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Abstract 

 
With the proliferation of Internet activities in one’s personal and professional life, 

network security has become one of the most important topics for discussion. It deals with 

protecting the integrity, confidentiality, and accessibility of computer networks and data. 

Countless security breaches attempting to steal user data and hack into private spaces have 

made this topic even more critical. One such category of a breach is the Distributed Denial of 

Service (DDoS) attack. It aims at disrupting the flow of genuine traffic by overwhelming the 

resources of the targeted network. Attackers send a huge amount of network traffic in a 

distributed fashion to (mainly) a single victim. Its primary goal is to overwhelm the resources 

of the targeted network, thus making it and its provisioned services (if any) unusable for 

genuine users. 

Distributed Reflection-based Amplification Denial of Service Attacks (DRDoS) is a 

type of DDoS attack. It exploits the client-server communication model wherein a client sends 

a request packet to the server and receives a response packet. The response packets in this 

attack are much larger in size in comparison to the request packets. The attacker spoofs the 

source Internet Protocol (IP) address to that of the victim in the request packet. Since the 

underlying Internet architecture does not validate the source IP address while forwarding the 

packets, as a result, all responses go to the victim. One such protocol often exploited for 

DRDoS attacks is a Domain Name System (DNS) protocol. The attacker uses various zombie 

computers to send massive DNS query packets to DNS servers. The packets’ inscribed source 

address is set to the victim’s address so that when the DNS server responds to the queries, the 

victim receives many respective response packets, and, in turn, the system crashes. This type 

of attack is amplification-based because DNS response packets are generally exponentially 

larger than DNS request packets. Thus, amplification in the packet’s size consumes the victim’s 
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bandwidth and, in the worst-case scenario, crashes the system by overwhelming it with the 

packets. This study deals with providing defense against DRDoS attacks. 

Because of the legitimate character of the traffic, detecting and mitigating DRDoS 

attacks becomes more challenging. Distinguishing between attack traffic and legitimate traffic 

is a formidable task.  Even, if possible, the victim’s resources are overwhelmed during attack 

detection and mitigation. Therefore, attack prevention is considered a better defense approach. 

In the thesis, we have provided prevention techniques against DRDoS attacks in the Software 

Defined Networking (SDN) environment. Utilizing the flexibility and programmability aspects 

of SDN, via this study, we intend to make the underlying network smart enough to prevent 

attacks. More specifically, we have designed, developed, and validated an SDN-based 

framework that will introduce “appropriate intelligence” to enhance the functionality of 

OpenFlow-enabled L2/L3 switches so that the underlying network itself can prevent DDoS 

attacks. This thesis proposes eight different techniques to prevent/detect DRDoS attacks.  

SYMSDN, IP-Switching, PortMergeIP, and Port-Mapping techniques focus on 

modifying reverse forwarding rules. In these techniques, the response from the server goes 

back to the attacker even when the attacker spoofs the source IP of the victim; hence, the 

attacker is penalized for the attack. SYMSDN and Port-Mapping use symmetric routing as the 

underlying approach, thus requiring modification in the entire core network. PortMergeIP and 

IP-Switching depend on the Internet Service Provider (ISP) to modify the IP address of the 

request packet; hence, they require changes in only the edge networks. 

RDPID, again a prevention approach, uses Path Identifiers (PIDs) which are primarily 

used in Information-Centric Networks (ICN) to forward response packets on PIDs. As against 

static PIDs, we use Reliable Dynamic PIDs (RDPIDs) to refrain the attackers from learning 
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these PIDs and launching the attack. These PIDs are proposed to be stored within the packet 

so that the response packet can follow the same path as the respective request packet.  

PoDIBC, another proposed prevention technique, does source authentication to prevent 

IP spoofing. It is achieved by using signatures to authenticate the sender’s identity. PoDIBC 

uses the Barreto, Libert, McCullagh, Quisquater (BLMQ) signature scheme of Identity-Based 

Cryptography (IBC) to prevent the targeted victim from the attack packets. Since IBC uses the 

packet identity as a public key (which in PoDIBC is the source-IP address), it eliminates the 

infrastructure required for public key certificate distribution.  

RF-SDN is a Machine Learning (ML) approach used in the SDN environment to 

prevent DDoS attacks. With the advancement of artificial intelligence (AI), (ML) algorithms 

have become sophisticated enough to classify traffic as malicious or benign based on 

distributional differences between malicious and benign packets. We use random Forest model 

in the SDN environment to detect DDoS attacks, primarily focusing on Portmap, DNS, UDP, 

UDP-lag, and SYN datasets available in the CICDDoS 2019 attack dataset. Through the 

prediction made by the model as either attack traffic or legitimate traffic, the attack is detected 

and blocked. The approach is validated to detect a DDoS attack in near real-time and prevent 

the attack traffic from reaching the victim. 

Finally, we propose DDoS detection using entropy. Entropy is used to measure 

randomness or uncertainty in a network’s traffic. As this randomness decreases, i.e., one type 

of traffic dominates the network, the entropy value declines. This abbreviation leads to the 

possibility of an attack on the network. The proposed approach employs a dynamic threshold 

mechanism to distinguish between regular and attack traffic effectively. 

All the prevention approaches are validated through detailed experimentation by 

creating topologies involving attackers, victims, and a server to generate amplification attacks. 
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The results show that because of the proposed approaches, none of the attack traffic reaches 

the victim, or approximately 1 % (in the case of RF-SDN). 
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CHAPTER 1- Introduction 

 

1.1 DDoS Attacks 

With the abundance of computers in our day-to-day activities and their need to interface 

with the Internet, many organizations, directly or indirectly, depend upon Internet 

infrastructure for proper and reliable functioning. The services provided by various 

organizations primarily depend upon two aspects—first, the correct functioning of their 

respective applications, and second, the underlying Internet itself. If the organization’s 

application is faulty, the individual organization will only be blamed. But whom to blame if 

the organization’s service model is disrupted due to the vulnerabilities of the underlying 

Internet architecture? For example, it would be chaos, hassle, and revenue loss if any ticket 

booking (flight, train, movie, etc.) website could be made inaccessible using the vulnerabilities 

of the underlying Internet architecture. Attackers are always looking for such vulnerabilities to 

launch different cyber-attacks. Distributed Denial of Service (DDoS) attack is one type where 

an attacker uses multiple zombie machines and generates enormous traffic to attack the victim. 

For example, one such attack was observed in 2016 when a series of DDoS attacks targeted a 

Domain Name System (DNS) provider organization named DYN (2016 Dyn Cyberattack, 

2021). As a result, it caused significant Internet platforms and services unavailable to a large 

part of Europe and North America.  

DDoS attacks are launched for many different reasons. These are business rivalry, 

political mileage, taking revenge, monetary gain, etc. In such attacks, by generating an 

enormous number of network packets, the perpetrator seeks to make a machine or network 

resource unavailable to its intended users by temporarily or indefinitely disrupting the services 

of a host connected to the Internet. The attackers target and make inaccessible the services of 
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a website or any online service directly or through that service’s dependencies. The attacker 

often chokes the available bandwidth, making resources unavailable to legitimate users.  

1.1.1 DDoS Attacks a Significant Threat 

A report by Amazon suggests that a 100-millisecond delay in response time can 

potentially drop their overall sales by approximately 1% (Greg, 2006). The various security 

reports generated by Arbor Networks (Netscout, 2019), Cloudflare (Famous DDoS Attacks | 

The Largest DDoS Attacks of All Time, 2021), and Secure List (B. Kupreev Oleg et al., 2021) 

suggest that DDoS attacks are a significant threat. According to Cloudflare, five of the most 

impressive DDoS attacks are (a) the attack on Github, (b) the attack on DYN servers, (c) the 

Spamhaus attack, (d) the attack on Google, and (e) the 2020 AWS attack (Famous DDoS 

Attacks | The Largest DDoS Attacks of All Time, 2021). A10 Networks classified the attacks 

based on amplitude (Paul, 2020). The top five among these are (a) The Google attack (2.5 

Tbps), (b) The AWS DDoS attack in 2020 (2.3 Tbps), (c) The DYN attack (1.5 Tbps), (d) The 

attack on GitHub (1.35 Tbps), and (e) attack on Occupy Central (500 Gbps). Many DDoS-for-

hire services are available as paid services that take the responsibility of attacking on the 

attacker’s behalf (Booters, Stressers and DDoSers, 2021). As they have a whole infrastructure 

on their side, they are more capable of making a full-fledged attack. According to the Q3 report 

of 2019 (B. E. Kupreev Oleg & Alexander, 2019) by Secure List, even when the FBI took down 

many DDoS-for-Hire sites, new ones sprung up in their place, and the number of attacks using 

these services increased by 400% from the previous quarter. As highlighted, following is a 

brief about some of the deadliest DDoS attacks to understand more about the threat and the 

methodology associated with DDoS attacks. 

a) The attack on Google- The DDoS attack on Google peaked at 2.5 Tbps in September 

2017 and took place over six months (Menscher, 2020). The attack was a reflection 
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attack that used about 180,000 servers, such as Connection-less Lightweight Directory 

Access Protocol (CLDAP), DNS, and Simple Mail Transfer Protocol (SMTP), to send 

amplified responses to Google servers (Cimpanu, 2020b). The spoofed requests were 

167 Mbps and are said to be originated from several Chinese Internet Service Providers 

(ISPs). After three years, Google disclosed this deadliest attack to raise awareness about 

this huge threat, i.e., DDoS attacks. It also stated that these attacks would intensify with 

increased bandwidth in the coming years. 

b) The AWS 2020 attack- Amazon Web Services (AWS) is a primary Cloud Service 

Provider (CSP). In the first quarter of 2020, AWS reported a DDoS attack that was 44 

% larger than any other volumetric attack detected by AWS Shield (Threat Landscape 

Report – Q1 2020, 2020). The attack peaked at 2.3 Tbps. It was also a reflection attack 

that used CLDAP servers to launch the attack. AWS did not disclose the customers to 

whom the attack was targeted but only said that it was an “elevated threat” for three 

days for AWS Shield staff (Cimpanu, 2020a).  

c) The attack on GitHub- According to the Institute for Research on Internet Society, this 

attack was launched in March 2018 (DDOS Attacks and the GitHub Case, 2018). It 

used Memcache, an open-source, simple, and robust distributed memory caching 

system. Memcache reduces database load through caching, which helps to increase the 

speed of dynamic web applications. It works in the form of a client-server application. 

The list of Memcached servers is made available through the client software. The 

client’s requested object is first checked in Memcache; if it is there, the value is 

returned; otherwise, a request to the database is made. Various institutions own about 

100,000 Memcache servers (Newman, 2018). Anyone can use them to send special 

request commands to which these servers respond with a much larger reply. The attack 

was launched on GitHub using this feature. It was also a reflection attack (Ghoshal, 
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2018). The attacker just requested the data from Memcache servers and spoofed their 

source IP addresses to that of GitHub, resulting in an attack of 1.35 Tbps. 

d) DYN attack- The attack occurred on October 21, 2016, and was on American and 

European Internet infrastructure (Famous DDoS Attacks | The Largest DDoS Attacks 

of All Time, 2021). A total of 85 major sites suffered as the main target was DYN, a 

DNS service provider company. The major sites affected were Airbnb, Netflix, PayPal, 

Visa, Amazon, The New York Times, Reddit, and GitHub, as they all used services 

from DYN (2016 Dyn Cyberattack, 2021). The attack was launched by producing a 

large number of DNS requests for DYN servers through an army of bots. The unique 

feature of this attack was that the bots were created from tens of millions of 

compromised Internet of Things (IoT) devices, such as cameras, radios, etc., using 

malware named Mirai. It took about one day to mitigate the attack.  

e) Spamhaus attack- Spamhaus, a nonprofit organization, works in threat intelligence. Its 

services protect about three billion users’ mailboxes from spam messages, malware, 

phishing, etc. As Spamhaus works against Internet abusers, it is on the target list of 

many cybercriminals. Among many attacks on Spamhaus, the biggest one occurred on 

March 18, 2013. It was a DNS amplification attack. Generated by open DNS resolvers, 

the attack started from 10 Gbps and reached 90 Gbps on March 19, 2013. On March 

22, the attack reached 120 Gbps, as reported by Cloudflare, which finally mitigated the 

attack (Prince, 2013a). In this attack, the attackers generated requests for DNS zone 

files for ripe.net (Prince, 2013b) to open DNS resolvers. The request packet size was 

36 bytes, and the response packet size was estimated to be 3000 bytes in size. Thus, 

approximately 100 times amplification factor. Furthermore, the source IP address of the 

request packets was spoofed with Spamhaus; hence, all the responses from over 30,000 
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unique DNS resolvers went to Spamhaus, creating such massive traffic on Spamhaus 

servers. 

1.1.2 Defense against DDoS Attacks 

From all the attack statistics mentioned in section 1.1.1, DRDoS attacks were among 

the deadliest attacks. Due to their legitimate nature, it is tough to differentiate whether the 

traffic is a legitimate one or an attack; hence, they are harder to detect. These attacks generally 

exploit the client-server architecture. In DRDoS attacks, the attacker spoofs the source IP 

address of request packets to that of the victim, resulting in all the server response packets 

going to the victim instead of the attacker. Many techniques in the literature claim to protect 

from DDoS attacks. The defense against DDoS attacks can be classified as attack detection, 

mitigation, and prevention. These are formally defined as follows- 

1.1.2.1 DDoS Attack Detection -  

Strategies falling under this realm are equipped for detecting the attack with probability 

P, where P depends upon the particular detection mechanism. In pure detection techniques, the 

host/network is allowed to be susceptible to DDoS attacks. Once an attack has started, the 

primary focus is to maximize the probability of detection based on different heuristics. These 

heuristics vary from network traffic analysis, entropy, anomalous behavior of data traffic, etc. 

(J. Singh & Behal, 2020). Once an attack is detected, remedial measures can be taken.  

1.1.2.2 DDoS Attack Mitigation -  

Once an attack is detected, strategies falling under this realm can mitigate it with 

probability P1 and within time T. Again, the value of P1 and T depends upon the particular 

mitigation mechanism. Once the attack is detected, DDoS mitigation techniques or tools are 

used to mitigate the impact of such an attack. These techniques are primarily based on rate-

limitation (J. Singh & Behal, 2020), tracing the attacker, blocking it, etc. 
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1.1.2.3 DDoS Attack Prevention -  

In general, prevention means not permitting something from occurring in the first place. 

Thus, in the context of DDoS attacks, strategies falling under this realm should not allow DDoS 

attacks from happening. Prevention means strategizing defense so that DDoS attacks can be 

prevented from happening in the first place, and even if they occur, the victim should remain 

as unaffected as possible by the attack.  

1.2 Contribution of Thesis 

The primary focus of activities aimed at countering DDoS attacks revolves around two 

main aspects: detecting the attacks, followed by mitigating the attack. With this approach, the 

defense strategies are reactive, leaving the underlying network vulnerable to DDoS attacks 

until they occur. Once an attack takes place and exhausts the victim's bandwidth and resources, 

only then do the detection and mitigation measures come into play. 

Rather, a more promising strategy involves a shift toward attack prevention. This 

proactive approach aims to either prevent the attacks from being generated in the first place or, 

if they are generated, ensure that the attack traffic is unable to reach the victim. In contrast, the 

detection and mitigation methods always involve the attack traffic reaching the victim, thus 

disrupting its normal functioning. 

Considering the benefits of prevention and its proactive nature, it is regarded as the 

primary defense technique in this study against DDoS attacks. 

Limiting the scope to the Internet architecture, we have identified three distinct 

categories of DDoS prevention techniques based on their effectiveness in safeguarding the 

victim. These categories are named Ideal Prevention, True Prevention, and Partial Prevention, 

as illustrated in Figure 1.1. 



7 
 
 

 

Figure 1.1 : Prevention techniques 

a) Ideal Prevention- This prevention technique completely prevents the attack traffic 

from entering the core network. In this case, the attack traffic generated by an attacker 

(or botnets in control of the attacker) cannot leave their respective access network.  

b) True Prevention- This prevention technique allows the attack traffic to leave the 

attacker’s network and enter the core network but is wholly prevented from reaching 

the victim’s network.  

c) Partial Prevention- This prevention technique initially allows the attack traffic to leave 

the attacker’s network, enter the core network, and even reach the victim’s network. 

However, the attack traffic is stopped from reaching the victim upon successful 

detection of an attack. Generally, an additional prevention layer between the attacker 

and the victim is responsible for this detection or diversion. The exact location of this 

prevention layer varies and may be anywhere in between the gateway router of the 

attacker’s network and that of the victim’s network. 

Implementing the prevention technique mentioned in section 1.2 requires certain 

changes in the Internet architecture. These changes can be achieved in two ways: first, by 
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enforcing predefined policies in all edge networks (access networks) to prevent attackers from 

launching attacks. Second, by enhancing the intelligence of the underlying core network 

responsible for traffic forwarding to minimize the probability of attack traffic reaching the 

victim. While it may be impractical to entirely stop attackers from launching attacks due to the 

need for widespread restrictions and upgrades across access networks, preventing attack traffic 

from reaching the victim's network is achievable by enhancing the intelligence of the 

underlying core network. This could involve introducing additional functionalities in core 

routers, incorporating extra layers in the core network, or having ISPs provide add-on 

functionalities to offer protection against DDoS attacks. 

In this study, we have utilized Software Defined Network (SDN) as the underlying 

network architecture to demonstrate the necessary intelligence and changes required for 

effective DDoS prevention and detection techniques. SDN is a promising network paradigm 

that decouples the forwarding and control planes, enabling a programmable network 

architecture. Leveraging the flexibility and programmability of SDN, the study aims to enhance 

the intelligence of OpenFlow-enabled L2/L3 switches within an SDN-based framework to 

enable the underlying network itself to prevent, detect, and mitigate DDoS attacks. 

Furthermore, among all the attacks discussed in section 1.1.1, DRDoS attacks were 

identified as the most severe. Due to their legitimate nature, distinguishing between legitimate 

traffic and an attack is challenging, making them harder to detect. Therefore, this study's main 

focus is prevention against DRDoS attacks. 

1.2.1 Research Objectives 

Based on the above discussion and literature review, the following objectives have been 

formulated for the study: 
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a) To study and analyse existing techniques in literature to defend against DDoS attacks 

and keep the primary focus on prevention. 

b) Design a framework to introduce appropriate intelligence in underlying SDN-enabled 

network switches/controllers and assess its security against DRDoS attacks. Such 

switches may be a part of the core network or a separate barrier network through which 

the traffic will pass. The following two hypotheses are researched – 

Figure 1.2 : SDN barrier 

 Assuming that the entire network is SDN-enabled 

In this scenario, we assume the entire network, including the core and edge 

networks, is SDN-enabled. It means that all the L2/L3 switches between the client 

and the server must be SDN-enabled. Hence, we propose modified routing 

algorithms for the SDN environment, which are capable of preventing/mitigating 

DRDoS attacks. 

 Assuming that the Internet core network is not SDN-enabled 

A separate SDN-based barrier is proposed in this scenario, as shown in Figure 1.2. 

It is called a barrier, as all the traffic to an organization will pass through it. It can 
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be implemented in two ways: either by a separate module connected through an 

SDN-enabled switch or by making only the edge network SDN-enabled (not the 

entire core network). It will be capable of preventing, detecting, and mitigating 

DRDoS attacks. 

c) Implement and validate the proposed framework in SDN lab setup and measure its 

effectiveness to prevent DDoS attacks against various network metrics. 

1.2.2 Organization of Thesis 

The thesis comprises nine chapters, each serving a specific purpose.  

Chapter 1 presents the introduction to the thesis, covering an overview of DDoS attacks 

and the significant threats they pose. The chapter also delves into DDoS defense techniques, 

emphasizing the importance of prevention against DDoS attacks. Furthermore, the contribution 

and research objectives of the thesis are highlighted. 

Chapter 2 entails an extensive literature survey of existing prevention techniques, 

categorizing them into three approaches: Ideal Prevention, True Prevention, and Partial 

Prevention. These techniques form the basis for proactive defense against DRDoS attacks, 

which are the main focus of this research. 

Chapter 3 briefly summarizes related theory, aiming to offer a comprehensive 

understanding of all proposed prevention techniques. The chapter briefly covers SDN and 

discusses the foundational techniques utilized in the prevention approaches: Identity-based 

Cryptography (IBC), random forest classifier, and symmetrical routing. 

Chapters 4 and 5 elaborate on the proposed prevention techniques, categorized based 

on their underlying approach. These chapters center around modifying reverse forwarding rules 

such that the attacker attacks itself. Chapter 4 details four prevention techniques: SymSDN, IP-

Switching, PortMergeIP, and Port-Mapping. While SymSDN and Port-Mapping approaches 
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assume SDN-enabled Internet Core and edge networks, PortMergeIP and IP-Switching assume 

only the edge network to be SDN-enabled. Chapter 5 introduces a prevention approach using 

Path identifiers (PIDs), predominantly used in Information-Centric Networks (ICNs), enabling 

response packets to follow the same path as request packets. 

In Chapter 6, the proposed prevention technique utilizes an Identity-Based Signature 

(IBS) scheme named Barreto, Libert, McCullagh, Quisquater (BLMQ), referred to as PoDIBC. 

This scheme employs source authentication to prevent IP spoofing by using signatures for 

sender identity authentication. PoDIBC employs the BLMQ signature scheme of IBC to protect 

the targeted victim from attack packets, eliminating the need for public key certificate 

distribution. 

Chapter 7 incorporates the use of the Machine Learning (ML) algorithm, random forest, 

in the SDN environment for real-time DDoS attack detection and prevention. This defensive 

approach leverages the differences between malicious and legitimate traffic to identify and 

block attacks. With the advancement of Artificial Intelligence (AI), ML algorithms can 

effectively classify traffic as either malicious or benign based on distributional differences, 

enabling accurate predictions and timely action against attacks. 

Chapter 8 focuses on the detection of DDoS attacks using entropy. Entropy is used to 

measure randomness or uncertainty in a network’s traffic. As soon as this randomness 

decreases, i.e., one type of traffic dominates the network, the entropy value decreases. This 

abbreviation leads to the possibility of an attack on the network. The proposed approach 

employs a dynamic threshold mechanism to effectively distinguish between normal and attack 

traffic. Finally, Chapter 9 lists the conclusions of the thesis. 

********** End of Chapter **********   
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CHAPTER 2- Literature Survey 

 

2.1 Introduction 

DDoS defense mechanisms are techniques or tools primarily used to defend networks 

or hosts attached to the Internet against DDoS attacks. These defense mechanisms are based 

on multiple different techniques such as traffic monitoring, various types of traffic analysis, 

traceback techniques, packet characterization techniques, etc. (Bhatia, S., Behal, 2018). We 

can classify any defense mechanism as prevention, detection, and mitigation. As mentioned in 

the previous chapter, prevention is a better defense technique than detection and mitigation to 

keep the victim from harm as much as possible. Hence, this chapter has a detailed literature 

survey of all the existing prevention techniques. 

2.1.1 DDoS Defense Taxonomy 

DDoS defense mechanisms can be looked upon from the perspective of their 

applicability, i.e., whether the mechanism is applied before the attack takes place (i.e., 

proactive defense mechanisms) or after the attack takes place (i.e., reactive defense 

mechanisms). Correspondingly, a taxonomy for DDoS defense is highlighted in Figure 2.1. 

2.1.1.1 Reactive Techniques 

Reactive techniques react to the DDoS attack, i.e., it allows the attack to happen, and 

then the detection or mitigation is done. In such a case, the victim starts detecting the attack 

when it is under attack. As soon as the victim detects the attack, an appropriate mitigation 

technique is applied. Here, the attack traffic constantly consumes the victim's network 

resources. 
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2.1.1.2 Proactive Techniques 

Prevention means the act of stopping something from happening (Prevent). In general, 

a technique or a set of techniques that claims to “prevent an event” should not allow the same 

event to happen in the first place. For example, deadlock prevention methods do not allow 

deadlocks to happen (Deadlocks). Proactive techniques are primarily DDoS prevention 

techniques. Rather than reacting to a DDoS attack, techniques falling under this realm focus on 

preventing the DDoS attack traffic from reaching the targeted victim.  

Figure 2.1:  DDoS defense mechanisms 

Depending upon the scope and meanings associated with various "Prevention" 

techniques, proactive techniques can further be classified into Ideal Prevention, True 

Prevention, and Partial Prevention. These further classifications can also be explained with the 

help of Figure 1.1, which shows an attacker, a victim, and a third-party layer responsible for 

mitigating the attack connected across the Internet. Figure 1.1 illustrates that in Ideal 

Prevention an attack packet cannot leave the attacker’s network, and in True Prevention, attack 

traffic can leave the attacker’s network but will be mitigated in the network; hence, it cannot 

reach the victim network. In Partial Prevention, the attack will be mitigated by a prevention 

layer from reaching the victim, but some percentage of attack reaches the victim. 
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a) Ideal Prevention 

These types of prevention techniques prevent the attack traffic from entering the core 

network of the Internet. In this case, the attack traffic generated by an attacker (or botnets in 

control of the attacker) cannot leave their respective access networks. More formally, as 

defined by (Gupta et al., 2010), Ideal Prevention can be considered as “Attack prevention 

methods which try to stop all well-known signature-based, and broadcast-based DDoS attacks 

from being launched in the first place or edge routers keep all the machines over Internet up to 

date with patches and fix security holes.” Later, the authors argue that DDoS attacks are always 

vulnerable to attack types for which signatures and patches do not exist in the database with 

this definition of prevention. By this definition, Ideal Prevention includes attack prevention 

methods that try to stop a type of DDoS attack (well-known signature-based attacks, broadcast-

based DDoS attacks, reflection-based attacks, etc.) from being launched in the first place. We 

call it “Ideal Prevention” because such methods are ideal solutions if feasible and applied 

across the network. 

b) True Prevention 

These types of prevention techniques entirely prevent the victim from attacking traffic. 

As formally described by (Saharan & Gupta, 2021), the attack traffic can leave an attacker’s 

access network and enter the core network of the Internet but can never reach the target victim’s 

network. These types of techniques are attack prevention methods that introduce sufficient 

“intelligence” within the network and make the network self-sufficient. Here, self-sufficiency 

means that the network itself is capable of stopping/diverting the attack and does not allow the 

attack traffic to reach the victim’s network. The attacker can attack, but the victim will not be 

affected in any manner. 
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c) Partial Prevention 

These types of prevention techniques partially prevent the victim from the attack traffic. 

In this case, the attack traffic initially reaches the victim but the attack traffic is stopped from 

reaching the victim upon successful detection of an attack. A third-party prevention layer is 

placed between the attacker’s and victim’s networks. The job of this third party is to detect the 

attack that is taking place and stop it from reaching the victim’s network as soon as possible. 

It may also be responsible for mitigating the attack. The exact location of this intermediate 

prevention layer varies and may be anywhere between the gateway router (which connects an 

attacker to the core network) and the victim’s network. Partial Prevention is called partial 

because some of the attack reaches the victim’s network.  

2.2 DDoS Prevention: Proactive techniques 

This section shows a detailed literature survey of DDoS prevention techniques, which 

fall under the realm of Ideal Prevention, Partial Prevention, and True Prevention. Also, DDoS 

prevention techniques in the literature are not just limited to Internet architecture. Instead, such 

techniques are also available for network architectures like Mobile Ad-hoc Networks 

(MANETS), Vehicular Ad-hoc Networks (VANETS), etc. However, we have classified all the 

prevention techniques in Table 2.1 for completeness. 

Table 2.1 : Classification of prevention techniques 

Author DDoS defense technique Type 

(Freiling et al., 2005) Botnet Tracking Ideal Prevention 

(Shafi & Basit, 2019) Preventing botnet creation Ideal Prevention 

(H. Luo et al., 2013) Identifier/locator separation Ideal Prevention 

(Baker & Savola, 2004) Ingress filtering Ideal Prevention 
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(Ndibwile et al., 2015) Protection using ML and traffic 
authentication 

Partial Prevention 

(Zhuotao Liu et al., 2018) M-boxes between client and server, as 
prevention layer 

Partial Prevention 

(Subbulakshmi et al., 2013) Network monitors as prevention 
layers 

Partial Prevention 

(Lad et al., 2014) DDoS Prevention Module between 
client and server 

Partial Prevention 

(Dhanapal & Nithyanandam, 
2019) 

A prevention layer in cloud, 
classifying request messages into 
different zones 

Partial Prevention 

(Jaber et al., 2018) Swarm intelligence to be used in an 
Intrusion Prevention System (IPS) 
before the cloud server 

Partial Prevention 

(Saxena & Dey, 2015) Third-party auditor acts as a shield 
before the victim cloud 

Partial Prevention 

(Sahi et al., 2017) A third party, known as CS_DDoS, is 
a classifier method between cloud and 
the user 

Partial Prevention 

(Shridhar & Gautam, 2014) The idea of a honeypot, as a 
prevention layer, between the client 
and server 

Partial Prevention 

(Navaz et al., 2013) Cloud Service Provider (CSP) 
maintains a third party to monitor the 
network. 

Partial Prevention 

(Somasundaram & 
Meenakshi, 2021) 

A 3-layer filtering mechanism 
between attacker and cloud 

True Prevention 

(Huong & Thanh, 2017) An SDN gateway to filter network 
traffic 

Partial Prevention 

(Z. Ahmed et al., 2019) SDN controllers use blockchain to 
share information about the attack 

Partial Prevention 

(A. K. Singh et al., 2020) NFV and SDN to develop a defense 
model against DDoS attacks 

Partial prevention 
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(Harikrishna & Amuthan, 
2021) 

Use of Self Organised Maps (SOMs) 
for accurate detection of DDoS 
attacks 

Partial Prevention 

(François et al., 2012) IPSs form virtual protection rings 
around the hosts to defend. 

Partial Prevention 

(Z. Liu et al., 2018) ISP-based service with three layers to 
defend against DDoS attacks 

Partial Prevention 

(Y. Kim et al., 2006) The network keeps a score of packets Partial Prevention 

(Kalkan & Alagöz, 2016) The network keeps the score of 
Packets 

Partial Prevention 

(Mirković et al., 2003) Traffic monitoring by gateway routers Partial Prevention 

(Poongodi et al., 2019) ReCAPTCHA controller, to prevent 
large botnets-based attacks 

Partial Prevention 

(Malhi & Batra, 2016) Road Side Units (RSUs) as prevention 
layer 

Partial Prevention 

(Islam et al., 2018) Both RSUs and controllers for 
prevention against DDoS attacks 

Partial Prevention 

 

(Grover & Mittal, 2016) Both RSUs and controllers for 
prevention against DDoS attacks 

Partial Prevention 

(Timcenko, 2014) Separate Intrusion Detection System 
(IDS) nodes for prevention 

Partial Prevention 

(Nagar et al., 2017) Dedicated IPS nodes to detect and 
block the attack 

Partial Prevention 

(Kaushal & Sahni, 2016) Attack prevention nodes to control the 
transmission of each node in Wireless 
Sensor Network (WSN) 

Partial prevention 

(Jingle & Rajsingh, 2014) Intrusion Prevention Detection 
System (IPDS) nodes in the network 

Partial Prevention 

(Dao et al., 2018) Multi-access edge computing 
controller (MAEC) 

Partial Prevention 

(Bhardwaj et al., 2018) Edge computing in IoT Partial Prevention 
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(Misra et al., 2011) Middleware between application level 
and technological infrastructure to 
detect and prevent an attack 

Partial Prevention 

(X. Chen et al., 2021) Packet sampling at multiple control 
points 

Partial Prevention 

(Dao et al., 2021) Fog-shield, the endpoint defender and 
Orchestrator 

Partial Prevention 

(Wu et al., 2013) Source validation  True Prevention 

(H. Luo et al., 2017) Dynamic PIDs (DPIDs) True Prevention 

(Al-Duwairi et al., 2020) DPID with Get message logging True Prevention 

(X. Liu et al., 2008) A new encrypted header field in the IP 
header 

True Prevention 

(Hu et al., 2017) Sender’s encrypted ID in the IPv6 
extension header 

True Prevention 

(Nadeem et al., 2021) Intermediate routers perform two 
levels of verification 

True Prevention 

(Andersen et al., 2008) Accountability of Autonomous 
Systems (Ass) 

True Prevention 

(Pappas et al., 2016) Forwarding accountability between 
Ass 

True Prevention 

(Y. Liu et al., 2015) Encrypted network identities to nodes True Prevention 

(Park & Lee, 2001) Allowed IP packets on a link True Prevention 

(J. Li et al., 2002) Source periodically informing 
neighboring nodes 

True Prevention 

(Duan et al., 2018) Route mutation to protect critical 
links from attack 

True Prevention 

(Keromytis et al., 2004) Secure overlay points and secret 
servlets 

True Prevention 

(Osanaiye, 2015) Operating System (OS) fingerprinting True Prevention 

(Goncalves et al., 2017) Information about blacklisted nodes is 
propagated through wireless routers. 

True Prevention 
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2.2.1 Ideal Prevention 

An attacker generally carries out a chain of processes to launch an attack. Ideal 

Prevention techniques target and prevent such processes from being executed, preventing an 

attacker from launching an attack. Therefore, such techniques do not allow the attack traffic to 

enter the network. One of the prominent ways to launch a DDoS attack requires multiple hosts 

acting in a coordinated fashion. These attack hosts are called bots (or zombies); they belong to 

networks called botnets of compromised hosts and are remotely controlled by an attacker. The 

preventive approach proposed by (Freiling et al., 2005) identifies and infiltrates this remote-

control network mechanism and aims at shutting it down. It is done by deploying honeypots 

that attract the traffic of malicious actions of the botnet maintainers and facilitates forensic 

analysis of this traffic. It helps in the detection of malware which is responsible for remote-

control mechanism and prevent botnets from being activated.  

Qaisar Shafi et al. prevent botnets creation in the Internet of Things (IoT) networks 

(Shafi & Basit, 2019). The proposed scheme uses SDN and blockchain to detect botnets among 

IoT networks in a distributed fashion. This detection is claimed to be automatic without the 

need for manual intervention. Thus, if an attacker is prevented from creating and controlling 

the botnets, DDoS attacks cannot be launched. Along similar lines, the technique proposed by 

(H. Luo et al., 2017) uses identifier/locator separation and thwarts DDoS attacks by preventing 

bot creation. As against the current Internet architecture, which uses only an IP address to 

represent both identity and location of a network node, the identifier/location separation 

technique separates the two. It was initially proposed to address the Internet’s routing 

scalability problem. Location/ID separation protocol (LISP) is one of many routing protocols 

which uses location/identifier separation. Using the modified DNS request/response mapping, 

a set of mapping servers for each provider network, and tunnel routers (TRs), the proposed 

technique makes it very difficult for attackers to find vulnerable hosts to act as zombies (or 
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bots). As through this approach, TRs only provide locators of hosts that provide a service. For 

the hosts that do not provide any service, the TRs cannot find locators. Hence the attackers 

cannot find vulnerable hosts to create bots. It also creates a hindrance in sending attack 

commands to these zombies, even if somehow, they are created. 

Although it seems feasible, identifying and infiltrating the botnets is always impossible. 

With many botnets present across the Internet, automating the infiltrating and analysis process 

is far from practical. Also, the attack is still possible through booter services (Booters, Stressers 

and DDoSers, 2021).  

Ingress filtering is yet another effective way to implement Ideal Prevention. Ingress 

filtering is implemented at the ISP level, and it prevents DDoS attacks by not allowing spoofed 

addresses to access the network. It also helps in tracking the source of the attack. Attacks can 

be somewhat prevented if the traffic leaving an edge network and entering an ISP can be limited 

to the traffic it is legitimately sending. There are at least five ways to implement ingress 

filtering, with varying impacts (Baker & Savola, 2004).  

 Ingress Access Lists 

 Strict Reverse Path Forwarding (RPF) 

 Feasible Path RPF 

 Loose RPF 

 Loose RPF ignoring default routes 

Ingress Access Lists check every message’s source address against a list of acceptable 

prefixes before the packet enters the network and drops the packet whose source IP is not in 

the list. Strict RPF is similar to access lists; the only difference is that the access list is dynamic. 

Forwarding Information Base (FIB) is used to check source addresses. The technique states 

that if the packet is forwarded on the same interface the packet is coming upon, that packet will 
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be accepted. A better version than Strict RPF is Feasible Path RPF. In this, alternative paths 

are also looked upon; if any alternative path is matched, it is accepted; otherwise, the packet is 

dropped. The mechanisms in Feasible RPF need to be defined more clearly, like where it will 

work and where it will not. The packet is checked against FIB in Loose RPF mode and is 

dropped when it will not match any incoming interface. The term used for this is the existence 

of the path on that router. However, this is useless because, like Loose RPF sacrifices 

directionality, it loses the ability to limit an edge network’s traffic to send legitimate traffic 

sourced from that network. The fifth technique, Loose RPF ignoring default routes, is like 

Loose RPF; the only difference is that the source check-list default routes are excluded. 

All the methods mentioned above prevent DDoS attacks by preventing IP Spoofing and 

allowing acceptable prefixes of IP addresses to pass through the network interface. But these 

techniques have some issues. To further elaborate, two terms, multihoming and symmetrical 

routing, must be understood. Symmetrical routing is a routing protocol that forces the request 

and corresponding response packets to follow the same path. It is not feasible to enforce 

symmetrical routing for entire internet traffic. Strict RPF requires a path to be symmetrical; it 

cannot work for an asymmetrical path. Multihoming means making multiple connections in an 

organization for better reliability and connection to the Internet. It has two types -classical 

multihoming and multihoming with multiple addresses. In classical multihoming, the 

organization that uses multiple network providers for reliability has its range of IP addresses, 

which it will announce to all network providers. The organization has an address for each 

provider in multihoming, with multiple addresses. Ingress filtering does not work correctly for 

multihoming networks. As the range of addresses belonging to a particular network or source 

increases, the range of acceptable addresses becomes more complex and dynamic. It becomes 

harder for ingress filtering to deal with this, and there is always a risk that legitimate packets 

can be dropped if the access lists are not up to date. 
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To apply ingress filtering against multihoming networks, the ways are as follows- 

 Applying an appropriate form of Loose RPF. 

 Ensure that each ingress filter at each ISP is complete in terms of information about 

change and interfaces so that legitimate packets are not dropped. 

