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ABSTRACT

When multiple mobile robots work cooperatively, one is able to accomplish a task

that is difficult for a single robot to accomplish. Creating solutions involving multiple

robots has a number of advantages. Some of the advantages are as follows:

• Tasks like unknown area exploration and terrain coverage have high complexity;

therefore, it is not feasible to employ a single robot. Instead, a well-coordinated

team of robots can perform the same task more efficiently.

• The tasks, like sweeping, lawn mowing, harvesting crops, patrolling, and monitor-

ing war fields, are boring, repetitive, and potentially dangerous. Additionally, these

tasks demand redundancy in terms of robots as they are required to be completed

quickly.

• Multi-robot systems generally offer high resilience and fault tolerance.

Unknown area exploration and terrain coverage are two fundamental applications in

multi-robot systems. However, there is a thin line of separation between these two appli-

cations. Unknown area exploration requires the robots to build a map of the environment

without visiting/ traversing the entire navigable region. On the other hand, the terrain

coverage application entails the entire free space to be physically traversed by at least one

robot. In order to accomplish any task using a team of autonomous mobile robots, inter-

robot communication is vital for coordination, information dissemination, and resource

sharing. Many state-of-the-art approaches work with the premise that communication is

omnipresent. This particular assumption may not be feasible in real-world scenarios. In

situations where communication is restricted within a certain range, achieving coordina-

tion and expecting the robot team to have cohesive behaviour is non-trivial. In this thesis,

we have designed and implemented coordination algorithms for multi-robot systems to

solve the identified problem. We have shown that a well-coordinated group of robots

is able to improve performance by making better use of the system’s resources, specif-
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ically the robots themselves, even when there is only sporadic communication between

the robots.

Chapter 3 of this thesis began with a study and simulation of five cutting-edge ap-

proaches to online terrain coverage. These are given below -

1. Backtracking Spiral Approach – Cooperative Multi-Robot (BSA-CM) [1]

2. Spiraling and Selective Backtracking (SSB) [2]

3. Boustrophedon and Backtracking mechanism (BoB) [3]

4. Multiple Depth First Search (MDFS) [4]

5. Brick and Mortar (BnM) [4]

We chose these algorithms because they are designed for scenarios with uninterrupted

communication without any range restrictions. However, we dropped the assumption of

global communication and conducted experiments where we varied both the communi-

cation range and the number of robots. This investigation aimed to shed light on how

the performance of these algorithms could be affected when communication is limited.

MDFS and BnM have incomplete coverage for communication ranges less than 12 meters

and are excluded from the comparison. For communication ranges up to 4 meters, BSA

CM and SSB approaches have a redundant coverage exceeding BoB by 4% and 11%,

respectively. However, for larger communication ranges, SSB and BSA CM outperform

BoB. For a team of 4 robots, SSB and BSA-CM outperform BoB by 14.8% and 9.60%

in redundant coverage. For a team of 6 robots, SSB and BSA CM perform even better

at 20.8% and 18.93% respectively. These findings proved instrumental in the develop-

ment of more efficient multi-robot exploration algorithms for unknown terrain, which are

presented in Chapter 4 and Chapter 5 of this thesis.

We have suggested algorithms (both centralized and distributed) for exploring un-

charted areas using a team of mobile robots in an environment with limited communica-

tion. This thesis introduces an innovative strategy for simultaneous robot exploration of

an uncharted region, viz., Multi-Robot Unknown Area Exploration Using Frontier Trees

(MRFTE). The frontier tree data structure used in single-robot exploration stores infor-

vi



mation on the frontiers, their locations, the explorer’s current status, and the map itself.

Inquiries into this tree could be used to plan future investigations. MRFTE extends this

idea for multi-robot exploration by introducing a new abstraction that is a group, which

is designed to share data via a shared frontier tree, group-level operations, and a means

of assigning goals to numerous robots. A group of robots is a collection of machines

whose collective map of the world covers a continuous area. During the exploration as-

signment, the robots are in sync with one another because each group has only one tree.

Once groups’ maps intersect, we provide methods for merging their frontier trees. We

conclude by recommending a strategy for designating and allocating exploration goals to

individual robots via the selection of nodes from the frontier tree. Simulation of MRFTE

outperforms seven state-of-the-art methods.

1. Nearest Frontier(NF) [5]

2. Information Gain Based Heuristic (D+IG) [6]

3. Cost+Utility (C+U) [7]

4. Voronoi Graph-Based Segmentation (VGS) [8]

5. Multiple Rapidly Exploring Random Trees (M-RRT) [9]

6. Information-Driven RRT (ID-RRT) [10]

7. Goal Assignment Using Distance Cost (GADC) [11]

During our simulation on a cluttered map with 8 robots, we discovered that MRFTE

takes less time than other algorithms. Specifically, it takes 62.16%, 53.33%, 41.66%,

28.81%, 56.25%, 58.82%, and 46.15% less time than NF, D+IG, C+U, VGS, M-RRT, ID-

RRT, and GADC respectively. Additionally, we found that MRFTE travels less distance

than other algorithms. Specifically, it travels 39.47%, 32.35%, 28.12%, 4.16%, 17.85%,

28.12%, and 23.33% less distance than NF, D+IG, C+U, VGS, M-RRT, ID-RRT, and

GADC respectively. However, this approach relies on the assumption that all robots can

communicate with each other without any restrictions. To get over this limitation, we

developed a decentralized method for multi-robot systems and were able to get results on

par with those of the centralized method.
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To conclude this thesis, we designed a novel Decentralized Relay-Based Approach

for Multi-Robot Unknown Area Exploration (D-MRFTE) for exploring uncharted terri-

tory with a fleet of mobile robots with limited communications. Meetups assure eventual

coherence and completeness of the scattered copies of exploration data used by the high-

latency multi-robot system’s, decentralized network formed by the relay robots. When-

ever the multi-robot network gets defragmented, the periodic meetups ensure that data is

transferred at regular intervals to restore network stability. Relay robots provide for easier

communication between units about the status of the robots and their current exploration.

To maintain consistency of the distributed information in the robot team, The robots use

timestamps and version vectors. To maintain a steady stream of explorer robots, the re-

lays organize get-togethers with the other relays they come into contact with. This method

outperformed two state-of-the-art algorithms in terms of both task completion time and

robot travel distance when using either the Disk-based or Line-of-Sight communication

models. After analyzing the impact of different approaches on two metrics (cumulative

distance travelled and frequency of disconnections), we discovered that D-MRFTE+0R

(a multi-explorer system without relay assistance for information exchange) performed

the poorest compared to all other approaches. The situation improved with the introduc-

tion of one relay, but frequent disconnections were still observed. However, this approach

performed less favourably than all others on both metrics. Despite this, it helped to re-

duce redundancy. Interestingly, when two relays were introduced (D-MRFTE+2R), the

performance improved significantly. With six and eight explorer robots, it surpassed VGS

by 13.4% and 14.2%, respectively. However, it fell short of MRFTE for Disk-based com-

munication. For Line-of-sight communication, it surpassed VGS by 9.09% with eight

explorer robots. The cumulative distance travelled yielded a similar conclusion.

Keywords: Multi-Robot Systems, Online Terrain Coverage, Unknown Area Exploration,

Frontier Exploration, Inter-Robot Communication, Constrained Communication, Player/

Stage and ROS-based simulation
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Chapter 1

INTRODUCTION

1.1 MULTI-ROBOT SYSTEMS (MRS)
Multi-robot systems are a paradigm shift in the field of robotics, offering a wide range

of advantages across industries and applications. These systems provide a number of

benefits, including increased efficiency through parallelization, flexibility, adaptability,

redundancy, collaboration, and cost-effectiveness. The potential for multi-robot systems

to revolutionize industries and redefine the boundaries of automation remains compelling

and promising as technology continues to advance. Multi-robot systems hold the key to

unlocking new levels of productivity and innovation, whether it’s transforming manufac-

turing processes, revolutionizing disaster response, or re-imagining urban infrastructure.

Some of the benefits of MRS are as follows:

(i) Enhanced Efficiency through Parallelization

Parallelization capability is one of the most important benefits of multi-robot sys-

tems. In conventional single-robot configurations, tasks are performed sequentially,

which frequently results in bottlenecks and slower overall execution. Multi-robot

systems, on the other hand, permit simultaneous execution of tasks, thereby re-

ducing the time necessary to complete complex operations. This parallelization is
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especially evident in manufacturing [15], where multiple robots can collaborate on

different production stages, optimizing efficiency and accelerating manufacturing.

Moreover, multi-robot systems are ideally suited for tasks requiring continuous op-

eration, including environment monitoring [16], unknown area exploration [17],

and surveillance [18]. In scenarios such as perimeter security [19], a team of robots

can maintain constant vigilance by patrolling in shifts, thereby reducing the likeli-

hood of blind spots and enhancing the efficacy of surveillance efforts.

(ii) Flexibility and Adaptability

Multi-robot systems excel in environments requiring adaptability and flexibility.

Unlike single robots, which may struggle to adapt to dynamic and unpredictable

conditions, a team of robots can more easily adapt to environmental changes. This

adaptability is crucial in industries such as agriculture, where robots equipped with

a variety of sensors can navigate difficult terrain [20], evaluate crop health [21], and

perform more precise targeted interventions. Multi-robot systems excel in disaster

response scenarios due to their versatile capabilities. These systems may include

robots specializing in various tasks, including search and rescue [22, 23], hazard

detection [24], and communication [25]. These robots can effectively address the

complex challenges presented by natural disasters and other emergencies by coop-

erating.

(iii) Redundancy and Fault Tolerance

Multi-robot systems have inherent redundancy and fault tolerance. Multiple robots

capable of performing the same task serve as a safety net in situations where failure

is not an option. If one robot encounters a malfunction or an obstacle, the oper-

ation can continue with the assistance of other robots. This feature is especially

advantageous for tasks involving hazardous or remote environments, such as space

exploration [26] or deep-sea exploration [27]. Moreover, the distributed nature of

multi-robot systems mitigates the effect of individual robot failures [28]. When

2
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a single robot becomes incapacitated, the system’s overall performance is largely

unaffected, ensuring that the mission or operation can continue with minimal inter-

ruption.

(iv) Collaboration and Collective Intelligence

The capacity of multi-robot systems to exhibit collective intelligence through co-

operation is one of their most intriguing characteristics. When robots communicate

and share information, they can optimize their actions collectively to achieve the

desired outcome. This emergent behaviour is observable in swarm robotics, in

which a large number of simple robots collaborate to accomplish complex tasks.

Applications of swarm robotics range from environmental monitoring to construc-

tion. For instance, a swarm of drones can rapidly map and assess disaster-stricken

areas, providing disaster response teams with vital information [29,30]. Combining

the digital and physical realms, robots can assemble complex structures with high

precision in the construction industry.

(v) Cost Efficiency

While setting up a multi-robot system may require a larger initial investment than

purchasing a single robot. However, long-term cost savings are substantial. Multi-

robot systems can cover larger areas and perform tasks more effectively, resulting

in an increase in productivity and a decrease in operational expenses over time.

Multiple robots can optimize inventory management, order fulfillment, and dis-

tribution in industries such as logistics and warehousing [31, 32], where they can

work in concert to optimize inventory management, order fulfillment, and distri-

bution. Moreover, multi-robot systems can be reconfigured and repurposed for

various tasks, making them more adaptable investments. Businesses can maximize

the utility of their robotic assets by reprogramming or retraining existing robots

rather than purchasing brand-new robots for specific applications.

3
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1.2 APPLICATIONS OF MRS
As discussed earlier, some of the benefits of multi-robot systems over single-robot sys-

tems are increased efficiency, scalability, fault tolerance, and adaptability. As technology

advances and robots become more capable, the use of multi-robot systems and their ap-

plications continues to expand. Some of the application areas where MRS are useful are

discussed below:

(i) Automation in Industry and Manufacturing

Multi-robot systems are utilized extensively in industrial automation and manufac-

turing. By executing tasks in parallel and performing repetitive actions with high

precision, these systems have the capacity to improve production processes signifi-

cantly. Multi-robot systems can assemble products, weld components, and conduct

quality control checks in manufacturing facilities [33]. They can work in unison,

decreasing production time and increasing output overall.

(ii) Search and Rescue

Multi-robot systems have demonstrated enormous potential for use in search and

rescue missions, especially in hazardous or disaster-stricken environments where

human participation is hazardous [22]. Robots equipped with sensors and cameras

can navigate through debris, rubble, and hazardous materials to locate survivors.

By collaborating, these robots can cover larger areas in less time, increasing the

likelihood of locating individuals who have become trapped. In addition, MRS can

share information wirelessly and optimize their search patterns based on real-time

data, resulting in more effective and coordinated efforts [23].

(iii) Precision Agriculture

Multi-robot systems are transforming traditional farming practices in the agricul-

tural sector. These systems can perform tasks such as plantation, irrigation delivery

of nutrients, fertilizers, and harvesting. With sensors and GPS technology, farmers
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can collect data on soil quality, moisture levels, and crop health, allowing them

to make informed decisions regarding resource allocation. By collaborating, these

robots can efficiently cover vast fields, resulting in optimized resource utilization,

increased yields, and decreased environmental impact [34, 35].

(iv) Unknown Environment Exploration

Additionally, multi-robot systems pave the way for the efficient exploration of un-

known environments. Clusters of robots can be deployed for exploration of build-

ings that are earthquake-hit but visually appear intact [36]. The robots can collect

data, map terrain, and evaluate damage. MRS also benefits underwater exploration,

as robots equipped with underwater sensors can navigate complex underwater en-

vironments and conduct surveys for scientific research, environmental monitoring,

and resource exploration [37, 38].

(v) Logistics and Storage

Modern logistics and e-commerce rely heavily on the timely and accurate move-

ment of goods. Multi-robot systems offer a means to streamline warehouse and

distribution center operations [31, 39]. Collaborating robots with picking arms can

locate and transport items from shelves to packaging stations. These robots can

optimize their routes to minimize congestion and maximize efficiency thanks to

sophisticated coordination algorithms. This application expedites order processing

and reduces the likelihood of human error.

As technology advances, the applications for multi-robot systems continue to diversify

and expand. From industrial automation to search-and-rescue missions, precision agri-

culture to medical advancements, these systems improve efficiency, precision, and adapt-

ability in a variety of domains. As researchers continue to develop more complex coor-

dination algorithms, improved communication protocols, and advanced sensor technolo-

gies, the potential of multi-robot systems to address complex problems and revolutionize

industries remains promising. Future opportunities for innovation and integration of these

systems into our daily lives are promising.

5
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1.3 MRS DEFINITIONS AND TAXONOMIES

The literature on MRS cooperation is substantial, and various definitions have been pre-

sented. Some of the definitions are as follows:

(a) The first definition is due to [40], which says that cooperation is ”joining together

for doing something that creates a progressive result such as increasing perfor-

mance or saving time.” This definition aims to make optimal use of the available

system resources. This definition drives the vast majority of multi-robot task allo-

cation(MRTA) research.

(b) The second definition is due to [41], which states that cooperation is ”joint collab-

orative behavior that is directed towards some goal in which there is a common

interest or reward.” This quantitative definition is suggested with profit maximiza-

tion in mind, which means minimizing the use of system resources. Furthermore, it

leads to evaluation of performance in terms of the earliest possible time to complete

a given task.

(c) The third definition given in [42] contrasts with the first two by describing coop-

eration as a form of interaction that is typically based on communication. This

definition encompasses inter-robot communication for synchronization of actions

and information exchange related to the robot’s state, for example, the robot’s pose

and its beliefs about its workspace.

In a multi-robot system, one of the vital software components is the algorithm that

breaks down a complex problem T into a set of simple sub-tasks representatives as

Ti = {t1, t2, ..., tn} that can be handled by a single robot. These simple tasks are then

strategically apportioned to the individual robots. Individual robots then simultaneously

perform/execute the assigned tasks. Most of the time, robots perform independent tasks;

however, whenever two or more activities overlap, robots must find a way to negotiate.

The task T’s completion is the result of recombining the outcome of the execution of all

6
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the tasks Ti. The system’s entire behaviour, including termination of task T, is governed

by the recombination of T ′
is.

It is important to properly evaluate individual and collective performance in unknown

area exploration using multi-robot systems. Task completion time, distance travelled by

the robot team, the computational complexity of the algorithm, and redundant exploration

are key metrics that can be used to evaluate the performance of the system. Task defini-

tion, system group architecture (whether centralized, weakly centralized, or distributed),

team composition (whether the multi-robot team is homogeneous or heterogeneous), and

communication structure (a given robot’s ability to recognize and model the intentions,

beliefs, actions, and capabilities of other robots) all influence the performance of the robot

team. Coherent and cooperative behavior among the robots is crucial to the existence of

a superior solution. In MRS, robots are able to accomplish this mission by exchang-

ing information with one another. Explicit communication occurs when robots convey

messages to one another, while implicit communication occurs when robots detect en-

vironmental cues and locate one another. The complexity of designing and deploying

multi-robot solutions stems from the wide variety of factors that must be considered si-

multaneously. The major features of MRS, such as group organization, communication

structure, control, group composition, learning, and conflict resolution methods, have

been addressed by researchers who have produced solutions in an integrated fashion.

Multi-robot systems due to their interconnected nature defy simple categorization based

on a single set of features. For example, in [12], we see a classification given by Dudek et

al., which is (shown in Figure 1.1) based on factors including team size, communication

structure, self-organizing team capability, computing capability, and group makeup.

Farinelli et al., [13] presents a taxonomy of coordinated multi-robot systems as shown

in Figure 1.2. The authors have defined four distinct stages: collaboration, informa-

tion, coordination, and management. Cooperative methods are differentiated from non-

cooperative methods at the highest level. Depending on their level of knowledge, robots

may or may not be aware of the presence of other robots in their surroundings. Strongly

coordinated, weakly coordinated, and uncoordinated multi-robot systems exist on the

7
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Figure 1.1: MRS Taxonomy Based on Available System Resources [12]

spectrum of coordination. The robots in a system with high levels of coordination, work

together more closely and make decisions through communication. The efficiency with

which the job is done is undoubtedly enhanced by sharing of information. The robots in

a weakly coordinated system are less invested and use ad-hoc group communication to

keep the noise level down. When all the robots do a set of specified activities in response

to varying environmental stimuli, intelligent behavior will likely occur if the robots are

self-aware and not coordinated. Individual robots’ freedom to choose their own behaviour

is a major focus at the organizational level. An elected leader is typically in charge of and

accountable for all robots in a centralized organization. In a distributed organization, on

the other hand, each robot is independent and makes its own decisions. Further refine-

ment of this classification has led to the proposal of a weakly centralized organization in

which leaders are eligible to be re-elected in the event of the death or voluntary resigna-

tion of the already elected leader. Each robot also has some degree of independence from

the others.

In [14], Gerkey et al. present a categorization scheme that uses MRTA and coordina-

tion methods. This taxonomy of MRTA problems is not specific to any specific MRTA

application. What the authors mean by tasks is sub-goals that must be accomplished in

order to complete the overall objective. The designer of a multi-robot system are required

8
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Figure 1.2: MRS Taxonomy Based on Coordination and System Dimensions [13]

to understand the nature of the task allocation problem at hand. For the same reason,

the three dimensions of classification indicated in Figure 1.3 are established. Robots can

be classified as either single-task (ST) or multi-task (MT), with the latter being able to

do multiple tasks simultaneously. While a single robot can complete a single-robot task

(SR), multiple robots are needed to complete a multi-robot task (MR). In the case of

instantaneous assignment (IA), we can only plan one step or action in the future. For

time-extended assignments (TA), the robots can plan for the future, taking into account

more than one action or a series of events in the future, due to the wealth of data at their

disposal. Sensor and actuator data, task specifications (including what robot capabilities

are needed to complete the task, the number and location of tasks, and the arrival pattern

of tasks), and environmental characteristics (including the geometry of obstacles) make

up the bulk of the data.

Communication is one of the most crucial aspects of the successful deployment of

MRS in the real world in accordance with the taxonomies presented in [12–14]. Com-

munications in MRS have been reviewed in [43,44] wherein the authors have highlighted
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the importance of designing multi-robot coordination methods tailored to address dif-

ferent real-world communication challenges, for example, intermittent communication

between the robot peers due to range restrictions. Designing coordination algorithms un-

der the presence of communication range restrictions is the central theme of our research

work in this thesis.

Figure 1.3: MRS Taxonomy Based on Domain Independent MRTA Problems [14]

1.4 MRS LIMITATIONS AND RESEARCH GAPS

Multi-robot systems hold immense potential for transforming various industries, but they

face several limitations that must be carefully considered during system design and oper-

ation. Overcoming these limitations requires a multidisciplinary approach that involves

advances in robotics, artificial intelligence, communication, and human factors to create

efficient, reliable, and ethically sound multi-robot systems.

(i) Communication and Coordination Complexity - One of the primary challenges

in multi-robot systems is coordinating the actions of multiple robots effectively.

Communication among robots is essential for sharing information, avoiding colli-

sions, and task synchronization. However, as the number of robots increases, the

complexity of communication and coordination also rises exponentially. The need

to establish reliable communication links while mitigating interference and latency

10
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can hinder system scalability. There is no dearth of literature on multi-robot co-

ordination wherein researchers have ignored the communication complexity and

developed methods that work on the premise that communication is omnipresent

and the channels are noise-free [45–47]. Furthermore, in the real world, the com-

munication range of the robots is usually restricted. Maintaining consistency of

distributed information is a non-trivial task and requires careful planning. Design-

ing such approaches is the primary objective of this thesis.

(ii) Task Allocation and Coordination - Assigning tasks to robots and coordinating

their actions efficiently is a fundamental challenge. The task allocation problem be-

comes more intricate in large environments where tasks and priorities change over

time. Ensuring that robots collaborate without duplicating efforts or leaving tasks

unattended requires sophisticated algorithms. Few state-of-the-art approaches have

successfully dispersed the robot team while opportunistically allowing the robot

peers to communicate with each other. Those who have attempted to maintain con-

tinuous connectivity were not able to globally disperse the robots, thereby achiev-

ing sub-standard performance [5, 48, 49]. Moreover, some of them resulted in a

deadlock, which is resolved with the costly deadlock detection and resolution al-

gorithm [50]. The approaches suggested in this thesis address the task allocation

problem in the context of multi-robot unknown area exploration without restricting

the robots to explore locally. At the same time, we have achieved global dispersion

without losing connectivity with the teammates for a long duration.

(iii) Limited Local Perception - Many multi-robot systems rely on local perception

capabilities to gather information about their surroundings. This limited field of

view can lead to incomplete or inaccurate situational awareness. Robots might

struggle to make well-informed decisions, especially in environments with com-

plex obstacles. This thesis addresses the information dissemination problem with a

limited field of view of the robots.

11
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(iv) Scalability - While the idea of deploying numerous robots to perform tasks more

efficiently is appealing, the scalability of multi-robot systems remains a challenge.

As the number of robots increases, the potential for conflicts, congestion, and in-

efficiencies in resource allocation rises. Additionally, the algorithms and protocols

that work well with a small number of robots might not scale appropriately to larger

groups, leading to reduced overall system performance.

(v) Heterogeneity - Multi-robot systems often consist of robots with varying capa-

bilities, including sensing, computation, and mobility differences. Integrating het-

erogeneous robots into a cohesive system introduces task allocation, resource man-

agement, and communication challenges. Ensuring that each robot contributes ef-

fectively to the system’s goals while accommodating their differences is a complex

problem.

(vi) Fault Tolerance and Reliability - individual robots’ reliability significantly im-

pacts a multi-robot system’s overall reliability. As more robots are involved, the

probability of individual robot failures or malfunctions increases. Developing fault-

tolerant strategies that allow the system to continue functioning despite the failures

of some robots is essential, but it adds another layer of complexity to system design.

(vii) Interference and Competition - In scenarios with limited resources or tightly

interconnected tasks, robots might compete with each other for access to those

resources or tasks. This competition can lead to inefficiencies, conflicts, and even

deadlock, where robots are unable to proceed due to mutual dependencies.

(viii) Security and Privacy - Multi-robot systems often involve sharing sensitive infor-

mation among robots to facilitate coordination. Ensuring the security and privacy

of this information is crucial to prevent unauthorized access or malicious attacks

that could compromise the system’s integrity.

(ix) Cost and Maintenance - Deploying a multi-robot system involves significant up-

front costs, including robot hardware, communication infrastructure, and software

12



Chapter 1: INTRODUCTION 13

development. Maintenance, repairs, and upgrades can also be costly and time-

consuming, impacting the system’s long-term viability.

1.5 OBJECTIVES

The primary aim of this thesis is to develop effective multi-robot coordination algorithms

for addressing the problem of intermittent connectivity while carrying out unknown en-

vironment coverage and exploration. The subsequent enumeration presents a list of ob-

jectives achieved in this thesis.

1. Empirical Analysis and Comparison of Various Online Terrain Coverage Al-

gorithms under Communication Range Restrictions

(a) Design a Robot Operating System(ROS) based framework for implementing

different state-of-the-art decentralized methods and communication range re-

strictions for online terrain coverage and unknown area exploration tasks.

(b) Implement some state-of-the-art approaches that assume noise-free contin-

uous communication within the developed framework and expose them to

communication range restrictions.

(c) Establish an experimental test bed comprising of mobile robots to test the

efficacy of the selected state-of-the-art algorithms.

2. Multi-Robot Unknown Area Exploration

(a) Design a Player/Stage-based simulation framework.

(b) Design and implement a multi-robot coordination algorithm for unknown area

exploration that are efficient in terms of reduced coverage/exploration com-

pletion time and cumulative distance travelled.

(c) Experimentally compare the proposed algorithm(s) with seven state-of-the-art

research works by implementing them in simulation.
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3. Multi-Robot Unknown Area Exploration in a Communication Restricted En-

vironment

(a) Design and implement a decentralized multi-robot coordination algorithm un-

der communication range restrictions, which efficiently reduces the redun-

dancy in exploration while minimizing completion time and distance travelled

compared to some state-of-the-art approaches.

1.6 SCOPE OF THE THESIS

Some aspects related to multi-robot systems and coordination algorithms that are not

addressed at present in this thesis are as follows:

1. Heterogeneity - refers to a group or team of autonomous robots that have different

physical characteristics, capabilities, or functionalities. These systems consist of

robots that are not identical and may vary in terms of their hardware, sensors, soft-

ware, or tasks they are designed to perform. This heterogeneity can be intentional,

as it allows the team to benefit from the complementary strengths of each robot,

making them more versatile and adaptable for a wider range of tasks.

2. Machine learning - This domain focuses on the concept of autonomous robots

learning and adapting collectively. Multiple robots collaborate to enhance their

performance through shared knowledge and data. They exchange information, op-

timize their behaviors, and make collective decisions by leveraging techniques like

reinforcement learning, deep learning, and swarm intelligence. This results in an

overall improved ability of the robots to carry out tasks efficiently.

3. 3D exploration - It is an emerging field that extends robotics into complex, three-

dimensional environments. In this context, a team of autonomous robots collabo-

rates to navigate, map, and explore intricate, multi-level spaces like underground

tunnels, caves, or skyscrapers. These robots employ advanced sensing technolo-

gies such as LiDAR and stereo cameras to build 3D maps and identify obstacles,
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ensuring safe and efficient exploration.

4. Fault Tolerance - These systems are designed to maintain functionality even when

one or more robots in the team experience failures or malfunctions. These systems

are crucial for ensuring the reliability and robustness of robot teams in complex,

real-world environments. They employ redundancy in both hardware and software,

enabling unaffected robots to compensate for those with faults.

1.7 STRUCTURE OF THE THESIS

This thesis is structured into four chapters. Following is the overview of the research

work carried out in the individual chapters of the thesis:

In Chapter 2, we have briefly surveyed the literature on multi-robot systems. It entails

a comprehensive evaluation of several research publications, categorized according to the

communication taxonomy presented in [43]. Through the examination of these specific

attributes, we are able to discern deficiencies within the current body of study, thereby

pinpointing areas that warrant our dedicated research endeavours. This facilitates the at-

tainment of the objectives stated in our thesis scope. Our focus is on the advancement

of online terrain coverage (OTC) for multiple robots, taking into account limitations in

communication range. This has led to the development of two approaches: a centralized

multi-robot frontier tree approach and a decentralized relay-based approach. Both ap-

proaches aim to explore unknown areas while considering the constraints imposed by the

communication range.

