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Abstract

Photonics plays a pivotal role in advancing the field of topological insulators by

enabling the synthetic preperation of these materials, which may not exist naturally. The

quasi-one-dimesioanl (quasi-1D) systems which can be fabricated through photonics can

show more exotic propeties in the presence of a time-dependent periodic driving. These

periodically driven systems are studied within the Floquet framework. The Floquet

formalism influences the static system by breaking certain system’s symmetries and

induces new topological propeties in the static systems. This thesis emphasizes on the

theoretical study of quasi-1D systems formed via the simplest 1D topological insulator,

Su-Schrieffer-Heeger model (SSH).

In the beginning of the thesis, we provide an introduction to topology, topological

insulators, their applications and the quasi-1D model followed by the methodology to

calculate the effective Hamiltonian and topological invariants. In this thesis, we analyzed

two different quasi-1D models. The first quasi-1D model is called the extended SSH

model or E-SSH model, where all the hopping amplitudes of the SSH chain along with

the next nearest neighbor hopping are modulated by a cyclic parameter. This cyclic

parameter is considered as a synthetic dimension, and the E-SSH model is treated as a

two-dimensionalmodel; hence the Chern number is the topological invariant to determine

the topological phases. We study this model by applying a continuous sinusoidal driving

both in the nearest neighbor and the next nearest neighbor and compute the effective

Hamiltonian using the Floquet replica method. The Floquet E-SSH model is cherished

by the topological phases with the high Chern number.

Then, we study another quasi-1Dmodelwhich is constructed by arranging SSH chains

in the H-direction and becomes a 2D weak topological insulator. The E-SSH model can

be turned into the stacked geometry by promoting the cyclic parameter to another actual

momentum. We allow hopping so that this # stacked SSH model preserves all three



fundamental symmetries (chiral, time-reversal and particle-hole). For this undriven

model, we catalog the topological phases by systematic breaking of these symmetries

where breaking of the symmetries in the system is introduced by allowing different

hopping in the system.

This is followed by a study of the periodically driven # stacked SSH model. We use

circularly polarized light as a time-dependent periodic drive. Again, we use the Floquet

replica method to derive the effective Hamiltonian. In the presence of driving, this model

also exhibits the topological phases with the high Chern number. The role of the linearly

polarized light along G− and H-directions are also investigated. We also study this model

with an elliptical periodic drive. Finally, we conclude this thesis with a summary and

some future directions.



Preface

About the thesis
This thesis presents a study on the exotic topological properties of quasi-1D systems.

The quasi-1D systems which are constructed from the 1D topological insulators. The

new topological properties can be induced in the system either via breaking some of

the system symmetries or by applying an external time-dependent periodic driving

which eventually leads to the breaking of the system’s symmetries. The time-dependent

periodically driven systems are known as Floquet systems. The Floquet formalism is a

theoretical framework to compute the effective Hamiltonian which is a time-independent

Hamiltonian. The trade-off to obtain this time-independent Hamiltonian is that now one

has to solve an infinite dimensional matrix. The Floquet replical method facilitates us

to work in high frequency regime as well as in the low frequency regime. We choose

quasi-1D model beacuse only a few investigations has been done on these models. This

thesis presents two quasi-1D models : extended Su-Schrieffer-Heeger (E-SSH) and #

stacked SSH model. The first model E-SSH model is constructed by modulating all the

nearest neighbor and next nearest neighbor hopping amplitudes by a cyclic parameter

which plays the role of another but synthetic dimension. This thesis studied the E-SSH

model with a continous sinusoidal driving. In this study, we obtain exotic Floquet

topological phases with the high Chern number. The other model, # stacked SSH

model is constructed by stacking # number of SSH chains in the vertical direction. This

model is studied by systematic breaking of symmetries and by application of a laser

field of the form circularly polarized light. The first study focuses on how topological

phases are affected with the systematic breaking of the symmetries. The latter study

reveals the effect of the laser field of the form circularly and linearly polarized light

on the topological phases of the # stacked SSH model. This thesis also includes the

effect of elliptical polarized light on the # stacked SSH model that clarifies which



phase angle of the laser field can induce more exotic topological properties for this model.

To the reader
This thesis will hopefully provide an overview to prepare a system with rich topological

properties. This thesis shines light on the theoretical study of Floquet topological

insulators. Those who are attracted to the field of Qunatum Hall effect, topology will

like to hold this thesis. The area of the research of this thesis is theoretical condensed

matter physics.

Thesis Outline
Thesis consists of seven Chapters. The first Chapter includes the introduction and

motivation behind this thesis work. The second Chapter has all the mathematical tools

which are further used in the thesis. The last four Chapters discuss different results of

the thesis. This thesis is organized as follows :

• In Chapter 1, an introductory part with the qualitative discussion of an overview

of the topological insulators, their properties, classification of the topological

insulators, quasi-1D systems. A discussion on the motivation behind this thesis

work is also presented in this Chapter.

• In Chapter 2, mathematical framework for all the formulation and methods are

presented. It includes a mathematical description on the topology, topological

invariants, 1D topological insulator : SSH model and the Floquet formalism with

the Floquet replica method and perturbative schemes.



• In Chapter 3, Floquet topological phases with the high Chern number of the peri-

odically driven E-SSH model is discussed. This Chapter use the monochromatic

continous sinusoidal driving. A detailed analysis is also shown for the topological

phases with the high Chern number.

• In Chapter 4, another quasi-1D model and 2D weak topological insulator, called

# stacked SSH model is studied. This Chapter cataloges all the topological

phases of this model by systematic breaking of the symmetries. This Chapter is

divided into three parts. In the first part, the model is discussed by preserving all

three fundamental symmetries. In the second part, the model is studied with the

broken chiral symmetry and in the third part, models with broken chiral and time-

reversal symmetry are studied. Finally, it discusses a interplay between the broken

particle hole and inversion symmetry which exhibits a topological phase transition.

• In Chapter 5, the model discussed in the previous Chapter is analysed with the

application of a periodically driving. This study shows the emergence of the laser

indduced Floquet topological phases with the high Chern number. This Chapter

also includes an investigation after applying linearly polarized light on the #

stacked SSH model.

• In Chapter 6, again the # stacked SSH model is investigated but in the presence

of elliptical polarized light. This study clarifies which laser field is more efficient

to prepare a 2D weak topological insulator with rich topological phases.



• Chapter 7, sheds light on the final remarks of this thesis. This Chapter also includes

some of the future directions related to this thesis work.
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1
Introduction

1.1 Historical background of topology in condensedmat-

ter physics

Topology is a branch of mathematics that has recently found immense applications in

condensed matter physics. Notably, its application in studying a class of materials

known as topological insulators (TIs) is very important. The TIs are a promising class

of materials that have the potential for different technological applications because they

allow current to flowwithout dissipation at the edges (in 2Dmaterials) and at the surfaces

(in 3D materials), keeping the bulk part insulating [1–4]. Historically, topology was first

applied in condensed matter physics when von Klitzing discovered the so-called quantum

Hall effect (QHE) in 1989 [5]. The classical version of the Hall effect, or simply the

Hall effect, has been known to humanity for a long time when, in 1879, Edwin H.

Hall discovered that a magnetic field applied perpendicular to the direction of a current

flow through an electrical conductor generates a potential difference, known as the Hall



Chapter 1. Introduction 5

voltage, transverse to the current flow as well as the direction of the applied magnetic

field. On the other hand, in the case of the QHE, von Klitzing observed that the Hall

conductivity (ratio of the Hall voltage and the applied current) got quantized in the units

of fundamental constants 42/ℎ when electrons are flowing in a 2D sample at very low

temperature and in the presence of strong magnetic field where 4 is the charge of an

electron and ℎ is the Planck’s constant. The quantized transverse Hall conductivity is

defined as follows:

fGH = �
42

ℎ
.

It was observed that the Hall conductivity fGH shows multiple plateaus when plotted as

a function of the magnetic field. Moreover, when fGH jumps from one plateau to another

one, the longitudinal Hall conductivity fGG shows peaks.

Since the discovery of theQHE, amathematical formulation for the quantization of the

Hall conductivity has been proposed by Thouless, Kohmoto, Nightingale, and den Nijs,

and they connected this quantization with a topological invariant, which is now known as

the TKNN invariant [6]. Later, in 1983, a connection between the TKNN invariant and

Chern number was identified and found that essentially they refer to the same topological

invariant [7–10]. Mathematically, the topological invariant is an integer that remains the

same for a particular topological phase. In topology, two objects are called topologically

equivalent if one can get an object from another by a continuous deformation without

cutting or stitching. During this continuous deformation, the topological phase of the

objects remains unchanged, and the topological invariant identifies this. In condensed

matter, two materials are considered topologically equivalent if one gets the energy bands

of one material from the other by continuous variation of a system parameter without

closing or opening any energy bands [11].

After von Klitzing’s discovery of the QHE, Haldane proposed a model that exhibits

the QHE-like behavior without any external magnetic field [12]. In this model, Haldane
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introduced a complex next-nearest neighbor (NNN) hopping term in a graphene-like

hexagonal lattice, simulating a magnetic field-like effect in the system. Like the magnetic

field, NNNhopping also breaks the time-reversal (TR) symmetry and exhibits topological

phases with nonzero Chern numbers. The next question was how to generate topological

systems with TR symmetry preserved. A new kind of Hall effect was proposed, called the

quantum spin Hall effect (QSHE). The QSHE was observed in a single layer of graphene

with spin-orbit interaction term [13, 14]. In the QSH systems, the TR symmetry is

preserved, and the spin-orbit interaction term generates a magnetic field-like effect. The

chiral edge modes are again along the opposite directions and related to a particular spin.

In the following section, we unveil the utilization and categorization of the TIs, followed

by a motivation for this thesis.

1.2 Properties and applications of TIs

Topological insulators (TIs) [15–18] are intriguing semiconductor materials with wide

technological applications in photonics [19], quantum computers, spintronics [20], topo-

logical electronics [21], etc. The TIs are an interesting class of materials, because these

harbor following exotic properties: [22–38]. These properties are as follows

Low power dissipation: Unlike ordinary insulators with an energy band gap in the

bulk, a distinct feature of the TIs is the presence of edge states in the gap that connect the

valence and conduction bands. This allows electronic charges to flow along the edges

or surfaces. The flow of electrons surpasses any defects in the crystal and continue their

flow along the edges or surfaces. In the TIs, there is no backscattering which makes them

the materials with low-power dissipation.

Topological protection of electronic states: In condensed matter, electronic states

are topologically protected means that these states are immune to a perturbation that

is respecting the symmetry responsible for the topological nature of the system. The
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topological property of a system is measured by topological invariants like winding

number, Chern numbers, etc. These invariants are calculated from the energy bands of

the system. The stability of the electronic states of the topological materials have made

them an ideal candidate for realizing quantum computers.

Thermoelectrical properties: The TIs are also suitable materials that exhibit thermo-

electric properties. The efficiency of a thermoelectric material is given as /) = (2f
^
) ,

where (, f, ^, and) refer to the thermoelectric power, thermal conductivity, electric con-

ductivity, and temperature, respectively. The main difficulty in preparing these materials

is synchronizing all these strongly correlated variables. One advantage of using TIs in

thermoelectric devices is that they are composed of heavy elements like Bi, Sb, and Pb,

which reduce the thermal conductivity in the system. Additionally, in TIs, the electrons

move on the surface even after inducing crystal defects without backscattering. There-

fore, introducing many defects in a TI reduces the thermal conductivity and increases the

material’s electric conductivity, making it an ideal material for thermoelectric devices.

QSH state: A remarkable discovery of QSHE triggered a possibility for the TIs to be

used in spintronics, the short form of “spin transport electronics". Spintronics is similar

to electronics; however, it uses the intrinsic spin of electrons rather than its charge for

storing and transferring information. In the QSHE, the electron spin is separated from

its charge. This property is exploited in spintronics to create spin-current, which has

applications in magnetic memory devices and spin-based logic gates.

1.3 Classification of topological insulators

The TIs are classified according to their dimensions and the symmetries preserved in any

system. Accordingly, the TIs are classified into ten different categories and developed a

periodic table for the TIs [39, 40].
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Classification according to dimensions: The 2D TIs were discovered after the

remarkable discovery of IQHE and QSHE, along with the phenomenal discovery of the

Haldane model. The 2D and 3D TIs attracted much more attention from the community

when graphene, a natural 2D TI, was extracted from bulk graphite [41]. However,

extensive theoretical and experimental work has already been done on it, where some

extensions to 3D have also been considered. The 3D TIs are also studied extensively

[42, 43]. On the other hand, the lowest dimensional TI was added to the list of TIs when

conducting properties were observed in a polyacetylene chain with doping [44, 45].

This polymer was subsequently modeled by Su-Schrieffer-Heeger (SSH) through a tight-

binding Hamiltonian, leading to an eventual observation of topological properties [46].

A detailed explanation of this model of the 1D chain is provided in the next Chapter.

This thesis studied different models in different contexts, but all these models comprise

the SSH chains.

Classification according to symmetries : A TI can have following three fundamental

symmetries

C−1H(:) C = −H(:)

P−1H(:) P = −H(−:)

T −1H(:) T = H(−:)

Here, C, P, and T are chiral, particle-hole and time-reversal symmetries. Only the 1D

TIs have the privilege to follow all three symmetries. In the periodic table, depending

upon the symmetries and dimension, different topological invariants are defined as a

measure of the topological phases as shown in 1.1. Recent studies have also attracted

towards the quasi-1D and 2D systems which are engineered from the 1D and 2D systems.

After the discovery of graphene and bilayer graphene, quasi-2D systems formed via

stacking of graphene have been studied extensively [47–49]. However, quasi-1D systems
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TRS PHS CS 3 = 1 3 = 2 3 = 3

Standard

A (Unitary) 0 0 0 − Z −

Wigner-Dyson

AI (Orthogonal) +1 0 0 − − −

AII (Sympletic) −1 0 0 − Z2 Z2

Chiral

AIII (Chiral unitary) 0 0 +1 Z − Z

Sublattice

BDI (Chiral orthogonal) +1 +1 1 Z − −

CII (Chiral Sympletic) −1 −1 1 Z − Z2

BdG

D 0 +1 0 − Z −

C 0 −1 0 Z − −

DIII −1 +1 1 Z2 Z2 Z2

CI +1 −1 1 − − Z

Table 1.1: Periodic table for topological insulators and superconductors. This table is taken
from the reference [39].

are still an unexplored area which we discuss extensively in the next section.

1.4 Quasi-1D topological insulators

Weconsistently search for an appropriatemodel that exhibits robust topological properties

while minimizing the number of degrees of freedom. In this thesis, we study various

quasi-1D systems and their associated topological properties. The quasi-1D systems are

generated from the modified 1D topological insulator (TI). The SSH model is a well-

known and the simplest 1D toy model of TI. As a theoretician, we select this simplest

model and lay a roadmap to engineer systems with new topological properties. On the

way, different techniques are used to introduce new topological properties in the system.

An extensive study of quantum Hall systems, the Haldane model, and quantum spin Hall

systems has opened a research direction to induce new topological phases by breaking or

preserving symmetries in a given system. On the other hand, external driving can also

be applied to a system to break some of its symmetries and introduce exotic topological
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properties. Most studies focus on the 1D, 2D, and 3D TIs, but quasi-1D TIs attracted

much less attention.

This thesis focuses on two different quasi-1D TI models. First, we consider an

extended SSH or E-SSH model. This model is a 1D SSH chain with an additional NNN

hopping term, where a cyclic parameter modulates all the hopping terms. This cyclic

parameter plays the role of an additional synthetic dimension. The second model is

constructed by promoting the synthetic dimension to an actual one. Specifically, these

models are constructed by stacking # number of SSH chains. This layered structure

forms a weak TI with even number of Dirac points. The quasi-1D TIs are not found

naturally but can be simulated in photonic systems. We discuss these models rigorously

in Chapters 3-6. In order to make these systems topologically exotic, we also study these

models under time-periodic driving.

1.5 Floquet topological insulators

Periodically driven systems are studied under Flqouet theory, and therefore, these sys-

tems are known as Floquet systems. Similarly, when periodic driving induces topological

property in a system by breaking its underlying symmetries, it is called a Floquet topolog-

ical insulator (FTI) [50, 51]. In any undriven system, nontrivial topology is studied using

energies and spatially periodic Bloch states. However, in the FTIs, along with spatial

periodicity, the system also has time-periodicity, and thus, it becomes a temporal analog

of Bloch systems. In the FTIs, the external driving introduces additional parameters like

driving amplitude, frequency, and phase, which can be tuned to induce a new desired

topological phase in a given system.

The Schrödinger equation with time-periodic Hamiltonian is solved by the Floquet

theory. Following this theory, the time-periodic Hamiltonian becomes time-independent

when expressed in the frequency space by Fourier transformation. A trade-off to obtain
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the time-independent Hamiltonian is that one has to solve an infinite dimensional matrix,

whichwe have discussed extensively in the next Chapter. Since periodic driving can break

various symmetries in a system, the FTIs have the potential to host exotic topological

properties, which may not be possible to achieve by any static drive. In the last few years,

the FTIs in 1D, 2D, and 3D have been studied extensively, and remarkable nontrivial

topological properties have been observed. Recently, experimentalists have found that

the FTIs can be realized in photonic systems, known as photonic topological insulators

[19].

In this thesis, my main focus is to study the quasi-1D systems with an external

time-periodic driving which is discussed in detail in the upcoming Chapters.

1.6 Motivation

Over the past four decades, the topological insulator research area predominantly revolved

around exploring various 2D and 3D TIs, but much less attention has been paid to the

quasi-1D systems. These systems are 2D but engineered by stacking many 1D systems.

The primary objective of this thesis is to investigate the quasi-1D TIs and scrutinize their

distinct topological features. We study two kinds of quasi-1D TIs: the extended SSH

model (E-SSH) and the # stacked SSH model. Both models are constructed from the

1D SSH model. This low-dimensional system exhibits the Haldane model-like phase

diagram, which is a primary motivation behind selecting the E-SSH model for our study.

Next, we consider a 2D weak topological insulator (WTI) engineered by stacking #

number of SSH chains. This model can induce various topological phases by tuning intra

and inter-chain hopping terms. Moreover, periodic driving has also been used to induce

nontrivial topology in the # stacked SSH chains with all the symmetries preserved.
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1.7 Organization of the thesis

This thesis contains seven Chapters, including the introduction. A brief description of

these systems as follows:

Chapter 2 : In this Chapter, we discuss all the mathematical tools and formalism used in

the later Chapters to derive the effective Hamiltonian and different topological invariants.

We discuss the derivation of Floquet formalism and its formulations in Physics. We

provide a theoretical discussion on topology, Berry phase, and topological invariants.

Chapter 3 : We investigate the periodically driven E-SSHmodel and observe the Floquet

topological phases with the high Chern number. The E-SSH model is a 1D SSH model

with nearest neighbor and NNN hopping. The hopping amplitudes are modulated by a

cyclic parameter \ where this parameter \ plays the role of another synthetic dimension.

The topological properties are defined by calculating the Chern number. Studies found

that the low-dimensional E-SSHmodel possesses the same phase diagram as the Haldane

model. We use sinusoidal driving as the periodic drive in NN and NNN hopping

amplitudes. Under this periodic driving, we study the driven E-SSH model in the high-

frequency regime as well as in the low-frequency regime. The Floquet replica method

facilitates our exploration of both frequency regimes.

Chapter 4 : We study a 2D weak topological insulator constructed by stacking # number

of SSH chains along the H-direction which has even number of Dirac points with edge

modes along the direction of stacking. We catalog the various topological properties of

the #-stacked SSH model by systematically breaking the symmetries. We construct a #

stacked SSH model such that it preserves all three fundamental symmetries (chiral, TR,

and PH) and named the “basic model”. This basic model has topological properties with

� = 0 and a non-zero quantized 2D Zak phase. Then, we break chiral symmetry in the

system by adding � (or �) to � (or �), hopping with equal and opposite real amplitude.

This model again shows zero Chern number and nontriviality is defined by non-zero
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fractionalized Zak phase. Finally, we study the basic model with the breaking of chiral

and TR symmetry by replacing real � (or �) to � (or �) hopping amplitudes with the

imaginary hopping amplitudes. Breaking chiral and TR symmetries is essential for this #

stacked SSHmodel to be aChern insulator. Initially, we preserve the PH symmetry, which

allows us to calculate the Chern number analytically. Using the analytical expression

of the Chern number, we also show a Phase diagram. Later, we also show an interplay

between the breaking of PH and inversion symmetry, which leads to a topological phase

transition with the Chern number � = ±1.

Chapter 5 : We study Floquet version of # stacked SSH model. We shine the circularly

polarized laser light (CPL) on the basic model. Here again, we use the Floquet replica

method to calculate the effective Hamiltonian. The CPL breaks the system’s TR sym-

metry and converts the basic model into a Chern insulator. Here, we obtain topological

phases with a high Chern number in the low-frequency regime and topological phases

with � = ±1 in the high-frequency regime.

Chapter 6 : In this Chapter, we study the # stacked SSHmodel with elliptically polarized

light. Since, in the weak topological insulators, edge states can exhibit along the direction

of stacking. However, for the undriven system, we found that the system breaks the chiral

and TR symmetry; it exhibits edge states in both directions and behaves the same as an

actual 2D model. Therefore, we investigate the effect of coupling in the # stacked SSH.

Chapter 7 : Finally, we conclude the thesis with a short discussion about the probable

future directions.
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2
Mathematical tools

This Chapter discusses the basic mathematical formulations which are used in this thesis.

2.1 Topology

The term topology often describes the contours of a surface or the shape of a crystal.

Fundamentally, topology is a branch of mathematics that studies the objects (manifolds

in the topology) that retain the same topological properties only if these objects can

be transformed into each other through some continuous deformation. Independent of

the geometry of an object, topology defines the global properties of the object. In this

section, we provide a mathematical overview of topology.

A topological space is defined as an ordered pair ((,*) of two sets ( and *, where

* is a collection of the subsets of (, and the set* satisfies

1. the empty set ∅ is in*, i.e., ∅ ∈ *,

2. the set ( is in*, i.e., ( ∈ *,
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3. the union of any two elements of D8 and D 9 of* such that (D8 ∪ D 9 ) ∈ *,

4. the intersection of any two elements D8 and D 9 of* such that (D8 ∩ D 9 ) ∈ *,

then* is called a topology on (. This definition can be understood by a simple illustrative

example. Consider a set ( = {Ball, Racket, Shuttle}. Then the set * = {∅, (, {Ball}}

will be topological. However, the set * = {∅, (, {Ball}, {Shuttle}, {Racket, Shuttle}}

will not be topological because the union of {Ball} and {Shuttle} is not an element of*.

2.2 Topological invariants

We now discuss some important theorems to understand topological invariants and how

these characterize a topological phase.

Gauss-Bonnet theorem: This theorem establishes a relationship to understand the

interplay between geometry and topology. For any closed surface, the Gauss-Bonnet

theorem defines
1

2c

∫
B

3fΩ̄ = 2(1 − 6), (2.1)

where Ω represents the Gaussian curvature and 6 is a positive integer called “genus”

of the surface. For example, the sphere is the surface with genus 6 = 0. Similarly,

objects with one hole such as coffee mug and doughnuts have genus 6 = 1, and an object

with two holes has 6 = 2 and so on. This theorem is important because it links the

curvature of a surface to the topology which is given by “Euler characteristics”. The

Euler characteristics are determined by the following equation

j = + − � + �,

where+ is the number of vertices, � is the number of edges, and � is the number of faces.

The Euler characteristic is an integer and a topological invariant. Now, to understand how
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this topological invariant changes in the system, one needs to understand the adiabatic

theorem.

Adiabatic theorem: This theorem states that when a system is under a small continuous

deformation, then the eigenstate of the system before and after the deformation remains

identical. A system is continuously deformed into another system, provided

• the parameters are changed continuously and preserve all the symmetries,

• the band gap does not close during the transformation.

To compute the path of the revolving eigenstate under a continuous deformation, a

mathematical formulation is described below.

Berry phase and Berry curvature: The Berry phase, also known as Berry’s phase or

geometric phase, is a concept in quantummechanics that describes a phase shift acquired

by the quantum state of a system when subjected to adiabatic (slow and continuous)

changes in its parameters. Sir Michael Berry introduced this concept in 1984, and it

has since become an important topic in quantum physics, condensed matter physics, and

other areas of theoretical physics [52]. Pancharatnam introduced a similar geometrical

phase in the context of optics [53]. In solid-state physics, the Berry phase is defined as

a global phase acquired by an eigenstate when it traces the Brillouin zone (BZ) under

some continuous deformation. The Berry phase is a geometric phase because it depends

on the path followed by the system’s Hamiltonian, or eigenstate. It does not depend on

the complete details of the geometry.

We now formally define the Berry phase. Consider a quantum system with the

Hamiltonian � (X) depending on the parameters X. These parameters vary adiabatically

with time as X ≡ X(C). The corresponding Schrödinger equation is

� (X) |k(C)〉 = 8 3
3C
|k(C)〉
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and

� (X) |=, X〉 = �= (X) |=, X〉,

where �= (X) is the energy of the =Cℎ eigenstate. For a closed loop, the Berry phase is

defined as

q= =

∫
2

�= (X) · 3X, (2.2)

where Berry’s connection �(X) is defined as

�= (X) = 8〈=, X |∇X |=, X〉. (2.3)

Below, we show that the above inner product is a pure imaginary quantity:

Re 〈=, X |∇X |=, X〉 =
1
2

[
〈=, X |

(
∇X |=, X〉

)
+

(
∇X〈=, X |

)
|=, X〉

]
= ∇X〈=, X |=, X〉 = 0.

This result shows that Berry’s connection and Berry’s phase are real quantities, which is

expected.

In this thesis, we use two different topological invariants: the winding number (F)

and the Chern number (�). The basic difference between these two topological invariants

is that the first one characterizes the topological properties of the 1D systems, while the

latter one is used for characterizing the 2D systems. The winding number is defined as

the number of times the phase wraps around the origin as the system parameters vary

within the BZ. This topological invariant is calculated from the following formula:

F =
1

2c8

∫
�/

3:
3

3:
log ℎ(:). (2.4)
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Figure 2.1: A schematic diagram of 1D SSH chain. Here, � and � sublattices are shown by red
and black solid circles. The intra-cell hopping W1 is shown by blue color, whereas the intercell
hopping W2 is shown by magenta color.

The Chern number � is calculated by integrating the Berry curvature over the first

BZ, a closed 2D manifold, as:

� =
1

2c

∫
�/

F (:G , :H) 3:G 3:H, (2.5)

where the Berry curvature

F (:G , :H) = m:H�:G − m:G �:H

and

�:G/H ≡ 〈k(:G , :H) |m:G/H |k(:G , :H)〉

are Berry’s connections [52]. Here, the state |k(:G , :H)〉 is Bloch’s function.

2.3 One dimensional topological insulator: Su-

Schrieffer-Heeger (SSH) model

The Su-Schrieffer-Heeger (SSH) chain is an extensively studied model for a one-

dimensional topological insulator. This model was first proposed to study the electrical

conductivity in a polyacetylene chain, which is a polymer consisting of alternate single

and double carbon bonds [54, 55]. Later, the conducting properties of the polyacetylene

chain were explained through a tight binding Hamiltonian [44, 45]. The alternate single
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and double carbon bonds in the polymer chain are mimicked in the tight-binding model

by introducing two distinct nearest-neighbor (NN) hopping terms. Consequently, the 1D

chain can be thought of as a combination of two sublattices � and �. Alternatively, one

can consider that two atoms are present in every unit cell of this tight-binding model.

Thus the Hamiltonian of the SSH chain can be expressed as:

�((� =
∑
=

[
W1 2

†
�,=
2�,= + W2 2

†
�,=+1 2�,=

]
. (2.6)

Here, the parameters W1 and W2 are the NN hopping amplitudes, where W1 represents the

strength of the intracell hopping between � to �; whereas W2 is the intercell hopping

strength between the � and � sites of the adjacent unit cells as shown in Fig. 2.1. Since,

the system is Hermitian, the strength of the hopping between � to � and � to � are the

same. The SSH model becomes topologically nontrivial when the intracell hopping is

weaker than the intercell one. The nontrivial topology in the system introduces edge

states in the SSH chain.

A topological system also satisfies “bulk boundary correspondence", which suggests

that the number of edge states in a system should be equal to its topological invariant. To

investigate the bulk properties of the system, we impose periodic boundary conditions.