Even if these changes are made, modifications will be needed in complex networks 

containing too many uplinks and peers. An approach where IP spoofing can be prevented and 

validation of source IP can be done without dropping the packets is needed. 

2.2.2 Partial Prevention 

This section reviews DDoS prevention techniques that initially may allow the attack 

traffic to reach the victim. Later, this traffic is detected with the help of an additional prevention 

layer between an attacker and the victim. 

Once detected, the attack traffic is stopped from reaching the victim. Figure 2.2 

provides a general architecture of the partial prevention layer in the network. The prevention 

layer can either be situated near the source of the attack, in the edge routers of the ISP, or near 

the victim of the attack. The purpose of the prevention layer is to detect and mitigate the attack 

as soon as possible. This prevention layer generally classifies the traffic as an attack or 

legitimate and blocks it. Due to some false positives from the classification, legitimate traffic 

can be deemed attack traffic and blocked. 

Various authors have proposed adding this prevention layer at different points within 

the network and using different technologies. (Ndibwile et al., 2015) have proposed using 

decoy servers and bait servers as prevention layers to protect web servers from DDoS attacks. 

All the regular traffic first passes through the bait server. From this, authenticated traffic is 

allowed to pass to the actual web server, and the unauthenticated traffic passes to the decoy 

server, which uses an additional layer of authentication to remove the number of false positives. 
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The decoy and bait web servers use the same IP address, so the attacker does not know where 

the traffic is going. 

(Zhuotao Liu et al., 2018) have proposed a concept of middle-policing between the 

client and server as a prevention layer. It can be deployed in the existing Internet architecture. 

This task is performed by Middle-Boxes (M-Boxes), which are placed between the victim and 

the network. These M-Boxes work as a prevention layer. Regardless of how sophisticated a 

DDoS attack is, as long as middle-police can effectively enforce victim-defined traffic control 

policies to forward victim-preferred traffic, the impact the DDoS attack imposes on a victim is 

minimized. (Subbulakshmi et al., 2013) have proposed using network monitors to detect and 

prevent attacks. First, non-spoofed IPs are detected using enhanced Support Vector Machine 

(SVM), and spoofed IPs are detected using hop-count filtering. After this, appropriate 

mitigation approaches, such as rate-limiting, dropping the packets, etc., are applied based on 

attack strength. 

(Lad et al., 2014) proposed an approach for REST-based web services. The DDoS 

prevention module does the prevention against DDoS attacks. Every request packet from the 

client will go through this module to the server. The server tries to validate the client through 

a token; if it has a valid token, the request is checked for valid IP; otherwise, the registration 

module is called to generate the token. If the IP of the request packet is valid, it is accepted; 

otherwise, it is dropped.  

Numerous web applications use cloud platforms for more flexibility, additional 

security, reduced operating cost, etc. These web applications hosted on cloud servers are also 

prone to DDoS attacks. Various techniques which filter out attack traffic are proposed to 

prevent DDoS attacks on cloud platforms. Often, these techniques can be considered a third-

party prevention layer responsible for detecting and mitigating the attack traffic. The technique 
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proposed by (Dhanapal & Nithyanandam, 2019) uses a prevention layer within the cloud 

infrastructure to safeguard web servers against internal and external slow Hypertext Transfer 

Protocol (HTTP) DDoS attacks. This prevention layer classifies client request messages into 

different zones. These zones are monitoring orange, red, and green state zones. The monitoring 

state zone is responsible for monitoring all the HTTP requests and, based on different 

heuristics, classifies them into the orange, green, or red zone. If the request is classified within 

the red zone, it is blocked. The prevention layer thus monitors and blocks the packets from 

reaching the web server after the attack has started. 

Figure 2.2 : Partial Prevention 

(Jaber et al., 2018) proposed a host-based IPDS in the hypervisor before the cloud 

server. The packets are captured in this hypervisor before it reaches the cloud. Swarm 

intelligence and data analysis are used for better detection of DDoS attacks. There are two 

phases inside the hypervisor, i.e., IDS and IPS. IDS uses Principal Component Analysis (PCA) 
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and Linear Discriminant Analysis (LDA); IPS uses the Artifical Neural Network (ANN) 

classifier to classify attack traffic and regular traffic. These are both used to filter the attack 

traffic. Using a Third-Party Auditor (TPA) between a victim cloud and an attacker is proposed 

by (Saxena & Dey, 2015). This TPA, known as Cloud-Shield, is responsible for detecting and 

preventing DDoS attacks. All legitimate and malicious packet information is logged into the 

Cloud-Shield on behalf of cloud servers. After analyzing all the packets, Cloud-Shield can trace 

back the attacks’ source based on Dempster Shafer Theory (Siaterlis & Maglaris, 2003). (Sahi 

et al., 2017) have also proposed using a third party known as CS_DDoS, a classifier method, 

between cloud and the user. The detection phase stores the records of the incoming packets and 

classifies them as malicious or legitimate based on classification results. The malicious 

detected packets are stopped using the cloud service, and the source IP is blacklisted for further 

communication. The approach proposed by  (Shridhar & Gautam, 2014) discusses the idea of 

a honeypot as a prevention layer between the client and server. The approach assumes that the 

attack packets should be known and forwarded to the honeypot, and the normal packets will 

go to the server. Honeypots should be created to resemble the original server for this to work, 

and attack packets should be known before the attack. In the approach proposed by (Navaz et 

al., 2013), entropy is used to detect the attack. A third party is maintained by CSP, which 

monitors the network and generates alerts for a user if an attack is detected. The router placed 

at the cloud server calculates entropy; if it is less than a certain threshold, it is considered an 

attack. The entropy is calculated using a port number, IP address, and flow size as inputs. A 

three-layer filtering layer between the attacker and cloud to prevent DDoS attacks is proposed 

by (Somasundaram & Meenakshi, 2021). The first layer filters out unauthenticated requests, 

the second layer prevents users from accessive use of resources, and the third layer removes 

spoofed requests finally only legitimate requests reach the cloud servers. So, with this only 
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authenticated user can connect to the cloud and the malicious users also cannot demand for 

resources more than their limit. 

Various authors have used SDN switches and controllers as a prevention layer to 

prevent the attack traffic from reaching the victim during an attack. (Huong & Thanh, 2017)  

proposed an SDN-based gateway to protect application servers against DDoS attacks. This 

gateway filters the network traffic to a security analyzer that sends traffic indicator results to 

the SDN controller. This security analyzer is capable of detecting attacks on the fly. The 

controller then decides whether the indicator results correspond to an attack. In case of an 

attack, appropriate flow entries are pushed in the SDN gateway to drop corresponding single 

packet flows. This way, the proposed technique claims to save the application servers against 

DDoS attacks. (Z. Ahmed et al., 2019) have used blockchain and SDN to prevent the victim 

from DDoS attacks. The SDN controller oversees the detection and mitigation of the attack. 

All the communication takes place through the Ethereum blockchain. Based on a threshold 

calculated from incoming packets, the controller decides if a source is legitimate or an attacker. 

The controller shares this information with other controllers using blockchain. (A. K. Singh et 

al., 2020) have used the functionality of Network Function Virtualization (NFV) and SDN to 

develop a defense model against DDoS attacks. NFV helps to manage network functions on-

demand, and SDN for redirecting the flows and managing the rules. The proposed technique 

monitors the network traffic periodically. Due to an attack when the server is overloaded with 

traffic, its traffic is directed to another Virtual Machine (VM) which analyses the attack traffic 

to know the source of the attack. Also, the users connected to that server are connected to a 

different server whose IP addresses are also spoofed. (Harikrishna & Amuthan, 2021) have 

proposed a partial prevention scheme for SDN-based clouds. A prevention layer in the form of 

a Virtual Router Firewall (VRF), which connects the internet with the SDN-based clouds’ 

physical infrastructure, is proposed.  It has the benefit of rival penalized  SOMs and constant 
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learning rate which results in rapid and accurate detection of DDoS attacks. It categorizes data 

flows into normal or malicious based on weights of neuron whose weight vector is very close 

to euclidian distance of considered IP vector (deviation in actual data traffic from expected 

traffic). 

A prevention layer can also be added within the ISP’s network. (François et al., 2012) 

have proposed creating a prevention layer in an IPS at the ISP level. The IPSs form virtual 

protection rings around the hosts to defend and collaborate by exchanging selected traffic 

information. This service is provided as close to the attack source as possible and as far as 

possible from the victim. Belief scores on potential attacks are computed and shared among 

networks to detect DDoS attacks. 

Similarly,  (Z. Liu et al., 2018) proposed an ISP-based service to defend against DDoS 

attacks on the victim side. This defense architecture has three layers. First is the flood throttling 

layer- which handles large application-layer attacks such as Network Time Protocol (NTP). 

This layer minimizes the effect of amplification flooding attacks, which exploits specific 

network service protocols for launching an attack. It uses a weighted fair queuing technique 

for the same. The second layer is the congestion-resolving layer, and it is used to stop more 

subtle and sophisticated attacks. It also punishes attackers by blocking them. Therefore, users 

who overlook packet losses and continuously inject packets are held accountable for the 

enduring congestion during DDoS attacks. The third layer is user-specific, and the goal of 

adding this user-specific defense layer is to provide the flexibility for the victim to enforce self-

interested traffic control policies that are most suitable for their business logic.  (Y. Kim et al., 

2006)  (Kalkan & Alagöz, 2016) have proposed using a scoring mechanism of packets to 

differentiate between regular and attack packets. The approach proposed by (Kalkan & Alagöz, 

2016) is collaborative and proactive. According to the authors, “attack prevention efficiency 
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measures how early the network can get rid of the attack packets.” It generates a score for 

network packets, called PacketScore, to distinguish between attack packets and legitimate ones. 

The following attributes are considered for scoring the packets:  IP address, port number, 

protocol type, packet size, Time To Live (TTL) value, and TCP flag. This packet-based 

analysis starts when congestion is detected within the network. Finally, upon detecting the 

attack packets, the network drops these, thus preventing the attack. (Y. Kim et al., 2006) have 

given an approach in which a packet score is kept for each packet, and a packet is called a 

legitimate packet if its value is below a threshold. Otherwise, the packets are blocked. The 

attributes used for scoring are packet size, TTL values, protocol-type values, source IP prefixes, 

TCP flags, and server port numbers. This approach can’t filter low-volume traffic, and the 

attacker can mimic the characteristics of a legitimate packet. It is partial Prevention. 

 D-WARD, a DDoS defense mechanism proposed by (Mirković et al., 2003), is 

deployed at source-end networks and automatically detects and stops attacks originating from 

it. The gateway router between the source network and the rest of the Internet monitors the 

behavior of each peer with which the hosts communicate. Periodically, the traffic statistics are 

compared to that of regular traffic. In case of substantial deviation crossing certain pre-defined 

thresholds, the traffic is rate limited in proportion to their aggressiveness. 

In addition to the Internet architecture, Partial Prevention techniques are also proposed 

for different types of networks, i.e., VANETS, WSNs, wireless mesh networks, 5G, and IoT 

networks. VANETS, a subclass of MANETS, has two types of communication nodes (i.e., 

Vehicles and Road Side Units (RSU’s) and three types of communication links among nodes, 

i.e., Vehicles to Vehicles, Vehicles to RSUs, and RSUs to RSUs. A DDoS prevention layer is 

generally added within RSUs or as an additional controller operating between the 

communicating nodes. (Poongodi et al., 2019) proposed an additional controller, called 
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reCAPTCHA controller, to prevent large botnets-based attacks. This reCAPTCHA controller 

filters specific IP addresses or ports through source integrity checks. It uses a challenge-

response mechanism to calculate the entropy associated with the data from the covariance 

matrix. If it crosses the threshold, the node is blocked. (Malhi & Batra, 2016) proposed that the 

framework for DDoS Prevention uses a prevention module within RSUs as a prevention layer. 

These RSUs periodically calculate the fitness of every connecting node using a genetic 

algorithm. The fittest nodes are allowed to communicate, and the worse nodes are discarded by 

ending their communication with other nodes. (Islam et al., 2018) and (Grover & Mittal, 2016) 

have proposed using both RSUs and controllers for prevention against DDoS attacks. (Islam et 

al., 2018) leverage edge-computing, SDN, and NFV for their prevention architecture. RSUs 

are extended with micro-boxes to act as security gateways. They capture the traffic and provide 

analysis capabilities to the controller, which is located in the cloud. This controller is 

responsible for identifying threats and controlling all the micro-boxes. (Grover & Mittal, 2016) 

have proposed grouping nodes to detect the attack. RSUs first monitor and make a group of 

nodes based on a few select parameters. Once a group is formed, a group leader is selected, 

who will work as a group controller. This controller will now help to detect and block the 

malicious node. (Timcenko, 2014) have proposed prevention in MANETS using IDS nodes. 

These nodes, different from the communicating nodes, manage the MANET infrastructure. An 

attack profile is created based on the forensic analysis of log files of packets in the detection 

phase. In the prevention phase, all nodes are updated about the attacker’s profile, and attackers 

are blacklisted. 

In a WSN, sensor nodes are deployed in primarily hostile areas to monitor various 

network parameters for inspecting the traffic. (Nagar et al., 2017) proposed a methodology to 

detect and block the malicious nodes in a WSN to prevent them from generating DDoS attack 

traffic. Dedicated IPS nodes work as the third-party layer and scan the neighbors regularly, 
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detect and find a node involved in frequent message passing, block it, and inform the honest 

nodes in its vicinity to change the routes. (Kaushal & Sahni, 2016) proposed an approach for 

preventing DDoS flooding attacks in the WSN. The methodology includes limiting the number 

of transmissions of each node. This limit is based on the number of neighboring nodes 

(transmission is hop by hop). Each node will decide and tell its neighbor count to an examiner 

node, set a threshold based on that, and work as an attack-prevention node. If any node sends 

more packets than a threshold, it is compared with the packet delivery ratio of the neighboring 

nodes. An attacker involved in the attack will have an abnormal packet delivery ratio. Hence it 

will be detected. But normal packets can also suffer due to a limit in transmission. Similarly, 

(Jingle & Rajsingh, 2014) proposed a DDoS detection and mitigation technique for wireless 

mesh networks by proposing an IPDS. These IPDS nodes work collaboratively at various 

strategic points within the network. This IPDS system admits a node and keeps track of the 

traffic generated by it to detect any IP spoofed flooding attack in a mesh network. There are 

four components of the IPDS in this technique. First is the admission controller responsible for 

bandwidth allocation. The second is the traffic analyzer, which consists of a timer monitor and 

bandwidth monitor, and finally, the mitigation manager is responsible for attack mitigation. A 

single IPDS cannot handle all nodes; hence, the use of multiple IPDS is promoted. In all these 

techniques an IPS node or controller is used as a prevention layer. 

The technique proposed by (Dao et al., 2018) proposes a MAEC controller to prevent 

attacks. It helps in the detection of attacks in an early stage. MAEC is an emerging 5-G 

technology. It is helpful against DDoS attacks as it is implemented near clients.  Whenever the 

first edge nodes detect malicious activity, they inform the central MAEC-X controller, 

generating policies for the edge nodes to handle this suspicious traffic, but before this, some 

percentage of the attack reaches the victim. 
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DDoS attacks also threaten IoT infrastructure due to their open nature. (Bhardwaj et al., 

2018) have proposed Shadownet, a prevention layer to detect DDoS attacks in IoT 

infrastructure. It uses edge computing and a shadow net web service. Edge computing works 

as the first line of defense, where edge functions will sketch IoT traffic profiles. After this, it 

sends shadow packets to the shadow web service. Shadow packets contain locally-driven info 

about the IoT traffic. The attack detection and appropriate mitigation actions will be decided 

at the shadow web service. (Misra et al., 2011) have proposed a service oriented architecture, 

which works as a prevention layer against DDoS attacks in the form of middleware between 

the application level and technological infrastructure. The detection and prevention phases use 

learning automata to optimize the utilization of all its resources. In the detection phase, a 

threshold value for each layer is defined based on the resources available at each layer. A DDoS 

attack is detected if a request for these resources at any layer exceeds the threshold limit. In the 

defense phase, packets from an identified attacker are discarded. (X. Chen et al., 2021) also 

propose a partial prevention scheme with multiple control points to defend against IoT-based 

DDoS attacks. Packet sampling is done at these control points, and based on that, the attacker’s 

and defender’s costs for attack will be calculated, and control strategies will be made to stop 

the attack.  To secure heterogeneous IoT, (Dao et al., 2021) proposed a prevention layer in the 

form of a fog-shield endpoint defender and orchestrator. Multiple endpoint defenders are 

located at the border of each homogeneous IoT system. These endpoint defenders contain 

SOMs to classify traffic, and they send a report to the centralized orchestrator. The main task 

of the orchestrator is to cooperate with training results and policies among endpoint defenders. 

It is also responsible for analyzing and generating a policy for endpoint defenders.  

2.2.3 True Prevention 

Based on the literature, True Prevention can be categorized into techniques involving 

Source Validation, PIDs, Route Mutation, Route-based Packet Filtering, Secure Overlay 
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Points, Encryption, and OS Fingerprinting, as shown in Figure 2.3. Validating the source IP 

address is one of the promising ways to prevent DDoS attacks. Source Address Validation 

Improvement (SAVI) (Wu et al., 2013) is a promising way to implement this in the Internet 

architecture. Source validation protects from IP Spoofing, thus preventing DRDoS attacks. It 

is purely a network-based technique and has no dependency on end hosts. Following is a three-

step model followed by SAVI instances: 

 Using specialized packets (monitoring packets), legitimate and valid source IP 

addresses are identified for a host. 

 Bind the legitimate source IP address and a link-layer property of the host’s network 

attachment. The link-layer property is chosen such that this binding, called a binding 

anchor, is harder to spoof and is verifiable in every packet. The binding anchor varies 

from IEEE unique identification, security association between host and base station for 

wireless links, or Ethernet port of a switch to which the host attaches  (Wu et al., 2013) 

 Validate the source IP using the binding anchor. 

The SAVI instances should be positioned as close as possible to the host. Ideally, it 

should be located in the host’s default router. The issues with SAVI instances may be that they 

can face reliability issues due to the loss of bindings in SAVI devices through the restart of 

SAVI devices or binding information for a new link not reaching the SAVI device. If the SAVI 

device’s physical location is known, the attacker can change or surpass it by connecting through 

a non-SAVI device. SAVI devices can also be attacked, e.g., a DDoS attack on them. Several 

SAVI documents have been standardized based on the different address assignment techniques 

e.g., First Come Fist Served (FCFS) SAVI (Nordmark et al., 2012), Dynamic Host 

Configuration Protocol (DHCP) SAVI (Bi et al., 2015), Secure Neighbor Discovery (SEND) 
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SAVI (Bagnulo & Garcia-Martinez, 2014), and Mixed Address Assignment Methods  

(MAAM) SAVI (Bi et al., 2017).   

 

Figure 2.3 : True Prevention 

Jessica et al. (Goncalves et al., 2017) have proposed a Wireless Distributed IPS 

(WIDIP), and its main focus is to protect the internal network from attacks. The attackers are 

identified and blacklisted in this work using IP and Media Access Control (MAC) addresses. 

If there is more than one IP address for a MAC, that address is blacklisted, and this information 

is propagated to other wireless routers. Hence, the attacker is detected at the source and thus 

prevented from making the attack. The problem with this technique is that innocent machines 

controlled by bots are also blacklisted for a very long time and won’t avail of any service as 

they are blacklisted. 

Instead of using IP addresses as routing parameters, PIDs are used in the content-centric 

network to enforce prevention. PIDs are identifiers that identify the path between network 
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entities as inter-domain routing objects. (H. Luo et al., 2017) have proposed prevention against 

DDoS attacks with DPIDs. In DPIDs, two adjacent domains periodically update and install 

new PIDs into the data plane for packet forwarding. Even if the attacker obtains the PIDs to its 

target and sends the malicious packets successfully, they will become invalid after a particular 

configurable time. Therefore, the network will discard the subsequent attack packets. (Al-

Duwairi et al., 2020) have also used the concept of DPID with Get-message logging. This 

approach is mainly for ICNs where users request information using Get messaging. The reason 

for logging Get-messages for DDoS attack detection is that normal users correspond to a Get 

message while an attacker does not. Here, the ICN routers log Get-request messages using 

bloom filters. Bloom filters will help in comprehensive logging; they don’t even take up much 

space. This approach is claimed to give better results against DDoS prevention than DPID. The 

limitations of this technique are modification of underlying Internet architecture is required for 

its implementation, and if a link breaks between the communication, the response packet is 

lost. 

One way to provide prevention is by authenticating the source IP address using different 

encryption techniques. Many authors have used encrypting the packet header to authenticate 

the source address. (X. Liu et al., 2008) proposed a new field (captioned as Passport) with an 

IP header in their proposed approach. When the packet leaves its originating AS, the 

border/egress router will attach message authentication code to the passport header of the 

packet. A secret key is shared in advance between source AS and each AS between the source 

and destination. With the help of this message authentication code, the inter-between ASs can 

verify whether the incoming packet belongs to that particular source address. The limitation of 

this technique is that Diffie-Hellman is used for exchanging the keys, which in itself is not 

secure. (Hu et al., 2017) proposed to store the sender’s undeniable and reliable identity using 

the IPv6 extension header. A slight change in legacy networks is proposed by implementing 
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this technique in two steps. For inter-domain accountability, SAVI is used, and before the 

packet leaves the network, the gateway router/switch embeds users’ credibility information in 

the packet. This L3 switch is named a SuperFlow switch, which can be an SDN/OpenFlow; 

hence, different granularities of the flow can be controlled. The user’s private keys will be 

stored in the extension header of the IPv6 protocol. The public keys of users will be stored in 

a Public Key Exchange Server (PKES). The receiver can verify the sender’s signature through 

its local PKES. The limitation in this technique is SAVI devices and also PKES on which 

Denial of Service (DoS) attacks can be made. User identification as a mode of verification for 

the cloud is also proposed by (Nadeem et al., 2021). The authors propose intermediate routers 

do attack prevention by using two levels of verification. The first is a user ID and password; 

the second consists of port numbers assigned to different countries. Routers work as Network 

IDS (NIDS) and Host IDS (HIDS) to prevent attackers from generating the attack.  If somehow 

the attacker comes in possession of a username and password, the attack can be launched. This 

technique also causes an accessive delay for a legitimate user to access the cloud. The 

Accountable Internet Protocol (AIP) proposed by (Andersen et al., 2008) provides self-certify 

addresses without depending on a third party. This technique proposes Accountability Domains 

(ADs) (like ASs), and each host in that AD is given a unique End-point Identifier (EID) for 

authentication so that each host will have a combination of AD: EID. The problem with this 

technique is the deployability and refurbishment of Internet protocol. (Pappas et al., 2016) 

proposed the approach, named Forwarding Accountability, for Internet reputability. It works 

by incentivizing ISPs and ASs. The idea is forwarding accountability, in which the receiver in 

the communication decides security policies that the sender must follow. The inter-between 

ASs are also responsible for sending the traffic as they mark the packets that pass through them. 

These transit ASs insert cryptographic markings. The limitation of this technique is open 

recursive resolvers like that in DNS amplification attacks. A new IPv6 address generation 
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algorithm is proposed by (Y. Liu et al., 2015). The basis of this algorithm is time and Network 

Identity (NID). The authenticity of source addresses is achieved with the help of Source 

Address Validation Architecture (SAVA) . Still, dependency on SAVI devices can be a hurdle 

because a DOS attack can be made on SAVI devices. The proposed approach has three steps 

after SAVI. First, a scalable structure of NID is designed. After this, the second step involves 

the address generation algorithm for IPv6. The concatenation of NID and time is encrypted 

using the International Data Encryption Algorithm (IDEA) algorithm (Daemen et al., 1994), 

(Lai & Massey, 1991), generating an address assigned to the host. The final step is the 

implementation of the algorithm and traceback.  

In the approach proposed by  (Park & Lee, 2001) and  (J. Li et al., 2002), the packets 

allowed on a particular link are controlled. It is Route-based Packet Filtering. The approach 

Route-based Distributed Packet Filtering (RDPF) by (Park & Lee, 2001) ensures True 

Prevention, followed by traceback. Prevention is based on a pre-defined range of IP packets 

allowed on a link. This range is based on the source-destination IP address pair. The packets 

on a particular link are allowed if they belong to the allowed pair. The corresponding router of 

that AS link will block the packet for every other packet. This technique can’t prevent 

intelligently spoofed IP addresses and doesn’t support dynamic changes in the topologies. If 

Border Gateway Protocol (BGP) is used for configuration, then hijacking in a BGP session can 

mislead routers. In the method proposed by  (J. Li et al., 2002), called Source Address Validity 

Enforcement (SAVE), a dynamic routing problem is resolved. In this proposed approach, the 

source address periodically informs about itself by sending messages to all destination nodes 

and solves the RDPF dynamic routing problem. Each router will know valid IP addresses that 

can arrive on it through this approach. Routers receive valid addresses from incoming tables 

(sent previously). Hence, it prevents attacks from invalid IP addresses. Still, this technique 
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cannot stop attacks from valid IP addresses and causes an increase in memory and 

computational costs in routers. 

Focusing mainly on DDoS attacks that exploit network infrastructure design, (Duan et 

al., 2018) proposed a proactive Routing Mutation technique. Analysis reveals that many public 

servers have only a few critical links, and congesting these critical links can cause 60-90% 

service degradation in most cases (Duan et al., 2018). Once such links are known, the attacker 

selects links with the highest flow density to the victim servers as target critical links. The 

proposed approach includes developing a susceptibility metric to quantify the potential 

bandwidth degradation ratio and severity level of attack. Based on these metrics, the proposed 

solution provides proactive route mutation to reduce susceptibility and improve the availability 

and resilience of critical servers. This methodology targets a victim directly, not links, so even 

if the flow is switched to non-critical links, it won’t matter as the victim will still be affected. 

(Keromytis et al., 2004) proposed an excellent method for preventing DOS attacks, known as 

Secure Overlay Services (SOSs). Authentication of the packets is done at secure overlay points, 

which forward the packets through overlay nodes to beacon nodes. Beacon nodes forward these 

packets to a secret servlet (remote node). These secret servlets send the packets to destination 

nodes. Scalability is a big issue with this proposed solution because the state for each target 

must be maintained at the secret servlets, beacons, and access points. (Osanaiye, 2015) 

proposed OS Fingerprinting for DDoS prevention against IP spoofing. It is implemented to 

detect spoofed packets and not forward them. The detection scheme is based on matching the 

OS of the spoofed IP packet with the OS of the trustworthy Source. The fingerprinting can be 

passive or active. It only works if the spoofed source and actual source have different OSs and 

have extra communication overhead to check for OS.  
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2.3 Limitations of Prevention Techniques 

The benefits and limitations of all the prevention techniques, i.e., Ideal, Partial, and 

True Prevention, are listed in Table 2.2 

Table 2.2 : Advantages and limitations of existing prevention techniques 

Author Benefits Limitations 
(Freiling et al., 
2005) 

Prevents activation of botnets by 
infiltrating the remote-control 
network mechanism. 

DDoS attacks can still happen with 
booter services (Booters, Stressers 
and DDoSers, 2021). 

(Shafi & Basit, 
2019) 

The attacker is prevented from 
creating and controlling the 
botnets; therefore, DDoS attacks 
cannot be launched. 

DDoS attacks can still happen with 
booter services. (Booters, Stressers 
and DDoSers, 2021). 

(H. Luo et al., 
2013) 

This technique makes it difficult 
for attackers to find vulnerable 
hosts to create bots by separating 
identity from a location. 

DDoS attacks can still happen with 
booter services. (Booters, Stressers 
and DDoSers, 2021). 

(Baker & Savola, 
2004) 

Ingress filtering stops DDoS 
attacks by not allowing spoof 
packets to enter the network; 
hence the victim will remain 
unaffected. 

 Problematic to implement in 
complex networks containing too 
many uplinks and peers. 

 The ingress filter at each ISP 
should be complete in terms of 
information about change and 
interfaces so that legitimate 
packets are not dropped. 

(Ndibwile et al., 
2015) 

Bait servers and decoy servers 
are used before the actual web 
servers so that only the validated 
traffic reaches the actual web 
servers. 

 Due to false positives, legitimate 
traffic also gets blocked 

 The new type of DDoS attacks, 
whose characteristics are 
unknown, will be hard to stop. 

(Zhuotao Liu et 
al., 2018) 

Middle-police allows only 
victim-preferred traffic to pass, 
and these M-boxes can be 
implemented in the existing 
Internet infrastructure. 

Victim-preferred traffic, e.g., DNS 
amplification attacks, can reach the 
victim. 

(Subbulakshmi et 
al., 2013) 

Network monitors detect the 
attack traffic in the network itself 
so it cannot reach the victim. 

 Due to false positives (from 
SVM), legitimate traffic also gets 
blocked 
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 Legitimate packets may use 
asymmetrical paths, which result 
in different hop counts causing 
false detection. 

 
(Lad et al., 2014) A DDoS prevention token only 

allows packets with valid tokens 
to reach the server. 

If the prevention model’s bandwidth 
is choked from all the packets needing 
validation, then legitimate packets 
will be dropped. 

(Dhanapal & 
Nithyanandam, 
2019) 

The monitoring zones block the 
attack traffic from reaching the 
server. Four different zones are 
used for better classification. 

Attacks that have no signature or 
mimic legitimate traffic will be hard 
to stop. 

(Jaber et al., 2018) The prevention module detects 
and stops the DDoS attack from 
reaching the server. For 
detection, it uses swarm 
intelligence. 

 The DDoS attack can be made on 
the prevention module. Because of 
this, legitimate traffic will also 
suffer. 

 
(Saxena & Dey, 
2015) 

Cloud-Shield logs all packets, 
and after analyzing them, attack 
traffic is prevented from reaching 
the cloud servers. 

 All packets pass through the 
Cloud-Shield, the delay 
introduced due to this is not 
shown. 

 This approach can be classified as 
Partial Prevention, hence some 
percentage of attack traffic can 
reach the victim before it is 
detected. The exact percentage of 
this occurrence has not been 
quantified. 

(Sahi et al., 2017) A third party classifies and 
blocks the attack packets from 
cloud servers. The IP address of 
attackers is also blocked. 

Detection is done using classification, 
which can result in blocking 
legitimate IP addresses due to false 
positives. 
 

(Shridhar & 
Gautam, 2014) 

The honeypot used between the 
client and server will act as a 
decoy, and all the attack packets 
will go toward the honeypot, and 
the server will remain unaffected. 

The approach assumes that the attack 
packets should be known and 
forwarded to the honeypot. 

(Navaz et al., 
2013) 

Using entropy, a third party 
detects the attack and prevents it 
from reaching the server. 

The DDoS attack can reach the victim 
if the threshold for detection is not 
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crossed, for example, low-rate DDoS 
attacks. 

(Somasundaram 
& Meenakshi, 
2021). 

A 3-layer filtering mechanism 
between attacker and cloud, 
allowing only legitimate requests 
to reach the cloud. 

 Legitimate users can also suffer 
because of the number of requests 
allowed to access the server. 

 Low-rate DDoS attacks are still 
possible. 

(Huong & Thanh, 
2017) 

A security analyzer detects the 
attack on the fly and provides a 
fast response for attack 
mitigation. 

 The security analyzer cannot 
detect low-rate DDoS attacks, 
resulting in no attack detection. 

 To detect different DDoS attacks, 
the number of parameters used for 
attack detection is not sufficient. 

(Z. Ahmed et al., 
2019) 

Multiple controllers 
communicate through blockchain 
to provide attack information to 
all networks to stop the attack 
from reaching the victim. 

Due to delays in information 
exchange among controllers, some 
parts of attack traffic can reach the 
victim. 

(A. K. Singh et al., 
2020) 

After an attack happens and the 
server is overloaded, all users 
connected to it are transferred to 
another server. 

With the increase in the number of 
users and servers, the processing 
delay in removing users and changing 
their IP addresses increases, causing a 
delay in preventing DDoS attacks. 

(Harikrishna & 
Amuthan, 2021) 

Use of SOMs for accurate 
detection of DDoS attacks. 

 The delay caused in normal traffic 
by applying ML techniques on 
routers. 

 The percentage of regular traffic 
reaching the cloud server is also 
uncertain. 

(François et al., 
2012) 

Virtual protection rings are 
created near the attack source and 
as far as possible from the victim. 

 Some part of the attack reaches the 
victim before these rings detect the 
attack, and attack information is 
shared among these rings. This 
percentage of attack traffic 
reaching victims is not shown.  

 Due to false positives, legitimated 
IPs can be blacklisted and 
blocked, and no approach to 
unblock these IPs is proposed. 

(Z. Liu et al., 
2018) 

It punishes the attackers 
responsible for the congestion by 
blocking them. 

Delay is introduced for regular traffic 
to reach the victim because of three 
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prevention layers placed by ISP in the 
network. 

(Y. Kim et al., 
2006) 

A scoring mechanism to 
differentiate between attack 
packets and normal traffic 

 This approach can’t filter low-
volume traffics, and the attacker 
can mimic the characteristics of a 
legitimate packet.  

 Attributes to decide the score of 
packets can take up too much 
storage. 

(Kalkan & 
Alagöz, 2016) 

A scoring mechanism to 
differentiate between attack 
packets and normal traffic 

 This approach can’t filter low-
volume traffics, and the attacker 
can mimic the characteristics of a 
legitimate packet.  

 Hard to decide the correct attribute 
pairs to be used for scoring to 
detect an ongoing attack. 

(Mirković et al., 
2003) 

The proposed technique is 
applied near the source of the 
attack to be prevented at the 
source only. 

 The authors themselves say that 
detection can be unreliable, hence 
proposed a rate-limiting 
mitigation technique, but due to 
this, legitimate traffic also suffers, 
as that is prone to rate-limiting 
also. 

(Poongodi et al., 
2019) 

Its reCAPTCHA controller is 
capable of detecting low-rate 
DDoS attacks also. 

Normal traffic frequency and entropy 
will also be checked by the 
reCAPTCHA controller, causing 
unnecessary delay. 

(Malhi & Batra, 
2016) 

The detection accuracy of attack 
packets increased due to the use 
of a genetic algorithm. 

Increased processing overhead on 
RSUs to implement a genetic 
framework for the detection of DDoS 
attacks. 

(Islam et al., 
2018) 

Both controllers and RSUs are 
used for the prevention 

The DDoS attack can be made on the 
controller located in the cloud.  

(Grover & Mittal, 
2016) 

Both controllers and RSUs are 
used for the prevention 

The DDoS attack can be made on the 
group leader, which is responsible for 
controlling other nodes. 

(Timcenko, 2014) Separate IDS nodes are created to 
prevent attacks so that overhead 
on normal nodes can be avoided. 

Legitimate nodes used by attackers 
for spoofing attacks will also be 
blacklisted. 

(Nagar et al., 
2017) 

Dedicated IPS nodes for 
continuous scanning of the 
network to detect attacks 

The DDoS attack can be made on the 
IPS nodes so that attacks on WSN 
nodes cannot be prevented. 
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(Kaushal & Sahni, 
2016) 

Examiner nodes detect the 
attacker based on the information 
provided by WSN nodes. These 
sensor nodes inform about their 
neighbors and the amount of 
traffic they should receive. 

Normal packets can also suffer due to 
a limit in transmission by the nodes. 

(Jingle & 
Rajsingh, 2014) 

Various IPDS nodes located 
strategically work 
collaboratively to detect attacks. 

Communication overhead in the 
network due to collaborative 
information sharing among IPDS 
nodes. 

(Dao et al., 2018) MAEC is implemented very near 
to clients to detect DDoS attacks. 

The DDoS attack can be made on 
MAEC-X central controller. 

(Bhardwaj et al., 
2018) 

Edge computing is used as the 
first line of defense, leading to 
attack detection as near the 
source as possible. 

Deployment of Shadownet in 
multiple networks for effective 
detection compromises the fast-path 
assumptions and is not feasible. 

(Misra et al., 
2011) 

Learning automata is used for 
intelligent sampling of packets to 
categorize them into attack or 
legitimate ones. 

This technique does not guarantee 
that all the attack packets can be 
dismissed.   

(X. Chen et al., 
2021) 

Packet sampling at multiple 
control points 

For mitigation and control strategies 
to be implemented, classifying what 
bots and normal users are, is unclear. 

(Dao et al., 2021) Multiple endpoint defenders 
classify traffic, and centralized 
endpoint defenders analyze this 
traffic and generate policies. 

 The channel between the endpoint 
and the centralized orchestrator 
must be secure; otherwise, 
detection might not be possible. 

 Extra functionalities for attack 
detection must be added at each 
homogeneous system’s border. 

(Wu et al., 2013)  Detects attack as near to the 
source as possible. 

 Entirely network-based, with 
no dependency on end hosts. 

 DDoS attacks on SAVI devices 
can be made. 

 Can have reliability issues due to 
the loss of bindings in SAVI 
devices 

(H. Luo et al., 
2017) 

 DPIDs are introduced that can 
prevent flooding attacks also. 

 Attack packets cannot reach 
the victim. 

 It is limited to ICNs. 
 The DPID sharing and updation 

time can be improved. 
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(Al-Duwairi et al., 
2020) 

 Bloom filters are used for the 
effective logging of GET 
messages. 

 Attack packets cannot reach 
the victim. 

It only works for ICNs where a Get 
request is used. 

(X. Liu et al., 
2008) 

Using encryption inter-between 
ASs can verify that the packet 
belongs to a source and prevents 
the packet from reaching the 
victim. 

Diffie-Hellman is used for key 
exchange, which itself is not secure. 

(Hu et al., 2017) The sender’s identity is stored 
inside the IPv6 extension header 
only. 

 Separate PKES needs to be 
maintained 

 DOS attacks can be made on 
PKES and SAVI devices 

(Nadeem et al., 
2021) 

Intermediate routers perform 
authentication before the cloud 
can be accessed. 

 Internal users can launch an attack 
on the cloud 

 Accessive delay is caused for a 
legitimate user accessing the 
cloud. 

(Andersen et al., 
2008) 

This technique uses self-
certifying addresses without any 
dependency on a third party. 

Deployability and refurbishment of IP 

(Pappas et al., 
2016) 

ISPs and ASs are incentivized so 
that security policies can be 
enforced to prevent DDoS 
attacks. 