In Chapter 3, we investigated the impact of communication range on multi-robot On-

line Terrain Coverage (OTC) approaches. Terrain coverage has various real-life applica-

tions, ranging from small-scale tasks such as floor cleaning, lawn mowing, and harvest-

ing to large-scale missions like hazardous terrain inspection and battlefield surveillance.

However, these tasks are often tedious, time-consuming, and dangerous, necessitating the

use of more robots with effective communication capabilities to achieve optimal coordi-

nation. While communication is crucial in enabling effective coordination in multi-robot
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systems, many advanced approaches overlook intermittent connectivity issues arising due

to communication range limitations. Therefore, this chapter departs from the assumption

of global communication and instead restricts the robots to communicate within a speci-

fied range, as in realistic scenarios. To compare the performance of different approaches,

we use decentralized algorithms with a team of homogeneous robots, assessing the per-

formance of five state-of-the-art approaches that assume omnipresent communication.

We vary the communication range with teams of varying sizes in simulations and on a

physical multi-robot test bed. The impact of communication range restrictions on the

system’s performance has been investigated.

Chapter 4 presents an innovative strategy for multi-robot exploration of unknown ar-

eas. Recently, [51], the frontier tree data structure has been utilized in single robot ex-

ploration to memorize frontiers, their positions on the map, and the exploration state.

One could query this tree to determine the next step in the exploration process. In this

chapter, we take the concept one step further for multi-robot exploration by proposing a

new abstraction we call the ”group.” The group is intended to share information through

a common frontier tree, requisite operations at the group level, and a method to assign

goals to multiple robots. A group is a collection of robots, the explored regions of which,

when added together, form a continuous area (a single connected region in a topological

sense). The robots are in the same state regarding the exploration task because each group

has exactly one tree. When two groups’ maps intersect, we propose various methods for

merging the frontier trees of both groups. Lastly, we propose a technique that can be

used to select nodes from the frontier tree to designate and delegate exploration goals to

the various robots. The proposed method outperforms seven research works considered

state-of-the-art regarding simulation.

Chapter 5, we proposed a novel approach to multi-robot exploration. This method

differs from MRFTE in some ways. This method is based on the robot’s independent

motion—the robot’s classification into explorer and relay roles. Explorers are in charge

of investigating the environment, while relays help to disseminate information to other

explorers. Conditions may arise in this approach in which explorers cannot communicate
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because they are not in communication range with one another. The relay then assumes

responsibility for transferring information or messages from one explorer to another. We

created an algorithm introducing a rendezvous point to improve communication between

relays and explorers. This point facilitates the successful exchange of information by

allowing relays and explorers to meet at a designated location known as the rendezvous.

This algorithm is critical in ensuring effective task allocation. We developed two models

for restricting communication range for this disk (range)-based and line-of-sight commu-

nication model. We also developed three approaches in this method: multi-explorer with

no relay, multi-explorer with one relay, and multi-explorer with multiple relays. Finally,

we compared the area redundancy for all three methods while exploring the environment.

We discovered that combining relays with an explorer for area exploration in a commu-

nication range-restricted environment can reduce redundancy and complete exploration

tasks faster than multiple explorers without a relay.

Finally, the chapter concludes the thesis by summarizing the research work presented

in the previous chapters and the scope for future work. It also enumerates the publications

based on the research work in this thesis.
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Chapter 2

LITERATURE REVIEW

2.1 INTRODUCTION

MRS is a group of robots that collaborate on the same or different tasks. However, prob-

lems arise when robots interact with the physical world, requiring them to modify current

strategies to deal with uncertainty, obtain environmental information, and model incom-

plete knowledge. The development of robot teams capable of cooperating to accomplish

a specific goal is a top priority for researchers, who recognize that MRS outperforms

single-robot strategies in various applications. MRS is more time-efficient and less prone

to a single point of failure, resulting in a more effective solution to a given problem.

Researchers have examined natural systems, such as swarms of bees, ants, and humans,

to gain a better understanding of how different entities can collaborate to accomplish a

task. These early studies led to the use of MRS in a variety of fields, such as object

transportation [52–54], foraging [55–57], cooperative manipulation [13, 58, 59], surveil-

lance [45, 60, 61] and search and rescue [62–64], to name a few.

The following essential components of MRS enable multiple robots to work together

effectively toward a common task.

Control and Coordination: Effort and time are required to keep track of the numer-
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ous components in MRS. To effectively control these diverse robots, the controller must

fully utilize their unique capabilities. In scenarios like swarm exploration, where robots

are tasked with investigating a predetermined set of targets, it would be inefficient for all

the robots to examine the same target. Similarly, for a group of mobile manipulators to

lift and transport an object, they must move in unison. The control of the entire system

can either be centralized with a single master exercising authority or decentralized. Coor-

dination and proper control are essential for activities such as robot soccer tournaments.

Communication: To ensure the successful functioning of the system, it is crucial

to establish effective communication between robot peers. In some robotics applica-

tions, communication can be implicit, with information transmission occurring through

the environment, such as when insects use pheromone trails to mark explored routes.

However, communication can pose significant challenges during exploration tasks, par-

ticularly when robots operate away from one another. Proper communication is also nec-

essary for activities such as robot soccer, where the ability to pass the ball between robots

is vital. Similarly, proper communication is essential in exploring unknown environments

with multiple robots to avoid redundant exploration of the same area.

Localization and mapping: In many robotic applications, robots must build a map

of their environment to compute paths, move between targets, avoid collisions, and locate

objects. This process is commonly referred to as mapping, while finding one’s position

in the environment is known as localization. In MRS, each robot must know others’

locations to avoid collisions and complete specific tasks. On the other hand, depending

on the team members’ perception abilities, they can assist each other in collecting data

about the environment or improving their localization.

MRS properties can be categorized using the PEAS(Performance, Environment, Ac-

tuators, and Sensors) representation model. In this model, Performance pertains to the

standards employed to evaluate the MRS’s effectiveness, such as its speed, accuracy, or

resilience. Its metrics could comprise the distance traveled and completion time. Environ-

ment denotes the physical and operational conditions under which the MRS will function,

encompassing factors such as the size of the area to be covered, obstacles present, and
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lighting and weather conditions. Actuators refers to the mechanisms that regulate the

movements and actions of robots, such as motors, servos, and grippers. Sensors are de-

vices used to perceive the environment and obtain information about the task. Examples

of sensors that could be utilized in MRS include cameras, microphones, sonar, and li-

dar. In the following sections, we provide chapter chapter-specific literature survey of

the state-of-the-art on multi-robot online terrain coverage and exploration under limited

communication.

2.2 ONLINE TERRAIN COVERAGE APPROACHES

During the last two decades, research on MRS has attracted considerable interest. MRS’s

primary advantage over one single monolithic robot is that MRS is more robust and fault-

tolerant [65]. Individual robots in MRS are less capable when compared with a single

monolithic robot, but their innate nature of coordination with their teammates makes them

more robust and fault-tolerant [66]. Therefore, it is viable to use MRS for tasks that can

be parallelized, e.g., area exploration, terrain coverage, pick and place operations, etc.

Fault tolerance is particularly important in unknown environments wherein the robots

are susceptible to partial and/or complete failure. Several approaches for online terrain

coverage (OTC) were not designed to deal with real-world situations like communication

disruptions, but they are frequently used for comparison in simulation. Therefore, it is

necessary to test the applicability of these algorithms in real-world situations to make

more significant comparisons.

Moreover, some algorithms are designed on the premise that the large-sized robot

team is available, the global map of the environment is available apriori, and communica-

tion is omnipresent. These are strong assumptions in the real world and should be relaxed

when designing OTC algorithms using multiple robots. In [67], the authors deployed a

team of more than a hundred simple robots to achieve real-world military missions. The

coverage task is classified into three categories, i.e., blanket, barrier, and sweep. The

objective of blanket coverage is to maximize the area covered [68, 69]. Barrier coverage

keeps track of the variation on the borders while setting up a perimeter around the area
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of interest. On the other hand, sweep coverage is nothing but a moving barrier. Early

research concentrated on surveillance and patrolling missions and therefore employed

blanket and barrier coverage [50, 70]. With a small team of robots, these approaches are

not capable of completing the coverage task. Sweeping robots traverse the terrain while

ensuring that the obstruction-free region is visited at least once. The robots coordinate

with their teammates to share coverage information and progressively cover the terrain

while avoiding redundant coverage [71, 72]. Patrolling robots repeatedly traverse a des-

ignated region in order to obtain the latest state of the dynamic environment. Sweeping

robots can complete the OTC task even with a smaller-sized multi-robot system on the

premise that at least one robot survives until task completion.

Decentralized group organization of MRS is generally preferred to take complete ad-

vantage of the redundancy offered by the system and design algorithms that are scalable,

robust, and fault-tolerant [45]. However, centralization has its advantages when the team

size of MRS is small. For example, in [73, 74], the robots form a communication bridge

with a fixed base station for delivering information in a multi-hop manner. In [71], the

robots reduce the odometry error while localizing w.r.t, another stationary robot that acts

as a beacon. These approaches demand exact and expensive sensors for the global cov-

erage map to be centrally constructed [75–77]. Some approaches (both centralized and

decentralized) are designed to achieve global dispersion such that the robot team quickly

gets dispersed in the unknown environment for exploration, and when they meet up, they

merge their maps to build a standard, consistent global map [3,77,78]. Nevertheless, it is

a non-trivial task because of intermittent network connectivity.

In the real world, both the communication range and the bandwidth are limited [43].

Most of the centralized OTC algorithms work with the premise that the individual robots

can always communicate with the central planner/base-station [3, 50, 74, 79, 80]. In the

outdoor environment, the robots may travel to in far-off regions while conducting the

coverage task, or due to disaster, the communication infrastructure may break down. In

an indoor environment, thick concrete walls, metal surfaces, and mirrors act as physical

barriers to wireless communication. These are some of the possible reasons for the multi-
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robot network to get partitioned. Therefore, research interest has shifted to achieving

OTC under communication restrictions [81]. Most of the robotic systems are equipped

with some form of local communication like Wi-Fi, Bluetooth, and Zigbee modules. It

is possible to communicate with the robot peers in a specified communication range or

when the robots are in line-of-sight [82, 83] of each other using short-range wireless

communication technologies. In applications like battlefield surveillance, the robot team

must cover the terrain as fast as possible in search of landmines and minimize redundant

coverage.

After the terrain map is discovered completely in applications like patrolling, re-

peated coverage is desirable for monitoring the terrain [84]. In some research works,

the robots deploy beacons/smart tags in the terrain while performing OTC tasks. The

robots store the coverage information in the beacons to avoid redundant coverage [4,85].

The beacons communicate with each other, and the coverage information propagates in

the network of beacons. The robots themselves do not share the coverage information.

Instead, they obtain and update the coverage information using these beacons. How-

ever, the beacons themselves are prone to failure. Small living species like ants inspire

these approaches [70,86,87]. Two solutions exist for addressing intermittent connectivity.

First is rendezvous-based approaches [88], and the second is to design multi-robot coor-

dination algorithms that are connectivity aware [89]. The rendezvous-based approaches

may not be suitable when a faster task completion time is desirable. However, they can

still be used along with dispersion techniques [90], which will speed up the task. The

connectivity-aware multi-robot coordination algorithms are viable in situations when the

terrain is bounded. For unbounded terrains, moving base stations can be deployed [91].

2.3 UNKNOWN AREA EXPLORATION - CENTRALIZED

APPROACHES

Area exploration is crucial in various fields such as planetary exploration, search and

rescue, agriculture, cleaning, and dangerous locations like mined lands and radioactive
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zones. To achieve efficiency and robustness, exploration is usually carried out by multi-

robot systems. During exploration, robots encounter various geometrically challenging

regions due to impediments such as furniture, and they must navigate around them. The

robots need to explore these environments independently without relying on pre-designed

maps created explicitly for them. This autonomy enables them to adapt to their surround-

ings and operate effectively.

The idea of the frontier for unknown area exploration is presented in [5]. Over the

course of time, the frontier-based methodology was combined with a number of other

heuristics. Research efforts have been focused on heuristic-based techniques, empha-

sizing the interaction between the cost of the distance, the utility, and the amount of

information gained. In [92], a utility function was used to change the utility of the fron-

tiers given to other robots for exploration. In spite of the fact that maintaining constant

contact throughout the exploratory process may potentially simplify things, it became

clear that the robots needed a shared map. Target points were allotted to each individual

robot based on the calculated costs and utilities associated with them. Using a method

known as the ”next-best view,” which involved balancing the costs of traveling with the

amount of information gained, [93] explored a new point of view. When traversing un-

explored terrains, the utilization of several robots was undertaken primarily with the in-

tention of achieving comprehensive environmental coverage. With this line of research,

a new method was proposed in [94]. This method incorporated a distance cost measure

obtained from solving the Traveling Salesman Problem by employing the Chained Lin-

Kernighan heuristic. An algorithm for the online exploration of repetitive tasks was sug-

gested in [95]. This algorithm considered the current expenses and the prospective future

rewards of exploration efforts. The algorithm used a greedy strategy, which selected the

most effective exploratory action for each task repetition by striking a balance between

the costs and benefits of the action in its immediate environment. Various techniques

have been explored in these studies to coordinate robots during exploration. In [96],

robot coordination is achieved through environment segmentation, where each robot is

confined to exploring within its designated segment. This segmentation is achieved by
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initiating wavefronts from the robots towards the frontiers, stopping their growth upon

collision. However, these methods require a shared map and centralized planning. Most

algorithms rely on graphs or trees, such as the Voronoi graph, for graph-based exploration

and Rapidly Exploring Random Trees (RRT) and frontier trees for trees.

In [8], a Voronoi graph depicting the environment is created, and critical spots at door-

ways and narrow corridors are obtained. The graph is then partitioned into multiple parts,

each allocated to a separate robot using the Hungarian approach. This method decreased

the overhead associated with the recurrent allocation of frontier cells. However, success-

ful map segmentation cannot be obtained if the graph has only a few crucial points. To

enhance this approach, [97] extends the segmentation algorithm by merging several par-

titions, further optimizing the exploration process by reducing the overall travel distance.

Furthermore, the approach is centralized and needs to be more resilient to failure. K-

means clustering is utilized to segment the landscape in [98]. Frontier cells in the inner

and exterior of the robot’s partition are allocated distinct charges. This method necessi-

tates many calculations to repeatedly cluster frontier cells in the unknown region, partic-

ularly when the environment is large. Voronoi partitions are created using a distributed

approach in a recent work [99]. Each robot respects the territorial bounds of the Voronoi

partitions into which it falls and does not cross them. Each robot explores the boundaries

of its zones to identify inaccessible patches owing to impediments. After that, the patches

are auctioned off to other robots. In arbitrarily complicated terrains, this approach ensures

comprehensive, non-overlapping coverage. However, this strategy does not guarantee a

fair workload allocation in a multi-robot system; for example, some robots may explore

extensive territories while others lie inactive. This strategy does not account for one

or more robot failures. Instead of assigning vast unknown segments to the robots, [79]

assigns subsets of tasks made up of known frontier cells grouped using the Geodesic

K-means algorithm [100] to the robots using the Hungarian technique [101]. In this ap-

proach, robot dispersion is an emergent behavior, meaning that when fewer frontier cells

are known, the robots are locally dispersed at the start of the coverage task. As the map

unfolds and more frontier cells become visible, the robots disperse from each other. [6]
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suggests a simple yet straightforward landscape-covering approach. This method is based

on structured trajectories. Therefore, a single robot can cover simple regions using spiral

paths. A backtracking method detects and connects other sections because the spiral paths

end in the middle of the rectangular zone. Structured patterns, it has been proposed, are

more efficient since they sweep or cover lengthy contiguous segments and require robots

to take fewer turns. [1] proposes a multi-robot adaptation of [6]. However, this strategy

employs a basic allocation scheme, increasing coverage redundancy. This approach still

needs to be improved when dealing with robot breakdowns.

The Frontier-based Rapidly Exploring Random Tree (RRT) exploration method is

useful for exploring unknown environments. However, its greedy nature results in mul-

tiple robots focusing on the same high-revenue zone, leading to significant overlap. To

address this issue, a group of researchers has proposed a new exploration technique called

the Temporal Memory-based RRT (TM-RRT) [102], which involves multiple robots col-

laborating in the exploration process. This technique uses adaptive duration and income

to determine the value of each frontier based on the robot’s position, resulting in more

efficient and robust exploration of new environments. In their paper [103], the authors

proposed a method for exploring uncharted territories involving Frontier and a tree-like

task assignment structure. It is known as the Frontier Tree algorithm because each fron-

tier is stored in a tree-like data structure. One of the disadvantages of this algorithm is the

increased computational effort, which is tolerable in comparison to the increase in travel

distance toward the end of exploration when greedy algorithms update only a small per-

centage of the map. They employ a single robot to investigate an uncharted environment.

2.4 UNKNOWN AREA EXPLORATION - DECENTRAL-

IZED APPROACHES

In [104], a topological map-based exploration method for multi-agent exploration

is suggested, viz., MR-TopoMap in communication-constrained situations. Each robot

has its own local grid map for path planning, which is not shared. Regarding the ex-
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ploration assignment, a robot’s ability to select an appropriate trajectory depends on the

locations of the other robots and the unexplored regions. The authors have shown that

MR-TopoMap increases exploration efficiency by 23–77%, and in comparison to the oc-

cupancy grid map scheme, reduces data transmission by 84% to 90%. In [105], a method

for Propagation Environment Modelling and Learning (PropEM-L) is developed that pre-

dicts signal intensity by learning attenuation in complicated, communication-restricted

situations. The authors have compared their neural network-based online learning algo-

rithm with the standard received signal strength(RSS) prediction methods and demon-

strate PropEM-L on a dynamic network of exploring robots and stationary antennae in

various communication-restricted, underground locations. This algorithm is shown to

improve RSS prediction and adapt to novel settings. A novel distributed controller for

multi-robot exploration is presented in [106] that autonomously decides at each time

step, based on the current system state, how to weigh network reliability, connectivity,

localizability, and information gain. The presented distributed controller achieves greater

coverage than the state-of-the-art while reducing localization uncertainty. However, this

approach works with the premise that the robot’s movement is error-free. GVGExp [30],

a recurrent connection exploration approach for multi-robot systems, explores unforeseen

environments under communication constraints. This approach successfully minimizes

the communication events between robots and path interference. Generalized Voronoi

Graph (GVG) is created by robots in a progressive manner and is used by the robots to

traverse and determine the topology of the unknown environment. This method, how-

ever, produces suboptimal results because the method used for portioning the area does

not guarantee balanced workload distribution for the individual robots. In [107], the au-

thors have suggested a multi-robot exploration framework that comprises a mission-based

protocol to address the absence of global communication. This protocol allows robots to

independently explore the environment and reach pre-specified places at the scheduled

time for information exchange with their peers. It is a rendezvous-based approach that

may take a longer time and distance to be traveled by the robot team to complete ex-

ploration if the meeting point is not decided carefully. Another research work, [108],
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presents a behavior-based approach for multi-agent exploration of the unknown non-

convex environment. It is not mandatory for the agents to always maintain continuous

connectivity. This approach is based on the behavior of ants laying pheromone trails by

using artificially placed markers in the environment. Using these markers, the agents

avoid redundant exploration. Robots exchange information pertaining to the partial maps

they have discovered and the markers with their peers whenever they are inside the com-

munication range of each other. In general, ant-based approaches have a limitation in that

they need special hardware for trail laying and sensing. It is also possible that the mark-

ers get damaged, rendering the suggested approach in [108] ineffective. In [109], the

authors proposed an approach for multi-robot systems to learn and simultaneously up-

date the communication map while exploring the unknown environment. The multi-robot

system constructs a communication graph incrementally in a communication-restricted

environment. As the robots explore the environment, they keep updating the communi-

cation map, i.e., the vertices represent the locations visited by the robots, and the edges

represent the strength of the radio frequency signals. The robot team uses this commu-

nication map to predict the possibility of communication with the base station without

using relays. In this work, the authors have attempted to ensure connectivity between

robots and the base station. However, in many real-world situations, like an exploration

of a building that looks visually intact from the outside but is earthquake hit, building a

multi-robot network that ensures continuous connectivity is not possible.

Subsequently, in this chapter, the literature survey on MRS is conducted in accordance

with the characteristics of the environment in which MRS has deployed the composition

of the robot team, followed by inter-robot communication and coordination algorithms.

We have recently come across several research papers on coordination algorithms. These

algorithms can be divided into four phases: task decomposition, task allocation, task

exploration, and task termination upon completion. According to MRS characteristics,

these algorithms’ control architectures can be centralized or decentralized. In centralized

control architectures, robots remain connected to the base station, so communication cri-

teria are not a major concern. However, in the decentralized approach, connectivity issues
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between robots and the base station may arise. Therefore, in the communication charac-

teristics section, we have discussed research papers that focus on communication-based

solutions for the decentralized approach.

2.5 ENVIRONMENT CHARACTERISTICS

This section outlines several essential environmental attributes and their corresponding

sub-attributes, as shown in Table 2.1.

Table 2.1: Environment Characteristics

Environment
Attributes

Sub Attributes Related Papers

Knowledge of the
environment

Known [50, 75, 110–115]

Unknown
[5,8,11,19,29,38,58,60,62,63,74,
88,89,91–93,96,108,109,116–140,
140–176]

Known bounds [91, 96, 177–179]
Known bounds with
holes

[180–182]

2.5.1 Knowledge of the Environment

The environment in which the robot team operates can be known beforehand, or it can be

a completely unknown environment, with the exception that sometimes only the bounds

are known. Some examples of the known environment are that of warehouses [116,183],

surveillance [18, 184] and search-and-rescue operations for unknown environments [19,

185]. We first delve deeper into the attributes of the known environment and explain

how a robot can have complete knowledge of all possible outcomes of its actions. In

contrast, we also discuss the challenges faced by the robots when they incrementally

acquire knowledge of the unknown environment before making any decision. The known

environment has two sub-types: known bounded [172,186] and known bounds with holes

[181, 182]. In a known bounded environment, the robot is aware of the overall boundary,

but unexpected obstacles may be present that the robot must navigate around [187]. For

instance, we consider a scenario in which a robot is tasked with delivering medication to
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patients on a specific floor or ward of a hospital [188]. On the other hand, in a known

bound with holes environment [180], the overall layout and boundaries are known, but

certain areas are restricted. For example, we explore a library where a robot collects books

from various shelves. These restricted areas, or holes, present a challenge for the robot.

Nonetheless, by incorporating the knowledge of these holes, the robot can determine the

external boundaries and internal obstacles it must avoid.

2.6 MRS CHARACTERISTICS

This section outlines some essential attributes of MRS characteristics and their sub-

attributes. Table 2.2 summarizes the characteristics discussed in the literature.

Table 2.2: MRS Characteristics

MRS Attributes Sub Attributes Related paper

MRS composition
Homogeneous

[5, 8, 11, 19, 38, 50, 58, 62, 63, 74,
88,89,91–93,96,110–125,127,128,
130, 131, 134–138, 140, 141, 143–
145, 147, 148, 150–159, 161–165,
167, 171, 177–180, 186, 189, 190]

Heterogeneous [29, 75, 83, 129, 133, 139, 151, 191]

MRS control
architectures

Centralized
[11,38,50,58,63,75,83,89,92,112,
114,115,123,124,129,134,136,145,
150, 162, 177, 189]

Decentralized

[5, 8, 19, 29, 58, 62, 88, 91, 96, 110,
113, 116, 118–122, 125, 127, 128,
130,131,133,137,139,140,140,141,
143–145, 147–149, 151, 152, 155–
159, 161, 163, 165, 167, 171, 178–
180, 186, 190, 191]

The main objective of MRS is to achieve proper coordination among the robot peers

[23,47,92,165]. During movement, robots share information like their pose in both local

and global frames. When examining the characteristics of MRS, the initial position of

each robot is a crucial aspect to consider. It is essential to determine whether all robots

start from the same location, such as a base station [89], or different locations [153]. If

the robots have a common starting point [50, 192–194], then it remains easier for them

29



Chapter 2: LITERATURE REVIEW 30

to discover the pose of their peers. Furthermore, with known poses, in tasks involving

environment monitoring and mapping, the information dissemination within the group is

more accurate. On the other hand, when the robots start from different locations [153],

determining the pose of the peer robots is complex, and information integration is less

accurate. The size of the environment is also critical since it affects the success of MRS

exploration, along with other important factors like the type of robots, sensors, speed,

computation speed, and simulation software used. These factors significantly impact

the navigation, communication, coordination, and task completion of MRS. Therefore,

selecting an appropriate robot and environment configuration is necessary to ensure effi-

cient navigation and task completion performance.

2.6.1 MRS Composition

A homogeneous MRS [157, 186] comprises robots with identical capabilities, sensor

suites, and hardware. They have similar abilities and can complete similar tasks. These

robots can efficiently coordinate their actions since they are equally capable of perform-

ing tasks. According to [195], this composition has several advantages, including sim-

plicity, reduced complexity, and lower cost. Whereas, A heterogeneous MRS [196, 197]

comprises varying robots with differing capabilities, sensor suites, and hardware. They

possess different skills and can execute different duties. This makes coordinating their ac-

tions more challenging since not all can execute similar duties. According to [198, 199],

Some advantages of this mixture include increased versatility, efficiency, and strength.

Most researchers prefer homogeneous MRS due to its simplicity and affordability com-

pared to heterogeneous MRS, as shown in Table 2.2.

2.6.2 MRS Control Architectures

In a centralized control architecture, a single central controller manages the actions of

multiple robots [200]. This controller receives sensory data from the robots and sends

commands to direct their actions. Although this structure is simple to implement, it is

vulnerable to failure due to its reliance on a single point. According to [201], the central-
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ized approach is similar to the leader-follower approach. The commonly used algorithms

for centralized techniques in task allocation are the Hungarian approaches [202]. In the

Hungarian-based approach, a cost matrix based on distance is utilized to assign tasks

to robots. The aim of this approach is to minimize costs and obtain an optimal solu-

tion. However, it is important to note that centralized task allocation algorithms have

limitations in terms of robustness and scalability. On the other hand, in a decentralized

control architecture, there is no central controller, and the robots make decisions indepen-

dently. While they share information and coordinate actions, this control architecture is

more complex. Each robot works to optimize its objectives within its specific boundaries

while interacting with other robots to achieve a common global goal. In the decentralized

auction-based task allocation method [203], a bidding method is used to assign tasks to

robots. Both approaches aim to minimize costs and obtain an optimal solution. In their

article [204], the authors discuss the optimal control architecture to utilize based on the

specific application requirements and desired system performance. Centralized control

is easy to implement but prone to a single point of failure. The decentralized control is

more robust but challenging to set up.

In the field of MRS research, researchers have traditionally relied on a centralized

control architecture [124, 129]. This approach has been effective for simpler systems

with either known or unknown surroundings. However, as the complexity of the system

and the number of robots increases, managing and coordinating communication becomes

more challenging. To address this issue, researchers have started to adopt a decentralized

approach [131,133]. However, decentralization of the robots poses significant challenges,

such as fault tolerance, scalability, collaboration, and cooperation.

When designing a multi-robot system (MRS), several critical factors need careful

consideration. These factors include the speed of the robots, the type of sensor used,

the range and field of view (FOV) of the sensor, and the specific robot type being em-

ployed. High-speed robots are capable of executing tasks faster, while different sensor

types, ranges, and FOVs affect how well robots perceive their surroundings and interact

with each other. Choosing the right robot for the MRS has a direct impact on the system’s
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performance and capabilities. To optimize MRS performance, it is crucial to select robots

and sensors carefully and design efficient algorithms and control strategies that account

for each robot’s species, sensors, and capabilities. Robots working in a team can explore

their environment faster by communicating and coordinating with each other. In the fu-

ture, we will focus on the characteristics of communication and coordination when robots

work in a centralized or decentralized manner. To ensure success, it is crucial to estab-

lish a reliable communication system. Effective communication is vital in robotics, as it

involves transmitting and receiving information among various components of the robot,

such as the control station operator to the robot, robot control device to robot hardware,

robot running node to running node, and so on. All these examples of communication

fall under this category. Mobile robots commonly use wireless communications, such

as Bluetooth, Wi-Fi, and cellular networks, due to their numerous benefits [205]. Estab-

lishing an effective decentralized strategy requires determining the transmission modes

of communication, which can be either half-duplex or full-duplex. In half-duplex com-

munication, robots can only send or receive flags, which can limit communication and

coordination. An example of inter-process communication using a Zigbee modem [206]

is available. Meanwhile, robots can achieve full-duplex communication by transmitting

and receiving flags simultaneously, which is exemplified by Bluetooth technology [207].