Then the Hamiltonian of the system in the quasi-momentum space or :-space can be

obtained by the Fourier transformation of the fermionic operators:

2U,= =
1
√
#

∑
:

48:=2̃U,: .

Defining a Nambu spinor k: =
(
2̃�,: , 2̃�,:

)) and substituting the above Fourier trans-

formed operators, we can write the SSH Hamiltonian as

�((� =
∑
:

k
†
:
H((� (:) k: ,
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where

H((� (:) = ®ℎ(:) · ®f.

The Hamiltonian in the :-space has the form

H((� (:) = (W1 + W2 cos :) fG + (W2 sin :) fH . (2.7)

In the above Hamiltonian, all three fundamental symmetries are preserved and thus this

system belongs to the BDI class of the topological periodic table. For 1D systems, the

winding number is the topological invariant. Here, the winding number is defined as the

number of times the tip of the vector ®ℎ(:) wraps the origin in the ℎG-ℎH plane.

2.4 Floquet formalism

A major part of this thesis has considered periodically driven systems. The most general

formalism to study in any time-periodic system is the Floquet formalism. Therefore, we

now present an essential features of this formalism.

This formalism was developed based on the Floquet theorem. This theorem was

initially proposed in 1883 to solve linear differential equations with time-periodic coeffi-

cients. Later, this idea was extensively applied in different branches of Physics, namely

quantum optics, ultracold atoms, optical lattices, etc. We start with the original proof

of the Floquet theorem which was given in 1883 by G. Floquet. We consider a linear

time-periodic differential equation of the form

¤x = A(C)x. (2.8)

Here the coefficients matrix A(C) is time-periodic with the period ) , i.e., A(C +)) = A(C)

and x is not necessarily time-periodic, but has the form 4`Cp(C), where p(C) is also
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periodic with period ) and satisfies the relation

4`1)4`2) . . . 4`=) = exp
(∫ )

0
CA (A(C′)) 3C′

)
.

There are = possible solution of Eq. (2.8), x1, x2, . . ., xn which can be written in the

form of a matrix X as

X(C) =
[ [

x1
] [

x2
]
. . .

[
xn

] ]
(2.9)

Hence, X(C) is an # × # matrix solution of Eq. (2.8). Let, all these solutions x1,

x2, . . ., xn are linearly dependent, then X(C) is non singular and fundamental matrix.

For X(C0) = I, X(C) is called principal fundamental matrix where I being the identity

matrix. This fundamental matrix X(C) follows different assertions as given below (Only

statements are given but it can be proved)

• If X(C) is a fundamental matrix, then Y(C) is another fundamental matrix of the

form Y(C) = X(C)B, where B is a non singular constant matrix. Here, Y(C) is

nothing but written in terms of the linear combination of X(C).

• The determinant of X(C) is determined by the Wronskian, (C) of X(C)

, (C) = , (C0) exp
(∫ C

C0

CA (A(C′)) 3C′
)

• If X(C) is a fundamental matrix, then X(C + )) is also a fundamental matrix and

satisfies the matrix differential equation given in (2.8). There also exists a non

singular constant matrix B such that

→ X(C + )) = X(C)B for all values of t, and

→ det(B) = exp
(∫ )

0 tr (A(C′)) 3C′
)
.

This assertion shows that the two solutions which differ by the period ) can be

obtained by a constant matrix.
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• Let us consider that the eigenvalues of the constant matrix B are d1, d2, . . ., d=.

These eigenvalues are called characteristic multipliers whereas for Eq. (2.8), `1,

`2, . . ., `= are characteristic exponents or Floquet exponents which satisfy

d1 = 4
`1) , d2 = 4

`2) , . . . , d= = 4
`=) .

The Floquet exponents may be complex.

• There also exist a solution x(C) of Eq. (2.8) such that

→ x(C + )) = dx(C), and

→ x(C) = 4`C p(C), where p(C) is time-periodic

• If ` is replaced by ` + 8 2c
)
, then the above solution becomes

x(C) = 4`Cp(C)482cC/) ,

where 482cC/) is again periodic with period ) . This shows that ` is not unique, but

it does not change the result.

From here, we move to the use of this basic Floquet formalism to solve the time-periodic

Schrödinger equation (TDSE).

2.4.1 Exact methods to calculate the effective Hamiltonian

The well TDSE is given as

8
3

3C
|k(C)〉 = � (C) |k(C)〉. (2.10a)
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According to the ansatz of Floquet theory, the solution of the time-dependent Schrödinger

equation (TDSE) for the periodically driven Hamiltonian will be of the form

|k= (C)〉 = 4−8n=C |D= (C)〉, where |D= (C)〉 = |D= (C + ))〉. (2.10b)

In this equation, |k= (C)〉 is the fundamental matrix which is given by X(C), n= is ` and

|D= (C)〉 is p(C) as described in the previous section. Here we set the Planck constant ℏ = 1

and ) = 2c/l as the time period. The states |k= (C)〉 are known as the Floquet states

[56]. The time-periodic states |D= (C)〉 are called Floquet modes and n= represents the

quasi-energy of the =-th state. The Floquet states are the temporal analogue of the Bloch

states of solid-state physics [57, 58], where the Hamiltonian has the periodicity in space.

The Floquet states are the eigenstates of the time-evolution operator over one driving

period, i.e.,

* (C0 + ), C0) |k= (C0)〉 = 4−8n=) |k= (C0)〉,

where C0 is an arbitrary initial time. Therefore, one can obtain the Floquet states and

the quasienergies, by diagonalising the time-evolution operator * (C0 + ), C0), which

is defined within a single time-period. The eigenvalues 4−8n=) and the corresponding

eigenstates |k= (C0)〉 are gauge independent, but the quasienergy n= and the corresponding

Floquet mode |D= (C)〉 = 48n=C |k= (C)〉 are gauge dependent. By introducing an integer

label < = ±1, ±2, . . . , we get all the possible gauges of the quasienergies n=< = n= +<l

and the corresponding Floquet modes |D=< (C)〉 = 48<lC |D= (C)〉, which give the same

Floquet state |k= (C)〉. Substituting, the general representation

|k= (C)〉 = 4−8n=<C |D=< (C)〉 (2.11)
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in the TDSE [Eq. (2.10a)], we get the Floquet Hamiltonian as

H� :
[
8
3

3C
− � (C)

]
|D=< (C)〉 = n=< |D=< (C)〉. (2.12)

The above relation forms an eigenvalue problem in an extended Hilbert spaceH⊗T. The

extended Hilbert space, also known as the Sambe’s space, where H is the usual Hilbert

space and T is a Hilbert space spanned by the time-periodic functions 4−8<lC with < ∈ Z

[59]. The time-periodic property of the Hamiltonian � (C) and the Floquet modes |D= (C)〉

allow us to expand these systems in the Fourier series. This process splits the driven

spectrum into an infinite number of copies of undriven Hamiltonian separated by <l.

This process is called the Floquet replica method, which is analogous to the dressed

atom picture of the electromagnetic field induced atomic systems [60]. Therefore < is

called the photon numbers. In the Sambe space, the general representation of the Floquet

Hamiltonian is:

H� =



. . .
...

...
...

...
... . .

.

. . . �0 − 2l �−1 �−2 �−3 �−4 . . .

. . . �1 �0 − l �−1 �−2 �−3 . . .

. . . �2 �1 �0 �−1 �−2 . . .

. . . �3 �2 �1 �0 + l �−1 . . .

. . . �4 �3 �2 �1 �0 + 2l . . .

. .
. ...

...
...

...
...

. . .



, (2.13a)

where

�< =
1
)

∫ )

0
� (C) 4−8<lC 3C. (2.13b)

By construction/definition, the Floquet Hamiltonian is exact if one considers an infinite

number of photon sectors. However, in numerics, we have to consider only a finite
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number of photon sectors. The number of photon sectors is decided by the strength of

the driving frequency l. Suppose the driving frequency is of the order or smaller than

the characteristic frequencies of the undriven system, one has to consider a larger number

of photon sectors to get convergence in the calculation of the (dressed) Floquet bands

around zero photon sector. On the other hand, one has to consider only a few photon

sectors for a very high frequency.

2.4.2 Perturbative schemes

The replica method is an exact method which works in high frequency as well as in the

low-frequency regime. However, this method has a drawback in solving a large matrix

and difficult to perform any analytical calculation. There are two different perturbative

schemes which work in high-frequency regimes. These perturbative schemes facilitate

us to perform the analytical calculation for the effective Hamiltonian. Van vlech and

Brillouin-Wigner are two perturbative methods which use an expansion series in the

inverse power of driving frequency [61, 62].

Let us now consider a time-periodic Hamiltonian of the form

�̂ (C) = �̂0 + +̂ (C), (2.14)

where �̂0 is the undriven Hamiltonian and +̂ (C) = +̂ (C + )) is the external time-periodic

driving. In Ref. [61], the time-evolution operator is redefined in terms of the initial time

C8 and final time C 5 , and this is given as

*̂ (C8, C 5 ) = *̂†(C 5 ) 4−8�eff (C 5 −C8) *̂ (C8)

= 4−8 ̂ (C 5 ) 4−8�eff (C 5 −C8) 48 ̂ (C8) .

(2.15)

Here C8 is the time when driving starts and (C 5 − C8) is the time interval in which the
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system evolved, and C 5 is the final time of the driving. In this equation, �eff is the

time-independent Hamiltonian operator which does not depend on the initial and final

time, whereas  ̂ (C) is a kick operator, which also describes micromotion. All the time-

dependency of the system is referred to as the kick operator.

Using the following expressions, one can derive the effective Hamiltonian �eff in the

high-frequency regime as

�vV
eff = �0 +

1
l
[�=, �−=] +

1
l2 [[�0, �=] , �−=] + O

1
l3 (2.16)

The higher-order terms with these two methods are very small for the high driving

frequency. In the limit high frequency, i.e., l → ∞, the effective Hamiltonian will be

just �0 and contribution from the higher order photon sector is negligible.
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3
Floquet topological phases with

high-Chern number in periodically

driven E-SSH model

The contents of this Chapter has been published in Journal of Physics: CondensedMatter

as Aayushi Agrawal & J.N.Bandyopadhyay (2022).

3.1 Introduction

The discovery of the integer quantum Hall (IQH) effect under a strong magnetic field

[5] unveiled a new family of materials called topological insulators (TIs) [15–17]. The

TIs are mostly observed in compounds made of heavy elements with strong spin-orbit

coupling. Unlike in the usual insulators, the topological insulators have conducting edges

or surfaces with the insulating bulk part. The topological materials are classified based

on the dimension and symmetries of the systems [39, 40, 63]. The topology of a system

is quantified by topological invariant, which is a constant integer and does not vary
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under any continuous deformation of the energy bands (or Hamiltonian) [10]. Besides

some natural solid-state materials [64, 65], the topological properties are experimentally

simulated in ultra-cold atoms [61, 66], photonic systems [67], etc.

In a two-dimensional (2D) honeycomb lattice, Haldane introduced a complex next-

nearest-neighbor (NNN) hopping to simulate a magnetic field-like effect. This leads to

the realization of the quantum anomalous Hall (QAH) effect in the system [12]. In this

2D system, a topological phase transition from a normal insulator to a Chern insulator is

observed by varying the hopping phase and the sub-lattice potential difference [12, 68, 69].

Recent investigations of realizing the Haldane model-like effect in lower-dimensional

systems led to the so-called extended Su-Schrieffer-Heeger (E-SSH) model, which is

described in one-dimension (1D). The original SSH model is the simplest possible 1D

system which shows topological property [40, 46]. This model was proposed to describe

the electronic properties of the poly-acetylene chain [44, 45]. Following the idea of

Haldane, in the E-SSH model, in addition to a standard nearest-neighbor (NN) hopping,

the NNN hopping term is introduced [70]. Furthermore, the hopping strengths are

modulated by a cyclic variable that plays the role of an additional synthetic dimension.

This synthetic dimension, together with the momentum, defines an effective 2D space

on a real 1D space [71–73]. Consequently, instead of the winding number, one has to

now calculate the Chern number as a topological invariant for this effective 2D system

[74]. In the E-SSH model, if we also introduce an onsite potential, then one can map

the synthetic dimension, and the momentum of this exactly with two momenta of the

Haldane model [70]. Therefore, this mapping gives a clear understanding of the relation

between the E-SSH model and the Haldane model. However, instead of two modulated

terms (the onsite and the NNN) together with the SSH Hamiltonian, it is experimentally

easier to realize the version of the E-SSH model that has only the modulated NNN term

with the SSH Hamiltonian. Recently, some other versions of the E-SSH models are also
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investigated [75–78].

The QAH effect is experimentally realized mostly in magnetic topological insulators

[79–84] and in bilayer graphene twisted with a magic angle [85, 86]. In all these

investigations, the QAH is observed only with the Chern number � = ±1. Very recently,

the QAH effect is observed with a tunable Chern number up to � = 5 [87]. In this work,

a system of multiple layers with alternating magnetic and undoped topological insulators

was fabricated to observe high Chern numbers. Interestingly, the number of undoped

topological layers decides the Chern number of the system. Moreover, higher topological

phases with 2 ≤ |� | ≤ 4 are observed in the Kitaev-Heisenberg ferromagnet with next to

next nearest neighbor interaction [88]. In Harper-Hofstadter model, energy bands with

|� | > 1 are also reported [89, 90].

Recent studies have established that the nontrivial topological properties can be

ascribed to some topologically trivial systems by applying external time-periodic driving

[50, 91–99]. Since the periodically driven systems are studied under Floquet theoretical

framework, these synthetic topological systems are calledFloquet topological systems. In

the literature, Floquet topological system was introduced in the context of the topological

aspects of quantum chaotic systems [100]. Many times, the Floquet systems show new

exotic topological phases that may not be realized by any static means. For example, new

Floquet topological phases in graphene illuminated by circularly polarized laser field

[101, 102], higher-order topological phases in superconductor [103, 104], generating

multiple Majorana modes [105], alter the native topology of the SSH model [106], etc.

Very recently, it has been observed that periodic driving can generate topological

insulators with larger Chern numbers in higher dimensional (higher than 1D) systems

[107–117]. Since the 1D E-SSH model can be mapped to the 2D Haldane model, a

natural question is whether one can realize larger Chern numbers in the Floquet E-SSH

model. The richer topological phases with higher Chern numbers are obtained when the



Chapter 3. Periodically driven E-SSH model 30

SSH system is periodically modulated in time [118]. Moreover, the topological phases

with larger Chern numbers were reported in a Dirac delta-kicked SSH model with onsite

potential [119]. Here, we have applied smooth sinusoidal drivings to the E-SSH model

having the usual NN hopping of the SSH model and an additional NNN hopping to

realize the topological phases with large Chern number.

3.2 Model

This section starts with the description of the E-SSH model. In this paper, we consider

the same version of the static E-SSH model, which was originally proposed in Ref. [70].

Here we discuss the salient features of this model, and then introduce the periodically

driven version of this. We also present a basic theoretical background that is needed to

quantify and analyze the results.

3.2.1 Undriven E-SSH model

The original SSH model is a 1D chain that consists of two sub-lattices, represented by

sites � and � in every unit cell. In this model, as shown in Fig. 3.1(a), only intra-cell

hopping among � and � sites and the NN inter-cell hopping are allowed. Figure 3.1(b)

shows that the same dynamics can also be described on a ladder geometry by placing

each dimer vertically. For the E-SSH model, an additional NNN hopping from the �-

site (�-site) of a unit cell to the �-site (�-site) of the neighboring unit cell is included.

The E-SSH model can also be described as a 1D chain and a ladder. These are shown

respectively in Figs. 3.1(c) and 3.1(d). Following [70], we consider the Hamiltonian of



Chapter 3. Periodically driven E-SSH model 31

the undriven E-SSH model as

��−((� = −
∑
=

{
W12
†
�,=
2�,= + W22

†
�,=+12�,=

}
+ h.c︸                                              ︷︷                                              ︸

≡�((�

+
∑
=

{
W�2

†
�,=+12�,= + W�2

†
�,=+12�,=

}
+ h.c.︸                                                ︷︷                                                ︸

≡�###

,

(3.1)

where �((� is the standard SSH Hamiltonian and �### is the NNN hopping part of the

Hamiltonian. The operators 2�,= (2�,=) and 2†�,= (2
†
�,=

) are the annihilation and creation

operators defined on the sub-lattice �(�). Here the parameters

W1 = (1 + X cos \) and W2 = (1 − X cos \)

respectively denote the intra-cell and inter-cell hopping strengths. Here the parameter

X is always set as positive. In the SSH model, the relative strengths of the hopping

amplitudes decide the topological property of the system. Here we have modulated

the hopping amplitudes by a single cyclic parameter \. Therefore, the Hamiltonian

becomes periodic in \, i.e., ��−((� (\) = ��−((� (\ + 2c). The cyclic parameter \ can

be considered as an additional synthetic dimension.

In the NNN hopping part, the following form of the hopping strengths are considered:

W� = 6� + ℎ cos(\ + q) and W� = 6� + ℎ cos(\ − q),

where the constant parameters (6�, 6�) and the modulation strength ℎ are introduced

to avoid the overlap between the two bands. Moreover, a parameter q is introduced to

observe a topological phase transition at q = 0. This phase transition is identified by the

change of sign of the Chern number at this point.

In order to observe the properties of the bulk energy of the E-SSH model, periodic
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Figure 3.1: The original SSH model can be described by two geometrical structures: (a) a linear
chain and (b) a ladder geometry. The same is shown for the E-SSH model in (c) and (d).

boundary condition (PBC) is imposed on the system. The PBC allows the transformation

of the Hamiltonian from the real space to the momentum space (:-space) via Fourier

transformation.

2�/�,= =
1
√
#

∑
:

48:= 2̃�/�,: , (3.2)

where # is the number of sites in each sub-lattice and this number is also equal to

the number of dimers. Substituting these Fourier transformed operators in Eq. (3.1)

and defining Nambu spinors Ψ: =
(
2̃�,: 2̃�,:

)) , we write down the Hamiltonian in the

:-space as

�E−SSH =
∑
:

Ψ
†
:
HE−SSH(:)Ψ: ,

withHE−SSH(:) = ℎ:01 + h(:) · 2,
(3.3a)

where HE−SSH(:) is the Bloch Hamiltonian and 2 =
(
fG , fH, fI

)
are Pauli (pseudo)

spin operators defined in the sub-lattice degrees of freedom. The parameter ℎ:0 and the

components of the parameter vector h(:) =
(
ℎ:G , ℎ:H, ℎ:I

)
are given as

ℎ:0 = (W� + W�) cos :, ℎ:G = −(W1 + W2 cos :)

ℎ:H = −W2 sin :, ℎ:I = (W� − W�) cos :.
(3.3b)
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Symmetries in the system

The SSH Bloch Hamiltonian �((� (:) ≡ HE−SSH(:)
��
W�=W�=0 follows three fundamental

symmetries:

T −1HSSH(:) T = HSSH(−:), (Time − reversal) (3.4a)

P−1HSSH(:) P = −HSSH(−:), (Particle − Hole) (3.4b)

C−1HSSH(:) C = −HSSH(:), (Chiral). (3.4c)

Here, the time-reversal operator T =  , the complex conjugation operator, and the

particle-hole operatorP = fI  are anti-unitary operators. The other symmetry operator,

the chiral operator, C = P T = fI is a unitary operator. Even though this is a unitary sym-

metry, but it does not follow the standard commutation relation
[
fI, HSSH(:)

]
= 0, rather

it follows the anti-commutation relation
{
fI, HSSH(:)

}
= fIHSSH(:)+HSSH(:) fI = 0.

The chiral symmetry appears in the SSH model due to the absence of any hopping within

the sub-lattices. Consequently, the parameter vector h(:) of the SSH Hamiltonian lies

on the G − H plane; and depending on whether the tangent of h(:) encloses the origin

with the variation of : , the SSH model shows its topological property. This topological

property is quantified by the winding number, which counts how many times the tangent

of h(:) encircles the origin as we vary : within the Brillouin zone (BZ), i.e., : = −c to

c. Since the SSH Hamiltonian satisfies these three symmetries, this system is classified

as the BDI class of the ten-fold way of classification of the quantum topological matters

[40, 120, 121].

The addition of theNNN term�### with theHamiltonian�((� introduces a hopping

within the sub-lattices. Consequently, this additional term breaks the chiral symmetry

in the E-SSH model. Unlike the SSH case, due to the presence of fI in the Bloch

Hamiltonian of the E-SSHmodel, the parameter vector h(:) does not lie on the G−H plane,
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and therefore the tip of this vector cannot enclose the origin. Consequently, the winding

number becomes ill-defined for this system. However, in this model, the modulation

parameter \ can be varied adiabatically from 0 to 2c without closing the gap between

the bands for any non-zero value of the parameter q. Since, the modulation parameter \

plays the role of a synthetic dimension, the E-SSHmodel becomes an effective 2D system

defined on the periodic (:, \)-space, which is geometrically identical to a torus. The

topological property of a system higher than 1D is generally quantified by topological

invariants known as Chern numbers which is defined in Chapter 2 in Eq. 2.5.

Depending upon the parameters W� and W�, symmetries of the E-SSH model changes

[70]. We can see from the E-SSH Hamiltonian in Eq. (3.3), when W� = W�, the fI term

vanishes in the Bloch Hamiltonian. For this case, in addition to the chiral symmetry C,

the particle-hole symmetry P also breaks down. This symmetry breaking results in an

asymmetry in the energy bands and appearance of non-zero degenerate edge states. For

W� = −W� case, instead of fI term, now the term with the identity matrix 1 vanishes.

Therefore, instead of the particle-hole symmetry, now the time-reversal symmetry T

breaks down in the system. In this case, the energy spectrum will again be symmetric,

but now the degeneracy of the non-zero edge states will be lifted. Finally, for the general

case, when the parameters W� and W� do not satisfy any special relation, then the three

symmetries mentioned above break down in the E-SSH model. For this case, the energy

bands will be asymmetric, and the edge states will be non-zero and non-degenerate. In

this paper, we consider the general case |W� | ≠ |W� |, where none of the symmetries is

preserved.

3.2.2 Periodically driven E-SSH model

We now describe the periodically driven E-SSH model which we extensively study as

a prototype model for a realization of the high Chern number topological phases. The
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Hamiltonian of this model is

�̂�−((� (C) = �̂�−((� + +̂ (C), (3.5a)

where �̂�−((� is already defined in Eq. (3.3) and the time-periodic potential satisfies the

condition +̂ (C + )) = +̂ (C). Consequently, the total Hamiltonian is also a time-periodic

�̂�−((� (C + )) = �̂�−((� (C). The time-periodic driving part of the Hamiltonian is

considered as

+̂ (C) = v1(C)
∑
=

(2†
�,=
2�,= − 2†�,=+12�,=)

+ v2(C)
∑
=

(2†
�,=+12�,= − 2

†
�,=+12�,=) + ℎ.2.

(3.5b)

Here, the periodic driving: E1(C) = 2+1 coslC and E2(C) = 2+2 cos(lC + U), where +1

and +2 are the driving amplitudes, the frequency of both the driving is l, and U is a

phase factor. In the momentum space, the Bloch Hamiltonian of the time-periodic E-SSH

model will be of the form

H: (C) = (W� + W�) cos : 1 − [(W1 + W2 cos :) − v1(C) (1 − cos :)] fG − [W2 + v1(C)] sin : fH

+ [W� − W� + 2v2(C)] cos : fI .

(3.6)

The driving protocol is chosen in such a way that it introduces the time-dependent

functions only with the pseudo-spin operators 2.

Floquet analysis of the driven E-SSH model

In this paper, we need to consider maximum eleven photon sectors to achieve numerical

convergence. Since, our driving protocol is monochromatic (absence of any harmonics
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of l), �< = 0 for |< | ≥ 2 and for the remaining values< = 0, ±1 we have in the :-space

�0,: = (W� + W�) cos : 1 − (W1 + W2 cos :) fG

− W2 sin : fH + (W� − W�) cos : fI,

�±1,: = +1
[
(1 − cos :) fG − sin : fH

]
+ 2+2 4

±8U cos : fI .

(3.7)

Here, the Hamiltonian �0,: , defined in < = 0 photon sector, is just the undriven E-

SSH Hamiltonian represented in the :-space. In Sambe’s space representation, the

periodic driving introduces the off-diagonal blocks �±1 in the Floquet Hamiltonian,

which connects different photon sectors. In the :-space, the eigenstates of �� form

Floquet-Bloch bands where both (quasi)energy and momentum are periodic. In the

crystalline solid, the Bloch bands hybridize and develop bandgaps at the crossing points

[57, 58]. Similarly, the crossing points between different photon sectors of the Floquet-

Bloch bands open dynamical gaps [59]. The Floquet-Bloch bands are also experimentally

observed on the surface of a 3D topological insulator Bi2Se3 [122]. Again the Chern

number can be the quantifier of the topology of the Floquet-Bloch bands. For that, in Eq.

(2.5), one has to replace the Bloch bands by the Floquet-Bloch bands.

3.3 Results

In this section, we present all the results. First, we discuss the Floquet (energy) band

diagram of the E-SSH model and study their topological properties by calculating the

Chern number. We then discuss how the Floquet topological phase transition in the

system is dependent on the parameters of the undriven system. Later, we discuss the role

of the driving frequency and the amplitude on the Floquet topological phase transition.

Finally, we concentrate on the parameter regimes where the topological phases with
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higher Chern numbers � = 3 and � = 5 are observed.

3.3.1 Floquet (energy) band diagrams of the E-SSH model and its

topological property

The Floquet band diagram for the driven E-SSH model with driving frequency l = 2.8

(larger than the maximum bandgap of the undriven system i.e l > 2.0) are presented

in Fig. 3.2(a)-(c) respectively for q = −c/4, 0 and c/4 as a function of momenta : .

For the each case, the Floquet-Bloch bands are presented for three (< = 0, ±1) photon

sectors. Here the synthetic dimension \ ∈ [0, 2c] plays the role of a parameter. Since

the driving frequency is much larger than the maximum bandgap of the undriven system,

this value of l can be considered as a high-frequency case. Therefore, we find that the

calculation with only five photon sectors (< = 0, ±1, ±2) is sufficient for the numerical

convergence of the three central Floquet bands. In all the calculation, we set +1 = +2, the

phase factor U = c/2, and the dimerization constant X = 0.3. Hereafter, we replace all+1

and +2 by a single parameter + . For Fig. (3.2), we set + = 0.1 and the other parameters

as 6� = 6� = 0.1 and ℎ = 0.2. Here, we note that the bulk spectra for q = c/4 and −c/4

are identical. We also notice a pair of gaps between the Floquet bands at : = ±c/2 and

another pair of gaps at the BZ boundary : = ±c. The gaps at the BZ boundary disappear

at q = 0. This opening and closing of the Floquet bandgaps indicate a topological phase

transition in the system.

In Fig. 3.2(d)-(f), we have presented the Floquet energy spectrum of the central three

Floquet bands for the open boundary condition as a function of the cyclic parameter \

for the same values of q. These show the presence of edge states in the system, a typical

property of any topologically nontrivial system. Here again, Figs. 3.2(d) and (f) show

the identical nature of the energy spectrum, whereas Fig. 3.2(e) shows the closing off of

the bandgap at \ = c/2 and 3c/2.
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Figure 3.2: Floquet bands of the driven extended SSH model at the high-frequency regime. The
parameters X = 0.3, l = 2.8, and + = 0.1 are kept fix for all the cases. In the high-frequency
range, we use 5 photon sectors in the numerics and present the Floquet bands corresponding
to the central three photon sectors with < = 0,±1. The color bar represents the static weight
(|〈D0

U |D0
U〉|2) and separates the zero photon sector from the higher photon sectors [123]. In the

upper panel, � is plotted as a function of :; while in the lower panel, � is plotted against \.
We set q = −c/4 for the left side figures, q = 0 for middle figures, and q = c/4 for the right
side figures. Nonzero value of q induces a additional gap at : = ±c which is absent for q = 0.
Varying q, topological phase transitions are exhibited via the closing and opening of the Floquet
bands. The lower panel shows the quasienergies for the open boundary condition and the edge
states presence.

According to Fig. 3.2(a) and (c) or Fig. 3.2(d) and (f), the bulk spectrum for q = −c/4

and q = c/4 do not reveal different topological property of the Floquet bands. Therefore,

we need to calculate the Chern number to detect the topological phase transition. We

follow Ref. [124] to evaluate the Chern number. In Fig. 3.2(a), where q = −c/4,

�V =

{ 1 (V = �, �, �)

−1 (V = �,�, �).
(3.8)

Here �V is the Chern number of the Floquet-Bloch band V, as shown in Fig. 3.2(a).

