atomistic simulation results are available to calibrate the length-scale 

parameters. Therefore, in this study, the length scale parameters are assumed to provide 

effective qualitative results, enabling us to study the qualitative effect of various parameters on 

geometric nonlinearity and stiffness of moderately thick microplates (Gholami et al. 2020). 

The material length scale parameter, l is assumed to be half the thickness of the plate, h, and, 

a = 10h, a =b. In the case of modified strain gradient theory, all three MLSPs, l0, l1, and l2, are 

regarded as equal, suggesting that the three strain gradient tensors—rotation gradient, dilatant 

gradient, and deviatoric stretch gradient—all contribute equally. In the context of MCST, the 

effects of the dilatant gradient and deviatoric stretch gradient are not taken into account. 

Therefore, l1 and l2 are considered to be zero. SSSS support conditions and transverse loading 

of the form 𝐅cos(𝜔𝑁𝐿𝑡) is applied on the face of the plate in the transverse direction. The 

loading is considered to be uniformly distributed in the patch region (al=0.5a, bl = 0.5b) for the 

different loading cases (Fig. 3.2). The modal damping ratios ζ1 and ζ2 are considered equal to 

4% and 2% respectively. All of the aforementioned conditions are taken into account 

throughout this investigation, unless otherwise stated. 

A parametric study on the non-linear vibration characteristics of a square functionally graded 

microplate using the non-dimensional amplitude (w/h) vs. non-dimensional frequency ratio 

(𝜔𝑁𝐿/𝜔𝐿) is presented in the following subsections. The non-dimensional frequency ratio is 

the ratio of the resonating frequency considering the nonlinear stiffness to the linear 

fundamental natural frequency of the FG microplate. The resonating frequency considering the 
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nonlinear stiffness, equals the forcing frequency for harmonic transverse loading.  

The effect of parameters such as power-law index and h/l ratio on free vibration response 

(backbone curve) is studied. Furthermore, the effects of change in thickness (a/h ratio), modal 

damping ratios, boundary conditions, position, and concentration of patch loading on the forced 

vibration response, are discussed in the sections below. The fundamental natural frequencies 

in MHz (Ω) are also given in the figures. It can be seen from the figures that the FG microplate 

exhibits a hardening type of non-linearity due to the addition of stiffness owing to geometric 

nonlinearities. It is observed that the hardening behavior magnifies with the increase in 

amplitude. Thus, nonlinear vibration analysis is essential for the design of microplates used in 

small-scale devices subjected to large amplitude deflections. 

6.3.1 Non-Linear Free Vibration Analysis 

6.3.1.1 Effect of power-law index 

It can be seen from Fig. 6.1 that the natural frequencies decrease on the increase in the 

power-law index due to a decrease in the stiffness of the FG microplates.  However, the 

hardening behavior of the backbone curves with different power-law indices does not follow a 

particular trend. The hardening nature is maximum for n=1 and minimum for n=10. The 

hardening nature for n=0 is found to be lesser than the microplate with n=1. The difference 

between the hardening behaviors is not significant enough, therefore showing the unsubstantial 

influence of the power-law index on the nonlinear hardening behavior of the microplate. 
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Fig. 6.1 Effect of different power law indices on non-linear free vibration response of square 

FG microplate( a/h=10; h/l=2; ζ1=4% & ζ2=2% ; MSGT; SSSS;  f0 = 0) 

6.3.1.2 Effect of change in h/l ratios 

 

Fig. 6.2 Effect of h/l ratio on non-linear free vibration response of square FG microplate 

(n=1; a/h=10; h=17.6μm; ζ1=4% & ζ2=2% ; MSGT; SSSS;  f0 = 0) 

Fig. 6.2 represents the free nonlinear free vibration response of FG microplates with 

different h/l ratios. The influence of  h/l is studied by keeping the thickness of the plate constant 

to ignore the effects due to shear deformation. The natural frequency is higher for a smaller h/l 

ratio due to the hardening of stiffness owing to the enhancement of small-scale effects. The 

free vibration frequency decreases as the small-scale effect disappears on increasing the h/l 

ratio. The nonlinear hardening behaviour due to geometric nonlinearities decreases in smaller 

h/l ratio microplates as the structural model becomes stiffer, reducing the impact of geometric 

nonlinearities. Due to this reason, the dimensionless resonance frequency ratio at higher 

amplitudes is lesser for smaller h/l ratio microplates. 

6.3.2 Nonlinear Forced Vibration Analysis 

The frequency-amplitude curve (Fig. 6.3) comprises of two bifurcation points, ‘A’, and 

‘B’ as shown in Fig. 6.3. ‘A’ and ‘B’ both denote saddle-node bifurcation points. Three 

frequency zones can be defined on the basis of these saddle nodes. The zones ‘I’ and ‘III’ 

consists of one stable curve, and zone ‘II’ consists of two stable and one unstable curve. Due 
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to the existence of a single stable curve, the steady state amplitude achieved by a plate under 

transverse harmonic loading with forcing frequency in zones I and III is independent of the 

initial perturbation. 

 

Fig. 6.3 Non-linear forced vibration response of a damped FG microplate(n=1; h/l=2; a/h=20; 

ζ1=4% & ζ2=2% ; MSGT; SSSS; f0 = 2x107 N/m2; loading case 1; al=0.5a; bl = 0.5b) 

6.3.2.1 Effect of change in length to thickness ratios (a/h) 
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Fig. 6.4 Effect of length to thickness ratio (a/h) on non-linear free and forced vibration 

responses of square FG microplate(n=1; a=176μm; h/l=2; ζ1=4% & ζ2=2% ; MSGT; SSSS;  

f0 = 1x107 N/m2; loading case 4; al=0.5a; bl = 0.5b ) 

The effect of variation in thickness of the microplate on the nonlinear free and nonlinear 

forced vibration (f0 = 1x107 N/m2) responses are presented in Fig. 6.4 for a/h =20, 30, and 40. 

The edge length ‘a’ is kept constant at 176 μm, and the thickness of the plate is changed. The 

value of l is also changed accordingly to maintain an h/l ratio of 2. The nondimensional 

amplitude (wmax/h) is calculated using h of the microplate with a/h=20, i.e. 8.8μm. It can be 

seen from Fig. 6.4 that the natural frequency of the plate decreases by reducing the thickness 

of the plate. This is because shear deformation becomes more prominent for the thicker plate. 

The stiffest plate's (a/h =20) peak amplitude is likewise its lowest, while the least stiff (a/h 

=40) plate's is the highest. The nonlinear hardening characteristic is found to be less for thicker 

plates as the impact of geometric nonlinearity gets suppressed due to the addition of the shear 

deformation effect.  

6.3.2.2 Effect of change in modal damping ratios 

 

Fig. 6.5 Impact of varying modal damping ratios on non-linear free and forced vibration 

responses of square FG microplate (n=1; a/h=10; h/l=2; MSGT; SSSS; f0 =5x108 N/m2; 

loading case 2; al=0.5a; bl = 0.5b) 



Chapter 6 
 

141 
 

Fig. 6.5 depicts the influence of varying the values of ζ1 and ζ2 on the non-linear forced 

vibration response of an FG microplate. It is found that the increase in the modal damping ratio 

considerably lowers the peak amplitude of the forced vibration response. The width of zone II 

decreases by increasing the modal damping ratios. The hardening characteristics of the curve 

are unaffected by the change in damping factors.  

6.3.2.3 Effect of different boundary conditions 

In actual use, different support conditions are applied to the microplates. Fig. 6.6 shows 

the non-linear free and forced vibration responses of some of the typical boundary conditions, 

namely, CCCC (all edges clamped), SCSC (one set of opposite edges simply supported and 

other set clamped), and, SSSS (all edges simply-supported). The CCCC microplate has the 

maximum natural frequency, and SSSS has the least due to the higher stiffness of the plate in 

the case of clamped supports. Following similar reasons, the maximum amplitude of the CCCC 

microplate is minimum, and the SSSS microplate is maximum. Since clamped boundary 

conditions promote a hardening response, the hardening behaviour of the nonlinear vibration 

response is also maximum for the CCCC plate and least for the SSSS microplate. 

 

Fig. 6.6 Effect of different boundary conditions on non-linear free and forced vibration 

response of square FG microplate (n=1; a/h=10; h/l=2; MSGT; ζ1=4% & ζ2=2%; f0 =2x108 

N/m2; loading case 1; al=0.5a; bl = 0.5b) 
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6.3.2.4 Effect of different patch loading positions 

As discussed in section 3.5.2, four different positions of transverse patch loadings (f0 = 

5x108 N/m2) have been considered on an SCSC microplate in this study. The effect of the four 

loading cases on the forced nonlinear vibration response of the FG microplate is shown in Fig. 