In their paper [208], the authors present several practical applications that utilize two

modes of communication for robots. The first mode is long-range and low-bandwidth,

utilizing technologies such as XBee. The second mode is a shorter range but high capac-

ity, using WiFi. Additionally, the authors introduce three algorithms: network formation,

which leverages subroutines cluster-connection and star-connection. In the study [168],

the authors provide clear evidence that their proposed exploration technique, which uti-

lizes a fixed Bluetooth chain-like team, outperforms existing approaches in obstacle-free

scenarios where limited connection to the base station is an issue. They accomplish this

by creating a static networking architecture that is not ad hoc.
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2.7 COMMUNICATION CHARACTERISTICS

This section summarizes the key qualities of effective communication and their sub-

attributes. See Table 2.3 for a summary.

Table 2.3: Communication Characteristics

Communication
Attributes

Sub Attributes Related paper

Connectivity Model

No Connectivity [75, 118, 209]
Event-based [46, 210]
Continuous [91, 173, 211]
Time-triggered [180, 212]

Communication
model

No Communication [112, 148, 150, 163, 180]
Line of Sight based [29, 83, 89, 121, 148, 170, 171, 191]

Range based

[5,8,19,29,50,58,63,74,75,75,83,
91,92,110,111,113,113–115,118–
120, 122, 123, 125–127, 129, 131,
133–135, 137, 139, 140, 143, 144,
148,149,152,155,158,163,164,170,
177–179, 189, 191]

Signal based [170, 171]
Traces-based [96, 116, 141, 163, 167, 171]

Communication
necessity or need

Periodic
[19,83,140,147–149,152,155,158,
159, 163, 164, 166, 170, 171, 186]

Aperiodic
[5,8,75,113,118,123,127,135,137,
139, 141, 177–179, 191]

Continuous

[11, 19, 38, 50, 58, 63, 74, 88, 89,
91, 92, 110, 111, 114–116, 119–122,
124–126, 129, 132–134, 140, 143,
144, 162, 167, 189]

Inter-Robot network Fragmentation
[8,38,50,74,75,111,119,121,125,
130–132, 189, 213]

2.7.1 Connectivity Model

Effective coordination is crucial for autonomous robots to work together towards shared

objectives in tasks like search and rescue or swarm robotics. To achieve proper coordina-

tion, robots need to communicate with each other by exchanging data and sharing infor-
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mation. Connectivity plays a vital role in providing reliable links between robots, which is

essential for seamless interaction and teamwork. Improper communication methods can

lead to uncoordinated systems, resulting in ineffective performance. The robots’ com-

munication networks facilitate proper coordination between the team of robots. Multiple

categories of connectivity methods are explained below [43, 176].

• No connectivity: No connectivity in robotics occurs when robots can’t communi-

cate due to infrastructure failure, physical obstructions, or distance [5]. This means

robots rely on their sensors and decision-making abilities to complete tasks, which

can result in sub-optimal performance or mission failure if they can’t complete

tasks independently.

• Event-based connectivity: Event-based connectivity is a communication model

used in MRS where robots communicate based on specific events or triggers in-

stead of continuous communication [171]. It is particularly useful in dynamic en-

vironments where communication needs change frequently. The robots are only

connected when communication is necessary, helping to save energy and reduce

communication overhead.

• continuous connectivity: Robots in MRS communicate continuously using con-

tinuous connectivity. This allows robots to collaborate in real-time, improving per-

formance. Continuous connectivity allows a group of robots mapping an unknown

environment to share sensor data and coordinate their movements to cover more

ground and create a detailed map. It takes a reliable infrastructure and nearby

robots to use wireless or wired communication to achieve this model. If communi-

cation infrastructure fails, the entire system may go down. Continuous connectivity

is bandwidth- and power-intensive. In [89], a group of robots explores an unknown

2D environment while maintaining continuous connectivity with a single base sta-

tion. In [214], They propose a distributed algorithm for continuous robot-to-base

station connectivity. In this algorithm, swarm members form a network topology

and role switch to deploy repeaters for base station connectivity.
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• Time-triggered connectivity: Time-triggered connectivity is a communication

model used in MRS where robots communicate at predetermined intervals rather

than continuously [29, 212]. This means that the robots are only connected at spe-

cific times. Regular communication intervals, such as once per hour, can be estab-

lished when deploying robots for surveillance in a large area.

In their paper [215], the authors address two communication challenges related to con-

nectivity when using ROS as a middleware. The first challenge is a time-based physics-

based ROS simulator toolkit, while the second challenge is an event-based network simu-

lator. There are a few papers that focus on the connectivity between MRS. In [216], They

compare the bandwidth and speed restrictions of local and global connectivity mainte-

nance on an MRS. In [217], They also proposed several local and global connectivity

maintenance algorithms for distance-dependent communication topology. In [30], they

generate a graph-based connectivity between the multiple robots. They also suggest that

robots can conflict when they explore the same area, so communication between robots

becomes important. In [218], They provide a definition of connectivity that requires

agents to maintain line-of-sight, which is guaranteed by obstacles. When computing the

graph topology, each agent considers its environment task, and the tasks are calculated

based on the Minimum Spanning Tree (MST). Simultaneously, some researchers will

focus more on network connectivity. In their study [219], the authors evaluate the effec-

tiveness of simultaneous and iterative link removal techniques on various types of net-

work connectivity. In their study [220], researchers conducted experiments on preserving

network connectivity in a multi-robot system. The study showed that a group of three

robots could successfully preserve network links. The researchers also noted that wire-

less communication and sensor observation networks can have varied topologies, which

makes preserving network links a challenging task. Most strategies for preserving net-

work connections assume similar topologies and rely on robots communicating with their

neighbors. However, this assumption is false since some sensors, such as cameras, are

only available in the line of sight. Nevertheless, wireless communication can still occur
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through diffraction or reflection, even if the robot is out of sight. Therefore, each robot

must simultaneously observe its relevant neighbors’ relative positions and network IDs to

interact wirelessly.

Whereas continuous connectivity [211] can limit the freedom of movement for robots

in exploration strategies. However, despite continuous connectivity, limited-range com-

munication can prevent robots from reaching certain parts of the environment. Another

important factor is the control station (CS) to which the gathered information must be

periodically delivered. This factor is particularly useful in exploration missions that in-

volve search and rescue operations. During an exploration mission, a mobile robot can

communicate with its teammates (and potentially a CS) through a radio channel, such as

Wi-Fi [205] or Zigbee. However, radio channels can be degraded as the distance between

robots and physical obstructions increases. In this context, the ”communication model”

refers to a robot’s communication capabilities, which decide where it should go next.

The communication model predicts that robots will communicate within a specific range

when mutually visible, but this may only be true when robots are near each other [221].

This conservative method can be used to construct robust multi-hop chains [19, 46] be-

tween robots to achieve tasks such as live video streaming between a location of interest

and the CS. It is considered a very safe method because it rarely produces false positives.

However, in some scenarios, the communication model is only assumed [201, 222]. In

these cases, robots do not determine which locations to visit based on the possibility of

inter-robot communication. As a result, communication can only occur when it is conve-

nient. A list of the most common types of communication models [43, 169, 173] used in

MRS organizations:

2.7.2 Communication Model

The term ”communication range restriction” in a MRS refers to the limit on the distance

over which robots can communicate. This limitation is due to factors such as communica-

tion device power or environmental obstacles, and it means that robots can only exchange

information when they are in close proximity to each other. This constraint is important
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because it affects how robots collaborate, form teams, and distribute tasks. Robots that

are within the communication range can share data and coordinate with each other, while

those that are beyond it must operate independently. When designing MRS algorithms,

engineers need to take this limitation into account. The communication model that they

choose will determine how the robots connect and share information, and it is directly af-

fected by the communication range. Researchers should consider these aspects to ensure

that the MRS operates efficiently. There are different communication models available,

including:

• No communication: In MRS, it is possible to have a type of system called an

”uncoordinated” or ”asynchronous” system, where there is no direct communica-

tion between the robots. In such a system, each robot acts independently, without

direct communication with the other robots [5, 112, 180, 223]. MRS only some-

times requires communication between robots. There are several situations where

robots can perform their tasks without communicating with each other. For exam-

ple, when robots are assigned to different locations or performing tasks that do not

require coordination, such as exploring an unknown environment. Furthermore, in

some environments, the communication channel might be unreliable or unavailable

due to external factors, such as noise or jamming. There are several advantages

of having no communication in MRS. One of the benefits is simplicity since there

is no need for communication infrastructure or coordination. Another advantage

is robustness because the system can operate even if the communication channel

is disrupted. Finally, the need for more communication makes the system cost-

effective.

• Line of Sight based communication: In MRS, Line of Sight (LoS) based com-

munication is a type of wireless communication in which the communication link

between the robots is established through a direct, unobstructed path. This means

no physical obstacles, such as buildings or trees, should block the signal between

the robots [89, 170, 171, 173]. Examples of LoS-based communication in MRS
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include microwave or millimeter wave communication systems or infrared com-

munication. These systems typically have a limited range and require a clear path

between the robots for reliable communication. Low latency, high data rates, relia-

bility, security, and accuracy are advantages of LoS-based MRS communication.

• Range-based communication: In MRS, Circle or Range-based communication

refers to a type of wireless communication where robots can only communicate

with each other if they are within a certain range or radius [46,91,177]. This means

that only robots located near each other can establish a communication link. Several

wireless technologies, such as WiFi, Zigbee, Bluetooth, ultrasonic or infrared com-

munication, etc., have limited communication ranges. In beacon-based localiza-

tion [160], robots periodically broadcast their location, and other robots can listen

and determine their relative position based on the received signal strength. The use

of Circle or Range-based communication in MRS has several advantages. Firstly,

it helps reduce the amount of noise or interference in the system since communi-

cation is only established between robots located close to each other. Secondly, it

is a more efficient approach as it limits the number of robots that need to be coor-

dinated. Lastly, this approach allows for independent coordination as small groups

of communication are created between the robots.

• Signal based communication: Wireless communication in MRS that relies on

transmitting signals between robots is called signal-based communication. This

communication model enables the robots to exchange information, such as their

location, actions, and sensor data [78, 224]. Examples of signal-based communi-

cation include Wi-Fi, Zigbee, Infrared (IR), Ultrasound (US), and Wireless Sensor

Networks (WSNs) [171, 176]. Real-time communication between the robots and

a central control system is possible through signal-based communication, allowing

for coordinated actions.

• Traces-based communication: Traces-based communication in MRS is wireless
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communication that relies on the robots leaving behind a trace or a record of their

actions and movements [167,171,223]. Other robots can then detect and read these

traces to gain information about the actions and movements of other robots. Robots

leave behind a trail of pheromones [225], markers [226] that other robots can detect

and follow to reach a certain location. They broadcast their location and actions,

which other robots can use to update their map of the environment. Traces-based

communication in MRS offers several advantages, including direct communica-

tion between robots, even in noisy or jammed environments. This communication

method is commonly utilized in swarm robotics [227], where robots can collabo-

rate to achieve a common goal without a central controller. The primary objective

of this collaboration is usually to accomplish cooperative tasks.

The paper [228] presents three algorithms for exploration tasks under communica-

tion range restrictions. In the Rolling Dispersion Algorithm (RDA), Wi-Fi is used for

communication between robots, and This algorithm uses beacons as markers to mark the

explored path. Sweep Exploration Algorithm (SEA) For chemical signals or line-of-sight

with cameras and LEDs are used in communication between robots. The train Explo-

ration Algorithm (TEA) is similar to the Sweep Exploration Algorithm (SEA), but here,

robots remain in the group like a train moving on a track. On comparing all of these al-

gorithms, SEA is 1.35 times faster than RDA in achieving full coverage and works better

than RDA in environments with long paths.

2.7.3 Communication Need

In MRS, there are different types of communication needs, including:

• Periodic communication: This type of communication is characterized by the

need for robots to communicate at regular intervals [163,164]. For example, robots

may need to periodically exchange their positions or sensor data to coordinate their

actions. This type of communication is helpful for tasks such as formation control,

where the robots need to maintain a specific configuration [229].
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• Aperiodic communication: This type of communication is characterized by the

need for robots to communicate only when necessary [8, 75]. For example, robots

may need to communicate only when they detect an obstacle or reach a specific

location. This type of communication is helpful for tasks such as exploration, where

the robots need to adapt to environmental changes.

• Continuous communication: This type of communication is characterized by the

need for robots to communicate constantly [88, 150]. For example, robots may

need to communicate in real-time to control a shared resource or to maintain a

shared map. This type of communication is helpful for tasks such as navigation

and localization, where the robots need to know the positions of other robots in

real-time.

The type of communication needed will depend on the specific task and the requirements

of the MRS. For example, in a search and rescue task [230], aperiodic communication is

probably more suitable because the robots can move independently and only need to com-

municate when they detect something interesting. On the other hand, in a swarm robotic

task [231], continuous communication is probably more suitable because the robots need

to work together in real time to achieve the task.

2.7.4 Fragmentation

Fragmentation [148, 191] in MRS refers to the situation where the network of robots

becomes disconnected, which means that some robots can no longer communicate with

others. This can happen due to various factors, such as obstacles blocking communica-

tion paths, the limited communication range of the robots, or the failure of some robots.

Fragmentation can significantly impact the performance and efficiency of MRS as dis-

connected robots cannot share information or coordinate their actions. This can result in

sub-optimal performance or even failure of the overall design. Fragmentation can occur

in different ways in MRS, such as physical (caused by obstacles), logical (caused by the

failure of some robots), and topological fragmentation (changes in network topology due
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to robot motion).

In [232] a decentralized approach to evaluate inter-robot communication. The study

found that communication can improve performance in tasks that require less communi-

cation. Three communication models were introduced and tested in three different envi-

ronments. The results suggest that low-level communication strategies are more effective

than complex ones. In [233], They provide a new idea for a lightweight open-source sys-

tem called Robofleet that provides inter-robot communication, remote monitoring, and

remote tasking for a heterogeneous fleet of ROS-enabled service-mobile robots. They

also mention that it is better than the ROS when there are many robots in the environment.

They used ROS2 to solve their problem. In [234], A strategy for collision avoidance in

communication-based multi-agent navigation was presented. The strategy involves im-

proving agent navigation by communicating hidden state information. A self-attention

model is employed to encode neighbor observation and link prediction for inter-agent

communication. In various circumstances, the approach outperformed other learning-

based baselines in simulation.

There are few research also exist that work on aerial, underwater, and ground robots or

a combination of them. In their paper [197], the authors presented a technique that enables

decentralized multi-robot systems to establish ad-hoc communication links with specific

target robots based on their surroundings. They used Markov chains to model a spatially

targeted communication protocol between aerial and ground robots in a swarm to achieve

this. The technique involves a swarm of marXbots combined with several aerial robots

that work together to climb a hill. In their paper [170], the authors proposed a distributed

exploration method for 3D environments. The robots always maintained communication

range with one another and exchanged limited data - only the movement direction of each

robot. The method was computationally efficient due to a heuristic function and a greedy

computation strategy. The authors also presented an efficient deadlock recovery strategy.

The exploration algorithm was tested on a simulator for autonomous underwater vehicles.

In their paper [234], the authors propose a collision avoidance strategy for multi-agent

navigation based on communication. They developed a self-attention model to encode

41



Chapter 2: LITERATURE REVIEW 42

neighbor observations and predict links for inter-agent communication.

2.8 COORDINATION CHARACTERISTICS

Effective coordination among multiple robots that share a common objective is crucial

for exploring unknown environments [162]. This coordinated approach has potential ap-

plications that span from surveillance and sea rescue to space exploration. When the

area is too vast for a single robot, multiple robots can increase efficiency and coverage,

which is particularly important given the significant time and energy required to map

new terrain and adhere to constraints. However, coordinating numerous robots presents a

significant challenge that requires the development of sophisticated algorithms for coor-

dination, control, and communication to ensure optimal outcomes. The primary objective

is to optimize performance by identifying the key factors that contribute to successful

coordination.

In the field of path planning, recent works have made significant progress toward

guaranteeing complete coverage of free space. This is especially important in applica-

tions such as de-mining, where it is critical to cover the entire environment. To achieve

this, the most effective method is to use cellular decomposition. Three types of cellular

decomposition are commonly used: approximate, semi-approximate, and exact.

2.8.1 Task Decomposition

Task decomposition is a method of breaking down a complex task into smaller, more

manageable subtasks. This approach allows for more efficient and effective completion

of the task by distributing the workload among multiple robots. The subsequent methods

are associated with task decomposition. In our case, we are considering the exploration

of an unknown environment as the task to be accomplished.

An approximate cellular decomposition is a representation of the free space using a

fine grid of cells that are all the same size and shape, also known as binary cell decompo-

sition. In semi-approximate cellular decomposition [65, 235], the cells are of fixed width

but can have varying top and bottom shapes. The exact cellular decomposition is also
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known as trapezoidal decomposition [236], where robots move back and forth to cover

the space completely.

Table 2.4: Coordination Characteristics

Coordination
Attributes

Sub Attributes Related paper

Task decomposition

Local frontier
identification

[5, 8, 19, 38, 62, 75, 83, 88, 89, 92,
110–113, 116, 118, 119, 125, 127,
135, 137, 143, 145, 148, 152–155,
158, 159, 162–164, 167, 179, 186,
189, 190, 237]

Voronoi based
[50, 114, 122, 139, 140, 142, 147,

180]
Bidding based [129, 131, 136, 157, 161]

Task allocation

Depth-First search [5, 151, 160, 180, 238]
Breath-First search [180, 238–241]
Greedy based [5, 19, 29, 88, 110, 190]
Bidding based [113, 118, 242]
Hungarian method [111, 114]

Heuristic based
[62, 117, 129–131, 134, 135, 137,

138, 153, 154, 157, 161, 179, 189]

Rendezvous based
[143, 148, 149, 152, 155, 158, 163,

164]

Task exploration

Frontier based

[5,8,11,29,38,58,62,63,74,75,88,
91,92,110–113,115,117–127,129–
131, 143, 145, 148, 150, 153, 155,
161–163, 170, 177, 179, 190]

Segment based [8, 52, 114, 158, 173]
Target based [91, 110, 135, 178]
Role based [29, 152, 155, 158, 164]

Task termination

No visible frontiers

[5,8,11,19,29,29,38,58,62,63,74,
75,88,89,91,92,110–113,115,117–
127, 129–131, 140, 143, 145, 148,
150, 152, 153, 155, 158, 161–164,
170, 170, 177, 179]

No bids available [129, 131, 131, 136, 157, 161]
All Voronoi cells
covered

[50, 114, 121, 122, 139, 140, 142,
147, 180]

Return to BS [29, 88, 149]

Exploring a map involves gathering new information by moving through an environ-

43



Chapter 2: LITERATURE REVIEW 44

ment. There are various methods to accomplish this, starting with local frontier detection.

We already know that the frontier is the boundary between the explored and unexplored

areas. Identifying these frontiers is crucial for enabling robots to explore and map their

operational environment fully. Various approaches can be employed to identify local

frontiers in MRS. One such approach is occupancy grid mapping, The robots can then

use this map to identify unexplored areas and navigate toward them to explore them. An-

other approach involves using visual sensors and cameras to detect unexplored areas. The

robots can capture images using these sensors and use them to identify areas that have

not been visited and then navigate toward these areas to explore them [243].

One of the techniques used in this approach is Distance-based frontier identifica-

tion [94, 98], which is widely used in multi-robot systems. This technique utilizes the

distance to different points (robot’s location and centroid of the frontier) in the envi-

ronment to identify potential frontiers that can be further explored using path-planning

algorithms. According to [5], robots detect closed frontiers and move towards them,

while [92] considers the trade-off between the distance cost of reaching a target and its

utility of that target. Future [118] approach uses a metric to determine the value of a

frontier, taking into account the information gained and the travel cost of observing from

the selected pose. According to [114], cell decomposition may not be effective in larger

environments. To address this issue, a new approach based on area partitioning, known

as Voronoi diagrams, was introduced.

Voronoi diagrams have numerous applications due to their useful properties. Voronoi-

based frontier identification provides a dependable approach for multi-robot systems to

navigate unfamiliar surroundings. The coordination of team members can be achieved

through Voronoi diagrams, which divide the environment into various segments. Each

unknown segment acts as a Voronoi region [244]. Using the Voronoi diagram, this tech-

nique divides the space into regions based on the proximity to the nearest point. The

method identifies frontiers using sensor data and robot locations by selecting the edges

of the closest regions. Path-planning algorithms are then used to explore these frontiers

effectively. Numerous studies, such as [245, 246], have investigated the applications of
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Voronoi diagrams. The Voronoi graph is widely used in various fields such as path plan-

ning, computer graphics, biology, VLSI design [247], and sensor networks. In [248], they

used Voronoi diagrams for developing the roadway-based approach.

The strategy involves having each teammate robot move toward the frontier cell that’s

closest to them. However, this approach doesn’t take into account the placement of all the

team members throughout the environment. To address this, a bidding-based algorithm

was introduced to enhance the frontier-based method by balancing the costs of reaching

the frontier cells with their utilities [75]. Bidding-based approaches have been the subject

of various studies exploring decentralized control strategies among robots competing for

tasks or resources. These approaches aim to distribute functions and resources efficiently

and equitably among the robots.

In [249] providers, the multiple Auction-based methods that contain the Parallel Auc-

tion, G-Prim [250], Sequential Auction [251], Repeated Parallel Auction [252], Repeated

G-Prim [252], and Combinatorial Auction [253]. Implementing these strategies can be

challenging and require a robust communication infrastructure. The effectiveness of these

approaches can be impacted by factors such as the accuracy of robots’ information, bid

quality, and communication range. It is crucial to carefully tailor bidding-based ap-

proaches to meet the application’s demands and system performance objectives, consider-

ing the number of robots, task requirements, communication infrastructure, and available

resources. Multiple studies have explored this approach differently, including [165, 254].

According to [255], an MRS task is assigned in bidding-based approaches by maximizing

cell utility and minimizing cost.

2.8.2 Task Allocation

Task allocation refers to the process of assigning particular subtasks to individual robots

based on their skills, abilities, and the requirements of the sub-task. The methods that are

used in this process are associated with task allocation.

An efficient way to explore and map an environment is to use a Multi-Robot Sys-

tem (MRS) that employs Depth-First Search (DFS) or Breadth-First Search (BFS) algo-
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rithms. In these methods, each robot is given a unique ID and starting location (vertex),

and follows either a DFS or BFS approach while maintaining a stack of vertices to be

visited. In order to avoid collisions and ensure that they do not visit the same vertex

simultaneously, the robots communicate with each other. However, careful coordination

and planning are necessary to overcome challenges such as collision avoidance. There are

several algorithms proposed for exploring unknown terrains using a DFS approach. One

of the algorithms, presented in [180], involves dividing the terrain into smaller regions,

constructing a tree with each region as a node, and using a centralized DFS algorithm

for robot exploration. Another algorithm proposed in [113] divides the obstacle-free area

into cells and assigns a single robot to explore each cell using DFS. Moreover, in [77],

each robot follows a DFS-like procedure to create spanning trees required for the ex-

ploration algorithm when multiple robots explore an area divided into cells. Finally, [4]

proposes an improved DFS approach by introducing a new method that employs multiple

DFS searches. However, BFS is an efficient method for finding optimal paths and sys-

tematically exploring an environment. In [108], BFS was used to calculate the Flooding

Distance. The BALANCE algorithm, described in [239], uses the lower bound values

of DFS and BFS. Moreover, [240] introduced two algorithms, the Wave Front Detector

(WFD) and Fast Frontier Detector (FFD), which are based on BFS.

Greedy-based task allocation is a popular approach for assigning robot tasks in a

MRS. In this method, each robot maintains a priority queue of available tasks, sorted

based on a greedy criterion, such as distance or remaining time to complete the task.

The robot selects and performs the task with the highest priority from its queue. Despite

its efficiency and simplicity, this approach may not always result in optimal task alloca-

tion. The process is repeated until all tasks are completed. When choosing the greedy

criterion, carefully considering the system’s goals and requirements is important. One

such approach, described in [256], is the Nearest-Based Frontier Allocation Strategy,

where robots move toward the closest frontier on the map. In [257], each robot calcu-

lates the distance to all tasks available for auction. Research in [238] has shown that for

single-robot systems, the greedy approach of guiding the robot to the closest frontier is
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reasonably effective compared to the optimal solution.

The Kuhn-Munkres algorithm, also known as the Hungarian method, is used to solve

the MRS assignment problem. The assignment problem involves optimally assigning

tasks to a group of robots. The Hungarian method is a combinatorial optimization al-

gorithm that minimizes the cost of the assignment to obtain an optimal solution. It can

handle multiple tasks and robots and address constraints. However, it can be computa-

tionally expensive, unsuitable for real-time applications, and not handle uncertainty well.

In [64], a Decentralized Hungarian Based Algorithm (DHBA) was developed to address

these limitations. Additionally, [8] divided the map into segments using a Voronoi graph

(VG) [258] to represent individual rooms or areas of a large corridor. These segments

were then assigned to robots using the Hungarian method.

Heuristic-based task allocation method allows robots to select tasks based on pre-

defined rules or heuristics rather than an optimal solution, providing coordination of the

robots’ actions and allowing for workload balance and adaptation to changing environ-

mental conditions. However, it may not guarantee the optimal global solution, fair alloca-

tion among robots, or consider the long-term impact on the mission. Different heuristics

have been studied for task allocation in previous research. For instance, [92] built a

global map using a heuristic that combined distance cost and utility for target selection.

Similarly, [110] developed a utility-based heuristic and introduced a ”belief measure” for

allocating the next target to the robot. In [174], a cost-utility-based approach was used

where cost was defined as the distance between the robot and the target, and utility was

based on communication constraints. [259] defined a cost-utility approach, where cost

was the distance between the robot’s location and the frontier’s centroid, and the area

covered by the frontier defined the utility. [132] combined information gain and distance

cost of the frontiers in their heuristic. Finally, [139] developed a new function based on

distance cost to select the target that provided the maximum information gain.

The potential field is an AI approach that can be utilized for task allocation in MRS.

The method works based on the principle that each task generates a corresponding poten-

tial field, and robots are attracted to tasks with the highest potential. This decentralized
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coordination strategy distributes the workload among robots and allows for adaptation

to environmental changes. However, the potential field method may not always provide

the optimal global solution and may not adequately address real-time constraints and un-

certainty. In [120], the authors use a decentralized frontier-based exploration approach

to evaluate the cost-utility ratio of navigating towards target waypoints, utilizing the A*

algorithm. They implement the potential field method to control the robots’ motion to

avoid obstacles. On the other hand, [135] employs a behavior-based approach called so-

cial potential fields to determine the robots’ heading and move them toward unexplored

areas. The system is optimized by adjusting each robot’s angle and velocity. In [115],

the potential field method is used for decentralized robot control, and a frontier-based

approach is used to escape potential field minima.

Rendezvous points-based task allocation is a method used in MRS to coordinate the

actions of robots by agreeing on a common location, called a rendezvous point, where

they can meet and exchange information about the available tasks. The main aim of this

technique is to enable efficient and rapid allocation of functions among the robots. It al-

lows for decentralized coordination of the robots’ actions, facilitating workload balancing

and adaptation to changing environmental conditions. However, it depends on a reliable

communication infrastructure and may not be suitable for real-time constraints. Robots

are divided into explorers and relays in the system proposed by [46]. Explorers are tasked

with discovering new areas of the environment while relaying the shuttle back and forth

to transmit the data collected by the explorers to the central station. The explorers and

relays coordinate by selecting appropriate rendezvous points. However, it is important to

note that periodic meetings at these points may limit the exploration process.

2.8.3 Task Exploration

Task exploration identifies and evaluates possible subtasks and determines their relative

importance and dependencies. This involves analyzing the overall task and determining

which subtasks are necessary to achieve the goal and how they can be best accomplished.

The subsequent methods are associated with task exploration.
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Frontier-based exploration [129, 130, 179] in MRS is a method where robots explore

an unknown environment by identifying and visiting the frontiers, or the boundaries be-

tween known and unknown areas. An approach for this is the Wavefront Frontier Detector

(WFD) algorithm [124]. The main advantage of the WFD algorithm over the original is

that it only scans the known regions of the occupancy grid instead of scanning the en-

tire grid every time the algorithm runs. This makes the process much more efficient and

faster. In [260], they proposed an extended frontier-based exploration method that relies

on a new bidding function called ”span.” The ”span” parameter represents the distance

between the frontier cell and the other robot.