Similarly, for q = c/4 [Fig. 3.2(c)], we get

�V =

{ 1 (V = �,�, �)

−1 (V = �, �, �)
(3.9)
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Figure 3.3: Phase diagram for the topological phase transition is shown via plotting the sum of
the Chern numbers �s of all the Floquet bands below � = 0 as a function of 6−/ℎ and q. Here,
nine photon sectors are required to get numerical convergence. In (a) + = 0.1 and in (b) + = 1.0
are considered for a fixed l = 2.8. The color bar represents �s.

We obtain the Chern number of opposite signs for the Floquet bands corresponding to

two opposite values q = c/4 and q = −c/4. For any arbitrary nonzero values of q with

opposite sign, we always find � = ±1. This indicates topological phase transition at

q = 0. The same results were obtained even for the undriven E-SSH model [70].

In the remaining part of this section, we explore the role of periodic driving in the

topological phase transition. We particularly show the advent of Floquet-Bloch bands

with higher Chern numbers due to periodic driving.

3.3.2 Phase diagram between 6−/ℎ and q

We now examine the effect of the NNN hopping and the time-periodic driving on the

topological properties of the E-SSH model. In Fig. 3.3, we present a phase diagram to

show the topological phase transition in the driven E-SSH model. We define a parameter

6− = (6� − 6�)/2, which gives a measure of the relative strength of two intra-sublattice

hopping (� to � and � to �). The parameter 6− is then scaled with respect to the

modulation parameter ℎ, where we fix ℎ = 0.2. In Fig. 3.3, we consider two different

driving amplitudes + = 0.1 and + = 1.0 for a fixed frequency l = 2.8. Here we plotted

the sum of the Chern numbers, denoted by �s, of all the Floquet bands below � = 0
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as a function of 6−/ℎ and q. Since here we are considering high-frequency driving,

we find that the consideration of five photon sectors is sufficient for the convergence.

Nevertheless, here we have presented the results with nine photon sectors.

In Fig 3.3(a), we present the result for the driving amplitude + = 0.1. For this case,

the phase diagram is showing three topologically distinct regions: a non-trivial region

within q ∈ [−c, 0) with �s = +1; another non-trivial region within q ∈ (0, c] with

�s = −1, and the rest is topologically trivial region with �s = 0. If we compare the phase

diagram of the driven E-SSH model with the undriven E-SSH model, discussed in Ref.

[70], then we observe that the periodic driving flips the sign of the Chern number. One

should also note that the phase diagram of the E-SSH model shares qualitatively similar

properties with the Haldane model [12]. In Fig. 3.3(b), we consider the same phase

diagram corresponding to the stronger driving field + = 1.0. For this case, we observe

appearance of higher Chern number �s = ±3 in the same parameter regime where we

observed �s = ±1 for the weaker driving strength + = 0.1. Interestingly, here we notice

that �s = +3 (�s = −3) region is surrounded by a thin layer of �s = +1 (�s = −1)

region. Overall these phase diagrams suggest two types of topological phase transition

depending on the periodic driving strengths: for the weaker driving, the Chern number

flips its sign; and for the stronger field, the Chern number not only flips its sign but also

increases the magnitude.

3.3.3 Topological phase transition from a non-trivial phase to an-

other non-trivial phase

In the previous subsection 3.3.2, we have shown two different types of topological

phase transitions depending on the driving strengths at the high-frequency limit. We now

explore the simultaneous role of the driving strength and the frequency on the topological

phase transition in a more detail. More precisely, we study the variation of the sum of the
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Figure 3.4: The summed over Chern number �s is plotted as a function of l and + in the low-
frequency regime l ≤ 2. Here twenty one photon sectors are considered for the convergence.
The other parameter are set at: q = −c/4, 6� = 6� = 0.1, and ℎ = 0.2. The color bar represents
the Chern number �s. For very small values of l and + , the sum of the Chern number of the
Floquet bands is very high which is shown with the white region. A major part of the phase
diagram is occupied by the lower Chern number phases with �s = +1. Topological phases with
high Chern numbers |� | > 1 are demonstrated by different color coding.

Chern number �s as a function of the driving strength + and the frequency l. We have

found that, by tuning the driving amplitude and frequency, one can get �s of different

magnitudes.

Here we cover a wide range of frequencies: from a much smaller frequency than the

lowest bandgap energy of the undriven E-SSHmodel to a frequency much higher than the

largest bandgap of the same undriven system. We present the phase diagram for the lower

frequency regime (0.1 ≤ l ≤ 2.0) and the higher frequency range (l > 2.0) separately.

Here, we set the parameter q = −c/4 and keep it fixed throughout this analysis. Except

at q = 0, we get a qualitatively similar topological property for any other values of q. We

also notice that the Chern number changes sign with the sign change of q.

For the lower frequency regime, the phase diagram is shown in Fig. 3.4. This phase

diagram displays the sum of the Chern numbers �s of all the Floquet bands below � = 0.

The Chern number �s is playing the role of the topological invariant. Here we consider

the driving amplitude in the range 0.1 ≤ + ≤ 4.5. In this regime, around the left-bottom
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Figure 3.5: A similar phase diagram as the previous figure is presented in the high-frequency
regimel > 2. Here, nine photon sectors are considered and the parameters are fixed at: q = −c/4,
6� = 6� = 0.1 and ℎ = 0.2. The color bar represents the Chern number �s.

corner of the plot marked by a white region, we observe huge values of |�s |. We have

marked the different regions of the phase diagram by colors only for |�s | ≤ 10. For

smaller values of both l and + , we see many jumps in the values of �s which indicate

rapid Floquet topological phase transition.

A major portion of this phase diagram is occupied by the topologically non-trivial

phase with �s = 1 (light-green color). We have found some scattered regions where

|�s | > 1. However, among these different higher Chern number regions, we find that the

regions with |�s | = 2, 3, 5, and 9 are prominent. The other values of the Chern number

are observed as many tiny islands in the phase diagram, which are mostly located near

the +-axis with + & 2. Since here the frequency is low enough, we have to consider

twenty one photon sectors to achieve convergence in our calculation. A qualitatively

similar topological property was reported for the case of periodically driven honeycomb

lattice [62]. However, here we observe this in a 1D system.

In Fig. 3.5, we have presented the phase diagram in the higher frequency regime

(2.0 < l ≤ 6.0). Here we consider the same range of driving amplitude + as earlier.

Because of the high-frequency regime, we need to consider only five photon sectors to
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get convergence. However, here we present results with nine photon sectors. Here again,

we mostly observe a “sea" of �s = +1 region, but the regions with higher values of �s

are much smaller than the low-frequency case. We can see some strips of regions with

�s = 2 and 3. Here, we observe islands of minuscule sizes with the Chern number�s = 5,

which is the highest observed value of �s for this high-frequency regime.

The Floquet topological phase transition discussed in this subsection can be under-

stood by investigating the Berry curvature, whose integration over the BZ gives the Chern

number. We know that when a (Floquet) topological phase transition takes place, the

Berry curvature localizes near the band touching points in the BZ. In Fig. 3.5, we see

tiny dark-green islands with �s = 5 on the orange strip with �s = 3. These points are the

critical points of the Floquet topological phase transitions �s = 3↔ �s = 5. Therefore,

in the next subsection, we study in detail the cases of higher Chern numbers �s = 3 and

5 at the high-frequency regime. At this regime, the interactions among different photon

sectors are minimal. As a consequence, we have found that the summed over Chern

number �s is equal to the Chern number � of the lower Floquet band of the zero photon

sector. This happens because each photon sector with < < 0 contributes a pair of Chern

numbers with the same magnitude but of opposite signs. Consequently, when we sum

them up, they cancel each other, and only the Chern number corresponding to the lower

Floquet band of the zero photon sector survives, and thus it leads to �s = �.

3.3.4 Cases of the higher Chern numbers at the high frequency

limit: I = 3 and 5

We now focus on two cases of higher Chern numbers with� = 3 and 5. Here we consider

the regime of high-frequencies in l and strong driving strengths + .
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Figure 3.6: In (a), the density plot of the PR of all the eigenstates for � = 3 case are shown as a
function of their eigenvalues � scaled by the external driving frequency l (G-direction) and for
different values of the parameter \ (H-direction). Here l = 2.8 and driving field strength+ = 1.0.
The darker color is identifying the localized states and the light color represents all delocalized
bulk states. The localized states within |� | < l are all edge states. However, the other localized
states within −3l < � < −2l are not edge states, these are localized in the bulk region. In (b),
the edge states are shown. Here we see that, all the eigenstates corresponding to � ' −0.6l have
prominent component only at the edge in different photon sectors. In (c)-(h), we have presented
a few typical edge states for two different values of \ and have shown their contribution in three
photon sectors −2 ≤ < ≤ 0.

Case: I = 3

In Fig. 3.2, we showed the edge states for |� | = 1 by projecting the Floquet bands along

the synthetic dimension \ for all possible values of the quasi-momentum : . Here, for

� = 3 case, the driving amplitude is much stronger than� = 1 case. This stronger driving

amplitude bends all the Floquet bands considerably. Consequently, the projection of the

Floquet bands along \ direction hides all the edge states. Hence, to show the presence

of edge states, we follow a different method by exploiting the localization property of

the edge states. We calculate the participation ratio (PR) of all the eigenstates of the

Floquet Hamiltonian as a measure of the (de)localized states. The PR of a state |k〉 in

basis {|q=〉} is defined as: PR = 1/∑= |2; |4, where |k〉 =
∑
= 2= |q=〉. Here, the state

|k〉 will be the eigenstates of the Floquet Hamiltonian. This calculation considers five

photon sectors, sufficient for convergence since the frequency is high (l = 2.8). If |k8〉
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is an eigenstate of the Floquet Hamiltonian, then this state can be expanded as

|k8〉 =
!∑
;=1

+2∑
<=−2

2;< |;, <〉,

where {|;, <〉} are the basis states with lattice sites ; = 1, . . . , ! and the photon sectors

−2 ≤ < ≤ +2. Then the PR of the eigenstates of the Floquet Hamiltonian will be

PR =

[
!∑
;=1

+2∑
<=−2
|2;< |4

]−1

.

In Fig. 3.6(a), we present a density plot of the PR as a function of the energy (scaled by

the driving frequency l) and for all the values of the cyclic parameter \ ∈ [0, 2c]. Here

we have assigned a light-blue color to all the delocalized states with PR ≥ 30. The darker

color represents the localized states. We detect localized eigenstates around |� | = 0.6l

for all values of \. These localized states are all edge states. On the other hand, the

localized states observed within � = −2l to −3l are not edge states; these are localized

in the bulk part of the lattice.

In Fig. 3.6(b), we show the localized eigenstates with � = −0.6l on the real lattice

space for \ ∈ [0, 2c]. This figure clearly shows that, for \ < c, all these states are

localized at the left edge of the lattice in photon sectors −2 ≤ < ≤ 0. Since we consider

the summed over Chern number presented below � = 0, we have shown localized states

Figure 3.7: The Floquet bands are presented for� = 3 case along the high-symmetry lines. Here
we set+ = 1.0 and l = 2.8. Subfigure (a) demonstrates the high symmetry path Γ−- −(−. −Γ
in the BZ. Here, in the (:, \) coordinates, the symmetry points are at Γ = (0, c), - = (c, c), ( =
(c, 2c), and . = (0, 2c). Subfigure (b) shows that there are many regions where Floquet
bandgaps are very small. This behavior is responsible for the localization in the Berry curvature
and consequently its leads to high Chern number.
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only in the photon sectors −2 ≤ < ≤ 0. For \ > c, the states are localized at the left

edge of the lattice in the same photon sectors. This property is separately shown in Figs.

3.6(c)-(h). In these subfigures, we have shown two typical eigenstates with \ = 3c/2 and

\ = c/2, and their contributions in every photon sector −2 ≤ < ≤ 0. For \ = 3c/2 case,

we see that the eigenstate is localized at the right edge in every photon sector. On the

other hand, for \ = c/2, we see that the eigenstate is localized at the left edge of every

photon sector.

In the next two figures, we present the results relates to the high Chern number. Figure

3.7(a) shows a high symmetry path Γ− - − ( −. −Γ by solid lines in the BZ. For a case

of � = 3, we have then demonstrated in Fig. 3.7(b) the Floquet bands corresponding

to < = 0 photon sector along the high symmetry path. Here we see a couple of points

surrounded by the rectangles, where the Floquet bands are almost closing with tiny finite

bandgaps. We have zoomed those regions to show clearly the presence of the bandgaps.

The presence of gaps is allowed us to calculate the Chern number of the Floquet bands.

If we tune the driving parameters (+, l) slightly, we see band closing and reopening

with a different Chern number (� = 1). Another interesting region is observed when we

consider the high-symmetry path - − (. Here two bands are always nearby and varying

almost parallel as we change the parameter (\ : c → 2c) along the - − ( path.

It is well known that the bandgap closing and opening are responsible for the localiza-

tion of the Berry curvature in the reciprocal space. We have seen above that the bandgaps

between the Floquet bands in the zero photon sectors are small at different points within

the BZ. Therefore, we now investigate the effect of this behavior of the Floquet bands on

the Berry curvature and its consequences in the Chern number. The results are shown

in Fig. 3.8. According to our expectation, we see in Fig. 3.8(a) localization in the

Berry curvature around the regions where the bandgaps are very small. Since the Chern

number is obtained by integrating the Berry curvature over the BZ, we investigate the
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Figure 3.8: For � = 3, the Berry curvature is plotted in (a) as a function of : and \ for the lower
Floquet band of the zero photon sector. The driving parameters are fixed at + = 1.0 and l = 2.8;
and here nine photon sectors are considered. Fixing the parameters same as (a), �: is plotted as
a function of : in (b) to observe the contribution from the different parts of the BZ in the Chern
number.

contribution of the Berry curvature from different regions of the BZ to the Chern number.

For this purpose, we define a measure local Chern number �: as

�: =
1

2c

:∫
: ′=−c

3:′
2c∫

\=0

3\ F (:′, \). (3.10)

According to this definition, the Chern number and the local Chern number are related

as � = �c. In Fig. 3.8(b), we show how �: changes with : . Here we observe transitions

in �: around those regions where the Floquet bandgaps are small. This is happening

because the Berry curvature is nonzero exactly around those regions. Interestingly, except

when : ' c, the local Chern number �: is transitioning only within 0 ↔ (−1). These

are happening exactly at those regions where the Floquet bandgaps are very small, as well

as the bands are linearly dispersive. The transition 0 → 3 at : ' c can be understood

by comparing the properties of the Floquet bands along the high-symmetry path - − (,

which is defined as c ≤ \ ≤ 2c and : = c. Here, two Floquet bands vary in parallel,

maintaining almost a fixed but small bandgap. In Fig. 3.8(a), we see the localization of

the Berry curvature exactly along a line that is the same as the - − ( path.
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Figure 3.9: For � = 5 case, we follow exactly the same method as earlier to detect the edge
states. Here we have consider the edge states for two different values of \ and has shown a typical
one for each value of \. In (a)-(e), we show an edge state corresponding to \ = 0.32c and its
contribution in different photon sectors −4 ≤ < ≤ 0. Subfigures (f)-(j) is showing the same for
\ = 1.60c.

Case: I = 5

The results for this case are presented in Figs. 3.9 and 3.10. In Fig. 3.9, we once

again picked up two localized eigenstates from \ = 0.32c and 1.60c following the same

procedure as we did for� = 3 case. Figures 3.9(a)-(e) show the edge state corresponding

to \ = 0.32c and its contribution in different photon sectors −4 ≤ < ≤ 0. In Figs.

3.9(f)-(j), the other localized state for \ = 1.60c and its contribution in different photon

sectors are presented.

In Fig. 3.10(a), the Floquet band diagram is presented along the same high symmetry

path Γ− - − ( −. − Γ for the driving parameters + = 3.02 and l = 4.8. Here again, we

observe multiple points where the Floquet bandgaps are very small with linear dispersive
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Figure 3.10: The driving parameters are set at+ = 3.02 andl = 4.9; and nine photon sectors are
considered for the numerics. Here for the lower Floquet band the Chern number� = 5. Subfigure
(a) presents the Floquet band diagram along the same high symmetry path Γ−- −(−. −Γ. Here
we also find multiple points where the bandgaps are tiny. Again along - − ( path, the behavior of
the Floquet bands is similar to the above case of � = 3. In (b), the Berry curvature is plotted as a
function of : and \ for the lower Floquet band of the zero photon sector. Subfigure (c) presents
�: as a function of : .

bands. Moreover, along the - − ( path, the qualitative behavior of the Floquet bands is

similar to the case of � = 3. We present the Berry curvature in Fig. 3.10(b). This figure

shows the correlation between the localization of the Berry curvature and the Floquet

bandgaps. According to our expectation, here again, we see that the smaller Floquet

bandgaps are responsible for the stronger localization and vice versa. Like the previous

case, we also see in Fig. 3.10(c) the appearance of nonzero Berry curvatures at different

regions in the BZ, and that leads to the transitions in �: . From the transition perspective,

the property of the local Chern number is very rich here. We observe many different

transitions in �: . This is clearly the consequence of the complex structure of the Berry

curvature as shown in Fig. 3.10(b). In this case, besides the transitions of 0↔ (−1), we

also observe transitions like 0→ 1, 1→ 2, and 2→ 5. The final transition of 2→ 5 is

happening again due to the same behavior of the Floquet bands along the high symmetry

path - − ( as discussed above for the case of � = 3. In case of � = 3, the final transition

of �: was 0 → 3. The equal amount of jump in local Chern number Δ�: = 3 around

: = c suggests that the contribution of the - − ( path to the Chern number � is exactly
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the same for both the high Chern number cases.

3.4 Summary and final remarks

In this paper, we study a periodically driven E-SSHmodel. An extensive study of different

phase diagrams clarifies that the external periodic drivingmakes this system topologically

much richer. First, we have found that our periodic driving protocol introduces gaps

between the Floquet bands at the BZ boundary for non-zero values of the parameter q.

In the case of the undriven E-SSHmodel, the parameter q determines the topology of the

system. This result then motivates us to study a phase diagram in the parameter space of

the relative strength of the NNN hopping and the parameter q. We have observed that,

for the weaker driving field strength, the phase diagram is almost identical (�s = 0 or±1)

to the phase diagram corresponding to the undriven system except that the sign of the

Chern number is now opposite but of the same magnitude. However, for the stronger

driving strength, the Chern number not only changes its sign, but its magnitude also

increases with �s = ±3. Moreover, we observe that the larger Chern number regions

are surrounded by lower Chern number regions with �s = ±1. The discovery of higher

Chern numbers for the stronger driving field motivates us to extensively study the role of

the driving parameters (l and +) on the topological properties of the system.

We then study the topological phase diagram by studying the Chern number �s as

a function of the driving frequency l and driving amplitude + . Here we concentrate

separately on the driving frequency in two regimes: (1) lower than or the same order

of the bandgap of the undriven E-SSH model; and (2) higher than the bandgap of

the undriven E-SSH system. In the lower frequency regime, we observe many sharps

topological phase transitions. Particularly for the weaker driving amplitudes, we observe

topological phase transitions between a non-trivial phase with a very high Chern number

to another non-trivial phase with another high Chern number. Higher Chern number
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is also observed in the high-frequency regime but within a very restricted value of the

driving parameters. Moreover, in this regime, we have observed the highest value of the

Chern number as�B = +5. The above discussion clearly shows that the 1D E-SSH model

under monochromatic periodic driving can have many different topological phases with

a much higher Chern number depending on the driving parameters.

We investigate in detail the higher Chern number cases with� = 3 and 5 at the higher

frequency regime. The edge states are detected by calculating the PR of the energy

eigenstates for all values of the synthetic dimension \. After identifying the localized

states, we then detected the edge states. Here we observe that whenever two Floquet

bands in the zero photon sector come close to each other, the Berry curvature localizes

there, and consequently, it contributes to the Chern number of the Floquet bands. In order

to identify the contribution of the Berry curvature to the Chern number from different

regions of the BZ, we introduce a measure “local Chern number" �: . We see many

jumps in the values of �: when we plot this as a function of : , and these jumps exactly

occur at those values of : where the gaps in two Floquet bands are very small.

In this study we consider a driving protocol of the form + (C) = +1 coslC ++2 sinlC.

Following the recently proposed perturbation theory in Ref. [125], this smooth driving

protocol can be realized at the high-frequency limit (very large l) upto an order of 1/l2

by a class of four-step pulse sequence of the form

{�0 ++1, �0 ++2, �0 −+1, �0 −+2},

where �0 is the undriven Hamiltonian. Here each pulse is applied for the time interval

)/4, where ) = 2c/l. This kind of pulse sequences can be realized in cold atoms and

optical lattice setup [126–128].
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4
Theoretical study of # stacked SSH

model via symmetry breaking

The contents of this Chapter has been published in Physical Review B as Aayushi Agrawal

& J.N.Bandyopadhyay (2023).

4.1 Introduction

Different extensions of 1D SSH chain which either remains in 1D or 2D are investigated

in the literature. As discussed in the previous Chapter, periodically driven E-SSH

model was studied where monochromatic sinusoidal driving is used. The E-SSH model

was considered as an effective 2D model, where the cyclic parameter plays the role of

an additional synthetic dimension. In these extensions of the 1D SSH model, ladder

structures and two coupled-SSH chains, have been proposed [129–137].

A series of works have studied two versions of the 2D SSH model: First, a square

lattice, where each unit cell contains four different atoms [138, 139]. Therefore, this

model has four energy bands. An interesting feature of this 2D SSH model is that it
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shows nontrivial topology but with zero Berry curvature [140]. Second, a layered 2D

SSH model is constructed by stacking #-number of SSH chains [141–145]. Moreover,

one can obtain a layered structure of the 2D SSHmodel by promoting the cyclic parameter

of the E-SSH model to (quasi)momentum. In general, a (3 + 1) dimensional layered

structure can be constructed by stacking 3 dimensional TIs. This layered material is

categorized as a new class of TIs, called weak TIs. Since the stacking happens in some

particular direction, one can expect edge modes only in the stacking direction. Therefore,

unlike the four bands 2D SSHmodel, where four edge modes may appear at all four sides,

the #-stacked SSH model has edge modes only at the two sides along the direction of

stacking. This results in an anisotropy of the edge states in the system.

Originally, this idea of stacking was incorporated in a generalized 3D quantum spin

Hall (QSH) system [146, 147], where they formed 3Dweak TIs from the layered 2DQSH

[13, 14]. They also showed two distinct classes: weak TIs and strong TIs, depending on

the nature of their surface states [146]. In this study, they observed that a small amount of

disorder could destroy weak TIs and transform these into band insulators. A later study

has demonstrated that the weak TIs are protected from any random disorder, provided

this disorder does not break the TR symmetry and does not close the bulk energy gap

[148]. Thereafter, a new topological phase was discovered near the transition from weak

TIs to strong TIs, called topological semimetal (TSM) [149]. The TSMs are the phases

where two (four) bands are separated by a finite band gap, however, there exist some

points at the Fermi energy where both (four) bands have degeneracy [150, 151]. These

degenerate band touching points are called Weyl (Dirac) nodes [152, 153].

Recently, a couple of extensive studies have found that, by varying the system pa-

rameters, the #-stacked SSH model makes a transition from trivial insulator to weak

topological insulator via topological semimetal state [141, 142]. The experimental real-

ization of this model has also been proposed [154]. Since this model is chiral symmetric,
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we calculate the winding number as a topological invariant by dimension reduction.

Until now, the #-stacked SSH model has been studied to preserve all the fundamental

symmetries. Therefore, the above studies raise a natural question about the fate of the

#-stacked SSH chains with various broken symmetries. The primary goal of this study

is to investigate the impact of the broken symmetries on the #-stacked SSH model and

catalog their interesting topological phases.

In this paper, we have considered a basic model of #-stacked half-filled SSH chains.

This basic model preserves chiral, time-reversal (TR), and particle-hole (PH) symmetries

like in the single SSH chain. The presence of these symmetries in the system suggests that

its Hamiltonian satisfies the following conditions in quasi-momentum space or k-space:

P−1H(:G , :H) P = −H(−:G ,−:H),

T −1H(:G , :H) T = H(−:G ,−:H),

C−1H(:G , :H) C = −H(:G , :H),

(4.1)

where P, T , and C respectively represent chiral, TR, and PH operations. Based on these

three fundamental symmetries, a periodic table of the topological materials was proposed

to classify them [39, 40, 63]. A major part of this paper, preserving the PH symmetry in

the system, investigate the topological properties of the system in the presence or absence

of the chiral and the TR symmetries. These symmetries are systematically preserved or

broken by allowing or restricting various hopping in the system. The TR symmetry is

broken by considering hopping strengths with imaginary amplitude. Later, we also study

the role of the PH symmetry on the topology of the system.

In this model of the #-stacked SSH chains, we have placed individual SSH chains

along the G-direction, whereas in the H-direction, we have stacked # number of identical

SSH chains. Here we have proposed different versions of the #-stacked SSH chains

depending on the various hopping terms in the system. We consider two specific cases
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for each of these versions: in one case, the individual SSH chains is topologically trivial

(the winding number F = 0), and in the other case, the individual chain is topologically

nontrivial (F ≠ 0). We classify these different versions into two classes of Hamiltonians:

1. Systemwith chiral symmetry. Because of this symmetry, off-diagonal terms appear

in the Hamiltonian represented in the quasi-momentum space.

2. System without chiral symmetry. Along with the off-diagonal terms, now diagonal

or mass terms appear in the Hamiltonian.

For the latter class, we have considered two sub-classes based on the presence and absence

of the TR symmetry.

4.2 Weak topological insulator : # stacked SSH model

In this section, we study the #-stacked SSH chains model with chiral symmetry. This

is the basic model whose structure is shown in Fig. (4.1). Here, # number of identical

SSH chains are stacked along the H-direction, forming a 2D square/rectangular lattice

model. Each SSH chain is a standard one with two sites per unit cell or one dimer per

unit cell. Sites � and � are respectively represented by the red and black circles in the

figure. Here we see that the spin-less electrons in this system can hop only to adjacent

Figure 4.1: Schematic representation of the #-stacked SSH chains with chiral symmetry is
presented. The red and black colored spheres, respectively, represent sites of � and � sub-
lattices. The thick and dotted black bonds represent the inter-cell and intra-cell hopping within a
chain, respectively. The neighboring chains are connected by light blue and purple dotted bonds.



Chapter 4. # stacked SSH model 56

or nearest neighbor sites through the bonds represented by the dotted and solid black

lines along the G-direction. The electrons are allowed to hop only between neighboring

chains, which are shown by the light blue and purple lines. This 2D lattice has only two

sub-lattices. Therefore, like an SSH chain, this system has two energy bands.

The real-space Hamiltonian of this model is given as

�#−((� =
∑
=G ,=H

[
(1 − [) 2†�=G ,=H2

�
=G ,=H
+ (1 + [) 2†�

=G+1,=H2
�
=G ,=H

]
− X

2

∑
=G ,=H

[
2
†�
=G+1,=H2

�
=G ,=H+1 + 2

†�
=G+1,=H+12

�
=G ,=H

]
+ X

2

∑
=G ,=H

[
2†�=G ,=H2

�
=G ,=H+1 + 2

†�
=G ,=H+12

�
=G ,=H

]
+ h.c.,

(4.2)

where 2�=G ,=H (and 2
�
=G ,=H

) and 2†�=G ,=H (and 2
†�
=G ,=H ) are the fermionic annihilation and creation

operators corresponding to the sub-lattice � (and �). The first and the second terms of

the Hamiltonian represent intra-cell and inter-cell hopping. The parameter [ fixes the

relative strengths of these hopping, and thus it decides the topological property of the

individual SSH chain. The last two terms of the Hamiltonian describe the coupling

between two adjacent SSH chains, and the parameter X decides the strength of these

hopping. Note that all the inter-chain hopping strengths are considered equal here. For

the case of the full periodic boundary condition (PBC), i.e., the PBC is considered along

both G- and H-directions, we have to stack # number of SSH chains on a toroidal surface.