6.7. The peak amplitude decreases for the four loading cases in the order Case 1 > Case 3 > 

Case 2 > Case 4. This shows that the impact of loading decreases as it moves away from the 

centre of the plate. The peak amplitude for Case 3 > Case 2 shows that loading away from the 

simply supported edges has a higher impact than loading away from the clamped edge. 

Following similar reasons, the excitation frequency ratio at which resonance occurs is also 

minimum for loading at the centre and maximum for loading at corners. The excitation 

frequency ratios for resonance are almost equal for Case 2 and Case 3 loadings.  

 

Fig. 6.7 Effect of different patch loading positions on non-linear free and forced vibration 

response of square FG microplate (n=1; a/h=10; h/l=2; MSGT; SCSC; ζ1=4% & ζ2=2%; f0 

=5x108 N/m2; al=0.5a; bl = 0.5b) 

6.3.2.5 Effect of different loading concentrations 

The influence of different concentrations of patch loadings on the nonlinear vibration behavior 

is portrayed in Fig. 6.8. Different loading concentrations are applied at loading position 1 (Fig. 

3.7), and their impact is assessed. It can be seen that the impact of loading maximizes with the 

increase in the concentration of the applied loading. The peak amplitude increases with the 
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increase in the concentration of loading and is maximum for al=0.1a, bl = 0.1b. The resonance 

frequency ratio also decreases with the increase in loading concentration owing to a decrease 

in stiffness due to the increased loading concentration. 

 

Fig. 6.8 Effect of different patch loading concentrations on non-linear free and forced 

vibration response of square FG microplate (n=1; a/h=10; h/l=2; SSSS; MSGT; ζ1=4% & 

ζ2=2%; f0 =1x108 N/m2; loading case 1) 

6.4 Nonlinear Dynamic Analyses of PMREF 

This section does a parametric analysis of the nonlinear vibrations and nonlinear 

dynamic responses of a porous metal foam microplate supported by a Winkler-Pasternak elastic 

foundation and exposed to harmonic transverse patch loads.  

The parameters of the PMREF used in this study are: 

E = 200 GPa, μ = 0.33, and ρ = 7850 kg/m3, a/h=10, a=b, Theory: MSGT, l0 = l1 = l2 = l = 15 

μm, h/l=2, e0=0.2, Symmetric Porosity, 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10, Loading: Centre (al,bl = 0.5(a,b)), 

modal damping ratios: ζ1=4% & ζ2=2%. Support conditions: All edges simply-supported 

(SSSS). All these parameters are used throughout this study unless explicitly mentioned. 

The nonlinear vibration of the PMREF is illustrated using the nondimensional amplitude (w/h) 

versus nondimensional frequency ratio, (𝜔𝑁𝐿/𝜔𝐿). The non-dimensional frequency ratio is the 
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ratio between the resonant frequency (ωNL) and the linear fundamental natural frequency (ωL) 

of the PMERF. The resonant frequency equals the forcing frequency for harmonic transverse 

loading when nonlinear stiffness is considered. Utilizing the arc-length approach in IHB yields 

both unstable and stable frequency-amplitude curves. The curve features two saddle-node 

bifurcation points, labeled I and II. At point III on the curve, the forcing frequency (ωNL) is 

equal to the natural frequency (ωL) for the PMREF, ignoring nonlinearities. Based on these 

three locations, as illustrated in Fig. 6.9, the plot can be segregated into four regions of forcing 

frequency. Regions 'A', ‘B’, and 'D' each have one stable curve, but region 'C' contains two 

stable curves and one unstable curve. Due to the existence of a single stable solution, the steady-

state amplitude obtained by a plate under parametric excitation with forcing frequency in 

regions "A," "B," and "D" is independent of the parametric excitation's initial amplitude. 

However, due to the existence of two stable solutions, the steady-state amplitude of a plate 

subjected to a driving frequency in region 'C' depends on the initial amplitude. Region 'B' is 

the most critical in terms of response stability since it results in a large steady-state amplitude 

for any initial displacement amplitude. Region 'C' likewise exhibits a high steady-state 

amplitude, but only for specific high initial displacement amplitude values. The most stable 

regions of forcing frequency are 'A' and 'D', where the steady-state amplitude decays to nominal 

values for any initial amplitude. 

In the following subsections, the frequency amplitude plot and the time history response plot 

are utilized to examine the nonlinear dynamic behaviour of the PMREF subjected to transverse 

patch loading. In order to compare the influence of geometric nonlinearities, the curve of free 

vibration is also depicted in several frequency amplitude plots. The effect of various 

parameters, including porosity coefficient, type of porosity, Winkler-Pasternak elastic 

foundation parameters, size-dependent theory, loading concentration, loading profile, and 

modal damping ratios, is explored. With nonlinear vibration (frequency-amplitude curve) and 

nonlinear dynamic response(time-history response plots), the effect of these factors on 

geometric nonlinearity, the width of regions of forcing frequency, and total stiffness is 

investigated. From the time-history response plots, the effect of the initial amplitude of 

perturbation in different regions of forcing frequency is also examined. 
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Fig. 6.9 Non-linear vibration response using frequency-amplitude curve at β=0.6 for a 

damped PMREF (e0=0.2; symmetric porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & 

ζ2=2% ; MSGT; SSSS; f0 = 2x108 N/m2; Centre {(al,bl)= 0.5(a,b)}) 

6.4.1 Effect of Porosity coefficient 

Fig. 6.10 depicts the influence of a change in the porosity coefficient on the nonlinear 

dynamic behaviour of the PMREF. The non-dimensional frequency ratio (𝜔𝑁𝐿/𝜔𝐿) and 

dimensionless time ratio (t/T) is made non-dimensional by using ‘𝜔𝐿’ and ‘T’ of e0=0.6. It is 

observed from Fig. 6.10(a) that on increasing the porosity coefficient, the origin of region 'B' 

shifts towards a lower excitation frequency ratio, illustrating a drop in linear stiffness for more 

porous plates. Increasing the porosity coefficient also increases the width of the forcing 

frequency regions 'B' and 'C'. In less porous PMREF, the effect of geometric nonlinearities on 

nonlinear stiffness is more pronounced. This is seen by the rising disparity in steady-state 

amplitudes between more porous and less porous plates when the forcing frequency is 

increased. The forcing frequency for each of the three curves in the time history response lies 

in the region ‘A’ with no initial perturbation. It is noted that the amplitude of the time history 

plot grows for all three curves to attain their steady-state amplitude (Fig. 6.10(b)). The 

amplitude at steady state is greatest for the most porous plate and smallest for the least porous 

plate. 
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Fig. 6.10 Effect of porosity coefficient on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response ((𝜔𝑁𝐿/𝜔𝐿) =2 and w0=0), for a damped PMREF (Symmetric Porosity; 

𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS; f0 = 2x108 N/m2; Centre 

{(al,bl)= 0.5(a,b)}). 

 

6.4.2 Effect of Type of Porosity 

Fig. 6.11 depicts the effect of the kind of porosity distribution for various porosity coefficients 

on the nonlinear dynamic behaviour of the PMREF. The non-dimensional frequency ratio, 

(𝜔𝑁𝐿/𝜔𝐿) and dimensionless time ratio (t/T) are assumed to be equal to the fundamental 

natural frequency and fundamental time period of PMREF with uniform porosity distribution 

and e0=0.6. Fig. 6.11(a) demonstrates that as the distribution of porosity changes from 

symmetric to uniform, region 'B' shifts towards a lower excitation frequency ratio for a given 

porosity coefficient. Consequently, suggesting a decrease in linear stiffness. The difference in 

stiffness between uniform and symmetric porosity distribution is likewise more pronounced at 



Chapter 6 
 

147 
 

higher porosity coefficient values. Following similar tendencies, the width of regions 'B' and 

'C' is also observed to be greater for homogeneous porosity distribution. However, no 

substantial differences in hardening behaviour are seen, showing that nonlinear stiffness is 

unaffected. For each curve and initial amplitude near the top stability curve of PMREFs with 

e0=0.2, the forcing frequency being in the region 'C', a time history plot is plotted. 

Consequently, it is seen that the steady-state amplitude is equivalent to the upper stable curves 

for PMREFs with e0=0.2. Nevertheless, because the initial amplitude is not close to the steady-

state amplitudes of PMREFs with e0=0.6, the steady-state amplitude of the more stable, lower-

stable curve is obtained. 