Segment-based exploration [52, 158] in MRS is a method where robots explore an

unknown environment by dividing it into smaller segments and assigning each segment

to a robot or a group of robots for exploration. The algorithm in [261] uses range finders

to recognize the environment. They segment the map. That approach was described

in [262] for efficient robot exploration. To start segmentation, robots load an environment

map into memory. Machines then segmented the space. Sharing section positions. Guess

which geographic region is under-explored. One robot searches the less-explored region.

Choosing the nearest robot to aimed parts.

Role-based exploration [29, 149] in MRS is a method where robots are assigned spe-

cific roles and responsibilities based on their capabilities and resources and coordinate

their actions to explore an unknown environment. In their study [248], the authors distin-

guish between Behavior-based and Role-based systems for MRS. It is also known as the

relays-explorers; MRS is a method where one robot, the leader, is assigned to plan and

coordinate the exploration. In contrast, the other robots, the explorers, gather information

and map the environment. It allows for efficient exploration of unknown environments

by utilizing the robots’ capabilities and resources. [149] presents a different approach to

using rendezvous points in an unknown environment. This method involves role-based

exploration, where some robots (referred to as ”relays”) relay information between other

robots and a central command center while others (called ”explorers”) continue to ex-

plore the environment using frontier exploration. When an explorer and a relay meet,
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they share information about the environment. The explorer chooses the next rendezvous

point by placing it deep into its next choice of frontier while ensuring that the point has a

strong communication range.

Efficient exploration of unknown environments is made possible through effective

utilization of the robots’ capabilities and resources. This allows for a balanced work-

load distribution among the robots and adaptability to changing environmental condi-

tions. However, it is important to have a good communication infrastructure and a robust

localization system to ensure success. Real-time constraints and uncertainty may pose

challenges in its implementation.

2.8.4 Task Termination

Task termination, conversely, refers to ending or completing a task assigned to a group

of robots. This can include shutting down the robots, releasing them for other tasks, or

returning them to a home base. Factors such as task completion, detecting an error or

failure, or changing operating conditions can trigger task termination. The goal of task

termination is to ensure that the robots stop working as soon as the task is completed, to

avoid unnecessary work, and to save energy. It is also possible for some robots to reach

their base station after completing all their assigned tasks.

Initially, most researchers studying multi-robot exploration utilized frontier-based

methodologies as described in [5, 263]. The necessary components for conducting de-

centralized exploration are outlined, highlighting robot coordination’s importance in effi-

ciently exploring unknown environments. In [92], the focus shifts to global exploration,

with an emphasis on task allocation and evaluating the suitability of a new target pose

for an individual robot. Other approaches, such as the one proposed in [114, 139], use

scenario segmentation and Voronoi diagrams to divide the environment into zones and

compute a function that assesses the cost of exploring a particular area for a given robot.

The Hungarian Algorithm is then used to assign a goal area for each robot. Combin-

ing a centralized approach and the Hungarian Method as a task allocator in structured

environments like offices can yield positive results, as demonstrated in [111].
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The future approach to minimize repetitive visits involved segmenting the partial map

into separate rooms and prioritizing unexplored cells within the same area as the robot’s

current location. To accomplish this segmentation, the method outlined in [264] was im-

plemented, which entailed dividing map regions at local minima or critical points in the

Voronoi diagram of the map’s unoccupied space. While effectively extracting the envi-

ronment’s structure from grid maps, this algorithm could result in numerous partitions,

particularly in long corridors. To tackle this issue, [8] enhanced the algorithm by limiting

critical points to those with a degree of 2 and adjacent to a junction node in the Voronoi

diagram. This modification significantly reduced the number of segments and allowed

for coordination among multiple autonomous exploring robots. The majority of research

in this area is centered on the Voronoi-based segmentation approach, as demonstrated in

Table 2.4.

A fleet of n identical robots (R1, R2,..., Rn) is exploring an unexplored region, with

each robot equipped with sensing, localization, mapping, and short-range communication

capabilities. A simple coordination algorithm must be developed to ensure the reliable

and efficient exploration of the entire environment. To guarantee mission success even in

case of robot shutdowns or communication link failures, a fully decentralized algorithm

for mission coordination has been devised for achieving reliability. To achieve time and

energy efficiency, a bidding mechanism is used to select the best movement from the bids

submitted by a set of robots, as described in [136]. A simple, fully distributed coordina-

tion algorithm presented in [242] is used, where all robots make their movement decisions

asynchronously based on a bidding mechanism. The robot selects the best bid from com-

peting robots and sets the winning bid’s destination as the next stop. The robot executes

the following three operations sequentially: (i) sensing and mapping, (ii) bidding, and

(iii) traveling.

Simulations are the primary method used to investigate the behavior of MRS in com-

plex or large environments with a large number of robots. Simulations offer advantages

such as cost-effectiveness, controllability, scalability, and safety, making them a valu-

able tool for optimizing the performance of MRS, evaluating different configurations and
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scenarios, and minimizing the risk of errors and accidents. The papers cited, includ-

ing [103, 109, 265], represent only a small subset of research studies focused on simula-

tions of MRS.

In addition to simulations, some researchers also conduct real-time experiments to ob-

serve and analyze the behavior of robots as they interact with their environment and each

other. This information can be leveraged to optimize system performance, identify and

rectify any issues or errors, and improve overall efficiency. Real-time experimentation

also allows for system robustness and scalability evaluation, which are important factors

for real-world deployment. The papers cited, including [74, 118], represent only a small

portion of research studies focused on real-time experiments in multi-robot systems. It’s

worth noting that some studies use both simulation and real-time experimentation, and

the papers cited, including [5,50,91,138], represent only a fraction of the research in this

area.

2.9 RESEARCH GAPS

The literature survey conducted in this chapter unearthed research gaps related to multi-

robot unknown terrain coverage and area exploration under communication constraints.

Specifically, we identified the following:

• In recent years, researchers embarked on a mission to tackle the intricate chal-

lenge of limited-range communication [46, 107, 266]. Simultaneously, there is no

dearth of literature assuming that the communication network is always available.

These research works can be adapted to function within the constraints of restricted

communication environments. However, as the communication range shrinks, the

performance of these approaches gets compromised. The consequence is a slower

completion of the coverage task, along with the increase in redundant coverage.

This redundancy is a direct result of robots being unable to share vital information,

such as an evolving map of the environment they have covered so far. Hence, it

becomes imperative to delve into the impact of communication range restrictions
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on these approaches and evaluate their effectiveness in real-world scenarios.

• Sometimes, when gathering data, there may be time constraints, requiring the in-

formation to reach the base station within some specified time [50, 89, 267]. Main-

taining continuous connectivity with the base station is not always feasible due to

various factors like issues with wireless connectivity over the last mile, battery de-

pletion, or ongoing tasks. Such situations often occur in scenarios like unknown

area exploration, search and rescue missions, or disasters, where ground or Un-

manned Aerial Vehicles (UAVs) navigating may become disconnected from the

network and thus unable to communicate with their command center. Therefore,

it becomes crucial to provide temporary last-mile connectivity to some wirelessly

isolated robots.

In Chapters 3, 4, and 5 of this thesis, we have addressed these research gaps.
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MULTI-ROBOT ONLINE TERRAIN

COVERAGE UNDER COMMUNICATION

RANGE RESTRICTIONS – AN

EMPIRICAL STUDY

3.1 INTRODUCTION

The use of autonomous mobile robots in real-world applications [65, 151] has become

a more feasible and enticing choice due to improvements in the capabilities of these

machines and a reduction in their costs. Online terrain coverage (OTC) is particularly

interesting for applications that range from mundane and repetitive tasks like harvesting

and insecticide spraying to potentially life-threatening missions like hazardous substance

detection and battlefield surveillance for landmine detection, amongst others. Some ex-

amples of these applications include harvesting, spraying, hazardous substance detection,

battlefield surveillance for land mine detection, and other applications. The urgency and

seriousness of the situation are the primary factors in determining the specific criteria that
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must be met for these applications. However, the overarching goal of these applications is

to achieve complete coverage of the environment, leaving no part of the surrounding envi-

ronment that can be navigated uncovered in the process of accomplishing this goal [67].

As the terrain map is not currently available, it is impossible to calculate the robot’s

path across the entire landscape. Instead, the movement of the robot team determines as

the mission continues and the map begins to take shape. Many different heuristics for

decision-making have been suggested [66, 151] for use with an SRS. Despite this, MRS

complicates the coordination process. This relates to the question of what information

and how it should be shared with the other team members. As the map unfolds, this

coordination is required to assign coverage tasks to individual robots. This is done to im-

prove important measurements like the time it takes to finish coverage, the total distance

traveled, the total energy used, and so on.

Before we begin our discussion of some of the methods developed in recent years,

it is important first to distinguish between terrain coverage and terrain exploration tasks.

Both of these tasks are necessary to understand the terrain fully. While terrain coverage

requires the robots to traverse the unknown terrain in a shorter time, exploration requires

the robots to construct a quality global map of the unknown region. The robots do not

have to travel throughout the region to complete the exploration process; once a region

has been scanned, the robots head in the direction of unexplored territories. Despite being

two distinct applications, there is a significant overlap between robot activities. These

activities are:

• The robots cannot access a map of the area before the mission begins.

• An approach called approximate cell decomposition is utilized to break up the land-

scape into grid cells of consistent dimensions. Although this is not the only tech-

nique for terrain decomposition, we have focused solely on frontier exploration

methods for this discussion.

• Robots need to possess the capability of self-localization. Without a global map,
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techniques such as simultaneous localization and mapping (SLAM) [268] are uti-

lized to construct the map.

• The robots determine their next action by consulting the map data produced locally

by their sensors or provided to them by their fellow robots. In this sense, the robots

combine the valuable map information from other robots to navigate effectively.

• The robots can communicate with each other to exchange information about the

global map at that particular time. This also makes it possible to synchronize the

robots’ actions. They may also share additional information, such as their pose, the

current task assigned to them, the status of its completion, and their current health

status.

One important difference between the two applications is that, in the exploration pro-

cess, the robots have a sensing radius higher than one cell. For the terrain coverage task,

the robots can sense only the eight surrounding cells from the robot’s position. It is crucial

to discuss recent state-of-the-art multi-robot exploration approaches before accepting this

argument as a fact. Brick&Mortar [4], RAPID [85], and BMI [225] are three different

ant-based approaches in which the environment is divided into a grid of square cells. The

size of the cell depends on two things: (a) the distance measured by the range sensors

(Rs) and (b) the communication range (Cr) of the agents.

Communication within MRS makes timely coordination possible. As a result, fin-

ishing the OTC task on time is feasible [24]. It is a reasonable assumption that commu-

nication is constantly occurring. Under the assumption of widespread communication,

we developed both centralized [79] and decentralized [45] coordination algorithms for

OTC. However, global communication is a strong assumption in the real world because

the robots may travel to far-off regions while performing the coverage task. Some robots

may become disconnected from the rest of the team. It is especially true for online ex-

ploration [50, 119], and coverage tasks [4, 269], in which the robot team may become

dispersed while carrying out the mission, resulting in a fragmented multi-robot network.
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As a result, the algorithms used for OTC coordination must be able to deal with com-

munication interruptions and use the limited and variable communication available for a

limited time.

Researchers have addressed the issue of limited-range communication in recent years

[60]. On the other hand, written material is abundant, so it is assumed that a long-range

communication channel is always accessible. These strategies can be adapted with ad-

ditional work to function effectively within the constrained communication environment.

However, the performance of these approaches is hindered by the limitations placed on

the communication range. This means the coverage task may take longer because of re-

dundant coverage. As a result, robots may be unable to share important information, like

a map of the environment they have already covered. As a result, it is of the utmost im-

portance to investigate the impact of communication range limitations on selecting these

strategies and evaluating how well they work in practice settings. In this chapter, five

different approaches to multi-robot online terrain coverage are set. These approaches

assume global communication and represent the current state of the art (SoTA).

In addition, the presumption of global communication is refuted. The effect of impos-

ing communication range restrictions on these methods is studied by adjusting the number

of robots and the communication range in three different maps with varying degrees of

complexity. This is done to investigate these restrictions’ influence on these methods.

Because of this, it is possible to investigate these restrictions’ effects. Experiments have

been conducted in a laboratory setting under strict control, using simulation software and

various mobile robots as part of the testing process. To the best of our knowledge, there

has not been a previous attempt made to reproduce SoTA OTC approaches by utilizing

a communication model that is less reliable than the one we are using in this research.

However, we are open to the possibility that such an attempt may have occurred.

However, we are open to the possibility that such an attempt might have been made.
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3.2 PROBLEM DEFINITION

This chapter considers the OTC task using a team of homogeneous mobile robots un-

der communication range restrictions. The same problem is called Online Multi-Robot

Coverage Path Planning (MR-CPP). The terrain to be covered is decomposed into grid

cells using approximate cell decomposition described in [235]. Formally, the MR-CPP

problem can be stated as follows:

Given a bounded environment E consisting of a finite set C of free cells, such that

each free cell ci ∈ c is in one connected component, and a set R of n homogeneous mobile

robots, find trajectories for each robot ri ∈ R, such that each cell ci ∈ c is traversed by

at least one robot ri ∈ R in finite time while minimizing repeated coverage.

The following assumptions are considered for solving the MR-CPP problem:

• Initially, the robots start from arbitrary locations.

• Each robot in the team can detect whether its surrounding cells are occupied with

obstacles. In other words, if the robot is present in some cell cx ∈ C, the sensing

range of robots is restricted to eight surrounding cells of cx.

• The robots can communicate with their peers within a re-specified communication

range, i.e., their communication range is restricted.

3.3 ONLINE TERRAIN COVERAGE STRATEGIES

We choose decentralized algorithms because this chapter evaluates the impact of im-

posing communication range restrictions on various OTC strategies involving multiple

robots. To do this, we compared the effects of these restrictions. The area that needs to

be traversed is referred to as being bound.

1. Backtracking Spiral Approach – Cooperative Multi-Robot (BSA-CM) [1]

2. Spiraling and Selective Backtracking (SSB) [2]
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3. Boustrophedon and Backtracking mechanism (BoB) [3]

4. Multiple Depth First Search (MDFS) [4]

5. Brick and Mortar (BnM) [4]

We chose these strategies because they are distinctive from one another and have

received much attention in the relevant research. In the following subsections, we explain

how each algorithm works in more in-depth.

3.3.1 BSA-CM

The Backtracking Spiral Algorithm, commonly called the BSA, applies exclusively to

scenarios involving a single robot [6]. The assumption is made that the environment in

which the robot operates can be partitioned into grid cells, with each cell determined

by the size of the robot’s footprint, to ascertain occupancy. It is assumed that the free

space constitutes a single connected component. The algorithm concurrently partitions

available space into multiple organized spiral trajectories. The algorithm guarantees the

utilization of every available cell in the grid map.

The robot is able to successfully navigate free space due to the structured spiral tra-

jectories, which it uses while it is also incrementally constructing the simple regions. At

first glance, each cell in the grid appears to be a puzzle. Following the robot’s passage

through a given cell, that cell is then flagged as a ”virtual obstacle,” meaning that the

robot will not be able to access it again as it travels along the spiral path. The remaining

cells that contain obstacles are referred to as ”real obstacles.”

Following a trajectory in the shape of a spiral results in the formation of paths similar

to concentric rings. As a result of the formations, there is an unbroken path that can be

followed from the region’s outskirts to the center of the spiral’s termination. At first,

the robots are positioned near real or simulated obstructions. It is important to position

the obstacle so that it is visible from the Reference Lateral Side (RLS) of the robot.

The relative direction in which obstacles should be referred throughout the spiral filling

technique is indicated by RLS. RLS is predetermined and cannot be altered. The antipode

59



Chapter 3: MULTI-ROBOT ONLINE TERRAIN COVERAGE... 60

of RLS is identified by the opposite lateral side, OLS. The robots carry out a reactive

execution of the BSA Coverage Algorithm, which is referenced as 3.1, to generate spiral

trajectories. The following is a list of some of the essential features that this algorithm

possesses:

• When executing the algorithm’s instructions, both virtual and physical obstacles

are treated in the same manner.

• Upon the termination of the algorithm, the cells that have been marked as virtual

obstacles indicate the presence of unobstructed covered cells.

• During the algorithm’s execution, the robot identifies and records backtracking

points along the spiral path, which indicate alternative routes.

• Upon the termination of the algorithm, the robot proceeds to select and follow the

shortest path to reach the closest backtracking point. From this juncture onward,

the robot resumes its spiral descent.

• The algorithm terminates when the robot has exhausted all available backtracking

points in its list. This observation also suggests that there are no remaining cells

that are free and uncovered.

Algorithm 3.1 BSA Coverage [6]
1: if obstacles in all directions then
2: stop motion because end spiral point detected;
3: else if no obstacle in RLS then
4: turn to RLS and start forward motion;
5: else if obstacle in front then
6: turn to OLS;
7: else
8: move forward;
9: end if

The process of executing the fundamental BSA algorithm is shown in Figure 3.1.

Black lines represent the three spirals. The robotic entity, represented by the maroon
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Figure 3.1: Basic BSA Algorithm in Execution [6]

circular shape, consistently initiates its trajectory from a cellular unit that is obstructed

on one of its sides. When the robot is located at position 3, the cells on its RLS that are

colored green have already been covered and are considered as a virtual wall. This phe-

nomenon occurs due to the cells being regarded as a barrier. The algorithm’s simplicity

and its requirement for the robots to start their journey adjacent to a wall on the lateral

side of the reference are factors that limit its effectiveness despite its ability to traverse

the entire topography. The algorithm exhibits potential for improvement.

In this approach, the robots follow a spiral trajectory to cover the unknown environ-

ment. The uncovered cells touching the trajectory of the robots are marked as backtrack-

ing points (BPs). The robots spiral inwards until they reach the spiral center. A covered

cell is virtually marked as an obstacle, and the robots are not allowed to navigate through

it while spiraling. Once the robots complete their spiral path, they select a BP to spiral on

an alternate path. Using auctions, the most suitable BP is selected. Each robot submits

its bid for all BPs. The robot’s bid is calculated as the sum of the length of the spiral path

it is yet to cover plus the length of the path the robot will have to follow to reach the BP

being auctioned. The robot moves to the nearest unvisited BP if it does not win an auction
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because some other robot may have won this BP. When there are no more BPs left to be

visited, the algorithm terminates. This approach’s main limitation is that the robots must

start from a near-wall position, or else many cells will be marked as BP points.

Consequently, several auctions will be initiated to select alternate paths after any robot

completes its assigned coverage task. Also, this algorithm is sensitive to communica-

tion breakdown. Under communication range restrictions, the algorithm’s performance

severely deteriorates as fewer robots send their bid for some BPs. The worst case is when

no robot participates in auctions of the BPs starting point of longer paths. Such paths

may be redundantly traversed if the robots never meet and exchange coverage informa-

tion, thereby increasing redundant coverage.

3.3.2 SSB

SSB and BSA-CM share the same mechanism of spiraling inwards while labeling the

cells as BPs. However, SSB selectively marks the cells with the BP marker. Additionally,

once each robot has finished its coverage task, the BPs are put up for auction to choose

alternative paths.

Figure 3.2: The Robot Moved Right (arrow) and Utilized Algorithm 3.2 Terminology [2]

Like BSA-CM, SSB also works by spiraling inwards while marking the cells as BPs.

However, it selectively marks the cells as a BP. Further, these BPs are auctioned for

selecting alternate paths after any robot accomplishes its coverage task. The robot moves

to the nearest unvisited BP if it does not win any auction. When there are no more BPs
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Algorithm 3.2 Marking Backtrack Points [2]
Let F represent the Free
Let O represent the Obstacle
Let BPs represent the Backtrack Points

1: if local-right is F then
2: if local-front ∨ front-right ∨ back-right is O then
3: mark local-right as BPs;
4: end if
5: end if
6: if local left is F then
7: if local-front ∨ front-left ∨ back-left is O then
8: mark local-left as BPs;
9: end if

10: end if

left to be visited, the algorithm terminates. The main advantage of Algorithm 3.2 is that

it generates fewer BPs. The terminology used in this algorithm is presented in Figure

3.2. As a result, the robots have to participate in fewer auctions and, therefore, have

lesser reliance on global communication. However, this algorithm also gets affected by

communication disruptions, resulting in redundant coverage, but it is less than BSA-CM.

On the other hand, this algorithm is also vulnerable to communication problems, which

can lead to duplicate coverage, though this is less likely to happen than with BSA-CM.

Please find the link below to access the demonstration of our SSB approach: [270].

3.3.3 BoB

In this approach, Boustrophedon motion is followed by the robots to cover the terrain,

succeeded by backtracking. The covered cells are marked as virtual obstacles. The robot

executing the algorithm initiates backtracking when it arrives in a cell surrounded by

obstacles (real or virtual) from all sides. The cells are marked as BPs only when the robot

initiates backtracking. Only the corner most cells of the covered and uncovered region are

marked as BP. The robots select the nearest BP to traverse. When all the robots arrive at a

dead end and no BPs are left to be traversed, the algorithm terminates. This algorithm has

much less reliance on communication than BSA-CM and SSB because it only marks a few

cells as BPs. A step-by-step Boustrophedon motion algorithm may include the following
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steps:

1. Initialize the robot in the starting position and set the direction of movement.

2. Move forward in the set direction until the end of the row or area is reached.

3. Detect the end of the row or area using sensors or other means.

4. Reverse the direction of movement.

5. Move forward in the new direction until the end of the next row or area is reached.

6. Repeat steps 3-5 until the entire area has been covered.

7. Adjust the movement based on sensor data or other inputs to avoid obstacles or

make other necessary corrections.

8. Stop the robot or machine.

Figure 3.3: Boustrophedon Paths Created by Robots [3]

This algorithm is not capable of sufficiently dispersing the robots. As a result, network

breakdown events due to robots moving far and out of each other’s range are less, even

when the communication range is small. Simultaneously, the algorithm does not take

advantage of long-range communication (if available).
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3.3.4 MDFS

The robots construct their exploration trees individually, traversing them using depth-

first search Figure 3.4 while the cells are marked as having been explored. Further, the

Figure 3.4: Different branches in a Depth First Search Exploration [4]

explored cells are marked as visited when the robots traverse the tree upwards. Visited

cells are not traversed again. On encountering their peers’ explored cells, the robots

traverse that path of explored cells to investigate any new neighboring cells on that path.

If a new cell is discovered, this cell is marked as a fresh tree’s root node. When all the

cells are surrounded by visited or wall cells, the algorithm terminates. There is no explicit

communication between the robots.

Algorithm 3.3 is inspired by the behavior of ants leaving pheromones. It works with

the premise that the robots can leave tags in the terrain that can be read and updated

by the robots themselves or other robots. They treat the terrain as a shared memory for

communication. It is non-trivial to practically tag the terrain for communication purposes

in the real world as the tags themselves are prone to failure. For our purpose in this

chapter, the robots can read or update the grid decomposed terrain map (local to the robot)

while traversing their trees downwards and upwards. The robots explicitly communicate

with other robots when they are in each other’s communication range for sharing coverage

information.
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Algorithm 3.3 Multiple Depth First Search [4]
Let Uc represent the Unexplored cell
Let Cc represent the Current cell
Let Pc represent the Parent cell
Let Ecs represent the Explored cell
Let Vc represent the Visited cell

1: if the Cc is Uc then
2: mark it as explored;
3: annotate the cell with your ID and the direction of the previous cell (Pc);
4: end if
5: if there are Ucs around then
6: go to one of them randomly;
7: else if the Cc is marked with your ID then
8: mark it as visited;
9: go to the Pc;

10: else
11: randomly goes to one of the Ecs, avoiding selecting the cell from which you are

coming unless it is the only candidate.;
12: end if

3.3.5 BnM

In the same way, as in MDFS, the terminology of the wall visited, explored, and unex-

plored cells are utilized in BnM. Wall cells and cells that have already been visited are

examples of inaccessible cells, whereas explored and unexplored cells are examples of

accessible cells. The algorithm guarantees success for any robots that implement it. They

continually mark their current cells as visited if the cell does not block the path between

any two accessible cells, and then they move to any of the accessible cells that are nearby

in random order. This process continues until all of the cells in the area have been visited.

Because of this, the algorithm causes the blocks of inaccessible cells to become dense. It

continues to do so until the entire topography is transformed into a single large block of

inaccessible cells. The algorithm’s execution is complete when it reaches this stage.

It is necessary to assume that the environment has been mapped out as a grid and

that an intelligent tag or device has been pre-assigned to each grid cell in advance. The

robots cannot communicate or share any information regarding their map coverage with

the other robots. Instead, they read and update the state of each cell that they cover
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independently. A robot considers the currently occupied cell to have been visited if it

does not obstruct movement between the uncovered two cells. This includes cells that

are adjacent to one another. After that, it looks for a vacant nearby cell and wanders

around until it finds one. The robot team is progressing toward converting the entire

landscape into blocks of cells that can be explored, walled off, or made inaccessible in

this manner. After each grid cell’s state has been updated to reflect that the algorithm has

been ”visited,” the algorithm will be finished. Regarding inter-robot communication and

restrictions on the communication range, we have handled BnM comparable to how we

have handled MDFS. Specifically, we have taken inspiration from how we have handled

MDFS.

3.4 EXPERIMENTAL TEST-BED SETUP

In this chapter, we conducted extensive experiments both in simulation and on a physical

multi-robot test-bed. A detailed description of the same is presented in the following

sub-sections.

3.4.1 Simulation Setup

We used the ROS-based Gazebo simulator with a varying team size of two to eight Pi-

oneer2 DX robots. The communication range of the robots is kept as a configurable

parameter. All the robots are equipped with a 2D Lidar sensor, i.e., Sick Tim 561, which

has a 270-degree field of view, a resolution of 0.33 degrees, a maximum range of 10 me-

ters, and an update rate of 15 Hz. However, we have considered laser scan readings in the

maximum range of five meters. The robots are also equipped with an IMU, i.e., ADXL

345, and wheel odometry. The robots’ wheel odometry is believed to accumulate errors

over time; therefore, in simulation, it is corrupted with Gaussian noise and is a config-

urable parameter. In our simulation, the robots generate a 2D occupancy grid map of the

environment while carrying out OTC using Hector SLAM [271]. Hector SLAM does not

utilize odometry and IMU and entirely relies on scan matching based on exact laser scans

obtained from the sensor. However, in indoor symmetric environments with long corri-
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dors, the 2D point cloud obtained from the laser scanner is distributed uniformly, and the

variation in the point cloud is not visible.

As a consequence, Hector SLAM produces an inaccurate robot pose. Furthermore,

the map generated by the robots drifted and did not align with the actual map of the

environment. Therefore, in this chapter, we have augmented the Hector SLAM and com-

bined odometry and IMU sensor readings to estimate the robot’s pose using the Extended

Kalman Filter (EKF). We used the odometry and IMU sensor readings for symmetry

breaking and aligned the point cloud obtained from the laser scanner with the robot’s

accurate pose. The grid map is obtained from the point cloud using the scan match-

ing algorithm, which uses the Gauss-Newton method to minimize the error between the

alignment of the laser scan and the map. It is assumed that the robots can measure their

relative position and orientation in the simulated world.

Inter-robot communication is achieved using the adhoc communication ROS node

[272]. The robots executing the corresponding node establish an ad-hoc network with

their peers for exchanging data. The data can be exchanged with several roscores. This

ROS node allows unicast, multicast, and broadcast-based communication. The robots

communicate with their peers by publishing information on a specified ROS topic sub-

scribed by other robots. Each robot has its multicast group for communication that other

robots can join using the join mc group service. Information is routed in the multi-robot

network using the robots’ hostnames. In our simulation, for imposing communication

range restrictions on the robots, the ad hoc detailed unification ROS node is modified to

allow communication between any two robots only after verifying that they are inside a

pre-specified communication range of each other.

3.4.2 Physical Test-Bed Setup

Conducting experiments with the multi-robot system in the real world is non-trivial since

we have to address three vital requirements simultaneously, i.e., (a) multi-robot local-

ization and mapping, (b) inter-robot communication and (c) robot control, which also

takes care of robust trajectory tracking and collision avoidance. We used three Firebird V

68



Chapter 3: MULTI-ROBOT ONLINE TERRAIN COVERAGE... 69

(FB-V) robots in our team of mobile robots. This FB-V is a two-wheel differential drive

robot controlled by an AVR (ATMEGA2560) microcontroller. These robots have a 2.4

GHz Xbee module, allowing multi-channel (16) wireless communication. The robots are

equipped with a skirt of 12 analog IR proximity sensors and position encoders on both

wheels. The remaining section elaborates on how the requirements mentioned above were

accomplished.