Correspondingly, the quasi-momentum space will also be a 2D toroidal surface, defined

in k = (:G , :H) space. For the PBC, the above Hamiltonian in k-space is expressed by

substituting the real-space fermionic operators {2=G ,=H } with its k-space representation

as

2=G ,=H =
1

#G#H

∑
:G ,:H

48(=G :G+=H:H) 2̃:G ,:H , (4.3)

where #G is the total number of unit cells (or dimers) along G-direction and #H is the
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number of SSH chains stacked along H-direction. We thus get the k-space Hamiltonian

as

�#−((� =
∑
k

Ψ
†
k
H#−((� (k)Ψk , (4.4)

where Ψk =
[
2�k 2�k

]) are the Nambu spinors and the Hamiltonian kernel or the Bloch

HamiltonianH#−((� (k) is expressed as

H#−((� (k) = h(k) · 2, where

ℎG (k) =
[
(1 + cos :G) + (1 − cos :G) (X cos :H − [)

]
ℎH (k) =

[
(1 + [) − X cos :H

]
sin :G ,

(4.5)

were fU’s with U = {G, H, I} are Pauli’s pseudo-spin matrices. Two energy bands of this

system are obtained from the eigenvalues of the above Bloch Hamiltonian and these are

�±(k) = ±
√
ℎG (k)2 + ℎH (k)2

= ±
√

2
[
(1 + cos :G) + (1 − cos :G) (X cos :H − [)2

]1/2
.

(4.6)

Here, we consider two cases of the #-stacked SSH chains model: in one case, we set

[ > 0 to make the individual SSH chain topologically nontrivial; and in the other case,

when [ < 0, the individual SSH chain is topologically trivial. The presence of the edge

states in the bulk gap characterizes the topological property of the system. The edge

states are observed for the open boundary conditions (OBC) only. For better visibility of

the edge states, here we consider energy bands under partial open boundary conditions

(POBCs), when at a time the OBC is considered only along one direction, and the PBC

is considered along the other direction. Geometrically, this suggests that the #-stacked

SSH chains are now placed on a cylinder, where the cylinder’s axis is along G-direction

in one case and along H-direction in the other case. Under these two different POBC
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cases, the Hamiltonians become

H#−((� (:G) =[{
(1 − [) + (1 + [) cos :G

}
fG + (1 + [) sin :GfH

]
⊗ 1#H

+ X
2

[
(1 − cos :G)fG − sin :GfH

]
⊗

∑
=H

(2†=H2=H+1 + h.c.)

(4.7)

and

H#−((� (:H) =
∑
=G

[
(1 − [) 2†�=G 2

�
=G
+ (1 + [) 2†�

=G+12
�
=G

]
+ X cos :H

∑
=G

[
2†�=G 2

�
=G
− 2†�

=G+12
�
=G

]
+ h.c.

=
∑
=G

[ (
1 − [ + X cos :H

)
2†�=G 2

�
=G
+

(
1 + [ − X cos :H

)
2
†�
=G+12

�
=G

]
+ h.c.,

(4.8)

whereH#−((� (:G) is the Hamiltonian corresponding to the POBC case with the PBC is

considered only along the G-direction; and H#−((� (:H) represents the POBC Hamilto-

nian with the PBC is considered only along the H-direction. In other words, we can say

thatH#−((� (:G) describes a model of #-stacked SSH chains placed on the surface of a

cylinder, whose axis is along the H-direction; whereas H#−((� (:H) describes the same

2D model on the surface of a cylinder, whose axis is along the G-direction. Here, 1#H is

a # × # identity matrix.

In Eq. (4.8), the Hamiltonian H#−((� (:H) mimics a single SSH chain, where :H

plays the role of a parameter that modulates the hopping amplitudes. For each value of :H,

this Hamiltonian represents an SSH chain. Consequently, the defined weak topological

invariant is independent of :H, and that can be calculated only along the G-direction.

If we compare with a single SSH chain, this system is topologically nontrivial when(
1 + [ − X cos :H

)
>

(
1 − [ + X cos :H

)
. This imposes the following condition on :H in
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Figure 4.2: In (a)-(c), the closed curves in the ℎG−ℎH plane are presented for the model proposed
in Fig. 4.1 for #H = 200 topologically trivial stacked SSH chains with 100 dimers in every single
chain (i.e., #G = 200). Here, we consider three different cases: X = 0.0, X = 0.5 and X = 1 with
[ = −0.5. In (d)-(f), corresponding energy bands are plotted as a function of :G for the POBC
case, where PBC is considered only along G-direction and OBC is considered along H-direction.
Similarly, in (g)-(i), energy bands are plotted as a function of :H , where PBC is considered only
along the H-direction and OBC is considered along the G-direction.

the first Brillouin zone (BZ):

cos−1
([
X

)
< :H < 2c − cos−1

([
X

)
. (4.9)

In Figs. 4.2(a)-(c) and 4.3(a)-(c), the Hamiltonian kernel h(k) is shown in the ℎG − ℎH

plane for individual trivial and nontrivial SSH chain, respectively for three different

values of X. Fig. 4.2 (a) and 4.3 (a) are plotted for X = 0, i.e., there is no interchain

hopping. Therefore, it behaves like a single SSH chain. The closed curve encloses the

origin only when the individual SSH chain is nontrivial. The next two figures are plotted

for non-zero values of X. Here, in contrast to the single SSH chain, it has a finite number

of circles, which either enclose the origin or pass through the origin or not encloses the

origin depending on the above condition of :H. This is clearly observed when the energy

bands are plotted as a function of :H under POBCs.

We show the energy bands corresponding to the Hamiltonian H#−((� (:G) and
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Figure 4.3: The same results are presented here as in Fig. (4.2), but here all the individual SSH
chain is topologically nontrivial. Here, we again consider the same three different values of the
parameter X (= 0.0, 0.5 and 1.0) and fix the other parameter [ = 0.5.

H#−((� (:H) in Fig. 4.2(d)-(f) and Fig. 4.2(g)-(i), respectively. Here, we consider

the individual SSH chain to be topologically trivial. We observe that, as the interchain

hopping X increases, the #-stacked SSH model constructed with the topologically trivial

individual SSH chains starts exhibiting nontrivial nature.

The energy band diagrams for the case when the individual SSH chain is nontrivial

are shown in Fig. 4.3(d)-(i). For this case, the #-stacked SSH model shows the zero

energy edge states for all values of X. However, the length of the zero energy states is

decided by the above condition on :H. The region where the zero energy edge states are

presented is known as “Edge Brillouin zone (EBZ)". The edge states in the EBZ are

bridged by two bulk nodes and this explains the topological semimetal behavior of the

system [142]. For X = 1, besides the shifting of the band-touching points, we do not see

any qualitative difference in the bands in Figs. 4.2(i) and 4.3(i). For this system, the
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phase transitions occur in the following parametric way:

[ < −X : Trivial insulator,

−X < [ < X : Topological semimetal,

[ > X : Weak topological insulator.

(4.10)

In this study, we choose the parameters such that the system has edge states irrespective

of the nature of the individual SSH chain, whether it is trivial or nontrivial.

4.3 Generalized T-stacked SSH chains with broken chi-

ral symmetry

The chiral symmetry is broken in the #-stacked SSH chains by introducing bonds within

the sub-lattices, leading to the intra-sub-lattice hopping. The Chern number is a topo-

logical invariant for systems with broken chiral symmetry. Moreover, here we have

considered two sub-classes of systems depending on the presence and absence of the

TR symmetry. Following Haldane’s approach [12], the TR symmetry is broken by

introducing intra-sub-lattice hopping with imaginary strength. This section is divided

into two subsections. In subsections 4.3.1 and 4.3.2, we have respectively discussed the

topological properties of the system with and without the TR symmetry, while the chiral

symmetry is broken for both cases. Note once again that the PH symmetry is preserved.

4.3.1 Topological phases with TR symmetry

As a target of designing #-stacked SSH models of nontrivial topology with the Chern

number� ≠ 0, we introduce additional intra-sub-lattice hopping in our basic model. This

hopping introduces a mass term in the k-space Hamiltonian. Consequently, this term

breaks the chiral symmetry and lifts the degeneracy of the two bands, which results in
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an opening of the band gap. The broken chiral symmetry is the cause of the existence of

non-zero and non-degenerate energy edge states. Here, we set W� = −W� = W to preserve

the PH symmetry in the system, where W� (W�) is � to � (� to �) sub-lattice hopping

strength. Note that here the intra-sub-lattice hopping strengths are equal in magnitude,

but opposite in sign. As a consequence, the energy spectrum is symmetric about � = 0.

For the condition W� = W�, the spectrum does not remain symmetric about � = 0 due

to the broken PH symmetry, but the inversion symmetry (discussed later in Sec. 4.6) is

preserved in the system. This model preserves the TR symmetry due to the real value of

the chiral symmetry-breaking terms in the Hamiltonian.

We introduce NNN intra-chain (i.e., along the G-direction) bonds with real hopping

strengths while keeping the original bonds intact. These bonds give additional hopping

within an SSH chain from its � site (or � site) of a unit cell to the � site (or � site) of the

adjacent unit cell. The schematic representation of this model is presented in Fig. 4.4(a).

For this model, the Hamiltonian in the k-space is given as:

Hk = H#−((� (k) + 2W cos :G fI . (4.11)

Here, the first term at the right side H#−((� (k) is given in Eq. (4.5). The second

term appears due to the newly introduced NNN bonds, where we set the intra-sub-lattice

long-range hopping strength W = 0.2. In Figs. 4.4(b)-(e), the energy bands are presented

for the POBC. Here the system satisfies the PBC along the H-direction, but the OBC

along the G-direction. The corresponding POBC Hamiltonian is

H(:H) = H#−((� (:H) + W
∑
=G

[(
2†�=G 2

�
=G+1 − 2

†�
=G
2�=G+1

)
+ ℎ.2.

]
(4.12)

Here, H#−((� (:H) is already given in Eq. (4.8). Figs. 4.4(b) and 4.4(d) show the

energy bands with the POBC for the Hamiltonian H(:H), when the individual chain of
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the stacked SSH chains is topologically trivial (winding number F = 0). On the other

hand, Figs. 4.4(c) and (e) show the energy bands, when the individual SSH chain is

topologically nontrivial (F ≠ 0).

In Fig. 4.4(d), we see the presence of the edge states at the band gap. These states are

not connecting the valence and the conduction band. Therefore, the Chern number of this

system is � = 0. The energy band diagram of this system is similar to the bands shown

in Ref. [70], where an SSH chain with an additional synthetic dimension was studied.

For the other case, as shown in Fig. 4.4(e), an edge state emanating from one band forms

a single lobe by crossing the edge state emanating from the other band twice and finally

enters into the same band from where it was emanated. The edge state emanating from

the other band shows the same property. Here again, the Chern number � = 0. The

� = 0 is also observed for both cases by analytical means in Sec. 4.4. Even though for

these cases � = 0, the presence of the edge states indicates nontrivial topology. This

nontriviality will be revealed by the calculation of the 2D Zak phase in Sec. 4.5.

4.3.2 Topological phases without TR symmetry

In the previous subsection 4.3.1, we observed that the TR-symmetric #-stacked SSH

chains without chiral symmetry could not have a nontrivial topology with a non-zero

Chern number. Here, we study the #-stacked SSH chains with broken chiral symmetry

and TR symmetry. The chiral symmetry was broken earlier by introducing intra-sub-

lattice hopping with real hopping strengths. Here, we simultaneously break the chiral

and the TR symmetries by replacing all the intra-sub-lattice real hopping strengths with

imaginary amplitudes. In experiments, the imaginary hopping amplitude can be realized

by applying a magnetic field-like gauge field in the direction perpendicular to the plane

of the 2D lattice. However, following Haldane [12], we consider intra-sub- lattice

imaginary hopping amplitude, which gives the gauge-field-like effect even without any
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Figure 4.4: A schematic diagram of a #-stacked SSH model with broken chiral symmetry is
shown in subfigure (a). Here, the intra-sub-lattice hopping strengths are real numbers and are
shown by the solid-brown andmagenta bonds. The corresponding energy bands under the POBCs
are shown in subfigure (b)-(e). In subfigures (b) and (c), energy bands are shown as a function
of :G , where the PBC is considered along the G-direction and the OBC is considered along the
H-direction. In subfigure (b), the individual SSH chain is trivial ([ = −0.5); and in subfigure (c),
each SSH chain is nontrivial ([ = 0.5). For these two values of the parameter [, energy bands
are shown as a function of :H in subfigures (d) and (e), respectively. In these cases, the PBC is
considered along the H-direction, and the OBC is considered along the G-direction. Here, we set
the parameters X = 1.0 and W = 0.2.
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external physical field. We again set the intra-sub-lattice hopping strength W� = −W� = 8W

to preserve the PH symmetry. Due to the broken TR symmetry, this system can now be

transformed into a Chern insulator, a TR symmetry broken topological insulator with a

non-zero Chern number.

Model 1

First, we study the system with NNN intra-chain hopping of imaginary amplitude from

� (or �) sites to � (or �) sites of the nearest unit cell. The schematic diagram of this

model is shown in Fig. 4.5(a). The Hamiltonian of this system in the real space (lattice

space) is of the form

��#−((� = �#−((�

− 8W
∑
=G ,=H

(
2†�=G ,=H2

�
=G+1,=H − 2

†�
=G ,=H

2�=G+1,=H − h.c.
)
.

(4.13)

The expression of the Hamiltonian �#−((� is given in Eq. (4.2). The above Hamiltonian

in k-space becomes

Hk = �#−((� (k) + 2W sin :G fI, (4.14)

where the Hamiltonian �#−((� (k) is given in Eq. (4.5). Here again we set W = 0.2.

For this case, we present the band diagrams in Fig. 4.5(b)-(e) under POBCs. The

corresponding Hamiltonians are

H(:G) = H#−((� (:G) + (2W sin :G) fI ⊗ 1#H

and

H(:H) = H#−((� (:H) − 8W
∑
=G

(
2†�=G 2

�
=G+1 − 2

†�
=G
2�=G+1 − h.c.

)
.

(4.15)

Figures 4.5(b) and 4.5(d) show energy bands for the case when the individual SSH chain

is topologically trivial. On the other hand, Figs. 4.5(c) and 4.5(e) show energy bands for
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Figure 4.5: Model 1: The subfigure (a) shows a model which is identical to the model presented
in Fig. 4.4(a). However, here the strengths of all the intra-sub-lattice hopping are imaginary
(shown by the dotted bonds), breaking the TR-symmetry in the system. The other subfigures
show the energy bands of the system under the POBCs. In subfigures (b) and (c), energy bands
with the PBC only along G-direction are presented. Here, in (b), the individual SSH chain is
topologically trivial with [ = −0.5; whereas, in (c), the individual chain is topologically nontrivial
with [ = 0.5. Similarly, in subfigures (d) and (e), the energy bands are presented respectively for
the same values of the parameter [, but here individual SSH chain with PBC is considered only
along H-direction. Here, we set X = 1 and W = 0.2.

the case when the individual SSH chain is topologically nontrivial. Here, when the PBC

is considered only along G-direction, we observe that the system is gapless and the bands

are touching at :G = c. However, when the PBC is considered only along the H-direction,

the two bands touch at :H = c/3 and :H = 2c/3. These suggest that the system has a pair

of Dirac points at (c, c/3) and (c, 2c/3). At both the Dirac points, the term appears

in this model due to the broken chiral and TR symmetries vanishes. Therefore, like the

basic model, here we also do not see any opening of band gap. Moreover, this system

has a pair of degenerate zero energy edge states. We have calculated the Chern number

of the lower band of this system and found � = 0. Therefore, we now proceed to the next

model, where inter-chain NNN hopping with imaginary amplitude is considered.
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Figure 4.6: Model 2: In subfigures (a), two different types of inter-chain hopping terms are
considered, which are shown by brown (A to A) and magenta (B to B) bonds. These intra-
sub-lattice hopping strengths are imaginary numbers (represented by the dotted bonds). The
imaginary hopping amplitude breaks the TR-symmetry in the system. The remaining subfigures
(b)-(e) show the energy bands of this model under POBCs same as for the cases described in Figs.
4.5(b)-(e).

Model 2

The schematic representation of this model is shown in Fig. 4.6(a). Here, � (or �) sites of

a SSH chain are connected to the � (or �) sites of the nearest unit cell of the neighboring

SSH chain. In real space, the corresponding Hamiltonian under tight-binding condition

is given as

��#−((� = �#−((�

− 8W
∑
=G ,=H

(
2†�=G ,=H2

�
=G+1,=H+1 − 2

†�
=G ,=H

2�=G+1,=H+1 − h.c.
)
.

(4.16)

The above Hamiltonian under PBC can be represented in the k-space as

Hk = �#−((� (k) + 2W sin(:G + :H) fI, (4.17)
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where, as earlier, we set W = 0.2. For this model, we show the band diagrams in Figs.

4.6(b)-(e) under the POBCs and the corresponding Hamiltonians are

H(:G) = H#−((� (:G) + (W sin :G) fI ⊗
∑
=H

(
2†=H2=H+1 + h.c.

)
− 8 (W cos :G) fI ⊗

∑
=H

(
2†=H2=H+1 − h.c.

)
and

H(:H) = H#−((� (:H) − 8W
∑
=G

[(
2†�=G 2

�
=G+1 − 2

†�
=G
2�=G+1

)
4−8:H − h.c.

]
.

(4.18)

Here, the energy bands for the case when the individual SSH chain is topologically trivial

are shown in Figs. 4.6(b) and (d). On the other hand, Figs. 4.6(c) and (e) show the same

for the case when the individual chain is topologically nontrivial. In Figs. 4.6(b) and (c),

the edge states with single crossing is observed when the energy bands are presented for

the HamiltonianH(:G). However, in Figs. 4.6(d) and (e), we respectively observe edge

states with single and triple crossings (shown in the inset figure) in the energy bands of

H(:H). These band diagrams indicate that the system may exhibit nontrivial topological

properties. We verify this by calculating the Chern number of the system and obtain

� = 1 for both the cases. This study reveals that the system shows nontrivial topology,

when the edge states cross odd number of times.

In case of the previous model, the edge states were only observed for the POBC case

with the PBC along the H-direction and the OBC along the G-direction. In this model,

the edge states are observed along both the directions. This suggests that this system

behaves like a true 2D model with two-bands, without any effect of the stacking in a

particular direction. This system is a Chern insulator with � = 1. These results motivate

us to study the next model with � to � (or � to �) NN inter-chain hopping of imaginary

amplitude along the vertical or the H-direction.
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Figure 4.7: Model 3: The subfigure (a) shows that here we consider a different version of
#-stacked SSH chains with broken chiral and TR-symmetry. This model has intra-sub-lattice
hopping along the vertical direction shown by the dotted green bonds. Here, once again, the
remaining subfigures show the energy bands of this model under the POBCs for the cases
identical to Figs. 4.5(b)-(e).

Model 3

The schematic diagramof this system is shown in Fig. 4.7(a). The real-spaceHamiltonian

of this system is given as

��#−((� = �#−((�

− 8W
∑
=G ,=H

(
2†�=G ,=H2

�
=G ,=H+1 − 2

†�
=G ,=H

2�=G ,=H+1 − ℎ.2.
)
,

(4.19)

and the corresponding Hamiltonian under the PBC is given in k-space as

Hk = �#−((� (k) + 2W sin :H fI, (4.20)
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where we set W = 0.2. The band diagrams are shown in Figs. 4.7(b)-(e) for the POBC

Hamiltonians

H(:G) = H#−((� (:G) − (8W) fI ⊗
∑
=H

(
2†=H2=H+1 − h.c.

)
and

H(:H) = H#−((� (:H) + 2W sin :H
∑
=G

(
2†�=G 2

�
=G
− 2†�=G 2

�
=G

)
.

(4.21)

Similar to the previous cases, Figs. 4.7(b) and 4.7(d) show the energy bands, when all the

individual SSH chain is topologically trivial. In Figs. 4.7(c) and 4.7(e), we have shown

energy bands, where the individual SSH chain is topologically nontrivial. In all these

figures, we observe edge stateswith single crossing only. Earlier, we have commented that

Model 2 exhibits topologically nontrivial properties due to the odd number of crossings.

In this model, we see single crossing of the edge states in the energy bands, which is

also odd number of crossing. Therefore, we expect non-zero Chern number for this

model. Our numerical calculation indeed finds � = −1. Like Model 2, again this model

behaves like a true 2D Chern insulator with edge states along both the directions. Since,

Model 2 and Model 3 show nontrivial topological properties with the Chern number of

opposite signs, a natural question is whether the combination of these two models form

a topologically trivial system. Thus we now study a combination of these two models.

Model 4

Finally, we consider a system having NNN diagonal hopping and NN vertical hopping

among neighboring chains as depicted in Fig. 4.8(a). Moreover, here we assume the

strength of both the hopping as imaginary numbers. The corresponding real-space
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Figure 4.8: Model 4: The schematic diagram presented in subfigure (a) shows that this model
combines Model 2 and Model 3, as presented in Figs. (4.6) and (4.7). The remaining subfigures
show the energy bands of this model under POBCs, and their description is once again identical
to Figs. 4.5(b)-(e).

Hamiltonian is given as

��#−�((� (=G , =H) = �#−�((� (=G , =H) − 8W
∑
=G ,=H

(
2†�=G ,=H2

�
=G ,=H+1

+ 2†�=G ,=H2
�
=G+1,=H+1 − 2

†�
=G ,=H

2�=G ,=H+1 − 2
†�
=G ,=H

2�=G+1,=H+1 − h.c.
)
.

(4.22)

For this case, the k-space Hamiltonian is

Hk = �#−((� (k) + 2W [sin :H + sin(:G + :H)] fI, (4.23)
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where we set W = 0.2. The corresponding POBC Hamiltonians are

H(:G) = H#−((� (:G) + W sin :G fI ⊗
∑
=H

(
2†=H2=H+1 + h.c.

)
− 8W(1 + cos :G)fI ⊗

∑
=H

(
2†=H2=H+1 − h.c.

)
and

H(:H) = H#−((� (:H) + 2W sin :H
∑
=G

(
2†�=G 2

�
=G
− 2†�=G 2

�
=G

)
− 8W

∑
=G

[(
2†�=G 2

�
=G+1 − 2

†�
=G
2�=G+1

)
4−8:H − h.c.

]
.

(4.24)

The energy bands corresponding to these Hamiltonians are presented in Figs. 4.8(b)-(e).

These figures show that the energy bands are gapless. Similar to Figs. 4.4(d) and 4.4(e),

the Chern number of this model is expected to be � = 0 due to the even number of

crossings, and we have indeed found that by numerical calculation. Later, we shall also

find the same by analytical calculation in Sec. 4.4. However, the presence of the edge

states in this model is again indicating nontrivial topology, which is revealed in Sec. 4.5

by the calculation of the 2D Zak phase.

Here we consider all the inter-chain hopping strengths are equal. However, for the

unequal strengths of the interchain NNN diagonal hopping (dotted red and brown lines

in the figure) and the NN hopping along the vertical direction (dotted green lines in

the figure), this model is topologically nontrivial with � = ±1. The sign of the Chern

number is dependent on the relative strength Γ ≡ W1−W2 of these two inter-chain hopping,

where W1 is the inter-chain NNN diagonal hopping strength, and W2 is the strength of the

inter-chain NN hopping along the vertical direction. When the NNN diagonal hopping

strength is stronger than the NN vertical one, i.e., Γ > 0, the Chern number is � = 1. For

the opposite case, when Γ < 0, we find � = −1. For both these cases, i.e., for |Γ| > 0,

we expectedly observe a gap in the bulk part of the energy bands of Model 4. We have
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already shown the gapless spectrum of Model 4 in Fig. 4.8 for Γ = 0, i.e. when W1 = W2.

This implies Γ = 0 is the transition point for the topological phases with� = 1 to� = −1.

4.3.3 A summary of the results presented in this section

In all the cases discussed in this section, we observe that when the system has either

NN vertical or NNN diagonal inter-chain hopping with imaginary amplitude, the systems

exhibit nontrivial topology with the Chern number� = ±1. However, if we consider both

these hopping in the system, we need unequal hopping strengths to get nontrivial topology

with � = ±1. Furthermore, we observe that a system becomes topologically nontrivial

with � = ±1 when the edge states emanating from the valence and conduction bands

cross each other an odd number of times and connect the two bands. Compared with the

energy band properties of the TR-symmetric systems with broken chiral symmetry, we

observe according to the expectation that when the edge states cross each other an even

number of times, the edge states do not connect the valence and the conduction bands.

For these cases, we numerically find � = 0. However, in these models, the presence

of the edge states indicates their nontrivial topology. In the next section, Sec. 4.4, we

have calculated the Chern number of these models analytically, and these agree with

the numerics. Moreover, in Sec. 4.5, the nontrivial topology of the systems with the

Chern number � = 0 cases will be studied by the calculation of the 2D Zak phase as a

topological invariant.

4.4 Chern number and phase diagram: An analytical

calculation

We have extensively studied different cases of the #-stacked SSH chains. In this study,

we numerically find two cases showing nontrivial topology with Chern number � = ±1.
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The Chern number of the other cases was � = 0. However, these models have shown

their nontrivial nature by exhibiting edge states. In the previous sections, we calculated

the Chern number numerically as defined in Chapter 2 and given in Eq. (2.5). In this

section, we focus on the analytical calculation of the Chern number. Moreover, here we

have shown phase diagrams of the topological transition.

4.4.1 Chern number calculation

Instead of calculating the Chern number via Berry curvature, we follow an alternate

formula to calculate the Chern number [114, 155]. Here, instead of integrating the Berry

curvature over the Brillouin zone, one needs to calculate summation of a quantity at all

the Dirac points �8, and the formula is given as

� =
1
2

∑
kn�8

sgn
[
m:G h(k) × m:Hh(k)

]
I

sgn [ℎI (k)] . (4.25)

Here, we assume that the Hamiltonian in the k-space is of the form Hk = h(k) · 2. If

we substitute h(k) of the Hamiltonians considered in this paper in the above equation,

we get the expression for the Chern number as

� =
1
2

∑
kn�8

[
sgn{−X sin :H (1 + [ − X cos :H) (1 − cos :G)} sgn(ℎI)

]
. (4.26)

At the Dirac points, any systemwith PH symmetry has doubly degenerate zero-energy

states. These Dirac points are calculated by setting first ℎG (k) = ℎH (k) = 0, and then

nullify ℎI (k) by tuning the system parameters. Following this, we get the Dirac points

for all the models at the same place in the first Brillouin zone, and these are at

�1 :
[
c, cos−1

([
X

)]
and �2 :

[
c, 2c − cos−1

([
X

)]
. (4.27)
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Symmetries Section Model # ℎI (k) ℎI (k)
��
k=�1

ℎI (k)
��
k=�2

C

P, C, T Sec. 4.2 − 0 0 0 0

P, AC, T Sec. 4.3.1 1 2W cos :G −2W −2W 0

P, AC,ZT Sec. 4.3.2

1 2W sin :G 0 0 0

2 2W sin(:G + :H ) ∓2W
√

1 − ([/X)2 ±2W
√

1 − ([/X)2 +1*

3 2W sin :H ±2W
√

1 − ([/X)2 ∓2W
√

1 − ([/X)2 −1*

4(a) W1 = W2, 2 [W1 sin(:G + :H ) + W2 sin :H ] 0 0 0

4(b) W1 ≠ W2, 2 [W1 sin(:G + :H ) + W2 sin :H ] ±2(W2 − W1)
√

1 − ([/X)2 ∓2(W2 − W1)
√

1 − ([/X)2 −1*

Table 4.1: A summary of the Chern number calculation using the analytical expression given in
Eq. (4.28) is presented for all the systems studied in this paper. The extreme left column of the
table shows the systems’ presence and absence of different symmetries. Here, SC and @@T denote
respectively the broken chiral and the broken TR symmetries in the system. However, for all the
systems, the PH symmetry P is preserved. *The sign of the Chern number can also be opposite
if some system parameters change the sign. Topological phases of the systems with broken PH
symmetry are not summarized here.

The above relation shows that the Dirac points can exist (i.e., bands can touch each other)

only when |X | > |[ |. We observe that these Dirac points are not on the high-symmetric

path [156]. Therefore, by changing a system parameter, the Dirac points can be moved

anywhere in the BZ. Substituting the Dirac points in Eq. (4.26) with the condition
��[
X

�� < 1

and assuming X > 0 without losing any generality, we obtain a simplified expression of

Figure 4.9: The subfigures (a) and (b) show the topological phase transitions in the models
presented in Figs. 4.6(a) and 4.7(a), respectively. Here, the Chern number is calculated as a
function of the parameters W and X for a fixed value of [ = 0.5. Varying the parameters W and X,
three different topological phases with � = 0,±1 are observed.
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the Chern number for our systems as

� = −1
2

sgn ©«±
√

1 − [
2

X2
ª®¬

×
(
sgn [ℎI (k)]

����
k=�1

− sgn [ℎI (k)]
����
k=�2

)
.