The attack can happen from open 
recursive resolvers like that in DNS 
amplification attacks. 

(Y. Liu et al., 
2015) 

To prevent spoofing, the user is 
identified with two more 
identities, NID and time identity. 

Dependency on SAVI devices can be 
a hurdle because a DOS attack can be 
made on SAVI devices. 
 

(Park & Lee, 
2001) 

The router of a link blocks the 
packet if that packet’s source-
destination IP pair doesn’t belong 
on that link. 

It doesn’t support dynamic changes in 
the topologies. 
 

(J. Li et al., 2002) The source address periodically 
shares information with 
neighbors to self-validate. 

 This technique can’t stop the 
attack from valid IP addresses.  

 Increase in memory and 
computational costs in routers. 
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(Duan et al., 2018) Critical links are identified 
proactively, and attack is 
prevented by route mutation. 

 For attacks targeting a victim 
directly, not links, even if the flow 
is switched to non-critical links, it 
won’t matter as the victim will be 
affected. 

(Keromytis et al., 
2004) 

With the help of secret servlets, 
the attack is prevented from 
reaching the victim. 

Scalability is a big issue with this 
proposed solution because the state 
for each target must be maintained at 
the secret servlets, beacons, and 
access points. 

(Osanaiye, 2015) Prevent IP spoofing of packets.  It only works if the spoofed and 
actual sources have different OSs. 

 Extra communication overhead to 
check every time for OS. 

 
(Goncalves et al., 
2017) 

The attacker is detected at the 
source and prevented from 
making the attack. 

 Innocent machines controlled by 
bots are also blacklisted for a very 
long time and won’t be able to 
avail of any service as they are 
blacklisted. 

 

2.3.1 Research Gaps  

Based on the literature survey following are the identified research gaps which require further 

research: 

a) The dependability of applying prevention techniques should be minimized for the end-

users. Ideally, the end-users should have no role in DDoS prevention. The underlying 

forwarding network should be made self-sufficient. It should not allow attack traffic to 

be generated; if attack traffic generation cannot be stopped, it should not allow this 

traffic to reach the victim. 

b) The ideal technique for prevention is Ideal Prevention. The primary issues with 

achieving Ideal Prevention are- 
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i) It includes methods that try to stop all well-known signature-based and broadcast-

based DDoS attacks from being launched in the first place, or edge routers keep all 

the machines over the Internet updated with patches and fix security holes. But with 

this, networks are always vulnerable to attack types for which signatures and 

patches do not exist in the database.  

ii) Ideal Prevention includes methods to prevent botnet creation and causing hindrance 

in remote-control mechanisms. But DDoS attacks are always possible from DDoS 

for hire services (Booters, Stressers and DDoSers, 2021). 

iii) Ingress filtering a source validation scheme is difficult to apply for multihomed 

networks. To apply ingress filtering against multihoming networks, the ways are- 

 Applying an appropriate form of Loose RPF.  

 Ensure that each ingress filter at each ISP is complete in terms of information 

about change and interfaces so that legitimate packets are not dropped.  

Even if these changes are made, modifications will be needed in complex networks 

containing too many uplinks and peers. 

c) Partial Prevention defines a prevention layer between the victim and the attacker, 

preventing the victim from attack traffic. 

i) This layer collects traffic statistics from the network and classifies the traffic as 

legitimate or attack based on some parameters. Due to some false positives from 

the classification, legitimate traffic can be deemed attack traffic and blocked. 

ii) In some techniques, the prevention layer itself is vulnerable to DDoS attacks. 

The limitations found in individual techniques are listed in Table 2.2. 

********** End of Chapter ********** 
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CHAPTER 3- Related Theory  

 

3.1 Introduction  

To provide proactive defense against DRDoS attacks, the prevention techniques 

proposed in this research work use some existing paradigms and techniques. To better 

understand all the proposed prevention techniques, this chapter describes all behind-the-scenes 

techniques. As mentioned in Chapter 1, we will implement our strategies using SDN. So, first, 

we give a detailed description of SDN. After this, we describe the base techniques used in our 

prevention approaches, i.e., IBC, random forest classifier, and symmetrical routing. 

But before providing defense against DDoS attacks, we first need to understand DDoS 

attacks. What are the different types of DDoS attacks, and how do they work? So, before 

dwelling on prevention, let us first understand the types of DDoS attacks. 

3.2 Classification of DDoS Attacks 

Different taxonomies for classifying DDoS attacks have been proposed in the literature, 

which helps to understand the problem and its solution space. Among the various ways, one 

way to classify DDoS attacks is the process through which the attack is generated. Accordingly, 

a taxonomy is proposed in section 3.2.1. 

3.2.1 Types of DDoS Attacks  

Different authors in the literature have proposed different classifications/types of DDoS 

attacks. As shown in Table 3.1, the categorizations are as follows-   

 A two-dimensional view of DDoS attacks is discussed by (Bhatia, S., Behal, 2018). 

One is the high-rate flooding attacks generated from the high number of requests 

targeting a victim by various bots. The other is semantic attacks that exploit an 

application or protocol’s implementation or design flows.  
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 (Bawany et al., 2017) characterized prevalent DDoS attacks into three categories: 

reflection-based, protocol exploitation flooding, and reflection and amplification-

based. Reflection-based DDoS attacks include Smurf attacks and Fraggle attacks. 

Protocol exploitation flooding attacks include SYN flooding attacks and UDP 

fragmentation attacks. Finally, reflection and amplification-based DDoS attacks have 

DNS and NTP amplification attacks. 

  Similarly  (Swami et al., 2019) divided DDoS attacks into volumetric attacks and 

application layer attacks. Volumetric attacks were further classified into flooding 

attacks and amplification attacks.  

 The classification done by (Yan et al., 2015) is based on TCP/IP protocol stack, i.e., 

Application, Transport, and Internet layer. 

 (Mirkovic & Reiher, 2004) presented two taxonomies to classify DDoS attacks and 

defenses based on the essential features of attack strategies and design decisions of 

DDoS defense mechanisms. It also states how DDoS attacks take place on the global 

Internet.  

 (Zeebaree et al., 2018) state that DDoS attacks are of two types: application layer and 

network/transport layer attacks. Application layer attacks can be further divided into 

resource-exhausting and bandwidth-consumption attacks.  

 According to US-Cert, layer-3 (Network layer) and layer-4 (Transport Layer) DDoS 

attacks are volumetric attacks, and layer-1 (Application layer) attacks are semantic-

based attacks (DDoS Quick Guide, 2020). 

Table 3.1 shows the above-listed DDoS attack classifications. 
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Table 3.1 : Different classifications of DDoS attacks 

Author Classification 
 (Bhatia, S., Behal, 2018) Flooding attacks  

Semantic attacks 
(Bawany et al., 2017) Reflection attacks 

Protocol exploitation attacks 
Reflection and amplification attacks 

 (Swami et al., 2019) Volumetric attacks (flooding, amplification), 
Application layer attacks 

(Yan et al., 2015) Application layer attacks, 
Transport layer attacks, 
Internet layer attacks 

(Mirkovic & Reiher, 
2004) 

Source address vulnerability 
Exploiting vulnerability 
Attack rates dynamics 
Based on the impact of the attack and the recovery of the victim 

(Zeebaree et al., 2018) Application layer attacks (resource exhausting, bandwidth 
consumption attacks) 
Network/Transport layer attacks 

US-CERT (DDoS Quick 
Guide, 2020) 

Volumetric attacks (Transport layer, Network layer) 
Semantic attacks (Application layer attacks) 

Based on the above classifications, a general taxonomy for types of DDoS attacks is 

depicted in Figure 3.1; mainly, the attacks are categorized as volumetric, semantic, and 

reflection attacks. As shown in Figure 3.2, volumetric attacks are generated from the high 

number of requests targeting a victim, while semantic attacks are the ones that exploit the 

implementation or design flows of an application or protocol.  

For reflection attacks, the attacker spoofs the source IP address of request packets to 

that of the victim, resulting in all the server response packets going to the victim instead of the 

attacker. When these responses are amplified, like DNS amplification attacks, they become 

reflection amplification attacks. This generalized taxonomy can cover all the attack types 

mentioned in Table 3.1. Some attacks can also overlap in multiple categories, e.g., a flooding 

attack is mainly a volumetric attack, but the HTTP flood attack is also a layer 7 attack. 
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Figure 3.1 : Taxonomy of DDoS attacks 

 

Figure 3.2 : Various DDoS attacks 
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3.3 Software Defined Networking (SDN) 

Due to the dawn of technologies such as Cloud Computing, Big Data, Virtualization, 

and the increase in the use of mobile devices, a need for high network capacity and network 

scaling became necessary (Rowshanrad et al., 2014). The network devices became more 

complex to support changing traffic patterns, and it was difficult for network administrators to 

configure each device individually. Because of this reason, the idea of programmable networks 

was introduced, and SDN came into existence. SDN is a promising network paradigm in which 

the forwarding and control planes are decoupled. It is a network architecture that breaks vertical 

integration by separating the data plane, i.e., the network devices that forward traffic, from the 

control plane, i.e., the software logic that controls how traffic will be forwarded through the 

network (Kreutz et al., 2015). This decoupling feature facilitates many innovations by making 

the network programmable and logically centralized.  

SDN infrastructure has two parts:  

a) Software control plane  

 It is the network’s brain  

 It can be run separately from devices  

 It computes the logic of how traffic will be forwarded.  

b) Programmable data plane  

 Typically, programmable hardware  

 Controlled by the control plane.  

The advantages of SDN over conventional-network are- 

 SDNs are easier to coordinate, i.e., the network operator can easily write a program that 

helps coordinate different network devices.  

 Easier to evolve because of network automation.  
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 Apply programming languages as conventional computer science approaches, as the 

controller can give new flow rules based on the type of functionality needed.  

 SDN is logically centralized but not physically; hence there can be more than one 

controller distributed across the globe to balance the load.  

3.3.1 OpenFlow Protocol 

OpenFlow protocol is responsible for interaction/communication between the SDN 

architecture’s control plane and data plane (“Software-Defined Networking: The New Norm 

for Networks,” 2012). There is a non-profit industry known as Open Networking Foundation 

(ONF), which is prominent in normalizing the critical elements of SDN architecture like 

OpenFlow Protocol and also in the development of SDN. In an SDN architecture, OpenFlow 

is the first standard communications interface defined between the forwarding layer and the 

control layer. (“OpenFlow Switch Specification Version 1.5.1 ( Protocol Version 0x06 ),” 

2015) OpenFlow 1.0 got released on December 31, 2009, and formally introduced how control 

and data plane can be separated. It introduced flow tables as forwarding structures in a network 

switch and allowed 12 different fields on which incoming packets can be matched against flow 

entries. OpenFlow 1.1 added new features in the form of multiple flow tables, group tables, 

Multi-Protocol Label Switching (MPLS) tags, Virtual Local Area Network (VLAN) tags, and 

virtual ports. OpenFlow 1.2 added generic and extensible packet matching capability via 

OpenFlow extensible match descriptors. It allowed any header fields used in matching for 

Ethernet, VLAN, MPLS, IPv4, and IPv6 to be used in flow tables. Then came the significant 

milestone, i.e., OpenFlow 1.3. Today, many of the commercially available networks have 

switched to support this version. It extended the features by now allowing per-flow meters, 

cookies, and auxiliary connections, which helps in entries. Experimentor modes permitted 

within OpenFlow allow experimenting with application layer flow definitions. OpenFlow 1.3.1 
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was released on September 06, 2012, and the main change was to add a bitmap of version 

numbers for hello messages during negotiation. OpenFlow 1.3.2 was released on April 25, 

2013. OpenFlow 1.3.3 on September 27, 2013, OpenFlow version 1.3.4 on March 27, 2014, 

and OpenFlow version 1.3.5 was released on March 26, 2015, with many major changes, and 

few of them are defining oxm_len for OpenFlow extensible match IDs in table features to have 

payload length, IPv6 flow label was made maskable, control channel maintenance section was 

added, and some new modification to MPLS. OpenFlow version 1.4.0, released on August 5, 

2013, modified many other parts of protocols with tag, length and value structures, improving 

extensibility. This additional extensibility will also help in easily extending the Experimenter 

extension Application Programming Interface (API). Likewise, with new modifications, 

OpenFlow version 1.4.1 was released on March 26, 2015, and OpenFlow version 1.5.0 on 

December 2014. Then came OpenFlow version 1.5.1 on March 26, 2015, which added a new 

error OFPBAC_BAD_METER for the wrong meter in flow-mod, clarifications for spelling, 

grammar, and other types were given, and a few other changes were also made. On December 

2016, a new version of 1.6 came, but it is only accessible to ONF members. 

3.4 Techniques Used for Prevention 

In this section, the techniques used for Prevention against DDoS attacks are explained. 

These include IBC, RF, and symmetrical routing 

3.4.1 Identity-Based Cryptography (IBC) 

It is a kind of public-key cryptography in which an identity unique to the participating 

entity is used as a public key with a corresponding private key. It eliminates the need for 

separate servers (e.g., PKES servers) to distribute public key certificates. IBC incorporates both 

IBS and Identity-Based Encryption (IBE) (Long & Xiong, 2020).  (Boneh & Franklin, 2001), 

(Cocks, 2001), and (Sakai, R., Ohgishi, K., and Kasahara,) introduced their respective works 

on IBE. The work of (Boneh & Franklin, 2001), and (Sakai, R., Ohgishi, K., and Kasahara) is 
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primarily based on bilinear mapping on elliptic curves, and bilinear Diffie-Hellman is the 

underlying principle for the security of their proposed schemes. Since crafted by Boneh et al. 

(Boneh & Franklin, 2001) and Sakai et al. (Sakai, R., Ohgishi, K., and Kasahara), the pairing-

based IBC is proven to be very efficient with a proven security model. Since its inception, IBC 

has been applied in various areas (Anggorojati & Prasad, 2018),(Salman et al., 2016), (Drias 

et al., 2017), (Suganthi, S.D., Anitha, R., and Thanalakshmi). To further promote its 

application, IEEE has also specified a standard based on pairing-based IBC (“IEEE Standard 

for Identity-Based Cryptographic Techniques Using Pairings,”). In this, a pairing-based 

signature scheme is specified, named BLMQ (Barreto et al., 2005) (named after the surnames 

of its proposers, i.e., Paulo S.L.M. Barreto, Benoit Libert, Noel McCullagh, and Jean-Jacques 

Quisquater). BLMQ is based on the work of Sakai and Kasahara (SAKAI & KASAHARA, 

2003). 

3.4.2 Random Forest 

Random forest, trademarked by Leo Breiman (BREIMAN, 2001) and Adele Cutler, is 

a standard ML Algorithm (Yiu, 2019). Random forest algorithm can be used as both a classifier 

and a regressor. This technique consists of multiple decision trees to output a single result of 

prediction. To understand random forests, we first need to understand decision trees. 

3.4.2.1 Decision Trees 

The basis of the random forest model is decision trees. As the name suggests, decision 

tree is a tree in which a node splits into different nodes based on a condition. For example, the 

condition can be that the Sun rises in the east, so that this node will be split into two depending 

on the answer yes or no. Following this principle, a prediction is made when we reach the final 

leaf node. 



54 
 
 

3.4.2.2 Ensemble Methods 

A number of algorithms, such as decision trees, are combinedly used in ensemble 

learning techniques, and their predictions are combined to determine the most common 

outcome (Random Forest). The ensemble technique bagging (Breiman, 1996) is used in 

random forest. Bagging is also known as bootstrap aggregation. This method selects a random 

sample of data from a training set with substitution, which allows for multiple selections of the 

individual data points. Following the generation of several data samples, these models are 

individually trained to result in more accurate predictions. 

3.4.2.3 The Random Forest Algorithm 

The random forest algorithm is created using a group of decision trees.  Ensemble 

learning is a popular technique that improves the accuracy of predictive models by combining 

multiple individual models. One such ensemble method is the decision tree ensemble, which 

comprises several decision trees, each trained on a bootstrap sample of the data with 

replacement. 

To further enhance the diversity and reduce correlation across decision trees, feature 

bagging is applied, introducing another randomization instance. 

To evaluate the performance of the decision tree ensemble, an Out Of Bag (OOB) 

sample, consisting of one-third of the training data not used in building each tree, is used as a 

test set. For classification tasks, the predicted class is determined by taking the majority vote 

on the individual trees’ outputs, while for regression tasks, the individual trees’ outputs are 

averaged. 

Finally, the OOB sample is used for cross-validation to estimate the accuracy of the 

model and to finalize the prediction. This approach helps to ensure that the model generalizes 

well to unseen data. 
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3.4.3 Symmetrical Routing 

In computer networking, symmetric routing is a configuration in which traffic between 

two hosts follows the same path in both directions. It means that the network traffic from Host 

A to Host B takes the same path as that from Host B to Host A. 

Symmetric routing is important because it ensures that the network traffic flows 

efficiently and with the same level of security in both directions. If the routing is asymmetric, 

i.e., traffic follows different paths in each direction, it can cause issues with performance and 

security. Additionally, asymmetric routing can make it difficult to apply security policies 

consistently to both directions of traffic. In summary, symmetric routing is essential for 

ensuring efficient and secure network traffic flow between hosts.  

********** End of Chapter ********** 
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CHAPTER 4- Prevention of DRDoS Amplification Attacks by Penalizing the Attackers 

in a Software-Defined Networking Environment 

 

4.1 Introduction 

In this chapter, we present four mechanisms to defend against DRDoS attacks. The 

proposed techniques are based on the philosophy of attack prevention, which conforms to the 

definition of True Prevention. To the best of our knowledge, no technique can completely 

prevent any attack traffic from entering the Internet’s core network in the first place. It would 

require controlling the attacker’s network infrastructure itself. Instead, we argue that the 

responsibility of prevention should lie within the underlying network infrastructure, i.e., the 

underlying network functionality should be amended and should be equipped with enough rules 

to prevent such attacks. Presently, Internet architecture adheres to the following design 

principles: 

a) Destination IP-based routing: Routing algorithms populate the router’s forwarding 

tables, which forward each network packet. This forwarding decision is solely based on 

the destination IP address.  

b) No source-IP validation: The primary design goal of the Internet was reliability, 

distributed management, cost-effectiveness, and support for multiple varieties of 

networks and different types of communication services. Security was not the primary 

design principle. Accordingly, source IP validation is not done by the network. In the 

client-server model, the source IP and destination IP fields are swapped in the 

corresponding response packet when the packet reaches the destination. This packet is 

again routed using the forwarding tables of different routers. 
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Considering the above network properties, the True Prevention algorithm should conform to 

the following: 

a) Attack traffic can enter the network but should be mitigated away automatically within 

some constant time. This time can vary and depends upon the network bandwidth of 

the attacker. 

b) Even in the presence of attack traffic, the victim’s network should always be safe. In 

other words, such attack traffic should never reach the victim.  

One of the promising philosophies of prevention is to direct all the reflected traffic by 

the server toward the attacker’s network itself or to the individual systems that were part of the 

attack in case of DDoS. It would require no change in underlying forwarding techniques (i.e., 

from client to server or the request packet). But it requires modifying reverse forwarding rules 

(i.e., from server to client or the response packet.  The underlying network should forward the 

packet to where it originated, even if the source IP address is spoofed. We achieve this reverse 

forwarding by proposing four techniques- IP-Switching, Port-Mapping, PortMergeIP, and 

SymSDN. We categorize these approaches into two categories based on the underlying 

modification.  

a) The basis of the first category is to modify the switch’s flow table, not the packet header. 

SymSDN lies in this category. SymSDN’s mechanism is based on symmetric routing. 

In symmetric routing, the response packet follows the same path (in the reverse 

direction) as the corresponding request packet, irrespective of the source IP address of 

the request packet. It will prevent DRDoS attacks, even if IP spoofing is done, as the 

response packet will go to the attacker rather than the victim, completely bypassing the 

IP spoofing.  

b) The basis of the second category is to modify the packet header. We ensure that the 

attacker’s identity or the request packet’s path is somehow embedded within the request 
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packet itself so that the response packet reaches the source of the attack using that 

information. IP-Switching, Port-Mapping, and PortMergeIP lie in this category. 

i. Port-Mapping: In this proposed method, the request packet's path is stored in the 

options and padding field of the IP header of the packet so that the response packet 

can follow the same path. 

ii. IP-Switching: In this method, we propose to change the source IP address in the 

request packet with another legitimate one within the network. 

iii. PortMergeIP: Above two techniques have a few limitations (as explained in section 

4.4.3). PortMergeIP focuses on the removal of these limitations by merging the two 

techniques. 

All the methods are proven to prevent the victim from the attacks altogether. These 

techniques also cause the attack to divert back to the attacker, saving the client from the attack 

and hampering the attacker’s ability to launch further attacks. For the techniques presented in 

this paper, we conform to the following definition of prevention (called True Prevention) as 

provided in (Saharan & Gupta, 2021): Let, 

o B be the network bandwidth of the network in which an attacker, or a bot in control of 

an attacker, resides. 

o V be the victim of a DDoS attack. 

o IV be the IP address of victim V, and IA be the IP address of attacker A 

True Prevention is defined as a set of techniques embedded into the network routers 

which prevents the attack traffic from reaching V, even though the destination IP address of 

network packets belonging to the DDoS attack is IV, and automatically mitigates the attack for 

some constant time T where T is directly proportional to B. 

Because of the flexibility and programmability aspects provided by SDN in terms of 

controllers, it is used to show and validate the required network intelligence to be induced in 
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the underlying network infrastructure to prevent DRDoS attacks. Also, DNS based DRDoS 

attack is used to show the effectiveness of the proposed techniques as, attackers still choose 

DNS architecture to launch DNS amplification attacks, e.g., the attack on Google (Cimpanu, 

2020b) and the Spamhaus attack (Prince, 2013b). Such traffic can easily be recognized using 

the source port number in the IP packet. Henceforth, the discussion is based only on the 

prevention of DNS amplification attacks. Of course, the proposed prevention algorithms can 

be applied to other types of DRDoS attacks and traditional network infrastructure. 

4.2 Related Work 

This section primarily shows the DDoS defense mechanisms close to the definition of 

True Prevention. (Duan et al., 2018) proposed a defense technique against infrastructure DDoS 

attacks on specific flows. This technique works for critical links to a server by a proactive 

routing mutation. The problem with this approach is that the victim can still be affected when 

the attack traffic is switched to non-critical links. (Keromytis et al., 2004) proposed secure 

overlay services as a prevention technique. Here, authentication of the packets is done at secure 

overlay points known as SOAPs, which forward the packets through overlay nodes to beacon 

nodes. The primary issue with this approach is additional infrastructure requirements, thus 

making it difficult to scale. (Wu et al., 2013) proposed SAVI, and it complements ingress 

filtering by adding IP address validity to an individual source. SAVI is defined as network-

based so that there is no dependency on a host. SAVI instances may face reliability issues due 

to a loss of bindings in SAVI devices through a restart of SAVI devices or binding information 

for a new link not reaching the SAVI device. A new IPv6 address generation algorithm was 

proposed by (Ying Liu et al., 2015). Firstly, SAVA (Wu et al., 2008) is used to authenticate 

source addresses. After this, an address is generated using NID (network identity) and time, 

and this address is assigned to the host. This newly generated IP address will be used for 
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communication. The absence of a built-in security module in the ONOS SDN Controller leaves 

it vulnerable to DDoS attacks. To address this issue, (Ohri et al.,2024) leverages the widely 

adopted Suricata (IPS). The proposed structured approach comprises of reconnaissance, 

detection, and mitigation phases. During reconnaissance, all incoming network packets 

undergo thorough analysis. In the subsequent detection phase, the system identifies potentially 

malicious IP packets. Finally, in the mitigation phase, any identified malicious packets are 

promptly discarded. (S. Kim et al., 2017)have proposed a framework using SDN. A DNS 

response is only accepted on the client-side when there is a request; otherwise, the packet is 

dropped. The DNS request information is stored in the switch or the memory of the SDN 

controller. The problem with this approach is that the attack traffic still reaches the victim’s 

network. (Sahri & Okamura, 2016) have proposed an authentication approach to prevent DNS 

amplification attacks in SDN as an underlying architecture. In their authentication approach, 

the DNS server, before sending the response, sends a query back to the client, asking whether 

the query was sent or not, and if the client responds, only then is the response provided to the 

client. Because of this, a delay of one extra Round-Trip Time (RTT) is introduced in the 

response packet. The authentication approach is the algorithm we use to compare our 

techniques by focusing mainly on the additional RTT needed to get the final DNS response. 

4.3 Modifying Switch Flow Table- SymSDN (Symmetric SDN) 

In the existing Internet architecture, whenever a router receives a packet, it consults its 

routing table and forwards the packet. A routing table can be created statically or dynamically 

using a routing algorithm. In SDN, this process is slightly modified. The control plane of all 

the routers is placed in a single machine called a controller that controls the data plane of all 

the routers in the network (Kreutz et al., 2015), (ONF). The router has a local table called the 
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flow table, which the controller usually populates. On encountering a packet, the SDN switch 

consults its flow table. If there is a match, the router forwards the packet accordingly. 

Figure 4.1 : The architecture of SymSDN 

The controller analyzes the packet and decides to forward or drop it based on certain 

conditions. It also pushes appropriate flow rules in the flow table of the router to match future 
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packets of the same. We push reverse flow rules along with forward flow rules in the SDN 

switch to implement symmetric routing for DNS packets. (Le Pennec et al., 2014) have 

proposed a way to implement symmetrical routing in the existing internet architecture. We 

extend their work to provide defense against DRDoS attacks, by modifying this architecture in 

SDN. 

Figures 4.1 and 4.2 illustrates that two flow tables are used to implement the proposed 

methodology, i.e., SymSDN. Flow table 0 is responsible for legacy routing, and flow table 1 

for symmetric routing. 

Figure 4.2 : The internal functioning of the SDN switch 

As shown in Figure 4.2, flow table 0 is pipelined to table 1 for DNS packets. When the 

packet first arrives at the SDN switch, it is forwarded to flow table 0 and checked if it is a DNS 

packet or not (Figure 4.1). If it is a DNS packet, the action is GOTO table 1; otherwise, forward 

it according to the flow rules. If a flow rule for that packet does not exist in table 1, it is 

forwarded to the controller, which will push both the forward flow rules and reverse flow rules.  

The controller pushes a flow rule (matching a DNS request from the same host to the 

same server) in the forward direction (i.e., from host to server) and another reverse flow rule 

in the table (matching the corresponding DNS response sent by the same server to the same 
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host) in the reverse direction (the input interface becomes the output interface). It forces the 

DNS response packet to take the same path as the DNS request but in the reverse direction, 

ensuring that the DNS responses go to the same physical machine that placed the corresponding 

DNS request. This process completely bypasses the IP spoofing and defends against the DNS 

reflection attack. 

Figure 4.3 : Working of the SDN controller 

As shown in Figure 4.3, when the controller encounters a DNS request packet arriving 

on R1 that originated from A and is bound for B, it pushes a flow rule on R1 to send all DNS 

request packets originating from A and bound for B to B (through the interface eth2). In our 

mechanism, however, the controller also pushes a reverse flow rule on R1 to send all DNS 

response packets of this request packet(A->B) in the reverse direction (B->A), i.e., from 

interface eth1.  

Generally, a flow is defined as a sequence of packets exchanged between a specific 

source and destination. We discovered that if we use the main parameters defined for a flow 

rule in SDN, especially the source and destination port numbers, overflow can occur in the 

flow tables due to DRDoS attacks. At first, we considered five parameters - source IP address, 

destination IP address, source port, destination port, and protocol for rules entry. However, 

considering the source ports to define flow rules has a risk. An attacker commencing a DRDoS 

attack can instruct all its bots to use a different source port for every packet. It leads to an 
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exponential increase in the number of flow rules that need to be pushed to the SDN switch. 

Eventually, this leads to the flow tables getting over-filled. Hence, this type of attack is called 

a “Flow Table Overflow Attack.” To make our mechanism resistant to these attacks, we opted 

not to use the parameter source port for defining the flow rules. Our extensive experimentation 

proved that this is highly effective in reducing the number of flow rules being pushed to the 

SDN switch without affecting the mechanism's efficiency. 

Another line of defense we have adopted against flow table overflow attacks: is "Flow 

Table Pipelining.” We keep the primary flow table for general-purpose use and create a new 

secondary flow table for handling DNS flow rules. It ensures that even if a large number of 

DNS flow rules are getting pushed to the SDN switch, the switch’s primary flow table is 

unaffected, and only the secondary flow table will overflow, even in the worst-case scenarios. 

4.3.1 Experimental Setup and Result Analysis  

In this section the experimental setup done to validate SymSDN is explained. To 

validate SymSDN various parameters such as throughput, packet loss are calculated.  

4.3.1.1 Experimental Setup 

For experimental purpose, we created a virtual network through mininet (Mininet, 

2022), whose topology is represented by Figure 4.4.  

Figure 4.4 : Experimental topology: SymSDN 
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It consists of 10 hosts and seven routers (SDN switches). Out of the ten hosts, H1 represents 

the attacker, H2 represents the victim, HS1 and HS2 represent HTTP servers, and DS1 through 

DS6 represent DNS servers. To simulate a DDoS attack with many attacker hosts, a large 

number of spoofed requests have been generated by host h1 and amplified response by DNS 

servers. This topology simulates 4 Local Area Networks (LANs): the attacker’s LAN, the 

victim’s LAN, the DNS servers’ LAN, and HTTP servers’ LAN. All these LANs are connected 

via intermediate core routers. The DRDoS attack is generated using scapy (Introduction: About 

Scapy, 2023). 

4.3.1.2 Results and Analysis 

The topology mentioned in Figure 4.4 is connected to the Ryu controller (RYU A, 2013), 

and based on this setup, the following three experiments are performed to validate our 

prevention approach. 

Figure 4.5 : Throughput w.r.t. time (without SymSDN) 

a) Throughput is calculated on the victim’s and attacker’s sides from HTTP servers during 

an attack of 1 Gbps (by DNS servers) on a link bandwidth of 1 Gbps. Wget is used for 

the calculation of throughput. Figure 4.5 shows throughput for the time at the attacker’s 
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and victim’s sides when SymSDN is not in place, and Figure 4.6, shows when SymSDN 

is in place. Twenty iterations are done for throughput calculation, so #1-A represents 

throughput at the attacker in the first iteration, #1-V represents throughput at the victim 

in the first iteration, and so on. The graph’s dots represent individual iterations, and the 

line represents the average at attacker’s (A-Avg) and victim’s n/w (V-Avg). It is clear 

from the graphs that when SymSDN is not in place, throughput drops at the victim as 

soon as the attack starts at the 15th second, and when SymSDN is in pla ce, throughput 

drops at the attacker, not at the victim. It is because, with SymSDN, the response goes 

to the originator of the attack (the attacker), irrespective of the spoofed IP address. 

Hence proving that the proposed approach prevents the attack. The respective data 

values are also shown in Appendix A. 

Figure 4.6 : Throughput w.r.t. time (with SymSDN routing) 

b) Packet loss due to a DRDoS attack on the victim side without SymSDN (Figure 4.7) 

and with SymSDN(Figure 4.8) in place is calculated. The link bandwidths of H1-R1 

and H2-R2 are set at 500 Mbps with a delay of 1 ms. Ping is started between H1 & HS1 

and H2 & HS2 to calculate Packet loss. As soon as the attack starts, packet loss occurs 

at the victim, while no packet loss occurs at the attacker (Figure 4.7). But when our 
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proposed app roach is in place, the victim remains unaffected, and packet loss occurs 

at the attacker (Figure 4.8). This experiment is also performed for twenty iterations. 

The respective data values are also shown in Appendix A 

 

Figure 4.7 : Packet loss % w.r.t. time (without SymSDN)  

Figure 4.8 : Packet loss % w.r.t. time (with SymSDN routing) 
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c) We measure the delay caused by DNS request-response due to the SymSDN prevention 

approach. We calculate this delay and compare it with the authentication approach 

(Sahri & Okamura, 2016) and the baseline. Figure 4.9 shows this delay. Baseline delay 

indicates the average delay without any prevention algorithm, which is nearly 0.09 

seconds. SymSDN also shows a similar delay of .093 seconds. The authentication 

algorithm shows the highest delay of .15 seconds as it needs one additional RTT before 

the server receives the DNS response.  

Figure 4.9 : DNS request-response delay 

d) As explained in section 4.3, “Flow Table Overflow Attack” causes an overflow of flow 

entries in the flow tables at the time of the attack. The prevention is to optimize flow 

entries by opting out source port numbers. Figure 4.10 showcases this scenario. The 

attacker (H1) placed many DNS requests with dynamic source ports. The number of 

flow rules existing inside the flow table is periodically measured at 10-second intervals. 

The count of flow rules being pushed by the controller is also recorded. The process 

was repeated three times by setting the flow table capacity as 20000, 30000, and 40000 

entries, respectively. Figure 4.10 shows the number of flow entries w.r.t time. When 

the source port is considered to create the flow rule, the number of flow rules being 
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pushed is observed to be proportional to the number of DNS requests. The actual 

number of flow rules in the flow table increased along with the number of flow rules 

pushed by the controller but became constant after reaching the predefined limit, 

indicating flow-table overflow. When the source port is not considered to create the 

flow rules, the number of flow entries remain very low (proportional to the number of 

DNS servers). Hence, Figure 4.10 proves Prevention against the Flow Table Overflow 

Attack. 

Figure 4.10 : Number of flow-rules w.r.t. time 

4.4 Packet Modification to Enforce Reverse Routing 

As outlined in section 4.1 above, for True Prevention of DRDoS attacks, the underlying 

network functionality should be amended. We suggest implementing the change for client-

server communication, historically the main culprit for DRDoS attacks. For example, attackers 

still choose DNS architecture to launch DNS amplification attacks, e.g., the attack on Google 

(Cimpanu, 2020b) and the Spamhaus attack (Prince, 2013b). Such traffic can easily be 

recognized using the source port number in the IP packet. Henceforth, the discussion is based 

only on the prevention of DNS amplification attacks. Of course, the proposed techniques can 
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be extended further for any specific type of amplification attack which exploits the client-server 

model to launch the attack. 

Figure 4.11 : Generalized network topology 

Any access network (whether an individual or an organization) gets connected to the 

Internet using the Internet Service Provider (ISP) services. Consider Figure 4.11, which shows 

how an organization’s network gets connected to the Internet. It shows the access network of 

four organizations (Org1, Org2, Org3, and Org4). Access network 1 belongs to the victim’s 

organization, and the attacker controls access networks 2, 3, and 4. In access network-1, there 

are three hosts: one is the victim, i.e., V1, and two end-hosts, i.e., h2 and h3. A1, A2, and A3 

are attackers in access networks-2,3, and 4, respectively. We have used the terms organization 

and access network interchangeably in this work. For launching the attack, the attacker will 
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spoof the source IP address field of the packets to that of a host in the victim’s network. Each 

access network is connected to the ISP’s first-hop router through its gateway router. These 

first-hop routers will be responsible for switching IP addresses in the IP-Switching algorithm 

and PortMergeIP algorithm. DNS servers to generate a DRDoS attack and HTTP servers to 

generate legitimate traffic and calculate throughput are also connected to the network. We have 

used three DNS servers to launch the attack.  

The algorithms 4.1-4.3, respectively show the proposed algorithms for IP-Switching, 

Port-Mapping, and PortMergeIP.  The notations used by these algorithms are defined in table 

4.1. 

Table 4.1 : Notations used in the packet modification algorithms 

Notation Definition 
n  number of routers in-between source and destination 
ri ith router (0 <i <= n) 
M total number of organizations 
P switches or routers between the host machine and ISP’s first hop router 
T number of interfaces a router has 
rj

q jth organization’s qth switch or router between host and ISP’s first-hop  router 
(0 <j≤ m, 0 < q ≤ p) 

rj
h ISP’s jth organization’s hth first hop router ( 0 <h≤ m) 

rj
hk  ISP’s jth organization’s hth first hop router’s kth incoming interface(0 <k ≤ t) 

rj
qk  jth organization’s qth router’s kth incoming interface  

rj
ql qth router’s lth outgoing interface ( 0< l≤ t) 

ipv4-src, 
ipv4-dst 

source IP address,  
destination IP address 

src-port, 
dst-port, 

source protocol number, destination protocol number 

Option  options field of the packet  
rtr-id  ID of router 
in-port The interface of router where the packet arrives 
out-port The outgoing interface 
SRC-IP-
ADDR 

Source IP address of the downstream network known by ISP 
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4.4.1 IP-Switching 

In IP-Switching, the source IP address of every DNS request packet (i.e., an IP packet 

with destination port number 53) is switched after it leaves the organization’s network with the 

organization’s downstream address, as shown in algorithm 4.1. ISPs’ first-hop routers do this 

switching. For example, when the packet leaves access network 1, the ISP’s first-hop router 

for access network 1 will do this switching. We assumed that the ISP’s network should be 

SDN-enabled for implementation and testing purposes. Otherwise, a change in the router’s 

functionality would be required. The DNS response traffic would be directed toward the 

attacker’s organization even if the source IP is spoofed. It results in congestion of the traffic in 

the attacker’s organization and will slow down and eventually stop the attack for some time 

because routers would not be able to handle such a massive surge simultaneously. It would 

result in the True Prevention of the attack with negligible overhead regarding memory usage 

and computation. Of course, the time to prevent depends upon the amplification factor, 

resultant DNS response traffic, and the bandwidth of an attacker. Formally, the algorithm is 

explained in the IP switching algorithm to prevent DNS-based amplification attacks.  

Algorithm 4.1: IP-Switching 

IP-SWITCHING Algorithm- Rule set to be added in switches by controller 

Assumption: There is no intermediate router between the organization’s gateway 
router and ISP’s first hop router. 

INPUT- Packet coming at ri  

for i= 1 to n do  

  while rtr.id = rj
h  and in-port = rj

hk do 

if packet is udp and dst-port==53 then 

              ipv4-src = SRC-IP-ADDR 
              Forward the packet to out-port 
     end while 
    Forward the packet to out-port 
   end for 
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4.4.2 Port-Mapping 

In Port-Mapping, the forward path of the request packet is stored in the packet itself to 

enable the corresponding response packet to use the same path to return to the source. 