 

Fig. 6.11 Effect of type of porosity on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response ((𝜔𝑁𝐿/𝜔𝐿) =1.35 and w0=1.35h), for a damped PMREF (𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ =

10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS; f0 = 2x108 N/m2; Centre {(al,bl)= 

0.5(a,b)}). 
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6.4.3 Effect of Elastic Foundation Parameters 

 

Fig. 6.12 Effect of Winkler-Pasternak elastic foundation parameters on (a)nonlinear vibration 

response, and (b)nonlinear dynamic response ((𝜔𝑁𝐿/𝜔𝐿) =1.5 and w0=0.5h), for a damped 

PMREF (e0=0.2; symmetric porosity; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS; f0 = 

2x108 N/m2; Centre {(al,bl)= 0.5(a,b)}) 

Fig. 6.12 depicts the effect of Winkler-Pasternak elastic foundation parameters on the 

nonlinear dynamic behaviour of the PMREF under harmonic transverse loading. The ‘𝜔𝐿’ for 

the non-dimensional frequency ratio (𝜔𝑁𝐿/𝜔𝐿)  and ‘T’ for dimensionless time ratio (t/T) are 

assumed to be equal to the fundamental natural frequency and fundamental time period of 

PMREF with  𝐾𝑤
̅̅ ̅̅ ̅ = 0, 𝐾𝑝

̅̅ ̅̅ = 0. The origin of region 'B' shifts toward a higher excitation 

frequency ratio, and the width of regions 'B' and 'C' decreases as the corresponding elastic 

foundation parameters 𝐾𝑤
̅̅ ̅̅ ̅and 𝐾𝑝

̅̅ ̅̅  are increased (Fig. 6.12(a)). In contrast to the Pasternak 

parameter, the effect of the Winkler parameter on the enhancement of stiffness is observed to 

be minimal. As the forcing frequency rises, the difference between steady-state amplitudes of 

free vibration curves decreases, indicating that the hardening nature of the frequency amplitude 
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curve is diminished for higher values of elastic foundation parameters. This suggests that the 

effect of geometric nonlinearity diminishes as the significance of the elastic foundation 

parameters increases. The time history response (Fig. 6.12(b)) is presented for all models with 

forcing frequency in region 'C' and an initial amplitude of 0.5h. It can be noted that the response 

for all models decays until it reaches the steady state amplitude depicted by the lower stable 

curve. The steady-state amplitude for PMREFs with greater elastic foundation parameters and 

increased stiffness is attained sooner than for PMREFs with weaker values. 

6.4.4 Effect of Size-Dependent Theory 

 

Fig. 6.13 Effect of different small-scale theories on (a)nonlinear vibration response, and 

(b)nonlinear dynamic response (𝜔𝑁𝐿/𝜔𝐿  =2 and w0=0.2h), for a damped PMREF (e0=0.2; 

symmetric porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; SSSS; f0 = 2x108 

N/m2; Centre {(al,bl)= 0.5(a,b)}) 
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Fig. 6.13(a) and Fig. 6.13(b) depict the nonlinear vibration and dynamic responses of 

PMREF with small-scale effects modelled using MSGT, MCST, and CCT, respectively. The 

‘𝜔𝐿’ for the non-dimensional frequency ratio (𝜔𝑁𝐿/𝜔𝐿)  and ‘T’ for dimensionless time ratio 

(t/T) are taken equal to the fundamental natural frequency and fundamental time period of 

PMREF modelled using CCT. On including the effect of rotation gradients in the MCST model, 

the origin of region 'B' shifts toward a higher excitation frequency ratio. MSGT model indicates 

more contribution in stiffness due to dilatant and deviatoric stretch gradients. Consequently, 

the magnitude of the shift is bigger. Due to the inclusion of linear stiffness from the hardening 

of strain gradients in the MSGT and MCST models, the width of areas 'B' and 'C' is also 

minimal for MSGT and maximal for CCT. However, the hardening aspect of the free vibration 

curve is diminished in the MCST and MSGT models. Due to the availability of stiffer strain 

gradient models of MCST and MSGT, the effect of geometric nonlinearities is diminished. For 

the MSGT model, the forcing frequency utilized to generate the time history response plot lies 

in region 'B,' whereas for the MCST and CCT models, it lies in the region 'C'. Initial 

displacement amplitude is considered close to the upper stable curves of the CCT and MCST 

models. Fig. 6.13(b) demonstrates that while the initial amplitude is not close to the upper 

stable curve, the response decays to the steady state amplitude of the lower stable curve for 

MCST and CCT-modelled PMREFs. However, in the case of MSGT-modelled PMREF, 

despite the initial amplitude being distinct from the upper stable curve, the response develops 

to achieve the steady-state amplitude derived from the upper stable curve. This is because the 

excitation frequency for this model lies in region B. 

6.4.5 Load Concentration 

Fig. 6.14 demonstrates the effect of transverse patch load concentration, ‘al’ and ‘bl’ on the 

nonlinear dynamic behaviour of the PMREF. The loading concentration has no influence on 

the PMREF's linear and nonlinear stiffness. Loading concentration has no effect on the origin 

of area 'B' and the hardening nature of the curve. However, it is noticed that the steady-state 

amplitude of the upper stable curve, as well as the width of regions 'B' and 'C', increases as the 

load concentration rises. The excitation frequency evaluated for the time-history response (Fig. 

6.14(b)) falls within the region 'A' for all loading concentrations, and the initial perturbation 

amplitude was assumed to be 'h'. Thus, the response for all load concentrations decays to reach 

the steady-state amplitude of the single stable curve in the region 'A', where the steady-state 

amplitude for higher load concentrations is greater. In the case of transverse patch loading, 
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unlike in-plane loading, the response does not die out completely due to the forcing frequencies 

in regions 'A' and 'D'. Since the linear stiffness is unaltered in all circumstances, the decline 

occurs simultaneously for all concentrations. 

 

Fig. 6.14 Effect of Concentration of load on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response (𝜔𝑁𝐿/𝜔𝐿=0.5 and w0=h), for a damped PMREF (e0=0.2; symmetric 

porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS; f0 = 5x108 

N/m2; Centre) 

6.4.6 Effect of Load Position 

The influence of the loading profile of the in-plane harmonic load on the nonlinear dynamic 

behaviour of the PMREF is depicted in Fig. 6.15. The loading profile has no effect on the linear 

stiffness and nonlinear stiffness of the PMREF. Thus, the origin of region ‘B’ and the hardening 

nature of the curve remains unaffected by the loading profile. The width of region ‘B’ and 
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region ‘C’ is maximum for the centre loading position and minimum for the corner loading 

position. This implies that the impact of loading decreases as the centroid of the load moves 

further away from the centre of the plate for the first mode with central deflection. The time 

history response is plotted for excitation frequency in the region ‘D’ for all the loading positions 

with no initial amplitude of perturbation (Fig. 6.15(b)). It is observed that even for forcing 

frequency far away from the fundamental natural frequency and with no initial perturbation, 

the response does not completely decay to zero. The steady-state amplitude, though very small, 

is maximum for the centre loading position and minimum for the corner loading position. 

 

Fig. 6.15 Impact of loading position on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response (𝜔𝑁𝐿/𝜔𝐿=2.3 and w0=0), for a damped PMREF (e0=0.2; symmetric 

porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; ζ1=4% & ζ2=2%; MSGT; SSSS; f0 = 5x108 

N/m2; {(al,bl)= 0.5(a,b)}) 
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6.4.7 Effect of Damping 

Fig. 6.16 depicts the effect of modal damping ratios on the nonlinear dynamic behaviour 

of the PMREF. Fig. 6.16(a) demonstrates that an increase in modal damping ratios significantly 

reduces the width of region 'C'. The width of region 'B' is minimally altered. The forcing 

frequency for the time history response falls within region 'D' for the system with ζ1=6% & 

ζ2=3% and region 'C' for the remaining two systems. Initial amplitude is determined in close 

proximity to the upper stable curves. For ζ1=4% & ζ2=2%, and ζ1=5% & ζ2=2.5%, the time 

history response reaches the steady-state response. It decays fully for the ζ1=6% & ζ2=3% 

systems as it lies within the region 'D'. It is also noticed that systems with a greater modal 

damping ratio reach the steady state response earlier. 