(4.28)

This relation is valid for all the models discussed in this paper. Besides the constant term

without any k-dependency, the above expression clearly shows that the Chern number

will be determined by the values of ℎI (k) at two Dirac points. This relation also predicts

that the possible values of the Chern number are � = 0, ±1.

We have summarized the calculation of the Chern numbers using the analytical

expression given in Eq. (4.28) in Table 4.1 for all the models of #-stacked SSH chains

studied in Secs. 4.2, 4.3.1, and 4.3.2. We see from the table that, for the nontrivial

topological cases with � ≠ 0, a square root factor appears from the mass term of Eq.

(4.28), which is identical to the first term of Eq. (4.28). Consequently, the square root

disappears in the expression of the Chern number, and the condition |X | > |[ | gives

sgn[1 − ([/X)2] = +1.

4.4.2 Phase diagram

We now concentrate only on those two models, which showed nontrivial topology with

|� | = 1, to study their topological phase transitions. Here, we fix the parameter [ = 0.5,

which decides the relative strength of the intra-dimer and inter-dimer hopping within

an SSH chain. We then investigate the system’s phase transition by tuning the system

parameters (X, W), where these parameters decide the hopping strength between two

neighboring SSH chains. In Figs. 4.9 (a) and (b), we present the phase-diagrams on

the parameter space (X, W) of the Model 2 and 3 of Sec. 4.3.2. Here we also relax any

restriction on the values of (X, W): these parameters can be both positive and negative.
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Since we set [ = 0.5, the Dirac points can only exist if |X | ≥ 0.5. Consequently, when

|X | < 0.5, the systems should show a trivial topology with � = 0. In Fig. 4.9, we indeed

see for both the systems that the Chern number � = 0 in the region |X | < 0.5 of the

parameter space and this region is highlighted by light-grey color. The phase diagrams

show that, for these two models, the transition from trivial to nontrivial occurs when

X ≥ [. These figures also reveal that the topological properties of the two models are

complementary to each other, i.e., wherever in the parameters space, the Chern number

of one system is �, and the Chern number of the other system is −�. The parameter

regions with nonzero Chern numbers are shown using cyan and grey colors.

4.5 Cases of the nontrivial topologywith theChernnum-

ber � = 0

This section focuses on the � = 0 cases observed in Secs. 4.2, 4.3.1, 4.3.2. The basic

model, which was considered at the beginning, is anisotropic. The anisotropy appears

due to the independent intra-chain and inter-chain (both vertical and diagonal inter-

chain bonds) hopping strength. This type of 2D anisotropic model can show nontrivial

topological properties even though the Chern number of a system is zero [157]. For the

anisotropic 2D model with � = 0, the topological invariant is the 2D Zak phase. The

2D Zak phase is nothing but the 1D Zak phase with fixed values of momenta which is

defined as

/G/H,< (:H/G) =
∫
�/

�G/H,< (:G , :H) 3:G/H, (4.29)

where < represents the band indices for lower (-) and upper band (+). The Berry

connection �G/H,< (:G , :H) is defined after the equation 2.5.

This investigation begins with the model presented in Sec. 4.2. This model has all

three previously mentioned fundamental symmetries. For this model, we find the 2D
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Figure 4.10: The difference between the 2D Zak phases of the basic model (Fig. 4.1) and
the chiral symmetry broken system [Fig. 4.4(a)] is shown as a function of the NNN hopping
amplitude Δ = 2W. In subfigures (a) and (b), the individual SSH chain with trivial and nontrivial
topology is considered, respectively. These figures demonstrate the presence of the fractional
Zak phase for the chiral symmetry broken #-stacked SSH model [Fig. 4.4(a)]. The Zak phases
/G,− and /G,−(Δ) are calculated at :H = c.

Zak phase /G,−(:H) = −c, provided the :H values are within the range given in Eq. (4.9).

However, for :G = c, the 2D Zak phase /H,−(:G) = 0. These values of the Zak phase are

the same for both trivial and nontrivial individual SSH chains.

We then study the model presented in Sec. 4.3.1 that is an #-stacked SSH model

with broken chiral symmetry. Because of the existence of the non-zero ℎI, the pseudo-

spinors move in the I-direction from the equatorial plane (represented by ℎI = 0) of the

Bloch sphere. This aberration of results is reflected in the non-quantized Zak phase, i.e.,

the Zak phase is not an integer multiple of c. This is referred to as the fractional Zak

phase [158–161]. The presence of the fractional Zak phase has also been experimentally

Figure 4.11: The band diagram is presented for the model shown in Fig. 4.8(a), where the
strengths of the diagonal NNN and the vertical hopping are equal. In subfigures (a) and (b), we
set [ = −0.5 and 0.5 so that the individual SSH chain will be trivial and nontrivial, respectively.
Here, we choose X = 0 for both the cases.
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Figure 4.12: The energy bands are shown under POBCs of the system presented in Sec. 4.3A,
but now with the broken PH symmetry. Since here both chiral and PH symmetries are broken,
the energy bands are asymmetric. The Chern number is � = 0 in this case. Subfigures (a) and (b)
present the results when the individual SSH chain is trivial ([ = −0.5); whereas subfigures (c)
and (d) are shown for the case when the individual SSH chain is non-trivial ([ = 0.5). Here we
set the parameter X = 1.0 for both the cases. Their corresponding deviation from the Zak phase
of the basic model is presented respectively in subfigure (e) and (f). In subfigures (a)-(d), we set
the hopping amplitude W� = 0.2 and W� = 0.1, which break the PH and inversion symmetries in
the system.

observed for a chiral symmetry broken 1D TI [158]. For our model, we demonstrate in

Fig. 4.10 the deviation of the Zak phase from the quantized to non-quantized values as a

function of the NNN hopping amplitude Δ = 2W, the parameter which breaks the chiral

symmetry. In Fig. 4.10(a), we show the deviation of the Zak phase for the case when

the individual SSH chain is trivial, whereas Fig. 4.10(b) shows the same deviation when

the individual SSH chain is nontrivial. The nature of the deviation of the Zak phase for

these two cases is the opposite. According to our expectation, for both cases, when the

parameter Δ → 0, the Zak phase approaches −c, a quantized value. Moreover, we also

notice that the Zak phase saturates when |Δ| ≥ 4. However, in this parameter region, the

NNN hopping strength becomes stronger than the NN hopping.

We now analyze the � = 0 cases discussed in Sec. 4.3.2. Here, both chiral and TR

symmetries are broken. This section considers two models with � = 0: Model 1 and

Model 4. The energy bands of Model 1 are similar to the basic model. Consequently,

the Zak phase of Model 1 is equals the basic model. In the case of Model 4, when the

inter-chain coupling parameters are equal (i.e., W1 = W2 = W), the system exhibits � = 0.
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Figure 4.13: The energy bands are shown under POBCs with the broken PH symmetry ofModel
3 discussed in Sec.4.3B. In the upper panel, energy � is plotted as a function of the momenta
:G and :H for different values of the intra-sub-lattice hopping amplitudes W� and W� forModel 3
(discussed in Sec. 4.3B). The corresponding band diagram under POBCs with periodic boundary
condition along H-direction are shown in the lower panel. As we gradually change the amplitudes
W� and W�, the energy bands become asymmetric. Although there is a topological phase transition
point at W� = W� = 0.2, where the system has inversion symmetry; but the PH symmetry is still
broken at this point. Around this transition point, the system makes topological phase transition
from a phase with Chern number � = −1 to a phase with � = 1. Here we set the dimerization
constant [ = 0.5 and hence the individual SSH chain is topologically nontrivial.

According to Ref. ([157]), the nontrivial topology of this anisotropic system appears

through the presence of gap-edge states, which are completely isolated from the bulk part.

In Fig. (4.11), similar gap-edge states in the whole BZ are also observed in our model.

Here again, we consider two cases: all the SSH chains are topologically nontrivial, and

all are trivial. The respective energy band diagrams are shown in Figs. 4.11(a)-(d). In

these cases, we set X = 0. We show in Fig. 4.11(d) that the system has gap-edge states.

Therefore, we concentrate only on this case. We find the 2D Zak phase /G,−(:H) = −c,

provided the values of :H lie within the range given in Eq. (4.9). However, for :G = c,

the 2D Zak phase /H,−(:G) = 0. Moreover, the area covered by the edge states in the BZ

decreases after increasing X, which is shown in Fig. 4.8(d)-(e).
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Figure 4.14: The same results are presented as in Fig. 4.13, but here we set the dimerization
parameter [ = −0.5 to make the individual SSH chain topologically trivial.

4.6 Systems with broken particle-hole symmetry

We now discuss the PH symmetry broken version of the models presented in Secs. 4.3A

and 4.3B. In Fig. 4.12, the energy bands are presented for the PH symmetry broken

version of the model presented in Sec. 4.3A under POBCs. Here, subfigures 4.12(a) and

4.12(b) are plotted when the individual SSH chain is trivial; whereas subfigures 4.12(c)

and 4.12(d) are presented for the cases, when the individual SSH chain is nontrivial. In

order to break the PH symmetry in themodel, we set the � to � hopping amplitude W� and

the � to � hopping amplitude W� unequal. Here, we particularly consider W� = 0.2 and

W� = 0.1. Our results remain qualitatively invariant for any other pairs of unequal values

of these above mentioned hopping parameters. The broken PH symmetry in the model

leads to the asymmetric energy bands. In this case, we obtain the Chern number � = 0

as we obtained for the model presented in Sec. 4.3A, where only chiral symmetry was

broken. Again like the chiral symmetry broken case, here we obtain the fractionalized

Zak phase for this case. For the equal hopping amplitudes W� = W� = 0.2, the Zak

phase gets quantized due to the preserved inversion symmetry. In order to preserve the
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inversion symmetry, the Hamiltonian should satisfy the following condition:

R−1H(:G , :H) R = H(−:G ,−:H), (4.30)

where R represents the inversion operation. The deviations of the Zak phase from the

Zak phase of the basic model with all the symmetries preserved are shown in Fig. 4.12(e)

(individual SSH is trivial) and (f) (individual SSH is nontrivial). Here the deviation of

the Zak phase is plotted as a function of the difference Δ′ between two intra-sub-lattice

hopping amplitudes, i.e., Δ′ = W� − W�.

We then investigate the effect of the PH symmetry breaking on the models presented

in Sec.4.3B. Here, we present only Model 3 of Sec. 4.3B, because the other models

of Sec. 4.3B show qualitatively similar behavior. The band diagram for the Model 3

under full PBC and POBCs are shown in Figs. 4.13 and 4.14. The subfigures 4.13(a)-(e)

show the band diagrams corresponding to the nontrivial SSH chain; and on the other

hand, the subfigures 4.14(a)-(e) show the band diagrams corresponding to the trivial

SSH chain. In the upper panel, the band diagrams are plotted under full PBC and

their corresponding band diagrams under POBCs are shown in the lower panel. Here,

we observe a topological phase transition from the topological phases with the Chern

number � = −1 to � = +1 due to the interplay of the breaking and preserving of the

PH and the inversion symmetries. The topological phase transition occurs in the system

when the system has inversion symmetry with equal hopping amplitudes W� = W� = 0.2.

4.7 Experimental aspects of #-stacked SSH model

We now discuss the possible experimental realizations of the #-stacked SSH model. In

order to construct the #-stacked SSH model, we first need to construct single 1D SSH

chain. Recent discoveries suggest that the SSH chain could be realized in photonics
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[162] and electric circuits [163]. In photonics, one-dimensional TIs can be engineered

using an array of coupled optical waveguides [70, 162, 164, 165]. In Ref. [162], to

design a 1D SSH chain, all the waveguides are kept at the same distance from each other

and an auxiliary waveguide is placed next to every other waveguide. These auxiliary

waveguides strengthen the coupling between the two waveguides that are same distance

apart and thus simulate the intra-cell and inter-cell hopping in the 1D SSH chain. The

array of optical waveguides can be fabricated using a femtosecond laser writing technique

[162, 164, 166]. Moreover to design the SSH chain in the electric circuits, each sub-lattice

is constructed from a combination of inductors and capacitors.

Similarly using the optical waveguides, the E-SSHmodel (mentioned in the Introduc-

tion section) with broken chiral symmetry can also be realized [165]. This fabrication

uses photon propagation along a binary waveguide lattice placed in a zig-zag geometry

[165]. In this experiment, the hopping is considered in such a manner that the system

breaks chiral symmetry, but possesses inversion symmetry. The inversion symmetry in

the system can be preserved by keeping the equal hopping amplitudes between A to A

sub-lattice and B to B sub-lattice. This design is helpful in breaking the symmetries of

the SSH chain. It is also studied that 2D photonic crystals with broken TR symmetry can

be realized using photonic meta-materials [167].

Recent studies also have found that a #-stacked SSH chain can also be fabricated

using magneto-mechanical meta-material [168] and electric circuits [154, 163]. In [168],

the #-stacked SSHmodel is realized with dislocation defects, where the 1D SSH chain is

designed using mechanical resonators. These mechanical resonators are coupled to each

other through their magnetic interaction [168, 169]. Each resonator is like a sub-lattice

and a unit cell is made of two coupled adjacent resonators. A #-stacked SSH model is

designed when this setup is aligned in the G-direction and kept periodically along the

H-direction.
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Here we propose that a #-stacked SSH model can be fabricated by designing 1D

SSH chain using the techniques mentioned above and place them periodically in the

transverse direction of the SSH chains. The chiral symmetry can be broken following the

method given in [165]. Moreover, imaginary hopping can be introduced (to break the TR

symmetry) by applying a magnetic field-like gauge field in the direction perpendicular to

the plane of the 2D lattice. Since the chiral, PH, and inversion symmetries are dependent

on the hopping amplitudes from � to � and from � to � sub-lattices, these symmetries

can be broken by properly placed the waveguides.

4.8 Summary

In this paper, we have proposed a 2D SSH model constructed by stacking # number

of SSH chains with coupling only between two neighboring SSH chains. Here, we

have considered two versions of the model determined by the topological property of

the individual SSH chain: (1) all the chains are topologically trivial with the winding

number F = 0; and (2) all the chains are topologically nontrivial with F ≠ 0. Depending

on the intra-chain parameters (intra-dimer and inter-dimer strengths) and the inter-chain

coupling strength, the #-stacked SSH chains can be in three phases: topologically trivial,

topological semimetal, andweak topological insulator. We have observed all these phases

in this model by systematically breaking the symmetries.

We start the analysis with a basic model of the #-stacked SSH chains with all the

fundamental symmetries (chiral, TR, and PH) preserved. Depending on the topological

property of the individual chain, the basic model shows both topologically trivial and

nontrivial nature. However, for both the cases, the Chern number of this model � = 0.

The nontrivial topology of this model is identified from the presence of the edge states.

We then start analyzing the role of different symmetries on the topology of this model.
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First, we break the chiral symmetry by introducing intra-sub-lattice hopping in the

system. This is done by allowing NNN hopping within an SSH chain. The introduction

of this new hopping leads to a mass-like term, and consequently, it opens up the band

gap. This model also shows the Chern number � = 0. However, edge states are still

present in this model, which indicates its nontrivial topology.

FollowingHaldane, we have broken the TR-symmetry by introducing intra-sub-lattice

hopping strength with imaginary amplitude. For this case, we have studied four different

models. Only two models (Model 2 and Model 3) have shown nontrivial topology with

� = ±1. The other models, Model 1 and Model 4 have the Chern number � = 0, but

the presence of edge states in theses models indicate their nontrivial topology. However,

Model 4 shows the nontrivial topology with a nonzero Chern number when two different

types of inter-chain hopping strengths are considered unequal. In all these cases, we

have preserved the PH symmetry in all the models. Therefore, we could apply a recently

proposed analytical formulation to calculate the Chern number. This calculation agrees

well with the models’ numerically observed topological properties. We have presented

phase diagrams of these systems that showed nontrivial topology with nonzero Chern

numbers. Thus we have found a recipe to prepare a Chern insulator from a weak TI

with � = ±1 and cataloged the topological phases of the #-stacked SSH chains by the

systematic breaking of symmetries.

Next, we have concentrated separately on studying the nontrivial topological cases

with � = 0. We have calculated the 2D Zak phase as a topological invariant for these

cases. Interestingly, here we have observed two different behaviors in the 2D Zak phase:

quantized Zak phase, which is equal to the integer multiples of c, and fractional Zak

phase when this is not an integer multiple of c. The former is observed in the basic model

(discussed in Sec. 4.2), and also in chiral and TR symmetry broken Model 1 and Model

4 (discussed in Sec. 4.3B). The latter is observed when the chiral symmetry is broken in
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the basic model (discussed in Sec. 4.3A). For this model, we have extensively discussed

how the breaking of the chiral symmetry affects the fractional nature of the Zak phase.

Finally, we have presented the results for the system with broken PH symmetry for

the two cases: with broken chiral symmetry, and with broken chiral as well as the TR

symmetry. The breaking of the PH symmetry introduces an asymmetry in the hopping

terms of the system, which exhibits in the energy bands and also in the phase transition

around the point where the system preserves inversion symmetry. We have also discussed

possible experimental realizations of the #-stacked SSH model.

4.9 Outlook

Three-dimensional weak topological insulators (WTIs) formed by stacking 2D QSH

layers have been studied extensively, both theoretically and experimentally. These studies

also consider the impact of breaking of some of the fundamentals and translational

symmetries [170–176, 176–186]. However, compare to 3D WTIs, there are relatively a

few theoretical and experimental studies available on the 2D WTIs constructed from the

stacked 1D TIs [143–145, 154, 163, 168]. In this extensive paper, we have introduced

five different models (presented in Secs. 4.3A and 4.3B) which can be studied further

with the broken translational symmetry also.

As a future perspective, one can construct a full-fledged three-dimensional layered

structure by extending the #-stacked SSHmodel. In its 3D version of the #-stacked SSH

model, one can place all the #-stacked layers periodically along the I-direction. This

extension of 1D TIs to 3D WTIs will also exhibit following exotic topological properties

as observed in the 3D layered QSH system: such as non-linear QHE, spin-polarization,

Quantum anomalous layer Hall effect, QSH effect with half integer, etc. [179–182]. This

work is useful in choosing a model, depending on the requirement of the study, which

either preserve or break the fundamental symmetries. For this 3D extension, one can



Chapter 4. # stacked SSH model 87

also look into the macroscopic electric, magnetic and optical properties via symmetry

breaking.
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5
Floquet version of # stacked SSH

model using circularly polarized light

The content of this Chapter has been submitted to the Physical Review B as Aayushi

Agrawal and J.N. Bandyopadhyay.

In the upcoming two Chapters, we use a new notation Ω for the driving frequency.

5.1 Introduction

Floquet engineering is becoming a vast area of research, where a desired solid state system

is synthesized by periodic driving. A primary goal of this research area is to design a

periodic driving protocol to quickly introduce or enhance desired exotic properties in a

given system by very controlled way [187]. In the realm of topological insulators (TIs),

periodically driven TIs or Floquet TIs have been studied extensively. Periodic driving

introduces many interesting features in the TIs, which may not be possible to realize by



Chapter 5. Floquet version of # stacked SSH model 89

any static means [50, 67, 93, 109, 188–191]. These periodically driven systems can be

realized experimentally by ultracold atoms in optical lattices [66, 192].

The quasi-nD systems, engineered by stacking numerous nD systems, came into light

after the discovery of weak topological insulators (WTIs). The WTIs were discovered in

quasi-2D quantum spin Hall systems (QSH) in which 2D QSH layers were stacked and

formed a 3D layered structure [146, 147]. A few studies on quasi-2D systems, such as

3D layered structure of graphene and topological crystalline insulators (TCI) have been

conducted [47–49, 193–198]. The recent literature focuses extensively on different 2D

materials, only a very little attention is paid to the quasi-1D systems form by a systematic

stacking of numerous identical 1D systems. Recently, present authors rigorously study

an # number of stacked SSH chains [212]. Similarly, some studies have investigated

topological properties of another quasi-1D model, an extended Su-Schrieffer-Heeger

model (E-SSH) [70, 199]. The E-SSH model is a 1D SSH chain where all the hopping

amplitudes are modulated by a cyclic parameter \ and this cyclic parameter is considered

as an another synthetic dimension. In fact, the Floquet version of the SSH chain, the

simplest 1D TI which displays interesting properties [106, 118, 119, 200]. An intriguing

feature of the static E-SSH model is that the phase diagram of this system resembles

the phase diagram of the Haldane model. The interlink between the E-SSH model and

# stacked SSH model is that by promoting \ to an actual dimension, one can obtain #

stacked SSH model. The E-SSH model is also studied with different periodic drivings

such as Dirac-delta kickings and sinusoidal driving [119, 199].

Through Floquet, the quasi-2D system of # stacked Graphene layers is also explored

where circularly polarized light (CPL) is used as an external periodic drive and topological

phases with the high Chern number (�) are observed [48]. The CPL is widely recognised

for breaking the time-reversal symmetry [102, 122, 201–206]. As a result, it creates a new

gap at the band touching points and the system harbors quantum Hall effect without using
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any external magnetic field or creating Landau levels [12]. Furthermore, the CPL can

be used to detect optical chirality, thermoelectric transport, photo-voltage, the dynamical

Hall effect, and as a probe for high harmonic generation [207–211].

In this work, we aim to induce new Floquet topological phases through CPL in the

# stacked SSH chains model. As per our knowledge, periodically driven WTI is not

studied in literature. Here, we study a 2D WTI under periodic driving. This undriven #

stacked SSH chains follows all the three fundamental symmetries (chiral, particle-hole,

and time-reversal), which hosts nontrivial topology but with Chern number� = 0. In the

undriven case, two possible construction were addressed: # stacked SSH model where

each SSH chain is topologically trivial (winding number, F = 0), and each SSH chain

is nontrivial (F = 1) [212]. As we turn on the driving, these two cases exhibit different

topological phases. This model has an interesting feature beacuse there exist a coupling

term between the momenta :G and :H which makes the system complex and distinct from

various other well-studied 2D systems [18, 213]. At the low energy limit, near the band

touching points, the dispersion relation of this system becomes quadratic with a :G:H like

coupling term.

In various studies, it has been observed that, in case of the linear dispersion, that the

band crossing points or Dirac points are stable against any small perturbation [12, 214–

216]. However, for the case of the quadratic dispersion near the band crossing points

or semi-Dirac points are unstable for the small perturbation: either a gap is opened

up or splits into two Dirac points [204, 217]. The emergence of the semi-Dirac point

requires linear dispersion in one direction, and quadratic dispersion in the other direction.

This non-linear dispersion encourages to investigate the # stacked SSH chains under the

influence of linearly polarized light LPL along the G− and H-directions.

This paper is organized as follows: In Sec. 5.2, we briefly discuss the static Hamilto-

nian. In the next section, Sec. 5.3, we discuss the Floquet formalism and the periodically
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driven Hamiltonian which uses the exact Floquet replica method. In the next section,

Sec. 5.4, we calculate the low-energy Hamiltonian to show a signature of hierarchy in

Floquet band gaps. In Sec. 5.5, we demonstrate the role of linearly polarized light on the

# stacked SSH model. Finally, we summarize in Sec. 5.6.

5.2 Static Hamiltonian

We consider a static # stacked SSH chain model, which is composed of an # number

of SSH chains stacked in the vertical direction [212]. In real space, the mathematical

expression for this static system is given as

�#−((� = (1 − [)
∑
=G ,=H

2†�=G ,=H2
�
=G ,=H
+ (1 + [)

∑
=G ,=H

2
†�
=G+1,=H2

�
=G ,=H

+ X
2

∑
=G ,=H

[
2†�=G ,=H2

�
=G ,=H+1 + 2

†�
=G ,=H+12

�
=G ,=H

]
− X

2

∑
=G ,=H

[
2
†�
=G+1,=H2

�
=G ,=H+1 + 2

†�
=G+1,=H+12

�
=G ,=H

]
+ ℎ.2.

(5.1)

Here X is the hopping amplitude between the inter-sublattices of neighboring SSH chains;

and [ is the dimerization constant of the individual SSH chain. The parameter [ can

be negative or positive values which results in trivial or nontrivial SSH chain. To

illustrate the energy spectrum and topological properties, we write the Hamiltonian in

the quasimomentum space (or k-space), which is given as

�#−((� (k) = h · 2 (5.2)

ℎG (k) =[(1 + cos :G) + (1 − cos :G) (X cos :H − [)]

ℎH (k) =[(1 + [) − X cos :H] sin :G
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In our previous study [212], we found that breaking of chiral and time-reversal symmetries

are essential for this static system to be a Chern insulator (CI). However, this static system

follows all three fundamental symmetries, and shows topological properties even when

the Chern number� = 0. For this case, its topological property is determined by nonzero

2D Zak phase / (:H) = −c. This study also revealed that the topological properties of

this system are not dependent on the topological properties of the individual SSH chain.

We now discuss this model under the periodic driving with CPL. It is well-known that

the CPL breaks the chiral as well as the TR symmetry in the system, and this leads to

nontrivial topological properties in the system with non-zero Chern number.

5.3 Driven Hamiltonian

We now apply a laser field whose vector potential G(C) has the form

G(C) = (�0G cosΩC, �0H sinΩC)

with it satisfies G(C + )) = G(C), where ) is the time-period of the driving, and conse-

quently the driving frequency Ω = 2c/) . Here, �0G and �0H are the components of the

vector potential along G and H direction, respectively. If we set �0G = �0H = �0, the laser

field will be the CPL. The LPL is a special case of this laser field, when it has a form

either G(C) = (�0G cosΩC, 0) or G(C) = (0, �0H cosΩC). This driving is induced in the

system by the Peierls substitution, which modifies the form of the quasi-momenta :G and

:H as

:G (C) → :G + �G (C) ; :H (C) → :H + �H (C)
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The form of the time-periodic Hamiltonian in the k-space reads

�#−((� (k, C) =[(1 + cos :G (C)) + (1 − cos :G (C))

× (X cos :H (C) − [)]fG

+ [(1 + [) − X cos :H (C)] sin :G (C) fH

(5.3)

In order to solve the time-periodic equation, we use the Floquet replica method and cal-

culate the effective Hamiltonian, which is an infinite dimensional matrix in the frequency

space.

We write the Fourier components � (<) for the #-stacked SSH model in the form as

� (<) = d (<) · 2.

The driving modifies the undriven part as follows

�
(0)
#−((� = d (0)

#−((� · 2 (5.4a)

where

(
3
(0)
#−((�

)
G
= (1 − [) + (1 + [) cos :G �0(�0) + X cos :H �0(�0)

− X cos :G cos :H �2
0 (�0)

(5.4b)

(
3
(0)
#−((�

)
H
= (1 + [) sin :G �0(�0) − X sin :G cos :H �2

0 (�0); (5.4c)

where �0 is the Bessel function of the first kind with zeroth order.

In order to calculate the other non-zero Fourier components, we choose the driving

amplitude �0 such that the Bessel functions contribute only upto an order of �2
0. The

higher order Fourier components are neglected, because we assume that the amplitude
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�0 is small. Thus, the effective Hamiltonian �eff have only � (1) and � (2) Fourier

components, which are given as

�
(1)
#−((� = d (1)

#−((� · 2 (5.5a)

where

(
3
(1)
#−((�

)
G
= − (1 + [) sin :G �1(�0) + 8 X sin :H �1(�0)

− X
{
− sin :G cos :H + 8 cos :G sin :H

}
�0(�0) �1(�0)

(5.5b)

(
3
(1)
#−((�

)
H
= (1 + [) cos :G �1(�0)

− X
{
cos :G cos :H + 8 sin :G sin :H

}
�0(�0) �1(�0);

(5.5c)

and

�
(2)
#−((� = d (2)

#−((� · 2 (5.6a)

where

(
3
(2)
#−((�

)
G
= − (1 + [) cos :G �2(�0) + X cos :H �2(�0)

+ 8 X sin :G sin :H�2
1 (�0)

(5.6b)

(
3
(2)
#−((�

)
H
= −(1 + [) sin :G �2(�0) − 8 X cos :G sin :H�2

1 (�0). (5.6c)

Here, �1 and �2 are the Bessel functions of the first kind.