Multi-robot localization is the most challenging task when dealing with autonomous

multi-robot systems. The robots must determine their positions and localize their peers

to plan the next move. For our experiments, we have used a roof-mounted camera that

acts as a pseudo-GPS system to localize the robots moving under its field of view while

tracking fiducial markers, i.e., April Tag-2 [273], that is attached on top of each robot as

shown in Figure 3.5. The data obtained from the camera is transmitted to a PC, i.e., a Dell

OptiPlex 7040. This PC runs a C program based on the April Tag-2 libraries. The April

Tag-2 libraries can calculate the precise 3D pose of a robot relative to the camera. The

library uses sophisticated feature extraction algorithms for robustly localizing tags from a

single image. A unique number is assigned to each tag, starting from zero. After camera

calibration, the camera’s intrinsic parameters and the physical size of the printed tags are

fed to the April Tag-2 libraries. The library then determines the relative transformation

between each tag and the camera. The 3D world coordinates of each tag concerning the

camera, which is at coordinate (0, 0, 0), are shown in Figure 3.5.

In our system, tag number zero is stationary and used as an origin. On the other

hand, the robots are assigned the rest of the tags. The origin tag is used to localize each

robot in the 2D world. The 2D points on the camera’s image plane are projected onto the

plane containing the tags using simple 3D geometry and tag orientations. We call this the

working plane. The X and Y axes of the working plane coincide with those of tag zero,

and the Z-axis is perpendicular to the tag. The angle measures each robot’s orientation

that the Y-axis of their tag subtends to the working planes’ X-axis. This orientation,

combined with the robot’s coordinates in the working plane, determines the robot’s pose.

The final output of these transformations is shown in Figure 3.5. Each robot maintains
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Figure 3.5: Robot’s Localization using April Tags – After Transformation

a local instance of the environment map for mapping and coverage. As the robots cover

the terrain, they transmit their local map and coverage information to the other robots.

Whenever a robot receives information from other robots, it fuses this new information

into its local map.

We have allowed the robots to communicate when inside the communication circle

to impose communication range restrictions. They can communicate when their commu-

nication circles intersect, as shown in Figure 3.6, where only Robot-1 and Robot-2 can

communicate with each other but not Robot-3.

For inter-robot communication, a radio communication module, i.e., Digi XBee (Zig-

Bee/IEEE 802.15.4 compliant), is used to share the terrain coverage information along

with the map discovered by the robots. This module allows mesh networking and packet

rerouting. The XBee is also suitable for swarm applications, as it scales well with its 16-

bit addressing capability. It requires significantly low power (a few milliwatts) and offers

a range of 100 meters. The XBee chip communicates via TTL-level UART. Nex-Robotics

has designed a PCB that acts as an interface between the XBee and the Firebird-V robot.

For XBee, Digi provides extensive documentation and many functionalities to implement

reliable communication while efficiently supporting automatic retransmissions and ac-
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Figure 3.6: Communication Circle of a Robot

knowledgments. We used the Digi XBee ANSI C Library [274] for communication. This

library is used for disparate data values that can be packed (for sending) easily into a

buffer and unpacked quickly by the receiver. A robot can transfer data packets to other

robots in a unicast, multicast, and broadcast manner, allowing individual robots to com-

municate (relaying and querying map and coverage information) with other robots locally

in their communication circle.

Low-level robot control and collision avoidance for terrain coverage are implemented

as a hierarchical process with two cascading loops. The outer loop is the planning loop

that allocates the cells to each robot and commands a trajectory to the inner loop as an

input. The inner loop commands the ground robots to follow the commanded trajectory.

The collision avoidance among the robots is integrated into the planning loop. As the

robot’s size is strictly less than the cell decomposition size, the collision event is averted

by not assigning an identical cell to any pair of robots at any time along the trajectory.

Note that the assigned trajectory to an inner loop is a function of time for each robot.

Therefore, following a trajectory is essential to satisfy both position and temporal con-

straints. Besides, the performance of trajectory tracking can also degrade in the presence

of external disturbances. We implement the trajectory controller described in [275] to
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achieve robust performance. The problem is formulated as a two-player zero-sum dif-

ferential game against external disturbances. Once the trajectory is received from the

planning loop, the controller gains for tracking are computed for a finite interval of time,

and the ground robots precisely track the trajectory. Once the tracking for the finite inter-

val is complete, the planning loop sends the new trajectories for the successive interval.

3.5 RESULTS AND DISCUSSIONS

In this section, We have presented the results obtained through simulation and on a real

test platform using numerous robots.

3.5.1 Results

Two different terrain maps were considered for simulation and experiment. The map M1

is a large map of 150 m2 used in the simulation. For the experiments, the terrain of size

108 ft2 (M2), which is grid decomposed, is considered. The two maps are shown in

Figure 3.7. The performance metric used for the empirical comparison of algorithms is

redundant coverage – which is the total number of times each cell was covered more than

once by any robot to complete the OTC task. It is the most dominant metric because all

other metrics, like completion time, cumulative distance traveled, etc., are directly depen-

dent on redundant coverage. We have conducted 100 simulation runs for each algorithm

in Large Map (M1) by varying the communication range with different robot team sizes.

Ten experimental runs were conducted on a physical multi-robot test bed with a team size

of three robots and varying communication range of 1 ft to 3 ft.

The initial position of the robots is randomly chosen. One factor evident from all the

simulations and experiments, irrespective of the OTC algorithm employed, is that with

the increase in communication range, the OTC algorithm becomes effective, resulting in

lesser redundant coverage. Moreover, after a specific communication range, i.e., critical

range, any OTC algorithm’s behavior for a particular number of robots starts to emulate

the behavior achieved with global communication.

In contrast to the aforementioned, it was observed through empirical research that
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Figure 3.7: Terrain Maps Used in Simulation (M1) and Experiment (M2)

when the communication range was kept small (between 4 and 8 meters), the algorithms

MDFS and BnM could not complete the coverage and terminated too soon. This contra-

dicts the findings of the aforementioned. Both of these algorithms constantly mark the

grid cells as having been visited, rendering them inaccessible to ever again being visited.

Some cells may be marked as visited by one robot (robot A) but not by another. This

could be due to random chance (say, robot B). As soon as robot B makes contact with

robot A, robot B’s map is updated, and it soon discovers that it is surrounded by cells that

have already been visited. As a direct result, the two OTC algorithms finish their work

prematurely. No matter how far apart they were able to communicate with one another,

BSA-CM, SSB, and BoB never failed to complete their coverage. We separated the analy-

sis of the BnM and MDFS algorithms from the analysis of the remaining ones; as a result,

we discuss the two algorithms independently from this point onward in the chapter.
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Figure 3.8: Percentage Coverage of MDFS in M1

Figure 3.9: Percentage Coverage of BnM in M1

The comparison of percentage coverage variation with the communication range for both

the algorithms is shown in Figure 3.8 and Figure 3.9. BnM suffers more from prema-
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ture termination than MDFS because the robots executing BnM are more involved with

each other and have significantly overlapping paths. As the communication range in-

creases, the percentage of coverage increases. The critical communication range for both

algorithms is 12 meters. The general behavior of redundant coverage for BSA-CM, SSB,

and BoB, in maps M1 and M2, is that, as the communication range increases, redundant

coverage decreases, see Figure 3.10 to Figure 3.13. There is a significant dip in the re-

dundant coverage as the communication range is changed from 4 meters to 8 meters. It

can be inferred that even a small increase is significant at smaller communication ranges.

Figure 3.10: Redundant Coverage in M1 for 04 Robots

As shown in the graphs from Figure 3.10 to Figure 3.12, the performance of BSA-CM

and SSB remains comparable even when the communication range and the number of

robots vary. SSB has a slight edge in performance. It can also be observed performance

of BoB is better than the other two when the communication range is minimal (between 4

and 8 meters). The experiment results show the same observation; see Figure 3.13. It can

be seen that BoB performs better when the communication range is small, i.e., between 1

feet and 1.75 feet. However, the performance of the other two algorithms improves with

a marginal increase in the communication range. The boustrophedon motion in BoB does
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Figure 3.11: Redundant Coverage in M1 for 06 Robots

Figure 3.12: Redundant Coverage in M1 for 08 Robots

not focus on spreading the robots in space, unlike the spiral motion in BSA-CM and SSB.

It is also why the critical range for BoB is roughly 8 meters less than that of BSA-CM

and SSB in the simulated map. It is also why the critical range for BoB is roughly 8 meters

less than that of BSA-CM and SSB in the simulated map. The redundant coverage graph

76



Chapter 3: MULTI-ROBOT ONLINE TERRAIN COVERAGE... 77

Figure 3.13: Redundant Coverage in M2 for 03 Robots

Figure 3.14: Redundant Coverage of MDFS in M1

for MDFS, shown in Figure 3.14, is more or less straight and tightly packed, apart from

initial inconsistencies due to premature terminations. It is expected because, in MDFS,
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Figure 3.15: Redundant Coverage of BnM in M1

the robots are less involved and communicate less. The communication constraints have

no significant impact on MDFS. The effect of premature termination is far more promi-

nent in the redundant coverage of BnM than in MDFS. It can be easily observed from

Figure 3.15 that the redundant coverage of BnM increases irrespective of the number of

robots. The percentage coverage is lower with less communication, translating to less

redundant coverage. By using terrain coverage, we can cover the area, but for Unknown

areas, exploration requires the robots to build a map of the environment without visiting/

traversing the entire navigable region that cannot be covered by the terrain coverage, so

it is better. Still, Terrain coverage and task completion are two different aspects of explo-

ration that are closely related. Terrain coverage refers to the extent to which an area has

been explored and mapped, while task completion refers to the successful accomplish-

ment of specific objectives within the explored area.

Exploration involves two important aspects - terrain coverage and task completion.

While terrain coverage helps in identifying the extent of the explored area and areas that

need further exploration, task completion is crucial to achieve the specific objectives of

the exploration and obtain the desired results. By properly coordinating and planning
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both these aspects, successful exploration can be ensured. To optimize the exploration

process, it is recommended to move from terrain coverage to a centralized coordination

algorithm for multi-robot system unknown area exploration. This approach helps in allo-

cating tasks efficiently, improving coordination, communication, and safety, and making

the exploration process more robust and adaptable. Ultimately, this approach can lead to

new discoveries and insights into the natural world.

3.6 SUMMARY

Many state-of-the-art multi-robot OTC approaches assume that communication is om-

nipresent. In this chapter, the assumption of global communication is abandoned. Instead,

five state-of-the-art multi-robot OTC approaches are re-implemented in simulation and on

a physical robotic test bed. The effectiveness of these five methods is analyzed and com-

pared using empirical data, and the findings are discussed. We have concluded that the

performance of BoB is superior for a shorter communication range (one that is less than or

equal to four meters). When the distance between the sender and receiver is greater than

four meters, SSB and BSA-CM perform more effectively. When the communication range

is less than 12 meters, MDFS and BnM should be avoided because they cannot complete

the coverage in some situations and are inefficient (premature termination). Last but not

least, one can conclude from the findings that SSB performs better than BSA-CM, BnM,

MDFS, and BoB, which holds for both short and long-communication ranges.
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Chapter 4

MULTI-ROBOT UNKNOWN AREA

EXPLORATION USING FRONTIER

TREES

4.1 INTRODUCTION

Using a team of autonomous mobile robots for unknown area exploration (online explo-

ration) is a non-trivial problem. The objective is to obtain accurate and quality informa-

tion about the environment while minimizing the team effort. Multi-robot coordination

algorithms for online exploration have broad applicability in many real-world applica-

tions like mapping, search and rescue, ocean and space exploration, etc. Multi-robot

systems (MRS) are capable of performing the online exploration task in a robust and

fault-tolerant manner through redundancy. However, the design and selection of an ap-

propriate coordination strategy are paramount, as it assigns specific exploration goals to

the individual robots while reducing redundant exploration. Many researchers have pro-

posed solutions for online exploration using MRS.

A market economy-based approach is suggested in [118] to govern the coordinated
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exploration, thus avoiding redundant exploration. In this approach, the robots negotiate

the assignment of frontiers, which are potential targets for exploration using auctions.

Since this approach only considers the distance of the robots to the frontiers, it failed in

dispersing the robots in the environment. Therefore, the problem of redundant explo-

ration is partially addressed in [118]. There are many extensions of the auction-based

strategy suggested by [118]. For example, in [257], using auctions, the authors have

addressed the problem of coalition formation for such situations when the number of ex-

ploration targets is lesser than the number of robots. In [268] and [139], the authors have

addressed the problem of Simultaneous Localization and Mapping (SLAM) by using a

Rao-Blackwellized particle filter (RBPF). They have proposed an online algorithm for

exploration that selects the next best location that maximizes the size of the explored re-

gion and minimizes the uncertainties associated with the robot’s location and the map.

In [276] and [163], the authors have proposed distributed inference techniques to coor-

dinate the robot team. Visual features were used in [276], and in [163], simulated laser

scans are used. Some authors used semantic information for assigning exploration goals

to the robot team [277], [278].

Some other coordination strategies are based on segmentation of the environment

wherein the environment map is partitioned into segments using Voronoi graph [8], [258],

[279], [280]. These segments typically represent an individual room or a portion of long

corridors. Combinatorial optimization methods like the Hungarian method for optimal

task assignment are used to assign these environment segments to the robots for fur-

ther exploration. In [98], the authors used K-means clustering algorithm to obtain as

many segments of the unknown environment as the number of robots. Although these

approaches achieve reasonable performance in terms of exploration time, their applica-

bility is limited in environments that can be partitioned into large and separate segments.

Moreover, in a grid-decomposed large environment, iteratively performing clustering is

computationally expensive and time-consuming. In small and cluttered environments,

methods like the one proposed in [281] perform better. They have suggested an algorithm

called MinPos (for Minimum Position), which computes the robot’s rank towards its se-
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lected target (say f ) based on path distance. The robot computes its rank for f, taking into

account the number of other robots closer to f. The primary advantage of this approach

is that it is decentralized and has low computational complexity. Furthermore, this algo-

rithm is capable of dispersing the robots quickly in different directions, thereby reducing

the overall exploration time. However, it requires a good deal of common knowledge,

i.e., every robot should be aware of the position of its other teammates and a shared map

with a common coordinate system. Also, in a communication-constrained environment

MinPos will have high redundant exploration as several robots may have the same rank

for the same target frontier.

The problem of intermittent communication in multi-robot exploration has been ad-

dressed by many researchers in recent years [60], [173], [249], [109]. A role-based dis-

tribution is proposed in [173]. This approach ensures that the robot network does not get

fragmented, i.e., the exploration is accomplished while maintaining a continuous connec-

tion between all the team members. In [249], a comparative study of six different auc-

tioning algorithms for multi-robot task allocation considering unreliable communication

is conducted. To efficiently complete the online exploration task in a communication-

restricted environment [109] proposed an approach using which the robot team while

pursuing exploration, learns the network topology and updates the graph.

In [103], the problem of exploring unknown areas using a single robot with sensing,

localization, and mapping capabilities was addressed. The frontier tree data structure

proposed in [103] for single robot area exploration offers an elegant way to save frontiers

to memory while generating a semantic understanding of their positions. As it grows,

the tree simulates a fairly descriptive skeleton structure of the environment map with the

position of each node and exploration status. This structure acts as a map approximation

and a holder of the exploration state and can directly decide further exploration steps.

Although the frontier tree approach suggested in [103] is significantly faster than state-

of-the-art (SOTA) at calculating and recommending goals, it cannot be used in situations

where more than one robot is available for exploration.

This chapter presents a novel multi-robot coordination approach for unknown area
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exploration, viz., Multi-Robot Frontier Tree Exploration (MRFTE). The primary contri-

butions of this chapter are as follows:

• We have proposed a new abstraction called the group, which is a sub-set of robots

whose explored regions overlap and thereby form a contiguous region. Each group

exploits the frontier tree data structure for coordination. Our version of the fron-

tier tree data structure is dynamic, informative, and provides the backbone of this

proposal. In each iteration, in addition to storing frontiers, their positions and ex-

ploration state, it also keeps a record of on which node a particular robot is at

present.

• We have proposed a technique to merge groups and their trees as soon as their

maps overlap. Merging maps is necessary due to the distinct starting locations of

the robots. By ensuring that each group has precisely one frontier tree, we create a

shared state for the members in that group.

• We have suggested a method for designating exploration goals to the individual

robots by picking from unexplored nodes on this tree.

• Finally, We have re-implemented seven (SOTA) approaches for multi-robot un-

known area exploration to be compared with the proposed approach. Our approach

outperforms all the seven SOTA approaches.

The rest of the chapter is structured in four sections. Section II gives a brief descrip-

tion of seven SOTA approaches compared to the proposed MRFTE approach. Section

III presents a detailed description of the proposed approach. In Section IV, simulation

settings and comparison results are described. Finally, the conclusion and future work is

presented in Section V.

4.2 SOTA APPROACHES

This section briefly describes a representative subset of unknown area exploration ap-

proaches that we have considered for comparison with MRFTE.
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4.2.1 Nearest Frontier Heuristic (NF)

It is a frontier-based decentralized coordination algorithm [5] for online exploration. It

was one of the earliest pioneering works wherein each robot independently selected the

nearest frontier for exploration. This approach greedily assigns the nearest frontier to

each robot. In this approach, the target frontier cell (tfgreedy) is selected by using 4.1.

tfgreedy = argmin
f∈F

path(f, rpi ) (4.1)

where F is the set of frontier cells presently visible and path(f) is the shortest path length

between the frontier cell f and the ith robot’s current position, i.e., rpi . Dijkstra algorithm

is used for path planning. Dead reckoning is conducted for continuous localization of the

robots.

4.2.2 Information Gain Based Heuristic (D+IG)

In this approach, [6], the robot moves to the location, which reveals maximum-quality

information. By executing Next–Best–View (NBV) algorithm, the robot generates a set

(Nsam) of feasible candidate locations. Each location q ∈ Nsam is assigned a score by

using 4.2.

g(q) = A(q)exp(−λL(q)) (4.2)

Here, λ is a positive constant, L(q) is the length of the collision-free path obtained by exe-

cuting the DFS algorithm, and A(q) measures the unexplored region visible from location

q. Model alignment and merging are used for SLAM.

4.2.3 Cost Utility Based Heuristic (C+U)

This approach [7] simultaneously considers the cost of reaching a target location that

has so far explored and its utility in a coordinated fashion. The cost of reaching frontier

cells is computed by taking the product of the occupancy probability of the frontier cell

and the distance to that cell in an iterative fashion. The utility of a target location is
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estimated as the probability that this location is visible from target locations assigned to

other robots. Finally, a robot is assigned a target location based on the best trade-off

between utility and cost. They have used a deterministic variant of the value iteration

method for path planning based on dynamic programming. SLAM is achieved using the

maximum likelihood and posterior pose estimators.

4.2.4 Voronoi Graph-Based Segmentation (VGS)

This approach [8] partitions the environment into multiple disjoint segments, and the

robots are sent to individual segments for exploration. Segments could be separate rooms,

corridors, or parts of larger corridors. The segment–based exploration reduces overlap

among the field of view of robots’ sensors, resulting in faster exploration. The Voronoi

graph is created using an occupancy grid map for partitioning the environment. After

that, graph nodes are segmented into disjoint sets such that each set of nodes belongs to

a particular segment. The Hungarian method for task assignment [101] is used to assign

these segments to the individual robots. The path planning algorithm is based on dynamic

programming. Scan-matching algorithm is used for robot localization.

4.2.5 Goal Assignment Using Distance Cost (GADC)

This approach [11] formulates the exploration problem as multiple traveling salesman

problems (MTSP). It applies a clustering-based MTSP solution that groups the targets

into clusters and then determines the TSP distance cost for each cluster–robot pair. The

target clustering uses the K–means algorithm with Geodesic distances. These clusters are

sequentially assigned to the robots such that the length of the longest TSP tour is mini-

mal. A distance transform-based path planner is used. This approach does not address

SLAM. The robots are assumed to operate in a common coordinate system with perfect

localization.
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4.2.6 Multiple Rapidly Exploring Random Trees (M-RRT)

This approach [9] uses multiple Rapidly-exploring Random Trees (RRTs). The RRT gen-

erally samples the environment in a tree-like structure consisting of nodes and edges.

Robots achieve exploration by traversing over the tree as it grows. They present a modi-

fied RRT in which a tree is used to search filtered frontier points. The approach constructs

local and global frontier trees for achieving faster exploration. Multiple local trees are

constructed using the frontier points near the robot.

In contrast, a single global tree is constructed using the frontier points in areas far from

the robot. The filtering process clusters the points too close and stores only the centroid

of each cluster, as no additional information is gained by including all the points. It

also deletes the invalid points, leading to overlapping exploration in successive iterations.

The master robot follows a market-based task assignment strategy. The robots send their

bids to the master robot. The bid is a function of the robot’s navigation cost and the

information gained for a given frontier. The robot that places the highest bid is allocated

the frontier. Dijkstra’s algorithm is used for path planning. The ROS ”gmapping” package

implements Rao-Blackwellized particle filter [282] for SLAM is used.

4.2.7 Information-Driven RRT (ID-RRT)

The robot selects the target frontier for exploration by predicting the information gained

from reaching each frontier based on local structures in the map built so far [10]. This

prediction is based on how the walls around each frontier are expected to propagate in the

unknown regions. The robot follows an RRT-based exploration path with a bias toward

frontiers having higher estimated information gain. This approach for unknown area ex-

ploration is for a single robot. To compare it with MRFTE, we have extended [10] for

multiple robots by following the rank-based strategy suggested in MinPos [281]. How-

ever, the rank calculation based on distance cost is replaced with the heuristic proposed

in [10]. ROS ”gmapping” package [282] is used for SLAM.
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4.3 THE PROPOSED APPROACH- MRFTE
This section presents the proposed modified approach for multi-robot coordination for

unknown area exploration using frontier trees. Let R = {r1, ..., rn} be a set of available

robots, the union of whose initial sensing maps form a contiguous region.

4.3.1 Detailed Description of MRFTE

The main objective of exploration is to construct a map of the unknown environment and

deliver it to a base station. For example, consider an earthquake-hitting building that

looks visually intact. However, it may be unsafe for rescuers to move inside without an

accurate damage assessment. The map of this building would assist the rescue team in

efficiently and safely conducting the rescue mission. Therefore, multi-robot systems can

be used to conduct the exploration mission in a time-efficient manner multi-robot systems

can be used. With this motivation, we describe our multi-robot coordination approach,

i.e., MRFTE. The robot team in our approach synchronizes with the coordinator process

executing on the base station while exploring the environment.

Algorithm 4.1 Robot Behaviour
1: while true do
2: wait for the coordinator’s permission;
3: if exploration complete then
4: break
5: end if
6: visit assigned frontier;
7: update robot map;
8: post(finished exploration);
9: end while

The algorithm’s pseudo-code executed by an individual robot is presented in algo-

rithm–4.1. When the coordinator process signals the robots, they move to the frontiers

assigned to them. While exploring, the robots build a map of their surroundings. Fur-

thermore, they keep the local copy of their explored map up to date. After reaching the

destination, they notify the coordinator process, which then assigns them a new explo-
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ration target.

Algorithm 4.2 Coordinator Process Behaviour
1: while true do
2: wait for the notification from each robot;
3: for each group gi handled independently do
4: merge local map of each robot rj ∈ gi to generate a common consistent map;
5: end for
6: for every pair of groups say groupi and groupj do
7: if explored regions of groupi and groupj overlap then
8: closest node groupi = find node in
9: groupi.tree which is closest to

10: groupj .tree.root insert groupj .tree
11: under closest node groupi;
12: end if
13: end for
14: update maps of all robots;
15: for each group gi do
16: Assign Goals(gi) [refer Algorithm-4.3];
17: end for
18: if exploration complete then
19: break;
20: end if
21: end while

The pseudo-code of the coordinator process that is executing on the base–station is

presented in algorithm–4.2. Upon getting a signal from all the robots, the coordina-

tor process merges the maps obtained from each robot into a separate unified map for

each group (lines 3-4). The maps are merged by identifying and aligning the overlapping

segments in the local maps of the robots. The rotation and translation between the two oc-

cupancy grid maps, say m1 and m2, are calculated by the coordinator. The objective is to

maximize the overlap between the map m1 and the transformed map m
′
2. Like [283], for

map-merging, the coordinator calculates the image descriptors using Harris or Kanade-

Lucas-Tomasi feature detectors. After that, the correspondences between the features of

the two maps to be merged are determined. The occupancy grid maps are not sufficiently

rich or nor do they have distinct features. As a result, it is not uncommon to have multiple

correspondences for a given feature. Therefore, to determine consistent correspondences
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and transformations between the two maps, a modified RANSAC algorithm [283] has

been implemented. The modified RANSAC algorithm enforces single correspondence in

the other map for a given feature. Also, it ensures the rigid transform constraint, such that

the features should have the same relative position in both maps. The coordinator then

updates all the robots of each group with their respective merged maps.

1. Merging Local Maps from Multiple Robots: An occupancy grid map represents

the local map of each robot in the coordinated robot system. A few procedures

must be taken to combine these local maps into a logical global map.

Robot A’s Local Map (R1):
0 0 0 0 0
0 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 0 0



Robot B’s Local Map (R2):
0 0 0 0 0
0 0 0 0 0
0 0 1 1 1
0 0 0 1 1
0 0 0 1 1


Figure 4.1: Robot A’s Local Map (R1) and Robot B’s Local Map (R2)

2. Identify and Align Overlapping Segment: The goal is to identify the overlapping

region between two local maps and calculate the final overlapping segment. To


0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0


Figure 4.2: Overlapping Segment

achieve this, it is necessary to compute the rotation and translation between the

maps.

3. Calculating Rotation and Translation: Once the overlapping segments have been

identified, the coordinator computes the rotation and translation between the two
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maps R1 and R2 to align them. To accomplish this, we can determine the differ-

ence in the X and Y directions between the coordinates shared by both maps.

For R1, the center of the overlapping region (coordinates in common) is located at

(2, 2). The overlap region’s center for R2 is also located at the coordinates (2, 2).

To align R2 with R1, we calculate the translation required for R2’s center to align

with R1’s:

• Translation in X direction = 2 (R1’s center X) −2 (R2’s center X) = 0

• Translation in Y direction = 2 (R1’s center Y) −2 (R2’s center Y) = 0

Since the translation in both the X and Y directions is 0, it means Robot B’s local

map (R2) is already aligned with Robot A’s local map (R1) in the overlapping

region. No translation is needed in this case.

Therefore, the output at this step is:

• Translation in X direction: 0

• Translation in Y direction: 0

4. Image Descriptors and Feature Detectors Image descriptors are calculated us-

ing Harris or Kanade-Lucas-Tomasi feature detectors. These detectors help in

identifying distinctive points or features in the maps. Applying the Harris corner

detection algorithm, we identify distinctive features in each map:

Features in R1:

(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (3, 3)

Features in R2:

(2, 3), (3, 3), (3, 2), (4, 3), (4, 4)

Harris corner detection identifies points in the maps that are considered ”corners”

or regions of significant intensity variation in different directions.
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5. Determine Correspondences: Correspondences between the features of the two

maps are determined. The goal is to find matching features between R1 and the

transformed version of R2 (R′2).

To establish correspondences, we look for features in one map that are closest to

features in the other map. The feature points (2, 3) and (3, 3) are common to both

maps. So, they form a correspondence pair:

(a) Correspondence 1: (2, 3) in R1 corresponds to (2, 3) in R2.

(b) Correspondence 2: (3, 3) in R1 corresponds to (3, 3) in R2.

The features (3, 2) in R1 and (3, 2) in R2 are also close to each other, so they form

another correspondence pair:

(c) Correspondence 3: (3, 2) in R1 corresponds to (3, 2) in R2.

The other features do not have direct correspondences since they do not have close

matches in the other map.

6. Handle Multiple Correspondences: It is possible to have multiple correspon-

dences for a given feature due to the nature of occupancy grid maps, which may be

lacking in distinct features. To address this situation, a modified RANSAC algo-

rithm is used.