 

Fig. 6.16 Effect of modal damping ratios on (a)nonlinear vibration response, and (b)nonlinear 

dynamic response (𝜔𝑁𝐿/𝜔𝐿=1.5 and w0=h), for a damped PMREF (e0=0.2; symmetric 

porosity; 𝐾𝑤
̅̅ ̅̅ = 10, 𝐾𝑝

̅̅̅̅ = 10; a/h=10; h/l=2; MSGT; SSSS; f0 = 3x108 N/m2; Centre {(al,bl)= 

0.5(a,b)})



 

 
 

 

 



7 
    Thermal Buckling and Post-buckling analyses of Microplate: 

Results and Discussion   

 
 

7.1 Introduction         

In this chapter, a parametric study on the buckling and post-buckling analyses of porous 

microplates resting on elastic foundation (PMREF) subjected to localized heating (Fig. 3.3(c)) 

is presented. The developed semi-analytical expressions for pre-buckling stresses are validated 

by comparing with ABAQUS (FEM) results. The overall methodology is also validated by 

comparing its simpler version with previously published studies. The parametric response of 

mode shape at buckling load for different aspect ratios and boundary conditions of the 

microplates subjected to in-plane mechanical and thermal loads is performed. The properties 

of the PMREF plate considered in this study are given in column no. 1 of Table 7.1. These 

properties are considered throughout the study unless explicitly stated. 

Table 7.1 Properties of the plates used in this chapter 

Parameters Property Sym
. 

Column No. 
1 2 3 4 

PMREF 
Plate 

 (Fig. 3 
and 

Table 2.) 
 (Fig.6)  (Table 

3.) 

Material 
Properties 

Young's 
Modulus E 200 GPa 200 GPa 380 

GPa 200 GPa 

Poisson's 
Ratio ν 0.33 0.33 0.33 0.33 

Coefficient 
of Thermal 
Expansion 

𝛼𝑇 2 × 10−6 
1/K 

2 × 10−6 
1/K 

7.4 ×
10−6 
1/K 

− 

Porosity 
Parameters 

Distribution  Uniform None None Varying 
Porosity 

Coefficient eo 0.3 0 0 0.2 

Elastic 
Foundation 
Parameters 

Winkler �̅�𝑤 25 0 0 0 

Pasternak �̅�𝑝 50 0 0 0 

Length Scale 
Parameters l0 = l1 = l2 = l 15μm 0 0 15μm 

Dimensions Thickness h 3l a/30 a/100 varying 
Edge a=b 30h 1m 1m 10h 

Note: For isotropic plate, 𝛼𝑇 = 𝛼𝑥𝑥
𝑇 = 𝛼𝑦𝑦

𝑇 , & 𝛼𝑥𝑦
𝑇 = 0. 

The effect of different parameters such as porosity distributions, porosity coefficients, elastic 

foundation parameters, size-dependent theories, a/h ratio of microplate, h/l ratio of microplate, 
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Winkler and Pasternak elastic foundation parameters, aspect ratio (a/b), loading concentration 

(
𝑎0

𝑎
=

𝑏0

𝑏
), and boundary conditions on the buckling and post-buckling response of the PMREF 

are studied. In this study, 𝑏0

𝑏
 ratio is considered equal to 𝑎0

𝑎
 ratio. Also, the amount of heating is 

kept same for all cases of loading concentrations. 

7.2 Validation and Convergence study 

The semi-analytical technique used to compute the in-plane pre-buckling stresses due 

to the localized thermal load is tested by assessing these stresses and the buckling temperature 

difference (∆𝑇𝑐𝑟) due to these stresses with those obtained from finite element (FE) based 

ABAQUS software (numerical method) results. The size-dependent effects cannot be 

considered in ABAQUS, thus a macro plate is considered. The properties of the plate are given 

in column no. 2 of Table 7.1. The normalized stresses  (𝜎𝑖𝑗 = 𝜎𝑖𝑗 .
(1−𝜈2)𝑎

(1+𝜈)𝐸𝛼𝑇
 where 𝑖, 𝑗 =

 (𝑥, 𝑦)) are plotted at a particular section of an isotropic macro plate for 𝑎0

𝑎
= 0.6 in Fig. 7.1. 

The stresses (𝜎𝑖𝑗) are computed from the stress resultants (𝑛𝑖𝑗) using the relation: 𝜎𝑖𝑗 =
𝑛𝑖𝑗

ℎ
. 

The nondimensional buckling temperature difference (∆𝑇̅̅̅̅
𝑐𝑟 = ∆𝑇𝑐𝑟. 𝛼𝑇 . (

𝑎

ℎ
)

2
) due to various 

concentrations of the localized heating are compared with the outcomes of ABAQUS for this 

macro plate in Table 7.2. Fig. 7.1 and Table 7.2 show that the findings are in close accord with 

FE based ABAQUS results, thus validating the current Airy’s stress approach used in this work.  

Table 7.2 Comparison of non-dimensional buckling temperature difference ∆𝑇̅̅̅̅
𝑐𝑟 obtained 

from finite element (FE) method and current semi-analytical methodology (Airy’s stress 

approach) (SSSS; CCT) 

𝒂𝟎/𝒂 = 𝒃𝟎/𝒃 0.2 0.4 0.6 0.8 1 

∆𝑻̅̅ ̅̅
𝒄𝒓 

Finite Element 

Method (ABAQUS) 
0.669 0.773 0.894 1.045 1.226 

Semi-analytical 

(Airy’s stress 

approach) 

0.692 0.777 0.894 1.042 1.216 
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(a) Normal Stress 𝜎𝑥𝑥 at x=0 

 
(b) Normal Stress 𝜎𝑦𝑦 at x=0 

 
(c) Shear Stress 𝜎𝑥𝑦 at x=0.3 

Fig. 7.1 Comparison of in-plane pre-buckling normalized (a) normal stress 𝜎𝑥𝑥, (b) normal 

stress 𝜎𝑦𝑦, and (c) shear stress 𝜎𝑥𝑦 computed using the semi-analytical methodology (Airy’s 

Stress Approach) used in this study with numerical method (ABAQUS) for a simply 

supported macro plate (𝑎0

𝑎
= 0.6; CCT) 

The expression for the in-plane stresses consists of trigonometric series. The optimum number 

of these terms need to be determined to save computational cost while maintaining accuracy. 

Convergence analysis is performed in Fig. 7.2 on PMREF with 𝑎0

𝑎
= 0.7 to determine the 

optimum number of these terms. The non-dimensional stress 𝜎𝑥𝑥  is computed using different 
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number of these terms. It is observed from Fig. 7.2 that 𝜎𝑥𝑥 computed with NT1 = 20 and 

NT2 = 100 coincides with that computed using NT1 = 100 and NT2 = 100. Thus NT1 = 20 

and NT2 = 100 are adopted as the optimum number of terms in this study to compute in-plane 

pre-buckling stresses due to localized heating. Here, NT1 and  NT2 are the number of terms 

taken in complimentary solution and particular integral used to compute the stress resultants. 

 

Fig. 7.2 Convergence analysis of the PMREF’s pre-buckling normalized stress 𝜎𝑥𝑥  with 

different number of terms in the trigonometric series expressions used to model these stresses 

(
𝑎0

𝑎
= 0.7; SSSS; MSGT) 

Table 7.3 Comparison of dimensionless buckling load for a SSSS square porous metal foam 

microplate subjected to uniaxial compressive mechanical loading with varying l/h ratios 

(MSGT) 

Type of Porosity Symmetric Uniform 
l/h 0.1 0.2 0.5 1 0.1 0.2 0.5 1 

𝑵𝒄�̂� 

Present 
Study 3.66 4.98 14.25 47.35 3.47 4.78 13.96 46.69 

(Hung et al. 
2022) 3.66 4.97 13.86 46.23 3.47 4.77 14.15 46.92 

The contour plots of 𝜎𝑥𝑥 , 𝜎𝑦𝑦 , and 𝜎𝑥𝑦 for this plate are presented in Fig. 7.3(a), Fig. 7.3(b), 

and Fig. 7.3(c), respectively. It can be observed from Fig. 7.3(a) and Fig. 7.3(b) that 𝜎𝑥𝑥 and 

𝜎𝑦𝑦 are high in the localized heating region and outside the region these stresses gradually 
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diminish. The shear stress (Fig. 7.3(c)), is almost negligible at all portions of the plate except 

the corners of the heating region, where it shows sudden increase. 