Floquet energy bands corresponding to the Hamiltonian given in Eq. (5.3) are shown

in Fig 5.1. In subfigure 5.1(a) and 5.1(c), we consider each SSH chain is topologically

trivial ([ = −0.5). Subsequently, in subfigure 5.1(b) and 5.1(d), we consider individual

SSH chain as nontrivial ([ = 0.5). The Floquet bands are shown for cylindrical geometry

with axis along G-direction or H-direction. Here, axis along G-direction (or H-direction)
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Figure 5.1: Quasienergy bands for the periodically driven # stacked SSH chains are shown as a
function of :G and :H in cylindrical geometry. In subfigures (a) and (c), all the SSH chains are
considered trivial ([ = −0.5), while in subfigures (b) and (d), all the SSH chains are nontrivial
([ = 0.5). Here, when the quasienergy bands are shown as a function of :G (:H), then this
suggests that the PBC is considered along G-direction (H-direction), and the OBC is considered
along the other direction. In both the cases, the driving generates new Floquet topological phases
with Chern number � = −1, and this is depicted by the edge states. For both the plots, we fix the
parameters as X = 1.0, �0 = 0.5 and Ω = 6.0.

means, we consider periodic boundary condition (PBC) along H-direction (or G-direction),

and open boundary condition (OBC) along the G-direction (or H-direction). These Floquet

bands are presented in the high-frequency regime withΩ = 6.0 and the driving amplitude

�0 = 0.5. In both the case, we obtain nontrivial topology with � = −1, which was

topologically trivial with � = 0 in the undriven case [212]. With the application of the

CPL, the# stacked SSHmodel is transformed into aChern insulator. In the undriven case,

we found that the topological properties remained unchanged irrespective of underlying

SSH chains are topologically trivial or nontrivial. In both cases, we observe qualitatively

similar characteristics for this specific driving amplitude and frequency. To illustrate the

complete behavior of the topological properties in driving parameter space, we present a

phase diagram in the next section.
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Figure 5.2: Different topological phases with different Chern numbers � are shown as the
function of driving frequency Ω and driving amplitude �0. In this case, we set [ = −0.5 and
hence the individual SSH chain is topologically trivial. Here, we consider 9 photon sectors in
the Hamiltonian to get the desired convergence. In subfigure (b), the Floquet bands are plotted in
FBZ along the high symmetric path. Here, Γ is (c, c),  is (2c, c) and " is (2c, 2c).

Figure 5.3: The results presented here is similar to Fig. 5.2, but here we consider individual
SSH chain as topologically nontrivial.
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5.3.1 Phase diagram

In this section, we demonstrate two phase diagrams depending on the topological property

of the individual SSH chain. The phase diagrams are plotted in the driving parameter

space of amplitude (�0) and frequency (Ω) to illustrate various topological phases. The

result for the case when the individual SSH chain is topologically trivial is presented in

Fig. 5.2(a), whereas Fig. 5.3(a) shows the result when the individual SSH chains are

topologically nontrivial. In these phase diagrams, we show the sum of the Chern number

of all the Floquet bands below n = 0 as a function of the driving frequency Ω for four

different values of driving amplitudes �0 = 0.1, 0.3, 0.5 and 0.7. As stated in Ref. [218],

in frequency domain, one can calculate the number of chiral edge states in a particular

gap by summing the Chern number of all the Floquet bands below that gap.

In these phase-diagrams, we consider 9 photon sectors to achieve the convergence.

For the trivial case, we observe five different topological phases with � = 0,±1,−2, and

−3. In the low-frequency regime (Ω < 4.0), we obtain topological phases with the high

Chern number while in the high-frequency regime (Ω > 4.0), system exhibits topological

phases with � = ±1. In Fig. 5.3, where the phase diagram is plotted for the nontrivial

case, we observe four different topological phases with Chern number � = 0,−1,−2,

and −4. For this case, the system saturates at the topological phase with � = −1 in the

high frequency regime. It is important to note that, for the different values of the driving

amplitude �0 ∈ [0.1, 0.7], the variation in the Chern number with the driving frequency

Ω is almost similar. The variation in the Chern number is mostly determined by the

variation in Ω. Nevertheless, both the phase diagrams show that, in comparison to the

undriven case, the Floquet version of the # stacked SSH chains displays much richer

topological phases with high Chern numbers.

It is well known that the bulk boundary correspondence in the Floquet system is not

the same as the undriven cases. In case of the undriven systems, the edge states appear
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only in the energy gaps between the bulk bands. However, in the Floquet version of

these systems, we have infinite number of copies of the undriven systems. The driving

does not affect the band gap only between the original bands, but it also affects different

copies or replicas, and consequently edge states can also appear in between Floquet

replica bands. Here, we consider the Floquet bands or quasi-energy bands only in the

first Floquet Brillouin zone (FBZ), where the edge states can exist at the central gap

n
Ω
= 0; and as well as at the boundary of the FBZ, i.e., at n

Ω
= 0.5. As a consequence, the

total number of chiral edge states are calculated from the relation � = �0 − �c, where

�0 and �c respectively measure the number of chiral edge states in the central gap and

the gap around the Floquet zone boundary. For the frequency regime 2.0 ≤ Ω ≤ 6.0, we

observe �c = 0 at the Floquet zone boundary. Therefore, in this frequency regime, the

Chern number is always � = �0.

The topological phase transitions observed in the phase diagrams are occurred in the

system because the closing and re-opening of some of the band gaps. Therefore, in Figs.

5.2(b) and 5.3(b), we show the bands in the first FBZ along the high symmetric path.

Earlier, we have mentioned that the topological phases are almost independent of �0, we

plot these band diagrams only for �0 = 0.1. We see that phase transition occurs either

due to the band gap closing at n/Ω = 0 or at the Floquet zone boundary n/Ω = ±0.5.

Since, the maximum band gap in the undriven system is 4.0, we find that the band gap

closing occurs at n/Ω = ±0.5 when Ω = 4.

5.3.2 Demonstration of the edge states of the Floquet topological

phases with high Chern number

In this section, we demonstrate the edge states in the energy band diagrams for the higher

Chern numbers with |� | > 1. In Fig. 5.2, we observed topological phases with the

Chern number � = −2 and −3. Here, we select two pairs of the driving amplitudes and
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Figure 5.4: The quasienergy bands under POBCs are shown for the Chern numbers � = −2 and
� = −3 corresponding to the phase diagram Fig. 5.2. In subfigures (a) and (c), the bands are
plotted for the driving amplitude �0 = 0.5 and the driving frequency Ω = 2.5. In subfigures (b)
and (d), the bands are plotted for �0 = 0.5 and Ω = 3.5. In both the cases, the individual SSH
chain is considered as topologically trivial.

frequencies (�0 = 0.5,Ω = 2.5) and (�0 = 0.5,Ω = 3.5) from the phase diagram, where

the corresponding Chern numbers are � = −2 and −3, respectively. For the presentation

purpose, we choose �0 = 0.5 so that the band gap is prominent and the edge states are

clearly visible. In Fig. 5.4(a)-(d), we have shown the energy band diagram for the case

of cylindrical geometry. In this figure, we consider individual SSH chain is topologically

trivial.

In Fig. 5.5(a)-(d), the energy band diagrams for cylindrical geometry are presented,

where the individual SSH chain is nontrivial. In these figures, we have shown the edge

states for the topological phases with � = −4 and � = −2. The band diagrams (Figs. 5.4

and 5.5) exhibit edge states along both the directions, thus these show true 2D system

even though the system is constructed as a weak topological insulator by stacking many

SSH chains.
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Figure 5.5: Quasienergy bands for cylindrical geometry are shown for the Chern numbers� = −4
and � = −2 corresponding to the phase diagram presented in Fig. 5.3. In subfigures (a) and (c),
the bands are shown for the driving amplitude �0 = 0.5 and the driving frequency Ω = 2.5. In
subfigures (b) and (d), the bands are presented for �0 = 0.5 and Ω = 2.9. In both the cases, the
individual SSH chain is considered as topologically nontrivial.

Figure 5.6: The quasienergy bands repulsion in case of the low-energy Hamiltonian is shown for
the cylindrical geometry. In subfigure (a), the PBC is considered along the G-direction, and the
OBC is considered along the H-direction. The boundary condition is interchanged in subfigure
(b), i.e., the PBC is considered along G-direction, and the OBC is considered along the H-direction.
Here, the individual SSH chain is considered as nontrivial. The colored dashed lines are used to
show the quasi-energy bands for the undriven system, whereas the black solid lines are used for
the driven case. We set the driving parameters at: Ω = 0.3 and �0 = 0.05.

Figure 5.7: The results presented here is similar to Fig. 5.6, but here the individual SSH chain
is topologically trivial.
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5.4 Low-energy Hamiltonian

The low-energy Hamiltonian near the band touching point Q� =
[
c, cos−1 [

X

]
, can be

derived by substituting k = q + Q� in Eq. (5.2). Here, |q | � 1 and under this condition

the Hamiltonian will be

ℎ
(0)
G =

@2
G

2
− [@2

H − 2@H
√
X2 − [2

ℎ
(0)
H = −@G − @G@H

√
X2 − [2

(5.7)

For the driven case, we obtain Fourier components of the low energy Hamiltonian by

substituting q → q + G(C)

ℎ
(1)
G = @G

�0

2
+ 8[@H�0 + 8�0

√
X2 − [2

ℎ
(1)
H = −�0

2
+ 8@G

�0

2
+ @H

�0

2

√
X2 − [2

ℎ
(2)
G =

�2
0

8
+ [

�2
0

4

ℎ
(2)
H = 8

�2
0

4

√
X2 − [2

(5.8)

Here we see that, unlike graphene, the low-energy Hamiltonian of the #-stacked SSH

model has a non-linear dispersion. Moreover, the Hamiltonian has asymmetry along

:G and :H directions due to the presence of a coupling term. Overall, these made the

system more complex than any other 2D systems. We now investigate the behavior of

the low-energy Hamiltonian.

The effect of the asymmetry in the Hamiltonian can be seen in Figs. 5.6 and 5.7,

where we have projected the Floquet bands along one of the directions of the quasi

momenta, and set the value of the other quasi momentum equals zero. In this figure,

the dotted lines represent energy bands of the undriven system, where different colors

are used for denoting different photon sectors. The black solid lines are used for the

driven case. As we turn on the driving, the Floquet bands corresponding to different
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Figure 5.8: The quasienergy bands with a semi-Dirac point are shown for the undriven case with
X = |[ |. In subfigures (a) and (c), we set X = 0.5 and [ = −0.5, and hence the individuak SSH
chain is topologically trivial. On the other hand, in subfigures (b) and (d), where the individual
SSH chain is made topologically nontrivial by setting X = 0.5 and [ = 0.5.

photon sectors repel each other and create band gaps, where Floquet edge states can

appear. Our major goal is to investigate whether the Floquet bands of the # stacked

model has the same hierarchical structure as observed in graphene [206]. Even though

our system is very much different from graphene, we observe some hierarchical structure

in the Floquet band gaps at n = 0, and also at n = ±Ω2 . We observe that the behavior of

the level repulsion around the central gap and the Floquet zone boundary is qualitatively

similar to graphene. The width of the Floquet gaps are almost of the order of
(
�0
Ω

)Δ<
,

where Δ< is the difference between the photon sectors. In Figs. 5.6 and 5.7, we show by

red and blue dotted lines that the first largest Floquet band gap occurs at n = ±Ω2 , due to

the repulsion between the bands with photon sectors < = ±1 and < = 0. However, the

width of the Floquet band gap at n = 0 between the bands in the zero photon sector is of

the order of
(
�0
Ω

)2
[206].

5.5 # stacked SSH model with linearly polarized light

Earlier, we have shown that the # stacked SSH model has non-linear dispersion. There-

fore, we choose the system parameters in such a way that this model also shows a
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semi-Dirac point, i.e., a band touching point where the dispersion along one direction is

linear and quadratic along the other direction. Similar semi-Dirac point is observed in

hexagonal lattice. The semi-Dirac point of this system is split into two Dirac points if the

system is shined by an LPL [204]. For our study, we consider two cases of the LPL: along

G and H-directions. Our goal is to observe whether the semi-Dirac point of the # stacked

SSH model also splits into two Dirac points. Here, we set X = |[ | in Eq. (5.2). For the

case, when # stacked SSH chain is constructed with trivial SSH chains, we observe a

semi-Dirac point at [c, c] as shown in Figs. 5.8(a) and 5.8(c). For the other case, when

# stacked SSH chain is constructed with nontrivial SSH chains, we find the semi-Dirac

point at [c, 0] (or at [c, 2c]) as shown in Figs. 5.8(b) and 5.8(d). The emergence of the

semi-Dirac behavior can be identified by deriving the low-energy Hamiltonian around

these band touching points as follows:

ℎ
(0)
G =

@2
G

2
− [@2

H; ℎ
(0)
H = −@G (5.9)

The above low energy Hamiltonian of the # stacked SSHmodel clearly shows semi-Dirac

like behavior for the condition [X = |[ |]. We now separately study the role of LPL along

G and H-directions.

5.5.1 Linearly polarized light along G-direction

First, we consider the case when the LPL is applied along G-direction of the form

�(C) = �0 cosΩC. For this driving, we find the Fourier component of the Hamiltonian

for < = 0 as:

�
(0)
#−((� = d (0)

#−((� · 2 (5.10a)
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Figure 5.9: The quasienergy bands are presented, when the LPL is applied along the G-direction
for the case when the individual SSH chain is topologically nontrivial. Here, we fix the driving
parameters at �0 = 0.5 and X = [ = 0.5 in all the subfigures. In subfigures (a) and (c), we set
Ω = 3.0; while in subfigures (b) and (d), we set Ω = 6.0. Here, we observe the emergence of the
semi-Dirac like point as LPL is applied along G-direction.

Figure 5.10: This figure is similar to Fig. 5.9, but here we consider stronger driving amplitude
�0 = 1.0.

where

(
3
(0)
#−((�

)
G
= (1 − [) + (1 + [) cos :G �0(�0) + X cos :H,

− X cos :G cos :H �0(�0)
(5.10b)

(
3
(0)
#−((�

)
H
= (1 + [) sin :G �0(�0) − X sin :G cos :H �0(�0). (5.10c)
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The Fourier component of the Hamiltonian for < = 1 is obtained as:

�
(1)
#−((� = d (1)

#−((� · 2 (5.11a)

where

(
3
(1)
#−((�

)
G
= −(1 + [) sin :G �1(�0) + X sin :G cos :H�1(�0) (5.11b)

(
3
(1)
#−((�

)
H
=

[
(1 + [) − X cos :H

]
cos :G �1(�0) (5.11c)

and for < = 2 as:

�
(2)
#−((� = d (2)

#−((� · 2 (5.12a)(
3
(2)
#−((�

)
G
= −(1 + [) cos :G �2(�0) + X cos :G cos :H�2(�0) (5.12b)(
3
(2)
#−((�

)
H
= −

[
(1 + [) − X cos :H

]
sin :G�2(�0). (5.12c)

The Floquet energy band diagrams are shown in Figs. 5.9, 5.10 and 5.11. Here again

we consider two different cases depending on the topological property of the individual

SSH chain. In Figs. 5.9 and 5.10, each SSH chain is considered as nontrivial by setting

[ = 0.5. Unlike the case of hexagonal lattice, here we observe that the semi-Dirac like

point splits into two band-touching points with non-linear dispersion along H-direction.

This behavior is observed for both high and low frequency regime. In Figs. 5.9(a) and

(c), we set the driving frequency Ω = 3.0. On the other hand, in Figs. 5.9(b) and (d),

we set Ω = 6.0. The driving amplitude is fixed at �0 = 0.5 for both the frequencies. As

we increase the driving amplitude, the separation between the two band touching points

also increase, as shown in Fig. 5.10. In contrary, when we consider each SSH chain as

topologically trivial, the semi-Dirac like point does not split, but a band-gap opens at that

point. This result is shown in Fig. 5.11.
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Figure 5.11: The quasi-energy bands are presented for the case when the LPL is applied along
the G-direction. Here we fix the parameters X = −[ = 0.5 and hence the individual SSH chain
topologically trivial. We set the driving amplitude �0 = 0.5. In subfigures (a) and (c), we set
Ω = 3.0; while in subfigures (b) and (d), we set Ω = 6.0. Here, we see opening of a gap in the
quasi-energy band gap at the semi-Dirac-like point.

5.5.2 Linearly polarized light along H-direction

We now consider the other case where the LPL is applied along H-direction of the same

form as earlier, i.e., �(C) = �0 cosΩC. Like the previous case, for this driving, we find

the Fourier component of the Hamiltonian for < = 0 as:

�
(0)
#−((� = d (0)

#−((� · 2 (5.13a)

where

(
3
(0)
#−((�

)
G
= (1 − [) + (1 + [) cos :G + X cos :H �0(�0)

− X cos :G cos :H �0(�0)
(5.13b)

(
3
(0)
#−((�

)
H
= (1 + [) sin :G − X sin :G cos :H �0(�0). (5.13c)

Again, we derive the Fourier component of the Hamiltonian for < = 1 as:

�
(1)
#−((� = d (1)

#−((� · 2 (5.14a)
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Figure 5.12: The quasi-energy bands are shown for the case when the LPL is applied along
H-direction and here we consider the individual SSH chain as topologically nontrivial by setting
the parameters X = [ = 0.5. The driving amplitude is set at �0 = 0.5 in all the subfigures. In the
subfigures (a) and (c), we consider Ω = 3.0; while Ω = 6.0 is considered in subfigures (b) and
(d). Here, we also observe opening of a band gap at the semi-Dirac-like point.(

3
(1)
#−((�

)
G
= −X sin :H �1(�0) + X cos :G sin :H�1(�0) (5.14b)(
3
(1)
#−((�

)
H
= X sin :G sin :H �1(�0) (5.14c)

and for < = 2 as:

�
(2)
#−((� = d (2)

#−((� · 2 (5.15a)(
3
(2)
#−((�

)
G
= −X cos :H �2(�0) + X cos :G cos :H�2(�0) (5.15b)(
3
(2)
#−((�

)
H
= X sin :G cos :H �2(�0). (5.15c)

In Fig. 5.12, the Floquet band diagrams are shown for the case where the individual

SSH chain is topologically nontrivial. On the other hand, in Fig. 5.13, the Floquet band

diagrams are presented for the trivial case. For both the cases, we find the semi-Dirac

like point does not split, and a band gap opens at that point.
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Figure 5.13: Similar results as Fig. 5.12 are presented, but here the individual SSH chain is
considered as topologically trivial by setting X = −[ = 0.5.

5.6 Summary

We consider a time-periodic driving acting on the # stacked SSHmodel and examine the

topological properties of this system. We use circularly polarized light as a periodic drive

and compute the effective Hamiltonian using the Floquet replica method. This method

is an exact method that determines the topological phases in the high-frequency regime

as well as in the low-frequency regime. This system exhibits topological phases with

high Chern numbers in the low-frequency regime. We consider two different ways of

constructing the # stacked SSHmodel: either construction has each trivial SSH chain, or

the construction has each nontrivial SSH chain. In the driving parameter space, the phase

diagram shows the topological phases with high Chern numbers in the low-frequency

regime. After driving, both the construction has distinct topological properties. When

the # stacked SSHmodel has all trivial SSH chains, the highest Chern number is� = −3

while for each nontrivial SSH chain, the highest Chern number is � = −4. We also

observed that with the varying driving amplitude �0, the topological phases remain the

same but change with the varying driving frequencyΩ. The topological transition occurs

when a band gap closing or reopening happens in the system. Therefore, with the varying

Ω, we have shown that the energy bands, lie in the first Floquet Brillouin zone. We have
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also shown the band diagrams in cylindrical geometry to present the results with the high

Chern number.

In the Floquet systems, the total number of chiral edge states between the gap at n = 0

and n = Ω
2 is obtained by � = �0 −�c. Here, �0 and �c are calculated by the sum of the

Chern number of all the Floquet bands below the energy at n = 0 and n = Ω
2 , respectively.

For both cases, we always obtain �c = 0; hence, we obtain � = �0. The model we chose

here is slightly nontrivial due to the coupling between the quasimomenta :G and :H. We

compute a low-energy Hamiltonian around the band touching points to observe the effect

of this coupling near the band touching points. This coupling leads to quadratic nonlinear

dispersion. Even after the nonlinear dispersion, which is a completely different behavior

from the Graphene, this model has the signature of hierarchy in the Floquet gaps.

Due to the unconventional dispersion (with the presence of coupling, qudratic and

linear term), we observe a semi-Dirac-like band touching point for a particular choice of

the system parameter. We find that, for the periodic driving with LPL along G-direction,

the semi-Dirac-like point splits into two band touching points with nonlinear dispersion.

On the other hand, when the LPL is applied along the H-direction, a band gap opens

around the semi-Dirac-like point. The same observation is shown for the hexagonal

lattice [204]. We have shown the band diagrams for the existence of the semi-Dirac

point, splitting into two band points and the opening of the band gap for the cylindrical

geometry.
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6
Floquet topological phases of # stacked

SSH model using elliptically polarized

light

In this Chapter, we only include some of the preliminary results of this study.

6.1 Introduction

In the previous Chapter, we investigated the periodically driven # stacked SSH model

where CPL and LPL were used as periodic driving. In this Chapter, we introduce the

effect of elliptically polarized light (EPL) on the # stacked SSH model. We consider the

EPL of the form

G =
[
�0G cosΩC, �0H cos(ΩC + q)

]
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Our main focus is to study the topological properties with the varying phase factor q.

Even for q = 0, this driving can be of the form EPL if �0G ≠ �0H. In this Chapter, again

we use the Floquet replica method to calculate the Floquet effective Hamiltonian. The

Fourier component and the modified static Hamiltonian have the following form

�
(0)
#−((� = d (0)

#−((� · 2(
3
(0)
#−((�

)
G
= (1 − [) + (1 + [) cos :G �0(�0G) + X cos :H �0(�0H)

− X cos :G cos :H �0(�0G)�0(�0H)(
3
(0)
#−((�

)
H
= (1 + [) sin :G �0(�0G) − X sin :G cos :H �0(�0G)�0(�0H)

(6.1)

�
(1)
#−((� = d (1)

#−((� · 2(
3
(1)
#−((�

)
G
= − (1 + [) sin :G �1(�0G) − X sin :H �1(�0H) 48q

− X
{
− sin :G cos :H�1(�0G)�0(�0H) − cos :G sin :H�0(�0G)�1(�0H) 48q

}(
3
(1)
#−((�

)
H
= (1 + [) cos :G �1(�0G)

− X
{
cos :G cos :H�1(�0G)�0(�0H) − sin :G sin :H�0(�0G)�1(�0H) 48q

}
(6.2)

�
(2)
#−((� = d (2)

#−((� · 2(
3
(2)
#−((�

)
G
= − (1 + [) cos :G �2(�0G) − X cos :H �2(�0H) 482q

− X sin :G sin :H �1(�0G)�1(�0H) 48q(
3
(2)
#−((�

)
H
= − (1 + [) sin :G �2(�0G) + X cos :G sin :H �1(�0G) �1(�0H) 48q

(6.3)
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Figure 6.1: Different phase diagrams are shown for different values of q in the high-frequency
regime by choosing the driving frequency Ω = 6.0. In this figure, the Chern number is shown
as a function of driving amplitudes �0G and �0H . In subfigures (a), (b), and (c) we set q as
c/3, c/4 and 3c/4, respectively. Here, in all subfigures, we choose X = 1 and [ = 0.5. In the
high-frequency regime, we observe topological phases with the Chern number � = ±1.

Figure 6.2: The same phase diagrams as shown in 6.1, are presented, but for Ω = 3.0. In the
low-frequency regime, we observe topological phases with the higher Chern number |� | > 1.



Chapter 6. # stacked SSH model using elliptically polarized light 113

6.2 Results

In this section, we show phase diagrams for different q values in high-frequency regimes

by choosing Ω = 6.0. In these phase diagrams, the Chern number is shown as a function

of the driving amplitudes �0G and �0H. Here, the Chern number is the sum of the

Chern number of all the Floquet bands below the energy n = 0 which shows the total

number of chiral edge states in the gap n = 0. In all the phase diagrams, we observe the

phase transitions between the Floquet topological phases with � = 0 and � = ±1. In

Figs. 6.1(a), 6.1(b) and 6.1(c) which are plotted for q = c/3, q = c/4 and q = 3c/4,

respectively, the Floquet topological phase saturates at � = +1 for �0G , �0H > 0.1. Next,

we will present the same phase diagrams but in the low-frequency regime by choosing

Ω = 3.0.

For four different values of q, the different phase diagrams are shown in Fig. 6.2 for

Ω = 3.0. Here, we observe the Floquet topological phases with the higher Chern number,

i.e. |� | > 1. The phase diagrams are more or less similar when the driving amplitudes

�0G and �0H are larger than 0.1.

Further, we want to calculate the time-averaged optical conductivity for this system

using the extended Kubo formalism. The optical conductivity for a probe frequency l is

given as [155]

fDa(<) (l) = −8
∑
U,W>U

∑
<

5U − 5W
nU − nW − <Ω

×
[

9
a(<)
UW 9

D(−<)
WU

l + 80+ − (nU − nW − <Ω)

+
9
D(<)
UW 9

a(−<)
WU

l + 80+ + (nU − nW − <Ω)

] (6.4)

where < represents the different photon sectors, U, W are band indices, 5U and 5W are

occupation of the bands and 9 a(<)UW is the Fourier component along a-direction which can
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be obtained by as follows

9
a(<)
UW =

1
)

∫ )

0
〈qU (C) |

m� (C)
m:a

| qW (C)〉 4−8<ΩC3C (6.5)

Here, qU/W (C) and m� (C)
m:a

are periodic and can expand by means of Fourier transformation

and we obtain

9
a(<)
UW =

∑
;,?

〈q;U | 9 a(?) | q
;+<−?
U 〉 (6.6)
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7
Conclusion and Outlook

7.1 Conclusion

The primary focus of this thesis was to investigate the topological properties of the quasi-

1D TIs. The Chapter 3, studied the � − ((� model, where a cyclic parameter \ was

sitting in all the hopping amplitudes. We assumed this parameter \ as another synthetic

dimension and behaved this � −((� model as a 2Dmodel. Sinusoidal driving is applied

to the NN and NNN hopping amplitudes. To compute the effective Hamiltonian, the

Floquet replica method is used which works in the high-frequency as well as the low-

frequency regime. In the high-frequency regime, we presented a phase diagram between

the parameters of NNN hopping amplitudes. This result revealed that this model has the

identical phase diagram as Haldane obtained for the hexagonal lattice with the borders of

the Chern number � = ±1 while the middle part of this phase diagram is filled with the

topological phases � = ±3. Moreover, this study also demonstrated two different phase

diagrams in high- and low-frequency regimes where the Chern number is presented as
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a function of the driving parameters l and + . In the high-frequency regime, the largest

Chern number is� = 5whereas in the low-frequency regime, we obtained the topological

phase with |� | = 10. The presence of the high Chern number phases (� = 3 and � = 5)

is detected by showing the participation ratio and the corresponding Floquet Bloch state

to show the localization of the states at the edges of the system. For these cases, we have

also shown the band diagram along the high-symmetric path and the Berry curvature. At

the points where the two bands come closer, the Berry curvature localizes, and the Chern

number gets some non-zero contributions from these points. To observe the contribution

from the Berry curvature to the Chern number, a local measure, ‘local Chern number

�: ’ is shown as a function of : . This result found the jumps exactly at the same values

of : where the Berry curvature localizes.

The Chapter 4, cataloged the topological phases of the # stacked SSH model by

breaking symmetries systematically. This model can be attained by promoting the cyclic

parameter \ of the � − ((� model to an actual momentum. As the name explains,

it is a 2D layered structure where # number of SSH chains are placed in H-direction.

This model considered all the hopping in such a manner that it preserves all three

fundamental symmetries (chiral, TR and PH). The primary goal of this study was to

study the topological properties of this model by systematic breaking of the symmetries.

In the presence of all three symmetries, this model showed � = 0. In this Chapter,

we have provided a separate section that describes all the cases with � = 0. Next, this

study considered the model that breaks chiral symmetry in the system. The breaking of

chiral symmetry is obtained by considering hopping from � (or �) sublattice to � (or �)

sublattice with real hopping strengths. Again, themodel with broken chiral symmetry had

� = 0. Then, by following the idea of Haldane, we introduced intra-sublattice hopping,

but with imaginary and opposite strengths, which led to the breaking of the TR and chiral

symmetry. In this category, four different models along with their topological properties
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were demonstrated, where two models showed the topological properties with � = ±1.

The presence of particle-hole symmetry facilitated an analytical calculation of � which

agreed with the numerical calculation of � and also the phase diagram. Next, the case

for � = 0 was demonstrated, which is explained by the 2D Zak phase which is quantized

for chiral symmetric and chiral and TR symmetry broken systems. However, the 2D

Zak phase was fractionalized when chiral symmetry was absent in the system. This

detailed study finally showed the interplay between PH and inversion symmetry which

also exhibited a topological phase transition. Here, the PH symmetry was broken for

unequal intra-sublattice hopping and equal intra-sublattice hopping ensured the presence

of inversion symmetry.