According to CAIDA’s skitter Map, the average-path length of any packet lies between 10 to 

30 hops (CAIDA’s Skitter MAP). This means storing a path of about 30 hops within the packet 

is required. Also, the fields that can be used to store path information in an IP packet are 

(Ehrenkranz & Li, 2009): Identification field (16 bits), Time Of Service (TOS) field (8 bits), 

Flags field (3 bits), Option and padding field. We propose the options and padding field 

(hereafter called options field) in the IP packet as it is typically not used in a DNS query and 

can be up to 40 bytes long. The Port-Mapping technique assumes that (a) an intermediate router 

has 8 to 48 interfaces or physical ports; thus, a router would require 3 to 6 bits to uniquely 

identify such ports (b) The underlying network is SDN-enabled. 

As shown in algorithm 4.2, when a DNS request packet passes through a router, it 

forwards the packet to the SDN controller. The SDN controller inscribes the packet with the 

input interface (the in-port of the router) in the options field. Later, it pushes flow entry in the 

SDN switch to forward the packet through the out-port (outgoing interface) as per IP 

forwarding rules. When a DNS Response packet arrives at SDN switch, it again is forwarded 

to the controller. The controller removes the corresponding in-port number engraved earlier 

and routes the packet to that port. Rather, if the packet is not the DNS packet (i.e., packet.dest-

port != 53 or packet.source-port != 53), it is treated as per normal IP forwarding rules. The 

options field is considered stack memory. So for all UDP packets with a destination port of 53, 

the incoming interface of the router will be pushed on the options field. Rather, if the source 

port is 53, the top element will pop out, and the packet will be forwarded to that interface. The 

steps to be taken by an SDN switch to implement Port-Mapping are explained in the Port-

Mapping algorithm. 
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Algorithm 4.2 : Port-Mapping  

4.4.3 PortMergeIP 

 This technique combines the strength of the Port-Mapping and IP-Switching 

techniques. The first-hop router of the ISP does IP switching. The information about the path 

from an end host to the organization’s gateway router is stored in the options field of the IP 

packet in terms of physical port numbers, as proposed in Port-Mapping. Formally, the 

technique is explained in the PortMergeIP algorithm 4.3. By doing this, the packet does not 

require to go to the controller every time it hops; thus, the delay is reduced. The packet also 

reaches the attacker’s network without getting lost. 

Port-Mapping Algorithm (Switch-Side Processing) 
INPUT- Packet coming at ri 
for i= 1 to n do 

      if packet is udp and dst-port==53 then 
            Send the packet to controller 

          else if packet is udp and src-port==53 then 
            Send the packet to controller 
      else Forward the packet to out-port 
      end if 

end for 
Port-Mapping Algorithm (Controller-Side Processing) 
for each packet-in from switch do                

if packet is udp and dst-port==53 then 
               if option==none then 
                        new-option=in-port 
                else 
                        new-option=new-option + in-port 
               end if 
         // Create a packet with new-option field 
            packet=create-new-packet (new-option) 
            Forward the packet to out-port 
    else if packet is udp and src-port==53 then 
          // remove last field from option and put it in outgoing port 
            out-port= option [-1] 
         // create new option by removing last field 
            new-option = option -1 
            packet =create-new-packet (new-option) 
            Forward the packet to new out-port 
      end if  
end for 



75 
 
 

Algorithm 4.3 : PortMergeIP 

  

The advantages of the IP-Switching technique are (a) It prevents DRDoS attacks and 

completely saves the victim from attack traffic, as proven in section 4.4.4.2. As proven in 

section 4.4.4.2(c), it implements True Prevention at a little extra cost concerning the time 

required to resolve the legitimate query; the only change required in the underlying network 

infrastructure is in the functionality of the first-hop router of the ISP. Therefore, this router can 

be SDN-enabled, and the rest of the infrastructure remains the same. On the other hand, there 

is a limitation to this technique if the organization’s gateway router is not Network Address 

Translation (NAT) enabled; reverse-path traffic will undoubtedly reach the correct network but 

might not reach the correct source/attacker.  

The Port-Mapping technique has the advantage of correctly implementing True 

Prevention, and no attack traffic reaches the victim network. On the other hand, it also has a 

few limitations. These are (a) the existing free space in the IP packet is a bottleneck, (b) since 

PortMergeIP Algorithm (Switch-Side Processing) 
INPUT- Packet coming at ri  
for i= 1 to n do  
     while rtr.id =  rj

q
 and in-port = rj

qk or rtr.id = rj
q and in-port= rj

ql
 do 

          if packet is UDP and src-port==53 then 
             Send the packet to Controller 
          else if packet is UDP and dst-port==53 then 
            Send the packet to Controller 
          else 

      Forward the packet to out-port 
          end if 
     end while 
  while rtr.id = rj

h  and in-port = rj
hk do 

              ipv4-src = SRC-IP-ADDR 
              Forward the packet to out-port 
     end while 
    Forward the packet to out-port 
   end for 
Port-Mapping Algorithm (Controller-Side Processing) 
   Same as Port-Mapping 
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the processing time at each intermediate router increases, it is comparatively a bit slower than 

its counterpart, (c) it requires a change in the functionality of each router along the path, and 

(d) if some link along the request – response path becomes non-functional while forwarding 

the response packet, the corresponding packet is lost. On the other hand, the PortMergeIP 

technique also correctly implements True Prevention; no attack traffic reaches the victim, 

reduces delay, correctly routes the reverse-path traffic to the attacker’s machine or legitimate 

user, overcomes the bottleneck in terms of free memory requirement for storing physical port 

numbers, and requires minimal change in ISP network. 

4.4.4 Results and Discussion 

In this section the experimental setup done to validate IP-Switching, Port-Mapping, and 

PortMergeIP is explained. To validate these algorithms various parameters such as throughput, 

packet loss, etc are calculated. 

4.4.4.1 Experimental Setup 

As shown in Fig. 4.11, a topology was created in an SDN environment using mininet 

to implement and validate the proposed algorithms. It shows four access networks (access n/w-

1 to access n/w-4). Access n/w-1 belongs to the victim’s organization, and access n/w’s 2, 3, 

and 4 are in control of an attacker. Any number of hosts in these access networks can launch 

the DDoS attack; we have used A1, A2, and A3 to launch the attack by spoofing the source IP 

address field of the packets to that of a host in the victim’s network. Each access network is 

connected to the ISP’s first-hop router through its gateway router. The ISPs’ first-hop routers 

are assumed to know the downstream IP addresses. These first-hop routers are responsible for 

switching the IP addresses in the PortMergeIP and IP switching algorithms. To implement the 

proposed IP-Switching algorithm in mininet, we connect a node to the organization’s gateway 

router, and the ISPs know the IP address of that node. It works as a NAT router and is 

responsible for forwarding the packet to the respective host machine. Besides this, DNS servers 
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to generate a DRDoS attack and HTTP servers to generate traffic for analysis are also 

connected to the network. We used Ryu as the SDN controller and OpenFlow as a protocol for 

communication between the SDN controller and switch. 

DRDoS attack traffic of approx. 1Gbps and 1 Mbps are generated using scapy. The 

attackers combinedly generate this attack. After attack generation, both algorithms are tested 

on various parameters described in more detail in section 4.4.4.2.  

4.4.4.2 Result and analysis 

The three prevention algorithms, IP-Switching, Port-Mapping, and PortMergeIP, are 

tested on parameters like throughput and packet loss to check their validity against DDoS 

attacks. To avoid redundancy, we have shown the parameters graphs for only attacker A1, as 

the behavior of these parameters is similar for A1, A2, and A3. 

A. Throughput calculation for the victim’s and the attacker’s network 

Throughput is calculated on the victim’s and attacker’s sides from HTTP servers during 

an attack of 1 Gbps for no prevention, IP-Switching, and PortMergeIP. The bandwidth for 

throughput calculation at the victim’s side and attacker’s, when there is no prevention in place, 

is kept at 1 Gbps as an attack of approx. 1Gbps reaches the victim. For IP-Switching and 

PortMergeIP, the bandwidth is 400Mbps, as each attacker generates an attack of 400 Mbps 

(combinedly forming an attack of approx. 1Gbps towards the victim). For the Port-Mapping 

algorithm, as we are using only one controller, and all the packets go to a controller, the 

attackers generated an attack of approx. 1Mbps (each attacker generating an attack of approx. 

450 kbps); hence the bandwidth is kept at 500 kbps. Wget is used for the calculation of 

throughput.  

Figure 4.12 shows throughput for the time at the attacker’s and victim’s sides when no 

Prevention approach is in place, and Figures 4.13- 4.15 show when IP-Switching, PortMergeIP, 

and PortMapping are in place, respectively. 
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Figure 4.12 : Throughput without any prevention technique 

Figure 4.13 : Throughput (with IP-Switching) 

Twenty iterations are done for throughput calculation, so #1-A represents throughput at 

the attacker in the first iteration, #1-V represents throughput at the victim in the first iteration, 

and so on. The graph’s dots represent individual iterations, and the line represents the average.  
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Figure 4.14 : Throughput (with PortMergeIP) 

Figure 4.15 : Throughput (with PortMapping) 

It is clear from the charts that when there is no prevention approach in place, throughput 

drops at the victim as soon as the attack starts at the 15th second, and when prevention 

approaches are in place, throughput drops at the attacker, not at the victim. It is because, with 
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prevention approaches, the response goes to the originator of the attack (the attacker), 

irrespective of the spoofed IP address; hence proving that the proposed approach prevents the 

attack. The respective data values are also shown in Appendix B. 

B. Packet loss due to attack 

We calculate the loss of packets due to an attack in the network in both cases when the 

prevention algorithms are in place (Figures 4.17-4.19) and when it is not (Figure 4.16). The 

intensities of attacks are kept the same as that for throughput calculation. The link bandwidth 

of the attacker’s and victim’s network is 500 Mbps for no prevention. For IP-Switching and 

PortMergeIP, the link bandwidth is 100 Mbps; for Port-Mapping, it is kept at 300 kbps. Ping 

is started between attacker A1 and the first HTTP server and between V1 and the second HTTP 

server to calculate packet loss.  

Figure 4.16 : Packet loss (without any prevention technique in place) 
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Figure 4.17 : Packet loss w.r.t IP-Switching 

As soon as the attack begins, packet loss occurs at the victim, while no packet loss 

occurs at the attacker (Figure 4.16). But when our proposed approaches are in place, the victim 

remains unaffected, and packet loss occurs at the attacker (Figures 4.17-4.19). This experiment 

is also performed for twenty iterations.  

Figure 4.18 : Packet loss w.r.t PortMergeIP 
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Figure 4.19 : Packet loss w.r.t PortMapping 

C. The delay in DNS request response due to prevention algorithms- 

The proposed DDoS prevention algorithms introduce an extra delay in the DNS 

request-response packets. Therefore, we need to measure this delay. We calculate it for the 

proposed algorithms and the authentication approach. Figure 4.20 shows the delay between 

DNS request-response packets when the prevention algorithms are implemented. Baseline 

delay indicates the average delay without any prevention algorithm, which is nearly 0.09 

seconds. After this, PortMergeIP has slightly more delay as the packet goes to the controller 

after IP is switched. 

Furthermore, the IP switching technique has more delay than PortMergeIP as after 

IP-Switching, we have implemented the NAT router mechanism to route the packet to the 

actual host by connecting the gateway router to a host mimicking NAT router functionality. 

It is the limitation of our simulation environment. The Port-Mapping technique delays 

slightly more as all packets go to the controller at each router before they are forwarded. The 

highest delay is in the authentication, as it needs one additional RTT before the server 

receives the DNS response.  
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Figure 4.20 : DNS request-response delay due to prevention algorithms 

4.4.4.3 Attack mitigation 

The throughput and packet loss results show that the targeted victim is always safe as 

no spoofed traffic reaches the victim. All the attack traffic is sent to the attacker. This leads to 

constraining the attacker's available bandwidth and temporarily mitigating the attack. This can 

be shown through Bandwidth Delay Product (BDP). 

The congestion in the attacker’s network is calculated to prove that the attack will be 

mitigated for some time using our algorithms. In the results section, we have shown how our 

algorithms penalize the attacker’s network. Now, using the BDP, we show how the congestion 

in the attacker’s network changes. As the name suggests, the BDP is the product of bandwidth 

and delay in the network (Bandwidth-Delay Product). It tells about the data, which is yet to be 

acknowledged, present in the link at any given time. It is the in-flight data often referred to as 

the window size. To put it formally, if c is the data rate of a link (“bandwidth”) and RTT is the 

round-trip time delay, then the BDP defines the window W given by eq (4.1). 

W= c × RTT ……………………….. (4.1) 

So, through this, we can find the congestion in the network. With no prevention 

algorithm in place all the attack traffic goes toward the victim’s network. The BDP of victim’s 

network increases gradually until the allowed TCP window size of all the links in between is 
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reached, as shown in Figure 4.21. As the attacker constantly sends request packets to the DNS 

server, which in turn sends responses to the victim, the victim’s network is in continuous 

congestion, and out of 1000 packets sent, only 276 are received.  

Figure 4.21 : Congestion in victim’s network when there is no prevention algorithm 

Figure 4.22 : Congestion in attacker’s network when prevention algorithm is in place. 

A change in the behavior of the BDP line on the attacker’s side can be seen in Figure 

4.22. As shown in Figure 4.22, the BDP in the network does not increase gradually till it 

becomes constant; instead, it oscillates. When the attacker’s network is congested due to all the 

DNS responses coming to it, the attacker cannot send any more request packets; as a result, 

there is no response from the DNS server, and for that duration, the attacker’s network becomes 

congestion free. Now the attacker can send packets again, leading to another congestion, and 
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repeats till the attacker stops sending the packets. The attack is mitigated for the amount of 

time the attacker cannot send packets. Hence as per the definition provided of True Prevention, 

the attack is mitigated automatically for some time. Based on these readings, if the ISP wants 

to, it can block the attacker, thus mitigating the attack. This time depends majorly upon the 

bandwidth of an attacker. Moreover, through the proposed techniques, the attacker will always 

attack itself; hence the techniques will penalize the attacker. 

4.5 Summary of the Chapter 

In this chapter, we proposed four techniques to prevent DRDoS attacks with 

implementation and results specific to DNS amplification attacks. All the proposed 

techniques use the common philosophy to equip underlying network infrastructure with 

enough rules/intelligence to enforce reverse path forwarding, the same as that of 

corresponding forward-path forwarding of the client-server communication. The proposed 

approaches provide prevention against DRDoS attacks focusing on reverse forwarding with 

two subcategories. With such rules, an attacker would attack itself. The implementation 

results show that the targeted victim is always safe as no spoofed traffic reaches the victim. 

With the proposed approaches, the victim remains unaffected while the attack traffic goes to 

the attacker itself, choking its bandwidth. This leads to attack mitigation for some time T. 

The authentication approach (Sahri & Okamura, 2016) is the algorithm we used to 

compare our techniques by focusing mainly on the additional RTT needed to get the final 

DNS response. The reason for picking this algorithm is that they also prevent DNS 

amplification attacks, and its underlying architecture is an SDN environment. SymSDN 

shows a delay of .093 seconds and the authentication algorithm shows the highest delay of 

.15 seconds. For IP Switching, PortMapping, and PortMergeIP, the highest delay is shown 
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by the authentication approach only as it needs one additional RTT before the server receives 

the DNS response.  

  

 

********** End of Chapter **********   
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CHAPTER 5- Prevention Of DRDoS Attacks with Reliable-Dynamic Path Identifiers 

 

5.1 Introduction 

As mentioned in chapter 1, shifting the defense domain from detection to attack 

prevention is a more promising strategy. In this chapter, to prevent DRDoS attacks, we use 

PIDs. PIDs are used as a packet routing mechanism for ICNs (H. Luo et al., 2017), (Hongbin 

Luo et al., 2014). We propose using these PIDs to prevent DRDoS attacks by ensuring that the 

response packet path is the same as the corresponding request packet, like in previous chapter. 

Different authors use PIDs to avoid DRDoS attacks (H. Luo et al., 2017), (Hongbin Luo et al., 

2014), (Al-Duwairi et al., 2020). Because of PIDs, DRDoS attacks are not possible even if the 

source-IP addresses are spoofed because the response packet is not forwarded using regular IP 

forwarding (H. Luo et al., 2017). Instead, it is based on the PIDs stored in the corresponding 

request packet. (Hongbin Luo et al., 2014) propose these PIDs as static. Static PIDs prevent 

DRDoS attacks but make the network vulnerable to flooding attacks. If an attacker sniffs these 

PIDs (by sniffing the network packet), a DDoS attack can be launched toward the sender of 

these packets. Hence, DPIDs are proposed by (H. Luo et al., 2017). However, the proposed 

approaches are prone to packet drops during PID updates.  

In the preceding chapter, we discussed storing path information within the packet to 

ensure that the response path aligns with the request path. In this chapter, we present a novel 

concept called Reliable-Dynamic PIDs (RDPIDs) as a means of preventing DRDoS attacks. 

RDPIDs are dynamic in nature, making them effective against DRDoS attacks and flooding 

attacks (possible because of MITM learning static PIDs). They offer enhanced security against 

DDoS attacks through the innovative incorporation of Reserved PIDs (RPIDs) and Open PIDs 

(OPIDs). Additionally, RDPID boasts reduced PID negotiation delay compared to a prior study 
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(H. Luo et al., 2017). Further details on RDPID are provided in section 5.3, while the 

subsequent section outlines the existing literature on the utilization of PIDs.  

5.2 Related Work 

In this section, related work concerning DDoS prevention using PIDs is presented. 

Instead of using traditional IP forwarding to transmit packets, (Godfrey et al., 2009) have 

proposed using pathlets, which are inter-domain routing objects. The authors propose to use a 

standard, wireless path-vector protocol with a pathlet declaration containing forward identifier 

for pathlets and a sequence of vnode identifiers. CoLoR, an approach proposed by Luo et al. 

(Hongbin Luo et al., 2014), says that the future Internet will continue to be organized in 

domains with provider/consumer/peer relationships. Every domain has a logical resource 

manager, which maintains a registry table that stores content access information identified by 

source identifiers. CoLoR also uses two local namespaces: domain-based connectors and route 

identifiers (PIDs). The domain in CoLoR can use different local intra-domain protocols. Inter-

domain routing is based on PIDs. In CoLoR, users send GET messages to find their desired 

content. In the GET messages, PIDs of the inter-domain path are stored in the packet. The 

routing from the content provider to the content consumer is done based on these PIDs. The 

PIDs are static, so a flooding attack is still possible. The other approach proposed by (H. Luo 

et al., 2017) describes how flooding attacks are still possible if the attackers can discover these 

inter-domain identifiers. The ways to know the PIDs are also described in detail, i.e., GET 

luring and botnet cooperation. The attackers learn the PIDs between there and the victim’s 

network through these ways. The PIDs are static and do not change, so the attackers can launch 

a successful attack. That is why (H. Luo et al., 2017) proposed DPIDs, so even if the attackers 

learn the PIDs and launch the attack, the attack cannot continue as the PIDs will change after 

some time. We also used DPIDs and compared our approach with the one proposed by (H. Luo 
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et al., 2017). (Al-Duwairi et al., 2020) have also used the concept of DPID with Get-message 

logging. This approach is mainly for ICNs where users request information using Get 

messaging. The reason for logging Get messages for DDoS detection and prevention is that 

normal users correspond to a Get message while an attacker does not. Here, the ICN routers 

log Get request messages using bloom filters. Bloom filters will help in comprehensive logging, 

and in return, they don’t even take up much space. This approach is claimed to give better 

results against DDoS Prevention in comparison to DPID. 

5.3 Proposed Methodology 

The proposed technique for DDoS prevention uses PIDs described in (H. Luo et al., 

2017) to identify the inter-domain paths. Here domain refers to an independently maintained 

network connected to other domains via Border Routers (BRs). A domain might be an AS’s or 

ISP’s network in the Internet architecture. We assume that these domains are numbered D1, 

D2… Dn. Each domain has one or more BR through which network traffic is routed to another 

domain. Assume these BRs in each domain are also numbered B1, B2, …, and Bm. In addition, 

each domain has a Resource Manager (RM) whose task is to share PIDs with the BRs to 

maintain inter-domain routing. Figure 5.1 shows all these network elements. It shows six 

domains (D1 to D6), BRs in each domain, RMs, and hosts. Host-1 and host-2 are located in 

domain D1, and host-3 is in D2. It also shows a DNS server in D3. For each link connecting the 

two BRs, a PID is generated and shared before any communication can start. These PIDs are 

generated and distributed by a central entity called Network Manager (NM). Although we 

assume NM to be a centralized entity in this work, it can be maintained as a distributed system. 



90 
 
 

For more clarity, let’s take an example. Suppose, for inter-domain routing, PID1 is used 

between the domains D1 and D4, PID2 between D2 and D4, PID3 between D4 and D5, PID4 

between D5 and D6, and PID5 between D6 and D3. These PIDs are negotiated and shared with 

the BRs before any communication can start. Also, suppose host-1 in D1 generates a DNS 

request packet for the DNS server in D3. This packet will be routed to D3 using any inter-

domain routing protocol, as described in (Avramopoulos & Suchara, 2009). The respective 

BRs in between will push (i.e., store) the associated PIDs in the options and padding field of 

the network packet’s IP header. Thus, PID1, PID3, PID4, and PID5 will be stored in the DNS 

request packet. 

Figure 5.1 : Network setup showing Domains, Bord Routers, and Resource Managers. 

The corresponding response packet will follow the same path using these PIDs (rather 

than IP forwarding) to reach back to host-1. With this approach, even if source-IP spoofing is 

done by host-1 for any potential DRDoS attack, the response packet is assured to go back to 

the attacker itself. Thus, an attacker will attack itself. There are two following possibilities with 

PID assignments.  
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a) As proposed by (Hongbin Luo et al., 2014), PIDs can be assigned once and can be made 

static. This approach has a disadvantage in that an attacker can learn these PID 

sequences by sniffing the packets or deploying a honeypot “server” in the network. A 

sniffed packet (or a packet coming to the honeypot) from some host-H will have a PID 

sequence. The reverse of this sequence refers to the PID path back to the host-H. An 

attacker could use this knowledge to launch a flooding attack on H.  

b) To overcome the above problem, as proposed in (H. Luo et al., 2017), PIDs can be 

made dynamic in the sense that they change after every fixed time interval T. Of course, 

this technique results in an increase in network traffic during PID updates. The value 

of T being less results in network congestion and T being more makes the source host 

susceptible to flooding attack, as with static PIDs. 

We propose RDPID to tackle the above issues. The proposed methodology is explained 

using three points: (a) RDPID Generation, (b) Request-Routing, and (c) Response-Routing 

5.3.1 Reliable-Dynamic PID (RDPID) Generation 

Figure 5.2 shows the RPID and OPID generation for each link interface connecting two 

BRs. If any two BRs (BR1 and BR2 as shown in Figure 5.2) are connected with a link L, the 

RPID for an interface of BR1 becomes OPID for an interface of BR2 and vice versa.     

Figure 5.2 :  Reserved and Open PIDs 
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Algorithm 5.1 : PID Generation Algorithm 

 

 

Let 
D be the total number of domains, numbered 1... D 
BD: Total number of Border Routers (BR) in Dth domain, numbered 1…BD, for all D 

 : Link_ID between Ith domain’s Jth BR and Kth domain’s Mth BR (1  I  D, 1  K  
D, 1  J  BI, 1  M  BK)  

 : Number of links to which Jth BR of Ith domain is connected to. 
RPID ( ): Reserved PID for Link_ID  
OPID ( ): Open PID for Link_ID  
[Note that RPID ( ) = OPID ( )] 
PID_Generation (Time interval T) 
{ 
  Input T: time interval for PID update. 
  Output: Pair [RPID ( ) , OPID ( )] for all Link_ID’s. 
  Repeat after every time interval T 
  { 
    For d = 1 to D 
        Generate_Keys (d) 
  } 
  Distribute all [RPID ( ) , OPID ( )] pairs for all Links via RM’s. 
} 
Generate_Keys (d) 
{ 
  Input d: Domain for which key pairs are to be generated. 
  Output: Unique RPID and OPID for each link interface. 
  For b = 1 to Bd 
  { 
     For p = 1 to  
        Key = GENERATE_UNIQUE_KEY(); 
        x = domain to which pth link of Bd is connected to. 
        y = BR to which pth link of Bd is connected to. 
        RKEY ( ) = OKEY ( ) = key         
  } 
} 
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The procedure PID_Generation(), shown in Algorithm 5.1, runs periodically after every 

time interval T. For each domain, procedure Generate_Keys () generates RPIDs for each link 

of each of its BR. The procedure assumes a function GENERATE_UNIQUE_KEY(), which 

generates a unique key for a specific domain. Finally, the NM communicates all the pairs for a 

domain with the corresponding RM, which shares the keys with its BRs. Now, these shared 

PIDs can be used for communication. It should be noted that while each PID is not necessary 

to be unique in the network, each PID must be unique inside a domain. In other words, these 

PIDs are used to identify neighboring devices linked to a single device; thus, they do not need 

to be unique across the network but only within a domain. 

5.3.2 Request Routing 

While forwarding a request packet, a BR, before sending the packet to another BR, must 

append the open PID received from that BR within the options field of the IP header of a 

network packet. The options field can be considered as a stack, and the PIDs are inserted on 

top of this stack. The BR then consults these “stacked” PIDs to receive the response packets.  

Figure 5.3 : Request packet routing 

Figure 5.3 depicts the entire request packet routing. It shows six BRs, and each is 

assumed to be in a different domain. The link interface of each BR shows the OPID of the next 

BR on the link. The request packet is to be forwarded from BR1 to BR6. Based on the standard 
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IP routing, BR1 should first send the packet to BR2. Hence, BR1 appends the PID value two 

within the options field of the packet and sends it. BR2 verifies this PID for correctness upon 

receiving the packet; it should be its RPID. If the appended PID is malicious, the packet is 

dropped. 

Similarly, BR2 now appends the PID value 4 to send the packet to BR4. In this manner, 

the entire routing is performed. The packet contains the entire flow indicated through the PIDs 

at the destination. In this case, it is (2,4,5,6). This PID sequence is then used to trace the packet 

back to the source. 

5.3.3 Response Routing 

Once the request packet has been received at the destination, the PID sequence is 

referred for forwarding the corresponding response packet. Each BR maintains a PID table that 

stores RPIDs and OPIDs of its interfaces.  

Figure 5.4 : Response packet routing 

The last PID in the options field (pointed to by the top of the stack pointer) is referred 

to determine the subsequent BR to which the packet should be forwarded. Once determined, 

the PID pointed at the top of the stack is popped, and the remaining PID sequence is sent along 

with it. Figure 5.4 portrays the flow. It shows the PID table of BR4. When BR4 receives the 

response packet with PID sequence (2, 4), with 4 being the last PID, it refers to its own PID 
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table to determine the next node on which packet would be forwarded. This last PID is then 

popped, and the packet with the remaining PID sequence is sent further. This exact procedure 

is then continued further till the packet reaches the destination. 

5.4 RDPID v/s DPID 

In the past, single PIDs were used to combat DDoS attacks; however, they are vulnerable 

to other forms of attacks. Instead, using two PIDs (open and reserved) for each link interface 

helps secure the network further. For example, it secures the network from Syn flood type of 

DDoS attacks (also called (half-open attacks)) (Imperva). The attacker sends a half-open 

connection request to the server as a client of this type. Of course, the source IP in this request 

packet can be spoofed. The server acknowledges the connection and waits for the final 

acknowledgment. Since the source IP was spoofed or otherwise, this acknowledgment will not 

arrive; thus, server resources are wasted.  

Figure 5.5 : Advantages of using RDPID over DPID 

Consider the scenario depicted in Figure 5.5. Assume that host h1 sends a request packet 

to host h2, and the underlying system uses a single PID for each link (shown within a square 

box on top of each link). The routers in between would append the PIDs [1, 3, 5, 7] as the packet 
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traverses through the links A, B, C, and D. Now, if the host h2 has to send a request packet to 

h1, the PIDs would also be [1,3,5,7], but appended in reverse order, i.e. [7, 5, 3, 1]. A sniffer at 

BR5, trying to sniff incoming packets, would know this PID sequence for communication 

between h1 and h2. As a result, an attacker can construct a spoofed request packet somewhere 

between h2 and h1, thus launching a flooding DDoS attack against h1. 

With two PIDs per router interface, such attacks are harder to launch. Here, the 

sequence remains the same for the packet from h1 to h2, i.e., [1,3,5,7]. However, if h2 generates 

a packet for h1, the PID sequence would be [8,6,4,2]. Therefore, after sniffing the request 

packet generated from h1 at BR5 and getting the PID sequence [1, 3, 5, 7], when an attacker 

generates a spoofed request packet from h2 to h1, the packet will be discarded at BR4; as for it 

to forward any request, the PID appended should be 8. But, of course, an attacker can launch a 

flooding attack toward host h1 using response packets. Its mitigation time depends upon the 

RDPID update interval.  

5.5 Simulation and Results 

The topology shown in Figure 5.1 was emulated in mininet, using Click (Kohler et al., 

2000) as a router. The purpose is to demonstrate that the proposed technique can prevent DDoS 

attacks. Click’s extensible language for deployment enables the creation of highly 

customizable router functionalities. This way, routers can be implemented in Linux hardware 

more efficiently. Also, Click achieves a very high forwarding rate per second. To do this, Click 

removes the interrupt-driven architecture favoring polling, avoiding expensive context 

switches and memory accesses. Mininet is a network emulator or, more accurately, a network 

orchestration system. It works with a set of endpoints, switches, routers, and a single Linux 

kernel connection.  
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The proposed technique’s effectiveness is shown to prevent the DRDoS attacks from 

reaching the victim, prevent flooding attacks, and the effect of keys distribution on network 

functioning. The measured parameters are compared with the DPID technique as presented in 

(H. Luo et al., 2017).  

To validate the prevention of DDoS attacks, in the simulated network (Figure 5.1), host-

1, as an attacker, generates DNS request packets with source IP spoofed to that of host-3. To 

send the request packet from h1 to the DNS server configured in D3, the PID’s are updated by 

the NM only on the three intermediate RM’s. It saves the time for updating because it is not 

needed for border domains. 

To test and validate the resilience of RDPID-based routing against preventing DRDoS 

flooding attacks, host-1 in Figure 5.1 sends the DNS request packets to the DNS server, which 

is configured as a network honeypot (or otherwise) that allows an attacker to sniff the packets. 

Thus, an attacker in D3 learns the PID sequence and launches a flooding attack of 20 Mbps 

against host-1. This attack rate was chosen to compare the effectiveness of RDPID with that of 

DPID, as proposed by (H. Luo et al., 2017). As shown in Figure 5.6 four different scenarios 

were taken. First, when PIDs are static (i.e., no RDPIDs). Second, when the RDPID routing 

scheme is in place and its update period is 30 seconds. Third, when the RDPID update period 

is 60 seconds; fourth, reduce the RDPID update period to 10 seconds upon detection of an 

attack. Three of these four scenarios (i.e., first, second, and fourth) are also considered by (H. 

Luo et al., 2017) to show resiliency against attacks.  As expected, the victim host-1 is subjected 

to a full 20Mbps attack with static PIDs. The attack gets mitigated in 33.2 seconds with an 

RDPID update period of 30 seconds. With an update period of 60 seconds, the attack gets 

mitigated in 70 seconds (as against 115 seconds reported in (H. Luo et al., 2017)). Also, with 

an update period of 10 seconds after attack detection, it got mitigated in 14 seconds (as against 

18 seconds reported in (H. Luo et al., 2017)). 
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Figure 5.6  : Prevention of DDoS attacks 

The performance of RDPID was further evaluated using PID update delay. It is the sum 

of time NM takes to share the RDPIDs with the intermediate RMs and then RMs to share them 

with its BRs. 20000 PID update delay samples were recorded by running the proposed RDPID 

distribution in the topology. As we compare our proposed work with (H. Luo et al., 2017), we 

only calculate the CDF for OPID update delay. Figure 5.8 shows the CDF for the OPID update 

delay, which is 10 ms. (H. Luo et al., 2017) calculated the PID negotiation delay and PID 

distribution delay. The former refers to the interval between when an RM sends the PID update 

message to its neighbor RM and receiving a corresponding acknowledgment. The latter is when 

an RM sends the PID distribution message to a BR and receives the corresponding 

acknowledgment. The sum of these two delays is the PID update delay. (H. Luo et al., 2017) 

reported an average of 20 ms for PID negotiation and 3 ms for PID distribution, a total of 23 

ms. With RDPID, the OPID (which is RPID for opposite BR) update was only 10 ms. Figure 

5.8 shows that it was only 6 ms with a 99% probability. This reduction can be attributed to the 
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fact that in our approach, RMs do not negotiate RDPIDs; NM’s job is to update all the PIDs to 

RMs.  

The loss of packets caused due to RDPID update is shown in Figure 5.7. As can be seen, 

with a PID update period of 50 seconds, the loss is 1%, and with that of 100 seconds, it reduces 

to 0%. 

Figure 5.7 : Loss of packets due to PID update 

Figure 5.8 : Time taken to update PIDs          
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Further, the probability P of determining the PID depends on the number of hops (h) 

and the size of character space Sch. It is given by eq (5.1). 

 ……….….  (5.1) 

Our experiment has a network with four hops for a packet to reach the DNS server and a 

character space of 52 characters. Even in this small network, the probability of deducing the 

correct PID sequence by an attacker is 10-7, as it has more than 7 million possibilities. Further, 

with the PID change interval of 30 seconds, for an attacker to sustain an attack of 1 minute, the 

probability reduces to 10-14, having more than 50 million possibilities of different PID 

sequences. 

5.6 Summary of the Chapter 

This chapter proposed a DDoS prevention approach using RDPIDs against DPIDs 

primarily used for ICNs. The experiments were conducted using DNS-based request-response 

client-server inter-domain architecture. It is proved that with RDPID based routing mechanism 

in place, the victim is constantly prevented from DRDoS attacks. Also, a flooding attack is 

automatically mitigated within some constant time, depending on the PID update period. If the 

attacker tries to guess the used DPIDs, there are approximately 50 million possible PID 

sequences to guess, making it a computationally costly business for the attacker. Via different 

simulations, it is shown that with our proposed approach, the PID negotiation time reduces to 

6 ms, as against 23 ms reported in (H. Luo et al., 2017). Also, the attack gets mitigated in 70 

seconds with a PID update period of 60 seconds (as against 115 seconds reported in (H. Luo et 

al., 2017)). 

********** End of Chapter **********   
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CHAPTER 6- PODIBC: Prevention of DRDoS Attacks using Identity -Based 

Cryptography in Software-Defined Networking Environment

 

6.1 Introduction 

The previous chapters provide prevention against DRDoS attacks using reverse 

forwarding rules. One more promising approach is source authentication, as it prevents IP 

spoofing. A way to do this is to use signatures to authenticate the sender's identity (Schridde et 

al., 2009).  Signatures mean digitally signing something from a key. Private keys are used to 

sign the object, and public keys are used to verify them.  Generally, they require a dedicated 

external service that provides public-key certificates for corresponding private keys. So, private 

keys remain confidential to the signee, and public keys can be known to all. The complexity of 

this technique is that we need separate entities, i.e., PKES (Hu et al., 2017), within the network 

to record all the key pairs. Managing and maintaining these servers to store and distribute all 

the certificates is a hassle.  

The other more promising approach is to use IBC (Long & Xiong, 2020) (“IEEE 

Standard for Identity-Based Cryptographic Techniques Using Pairings,” 2013), as explained in 

Chapter 3. It is a kind of public-key cryptography in which an identity unique to the 

participating entity is used as a public key with a corresponding private key. It eliminates the 

need for separate servers (e.g., PKES servers) to distribute public key certificates.  

To prevent DRDoS attacks, in the chapter, we propose using the BLMQ signature 

scheme (an IBS scheme) with SDN. We name the proposed scheme PoDIBC (Prevention of 

DRDoS attacks using Identity-Based Cryptography, IBC). The following are the salient 

features and advantages of PoDIBC: 
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a) To implement it, only the edge networks which require preventing their resources 

against DRDoS attacks need to be SDN enabled, and the core network of the Internet 

architecture remains unaffected.  

b) (Schridde et al., 2009) proposed an IBS scheme to prevent IP spoofing. But that scheme 

has an issue: - if an identity is known, the attacker can also generate the private key, 

defeating the purpose of signing with a secure private key. We prove this shortcoming 

in section 6.5.3 and that the proposed PoDIBC technique solves this issue.  

c) Since a signature is embedded within the network packet, PoDIBC requires 

approximately one-sixth of the network packet space as compared to (Schridde et al., 

2009). 

d) PoDIBC also prevents replay attacks by combining the timestamp with the message to 

be signed.  

e) The packet identity itself is used as a public key, thus eliminating the need for separate 

servers to provide public keys. The private keys are generated with the help of this 

identity and are unique to this identity. For verification also, the same identity is used. 

In PoDIBC, the SDN controller is responsible for generating and sharing the private 

keys to all the hosts connected in the edge network based on the respective hosts' identities (IP 

addresses). 

6.2 Related Work 

In computer communications, various techniques for source verification/authentication 

to prevent IP spoofing have been proposed by different authors. One such technique is 

presented by (Mishra et al., 2023). It improves Datagram Transport Layer Security (DTLS) by 

using lightweight authentication encryption with Quark. The authors propososed an improved 

method of over-hearing to prevent various types of attacks such as DOS, Man In The Middle 
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(MITM), active assaults, and passive attacks. Another proposed technique is by (X. Liu et al., 

2008), who suggest adding a new field, called Passport, within the IP header to prevent 

spoofing. When the packet leaves its originating AS, the border/egress router attaches the 

message authentication code to the passport header of the packet. A secret key is shared in 

advance between the source AS and each AS in between the source and the destination. With 

the help of this key and the message authentication code, the inter-between ASs can verify 

whether or not the incoming packet belongs to that particular source address. The limitation of 

this technique is that Diffie-Hellman is used to exchange the keys, which in itself is not secure. 