Robot A’s local map (R1) is merged with Robot B’s local map (R2) by employing

the modified RANSAC algorithm to handle multiple correspondences and find the

optimal translation between Robot A’s local map (R1) and Robot B’s local map

(R2). Despite potential outliers in the correspondences, the RANSAC algorithm

helps to estimate the translation reliably.

(a) Correspondences:

• Correspondence 1: (2, 3) in R1 corresponds to (2, 3) in R2.
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• Correspondence 2: (3, 3) in R1 corresponds to (3, 3) in R2.

• Correspondence 3: (3, 2) in R1 corresponds to (3, 2) in R2.

(b) Modified RANSAC Algorithm:

i. Select at random a minimal set of correspondences (two in this instance)

to estimate the translation model. Suppose we select Correspondence 1

and Correspondence 2.

ii. Calculate the vector of translation that will align the selected correspon-

dences. In this instance, we are able to compute the translation vector as

follows:

Translation vector = (2, 3) (Correspondence 2 in R1)−(2, 3) (Correspon-

dence 1 in R1) = (0, 0)

The translation vector is (0, 0) since the selected correspondences are

already in the same location in both maps.

iii. Count the number of inliers (correspondences that match the estimated

translation well). In this case, all three correspondences are inliers, as

they correspond well with the translation (0, 0).

iv. Repeat steps 1 through 3 for a predetermined number of iterations while

keeping track of the translation model with the highest number of inliers.

v. After the iterations, the model with the greatest number of inliers will be

selected as the final translation model.

(c) Output:

In this case, after running the modified RANSAC algorithm, the output will

be the translation vector that aligns Robot B’s local map (R2) with Robot A’s

local map (R1). As the algorithm determined that no translation is needed

(translation vector = (0, 0)), it means Robot B’s local map (R2) is already

aligned with Robot A’s local map (R1) in the overlapping region.

• Translation vector: (0, 0)
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This means no translation is required, and Robot A (R1) and Robot B (R2)

are already in alignment in the overlapping region.

7. Enforce Rigid Transform Constraint: Ensure that each feature in one map has a

unique counterpart in the other map, maintaining the relative positions of features

after the transformation. In this step, the rigid transform constraint is enforced,

which means that the relative positions of features in both maps should remain

unchanged after the transformation. Since the translation vector is (0, 0) as de-

termined in Step 5, Robot B’s local map (R2) is already aligned correctly with

Robot A’s local map (R1) in the overlapping region, satisfying the rigid transform

constraint.

The rigid transform constraint ensures that features shared by both maps have the

same relative positions in the merged global map as in their respective local maps.

In this instance, since no translation is required, the relative positions of the com-

mon features are preserved, and the two maps can be seamlessly combined without

distortion.

Therefore, the output in Step is: Rigid Transform Constraint Satisfied

This indicates that the alignment of the overlapping regions between the two local

maps (R1 and R2) is accurate and that the relative positions of the common features

after merging are preserved. Now, Robot A (R1) and Robot B (R2) can confidently

proceed to update their local maps with the merged information from Step 8 to

create a more inclusive global map.

8. Update Robots with Merged Maps: After determining the correspondences and

transformations, the coordinator updates each group’s robots with their respective

merged maps. This ensures that the entire coordinated system has access to the

updated global map, which represents the information gathered from all robots.

In this step, both Robot A (R1) and Robot B (R2) update their respective local maps

with the merged data to create a more comprehensive global map. Given that the
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translation vector is (0, 0) (as determined in Steps 5 and 7), Robot B’s local map

(R2) is already aligned with Robot A’s local map (R1) in the overlapping region.

To update the maps, we combine the data from the two local maps in the region

of overlap. Since both maps agree on the content of the overlapping region, we

can update the merged global map by taking the maximum value (1) from each

corresponding cell in the two maps. The merged map will look like the following:


0 0 0 0 0
0 1 1 0 0
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1


Figure 4.3: Merged Map and Global Representation

Further, the coordinator process examines if the explored regions of any of the groups

overlap. Such groups are combined (lines 6-9). When the groups are combined, their

maps and trees are merged. We attach the absorbable tree under the nearest node in

the absorbing tree to merge the trees. The positions of the robots are also recorded in the

merged tree. Finally, the coordinator assigns exploration goals to the robots in each group

by executing Algorithm-4.3.

As the proposed approach is based on the frontier tree data structure, we initialize the

tree for multi-robot by executing the steps described in algorithm–4.4. It is a cautious

method that directs every robot in the group to face inwards so that there is a clear,

common explored area to begin. The tree’s root is set to the location’s centroid. In the

first iteration of the algorithm’s execution, the current locations of the robots are treated

as frontiers. When these initial positions are fully processed, one coordinator iteration

later, initialization is complete. Algorithm–4.4 ensures that there is indeed a valid frontier

tree available to each group. It first marks the robots’ current positions as having been

visited and then updates the tree with the current location of the robots and the current

frontiers on the latest map. These are used to synchronize the tree and bring it up to date.
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Algorithm 4.3 AssignGoals(Group gi)
1: if gi frontier tree not initialized then
2: InitializeFrontierTree(gi) [refer Algorithm-4.4];
3: return;
4: end if
5: in gi.frontier tree, for each robot ri ∈ gi set ri’s previous destination as its current

position and mark it as visited;
6: frontiers = getFrontiersFromEachGroupMap();
7: SynchronizeFrontierTree(gi.frontier tree, frontiers);
8: explorationgoal = GetGoalsForExploration(gi, gi.frontier tree);
9: get optimal robot-destination mapping using Hungarian Algorithm [101]

with geodesic distance cost;
10: for each robot ri ∈ gi do
11: if explorationgoal is available then
12: ri.assigned frontier = explorationgoal

13: post(ri’s permission to run);
14: else
15: post(ri finished exploration);
16: end if
17: end for

The frontier tree needs to be regularly updated with the latest information to stay updated

with the most recent exploration. It is called frontier tree synchronization that follows

from [103].

Algorithm 4.4 InitializeFrontierTree(Group Gi)
1: get centroid of robot positions;
2: set centroid as group.tree.root node;
3: for each robot Ri ∈ Gi do
4: set Ri.assigned frontier as Ri.current position;
5: reset Ri’s heading towards centroid;
6: post(Ri’s permission to run);
7: end for

Every frontier in the latest frontier set (say fnew) is inserted as a node into the tree

made (unless its location is already a node). Further considerations decide the node’s

parent. Every frontier (say fold) in the old set votes for its closest frontier, fnew, in the

current frontier set. It must be noted that fnew might coincide with the fold. This situation

arises when the fold is not chosen for exploration in the previous round, resulting in no
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change to its exploration state. In this case, fold votes for fnew, but fnew is not inserted as a

new node in the tree. If more than one fold nodes vote for the same current fnew node, the

fnew node is made a child of the closest assigned fold node. The other assigned old nodes

are considered completely explored and are ”marked.” If a new frontier fnew has only one

voter fold (and the new and old nodes have distinct locations), fnew node becomes a child

of fold node, and the fold node becomes ineligible for selection as a goal. No action needs

to be taken if they do not have distinct locations. Finally, if fnew node has no fold voters,

it is made a child of the node corresponding to the closest robot position and is assumed

to have been freshly explored by that robot.

Next, algorithm–4.3 returns at most as many exploration goals as the number of robots

by invoking GetGoalsForExploration procedure (line–7). These goals are apportioned to

the robots using the Hungarian method for task assignment [101]. The cost matrix used

for the task assignment is initialized with the shortest-path distances between each robot

and each goal by executing the Jump Point Search (JPS) Algorithm [284], [285] for path

planning. Further, the coordinator notifies the robots to resume their exploration (line–12)

if they have goals or posts finished on their behalf (line 14). The latter occurs when the

robot has no goals assigned to it. The robot is not permitted to execute during the current

round.

Any node in the tree can be in one of the three possible states - marked, unmarked, and

visited. Unmarked nodes represent unexplored frontiers and are the only ones eligible for

goals. Marked nodes are explored indirectly when a robot proceeds to explore another

frontier in its vicinity, and these are not useful as exploration goals. Visited nodes repre-

sent those directly explored by a robot visiting them and are often on the way to further

potential explorations. By default, a node is created unmarked and is later updated oth-

erwise. The pseudo-code of the algorithm for obtaining goals is listed in Algorithm-4.5,

which derives its motivation from [103].

However, several changes have been made to adapt it for multiple robots. At first,

every node is considered unreserved (not to be confused with unmarked), and every robot

is considered undecided.
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Algorithm 4.5 Get Goals For Exploration(Group Gi, Tree T )
1: set T.node.reserved = false for each node ∈ T;
2: set Gi.robot.decided = false for each robot ∈ Gi;
3: for each robot Ri ∈ Gi do
4: for each T.node freshly marked in synchronize do
5: if T.node is in sensing range of Ri then
6: flag = DetectCycle() [103];
7: if flag == true then
8: mark (T.node, Ri) pair as a possible cycle;
9: end if

10: end if
11: end for
12: end for
13: for possible cycles do
14: if Ri.decided == true then
15: continue
16: end if
17: node = ExecuteTwoStepSearch() while avoiding reserved nodes [103]
18: if node ̸= ϕ then
19: node.reserved = true;
20: Ri.decided = true;
21: end if
22: end for
23: for each Robot Rj that is undecided do
24: for each sibling node of Rj .current location do
25: if sibling node == unmarked and sibling node.reserved == false then
26: sibling node.reserved = true;
27: Rj .decided = true;
28: skip to next robot;
29: end if
30: end for
31: end for
32: for each Robot R that is still undecided do
33: destination = nearest unmarked, unreserved frontier, if any;
34: if destination ̸= ϕ then
35: destination.reserved = true;
36: end if
37: end for
38: return all reserved nodes;

Along with the procedure, candidate nodes become reserved if selected and are removed
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from the selection pool; similarly, robots are set to be decided and removed from the

decision-making process. The GetGoalsForExploration algorithm consists of three sub-

parts - cycle detection, sibling search, and nearest neighbour (NN). Sibling search is a

proposal made by this chapter to improve on the nearest neighbour (NN) should cycle

detection fail to yield an assignment. The first step is to obtain possible cycles (lines 3-8).

The cycles are detected by checking every freshly marked node against the position of

every robot within the sensing range. If for any such (robot, node) pair, their rank, i.e.,

the tree depth, differs by more than one, it is considered a cycle.

Next, we execute the two-step search (lines 9–15) for each possible cycle. In the

first step, a breadth-first traversal is made from the marked node to the root, looking for

an eligible (unmarked and unreserved) goal. If this step fails, another step is executed,

where the breadth-first traversal is made from the robot’s (say r′s) position to the marked

node. If an eligible goal (say node ne) is found at either stage, the procedure immediately

reserves ne, sets the robot r as having decided, and removes r and ne from further con-

sideration. The two-step search frequently fails in uncluttered and bigger maps, owing

to the low number of cycles encountered. Without a sibling search, opting straight for

the nearest neighbour (NN) approach forms a very deep tree, causing the tree to become

a poor representation of the real map. The purpose of the sibling search step is to try

to broaden the tree where possible to counter this. Thus, a sibling search (line 15-20) is

attempted if the two-step search procedure fails to generate goals for some or all robots.

Here, the sibling nodes of the robot’s current position are examined for their eligibility

for exploration.

If they are found eligible, then they are reserved as goals. Finally, should this also

fail, the procedure defaults to nearest neighbour (NN) (lines 21–24), where the nearest

eligible frontier to each remaining robot is reserved. All reserved nodes are then returned

as goals for the robots. Remember that these measures may result in fewer goals than

robots, especially in the beginning (when the number of frontiers may be less) or toward

the end (when most of the map is explored and only a few frontiers are left). In such

cases, some robots may not be assigned any frontier.
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4.4 COMPLEXITY ANALYSIS OF MRFTE

4.4.1 Algorithm–4.1

This algorithm defines how each robot in the system behaves. It waits for permission from

the coordinator (Algorithm 4.2) before performing tasks such as exploring assigned areas

(frontiers), updating its map, and signalling the completion of exploration. The com-

plexity of Algorithm 4.1 is mainly linear, O(m), for each robot’s actions. This involves

waiting, exploring, updating, and signalling.

4.4.2 Algorithm–4.2

Algorithm 4.2 is a complex system that coordinates multiple robot groups (m groups).

It merges maps, manages group interactions, assigns goals, and monitors completion

conditions. The algorithm’s complexity combines linear O(m) operations with nested

loops and conditional checks that depend on group sizes |gi|. This yields a complexity

ranging from linear O(m) to quadratic O(m2), depending on the specific tasks like map

merging and pairwise group interactions being performed. Finally, The complexity of

this algorithm is O(m * AssignGoals(Group gi)) depending on tasks like map merging

and pairwise group interactions.

4.4.3 Algorithm-4.3

The overall complexity of this algorithm is O(|gi|)+O(K)+O(n3). The dominant factors

contributing to the complexity are typically the number of robots in the group Gi |gi|, K

is the no. of the group and the complexity of solving the assignment problem using the

Hungarian Algorithm (n3).

4.4.4 Algorithm-4.4

The function initializes a frontier tree for a group, which is based on the positions of

robots. The complexity of this algorithm is generally determined by the number of robots

in the group, denoted as |gi|. Other operations in this function have either constant-time
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complexity or complexity linearly proportional to the number of robots in the group. The

overall complexity of this algorithm is O(|gi|)

4.4.5 Algorithm-4.5

The ”Get Goals for Exploration” algorithm’s complexity depends on its individual steps,

specifically cycle detection, two-step search, and node reservation. Overall complexity

can be represented as O(|T | + |Gi| + cycle detection complexity + two-step search com-

plexity + node reservation complexity), where T is the number of nodes in the tree, and

Gi is the number of robots in the group Gi.

4.5 EXPERIMENT AND RESULT

The proposed approach for multi-robot exploration is thoroughly evaluated through a se-

ries of experiments performed in simulation in two different environments. This section

describes the simulation settings and the results thus obtained. Seven SOTA approaches

have been re-implemented and extensively evaluated. The proposed approach is com-

pared with these seven approaches, and the results thus obtained are also explained.

4.5.1 Simulation Setup

We have performed the experiments in the Player/Stage robot simulator [286]. The sim-

ulated robot is a model of Pioneer3-AT robot [287], which is a four-wheel differential

drive robot equipped with Hokuyo Laser Range Finder - URG-04LX-UG01 [288] that

has a field of view (FoV) of 240 degrees and a scanning range of six meters. All ex-

periments are conducted on a computer with 32 GB of RAM and an Intel Core i7 (10th

generation) processor. Two different types of environments, unknown to the robots ini-

tially, are used for exploration. The first environment (Map-1) map is displayed in Figure

4.4(a), an uncluttered indoor environment of size 900× 600 pixels.

The second environment is a cluttered indoor environment (Map-2) of size 900× 900

pixels that are displayed in Figure 4.4(b). The third environment is a hospital indoor

environment (Map-3) of size 1800 × 900 pixels that are displayed in Figure 4.4(c). The
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(a) Map-1: Uncluttered Indoor Environment (b) Map-2: Cluttered Indoor Environment

(c) Map-3: Hospital Indoor Environment

Figure 4.4: Various Types of Environment

resolution of both maps is set to 0.03 m per pixel. The white color is the free space to

be explored, while the black color represents the walls and the obstacles. Map-1 does

not have obstacles, and the robots easily navigate in open areas. In Map-1, lesser but

bigger-sized frontiers appeared compared to Map-2. Also, both long and narrow corridors

frequently generate fewer frontiers than the number of available robots. Map-2 and Map-3

are both challenging environments with different obstacles. While Map-2 has numerous

obstacles, Map 3 is made up of many small and large rooms, a long corridor, and a

complete hospital structure. As a result, Map-2 produces more smaller-sized frontiers
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than Map-3. These maps are specifically designed to test the performance of coordination

algorithms in environments with a high density of obstacles.

4.5.2 Simulation Workflow

Here, the workflow of the Coordinator and each Robot is described using a state diagram

shown in Figure 4.5. The Coordinator and the Robot execute in their thread. More than

one Robot thread can be active at a time. After initialization, the Coordinator sends a start

message to each robot and goes into the waiting state. Essentially, it waits for the local

map (LM[i]) of each Robot-i, where ”i” indicates the ith robot. At this point, the working

of the two threads, i.e., the Coordinator and the Robot, is explained separately as follows:

• Robot thread - each Robot-i, after receiving the start message from the Coordina-

tor, scans the environment using its sensors, extracts frontiers, and builds its local

map (LM[i]). It then signals and sends LM[i] to the Coordinator and goes into

the waiting state for the Coordinator to send the global map (GM) and assign the

task, i.e., the target location for exploration. Each Robot-i examines if it has re-

ceived a valid task from the Coordinator and moves toward the assigned target. It

then signals the Coordinator of task completion and goes into the waiting state for

subsequent task assignments and the updated GM. The robot terminates when the

Coordinator does not assign it any task (a goal for exploration).

• Coordinator thread - upon receiving a signal from each Robot-i and LM[i] the

waiting Coordinator, merges LM[i] and updates the global map (GM). Then, the

coordinator finds frontiers in the GM. If no frontiers are found in the GM, the

Coordinator sends ”null” tasks to the robots and terminates, indicating the end of

exploration.

4.5.3 Results and Discussions

This section presents the results of performing experiments in both Map-1 of Figure 4.4(a)

and Map-2 of Figure 4.4(b). A series of 100 simulations are conducted for each of the
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seven SOTA approaches we have re-implemented and the proposed MRFTE approach.

The number of robots varies from 2 to 4, 6, and 8. In each simulation run, the starting

positions of the robots are randomly chosen. However, for a fair comparison, the robots’

starting positions are kept the same across different approaches. We have compared all

the approaches based on two metrics.

1. Completion Time - the time it takes for the robot team to complete exploration. The

exploration is complete when no more frontiers are left for any robot to explore.

2. Cumulative Distance Travelled - that is the summation of the distance traveled by

each robot until the whole map is explored and no more frontiers are visible to

any robot. The time constitutes sensor data acquisition and processing time; time

is taken in the robot’s navigation while avoiding obstructions and synchronization

with the base station. Also, many a time, the robots interfere with each other. As a

result, the planner wastes time in detouring. Therefore, the completion time metric

is not directly proportional to the distance traveled by the robot team.

One important observation is that irrespective of the coordination algorithm and the

map used, both the Completion Time and Cumulative Distance Travelled decrease due

to increasing the number of robots. The coordination mechanism of the first three ap-

proaches, i.e., NF [5], D+IG [6], and C+U [7] is not very sophisticated. NF does not

consider the usefulness of the frontier. The robots executing NF do not coordinate. As a

result, they do not get dispersed, and the two robots operating in close proximity end up

choosing the same frontier cell to explore. Dijkstra algorithm is used for path planning,

which does not scale well on occupancy grid maps. As shown in Figure 4.6-4.11, this

approach is the least effective on both metrics. D+IG does not consider the errors that

occurred in poly-line extraction or image alignment. Such errors result in a longer mo-

tion path for the robot. Moreover, the suggested heuristic in D+IG could not disperse the

robots operating in close proximity, and therefore, the robot team gets locally dispersed.

However, some form of coordination produces better results compared to NF. C+U em-

ploys a better heuristic function and successfully disperses the robots. Still, it works
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with the premise that the robots are aware of other robots’ relative positions, which is a

strong assumption. It is evident from Figure 4.6-4.11 that with the increase in size and

complexity of the map, both the exploration completion time and the distance traveled

drastically increase for C+U. Nevertheless, this approach is superior to NF and D+IG on

both metrics.

VGS [8] is an example of a segmentation based approach. This approach successfully

achieves global dispersion, thereby significantly minimizing the overlapping exploration.

It is evident from the graphs of Figure 4.6-4.11. However, in complex environments,

the performance suffers due to the fact that the approach is too restrictive, particularly at

the doorways, in the sense that the two rooms form a single segment if the local minima

in between are not in the direct proximity of a junction node. It also assumes that the

relative starting pose of the robots is known beforehand. It can be seen from the plots

of Figure 4.6 and 4.9 that VGS and MRFTE have comparable performance on both the

metrics in Map-1 of Figure 4.4(a). These results prove that MRFTE is capable of quickly

dispersing the robot team. moreover if we refer to the graphs of Figure 4.7 and Figure

4.10, the effectiveness of MRFTE is more visible in Map-2 of Figure 4.4(b), wherein its

performance is significantly better than VGS and all the other approaches. The ability of

MRFTE to achieve global dispersion is attributed to the fact that the goal assignment al-

gorithm (algorithm-4.3) ceases to assign to the robots, previously explored frontiers (say

fpast), and the exploration goals that appear in the close proximity of fpast. Addition-

ally, the mechanism of sibling search introduced in MRFTE does not allow the combined

frontier tree of each group to grow far down. Thus, collectively, the robot team does not

leave too many frontiers far behind and explores them early while achieving dispersion.

These two characteristics are not evident in other SOTA approaches.

In GADC [11], K-means clustering is employed to produce frontier clusters that are

assigned to the robots based on TSP distance cost. The benefit obtained from the heuristic

function that is used for splitting the frontiers is evident only for a certain number of

robots, i.e., four robots in the map of Figure 4.4(a), and it reduces as we increase the size

of the robot team to 6 and 8 (refer to Figure 4.6 and 4.9). Moreover, its performance
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Figure 4.6: Exploration Completion Time in Map-1

Figure 4.7: Exploration Completion Time in Map-2
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Figure 4.8: Exploration Completion Time in Map-3

Figure 4.9: Cumulative Distance Travelled in Map-1
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Figure 4.10: Cumulative Distance Travelled in Map-2

Figure 4.11: Cumulative Distance Travelled in Map-3
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Figure 4.12: Firebird-VI Robot Equipped with HOKUYO URG-04LX-UG01 2D Laser
Scanner for Real Robot Experiments

severely degrades in unstructured environments, i.e., in the map of Figure 4.4(b), as can

be seen in the graphs of Figure 4.7 and 4.10. This approach does not address SLAM. The

robots are assumed to operate in a common coordinate system with perfect localization.

Therefore, it has an advantage in completion time compared to other approaches.

Sampling–based approaches such as M-RRT [9] and ID-RRT [10] improve the effi-

ciency of single robot exploration by generating collision-free paths by appending a ran-

domly sampled point to the tree. In an unknown, cluttered environment, it is non-trivial

to sample a point occluded by obstacles and can still be connected to the tree. M-RRT

and ID-RRT are computationally expensive, restricting their use in large-scale planning

and real-time operations. These findings can be corroborated by the graphs of Figure 4.6

and 4.7. However, the distance traveled by the robot team for M-RRT is lesser than NF,

D+IG, C+U, GADC, but it is higher than MRFTE, as can be seen in Figure 4.9 and 4.10.

On the contrary, both the time and the distance traveled of ID-RRT is higher than C+U,

VGS, GADC, M-RRT, and MRFTE in the Map of Figure 4.4(b) because it fails to predict

the information gain in complex unstructured environments, which leads to inferior task

allocation.

The quantitative results of the comparison between MRFTE and seven other state-of-
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the-art approaches, using both two and eight robots in Map-2, are described below. Please

refer to Figure 5.4 and Figure 5.7 for more details.

• Comparison with heuristic-based approaches - In comparison with heuristic-

based approaches, MRFTE demonstrated notable advantages. With two robots,

MRFTE exhibited a time reduction of 41.05%, 31.70%, and 25.33% compared to

NF, D+IG, and C+U, respectively. Additionally, MRFTE covered 42.42%, 34.48%,

and 17.39% less distance than NF, D+IG, and C+U, respectively. Scaling up to

eight robots, MRFTE outperformed significantly, consuming 62.16%, 53.33%, and

41.66% less time than NF, D+IG, and C+U, respectively. Similarly, MRFTE trav-

eled 39.47%, 32.35%, and 28.12% less distance than NF, D+IG. These results em-

phasize the superiority of MRFTE over heuristic-based approaches, and consistent

findings were observed even with changes in the map.

• Comparison with segmentation-based approaches - When employing two robots,

it was observed that MRFTE exhibited a 12.5% reduction in time compared to

VGS. Additionally, MRFTE covered 9.52% less distance than VGS in this scenario.

Furthermore, utilizing eight robots, MRFTE demonstrated notable performance im-

provements, showcasing a substantial 28.81% reduction in time compared to VGS.

Similarly, MRFTE traveled 4.16% less distance than VGS in this eight-robot con-

figuration.

• Comparison with sampling-based approaches - When employing two robots, it

was observed that MRFTE demonstrated a time reduction of 34.11% and 36.36%

compared to M-RRT and ID-RRT, respectively. Similarly, MRFTE covered 13.63%

and 30.90% less distance than M-RRT and ID-RRT, respectively, in this scenario.

Furthermore, with the use of eight robots, MRFTE exhibited notable performance

improvements, showcasing a significant 56.25% and 58.82% reduction in time

compared to M-RRT and ID-RRT, respectively. Likewise, MRFTE traveled 17.85%

and 28.12% less distance than M-RRT and ID-RRT.
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• Others - When utilizing two robots, it was observed that MRFTE exhibited a

17.64% reduction in time compared to GADC. Additionally, MRFTE covered 26.92%

less distance than GADC in the same configuration. Furthermore, with the use of

eight robots, MRFTE demonstrated noteworthy performance improvements, show-

ing a substantial 46.15% reduction in time compared to GADC. Similarly, MRFTE

traveled 23.33% less distance than GADC in this eight-robot setup.

4.5.4 Real Robot Experiments

We conducted experiments with a team of four Firebird-VI (FB-VI) robots [287] see

Figure 4.12, to verify the functionality of the proposed MRFTE algorithm. FB-VI is a

differential drive robot equipped with HOKUYO URG-04LX-UG01 2D Laser Scanner

(FoV of 240o) for constructing the map of the unknown environment. The robot also has

an onboard Intel NUC 10 PC with WiFi and 10th Generation Intel Core i5-10210U Pro-

cessor with 4 GB RAM and 128 GB SSD. Ubuntu 14.04 LTS operating system is installed

on the onboard PC. Additionally, it has 8 MaxBotix Ultrasonic sensors with a range of up

to 5 meters, a 9 DOF IMU, and position encoders for obstacle detection/avoidance and

navigation, respectively. The experiments were conducted indoors, as shown in Figure

4.14. The software stack for unknown area exploration using a team of FB-VI robots is

developed in the Robot Operating System (ROS). It comprises ROS packages for SLAM,

Navigation, Control, Map Merging, Coordination, and Communication. We have imple-

mented our approach, i.e., MRFTE for multi-robot coordination as a ROS package. How-

ever, for SLAM, we used Hector-SLAM [271], for Navigation and Control FB-VI vendor

libraries were used, and for inter-robot communication, FKIE Multimaster ROS package

is used that allows a set of nodes to establish and manage a multi-master network [289]

as shown in Figure 4.13.

The multirobot map merge ROS package [290], which was originally designed to

work with the Gmapping SLAM library [291], successfully merges the maps of multiple

robots. But, it has a few limitations, such that it works with the premise that all the robots

have the same origin and produce maps of the same size. In our experiments, Hector-
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Figure 4.13: Example Network of Three FB-VI Robots based on FKIE Multimaster for
Information Interchange

Figure 4.14: Combined Map of Two FB-VI Robots
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SLAM [271] is employed for mapping, which produces maps of different sizes. Thus,

the multirobot map merge ROS package cannot be used in its present form. In order to

ensure that all robots have the same sized map and origin, we expanded the maps received

from Hector-SLAM and resized them. After that, the map-merging procedure described

in Section 3.1 is used to merge the maps of multiple robots. The map constructed by the

team of two robots is shown in Figure 4.14. Snapshots of the execution of our approach

at different time intervals on two FB-VI robots in our research lab and the location of

the two robots along with their exploration targets are shown in Figure 4.15. Here is the

complete exploration process video link [292]. The size of the map is 92 ft2.

MRFTE is especially capable of quickly dispersing the robot team in an unknown

environment, thereby completing the exploration task more efficiently. These observa-

tions are validated through simulation by comparing them with seven state-of-the-art ap-

proaches. The Centralized MRFTE problem faces the potential issue of a single point of

failure as there is no communication model in place. To address this, it is recommended

to transition towards implementing a decentralized MRFTE solution on a team of mobile

robots in real-world scenarios. This will allow for addressing situations where robot(s) or

communication may fail.