The Chapter 5 investigated # stacked SSH model with the application of periodic

driving. This study adopted the model which preserves all three symmetries and applies

CPL. The CPL is recognized for the breaking of TR symmetry in the system. Similar to

Chapter 4, this study again considered two cases: the # stacked SSH model constructed

either each SSH chain is topologically trivial or topologically nontrivial. The time-

independent effective Hamiltonian is computed using the Floquet replica method which

is further used for computing quasi-energies and the topological invariant. As discussed

in Chapter 3, using the replica method, one can work in low-frequency as well as in

the high-frequency regime. In the low-frequency regime, the driven system exhibited

topological phases with a high Chern number for both cases whether the individual

SSH chain is trivial or non-trivial. Contrary to the undriven # stacked SSH model, the

periodically driven # stacked SSH model showed different topological phases for both

cases. This model also has some heirarchy signature even the low-energy Hamiltonian

has non-linear dispersion because of a cross term. This case is very different from

the graphene which has linear dispersion. Moreover, the emergence of the semi-Dirac

point split into two Dirac points with non-linear dispersion by the application of LPL
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in G-direction and induced a gap at semi Dirac point with the application of LPL in

H-direction.

7.2 Future outlook

We now sketch some of the promising projects which we like to work on in future.

A study of bilayer # stacked SSH model: Here, we will consider two layers of #

stacked SSH model. First, we will construct the single # stacked SSH layer by placing

an SSH chain starting with the � sublattice over the SSH chain which is starting with

the sublattice �. The schematic diagram of this # stacked SSH model is shown in the

following figure. The model Hamiltonian for a single layer of the # stacked SSH model

will be as follows

�#−((� =
∑
=G ,=H

[
(1 − [)2�†=G ,=H2

�
=G ,=H
+ (1 + [)2�†

=G+1,=H2
�
=G ,=H

]
+ X

∑
=G ,=H

[
2�†=G ,=H2

�
=G ,=H+1

] (7.1)

This work is essentially motivated by the bilayer Graphene. Our primary focus will be to

compare this model with the bilayer graphene and find a magic angle with the intriguing

topological properties in the system.

Figure 7.1: Schematic diagram of a single layer of # stacked SSHmodel that has a graphene-like
structure. Here, red and black filled circles represent � and � sublattice, respectively.
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# stacked SSH model irradiated by twisted light: Recently, in Ref. [219], the

monolayer graphene irradiated by a twisted light is reported. The components of the

vector potential of twisted light are of the following form

�G + 8�H = �0 5 (A)48(ΩC+<q)

Here, �0 is the driving amplitude, Ω is the driving frequency, 5 (A) is the spatial profile

and integer < is the orbital angular momentum. The twisted light is spatially modulated

light which carries an orbital angular momentum and has phase singularity around the

axis because of which the beam possesses a helical wavefront. In our previous study,

we observed that # stacked SSH model shares some properties with graphene. In this

project, we would also like to extend our study with the # stacked SSH model irradiated

by a twisted light.

# stacked Kitaev model: Like the # stacked SSH model, we would also like to study

the stacked Kitaev model where the role of pairing term along G and H-direction can be

observed. This project aims to uncover distinct topological phenomena in the presence

of such pairing interactions. Additionally, these models can be further extended by

incorporating a spin-orbit coupling term, with a pairing term, by adding a non-hermitian

termand using a quasi-periodic potential. The comprehensive exploration of these aspects

will provide an in-depth understanding of the emergence of exotic topological properties

in these systems. Furthermore, we intend to investigate the optical conductivity of these

models and explore their applicability in studying high harmonic generations.
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generated spin-orbit coupling for ultracold atoms. Phys. Rev. Lett., 111:125301,
Sep 2013. doi:10.1103/PhysRevLett.111.125301. URL https://link.aps.
org/doi/10.1103/PhysRevLett.111.125301.

[127] Zhi-Fang Xu, Li You, and Masahito Ueda. Atomic spin-orbit coupling syn-
thesized with magnetic-field-gradient pulses. Phys. Rev. A, 87:063634, Jun
2013. doi:10.1103/PhysRevA.87.063634. URL https://link.aps.org/doi/
10.1103/PhysRevA.87.063634.

[128] Anders S. Sørensen, Eugene Demler, and Mikhail D. Lukin. Fractional quantum
hall states of atoms in optical lattices. Phys. Rev. Lett., 94:086803, Mar 2005.
doi:10.1103/PhysRevLett.94.086803. URL https://link.aps.org/doi/10.
1103/PhysRevLett.94.086803.

[129] Juan Zurita, Charles E. Creffield, and Gloria Platero. Topology and interactions in
the photonic creutz and creutz-hubbard ladders. Advanced Quantum Technologies,
3(2):1900105, 2020. doi:https://doi.org/10.1002/qute.201900105. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900105.

[130] Milad Jangjan and Mir Vahid Hosseini. Topological properties of subsystem-
symmetry-protected edge states in an extended quasi-one-dimensional dimerized
lattice. Phys. Rev. B, 106:205111, Nov 2022. doi:10.1103/PhysRevB.106.205111.
URL https://link.aps.org/doi/10.1103/PhysRevB.106.205111.

[131] Milad Jangjan and Mir Vahid Hosseini. Floquet engineering of topological metal
states and hybridization of edge stateswith bulk states in dimerized two-leg ladders.
Scientific Reports, 10(1):14256, Aug 2020. ISSN2045-2322. doi:10.1038/s41598-
020-71196-3. URL https://doi.org/10.1038/s41598-020-71196-3.

https://doi.org/10.1143/JPSJ.74.1674
https://doi.org/10.1103/PhysRevX.4.031027
https://link.aps.org/doi/10.1103/PhysRevX.4.031027
https://link.aps.org/doi/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevLett.111.125301
https://link.aps.org/doi/10.1103/PhysRevLett.111.125301
https://link.aps.org/doi/10.1103/PhysRevLett.111.125301
https://doi.org/10.1103/PhysRevA.87.063634
https://link.aps.org/doi/10.1103/PhysRevA.87.063634
https://link.aps.org/doi/10.1103/PhysRevA.87.063634
https://doi.org/10.1103/PhysRevLett.94.086803
https://link.aps.org/doi/10.1103/PhysRevLett.94.086803
https://link.aps.org/doi/10.1103/PhysRevLett.94.086803
https://doi.org/https://doi.org/10.1002/qute.201900105
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900105
https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900105
https://doi.org/10.1103/PhysRevB.106.205111
https://link.aps.org/doi/10.1103/PhysRevB.106.205111
https://doi.org/10.1038/s41598-020-71196-3
https://doi.org/10.1038/s41598-020-71196-3
https://doi.org/10.1038/s41598-020-71196-3


BIBLIOGRAPHY 133

[132] B Hetényi and M Yahyavi. Topological insulation in a ladder model with particle-
hole and reflection symmetries. Journal of Physics: Condensed Matter, 30(10):
10LT01, feb 2018. doi:10.1088/1361-648X/aaac9d. URL https://dx.doi.
org/10.1088/1361-648X/aaac9d.

[133] Kyle Monkman and Jesko Sirker. Operational entanglement of symmetry-
protected topological edge states. Phys. Rev. Research, 2:043191, Nov 2020.
doi:10.1103/PhysRevResearch.2.043191. URL https://link.aps.org/doi/
10.1103/PhysRevResearch.2.043191.

[134] Carla Borja, Esther Gutiérrez, and Alexander López. Emergence of Floquet edge
states in the coupled Su-Schrieffer-Heeger model. Journal of Physics: Condensed
Matter, 34(20):205701, mar 2022. doi:10.1088/1361-648x/ac5865. URL https:
//doi.org/10.1088/1361-648x/ac5865.

[135] C. Li, S. Lin, G. Zhang, and Z. Song. Topological nodal points in two
coupled Su-Schrieffer-Heeger chains. Phys. Rev. B, 96:125418, Sep 2017.
doi:10.1103/PhysRevB.96.125418. URL https://link.aps.org/doi/10.
1103/PhysRevB.96.125418.

[136] A. Sivan and M. Orenstein. Topology of multiple cross-linked Su-
Schrieffer-Heeger chains. Phys. Rev. A, 106:022216, Aug 2022.
doi:10.1103/PhysRevA.106.022216. URL https://link.aps.org/doi/10.
1103/PhysRevA.106.022216.

[137] Shao-Liang Zhang and Qi Zhou. Two-leg Su-Schrieffer-Heeger chain
with glide reflection symmetry. Phys. Rev. A, 95:061601, Jun 2017.
doi:10.1103/PhysRevA.95.061601. URL https://link.aps.org/doi/10.
1103/PhysRevA.95.061601.

[138] Daichi Obana, Feng Liu, and Katsunori Wakabayashi. Topological edge states
in the Su-Schrieffer-Heeger model. Phys. Rev. B, 100:075437, Aug 2019.
doi:10.1103/PhysRevB.100.075437. URL https://link.aps.org/doi/10.
1103/PhysRevB.100.075437.

[139] Chang-An Li, Sang-Jun Choi, Song-Bo Zhang, and Björn Trauzettel. Dirac states
in an inclined two-dimensional Su-Schrieffer-Heeger model. Phys. Rev. Research,
4:023193, Jun 2022. doi:10.1103/PhysRevResearch.4.023193. URL https://
link.aps.org/doi/10.1103/PhysRevResearch.4.023193.

[140] Feng Liu and Katsunori Wakabayashi. Novel topological phase with
a zero berry curvature. Phys. Rev. Lett., 118:076803, Feb 2017.
doi:10.1103/PhysRevLett.118.076803. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.118.076803.

[141] Bo-Hung Chen. Two-Dimensional Extended Su-Schrieffer-Heeger
Model. PhD thesis, National Taiwan Normal University (Taiwan), 2018.
URL http://rportal.lib.ntnu.edu.tw:8080/server/api/core/
bitstreams/9c19bce0-b5f3-44da-9927-53d2ed784c9b/content.

https://doi.org/10.1088/1361-648X/aaac9d
https://dx.doi.org/10.1088/1361-648X/aaac9d
https://dx.doi.org/10.1088/1361-648X/aaac9d
https://doi.org/10.1103/PhysRevResearch.2.043191
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043191
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043191
https://doi.org/10.1088/1361-648x/ac5865
https://doi.org/10.1088/1361-648x/ac5865
https://doi.org/10.1088/1361-648x/ac5865
https://doi.org/10.1103/PhysRevB.96.125418
https://link.aps.org/doi/10.1103/PhysRevB.96.125418
https://link.aps.org/doi/10.1103/PhysRevB.96.125418
https://doi.org/10.1103/PhysRevA.106.022216
https://link.aps.org/doi/10.1103/PhysRevA.106.022216
https://link.aps.org/doi/10.1103/PhysRevA.106.022216
https://doi.org/10.1103/PhysRevA.95.061601
https://link.aps.org/doi/10.1103/PhysRevA.95.061601
https://link.aps.org/doi/10.1103/PhysRevA.95.061601
https://doi.org/10.1103/PhysRevB.100.075437
https://link.aps.org/doi/10.1103/PhysRevB.100.075437
https://link.aps.org/doi/10.1103/PhysRevB.100.075437
https://doi.org/10.1103/PhysRevResearch.4.023193
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023193
https://link.aps.org/doi/10.1103/PhysRevResearch.4.023193
https://doi.org/10.1103/PhysRevLett.118.076803
https://link.aps.org/doi/10.1103/PhysRevLett.118.076803
https://link.aps.org/doi/10.1103/PhysRevLett.118.076803
http://rportal.lib.ntnu.edu.tw:8080/server/api/core/bitstreams/9c19bce0-b5f3-44da-9927-53d2ed784c9b/content
http://rportal.lib.ntnu.edu.tw:8080/server/api/core/bitstreams/9c19bce0-b5f3-44da-9927-53d2ed784c9b/content


BIBLIOGRAPHY 134

[142] A Pályi. Topological Insulators. URL https://physics.bme.hu/sites/
physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.
pdf.

[143] Peter Rosenberg and Efstratios Manousakis. Topological superconductivity in
a two-dimensional Weyl SSH model. Phys. Rev. B, 106:054511, Aug 2022.
doi:10.1103/PhysRevB.106.054511. URL https://link.aps.org/doi/10.
1103/PhysRevB.106.054511.

[144] Peter Rosenberg and Efstratios Manousakis. Weyl nodal-ring semimetallic behav-
ior and topological superconductivity in crystalline forms of Su-Schrieffer-Heeger
chains. Phys. Rev. B, 104:134511, Oct 2021. doi:10.1103/PhysRevB.104.134511.
URL https://link.aps.org/doi/10.1103/PhysRevB.104.134511.

[145] Peter Rosenberg, Niraj Aryal, and Efstratios Manousakis. Numerically ex-
act study of Weyl superconductivity. Phys. Rev. B, 100:104522, Sep 2019.
doi:10.1103/PhysRevB.100.104522. URL https://link.aps.org/doi/10.
1103/PhysRevB.100.104522.

[146] Liang Fu, C. L. Kane, and E. J. Mele. Topological insulators in three dimensions.
Phys. Rev. Lett., 98:106803,Mar 2007. doi:10.1103/PhysRevLett.98.106803. URL
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803.

[147] J. E. Moore and L. Balents. Topological invariants of time-reversal-invariant band
structures. Phys. Rev. B, 75:121306,Mar 2007. doi:10.1103/PhysRevB.75.121306.
URL https://link.aps.org/doi/10.1103/PhysRevB.75.121306.

[148] Zohar Ringel, Yaacov E. Kraus, and Ady Stern. Strong side of weak topological
insulators. Phys. Rev. B, 86:045102, Jul 2012. doi:10.1103/PhysRevB.86.045102.
URL https://link.aps.org/doi/10.1103/PhysRevB.86.045102.

[149] Cheng-Cheng Liu, Jin-Jian Zhou, Yugui Yao, and Fan Zhang. Weak topological
insulators and composite Weyl semimetals: V-Bi4X4 (X=Br, I). Phys. Rev. Lett.,
116:066801, Feb 2016. doi:10.1103/PhysRevLett.116.066801. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.116.066801.

[150] A. A. Burkov. Topological semimetals. NatureMaterials, 15(11):1145–1148, Nov
2016. ISSN 1476-4660. doi:10.1038/nmat4788. URL https://doi.org/10.
1038/nmat4788.

[151] Andrei Bernevig, Hongming Weng, Zhong Fang, and Xi Dai. Recent progress in
the study of topological semimetals. Journal of the Physical Society of Japan, 87
(4):041001, 2018. doi:10.7566/JPSJ.87.041001. URL https://doi.org/10.
7566/JPSJ.87.041001.

[152] Xiangang Wan, Ari M. Turner, Ashvin Vishwanath, and Sergey Y.
Savrasov. Topological semimetal and fermi-arc surface states in the elec-
tronic structure of pyrochlore iridates. Phys. Rev. B, 83:205101, May 2011.
doi:10.1103/PhysRevB.83.205101. URL https://link.aps.org/doi/10.
1103/PhysRevB.83.205101.

https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://physics.bme.hu/sites/physics.bme.hu/files/users/BMETE11MF34_kov/weyl_semimetals.pdf
https://doi.org/10.1103/PhysRevB.106.054511
https://link.aps.org/doi/10.1103/PhysRevB.106.054511
https://link.aps.org/doi/10.1103/PhysRevB.106.054511
https://doi.org/10.1103/PhysRevB.104.134511
https://link.aps.org/doi/10.1103/PhysRevB.104.134511
https://doi.org/10.1103/PhysRevB.100.104522
https://link.aps.org/doi/10.1103/PhysRevB.100.104522
https://link.aps.org/doi/10.1103/PhysRevB.100.104522
https://doi.org/10.1103/PhysRevLett.98.106803
https://link.aps.org/doi/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.75.121306
https://link.aps.org/doi/10.1103/PhysRevB.75.121306
https://doi.org/10.1103/PhysRevB.86.045102
https://link.aps.org/doi/10.1103/PhysRevB.86.045102
https://doi.org/10.1103/PhysRevLett.116.066801
https://link.aps.org/doi/10.1103/PhysRevLett.116.066801
https://link.aps.org/doi/10.1103/PhysRevLett.116.066801
https://doi.org/10.1038/nmat4788
https://doi.org/10.1038/nmat4788
https://doi.org/10.1038/nmat4788
https://doi.org/10.7566/JPSJ.87.041001
https://doi.org/10.7566/JPSJ.87.041001
https://doi.org/10.7566/JPSJ.87.041001
https://doi.org/10.1103/PhysRevB.83.205101
https://link.aps.org/doi/10.1103/PhysRevB.83.205101
https://link.aps.org/doi/10.1103/PhysRevB.83.205101


BIBLIOGRAPHY 135

[153] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe.
Dirac semimetal in three dimensions. Phys. Rev. Lett., 108:140405, Apr 2012.
doi:10.1103/PhysRevLett.108.140405. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.108.140405.

[154] Huanhuan Yang, Lingling Song, Yunshan Cao, and Peng Yan. Experimental
realization of two-dimensional weak topological insulators. Nano Letters, 22(7):
3125–3132, Apr 2022. ISSN 1530-6984. doi:10.1021/acs.nanolett.2c00555. URL
https://doi.org/10.1021/acs.nanolett.2c00555.

[155] S. Sajad Dabiri, Hosein Cheraghchi, and Ali Sadeghi. Floquet states and optical
conductivity of an irradiated two-dimensional topological insulator. Phys. Rev.
B, 106:165423, Oct 2022. doi:10.1103/PhysRevB.106.165423. URL https:
//link.aps.org/doi/10.1103/PhysRevB.106.165423.

[156] Xiaolong Feng, Jiaojiao Zhu, Weikang Wu, and Shengyuan A. Yang. Two-
dimensional topological semimetals*. Chinese Physics B, 30(10):107304, nov
2021. doi:10.1088/1674-1056/ac1f0c. URL https://dx.doi.org/10.1088/
1674-1056/ac1f0c.

[157] H. C. Wu, L. Jin, and Z. Song. Nontrivial topological phase with a zero chern
number. Phys. Rev. B, 102:035145, Jul 2020. doi:10.1103/PhysRevB.102.035145.
URL https://link.aps.org/doi/10.1103/PhysRevB.102.035145.

[158] Marcos Atala, Monika Aidelsburger, Julio T. Barreiro, Dmitry Abanin, Takuya
Kitagawa, Eugene Demler, and Immanuel Bloch. Direct measurement of the zak
phase in topological bloch bands. Nature Physics, 9(12):795–800, Dec 2013.
ISSN 1745-2481. doi:10.1038/nphys2790. URL https://doi.org/10.1038/
nphys2790.

[159] P. Delplace, D. Ullmo, and G. Montambaux. Zak phase and the exis-
tence of edge states in graphene. Phys. Rev. B, 84:195452, Nov 2011.
doi:10.1103/PhysRevB.84.195452. URL https://link.aps.org/doi/10.
1103/PhysRevB.84.195452.

[160] Jan Carl Budich and Eddy Ardonne. Fractional topological phase in one-
dimensional flat bands with nontrivial topology. Phys. Rev. B, 88:035139, Jul
2013. doi:10.1103/PhysRevB.88.035139. URL https://link.aps.org/doi/
10.1103/PhysRevB.88.035139.

[161] Sujit Sarkar. Quantization of geometric phase with integer and fractional topologi-
cal characterization in a quantum Ising chainwith long-range interaction. Scientific
Reports, 8(1):5864, Apr 2018. ISSN 2045-2322. doi:10.1038/s41598-018-24136-
1. URL https://doi.org/10.1038/s41598-018-24136-1.

[162] Stefano Longhi. Zak phase of photons in optical waveguide lattices. Opt. Lett.,
38(19):3716–3719, Oct 2013. doi:10.1364/OL.38.003716. URL https://opg.
optica.org/ol/abstract.cfm?URI=ol-38-19-3716.

[163] Junkai Dong, Vladimir Juričić, and Bitan Roy. Topolectric circuits:
Theory and construction. Phys. Rev. Res., 3:023056, Apr 2021.

https://doi.org/10.1103/PhysRevLett.108.140405
https://link.aps.org/doi/10.1103/PhysRevLett.108.140405
https://link.aps.org/doi/10.1103/PhysRevLett.108.140405
https://doi.org/10.1021/acs.nanolett.2c00555
https://doi.org/10.1021/acs.nanolett.2c00555
https://doi.org/10.1103/PhysRevB.106.165423
https://link.aps.org/doi/10.1103/PhysRevB.106.165423
https://link.aps.org/doi/10.1103/PhysRevB.106.165423
https://doi.org/10.1088/1674-1056/ac1f0c
https://dx.doi.org/10.1088/1674-1056/ac1f0c
https://dx.doi.org/10.1088/1674-1056/ac1f0c
https://doi.org/10.1103/PhysRevB.102.035145
https://link.aps.org/doi/10.1103/PhysRevB.102.035145
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1038/nphys2790
https://doi.org/10.1103/PhysRevB.84.195452
https://link.aps.org/doi/10.1103/PhysRevB.84.195452
https://link.aps.org/doi/10.1103/PhysRevB.84.195452
https://doi.org/10.1103/PhysRevB.88.035139
https://link.aps.org/doi/10.1103/PhysRevB.88.035139
https://link.aps.org/doi/10.1103/PhysRevB.88.035139
https://doi.org/10.1038/s41598-018-24136-1
https://doi.org/10.1038/s41598-018-24136-1
https://doi.org/10.1038/s41598-018-24136-1
https://doi.org/10.1364/OL.38.003716
https://opg.optica.org/ol/abstract.cfm?URI=ol-38-19-3716
https://opg.optica.org/ol/abstract.cfm?URI=ol-38-19-3716


BIBLIOGRAPHY 136

doi:10.1103/PhysRevResearch.3.023056. URL https://link.aps.org/doi/
10.1103/PhysRevResearch.3.023056.

[164] Gabriel Cáceres-Aravena, Bastián Real, Diego Guzmán-Silva, Alberto Amo, Luis
E. F. Foa Torres, and Rodrigo A. Vicencio. Experimental observation of edge
states in SSH-Stub photonic lattices. Phys. Rev. Res., 4:013185, Mar 2022.
doi:10.1103/PhysRevResearch.4.013185. URL https://link.aps.org/doi/
10.1103/PhysRevResearch.4.013185.

[165] S. Longhi. Probing one-dimensional topological phases in waveguide lat-
tices with broken chiral symmetry. Opt. Lett., 43(19):4639–4642, Oct 2018.
doi:10.1364/OL.43.004639. URL https://opg.optica.org/ol/abstract.
cfm?URI=ol-43-19-4639.

[166] Alexander Szameit, Dominik Blömer, Jonas Burghoff, Thomas Schreiber, Thomas
Pertsch, Stefan Nolte, Andreas Tünnermann, and Falk Lederer. Discrete nonlinear
localization in femtosecond laser written waveguides in fused silica. Opt. Express,
13(26):10552–10557, Dec 2005. doi:10.1364/OPEX.13.010552. URL https:
//opg.optica.org/oe/abstract.cfm?URI=oe-13-26-10552.

[167] F. D. M. Haldane and S. Raghu. Possible realization of directional optical
waveguides in photonic crystals with broken time-reversal symmetry. Phys.
Rev. Lett., 100:013904, Jan 2008. doi:10.1103/PhysRevLett.100.013904. URL
https://link.aps.org/doi/10.1103/PhysRevLett.100.013904.

[168] Inbar Hotzen Grinberg, Mao Lin, Wladimir A. Benalcazar, Taylor L. Hughes,
and Gaurav Bahl. Trapped state at a dislocation in a weak magnetome-
chanical topological insulator. Phys. Rev. Appl., 14:064042, Dec 2020.
doi:10.1103/PhysRevApplied.14.064042. URL https://link.aps.org/doi/
10.1103/PhysRevApplied.14.064042.

[169] Inbar Hotzen Grinberg, Mao Lin, Cameron Harris, Wladimir A. Benalcazar,
Christopher W. Peterson, Taylor L. Hughes, and Gaurav Bahl. Robust temporal
pumping in a magneto-mechanical topological insulator. Nature Communications,
11(1):974, Feb 2020. ISSN 2041-1723. doi:10.1038/s41467-020-14804-0. URL
https://doi.org/10.1038/s41467-020-14804-0.

[170] Christian Pauly. Weak Topological Insulator. Springer Fachmedien Wiesbaden,
Wiesbaden, 2015. doi:10.1007/978-3-658-11811-2_5. URL https://link.
springer.com/chapter/10.1007/978-3-658-11811-2_5.

[171] Ji Seop Oh, Tianyi Xu, Nikhil Dhale, Sheng Li, Chao Lei, Chiho Yoon, Wenhao
Liu, Jianwei Huang, Hanlin Wu, Makoto Hashimoto, Donghui Lu, Chris Jozwiak,
Aaron Bostwick, Eli Rotenberg, Chun Ning Lau, Bing Lv, Fan Zhang, Robert
Birgeneau, and Ming Yi. Ideal weak topological insulator and protected helical
saddle points, 2023.

[172] Jierui Huang, Tan Zhang, Sheng Xu, Zhicheng Rao, Jiajun Li, Junde Liu, Shunye
Gao, Yaobo Huang, Wenliang Zhu, Tianlong Xia, Hongming Weng, and Tian
Qian. Electronic structure of the weak topological insulator candidate Zintl

https://doi.org/10.1103/PhysRevResearch.3.023056
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023056
https://link.aps.org/doi/10.1103/PhysRevResearch.3.023056
https://doi.org/10.1103/PhysRevResearch.4.013185
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013185
https://link.aps.org/doi/10.1103/PhysRevResearch.4.013185
https://doi.org/10.1364/OL.43.004639
https://opg.optica.org/ol/abstract.cfm?URI=ol-43-19-4639
https://opg.optica.org/ol/abstract.cfm?URI=ol-43-19-4639
https://doi.org/10.1364/OPEX.13.010552
https://opg.optica.org/oe/abstract.cfm?URI=oe-13-26-10552
https://opg.optica.org/oe/abstract.cfm?URI=oe-13-26-10552
https://doi.org/10.1103/PhysRevLett.100.013904
https://link.aps.org/doi/10.1103/PhysRevLett.100.013904
https://doi.org/10.1103/PhysRevApplied.14.064042
https://link.aps.org/doi/10.1103/PhysRevApplied.14.064042
https://link.aps.org/doi/10.1103/PhysRevApplied.14.064042
https://doi.org/10.1038/s41467-020-14804-0
https://doi.org/10.1038/s41467-020-14804-0
https://doi.org/10.1007/978-3-658-11811-2_5
https://link.springer.com/chapter/10.1007/978-3-658-11811-2_5
https://link.springer.com/chapter/10.1007/978-3-658-11811-2_5


BIBLIOGRAPHY 137

Ba3Cd2Sb4. Chinese Physics Letters, 40(4):047101, mar 2023. doi:10.1088/0256-
307X/40/4/047101. URL https://dx.doi.org/10.1088/0256-307X/40/4/
047101.

[173] Ying Ran, Yi Zhang, and Ashvin Vishwanath. One-dimensional topologically
protectedmodes in topological insulators with lattice dislocations. Nature Physics,
5(4):298–303, Apr 2009. ISSN 1745-2481. doi:10.1038/nphys1220. URL https:
//doi.org/10.1038/nphys1220.

[174] Peng Zhang, Ryo Noguchi, Kenta Kuroda, Chun Lin, Kaishu Kawaguchi, Koichiro
Yaji, Ayumi Harasawa, Mikk Lippmaa, Simin Nie, HongmingWeng, V. Kandyba,
A. Giampietri, A. Barinov, Qiang Li, G. D. Gu, Shik Shin, and Takeshi Kondo.
Observation and control of the weak topological insulator state in ZrTe5. Nature
Communications, 12(1):406, Jan 2021. ISSN 2041-1723. doi:10.1038/s41467-
020-20564-8. URL https://doi.org/10.1038/s41467-020-20564-8.

[175] Zongjian Fan, Qi-Feng Liang, Y. B. Chen, Shu-HuaYao, and Jian Zhou. Transition
between strong and weak topological insulator in ZrTe5 and HfTe5. Scientific
Reports, 7(1):45667, Apr 2017. ISSN 2045-2322. doi:10.1038/srep45667. URL
https://doi.org/10.1038/srep45667.