 
(a) Normal Stress 𝜎𝑥𝑥 

 
(b) Normal Stress 𝜎𝑦𝑦 

 
(c) Shear Stress 𝜎𝑥𝑦 

Fig. 7.3 Contour plots for in-plane pre-buckling normalized (a) normal stress 𝜎𝑥𝑥, (b) normal 

stress 𝜎𝑦𝑦, and (c) shear stress 𝜎𝑥𝑦 for the PMREF used in this study(
𝑎0

𝑎
= 0.7; SSSS; MSGT) 

In order to validate the modified strain gradient theory formulation and porosity inclusion in 

the developed methodology, the dimensionless buckling load, 𝑁𝑐�̂� =
𝑁𝑐𝑟𝑎2

𝐸ℎ3
 due to uniaxial 

compressive mechanical loading is compared with those given by ref. (Hung et al. 2022) in 

Table 7.3. The properties of the microplate used in this comparison are given in column no. 4 

of Table 7.1. Hung et al. used MSGT and refined higher order shear deformation theory to 
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model the plate. The results of  𝑵𝒄�̂� for various values of l/h and different porosity distributions 

are compared. It is found that the findings of present investigation are consistent with those of 

Hung et al. (2022). Thus, the authenticity of the current methodology is validated. 

The methodology adopted to compute the post-buckling path is validated by comparing the 

post-buckling response of a macro plate with that given by (Prakash et al. 2008). Since the 

post-buckling path of a isotropic microplate for constant temperature variation was not 

available in literature, macro plate is considered. The properties of the macro plate considered 

by Prakash et al. (2008) are given in column no. 3 of Table 7.1. The heating is assumed to be 

spread throughout the domain of the plate (
𝑎0

𝑎
= 1). They used the FSDT and modelled the 

plate using FE modelling. The thermal post-buckling path was obtained using direct iterative 

technique. It is observed from Fig. 7.4 that the post-buckling path found in this study is very 

close to that obtained by Prakash et al. (2008). Thus, the authenticity of the methodology 

adopted to acquire the post-buckling response is established. 

 

Fig. 7.4 Validation study of the plate’s post-buckling response methodology by comparison 

of post-buckling equilibrium path of a macro-plate (𝑎0

𝑎
= 1; SSSS; CCT) with results of 

Prakash et al. (2008) 

Convergence analysis to determine the optimum count of terms in the trigonometric series for 

expressing basis functions is performed in Fig. 7.5. The thermal post-buckling equilibrium path 

is computed for a PMREF with 𝑎0

𝑎
= 0.6 for different number of terms. It can be seen in Fig. 
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7.5, that the post-buckling path computed using 𝑁∗ = 𝑀∗ = 4 completely coincides with post-

buckling path computed using 𝑁∗ = 𝑀∗ = 6. Thus, 𝑁∗ = 𝑀∗ = 4 is taken as the optimum 

count of terms in the basis functions for expressing the displacement fields. 

 

Fig. 7.5 Convergence analysis of the PMREF’s (𝑎0

𝑎
= 0.6; SSSS; MSGT) post-buckling 

response by considering varying count of terms in the basis function associated with each 

displacement field 

7.3 Parametric Analysis 

The parametric investigation on the mode shape behaviour, critical buckling 

temperature difference and the thermal post-buckling strength of PMREF is illustrated in the 

following subsections. The effect of parameters such as size of plate, aspect ratio, thickness, 

support conditions, porosity distributions, elastic foundation parameters, and concentration of 

heating is analysed. 

7.3.1 Mode Shape Behaviour  

The mode shapes of PMREFs with uniaxial compressive mechanical loading and 

PMREFs with heating on the entire surface of the plate (
𝑎0

𝑎
= 1) at their buckling 

load/temperature are compared in Fig. 9 and Fig. 8 for CCCC and SSSS boundary conditions 

respectively.  
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(a) 

 

(b) 

 
(c) 

 

(d)

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Fig. 7.6 Mode Shape at mechanical buckling load((a), (c), (e), and (g)) and thermal buckling 

load ((b), (d), (f), and (h)) for a SSSS type PMREF with different aspect ratios (MSGT). 
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(a) 

 

(b)

 

(c) 

  

(d) 

 

(e)

 

(f)

 

(g) 

 

(h) 

 

Fig. 7.7 Mode Shape at mechanical buckling load ((a), (c), (e), and (g)) and thermal buckling 

load ((b), (d), (f), and (h)) for an SSSS type PMREF with different aspect ratios (MSGT) 

The mode shapes for various aspect ratios at buckling loads are presented. It is evident from 
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Fig. 7.6 and Fig.7.7 that the index of mode shape increases with the increase in aspect ratio for 

uniaxial compressive mechanical loading. In the case of SSSS type PMREFs with thermal load, 

the thermal buckling load occurs at the first mode itself for all the given aspect ratios of 

PMREFs. In the case of CCCC type PMREFs subjected to thermal load, mode index increases 

to (2,1) for aspect ratio 3. The PMREFs with lower aspect ratio buckle in the first mode only. 

This indicates that increase in index of buckling mode is more susceptible to increase in aspect 

ratio for uniaxial mechanical load in comparison to thermal load. This is because, pre-buckling 

stresses are more concentrated at the centre of the plate in the case of thermal load in 

comparison to uniaxial compression load, where loads are applied at the opposite edges. The 

loads along the edges induce bending in the direction perpendicular to the loading. Thus, 

making the plate susceptible to buckle at higher modes. However, in thermal loading, the 

stresses are concentrated more towards the center of the plate. Thus, there is less possibility of 

concentration of stresses at the nodal lines of higher modes. Therefore, buckling occurs at lower 

modes for thermal loading. It can also be noted on comparing Fig. 7.6 and Fig. 7.7 that for a 

particular aspect ratio of PMREF, the buckling load tends to occur at a higher mode for clamped 

restraints than simply supported PMREFs. This is because, the simply supported plates have 

more flexibility due to laterally free edges. This provides these plates a higher resistance to 

buckling at higher modes. In contrast, the CCCC type plates lack this flexibility, leading to less 

deformation and thus lower resistance to buckling at higher modes. 

7.3.2 Buckling Temperature 

The parametric variation on non-dimensional buckling temperature difference 

(∆𝑇̅̅̅̅
𝑐𝑟 = ∆𝑇𝛼 (

𝑎

ℎ
)

2
) is presented in this section. The influence of porosity distribution and 

porosity coefficient, 𝑒0, is presented in Fig. 7.8. The augmentation in porosity coefficient 

results in an increase in ∆𝑇̅̅̅̅
𝑐𝑟, as the in-plane thermal stresses induced due to heating diminish 

i.e., thermal resistivity increases. This decrease is more than the reduction in stiffness of the 

plate owing to increase in porosity. Thus, the overall stability of the system enhances and the 

∆𝑇̅̅̅̅
𝑐𝑟 increases. The effect of type of porosity distribution is not visible until 𝑒0=0.7. However, 

the critical buckling temperature is higher for uniform porosity (UP) distribution than the non-

uniform symmetric porosity (NSP) distribution at 𝑒0>0.7. This is because concentration of 

voids at the central portion of the PMREF increases too much for NSP distribution, leading to 

considerable loss of effective material volume and consequently, its strength. The ∆𝑇̅̅̅̅
𝑐𝑟 
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increases with increase in 𝑎0

𝑎
 as the concentration of stresses decreases (Fig. 7.9). Due to the 

greater stiffness provided by clamped restraints, the increase is maximum for CCCC type 

PMREF and minimum for SSSS type PMREF. The amount of heat is kept constant for all 𝑎0

𝑎
 

ratios. 

 

Fig. 7.8 Modification in  ∆𝑇̅̅̅̅
𝑐𝑟 with change in porosity coefficient of a PMREF (𝑎0

𝑎
=

0.6; SSSS; MSGT) with different porosity distributions 

 

Fig. 7.9 Modification in nondimensional buckling temperature difference with change in 

loading concentration of a PMREF (MSGT) for various boundary conditions 
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Fig. 7.10 Variation of ∆𝑇̅̅̅̅
𝑐𝑟 with change in size (h/l ratio) of a PMREF (h=45μm; 𝑎

𝑏
= 1; 𝑎0

𝑎
=

0.6; SSSS) modelled with different size-dependent theories 

The impact of non-dimensional length scale parameter (h/l) on the PMREF modelled using 

different size-dependent theories is presented in Fig. 7.10. The thickness is kept constant and l 

is varied. It is found that the value of ∆𝑇̅̅̅̅
𝑐𝑟 amplifies when the thickness is close to the value of 

l for MSGT and MCST. The amplification is more for MSGT than MCST. This is because 

size-dependent effects due to formation of dislocations (strain gradients) are also included in 

the MSGT along with the rotation of grains (couple stress) used in MCST. In the absence of 

size-dependent effects in CCT, there is no influence on the  ∆𝑇̅̅̅̅
𝑐𝑟. 

It is observed from Fig. 7.11 that the ∆𝑇̅̅̅̅
𝑐𝑟 decreases as the aspect ratio (a/b) of the PMREF 

increases. At aspect ratio unity, the SCSC and CSCS type PMREF are similar. As the aspect 

ratio increases, the stiffness of CSCS type PMREF dips more than the SCSC type PMREF. 