A new IPv6 address generation algorithm is proposed by (Y. Liu et al., 2015). The basis of this 

algorithm is time and NID, and the proposed approach has three steps. First, a scalable structure 

of NID is designed. The address generation algorithm for IPv6 follows it. Finally, the 

concatenation of network identity and time is encrypted using the IDEA algorithm ff, 

generating an address assigned to the host. In this proposed technique, the authenticity of a 

source address is achieved with the help of SAVA, which involves SAVI devices (Wu et al., 

2013). Such network devices complement ingress filtering (Wu et al., 2013) by adding IP 

address validity to an individual source. This dependency on SAVI devices is a drawback. 

(Q. Zhou et al., 2021) propose the integration of SAVI and SDN to meet SAVI 

requirements in large-scale networks. The authors state that a central controller substantially 

facilitates the validation process since the SAVI based on SDN can verify the legitimacy of 

each passing packet and delete illegitimate ones in accordance with rules set by the controller. 

The authors created a versatile framework for SDN-based networks that utilize the available 

resources effectively while enabling centralized management. To detect anomalous activities 

and enable differentiated security management, they introduced a state partitioning and 

transitioning model for dynamic source address validation and binding relationships in the first 

level of the flow table. SDN-Ti, an SDN-based solution for identifying and tracing attackers in 
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IPv6 networks, is presented by (C. Li et al., 2019). It involves translating the source IPv6 

address of the packet to a trusted ID-encoded address generated by the SDN controller, 

enabling effective identification of the attacker by the network administrator. This solution 

supports multiple IPv6 address assignment scenarios and does not require any modification on 

the end device, making it easy to deploy. The results suggest that SDN-Ti is a practical solution 

with the potential to be deployed for a large number of users. 

In addition to network packet modification, alternative methods have been suggested 

that utilize the creation of certificates to sign packets and mitigate the risk of IP spoofing. These 

certificates can be supported by a third party like a Certifying Authority (CA) (Cooper et al., 

2008), (Schridde et al., 2009) or can be self-certified (Andersen et al., 2008). The primary issue 

with CA is that separate infrastructure is needed to maintain the keys, like in IPSec (Frankel & 

Krishnan, 2011), (Kent & Atkinson, 1998), and TrueID (Hu et al., 2017).  

The technique known as CGA (Aura, 2005) involves generating some of the bits in an 

IPv6 address by hashing the host's public key. In HIP proposed by (Moskowitz & Nikander, 

2006), the public key is used as the host's identity and is created by hashing the corresponding 

host identifier. However, a drawback of these methods is that public keys must be generated 

prior to address generation, and for HIP the protocol stack or the entire Internet infrastructure 

would need to be modified.  

To avoid the change in the protocol stack (and/or modifying the Internet architecture), 

(Schridde et al., 2009) proposed the true-IP technique to prevent DRDoS attacks. TrueIP 

leverages IBE to prevent IP spoofing by signing packets with the IP address via an IBC system. 

This eliminates the need for public key distribution and Certificate Authority (CA) 

infrastructures. The identity private key generator generates the private identity key and stores 

a set of public parameters, while the sender of the packets signs them using their private key, 

which is generated based on their IP address and public parameters. However, one drawback 
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of the TrueIP scheme is that if an identity is known, an attacker can generate a private key, 

thereby compromising the security of the system. We prove this shortcoming in section 6.5.3 

and prove that the proposed PoDIBC technique solves this issue. IBS scheme to provide 

stronger authentication between devices is proposed by (Wei et al., 2020). This scheme protects 

against Address Resolution Protocol (ARP) spoofing attacks, which android devices are 

susceptible to when connecting to an insecure Wireless Local Area Network (WLAN). This 

scheme involves utilizing the MAC address to create a unique identity that can be used to 

validate the authenticity of an IP address. By employing this method, they ensure a reliable and 

secure mapping between the identity and the IP address, which helps to establish trust and 

integrity. This scheme does not require root privileges and can work on low resource 

consumption. 

6.3 BLMQ Signature Scheme using SDN Controller 

The proposed use of the BLMQ signature scheme ("IEEE Standard for Identity-Based 

Cryptographic Techniques Using Pairings," 2013), (Barreto et al., 2005), (Noel Michael 

McCullagh, 2005) for preventing DRDoS attacks using IBC consists of four phases. The 

following are the steps taken: 

a) Generation of Master-Secret and Public-Parameters Group: 

The SDN controller first generates a secret known as Master-Secret, which is only known 

to the controller. This master-secret is used to generate a group called Public-Parameters 

Group which would be shared with all the hosts connected to the controller via respective 

SDN switch. 

b) Private key generation 

Host (either client or server), which requires to implement BLMQ signature scheme, 

pings the controller by generating a parameter request packet with the destination IP 
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address as “1.1.1.1”. The SDN switch is configured such that when it receives a packet 

with this IP address, the packet is simply forwarded to the controller. Upon receiving this 

packet, the controller generates a private key for the host using its source IP address and 

Master-Secret. Finally, the controller generates and forwards a request packet embedded 

with private key and Public-Parameter Group to the host. Figure 6.1 shows step-1 and 

step-2. 

Figure 6.1 : Communication between host and controller to receive private key and Public 
Parameters Group 

 
c) Signing the message 

Upon receiving its private key and Public Parameter Group from the controller, the host 

is now ready to send the message. Upon receiving a message to be sent, a client generates 

the sign using the BLMQ scheme for [message + timestamp]. Using timestamp for 

generating the sign prevents replay attacks. It then generates the request packet embedded 

with the message, timestamp, and the corresponding sign. This packet is forwarded to the 

server. 

d) Verification by the server 
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Upon receiving the request packet, the server extracts its source IP address and the sign. 

It then recalculates the signature using the source IP and the Public Parameter Group. 

This newly generated signature is compared with the sign extracted. If they match, and 

the sum of extracted timestamp ( Th) and validation period ( V) is greater than the 

current timestamp ( Ts), the corresponding response packet is generated and forwarded; 

else, the packet is dropped. Synchronization at both the host and server for timestamp 

verification is necessary and can be achieved using NTP. Figure 6.2 shows step-3 and 

step-4. 

Figure 6.2 : Signing and verifying the packet 

Above four steps are explained mathematically in the following subsections in detail. 

Table 6.1 shows the notations used in the PoDIBC scheme. 

6.3.1 Generation Of Master Secret and Public Parameters Group 

The controller generates the Master-Secret and the Public- Parameter Group. The steps 

are as follows: 

1) A Master-Secret (Msec) is generated as per eq. (6.1). 
 

Msec = Zs
* …………. (6.1)  
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where, Zs is a set of integers with reduction modulo s, and Zs
* is a multiplicative inverse 

set of Zs. 

2) Bilinear mapping (or pairing) of groups GA, GB, and μs of large prime order s is 

generated as per eq. (6.2). Here GA and GB are groups of order s, μs is a group of order 

s, A' is a generator of group GA, B' is a generator of group GB, and e is the pairing. 

e: GA × GB → μs …………… (6.2) 

where, t = e (A', B') and t  μs 

3) For verification purposes, a common key Pub (which is not identity) is also generated 

with the help of the controller's Master-Secret, as shown in eq. (6.3). 

Pub= Msec . B’ ………… (6.3) 

4) Two hash functions (H1 and H2) are also needed for computations. We have used 

SHA224 for hash functions, 

For the BLMQ signature scheme, the Public Parameter Group is (A', B', GA , GB , μs , 

Pub, e, t, H1, H2 ). This group is shared with all the hosts connecting to the controller. 

Table 6.1 : Notations used in the PoDIBC scheme. 

Notation Explanation 
Msec Master-Secret of the SDN controller 
 Zs  Set of integers with reduction modulo s 
Zs

* Multiplicative inverse set of Zs 
GA ,GB, μs  Groups of order s 
A' Generator of group GA 
B'  Generator of group GB 
 e  Bilinear mapping or pairing 
H1 and H2 SHA224 hash functions 
PRID Private Key 

Th Timestamp at host 
IP IP address of the signee (public 

identity)  
Pub A common key 
hs Hash of message and a random integer 
Ss Sign generated using private key and hs 
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6.3.2 Private Key Generation 

The Private key (PRID) is generated using the Master Secret (i.e., Msec) and the identity 

of the host (which, in our case, is the source IP address), as shown in eq. (6.4). This process is 

similar to ("IEEE Standard for Identity-Based Cryptographic Techniques Using Pairings"), 

(Barreto et al., 2005), (Noel Michael McCullagh, 2005). Since IP addresses differ for each host, 

using it as an identity for private key generation guarantees a unique and different private key 

for each host (Schridde et al., 2009). 

PRID= (H1(IP)+ Msec)-1. A' ……… (6.4) 

6.3.3 Signing the Message 

The process of signing the message using the private key PRID is as described in (("IEEE 

Standard for Identity-Based Cryptographic Techniques Using Pairings")(Barreto et al., 

2005)(Noel Michael McCullagh, 2005)), except that in the proposed scheme, we sign 

(message+ timestamp).  (Schridde et al. 2009) have also signed the timestamp. The reason for 

doing this is to protect the network against replay and MITM attacks. Its formal proof is shown 

in section 6.4.  

If "Message" denotes the actual message to be sent, the message considered to be signed 

would be Msg, where Msg = (Message + Th ). Here Th is the current timestamp at the host. 

For l chosen randomly such that l  Zs
*, eq. (6.6) to (6.8) show the sign (Ss) generation process. 

Finally, the signature Sig = (hs, Ss) will be sent within the packet, as shown in Figure 6.2. 

Msg= (Message+ Th) ……………. (6.5) 

k= tl ……………. (6.6) 

hs= H2(Msg, k) ……………. (6.7) 

Ss= (l+hs)PRID ……………. (6.8) 
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6.3.4 Verification by the Server 

The server pings the controller and, in turn, receives the Public Parameter Group. Upon 

receiving the network packet, the server extracts the embedded identity (i.e., the source IP 

address), Msg, and the corresponding signature (i.e., Sig = (hs, Ss)). The value of hsnew is 

computed using the public parameters group as shown in eq. (6.9).  

 

 

where, = H1(IP) B’ + Pub 

…………. (6.9) 

If this computed hsnew is the same as the received hs, the source IP is authenticated, and 

the packet is accepted. Otherwise, if the two are different, it indicates spoofing the source IP, 

and the packet is dropped. In this case, further action can be taken toward identifying the 

attacker by traceback.  

6.4 Proof against IP Spoofing and Replay Attacks 

In this section, we give formal proof that the proposed BLMQ IBS scheme will always 

prevent the network from IP spoofing, thus preventing DRDoS attacks. In addition, we give 

mathematical proof that replay attacks are also prevented. 

6.4.1 Proof of Prevention against IP Spoofing 

Let the valid and original IP of the attacker be IP1, and the spoofed IP that the attacker 

will send as the source IP address in the network packets be IP2. From eq (6.9),  

= H1(IP1)B’+ Pub ………. (6.10) 

= H1(IP2)B’+Pub ………. (6.11) 

The private Key of the attacker will be 

  = (H1(IP1)+ Msec)-1. A' ….…. (6.12) 
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The signature (hs, Ss) is generated as per equations (6.7) and (6.8). Since the attacker 

spoofs the source IP address, the corresponding field in the network packet contains the source 

address as IP2. This packet is sent over the communication channel to the destination.  

The process of verification at the server is as follows:  

From eq (6.7), 

  hs= H2(Msg,k) 

hs= H2(Msg,tl) 

hs= H2(Msg,tl+hs.t-hs) 

 

 

 

 

From eqn  (6.4), 

 

From eqn  (6.3), 

 

From eqn  (6.11), 

 

From eqn  (6.8), 
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Received sign on IP address IP1 will be- 

hs= H2(Msg,k) 

hs= H2(Msg,tl) 

hs= H2(Msg,tl+hs.t-hs) 

 

 

 

 

From eqn  (6.4), 

 

From eqn  (6.3), 

 

From eqn  (6.10), 

 

From eqn  (6.8), 

 

  

 

 

Hence, the received signature is not equal to the computed one. 
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Spoofed IP will not result in the same sign. Hence the server will discard the packet. 

This proof is based on the BLMQ proof provided by (Noel Michael McCullagh, 2005), except 

that we have replaced the identity with the source-IP address. 

6.4.2 Proof of Protection against Replay Attacks 

A replay attack is one form of a network attack wherein an attacker sniffs the legitimate 

(possibly encrypted) messages and either delays them or retransmits them. In other words, it 

happens when an attacker captures possibly confidential information on a secure channel and 

then resends them after a delay, masquerading as the original sender (What Is a Replay Attack, 

2023).  

In the present context of using the BLMQ signature scheme for preventing DRDoS 

attacks, the attacker can capture the signed packet and reuse the sign to masquerade as the 

victim to get the packet accepted at the server. For example, suppose a legitimate user U1 (with 

source IP address IP1) sends a DNS query message to the DNS server. Based upon the identity 

IP1, this message contains the corresponding signature . Assume that this DNS query 

message gets sniffed by a malicious user. Thus, this malicious user now knows the signature 

and the IP address of U1. A replay attack is possible if this malicious user sends multiple 

DNS query messages with source IP IP1 and signature . Such replay attacks are not possible 

with the proposed scheme because of the timestamp field. Formally, in the remaining part of 

this section, we prove that replay attacks are impossible by considering two scenarios. 

Scenario-1: When the attacker uses the same timestamp as that sniffed/captured within 

the request packet. Let ,  

 Th  be the system's timestamp when the packet is created at the host. 
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 V  be the validation period of the timestamp to be checked when the packet is received 

at the server. This validation period depends upon the RTT between the source and the 

destination. 

 Ts be the timestamp at the destination (or server) when the packet reaches it. 

If the timestamp at the server, i.e. Ts does not fall within the range of V+ Th, the packet 

is dropped. Formally, at the destination, if Th,  < Ts < ( V + Th),  the packet is accepted, 

else the packet is discarded.  

Scenario-2: When the attacker uses the current timestamp Th', instead of the 

timestamp of the captured packet Th. Let,  

 The message received at the server be Msg' = M + Th.' 

 The actual message on the computed sign be Msg = M + Th 

From eqn (6.9), hs computed at the server would be  

where, PubID= H1(IP)B’+Pub  

The original hs would be 

 

where, PubID= H1(IP)B’+Pub 

 

 

Hence, the two signatures will be different, and the packet will be discarded. 

6.5 Simulation and Results 

This section describes the experimental setup done to validate the proposed approach.  

In this section, we also show that with PoDIBC in place and with the victim under attack, the 

attack traffic does not reach the victim, thus preventing its network from DRDoS attack. 
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6.5.1 Experimental Setup 

Figure 6.3 : Network architecture for PoDIBC 

As shown in Figure 6.3, the experimental topology consists of four subnets: an 

attacker's network in which the attacker host resides, the victim's network in which the victim 

host resides, a subnet for the DNS server, and a subnet for a test server. All these four subnets 

are SDN networks. In addition, Figure 6.4 also shows the core network consisting of four 

routers. We used Mininet (Mininet, 2022) to simulate the topology. This core network does not 

need to be SDN enabled, but it is for now for experimental purposes. The whole topology is 

currently connected to a single Controller. Multiple controllers can also be used for larger 

networks, and these controllers can communicate with each other to pass the Public Parameters 

Group.  A Ryu SDN controller (RYU A, 2013) was used to configure the SDN switches and 

routers and install the flow tables to route the packets. Python libraries scapy (Introduction: 

About Scapy, 2023) and iperf (What Is IPerf / IPerf3 ?) were used to generate traffic and 

bandwidth testing. To implement the proposed technique, we have used the bplib library 

(Copyright (c) 2014, George Danezis (UCL), and a common group G (Copyright (c) 2014, 
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George Danezis (UCL), Copyright (c) 2016, The OpenSSL Project), with elliptical set of 

groups G, and pairing e.   

Initially, when the controller starts, it creates the Master Secret, and it creates the Public 

Parameters Group. As the end host starts, it pings the controller. The controller, in turn, creates 

the corresponding private key and passes this key and public parameters to the host. For 

simulation purposes, a DRDoS attack is simulated using DNS Servers, towards which the 

attacker will send source-IP spoofed DNS query request packets. Hence the request is in the 

form of a DNS query to which the DNS server will respond. Further, to prevent replay attacks, 

the timestamp was added with the query to be sent. Thus, the total message to be signed is the 

[DNS-query + timestamp], and this signature (using BLMQ) is added after this message.   

Two different sets of experiments were conducted using the experimental setup. The 

first experiment showed a bandwidth test between the test server and the victim host. During 

this test, the bandwidth of the network link of the victim was kept at 500 Mbps while 

conducting a DNS-based DRDoS attack. We used HTTP traffic to generate legitimate traffic 

in our experimental analysis. The available bandwidth was recorded with both the BLMQ 

signature scheme and without it. In the second experiment, to measure the overhead due to the 

proposed method, we measured the RTT of a DNS request-response cycle with both the 

signature scheme present and not. For this, the victim host sends a legitimate packet to the DNS 

server, which then decrypts and verifies the signature and replies with the appropriate response 

packet. 

The proposed architecture requires modifying the functionality of the base protocol 

used for DRDoS attacks. Since, in this paper, we use DNS-based DRDoS attacks for 

experimentation purposes, DNS functionality needs to change to implement the BLMQ 

signature scheme. 
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6.5.2 Results and Discussion 

This section shows the validation and effectiveness of the proposed PoDIBC scheme. 

It proves that with PoDIBC in place and with victim under attack, the attack traffic does not 

reach the victim, thus preventing its network from DRDoS attack. The second set of 

experiments shows the overhead of implementing PoDIBC. 

Figure 6.4 : Available intermediate bandwidth between the victim and test server with 
PoDIBC in place. 

Figure 6.4 shows the available TCP test bandwidth during the attack as a function of 

time between the victim host and the test server. It is when the signature verification scheme is 

in place. Experiments show that out of the available 500 Mbps link bandwidth, on average, 460 

Mbps (or 92%) of effective intermediate bandwidth is available between the victim host and 

the test server. Thus, even though the attacker is making an attack of 1 Gbps with source-IP 

spoofed to that of the victim host, there is no effect on the available bandwidth (thus 

communication) between the victim and servers. Correspondingly, Figure 6.5 shows the 

available bandwidth without the signature verification scheme in place. In this case, the DNS 

server reflects the packets toward the victim; thus, it is under attack. Here, an average 

bandwidth of 0.52 Mbps (or 0.1%) was available, considerably lower than the one achieved in 
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the previous case. It is worth emphasizing that for both Figure 6.4 and 6.5 there was no effect 

on the bandwidth for first 1-2 seconds of the start of an attack. 

Figure 6.5 : Available intermediate bandwidth between the victim and test server without 
PoDIBC in place. 

Since the BLMQ signature verification scheme requires additional computation, an 

additional delay is expected in the corresponding client-server communication service. The 

computational cost would increase because of the following two additional tasks. 

Task-1: Getting a private key and Public Parameter Group from the SDN controller.  

Task-2: Using the Public Parameter Group and private key, generate the sign using the 

BLMQ signature scheme, embed the sign into the network packet, and verify it at the receiver 

end. 

To show the delay caused by Task-1, we incorporated fetching the parameters while 

sending the first request and response packet. The hosts fetch the parameters from the controller 

using the SDN-enabled OpenFlow switch, as shown in Figure 6.3. Alternatively, a host can be 

configured to fetch these parameters and a private key when it connects to the network. After 

that, upon acquiring all the parameters, only Task-2 is required for the subsequent 

communication. To show these additional delays caused by BLMQ, we calculate the following:  
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a) The RTT delay of the first request packet- this delay includes fetching the parameters 

from the controller, creating a request packet with the sign, sending the packet, sign 

verification at the server after fetching the parameters, and getting the response. 

b) Packet creation delay due to signing the packet at the client side- this delay includes 

generating the sign using the already acquired private key and Public Parameter Group 

and embedding the sign into the outgoing network packet.  

c) Packet processing delay due to verification at the server side- this delay includes 

overhead because of Signature verification at the receiver using an already acquired 

Public Parameter Group. 

d) The RTT overhead in terms of RTT of the second packet onwards, i.e., once the host 

has already acquired the private key and Public Parameter Group. It shows the overhead 

of implementing the proposed PoDIBC scheme for DRDoS prevention. 

All four delays are shown respectively in Figures 6.6-6.9. Each graph shows the delay 

with and without the signature verification approach for twenty iterations of experiments. 

Figure 6.6 : RTT for first request packet 
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Figure 6.6 shows the RTT delay of the first request packet. The average RTT for the 

first request packet is 2.3 seconds with the signature verification scheme and 0.05 seconds 

without the signature verification scheme. It is important to note that this delay is only for the 

first packet, not subsequent packets, thus no significant impact on overall performance and user 

experience. Therefore, in the context of preventing DDoS attacks, this delay is an acceptable 

measure to protect the system from potential threats while minimizing the impact on legitimate 

traffic.  

Figure 6.7 shows the overhead (in terms of delay introduced) in request packet creation 

at the client side due to sign generation. The request packet creation process with the PoDIBC 

scheme in place introduces an average delay of 7 ms in request packet creation at the client 

side, while without it, the delay is only 1 ms. Therefore, the additional delay due to sign 

generation is about 6 ms on average. 

Figure 6.7 : Overhead in packet creation due to sign generation 

Figure 6.8 illustrates the processing delay to verify the signature on the server side. 

Specifically, the delay with sign verification is, on average 16 ms; without it, the delay is only 

0.2 ms.  

0

0.002

0.004

0.006

0.008

0.01

0.012

0 5 10 15 20

D
el

ay
 In

 S
ec

on
ds

Number of Iteration

Delay Due to  Sign  Genera t ion

Packet-creation with Sign Packet-creation-without Sign



121 
 
 

Figure 6.8 : Overhead due to Sign verification 

The RTT graph in Figure 6.9 shows the total delay caused by the additional signing and 

verification. RTT is the time taken to send the signed packet and receive the response after 

verification. The average RTT when PoDIBC was in place was 76 ms; when PoDIBC was not, 

it was 55 ms. Thus, the additional average computational delay was 21 ms due to PoDIBC. 

Figure 6.9 shows the overhead while implementing the proposed DDoS prevention scheme 

using the BLMQ signature. 

Figure 6.9 : RTT overhead because of BLMQ signature scheme for DDoS prevention 
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We verified 100 messages with the BLMQ algorithm with 100% accuracy. Accuracy 

means the number of times the algorithm could authenticate correctly spoofed as spoofed and 

honest as honest. The BLMQ's implemented runtime for 100 messages was 1.663 seconds. 

6.5.3 Comparison and Discussion 

The proposed scheme is not susceptible to key revocation problems. Key revocation is 

a problem for IBC (Schridde et al., 2009). Since the public and private key pairs are generated 

using an identity unique to a participating entity, if somehow the keys are known by the 

perpetrator, they can be misused continuously. As the identity unique to a host cannot be 

changed, the private/public key pair also cannot be changed. The IBC-based scheme proposed 

using IP addresses as an identity does not pose this threat because IP addresses can be dynamic. 

It is not hard-coded like a MAC address.  

Also, in the proposed scheme, the network overhead in carrying additional bits of 

information (in the form of a signature) is less than (Schridde et al., 2009). The total bit-length 

of the sign is- Sig= (hs, Ss). We have used SHA224 for the hash, so hs= 224 bits. As shown in 

eq (iv) and eq(viii), Ss are dependent on the order of the field. As mentioned in (Elliptic Curve 

Cryptography (ECC), 2022) the private keys are in the range of elliptical curve field size, which 

usually is 256 bits.  Hence, Ss can be considered to be 256 bits. We also need to send the 

query+timestamp to verify. The query is sent with the DNS packet, and the timestamp requires 

192 bits. Thus, the total length of sign Sig is = 672 bits (i.e. 224 + 256 + 192).  Comparatively, 

the scheme of TrueIP (Schridde et al., 2009) requires 4128 bits, and that of X.509 certificate 

requires 6144 bits, as mentioned in (Schridde et al., 2009). Thus, regarding the number of bits 

required, the proposed scheme in this paper requires approx. one-sixth network packet space 

as compared to (Schridde et al., 2009)  and approx. one-ninth as compared to X.509 (Schridde 

et al., 2009). 
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The TrueIP scheme is susceptible to a DRDoS attack, which is not the case in PoDIBC, 

as shown in section 6.4. In TrueIP, the Private key is calculated as per eq. (6.13): 

H(ID)1/R (mod N) ……….. (6.13) 

where, ID is public identity, and R and N are public shared parameters. 

If the process to generate the private key is also known, then any perpetrator can 

generate the private key using these public parameters. If an attacker can also generate the 

private key, it can quickly generate spoofed messages, thus capable of launching DRDoS 

attacks. Specifically, suppose an attacker A1 knows the IP address of victim V1 (IPV). It will 

generate the private key using public shared parameters R and N using eq (6.14). 

Prkey= H(IPV)1/R (mod N) ……… (6.14) 

Spoofing can be done using this private key, making a DRDoS attack possible. In the 

PoDIBC scheme, the private key is generated using a Master Secret only known by the 

controller, so even if the identity is known, the private key cannot be generated, as shown in 

eq (6.4). 

IPsec is a complete security protocol that provides encryption with authentication using 

certificates. It involves protocols to negotiate keys and encryption algorithms that will be used 

before the process of authentication starts. It is a heavy protocol that provides a very secure 

channel for communication. Only to provide authentication, which our single packet approach 

can also achieve, renders the need for a heavy protocol like IPsec. 

6.6 Summary of the Chapter 

In conclusion, our research demonstrates that preventing DRDoS attacks using 

PoDIBC, a DRDoS prevention technique based on the BLMQ signature scheme of IBC, is a 

more effective approach than detection and mitigation. Our technique is mathematically and 

experimentally validated in an SDN environment, and we have shown that it is not susceptible 
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to replay attacks. Moreover, PoDIBC can detect IP spoofing and can be applied to prevent 

source IP spoofing in general. Our experiments have shown that implementing PoDIBC 

requires SDN-enabled edge networks, but no change in the core network is necessary. The 

experiments have also shown that the overhead of PoDIBC in terms of increased RTT and 

additional space in network packets is reasonable. When PoDIBC is in place, the victim's 

network is always protected from attack traffic, and the victim's bandwidth remains unaffected. 

********** End of Chapter ********** 
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CHAPTER 7- Near Real-Time Detection and Mitigation of DDoS Attacks through 

Feature Optimization in a Software-Defined Networking Environment 

 

7.1 Introduction 

Machine Learning (ML) is a key element in the rapidly expanding discipline of data 

science (What Is Machine Learning(ML)?, IBM). ML algorithms are trained using statistical 

techniques to produce classifications or predictions about a given dataset. These classifications 

and predictions provide insightful details for businesses to grow and understand consumers’ 

needs. Following the emergence of ML and AI, scientists began employing ML methods to 

identify and safeguard against DDoS attacks. It involves analyzing the intrinsic distinctions 

between malicious and legitimate network traffic. Various factors such as traffic rate, packet 

quantity and frequency, and the presence of multiple flows directed to a single destination IP 

address exhibit specific variances between harmful and benign traffic. Thanks to the progress 

in AI, ML algorithms have evolved to a level of sophistication where they can classify traffic 

as either malicious or benign by leveraging these distributional dissimilarities. 

However, the effectiveness of ML models heavily relies on the quality and 

comprehensiveness of the training data they receive for detection purposes. Consequently, the 

subsequent challenge has been to obtain well-defined datasets that accurately represent the 

various types of attacks. Fortunately, this predicament has been addressed with the contribution 

of the CICDDoS 2019 attack dataset by the Canadian Institute for Cybersecurity (DDoS 

Evaluation Dataset (CIC-DDoS2019)), (Sharafaldin et al., 2019). This dataset encompasses 

multiple distinct datasets specifically designed to simulate different types of attacks. The 

availability of the aforementioned dataset has spurred significant research in this domain, with 
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numerous studies exploring various ML and Deep Learning (DL) approaches for detecting 

attacks (Samom et al., 2021), (Kshirsagar & Kumar, 2022), (Rajagopal et al., 2021), and others. 

We have employed the CICDDoS 2019 attack dataset to train our ML model. The rationale 

behind this choice lies in the dataset’s extensive nature, exclusively encompassing diverse 

DDoS attack types. In contrast, datasets like KDD-cup and UNSW-15 contain a broader 

spectrum of cybersecurity threats, which includes DDoS attacks but not exclusively. Therefore, 

we opted for a dataset focusing solely on a variety of DDoS attacks.  

In the previous chapters, we study techniques involving amendment in the network 

layer or routing techniques to provide True Prevention. In this chapter, we delve into the 

utilization of machine learning models to detect and prevent attacks. The proposed method lies 

in the category of Partial Prevention. Our primary focus lies on employing the random forest 

model  (BREIMAN, 2001) to identify DDoS attacks such as Portmap, DNS, UDP-lag, UDP, 

and SYN, which are present in the CICDDoS 2019 attack dataset. Remarkably, we achieve an 

impressive accuracy rate of 99.9% in detecting DDoS attacks using this model. We deploy the 

trained model in a topology created in an SDN environment for near real-time attack detection. 

By near real-time detection, we mean that some attack traffic will reach the victim by the time 

the attack is detected. In our simulated setup, this attack traffic is approx. 1% of the total attack, 

and the maximum time to detect the attack is 5.3 seconds; hence near real-time. 

Within the simulated environment, an effective defense against DDoS attacks is 

implemented through the use of an SDN barrier. This barrier is composed of an SDN switch 

that replicates all incoming network traffic to a dedicated computing device running the trained 

model. The primary responsibility of this model is to detect attacks and promptly inform the 

controller regarding the source IP address of the attacker. Subsequently, the controller takes 
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action by discarding packets originating from the identified IP address, effectively blocking the 

ongoing attack. The key contributions of this study can be summarized as follows: 

 We conducted training using the random forest algorithm on the CICDDoS 2019 attack 

dataset. 

 Through meticulous hyperparameter tuning and optimized feature selection, we 

achieved a significant accuracy for the random-forest model, an impressive 99.9%. 

 By reducing the number of features from 88 to 15, we successfully achieved near real-

time detection of attacks with an accuracy of 99.99%. 

 In the SDN environment, we generated realistic random DDoS attack traffic and 

legitimate traffic. By leveraging the capabilities of the SDN switch, we seamlessly 

mirrored this traffic to a specific node running the trained model. Consequently, the 

model effectively classified the traffic as either an attack or normal. 

 Additionally, we computed valuable statistics to determine the proportion of attack 

traffic versus benign traffic that actually reached the intended victim. 

 The accuracy achieved through Random Forest was better than that achieved by the 

multi-classifier approach proposed by (Rajagopal et al., 2021). We achieved an 

accuracy of 99.9% for CICDDoS 2019 attack dataset, in comparison to 97% accuracy 

achieved by (Rajagopal et al., 2021). 

7.2 Related Work 

There has been promising research in detecting cyberattacks, like DDoS attacks, using 

ML and DL techniques. Due to their accuracy, ML techniques can be deployed to detect DDoS 

attacks by extracting a selected set of features from network traffic. The method proposed by 

(Munivara Prasad et al., 2016) uses ML to achieve fast detection of app-DDoS attacks. The 

approach focuses on a set of requests over an absolute time interval to detect anomalies in a 
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network. Different metrics are the ratio of packet types, packet count, route context, router 

chain, context, a ratio of request intervals, etc. The performance is measured by calculating 

precision, recall, sensitivity, and specificity. Considering that every DDoS attack tool has its 

signature, (Laskar & Mishra, 2016) have proposed a detection technique. First, a database is 

created using 14 feature vectors. Two vectors are used to filter out “suspicious” traffic; then, 

the remaining 12 vectors are used on this suspicious traffic to test it for possible DDoS attacks. 

Authors claim that this scheme can be used in real time. (Oo et al., 2015) proposed a packet 

classification approach for DDoS prevention using a hidden semi-markov model based on a 

selected set of parameters. It involves collecting packets every second, extracting features, 

applying a classification algorithm, and using the hidden semi-markov model algorithm. The 

set features include -the number of packets and bytes from a source to a destination IP address, 

packet rate and byte rate, etc. It then defines a classification algorithm with rigid decision 

boundaries for each parameter. It is computation and memory intensive since it requires 

keeping track of packets from each source IP  address to each destination IP address and has 

many parameters to compute. (Yadav & Subramanian, 2016) proposed pattern learning to 

detect application-layer DDoS attacks. A model based on neural networks like autoencoder 

was applied for broad learning. The process was divided into training and testing the features 

extracted from web server logs. The approach (M. E. Ahmed et al., 2017)  proposed is based 

on traffic monitoring and clustering using unsupervised learning. The proposed Dirichlet 

process mixture model is a Bayesian approach for clustering over nonparametric traffic 

patterns. Traffic features include- the total number of packets transmitted, connection duration 

time, and ratio of source and destination bytes. The proposed approach consists of a learning 

module, a traffic statistics manager, and a network resource manager. The limitation is that as 

traffic flow increases, the accuracy of detecting an attack traffic connection reduces, and the 

misclassification rate (i.e., the number of feature vectors assigned to wrong clusters over total 
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features) reaches nearly 50%. (C. C. Chen et al., 2017) have used SDN and ML techniques for 

implementing a system to detect DRDoS packets and block amplification attacks 

automatically. Their training model is built upon eight features: forward packet count, 

backward packet count, flow volume, etc. They have shifted the detection towards the network 

gate. 

In the study proposed by (Nurwarsito & Nadhif, 2021), a DDoS attack detection and 

mitigation system was developed within the framework of SDN architecture, employing the 

random forest algorithm. The random forest algorithm serves to categorize incoming packets 

as either normal or indicative of an attack, based on their flow entries. A limitation of this study 

lies in the choice of the attack dataset used for training the random forest model. The dataset 

employed in this study departs from the conventional standard, as it was generated by the 

authors within the SDN environment, rather than being sourced from a more diverse and 

authentic collection of DDoS attacks. Similarly to this (Santos et al., 2020) have also used 

various ML algorithms like random forest, decision tree, SVM, and multi-layer perceptron to 

detect and mitigate attacks of SDN environment. The DDoS attacks generated are limited to 

SDN environment. This study also has the limitation of not using a standard dataset for training 

the ML models. way to remove the load from controllers.  

Using the CICDDoS dataset, we have focused on papers based on the same dataset. 

(Sharafaldin et al., 2019) explain the CICDDoS-2019 dataset (Developing Realistic Distributed 

Denial of Service (DDoS) Attack Dataset and Taxonomy). The article describes how the data 

has been collected, the taxonomy of different datasets, and the weights of various features to 

respective datasets. (Samom et al., 2021) have used the CICDDoS 2019 dataset and tried out 

different ML models like logistic regression, random forest, naive Bayes, k-nearest neighbor, 

etc. The results show that random forest gave better results with low latency. K-nearest 
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neighbor also showed better results but took more time to detect the attack. (Rajagopal et al., 

2021) has provided a meta-classification approach for network intrusion detection in a cloud 

environment. Decision jungles, neural networks, and logistic regression are used for multi-

class classification. They have verified their approach with UNSW NB-15 (The UNSW-NB15 

DATASET), (Moustafa & Slay, 2015), (Moustafa & Slay, 2016), (Moustafa et al., 2017), 

(Moustafa  et al., 2017), (Sarhan et al., 2021), CICIDS 2017 (Sharafaldin et al., 2018), 

(Intrusion Detection Evaluation Dataset (CIC-IDS2017)), and CICDDOS 2019 attack datasets. 

(Kshirsagar & Kumar, 2022) have improved attack detection accuracy by implementing a 

feature reduction method. They have used information gain and correlation feature selection 

techniques. They also use the CICDDoS 2019 attack dataset with the J48 classifier. (Assis et 

al., 2021) proposed an SDN defense system against intrusion and DDoS attacks. The proposed 

approach comprises two main parts, the detection and mitigation modules. The detection 

module consists of gated recurrent, which is a recurrent DL approach. (Ma et al., 2023) have 

also used CICDDoS 2019 dataset to train their random forest model in SDN environment. They 

also reduce the total feature set to only 24 features. We optimize the feature selection process 

further by reducing it to 15.  

7.3 Proposed Methodology 

Our proposed approach aims to achieve near real-time DDoS attack detection with 

minimal impact on the victim. The methodology involves the implementation of a trained ML 

model within the network, which will be responsible for predicting potential attacks. This 

model uses the traffic data obtained through port mirroring to make accurate predictions. 

Consequently, our proposed work can be divided into two main parts. 
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The first part entails the selection and training of the ML model, while the second part 

involves setting up an SDN network to thoroughly test and validate the model’s performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 : Proposed ML architecture  
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7.3.1 Machine learning Architecture 

Our model training process involves utilizing the CICDDoS-2019 dataset, specifically 

selecting datasets such as DNS, SYN, UDP, UDP-lag, and Portmap, encompassing reflection 

and volumetric attacks. As illustrated in Figure 7.1, we perform preprocessing and feature 

reduction on the dataset before feeding it into the model. Additionally, we fine-tune the 

hyperparameters prior to deploying the trained model in the network. 

7.3.2 Model Selection 

We use random forest, an ML algorithm, to train our model. (Samom et al., 2021) have 

used the CICDDoS 2019 dataset and tried out different machine learning models like logistic 

regression, random forest, naive bayes, k-nearest neighbor, etc., The results show that random 

forest (BREIMAN, 2001) gave better results with low latency. So, we have proceeded with the 

random forest ML algorithm for our use case. 

7.3.3 Preprocessing  

As outlined in Section 7.1, we employ the CICDDoS-2019 attack dataset for training 

the random forest model. Before inputting the dataset into the model, we perform preprocessing 

steps, which involve replacing any infinity and NaN values with 0. It is important to note that 

we choose not to drop these values to prevent any loss of information. In order to address the 

dominance of attack data within the dataset, we employ a data augmentation technique known 

as oversampling before feeding the dataset into the model. Through oversampling, we increase 

the representation of benign data to achieve a more balanced distribution with the attack data. 

This process effectively enlarges the overall dataset size. 

Considering memory limitations, during the model training phase, we utilize three 

million samples for each dataset, encompassing all 78 features, for the purpose of feature 

selection. Subsequently, as we progressively reduce the number of features through the feature 
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selection approach, we increase the number of samples to enhance the final training of the 

random forest model. 