[176] Pallavi Malavi, Arpita Paul, Achintya Bera, D. V. S. Muthu, Kunjalata Majhi,
P S Anil Kumar, Umesh V. Waghmare, A. K. Sood, and S. Karmakar. Pressure-
induced superconductivity in the weak topological insulator BiSe. Phys. Rev.
B, 107:024506, Jan 2023. doi:10.1103/PhysRevB.107.024506. URL https:
//link.aps.org/doi/10.1103/PhysRevB.107.024506.

[177] Xun-Jiang Luo, Xiao-Hong Pan, and Xin Liu. Higher-order topological super-
conductors based on weak topological insulators. Phys. Rev. B, 104:104510, Sep
2021. doi:10.1103/PhysRevB.104.104510. URL https://link.aps.org/doi/
10.1103/PhysRevB.104.104510.

[178] Ryo Noguchi, T. Takahashi, K. Kuroda, M. Ochi, T. Shirasawa, M. Sakano,
C. Bareille, M. Nakayama, M. D. Watson, K. Yaji, A. Harasawa, H. Iwasawa,
P. Dudin, T. K. Kim, M. Hoesch, V. Kandyba, A. Giampietri, A. Barinov, S. Shin,
R. Arita, T. Sasagawa, and Takeshi Kondo. A weak topological insulator state in
quasi-one-dimensional bismuth iodide. Nature, 566(7745):518–522, Feb 2019.
ISSN 1476-4687. doi:10.1038/s41586-019-0927-7. URL https://doi.org/
10.1038/s41586-019-0927-7.

[179] Ankita Anirban. Quantum anomalous layer Hall effect. Nature Reviews Physics,
5(5):271–271, May 2023. ISSN 2522-5820. doi:10.1038/s42254-023-00585-0.
URL https://doi.org/10.1038/s42254-023-00585-0.

[180] Half quantum spin Hall effect on the surface of weak topolog-
ical insulators. Physica E, 44(5):906–911, 2012. ISSN 1386-
9477. doi:https://doi.org/10.1016/j.physe.2011.11.005. URL https://www.
sciencedirect.com/science/article/pii/S1386947711004000.

[181] Luojun Du, Tawfique Hasan, Andres Castellanos-Gomez, Gui-Bin Liu, Yugui
Yao, Chun Ning Lau, and Zhipei Sun. Engineering symmetry breaking in 2D

https://doi.org/10.1088/0256-307X/40/4/047101
https://doi.org/10.1088/0256-307X/40/4/047101
https://dx.doi.org/10.1088/0256-307X/40/4/047101
https://dx.doi.org/10.1088/0256-307X/40/4/047101
https://doi.org/10.1038/nphys1220
https://doi.org/10.1038/nphys1220
https://doi.org/10.1038/nphys1220
https://doi.org/10.1038/s41467-020-20564-8
https://doi.org/10.1038/s41467-020-20564-8
https://doi.org/10.1038/s41467-020-20564-8
https://doi.org/10.1038/srep45667
https://doi.org/10.1038/srep45667
https://doi.org/10.1103/PhysRevB.107.024506
https://link.aps.org/doi/10.1103/PhysRevB.107.024506
https://link.aps.org/doi/10.1103/PhysRevB.107.024506
https://doi.org/10.1103/PhysRevB.104.104510
https://link.aps.org/doi/10.1103/PhysRevB.104.104510
https://link.aps.org/doi/10.1103/PhysRevB.104.104510
https://doi.org/10.1038/s41586-019-0927-7
https://doi.org/10.1038/s41586-019-0927-7
https://doi.org/10.1038/s41586-019-0927-7
https://doi.org/10.1038/s42254-023-00585-0
https://doi.org/10.1038/s42254-023-00585-0
https://doi.org/https://doi.org/10.1016/j.physe.2011.11.005
https://www.sciencedirect.com/science/article/pii/S1386947711004000
https://www.sciencedirect.com/science/article/pii/S1386947711004000


BIBLIOGRAPHY 138

layered materials. Nature Reviews Physics, 3(3):193–206, Mar 2021. ISSN 2522-
5820. doi:10.1038/s42254-020-00276-0. URL https://doi.org/10.1038/
s42254-020-00276-0.

[182] Inti Sodemann and Liang Fu. Quantum nonlinear hall effect induced by berry
curvature dipole in time-reversal invariant materials. Phys. Rev. Lett., 115:216806,
Nov 2015. doi:10.1103/PhysRevLett.115.216806. URL https://link.aps.
org/doi/10.1103/PhysRevLett.115.216806.

[183] Ritajit Kundu, H. A. Fertig, and Arijit Kundu. Broken symmetry and competing
orders in Weyl semimetal interfaces. Phys. Rev. B, 107:L041402, Jan 2023.
doi:10.1103/PhysRevB.107.L041402. URL https://link.aps.org/doi/10.
1103/PhysRevB.107.L041402.

[184] A. A. Zyuzin, Si Wu, and A. A. Burkov. Weyl semimetal with broken
time reversal and inversion symmetries. Phys. Rev. B, 85:165110, Apr 2012.
doi:10.1103/PhysRevB.85.165110. URL https://link.aps.org/doi/10.
1103/PhysRevB.85.165110.

[185] Minkyung Kim, Zubin Jacob, and Junsuk Rho. Recent advances in 2D, 3D
and higher-order topological photonics. Light: Science & Applications, 9(1):
130, Jul 2020. ISSN 2047-7538. doi:10.1038/s41377-020-0331-y. URL https:
//doi.org/10.1038/s41377-020-0331-y.

[186] Max Geier, Ion Cosma Fulga, and Alexander Lau. Bulk-boundary-defect
correspondence at disclinations in rotation-symmetric topological insulators
and superconductors. SciPost Physics, 10(4), 2021. ISSN 2542-4653.
doi:10.21468/SciPostPhys.10.4.092.

[187] Takashi Oka and Sota Kitamura. Floquet engineering of Quantum mate-
rials. Annual Review of Condensed Matter Physics, 10(1):387–408, 2019.
doi:10.1146/annurev-conmatphys-031218-013423. URL https://doi.org/
10.1146/annurev-conmatphys-031218-013423.

[188] Kai Yang, Shaoyi Xu, Longwen Zhou, Zhiyuan Zhao, Tianyu Xie, Zhe Ding,
Wenchao Ma, Jiangbin Gong, Fazhan Shi, and Jiangfeng Du. Observation of
Floquet topological phases with large Chern numbers. Phys. Rev. B, 106:184106,
Nov 2022. doi:10.1103/PhysRevB.106.184106. URL https://link.aps.org/
doi/10.1103/PhysRevB.106.184106.

[189] Netanel H. Lindner, Gil Refael, and Victor Galitski. Floquet topological insula-
tor in semiconductor quantum wells. Nature Physics, 7(6):490–495, Jun 2011.
ISSN 1745-2481. doi:10.1038/nphys1926. URL https://doi.org/10.1038/
nphys1926.

[190] L. E. F. Foa Torres, P. M. Perez-Piskunow, C. A. Balseiro, and Gonzalo Usaj.
Multiterminal conductance of a Floquet topological insulator. Phys. Rev. Lett.,
113:266801, Dec 2014. doi:10.1103/PhysRevLett.113.266801. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.113.266801.

https://doi.org/10.1038/s42254-020-00276-0
https://doi.org/10.1038/s42254-020-00276-0
https://doi.org/10.1038/s42254-020-00276-0
https://doi.org/10.1103/PhysRevLett.115.216806
https://link.aps.org/doi/10.1103/PhysRevLett.115.216806
https://link.aps.org/doi/10.1103/PhysRevLett.115.216806
https://doi.org/10.1103/PhysRevB.107.L041402
https://link.aps.org/doi/10.1103/PhysRevB.107.L041402
https://link.aps.org/doi/10.1103/PhysRevB.107.L041402
https://doi.org/10.1103/PhysRevB.85.165110
https://link.aps.org/doi/10.1103/PhysRevB.85.165110
https://link.aps.org/doi/10.1103/PhysRevB.85.165110
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.1038/s41377-020-0331-y
https://doi.org/10.21468/SciPostPhys.10.4.092
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1146/annurev-conmatphys-031218-013423
https://doi.org/10.1103/PhysRevB.106.184106
https://link.aps.org/doi/10.1103/PhysRevB.106.184106
https://link.aps.org/doi/10.1103/PhysRevB.106.184106
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1103/PhysRevLett.113.266801
https://link.aps.org/doi/10.1103/PhysRevLett.113.266801
https://link.aps.org/doi/10.1103/PhysRevLett.113.266801


BIBLIOGRAPHY 139

[191] Abhishek Kumar, M. Rodriguez-Vega, T. Pereg-Barnea, and B. Seradjeh. Linear
response theory and optical conductivity of Floquet topological insulators. Phys.
Rev. B, 101:174314,May 2020. doi:10.1103/PhysRevB.101.174314. URLhttps:
//link.aps.org/doi/10.1103/PhysRevB.101.174314.

[192] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics,
1(1):23–30, Oct 2005. ISSN 1745-2481. doi:10.1038/nphys138. URL https:
//doi.org/10.1038/nphys138.

[193] Youngkuk Kim, C. L. Kane, E. J. Mele, and Andrew M. Rappe. Layered
topological crystalline insulators. Phys. Rev. Lett., 115:086802, Aug 2015.
doi:10.1103/PhysRevLett.115.086802. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.115.086802.

[194] YuTing Qian, ZhiYun Tan, Tan Zhang, JiaCheng Gao, ZhiJun Wang, Zhong
Fang, Chen Fang, and HongMing Weng. Layer construction of topological crys-
talline insulator LaSbTe. Science China Physics, Mechanics & Astronomy, 63(10):
107011, May 2020. ISSN 1869-1927. doi:10.1007/s11433-019-1515-4. URL
https://doi.org/10.1007/s11433-019-1515-4.

[195] Jin-YuZou andBang-Gui Liu. FloquetWeyl fermions in three-dimensional stacked
graphene systems irradiated by circularly polarized light. Phys. Rev. B, 93:205435,
May 2016. doi:10.1103/PhysRevB.93.205435. URL https://link.aps.org/
doi/10.1103/PhysRevB.93.205435.

[196] Konstantinos Ladovrechis and Ion Cosma Fulga. Anomalous Floquet
topological crystalline insulators. Phys. Rev. B, 99:195426, May 2019.
doi:10.1103/PhysRevB.99.195426. URL https://link.aps.org/doi/10.
1103/PhysRevB.99.195426.

[197] Shang Liu, Tomi Ohtsuki, and Ryuichi Shindou. Effect of disorder in a three-
dimensional layered Chern insulator. Phys. Rev. Lett., 116:066401, Feb 2016.
doi:10.1103/PhysRevLett.116.066401. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.116.066401.

[198] A. A. Burkov and Leon Balents. Weyl semimetal in a topolog-
ical insulator multilayer. Phys. Rev. Lett., 107:127205, Sep 2011.
doi:10.1103/PhysRevLett.107.127205. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.107.127205.

[199] Aayushi Agrawal and Jayendra N Bandyopadhyay. Floquet topological phases
with high chern numbers in a periodically driven extended Su-Schrieffer-
Heeger model. Journal of Physics: Condensed Matter, 34(30):305401, may
2022. doi:10.1088/1361-648x/ac6eac. URL https://doi.org/10.1088/
1361-648x/ac6eac.

[200] J. K. Asbóth, B. Tarasinski, and P. Delplace. Chiral symmetry and bulk-boundary
correspondence in periodically driven one-dimensional systems. Phys. Rev. B,
90:125143, Sep 2014. doi:10.1103/PhysRevB.90.125143. URL https://link.
aps.org/doi/10.1103/PhysRevB.90.125143.

https://doi.org/10.1103/PhysRevB.101.174314
https://link.aps.org/doi/10.1103/PhysRevB.101.174314
https://link.aps.org/doi/10.1103/PhysRevB.101.174314
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nphys138
https://doi.org/10.1103/PhysRevLett.115.086802
https://link.aps.org/doi/10.1103/PhysRevLett.115.086802
https://link.aps.org/doi/10.1103/PhysRevLett.115.086802
https://doi.org/10.1007/s11433-019-1515-4
https://doi.org/10.1007/s11433-019-1515-4
https://doi.org/10.1103/PhysRevB.93.205435
https://link.aps.org/doi/10.1103/PhysRevB.93.205435
https://link.aps.org/doi/10.1103/PhysRevB.93.205435
https://doi.org/10.1103/PhysRevB.99.195426
https://link.aps.org/doi/10.1103/PhysRevB.99.195426
https://link.aps.org/doi/10.1103/PhysRevB.99.195426
https://doi.org/10.1103/PhysRevLett.116.066401
https://link.aps.org/doi/10.1103/PhysRevLett.116.066401
https://link.aps.org/doi/10.1103/PhysRevLett.116.066401
https://doi.org/10.1103/PhysRevLett.107.127205
https://link.aps.org/doi/10.1103/PhysRevLett.107.127205
https://link.aps.org/doi/10.1103/PhysRevLett.107.127205
https://doi.org/10.1088/1361-648x/ac6eac
https://doi.org/10.1088/1361-648x/ac6eac
https://doi.org/10.1088/1361-648x/ac6eac
https://doi.org/10.1103/PhysRevB.90.125143
https://link.aps.org/doi/10.1103/PhysRevB.90.125143
https://link.aps.org/doi/10.1103/PhysRevB.90.125143


BIBLIOGRAPHY 140

[201] Takashi Oka and Hideo Aoki. Photovoltaic Hall effect in graphene. Phys. Rev. B,
79:081406, Feb 2009. doi:10.1103/PhysRevB.79.081406. URL https://link.
aps.org/doi/10.1103/PhysRevB.79.081406.

[202] Arnob Kumar Ghosh, Ganesh C. Paul, and Arijit Saha. Higher order topo-
logical insulator via periodic driving. Phys. Rev. B, 101:235403, Jun 2020.
doi:10.1103/PhysRevB.101.235403. URL https://link.aps.org/doi/10.
1103/PhysRevB.101.235403.

[203] P. M. Perez-Piskunow, Gonzalo Usaj, C. A. Balseiro, and L. E. F. Foa Tor-
res. Floquet chiral edge states in graphene. Phys. Rev. B, 89:121401, Mar
2014. doi:10.1103/PhysRevB.89.121401. URL https://link.aps.org/doi/
10.1103/PhysRevB.89.121401.

[204] Qi Chen, Liang Du, and Gregory A. Fiete. Floquet band structure of a semi-Dirac
system. Phys. Rev. B, 97:035422, Jan 2018. doi:10.1103/PhysRevB.97.035422.
URL https://link.aps.org/doi/10.1103/PhysRevB.97.035422.

[205] Takuya Kitagawa, Takashi Oka, Arne Brataas, Liang Fu, and Eugene Demler.
Transport properties of nonequilibrium systems under the application of light:
Photoinduced quantum Hall insulators without Landau levels. Phys. Rev. B, 84:
235108, Dec 2011. doi:10.1103/PhysRevB.84.235108. URL https://link.
aps.org/doi/10.1103/PhysRevB.84.235108.

[206] P.M. Perez-Piskunow, L. E. F. Foa Torres, and Gonzalo Usaj. Hierarchy of Floquet
gaps and edge states for driven honeycomb lattices. Phys. Rev. A, 91:043625, Apr
2015. doi:10.1103/PhysRevA.91.043625. URL https://link.aps.org/doi/
10.1103/PhysRevA.91.043625.

[207] Shouyuan Huang and Xianfan Xu. Optical chirality detection using a topo-
logical insulator transistor. Advanced Optical Materials, 9(10):2002210, 2021.
doi:https://doi.org/10.1002/adom.202002210. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/adom.202002210.

[208] J. Karch, P. Olbrich, M. Schmalzbauer, C. Zoth, C. Brinsteiner, M. Fehrenbacher,
U.Wurstbauer, M.M. Glazov, S. A. Tarasenko, E. L. Ivchenko, D.Weiss, J. Eroms,
R. Yakimova, S. Lara-Avila, S. Kubatkin, and S. D. Ganichev. Dynamic Hall
effect driven by circularly polarized light in a graphene layer. Phys. Rev. Lett.,
105:227402, Nov 2010. doi:10.1103/PhysRevLett.105.227402. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.105.227402.

[209] Takafumi Hatano, Teruya Ishihara, Sergei G. Tikhodeev, and Nikolay A. Gippius.
Transverse photovoltage induced by circularly polarized light. Phys. Rev. Lett.,
103:103906, Sep 2009. doi:10.1103/PhysRevLett.103.103906. URL https:
//link.aps.org/doi/10.1103/PhysRevLett.103.103906.

[210] M. Tahir and P. Vasilopoulos. Off-resonant polarized light-controlled thermoelec-
tric transport in ultrathin topological insulators. Phys. Rev. B, 91:115311, Mar
2015. doi:10.1103/PhysRevB.91.115311. URL https://link.aps.org/doi/
10.1103/PhysRevB.91.115311.

https://doi.org/10.1103/PhysRevB.79.081406
https://link.aps.org/doi/10.1103/PhysRevB.79.081406
https://link.aps.org/doi/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.101.235403
https://link.aps.org/doi/10.1103/PhysRevB.101.235403
https://link.aps.org/doi/10.1103/PhysRevB.101.235403
https://doi.org/10.1103/PhysRevB.89.121401
https://link.aps.org/doi/10.1103/PhysRevB.89.121401
https://link.aps.org/doi/10.1103/PhysRevB.89.121401
https://doi.org/10.1103/PhysRevB.97.035422
https://link.aps.org/doi/10.1103/PhysRevB.97.035422
https://doi.org/10.1103/PhysRevB.84.235108
https://link.aps.org/doi/10.1103/PhysRevB.84.235108
https://link.aps.org/doi/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevA.91.043625
https://link.aps.org/doi/10.1103/PhysRevA.91.043625
https://link.aps.org/doi/10.1103/PhysRevA.91.043625
https://doi.org/https://doi.org/10.1002/adom.202002210
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.202002210
https://onlinelibrary.wiley.com/doi/abs/10.1002/adom.202002210
https://doi.org/10.1103/PhysRevLett.105.227402
https://link.aps.org/doi/10.1103/PhysRevLett.105.227402
https://link.aps.org/doi/10.1103/PhysRevLett.105.227402
https://doi.org/10.1103/PhysRevLett.103.103906
https://link.aps.org/doi/10.1103/PhysRevLett.103.103906
https://link.aps.org/doi/10.1103/PhysRevLett.103.103906
https://doi.org/10.1103/PhysRevB.91.115311
https://link.aps.org/doi/10.1103/PhysRevB.91.115311
https://link.aps.org/doi/10.1103/PhysRevB.91.115311


BIBLIOGRAPHY

[211] DenitsaBaykusheva, Alexis Chacón, Jian Lu, Trevor P. Bailey, JonathanA. Sobota,
Hadas Soifer, Patrick S. Kirchmann, Costel Rotundu, Ctirad Uher, Tony F. Heinz,
David A. Reis, and Shambhu Ghimire. All-optical probe of three-dimensional
topological insulators based on high-harmonic generation by circularly polar-
ized laser fields. Nano Letters, 21(21):8970–8978, Nov 2021. ISSN 1530-
6984. doi:10.1021/acs.nanolett.1c02145. URL https://doi.org/10.1021/
acs.nanolett.1c02145.

[212] Aayushi Agrawal and Jayendra N. Bandyopadhyay. Cataloging topological phases
of # stacked Su-Schrieffer-Heeger chains by a systematic breaking of symmetries.
Phys. Rev. B, 108:104101, Sep 2023. doi:10.1103/PhysRevB.108.104101. URL
https://link.aps.org/doi/10.1103/PhysRevB.108.104101.

[213] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. Topological quantization
of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys.
Rev. B, 74:085308, Aug 2006. doi:10.1103/PhysRevB.74.085308. URL https:
//link.aps.org/doi/10.1103/PhysRevB.74.085308.

[214] Yasuhiro Hatsugai, Takahiro Fukui, and Hideo Aoki. Topological analysis of the
quantum hall effect in graphene: Dirac-fermi transition across van hove singu-
larities and edge versus bulk quantum numbers. Phys. Rev. B, 74:205414, Nov
2006. doi:10.1103/PhysRevB.74.205414. URL https://link.aps.org/doi/
10.1103/PhysRevB.74.205414.

[215] Shun-Li Yu, X. C. Xie, and Jian-Xin Li. Mott physics and topological phase
transition in correlated dirac fermions. Phys. Rev. Lett., 107:010401, Jun 2011.
doi:10.1103/PhysRevLett.107.010401. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.107.010401.

[216] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
Geim. The electronic properties of graphene. Rev. Mod. Phys., 81:109–162, Jan
2009. doi:10.1103/RevModPhys.81.109. URL https://link.aps.org/doi/
10.1103/RevModPhys.81.109.

[217] Kai Sun, Hong Yao, Eduardo Fradkin, and Steven A. Kivelson. Topological
insulators and nematic phases from spontaneous symmetry breaking in 2d fermi
systems with a quadratic band crossing. Phys. Rev. Lett., 103:046811, Jul 2009.
doi:10.1103/PhysRevLett.103.046811. URLhttps://link.aps.org/doi/10.
1103/PhysRevLett.103.046811.

[218] Mark S. Rudner, Netanel H. Lindner, Erez Berg, and Michael Levin.
Anomalous edge states and the bulk-edge correspondence for periodically
driven two-dimensional systems. Phys. Rev. X, 3:031005, Jul 2013.
doi:10.1103/PhysRevX.3.031005. URL https://link.aps.org/doi/10.
1103/PhysRevX.3.031005.

[219] Suman Aich and Babak Seradjeh. Real-space multifold degeneracy in graphene
irradiated by twisted light, 2023.

https://doi.org/10.1021/acs.nanolett.1c02145
https://doi.org/10.1021/acs.nanolett.1c02145
https://doi.org/10.1021/acs.nanolett.1c02145
https://doi.org/10.1103/PhysRevB.108.104101
https://link.aps.org/doi/10.1103/PhysRevB.108.104101
https://doi.org/10.1103/PhysRevB.74.085308
https://link.aps.org/doi/10.1103/PhysRevB.74.085308
https://link.aps.org/doi/10.1103/PhysRevB.74.085308
https://doi.org/10.1103/PhysRevB.74.205414
https://link.aps.org/doi/10.1103/PhysRevB.74.205414
https://link.aps.org/doi/10.1103/PhysRevB.74.205414
https://doi.org/10.1103/PhysRevLett.107.010401
https://link.aps.org/doi/10.1103/PhysRevLett.107.010401
https://link.aps.org/doi/10.1103/PhysRevLett.107.010401
https://doi.org/10.1103/RevModPhys.81.109
https://link.aps.org/doi/10.1103/RevModPhys.81.109
https://link.aps.org/doi/10.1103/RevModPhys.81.109
https://doi.org/10.1103/PhysRevLett.103.046811
https://link.aps.org/doi/10.1103/PhysRevLett.103.046811
https://link.aps.org/doi/10.1103/PhysRevLett.103.046811
https://doi.org/10.1103/PhysRevX.3.031005
https://link.aps.org/doi/10.1103/PhysRevX.3.031005
https://link.aps.org/doi/10.1103/PhysRevX.3.031005


A

List of Publications

In peer reviewed journals:

• Floquet topological phases with high Chern numbers in a periodically driven

extended Su–Schrieffer–Heeger model,

Aayushi Agrawal and Jayendra N. Bandyopadhyay, Journal of Physics: Con-

densed Matter 34, 305401 (2022).

• Cataloging topological phases of # stacked Su-Schrieffer-Heeger chains by a

systematic breaking of symmetries,

Aayushi Agrawal and Jayendra N. Bandyopadhyay, Physical Review B, 108,

104101 (2023).

• Laser induced Floquet topological phases with high Chern number in a two-

dimensional weak topological insulator,

Aayushi Agrawal and Jayendra N. Bandyopadhyay, arXiv:2312.02474.

Under preparation :

• # stacked SSH model with elliptical polarized light,

Aayushi Agrawal and Jayendra N. Bandyopadhyay, (2023).

• # stacked SSH model irradiated with twisted light,

Aayushi Agrawal and Jayendra N. Bandyopadhyay, (2023).



B

Biography of the Supervisor

Dr. Jayendra Nath Bandyopadhyay is a Professor in the Department of Physics at

Birla Institute of Technology & Science Pilani, Pilani Campus. He did his Ph.D. in

2004 from Physical Research Laboratory (PRL), Ahmedabad, and the degree was

awarded by Mohanlal Sukhadia University, Udaipur, Rajasthan. This was followed

by postdoctoral research work for a year at PRL, two and a half years at Max

Planck Institute for the Physics of Complex Systems, Dresden, Germany, and close

to 4 years at the National University Singapore most of which was at the Centre

for Quantum Technologies. Finally, he joined the Department of Physics, BITS

Pilani, Pilani Campus, in July 2012. He has published several highly cited papers

in reputed international journals. His research interests are Quantum Floquet

Systems, Attosecond Physics, and Quantum Chaos.



C

Biography of the Co-Supervisor

Dr. Tapomoy Guha Sarkar is a Professor in the Department of Physics at Birla

Institute of Technology & Science Pilani, Pilani Campus. He received his Ph.D.

degree from IIT Kharagpur, in 2011. He joined the Physics Department of BITS

Pilani, Pilani Campus, in June 2012 after a year’s postdoctoral research at HRI,

Allahabad. He has published several highly cited papers in reputed international

journals. His research interests are theoretical cosmology, specializing in the study

of the diffuse intergalactic medium through the Lyman alpha forest spectra and

redshifted 21-cm signal. Recently, his interest develops into the domain of driven

systems in condensed matter physics.



D

Biography of the Student

Ms. Aayushi Agrawal received her Master’s Degree from Mohanlal Sukhadiya

University, Udaipur in 2017. She cleared CSIR-UGC NET exam in 2017. She

joined BITS-Pilani, as a research scholar in the Department of Physics in January

2018. Her PhD research area is the theoretical condensed matter physics. Her

research interests are aligned in theoretical study of Floquet topological insula-

tors. Specifically in her PhD thesis, she presented a theoretical study of quasi-1D

topological insulators with an external periodic driving and observed intriguing

topological properties which are absent in the static systems. She has published

some papers in international journals and few are under review. She also presented

her work in various national conferences.


	Abstract
	Preface
	Contents
	Introduction
	Historical background of topology in condensed matter physics
	Properties and applications of TIs
	Classification of topological insulators
	Quasi-1D topological insulators
	Floquet topological insulators
	Motivation
	Organization of the thesis

	Mathematical tools
	Topology
	Topological invariants
	One dimensional topological insulator: Su-Schrieffer-Heeger (SSH) model
	Floquet formalism
	Exact methods to calculate the effective Hamiltonian
	Perturbative schemes


	Periodically driven E-SSH model
	Introduction
	Model
	Undriven E-SSH model
	 Symmetries in the system

	 Periodically driven E-SSH model
	Floquet analysis of the driven E-SSH model


	 Results
	Floquet (energy) band diagrams of the E-SSH model and its topological property
	 Phase diagram between g-/h and 
	 Topological phase transition from a non-trivial phase to another non-trivial phase
	 Cases of the higher Chern numbers at the high frequency limit: bold0mu mumu C=3C=3subsectionC=3C=3C=3C=3 and bold0mu mumu 55subsection5555
	Case: bold0mu mumu C=3C=3subsectionC=3C=3C=3C=3
	Case: bold0mu mumu C=5C=5subsectionC=5C=5C=5C=5


	 Summary and final remarks

	N stacked SSH model
	Introduction
	 Weak topological insulator : N stacked SSH model
	 Generalized bold0mu mumu NNsectionNNNN-stacked SSH chains with broken chiral symmetry
	 Topological phases with TR symmetry
	 Topological phases without TR symmetry
	Model 1
	Model 2
	Model 3
	Model 4

	A summary of the results presented in this section

	 Chern number and phase diagram: An analytical calculation
	Chern number calculation
	Phase diagram

	 Cases of the nontrivial topology with the Chern number C=0
	Systems with broken particle-hole symmetry
	Experimental aspects of N-stacked SSH model 
	 Summary
	 Outlook

	Floquet version of N stacked SSH model
	Introduction
	Static Hamiltonian
	Driven Hamiltonian
	Phase diagram
	Demonstration of the edge states of the Floquet topological phases with high Chern number

	Low-energy Hamiltonian
	 N stacked SSH model with linearly polarized light
	Linearly polarized light along x-direction
	Linearly polarized light along y-direction

	Summary

	N stacked SSH model using elliptically polarized light
	Introduction
	Results

	Conclusion and Outlook
	Conclusion
	Future outlook

	Bibliography
	List of Publications
	Biography of the Supervisor
	Biography of the Co-Supervisor
	Biography of the Student