This is because, the clamped boundary conditions become dominant in SCSC PMREF and 

simply supported conditions in CSCS PMREF. The ∆𝑇̅̅̅̅
𝑐𝑟 of SCSC becomes equal to CCCC 

PMREF at a/b=2 and CSCS becomes equal to SSSS PMREF at a/b=2.5. This is because at 

larger aspect ratios, the boundary condition of the longer side does not have much effect. 
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Fig. 7.11 Variation of ∆𝑇̅̅̅̅
𝑐𝑟 with change in aspect ratio (a/b) of PMREF (𝑎0

𝑎
=

𝑏0

𝑏
= 0.6; 

SSSS; MSGT) with different boundary conditions 

 

Fig. 7.12 Modification in  ∆𝑇̅̅̅̅
𝑐𝑟 with change in length to thickness ratio (a/h) of PMREF 

(a=1350μm; l varies; h varies;  𝑎0

𝑎
= 0.6; SSSS) with different aspect ratios 

The effect of change in length to thickness ratio (a/h) on ∆𝑇̅̅̅̅
𝑐𝑟 is monitored in Fig. 7.12 for 

different aspect ratios of PMREF. It is observed that the ∆𝑇̅̅̅̅
𝑐𝑟 amplifies for thicker plates 
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(a/h<=40). This is due to the enhanced stiffness owing to the shear deformation effects and the 

increase in thermal resistance for thicker plates. In case of thin plates, this effect vanished and 

thus the variation in ∆𝑇̅̅̅̅
𝑐𝑟on further decreasing the thickness is insignificant. It can also be seen 

that the change in aspect ratio does not alter the behaviour due to change in thickness. 

7.3.3 Thermal Post-buckling Response 

The parametric study of post-buckling response is presented in this section. The post-

buckling strength with respect to different length to thickness (a/h) ratios (Fig. 7.13(a)), 

different size-dependent theories (Fig. 7.13(b)), various non-dimensional length scale 

parameters (h/l ratio) (Fig. 7.13(c)), different distribution and coefficient of porosity (Fig. 

7.13(d)), and, different Winkler and Pasternak Elastic foundation parameters (Fig. 7.13(e)) are 

presented in Fig. 7.13. In all the above parametric studies, the post-buckling strength is 

proportional to the buckling strengths of these PMREFs. The difference between the post-

buckling response for different curves in these figures remains equal to the difference in in 

their critical buckling temperature difference (∆𝑇̅̅̅̅
𝑐𝑟). Thus, it can be said that a change in these 

parameters has insignificant effect on the strain hardening of these PMREFs. The strain 

hardening in Fig. 7.13(a) remains unaffected with decrease in length to thickness ratio, as the 

increase in nonlinear stiffness is undermined by the increase in geometric stiffness due to the 

increase in thermal resistivity. The inclusion of strain gradients in size-dependent theories in 

Fig. 7.13(b) and the intensification of size-dependent effects on reduction in size (Fig. 7.13(c)) 

do not influence the strain hardening because the effect of geometric nonlinearity is subdued 

in stiffer models with greater size-dependent effects. Thus, even with large difference in 

buckling strengths, the differences in nonlinear geometric stiffness is not much. Both the linear 

and nonlinear stiffness of the PMREF and the thermal resistivity or the geometric stiffness due 

to thermal load of the PMREFs increases with the increase in porosity coefficient. The 

differences in nonlinear hardening characters of the curves in Fig. 7.13(d) is not much because 

of the undermined effect of geometric nonlinear stiffness by the thermal resistivity. In the case 

of elastic foundation parameters, it is observed from Fig. 7.13(e) that an increase in overall 

strength occurs on incrementing the value of these parameters. The increase in Pasternak 

parameter has a greater effect of the stiffness in comparison to the Winkler parameter. The 

PMREF with �̅�𝑤 = 0 and �̅�𝑝 = 25 has a much larger overall strength than the PMREF with  

�̅�𝑤 = 100 and �̅�𝑝 = 0. However, the difference in strain hardening characteristics of the curve 

is not visible as the nonlinear effects of the foundation parameters are not considered. 
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Fig. 7.13(a) Thermal post-buckling response of PMREF (a=1350μm; l varies; h varies;  𝑎0

𝑎
=

0.6; SSSS) with different length to thickness (a/h) ratios 

 

Fig. 7.13(b) Thermal post-buckling response of a PMREF (𝑎0

𝑎
= 0.6; SSSS). modelled with 

different size-dependent theories 
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Fig. 7.13(c) Thermal post-buckling response of PMREF (h=45μm; 𝑎
𝑏

= 1; 𝑎0

𝑎
= 0.6; SSSS) 

with different size (h/l ratios) 

 

Fig. 7.13(d) Thermal post-buckling response of PMREF (𝑎0

𝑎
= 0.6; SSSS; MSGT). with 

different porosity coefficients and porosity distributions 
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Fig. 7.13(e) Thermal post-buckling response of PMREF (𝑎0

𝑎
= 0.6; SSSS; MSGT).with 

different Winkler and Pasternak elastic foundation parameters 

The effect of area of the heating region on the post-buckling strengths is illustrated in Fig. 7.14. 

It is observed that on decreasing the heating area such that the total thermal load remains the 

same, both the pre-buckling and post-buckling strength of the plate decreases. It is evident from 

the figure that for an equal increment in temperature from the critical buckling temperature, the 

deformation is more on PMREF which has a higher concentration of heating. Thus, the post-

buckling strength of PMREF with heating on the entire region of the plate (𝑎0

𝑎
= 1) is maximum 

and plate with least area of heating (𝑎0

𝑎
= 0.4) is minimum. This is because, the nonlinear 

hardening characteristics of the curves increase as the geometric stiffness due to thermal load 

decreases on increasing the heating area. A similar trend can be seen in Fig. 7.15 for PMREF 

with different support conditions. The CCCC type PMREF has the maximum buckling and 

post-buckling strength followed by the SCSC and SSSS type PMREF. This is because the 

clamped restraints provide an increase in both linear and nonlinear stiffness, and decrease in 

flexibility. Thus, leading to less deformations on increase of temperature in comparison to 

SSSS type PMREF. 
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Fig. 7.14 Thermal post-buckling response of PMREF (SSSS; MSGT).with different loading 

concentrations 

 

Fig. 7.15 Thermal post-buckling response of PMREF (𝑎0

𝑎
= 0.6; MSGT) with different 

boundary conditions 

 



8 
    Conclusions 

 
 

8.1 Introduction 

This thesis has provided a comprehensive investigation into the analysis of micro-sized 

plate structures. Since Classical Continuum Theory (CCT) cannot be used to model these 

structures, a semi-analytical methodology is developed using the size-dependent modified 

strain gradient theory (MSGT) and the third-order shear deformation theory (TSDT). The 

MSGT is optimum to model micro-sized structures and the TSDT is best suited for thin and 

moderately thick plates. This thesis presents findings concerning a range of phenomena in 

microplate behaviour, including free vibration, buckling, dynamic instability, nonlinear free 

vibration, nonlinear forced vibration, nonlinear dynamic response, and post-buckling 

behaviours under diverse loading conditions. The investigation encompasses microplates made 

of both isotropic and functionally graded (FG) materials. Furthermore, the study delves into 

the behaviour of metal foam microplates while accounting for porosity effects, alongside the 

consideration of microplates resting on elastic foundations. The impact of viscous damping on 

these microplates is also included in the analysis. 

In this investigation, the behaviour of microplates is analysed under uniform and non-uniform 

in-plane loadings, transverse patch loadings, and localized thermal loading. The analytical 

expressions for in-plane pre-buckling stresses due to in-plane non-uniform mechanical loading 

or localized thermal loading are obtained by solving the in-plane stress equilibrium equations 

and by solving the strain compatibility conditions in terms of the Airy’s stress function (𝛷). 

The validation of developed semi-analytical expressions against finite element analysis results 

has established the reliability and accuracy of the proposed methodology. The governing partial 

differential equations (PDEs) of motion are obtained using the Hamilton’s principle for 

dynamic problems and the principle of minimization of total potential energy for the static 

problem. The PDEs are reduced to ordinary differential equations (ODEs) of motion (dynamic 

problem) or algebraic equations (static problem) using the Galerkin’s weighted residual 

method. The buckling load/temperature and natural frequencies are calculated by solving the 

eigenvalue problem of these equations. The dynamic instability region is plotted using the 

Bolotin’s method. The nonlinear free and forced vibration behaviours are presented using the 

frequency-amplitude curves obtained using the incremental harmonic balance (IHB) method. 