4.6 SUMMARY

We have suggested a novel approach, viz., MRFTE, for unknown area exploration using a

team of mobile robots. Groups of robots use the frontier tree data structure to maintain the

exploration state of the frontiers, their positions, and the occupancy grid map. MRFTE

allows the robots who belong to the same group to communicate through their shared

frontier tree. When maps of two groups overlap, these teams are integrated, and their

frontier trees are merged. Finally, exploration goals are assigned to the individual robots

by selecting nodes from the combined frontier tree through a novel strategy. MRFTE

is especially capable of quickly dispersing the robot team in an unknown environment,

thereby completing the exploration task more efficiently. These observations are validated

through simulation by comparing them with seven state-of-the-art approaches.
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D-MRFTE: A DECENTRALIZED

RELAY-BASED APPROACH FOR

MULTI-ROBOT UNKNOWN AREA

EXPLORATION

5.1 INTRODUCTION

Environment exploration and mapping is a fundamental task in robotics, which is espe-

cially important in dangerous and unsafe environments. For example, robots can be used

for the detection of radiation in a nuclear plant, planetary exploration, battlefield explo-

ration for landmine detection, etc. Autonomous multi-robot systems (MRS) have been

demonstrated to perform far better than single mobile robots as they can carry out these

tasks in parallel by being redundant and exhibiting fault tolerant behavior [293]. Deliv-

ery of vital information, i.e., critical sensor data, video footage, pictures, etc., about the

environment being explored is paramount. Many times, this data needs to be collected

and transmitted wirelessly to a control center or base station for viewing and/or analysis
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by the humans [50, 171].

In the real world, there are many practical challenges faced by multi-robot systems,

for example, dynamically changing environments, limited power sources, and intermit-

tent loss of communication between robots. Therefore, it becomes vital for the designers

to suggest coordination approaches that maintain a good balance between exploration and

information exchange while coordinating the team of mobile robots. It is not a trivial task

to coordinate the robot explorers that are information-hungry in the presence of commu-

nication disruptions, i.e., exploring some regions that are rich in information can render

the multi-robot network defragmented and vice-versa. Some researchers have addressed

this problem for the task of unknown area exploration; for example, in [193], the authors

have suggested an algorithm called Bandwidth aware Exploration with a Steiner Traveler

(BEST). They have employed robots that deploy relays on precomputed positions which

ensure connectivity between new relays and existing relays on unsaturated (in terms of

bandwidth) paths. In another work [200], the authors have suggested the use of relay-

based communication in multi-robot networks. The relay robots were used for last-mile

wireless communication. They gathered data and transmitted it while traveling. The

authors have suggested two optimization models, viz., Single-Source-Multiple-Relays

(SSMR) and Multiple Source-Single-Relay (MSSR), for handling dense and sparse de-

ployments of relays, respectively.

In our previous chapter [17], which was published in IROS 2022, we proposed an

approach viz., MRFTE for rapid exploration of an unknown bounded region using a team

of mobile robots. The MRFTE algorithm used frontier tree data structure to maintain the

exploration state of the frontiers, the position of those frontiers, and the occupancy grid

map of the environment. The robot team creates a shared frontier tree by communicating

with their peers. Although MRFTE is capable of quickly dispersing the robot team in

an unknown environment, thereby completing the exploration task more efficiently com-

pared to seven state-of-the-art algorithms, it has certain limitations that were also pointed

out by the reviewers of IROS 2022. The two main limitations of MRFTE are as follows:
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• It is a centralized algorithm, and therefore, it has a single point of failure.

• It works with the assumption that robots can always communicate with their peers

without any disruptions, completely ignoring the possibility of intermittent connec-

tivity, which is inevitable due to communication range restrictions.

We worked on the above-mentioned limitations, and in this chapter, we propose a com-

pletely decentralized approach named D-MRFTE for unknown area exploration using

relay robots. We have validated the efficacy of the proposed approach, viz., D-MRFTE,

in the Player/Stage simulator by varying the number of explorer robots and relay robots

and by restricting the communication range of the robots in maps of different environ-

mental complexity. The simulation results were compared with our previous approach,

i.e., MRFTE [17], on two metrics, i.e., (a) exploration completion time and (b) cumu-

lative distance traveled. We found that DMRFTE is equally capable of dispersing the

robot team in the unknown environment and quickly completing the unknown area ex-

ploration task. We observed that there is a difference between the performance of the two

approaches, such that the D-MRFTE completes the task of exploration slower than its

centralized counterpart MRFTE and travels longer distances. However, these differences

are not significant.

5.2 THE PROPOSED APPROACH – DMRFTE
Let R = r1, ..., rn represent the available robots that are classified into two categories: an

explorer robot (now on-wards explorers) or a relay robot (now on-wards relays). Relays

do not explore frontiers but circulate among the explorers and other relays. Each robot

ri must be able to select a destination Ti, where Ti is either a frontier or a predetermined

rendezvous point between an explorer and a relay or between multiple relays. Explorers

head to the frontiers of the map and are occasionally obligated to rendezvous with a relay.

The frequency of such rendezvous is decided by countdown timers, reset on successful

communication. We assume that relays do not initiate independently but rather within

the communication and exploration range of an explorer, thereby preventing them from
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becoming stranded. Explorers may begin without relay access.

The robots effectively form a high latency decentralized system, with distributed

copies of exploration information for which eventual consistency and completeness must

be ensured through meetups. Between two meetups, an explorer autonomously decides

on exploration tasks, using its map and the information available to it with respect to

other robots’ positions and targets. Each robot regularly broadcasts its view of the sys-

tem’s latest state to all other robots in their range. This data exchange uses timestamps

to assimilate the latest available information, resulting in a state update mechanism using

version vectors [294]. Meetups act as a safety net and set a bound-on latency by ensuring

data transfer at periodic intervals if they do not occur in the regular course of events.

Algorithm 5.1 Robot Behaviour
1: while true do
2: Update robot state [refer Algorithm-5.2];
3: Target assignment [refer Algorithm-5.6];
4: if exploration complete then
5: break;
6: else
7: Visit assigned location
8: Update robot map
9: end if

10: end while

The pseudo-code of the Algorithm 5.1 is named robot behaviour or processing loop

executed in the background and uses iteration to determine the next destination to which

the robot will travel. It sleeps through the time the robot is in motion and then comes to

life once it reaches its destination. It now processes the changes made to the map as a

direct result of exploration, followed by the information received by the communicator

during the interval. It can then use this updated information to decide on the next desti-

nation, an exploration frontier or a rendezvous point. Then, the robots visit the assigned

goal. This can be different or the same for relay and explorer robots. The loop is com-

pleted when it is discovered that it is impossible to assign the next goal because all of the

frontiers have been investigated. All of the necessary communication has occurred.
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5.2.1 State Update

Algorithm 5.2 Update Robot State
//Mechanism Updating the robot’ state

1: get frontiers on robot’s map;
2: self-synchronize robot’s frontier tree with frontiers using Algorithm 5.3;
3: get latest data from communicator using Algorithm5.11;
4: reset timers for robots from whom communicator received messages using Algorithm

5.5;
5: update robot maps and data;
6: verify obtained frontiers and remove obsolete (explored) frontiers;
7: peer-synchronize robot with frontiers using Algorithm 5.4;
8: update communicator’s frontier advertisement with latest data;

The pseudo-code of the Algorithm 5.2 is named state update or update robot state

mechanism. This mechanism updates the robot’s state based on sensor readings and

control inputs. It plays a crucial role in ensuring the accuracy and reliability of the robot’s

actions. The data and state variables of the robot are kept up to date by this mechanism,

which is used in preparation for goal assignment. It begins by acquiring frontiers on the

recently explored map, bypassing the need for updates from peers. This identifies the

exploration that the robot itself was engaged in and the new goals generated due to this

exploration. After entering these into the tree, the communicator is contacted to continue

the process. If the communicator came into contact with any relay robots while in motion,

the timers associated with those robots were reset.

After this step, the robot’s maps are updated with peer data, and information on other

robots’ status, location, goals, and frontiers is also updated. If a frontier is to be accepted,

it must first be investigated, as it may have already been discovered by a different robot

than the one advertising it. The remaining frontiers are acknowledged, along with the

owners of each one, and any unclaimed frontiers still present on the map are also noted.

In the final step of the process, the communicator is given up-to-date information on the

frontiers to advertise during upcoming broadcasts. All frontiers are advertised, regardless

of owner, but this ensures that outdated ones do not continue to present themselves.
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5.2.1.1 Self Synchronization

Algorithm 5.3 Self-Synchronize
// Synchronize Frontier Tree with Self-Explored Frontiers
Let Lrobot denote the robot’s current location
Let T denote the Tree.

1: Update Lrobot in the Frontier tree;
2: Call the function tree sync(T ), which follows the tree synchronization procedure

laid out by Korb et al. [51];
3: Let Fnew be the set of new frontiers discovered by the robot;
4: for each frontier f ∈ Fnew do
5: Create a new node nf in the tree, with parent Lrobot and value f ;
6: if f is a potential goal owned by the robot then
7: Mark f down as a goal.
8: end if
9: if f is a stale frontier then

10: Mark f down as no longer being a goal;
11: end if
12: end for

The proposed approach uses a frontier tree to store state and to represent exploration

on the map, based on the tree suggested by Korb and Schottl [51], with some additional

information. Each node also stores a frontier’s owner, i.e., the explorer that first discov-

ered the frontier, to synchronize the frontier tree with self-explored frontiers. To keep

this tree, as a store of the robot’s state up to date, the synchronize function or algorithm

5.3 is executed, which is based on a similar approach used by [51]. New frontiers and

their owners are added as potential target nodes. Old frontiers vote for their closest rep-

resentative on the new map. Provided the new frontier is distinct, if it has a single vote,

it is added as a child of that voter. If it has no voters, it is added under the nearest old

frontier. Old frontiers that are no longer present are marked as visited and no longer serve

as targets.

5.2.1.2 Peer Synchronization
After an explorer receives the latest data, this additional information is integrated into

the robot’s state, which occurs in the peer-synchronization phase. In the peer synchro-

nization phase, the last known locations of the peers are noted to be used as part of the
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Algorithm 5.4 Peers-Synchronize
//Synchronize Robot with Frontiers Explored by Peers
Let L be the set of peers’ last known locations.
Let F be the set of all frontiers.
Let M be the map containing all possible frontiers.
Let P be the set of all peers.
Let C be the communicator.

1: L← new location ∪ L;
2: for each peer p in P do
3: add p’s advertised frontiers to F as owned by that p;
4: end for
5: for each frontier f in M do
6: if f is not owned by any peer then
7: add f to F as unowned potential goals;
8: end if
9: end for

10: for each frontier f in F do
11: if f is valid and its owner is not already sharing it then
12: add f and its owner to C’s list as a shareable frontiers and owner;
13: end if
14: end for

dispersion score Eq.(5.1) during frontier selection. Advertisements of frontiers by other

robots are received and added to the robot’s frontier tree as potential targets under peer

ownership. If the map has any further frontiers that have not been claimed by any ex-

plorer, these are added as unclaimed potential targets. Adding nodes to the tree happens

in the same way described in the Algorithm 5.4. Finally, a cumulative list of current fron-

tiers is written up (including all frontiers and their respective owners) for the explorer to

advertise.

5.2.1.3 Reset Timer

Algorithm 5.5 Reset Rendezvous Priority for a Peer using Timers
1: if either of self or peer is an explorer then
2: reset meet distance timer← 250 * number of explorers;
3: reset meet node timer← 2 * number of explorers;
4: else if both self and peer are relays then
5: reset meet distance timer← 0.5 * 250 * Number of explorers;
6: reset meet node timer← 1 * number of explorers;
7: end if
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Meetups are scheduled using timers see in algorithm 5.5. For a meetup between a

relay and an explorer, in a setup with ‘k’ explorers, the base timer is set to 2 × k visited

nodes or 250 × k pixel distances (about 8×k meters), whichever is covered first. Keeping

the reset timer proportional to the number of explorers allows the approach to scale to an

arbitrary number of explorers. The relay gets sufficient time to service all explorers and

additional relays without being overloaded. Distance timers are preemptively reduced by

the path distance that the robot will cover on its way to the destination. Meetups between

relays are given higher priorities by setting a lower reset value, i.e., 0.5×250×k pixel-

distance or 1×k nodes visited, which is half of the reset value for a meetup between a

relay and explorer. This causes them to reach zero sooner than in the case of an explorer.

Every relay schedule meetup with every other relay it has come in contact with, creating a

tightly knit group and helping to converge quickly to consistency. The value of 8 meters is

a variable parameter intended to model the expected average distance covered by a relay

moving from one rendezvous to the next. We have calculated empirically by running

multiple simulations.

5.2.2 Target Assignment

The target assignment to a relay and explorer is explained in Algorithm 5.6. In this chap-

ter, the terms target and goal are synonymous with each other and are used interchange-

ably. It returns either a meetup location or a frontier. First, it checks if a meetup is

scheduled urgently, in which case it finds the destination associated with that meetup.

For an explorer, this may or may not return a rendezvous, depending on the current state

of the timers. However, for a relay, this check will necessarily return a meetup, except

in case of termination. If the meetup is not urgent, then for an explorer, it decides on a

frontier and sets that as the next target. If no frontier is found, then the map exploration is

complete. The explorer’s stopping flag is then set, and the robot tries to ‘force’ a meetup,

trying to access the relays before the meet is naturally scheduled. This step will succeed

unless the robot has completed all its communication obligations, as described in the ter-

mination conditions. When this, too, fails, it can be assumed that the robot’s obligations
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have been fulfilled, and the robot shuts down. When this fails, That means Now finish-

flag set and count-flag increments by one. This count flag is used to check whether all

the explorers have finished their work. It is also indicated that the robot has completed its

tasks and switches off.

Algorithm 5.6 Target Assignment
// Assign Goal Location Let U is representing the Unforced
Let F is representing the Forced
Let E is representing the Exploration
Let g is representing the Goal
Let m is representing the meetup
Let n.timer is representing the node timer
Let d.timer is representing the distance timer

1: Um← check for an unforced meeting; [refer Algorithm-5.7];
2: Eg ← get exploration destination [refer Algorithm-5.9];
3: Fm← check for a forced meeting; [refer Algorithm-5.7]
4: if Um = True then
5: G← Um use algorithm-5.8;
6: else if Eg = True then
7: G← Eg use algorithm-5.9;
8: else if Fm = True then
9: G← Fm use algorithm-5.8;

10: set stoppingflag
11: end if
12: if stoppingf lag == True then
13: set finishf lag;
14: Countflag = Countflag + 1;
15: Stop explorer exploration;
16: end if
17: set the G as the robot’s assigned location;
18: for all nodes n do
19: n.timer ← n.timer − 1;
20: end for
21: for all distances d from the robot’s current location to L do
22: d.timer ← d.timer − travel distance;
23: end for

After deciding on a goal, the procedure communicates this to the robot and then pre-

emptively updates all meet timers. Upon deciding on a target, the Algorithm 5.6 commu-

nicates this to the robot and then preemptively updates all meet timers. Node countdown
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timers are decremented by one, indicating the completion of one target assignment. Dis-

tance timers are preemptively reduced by the path distance that the robot will cover on its

way to the destination. To find the distance of a path, the Jump Point Search technique is

utilized.

5.2.2.1 Check Meetup

Target assignment for a relay depends entirely on deciding the next robot to meet, while

explorers also need to check for scheduled meetups that they are obligated to attend.

Algorithm 5.7 Checks the Meetup Location
// Decide on a Robot for a Rendezvous

1: if any distance timers are negative then
2: get a robot with the most negative distance timer;
3: if self is a relay then
4: reset meet priority with that robot using algorithm-5.5;
5: end if
6: return robot;
7: else if any node timers are negative then
8: get a robot with the most negative node distance timer;
9: if self is a relay then

10: reset meet priority with that robot using algorithm-5.5;
11: end if
12: return robot;
13: else if self is regular and meetup is unforced then
14: return no urgent meetups;
15: end if
16: if self is relay then
17: if all known explorers have stopped exploration and communicated with self then
18: set robot’s stopping flag;
19: end if
20: end if
21: if no further robots can be met with then
22: returns with no meetups;
23: else
24: get a robot with the minimum distance timer;
25: if self is a relay then
26: reset meet priority with that robot using algorithm-5.5;
27: end if
28: return robot;
29: end if
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The Algorithm 5.7 checks the meetup location using the current timer values to iden-

tify which peer the robot should meet next, if any. This algorithm is also used to set

relays’ stopping flags when all the explorers they serve have set their own stopping flags.

As the first thing, a check is made to see if any distance timers have any meetups

that have reached an urgent priority, which is indicated by a negative timer value. If

this is the case, the most pressing (negative with the highest magnitude) peer is the one

that is returned. If no distance timer is urgent, the procedure continues with the node

(iteration) timers. If neither of the two cases brings back a meetup, an explorer can

continue exploring for another iteration rather than arranging a meeting with a relay. If

there is a relay, a peer meetup needs to be arranged even if there is no pressing need for

one because this is the only goal selection option that can be chosen.

Similarly, if an autonomous vehicle has completed its exploration, it can also request

to meet a relay ahead of schedule, also known as a non-urgent meetup. This type of sce-

nario is called ”forcing” a meetup from the perspective of an explorer. In such situations,

the peer to meet is decided based on the node timer’s lowest value but the highest rela-

tive priority. It is possible that even when forced, no meetups can be scheduled. There

are a few stipulations attached to the termination. First, the explorer does not locate any

frontiers in the surrounding environment. Second, once the communication between the

explorers has been confirmed as successful, when the robot’s stopping flag has been set,

followed by communication with every relay (for an explorer), or when all explorers have

set their stopping flags, followed by communication with every other relay (for a relay).

The final step is for the exit counter to catch up to the number of explorers. In this case,

the procedure returns without offering a peer to meet with.

It is important to ensure that relays are not rendered inoperable by a single explorer’s

actions. To achieve this, the priority of the meetup peer is always set to its lowest possible

level before making a decision regarding which meetup to use for a relay. This means that

if the peer does not show up at the scheduled time, the relay will not wait at the rendezvous

point but will move on to the next step. This ensures that the relay can continue providing

service to the rest of the system, enabling other explorers to return to the exploration
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process. As a result, the relay facilitates fast data transfer between explorers.

5.2.2.2 Get Meetup Location

Upon deciding on a peer to meet, the robot heads for the location associated with that

rendezvous. This location must be agreed on by both the robots meeting up. While

this can be implemented by having the robots communicate and reach a consensus, the

proposed approach instead gets the robots to execute Algorithm 5.8. To find a meetup

location with a peer robot, Algorithm 5.8 decides between two possible candidate meetup

methods, i.e., (a) either each robot goes to its location at the last communication or (b)

each robot goes to the first robot’s target as of the last communication.

Algorithm 5.8 Get Meetup Location
// Obtain Rendezvous Location with a Peer Robot

1: if self’s and peer’s locations at last communication are mutually inaccessible then
2: return self’s location at last communication;
3: else if self is relay and peer is explorer then
4: return peer’s goal at last communication;
5: else if self and peer are both relays then
6: return goal at last communication of robot with lower id;
7: else if self is an explorer then
8: return own goal at last communication;
9: end if

The first method is used as a backup and is used only in cases where the maps of the

robots communicating are disconnected, in which case it is not possible for both robots

to move their way to a common location. Thus, both robots recreate the situation as it

occurred the last time; they meet by returning to the same location. This is not used

in normal scenarios, as it has the drawback of pulling back robots deep into old territory,

incurring travel costs to get there and back to the hot zones where exploration is occurring.

The second method is regularly used. Here, it is essential to decide which is the first robot.

The first robot’s target at the moment of last communication is decided as the rendezvous

point that both robots will now head to. In a meetup between an explorer and a relay, the

explorer is given priority as the first robot in a bid to reduce its travel cost so that it can

quickly return to exploring. In this situation, giving the relay precedence would cause a
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lazy relay that acts as a static base station that explorers need to return to, resulting in

large travel costs. In a meetup between two relays, the relay with the lesser ID number

is given precedence as the first robot. ID numbers are assigned to robots uniquely at the

start of exploration and are used to identify robots for message passing and within data

transfers.

5.2.2.3 Frontier Selection
The explorer selects a frontier using a combination of tree-based, ownership-based, and

dispersion-based techniques. Algorithm 5.9 selects frontier using information on avail-

able potential targets, the positions of each robot, and the ownership relations between

potential targets and explorers.

Algorithm 5.9 Provide an Exploration Assignment
//Finding the goal node

1: if a sibling node of the current position in the tree is a potential goal then
2: return sibling node as goal;
3: else if nodes owned by self include a potential goal then
4: return potential goal node owned by self with optimal dispersion score;
5: else if unowned nodes include a potential goal then
6: return unowned potential goal node with optimal dispersion score;
7: else if nodes owned by other robots include a potential goal then
8: return potential goal node regardless of ownership with optimal dispersion score;
9: else

10: no destination found;
11: end if

As a first step, an explorer tries to explore sibling nodes close to its position in the

frontier tree in an effort to explore a local area thoroughly. If such a sibling node is

found, it is returned as the selected frontier. If no such node is present, then ownership

and dispersion-based techniques are used. The choice of a frontier within an ownership

group is decided by the dispersion score (DS) given by Eq.(5.1).

DM(frontier,robot) = ED(frontier, robot)− Avg(ED(frontier, peer)) (5.1)

Where ED is Euclidean distance, and the average is taken ∀peer ∈ peers.

A lower dispersion score is better for a frontier. The dispersion score prioritizes fron-
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tiers closer to the explorer while preferring those that have a greater average distance

from other explorers (peers). This directly causes them to fan out from any given start-

ing position and during normal exploration. The dispersion score is used to decide on a

frontier within a preference group. All frontiers in the group have their dispersion scores

calculated, and the one with the lowest value is picked as the next frontier to be explored.

Robots classify potential targets under three categories - self-owned, unowned, and peer-

owned, in order of preference during frontier selection.

This helps each robot to demarcate an ‘area’ of its own. The demarcation of the area

prevents explorers from converging in a small area. Further frontiers generated while

exploring an area are also owned by the same robot, as the robot claims ownership of

these frontiers in the self-synchronization phase. Robots also accept other explorers’

areas during peer-synchronization by accepting advertised data specifying frontiers and

their owners. An explorer first looks for a potential target in its own area. When these

are exhausted, it attempts to set up a new area by heading for an unowned frontier and

claiming it as its own. Unowned frontiers are formed when one robot in transit shares its

map with another before processing and claiming the frontiers it is generating on the way.

To the second robot, which cannot claim this frontier either, such a node is unowned. On

opting to explore an unowned frontier, a robot sets itself as the owner of the frontier and

explores further from there on within a self-owned area. Finally, when a robot finds itself

with no other choice, it joins another peer in the peer’s area by picking a peer-owned

frontier. It then sets itself as the frontier’s new owner and tries to carve out a new domain

with the new frontiers formed by exploring that frontier. This is a last resort, as it causes

explorers to work in an area too small for them to use their independent exploration

capacities efficiently. In the following section, the simulation framework is described.

Algorithm 5.10 is used to calculate the dispersion metric that is used to select a fron-

tier within a preference group. First, the dispersion scores of all of the frontiers in the

group are calculated, and then the frontier with the lowest value is chosen as the next

frontier to be explored. A better score for a frontier is thought to have a lower dispersion

metric. The dispersion metric precedes frontiers closer to the robot but prefers frontiers at
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Algorithm 5.10 Dispersion Score
Let self-num is representing the robot-ID
Let the node is representing the frontier-tree node
Let the score is representing the Dispersion Score

1: score← distance between current pos[self num] and node;
2: total dist← 0;
3: counter ← 0;
4: for i← 0 to size(current pos) do
5: if i = self num or current pos[i] = −1 then
6: continue;
7: end if
8: total dist← total dist+ distance between current pos[i] and node
9: counter ← counter + 1;

10: end for
11: if counter = 0 then
12: return score;
13: end if
14: avg dist← total dist/counter;
15: score← score− avg dist;
16: return score;

a greater average distance from other robots (peers). This causes them to spread out from

any starting position while they typically explore new territory. After the explorers have

located their frontier, the next step is to use the jump point search path planning tech-

nique to begin moving toward the frontier. This step is the next in the process. During

the time that they are traveling, they come across other explorers and begin the process

of communicating with each other.

5.2.3 Communicator

Algorithm 5.11 Communicator Behaviour
1: while robot is not finished do
2: sleep for 1000 milliseconds;
3: Assimilate all available data;
4: Broadcast a snapshot of the current state and data to all robots currently in the

range;
5: end while

The communication loop algorithm, as shown in 5.11, is an independent and persis-
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tent component that runs continuously as the robot’s communicator. Unlike the process-

ing loop that runs after a particular task, the communication loop runs at a fixed periodic

interval. The primary task of the communicator is to assimilate data from received mes-

sages and broadcast new information to other robots via their communicators. The robots

access their communicators to obtain this information. Communication is restricted to

nearby robots under range-based communication or visible robots for line-of-sight com-

munication, depending on the communication model used. In the case of range-based

communication, the broadcast step only contacts those robots in range and deposits a

message in its message queue. A message contains information about the sender, such

as:

1. Robot-ID

2. Type (relay/explorer)

3. Stopping flag (set / not set)

4. Set of robots whose existence is known

5. Timestamp of latest known position data for each robot

6. Latest known position of each robot

7. Latest known goal of each robot

8. Known frontiers

9. Owner for each known frontier

10. Maps

The robot’s basic information and state are provided by numbers 1 and 2 respectively.

Number 3 is used to check the completion status of all tasks. Number 4 is useful when

multiple robots begin in different locations but their existence is known. Number 5 is

utilized to gather data on number 6 and its timestamps. Numbers 6 and 7 are used to

calculate the dispersion metric with the help of a robot’s position and goal. Number 8 is

the frontier advertisement and number 9 offers ownership information for it. Number 10

is used to advertise the known maps that need to be assimilated.

Initializing the communicator, it accesses the physical simulator for sending mes-

sages. Additionally, the communicator generates a ”current” message that conforms to
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the previously described message structure and serves as a nearly comprehensive record

of the communicator’s state. This message is regularly updated and broadcasted to pro-

vide the most current data available to the communicator. When the robot needs to inquire

with the communicator, it requests a snapshot of this message. Semaphores are used to

regulate access to this structure due to its heavy cross-thread utilization. The commu-

nicator also manages a message queue, a basic buffer that stores messages until they

are processed. Inputs to the queue come from the Physical simulation, which manages

communication, and the robot associated with the communicator, whose data (a pseudo-

message) is produced at regular intervals. After processing the data, the queue can be

cleared.

The workflow of the communicator is described in Figure 5.1. The ID number of

the robot is also accessible to the communicator, along with a hash set used to monitor

frontiers and rendezvous information regarding other robots. This information encom-

passes details such as whether a given robot should be met, the positions of both the

own and peer robots, goals, maps from the previous meeting, and the time of the last

meeting. Each peer’s information is stored separately and is not included in the shared

message(current). The communicator executes a basic main loop once every second, dur-

ing which it handles incoming messages and disseminates the resultant processed state

message via broadcasting.

Figure 5.1: Workflow of Communicator

The communication process regularly encapsulates the latest data from the message

queue, clears it and broadcasts a message with updated information using algorithm 5.12.

As a first step, the robot’s data is added as a fake message for simplicity to ensure that

131



Chapter 5: D-MRFTE 132

the robot’s information is available during assimilation. The procedure also incorporates

robots met for the first time, allowing for the dynamic addition of explorers and relays to

the environment. To handle this, the robot will note the peer’s existence and set up timers

unless both self and peer are explorers.

Algorithm 5.12 Encapsulate Latest Data
Let Q be the message queue.
Let T be the set of rendezvous timers.
Let P be the set of all peers.
Let S be the set of peers whose stopping flag has been set.
Let L be the set of all peers’ latest known positions.
Let G be the set of all peers’ latest known goals.
Let F be the set of all frontier advertisements.
Let M be the combined map.