7.3.4 Feature Selection 

To enable near real-time detection of DDoS attacks without compromising accuracy, 

reducing the number of features is essential. While ensuring the detection accuracy remains at 

approximately 99%, we reduced the features from 88 to 15. The rationale behind opting for a 

limited set of features is to efficiently retrieve the minimum necessary information from raw 

pcap files in real-time, precisely during the occurrence of an attack. Research conducted by 

(Ma et al., 2023) has demonstrated that reducing the number of features can significantly 

diminish attack prediction time while maintaining prediction accuracy. 

We aim to reduce the dataset’s feature count without altering the fundamental feature 

values. We employ feature subset selection techniques rather than feature reduction to achieve 

this. As a result, we utilize Correlation and Mutual Information classifiers for feature selection, 

eschewing feature reduction methods like PCA. PCA, a dimensionality reduction technique, 

derives principal components grounded in feature covariance. By employing correlation, we 

get the linear relationship between two variables. When applied to feature selection, it helps 

identify features with a strong linear correlation with the target variable. MI is a more general 

measure of the dependence between variables. It can capture non-linear relationships, which 

correlation may miss. MI makes it suitable for feature selection in cases where the relationship 

between features and the target is not strictly linear. Hence, we take a union of the features 

selected from these two algorithms to capture both linear and non-linear relationships. 

Algorithm 7.1: Process for feature reduction 

Input- CICDDoS_2019_dataset- [data1=SYN, data2=PORTMAP, data3=DNS, 
data4=UDP, data5=UDPLAG] 
/*data is in the form of 2-D matrix i.e. - data[a,b] where a= flow-id number and 
 b= feature number 
Let, f[n] represents the nth feature, where (n= 1 to 78) */ 
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Algorithm- Find_Cor-Coeff () 

Repeat for each of the five datasets, i.e. SYN, UDP, UDPLAG, DNS, PORTMAP 

{ 

for ( n = 1; n <= 78; n ++) 

Cor [n] = Correlation-Coefficient of fn with target feature ‘Label’ 

for ( i = 0.1; i < 1.0; i += 0.05) 

{ 

    for ( n = 1; n <= 78; n ++) 

    { 

       if ( Cor [n] >i) 

 List_cor [i] [n] = fn 

       } 

                  Calculate F1 score, precision, recall, and accuracy of List_cor[i] 
 } 
} 
Algorithm- Find_MI-score () 

Repeat for each of the five datasets, i.e. SYN, UDP, UDPLAG, DNS, PORTMAP 

{ 

for ( n = 1; n <= 78; n ++) 

MI [n] = MI-score of fn with target feature ‘Label’ 

for ( i =.0001; i  < MI; i += 0.05) 

{ 

    for ( n = 1; n <= 78; n ++) 

    { 

       if ( MI [n] >i) 

 List_MI [i] [n] = fn 

       } 

                  Calculate F1 score, precision, recall, and accuracy of List_MI[i] 
 } 
} 
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In addition to reducing the overall number of features from 88 to 15, it is important to 

note that some features of type string (object) were also excluded from consideration to perform 

data augmentation using oversampling. The feature selection procedure was specifically 

applied to the remaining 78 features. This methodology involves leveraging the Pearson 

correlation and mutual info (using the SelectKBest feature selection method) of sklearn library. 

By employing these methods, we were able to effectively identify the most relevant and 

informative features for the task at hand. The process can be divided into the following steps: 

a) As shown in algorithm 7.1, we separately calculate the correlation coefficient and 

Mutual Info (MI) of Portmap, SYN, DNS, UDP, and UDP-lag datasets. This calculation 

was performed using all 78 available features. We determine the range for the 

correlation coefficient as values ranging from 0.1 to 1, and for the MI score, the range 

is set from 0.0001 to the maximum MI value until only one feature remains. We 

calculate various evaluation metrics within these specified ranges, such as precision, 

recall, and F1 score, for both the benign (0th class) and attack (1st class) datasets. We 

calculate these metrics specifically for the features falling within the aforementioned 

range. 

b) Precision, recall, and F1 score graphs are plotted with varying correlation coefficients 

and MI scores, as shown in Figure (7.2-7.6), (The data for these graphs is provided in 

Appendix C). The x-axis represents the correlation value or MI score in these graphs, 

while the y-axis represents the corresponding precision, recall, and F1 score. When 

observing the graphs, if there is a noticeable dip in the value for a particular correlation 

coefficient or MI score, we consider the features from the dataset that have a value 

greater than or equal to that specific coefficient or score.  
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Figure 7.2 : Precision, F1 score and recall for correlation and MI score of DNS dataset 
 

  

Figure 7.3 : Precision, F1 score and recall for correlation and MI score of Portmap dataset 
 

 
Figure 7.4 : Precision, F1 score and recall for correlation and MI score of SYN dataset 
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Figure 7.5 : Precision, F1 score and recall for correlation and MI score of UDP dataset 
 

 

Figure 7.6 : Precision, F1 score and recall for correlation and MI score of UDPLag dataset 
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Table 7.1 : Selected feature values and their description 

S.No. Feature Name Description 
1 ‘ Fwd Packet Length Min’, Minimum size of packet in forward 

direction 
2 ‘URG Flag Count’ Number of packets with URG 
3  ‘Min Packet Length’ Minimum length of a packet 
4 ‘Avg Fwd Segment Size’ Average size observed in the 

forward direction 
5 ‘ACK Flag Count’ Number of packets with ACK 
6 ‘Init_Win_bytes_forward’ The total number of bytes sent in 

initial window in the forward 
direction 

7 ‘Bwd IAT Total’ Total time between two packets 
sent in the backward direction 

8 ‘Average Packet Size’ Average size of packet 
9 ‘Fwd Packet Length Mean’ Mean size of packet in forward 

direction 
10 ‘Packet Length Mean’ Mean length of a packet 
11 ‘Packet Length Std’ Standard deviation length of a 

packet 
12 ‘Packet Length Variance’ Variance length of a packet 
13 ‘Bwd IAT Max’ Maximum time between two 

packets sent in the backward 
direction 

14 ‘Flow Duration’ Duration of the flow in 
Microsecond 

15 ‘Flow IAT Mean’ Mean time between two packets 
sent in the flow 

 

The feature importance or relevance in sklearn is calculated by normalizing the decrease 

in node impurity through the likelihood of reaching that node (Ronaghan, 2018). We computed 

the node probability by dividing the total number of samples by the number of samples that 

reach the node. The feature with a higher value is more significant. Feature importance  of 

feature t is calculated as (Ronaghan, 2018): 

 

= node i importance calculated by gini importance.   
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For each decision tree, scikit-learn calculates node importance ( ) as 

………… (7.2) 

 = ith node importance calculated by gini importance  

  = weighted samples reaching node i 

  = gini impurity of the ith node 

 = weighted samples reaching the left split of node i 

  = gini impurity of left split 

  = weighted samples reaching the right split of node i 

  = gini impurity of right split 

To determine the ultimate feature relevance at the random forest level, the process 

involves calculating the importance of each attribute for every tree and then dividing the total 

by the number of trees; it is :-  

 

 = final feature importance of feature t, through all random forest trees.  

 = normalized feature importance of feature t 

7.3.5 Hyper-Paramter Tuning 

Before deploying the trained model in the network, we perform hyper-parameter tuning 

on the random forest model using the complete dataset.  

The hyper-parameters that we tune include n_estimators (number of trees), max_depth, 

min_samples_leafs, max_features, and max_leaf_nodes. We aim to identify the optimal values 

for each hyper-parameter, which we achieve by evaluating the OOB scores. The OOB score is 

computed using data that was not utilized during the model’s analysis, and therefore we rely 
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on the OOB scores to select hyper-parameter values. Figure 7.7 illustrates the OOB scores 

compared to the training scores for various hyper-parameter values. 

  

   

 

Figure 7.7 : Accuracy and OOB_score of hyper-tuned parameters (a) no_of_trees (b) 

max_depth (c)min_samples_leaf (d) max_features (e) max_leaf_nodes 

With the help of these graphs, the values chosen for hyper-parameters are shown in Table 7.2- 

 

(a) (b) 

(c) (d) 

(e) 

                            oob_score 

                             train_score 
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Table 7.2 : Optimal values of the chosen hyper-parameters 

S. No. Hyper-Parameter Optimal Value 

1 n_estimators 20 

2 max_depth 8 

3 min_samples_leaf 4 

4 max_features sqrt 

5 max_leaf_nodes 75 

 

The hyper-parameters min_samples_split, oob_score, and verbose are kept at default 

values which are two, true, and true, respectively. The accuracy of the trained model on the 

selected features and the tuned hyper-parameters is 99.94%. This trained random forest model 

was now applied in our SDN environment to validate the approach. 

7.4 The SDN Barrier 

As the name suggests, the SDN barrier is a barrier between the attacker and the victim, 

as shown in Figure 7.8. It is a term used for a setup in an SDN environment to prevent the 

DDoS attack from reaching the victim. It consists of an SDN controller, the SDN switch 

responsible for mirroring the traffic, and the detection module (the machine running the ML 

model for predicting the attack). It is a protective measure that can be applied anywhere 

between the victim and the attacker organization. 

To facilitate the detection of malicious traffic, the traffic directed towards the victim is 

mirrored to a dedicated node running the trained random forest model. This model assesses the 

traffic and predicts whether it is benign or an attack. 
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Figure 7.8 : Proposed architecture of SDN barrier 

In order to enable this process, the SDN controller configures flow rules for port 

mirroring on the SDN switch. When the traffic is identified as benign, no further action is taken. 

However, if the traffic is determined to be malicious, the SDN controller is instructed to block 

all traffic originating from the corresponding IP address. This is achieved by the controller 

pushing a flow rule to the switch, thereby dropping any flows from the attacker’s IP address.  

We simulate a real-case scenario in the SDN environment, where an attacker 

organization attacks a victim. We have deployed a DNS_DRDoS attack using a DNS Server. 

The methodology is as follows: 
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 Initialization: Set up the SDN environment, including the SDN controller, SDN switch, 

and the node running the trained model. 

 DNS_DRDoS attack setup: Configure the DNS server to execute the DNS_DRDoS 

attack.  

 Traffic mirroring: Configure the SDN controller to enable port mirroring on the SDN 

switch. This ensures that all incoming traffic, including the attack traffic, is duplicated 

and forwarded to the node running the trained model for analysis. 

 Traffic analysis: The trained random forest model on the node analyzes the mirrored 

traffic in real-time. Based on the learned patterns and features, it classifies the traffic as 

benign or malicious. 

a. The computing node saves the traffic in the form of .pcap files. These files are saved 

every 20 seconds or when they exceed 50 MB in size, whichever happens first. 

b. The .pcap files are processed using CICFlowmeter (Cybersecurity). This tool 

extracts the relevant features from the .pcap files and generates a .csv file. 

c. The generated .csv file is then fed into the pre-trained machine learning classifier. 

The classifier analyzes the network flows and classifies them as either malicious or 

benign based on the learned patterns and features. 

 Detection of malicious traffic: If the model identifies any traffic as malicious, it notifies 

the SDN controller about the attacker’s IP address associated with the malicious traffic. 

 Flow rule deployment: The SDN controller dynamically pushes flow rules to the SDN 

switch, instructing it to drop any flows originating from the identified attacker’s IP 

address. This action effectively blocks the attack traffic from reaching the victim. 

 False positives: If the victim sends a request packet to an IP address previously blocked, 

the system identifies it as a potential false positive. In such cases, the controller is 

instructed to unblock the IP address to allow the traffic to flow freely. 
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By following these steps, the system can effectively monitor and classify network flows 

in real-time, proactively blocking malicious traffic and mitigating potential false positives for 

a more efficient and accurate prevention and mitigation system. 

7.4.1 Handling False Positives- 

 There may be instances where benign traffic is erroneously classified as attack traffic 

by the model, leading to false positives and subsequent blocking of benign IP addresses by the 

controller. For instance, in the case of a DNS_DRDoS attack, the controller may block the DNS 

server responsible for generating attack traffic toward the victim. Consequently, if the victim 

sends a DNS request to this server, the server’s response will not reach the victim because it is 

already blocked. We have implemented a mechanism to unblock IP addresses to address this 

issue if the victim generates a request directed toward that specific IP address. This ensures 

that even if the controller mistakenly blocks the DNS server, it will be unblocked once the 

victim initiates a request to that IP address. By incorporating this concept, we prevent any 

disruption to legitimate communication between the victim and the blocked IP address, 

mitigating the impact of false positives. 

7.5 Result And Analysis 

This section describes the experimental setup done to validate the proposed approach. 

The time taken to detect the attack through the proposed model is also calculated and shown in 

this section. 

7.5.1 Experimental Setup 

As shown in Figure 7.9, to test the proposed approach’s effectiveness, we simulated a 

network using Mininet (Mininet, 2022). 
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Figure 7.9 : Experimental setup 

The topology consists of a victim’s network where the model runs on node h7, an 

attacker’s network, a DNS server for generating attack traffic, and a test server for generating 

benign traffic. The simulations steps are as follows- 

 The attackers perform a DNS reflection attack on the victim network, specifically on 

the node labeled ‘h5’. There are two attack networks, each consisting of two attackers, 

i.e., the nodes ‘h1’, ‘h2’, ‘h3’, and ‘h4’.  They spoof the source IP address to match that 

of ‘h5’ and send DNS request packets to the DNS server ‘h9’. 

 The nodes ‘h5’ and ‘h6’ in the victim network randomly send and receive benign traffic 

from the TCP test server ‘h8’. 

In this simulation, the S3 switch acts as an SDN barrier. The controller installs a flow 

rule to automatically send all traffic that enters and exits the victim network to node ‘h7’. 
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 The trained ML model is running on node ‘h7’.  If it detects a malicious flow, it notifies 

the controller to install a drop rule in ‘S3’ (SDN switch). It corresponds to the malicious 

flow’s source IP address and blocks it. If the victim network sends traffic towards the 

blocked IP address even after it was blocked, ‘h7’ notifies the controller to remove the 

drop rule from ‘S3’ as it is likely the result of a false positive. 

We ran the attack simulation for six minutes and six seconds since that is the median 

length of a DDoS attack (The Median Duration of DDoS Attacks Was 6.1 Minutes in the First 

Half of 2021). To test the algorithm’s efficiency, we calculated the following parameters:- total 

attack traffic sent, total attack traffic reaching the victim, total benign traffic sent from the test 

server, total benign traffic received from the test server, time taken to block the attack, 

percentage of attack traffic reaching the victim, percentage of benign traffic reaching the 

victim, and avg attack rate. 

7.5.1 Results and Observations 

Table 7.3 shows the calculated parameters as mentioned in section 7.5 with varying 

attack rates ranging from 200Mbps to 1Gbps. The time taken to block the attack ranges from 

5.3 to 3.8 seconds. The detection time appears to decrease when the avg attack rate increases 

as the .pcap reach 50MB faster due to the faster rate of incoming traffic. 

Table 7.3 : Traffic at the victim with varying attack rates 

 200Mb/s 400Mb/s 600Mb/s 800Mb/s 1Gb/s 

Total attack traffic sent 8.2GB 15.16GB 21.03GB 27.47GB 30.84GB 

Total attack traffic 
reaching the victim 

108.51MB 145MB 211.50MB 218MB 241MB 

Total benign traffic sent 
from test server 

2.8MB 2.6MB 2.8MB 2.53MB 2.8MB 
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Total benign traffic 
received from test server 

2.8MB 2.6MB 2.8MB 2.53MB 2.8MB 

Time taken to block the 
attack 

5.3 
seconds 

4.3 
seconds 

4.1 
seconds 

3.8 
seconds 

3.8 
seconds 

Percentage of attack traffic 
reaching the victim 

1.31% 0.96% 1.01% 0.80% 0.79% 

Percentage of benign traffic 
reaching the victim 

99.99% 99.99% 100% 100.00% 99.98% 

Avg attack rate 
174.79 
MBit/s 

323.95 
MBit/s 

451.35 
MBit/s 

601.37 
MBit/s 

705.92 
MBit/s 

 

Figure 7.10 : Generated attack vs. attack reaching the victim 

As shown in Figure 7.10, the attack traffic reaching the victim is much less than the 

traffic sent. On the other hand, as shown in Figure 7.11, the benign traffic sent is nearly the 

same as that received by the victim. On average, 99.27% of the benign traffic is successfully 

transferred across the network. It implies that the DDoS attack does not hinder benign traffic. 
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Figure 7.11 : Benign traffic sent vs. reaching the victim 

7.6 Summary of the Chapter 

In this chapter, we propose a model for near real-time detection of DDoS attacks using 

random forest. The datasets used for training the model are DNS, SYN, UDP, UDP-lag, and 

Portmap of the CICDDoS-2019 dataset. We perform feature reduction using correlation and 

MI. The finalized features are ‘Fwd Packet Length Min,’ ‘URG Flag Count,’ ‘Min Packet 

Length,’ ‘Avg Fwd Segment Size,’ ‘ACK Flag Count,’ ‘Init_Win_bytes_forward,’ ‘Bwd IAT 

Total,’ ‘Average Packet Size,’ ‘Fwd Packet Length Mean,’ ‘Packet Length Mean,’ ‘Packet 

Length Std,’ ‘Packet Length Variance,’ ‘Bwd IAT Max,’ ‘Flow Duration,’ ‘Flow IAT Mean.’  

To assess the accuracy of the trained model in a real-time scenario, we construct a SDN 

topology and generate both attack and legitimate traffic. The attack traffic is simulated to have 

a speed of approx. 1 Gbps, while legitimate traffic is also included in the simulation. As 

mentioned earlier, out of the total attack traffic with a speed of 1 Gbps, only 0.79% of the attack 

traffic reaches the victim, while the remaining 99.21% is effectively blocked. On the other 

hand, 99.98% of the benign traffic successfully reaches the victim. This demonstrates the 
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effectiveness of the proposed model in mitigating and intercepting the majority of the attack 

traffic, thus minimizing the impact on the victim. 

Furthermore, the trained model exhibits an impressive accuracy rate of 99.9% in 

detecting the attacks. This high accuracy is achieved through meticulous hyper-parameter 

tuning and optimized feature selection, reducing the feature set from 88 to 15 relevant features. 

These improvements significantly enhance the performance of the random-forest model, 

ensuring robust and accurate detection of attacks within the network. 

********** End of Chapter ********** 
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CHAPTER 8- Detection of Distributed Denial of Service Attacks using Entropy on 

Sliding Window with Dynamic Threshold

 

8.1 Introduction 

In the context of network traffic, entropy refers to the degree of randomness or 

unpredictability found within the transmitted data. It serves as a metric for evaluating network 

traffic patterns' complexity and informational content. When discussing network traffic, 

entropy can be determined through various methods. One common approach involves 

examining the distribution of data within the network traffic payload. If the values within the 

payload are evenly spread out, the entropy will be higher. Conversely, if certain values or 

patterns dominate the payload, the entropy will be lower. A low entropy value indicates that 

the network traffic exhibits predictable patterns or structures. This can be indicative of specific 

types of network traffic or anomalies. For instance, network traffic generated by automated bot 

activity might display low entropy due to the repetitive nature of their actions. Hence; leading 

to the detection of DDoS attacks. This chapter elaborated on detection of DDoS attacks using 

entropy, instead of prevention as defined in the previous chapters. 

Examining entropy within network traffic holds several benefits, including network 

monitoring, intrusion detection, anomaly detection, and traffic classification. By analyzing the 

entropy of network traffic, network administrators and security professionals can gain valuable 

insights into the characteristics and behavior of the network. This knowledge enables them to 

identify potential security threats or abnormalities more effectively.  

In the literature, many researchers use entropy to detect DDoS attacks. The majority of 

detection algorithms based on entropy use a static threshold (Bülbül & Fischer, 2020) (Ali et 

al., 2021). However, such a static threshold would not work efficiently for DDoS attack 
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detection, resulting in many false positives. For instance, in normal traffic, the entropy values 

can drop due to high traffic from a host and lead to a prediction of an attack, hence false 

positives. To address this issue, we use a dynamic threshold as proposed by (Wang et al., 2015) 

for SDN to detect the attack. We used the sliding window concept to get more accurate results 

on the dataset. For sliding the window, our left and right pointers move by one second to predict 

the attack in a particular time interval. We identify whether there is a sudden drop in the entropy 

value of a particular window compared to the average entropy value for some previously 

encountered windows. Such a drop in entropy value would increase the count of violations. To 

increase the effectiveness of attack detection, we look for the particular number of such 

violations in the previously fixed number of windows. It helps us to reduce the number of false 

positives significantly. The proposed methodology is tested on the (DNS_DRDoS and 

Portmap) dataset available in the CICDDoS2019 attack dataset, which resembles true real-

world data. More on this will be explained in section 8.3. 

8.2 Related Work 

Entropy measures the randomness in network traffic. One such type of entropy to 

measure uncertainty is Shannon’s entropy (Shannon, 1951). If n is the number of packets in a 

window and pi is the probability of occurrence of event xi, Shannon’s entropy H(X) is given 

by eq. (8.1) and eq. (8.2) – 

……………………………. (8.1) 

…………………………………. (8.2) 

Different authors have used variations of Shannon’s entropy to detect DDoS attacks. 

These include General Entropy(GE) (Sahoo et al., 2018), fast entropy (David & Thomas, 

2015), φ entropy (R. Li & Wu, 2020), etc. Sahoo et al. (Sahoo et al., 2018), have proposed the 
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use GE to detect DDoS attacks on SDN controllers. Taking advantage of flow-based traffic in 

SDN controllers, GE is used to detect low-rate DDoS attacks. Generalized entropy Hα(X) is 

given by (Sahoo et al., 2018), as shown in eq. (8.3) – 

 (8.3) 

where α is the order of general entropy, varying which different values of entropy can be 

calculated. When α = 1, it becomes Shannon’s entropy. (R. Li & Wu, 2020) have also proposed 

the detection of DDoS attacks against SDN controllers using entropy. They have used φ 

entropy for the detection of DDoS attacks. φ entropy is used to widen the differences between 

attack traffic and normal traffic, and also adjust parameters according to network conditions. φ 

entropy, Hφ (X) is given by (R. Li & Wu, 2020), as shown in eq. (8.4) – 

……………………… (8.4) 

The parameter φ is used to adjust the sensitivity of measuring the frequency of events, where 

φ > 0. To reduce computation time in the calculation of entropy, David et al. (David & Thomas, 

2015) proposed to use fast entropy to detect DDoS attacks. Their approach is based on flow-

based analysis while keeping an adaptive threshold based on traffic patterns. A flow consists 

of all packets with the same source and destination IP/port pair for a certain amount of time. 

Let a random variable x(i, t) represent the flow count of a particular connection i over a given 

time interval t. The fast entropy H(i,t)(X) for a particular interval and particular connection is 

calculated as shown in eq. (8.5) and eq. (8.6): 

 (8.5) 
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 (8.6) 

To evaluate the approach proposed in this chapter, the CICDDoS-2019 attack dataset 

has been used. (R. Zhou et al., 2021), (J. Li et al., 2020), (Bülbül & Fischer, 2020), and (Ali et 

al., 2021) have also used this dataset to evaluate their approaches based on entropy. To detect 

anomalies caused in network traffic by botnets and DDoS attacks, (R. Zhou et al., 2021) 

proposed the use of the Euclidean distance-based multi-scale fuzzy entropy algorithm. The 

input is taken as a time series X = (x1, x2, ..... xn) with a time scale τ, and the output is the 

entropy value. They analyzed their algorithm on the CICDDoS-2019 dataset and have shown 

entropy curves on different time scales. In the approach proposed by (J. Li et al., 2020), the 

primary focus is on volumetric DDoS attacks. For this, they proposed the use of an optimized 

sliding window for entropy calculation. They used Shannon’s entropy only but on a joint pair 

of (source IP, source port) and (destination IP, destination port), making it a joint entropy. 

(Bülbül & Fischer, 2020) proposed DDoS detection and mitigation using NFV and SDN 

environment. For detection of attack, they used entropy. After detecting an attack, traffic is 

further analyzed to generate attack patterns so that attack traffic can be differentiated from 

legitimate traffic. (Ali et al., 2021) have proposed the use of entropy and Sequential Probability 

Ratio Test (SPRT) for DDoS detection. Flows are formed after monitoring the packets, and 

these flows are gathered in specific window sizes. After this entropy calculation, SPRT is used 

for the detection of DDoS attacks. 

From the approaches mentioned above, we can say that entropy is effective for detection 

of DDoS attacks. But to detect all types of DDoS attacks, not confined to only volumetric 

attacks, we need to make our threshold for DDoS detection dynamic so that it can change 

according to attack traffic and accurately provide detection. The approach proposed in this 

chapter uses a dynamic threshold with entropy to give better results. 
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8.3 Proposed Methodology 

In the proposed approach, we calculate entropy at fixed time intervals. We use the 

concept of flows in this approach. A flow is a five-tuple entity, and a flow count is the total 

number of packets of a flow in a particular time interval. Flow ID, source address, destination 

address, source port, and destination port are the five tuples of a flow. So, a flow is a uni-

directional flow of packets from one source port, source IP address, to another destination port, 

destination IP address. The entropy value would remain relatively stable without the attack, 

fluctuating in a specific range. During an attack, the network switch will have multiple packets 

with the same destination address. 

Shannon’s entropy would drop significantly when a few flows would dominate others. 

The algorithm considers entropy for a window, and we keep on sliding this window to consider 

different time intervals. Table 8.1 describes the notations used in the proposed approach. The 

algorithm is explained in Algorithm 8.1 (EBDD). The entropy can be calculated as per eq. (8.7) 

to (8.9), where n is the total number of flows in the interval ΔT, and left and right are pointers 

pointing to the leftmost and rightmost packets, respectively in the current window. 

Received_Packetsi(T) are the packets received till time T for the ith flow. 

….. (8.7) 

.. (8.8) 

 (8.9) 

We use a dynamic threshold as proposed by (Wang et al., 2015). We have used the 

sliding window concept to get more accurate results on the dataset used. For sliding the 

window, our left and right pointers move by 1 second to predict the attack in a particular time 

interval. Also, the proposed methodology is designed for real Internet scenarios, where 
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different types of DDoS attacks can take place. Hence, it is tested on DNS_DRDoS and 

Portmap dataset of CICDDoS-2019 attack dataset, which resembles true real-world data.  

Table 8.1 : Notations used in the proposed approach 

 

8.3.1 Dynamic Threshold Algorithm and Attack Detection 

For the current entropy calculation, if E −H > δ, it would be a violation since the current 

entropy varies by a range of δ from the average entropy of the previous N traffic values, i.e., 

E. We then check if there are at least M such violations in previous S such windows, as also 

proposed in (Wang et al., 2015). If that is the case, a DDoS attack is detected and reported. 

Checking for M such violations in S ensures that we do not report a normal increase in traffic 

which is not an attack. If there is no violation, we update δ and the average entropy for the 

previous N traffic values, i.e., E, and continue the calculations for the next time window.  

 

Notation Definition 
n The total number of flows in an interval 
N The number of nearest normal entropy values (used for calculating average 

entropy) 
D Dictionary consisting of all the flows along with there flow packets 
Xi Flow packets corresponding to a flow Di in a given window 
Hi Entropy of flow Di in a given window 
H Total entropy of a window (calculated using summation of Hi) 
E  Weighted average entropy of previous N normal traffic values 
M  The minimum times the formulae (E −H > δ) is to be satisfied 
s_len  The length of the sliding window 
S  Window size to count the number of predictions in the previous history 
δ  Dynamic threshold used in prediction of attack 
σ  The standard deviation of normal entropy values 
λ  Threshold multiplicative factor 

 A constant value for calculation of weighted average (changes with every 
iteration) 

startTime A constant denoting starting of traffic in seconds 
endTime A constant denoting ending of traffic in seconds 



156 
 
 

Algorithm 8.1 : Entropy-based DDoS detection using sliding window and flow entropy 
Initialize the local parameters E, δ, M, S, H, N, λ, ΔT, σ, left, right, endTime, s_len  
left  startTime 
right  startTime + ΔT 
while right ≤ endTime do 
            H  0 
            for i in all flow id between left and right timestamp do  
      Xi  = Received_Packetsi (left + ΔT) - Received_Packetsi (left) 
       

       H + = -pi * log pi 
            end for 
              
              if E – H > δ then:  
     if M times in S then 
         Report DDoS attack between window left and left + ΔT 
     end if 
              else 
         

           

        
 end if 
 left += s_len 
 right += s_len   
end while     

 

If there is no violation, we update δ and the weighted average entropy for the previous 

N traffic values, i.e., E, and continue the calculations for the next time window. A constant 

term αi is used to give more weightage to the most recently observed entropy values as 

compared to the previous ones. In the proposed approach, when there is no attack prediction in 

a window, that window’s traffic is considered normal traffic. The proposed methodology can 

also be understood from the flow diagram in Fig. 8.1. 
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Figure 8.1 : Flow of the dynamic threshold algorithm 
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8.4 Results and Discussion 

The CICDDoS-2019 dataset contains benign and the most up-to-date common DDoS 

attacks, resembling actual real-world data. This authentic dataset contains both benign traffic 

and attack traffic, although the attack traffic is more in comparison to benign traffic. The dataset 

was pre-processed by removing infinity and NaN values before applying our algorithm. The 

features taken for entropy calculation are time-stamp, flow ID, and flow-packets/sec. Entropy 

was calculated by varying ΔT and S. To test the metrics for the prediction of an attack, 

DNS_DRDoS and Portmap attack datasets of CICDDoS-2019 have been used.   

While accuracy is frequently employed as a metric to assess the effectiveness of a 

classification model, it might not be consistently suitable or enlightening, particularly in 

situations involving imbalanced datasets. In cases where the distribution of classes is uneven, 

accuracy can be deceptive. Alternative metrics, such as precision, recall, and F1 score, offer a 

more detailed perspective on the model's performance. Hence, our proposed algorithm's 

performance is measured by calculating precision, recall, and F1 score in attack prediction by 

varying ΔT and S. These metrics depend upon false positives, true positives, false negatives, 

and true negatives. False positives are legitimate traffic detected as attack traffic; true negatives 

are the legitimate traffic detected as legitimate traffic; false negatives are attack traffic detected 

as legitimate traffic, and true positives are attack traffic detected as attack traffic. 

Table 8.2 : Analysis of F1 score in prediction by varying S and ΔT for DNS_DRDoS 

 S=3 S=5 S=7 

ΔT=10 99.965 99.965 99.965 

ΔT=20 99.964 99.964 99.964 

ΔT=30 99.964 99.964 99.964 

As shown in Table 8.2, the F1 score for the prediction of the attack is 99.96 % for the 

DNS_DRDoS attack dataset on a time interval of 10 seconds. The algorithm achieves this high 
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value as there is an attack in almost every window, leading to higher prediction and detection 

of attack. Taking the values ΔT=10 and S=3 from Table 8.2, we plot the graphs in Figures 8.2 

and 8.3, respectively.  

Figure 8.2 : Precision, recall, and F1 score by varying intervals for DNS_DRDoS dataset 

Figure 8.3 : Precision, recall, and F1 score by varying S for DNS_DRDoS dataset 

Similarly, we plot the precision, recall, and F1 score v/s ΔT and v/s S graphs for the 

Portmap dataset in Figures 8.4 and 8.5, respectively. We plot the interval graph by keeping 

S=3. The time ΔT=30 seconds gave higher performance metrics for prediction compared to its 

previous windows, as the Portmap attack dataset has chunks of attack data and legitimate data 
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rather than contiguous attack data. Hence, longer intervals gave higher values in predicting the 

attack. The precision, recall, and F1 score v/s S graph is plotted for ΔT=30. The metric values 

remain uniform across different S values for this interval. 

Figure 8.4 : Precision, Recall, and F1 score by varying intervals for Portmap dataset 

Figure 8.5 : Precision, Recall, and F1 score by varying S for Portmap dataset 

8.5 Summary of the Chapter 

The focus of this chapter is to detect DDoS attacks using entropy. Entropy is used to 

measure randomness or uncertainty in a network’s traffic. As soon as this randomness 
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abbreviation leads to the possibility of an attack on the network. One benefit of entropy-based 

algorithms is that entropy calculations require minimal computational effort. The proposed 

approach employs a dynamic threshold mechanism to effectively distinguish between normal 

and attack traffic. The entropy of a certain interval is compared to this dynamic threshold for 

attack prediction. In our evaluation, we investigate the impact of varying the time intervals and 

the entropy variation in previous windows for the precision of attack prediction. Through this 

analysis, we achieve a notable F1 score of 99% in predicting DNS_DRDoS attacks and 94% 

for Portmap attacks. The difference in the values for these predictions is because of the type of 

attack present in these datasets. The DNS_DRDoS attack has contiguous attack data, resulting 

in higher accuracy.  

********** End of Chapter ********** 
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CHAPTER 9- Conclusions and Future Research Directions 

 

9.1 Conclusions 

This thesis provides defense techniques against DRDoS attacks, primarily focusing on 

Prevention. More specifically, the prevention techniques presented are IP-Switching, 

PortMapping, PortMergeIP, SymSDN, RDPID, PoDIBC, and RF-SDN. In addition, we also 

present a DDoS detection technique using entropy. The techniques provided mainly focus on 

two types of Prevention- True and Partial.  

 In True Prevention, the attack traffic can leave an attacker’s access network and enter 

the core Internet network but can never reach the target victim’s network.  

 In Partial Prevention, some attack traffic reaches the victim’s network. An additional 

prevention layer is proposed to be placed in between the attacker’s and the victim’s 

networks. The purpose of this prevention layer is to detect the ongoing attack at the 

earliest and successively stop it from reaching the victim’s network.  

The suggested prevention techniques aim to make the underlying network smart enough 

to counter DrDoS attacks effectively. To demonstrate and validate the efficacy of the proposed 

methods, the underlying network is considered to be an SDN network. Depending on the 

specific technique, the entire network is either assumed to be SDN-enabled or only a portion 

of it requires SDN integration. 

Based on the definitions of True Prevention and Partial prevention, the techniques 

proposed in this thesis can be categorized as described in Table 9.1.  
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Table 9.1 : Prevention techniques 

Prevention Technique Requirement of EDGE / 

CORE network to be SDN 

enabled 

Type Of Prevention 

1. IP-Switching EDGE N/W (ISP works as 

SDN Barrier) 

True Prevention 

2. PortMapping CORE N/W+EDGE N/W True Prevention 

3. PortMergeIP EDGE N/W (ISP works as 

SDN Barrier) 

True Prevention 

4. SymSDN CORE N/W+EDGE N/W True Prevention 

5. RDPID CORE N/W True Prevention 

6. PoDIBC EDGE N/W True Prevention 

7. RF-SDN EDGE N/W (Partial 

Prevention Layer as SDN 

Barrier) 

Partial Prevention 

IP-Switching is a True Prevention approach, with ISP’s first-hop router working as an 

SDN barrier. It is True Prevention as attack traffic leaves the edge network and enters the core 

network, but it does not reach the victim due to the IP address being switched to the downstream 

IP address by ISP. 

PortMapping is also a True Prevention technique. However, the entire network must be 

SDN-enabled to implement this algorithm, as the switches push in-port information in packets 

for the whole path between the host and the server. It is True Prevention as the request path 

takes the same path as the response; hence, even when the attack traffic enters the core network, 

it never reaches the victim. 

PortMergeIP is a True Prevention technique where the edge network and the ISP’s first-

hop router is required to be SDN enabled. It also overcomes the drawback of IP-Switching as 

the response traffic not only reaches the attacker’s organization but also towards the attacker 

responsible for the attack. The victim remains unaffected by the attack.  
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SymSDN is also a True Prevention approach requiring the entire network to be SDN 

enabled as the OpenFlow switches store path information in its tables to implement symmetric 

routing. It leads to attack traffic diverting back to the attacker, even with a spoofed source IP, 

keeping the victim’s network unaffected by the attack. 

RDPID is also a True Prevention approach, and it requires modifying the entire 

underlying network to incorporate appropriate rules for forwarding packets based on PIDs. The 

response reaches back to the attacker as the forwarding is based on PIDs, not the IP address; 

hence the victim is unaffected. 

PoDIBC is a True Prevention approach with the edge network as an SDN barrier. The 

client and server do the signing and verification process, with the controller providing 

parameters for the encryption process. It is True Prevention as the server drops the attack 

request packets on unsuccessful sign verification; hence, True Prevention as no response packet 

reaches the victim. 

RF-SDN is a Partial Prevention approach with the DDoS detection module and SDN 

controller working as an SDN barrier. The detection module can detect the attacks in near real-

time, and if the attack is detected, the controller is notified to block the malicious IP address. It 

is Partial Prevention as a small part of attack traffic (experimentally proved to be approximately 

0.79% for a 1-Gbps attack) reaches the victim. 

Finally, chapter 8 explains a DDoS detection approach using entropy. The proposed 

approach employs a dynamic threshold mechanism to effectively distinguish between normal 

and attack traffic. Although we did achieve good precision in detecting the attacks, the time 

interval for detection of attacks with good accuracy was more (experimentally proved to be 

approx. 30 seconds) for non-contiguous attack data like Portmap. 

9.2 Future Research Directions 

The works proposed in this thesis can be extended in the following ways- 
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 It is established in the thesis that prevention is a better approach than detection and 

mitigation of DDoS attacks. In this work, we have focused on the prevention of DRDoS 

attacks and provided techniques for only these attacks. This work can be extended to 

provide prevention from more categories of DDoS attacks like volumetric attacks and 

zero-day attacks. 

 To cover larger networks, multiple SDN controllers will be needed, and these 

controllers need to communicate with each other to pass shared information. For e.g., 

in Chapter 6, for the PoDIBC technique, we currently connect the whole topology to a 

single controller, but for larger networks, multiple controllers will be needed, and these 

controllers need to communicate with each other to pass the public parameters. Further 

research is required to get more insights into the effectiveness of the proposed 

techniques in such cases. 

 The techniques presented in the thesis require a change in the functionality of the 

underlying network. We have proven the techniques assuming SDN as the under lying 

network; however, the same can be achieved for the traditional network, which can be 

researched in the future. 