The post-buckling equilibrium path is obtained using the modified Newton-Raphson method. 

The nonlinear dynamic response is presented using the time history plots obtained using the 
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intrinsic Newmark β direct integration method. By corroborating the simpler version of the 

methodology used in this thesis with prior studies, the validity and robustness of our approach 

have been reinforced. 

A deep understanding of the intricate relationships of different parameters with the critical 

buckling load/temperature, natural frequencies, dynamic instability region, nonlinear dynamic 

instability regions, nonlinear dynamic responses and post-buckling response is achieved with 

the help of a detailed parametric analysis. The comparison of different size-dependent theories, 

such as CCT, MCST, and MSGT, has shed light on the small-scale effects that play a pivotal 

role in the nonlinear responses of microplates. The parametric studies undertaken have 

illuminated the multifaceted nature of microplate dynamics, revealing the intricate interplay 

among factors such as porosity coefficients, elastic foundation properties, plate dimensions, 

boundary conditions, and loading conditions. These findings have far-reaching implications for 

designing and optimizing microstructures, contributing to the advancing micro-

electromechanical systems and related technologies. The effect of aspect ratios, boundary 

conditions and elastic foundation parameters on the mode shape of the plate at the critical 

buckling load is also assessed. The exploration of initial perturbation effects on steady-state 

responses has emphasized the sensitivity of dynamic behaviour to minor disturbances. Time 

history plots have provided visual insights into the transient phenomena that dictate the overall 

behaviour of the microplates, offering valuable considerations for design and operational 

scenarios.  

In this chapter, the conclusions to this thesis are presented. The findings of the parametric 

studies conducted in chapters 4, 5, 6, and 7 are summarized and discussed in section 8.2. 

Furthermore, the potential impact of this research on both the industry and the academic 

community is explored in section 8.3. The strengths of this thesis are discussed in section 8.4 

It is important to note that this research, while comprehensive, does not encompass an 

exhaustive analysis of small-scale structures. Addressing this, section 8.5 delves into the 

identified limitations of this study, while section 8.6 elucidates the future avenues for research 

in this domain. 

8.2 Findings of this Study 

The focus of this thesis is to study the behaviour of microplate structures under various 

conditions of loading. The microstructure devices have unique properties depending on the 
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application, determining their resonant frequency, sensor bandwidth, sensitivity, frequency 

response, full-scale nonlinearities, and deflection. Controlling these properties mostly depends 

on microplate factors, including geometry, support conditions, and damping mass. Thus, a 

parametric analysis of all these parameters is presented to understand the influence of various 

parameters to allow efficient design of these structures. Moreover, due to the enormous 

strength/stiffness and displacement sensitivity of microstructures, they are frequently used in 

applications where they are subjected to large deflections. Thus, the inclusion of geometric 

nonlinearity becomes mandatory in the study of these structures. The function of many sensors, 

such as accelerometers, is to measure time-varying acceleration. This makes it necessary to 

investigate the microstructure's behaviour under dynamic loading. Responding to this, a 

parametric analysis of the linear and nonlinear dynamic instability regions due to periodic in-

plane mechanical loadings is presented in Chapter 4. The load acting on the edges of 

microplates is not uniform due to irregular connections with neighbouring members, partially 

damaged boundaries during fabrication or connections between stiffened and unstiffened 

plates. Thus, the effect of non-uniform in-plane loadings are presented. In Chapter 5, the effect 

of various parameters on the nonlinear dynamic response due to non-uniform in-plane loading 

is presented. The microplates in chips or organic solar cells are often placed on a flexible 

medium. Thus, the stiffness provided by the elastic foundation is also included in the 

modelling. Moreover, the advantage of large surface area and specific capacity has led to the 

massive use of porous materials in various microplate applications. Thus, a porous microplate 

resting on elastic foundations (PMREF) is considered in this chapter. The change in width and 

onset points of various regions of frequency and the nonlinear hardening nature of frequency-

amplitude curve due to various parameters are illustrated. The parametric change in mode 

shape at critical buckling load is also presented. The effect of the initial perturbation on the 

steady state response in various regions of frequency is also presented using the time history 

response curves. In Chapter 6, the parametric studies similar to Chapter 5 are presented, but 

due to periodic transverse loadings on PMREF as well as functionally graded (FG) microplate. 

Since practically, the transverse force gets transferred from components placed on these 

structures, and the loading is mostly localized. Thus, transverse patch loadings are considered. 

Over the course of their service life, the microplate elements are often subjected to large 

thermal stresses which may induce buckling. Thus, a parametric investigation of the buckling 

loads and post-buckling equilibrium path on PMREF is presented in Chapter 7. The hot 

microplate elements are often connected with cooler substrate elements which act as heat sinks. 
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The placement of electric components or sensors on the plate is localized. Thus, the region of 

heating often remains localized. Thus, the effect of localized heating is considered in the results 

for chapter 7. The parametric changes in mode shape at buckling load due to mechanical and 

thermal load are also shown. The major findings from this study are: 

(1) The inclusion of strain gradients in the MSGT significantly increases the linear stiffness 

of the microplate at micro-sizes. However, the effect on nonlinear stiffness is minimal. 

Thereby, the geometric nonlinearity of the microplates gets suppressed on using the 

MSGT model.  

(2) The impact of both non-uniform in-plane loading and transverse patch loadings is most 

when applied near the centre of the plate with higher concentrations. Its impact 

decreases as the concentration decreases or when it moves away from the centre.  

(3) The frequency-amplitude curves for both in-plane periodic and transverse periodic 

loading can be segregated in four regions of excitation frequencies. In regions of 

excitation frequency where more than one stable curves are present, the steady state 

amplitude attained by the microplate depends on the amplitude of initial perturbation.  

(4) Buckling occurs at lower modes for thermal loads compared to mechanical loads as the 

stresses are more concentrated at the centre of the plate in thermal loading. The increase 

in concentration of thermal loading leads to a decrease in post-buckling strength as the 

thermal stresses increase, which suppress the nonlinear geometric nonlinearity of the 

plate. 

The detailed chapter wise findings from the current study are presented in the sub-sections 

below. 

8.2.1 Nonlinear Vibration and Dynamic Instability of Microplate under In-Plane 

Mechanical Loading 

The major findings from this chapter are: 

(1) The strain hardening effect on critical buckling load and vibrational frequency is 

maximum using MSGT and null using Classical Continuum Theory (CCT). The small-

scale effect vanishes for h/l>7.5 on using modified couple stress theory (MCST) and 

h/l>15 for MSGT. The dynamic stability behaviour and nonlinear vibration response 

also follow a similar trend, where the width of linear dynamic instability region 
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(wDIRL), width of nonlinear dynamic instability region (wDIRNL), and peak amplitude 

are maximum from CCT and minimum from MSGT. 

(2) The minimum dynamic load required for the onset of instability increases with an 

increase in the modal damping ratio. The peak amplitude is unbounded for the 

undamped plate and it decreases with an increase in the modal damping ratio. No 

significant difference is noticed in the width of stability regions. 

(3) The instability region shifts towards the left with the increase in preloading due to a 

decrease in stiffness. The increase in width of the instability region on the increase in 

static load factor is nonlinear. 

(4) The width of the instability region is maximum for the SSSS boundary condition and 

minimum for the CCCC boundary condition. The origin of instability is similar for 

SCSC and CSCS boundary conditions. 

(5) The peak amplitude and width of the instability region are maximum for partial loading 

and minimum for uniform loading. The origin of instability is unaffected by the change 

in the loading profile. 

8.2.2 Nonlinear Vibration and Dynamic Response of Microplate under In-plane 

Mechanical Loading 

The major findings from this chapter are as follows: 

(1) Both linear and nonlinear stiffness decreases on the increase in the porosity coefficient. 

The impact of uniform porosity distribution is more than symmetric distribution, and 

this difference in result is even more for higher porosity coefficients. 

(2) While linear stiffness increases on increasing the elastic foundation parameters, the 

effect of geometric nonlinearity decreases. Moreover, the Winkler elastic foundation 

parameter's impact is insignificant compared to the impact of Pasternak parameter.  

(3) The change in mode shape happens earlier with an increase in the Pasternak parameter 

compared to an increase in the Winkler parameter. The plate moves to higher modes of 

vibration with an increase in the aspect ratio of the PMREF.  

(4) The effect of geometric nonlinearity gets suppressed in MCST and MSGT models due 

to the stiffer strain gradient models. Thus, the nonlinear hardening nature of the 

frequency-amplitude curves decreases when including the size-dependent effects using 

MCST and MSGT. 
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(5) The overall stiffness of the plate increases as the size-dependent effects and shear 

deformation effects become more prominent when decreasing the size and increasing 

the thickness of the PMREF. However, the nonlinear hardening nature of the curves 

decreases as these effects intensify. 