1: Q← own robot’s data;
2: Set rendezvous timers for newly met robots:
3: Disable rendezvous for peers whose stopping flag has been set:
4: for each peer p in S do
5: Tp ←∞;
6: end for
7: for each peer p do
8: log p’s latest position and goal in L and G, respectively;
9: end for

10: for each message m in Q do
11: update L, G, and S with the latest information;
12: end for
13: for each frontier advertisement f do
14: add f to F ;
15: end for
16: M ← combine and update maps using L, G, and F ;
17: Q← ∅

The procedure then disables further rendezvous for peers who have set their stop flag,

as per the termination procedure. It logs the robot’s and the peer’s current locations, goals,

and maps for future use while deciding rendezvous points. The latest information from

across messages is used to obtain the best guess for every robot’s position and goals using

the timestamps attached to the data. Maps are merged and updated, and received frontier-

owner advertisements are added to the communicator’s frontier-owner advertisement.
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5.2.3.1 Assimilation

Assimilation, also known as Encapsulation, is a process that involves scanning all the

available messages and obtaining the latest message system state to be used before pro-

cessing. During this procedure, data is obtained from the robot as a pseudo-message,

which is the robot’s input to its communicator. The communicator then uses its access to

the robot to read its status, maps, frontiers, and other relevant data. The pseudo-message

is timestamped at this point, and it is treated identically to any message.

To combine the data, the procedure first updates rendezvous data. Any robot from

whom a message was received in the current iteration is treated as being met. Data trans-

fer is possible in three types: explorer-relay, relay-relay, and explorer-explorer. How-

ever, explorer-explorer meets are ignored as no further rendezvous would be planned in

this case. These are strictly incidental meets. This opportunity is also used to observe

the peer’s stopping flag. If this is set, further meetings with that peer who is disabled.

Other meeting data stored are meet time (timestamp is taken) and own and peer posi-

tions, goals, and maps. Any robots whose data is received for the first time are noted, and

their positions, etc., will subsequently be tracked. The latest position data on each robot

is picked from across the messages (each has a complete vector of their opinions of each

robot’s positions). The same is done for goals. The maps advertised by each message

are accumulated and merged messages. The robot’s stopping flag is observed from the

pseudo-message and updated in the current.

Finally, frontiers (and owners) are processed. Every frontier received is hashed (with

the product of their coordinates) and compared with a set to check if it has previously

been observed. If so, the frontier is ignored; this is useful when robots remain in commu-

nication over a stretch and re-advertise the same data when obsolete frontiers continue to

be advertised by a robot unaware of their exploration, etc. Otherwise, the frontier-owner

pair is added to the communicator’s advertisement for further broadcast. The message

queue can now be safely cleared.
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5.2.3.2 Snapshot

The communicator has a feature that allows it to create a snapshot of its current message.

The robot uses this feature to access the data and simulate message transmission using

the physical simulator. The copy of the message received by the robot is then added

to the receiver’s message queue. This process is also used to update the robot’s meet

urgency parameters. To update the robot’s meet urgency parameters, its copy of previous

meet timestamps is compared to the communicator’s. If they are different (i.e. if the

communicator received a communication that the robot is not aware of), the robot’s timers

for that rendezvous are reset, and the meet time is updated. If the meet validity of any

robot has changed (e.g. if a new relay was discovered or a relay found an explorer with a

stopping flag set), the robot’s copy is also updated accordingly.

5.2.3.3 Advertisement

The communicator maintains an ’advertisement’ of frontiers and their owners. The com-

municator has heard of this set of frontiers, which have not yet been confirmed as ex-

plored. When the communicator comes across a new frontier, either as a result of updates

from its robot or by reading other frontier advertisements, these are considered for addi-

tion to the advertisement. Whenever a frontier is added to the advertisement, it is hashed

(using the product of the frontier’s coordinates), and the hash is added to a hash set.

This prevents the advertisement of multiple copies of the frontier and helps ensure that

the communicator does not re-advertise a frontier that was removed (due to exploration).

Deletion of frontiers from the advisement occurs when the associated robot observes,

upon processing the latest map, that the frontier no longer exists and has been explored.

5.2.4 Physical Simulator

The Physical simulator is a global, independent thread that simulates the communication

medium. It does this by maintaining a connectivity matrix between robots. Given the

communication model, their positions, and the map, this matrix is queried to check if any

two robots can communicate. Upon initialization, the simulator has complete access to

the map; this is required to evaluate whether the communication is possible.
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5.2.4.1 Workflow of Physical Simulator

The simulator runs a loop every 0.9 seconds (a frequency marginally higher than the

communicators’ central loop frequency). Each iteration considers every pair of robots,

decides whether they may communicate, and updates this as a boolean in the matrix. To

do this, it feeds the actual map and the robots’ positions to the communication model,

which takes a decision. The matrix also prohibits communication with an existing robot.

When the matrix is recalculated, a semaphore blocks a broadcast call from getting in.

5.2.4.2 Communication Models

We have incorporated two communication models: range-based and line-of-sight (LOS)

communication. In range-based communication, we calculate the Euclidean distance

between a pair of robots and compare it to a pre-defined limit to establish communication.

In LOS communication, we first establish a limit on the communication range, and if it is

not exceeded, assume a straight line between the two robots. However, communication

cannot occur if there are obstructions along the line. Instead of examining every point, we

make certain assumptions about the obstacles, such as assuming that each obstacle is at

least one meter in any dimension. Therefore, we divide the line into one-meter segments

and test each segment’s endpoints to determine if they are obstacles. If none of these

endpoints act as barriers, communication can occur.

5.2.4.3 Broadcast and Transmit

The simulator object allows independent communicator threads to access broadcast and

transmit procedures, using their connection to the simulator to invoke these functions. In a

broadcast call, a communicator requests that its current message be sent to all other com-

municators within range. This process involves repeatedly invoking the transmit function

for each robot and potential peer. The transmit function verifies if the desired pair of

endpoints can communicate by checking the matrix. If communication is possible, the

function takes a snapshot of the sender’s current message and adds it to the receiver’s

message queue. Semaphores are utilized to access the matrix and the receiver queue and,

by the snapshot function, to access the sender’s message.

135



Chapter 5: D-MRFTE 136

5.3 SIMULATION FRAMEWORK

We conducted simulations using the Player/Stage simulator, varying team sizes to include

4, 6, and 8 Pioneer3-AT robots. The Pioneer3-AT is a four-wheel differential drive robot

equipped with a 2D LiDAR sensor featuring a 240-degree field of view (FoV). However,

during our experiments, we restricted the sensing range to six meters. Simulations were

performed on three distinct maps. The first map depicted a large indoor environment

measuring 900 x 600 pixels, depicted in Figure 5.2(a). The second map portrayed a

more cluttered indoor environment with dimensions of 900 x 900 pixels, shown in Figure

5.2(b). The third map represented a large hospital environment measuring 1800 x 900

pixels and is shown in Figure 5.2(c). In these maps, the white region denoted free space

for exploration, while black lines represented walls and obstacles. The map’s resolution

was set at 0.03 meters per pixel. The robot configurations included two state-of-the-art

communication models [60] for inter-robot information sharing, namely:

• Disk-based communication

• Line-of-sight-based communication

We conducted separate analyses for the simulation results of D-MRFTE, focusing on

each communication model. The performance of D-MRFTE was measured based on two

metrics:

• Completion Time - It is the time the explorer robot team takes to explore the un-

known environment completely. The exploration is complete when no more fron-

tiers are left for any explorer robot.

• Cumulative Distance Traveled - It is the sum of the distance traveled by each

explorer robot until the whole map is explored and no more frontiers are visible to

any explorer robot.

It should be noted that the completion time comprises sensor data acquisition, pro-

cessing time, robot navigation, and moving towards the rendezvous for information ex-
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(a) Map-1: Uncluttered Indoor Environment (b) Map-2: Cluttered Indoor Environment

(c) Map-3: Hospital Indoor Environment

Figure 5.2: Various Types of Environment

change with relays. Also, robots frequently interfere with one another. Consequently, the

planner loses time detouring. The completion time metric is, therefore, not proportional

to the distance traveled by the robot team.

During the exploration of the environment by the explorer robots, we assess the re-

dundancy of their coverage area. This assessment is done at each step, but we showcase
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only a few steps. The explorers’ local map is used in this process.

5.4 Complexity Analysis of D-MRFTE

We are only considering the task assignment algorithm in this context.

5.4.1 Algorithm 5.6

It operates in O(m) time complexity, primarily driven by conditional checks and basic

operations. The algorithm handles target assignment based on urgency and availability of

meetups. Here, m is the number of nodes.

5.4.2 Algorithm 5.7

Operates in O(n) time complexity where n is the number of robots, as it involves scanning

robot states and selecting based on timer values and types.

5.4.3 Algorithm 5.8

Operates in O(1) time complexity, focusing on determining meetup locations based on

accessibility and robot types.

5.4.4 Algorithm 5.9

Operates in O(m) time complexity where m is the number of nodes, as it involves select-

ing optimal goals based on node ownership and dispersion scores.

Since Algorithm 5.7 complexity is driven by n (number of robots) and Algorithm 5.9

complexity by m (number of nodes), the overall complexity would be dominated by the

more significant of these two factors. Therefore, the overall complexity can be expressed

as O(max(n,m)), where n is the number of robots and m is the number of nodes. This

notation captures the scalability of the system with respect to handling varying numbers

of robots and nodes.
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5.5 RESULTS AND DISCUSSION

This section displays the results obtained from experiments conducted on three differ-

ent maps: Uncluttered, Cluttered, and the Hospital indoor environment shown in Figure

5.2(a), Figure 5.2(b), and Figure 5.2(c), respectively. We performed a set of 100 simula-

tion runs for the two communication models, i.e., the Disk-based communication and the

Line-of-Sight based communication model involving:

• D-MRFTE+0R: Multiple Explorers without Relays

• D-MRFTE+1R: Multiple Explorers - Single Relay

• D-MRFTE+2R: Multiple Explorers - Two Relays

We compared the results of D-MRFTE+0R, D-MRFTE+1R, and D-MRFTE+2R with

two state-of-the-art approaches., i.e., Voronoi Graph-based Segmentation (VGS) [8], and

MRFTE [17]. In [17], we showed that MRFTE is superior to seven state-of-the-art algo-

rithms for unknown area exploration while VGS [8] was second best. However, the main

limitation of both MRFTE and VGS is that they are centralized and assume continuous

global network connectivity. Nevertheless, MRFTE and VGS efficiently complete the

unknown area exploration task by achieving global dispersion. Referring to the graphs of

Figure 5.3-5.14, one common observation, irrespective of the communication model and

the algorithms, is that the completion time and the cumulative distance traveled by the

robot team decreases by increasing the number of robots. In the following, we present

and discuss the results obtained for the specific communication model by varying the

robot team size.

5.5.1 Disk-based Communication

The Disk-based Communication (DBC) model in multi-robot systems allows the robots to

communicate and exchange information with their peers within a pre-defined maximum

distance, irrespective of the presence of obstacles. The simulation results obtained under

this model are shown below. The results for the uncluttered map can be seen in Figure
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5.3 and Figure 5.6. For the cluttered map, Figure 5.4 and Figure 5.7 show the outcomes.

Lastly, the Hospital map results are presented in Figure 5.5 and Figure 5.8.

Figure 5.3: Disk Based Communication Model - Exploration Completion Time for
Uncluttered Map

We observed that D-MRFTE+0R, a multi-explorer system without relay assistance

for information exchange, exhibits the poorest performance compared to all other ap-

proaches on both metrics. This occurs when robot peers frequently move out of com-

munication range, leading to intermittent connectivity and, consequently, redundant ex-

ploration. Redundant exploration results in increased exploration completion time and

cumulative distance traveled. Furthermore, introducing one relay (D-MRFTE+1R) im-

proves the situation compared to D-MRFTE+0R. However, one relay cannot entirely

eliminate frequent disconnections and performs less favourably than all other approaches

on both metrics. When two relays are introduced (D-MRFTE+2R), interesting results

emerge. As shown in Figure 5.3, D-MRFTE+2R with two explorer robots cannot out-

perform VGS and MRFTE. Nevertheless, with four explorer robots, it matches VGS’s

performance. With six and eight explorer robots, it surpasses VGS by 13.4% and 14.2%,

respectively, but falls short of MRFTE. A similar conclusion can be drawn for cumulative
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Figure 5.4: Disk Based Communication Model - Exploration Completion Time for
Cluttered Map

Figure 5.5: Disk Based Communication Model - Exploration Completion Time for
Hospital Map
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Figure 5.6: Disk Based Communication Model - Cumulative Distance Travelled for
Uncluttered Map

distance traveled, as illustrated in Figure 5.6.

In cluttered environments, see in Figure 5.7, D-MRFTE+2R performs almost as well

as or better than VGS and MRFTE with six and eight explorers. This improvement, be-

sides addressing intermittent communication issues, is attributed to the increased number

of explorer robots and two relay robots, leading to frequent meetings between explorer

robots and relays. D-MRFTE+2R successfully mitigates performance penalties suffered

by other approaches. Through experimentation, we verified that the proposed approach,

D-MRFTE, is equally capable as centralized MRFTE when three relay robots and more

than four explorer robots are employed. Thus, D-MRFTE achieves global dispersion.

The time required to complete an exploration task depends not only on traversing the

area but also on waiting time, idle time, and the time spent by the robots in linear and an-

gular movements. For example, if four robots are assigned a task and one finishes before

the others, it must wait for the others, increasing the standard deviation. However, as the

number of robots increases, each robot’s travel distance decreases, reducing the standard

deviation.

In this study, we have provided four maps for eight explorers without relays, which are
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Figure 5.7: Disk Based Communication Model - Cumulative Distance Travelled for
Cluttered Map

Figure 5.8: Disk Based Communication Model - Cumulative Distance Travelled for
Hospital Map
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(a) Step-1 (b) Step-5

(c) Step-7 (d) Step-11

Figure 5.9: Number of Steps with Eight Explorers without Relay under Disk Based
Communication Model

(a) Step-1 (b) Step-5

(c) Step-7 (d) Step-11

Figure 5.10: Number of Steps with Eight Explorers with One Relay under Disk Based
Communication Model
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shown in Figure 5.9 and Figure 5.17. Additionally, we have provided four maps for eight

explorers with a single relay, which are shown in Figure 5.10 and Figure 5.18. The maps

have been color-coded to indicate redundant areas. The color scale is as follows: Dark

blue represents unexplored or obstacle areas; blue represents areas explored by a single

robot; light blue represents areas explored by two robots; the sky color represents areas

explored by three robots; light yellow represents areas explored by four robots; yellow

represents areas explored by five robots; orange represents areas explored by six robots;

red represents areas explored by seven robots; and dark red represents areas explored by

all eight robots.

5.5.2 Line-of-Sight based Communication

Line-of-sight-based communication (LoSC) in multi-robot systems enables communica-

tion and information exchange only when the distance between two robots is within their

communication range, and there are no obstacles blocking their line of sight. The sim-

ulation results for this model are presented below, with results for the uncluttered map

displayed in Figure 5.11 and Figure 5.14, those for the Cluttered Map in Figure 5.12 and

Figure 5.15, and outcomes for the Hospital map in Figure 5.13 and Figure 5.16.

In comparison with the Disk-Based Communication (DBC) model, the LoSC model

limits robots’ opportunities to communicate and exchange information, leading to redun-

dant exploration. Consequently, algorithms operating under the LoSC model perform

poorly in terms of completion time and distance traveled. This is evident in the results

shown in Figure 5.11 and Figure 5.14, where DMRFTE+2R with eight explorer robots

outperforms VGS by 9.09%. This contrasts with the DBC model, where DMRFTE+2R

with six explorer robots sufficed. In environments with numerous obstacles, such as those

depicted in Figure 5.12 and Figure 5.15, and in-hospital scenarios, as shown in Figure

5.13 and Figure 5.16, robots face communication difficulties when using LoSC due to the

obstacles present. DMRFTE+2R exhibits similar performance levels when compared to

both VGS and MRFTE.

Examining the exploration steps, starting from step 1 in Figure 5.17(a) or Figure
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Figure 5.11: Line-of-Sight Based Communication Model - Exploration Completion
Time for Uncluttered Map

Figure 5.12: Line-of-Sight Based Communication Model - Exploration Completion
Time for Cluttered Map
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Figure 5.13: Line-of-Sight Based Communication Model - Exploration Completion
Time for Hospital Map

Figure 5.14: Line-of-Sight Based Communication Model - Cumulative Distance
Travelled for Uncluttered Map
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Figure 5.15: Line-of-Sight Based Communication Model - Cumulative Distance
Travelled for Cluttered Map

Figure 5.16: Line-of-Sight Based Communication Model - Cumulative Distance
Travelled for Hospital Map

148



Chapter 5: D-MRFTE 149

(a) Step-1 (b) Step-5

(c) Step-7 (d) Step-11

Figure 5.17: Number of Steps with Eight Explorers without Relay under Line-of-Sight
Based Communication Model

(a) Step-1 (b) Step-5

(c) Step-7 (d) Step-11

Figure 5.18: Number of Steps with Eight Explorers with One Relay under Line-of-Sight
Based Communication Model
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5.9(a), where eight explorers begin from different or nearby locations, progressing to

step 5 in Figure 5.17(b) or 5.9(b) with visible sky colors indicating increased redundancy.

By step 7 in Figure 5.17(c) or Figure 5.9(c), more yellow is observed, indicating fur-

ther redundancy from robots exploring previously traversed areas. In the final step-11,

observed in orange-red in Figure 5.9(d) and orange, red, and dark red colors in Figure

5.17(d), it suggests that almost all robots have covered that area. Introducing a relay to

assist the explorers can reduce redundancy during exploration, as shown in Figure 5.10(d)

and Figure 5.18(d). It has been observed that concerning redundancy, the line-of-sight-

based approach provides more redundancy than the disk-based approach, with or without

a relay.

5.6 SUMMARY

In this chapter, a novel Decentralized Relay Based Approach, viz., D-MRFTE, for un-

known area exploration using a team of mobile robots is suggested. This work is an

extension of our previous work MRFTE [17] approach. The novelty of the proposed ap-

proach is in the process of information dissemination in the multi-robot network under

the presence of communication restrictions using relay robots. The relay robots sched-

ule meetups at periodic intervals to ensure eventual consistency and completeness of lo-

cally distributed information in the robot network. Version vectors are used as a state

update mechanism for the robots. The proposed approach gives superior performance

compared with two other state-of-the-art approaches, i.e., [17], and [8] under, i.e., Disk-

based and Line-of-Sight-based communication models. We conducted the simulations

in the Player/Stage simulator by varying the robot team size. It has been observed that

the robots perform the exploration more efficiently under a Disk-based communication

model irrespective of the exploration approach.
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CONCLUSIONS AND FUTURE SCOPE

OF WORK

6.1 CONCLUSIONS

Multi-robot systems have been observed working together in various situations to accom-

plish complex tasks that would be challenging or impossible for a single powerful robot

to achieve alone. This concept involves dividing smaller sub-problems among individual

robots while allowing them to interact and exchange information. Simple robots can be

easily constructed and programmed to collaborate toward a common objective, making

multi-robot systems a cost-effective solution compared to developing a single expensive

robot with numerous capabilities. The group architecture can be centralized, wherein the

base station/central controller plans for all the robots. However, they have a single point

of failure and can introduce synchronization delays, as the robots might have to wait for

other robots to finish their tasks before moving on to the next task. To address these

issues, decentralized architectures are preferred. They have no single point of failure,

and robots can move independently, eliminating the issue of waiting time. Coordination

plays a pivotal role in centralized and decentralized multi-robot systems, enabling mul-
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tiple robots to execute numerous tasks efficiently. Moreover, our research has unveiled

the indispensability of effective inter-robot communication when employing a decentral-

ized or distributed approach to tackle the challenge of exploring terrain with multiple

robot systems. This thesis presents an empirical investigation into online terrain coverage

(OTC) by multi-robot teams while operating within communication range constraints in

Chapter-3. Online terrain coverage is yet another critical task that can be solved using

multi-robot systems. The primary requirement of the task is to cover an unknown terrain

completely. The state-of-the-art methods assume that communication is omnipresent.

This assumption is unrealistic in the real world, so we have dropped it. Further, five

state-of-the-art multi-robot OTC approaches were re-implemented in simulation and on

a physical robot test bed. We began with conducting a comparative investigation of the

following five state-of-the-art approaches for online terrain coverage, viz.,

1. Backtracking Spiral Approach – Cooperative Multi-Robot (BSA-CM) [1]

2. Spiraling and Selective Backtracking (SSB) [2]

3. Boustrophedon and Backtracking mechanism (BoB) [3]

4. Multiple Depth First Search (MDFS) [4]

5. Brick and Mortar (BnM) [4]

The performance of the five approaches mentioned above is empirically compared for the

amount of redundant coverage carried out by each one of the algorithms. However, the

MDFS and BnM approaches show premature termination for the communication ranges

less than 12 meters because of their inability to complete the coverage. Therefore, both

of them are excluded from the comparison. For smaller communication ranges of robots,

i.e., less than or equal to four meters, the redundant coverage for BSA CM and SSB

approaches exceed the BoB by 4% and 11%, respectively. Whereas, for larger communi-

cation ranges, i.e., more than four meters, the SSB and BSA CM perform better than the

BoB. In particular, for a team of four robots, the SSB and the BSA-CM perform better by
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14.8% and 9.60%, respectively, than the BoB in terms of redundant coverage. Similarly,

for a team of six robots, the performance of SSB and BSA CM further increased to 20.8%

and 18.93% than the BoB.

In Chapter-4, we proposed a centralized coordination algorithm named Multi-Robot

Unknown Area Exploration using Frontier Trees (MRFTE). We re-implemented seven

other state-of-the-art methods to compare them with MRFTE. MRFTE exhibits superior

performance compared with the existing state-of-the-art approaches. Although MRFTE

is a highly efficient algorithm, it is centralized and works with the premise that the robot

peers can always communicate with the base station. Previously, the Frontier tree data

structure was used in single robot exploration to memorize frontiers, their positions, ex-

ploration state, and the map. This tree could be queried to decide on further exploration

steps. In our approach, we take the concept further for multi-robot exploration. Vital

characteristics of the proposed method are enumerated below:

1. Groups of robots use the frontier tree data structure to maintain the exploration

state of the frontiers, their positions, and the occupancy grid map.

2. MRFTE allows the robots who belong to the same group to communicate through

their shared frontier tree. When maps of two groups overlap, these teams are inte-

grated, and their frontier trees are merged. Finally, exploration goals are assigned

to the individual robots by selecting nodes from the combined frontier tree through

a novel strategy.

3. We have compared our work with seven state-of-the-art approaches that are listed

below:

(a) Nearest Frontier Heuristic (NF) [5]

(b) Information Gain Based Heuristic (D+IG) [6]

(c) Cost Utility Based Heuristic (C+U) [7]

(d) Voronoi Graph-Based Segmentation (VGS) [8]
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(e) Goal Assignment Using Distance Cost (GADC) [11]

(f) Multiple Rapidly Exploring Random Trees (M-RRT) [9]

(g) Information Driven RRT (ID-RRT) [10]

4. We have calculated Exploration Completion Time (ECT) in seconds and Cumula-

tive Distance Travelled (CDT) in meters for all the approaches, including MRFTE

in both uncluttered and cluttered environments

Table 6.1: Comparison of Exploration Completion Time (ECT) in seconds and Cumula-
tive Distance Travelled (CDT) in meters for Different Approaches with Different Num-
bers of Robots in Uncluttered Environment

S.No. Approaches 2 Robots 4 Robots 6 Robots 8 Robots
ECT CDT ECT CDT ECT CDT ECT CDT

1 NF 642 426 585 365 483 303 393 283
2 D+IG 523 363 485 345 422 282 364 224
3 C+U 503 343 415 325 345 245 322 202
4 **VGS 381 301 321 261 261 221 193 153
5 GADC 462 332 422 292 365 235 284 174
6 M-RRT 424 324 341 281 283 243 224 164
7 ID-RRT 443 313 382 302 324 254 242 167
8 *MRFTE 364 284 293 223 221 201 181 131

Table 6.2: Comparison of Exploration Completion Time (ECT) in seconds and Cumula-
tive Distance Travelled (CDT) in meters for Different Approaches with Different Num-
bers of Robots in Cluttered Environment

S.No. Approaches 2 Robots 4 Robots 6 Robots 8 Robots
ECT CDT ECT CDT ECT CDT ECT CDT

1 NF 954 664 825 524 761 481 742 382
2 D+IG 821 581 723 483 644 384 604 344
3 C+U 753 463 622 391 521 361 484 324
4 **VGS 645 425 595 365 422 282 385 245
5 GADC 681 521 652 452 622 402 524 304
6 M-RRT 855 445 742 422 723 343 643 283
7 ID-RRT 884 554 791 481 741 441 684 324
8 *MRFTE 561 381 424 364 364 293 284 234

In table 6.1 and table 6.2, the symbol *MRFTE represents the best approach, while

**VGS represents the second-best approach. From these results, we can conclude
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that MRFTE yielded better results than other existing state-of-the-art approaches.

These improved results are attributed to the fact that MRFTE is especially capable

of quickly dispersing the robot team in an unknown environment, completing the

exploration task more efficiently.

To address this limitation of MRFTE in Chapter-5, we developed a Decentralized

Relay-Based Approach for Multi-Robot Unknown Area Exploration termed DMRFTE,

which is at par with MRFTE. This approach is an extension of our previous work, the

MRFTE approach [17]. The novelty of this new approach lies in how information is

shared in the multi-robot network, especially when the communication range is restricted.

To overcome this, relay robots are used to schedule meetups between the robots at regular

intervals to ensure that all the information in the robot network is consistent and complete.

The robots use version vectors to update their states.

1. In this study, we used two different models to restrict the communication range

[121, 148, 158, 163, 164, 191].

(a) Disk-based communication (DBC) model

(b) Line-of-Sight-based communication (LoSC) model

2. In addition, We used three distinct robot team compositions:

(a) D-MRFTE+0R: Multiple explorers without relays

(b) D-MRFTE+1R: Multiple explorers with one relay

(c) D-MRFTE+2R: Multiple explorers with multiple relays

3. Finally, we have compared DMRFTE with the following state-of-the-art approaches.

(a) Voronoi Graph-Based Segmentation (VGS) [8]

(b) MRFTE [17]

4. We have calculated the Exploration Completion Time (ECT) and Cumulative Dis-

tance Travelled (CDT) for all the approaches in a large environment by employing
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DBC and LoSC models. Also, we have generated the heat map while the explo-

ration progresses to display the redundant area explored by multiple robots without

relays and with one relay. Significant results obtained in the simulation are de-

scribed below:

• Disk-based communication model -

Regarding ECT, We found that D-MRFTE+0R is the worst-performing method,

but D-MRFTE+1R showed some improvements compared to D-MRFTE+0R.

Furthermore, D-MRFTE+2R performed worse than VGS and MRFTE even

after adding two relays, especially when there were two and four explorer

robots. Despite this, when there were six and eight explorer robots, D-MRFTE

+2R performed better than VGS by 13.4% and 14.2%, respectively. But, it is

inferior to MRFTE. We can conclude that adding more relays with explorer

robots in the environment can improve performance. When there were six

and eight explorer robots, D-MRFTE+2R outperformed VGS by 12.5% and

11.1%, respectively, in the CDT. However, it was still inferior to MRFTE.

• Line-of-sight-based communication model -

In a multi-robot system utilizing the Line-of-Sight Communication (LoS)

model, two robots can only exchange information within each other’s com-

munication range and have an unobstructed line of sight. This limitation often

results in limited opportunities for communication among the robots, poten-

tially leading to redundant exploration of the environment. Consequently,

algorithms operating eunder the LoSC model may not be as efficient regard-

ing completion time and distance covered. We have made some observations

regarding ECT and CDT. Our findings indicate that when using the DM-

RFTE+2R approach with eight explorer robots, it performs better than the

VGS model by 9.09% for ECT and 6.6% for CDT. It is important to note

that this performance difference is distinct from the DBC model, where using

DMRFTE+2R with only six explorer robots was sufficient.
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We found that incorporating relays alongside explorers for area exploration in a communi-

cation range-restricted environment can significantly reduce redundancy and accomplish

the exploration task more efficiently than solely relying on multiple explorers without a

relay.

6.2 SCOPE FOR FUTURE WORK

In the future, we envision expanding upon this thesis to address the following limitations

inherent in the existing research conducted in this thesis:

• In terms of communication, our current system does not incorporate any commu-

nication models for addressing packet drops/losses during the communication pro-

cess. Key factors such as fading (interference caused by objects like walls in the

environment), path loss (communication degradation due to long distances between

robots), and bandwidth saturation are yet to be addressed.

• In this thesis, we have studied and suggested coordination algorithms for a team of

homogeneous autonomous robots. In our future work, we intend to design and im-

plement decentralized coordination approaches for a fleet of heterogeneous mobile

robots.

• Also, we will focus on addressing real-world scenarios involving robot malfunc-

tions (Byzantine failures) and communication failures.
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