********** End of Chapter ********** 
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Packet loss (with SymSDN) 

 

 

 

Appendix B 

Throughput (without any Prevention scheme) 
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Throughput (with IP-Switching) 

 

 

 

Throughput (with PortMergeIP) 
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Throughput (with PortMapping) 
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Packet loss (without any Prevention scheme) 

 

 

 

Packet loss (with IP-Switching) 
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Packet loss (with PortMapping) 

 

 

 

Appendix C 

Precision, F1 score and Recall for Correlation value of DNS attack Dataset 
 DNS        

corelation 
value 

 Features name   
Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

 
Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.1 Flow Duration 0.283253  
Total Backward Packets 0.120505 
 Fwd Packet Length Max 0.107764  
Fwd Packet Length Min 0.117172  
Fwd Packet Length Mean 0.115600  
Fwd Packet Length Std 0.172959  
Bwd Packet Length Max 0.239816  
Bwd Packet Length Min 0.525153  
Bwd Packet Length Mean 0.341763  
Bwd Packet Length Std 0.238461 
 Flow IAT Mean 0.198413  
Flow IAT Std 0.251703  
Flow IAT Max 0.248864  
Fwd IAT Total 0.274338  
Fwd IAT Mean 0.216968  
Fwd IAT Std 0.241460  
Fwd IAT Max 0.239073  
Bwd IAT Total 0.240343 
 Bwd IAT Mean 0.207499 
 Bwd IAT Std 0.212781 
 Bwd IAT Max 0.219618  
Bwd IAT Min 0.188097  
Fwd PSH Flags 0.355401  
Min Packet Length 0.117275  
Packet Length Mean 0.113725  
Packet Length Std 0.262631  
Packet Length Variance 0.157347  
RST Flag Count 0.355401  
ACK Flag Count 0.297723  
URG Flag Count 0.538700  
CWE Flag Count 0.306429  
Down/Up Ratio 0.570168  
Average Packet Size 0.114442  
Avg Fwd Segment Size 0.115600  
Avg Bwd Segment Size 0.341763  
Subflow Bwd Packets 0.120505  
Init_Win_bytes_forward 0.276853  

0.940276 0.983974 0.961629 0.999989 0.999957 0.999973 
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Init_Win_bytes_backward 0.283531  
Idle Mean 0.235001 
 Idle Max 0.235850  
Idle Min 0.230191  
Label 1.000000 

0.15 Flow Duration 0.283253  
Fwd Packet Length Std 0.172959  
Bwd Packet Length Max 0.239816  
Bwd Packet Length Min 0.525153  
Bwd Packet Length Mean 0.341763  
Bwd Packet Length Std 0.238461  
Flow IAT Mean 0.198413  
Flow IAT Std 0.251703  
Flow IAT Max 0.248864  
Fwd IAT Total 0.274338  
Fwd IAT Mean 0.216968  
Fwd IAT Std 0.241460  
Fwd IAT Max 0.239073  
Bwd IAT Total 0.240343  
Bwd IAT Mean 0.207499 
 Bwd IAT Std 0.212781  
Bwd IAT Max 0.219618  
Bwd IAT Min 0.188097  
Fwd PSH Flags 0.355401  
Packet Length Std 0.262631  
Packet Length Variance 0.157347  
RST Flag Count 0.355401  
ACK Flag Count 0.297723  
URG Flag Count 0.538700  
CWE Flag Count 0.306429  
Down/Up Ratio 0.570168  
Avg Bwd Segment Size 0.341763  
Init_Win_bytes_forward 0.276853  
Init_Win_bytes_backward 0.283531  
Idle Mean 0.235001  
Idle Max 0.235850  
Idle Min 0.230191  
Label 1.000000 

0.943925 0.971154 0.957346 0.99998 0.99996 0.99997 

0.2 Flow Duration 0.283253  
Bwd Packet Length Max 0.239816  
Bwd Packet Length Min 0.525153  
Bwd Packet Length Mean 0.341763  
Bwd Packet Length Std 0.238461  
Flow IAT Std 0.251703  
Flow IAT Max 0.248864  
Fwd IAT Total 0.274338  
Fwd IAT Mean 0.216968  
Fwd IAT Std 0.241460  
Fwd IAT Max 0.239073  
Bwd IAT Total 0.240343  
Bwd IAT Mean 0.207499  
Bwd IAT Std 0.212781  
Bwd IAT Max 0.219618  
Fwd PSH Flags 0.355401  
Packet Length Std 0.262631  
RST Flag Count 0.355401  
ACK Flag Count 0.297723  
URG Flag Count 0.538700  
CWE Flag Count 0.306429  
Down/Up Ratio 0.570168  
Avg Bwd Segment Size 0.341763  
Init_Win_bytes_forward 0.276853  
Init_Win_bytes_backward 0.283531  
Idle Mean 0.235001  
Idle Max 0.235850  
Idle Min 0.230191  
Label 1.000000 

0.94081 0.967949 0.954186 0.999978 0.999958 0.999968 

0.25 Flow Duration 0.283253  
Bwd Packet Length Min 0.525153  
Bwd Packet Length Mean 0.341763  
Flow IAT Std 0.251703  
Fwd IAT Total 0.274338  
Fwd PSH Flags 0.355401  
Packet Length Std 0.262631  
RST Flag Count 0.355401  
ACK Flag Count 0.297723  
URG Flag Count 0.538700  
CWE Flag Count 0.306429  
Down/Up Ratio 0.570168  
Avg Bwd Segment Size 0.341763  
Init_Win_bytes_forward 0.276853  
Init_Win_bytes_backward 0.283531  
Label 1.000000 

0.948276 0.969551 0.958796 0.999979 0.999963 0.999971 

0.3 Bwd Packet Length Min 0.525153  
Bwd Packet Length Mean 0.341763  
Fwd PSH Flags 0.355401  
RST Flag Count 0.355401  
URG Flag Count 0.538700  
CWE Flag Count 0.306429  
Down/Up Ratio 0.570168 
 Avg Bwd Segment Size 0.341763  
Label 1.000000 

0.794034 0.895833 0.841867 0.999928 0.999839 0.999883 

0.35 Bwd Packet Length Min 0.525153  
Fwd PSH Flags 0.355401  
RST Flag Count 0.355401  
URG Flag Count 0.538700  
Down/Up Ratio 0.570168  
Label 1.000000 

0.748555 0.830128 0.787234 0.999882 0.999807 0.999844 
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0.4 Bwd Packet Length Min 0.525153  
URG Flag Count 0.538700  
Down/Up Ratio 0.570168  
Label 1.000000 

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844 

0.45 Bwd Packet Length Min 0.525153  
URG Flag Count 0.538700  
Down/Up Ratio 0.570168  
Label 1.000000 

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844 

0.5 Bwd Packet Length Min 0.525153  
URG Flag Count 0.538700  
Down/Up Ratio 0.570168  
Label 1.000000 

0.747475 0.830128 0.786636 0.999882 0.999805 0.999844 

0.55 Down/Up Ratio 0.570168  
Label 1.000000 

0.745303 0.572115 0.647325 0.999703 0.999864 0.999784 

 

Precision, F1 score and Recall for MI-score of DNS attack Dataset 
Mi score 
value 

 Features name   Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

 Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.0001  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd 
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length 
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', ' Bwd 
Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT 
Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT 
Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT 
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet 
Length Std', ' Packet Length Variance', 'FIN Flag Count', ' SYN Flag 
Count', ' RST Flag Count', ' PSH Flag Count', ' ACK Flag Count', ' 
URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' 
Fwd Header Length.1', ' Fwd Avg Packets/Bulk', ' Fwd Avg Bulk 
Rate', ' Bwd Avg Bytes/Bulk', 'Subflow Fwd Packets', ' Subflow Fwd 
Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' Active 
Std', ' Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' 
Idle Min' 

0.990132 0.98527 0.987695 0.99999 0.999993 0.999992 

0.05  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd 
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length 
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', ' Bwd 
Packet Length Std', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT 
Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT 
Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT 
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet 
Length Std', ' Packet Length Variance', ' RST Flag Count', ' ACK 
Flag Count', ' URG Flag Count', ' CWE Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd 
Segment Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' 
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.982055 0.98527 0.98366 0.99999 0.999988 0.999989 

0.1  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd 
Packet Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length 
Max', ' Bwd Packet Length Min', ' Bwd Packet Length Mean', 'Flow 
Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow 
IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' 
Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' 
Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' 
Min Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Packet Length Std', ' Packet Length Variance', ' URG Flag Count', ' 
Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow 
Bwd Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.98366 0.98527 0.984464 0.99999 0.999989 0.999989 

0.15  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd 
Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet 
Length Min', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' 
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 
' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT 
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header Length', 
'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length 
Variance', ' URG Flag Count', ' Down/Up Ratio', ' Average Packet 
Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' Fwd 
Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' 
Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.980424 0.983633 0.982026 0.999989 0.999987 0.999988 
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0.2  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' Fwd 
Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' 
Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' 
Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' 
Min Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Packet Length Std', ' Packet Length Variance', ' URG Flag Count', ' 
Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow 
Bwd Bytes', 'Init_Win_bytes_forward', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 

0.982085 0.986907 0.98449 0.999991 0.999988 0.999989 

0.25  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT 
Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd 
IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' 
Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd 
Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet 
Length Std', ' Packet Length Variance', ' Down/Up Ratio', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', 
'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' Subflow Bwd 
Packets', 'Init_Win_bytes_forward', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 

0.982026 0.983633 0.982829 0.999989 0.999988 0.999988 

0.3  Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of 
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow 
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT 
Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', ' 
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 

0.934375 0.978723 0.956035 0.999986 0.999953 0.999969 

0.35  Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of 
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow 
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT 
Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', ' 
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 

0.934579 0.981997 0.957702 0.999988 0.999953 0.999971 

0.4  Label', ' Flow Duration', ' Total Backward Packets', 'Total Length of 
Fwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow 
IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header Length', 'Fwd 
Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet 
Length Mean', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Fwd Header Length.1', ' Subflow Fwd Bytes', ' Subflow Bwd 
Packets', ' min_seg_size_forward' 

0.931571 0.98036 0.955343 0.999987 0.999951 0.999969 

0.45  Label',  
' Flow Duration',  
'Total Length of Fwd Packets',  
' Fwd Packet Length Max', 
 ' Fwd Packet Length Min',  
' Fwd Packet Length Mean',  
'Flow Bytes/s',  
' Flow Packets/s',  
' Flow IAT Mean',  
' Flow IAT Std',  
' Flow IAT Max', 
 ' Fwd Header Length',  
'Fwd Packets/s',  
' Min Packet Length',  
' Max Packet Length',  
' Packet Length Mean',  
' Average Packet Size', 
 ' Avg Fwd Segment Size',  
' Fwd Header Length.1', 
 ' Subflow Fwd Bytes' 

0.907154 0.97545 0.940063 0.999983 0.999932 0.999958 

0.5 ' Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 
' Flow Packets/s', 'Fwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Subflow Fwd Bytes' 

0.793609 0.97545 0.875184 0.999983 0.999828 0.999905 

0.55 ' Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 
' Flow Packets/s', 'Fwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Subflow Fwd Bytes' 

0.793609 0.97545 0.875184 0.999983 0.999828 0.999905 

0.6  Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 
' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd 
Bytes' 

0.739877 0.986907 0.845722 0.999991 0.999764 0.999878 

0.65  Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 

0.739877 0.986907 0.845722 0.999991 0.999764 0.999878 
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' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd 
Bytes' 

0.7  Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes' 

0.738386 0.988543 0.845346 0.999992 0.999762 0.999877 

0.75  Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Max', ' 
Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Avg Fwd 
Segment Size' 

0.740196 0.988543 0.846531 0.999992 0.999764 0.999878 

 

Precision, F1 score and Recall for Correlation value of Portmap attack Dataset 
corelatio
n value 

 Features name  Precision 
(0th) 

Recall (0th) F1 score(0th) Precision 
(1st) 

Recall (1st) F1 
score(1st) 

0.1 Flow Duration 0.342514 
Fwd Packet Length Max 0.138812  
Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Fwd Packet Length Std 0.324970  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd Packet Length Std 0.334866  
Flow Bytes/s 0.303703  
Flow Packets/s 0.270935  
Flow IAT Mean 0.190359  
Flow IAT Std 0.304207  
Flow IAT Max 0.317377  
Fwd IAT Total 0.334536  
Fwd IAT Mean 0.234730  
Fwd IAT Std 0.300181  
Fwd IAT Max 0.306861  
Bwd IAT Total 0.308199  
Bwd IAT Mean 0.281647  
Bwd IAT Std 0.287126  
Bwd IAT Max 0.286565  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Fwd Packets/s 0.271683  
Min Packet Length 0.729168  
Max Packet Length 0.131981  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
Packet Length Variance 0.293627  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Init_Win_bytes_forward 0.342721  
Init_Win_bytes_backward 0.286310  
Active Mean 0.154199  
Active Max 0.127805  
Active Min 0.134215  
Idle Mean 0.301292  
Idle Std 0.115712  
Idle Max 0.304278  
Idle Min 0.291854  
Label 1.000000 

0.996582 0.997947 0.997264 0.999946 0.999911 0.999929 

0.15 Flow Duration 0.342514  
Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Fwd Packet Length Std 0.324970  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd Packet Length Std 0.334866  
Flow Bytes/s 0.303703  
Flow Packets/s 0.270935  
Flow IAT Mean 0.190359  
Flow IAT Std 0.304207  
Flow IAT Max 0.317377  
Fwd IAT Total 0.334536  
Fwd IAT Mean 0.234730  
Fwd IAT Std 0.300181  
Fwd IAT Max 0.306861  
Bwd IAT Total 0.308199  
Bwd IAT Mean 0.281647  
Bwd IAT Std 0.287126  
Bwd IAT Max 0.286565  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Fwd Packets/s 0.271683  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
Packet Length Variance 0.293627  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  

0.996582 0.997947 0.997264 0.999946 0.999911 0.999929 
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CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Init_Win_bytes_forward 0.342721  
Init_Win_bytes_backward 0.286310  
Active Mean 0.154199  
Idle Mean 0.301292  
Idle Max 0.304278  
Idle Min 0.291854  
Label 1.000000 

0.2 Flow Duration 0.342514 
Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Fwd Packet Length Std 0.324970  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd Packet Length Std 0.334866  
Flow Bytes/s 0.303703  
Flow Packets/s 0.270935  
Flow IAT Std 0.304207  
Flow IAT Max 0.317377  
Fwd IAT Total 0.334536  
Fwd IAT Mean 0.234730  
Fwd IAT Std 0.300181  
Fwd IAT Max 0.306861  
Bwd IAT Total 0.308199  
Bwd IAT Mean 0.281647  
Bwd IAT Std 0.287126  
Bwd IAT Max 0.286565  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Fwd Packets/s 0.271683  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
Packet Length Variance 0.293627  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Init_Win_bytes_forward 0.342721  
Init_Win_bytes_backward 0.286310  
Idle Mean 0.301292  
Idle Max 0.304278  
Idle Min 0.291854  
Label 1.000000 

0.997264 0.997947 0.997605 0.999946 0.999929 0.999938 

0.25 Flow Duration 0.342514  
Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Fwd Packet Length Std 0.324970  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd Packet Length Std 0.334866  
Flow Bytes/s 0.303703  
Flow Packets/s 0.270935  
Flow IAT Std 0.304207  
Flow IAT Max 0.317377  
Fwd IAT Total 0.334536  
Fwd IAT Std 0.300181  
Fwd IAT Max 0.306861  
Bwd IAT Total 0.308199  
Bwd IAT Mean 0.281647  
Bwd IAT Std 0.287126  
Bwd IAT Max 0.286565  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Fwd Packets/s 0.271683  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
Packet Length Variance 0.293627  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Init_Win_bytes_forward 0.342721  
Init_Win_bytes_backward 0.286310  
Idle Mean 0.301292  
Idle Max 0.304278  
Idle Min 0.291854  
Label 1.000000 

0.997264 0.997947 0.997605 0.999946 0.999929 0.999938 

0.3 Flow Duration 0.342514  
Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Fwd Packet Length Std 0.324970  
Bwd Packet Length Max 0.376745  

0.997947 0.997947 0.997947 0.999946 0.999946 0.999946 



190 
 
 

Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd Packet Length Std 0.334866  
Flow Bytes/s 0.303703  
Flow IAT Std 0.304207  
Flow IAT Max 0.317377  
Fwd IAT Total 0.334536  
Fwd IAT Std 0.300181  
Fwd IAT Max 0.306861  
Bwd IAT Total 0.308199  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Init_Win_bytes_forward 0.342721  
Idle Mean 0.301292  
Idle Max 0.304278  
Label 1.000000 

0.35 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Label 1.000000 

0.985145 0.998631 0.991842 0.999964 0.999607 0.999786 

0.4 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Bwd Packet Length Max 0.376745  
Bwd Packet Length Min 0.550527  
Bwd Packet Length Mean 0.419155  
Bwd IAT Min 0.360017  
Fwd PSH Flags 0.372674  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
Packet Length Std 0.407571  
RST Flag Count 0.372674  
ACK Flag Count 0.351102  
URG Flag Count 0.615081  
CWE Flag Count 0.420886  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Avg Bwd Segment Size 0.419155  
Label 1.000000 

0.979852 0.998631 0.989153 0.999964 0.999465 0.999714 

0.45 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Bwd Packet Length Min 0.550527  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
URG Flag Count 0.615081  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Label 1.000000 

0.979866 0.999316 0.989495 0.999982 0.999465 0.999723 

0.5 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Bwd Packet Length Min 0.550527  
Min Packet Length 0.729168  
Packet Length Mean 0.530715  
URG Flag Count 0.615081  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Label 1.000000 

0.979866 0.999316 0.989495 0.999982 0.999465 0.999723 

0.55 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Bwd Packet Length Min 0.550527  
Min Packet Length 0.729168  
URG Flag Count 0.615081  
Down/Up Ratio 0.648523  
Average Packet Size 0.614206  
Avg Fwd Segment Size 0.661613  
Label 1.000000 

0.979852 0.998631 0.989153 0.999964 0.999465 0.999714 

0.6 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613 
 Min Packet Length 0.729168  
URG Flag Count 0.615081  

0.979839 0.997947 0.98881 0.999946 0.999465 0.999706 
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Down/Up Ratio 0.648523  
Average Packet Size 0.614206 
 Avg Fwd Segment Size 0.661613  
Label 1.000000 

0.65 Fwd Packet Length Min 0.729103  
Fwd Packet Length Mean 0.661613  
Min Packet Length 0.729168  
Avg Fwd Segment Size 0.661613  
Label 1.00000 

0.896255 0.999316 0.944984 0.999982 0.996985 0.998481 

0.7 Fwd Packet Length Min 0.729103  
Min Packet Length 0.729168  
Label 1.000000 

0.89406 0.999316 0.943762 0.999982 0.996913 0.998445 

0.75 Label 1.0       

 
Precision, F1 score and Recall for MI-score value of Portmap attack Dataset 

Mi score value  Features name   Precision (0th) Recall 
(0th) 

F1 score(0th)  Precision (1st) Recall 
(1st) 

F1 score(1st) 

0.0001  Label',  
' Flow Duration',  
' Total Fwd Packets', 
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 ' Fwd Packet Length Std', 
 'Bwd Packet Length Max', 
 ' Bwd Packet Length Min', 
 ' Bwd Packet Length Mean', 
 ' Bwd Packet Length Std', 
 'Flow Bytes/s',  
' Flow Packets/s',  
' Flow IAT Mean' 
, ' Flow IAT Std', 
 ' Flow IAT Max', 
 ' Flow IAT Min', 
 'Fwd IAT Total', 
 ' Fwd IAT Mean', 
 ' Fwd IAT Std',  
' Fwd IAT Max', 
 ' Fwd IAT Min', 
 'Bwd IAT Total', 
 ' Bwd IAT Mean',  
' Bwd IAT Std',  
' Bwd IAT Max',  
' Bwd IAT Min', 
 'Fwd PSH Flags', 
 ' Bwd URG Flags', 
 ' Fwd Header Length', 
 ' Bwd Header Length',  
'Fwd Packets/s',  
' Bwd Packets/s',  
' Min Packet Length', 
 ' Max Packet Length',  
' Packet Length Mean', 
 ' Packet Length Std', 
 ' Packet Length Variance', 
 ' RST Flag Count', 
 ' PSH Flag Count', 
 ' ACK Flag Count', 
 ' URG Flag Count', 
 ' CWE Flag Count', 
 ' Down/Up Ratio', 
 ' Average Packet Size', 
 ' Avg Fwd Segment Size', 
 ' Avg Bwd Segment Size', 
 ' Fwd Header Length.1', 
 ' Fwd Avg Packets/Bulk',  
' Bwd Avg Bytes/Bulk', 
 'Subflow Fwd Packets',  
' Subflow Fwd Bytes',  
' Subflow Bwd Packets', 
 ' Subflow Bwd Bytes', 
 'Init_Win_bytes_forward',  
' Init_Win_bytes_backward', 
 ' act_data_pkt_fwd' 
, ' min_seg_size_forward', 
 'Active Mean', ' Active Std' 
, ' Active Max', ' Active Min', 
 'Idle Mean', ' 
 Idle Std', 
 ' Idle Max',  
' Idle Min' 

0.99858 1 0.999289 1 0.999964 0.999982 

0.05  Label',  
' Flow Duration',  
' Total Fwd Packets', 
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 ' Fwd Packet Length Std', 
 'Bwd Packet Length Max', 

0.99858 1 0.999289 1 0.999964 0.999982 
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 ' Bwd Packet Length Min', 
 ' Bwd Packet Length Mean', 
 ' Bwd Packet Length Std', 
 'Flow Bytes/s',  
' Flow Packets/s',  
' Flow IAT Mean' 
, ' Flow IAT Std', 
 ' Flow IAT Max', 
 ' Flow IAT Min', 
 'Fwd IAT Total', 
 ' Fwd IAT Mean', 
 ' Fwd IAT Std',  
' Fwd IAT Max', 
 ' Fwd IAT Min', 
 'Bwd IAT Total', 
 ' Bwd IAT Mean',  
' Bwd IAT Std',  
' Bwd IAT Max',  
' Bwd IAT Min', 
' Fwd Header Length',  
' Bwd Header Length', 
 'Fwd Packets/s', 
 ' Bwd Packets/s', 
 ' Min Packet Length', 
 ' Max Packet Length',  
' Packet Length Mean',  
' Packet Length Std', 
 ' Packet Length Variance',  
' ACK Flag Count', 
 ' URG Flag Count', ' CWE Flag Count', ' 
Down/Up Ratio', ' Average Packet Size', ' 
Avg Fwd Segment Size', ' Avg Bwd Segment 
Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow 
Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward', 
'Active Mean', ' Active Max', ' Active Min', 
'Idle Mean', ' Idle Max', ' Idle Min' 

0.1  Label',  
' Flow Duration',  
' Total Fwd Packets', 
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 ' Fwd Packet Length Std', 
 'Bwd Packet Length Max', 
 ' Bwd Packet Length Min', 
 ' Bwd Packet Length Mean', 
 'Flow Bytes/s', 
' Flow Packets/s', ' Flow IAT Mean', ' Flow 
IAT Std', ' Flow IAT Max', ' Flow IAT Min', 
'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT 
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd 
IAT Total', ' Bwd IAT Mean', ' Bwd IAT 
Max', ' Bwd IAT Min', ' Fwd Header Length', 
' Bwd Header Length', 'Fwd Packets/s', ' Bwd 
Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Packet 
Length Std', ' Packet Length Variance', ' URG 
Flag Count', ' Down/Up Ratio', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Avg 
Bwd Segment Size', ' Fwd Header Length.1', 
'Subflow Fwd Packets', ' Subflow Fwd Bytes', 
' Subflow Bwd Packets', ' Subflow Bwd 
Bytes', 'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.99858 1 0.999289 1 0.999964 0.999982 

0.15  Label',  
' Flow Duration',  
' Total Fwd Packets', 
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet 
Length Min', ' Bwd Packet Length Mean', 
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' 
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT 
Mean', ' Fwd IAT Max', ' Fwd IAT Min', 
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd 
IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd 
Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet 
Length Mean', ' Packet Length Std', ' Packet 
Length Variance', ' URG Flag Count', ' 
Down/Up Ratio', ' Average Packet Size', ' 
Avg Fwd Segment Size', ' Avg Bwd Segment 
Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow 

0.997163 1 0.99858 1 0.999929 0.999964 
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Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.2  Label',  
' Flow Duration',  
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet 
Length Min', ' Bwd Packet Length Mean', 
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' 
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT 
Mean', ' Fwd IAT Max', ' Fwd IAT Min', 
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd 
IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd 
Packets/s',' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet 
Length Mean', ' Packet Length Std', ' Packet 
Length Variance', ' Down/Up Ratio', ' 
Average Packet Size', ' Avg Fwd Segment 
Size', ' Avg Bwd Segment Size', ' Fwd 
Header Length.1', ' Subflow Fwd Bytes', ' 
Subflow Bwd Packets', ' Subflow Bwd 
Bytes', 'Init_Win_bytes_forward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 

0.997163 1 0.99858 1 0.999929 0.999964 

0.25  Label',  
' Flow Duration',  
 ' Total Backward Packets',  
'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet 
Length Min', ' Bwd Packet Length Mean', 
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' 
Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT 
Mean', ' Fwd IAT Max', ' Fwd IAT Min', 
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd 
IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd 
Packets/s',' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet 
Length Mean', ' Packet Length Std', ' Packet 
Length Variance', ' Down/Up Ratio', ' 
Average Packet Size', ' Avg Fwd Segment 
Size', ' Avg Bwd Segment Size', ' Fwd 
Header Length.1', ' Subflow Fwd Bytes', ' 
Subflow Bwd Packets', ' Subflow Bwd 
Bytes', 'Init_Win_bytes_forward', ' 
min_seg_size_forward' 

0.997871 1 0.998934 1 0.999947 0.999973 

0.3  Label',  
' Flow Duration',  
' Total Backward Packets', 
 'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max', ' Fwd Packet 
Length Min', 
 ' Fwd Packet Length Mean',  
'Bwd Packet Length Max', 
 ' Bwd Packet Length Mean', 
 'Flow Bytes/s',  
' Flow Packets/s',  
' Flow IAT Mean',  
' Flow IAT Std', 
 ' Flow IAT Max', 
 ' Flow IAT Min', 
 'Fwd IAT Total', 
 ' Fwd IAT Mean', 
 ' Fwd IAT Max', ' 
 Fwd IAT Min',  
'Bwd IAT Total', 
 ' Bwd IAT Mean',  
' Bwd IAT Max', 
 ' Bwd IAT Min', 
 ' Fwd Header Length', ' Bwd Header Length', 
 'Fwd Packets/s', ' Bwd Packets/s', 
 ' Min Packet Length', ' Max Packet Length',  
' Packet Length Mean', ' Packet Length Std',  
' Packet Length Variance', ' Down/Up Ratio' 
, ' Average Packet Size', ' Avg Fwd Segment 
Size', 
 ' Avg Bwd Segment Size', ' Fwd Header 
Length.1' 
, ' Subflow Fwd Bytes', ' Subflow Bwd 
Packets', 
 ' Subflow Bwd Bytes' 

0.996454 0.999289 0.997869 0.999982 0.999911 0.999947 

0.35  Label', ' Flow Duration',  
' Total Backward Packets', 
 'Total Length of Fwd Packets', 
 ' Fwd Packet Length Max',  

0.995751 1 0.997871 1 0.999893 0.999947 
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' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 'Flow Bytes/s', 
 ' Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Std', ' Flow IAT Max', 
 'Fwd IAT Total', ' Fwd IAT Mean', 
 ' Fwd IAT Max', 'Bwd IAT Total', 
 ' Bwd IAT Mean', ' Bwd IAT Max' 
, ' Bwd IAT Min', ' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s' 
, ' Bwd Packets/s', ' Min Packet Length' 
, ' Max Packet Length', ' Packet Length Mean' 
, ' Packet Length Std',  
' Packet Length Variance', 
 ' Average Packet Size', 
 ' Avg Fwd Segment Size',  
' Fwd Header Length.1',  
' Subflow Fwd Bytes', ' Subflow Bwd 
Packets' 
 

0.4  Label', ' Flow Duration', 
 'Total Length of Fwd Packets',  
' Fwd Packet Length Max',  
' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean',  
'Flow Bytes/s', ' Flow Packets/s',  
' Flow IAT Mean', ' Flow IAT Std', 
 ' Flow IAT Max', 'Fwd IAT Total' 
 ' Fwd IAT Mean', ' Fwd IAT Max', 
' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s', 
 ' Bwd Packets/s', ' Min Packet Length' 
, ' Max Packet Length', ' Packet Length 
Mean', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Fwd Header Length.1', ' 
Subflow Fwd Bytes' 

0.995745 0.998578 0.997159 0.999964 0.999893 0.999929 

0.45  Label', ' Flow Duration',  
'Total Length of Fwd Packets', 
 ' Fwd Packet Length Max', 
 ' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', 'Flow Bytes/s', 
 ' Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Max', 'Fwd Packets/s', 
 ' Min Packet Length', ' Max Packet Length', 
 ' Packet Length Mean', 
 ' Average Packet Size', 
 ' Avg Fwd Segment Size', 
 ' Subflow Fwd Bytes' 
 

0.995742 0.997866 0.996803 0.999947 0.999893 0.99992 

0.5  Label', 
 ' Flow Duration',  
'Total Length of Fwd Packets', 
 ' Fwd Packet Length Max' 
 ' Fwd Packet Length Min',  
' Fwd Packet Length Mean', 
 'Flow Bytes/s', ' Flow Packets/s', 
 ' Flow IAT Mean', ' Flow IAT Max' 
, 'Fwd Packets/s', ' Min Packet Length' 
, ' Max Packet Length', ' Packet Length Mean' 
, ' Average Packet Size',  
' Avg Fwd Segment Size',  
' Subflow Fwd Bytes' 
 

0.995742 0.997866 0.996803 0.999947 0.999893 0.99992 

0.55  Label',  
'Total Length of Fwd Packets', 
 ' Fwd Packet Length Max', 
 ' Fwd Packet Length Min',  
' Fwd Packet Length Mean',  
'Flow Bytes/s', 
 ' Min Packet Length', 
 ' Max Packet Length' 
, ' Packet Length Mean', 
 ' Average Packet Size',  
' Avg Fwd Segment Size', 
 ' Subflow Fwd Bytes' 

0.979777 0.999289 0.989437 0.999982 0.999483 0.999733 

0.6  Label',  
'Total Length of Fwd Packets',  
' Fwd Packet Length Max', 
 ' Fwd Packet Length Min',  
' Fwd Packet Length Mean', 
 'Flow Bytes/s', 
 ' Min Packet Length', 
 ' Max Packet Length',  
' Packet Length Mean', 
 ' Average Packet Size', 
 ' Avg Fwd Segment Size',  
' Subflow Fwd Bytes' 
 

0.979777 0.999289 0.989437 0.999982 0.999483 0.999733 
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Precision, F1 score and Recall for Correlation value of SYN attack Dataset 
SYN         
corelation 
value 

 Features name   Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

Support(0th)  
Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.1 Total Backward Packets        0.120493 
Total Length of Fwd Packets    0.208247 
 Fwd Packet Length Max         0.322236 
 Fwd Packet Length Mean        0.175248 
 Fwd Packet Length Std         0.339199 
Bwd Packet Length Max          0.383470 
 Bwd Packet Length Min         0.381006 
 Bwd Packet Length Mean        0.393921 
 Bwd Packet Length Std         0.359309 
Fwd PSH Flags                  0.411012 
 Fwd Header Length             0.142923 
 Bwd Header Length             0.128348 
 Max Packet Length             0.395465 
 Packet Length Mean            0.290465 
 Packet Length Std             0.416720 
 Packet Length Variance        0.315024 
 RST Flag Count                0.411012 
 ACK Flag Count                0.784367 
 URG Flag Count                0.639606 
 CWE Flag Count                0.427593 
 Average Packet Size           0.240398 
 Avg Fwd Segment Size          0.175248 
 Avg Bwd Segment Size          0.393921 
 Fwd Header Length.1           0.142923 
 Subflow Fwd Bytes             0.208247 
 Subflow Bwd Packets           0.120493 
 Init_Win_bytes_backward       0.270303 
 min_seg_size_forward          0.423877 
 Label                         1.000000 

0.967376 0.999191 0.983026 7419 0.999993 0.99972 0.999857 

0.15 Total Length of Fwd Packets    0.208247 
 Fwd Packet Length Max         0.322236 
 Fwd Packet Length Mean        0.175248 
 Fwd Packet Length Std         0.339199 
Bwd Packet Length Max          0.383470 
 Bwd Packet Length Min         0.381006 
 Bwd Packet Length Mean        0.393921 
 Bwd Packet Length Std         0.359309 
Fwd PSH Flags                  0.411012 
 Max Packet Length             0.395465 
 Packet Length Mean            0.290465 
 Packet Length Std             0.416720 
 Packet Length Variance        0.315024 
 RST Flag Count                0.411012 
 ACK Flag Count                0.784367 
 URG Flag Count                0.639606 
 CWE Flag Count                0.427593 
 Average Packet Size           0.240398 
 Avg Fwd Segment Size          0.175248 
 Avg Bwd Segment Size          0.393921 
 Subflow Fwd Bytes             0.208247 
 Init_Win_bytes_backward       0.270303 
 min_seg_size_forward          0.423877 
 Label                         1.000000 

0.949194 0.99973 0.973807 7419 0.999998 0.999555 0.999776 

0.2 Total Length of Fwd Packets    0.208247 
 Fwd Packet Length Max         0.322236 
 Fwd Packet Length Std         0.339199 
Bwd Packet Length Max          0.383470 
 Bwd Packet Length Min         0.381006 
 Bwd Packet Length Mean        0.393921 
 Bwd Packet Length Std         0.359309 
Fwd PSH Flags                  0.411012 
 Max Packet Length             0.395465 
 Packet Length Mean            0.290465 
 Packet Length Std             0.416720 
 Packet Length Variance        0.315024 
 RST Flag Count                0.411012 
 ACK Flag Count                0.784367 
 URG Flag Count                0.639606 
 CWE Flag Count                0.427593 
 Average Packet Size           0.240398 
 Avg Bwd Segment Size          0.393921 
 Subflow Fwd Bytes             0.208247 
 Init_Win_bytes_backward       0.270303 
 min_seg_size_forward          0.423877 
 Label                         1.000000 

0.949315 0.99973 0.973871 7419 0.999998 0.999556 0.999777 

0.25 Fwd Packet Length Max      0.322236 
 Fwd Packet Length Std      0.339199 
Bwd Packet Length Max       0.383470 
 Bwd Packet Length Min      0.381006 
 Bwd Packet Length Mean     0.393921 
 Bwd Packet Length Std      0.359309 
Fwd PSH Flags               0.411012 
 Max Packet Length          0.395465 
 Packet Length Mean         0.290465 
 Packet Length Std          0.416720 
 Packet Length Variance     0.315024 
 RST Flag Count             0.411012 
 ACK Flag Count             0.784367 
 URG Flag Count             0.639606 
 CWE Flag Count             0.427593 
 Avg Bwd Segment Size       0.393921 
 Init_Win_bytes_backward    0.270303 

0.949322 0.999865 0.973938 7419 0.999999 0.999556 0.999778 
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 min_seg_size_forward       0.423877 
 Label                      1.000000 

0.3 Fwd Packet Length Max     0.322236 
 Fwd Packet Length Std     0.339199 
Bwd Packet Length Max      0.383470 
 Bwd Packet Length Min     0.381006 
 Bwd Packet Length Mean    0.393921 
 Bwd Packet Length Std     0.359309 
Fwd PSH Flags              0.411012 
 Max Packet Length         0.395465 
 Packet Length Std         0.416720 
 Packet Length Variance    0.315024 
 RST Flag Count            0.411012 
 ACK Flag Count            0.784367 
 URG Flag Count            0.639606 
 CWE Flag Count            0.427593 
 Avg Bwd Segment Size      0.393921 
 min_seg_size_forward      0.423877 
 Label                     1.000000 

0.9492 0.999865 0.973874 7419 0.999999 0.999555 0.999777 

0.35 Bwd Packet Length Max      0.383470 
 Bwd Packet Length Min     0.381006 
 Bwd Packet Length Mean    0.393921 
 Bwd Packet Length Std     0.359309 
Fwd PSH Flags              0.411012 
 Max Packet Length         0.395465 
 Packet Length Std         0.416720 
 RST Flag Count            0.411012 
 ACK Flag Count            0.784367 
 URG Flag Count            0.639606 
 CWE Flag Count            0.427593 
 Avg Bwd Segment Size      0.393921 
 min_seg_size_forward      0.423877 
 Label                     1.000000 

0.9492 0.999865 0.973874 7419 0.999999 0.999555 0.999777 

0.4 Fwd PSH Flags            0.411012 
 Packet Length Std       0.416720 
 RST Flag Count          0.411012 
 ACK Flag Count          0.784367 
 URG Flag Count          0.639606 
 CWE Flag Count          0.427593 
 min_seg_size_forward    0.423877 
 Label                   1.000000 

0.821425 0.999461 0.901739 7419 0.999996 0.998194 0.999094 

0.45 ACK Flag Count    0.784367 
 URG Flag Count    0.639606 
 Label             1.000000 

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221 

0.5 ACK Flag Count    0.784367 
 URG Flag Count    0.639606 
 Label             1.000000 

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221 

0.55 ACK Flag Count    0.784367 
 URG Flag Count    0.639606 
 Label             1.000000 

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221 

0.6 ACK Flag Count    0.784367 
 URG Flag Count    0.639606 
 Label             1.000000 

0.780659 0.79539 0.787956 7419 0.998299 0.998142 0.998221 

0.65 ACK Flag Count    0.784367 
 Label             1.000000 

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224 

0.7 ACK Flag Count    0.784367 
 Label             1.000000 

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224 

0.75 ACK Flag Count    0.784367 
 Label             1.000000 

0.781279 0.79539 0.788271 7419 0.998299 0.998149 0.998224 

 
Precision, F1 score and Recall for MI-score value of SYN attack Dataset 

Mi score 
value 

 Features name   
Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

 
Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.0001  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets', 
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet 
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd 
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', ' 
Bwd Packet Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT 
Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' 
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT 
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length 
Variance', 'FIN Flag Count', ' SYN Flag Count', ' RST Flag Count', ' ACK Flag 
Count', ' URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' Fwd 
Header Length.1', ' Bwd Avg Packets/Bulk', 'Subflow Fwd Packets', ' Subflow 
Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' act_data_pkt_fwd', ' 
min_seg_size_forward', 'Active Mean', ' Active Std', ' Active Max', ' Active 
Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min'] 
 