(6) The impact of loading on the geometric stiffness due to in-plane loads increases as the 

concentration of loading increases near the centre of the plate. Following similar trends, 

the impact was found to be greater for the partial loading profile, followed by the 

parabolic and uniform loading profiles. 

(7) The traced frequency amplitude curves consists of two branches, one stable and one 

unstable, both showing nonlinear hardening. There are three bifurcation points and the 

forcing frequencies are segregated into four zones (‘A’, ‘B’, ‘C’, and ‘D’) based on 

these points. There is no effect of the amplitude of initial perturbation on the steady-

state response due to excitation frequencies from the region ‘A’, ‘B’ and ‘D’. However, 

in region ‘C’, due to the presence of two stable solutions, the initial displacement 

decides which solution will be attained.  

(8) Region ‘B’ of excitation frequencies is the most vulnerable, followed by Region ‘C’. 

Large steady-state amplitude is attained from excitation frequencies in Region ‘B’, 

independent of the initial perturbation amplitude. Large steady-state amplitude is also 

found in Region ‘C’, but only if the initial perturbation amplitude is provided near the 

upper stable curve. Otherwise, the response decays completely. In zones ‘A’ and ‘D’, 

the response decays to zero independent of the initial perturbation amplitude. 

8.2.3 Nonlinear Dynamic Analyses of Microplate under Transverse Loading 

The following are the significant findings from this chapter: 

(1) The traced frequency amplitude curves exhibits nonlinear hardening character and the 

curve consists of both stable and unstable regions, which are separated by two 

bifurcation points. The forcing frequencies are segregated into four zones (‘A’, ‘B’, 

‘C’, and ‘D’) based on their vulnerability and dependence on initial perturbation.  

(2) The most sensitive region of excitation frequencies is ‘B’, followed by ‘C’. Regardless 

of the initial perturbation amplitude, excitation frequencies in Region 'B' produce a 

large steady-state amplitude. Large steady-state amplitudes are also observed in Region 

'C', but only if the initial perturbation amplitude is close to the upper stable curve. 
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Otherwise, the response decays to the steady-state amplitude of a more stable, lower 

stability curve. In regions 'A' and 'D', the steady-state amplitude of the curve is minimal 

but does not decay to zero and is independent of the perturbation's initial amplitude. In 

the case of transverse loading, the steady-state amplitude is non-zero, even in the 

absence of an initial perturbation. 

(3) The effect of the power-law index on the hardening behaviour of the nonlinear free 

vibration response is insignificant.  

(4) The clamped boundary conditions cause an increase in both the hardening nature of the 

nonlinear vibration response and stiffness of the plate. 

(5) The transverse patch loading is most impactful when applied at the centre of the plate 

with higher concentrations. Its impact decreases as the concentration decreases or when 

it moves away from the centre. The excitation frequency ratio for resonance is also the 

least for centrally applied load with higher concentration and increases with a decrease 

in concentration or moving away from the centre of the plate. 

8.2.4 Thermal Buckling and Post-buckling analyses of Microplate  

The major findings from this chapter are: 

(1) Buckling occurs at lower modes for thermal load compared to mechanical load as the 

stresses are more concentrated at the centre of the plate in thermal loading. The increase 

in aspect ratio of PMREF leads to higher buckling modes. The buckling occurs in higher 

buckling modes for clamped restraints in comparison to simply supported conditions 

due to the rigidity to deformations in these supports. 

(2) The buckling strengths of the microplate decreases with the increase in loading 

concentration, h/l ratio, and a/b ratio. The buckling strength increases with an increase 

in porosity coefficient and elastic foundation parameters. The increase in buckling 

strength is more due to Pasternak parameter and uniform porosity distribution. 

(3) In case of post-buckling strength, the increase in loading concentration leads to a 

decrease in post-buckling strength as the thermal stresses increase. The clamped 

supports also provide higher post-buckling strengths as the deformation for an increase 

in temperature decreases. 
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8.3 Impact of this Study 

This analysis has not only enriched our theoretical knowledge but also highlighted the 

practical implications for engineering applications involving microscale structures. The 

nonlinear behaviours of microplates are studied comprehensively, shedding light on the 

complex interactions that govern their responses under various conditions. The major 

contribution of this research is to provide results of behaviour of microplates using a mesh-free 

semi-analytical methodology. This makes these results void of any discretization errors. Thus, 

the results provided in this thesis can be used as benchmarks to validate further numerical 

methodologies developed to study more complex microplates with irregular shapes, support 

conditions, and loading conditions. The insights gained from this thesis hold immense potential 

for influencing the design, analysis, and performance optimization of microscale systems in 

fields ranging from electronics to aerospace. As we delve deeper into the realm of miniaturized 

structures, the knowledge and methodologies developed herein will undoubtedly serve as 

essential tools for pushing the boundaries of modern engineering and technology.  

8.4 Strengths of this Study 

The notable strengths of the work adopted in this research are listed below. 

(1) The methodology used in this research is ideal for microplates towards the lower end 

of the micro-scale as the MSGT takes care of the rotation of grains and accumulation 

of dislocations in such structures.   

(2) The moderately thick/thin plates can be quite accurately modelled using the developed 

methodology as the shear deformation effects are quite accurately included using the 

TSDT. 

(3) The governing equations are derived using the robust analytical approximation method 

in its strong form. This technique yields results that closely align with closed-form 

solutions, while also accommodating the incorporation of nonlinearity within the 

governing equations. 

(4) This is unique research where the localized and nonuniform loadings are included in 

the semi-analytical solution methodology by deriving explicit analytical expressions 

for the localized mechanical/thermal loads and the corresponding pre-buckling stresses 

within the plate. 
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(5) The Incremental Harmonic Balance (IHB) method used in this research allows to plot 

both the stable and unstable regions of the frequency amplitude curve. Moreover, the 

arc-length continuation method used as the incremental method in this approach can 

pass through the juncture points and thus can easily trace the snap back and snap 

through cases. This allows to demonstrate the effect of damping on the nonlinear 

vibration.   

(6) A comprehensive parametric study is done in this thesis where a variety of microplate 

material properties, geometries, supports and loading conditions are included. 

8.5 Limitations of this Study 

Although quite comprehensive, still there are some limitations to this research. These are listed 

in the points below. 

(1) This research cannot be applied to nanoplates as the softening behaviour due to 

nonlocalities needs to be included to model such structures. 

(2) Thick microplates cannot be modelled using this methodology as the three-dimensional 

(3D) analysis is required to model such structures to model the large variations in 

transverse strains along the thickness. 

(3) This research cannot be applied to irregular geometries and boundary conditions of 

microplates. The approximating functions for the strong form method used in this 

research are very difficult to identify for such microplates. Secondly, the methodology 

applied to obtain the localized loading expressions can only be applied on rectangular 

plates. 

(4) Currently, no experimental or atomistic simulation results are yet available to calibrate 

the length-scale parameters for functionally graded materials and porous materials. 

Therefore, in this study, the length scale parameters are assumed which only provide 

effective qualitative results and not actual quantitative ones. 

(5) The analytical expressions for pre-buckling stresses due to localized heating are 

calculated only for the case when the heating is symmetric about the centre of the plate. 

(6) The IHB method is suitable only for systems with smooth nonlinearities. In the case of 

strong nonlinearities, a higher order of harmonics is required which leads to substantial 

computational cost. 
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8.6 Future Scope 

It is hopeful that the results of this study can serve as benchmark results to validate 

future numerical methods developed for MSGT based moderately thick microplates with 

nonlinearity considerations. Moving forward, this thesis opens doors to numerous promising 

avenues for future exploration. Some of these are listed below.  

(1) The nonlocality effects can be included in the methodology to allow efficient nonlinear 

analysis of nanoplates using nonclassical continuum theory.  

(2) Methodology incorporating 3D analysis can be developed to allow modelling of thick 

plates. 

(3) In order to calibrate material length-scale parameters for functionally graded structures 

and porous structures, atomistic simulations or experimental investigations can be 

performed.  

(4) Further numerical techniques can be developed to enable analysis of small-scale plates 

with irregular geometries, cut-outs, boundaries and loading conditions. 

(5) Methodologies for other complex microstructures such as shells, sandwich microplates 

shall be developed. 

(6) Analytical expressions for pre-buckling stresses for asymmetric loading cases shall be 

developed. 

(7) Nonlinear vibrations shall be further investigated to study chaos and other complex 

operations. 
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