0.99601 0.999199 0.997602 0.999993 0.999966 0.99998 

0.05  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets', 
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet 
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd 
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', ' 
Bwd Packet Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT 
Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' 
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Std', ' Bwd IAT 
Max', ' Bwd IAT Min', 'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length 

0.995878 0.999333 0.997602 0.999994 0.999965 0.99998 



197 
 
 

Variance', ' RST Flag Count', ' ACK Flag Count', ' URG Flag Count', ' CWE 
Flag Count', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd Segment 
Size', ' Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd 
Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' Active Std', ' 
Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' Idle Max', ' Idle Min'] 
 

0.1  Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward Packets', 
'Total Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd Packet 
Length Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' Fwd 
Packet Length Std', 'Bwd Packet Length Max', ' Bwd Packet Length Min', ' 
Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT 
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet Length Std', ' 
Packet Length Variance', ' ACK Flag Count', ' URG Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment 
Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' 
Subflow Bwd Packets', ' Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' act_data_pkt_fwd', ' min_seg_size_forward'] 
 

0.996143 0.999333 0.997735 0.999994 0.999968 0.999981 

0.15  Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', ' 
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length 
Min', ' Fwd Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet 
Length Min', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' 
Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd 
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT 
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header 
Length', ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet Length Std', ' 
Packet Length Variance', ' ACK Flag Count', ' URG Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment 
Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' 
Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward'] 
 

0.995878 0.999333 0.997602 0.999994 0.999965 0.99998 

0.2  Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', ' 
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length 
Min', ' Fwd Packet Length Mean', 'Bwd Packet Length Max', ' Bwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT 
Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' 
Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd 
IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header Length', 'Fwd 
Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' 
Packet Length Mean', ' Packet Length Std', ' Packet Length Variance', ' ACK 
Flag Count', ' URG Flag Count', ' Average Packet Size', ' Avg Fwd Segment 
Size', ' Avg Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' act_data_pkt_fwd', ' 
min_seg_size_forward'] 
 

0.995745 0.999333 0.997536 0.999994 0.999964 0.999979 

0.25  Label', ' Flow Duration', ' Total Fwd Packets', 'Total Length of Fwd Packets', ' 
Total Length of Bwd Packets', ' Fwd Packet Length Max', ' Fwd Packet Length 
Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd 
IAT Mean', ' Bwd IAT Max', ' Fwd Header Length', 'Fwd Packets/s', ' Bwd 
Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet Length Mean', 
' Packet Length Std', ' Packet Length Variance', ' ACK Flag Count', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' act_data_pkt_fwd', ' min_seg_size_forward'] 
 

0.995481 0.999333 0.997403 0.999994 0.999962 0.999978 

0.3  Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', ' 
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow 
IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet 
Length', ' Packet Length Mean', ' Packet Length Std', ' Packet Length 
Variance', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd Segment 
Size', ' Fwd Header Length.1', ' Subflow Fwd Bytes', 
'Init_Win_bytes_forward', ' min_seg_size_forward'] 
 

0.995613 0.999466 0.997536 0.999996 0.999963 0.999979 

0.35  Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', ' 
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd 
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd Header Length', 'Fwd 
Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' 
Packet Length Mean', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Fwd Header Length.1', ' Subflow Fwd Bytes', 
'Init_Win_bytes_forward', ' min_seg_size_forward'] 
 

0.995613 0.999466 0.997536 0.999996 0.999963 0.999979 

0.4  Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', ' 
Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Max', ' Fwd Header Length', 
'Fwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' Packet Length 
Mean', ' ACK Flag Count', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Fwd Header Length.1', ' Subflow Fwd Bytes', 'Init_Win_bytes_forward', ' 
min_seg_size_forward'] 
 

0.995746 0.9996 0.997669 0.999997 0.999964 0.99998 

0.45  Label', 'Total Length of Fwd Packets', ' Fwd Packet Length Min', ' Fwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT 
Max', 'Fwd Packets/s', ' Min Packet Length', ' Packet Length Mean', ' ACK 
Flag Count', ' Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd 
Bytes', 'Init_Win_bytes_forward'] 

0.994029 0.9996 0.996806 0.999997 0.99995 0.999973 
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0.5  Label',  

'Total Length of Fwd Packets', 
 'Flow Bytes/s',  
' Flow Packets/s',  
'Fwd Packets/s', 
 ' ACK Flag Count',  
' Average Packet Size',  
' Subflow Fwd Bytes', 
 'Init_Win_bytes_forward', 
 

0.994161 0.9996 0.996873 0.999997 0.999951 0.999974 

0.55  Label', 'Total Length of Fwd Packets', 'Flow Bytes/s', ' ACK Flag Count', ' 
Average Packet Size', 'Init_Win_bytes_forward'] 
 

0.954158 0.999867 0.976477 0.999999 0.999597 0.999798 

0.6  Label', 'Flow Bytes/s', 'Init_Win_bytes_forward'] 0.931957 0.999733 0.964656 0.999998 0.999387 0.999692 
0.65  Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967 
0.7  Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967 

0.75  Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967 
0.8 ' Label', 'Init_Win_bytes_forward' 0.802699 1 0.890553 1 0.997936 0.998967 

 
 

Precision, F1 score and Recall for Correlation value of UDP attack Dataset 
 UDP-features       

corelation 
value 

 Features name   Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

 Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.1 Flow Duration              0.264399 
 Total Backward Packets     0.178735 
 Fwd Packet Length Max      0.216441 
 Fwd Packet Length Min      0.232204 
 Fwd Packet Length Mean     0.272626 
Bwd Packet Length Max       0.350890 
 Bwd Packet Length Min      0.483829 
 Bwd Packet Length Mean     0.380976 
 Bwd Packet Length Std      0.334964 
 Flow IAT Mean              0.125424 
 Flow IAT Std               0.187512 
 Flow IAT Max               0.251776 
Fwd IAT Total               0.256064 
 Fwd IAT Mean               0.179106 
 Fwd IAT Std                0.210681 
 Fwd IAT Max                0.240887 
Bwd IAT Total               0.241923 
 Bwd IAT Mean               0.271974 
 Bwd IAT Std                0.267322 
 Bwd IAT Max                0.238984 
 Bwd IAT Min                0.264667 
Fwd PSH Flags               0.470833 
 Bwd Packets/s              0.128154 
 Min Packet Length          0.233385 
 Packet Length Mean         0.242002 
 Packet Length Std          0.129118 
 Packet Length Variance     0.286102 
 RST Flag Count             0.470833 
 ACK Flag Count             0.401689 
 URG Flag Count             0.727944 
 CWE Flag Count             0.430615 
 Down/Up Ratio              0.618930 
 Average Packet Size        0.132722 
 Avg Fwd Segment Size       0.272626 
 Avg Bwd Segment Size       0.380976 
 Subflow Bwd Packets        0.178735 
Init_Win_bytes_forward      0.464147 
 Init_Win_bytes_backward    0.239698 
Active Mean                 0.146077 
 Active Max                 0.151150 
 Active Min                 0.124369 
Idle Mean                   0.235977 
 Idle Max                   0.236119 
 Idle Min                   0.229957 
 Label                      1.000000 

0.996109 1 0.998051 1 0.999997 0.999998 

0.15 Flow Duration              0.264399 
 Total Backward Packets     0.178735 
 Fwd Packet Length Max      0.216441 
 Fwd Packet Length Min      0.232204 
 Fwd Packet Length Mean     0.272626 
Bwd Packet Length Max       0.350890 
 Bwd Packet Length Min      0.483829 
 Bwd Packet Length Mean     0.380976 
 Bwd Packet Length Std      0.334964 
 Flow IAT Std               0.187512 
 Flow IAT Max               0.251776 
Fwd IAT Total               0.256064 
 Fwd IAT Mean               0.179106 
 Fwd IAT Std                0.210681 
 Fwd IAT Max                0.240887 
Bwd IAT Total               0.241923 
 Bwd IAT Mean               0.271974 
 Bwd IAT Std                0.267322 
 Bwd IAT Max                0.238984 
 Bwd IAT Min                0.264667 
Fwd PSH Flags               0.470833 
 Min Packet Length          0.233385 
 Packet Length Mean         0.242002 

0.996104 0.998698 0.997399 0.999999 0.999997 0.999998 
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 Packet Length Variance     0.286102 
 RST Flag Count             0.470833 
 ACK Flag Count             0.401689 
 URG Flag Count             0.727944 
 CWE Flag Count             0.430615 
 Down/Up Ratio              0.618930 
 Avg Fwd Segment Size       0.272626 
 Avg Bwd Segment Size       0.380976 
 Subflow Bwd Packets        0.178735 
Init_Win_bytes_forward      0.464147 
 Init_Win_bytes_backward    0.239698 
 Active Max                 0.151150 
Idle Mean                   0.235977 
 Idle Max                   0.236119 
 Idle Min                   0.229957 
 Label                      1.000000 

0.2 Flow Duration              0.264399 
 Fwd Packet Length Max      0.216441 
 Fwd Packet Length Min      0.232204 
 Fwd Packet Length Mean     0.272626 
Bwd Packet Length Max       0.350890 
 Bwd Packet Length Min      0.483829 
 Bwd Packet Length Mean     0.380976 
 Bwd Packet Length Std      0.334964 
 Flow IAT Max               0.251776 
Fwd IAT Total               0.256064 
 Fwd IAT Std                0.210681 
 Fwd IAT Max                0.240887 
Bwd IAT Total               0.241923 
 Bwd IAT Mean               0.271974 
 Bwd IAT Std                0.267322 
 Bwd IAT Max                0.238984 
 Bwd IAT Min                0.264667 
Fwd PSH Flags               0.470833 
 Min Packet Length          0.233385 
 Packet Length Mean         0.242002 
 Packet Length Variance     0.286102 
 RST Flag Count             0.470833 
 ACK Flag Count             0.401689 
 URG Flag Count             0.727944 
 CWE Flag Count             0.430615 
 Down/Up Ratio              0.618930 
 Avg Fwd Segment Size       0.272626 
 Avg Bwd Segment Size       0.380976 
Init_Win_bytes_forward      0.464147 
 Init_Win_bytes_backward    0.239698 
Idle Mean                   0.235977 
 Idle Max                   0.236119 
 Idle Min                   0.229957 
 Label                      1.000000 

0.994812 0.998698 0.996751 0.999999 0.999996 0.999997 

0.25  Flow Duration             0.264399 
 Fwd Packet Length Mean    0.272626 
Bwd Packet Length Max      0.350890 
 Bwd Packet Length Min     0.483829 
 Bwd Packet Length Mean    0.380976 
 Bwd Packet Length Std     0.334964 
 Flow IAT Max              0.251776 
Fwd IAT Total              0.256064 
 Bwd IAT Mean              0.271974 
 Bwd IAT Std               0.267322 
 Bwd IAT Min               0.264667 
Fwd PSH Flags              0.470833 
 Packet Length Variance    0.286102 
 RST Flag Count            0.470833 
 ACK Flag Count            0.401689 
 URG Flag Count            0.727944 
 CWE Flag Count            0.430615 
 Down/Up Ratio             0.618930 
 Avg Fwd Segment Size      0.272626 
 Avg Bwd Segment Size      0.380976 
Init_Win_bytes_forward     0.464147 
 Label                     1.000000 

0.996109 1 0.998051 1 0.999997 0.999998 

0.3 Bwd Packet Length Max      0.350890 
 Bwd Packet Length Min     0.483829 
 Bwd Packet Length Mean    0.380976 
 Bwd Packet Length Std     0.334964 
Fwd PSH Flags              0.470833 
 RST Flag Count            0.470833 
 ACK Flag Count            0.401689 
 URG Flag Count            0.727944 
 CWE Flag Count            0.430615 
 Down/Up Ratio             0.618930 
 Avg Bwd Segment Size      0.380976 
Init_Win_bytes_forward     0.464147 
 Label                     1.000000 

0.988095 0.972656 0.980315 0.999977 0.99999 0.999983 

0.35 Bwd Packet Length Max      0.350890 
 Bwd Packet Length Min     0.483829 
 Bwd Packet Length Mean    0.380976 
Fwd PSH Flags              0.470833 
 RST Flag Count            0.470833 
 ACK Flag Count            0.401689 
 URG Flag Count            0.727944 
 CWE Flag Count            0.430615 
 Down/Up Ratio             0.618930 
 Avg Bwd Segment Size      0.380976 
Init_Win_bytes_forward     0.464147 
 Label                     1.000000 

0.988095 0.972656 0.980315 0.999977 0.99999 0.999983 

0.4 Bwd Packet Length Min    0.483829 0.982895 0.972656 0.977749 0.999977 0.999986 0.999981 
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Fwd PSH Flags             0.470833 
 RST Flag Count           0.470833 
 ACK Flag Count           0.401689 
 URG Flag Count           0.727944 
 CWE Flag Count           0.430615 
 Down/Up Ratio            0.618930 
Init_Win_bytes_forward    0.464147 
 Label                    1.000000 

0.45 Bwd Packet Length Min    0.483829 
Fwd PSH Flags             0.470833 
 RST Flag Count           0.470833 
 URG Flag Count           0.727944 
 Down/Up Ratio            0.618930 
Init_Win_bytes_forward    0.464147 
 Label                    1.000000 

0.982895 0.972656 0.977749 0.999977 0.999986 0.999981 

0.5 URG Flag Count    0.727944 
 Down/Up Ratio     0.618930 
 Label             1.000000 

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935 

0.55 URG Flag Count    0.727944 
 Down/Up Ratio     0.618930 
 Label             1.000000 

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935 

0.6 URG Flag Count    0.727944 
 Down/Up Ratio     0.618930 
 Label             1.000000 

0.965665 0.878906 0.920245 0.999897 0.999973 0.999935 

0.65 URG Flag Count    0.727944 
 Label             1.000000 

0.973274 0.56901 0.718159 0.999632 0.999987 0.999809 

0.7 URG Flag Count    0.727944 
 Label             1.000000 

0.973274 0.56901 0.718159 0.999632 0.999987 0.999809 

 
Precision, F1 score and Recall for MI-score value of UDP attack Dataset 

Mi score 
value  Features name  

 Precision 
(0th) Recall (0th) 

F1 
score(0th) 

 Precision 
(1st) Recall (1st) 

F1 
score(1st) 

0.0001 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet 
Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 
' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT 
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd 
IAT Mean', ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min', 
'Fwd PSH Flags', ' Bwd URG Flags', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min 
Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Packet Length Std', ' Packet Length Variance', ' RST Flag 
Count', ' ACK Flag Count', ' URG Flag Count', ' CWE Flag 
Count', ' ECE Flag Count', ' Down/Up Ratio', ' Average Packet 
Size', ' Avg Fwd Segment Size', ' Avg Bwd Segment Size', ' 
Fwd Header Length.1', 'Fwd Avg Bytes/Bulk', ' Fwd Avg Bulk 
Rate', 'Bwd Avg Bulk Rate', 'Subflow Fwd Packets', ' Subflow 
Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward', 'Active Mean', ' 
Active Std', ' Active Max', ' Active Min', 'Idle Mean', ' Idle Std', ' 
Idle Max', ' Idle Min' 0.99085 0.997368 0.994098 0.999998 0.999992 0.999995 

0.05 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet 
Length Mean', ' Bwd Packet Length Std', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 
' Flow IAT Min', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT 
Std', ' Fwd IAT Max', ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd 
IAT Mean', ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min', 
'Fwd PSH Flags', ' Fwd Header Length', ' Bwd Header Length', 
'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', ' Max 
Packet Length', ' Packet Length Mean', ' Packet Length Std', ' 
Packet Length Variance', ' RST Flag Count', ' ACK Flag Count', 
' URG Flag Count', ' CWE Flag Count', ' Down/Up Ratio', ' 
Average Packet Size', ' Avg Fwd Segment Size', ' Avg Bwd 
Segment Size', ' Fwd Header Length.1', 'Subflow Fwd Packets', ' 
Subflow Fwd Bytes', ' Subflow Bwd Packets', ' Subflow Bwd 
Bytes', 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 0.99085 0.997368 0.994098 0.999998 0.999992 0.999995 

0.1 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd 
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' 
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT 
Std', ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' 
Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min 
Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Packet Length Std', ' Packet Length Variance', ' URG Flag 
Count', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Avg Bwd Segment Size', ' Fwd Header 
Length.1', 'Subflow Fwd Packets', ' Subflow Fwd Bytes', ' 
Subflow Bwd Packets', ' Subflow Bwd Bytes', 
'Init_Win_bytes_forward', ' Init_Win_bytes_backward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996 
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0.15 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd 
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' 
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT 
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', 
' Max Packet Length', ' Packet Length Mean', ' Packet Length 
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg 
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' 
Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996 

0.2 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Min', ' Bwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 'Fwd 
IAT Total', ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', ' 
Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT 
Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', 
' Max Packet Length', ' Packet Length Mean', ' Packet Length 
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg 
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' 
Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' 
Init_Win_bytes_backward', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 0.992147 0.997368 0.994751 0.999998 0.999993 0.999996 

0.25 

 Label', ' Flow Duration', ' Total Fwd Packets', ' Total Backward 
Packets', 'Total Length of Fwd Packets', ' Total Length of Bwd 
Packets', ' Fwd Packet Length Max', ' Fwd Packet Length Min', ' 
Fwd Packet Length Mean', ' Fwd Packet Length Std', 'Bwd 
Packet Length Max', ' Bwd Packet Length Mean', 'Flow 
Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' 
Flow IAT Max', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT 
Std', ' Fwd IAT Max', 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd 
IAT Max', ' Bwd IAT Min', ' Fwd Header Length', ' Bwd Header 
Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min Packet Length', 
' Max Packet Length', ' Packet Length Mean', ' Packet Length 
Std', ' Packet Length Variance', ' URG Flag Count', ' Down/Up 
Ratio', ' Average Packet Size', ' Avg Fwd Segment Size', ' Avg 
Bwd Segment Size', ' Fwd Header Length.1', 'Subflow Fwd 
Packets', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', ' 
Subflow Bwd Bytes', 'Init_Win_bytes_forward', ' 
act_data_pkt_fwd', ' min_seg_size_forward' 0.992157 0.998684 0.99541 0.999999 0.999993 0.999996 

0.3 

 Label', ' Flow Duration', ' Total Backward Packets', 'Total 
Length of Fwd Packets', ' Total Length of Bwd Packets', ' Fwd 
Packet Length Max', ' Fwd Packet Length Min', ' Fwd Packet 
Length Mean', ' Fwd Packet Length Std', 'Bwd Packet Length 
Max', ' Bwd Packet Length Mean', 'Flow Bytes/s', ' Flow 
Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 
'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 'Bwd IAT 
Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', ' 
Fwd Header Length', ' Bwd Header Length', 'Fwd Packets/s', ' 
Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', ' 
Packet Length Mean', ' Packet Length Std', ' Packet Length 
Variance', ' Down/Up Ratio', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Avg Bwd Segment Size', ' Fwd Header 
Length.1', ' Subflow Fwd Bytes', ' Subflow Bwd Packets', 
'Init_Win_bytes_forward', ' act_data_pkt_fwd', ' 
min_seg_size_forward' 0.98957 0.998684 0.994106 0.999999 0.999991 0.999995 

0.35 

 Label', ' Flow Duration', ' Total Backward Packets', 'Total 
Length of Fwd Packets', ' Fwd Packet Length Max', ' Fwd 
Packet Length Min', ' Fwd Packet Length Mean', 'Flow Bytes/s', 
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT 
Max', 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 'Bwd 
IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max', ' Bwd IAT Min', 
' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', ' Min 
Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Packet Length Std', ' Packet Length Variance', ' Average Packet 
Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes', ' Subflow 
Bwd Packets', 'Init_Win_bytes_forward' 0.988281 0.998684 0.993455 0.999999 0.99999 0.999994 

0.4 

 Label', ' Flow Duration', 'Total Length of Fwd Packets', ' Fwd 
Packet Length Max', ' Fwd Packet Length Min', ' Fwd Packet 
Length Mean', 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT 
Mean', ' Flow IAT Std', ' Flow IAT Max', 'Fwd IAT Total', ' 
Fwd IAT Mean', ' Fwd IAT Max', 'Fwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Packet 
Length Std', ' Packet Length Variance', ' Average Packet Size', ' 
Avg Fwd Segment Size', ' Subflow Fwd Bytes' 0.979301 0.996053 0.987606 0.999997 0.999982 0.999989 

0.45 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT 
Max', 'Fwd IAT Total', ' Fwd IAT Max', 'Fwd Packets/s', ' Min 
Packet Length', ' Max Packet Length', ' Packet Length Mean', ' 
Average Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd 
Bytes' 0.980595 0.997368 0.988911 0.999998 0.999983 0.999991 
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0.5 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
'Flow Bytes/s', ' Flow Packets/s', 'Fwd Packets/s', ' Min Packet 
Length', ' Max Packet Length', ' Packet Length Mean', ' Average 
Packet Size', ' Avg Fwd Segment Size', ' Subflow Fwd Bytes' 0.975484 0.994737 0.985016 0.999996 0.999979 0.999987 

0.55 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
'Flow Bytes/s', ' Min Packet Length', ' Max Packet Length', ' 
Packet Length Mean', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Subflow Fwd Bytes' 0.959596 1 0.979381 1 0.999964 0.999982 

0.6 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
'Flow Bytes/s', ' Min Packet Length', ' Max Packet Length', ' 
Packet Length Mean', ' Average Packet Size', ' Avg Fwd 
Segment Size', ' Subflow Fwd Bytes' 0.959596 1 0.979381 1 0.999964 0.999982 

0.65 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' 
Min Packet Length', ' Max Packet Length', ' Packet Length 
Mean', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Subflow Fwd Bytes' 0.957179 1 0.978121 1 0.999962 0.999981 

0.7 

 Label', 'Total Length of Fwd Packets', ' Fwd Packet Length 
Max', ' Fwd Packet Length Min', ' Fwd Packet Length Mean', ' 
Min Packet Length', ' Max Packet Length', ' Packet Length 
Mean', ' Average Packet Size', ' Avg Fwd Segment Size', ' 
Subflow Fwd Bytes' 0.957179 1 0.978121 1 0.999962 0.999981 

0.75 
 Label', ' Fwd Packet Length Min', ' Min Packet Length', ' 
Average Packet Size' 0.953576 1 0.976236 1 0.999959 0.999979 

 

Precision, F1 score and Recall for Correlation value of UDPLag attack Dataset 
  udplag             
corelation 
value  Features name   Precision (0th) 

Recall 
(0th) F1 score(0th)  Precision (1st) 

Recall 
(1st) 

F1 
score(1st) 

0.1 

Total Backward Packets 0.257960  
Total Length of Bwd Packets 0.144216  
Fwd Packet Length Std 0.267577  
Bwd Packet Length Max 0.352576  
Bwd Packet Length Min 0.262471  
Bwd Packet Length Mean 0.350310  
Bwd Packet Length Std 0.293907  
Bwd IAT Total 0.261406  
Bwd IAT Std 0.100520  
Bwd IAT Max 0.181043  
Fwd PSH Flags 0.337964  
Bwd Header Length 0.297883  
Max Packet Length 0.128425  
Packet Length Std 0.317316  
Packet Length Variance 0.256579  
RST Flag Count 0.337964  
ACK Flag Count 0.191164  
URG Flag Count 0.512530  
CWE Flag Count 0.357120  
Down/Up Ratio 0.322534  
Avg Bwd Segment Size 0.350310  
Subflow Bwd Packets 0.257960  
Subflow Bwd Bytes 0.144216  
Init_Win_bytes_backward 0.311125  
act_data_pkt_fwd 0.181445  
Label 1.000000 0.988656 0.994732 0.991685 0.999945 0.999882 0.999914 

0.15 

Total Backward Packets 0.257960  
Fwd Packet Length Std 0.267577  
Bwd Packet Length Max 0.352576  
Bwd Packet Length Min 0.262471  
Bwd Packet Length Mean 0.350310  
Bwd Packet Length Std 0.293907  
Bwd IAT Total 0.261406  
Bwd IAT Max 0.181043  
Fwd PSH Flags 0.337964  
Bwd Header Length 0.297883  
Packet Length Std 0.317316  
Packet Length Variance 0.256579  
RST Flag Count 0.337964  
ACK Flag Count 0.191164  
URG Flag Count 0.512530  
CWE Flag Count 0.357120  
Down/Up Ratio 0.322534  
Avg Bwd Segment Size 0.350310  
Subflow Bwd Packets 0.257960  
Init_Win_bytes_backward 0.311125  
act_data_pkt_fwd 0.181445 
 Label 1.000000  0.987794 0.994732 0.991251 0.999945 0.999873 0.999909 

0.2 

Total Backward Packets 0.257960  
Fwd Packet Length Std 0.267577 
 Bwd Packet Length Max 0.352576 
 Bwd Packet Length Min 0.262471 
 Bwd Packet Length Mean 0.350310 
 Bwd Packet Length Std 0.293907 
 Bwd IAT Total 0.261406 
 Fwd PSH Flags 0.337964  
Bwd Header Length 0.297883  
Packet Length Std 0.317316 
 Packet Length Variance 0.256579 
 RST Flag Count 0.337964 
 URG Flag Count 0.512530 
 CWE Flag Count 0.357120 0.984238 0.986831 0.985533 0.999864 0.999836 0.99985 
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 Down/Up Ratio 0.322534  
Avg Bwd Segment Size 0.350310  
Subflow Bwd Packets 0.257960  
Init_Win_bytes_backward 0.311125 
 Label 1.000000 

0.25 

Total Backward Packets 0.257960  
Fwd Packet Length Std 0.267577 
 Bwd Packet Length Max 0.352576 
 Bwd Packet Length Min 0.262471 
 Bwd Packet Length Mean 0.350310 
 Bwd Packet Length Std 0.293907 
 Bwd IAT Total 0.261406 
 Fwd PSH Flags 0.337964  
Bwd Header Length 0.297883  
Packet Length Std 0.317316 
 Packet Length Variance 0.256579 
 RST Flag Count 0.337964 
 URG Flag Count 0.512530 
 CWE Flag Count 0.357120 
 Down/Up Ratio 0.322534  
Avg Bwd Segment Size 0.350310  
Subflow Bwd Packets 0.257960  
Init_Win_bytes_backward 0.311125 
 Label 1.000000 0.984238 0.986831 0.985533 0.999864 0.999836 0.99985 

0.3 

Bwd Packet Length Max 0.352576  
Bwd Packet Length Mean 0.350310  
Fwd PSH Flags 0.337964  
Packet Length Std 0.317316  
RST Flag Count 0.337964 
 URG Flag Count 0.512530 
 CWE Flag Count 0.357120 
 Down/Up Ratio 0.322534  
Avg Bwd Segment Size 0.350310  
Init_Win_bytes_backward 0.311125 
 Label 1.000000 0.971429 0.985075 0.978204 0.999845 0.9997 0.999773 

0.35 

Bwd Packet Length Max 0.352576  
Bwd Packet Length Mean 0.350310 
 URG Flag Count 0.512530 
 CWE Flag Count 0.357120 
 Avg Bwd Segment Size 0.350310  
Label 1.000000 0.873439 0.920983 0.896581 0.999182 0.998619 0.9989 

0.4 
URG Flag Count 0.51253  
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129 

0.45 
URG Flag Count 0.51253  
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129 

0.5 
URG Flag Count 0.51253  
Label 1.00000 0.741117 0.384548 0.506358 0.993661 0.99861 0.996129 

 
Precision, F1 score and Recall for MI-score value of UDPLag attack Dataset 

Mi 
score 
value  Features name  

 Precision 
(0th) 

Recall 
(0th) 

F1 
score(0th) 

 Precision 
(1st) 

Recall 
(1st) 

F1 
score(1st) 

0.0001 

 Label', ' Flow Duration', ' Total Fwd Packets',  
' Total Backward Packets', 'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', ' Fwd Packet Length Max', 
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean',  
' Fwd Packet Length Std', 'Bwd Packet Length Max', 
 ' Bwd Packet Length Min', ' Bwd Packet Length Mean',  
' Bwd Packet Length Std', 'Flow Bytes/s', 
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', 
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', 
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', 
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', 
 ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min', 
 'Fwd PSH Flags', ' Bwd PSH Flags', ' Bwd URG Flags', 
 ' Fwd Header Length', ' Bwd Header Length', 'Fwd Packets/s', 
 ' Bwd Packets/s', ' Min Packet Length', ' Max Packet Length', 
 ' Packet Length Mean', ' Packet Length Std', 
 ' Packet Length Variance', 
 'FIN Flag Count', ' SYN Flag Count', ' RST Flag Count',  
' PSH Flag Count', ' ACK Flag Count', ' URG Flag Count',  
' CWE Flag Count', ' Down/Up Ratio', 
 ' Average Packet Size', ' Avg Fwd Segment Size',  
' Avg Bwd Segment Size', ' Fwd Header Length.1' 
, ' Fwd Avg Packets/Bulk', ' Bwd Avg Bytes/Bulk', 
 'Subflow Fwd Packets', ' Subflow Fwd Bytes' 
, ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
 'Init_Win_bytes_forward', ' Init_Win_bytes_backward' 
, ' act_data_pkt_fwd', ' min_seg_size_forward', 
 'Active Mean', ' Active Std', ' Active Max', ' 
 Active Min', 'Idle Mean', ' Idle Std',  
' Idle Max', ' Idle Min'] 0.995495 0.998193 0.996843 0.999982 0.999955 0.999968 

0.05 

 Label', ' Flow Duration', ' Total Fwd Packets',  
' Total Backward Packets', 'Total Length of Fwd Packets', 
 ' Total Length of Bwd Packets', ' Fwd Packet Length Max', 
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
 ' Fwd Packet Length Std', 'Bwd Packet Length Max', 
 ' Bwd Packet Length Min', ' Bwd Packet Length Mean', 
 ' Bwd Packet Length Std', 'Flow Bytes/s', 
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', 
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', 
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', 
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', 
 ' Bwd IAT Std', ' Bwd IAT Max', ' Bwd IAT Min', 
 ' Fwd Header Length', ' Bwd Header Length', 0.995495 0.998193 0.996843 0.999982 0.999955 0.999968 
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 'Fwd Packets/s', ' Bwd Packets/s', 
 ' Min Packet Length', ' Max Packet Length', 
 ' Packet Length Mean', ' Packet Length Std', 
 ' Packet Length Variance', ' ACK Flag Count', 
 ' URG Flag Count', ' CWE Flag Count' 
, ' Down/Up Ratio', ' Average Packet Size', 
 ' Avg Fwd Segment Size', 
 ' Avg Bwd Segment Size',  
' Fwd Header Length.1', 'Subflow Fwd Packets', 
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets', 
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward', 
 ' Init_Win_bytes_backward', ' act_data_pkt_fwd', 
 ' min_seg_size_forward', 'Active Mean', 
 ' Active Max', ' Active Min', 'Idle Mean', 
 ' Idle Max', ' Idle Min'] 

0.1 

 Label', ' Flow Duration', 
 ' Total Fwd Packets', ' Total Backward Packets', 
 'Total Length of Fwd Packets', ' Total Length of Bwd Packets', 
 ' Fwd Packet Length Max', ' Fwd Packet Length Min', 
 ' Fwd Packet Length Mean', ' Fwd Packet Length Std', 
 'Bwd Packet Length Max', ' Bwd Packet Length Min', 
 ' Bwd Packet Length Mean', 'Flow Bytes/s', 
 ' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std', 
 ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', 
 ' Fwd IAT Mean', ' Fwd IAT Std', ' Fwd IAT Max', 
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', 
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s' 
, ' Min Packet Length', ' Max Packet Length',  
' Packet Length Mean', ' Packet Length Std', 
 ' Packet Length Variance', ' ACK Flag Count', 
 ' URG Flag Count', ' Down/Up Ratio', 
 ' Average Packet Size', ' Avg Fwd Segment Size', 
 ' Avg Bwd Segment Size', ' Fwd Header Length.1', 
 'Subflow Fwd Packets', ' Subflow Fwd Bytes', 
 ' Subflow Bwd Packets', ' Subflow Bwd Bytes', 
 'Init_Win_bytes_forward', ' Init_Win_bytes_backward', 
 ' act_data_pkt_fwd'] 0.995491 0.99729 0.99639 0.999973 0.999955 0.999964 

0.15 

 Label', ' Flow Duration', ' Total Fwd Packets', ' 
 Total Backward Packets', 'Total Length of Fwd Packets',  
' Total Length of Bwd Packets', ' Fwd Packet Length Max', 
 ' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet Length Min', 
 ' Bwd Packet Length Mean', 'Flow Bytes/s',  
' Flow Packets/s', ' Flow IAT Mean', ' Flow IAT Std' 
, ' Flow IAT Max', ' Flow IAT Min', 'Fwd IAT Total', 
 ' Fwd IAT Mean', ' Fwd IAT Max', ' Fwd IAT Min', 
 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max', 
 ' Bwd IAT Min', ' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s', 
 ' Bwd Packets/s', ' Min Packet Length', 
 ' Max Packet Length', ' Packet Length Mean', 
 ' Packet Length Std', ' Packet Length Variance', 
 ' ACK Flag Count', ' Down/Up Ratio',  
' Average Packet Size', ' Avg Fwd Segment Size' 
, ' Avg Bwd Segment Size', ' Fwd Header Length.1', 
 'Subflow Fwd Packets', ' Subflow Fwd Bytes', 
 ' Subflow Bwd Packets', ' Subflow Bwd Bytes' 
, 'Init_Win_bytes_forward', 
 ' Init_Win_bytes_backward', ' act_data_pkt_fwd'] 0.994595 0.99729 0.99594 0.999973 0.999945 0.999959 

0.2 

 Label', ' Flow Duration', ' Total Fwd Packets',  
' Total Backward Packets', 'Total Length of Fwd Packets',  
' Total Length of Bwd Packets', ' Fwd Packet Length Max',  
' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet Length Mean', 
 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', 
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', 
 ' Min Packet Length', ' Max Packet Length', 
 ' Packet Length Mean', ' Packet Length Std', 
 ' Packet Length Variance', ' ACK Flag Count', 
 ' Down/Up Ratio', ' Average Packet Size', 
 ' Avg Fwd Segment Size', ' Avg Bwd Segment Size',  
' Fwd Header Length.1', 'Subflow Fwd Packets', 
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets', 
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward'] 0.995479 0.99458 0.995029 0.999945 0.999955 0.99995 

0.25 

 Label', ' Flow Duration', ' Total Fwd Packets',  
' Total Backward Packets', 'Total Length of Fwd Packets',  
' Total Length of Bwd Packets', ' Fwd Packet Length Max',  
' Fwd Packet Length Min', ' Fwd Packet Length Mean', 
 'Bwd Packet Length Max', ' Bwd Packet Length Mean', 
 'Flow Bytes/s', ' Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 
 ' Fwd IAT Min', 'Bwd IAT Total', ' Bwd IAT Mean', 
 ' Bwd IAT Max', ' Bwd IAT Min', ' Fwd Header Length', 
 ' Bwd Header Length', 'Fwd Packets/s', ' Bwd Packets/s', 
 ' Min Packet Length', ' Max Packet Length', 
 ' Packet Length Mean', ' Packet Length Std', 
 ' Packet Length Variance', ' ACK Flag Count', 
 ' Down/Up Ratio', ' Average Packet Size', 
 ' Avg Fwd Segment Size', ' Avg Bwd Segment Size',  
' Fwd Header Length.1', 'Subflow Fwd Packets', 
 ' Subflow Fwd Bytes', ' Subflow Bwd Packets', 
 ' Subflow Bwd Bytes', 'Init_Win_bytes_forward'] 0.995479 0.99458 0.995029 0.999945 0.999955 0.99995 
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0.3 

 Label',  
' Flow Duration',  
' Total Backward Packets',  
'Total Length of Fwd Packets', 
' Fwd Packet Length Max', 
 ' Fwd Packet Length Mean',  
'Flow Bytes/s',  
' Flow Packets/s' 
' Flow IAT Mean',  
' Flow IAT Std',  
' Flow IAT Max', 
' Flow IAT Min',  
'Fwd IAT Total',  
' Fwd IAT Mean',  
' Fwd IAT Max', 
' Fwd IAT Min',  
'Bwd IAT Total',  
' Bwd IAT Mean',  
' Bwd IAT Max', 
' Bwd IAT Min',  
' Fwd Header Length',  
' Bwd Header Length', 
'Fwd Packets/s',  
' Bwd Packets/s',  
' Max Packet Length', 
' Packet Length Mean',  
' Packet Length Std',  
' Packet Length Variance',  
' Average Packet Size', 
' Avg Fwd Segment Size',  
' Fwd Header Length.1', 
' Subflow Fwd Bytes',  
' Subflow Bwd Packets', 
'Init_Win_bytes_forward', 0.99458 0.99458 0.99458 0.999945 0.999945 0.999945 

0.35 

 Label', ' Flow Duration', 'Total Length of Fwd Packets',  
' Fwd Packet Length Max', ' Fwd Packet Length Mean', 
 ' Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Std', ' Flow IAT Max', ' Flow IAT Min', 
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max', 
 'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max', 
 ' Bwd IAT Min', 'Fwd Packets/s', ' Bwd Packets/s',  
' Max Packet Length', ' Packet Length Mean', 
 ' Average Packet Size', ' Avg Fwd Segment Size', 
 'Init_Win_bytes_forward'] 0.983842 0.990063 0.986943 0.9999 0.999836 0.999868 

0.4 

 Label', ' Flow Duration', ' Flow Packets/s',  
' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT Max', 
 'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT Max',  
'Bwd IAT Total', ' Bwd IAT Mean', ' Bwd IAT Max', 
 'Fwd Packets/s', ' Bwd Packets/s', 
 'Init_Win_bytes_forward'] 0.976043 0.993677 0.984781 0.999936 0.999755 0.999846 

0.45 

 Label', ' Flow Duration',  
' Flow Packets/s', ' Flow IAT Mean',  
' Flow IAT Std', ' Flow IAT Max', 
 'Fwd Packets/s', ' Bwd Packets/s', 
 'Init_Win_bytes_forward'] 0.97695 0.995483 0.98613 0.999955 0.999764 0.999859 

0.5 

 Label', ' Flow Duration', ' 
 Flow Packets/s', ' Flow IAT Mean', 
 ' Flow IAT Max', 'Fwd Packets/s', 
 'Init_Win_bytes_forward'] 0.967515 0.995483 0.9813 0.999955 0.999664 0.999809 
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